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vi PREFACE

to the derivation of the orbital trajectories, some attention is given to the
time of flight, the determination of orbits, and to elementary perturbation
theory.

Beginning with Chapter 6, extensive usage is made of the Lagrangian
formulation of the equations of motion. The principle of virtual work is
often associated with the study of statics. But it is included here because
the ideas of virtual displacement and virtual work are fundamental in the
derivation of Lagrange’s equations and in obtaining a clear understanding
of generalized forces. The introduction of Lagrange’s equations of motion
at this point goes very smoothly in the classroom because the students now
have a sufficient fundamental background. Furthermore, they have been
motivated to find ways of easing the kinematical difficulties in problem
formulation.

Chapters 7 and 8 present the kinematics and dynamics of rigid bodies
with particular emphasis upon rotational motion in three dimensions. In
addition to the general analysis of free and forced motions of rigid bodies,
special attention is given to the forced motion of axially symmetric bodies
using the complex notation method. Matrix notation is introduced and is
extensively used in these chapters.

Matrix notation is continued in the final chapter which is devoted to
vibration theory. The finding of eigenvalues and the diagonalization of
matrices, which were previously associated with the problem of obtaining
principal axes of inertia, are now extended to the solution for the natural
modes of vibration of systems with many degrees of freedom. Other topics
such as Rayleigh’s principle, the use of symmetry, and the free and forced
vibrations of damped systems are also included.

The material contained in this text can be covered in about four semester
hours at the senior or fifth-year levels. It is my opinion, however, that the
discussion of homework problems and illustrative examples should be given
an important place in the overall allotment of class time; hence the course
could easily be extended to six semester hours. On the other hand, a course
of three semester hours could be arranged by omitting portions of Chapters
5 and 9, and by spending less time on problems. '

“The major portion of this book was written during a sabbatical leave
from the University of Michigan. I am particularly appreciative of the aid
of Professor H. D. Christensen and others of the Aerospace Engineering
faculty at the University of Arizona for providing a place to write and for
their helpful discussions. Also, the comments and suggestions of Professor
Y. C. Fung of Caltech were of great value during the final preparation of the
manuscript. Finally, I wish to thank my wife who typed the manuscript,

helped with the proofreading, and provided encouragement throughout
this period. :

DoNALD T. GREENWOOD.
Ann Arbor, Michigan
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PREFACE

Although there has been a steady improvement in the depth of most intro-
ductory courses in dynamics during recent years, the place of an additional
course at the intermediate level remains an important one. A course at this
level is normally taken by first-year graduate students or by undergraduate
seniors. The greater maturity of these students permits the presentation of
the subject from a more advanced viewpoint, with additional mathematical
knowledge assumed, and with the inclusion of illustrative examples having
more than the usual complexity. Through the study of the general theory and
its application in these examples, and by the solution of a variety of problems
of comparable difficulty, most students can attain a real competence in
dynamics.

This textbook has evolved from a set of notes which accompany the first
of three courses forming a sequence in the general area of flight mechanics.
The nature of this sequence explains the presence of several rocket and
satellite problems among the illustrative examples. Nevertheless, an effort
has been made to treat the subject of dynamics in a rather general context
with the liberal use of idealizations such as particles, massless rods, uniform
disks, and so on, without requiring that the configurations approximate
practical designs in any particular area of present-day technology.

The introductory chapter reviews some of the basic concepts of New-
tonian mechanics and gives a short discussion of units and their definitions.
There is also a review of those topics in vector analysis which are most com-
monly used in dynamics. This is in accord with the general policy of giving
brief explanations or summaries of new mathematical topics as they arise.

It has been my observation that one of the principal sources of difficulty
for students of the vectorial approach to dynamics is one of kinematics.
Consequently, the kinematical foundations of particle motion are discussed
rather thoroughly in Chapter 2. Motion in a plane and also general three-

dimensional motion are included. Particular attention is given to rotating

reference frames and to vector derivatives relative to these frames.

With this background in kinematics, a general vectorial development of
the dynamics of a single particle and of systems of particles is given in the
next two chapters. Thus we find that most of the basic principles of dynamics
are developed and applied to a general set of particles before the introduction
cf systems with distributed mass. :

Chapter 5 is concerned with orbital motion. The discussion is almost

entirely limited to motion in an inverse-square gravitational field. In addition
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2 INTRODUCTORY CONCEPTS CHAP. 1

for the most part, although some of the insights and procedures of analytical
mechanics will also be used.

Because vector operations are so important in the solution of dynamical
problems, we shall review briefly a few of the basic vector operations. First,
however, let us distinguish among scalars, vectors, and other tensors of
higher order.

A scalar quantity is expressible as a single, real number. Common
examples of scalar quantities are mass, energy, temperature, and time.

A quantity having direction as well as magnitude is called a vector.!
Common vector quantities are force, moment, velocity, and acceleration, If
one thinks of a vector quantity existing in a three-dimensional space, the

essential characteristics can be expressed geometrically by an arrow or a -

directed line segment of proper magnitude and direction in that space. But
the vector can be expressed equally well by a group of three real numbers
corresponding to the components of the vector with respect to some frame
of reference; for example, a set of cartesian axes. If one writes the numbers
in a systematic fashion, such as in a column, then one can develop certain
conventions which relate the position in the column to a given component
of the vector. This concept can be extended readily to mathematical spaces
with more than three dimensions. Thus, one can represent a vector in an
n-dimensional space by a column of #» numbers.

So far, we have seen that a scalar can be expressed as a single number
and that a vector can be expressed as a column of numbers, that is, as a
one-dimensional array of numbers. Scalars and vectors are each special
cases of tensors. Scalars are classed as zero-order tensors, whereas vectors
are first-order tensors. In a similar fashion, a second-order tensor is expres-
sible as a two-dimensional array of numbers; a third-order tensor is
expressible as a three-dimensional array of numbers, and so on. Note, how-
ever, that an array must also have certain transformation properties to be
called a tensor. An example of a second-order tensor is the inertia tensor
which expresses the essential features of the distribution of mass in a rigid
body, as it affects the rotational motion.

We shall have no occasion to use tensors of order higher than two; hence
no more than a two-dimensional array of numbers will be needed to express
the quantities encountered. This circumstance enables us to use matrix
notation, where convenient, rather than the more general but less familiar
tensor notation. (Matrix notation will be introduced in Chapter 7 in the
study of the rotational motion of rigid bodies.)

For the most part, we shall be considering motions which can be described
mathematically using a space of no more than three dimensions; that is,

! In addition, vectors must have certain transformation properties. For example,
equal vectors must remain equal after a rotation of axes. See Sec. 7-6 for a discussion of
these rotation equations.

i .,:-‘-.:-.-'e-'-‘_f-:,i'u{'r}»:, T
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INTRODUCTORY CONCEPTS

The science of mechanics is concerned with the study of the interactions of
material bodies. Dynamics is that branch of mechanics which consists of the
study of the motions of interacting bodies and the description of these
motions in terms of postulated laws.

In this book we shall concentrate on the dynamical aspects of Newtonian
or classical nonrelativistic mechanics. By omitting quantum mechanics, we
eliminate the study of the interactions of elementary particles on the atomic
or nuclear scale. Further, by omitting relativistic effects, we eliminate from
consideration those interactions involving relative speeds approaching the
velocity of light, whether they occur on an atomic or on a cosmical scale.
Nor shall we consider the very large systems studied by astronomers and
cosmologists, involving questions of long-range gravitation and the curvature
of space.

Nevertheless, over a broad range of system dimensions and velocities,
Newtonian mechanics is found to be in excellent agreement with observation.
It is remarkable that nearly three centuries ago, Newton, aided by the dis-
coveries of Galileo and other predecessors, was able to state these basic laws
of motion and the law of gravitation in essentially the same form as they
are used at present. Upon this basis, but using the mathematical and physical
discoveries and notational improvements of later investigators, we shall
present a modern version of classical dynamics.

1-1. ELEMENTS OF VECTOR ANALYSIS

Scalars, Vectors, and Tensors. Newtonian mechanics is, to a considerable
extent, vectorial in nature. Its basic equation relates the applied force and
the acceleration (both vector quantities) in terms of a scalar constant of
proportionality called the mass. In contrast to Newton’s vectorial approach,
Euler, Lagrange, and Hamilton later emphasized the analytical or algebraic
approach in which the differential equations of motion are obtained by
performing certain operations on a scalar function, thereby simplifying the
- analysis in certain respects. Our approach to the subject will be vectorial

1
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4 " INTRODUCTORY CONCEPTS CHAP. 1

Unit Vectors. If a positive scalar and a vector are multiplied together
(in either order), the result is another vector having the same direction, but
whose magnitude is multiplied by the scalar factor. Conversely, if a vector
is multiplied by a negative scalar, the direction of the resulting vector is
reversed, but the magnitude is again multiplied by a factor equal to the
magnitude of the scalar. Thus one can always think of a given vector as the
product of a scalar magnitude and a vector of unit length which designates
its direction. We can write o

A = de, (1-1)

where the scalar factor A4 specifies the magnitude of A and the unit vector
e, shows its direction (Fig. 1-1).

Addition of Vectors. The vectors A and B can be added as shown in
Fig. 1-2 to give the resultant vector C. To add B to A, translate B until its
origin coincides with the terminus or arrow of A. The vector sum is indicated
by the line directed from the origin of A to the arrow of B. It can be seen that

C=A+B=B+A (1-2)

since, for either order of addition, the vector C is the same diagonal of the
parallelogram formed by using A and B as sides. This is the parallelogram

A
p. f
%/\ v
A
Fig. 1-1. A vector and its correspond- Fig. 1-2. The parallelogram rule of

ing unit vector. vector addition.

rule of vector addition. Since the order of the addition of two vectors is
unimportant, vector addition is said to be commutative.

This procedure can be extended to find the sum of more than two
vectors. For example, a third vector D can be added to the vector C obtained
previously, giving the resultant vector E. From Fig. 1-3, we see that

E=C+D=(A+B)+D (1-3)

But we need not have grouped the vectors in this way. Referring again to
Fig. 1-3, we see that

E=A+@+D) (1-4)
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each matrix or array will have no more than three rows or columns and each
vector will have no more than three components. An exception will be found

in the study of vibration theory in Chapter 9 where we shall consider eigen-
vectors in a multidimensional space.

Types of Vectors. Considering the geometrical interpretation of a vector
as a directed line segment, it is important to recall that its essential features
include magnitude and direction, but not location. This is not to imply that
the location of a vector quantity, such as a force, is irrelevant in a physical
sense. The location or point of application can be very important, and this
will be reflected in the details of the mathematical formulation; for example,
in the evaluation of the coefficients in the equations of motion. Nevertheless,
the rules for the mathematical manipulation of vectors do not involve loca-
tion; therefore, from the mathematical point of view, the only quantities of
interest are magnitude and direction.

But from the physical point of view, vector quantities can be classified
into three types, namely, free vectors, sliding vectors, and bound vectors. A
vector quantity having the previously discussed characteristics of magnitude
and direction, but no specified location or point of application, is known as
a free vector. An example of a free vector is the translational velocity of a
nonrotating body, this vector specifying the velocity of any point in the
body. Another example is a force vector when conmdermg its effect upon
translational motion.

On the other hand, when one considers the effect of a force on the
rotational motion of a rigid body, not only the magnitude and direction of
the force, but also its line of action is important. In this case, the moment
acting on the body depends upon the line of action of the force, but is
independent of the precise point of application along that line. A vector of
this sort is known as a sliding vector.

The third type of vector is the bound vector. In this case, the magnitude,
direction, and point of application are specified. An example of a bound
vector is a force acting on an elastic body, the elastic deformation being
dependent upon the exact location of the force along its line of action.

Note again that all mathematical operations with vectors involve only
their free vector properties of magnitude and direction.

Equality of Vectors. We shall use boldface type to indicate a vector
quantity. For example, A is a vector of magnitude 4, where A is a scalar.
Two vectors A and B are equal if A and B have the same magnitude and
direction, that is, if they are represented by parallel line segments of equal
length which are directed in the same sense. It can be seen that the transla-

tion of either A or B, or both, does not alter the equality since they are con-
sidered as free vectors.
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6 INTRODUCTORY CONCEPTS CHAP. 1

A-A=(1-1A=0 (1-8)

In general, the distributive law applies to either the scalar or the vector.
Thus,

(n + m)A = nA + mA ' (1-9)
and

n(A + B) = nA + nB - (1-10)

Components of a Vector. If a given vector A is equal to the sum of several
vectors with differing directions, these vectors can be considered as compo-
nent vectors of A. Since component vectors defined in this way are not
unique, it is the usual practice in the case of a three-dimensional space to
specify three directions along which the component vectors must lie. These
directions are indicated by three linearly independent unit vectors, that is,
a set of unit vectors such that none can be expressed as a linear combination
of the others.

Suppose we choose the unit vectors e,, e,, and e; with which to express
the given vector A. Then we can write

A - Alel + A202 + A3e3 (1—11)

where the scalar coefficients A4,, 4,, and A; are now determined uniquely.
A,, A,, and A; are known as the scalar components, or simply the components,
of the vector A in the given directions.

If another vector B is expressed in terms of the same set of unit vectors,
for example,

B - Blel -+ Bgeg +‘B3e3 (1—12)

then the components of the vector
2 sum of A and B are just the sums of
the corresponding components.

A A+ B = (A4, + B)e,
Ak + (A, + By)e,

A This result applies, whether or not
e, €, and e; form an orthogonal

y triad of unit vectors. 4
Now consider a case where the
X unit vectors are mutuallvy orthogonal,
as in the cartesian coordinate system
of Fig. 1-4. The vector A can be
~expressed in terms of the scalar com-
Fig. 1-4. The components of a vector ponents 4, 4,, and 4., that is, it can

in a cartesian coordinate system. be resolved as follows:

i

X
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Fig. 1-3. The polygon rule of vector addition.

From Egs. (1-3) and (1-4) we obtain
A+B)+D=A+B+D)=A+B+D (1-5)

illustrating that vector addition is associative.

Because of the commutative and associative properties of vector addition,
we can dispense with the parentheses in a series of additions and perform
the additions in any order. Furthermore, using the graphical procedure of
Fig. 1-3, we see that the resultant vector E is drawn from the origin of the
first vector A to the terminus of the last vector D, thus closing the polygon.
This generalization of the parallelogram rule is termed the polygon rule of
vector addition. A similar procedure applies for the case where all vectors do
not lie in the same plane.

It is important to note that certain physical quantities that are apparently
vectorial in nature do not qualify as true vectors in the sense that the usual
rules for vector operations do not apply to them. For example, a finite rota-
tional displacement of a rigid body is not a true vector quantity because the
order of successive rotations is important, and therefore it does not follow
the commutative property of vector addition. Further discussion of this
topic will be found in Chapter 7.

Subtraction of Vectors. The negative of the vector A is the vector
—A = —Ae, (1-6)

which has the same magnitude as A but is opposite in direction. In other
words, the vector —A is equal to the product of the vector A and the
scalar —1.

Subtracting a vector B from another vector A is equivalent to adding its
negative.

A—B=A + (—B) (-7

In particular, for the case where A = B, we may use the distributive law for
multiplication of a vector and a scalar to obtain

e



8 INTRODUCTORY CONCEPTS cHAP. 1

‘Now consider the dot product of two vectors A and B, each of which is
expressed in terms of a given set of unit vectors e,, e,, and e;. From Egs.

(1-11) and (1-12), we obtain .
A ° B — AlBl + Ang + A3B3 + (Al.Bg -+ AgBl)el ° €y
+ (A4, B; + A;B)e, c e; + (A, B; + A;By)e, - e

For the common case where the unit vectors form an orthogonal triad, the
terms involving dot products of different unit vectors are all zero. For this
~ case, we see from Eq. (1-18) that

A ° B - AlBl + A2B2 + A3B3 (1—19)

(1-18)

Vector Product. Referring again to Fig. 1-5, we define the vector product
or cross product as follows:

A X B = ABsinfk (1-20)

where k is a unit vector perpendicular to, and out of, the page. In general,
the direction of k is found by the right-hand rule, that is, it is perpendicular
to the plane of A and B and positive in the direction of advance of a right-
~ hand screw as it rotates in the sense that carries the first vector A into the
second vector B. The angle of this rotation is 4. It is customary, but not
necessary, to limit # to the range 0 < 6 < .

Using the right-hand rule, it can be seen that

AXB=-BXA (1-21)

indicating that the vector product is not commutative.

Fig. 1-7. The distributive law for the vector product.
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A = Agi + A)j + A.k (1-14)

where i, j, and k are unit vectors in the directions of the positive x, y, and z
axes, respectively.

From Fig. 1-4, it can be seen that the component vectors A4,i, 4,j, and
Ak form the edges of a rectangular parallelepiped whose diagonal is the
vector A. A similar situation occurs for the case of nonorthogonal or skewed
unit vectors, except that the parallelepiped is no longer rectangular. Never-
theless, a vector along a diagonal of the parallelepiped has its components
represented by edge lengths. In this geometrical construction, we are dealing
with free vectors, and it is customary to place the origins of the vector A
and the unit vectors at the origin of the coordinate system.

It is important to note that, for an orthogonal coordinate system, the
components of a vector are identical with the orthogonal projections of the
given vector onto the coordinate axes. For the case of a skewed coordinate
system, however, the scalar components are not equal, in general, to the
corresponding orthogonal projections. This distinction will be important
in the discussions of Chapter 8 concerning the analysis of rigid body rotation

by means of Eulerian angles; for, in this case, a skewed system of unit vectors
is used.

Scalar Product. Consider the two
vectors A and B shown in Fig. 1-5.
The scalar product or dot product is

A+B=ABcost (1-15)

Since the cosine function is an even 7
function, it can be seen that A

A-B=B-A (1-16) Fig. 1-5. Multiplication of two
implying that the scalar multiplica- vectors.
tion of vectors is commutative.

The scalar product can also be considered as the product of the magni-
tude of one vector and the orthogonal projection of the second vector upon
it. Now, it can be seen from Fig.
1-6 that the sum of the projections
of vectors A and B onto a third
vector C is equal to the projection
of A + Bonto C. Therefore, noting
that the multiplication of scalars is
distributive, we obtain

A+B):C=A-C+B-C
> (1-17)
Fig. 1-6. The distributive law for Thus, the distributive property ap-
the dot product. plies to the scalar product of vectors.
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10 INTRODUCTORY CONCEPTS CHAP. 1

Scalar Triple Product. The
BxC A product A - (B X C) is known as the
A ‘ scalar triple product. Looking at
~ Fig. 1-8, we see that B X C is a

/ / vector whose magnitude is equal to
A the area of a parallelogram having
c , B and C as sides and whose direction
' is perpendicular to the plane of that

> parallelogram.  Considering this
© \ B plane to be horizontal for the
Ax(BxC) " moment, we note that A « (B X C) is

. Just the area of the base multiplied
~ by the projection of A onto the
: vertical; that is, its magnitude is the
volume of the parallelepiped having A, B, and C as edges. The sign of
A - (B X C) is positive or negative, depending upon whether or not A and
B X C lie on the same side of the plane of B and C. Of course, if A, B,
and C lie in the same plane, the product is zero.
We can find the scalar triple product in terms of cartesian components
by using equations in the form of Eqs. (1-14) and (1-26) to obtain

Fig. 1-8. Triple products of vectors.

i k| |4, 4, A4,
A-BXC)=A-|B, B, B,|=|B, B, B, (1-28)
c, ¢, C.| |c, ¢, c,

From the rules for determinants, we note that the interchange of any
two vectors (that is, any two rows) results in a change in the sign of the
product. Furthermore, an even number of such interchanges results in a
cyclic permutation of the vectors, but no change in the sign of the product.
Therefore, since the dot product is commutative, the dot and the cross in a

scalar triple product may be interchanged, or a cyclic permutation of the
vectors may occur, without affecting the result.

A-BXC)=(AXB).C (1-29)
Also,

A-BXC)=B-(CxXA)=C-:(A X B) (1-30)

These results can be interpreted geometrically by noting that the paral-
lelepiped whose edges are formed by the vectors A, B, and C, has a volume
that is independent of the order of these vectors. The order, as we have
seen, influences the sign of the result but not its magnitude.

Vector Triple Product. It can be seen from Fig. 1-8 that the vector triple
product A X (B X C) lies in the plane of B and C. On the other hand,
(A X B) x C lies in the plane of A and B and is not, in general, equal to
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Another way of visualizing the vector product A X B is to note again
that it must be perpendicular to both A and B. Thus if planes @ and b pass
through a common origin O and are normal to A and B, respectively, then
A X B must be directed along the line of intersection of these planes with
the sense again being determined by the right-hand rule. The magnitude of
A X B is equal to A4 times the projection of B onto plane a, or conversely,
it is equal to B times the projection of A onto plane b.

Now let us use this approach to evaluate the vector product A X
(B + C) (Fig. 1-7). First, we note that the vectors A X B, A X C, and
A X (B + C) must all lie in plane a that is normal to A. Furthermore, it is
apparent that the projection of B + C onto plane a is equal to the vector
sum of the projections of B and C onto the same plane. Thus, the paral-
lelogram formed by the vectors A X B and A X C is similar to that formed
by the projections of B and C onto a, there being a rotation through 90

degrees in plane @ and a multiplication by a scalar factor 4. Therefore, we
obtain that

AXB+C=AxXxB+AXC (1-22)

showing that the distributive law applies to vector products.

Using the distributive law, we can evaluate the vector product A X B’

in terms of the cartesian components of each. Thus,

A X B = (4,i + 4,j + A, k) X (B.i + B,j + B,k) (1-23)

But
iXi=jXj=kxk=0
iXj=—jXi=k
ST T (1-24)
jXk=-kXj=1i
kXi=—iXk=]

and therefore,
AXB=(4,B, — A,B)i + (4.B, — A, B))j + (4,B, — 4,B,)k (1-25)

This result can be expressed more concisely as the following determinant:

i j k
AXB=|A4, A, A, (1-26)
B, B, B,

In general, if the sequence e,, e,, and e; forms a right-handed set of
mutually orthogonal unit vectors, then the vector product can be expressed
in terms of the corresponding components as follows:

e € @€
B, B, B;

e T R AT R T A A R T
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(AxB)_E’éxB+Ax‘Z,B (1-36)

As an example of differentiation, consider the vector A expressed in
terms of its cartesian components:
A=A1+ A, + Ak

For the common case where differentiation is with respect to time, and the

unit vectors have a fixed orientation in space, we obtain, using Eqgs. (1-14),
(1-33), and (1-34), that

dA _dA.;  ddy. | dd, | L
T zi+ Sy Sk (1-37)

In the more general case where A is expressed in terms of the unit vectors
e;, €, and e, which may change their orientation in space, we can write

) A = Alel + A292 + A3e3
Then, we obtain

dA _ dA, dAg dA; de,

de, de,
E_dtel—*—dt +—6—1—2-93+A1—d—t+/12

dt dr
or, expressing the result using a dot over a symbol to indicate its time
derivative,

+ As

‘g:‘—Ale,—kAe2+A3e3+Ae1+Ae2+A e, (1-38)

where we note that the t1me rate of change of a unit vector is always per-
pendicular to that unit vector. Equatlons of this sort will be developed more
pendicular to that un

extensively in the study of kinematics in Chapter 2.

1-2 NEWTON’S LAWS OF MOTION

In his Principia, published in 1687, Sir Isaac Newton stated the laws
upon which classical mechanics is based. Using modern terminology, these
laws can be stated as follows:

I.  Every body continues in its state of rest, or of uniform motion in
a straight line, unless compelled to change that state by forces acting
upon it. '

II. The time rate of change of linear momentum of a body is proportional
to the force acting upon it and occurs in the direction in which the force
acts.

III. To every action there is an equal and opposite reaction; that is, the

mutual forces of two bodies acting upon each other are equal in magnitude
and opposite in direction.
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The Laws of Motion for a Particle. An understanding of Newton’s laws
of motion is most easily achieved by applying them to the study of the
motion of particles, where a particle is defined as a mass concentrated at a
point. Later, when we consider the case of bodies with a continuous distribu-
tion of mass, the generalization of the dynamical methods from the discrete
to the continuous case will be seen to be quite straightforward.

Now let us state three basic laws applying to the motion of a particle.
The first is the law of motion which summarizes Newton’s first two laws.
It can be expressed by the equation

F:k%@m:kma (1-39)

where the product mv is known as the linear momentum p, that is,
p = mv (1-40)

and where m is the mass of the particle, a is its acceleration, F is the applied
external force, and k is a positive constant whose value depends upon the
choice of units. The mass m is considered to be constant, since we are not
concerned with relativistic effects and any variable-mass systems are treated
as collections of particles.

Because of the fundamental nature of Eq. (1-39), the units are chosen
such that k = 1. So, with a proper choice of units, Eq. (1-39) simplifies to

F = ma (1-41)

which is the usual statement of the law of motion.
The second basic law is the law of action and reaction:

When two particles exert forces on each other, these interaction forces are
equal in magnitude, opposite in sense, and directed along the straight line
Joining the particles.

This is essentially a statement of Newton’s third law as it applies to two
particles, but the collinearity of the interaction forces has been mentioned
specifically. The added requirement of collinearity will be found to be
essential for the conservation of angular momentum of an isolated mechanical
system and applies to all mechanical or gravitational interaction forces. It
does not apply, however, to certain forces between moving, charged particles,
a situation which will not concern us in this book.

The third basic law is the law of addition of forces:

Two forces P and Q acting simultaneously on a particle are together
equivalent to a single force F = P + Q.

By similar reasoning, we can conclude that the simultaneous action of
more than two forces on a particle produces the same motion as a single
force equal to their vector sum.

Newton stated the law of addition of forces as a corollary to his laws of

e —

e
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motion. Note that it also implies that a single force may be replaced by its
component forces in a dynamical calculation. Thus, if we consider a particle
of mass m to be moving with respect to a fixed cartesian system under the
action of a force F, we can write ”

F=F,i+ Fj+ Fk (1-42)

and the resulting acceleration components are found from

F, = mx
F, = my (1-43)
F, = mzZ

where the total acceleration is
a=Xi+ jj+ Zk (1-44)

In other words, the single vector equation given in Eq. (1-41) is equivalent
to the three scalar equations of Eq. (1-43).

That these equations can be verified experimentally indicates the actual
independence of the component accelerations and also that the mass m is
a single scalar quantity.®

Frames of Reference. In our previous discussion we have not concerned
ourselves with the question of what is a proper reference frame from which
to measure the accelerations to be expected in accordance with the laws
of motion. The approach which we shall take is to define an inertial or
Newtonian reference frame to be any rigid set of coordinate axes such
that particle motion relative to these axes is described by Newton’s laws
of motion.

In an attempt to find an example of an inertial frame in the physical
world, one might consider first a system fixed in the earth. Such a choice

would be adequate for most cases where the distances traveled are short .

relative to the earth’s radius and where the velocities are small compared to
the velocity of escape from the earth. If one were to analyze long-range
missiles or satellites, however, the earth would be a completely inadequate
approximation to an inertial frame.

A much better approximation would be a system whose origin is at the
center of the earth and whose axes are not rotating with respect to the
“fixed” stars. Even here, however, measurements of satellites traveling far
from the earth would easily show deviations from Newton’s laws due to the
neglected gravitational forces exerted by the sun, moon, and planets.

Finally, one could choose as a Newtonian reference frame a system at
the center of the sun (or, more exactly, at the center of mass of the solar

- 2This, of course, presupposes that the particle velocity is small compared to the
velocity of light and therefore that relativistic effects can be neglected.
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system) and nonrotating with respect to the so-called fixed stars. This would
appear to be adequate for the foreseeable future.

So let us assume that we have found an inertial reference frame, and
therefore that Newton’s laws apply for motions relative to this frame. It
can be shown that any other reference frame that is not rotating but is trans-
lating with a uniform velocity relative to an inertial frame is itself an inertial
frame. For example, if system B is translating at a constant velocity v, with
respect to an inertial system A, then, denoting the velocity of a particle as
viewed by observers on 4 and B by v, and v, respectively, we see that

Vi= Vg + Vpy (1—45)

Differentiating with respect to time and noting that the derivative of v, is
zero, we obtain

a, = a, (1-46)

where a, and a, are the accelerations of the particle as viewed from systems
A and B, respectively. Now the total force applied to the particle is inde-
pendent of the motion of the observer. So from the Newtonian point of
view, observers on systems 4 and B see identical forces, masses, and accelera-
tions, and therefore, Eq. (1-41) is equally valid for each observer.

One can summarize by saying that the existence of an inertial frame
implies the existence of an infinite number of other inertial frames, all having
no rotation rate relative to the fixed stars but translating with constant
velocities relative to each other. Thus, even Newtonian mechanics has no
single, preferred frame of reference. |

1-3. UNITS

When one attempts to apply the law of motion as given by Eq. (1-41),
one is immediately faced with the problem of choosing a proper set of units
with which to express the quantities of interest. As we have seen previously,
when we set the proportionality constant k equal to unity in Eq. (1-39), the
sizes of the units used to specify force, mass, and acceleration are no longer
arbitrary. Furthermore, as we shall see, the selection of units for any two
of these quantities fixes the units to be used in measuring the third quantity
since the proportionality constant is assumed to be dimensionless, that is,
it is a pure number and has no units associated with it.

In considering the problem of units let us first discuss the so-called
dimensions associated with each unit.

Dimensions. It can be seen that the units which are used in the measure-
ment ‘of physical quantities may differ quantitatively as well as qualitatively.
For example, the foot and the inch differ in magnitude but are qualitatively

caaead
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the same in that both are units of length. On the other hand, the foot and

the second are qualitatively different. Now, the qualitative aspects of a given
unit are characterized by its dimensions. Thus, the foot and the inch both
have the dimension of 'length. Similarly, the hour and the second have the
dimension of time.

It turns out that all units used in the study of mechanics can be expressed
in terms of only three dimensions. By common agreement, the dimensions
of length and of time are considered to be fundamental. Thus, a physical
quantity such as velocity has the dimensions of length per unit time, written
[LT""], regardless of whether the units chosen are mi/hr, ft/sec, or even
knots. Similarly, acceleration has the dimensions [L7~2].

A characteristic of the equations of physics is that they must exhibit
dimensional homogeneity. By this, we mean that any terms which are added
or subtracted must have the same dimensions and it also implies, of course,
that the expressions on each side of an equality must have the same dimen-
sions. Furthermore, any argument of a transcendental function, such as the
trigonometric function, exponential function, Bessel function, and so on,
must be dimensionless; that is, all exponents associated with the fundamental
dimensions of the argument must be zero. One will sometimes find apparent
exceptions to the requirement of dimensional homogeneity, but in all cases
some of the coefficients will prove to have unsuspected dimensions or else
the equation is an empirical approximation not based on physical law. In
checking for dimensional homogeneity, one should note that the unit of
angular displacement, the radian, is dimensionless.

If we note that the equations of mechanics are principally of the form
of Eq. (1-41), or its integrals with respect to space or time (or the corre-
sponding moments), then the requirement of dimensional homogeneity
implies that the fundamental dimensions corresponding to mass and force
cannot be chosen independently. 1f one chooses mass to be the third funda-
mental dimension, then the dimensions of force are determined, and vice
versa. Thus, we see that there are two obvious possibilities for choices of
fundamental dimensions: (1) the absolute system in which mass, length, and
time are the fundamental dimensions; (2) the gravitational system in which
force, length, and time are the fundamental dimensions. Both types of systems
are in wide use in this country; the former being used more extensively by
physicists and other scientists, the latter by engineers.

Systems of Units. Within either the absolute system or the gravitational
system, many sets of fundamental units can be chosen. Absolute systems of
units in common use include the cgs or centimeter-gram-second system and
the mks or meter-kilogram-second system where, of course, the centimeter
(or meter) is the fundamental unit of length, the gram (or kilogram) is the
fundamental unit of mass, and the second is the fundamental unit of time.

SR Y,
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On the other hand, the English gravitational system, which is the system
that we shall use, employs the foot as the fundamental unit of length, the
pound as the fundamental unit of force, and the second as the fundamental
unit of time. In this case, the unit of mass, the slug, is a derived unit rather
than a fundamental unit. A slug is that mass which is given an acceleration

of 1 ft/sec by an applied force of 1 Ib. In terms of fundamental units, we
see that

1 slug = 1 1b sec?/ft

since, from Eq. (1-41) and the principle of dimensional homogeneity, the
unit of mass must equal the unit of force divided by the unit of acceleration.
Note particularly that we always use the term pound as a unit of force and
never as a unit of mass. A possible source of confusion arises from the fact
that the legal standard of mass is based on the absolute system and, in that
system, a standard unit of mass is the pound, also called the pound-mass.
To avoid confusion, however, we shall use the gravitational system exclu-
sively.
Some of the quantities that are most commonly used in dynamics are
listed in Table 1-1. The letters F, L, and T refer to the dimensions of force,
length, and time, respectively. '

TABLE 1-1. GRAVITATIONAL UNITS AND DIMENSIONS

Quantity Gravitational Units Dimensions
Length ft [L]
Time sec (7]
Force Ib [F]
Mass 1b sec?/ft (slug) [FT?L-1]
Velocity ft/sec [LT-1]
Acceleration ft/sec? [LT-9
Energy (work) ft 1b [FL]
Angular Velocity rad/sec [T-1
Moment Ib ft [FL]
Moment of Inertia Ib ft sec? [FLT?]

* Linear Momentum Ib sec [FT]
Angular Momentum Ib ft sec [FLT]
Linear Impulse b sec [FT]
Angular Impulse Ib ft sec : [FLT]

Conversion of Units. When making checks of dimensional homogeneity,
and even when performing numerical computations, it is advisable to carry
along the units, treating them as algebraic quantities. This algebraic manipu-
lation of units often requires the conversion from one set of units to another
set having the same dimensions. Normally, one converts to three basic units,
such as pounds, feet, and seconds, rather than carrying along derived units,



18 INTRODUCTORY CONCEPTS CHAP. 1

such as slugs, or perhaps several different units of length. In this conversion
process, one does not change the mnagnitudes of any of the physical quantities,
but only their form of expression.

A convenient method of changing units is to multiply by one or more
fractions whose magnitude is unity, but in which the numerator and the
denominator are expressed in different units. Suppose, for example, that
one wishes to convert knots into inches per second. One finds that

1 knot = 1 nautical mi/hr 1 ft = 12in.
1 nautical mi = 6080 ft 1 hr = 3600 sec

Therefore,

o - (Lo GOy

= 20.27 in./sec

Weight and Mass. We have seen that, although we shall use the pound
as a unit of force, one of the units of mass in the absolute system is also
known as the pound. This emphasizes the need for a clear distinction between
weight and mass since the weight of an object is expressed in units of force.

Briefly, the weight of a body is the force with which that body is attracted
toward the earth. Its mass is the quantity of matter in the body, irrespective
of its location in space. For example, if a given body is moved from a valley
to the top of an adjacent mountain, its mass is constant; but its weight is
less on the mountain top because the magnitude of the gravitational attrac-
tion decreases with increasing elevation above sea level.

Another approach is provided by the equation

w = mg (1-47)

where w is the weight, m is the mass, and g is the local acceleration of grevity,
that is, g is the acceleration that would result if the body were released from
rest in a vacuum at that location.

Although the interpretation of Eq. (1-47) appears to be straightforward,
certain complications arise in the determination of the acceleration of
gravity. First, the acceleration of gravity is measured with respect to a
reference frame fixed in the earth. This is not an inertial frame in the strict
sense because the earth is rotating in space. Therefore, as we shall show
more clearly in Chapter 2, the so-called inertial forces must be included in
a calculation of the acceleration of gravity. Thus it turns out that centrifugal
as well as gravitational forces enter the problem. The effect of the centrifu-
gal force is to cause a slight change in the magnitude and direction of the

acceleration of gravity, the amount of the change depending upon the

latitude.
A second reason for the slight variation in the acceleration of gravity
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with latitude is the oblateness of the earth, the polar radius being about
0.3 per cent smaller than the equatorial radius. The two factors previously
mentioned result in a variation of the acceleration of gravity at the earth’s
surface which can be approximated by the expression

g = 32.26 — 0.17 cos® 4 ft/sec®

where g is the local acceleration of gravity and 6 is the latitude of the point
in question.

For our purposes, it will generally be sufficient to use the value
g = 322 ft/secmfor the acceleration of gravity at the surface of the earth.
Furthermore, in any discussion of orbits about the earth, we shall use the

symbol g, which includes gravitational effects only and refers to a spherical
earth.

1-4. THE BASIS OF NEWTONIAN MECHANICS

Now that we have presented the basic laws of motion and have discussed
the question of units briefly, let us consider in greater detail the fundamental
assumptions of Newtonian mechanics. In particular, let us consider the
concepts of space, time, mass, and force from the viewpoint of Newtonian
mechanics and indicate experimental procedures for defining the correspond-
ing fundamental units. In the latter process, we shall not be concerned so

much with the practical utility of the operational definitions as with their
theoretical validity.

Space. Newton conceived of space as being infinite, homogeneous, iso-
tropic, and absolute. The infinite nature of space follows from the implicit
assumption that ordinary, Euclidean geometry applies to it. By homogeneous
and isotropic, it is meant that the local properties of space are independent
“of location or. d1rect10n

In claiming that space is absolute, Newton assumed the existence of a
primary inertial frame. In his view, it was nonrotating relative to the fixed
stars and also was fixed relative to the center of the universe which was
interpreted as being located at the center of mass of the solar system. Of
course, Newton realized that any other coordinate system that is translating
uniformly with respect to his primary frame would serve equally well as an
inertial frame. On philosophical grounds, however, he chose to give special
preference to the inertial frame that is fixed at the “center of the universe.”

We, too, saw in the discussion of Eq. (1-46) that the law of motion is not
changed by the transformation to another system that is translating uniformly

~ * with respect to a given inertial system. But any rotational motion of a ref-
. erence frame relative to a given inertial frame will produce apparent accelera-

tion terms which change the form of the basic equation of motion. So we
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can conclude that Newtonian mechanics requires an absolute reference for
rotational motion, but translational motion is relative in that an arbitrary
uniform translation may be superimposed. |

The spatial relationships associated with Newtonian mechamcs are
measured in units of length. As a standard unit of length, one can choose
the distance between two marks on a bar at a standard temperature, or
perhaps one could define the standard unit of length in terms of the wave-
length of the light corresponding to a given spectral line measured under
standard conditions. In either event, the unit is obtained in a rather direct
fashion and, in this theory, does not depend upon the motion of either the
standard or the observer.

Time. Newton conceived of time as an absolute quantlty, that is, the
same for all observers and, furthermore, mdependent of all “objects of the
physical world. He considered that a definition of time in terms of natural
phenomena such as the rotation of the earth was, at best, an approximation
to the uniform flow of “true” time.

Later, Mach® contended that time is merely an abstraction arrived at by
changes in the physical world. For example, we say that object 4 moves
uniformly if equal changes in the displacement of 4 correspond to equal
changes in the position of another system such as the hands of a clock. But
one cannot show that the motion of the clock is uniform in itself; a com-
parison must be made with another system. Thus, time is not an absolute
entity, but is assumed in order to express the mterrelat10nsh1ps of the
motions of the physical world. -

In deciding which physical process to use as a basis for the definition of
a standard unit of time, we assume the validity of certain physical laws and
choose a process that, according to the physical theory, proceeds at a
uniform rate, or at a constant frequency, and is relatively easy to measure.
For example, according to Newtonian mechanics, the rotation rate of the
earth relative to the fixed stars is constant except for a very small retarding
effect due to tidal friction. So, for most purposes, the definition of a standard
unit of time based upon the rotation rate of the earth, as measured by the
interval between successive transits of a given star, would seem to be
satisfactory.

Also, we shall adopt the Newtonian assumption that time is the same
for all observers. Note that this allows for a finite propagation velocity of
light if compensation is made for the time of transmission of clock synchro-
nizing signals from one place to another. No relativistic corrections are
required if the relative velocities of all bodies are much smaller than the
velocity of light.

3E. Mach, The Science of Mechanics (La Salle, Ili.: The Open Court Publishing Co.,
1942). The first edition was published in 1893.
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Mass. We have seen that reasonably straightforward operational defini-
tions can be given for the fundamental units of length and of time. The
third fundamental unit can be chosen as a unit of mass or of force, depending
upon whether the absolute or the gravitational system of dimensions is con-
sidered to be most appropriate. Let us consider first the choice of mass as
a fundamental dimension.

Newton defined mass as “quantity of matter” which was calculated as
the product of volume and density. Although this definition may give one
an intuitive concept of mass, it is not a satisfactory operational definition
but merely replaces one undefined term by another.

In an attempt to find a more satisfactory definition of mass, we might
take a given body A as a standard. Another body B is assumed to have a
mass equal to that of 4 if bodies 4 and B balance when tested on a beam
balance. In other words, their masses are equal if their weights are equal.
If one assumes further that mass is an additive property, that is, that the
mass of several bodies acting together is equal to the sum of their individual
masses, then one can establish a set of standard masses which are equal to
various multiples or fractional parts of the original primary standard. Using
the standard masses, one can in theory determine the mass of a given body
to an arbitrary precision.

This relatively convenient procedure of comparing the masses of two
bodies by comparing their weights has certain deficiencies when used as a
fundamental definition of mass. One difficulty is that it assumes the equiva-
lence of inertial ‘mass and gravitational mass. The mass that we are interested
in determining is the inerfial mass m in the equation of motion F = ma.
On the other hand, the weighing procedure compares the magnitudes of the
forces of gravity acting on the bodies. As we shall see in Sec. 5-1, the force
of gravity acting on a body is proportional to its mass, but there is no a
priori reason for the equality of gravitational mass and inertial mass. This
equality must be experimentally determined.*

In comparing the masses of two bodies by comparing their weights, the
assumption is made that, during the balancing procedure, the bodies are
motionless in an inertial frame. For this case, the upward force exerted on
each body by the balance is equal to the downward force of gravity on that
body. This results in a net force of zero which, in accordance with the law
of motion, corresponds to zero acceleration in an inertial frame, in agreement
with the initial assumption. |

Using this method, if one wishes to determine the mass of a movmg body,
an additional assumption must be made; namely, that the mass of a body is

independent of its motion. In other words, its mass while in ‘motion is assumed

41t is interesting to note that Newton tacitly assumed the equivalence of inertial and

gravitational mass. In more recent times, this prmczple of equivalence has been one of
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to be the same as the mass which was measured while at rest. This assump-
tion of Newtonian mechanics is in agreement with experimental results for

R PR
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cases where the velocity is very small compared with the velocity of light |

and relativistic effects are negligible.

Now suppose that the mass of a given body is to be determined by
weighing, using a calibrated spring scale. The calibration can be accomplished
by using a set of standard masses which are obtained in a manner similar to
that used previously except that a spring scale is used in place of a beam
balance. (Note that in obtaining standard masses, no calibration of the scale
is required since weights are merely matched.)

The use of a spring scale to measure the mass of a body relative to the
mass of a primary standard will be observed to have all the shortcomings of
the beam balance. In addition, the calibration of the scale is accurate only
if the weighings occur at a location with an acceleration of gravity equal to
the calibration value. This follows from the definition of weight given by
Eq. (1-47) and the fact that the spring scale measures weight or force dlrectly
rather than matching weights as in the case of the beam balance.

In order to avoid the theoretical difficulties involved in determining
mass by means of weight measurements, Mach proposed a method of
measuring megzal mass ratios by measuring accelerations. A dynamically
isolated sygfém is assumed, consisting of two mutually interacting masses.
Then, making the experimental proposition that the accelerations are
opposite in direction and lie along the line connecting their centers, he
defines the mass ratio to be the inverse ratio of their acceleration magnitudes.
Designating the bodies as 4 and B, the mass ratio is

my _ ay

4

mpy a,

(1-48)

where a, and a, are the magnitudes of the corresponding accelerations. Then,
if mass A is a standard unit, the mass of body B can, in theory, be determined.

Mach does not specify the nature of the interaction in his definition. It
might be gravitational or perhaps a direct connection as by a rigid rod or
elastic rope. Another possibility is a momentary interaction such as occurs
in an impact. V

Besides being a dynamic method of measuring mass, Mach’s procedure
has the virtue of not specifically assuming the concept of force. Given the
definitions of mass, length, and time, the unit of force can then be defined
in accordance with the law of motion as the effort required to produce a unit
acceleration of a unit mass. Furthermore, the law of action and reaction
follows from the law of motion and Mach’s experimental proposition in the
definition of a mass ratio.

Nevertheless, Mach’s procedure has its shortcomings. First is the prac-
tical difficulty of finding a system of two interacting masses that is dynami-
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cally isolated. The earth’s gravitational attraction would be an extraneous
influence for experiments performed near the earth, although the effect
could be minimized by confining the motion to a horizontal plane by con-
straints with very small friction. Another possibility ‘is to cause the masses
to hit each other. As will be seen more clearly in Sec. 4-7, the impact will
cause very large accelerations of short duration, and during this interval,
the effects of other influences will be relatively minor. But these procedures
do not appear to be practical for mass determinations of ordinary objects.

A second objection to Mach’s procedure is its tacit assumption that the
accelerations are measured relative to an inertial frame of reference. Since
the criterion for an inertial frame is that Newton’s law of motion applies
in this frame, we see that, again, the definition of mass assumes the validity
of a law which presupposes a definition of mass.

A dynamic method of mass measurement such as Mach proposes would
seem to be the least objectionable on theoretical grounds. But, as a practical
matter, the measurement of mass by a weighing procedure will undoubtedly
continue to be widely used.

Another important point in the discussion of mass is that Newtonian
mechanics assumes the principle of conservation of mass. Thus, while a
certain quantity of water may be converted to the vapor phase, its mass is
not changed in the process. Similarly, if a rocket is fired, the total mass of
the rocket body and ejected gases remains constant. This principle enables
one to consider a wide variety of physical systems as a group of particles,
constant in number, with the mass of each particle remaining the same in
spite of changes in its motion or its physical state.

Force. We have seen that if standard units of length, time, and mass are
chosen, then the corresponding unit of force is determined in accordance
with Newton’s law of motion. Thus, a unit force applied to a unit mass
results in a unit acceleration.

Now, suppose that force, length, and time are chosen as fundamental
dimensions. What is a suitable operational procedure for defining a standard
unit of force?

We shall define a unit force in terms of the effort required to produce
a certain extension in a given standard spring under standard conditions.
Then, noting that springs connected in series transmit equal forces, we can
mark the extensions produced by the standard force in each of a set of
similar springs, thereby producing a group of standard springs. Next, we
observe that if n standard springs are connected in parallel and if each is
stretched the standard amount, then the force transmitted by the n springs
is n standard force units. So, by connecting a given spring in series with

~ various numbers of parallel standard springs, the given spring may be
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calibrated in standard force units and subsequently used for force measure-
ments.

This definition of force, which is based upon an elastic deformation,
has the advantage of not requiring the measurements to be made in an

inertial system if the spring is assumed to have negligible mass. In a practical -

case, the so-called inertial forces associated with the mass of the spring must
be small compared to the force transmitted by the spring.

Nevertheless, there are objections to the choice of force as a fundamental
dimension. But before we discuss these objections, let us first note that the
forces that concern us in mechanics are of two general types, namely, contact
forces and field forces. Contact forces refer to a direct mechanical push or
pull which is transmitted by material means. For example, a rod or a rope,
or even air or water pressure could be used to apply contact forces to a body
at its surface. On the other hand, field forces are associated with action at
a distance, such as in the cases of gravitational and electrical forces. Also,
field forces are often applied throughout a body rather than at the surface.

Now, difficulties arise when one attempts to apply to field forces the
concept of a force as a push or pull that is measured by an elastic déflection.
For example, if a body is falling freely in a uniform gravitational field, the
gravitational force does not produce any elastic deflection and therefore this
method cannot be used to measure it. Actually, the gravitational force is often
found by counteracting it with a contact force such that the acceleration is
zero and then measuring this contact force. This is the process of weighing
the body. The assumption is made, of course, that the gravitational force is
not a function of velocity or acceleration.

More generally, field forces are calculated by observing accelerations and
obtaining the corresponding forces from Newton’s law of motion. In other
words, accelerations are observed and then forces are inferred in accordance
with the law of motion. :

The concept of force as a fundamental quantity in the study of mechanics
has been criticized by various scientists and philosophers of science from
shortly after Newton’s enunciation of the laws of motion until the present
time. Briefly, the idea of a force, and a field force in particular, was considered
to be an intellectual construction which has no real existence. It is merely
another name for the product of mass and acceleration which occurs in
the mathematics of solving a problem. Furthermore, the idea of force as a
cause of motion should be discarded since the assumed cause and effect
relationships cannot be proved.

We shall adopt the viewpoint that the existence of contact forces can be
detected and measured by springs or by other means of measuring elastic
deformations. Field forces will be calculated from observed accelerations,
using Newton’s laws of motions, or else from rules governing the force
that have been established from such observations. For the most part, we
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shall avoid questions of cause and effect. For example, suppose a stone is
tied to the end of a string and is whirled in a circular path. Does the tension
in the string cause the stone to follow a circular path, or does the motion
in a circular path cause the tension in the string? Conceivably, either view-

- point could be taken. But generally it is preferable to note that forces and

accelerations occur simultaneously and neither is specifically cause nor effect.

We have seen that the definitions of the fundamental units of mechanics
depend to some extent upon Newton’s laws of motion and these are the
laws to be demonstrated. Thus, the logic has a certain circularity. Never-
theless, the validity of the laws of motion has been established for mechanical
systems with a wide range of velocities and spatial dimensions. So long as
the distances involved are larger than atomic dimensions and the velocities
are much smaller than the velocity of light, the fundamental laws of
Newtonian mechanics apply remarkably well.

1-5. D’ALEMBERT’S PRINCIPLE

Newton’s law of motion for a particle is given by Eq. (1-41). Suppose
we write it in the form

‘F—ma=0 (1-49)

where F is the sum of the external forces acting on the particle, m is its
mass, and a is the acceleration of the particle relative to an inertial reference
frame. Now, if we consider the term —ma to represent another force, known
as an inertial force or reversed effective force, then Eq. (1-49) states that
the vector sum of all forces, external and inertial, is zero. But this is just the

form of the force summation equation of statics and the methods of

analysis for statics problems apply to it, including more advanced methods,
such as virtual work (Sec. 6-4). Thus, in a sense, the dynamics problem has
been reduced to a statics problem. Briefly, then, d’Alembert’s principle
states that the laws of static equilibrium apply to a dynamical system if the
inertial forces, as well as the actual external forces, are considered as applied
forces acting on the system. Of course, one still must solve the differential
equations of dynamics rather than the algebraic equations of statics, but
the point of view in setting up the equations is similar to that of statics.

_ Considerable care must be used in setting up the equations of motion
by means of d’Alembert’s principle. In particular, the inertial forces should

‘not be confused with the external forces comprising the total force F

that is applied to the particle. In order to keep the distinction clear
on force diagrams, we will designate inertial forces by a dashed arrow and
external forces by a solid arrow, as shown in Fig. 1-10. By external forces,

we mean contact forces and gravitational or other field forces applied to
the particle.
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Another approach is to think of the inertial force as a reaction force
exerted by the particle on its surroundings in accordance with the law of
action and reaction. This Vlewpomt is convenient when the motion of a

particle is given and one desires to
calculate the force it exerts on the

. remainder of the system. For exam-
ma m

< O ple, if a particle is whirled in a cir-
>a cular path by means of a string atta-

ched to a fixed point, then the inertial

Fig. 1-10. Inertial force for an force of the particle is the so-called
accelerating particle. centrifugal force which is equal to

the tensile force in the string. On the
other hand, the external force on the particle is the centripetal force of the
string acting radially inward toward the fixed point at the center of the
circular path. By the law of action and reaction, the centripetal force is equal
in magnitude to the centrifugal force but is opposite in direction.

Example 1-1. A particle of mass m is supported by a massless wire of
length / that is attached to a point O of a box having a constant accelera-
tion a to the right (Fig. 1-11). Find the angle # corresponding to a condi-
tion of equilibrium, that is, such that the particle will remain at constant

——é_—»

fo |

: |

0 0/r

1/~ |

l g |

| ma <¢— = 0Om

m
mg

(a) (b)

Fig. 1-11. Simple pendulum in an accelerating box.

¢ if released from this position. What is the tensile force 7 in the wire in
this case? [The direction of the acceleration due to gravity is shown by the
vertical arrow in Fig. 1-11(a).] -

The external forces acting on the particle are the weight mg and the
force T due to the wire, as shown in Fig. 1-11(b). In addition, one notes

‘that the particle has an acceleration a to:the right for constant 4, and there-

fore the inertial force is of magnitude ma and is directed to the left.
Now, according to d’Alembert’s principle, the external and inertial
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forces must add vectorially to zero. So, taking horizontal components, we
obtain "

Tsinf —ma=0
Similarly, taking vertical components,
Tcos§ —mg=20

Solving these two equations, we obtain
6 = tan™! (£>
g

T = mv/a' + g

and
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PROBLEMS

1-1. Forces P and Q are applied to a particle of mass m. The magnitudes
of these forces are constant but the angle @ between their lines of action can be
varied, thereby changing the acceleration of the particle. If the maximum possible
acceleration is three times as large as the minimum acceleration, what value of 8 is
required to attain an acceleration which is the mean of these two values?

1-2. In terms of a fixed cartesian system, the position of automobile A4 is
r, = 100zift and the position of airplane P is r, = 1000i + 300¢j + 2000k ft
where the time 7 is measured in seconds. Find: (a) the velocity of P relative to A4
and (b) the minimum separation between P and A.

1-3. Given the following triad of unit vectors:
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el — lli + l2j + l3k
e2 _- mli + mgj + m3k
es - nli + n2j + n3k

where i, j, k are the usual cartesian unit vectors. (a) Write 3 equations involving
the I’s, m’s, and »’s which apply for any unit triad. (b) What additional equation
applies if e,, e,, and e; are coplanar? (c) What equations apply if e,, e,, and e, are
mutually orthogonal ? ‘

1-4. Consider the vector A = A4,i + A4,j + A k. Find the components A4,,4,, A,
of the vector A in a skewed coordinate system whose axes have directions specified
by the following unit vector triad:

e =1, e, = (i + /v 2, e; = (i + K/ 2.

1-5. If units of length, mass, and force were chosen as the fundamental units,
what would the dimensions of time and acceleration be?

1-6. Suppose that units of force, length, and time are chosen such that the
density of water and the acceleration of gravity are both of unit magnitude. If the
pound is taken as the unit of force, what are the sizes of the units of length and time ?

1-7. At a certain moment during reentry, a satellite is moving horizontally in
the earth’s atmosphere. The satellite carries an accelerometer which measures the

“contact force acting on a small mass moving with the satellite. If the accelerometer

reading is 64 ft/sec? in a direction opposite to the velocity of the satellite, and if

the acceleration of gravity at that point is 32 ft/sec?, what is the absolute acceleration

of the satellite ? If the speed of the satel-

lite is 10,000 ft/sec, what is the angular

| rate of rotation of its velocity vector ?

| 1-8. The particles at B and C are of

equal mass m and are connected by

strings to each other and to points A

and D as shown, all points remaining

in the same horizontal plane. If points

A and D move with the same accelera-

tion a along parallel paths, solve for

the tensile force in each of the strings.

Assume that all points retain their
initial relative positions.




KINEMATICS OF A PARTICLE

Kinematics is the study of the motions of particles and rigid bodies, disregard-
ing the forces associated with these motions. It is purely mathematical in
nature and does not involve any physical laws such as Newton’s laws.

In this chapter we are concerned primarily with the kinematics of a parti-
cle, that is, with the motion of a point. Depending upon the circumstances,
we may at times choose to consider the point as being attached to a rigid
body and at other times as being the location of an individual particle.
In any event, we shall be interested in calculating such quantities as the
position, velocity, and acceleration vectors of the point.

In discussing the motion of a point, one must specify a frame of reference,
since the motion will be different, in general, when viewed from different
reference frames. We saw in Sec. 1-2 that Newton’s laws of motion apply
in a particular set of reference frames known as inertial frames. These frames,
nonrotating but translating uniformly relative to one another, thus consti-
tute a special or preferred set in writing the dynamical equations of a particle.
From the viewpoint of kinematics, however, there are no preferred frames
of reference since physical laws are not involved in the derivation of kine-
matical equations. Thus, in the strict sense, all motion is considered to be
relative and no reference frame is more fundamental or absolute than another.
Nevertheless, we shall at times refer to -absolute motions because of the
dynamical background, or for ease in exposition.

2-1. POSITION, VELOCITY, AND ACCELERA-
TION OF A POINT

The position of a point P relative to the XYZ reference frame (Fig.
2-1) is given by the vector r drawn from the origin O to P. If the point P
moves on a curve C, then the velocity v is in the direction of the tangent

to the curve at that point and has a magnitude equal to the speed! with
which it moves along the curve.

1Speed is a scalar quantity and is equal to the magnitude of the velocity. Sometimes

the term velocity is used loosely in the same sense, the meaning generally being clear
from the context. ’

29
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Fig. 2-1. Position and velocity vectors Fig. 2-2. The hodograph showing
of a particle P as it moves along curve velocity and acceleration vectors.

C.

Considering the velocity v as a free vector, we can imagine that it is
drawn with its origin at the origin of the coordinate system at each instant
of time, as shown in Fig. 2-2. The path C’ of the tip of the velocity vector
v is then known as the hodograph. Now, in general, the velocity of the tip
of a vector drawn from the origin in a given coordinate system is simply
the time derivative of the vector in that system. So the velocity of the tip of
the vector v along the hodograph is the acceleration a of point P relative

to the XYZ system. Hence we summarize by stating that the velocity of |
point P is

i
! |

dr 1

== 2~ g
Vo d@ 2-1) i
and the corresponding acceleration is 3 |
dv _ &

a = d_: = .d_t; (2-2) g

Note that a knowledge of the path C does not determine the motion
unless the speed along the path is known at all times. Similarly, a knowledge *‘ !
of C’ does not determine the motion unless one knows the starting point i |
in space as well as the rate of travel along the hodograph at all times. If
both C and C’ are known and are compatible, then the motion is nearly
always determined, an exception being the case of rectilinear motion at

a varying speed. We always assume that C is continuous, corresponding to
a finite velocity of the point.

.
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2-2. ANGULAR VELOCITY |

In studying the kinematics of a particle, we are primarily concerned
with the translation of a point relative to a given reference frame, that is,
with the position vector of the point and with its derivatives with respect
to time. On the other hand, the general motion of a rigid body involves
changes of orientation as well as changes of location. It is the rate of change
of orientation that is expressed by means of the angular velocity vector.

Consider the motion of the rigid body shown in Fig. 2-3 during the
infinitesimal interval Af. Anticipating the results of Chasles’ theorem (Sec.
7-8), we note that_the_infinitesimal displacement..during_this._interval can
be considered.as_a.translational displacement As_of all_points in_the body
plus a rotational displacement.A@._about._an. axis_through _the base_point.
A’ fixed in the body. The order of performing the translation and rotation
i1s immaterial, but Fig. 2-3 shows the case where the translation occurs
first. Thus a typical point P moves to P’ and the base point 4 moves to A’,
each undergoing the same displacement As. Then the infinitesimal rotation
A6 occurs, moving P’ to P while A’ does not move since it is on the axis
of rotation.

The infinitesimal angular displacement A@ is a vector whose magnitude

X

Fig. 2-3. Infinitesimal displacement of a rigid body.
[




32 KINEMATICS OF A PARTICLE

is equal to the angle of rotation and whose direction is along an axis deter-
mined by those points not displaced by the infinitesimal rotation. The sense

is in accordance with the right-hand rule. We define the angular Velocity
@ as follows:

_ A8 )
© = 2-3)

Now, if we should analyze the same_infinitesimal displacement of the-

body but _choose_a_different-base-point, only the_translational part of the
motion would be changed;.the rotational displacement would be identical.

A

Thus we can see that the angular velocity is a property of the body as a whole
and is not dependent upon the choice of a base point. Therefore the angular
velocity @ is a free vector.

Note that-measurements.of.the.angular.velocity of a body as viewed.from.
different reference frames will, in general, produce different results. There-
fore, when giving the angular velocity, the reference frame. shouldv.bc,,stated
or clearlv implied, An inertial frame is usually assumed if no statement is
made to the contrary. Also, recall again that angular velocity refers to the
motion of a rigid body, or, in essence, to the motion of three rigidly con-
nected points that are not collinear. The term has no unique meaning for
the motion of a point or a vector (or a straight line) in three-dimensional
space. Finally, the angular velocity vector will usually change both .its.
magnitude_and_direction _continuously_ with time. Only in the simpler cases
is the motion confined to rotation about an axis fixed in space or in the body.

P

Ve 2-3. RIGID BODY MOTION
ABOUT A FIXED POINT

As we have seen, the rotational
‘motion Qrelatlve to a given system
does not &epend upon the choice of
the base point. So, in order to con-
centrate upon the rotational aspects
of the motion, assume that the base
point of the rigid body is fixed at the
origin Q.of the cartesian system X YZ,
as shown in Fig. 2-4. Let us calculate
the velocity v relative to the XYZ
system of a point P that is fixed in the
body. If the X YZ system is fixed in
inertial space, then v is the absolute
Fig. 2-4. Rigid body rotation about velocity of point P and @ is the abso-
a fixed point. lute angular velocity of the body.
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In general, the rotation at any instant is taking place about an axis pass-
ing through the fixed base point. This axis is known as the instantaneous
axis of rotation. Consider first the case where the rotation takes place about
an axis that is fixed in the XYZ system. Then @ has a fixed direction and
the path of point P is a circle of radius rsin @, as can be seen from Fig.
2-4. The speed with which point P moves along the circle is

§ = or sin ¢ (2-4)

where s is the displacement of P along its path, o is the magnitude of ®,
r i1s the constant length of the position vector drawn from O to P, and 8 is
the angle between @ and r. The velocity of P is of magnitude s and is directed
along the tangent to the path. Thus we can write

V=wXTr (2-5)

In the general case where » and # may vary with time, the displacement
As of point P during the infinitesimal interval At is

As = or Atsin 6 (2-6)

where higher-order terms have been neglected. It is assumed that Ae and
A6 approach zero as the interval Af approaches zero, implying that @ is
finite. Of course, Ar is zero, since point P and the base point O are fixed in
the body. :
- Dividing Eq. (2-6) by Af and letting As and At approach zero, we again
obtain Eq. (2-4). Furthermore, the direction of v is again normal to @ and r.
Hence we see that Eq. (2-5) is valid for the general case of rigid-body rotation
about a fixed point.

Differentiating Eq. (2-5) with respect to time, we obtain an expression
for the acceleration a of point P.

.. ,/‘Lé,,c (
Aa=wWXTr+w®Xr
or, noting that f is the velocity v and using Eq. (2-5),
A= @ X(@X1)+®XT (2-7)

where, of course, all vectors are measured relative to the X YZ system.

It can be seen that the term @ X (@ X r) in Eq. (2-7) is a vector that is
directed radially inward from point P toward the instantaneous axis of ro-
tation and perpendicular to it. It is called the centripetal acceleration. The
term @ X r is often called the tangential acceleration. Note, however, that
the so-called tangential acceleration is in a direction tangent to the path of
P only if @ is parallel to the plane of @ and r. This would occur, for example,
if @ retains a constant direction and changes in magnitude only.
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2-4. TIME DERIVATIVE OF A UNIT VECTOR

We have obtained the.derivative with respect to time of the position
vector r of a point P in a rigid body that is rotating about a fixed point
O (Fig. 2-4). A similar situation exists in the calculation of the rates of
change of unit vectors. As was the case with the position vector to point P,
the unit vectors are each of constant length. Furthermore, we have seen
that the time derivative of a vector can be interpreted as the velocity of
the tip of the vector when the other end is fixed. So let us calculate the
velocities of the unit vectors e;, €,, and e; drawn from the origin of the fixed

system XYZ and rotating together as a rigid body with an absolute angular
velocity @ (Fig. 2-5).

From Eq. (2-5), we see that the
velocities of the tips of the unit

> vectors, that is, their time derivatives,
are
€, = w X e
) ¢, — @ X e, (2-8)
& = w X ¢

For the case where e,, e,, and e,
form an orthogonal set of unit
vectors, that is, e, X e, = e;, and
so on, we can perform the vector

multiplications using the determinant
X expression of Eq. (1-27). Writing the
angular velocity @ in the form™

W — w,€; + W€, + W;€;3 (2“'9)

Fig. 2-5. The rotation of a unit
vector triad.

we obtain
€ € €
él = | @ [OP) @3 | — CD3e2 — @5€;3 (2'—10)
1 0 O
Similarly,
€ € €
é2 = | @ (O 3| = ;€3 — w3€ (2'—'11)
O 1 O
and
€ € & _
é3 — | @ @y W3 | = @€, — W€y (2‘“‘12)
0O 0 1
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In the particular case where we consider a rotating triad of cartesian
unit vectors i, j, and k, we can make the substitutions e, = i, e, = j, and
e; = k. Noting that

W= o+ 0,j + ok (2-13)

where w,, w,, and w, are the components of @ in the directions of i, j, and k,

respectively, (not along the X, Y, and Z axes), we obtain from Egs. (2-8),
(2-9), (2-10), and (2-11) that

i=wXi=o0]— ok
=0 Xj=0k— i (2-14)
].(:a))(k:coyi—cozj

It can be seen that, in each case, the time derivative of a unit vector lies in
a plane perpendicular to the vector, in accordance with the definition of
a cross product.

Observe that in each case we have calculated the rate of change of a
unit vector with respect to a fixed coordinate system but have expressed
the result in terms of the unit vectors of the moving system. Since this
approach will be used extensively in our later work, the terminology should
be made clear. The terms relative to or with respect to a given system mean
as viewed by an observer fixed in that system and moving with it. On the
other hand, the term referred to a certain system means that the vector is
expressed in terms of the unit vectors of that system. For example, the
absolute acceleration of a certain particle can be given in terms of the unit
vectors of a fixed or of a moving coordinate system. In either event, we are
considering the same vector but are merely expressing the result in two
different forms. On the other hand, the acceleration of the particle relative
to a fixed coordinate system and the acceleration relative to a moving co-"
ordinate system would, in general, be quite different vectors.

2-5. VELOCITY AND ACCELERATION OF A

PARTICLE IN SEVERAL COORDINATE
SYSTEMS

Cartesian Coordinates. Suppose that the position of a particle P relative
to the origin O of the cartesian system xyz is given by the vector (Fig. 2-6)

r=xi+y+zk (2-15)
where i, j, and k are unit vectors fixed in the xyz system.

Differentiating Eq. (2-15) with respect to time, we find that the velocity
of point P relative to the xyz system is given by

v=1=X4+yj+ 2k T (2-16)

S
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Fig. 2-6. Cartesian coordinates and Fig. 2-7. Cylindrical coordinates and
unit vectors. unit vectors.

where we note that the time derivatives of the unit vectors i, j, and k are
all zero since they are fixed in the given cartesian system.

Similarly, differentiating Eq. (2-16) with respect to time, we find that

the acceleration of P relative to the xyz system is
a=xi+ jj+ Zk (2-17)
For the common case where the cartesian system is assumed to be fixed

in an inertial frame, the preceding expressions refer to the absolute velocity
and acceleration. '

Cylindrical Coordinates. Now consider the case where the position of
point P relative to the xyz system shown in Fig. 2-7 is expressed in terms of
the cylindrical coordinates r, ¢, and z. In this case, the position vector of
Pis

r =re, + ze, (2-18)

Note that the unit vectors e,, e;, and e, form a mutually orthogonal triad
whose directions are given by the directions in which P moves for small

increases in r, ¢, and z, respectively. As before, we obtain the velocity by -

finding the derivative of r with respect to time:
V=TI =re, + ze, + ré, 4 zé, (2-19)

It can be seen that e, and e, change their directions in space as P moves
through a general displacement, but e, is always parallel to the z axis.
Further, the changes in the directions of e, and e, are due solely to changes
in ¢, corresponding to rotations about the z axis. Thus the absolute rotation
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rate of the unit vector triad is
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A 5 LNy R
. o N [P AATEE
PR = W
{ T S

w=¢e, T (2220)
and, in accordance with Eq. (2-8), we find that “

er:wxeT:(ﬁed,

é¢=a)><e¢

¢, —w Xe,

= —de, (2-21)
=0

So from Egs. (2-19) and (2—21), we obtain

V= fe, + rde,,, + Ze, (2-22)
Another differentiation with respect to time results in the acceleration

a="t=re, + (’idp + rp)e, + e, + ré, + rdé, + zé,

which can be simplified with the aid of Eq. (2-21) to yield

a=(F— rp*e, + (rd + 2id)e, + Ze, (2-23)

Spherical Coordinates. The position vector of the point P in terms of
spherical coordinates and the corresponding unit vectors is simply

r = re,

(2-24)

since, in this case, the unit vector e, is defined to be in the direction of
the position vector r (Fig. 2-8). Differentiating Eq. (2-24) with respect to

_ time, we obtain the velocity

In order to evaluate &, &, and
€4, we note first that changes in the
directions of the unit vectors can
arise because of changes in 6 or ¢:
An increase in 6 rotates the unit
vector triad about an axis having the
direction e,, whereas an increase in
¢ corresponds to a rotation about
the z axis. Thus the total rotation
rate of the unit vector triad is

V=1 =re, + ré, (2-25)
| z
er
<,e¢
PN,
r
[/
0) y
¢

® = Ge, + e,  (2-26)

where e, is a unit vector in the

direction of the positive z axis.
Since e, and e, are perpendicu-

lar, it is relatively easy to express

e, in terms of the remaining unit
vectors:

X

Fig. 2-8. Spherical coordinates and
unit vectors. '
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e, =cosfe,— sinfe, (2-27)

Therefore, from Egs. (2-26) and (2-27), we obtain
| w=d¢cosfe, — psinfe, + fe, (2-28)

The unit vectors e,, ¢, and e, are mutually orthogonal, so we can use
the determinant method of evaluating the cross products involved in ob-
taining €,, &, and &;,. From Egs. (2-8) and (2-28), we have

| e, €y €y
é, =wXe = |pcosd —sing 4 (2-29)
1 0 0

and, using a similar procedure to evaluate &, and é,, we can summarize
as follows:

é, = e, + dpsinfe,

é = —0Oe, + pcosfe, (2-30)
é = —¢psinfe, — Ppcosde,

Finally, from Egs. (2-25) and (2-30), the velocity of point P is
v = ie, + rfe, + rdsin G e, (2-31)

In order to find the acceleration of P, we differentiate again, obtaining

2= =Fe + (0 + 1) + (hsind + rgsing + rpeosO)e, ., 5
: + ’:ér - ra.ég -+ I‘(ﬁ sin 0é¢ '

Substituting Eq. {2-30) into (2-32) and collecting terms, the result is

a = (F — r6* — rg?sin? O)e, + (r6 + 276 — ré* sin f cos f)e, (2-33)
+ (rdpsin @ + 2¢psin 6 + 2rf cos H)e,

Tangential and Normal Components. The velocity and acceleration of
a point P as it moves on a curved path in space may be expressed in terms
of tangential and normal components. Let us assume that the position of
P is specified by its distance s along the curve from a given reference point.
From Fig. 2-9, it can be seen that, as P moves an infinitesimal distance
ds along the curve, the corresponding change in the position vector r is

dr = dse,
or
e, = % | (2-34)

where e, is a unit vector that is tangent to the path at P and points in the
direction of increasing s. The velocity of P is

_dr _ .dr . : _
V== 8o = Se | .(235)
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To find the .acceleration of P, we 4

differentiate Eq. (2-35) with respect _\e,
to time, obtaining }q___

Before evaluating ¢, explicitly,
we note that, in general, e, changes
direction continuously with increas-
ing s. The direction of the derivative
de,/ds is normal to e, since the 0 y
magnitude of e, is constant. This is
known as the normal direction at P
and is designated by the unit vector
e,. The plane of e, and e, at any X
point P is called the osculating plane. Fig. 2-9. Tangential, normal, and
Therefore, any motion of e, must binormal unit vectors for a curve in
take place in the osculating plane at space.
that point, and hence the vector ¢, lies in this plane and points in the e,
direction. Its magnitude is equal to its rotation rate e, about an axis
perpendicular to the osculating plane. Thus

é, = s‘% = wp€, (2-37)

where w, is the rotation rate of e, about an axis in the binormal direction

;. The binormal unit vector e, is perpendicular to the osculating plane and
is given by

e, =€ Xe, (2-38)

thus completing the orthogonal triad of unit vectors at P.
The angular rate o, can be expressed in terms of the radius of curvature
p and the speed § of the point P as it moves along the curve.

wp = — (2-39)
P
Note that the vector pe, gives the position of the center of curvature C
relative to P. Of course, the position of the center of curvature changes
in general, as P moves along the curve.
From Egs. (2-37) and (2-39), we obtain
&= e, (2-40)
p

and, substituting this expression into Eq. (2-36), we have

o2

a = §e, + ‘% e, (2-41
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The acceleration component § is the tangential acceleration and the com-
ponent §%/p is the normal or centripetal acceleration.

The time derivatives of the unit vectors can also be obtained in terms
of the angular rotation rate @ of the unit vector triad. We have

@ = 0,8, + €, | (2-42)

Note that the normal component of @ is zero. This can be explained by
the fact that e, was defined to lie in the direction of é,. Any normal com-
ponent of @ would result in a binormal component of ¢,, in conflict with
the original assumption. Of course, w, does not influence é,.

From Egs. (2-8) and (2-42), we find that

é[ =@ X e = wp€,
én = X €, = —wp€ 4+ ;€ (2—43)
éb =® X € = —w:€,

We have seen that w, is equal in magnitude to &, and is a function of
the speed § and the radius of curvature p. Similarly, o, is equal in magnitude
to €, and is a function of § and de,/ds. Thus,

_43 .
& =S54 . 2-44
b S dS ( )

where the magnitude of de,/ds is called the torsion of the curve. It can be
seen that w, is also the rotation rate of the osculating plane.

2-6. SIMPLE MOTIONS OF A POINT

Circular Motion. Consider the motion of a point P in a circular path
of radius a (Fig. 2-10) in the fixed xy plane. The motion will be described
in terms of the polar coordmates (r, 8) and the corresponding unit vectors.

y In this case, the coordinate r is the
scalar constant a. Thus, we have

r = ae, (2-45)
and : '
V=1 = aé, (2-46)
Using the notation that |
X w=20 (2-47)

we find that the speed along the path
is

v = al = aw (2-48)
Fig. 2-10. Circular motion of a point. or
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V= awe, (2-49)
t , t _vvr';JJ E—[@
in agreement with Eq. (2-46), since =~ V=CA&r C)CJ = )
¢, — we, CosmEn (2-50)

The acceleration is obtained by differentiating Eq. (2-49) with respect to
time:

a=vV=aone + awt (2-51)
or, noting that
¢y = —we, (2-52)
we obtain
a = —aw’e, + awe, (2-53)

An alternate form is obtained by substituting for o from Eq. (2-48), obtaining
2

a = —% e, + e, (2-54)

The first term on the right represents the centripetal acceleration; the
second term is the tangential acceleration. Note that the same result is
obtained by using the tangential and normal unit vectors of Eq. (2-41)
where ¢, = €, e, = —e,, p = a,and § = v. )

Helical Motion. Next consider the velocity and acceleration of a particle
moving along a helix which is given in terms of cylindrical coordinates by

r=a, z=kad (2-55)
where k is the tangent of the helix

angle and a is constant (Fig. 2-11).
Now let

¢=w (2-56)

1
Differentiating the expression for z . fan " K
in Eq. (2-55), we obtain -7

= kap = kaw  (2-57)

and, from Egs. (2-22), (2-56), and '«
(2-57), we find that the velocity is
V=1 = awe, + kawe, (2-58) C P
The acceleration is found by a r
similar evaluation of Eq. (2-23),

yielding \/\H
a = —aw’e, + aove, + kaoe,
(2-59)

For the case where the point P Fig. 2-11. Helical motion of a point.
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moves at uniform speed along the helix, the angular acceleration & is zero
and only the radial acceleration remains. "

The radius of curvature at a point on the helix can be calculated by
equating the magnitude of the radial acceleration found in Eq. (2-59) to

the normal or centripetal acceleration previously found in Eq. (2-41).
Noting that the speed is

§ = awa/1 + k? _ (2-60)
we find that
$*_ A o?(l + k?) — 46?
P P
from which we obtain
p=a(l +k? (2-61)

For example, if the helix angle is 45°, the radius of curvature is p = 2a
and the center of curvature is diametrically opposite P on the surface of
the cylinder r = a. In this case, the locus of the centers of curvature is
a helix with the same radius and helix angle.

Harmonic Motion. A common type of particle motion is that in which
the particle is attracted toward a fixed point by a force that is directly pro-
portional to the distance of the particle from the point. Consider first the
one-dimensional case in which the motion takes place along the x axis of
a fixed cartesian system because of an attracting center at x = 0. From
Newton’s law of motion as given by Eq. (1-41) or Eq. (1-43), we recall
that the acceleration of the particle P is proportional to the applied force.
But we have assumed that the applied force is proportional to x and is
directed toward the origin. So we can write the differential equation

= —a?x (2-62)

where w? is a constant.
The solution can be written in the form

x = A cos (0! + a) (2-63)

where, in general, the constants A and a are evaluated from the values of
x and x at ¢t = 0. If, however, we choose to measure time from the instant
when the particle is at the positive extreme of its motion, then ¢ = 0, and

x = A cos ot (2-64)

- Motion wherein the position oscillates sinusoidally with time is known
as simple harmonic motion (Fig. 2-12). This motion is periodic with a period

2
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where ® is usually measured in
radians per second and is known
as the circular frequency.?

Differentiating Eq. (2-64), we
obtain expressions for the velocity
and acceleration.

X = — Ao sin ot (2-66)
= Aw cOs (a)t + f_)
2
and Fig. 2-12. Simple harmonic motion.
X = —Aw? cos ! = Aw? cos (ot + 7) (2-67)

It can be seen that each differentiation with respect to time results in
a sinusoidal oscillation of the same frequency, but the amplitude is multi-
plied by » and the phase angle is advanced by z/2 radians. Thus the extreme
values of the displacement and acceleration occur at the moment when
the velocity is zero, and vice versa.

Now consider the case of two-dimensional harmonic motion. Suppose
the particle P moves in the x direction in accordance with Eq. (2-62), as
discussed previously. But it also moves independently in the y direction
according to the following equation:

y= —a’y (2-68)

where the value of w is assumed to be the same as for the x motion. The
solution of this differential equation can be written in the form

y = Bcos (ot + 8) (2-69)

where the angle 8 is not zero, in general, since the time reference was chosen
such that &« = 0 in Eq. (2-63). Using vector notation, we find that the
position of P is

r=xi+yj= Acoseti+ Bcos (of + B)]j (2-70)

where i and j are the usual cartesian unit vectors. Differentiating Eq. (2-70)
with respect to time, we see that the velocity is

V=1= —Awsineti — Bo sin(ef + B)] (2-71)
and the acceleration is
a—v = —Aw? cos wti — Bw? cos (ot + B)] (2-72)
The path of the particle P in the xy plane may also be found by first
noting from Eq. (2-64) that

*The term frequency refers to the number of cycles per unit time, or 7-1. Thus o = 2z f.
In this book, we shall, for convenience, generally use the circular frequency o rather than
f and often shall refer to o as the frequency.
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cos ot = % - (2-73)

Then, using Egs. (2-69) and (2-73) and the trigonometric identity for cos
(ot + B), we see that

sin ot = (sin @)~ (% cos B — %) (2-74)
Squaring Eqgs. (2-73) and (2-74) and adding, we obtain
in@) (X LY _,%X Y ) _ _
(sin B)7 (5 + % — 2% L cosg) = 1 (2-75)

which is the equation of an ellipse (Fig. 2-13).

Fig. 2-13. Harmonic motion in two dimensions.

We saw that the x and y motions have the same frequency but are in-
dependent of each other. The relative phase angle B between these motions
is determined from the initial conditions and the value of 8 will influence
the shape and sense of the motion along the elliptical path. In any event,
however, the path is inscribed within the dashed rectangle shown in Fig.
2-13. For example, if 8 = + /2, Eq. (2-75) reduces to

§+§=1 \ (2-76)

indicating that the x and y axes are principal axes in this case.
On the other hand, if 8 = 0 or 7, Eq. (2-75) reduces to

x = i%y 2-77)
and the path is a straight line along a diagonal of the rectangle of Fig. 2-13.
In this case, we again have simple rectilinear harmonic motion.
For the case where 8 = +#/2 and 4 = B, Eq. (2-76) reduces to

%

x? + 2 = A4° | (2-78)
which is the equation of a circle of radius 4. Also,
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V= X + )2 = A2w(sin? of + cos’ of) = A%’ (2-79)

Thus the particle P moves at uniform speed about a circular path. The
acceleration is also constant in magnitude and, from Eq. (2-53), is

a= —Aow’e, (2-80)

It is interesting to note that elliptical harmonic motion can be considered
to be the projection of uniform circular motion onto a plane that is not
parallel to the circle. For the case of simple harmonic motion, the two
planes are orthogonal and the path reduces to a line. The velocity and
acceleration vectors in the case of elliptical motion are found by projecting
the corresponding vectors for the case of circular motion. Hence it can be
seen that the maximum velocity occurs at the ends of the minor axis and
the maximum acceleration occurs at the ends of the major axis. In each of
these two cases, the vectors at the given points are parallel to the plane
onto which they are projected.

In case the motions in the x and y directions are of different frequencies,
then a different class of curves known as Lissajous figures is generated.
Again, the motion remains within the dashed rectangle of Fig. 2-13 but,
unless the frequency ratio is a rational number, the curve does not close.
For the case of rational frequency ratios, the motion is periodic and retraces
itself with a period equal to the least common multiple of the periods of

the two component vibrations. We shall not, however, pursue this topic
further.

2-7. VELOCITY AND ACCELERATION OF A
POINT IN A RIGID BODY

Z
In Sec. 2-3, we calculated the ab-

solute velocity of a point in a rigid
body that is rotating about a fixed
base point. Now consider the case
shown in Fig. 2-14 where the base
point 4 has a velocity v, relative to
the inertial system XYZ. Also, the
body is rotating with an angular
velocity @ relative to this system.
Suppose we define the velocity

Vpy =V — V, (2-81)

where v and v, are the absolute

velocities of the points P and 4, %

respectively. Then vp, is known as Fig. 2-14. Motion of a point in a
the relative velocity of P with respect rigid body.
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to A as viewed by an observer fixed in the XYZ system. Now suppose
the observer is translating in an arbitrary fashion but is not rotating
relative to XYZ. The velocities of points P and A4 as viewed by the
translating observer would not be the same as in the previous case.
The velocity difference would, however, be the same as before because the
apparent velocities of the points P and 4 would each change by the same
amount, namely, by the negative of the observer’s translational velocity.
Thus the velocity of point P relative to point A4 is identical for any nonrota-
ting observer.

On the other hand, it is important to realize that the velocity of P relative
to A will be different, in general, when the motion is viewed from various
reference frames in relative rotational motion, as we shall demonstrate.
Hence a statement of the relative velocity of two points should also specify
the reference frame. An inertial or a nonrotating frame is assumed if none
is stated explicitly. |

Returning now to a consideration of the relative velocity v,, as viewed
by a nonrotating observer, we note that it can also be considered to be the
velocity of P as viewed by an observer on a nonrotating system that is
translating with A. In this case, the base point 4 would have no velocity
relative to the observer, and therefore we could use the results of Sec. 2-3
which apply to the rotation of a rigid body about a fixed point. Proceeding
in this fashion, we obtain from Eq. (2-5) that

Vea=® X p (2-82)

where p is the position vector of P relative to 4 and @ is the absolute angular
velocity of the body. (Here we note that if @ were measured relative to a
rotating system, its value would change and so would the value of v,
in general.) So, from Eqgs. (2-81) and (2-82), we find that the absolute
velocity of point P is

V=V, +®@Xp (2-83)
The acceleration of P is obtained by differentiating Eq. (2-83) with respect
to time: '

V=V,+0Xp+wXp (2-84)
To evalute p we recall that the time rate of change of a vector is the velocity
of the tip of the vector when the origin remains fixed. Since p is of constant

magnitude, we can again use Eq. (2-5), obtaining
P=0Xp (2-85)

which, of course, is identical with v,,, obtained previously. Finally, denoting
the acceleration v, by a,, we obtain from Egs. (2-84) and (2-85) the absolute
acceleration of P. '

a=a,+®Xp+oX(®Xp) (2-86)
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2-8. VECTOR DERIVATIVES IN ROTATING
SYSTEMS

Suppose that a vector A is viewed by an observer on a fixed system
XYZ (Fig. 2-15) and also by another observer on a rotating system. The
rotating system is designated by the unit vector triad e,, e,, and e; which is
rotating with an angular velocity @
relative to X' YZ. Since A is consider-
ed to be a free vector during the
differentiation process, no generality
1s lost by taking the point O as the
common origin of the unit vector
triad and also the vector A.

Now, as each observer views the
vector A, he might choose to express
it in terms of the unit vectors of his
own system. Thus each observer
would give a different set of compo-
nents. Nevertheless, they would be
viewing the same vector and a simple
coordinate conversion based upon
the relative orientation of the co- Fig. 2-15. The vector A relative to
ordinate systems would provide a fixed and rotating reference frames.
check of one observation with the other. :

On the other hand, if each observer were to calculate the time rate of
change of A, the results would, in general, not agree, even after performing
the coordinate conversion used previously. To clarify this point, recall from
Eq. (1-38) that the absolute rate of change of A, written in terms of the unit
vectors of the rotating system, is

A= Ae, + Aye, + Ase; + A&, + A&, + Asé, (2-87)

But the rate of change of A, as viewed by an observer in the rotating system,
1S

X

(A)T == Alel + Ageg + /1.383 (2_88)
since the unit vectors are fixed in this system.

Now let us consider the last three terms on the right side of Eq. (2-87).
Using Eq. (2-8), we see that

A€, + Azéy + Ajé; = Ao X e, + A;w X €, + A;@0 X €5
or, since vector multiplication is distributive,
A& + A8 + A6, = w X (4,e; + A,e, + Ase;) = @ X A (2-89)
Therefore, from Eqgs. (2-87), (2-88), and (2-89), we find that the ab-
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_.solute rate of change of A can be expressed in terms of its value relative to
a rotating system as follows: <_Ap7 {4 b ool
o o Hdils NdEg
A=(A),+wXA 2 2 - (2-90)
where (A), is the rate of change of A as viewed from the rotating system
and @ is the absolute angular velocity of the rotating system.

It is important to note that A can be any vector whatever. A relatively
simple application of Eq. (2-90) would occur for the case where A is the
position vector of a given point P relative to the common origin O of the
fixed and rotating systems. On the other hand, a more complicated situation
would arise if, for example, A were the velocity of P relative to another
point P’, as viewed from a third system that is rotating separately. Thus
Eq. (2-90) has a wide application and should be studied carefully.

Although we have referred to the coordinate systems in the preceding
discussion as fixed or rotating, the derivation of Eq. (2-90) was based upon
mathematics rather than upon physical law. Therefore we need not consider
either system as being more fundamental than the other. If we call them
system A and system B, respectively, we can write

(A, = Ay + @y X A (2-91)
where @, , is the rotation rate of system B as viewed from system A. Since
the result must be symmetrical with respect to the two systems, we could
also write _

(A=A, + @ XA (2-92)

where we note that w,,; = — @, and that A is the same when viewed from
either system.

Example 2-1. A turntable rotates with a constant angular velocity
o about a perpendicular axis through
O (Fig. 2-16). The position of a point
P which is moving relative to the
turntable is given by

r = xi+ yj
where the unit vectors i and j are
fixed in the turntable. Solve for the
absolute velocity and acceleration of

X P in terms of its motion relative to
the turntable.

Using Eq. (2-90), we see that
the absolute velocity v is given by
V=F={),+®Xr (2-93)
Fig. 2-16. Motion of a point that is But the velocity seen by an observ-
moving on a turntable. er rotating with the turntable is just
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(F), = xi + Jj
Also,
WOXT=x®0Xi+ ywXj=—yol + X0
Therefore,
V=X —yo)i + (J + xo)j (2-94)
where we note that the absolute velocity v is expressed in terms of the unit

vectors of the rotating system.

To find the acceleration, we again apply Eq. (2-90), this time to the
absolute velocity vector.

a=v=(W),+®XyV (2-95)

The term (V), is found by differentiating Eq. (2-94) with respect to time,
assuming that the unit vectors are constant since they are viewed from the
rotating system.

(V) = (X — yo)i + (J + Xo)] (2-96)
Note that (v), is not the acceleration of P relative to the rotating system.
Rather, it is the time rate of change of the absolute velocity vector as viewed
from the rotating system. In general, the subscript after a differentiated
(dotted) vector refers to the coordinate system from which the rate of change
is viewed. If the subscript is omitted, a nonrotating reference frame is
assumed.

Next, using the result given in Eq. (2-94), the term @ X v is evaluated
in a straightforward fashion, giving

DX V=—0+ x0)i+ o(X — yo)j (2-97)
Finally, from Egs. (2-95), (2-96), and (2-97) we obtain that the absolute
acceleration is

a=(%— x0 — 209)i + (G — yo® + 20%)j (2-98)

2-9. MOTION OF A PARTICLE IN A MOVING
COORDINATE SYSTEM

Now we shall use the general result of Eq. (2-90) to obtain the equations
for the absolute velocity and acceleration of a particle P that is in motion
relative to a moving coordinate system. In Fig. 2-17, the X YZ system is
fixed in an inertial frame and the xyz system translates and rotates relative
to it.

~ Suppose that r is the position vector of P and R is the position vector
of 0', both relative to point O in the fixed X YZ system. Then

r=R+p (2-99)
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Fig. 2-17. The position vectors of a point P relative to a fixed
system and a moving system.

where p is the position vector of P relative to O’. Differentiating with respect
to time, we obtain the absolute velocity

v=it=R+p (2-100)

where both derivatives on the right are calculated from the viewpoint of
a fixed observer. Next we express p in terms of its value relative to the ro-
tating xyz system, using Eq. (2-90), that is,

=) +wXp (2-101)

where ® is the absolute rotation rate of the xyz system. Then from Egs.
(2-100) and (2-101) we obtain

v=R+ (@), +oxp (2-102)

In order to explain further the meaning of the terms on the right side
of Eq. (2-102), let us define the point P’ to be coincident with P at the time
of observation but fixed in the xyz system. We see that R is the absolute
velocity of O’ and that @ X p is the velocity of P’ relative to O’ as viewed
by a nonrotating observer. Thus R + @ X p represents the absolute velocity
of P’. The remaining term (p). is the velocity of P P relative to O’, as viewed
by an observer rotating with the xyz system. It is interesting to note that
(p), can also be interpreted as the velocity of P relative to P’, as viewed by
a nonrotating observer.® Therefore the three terms on the right side of

3This result can be seen more clearly if we let p’ be a vector drawn from P’ to P. At
the moment in question, p” = 0, and therefore, from Eq. (2-90), ' = (¢'),. In other words,
at this particular moment, the velocity of P relative to P’ is the same, whether viewed
from a rotating or nonrotating system. Also, of course, the velocity of P relative to any

point fixed in the xyz system, whether it be P’ or O’, is the same when viewed by an ob-
server moving with the system.
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Eq. (2-102) are, respectively, the velocity of O’ relative to O, the velocity
of P relative to P’, and the velocity of P’ relative to O’, all as viewed by
an absolute or nonrotating observer.

To obtain the absolute acceleration of P, we find the rate of change of
each of the terms in Eq. (2-102), as viewed by a fixed observer. Thus,

gi ®) = R (2-103)

Using Eq. (2-90), we obtain

L1B) = @), + © X (B), (2-104)

Also, using Eq. (2-101),

ad—(a)Xp):(bXp—i—wxp
t (2-105)
=WXp+owX(P),+ oX((®Xp)

Finally, adding Egs. (2-103), (2-104), and (2-105), we obtain an ex-
pression for the absolute acceleration of P.

a=R+dXp+ox(@@Xp) + (@), +20x%(p), (2-106)

Now let us explain the nature of each of the terms. R is the absolute
acceleration of O'. The terms @ X p and @ X (@ X p) together represent the
acceleration of P’ relative to O’, as viewed by a nonrotating observer.

The term @ X p is similar in nature to the tangential acceleration of Eq.
(2-7), whereas the term @ X (@ X p) represents a centripetal acceleration
since it is directed from P toward, and perpendicular to, the axis of rotation -
through O'. Thus the first three terms of Eq. (2-106) represent the absolute
acceleration of P’. The fourth term (@), is the acceleration of the point P
relative to the xyz system, that is, as viewed by an observer moving with
the xyz system. The fifth term 2w X (@), is known as the Coriolis acceleration.
Note that the Coriolis acceleration arises from two sources, namely, Egs.
(2-104) and (2-105). The term in Eq. (2-104) is due to the changing direction
in space of the velocity of P relative to the moving system. The term in
Eq. (2-105) represents the rate of change of the velocity @ X p due to a
changing magnitude or direction of the position vector p relative to the %
moving system. 7

Note also that the Jast two terms of Eq. (2-106) represent the acceleration

of P_relative to P’ as_ v1eweLby a nonrotatmg observer. Thus _we_can.. |
summarize by saying that the ﬁrsmlygg_ggm§__g1ve the accelerauon of P’,..,-, , \
W the acceleration of P relative to P'; the _ ’
wmtmg in the absolute acceleration of P. .

form

R e e—
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2-10. PLANE MOTION

If a particle moves so that it remains in a single fixed plane, it is said to
move with plane motion. Similarly, plane motion of a rigid body requires
that all points of the body move parallel to the same fixed plane. In the
latter case, the kinematical aspects of the motion are adequately described
in terms of a lamina chosen such that its motion is confined to its own plane.
Let us consider, then, the motion of a lamina in its own plane (Fig. 2-18).

Instantaneous Center. In Eq.
(2-83), we found that the velocity
of a point P in a rigid body is given
by

V=V,+@®Xp
where v, is the velocity of the base
point A, @ is the absolute angular
velocity of the body, and p is the
position vector of P relative to 4. For
plane motion, the angular velocity
vector w, if it exists, must be perpen-
dicular to the plane of the motion.
Fig. 2-18. The motion of a lamina in Furthermore, we recall that a differ-
its own plane. ent base point will, in general, have
a different velocity. So if we can
find a base point location C whose velocity is zero, we see from Eq. (2-83)
that

V= X pp (2-107)

where pp is the position vector of P relative to C. Thus the line CP must be
perpendicular to v and of length p, such that

v = wps (2-108)

Hence, if v and w are known, the point C can be determined.
Similarly, it can be seen that '

V=@ X p, (2-109)
or, for another point B in the lamina,
Vp = @ X PB (2—1 10)

Thus one concludes that the instantaneous center C is located at the inter-
section of two or more lines, each of which is drawn from some point in
the lamina in a direction perpendicular to its velocity vector.

The point C, whose velocity is instantaneously zero, and about which
the lamina appears to be rotating at that moment, is known as the instan-

- T AT T S o
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taneous center of the rotation. It may be located in the lamina or in an imagi-
nary extension of it. The instantaneous center is at a unique point for any
given instant in time, provided that the motion is not that of pure translation
(o = 0). In the latter case, the instantaneous center is located at an infinite
distance from the point in a direction perpendicular to the velocity.

In considering the velocity of various points in the lamina, it should
be noted that only certain velocity distributions are possible. In particular,
the rigid-body assumption requires that the velocities at all points on any
given straight line in the lamina must have equal components along the
line. In fact, from Eq. (2-110) we see that the locus of all points having
a given speed v, is a circle centered at C and with a radius p, = vp/e, the
velocity at each point being tangent to the locus. Thus the velocity distri-
bution has a circular symmetry about the instantaneous center. Further-
more, a knowledge of the angular velocity and the location of the instan-
taneous center is sufficient to determine the velocity of any point in the
lamina, thereby providing a convenient means of calculating velocities
for the case of plane motion. It should be emphasized, however, that the
acceleration of the instantaneous center is not necessarily zero, and there-
fore the instantaneous center is not particularly useful in performing
acceleration calculations.

We have seen that the angular velocity @ is perpendicular to the lamina
and is not a function of position. Hence the angular velocity of any line
in the lamina is equal to the angular velocity of the lamina. So if we choose
any two points of the lamina, 4 and P for example, the angular velocity
is found by taking the difference of the velocity components at 4 and P
perpendicular to 4P and dividing by the distance AP. Using vector notation,

w=PX (:')2" Va) @2-111)

Space and Body Centrodes. In general, the instantaneous center does
not retain the same position, either in space or in the lamina. The locus of
the instantaneous centers forms a curve in space known as the space centrode.
Similarly, the locus of the instantaneous centers relative to the moving
lamina is known as the body centrode. Both curves are in the same plane,
of course, but neither curve need be closed.

Now suppose that, at a given B
moment, the space centrode S and
the body centrode B corresponding o >
to a given motion are as shown
in Fig. 2-19. The - instantaneous c
center is a point common to both
curves at this moment. Also, we note Fig. 2-19. The space centrode S and
that curve S is fixed in space and the body centrode B.

S
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curve B is rotating with angular velocity . In general, the curves B and
S are tangent at C but have different curvatures at this point. This allows
for the instantaneous center C to proceed smoothly along curves B and
C because of a finite rotation rate o of the body centrode. But this is
just the condition for rolling motion. Hence the body centrode rolls on
the space centrode. A further condition for rolling motion is that equal
path lengths are traced by point C in curves B and S in any given time
interval. If this were not true, slipping would result and pure rolling motion
would not occur.

Perhaps a source of confusion can be avoided if we emphasize again
that, at a given moment, the point known as the instantaneous center has
zero velocity. We may speak of the instantaneous center as moving along
the curves B and S but, more accurately, a succession of points on these
curves are called the instantaneous center at succeeding instants of time.
The points on the body centrode are in motion, in general, but when each
becomes the instantaneous center of rotation, its velocity is zero at that
instant. Each point on the space centrode is at rest at all times.

Now let us take a more general view of the instantaneous center. We
saw in the case of the lamina of Fig. 2-18 that the instantaneous center
C is instantaneously fixed both in the lamina and in space. So if we consider
a lamina 4 moving with plane motion and lamina B fixed in space, then
the instantaneous center is fixed in both laminas at that moment. But, as
we emphasized earlier, there are no absolute systems from the viewpoint
of kinematics. Therefore, in a more general sense, the instantaneous center
relative to any two laminas 4 and B in plane motion is that point C which
is instantaneously at rest, as viewed by observers on both 4 and B. If more
than two laminas are in plane motion, then there is, in general, a separate
instantaneous center for each pair. Thus, four laminas would have six
instantaneous centers. To avoid confusion, however, we shall always as-
sume that the instantaneous center for a given lamina is defined relative
to a fixed frame unless a contrary statement is made.

Example 2-2. As an example of plane motion, consider a wheel of radius
a which is rolling along a straight line (Fig. 2-20). Assume that the wheel
has a uniform angular velocity .

In this case, the instantaneous center is at the point of contact C. The
space centrode is the straight line on which the wheel is rolling, whereas
the body centrode is the circumference of the wheel.

Considering the instantaneous center C at the given moment as a base
point whose velocity is instantaneously zero, we can use Eq. (2-107) to
calculate the velocity of any point on the wheel. The velocity of the center
O’ is constant since its distance from C is constant and the rotation rate
is assumed to be constant. Its magnitude is '
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Vo = aw (2-112)

Similarly, the speed of a general

point P is v w
v = Pp(l_) (2—113) P

where pp is the distance from C to P. Op——>-V,:
The path in space of a point P P\
on the circumference can be shown a
to be a cycloid. Its speed along its
path reaches a maximum when p, is
a maximum, that is, when P is dia- ¢ )
metrically opposite C and at the top Fig. 2-20. A wheel rolling on a

point of the cycloid. At this point, straight line.

v = 29y = 2aw. On the other hand, the velocity of P goes to zero when
P coincides with C and p, = 0. In terms of the cycloidal motion, this
occurs when P is at the cusp of the cycloid and instantaneously at rest
while reversing the direction of its motion. Of course, the acceleration of P

.is_not zero when it coincides with C. In fact, the acceleration of P is of

uniform magnitude aw?, being at all times directed toward O’ for the case
of uniform . o

PR

Example 2-3. A bar of length / is constrained to move in the xy plane
such that end 4 remains on the x axis and the other end B remains on the
y axis. Assuming that the angular velocity o of the bar is constant, find

I

I

Body 6 \‘” '
centrode 1 !
I

I

Space
centrode

Fig. 2-21. The motion of a bar such that its ends remain on the
cartesian axes.
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the space and body centrodes and solve for the motion of-end A4 as a func-
tion of time. |

Let the position of the bar be specified by the angle § between the bar
and y axis at B, as shown in Fig. 2-21. If we measure time from the moment
when point A4 is at the origin and moving in the positive sense along the
X axis, we obtain

0 = ot (2-114)

The instantaneous center of rotation of the bar is at the intersection of
lines drawn perpendicular to the velocity vectors at two points on the bar.
Choosing the end points, for example, point 4 always moves along the x
axis and point B along the y axis. Therefore, the instantaneous center C
is located at the intersection of the dashed lines of Fig. 2-21, that is, at

x = [lsin @

y = lcos @ (-115)

indicating that the space centrode is a circle of radius / since the distance

with the positive y axis and, from Eq. (2-114), the point C proceeds around
the space centrode at a uniform rate.

We have seen that 4B and OC are of equal length / and therefore they
bisect each other at the center of the rectangle OACB. Thus the instan-
taneous center C remains at a constant distance //2 from the midpoint of
the rod but changes its position relative to the rod. Therefore we conclude
that the body centrode is a circle of radius //2 and centered at the midpoint
of the rod.

To find the motion of point 4, we note that it moves along the x axis

and has the same x coordinate as the instantaneous center. So, from Egs.
(2-114) and (2-115), we obtain

x = Isin ot (2-116)

indicating that point 4 moves with simple harmonic motion along the
x axis. Similarly, point B moves with simple harmonic motion along the
Y axis. | |

The instantaneous center C moves clockwise at the same angular rate
as the bar rotates counterclockwise. Therefore point C moves completely
around the space centrode during one complete rotation of the bar. Since,
however, the instantaneous center must traverse the same distance along
the space and body centrodes, it must make two complete circuits of the
body centrode for every complete rotation of the bar.




- —

SEC. 2-11 KINEMATICS OF A PARTICLE 57

2-11. EXAMPLES

Example 2-4. A particle P moves along a straight radial groove in a
circular disk of radius @ which is pivoted about a perpendicular axis through
its center O (Fig. 2-22). The particle moves relative to the disk such that

r:%(l + sin ef)

and the disk rotates according to

b = ¢ sin et
Find the general expression for the
absolute acceleration of P.
First we shall solve the problem
using the general acceleration equa-
tion in cylindrical coordinates, Eq.

(2-23). Setting 2z =0 since the Fig. 2-22. A particle with radial
motion is two-dimensional, we harmonic motion relative to a
obtain the components in- the e, harmonically oscillating disk.
and e, directions as follows:
a, = F — r¢? = — ngsincot — £15‘%(;{’—‘2’(1 + sin wt) cos® w?
) (2-117)
a, = rdp + 2id = —5‘-5%@(1 + sin w?) sin w? + aw’¢, COs? vt

Next let us solve the same problem using the general vector expression
of Eq. (2-106). Let the rotating coordinate system be fixed in the disk such
that the origins O and O’ coincide. Then, noting that

p =re = %(1 + sin wt)e,

® = <f>ez = wd, COS wl e,

we evaluate each of the terms.

R=0
o . aa)zd)o . .
DX p= ————2———(1 + sin wt) sin ot €,
aw’® ¢ - .
®X(®Xp)=— 5 (1 + sin wt) cos® wt e,
P), = —%’j sin ot €, -

20 X (P), = aw’¢, cos® wi €,

In obtaining the foregoing results, the procedure is straightforward
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except for finding the derivatives of p as viewed from the rotating system.
Here we differentiate the expression for p, assuming that e, is constant since
it is fixed in the rotating system. Adding the components in the e, and e,
directions, we obtain agreement with the results found previously in Eq.
(2-117).

Example 2-5. Suppose that a particle P moves along a line of longitude
on a sphere of radius a rotating at a constant angular velocity @ about the
polar axis. If its speed relative to the sphere is » = k¢ and if the center of
the sphere is fixed, find the absolute acceleration of P in terms of the spherical
unit vectors e, e, and ey, (Fig. 2-23). Let 6(0) = 6,.

@ One approach to the problem is
T to evaluate the acceleration directly
e in terms of spherical coordinates,
using Eq. (2-33). First we note that
P r = a and ¢ = w, where both g and
0 e w are constants. Also,

0 =2 Kk (2118
a a

Evaluating the spherical components
of the acceleration, we obtain

Fig. 2-23. The motion of a particle a, = F — rt? — r¢?sin* ¢
P having a velocity v relative to a _ _ kr
sphere.

— aw?®sin® ¢

ag = r + 2/ — rg?sinfcos = k — aw?sinfcos§  (2-119)
a, = rgsin 6 + 2i¢ sin 6 + 2rf cos 6 = 2wkt cos ¢
where we note from Eq. (2-118) that

. kt?
0=146,+ 3a (2-120)

Now let us solve this problem using Eq. (2-106). The moving coordinate
system is assumed to be fixed in the sphere and rotating with it at a constant
rate @. The origin O’ is at the center O. Evaluating the first two terms,
we find that

R=0 (2-121)
and
®Xp=0 (2-122)
Before evaluating the next term, we note that
W =wcosfe — wsinbfe,

p = ae;

e i fer g

H g 1R I T

3
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Therefore,
WX p=awsinfe,
and
@ X (w X p) = —aw?(sin®fe, + sin d cos Fey) (2-123)
It can be seen that the path of P relative to the sphere, that is, the moving

system, is just a circular path which is traversed at a constantly increasing
speed. From Eq. (2-54), we find that

.. k2t2
(), = — 5 e, + ke, (2-124)

Also, we see that

(), = kte,
so the Coriolis acceleration is

2w X (p), = 2wkt cos 0§ e, (2-125)

Adding the terms given by Egs. (2-121) to (2-125), we obtain the same
results as were obtained previously in Eq. (2-119).

Example 2-6. Find the acceleration of point P on the circumference
of a wheel of radius r, which is rolling on the inside of a fixed circular track

of radius r, (Fig. 2-24). An arm connecting the fixed point O and the wheel
hub at O’ movesata constant angular

velocity w. The position of P relative
to the arm is given by the angle ¢.
Our procedure will be to solve
this example using the general vector
equation given in Eq. (2-106). The
origin of the fixed system is taken at
O. The moving system is fixed in the
moving arm and its origin is at the
hub O’. Normal and tangential unit
vectors will be used, e, having the
direction of the line from O’ to O
and e, being perpendicular, as shown.
It can be seen that the wheel un-
dergoes plane motion, and since there
is no slipping of the wheel on the track, the instantaneous center of rotation
for the wheel is at the contact point C. This enables us to obtain an equation

Fig. 2-24. A wheel rolling on the
inside of a fixed circular track.

' relating ¢ and e. First consider the velocity with which the hub moves

along its circular path. The wheel is rotating clockwise at an angular rate
c[) relative to the arm but the arm rotates with an angular velocity o 1n a
counterclockwise sense. Therefore the wheel rotates clockwise at an absolute
angular velocity (¢ — o). Since the wheel is instantaneously rotating about
C, the absolute velocity of the hub is
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Vo = 1ry(Pp — o)e, (2-126)

But the velocity of the hub can also be calculated from the motion of the
arm. The distance OO’ is (r; — r;) and the arm rotates with an absolute
angular velocity o, so -

Vo = (11 — ry) e, (2-127)

From Egs. (2-126) and (2-127), we obtain
| ¢="e (2-128)

Fo

Now let us proceed with the evaluation of the absolute acceleration of
P. We find that

R = (r;, — n)o’e, (2-129)
which is just the centripetal acceleration of O’ due to its uniform circular
motion about O, in accordance with Eq. (2-53). The next term, @ X p,
is zero because the angular velocity @ is constant.

In order to evaluate the term @ X (@ X p), we note first that
@ — W€
where e, is a unit vector pointing out of the plane of the figure in accordance
with Eq. (2-38). Also,
P = ry(sin¢ e, + cos ¢ e,)
Consequently,
® X (® X p) = —r,0’(singe, + cos ¢ e,) (2-130)

which is a centripetal acceleration directed from P toward O'.

The point P, as viewed by an observer on the moving coordinate system,
moves at a constant angular rate ¢ in a circle of radius r,. Thus we find
that the acceleration due to this motion is again centripetal, being directed
from P toward O'.

(@), = —r2¢;2 (sin ¢ e, + cos ¢ e,)
or, substituting from Eq. (2-128), we obtain

@) = —12 sin g e, + cos b e,) (2-131)

ry

In order to evaluate the Coriolis acceleration term, we first obtain the
relative velocity

(B)r = ryd(cos p e, — sin ¢ e,)
= rio(cos ¢ e, — sin ¢ e,)

where we note again that an observer on the moving system sees point P
moving in a circular path with a uniform speed ry. Thus we obtain
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20 X (p), = 2r,0*(sin ¢ €, + cos ¢ e,) (2-132)
which is directed radially outward in the direction O'P.

Finally, adding the individual acceleration terms given in Eqs. (2-129)
to (2-132), we obtain

2 2
r . r
a — (Zrl —ry — T‘)msm(ﬁet-l— [(Zrl — ry — r_‘)mz(:OSgb
2 2

(2-133)
cn e

The preceding examples have illustrated the application of Eq. (2-106)
which is the general vector equation for the acceleration of a point in terms
of its motion relative to a moving coordinate system. Although this equation
is valid for an arbitrary motion of the moving coordinate system, this
system should be chosen such that the calculations are made as simple as
possible. An unfortunate choice at this point can result in a large increase
in the required effort. Roughly speaking, the motion of P relative to the
moving system should be of about the same complexity as the absolute
motion of O, provided that the angular velocity @ is constant or varies in
a simple fashion. Also, the choice of unit vectors in expressing the result

should be made for convenience. In general, they should form an orthogonal
set. Lo 1P
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PROBLEMS

2-1. A vertical wheel of radius a rolls without slipping along a straight hori-
zontal line. If its angular velocity is given by @ = at, solve for the acceleration of
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a point P on its rim, assuming that P
is initially at the highest point of its
r path. Express the result in terms of the
unit vectors e, and ey. ,

2-2. Solve for the hodograph of the
two-dimensional harmonic motion giv-
en by Egs. (2-64) and (2-69). Sketch
the result. ‘

2-3. A lamina undergoes general

motion in its own xy plane. At a
TIITTI7TT77 77772 1777727227777 given instant, its angular motion is given
by @ = ok, @ = ok; whereas a base
point A4 in the lamina has an accelera-
tion a4 = a4i. Find the position relative to 4 of a point P whose absolute accelera-
tion is zero.

2-4. A water particle P moves outward along the impeller of a centrifugal
pump with a constant tangential velocity of 60 ft/sec relative to the impeller, which
is rotating at a uniform rate of 1200 rpm in the direction shown. Find the accelera-
tion of the particle at the point where it leaves the impeller.

Fig. P2-1

z

Fig. P2-4 - Fig. P2-5

2-5. A cyclist rides around a circular track (R = 100 ft) such that the point of
contact of the wheel on the track moves at a constant speed of 30 ft/sec. He banks
his bicycle at 15° with the vertical. Find the acceleration of a tack in the tire
(1.25 ft radius) as it passes through the highest point of its path. Use cylindrical
unit vectors in expressing the answer.

2-6. An airplane flies with a constant speed » in a level turn to the left at a
constant radius R. The propeller is of radius a and rotates about its axis in a clock-
wise sense (as viewed from the rear) with a constant angular velocity ). Find the
total acceleration of a point P at the tip of the propeller, assuming that its axis is
always aligned with the flight path. Use cylindrical unit vectors and assume that
the velocity of P relative to the airplane is vertically upward at ¢ = 0.




%

SEC. 2-11 KINEMATICS OF A PARTICLE 63

2-7. A circular disk of radius r, rolls in its plane on the inside of a fixed circular
cylinder of radius r,. Find the acceleration of a point P on the wheel at a distance

b from its hub O’. Assume that ¢> is not constant, where the angle ¢ is measured
between O’P and the line of centers O’O.

ce——
Fig. P2-7 Fig. P2-8

2-8. A wheel of radius a rolls along a general convex curve of varying radius
of curvature R such that all motion is confined to a single plane. The contact point
O’ traverses the curve at a constant speed v,. Find the absolute acceleration of a
point P on the rim. Express the result in terms of the unit vectors e, and e;.

2-9. The origin O’ of a moving coordinate system has a constant absolute
velocity vo-; whereas the point P has a constant absolute velocity vp. If the moving

system rotates with a constant angular velocity w, and p is the position vector of
P relative to O, find:

@ 63 O D) © f; @ B)r: © T @)1

2-10. The points P and P’ are each located on the edge of separate circular disks
which are in essentially the same plane and rotate at constant but unequal angular
velocities w and »” about a perpendicular axis through the common center O.
Assuming that O is fixed, solve for the velocity and acceleration of P’ relative to
P at the moment when P and P’ have the least separation. Consider the following
cases: (a) the observer is nonrotating; (b) the observer is rotating with the unprimed
system. Express the results in terms of the unit vectors e, and e, which rotate

\ with the unprimed system.
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Fig. P2-10

Fig. P2-11

2-11. The plane of the windshield of a certain auto is inclined at an angle
o with the vertical. The windshield wiper blade is of length / and oscillates accord-
ing to the equation yr = 4r, sin B¢. Assuming that the auto travels with a constant
speed » around a circular path of radius R in a counterclockwise sense, (more
exactly, the point O’ traces out a circle of this radius), solve for the acceleration of
the point P at the tip of the wiper. For what value of 1[; would you expect the
largest force of the blade against the windshield ?

Z
pr e,
aln (eqi
P e,
I
2] R
I
(0):5
~ | y
g~
~

2-12. A gyroscope in the form of a
wheel of radius a spins with a constant
angular velocity & = {) about its axis of
symmetry. This axis maintains a con-
stant angle @ with the vertical and pre-
cesses at a constant rate ¢b. Find the
acceleration ofa point P on the rim
using spherical unit vectors e,,eg, €4 The
angle « is measured in the plane of the
rim and specifies the location of P
relative to a horizontal diameter
through O’.




DYNAMICS OF A PARTICLE

In Chapter 2, we studied some of the methods of kinematics which can be
used to obtain the absolute acceleration of a particle. Then, knowing the
acceleration and assuming a knowledge of its mass, one can use Newton’s
law of motion to determine the total external force acting on the particle.
This chapter emphasizes the inverse problem, namely, the problem of calcu-
lating the motion of a particle from a knowledge of the external forces acting
upon it.

First consider the general case where the force acting on a particle is
a function of its position and velocity and also the time. From Eq. (1-41),
its differential equation of motion is

mt = F(r, i, ?) | (3-1)

Assuming that the function F(r, , ) and the mass m are known, we would
like to solve for the position r as a function of time. Unfortunately, an ana-
lytic solution of this equation is impossible except in special cases.

To see the difficulties more clearly, let us write the vector equation in
terms of its cartesian components.

mi = Fo(x,y,2,%,0,2%,1)

my = F,(x, 9,2, %, J, 2, 1) (3-2)

mzZ = Fz(xayszaxay: Z., t)

The force components F,, F,, and F, are, in general, nonlinear functions
of the coordinates, velocities, and time; thus the equations are hopelessly
complex from the standpoint of obtaining an analytical solution. Neverthe-
less, it is the thesis of Newtonian mechanics that a complete knowledge of
the external forces acting on a particle determines its motion, provided that
the initial values of displacement and velocity are known. For example,
using cartesian coordinates, initial values of x, y, z and also %, y, and z would
be specified. So a solution to the problem does, in fact, exist. With the aid
of modern electronic computers, and using approximate methods, it is possi-
ble ‘to obtain solutions to the complete equations that are of sufficient
accuracy for engineering purposes.

Any general analytical solution of Eq. (3-2) will contain six arbitrary
65
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coefficients which are evaluated from the six initial conditions. One method

of obtaining the general solution is to look for integrals or constants of the |

motion, that is, to attempt to find six functions of the form

fk(x’yazax:}}azat):ak (k:1>25a6) (3—3) |

where the a; are constants. If the functions are all distinct, that is, if none
is derivable from the others, then, in principle, they may be solved for the
displacement and the velocity of the particle as a function of time and the
constants a.

It is usually not possible to obtain all the a; by any direct process. One
of the principal topics of advanced classical mechanics, however, is the
study of coordinate transformations such that the solution for the constants
in terms of the new coordinates is a straightforward process.

Sometimes the constants can be given a simple physical interpretation,
thereby giving us more insight into the nature of the motion. For example,
a constant of the motion might be the total energy or the angular momentum
about a given point. Even in cases where we do not solve completely for the
motion, a knowledge of some of the constants that are applicable to the
given problem may aid in obtaining certain results, such as the limiting values
of certain coordinates.

In this chapter, we shall discuss some of the simpler methods and princi-
ples to be used in solving for the motion of a particle. As will be seen in the
following chapters, these principles can be expanded to apply to systems
of particles and to rigid-body motion, thereby forming an important part of
our treatment of the subject of dynamics.

3-1. DIRECT INTEGRATION OF THE
EQUATIONS OF MOTION

Returning now to the general equation of motion as expressed in Eq.
(3-1) or Eq. (3-2), let us consider several cases in which direct integration
can be used to find the motion of the particle.

Case 1: Constant Acceleration. The simplest case is that in which the
external force on the particle is constant in magnitude and direction. Con-

sidering the cartesian components of the motion, we find from Eq. (3-2)
that

mx = F, _
my = F, (3-4)
mz = F, '

where F,, F,, and F, are each constant.
From Eq. (3-4), we see that the motions in the x, y, and z directions are

1
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independent. Therefore, let us consider the one-dimensional case of motion

parallel to the x axis. Denoting the velocity and acceleration by v and a,
respectively, we find that

a=%="1x (3-5)
and, by direct integration with respect to time, we obtain that
v="v, + at (3-6)
and
X = Xo 4 Vot + %aﬁ (3-7)

where x, and v, are the displacement and velocity at 1 = 0. Of course, similar
equations would apply to motion in the direction of the y or z axes.

The time required for the particle to attain a given speed v or displace-
ment x is found by solving Egs. (3-6) and (3-7) for ¢.

1

l = Z (’U - Uo) (3_8)

Also,

;= ‘:? (V2a(x = %)) + 0 — »,) (3-9)

An expression relating the speed and displacement can be obtained for

this case of constant acceleration by eliminating ¢ between Egs. (3-8) and
(3-9), with the result:

vP = v} + 2a(x — x,) | | (3-10)

Motion of a Particle in a Uniform Gravitational Field. The motion of a
particle in a uniform gravitational field is confined to the plane determined
by the initial velocity vector of the particle and the gravitational force. This
follows from the fact that the force remains in this plane, and therefore there
is no component of acceleration nor-
mal to the plane; hence there is no
tendency for the particle to leave it.
Of course, the velocity vector will
change direction in the general case,
but it will always lie in the same
plane.

Let us choose the xy plane as the
plane of motion with the y axis %
directed vertically upward, that is, \ x
opposite to the direction of the gravi-
tational force. Assume for conven- Fig. 3-1. The trajectory of a particle
ience that the particle is located at in a uniform gravitational field.
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the origin O at time ¢t = 0 and is moving with velocity v, at an angle v
above the horizontal, as shown in Fig. 3-1. The initial values of the velocity
components are

x(0) = v, cos vy

50) = v,siny 1D
Noting that the acceleration components are
a, =20
a, = —g (3-12)

and recalling again that the motion in the x and y directions proceeds inde-
pendently, we obtain the velocity components from Eq. (3-6).

VU, = U, COSYY (3-13)
vy, = V,SInfy — gt (3-14)
Similarly, the displacement components are obtained from Eq. (3-7).
X = v,tcosy (3-15)
y =vitsiny — 3 gt (3-16)

Solving for ¢ from Eq. (3-15) and substituting into Eq. (3-16), we obtain
the trajectory
_ N 4.5 _
y = xtanvy 3% cosTy (3-17)
which is the equation of a vertical parabola.

The vertex of the parabola occurs at the point of zero slope in this case
and is found by differentiating Eq. (3-17) with respect to x and setting the
result equal to zero. We obtain

2 2

Ve . v .
X, = -2 Ssiny.cosy = =2 sin 2 3-18
g S =7 % (3-18)

and, from Egs. (3-17) and (3—18),

_ Y
Vv = g

2
(]

sin? (3-19)

where (x,, y,) is the vertex location.
The time required to attain a given value of x is found from Eq. (3-15).

= 5reosy (3-20)

where we note that the velocity component in the x direction is constant.

Therefore, from Eqs. (3-18) and (3-20), we find that the time to reach the
vertex is : : ‘
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v
t, = —2sin 3-21
z SinY (3-21)

Of course, this value is also obtained from Eq. (3-14) by setting v, = O.
For the case of a trajectory over a flat surface, the range is

R =2x,= E sin 2vy (3-22)
and the time of flight is
t, = 2, — % sin o (3-23)

It can be seen that the maximum range is achieved for ¥ = 45° and the
maximum time of flight for ¥ = 90°.

Now let us calculate the initial flight path angle 7 such that the particle
passes through a given point P at the coodinates (x, y), as shown in Fig. 3-2.
Noting that sec?Y = 1 + tan®?, we can write Eq. (3-17) in the form

Envelope of possible trajectories
for a given y,

o - X
Fig. 3-2. The required initial flight path angle v in order that
the trajectory pass through a given point P.

22(1+tan ¥) — xtany +y =0

or

tan® oy — ?‘;r" tany + ‘?"y +1=0 (3-24)

If the point P is within range for a given initial velocity v,, then there are two
real roots of this quadratic equation in tan ¥, corresponding to the angles
7, and 7,. Complex roots result for the case where the point is out of range.

The maximum range in a given direction is a point on the dashed envelope
of Fig. 3-2 and corresponds to a double root. The value of this double root
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can be found from Eq. (3-24) by the method of completing the square, that
s, :

v 202

(tanfy;&>2:tan2fy—2—v?’tanfy+ y+1=0 (3-25)
ex gx gx*

from which we obtain that

v,

tany = (3-26)

where 7 is the initial flight path angle such that the trajectory just reaches
a point (x., y.) on the envelope of possible trajectories for a given v,. From
Eq. (3-25) we obtain the equation of the envelope:

V2 )2 20
(gxe “gxre .

or
202 v}
xﬁz——"(e——") 327
7 Ve 2g (3-27)
which is a parabola with the vertex located at x = 0, y = %/2g.
Assuming that the azimuth angle (that is, the direction of the horizontal
velocity component) of the trajectory is arbitrary, any point within the
paraboloid formed by rotating the envelope about the vertical line x = 0

will have at least one trajectory passing through it and will thereby be within
the range of a projectile of initial velocity v,.

Example 3-1. Assuming a given initial speed v,, find the initial flight
path angle ¥ such that maximum range is achieved in a direction 45° above
the horizontal.

Because the maximum range is obtained at 45° above the horizon, the
trajectory must pass through a point x, = y. on the envelope. Dividing
Eq. (3-27) by x2, we obtain

1:_2_?%(1_3_ "’3)

gX. \X, 2gx.
which, by using Eq. (3-26), may be written in the form:
—2tanfy(l — %tanfy) =1

or
tan’y — 2tany — 1 =0

The only root fitting the requirement that the end point (x., y.) lie above the
horizontal is

tany =14+ A/ 2
or | .
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vy =673

The slant range in this case is

ﬁxe——(z N2)

where x, is evaluated using Eq. (3-26).

Case 2: F = F(¢). Now assume that the external force is a function of
time only. Again the general equation of motion can be written in terms of
three independent equations giving orthogonal components of the motion.
For the case of motion parallel to the x axis, the equation of motion is

mx = F,(t) (3-28)
which can be integrated directly to give the velocity

v = vy 4+ — j F,(r) dr (3-29)
where v, is the initial velocity. Another integration results in
x=x+ o+ L[ [ E)dn |, (3-30)

where x, is the initial displacement.

Example 3-2. Solve for the displacement of a particle which is subject
to a force of constant magnitude P which is rotating at a uniform angular
rate o in the xy plane such that

F, = P sin ot
F, = P cos wt

Initially the particle is at the origin and has a velocity v, in the dlrectlon of
the positive x axis.

First, we can solve for the velocity component parallel to the x axis from
Eq. (3-29).

%= v, + L (1 = cos wt) (3-31)
Mo
Another integration results in the displacement
x= (9;0 + f’_) t — L sin ot (3-32)
_ Mo me

in agreement with Eq. (3-30).

In a similar fashion, one finds that the y components of the velocity and
displacement are

V= EPEJ sin wf (3-33)

~

y =L (1 = cos wt) (3-34)

me?



. It is interesting to note from Eqgs. (3-32) and (3-34) that the path of
the particle consists of a uniform circular motion plus a uniform translation.
To see this more clearly, consider a primed coordinate system translating
uniformly relative to the unprimed system such that the particle position in
the primed system is '

x’=x—(vo+—£-\)t=—— P2Sincol‘ (3-35)
Mo Mo
y=y= P (1 — cos wt) (3-36)
Mme* .

These equations represent a circular path of radius P/me? centered at
x' =0,y = P/me® as shown in Fig. 3-3.

Of course, the primed system is an inertial system since it is translating
uniformly relative to the fixed xy system. It can be seen that, even in the case

yl

xl

(0 :
Fig. 3-3. The path of the particle relative to a uniformly translat-
ing system.

of general initial conditions, a uniformly translating coordinate system can
always be found such that the motion of the particle relative to this system
consists of uniform circular motion in a plane.

Case 3: F = F,(x)i + F,(»)j + F.(z2)k. For this case, we shall again
consider only the x component of the motion, noting that similar results
apply to the motion in the y and z directions. The differential equation for
the motion is

mx = F,(x) (3-37)

Because the force F, is a function of the displacement rather than time,
it is desirable to integrate with respect to x. This can be accomplished by
making the substitution

X =0 (3-38)

implying that

Rl i el e S R AR
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=g ot
* g
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. _dv __dvdx _  dv

Sl Al ¥ Akl (-39
From Eqgs. (3-37) and (3-39), we obtain
dv
“r = ~-40
mv — Fx(x)' (3-40)
which can be integrated directly to give
,_;_ m(vt — of) = | Fu(x)dx (3-41)

This result is an application of the principle of work and kinetic energy
which will be discussed in Sec. 3-2.

Equation (3-41) can be integrated again to give a solution of the form

[ = f(xm Vo, x) (3_42)
from which one obtains a solution for x of the form
X = g(xos Yo, t) (3_43)

Example 3-3. A mass m and a linear spring of stiffness k are connected
as shown in Fig. 3-4. Assuming one-dimensional motion with no friction,
solve for the displacement x as a function of time and the initial conditions.

l._—». p's
AW ”

A z
Fig. 3-4. A mass-spring system.

AANAANARRNRNARNARNNY

In this example,

F, = —kx (3-44)
or, from Eq. (3-37), |
m% + kx =0 (3-45)
Using Eq. (3-41), we obtain
1 2 2y ‘ — __1_ 2 __ 42 -
o m(v* — v}) = f kxdx = —k(x* — X)) (3-46)

and, solving for the velocity, we find that

_dx _ [ ke 2]”2
U—E'—[’Ua m(x xo)

or

= [vg _ %( 2 xf,)]_m dx (3-47)

Evaluating the integral, we obtain
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. m s X I _1 xo
=ANT [Sm N Y G xg]

or

x = /(mR)oE F = sin (J% t+ a) (3-48)

where
Xo

A/ (m[k)v? + x?

This is the solution for the free motion of a mass-spring system with
arbitrary initial conditions and represents an example of one-dimensional
harmonic motion.

a = sin~!

(3-49)

Case 4: F = F ()i + F,(»)j + F.(2)k. In the analysis of this case,
we shall again consider just the x component of the motion because the form
of the equation is such that the three component motions are each inde-
pendent. The equation of motion can be written as

m Z_;’ — F,(v) (3-50)

from which we obtain

t=m j Fz(v) (3-51)

where, in this case, the velocity v is in the x direction. Evaluating the integral,
one can solve for velocity as a function of the initial velocity and time:

dx
V= = g(v,, t) (3-52)
A second integration results in the displacement in the form
x = f(xo, V5, 1) (3-53)
Another approach is to write Eq. (3-50) in the form
mo %’”‘_’ = F,(v) (3-54)
Integrating this equation results in
vdv
m f Fm = | (3-55)

Now eliminate » from Egs. (3-51) and (3-55) and one again obtains
x = f(X,, Vo, 1)
as in Eq. (3-53).

Example 3-4. Solve for the motion of a particle of mass m that is mov-
ing in a uniform gravitational field and is subject to a linear damping force.
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The force of the linear damper always acts in a direction opposite to the
velocity vector and its magnitude is directly proportional to the velocity.
So if we consider the motion to occur in the xy plane with gravity acting in

the direction of the negative y axis, then the total force acting on the particle
is

F= —cv— mgj (3-56)

Now the x component of the force is
F, = % (—cv) = —ck (3-57)

since x/v is the cosine of the angle between the velocity vector and the x axis
(Fig. 3-5). Similarly,

F,= —cy — mg (3-58)

0 AN X
Fig. 3-5. The trajectory of a linearly-damped particle which moves
in a uniform gravitational field.

So the differential equations of motion are .
m¥ + cx =0 (3-59)

and
my + cy = —mg (3-60)

Consider first the motion in the x direction. Eq. (3-51) can be used
directly in this case, resulting in

¢ Ji, X c
or
% = % e~cum (3-61)

where X, is the x component of the initial velocity. Another integration
results in

X =x, + m;"c0 (1 — e~ct/m) (3-62)

where the constant of integration has been evaluated from initial conditions.

Now consider the motion in the y direction. Equation (3-60) can be
integrated to obtain :
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--z]. ToEs = e s

Yo + (mgfc)
or ;
y=-== (yo cg) ~et/m (3-63)
Integrating again, assuming an initial displacement y,, we obtain
y=yo = B T (5, 4 TE)(1 — e (3-64)

From Egs. (3-62) and (3-64), we note that the displacement in the x
direction has a limiting value as ¢ approaches infinity, namely,

mx
X=X, + 2

On the other hand, the y displacement changes continuously in the negative
direction for large ¢, its limiting velocity being
mg

y=o7

The physical interpretation of this last result is that the gravitational force
mg and the friction force ¢y are of equal magnitude and opposite direction
in the steady state, resulting in no net external force being applied to the
particle.

Another point to notice is that the solutions for the motions in both the
x and y directions involve a term of the form exp(—ct/m). The exponent
contains the ratio
m
c

T =

which has the dimensions of time and is known as the time constant for the
system. Now, time constants are often associated with first-order systems,
but Egs. (3-59) and (3-60) are seen to be second-order differential equations.
Since they contain no term in x or y, however, they are also first-order in the
velocities v, and v, as may be observed by writing them in the form:
70, + v, =0
Ty + Uy = —Tg

The solutions for the velocities given by Eqgs. (3-61) and (3-63) are typical
of the form of the response of first-order systems to an initial condition or
to a constant forcing term.

3-2. WORK AND KINETIC ENERGY

We now present some general principles of particle mechanics. For the
cases where these principles apply, they are directly derivable from Newton’s

el

THy
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laws of motion, and thus they contain no new information. Nevertheless,
they promote further insight into particle dynamics and, by providing some
integrals of the motion, aid in the solution of many specific problems.

The first of these principles to be presented is the principle of work and
kinetic energy: The increase in the kinetic energy of a particle in going from
one point to another is equal to the work done by the external forces acting
on the particle as it moves over the given interval.

To illustrate the meaning of the principle, as well as to define some of
the terms, consider a particle of mass m that moves from A4 to B under the
action of an arbitrary external force F, as shown in Fig. 3-6. Starting witli

‘ B

A
X

Fig. 3-6. The path of a particle moving under the action of an ex-
ternal force.

Newton’s law of motion in the form
F = mf

let us evaluate the line integral of each side of the equation over the given
path from A4 to B. '

ij-d::jjmf-dr (3-65)

where dr is taken in a direction tangent to the curve at each point.
We note that

. 1 d

odr = = —

T 2 di

where it is assumed that the infinitesimal changes in position and velocity
occur during the same time interval. Thus, we see that

(k - B)dr = & d(v")

B _m (VN Mo s o B
Lmr cdr =7 )( d@) = 2 (% — ) (3-66)

where v, and v are the velocities of the particle at points 4 and B, respec-
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tively, of the path. From Eqgs. (3-65) and (3-66), we obtain the result:

("8 e = L oy — L
M ° l‘———2—m’vB—-7-va (3—67)

The integral on the left side of this equation is the work W which is done
by the external force F as it moves along the path from 4 to B.

. rB
W= F-dr (3-68)
A
The kinetic energy T of a particle relative to an inertial system is
T = 3 m (3-69)

where v is the speed of the particle relative to that system. Therefore, the
right side of Eq. (3-67) represents the increase of kinetic energy in going
from A to B.

Using Egs. (3-68) and (3-69), we can express the general result of Eq.
(3-67) in the form

W=T,—T, (3-70)

It should be emphasized that calculations of work and kinetic energy
are dependent upon which inertial system is used as a reference frame.
Nevertheless, even though the individual terms may vary with the reference
frame, the general principle of work and kinetic energy is valid in any inertial
frame.

Example 3-5. A whirling particle of mass m is pulled slowly by a string
toward a fixed center at O (Fig. 3-7) in such a manner that the radial com-
ponent of velocity is small compared to the tangential component. Also,

Fig. 3-7. A particle whirling about a fixed point.

F can be neglected relative to the centripetal acceleration. Using energy
methods, find the angular velocity o as a function of r. Initial conditions
are (0) = w, and r(0) = r,.

In order to use the principle of work and kinetic energy, we must first
determine the total external force acting on the particle. The string provides
the only means for exerting an external force and therefore this force must
be radial in nature. Thus, in accordance with Newton’s law of motion, the
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acceleration of the particle is entirely radial. Since 7 is assumed to be negli-
gible, the path at any point is approximately circular and the acceleration
1s just the centripetal acceleration. From Eqgs. (1-41) and (2-53), the total
external force is the radial force

F, = —mro? 3-71)
The work done on the particle in an infinitesimal radial displacement dr is
dW = F,dr = —me*rdr (3-72)

But, by the principle of work and kinetic energy, each increment of work

done on the particle is accompanied by an equal increase in the kinetic energy.
The kinetic energy is

T = Lmt = et (3-73)
since we neglect the radial velocity. Thus,
dT = me?rdr + mrie de (3-74)
Therefore we obtain
dW =dT

and, from Egs. (3-72) and (3-74),
—2meirdr = mrie do

Rearranging and integrating in the interval r, to r, corresponding to the
angular rates w, and w, we obtain

2[F=1%

or
—21n (L) —In (2) (3-75)
Fo @y
Solving for w as a function of r, we find that
2 2
o = (T) o, (3-76)

This final result can also be written in the form
mrie = mriw, 3-77)

which is in agreement with the principle of conservation of angular
momentum to be developed in Sec. 3-6.

3-3. CONSERVATIVE SYSTEMS

Referring again to Fig. 3-6 let us suppose that the force F acting on the

- given particle has the following characteristics: (1) it is a function of posi-

tion only; (2) the line integral
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IjF-dr

is a function of the end points only and is independent of the path taken
between 4 and B.
Now, from characteristic (1),

[(Fear=—['F.ar (3-78)

for the case where the line integral on the right is taken in the reverse direc-
tion along the same path. But, by characteristic (2), it is also true for an
integration along any two paths connecting 4 and B. Therefore,

(j;F edr =0 (3-79)

where the integral is taken around any closed path.

A force with the characteristics just cited is said to be a conservative
force, that is, it forms a conservative force field. Practically speaking, this
means that the force is not dissipative in nature and that any mechanical
process taking place under its influence is reversible. The property of reversi-
bility can be clarified as follows: if, at a certain moment, the velocities of
all moving parts are reversed, then, following the same physical laws, a
reversible mechanical process will retrace its former sequence of positions
and accelerations in reverse order, as though time were running backwards.

If the work W, as given by Eq. (3-68), is found to depend only upon the
location of the end points, then the integrand must be an exact differential.

Fedr=—dV (3-80)

where the minus sign has been chosen for convenience in the statement of
later results. Therefore we find that

B B
W:j Fedr=— [ av=1Vv,—V, (3-81)
A A

Equation (3-81) states that the decrease in the potential energy V in
moving the particle from A4 to B is equal to the work done on the particle
by the conservative force field. Conversely, the increase in potential energy
in moving the particle between two points is equal to the work done against
the conservative field forces by the particle.

The potential energy V is a scalar function of position only, for a given
particle. The sum of the potential and kinetic energies is known as the total
energy E, and from Eqgs. (3-70) and (3-81), we find that this sum is constant
for a conservative system.

VA+TA:VB+TB:E (3—'82)

Equation (3-82) is a mathematical statement of the principle of conser-
vation of mechanical energy. It applies to systems in which the only forces
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that do work on the particle are those arising from a conservative force field.
Note that workless forces, such as those due to frictionless, fixed con-
straints, do not change the applicability of the principle.

3—4. POTENTIAL ENERGY

Let us consider again the potential energy V. We saw that ¥ is a function
of position only, for the case of a conservative force field. Therefore, if we
express the position of a particle in terms of its cartesian coordinates, we
find that T -

4 oV oV N
dV—de+$dy+—a?dz (3-83)

Also,

dr = dxi + dyj + dzk
and therefore

F.dr= F,dx + F,dy + F.dz (3-84)
From Egs. (3-80), (3-83), and (3-84), we obtain
F= -2
F, = -%%? (3-85)
F=-9

since we note that Eq. (3-80) is applicable for an arbitrary infinitesimal
displacement; hence the coefficients of dx, dy, and dz in Eq. (3-83) must

be equal to the negative of the corresponding coefficients in Eq. (3-84). Thus
we can write

—Fij ; _ oy _ov. _ov _
F=Fi+Fj+Fk=—22i-2j— 7k (3-86)

Now the gradient of the scalar function V is

v, oV, , oV B
VV—§;L+%ﬂ+EEk (3-87)

and therefore we find that the force exerted by a conservative force field
acting on the particle is*

F=-VV (3-88)

This means that the force is in the direction of the largest spatial rate of
decrease of V and is equal in magnitude to that rate of decrease.

'The converse is not necessarily true, that is, a force derivable from a potential function

V by using Eq. (3-88) may not be conservative, as in the case of a time-varying field.
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Equation (3-88) is a general vector equation and therefore the gradient
need not be expressed in terms of cartesian coordinates. For a general
coordinate system, the component of the force F in the direction of the unit
vector e, is given by :

oV
- ox,

where x, is the linear displacement in the direction e, at the point under
consideration.

F, = (3-89)

Inverse-square Attraction. As an example of a potential energy calcu-
lation, consider the case of an inverse-square attraction of a particle of mass
m toward a fixed point. The force exerted by the attracting field is entirely
radial and is equal to

av _ K : N
5= = (3-90)
where K is a constant and r is the distance of the particle from the attracting
center. Since the force is a function of r only, we can integrate Eq. (3-90)

directly to give

F, =

y=-%4+c (3-91)
where C is an arbitrary constant of integration. In the usual case of inverse-
square attraction, we choose C = 0, implying that the potential energy is
always negative and approaches zero as r approaches infinity.

In the general case, the fact that the potential energy contains an arbitrary
constant would seem to require that all measurable quantities of the motion
such as velocity, acceleration, and so on, should be independent of the
choice of C, since the motion in a given situation is not arbitrary. That this
is actually true is confirmed further by noting that the potential energy enters
all computations as a potential energy difference, in which case the constant
C cancels out. As a result, the choice of C, that is, the choice of the datum
or reference point of zero potential energy, is made for convenience in solving
the problem at hand.

Gravitational Potential Energy. The most commonly encountered inverse-
square force in the study of mechanics is the force of gravitational attraction,
and as we have seen, the corresponding gravitational potential must be of
the form given by Eq. (3-91).

Now let us consider the particular case of gravitational attraction by the
earth. Assuming that the mass distribution of the earth is spherically sym-
metrical about the center, it can be shown (Sec. 5-1) that the attractive force
on an external particle is the same as if the entire mass of the earth were
concentrated at its center. Hence we see from Eq. (3-90) that the gravita-
tional force on a particle of mass m outside the earth’s surface is the radial
force
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F,=—% (>R (3-92)

where R is the radius of the earth (Fig. 3-8). The constant K can be evaluated

Fig. 3-8. The earth and a particle of mass m.

from the knowledge (Sec. 1-3) that, assuming a nonrotating earth, the weight
w of a particle is the force of the gravitational attraction of the earth on the
particle, measured at the earth’s surface. Thus

w=—F =X (3-93)
But, in this instance, the weight is also given by
w = mg, (3-94)

where g, is the acceleration of gravity at the surface of a spherical nonrotat-
ing earth. -

From Eqgs. (3-93) and (3-94), we obtain that

| K = mg,R? ,(3—95)
Therefore, from Eq. (3-92),
F,= "8 > g (3-96)
and, from Eq. (3-91),
= _M&R - R (3-97)

¥

But we can also write the potential energy in terms of the height 4 above
the earth’s surface. Letting
r=R+h (3-98)
we find from Eq. (3-97) that
y— —_Mg&R
1 + (h/R)

For motion near the surface of the earth, that is, for & < R, this equation
is approximated by
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~ _h
V= —mg,R (1 F)
Now we eliminate the constant term —mg,R by choosing the zero reference.

for potential energy at the earth’s surface. Then we obtain
V=mg,h (h<KR) (3-99)

In the calculation of local trajectories near the earth’s surface, a reference
frame is often chosen that is fixed in the earth and the value of the accele-
ration of gravity includes the effects at that point of the earth’s rotation.
In this case, the gravitational field is essentially uniform and we use the symbol
g for the local acceleration of gravity. Hence we find that

V = mgh (3-100)
Potential Energy of a Linear Spring. Another commonly encountered
form of potential energy is that due to elastic deformation. As an example

of elastic potential energy, consider a particle P which is attached by a linear
spring of stiffness k to a fixed point O, as shown in Fig. 3-9. If the elonga-

>
0 ) P
: AN— —> kX <—®

Fig. 3-9. The interaction forces of a particle P and a linear spring.

tion x of the spring is measured from its unstressed position, the particle
will experience a force

v B
Fo= =% = —kx (3-101)

Direct integration of Eq. (3-101) with respect to x, choosing the zero refer-
ence for potential energy at x = 0, results in

V= % kx? (3-102)

Note again that, in the preceding development, the force F, is the force
exerted by the spring on the particle and not the force of the opposite sign

that is applied to the spring by the particle. In other words, the emphasis

‘here is on the potential ability of the spring to do work on its surroundings,
and not vice versa.

Example 3-6. A particle of mass m is suspended vertically by a spring
of stiffness k in the presence of a uniform gravitational field, the direction
of the gravitational force being as shown in Fig. 3-10. If the vertical dis-
placement y of the mass is measured from its position when the spring is
unstressed, solve for y as a function of time. The initial conditions are




e e A s - P

SEC. 3-4 DYNAMICS OF A PARTICLE 85

Fig. 3-10. A mass suspended by a linear spring.

»(0) = y, and (0) = 0. Also find the maximum values of kinetic energy and
potential energy in the ensuing motion.

The equation of motion ecan be written with the aid of the free-body
diagram shown in Fig. 3-11, where we note that the spring force and the

I

Fig. 3-11. A free-body diagram showing the external forces which
act on mass m.

ky

mg

gravity force are the only forces acting on the particle. Using Newton’s law
of motion we can write

mj = —ky — mg
or

mj + ky = —mg (3-103)

Rather than solve this equation by direct integration in a fashion similar
to Example 3-3, we shall obtain the solution as the sum of two parts; that is,

Y=y + s (3-104)

where the transient solution y, (also called the complementary function) is
the solution to the homogeneous equation

my + ky =0 (3-105)
and the steady-state solution y, (also called the particular integral) is a solu-
tion which satisfies the complete differential equation.

In general, for this case of an ordinary differential equation with constant
coefficients, one assumes that the transient solution contains terms of the
form Ce, where C and \ are constants.” The exponential function is chosen,
since it retains the same variable part upon differentiation. For the problem
at hand, the substitution of y = Ce* into Eq. (3-105) results in .

~ ?This assumption is valid except for the case of repeated roots, a situation which
will not be considered here.
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(mA\? + k)Ce™ =0

Since this result must hold for all values of time and we rule out the trivial

case, C = 0, we obtain the so-called characteristic equation
m\ 4+ k=0 . (3-106)
The roots are imaginary in this case:

Mo = Eigf (3-107)
where i =/ —1.

Thus we assume a transient solution of the form
yo = CeVomt 4 CyemEmt | (3-108)

Substituting for the exponential functions in terms of sine and cosine func-
tions, we use the general formula

e = cos @ + isin @ (3-109)

i = (C, + Cy)cos 1/-”;‘1-: + i(C, — Cy)sin 1/%t (3-110)

Now if we let

to obtain

A == C]_ + C2 and B == i(Cl - Cz)

we obtain the transient solution in the form

yt:Acosﬂ/—’%t—{—Bsin\/%t (3-111)

where A and B are arbitrary constants. In general, there must be as many
arbitrary constants as the order of the differential equation, and as we shall
see, the constants are ultimately evaluated on the basis of initial conditions.

The steady-state solution can be found by several methods. For the
common case where the forcing function is represented by a constant or by
terms of the form ™ (n a positive integer), e, sin w?, cOs w?, or by sums and
products of these terms, the method of undetermined coefficients is appli-
cable. (See a standard textbook on differential equations for details of that
method.) Briefly, however, the usual form of the steady-state solution
consists of terms of the form of the forcing function plus terms containing
any different variable parts obtainable by successive differentiations of the
forcing function. In this particular case, the forcing function is the constant
term —mg and the steady-state solution is simply

— _mg _
Vs = T (3-112)

as may be verified by substitution into the differential equation. Therefore
the total solution is of the form

R B - St : ESge oo o v .:"' .
A ,F,.m.,ﬂ.‘s.\w\_-r..nm.msm.,uwmmm

PP SR ST S

.
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Y=Y+ Ys k+Acosﬂ/mt+Bsm i (3-113)

Now we find the constants 4 and B from the two given initial conditions.
Upon evaluating Eq. (3-113) at ¢ = 0, we obtain

=y =4 — M
y(O)—yo—A k

Differentiating Eq. (3—113) with respect to time and setting ¢ = 0, we have

s o [k
y0)=0 = \/ - B
Hence
A =Y, + Q’Z_‘g
Yo T % (3-114)
B=0
From Egs. (3-113) and (3-114), the complete solution is
_ _mg mg \/E B}
y T +(y,,+k)cos mt (3-115)
It can be seen that the solution consists of a sinusoidal oscillation of the
mass about the position y = —mg/k, which is the position of static equi-

librium for the particle.

The terms transient and steady-state should not be taken literally as
describing the nature of certain terms in the solution, although in many
instances the transient solution amplitude decreases exponentially with time
and the steady-state solution persists with undiminished magnitude. In this
example, the transient solution oscillates with constant amplitude. For the
case of a system with one or more roots with positive real paifts, it would
actually show an amplitude which increases with time. On the other hand,
the steady-state solution could have a magnitude which increases or decreases
with time, depending upon the nature of the forcing function.

Now let us calculate the kinetic and potential energies for this system.
From Eq. (3-69), the kinetic energy is

1

T = o my | (3-116)

The potential energy arises from both the gravitational force and the spring
force, since they are conservative in nature. Adding the individual potential
energies to obtain the total, we have from Egs. (3-100) and (3-102),

V = mgy + %ky2 (3-117)

the reference point of zero potential energy being taken at y = 0. We are
considering a conservative system and therefore the total energy E is a con-
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stant. Evaluating E from its initial value, we obtain

E=T+ V=nmgy, + % ky: (3-118) &

It can be seen that the kinetic energy is maximum when the potential
energy is minimum and vice versa. From Eq. (3-116), we see that

Tmin = 0 (3_],19)
and therefore
Viax = E (3-120)
On the other hand, we see by setting dV/dy = 0 that V,;, occurs at
_ _mg
and is equal to
_ _1m’g
Vinin 5k (3-121)
Therefore,
_ 1 m2g® ~
Thax = E + 5 % (3-122)
Thus we see that
Viax = Viin = Tiax — Thin (3—123)

even though the extreme values of V' are not equal to the corresponding
extreme values of 7.

Now let us consider the case where the displacement is measured from
its equilibrium position. Calling this vertical displacement z, we can write

z=y+ ’1;25 (3-124)

From Egs. (3-115) and (3-124), we find that the complete solution can be

written in the form
. k
Z = 2Z,C08 o/ — 1 (3-125)
N m

Zo =Y, + ’l;cé’ (3-126)

Now let us choose the zero reference for potential energy to be at z = 0,
that is, we choose a constant such that V' = 0 when z = 0. Then,

1, ., 1 mg?
A

2 2 o2

where

V =mgz +
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which reduces to

V= _:12_ kz? (3-127)
Therefore, if we use the static equilibrium position as the zero reference

for potential energy, we find that the total energy is

E— %mz’i’ + —;_—kz2 - —;—kzﬁ (3-128)
Also,
Toas = Vinax = E (3-129)
and
Tin = Viin = 0 (3-130)

In summary, it can be seen that the analysis is simplified by measuring
displacements from the position of static equilibrium and setting the poten-
tial energy equal to zero at this point. In this case, the total force acting on
the particle is —kz and, from Eq. (3-88), we obtain

v _
or
V = —;—kz?

in agreement with Eq. (3—127), provided that the reference for zero potential
energy is again taken at the static equilibrium position. Note that this expres-
sion includes the gravitational as well as the elastic potential energy.

3-5. LINEAR IMPULSE AND MOMENTUM

In Sec. 1-2, we saw that the linear momentum p of a particle is just the
product of its mass and velocity.

p = my (3-131)
Thus Newton’s law of motion can be written in the form
F=p (3-132)

where it is assumed that the particle mass is constant and its velocity is
measured relative to an inertial frame.

Now let us integrate both sides of Eq. (3-132) over the time interval
t; to t,.

“Fdt = [“pdr=p, —p, (3-133)
I 1A

where p, and p, are the values of the linear momentum vector at times ¢,
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and t,, respectively. The time integrai of the force F is known as the impulse E:

Z of the force, that is,
te
F = t Fdt (3-134)

So, from Egs. (3-133) and (3-134) we obtain a statement of the principle

of linear impulse and momentum:

The change in the linear momentum of a particle during a given interval
is equal to the total impulse of the external forces acting on the particle over

the same interval. |
F =Py — P1 =MV, — my, (3-135) -

The length of time over which the integration proceeds does not influence
the result. Of course, we assume that #, > ¢,, but the interval may approach
zero. If the duration of the external force approaches zero, but its amplitude
becomes very large in such a manner that the time integral of the force remains
finite, then the force is known as an impulsive force. The effect of an impul-
sive force in changing the motion of a particle is expressed entirely by its
total impulse &, in accordance with Eq. (3—135). We see that the velocity
changes instantaneously, but the position cannot change instantaneously

for a finite impulse because the velocity remains finite.
It is convenient to express an impulsive force of total impulse & occurring

at time ¢ = 7 in the form

F=%8t—n) (3-136)
| where 8(¢) is the Dirac delta function defined as follows:
| 0 t#0 |
| 5(t) ={ > (3-137)
} such that

[" syar =1 (3-138)

It can be seen that the total impulse due to F is

ledt - gfmsa —Ddt = F

in agreement with the original assumption.
Equation (3-135) can also be written in terms of its scalar components.

Choosing an inertial cartesian system in which to express the motion of %
the particle, we find that | -

f’t;
F = | Fodt = m), — m(x),
t )

tz
= " Fydt = m(3), - m(3),

rlg
F = [ F.dt = m(2), — m(z),
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where the subscripts 1 and 2 indicate that the evaluations of the given velocity
components are to be made at ¢, and ¢,, respectively. These equations are
obtained directly from Eq. (3-135) or by integrating Eq. (1-43) with respect
to time.

From Eq. (3-132) we see that if the external force F equals zero, then
the linear momentum p is constant. This is the principle of conservation of
linear momentum. Similarly, we note from Eq. (3-139) that if any compo-
nent of F is zero for a certain interval of time, then the corresponding com-
ponent of the momentum is conserved during that interval.

A comparison of Eq. (3-135), which equates the total impulse to the
change of momentum, and Eq. (3-70), which equates the work done on the
particle to the change in kinetic energy, reveals some interesting qualitative
differences. First, Eq. (3-135) is a vector equation, whereas Eq. (3-70) is
a scalar equation. The vector equation is advantageous at times because it
gives the direction as well as the magnitude of the velocity. On the other
hand, scalar equations are often easier to use. If the force F is given as a
function of time, impulse and momentum methods are usually called for;
but if F is given as a function of position, then work and energy methods
can be used to advantage.

Another point of interest is that the total impulse &%, and consequently
the change in linear momentum, is independent of which inertial frame is
chosen for viewing the motion of the particle. This is in contrast to the
calculations of work and the change of kinetic energy which, as we have
seen, are dependent upon a specific frame of reference.

Example 3-7. A particle m slides along a frictionless wire that is fixed
in inertial space, as shown in Fig. 3-12. Assuming that a known external

Z

X

Fig. 3-12. A partic]é moving over a fixed path under the action of
an external force.

force F acts on the system, find a general method for calculating speed changes

- of the particle.
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If at each instant we take components of force and acceleratlon along
the path, we find from Eqgs. (1-41) and (2-41) that
F, = m§  (3-140)

where F; is the component, along the tangential direction, of the external
force ¥, and § is the tangential component of the acceleration. Note that
the frictionless constramt forces are normal to the path and do not contri-

bute to F..
Integrating Eq. (3-140) with respect to time, we obtain
23 .
j CFodt = m(3), — m(s), (3-141)
Thus we obtain an essentially one-dimensional or scalar version of the
equation of impulse and momentum that applies to motion along a fixed

curve in space.
Of course, the equation of work and kinetic energy, Eq. (3-67), can be

applied directly, resulting in
f F.ds = m(s)2 1 3 MY, (3-142)

3-6. ANGULAR MOMENTUM AND ANGULAR IMPULSE

Angular Momentum. We have seen that the linear momentum of a parti-
cle with respect to a fixed reference frame is the vector mv, where m is the
mass of the particle and v is its absolute velocity. Now let us consider the
momentum vector as a sliding vector whose line of action passes through
the particle, as shown in Fig. 3-13. If r is the position vector of the particle

z

X
Fig. 3-13. A particle moving relative to a fixed point O.

with respect to a fixed reference point O, then the moment of momentum
or angular momentum about O is given by
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/

H=rXmy (3-143)

Let us differentiate this equation with respect to time and note that
v = . We obtain

H =r X mf + t X mi
and, since the cross product of a vector with itself is zero, this reduces to
H = r X mi (3-144)
Now let us consider again Newton’s law of motion written in the form
F = mfi

and take the cross product of each side with the position vector r. We find
that

r X F=r X mt (3-145)

and immediately identify the left side of the equation as the moment M of
the total external force F about the fixed point O.

M=rXF (3-146)
Then, from Eqs. (3-144), (3-145), and (3-146), we obtain
M=H (3-147)

which is a statement of the important principle that the moment about
a fixed point of the total external force applied to a particle is equal to the
time rate of change of the angular momentum of the particle about the same
fixed point.

We see from Eq. (3-147) that for the case where the external moment
M is zero, the angular momentum H must be constant in magnitude and
direction. This is known as the principle of conservation of angular momentum.

The general vector relationship given by Eq. (3-147) can also be written
in terms of its components. Thus, choosing a fixed cartesian coordinate
system, one obtains the scalar equations:

M, = Ha:
M, = H, o (3-14Y)
M, = H,

When written in this manner, each equation can be interpreted as relating
the moment and the rate of change of angular momentum about the corre-
sponding fixed axis passing through the point 0. So we can see that even
though the total angular momentum is not conserved in a given case, one
- of the components of M might vanish. This would require the angular
momentum about the corresponding axis to be- conserved.

A similar situation occurs when the motion of a particle is confined to
a plane (Fig. 3-14). In this case, the angular momentum is essentially scalar
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Fig. 3-14. The motion of a particle in a plane.

in nature since its direction is fixed. Let us assume that the velocity of the
particle m has radial and tangential components given by
v, =F
(3-149)
Vp = Tw
where o is the angular velocity of the radius vector as it moves in the plane
of the particle motion. The angular momentum is of magnitude

H = mrvy = mr'e (3-150)

and, in accordance with the right-hand rule, is directed out of the page. We
note that H is independent of v, since the line of action of the correspond-
ing component of linear momentum passes through the reference point O.

Now let us assume that the particle is acted upon by radial forces only.
Then, regardless of the manner of their variation, the applied moment A
will be zero at all times, and therefore the angular momentum will be con-
served. From Eq. (3-150), we obtain that

rio, = rjo, (3-151)

where the subscripts 1 and 2 refer to the values of the variable at the arbitrary
times ¢, and ¢,, respectively. '

Returning briefly to a more general discussion of the angular momentum
of a particle, let us consider what latitude is permissible in the application
of Eq. (3—-147). Specifically, in the analysis of the general motion of a single
particle, what constitutes a proper choice of (1) a reference frame for calcu-
lating the linear momentum vector; (2) a reference point O? Eliminating at
the outset the trivial case where the reference point O is chosen to coincide
with the particle, we can state that the reference frame must be inertial and
the reference point must be fixed in that frame. These requirements arise
because the derivation of Eq. (3-147) is based upon Newton’s law of motion
and also because I and v are assumed to be equal.
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The question reduces, then, to the choice of a reference point fixed in an
inertial frame. Nevertheless, the proper choice of the reference point can
greatly clarify the analysis of a problem and simplify its solution. Quite
frequently, one attempts to choose a reference point such that one or more
components of the total angular momentum are conserved.

Angular Impulse. The equation of linear impulse and momentum was
obtained by integrating Newton’s equation of motion with respect to time.
In a similar fashion, starting with Eq. (3—147), namely,

M =H

we can integrate each side with respect to time over an arbitrary interval

t, to t,. The time integral of the moment M is called the angular impulse and
is designated by .# .

2]
Mdt = & (3-152)

b

Also,

“Hdr = H, — H, (3-153)

4

So, equating the right-hand sides of Eqs. (3-152) and (3-153), we obtain
the principle of angular impulse and momentum:

This equation states that the change in the angular momentum of a particle
over an arbitrary time interval is equal to the total angular impulse of the
external forces acting on the particle during that interval, the reference point
being the same fixed point in each computation.

Example 3-8. A particle of mass m slides along a frlctlonless hori-
zontal track in the form of a logarithmic spiral

r=r,e

If its initial speed is v, when @ = 0, find the speed of the particle as a func-

tion of ¢ and also the magnitude of the track force acting on the particle
(Fig. 3-15).

In this example, the only force acting on the particle is the track force

Fig. 3-15. A particle moving along a logarithmic spiral.
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F which is normal to the direction of motiqn. Therefore, from Eq. (3-140),
the speed along the track is constant: ' '

V=19,

Also, we find from the equation of the spiral that
".

— = —da 3—155

| ré ( )

implying that the ratio of radial to transverse velocities is constant. There-

fore the angle between the radial line from O and the tangent to the curve
is constant. Let this angle be a, where

tana = % (3-156)

as can be seen from Fig. 3-16 and Eq. (3—-155).
The track force is calculated from the rate of change of angular momen-
tum about O.

H = mrv, sin«

and therefore

-rat

réOAt
Fig. 3-16. Radial and transverse displacements in an infinitesimal
intéerval At

H = m#v, sina@ = —mv? sin a cos a (3-157)

We see from Eq. (3-147) that the moment of the track force about O must
be constant, since H about that point is constant. The moment is seen to be

M = —Frcosa (3-158)
Equating the right-hand sides of Eqgs. (3—-157) and (3-158), we obtain '

2 .
F= mr” sin a (3-159)

or, writing the result in terms of § and a, using Eq. (3-156) and the equation
of the curve, we obtain
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Fe M g (3-160)
ron/1 + a?

3-7. THE MASS-SPRING-DAMPER SYSTEM

Let us consider the one-dimensional motion of the system shown in Fig.
3-17(a). We can treat the mass m as though it were a particle in this case,

LLLLLLLLLLL L L L LL AL y774

CLA]L . c&l lkx
—TX_ m
TF(” TFe

(a) (b)

Fig. 3-17. (a) The mass-spring-damper system. (b) A free-body
diagram showing the forces acting on the mass m.

since the motion consists of pure translation in which all points in the mass
have identical values of velocity and acceleration, and undergo identical
displacements relative to their initial positions. The forces acting on the mass
are shown in Fig. 3-17(b). The force cx, which is directed opposite to the
velocity vector at all times, is dissipative in nature, and is due to a linear
viscous damper with a damping coefficient ¢. The spring force kx is directed
opposite to the displacement x, where x is measured from the unstressed
position of the spring.?

Writing the differential equation for motion in the x direction using Eq.
(1-43), we obtain

mx = —cx — kx + F(¢)
or

mx + cx + kx = F(t) (3-161)

This second-order linear differential equation with constant coefficients
is quite important in the analysis of mechanical vibrations. Many simple
vibrating systems can be adequately represented using only a single degree
of freedom. Even for the case of certain more complex systems, the analysis

3In case gravity acts on the system in a direction parallel to the spring, then we can

measure the displacement x from the equilibrium position. In this case, the equations

are unchanged but the term kx corresponds to the sum of the gravitational and spring
forces (see Example 3-6).
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can be accomplished in terms of the motion of independent vibrating systems,

each with a single degree of freedom, as will be shown in Chapter 9. Finally, -

the mathematical methods used here are readily extended to the more com-
plicated linear systems to be considered later.

Transient Solution. Proceeding with the solution of Eq. (3-161), we first
find the transient solution x, which is the solution to the homogeneous

equation
mx + cx +kx=0 (3-162)

It is convenient to introduce at this point the undamped natural frequency*

o0, — & (3-163)

¢ = Tf/ﬁ (3-164)

Then, dividing Eq. (3-162) by m and using Eqgs. (3-163) arid (3-164), we
obtain the homogeneous equation in the following form:

X4 2o X + 0hx =0 (3-165)

The transient solution is obtained by using the same procedure that was

used in Example 3-6. We assume a solution of the form x = Ce and
substitute it into Eq. (3-165), thereby obtaining the characteristic equation

A+ 2w\ + @) =0 (3-166)

where we have omitted the common factor Ce* since it cannot be zero for
cases of interest. The roots of the characteristic equation are

and the damping ratio

)\‘1,2 - —g(l)n i @\ CQ — 1 (3—167)
and the transient solution is
x, = CieMt + Cyett (3-168)

It is convenient to express the transient solution in different forms,
depending upon the value of the damping ratio. (We shall assume through-
out this discussion that ¢ is zero or positive.) For the undamped case, ¢ = 0,
the roots are

xl,2 - i lwn
The transient solution is of the form |

in agreement with the result found in Example 3-6.
More generally, we find for the underdamped case, 0 < ¢ < 1, that the

roots are

+Note that this is actually circular frequency and the units are radians per unit time.

Sadln i |
- T e e e
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MNe= —Cwn T i1 — &

and the transient solution is

x, = e (Ccoswn/1 — 2t + Cysinwn/1 —E28) (0<<E <)
(3-170)

The constant w,n/1 — &? is the damped natural frequency w,. An alternative
form of Eq. (3-170) is

x, = Ce ot cos (wn/1 — 2t +60) (0<E <) (3-171)

where C and 6 are the two arbitrary constants required in the solution of
the second-order equation.

For the critically damped case, ¢ = 1, the roots are identical.
?\'l,Q = — @y

According to the theory of ordinary differential equations, the transient
solution for this case is of the form

x, = (C, + Cyt)e ™ (& =1) (3-172)

Finally, for the overdamped case, ¢ > 1, a pair of negative real roots occurs,
as shown in Eq. (3-167). The transient solution is of the form

x, = C, e~ (VP -Deat C2e—(c—~/ffl')w,.t ({: > 1) (3-173)

For the case of free motion wherein F(t) = 0, the arbitrary constants can
be evaluated immediately from the initial conditions. Let us assume general
initial conditions x(0) = x, and x(0) = v,. Noting that the transient solu-
tion constitutes the entire solution for this case, we can solve for C, and C,
in Eq. (3-170), obtaining

C,=x, and C,= Yot E@n%
1 X an 9 wnm

Then we can write
x = e~ton ‘(x,, cosS oA/ 1 — &2 1 + Y ;'_/Q"_? Sin wpA/1 — &2 t)
o<e<) | (3-174)

If the alternative form of Eq. (3-171) is used, we find in a similar manner
that

C= Q+2 % %)m O<t<1) (3-175)
I\/li? § 2.2 —

Xo @y xo W,
and

6 = tan™! [—C —:/Ev‘ixz,?")] O<e <) (3-176)

From Eq. (3-172), we obtain that the free motion of a critically damped
system with arbitrary initial conditions is
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x = e x,(1 + wat) + v,t] (& =1) (3-177)
Similarly, for the free motion of an overdamped system, we obtain from Eq.
(3-173) that

+ [(«/CT——T + §)x, + "’—0] e*/fr—‘mnt} €>1) (3-178)

@y
Typical plots showing the transient response of a mass-spring-damper
system are shown in Fig. 3-18 for various values of the damping ratio ¢.
The system is passive and therefore the total energy, that is, the kinetic
energy of the mass plus the potential energy of the spring, must decrease or

X
~ —Cw,!
f\ \\\/Ce
X4 /T ~~~~~~~~
X2
\//\ t
T 2w w, 1- 2>
O0<¢g <1
X , (a)
\ ,
¢=1
(b)
X
e f
¢ >1

(c)
Fig. 3-18. Typical transient solutions for a mass-spring-damper
system which is (a) under-damped, (b) critically damped, (c) over-
damped.

remain constant. For 0 << £ << 1, we have seen that the transient response
has the form of an oscillation whose envelope decreases exponentially. Thus,
a plot of the displacement versus time crosses the time axis at equal intervals
for an indefinite period of time. On the other hand, for ¢ > 1, a similar plot

ok A
= i
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can cross the time axis only once at the most. After the mass stops and
reverses its direction of motion, it can never again pass through x = 0.
For the underdamped case (0 << ¢ << 1), we can see from Eq. (3-174)
that the ratio of the displacements at any two instants separated by one
period of the damped vibration, that is, by At = 27/w.n/1T — £?, is constant.
The natural logarithm of this amplitude ratio is called the logarithmic decre-

ment 8.
e—{a)nt
8 : ln [e~{mn(t+27r/m,,\/l—§2)]
or
S — _ﬁ_?”__mgg (3-179)

It is convenient to think of the logarithmic decrement in terms of the ratio
of successive positive peak amplitudes. But we also recall that the total
energy is proportional to x?,, since the kinetic energy is zero at these
moments of zero velocity. Therefore the ratio of total energies, measured at
successive displacement maximums, is just the square of the amplitude

ratio. It can be seen, then, that 28 is the natural logarithm of this energy
ratio.

Steady-state Solution for a Sinusoidal Input. Now let us consider the

steady-state response of a mass-spring-damper system which is being driven
by the sinusoidal force

F(t) = F, cos ot (3-180)

In accordance with the method of undetermined coefficients (Example 3-6),
let us assume a solution of the form

x, = C; cos ot + C, sin wt
or, equivalently,

xs = A cos (ot + ¢) (3-181)

where 4 and ¢ are the coefficients to be evaluated. Substituting into the
differential equation of motion, Eq. (3—-161), we obtain

A(k — mw?) cos (0t + ¢) — Acw sin (of + ¢) = F, cos ot

Expanding cos (ef + ¢) and sin (ef + ¢) and collecting terms, we find
that

[((k—me?) cos ¢ — cw sin ¢] cos w?

— [(k — mw?) sin ¢ + cw cos ¢] sin wt = % cos wt

Now we equate the coefficients of the same variable parts on the left and
right sides of the equality. From the sin of terms we obtain

(k — mo?)sing + cocosp =0
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or .
v 6 = tan~ (=) = an” [ T2 | -1 &
In a similar fashion, we obtain from the cos ot terms that | .
(k—ma)z)COSQS—Ca)Singb:% g
or |
4= L = Fofk (3-183)

Nk — mo®? + o’ W[l — (0el)] + [2§(w/wn)]2

From Egs. (3-181) and (3-183), we can write the steady-state solution:

(F,/k) cos (ot + ¢) B

" V= D] + RE@lonT G189
where ¢ is given by Eq. (3-182). Plots of the amplification factor A|(F,/[k)
and the phase angle ¢ are shown in Figs. 3-19 and 3-20. The amplification
factor is the ratio of the amplitude A4 of the steady-state solution to the
static deflection F,/k due to a constant force of magnitude F,. It can be seen
from Fig. 3-19 that the amplification factor is unity for @ = 0, regardless
of the damping ratio ¢. Also, when the forcing frequency ® is equal to the

It
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Fig. 3-19. Amplification factor versus frequency.
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undamped natural frequency ,, the amplification factor is 1/(2¢). The
resonant frequency w, is the frequency of maximum amplification for a given
value of ¢. By differentiating Eq. (3—-183) with respect to w/w, and setting

this derivative equal to zero, we can solve for the resonant frequency. The
result is

wr = w1 — 287 (3-185)
It can be seen that a resonance or peaking effect occurs in all curves for
¢ < 1/a/ 2. The peak amplitude is found from Egs. (3-183) and (3-185).

Ay = (%) Z«/—IIT?  (3-186)

From Eq. (3-182) or Fig. 3-20 we note that the phase angle ¢ lies in the
range 0 << ¢ << —=. In other words, the steady-state displacement lags the

whw,
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0.25
0.50
_m
a4
© 2.07
@
o
C
o _T
$ 2
o
\ I ——_
_3m N, —~—
4
| \ L os0| —
\\
025 | ——
41010
-7

Fig. 3-20. Steady-state phase angle versus frequency.

input force by from 0° to 180°. Furthermore, for @ = 0, the phase angle
is zero and for o > w,, the phase angle is approximately —180°, for any
finite value of ¢. Of particular interest is the point that ¢ = —90° at ® = w,,
regardless of the damping ratio ¢. This can be used in vibration testing as .
~ a sensitive criterion to determine the undamped natural frequency w,. It
indicates that the velocity and the force are in phase and therefore that work
is being done on the system throughout the cycle.

The complete solution for the case of certain given initial conditions is
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the sum of the transient solution as given by Eq. (3-170), (3-172), or (3-
173) and the steady-state solution of Eq. (3-184). The two arbitrary con-
stants in the transient solution are evaluated from the initial conditions
upon velocity and displacement which are applied to the complete solution.

Unit Step and Unit Impulse Responses. Let us consider next the response
of a mass-spring-damper system to a force of unit magnitude applied at
t = 0. We use the notation

F(t) = u(t)

where the unit step function u(t) is plotted in Fig. 3-21(a). It can be seen that
the steady-state solution in this case is simply

u(t)

L =

(a)

U ——_

———
—_——

Fig. 3-21. A unit step function and the corresponding response
of an underdamped system.

1

Xs = — 3-187
=7 (3-187)
Assuming that the initial velocity and displacement are zero for the complete
solution, we can immediately solve for the initial conditions on the transient
portion of the solution. They are just the negative of the steady-state values
at ¢+ = 0. In this particular example of a unit step forcing function, we obtain

1

x(0) = —x,(0) = ——

(0) = —x(0) = — s,
X(0) = —x,(0)=0

So we can write down the transient solution directly from results obtained

previously. For example, for the underdamped case, we find from Eq. (3-
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174) that the transient solution is

x, = e~tedt (—715 COS w1 — 28 — W——l_g—:?sin oA 1 :? t)

o<e< (3-189)

Adding Egs. (3—-187) and (3-189), we obtain the complete response. Desig-
nating this response to a unit step function by U(¢), we can write
1 —{m,,(.( — 23 4 : 1T #2 ﬂ
T [1 e cos w,n/1 — ¢ t—!—/\/-——-—-—-l _{:Qsmwn«/l &t

o<e<l) (3-190)
For the critically damped or overdamped cases, the complete solution U(z)
is obtained in a similar manner.

The unit step response for the underdamped case is plotted in Fig. 3-
21(b). Note that it is identical in shape to the transient solution for the case
of an initial displacement, but the oscillations occur about the new static
equilibrium position, namely, x = 1/k.

Now let us find the response to a unit impulse at t = 0, that is, the case
where the forcing function is

U(t) =

F(t) = (1)

Recall from Egs. (3-137) and (3-138) that the delta function is a pulse of
infinite amplitude and infinitesimal width occurring at ¢ = 0. Then, since
the total impulse acting on the mass due to this force is unity, the change
in linear momentum must also be unity, in accordance with Eq. (3-135). The
velocity changes instantaneously because of the unit impulse, but the dis-
placement is unchanged since a finite time is required for the mass to move
a finite distance. Hence the conditions immediately after the impulse are

x(0+)=20
. I (3-191)
xO0+) =~

©+) =
These serve as initial conditions for the transient solution. The transient
and complete solutions are identical in this case because the steady-state
solution is zero. As an example, we again consider the underdamped case.

From Egs. (3-174) and (3-191), and noting that w, = ~/k/m, we find
that the response to a unit impulse at z = 0 is

wpe ot .
h(t) = W——T~—_——f55m w1 =22t (0<¢ <) (3-192)
The response A(¢) to a unit impulse input is known as the weighting function
for the system.

Convolution Integral. Perhaps the principal reason for introducing the
unit step and unit impulse responses in the discussion of the mass-spring-
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damper is that this system is an example of a linear system, that is, it is a
system described by linear differential equations, and the principle of super-
position applies. The principle of superposition can be stated as follows: .

If x,(t) is the response of a linear system to an input F(t) for initial con-
ditions x,(0), x,(0), and so on, and if x,(t) is the response of the same system
to an input F,(t) for initial conditions x,(0), X5(0), and so on, then x,(t)+
Xq(t) is the response of that system to the input F,(t) + F(t), assuming the
initial conditions are x,(0) + x,(0), X,(0) + x,(0), and so on.

Of course, the superposition principle can be extended to more than
two inputs or forcing functions. Also, the input need not be a force, but
could be a given velocity, displacement, and so on, or some combination
of these. It is interesting to note that we have already applied the principle
of superposition in obtaining the complete solution to a differential equation
as the sum of the transient and steady-state solutions.

Now let us apply the principle of superposition to the problem of finding
the response of a linear time-invariant system to an arbitrary forcing func-
tion F(¢t). We consider F(¢) to be composed of a sequence of infinitesimal
impulses. The response of the system at time ¢ due to a unit impulse at time
7 is just A(t — 7) since (¢ — 7) 1s the interval between the time of the impulse
and the time of observation, and the various system parameters do not
change with time. In other words, the response due to a given impulse is
determined solely by the time interval since that impulse, not by the absolute

F(n
/_
1T
F (1)
dr > (=7
\ !
0 T | t
(@)
F(1) '-r-
; F(r)dr
| e
1 e
{ | ! !
0 T t

(b)

Flg 3-22. Quantities used in the convolution integral.

CHAP. 3 .. 8
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time. Therefore the response of the system at time ¢ due to an impulse of
magnitude F(7) dr at time v (Fig. 3-22a) is given by

h(t — 7)F(v)dr

Now, by the principle of superposition, the total response at time ¢ due to
the effect of all previous portions of the forcing function, considered as a
series of impulses, is just the sum of the individual responses. In the limit-
ing case of infinitesimal impulses, the following integral results:

X(t) = f h(t — 7)F(r) dx (3-193)

For the common situation where the response is desired for ¢ > 0 with a//
initial conditions equal to zero, we obtain

x(t) = | h(t — 7)F(z) dr (3-194)

If the initial conditions are not all zero, we add to the convolution integral
of Eq. (3-194) the transient solution for F(z) = 0, assuming the actual
initial conditions.

An alternative form of Eq. (3-194) can be written by interchanging the
roles of 7 and (¢ — 7). The result is

X(r) = f W) F(t — 7)dr (3-195)

where 7 is now interpreted as the interval between the impulse and the time
of observation.

Additional forms of the convolution integral can be obtained in terms
of the unit step function response. Considering the forcing function F(¢) to
be composed of a series of step functions applied in sequence—Fig. 3-22(b),
we can see that the response at time ¢ due to a step function of amplitude
F'(t) dr applied at time 7 is

Ut — =) F'(z)dr

where the prime indicates differentiation of the function with respect to its
argument. Assuming that the initial conditions are all zero, we superimpose
the effects of all the infinitesimal step functions as previously given and, in
addition, include the term F(0)U(z) which is the response at time ¢ due to
an initial step function of magnitude F(0). The result is

X(t) = FO)U(t) + lim jl Ut — 7)F'(7) dr

- where we use as the lower limit on the integral a small positive quantity
e to emphasize that the value of F’(0) is normally finite and is measured to
the right of any discontinuity of F(7) at the origin. Of course, F(0) is deter-
mined in a similar manner. Now we can write
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t
x(t) = FOU) + | Ut — m)F'(x)dr (3-196)
An alternate form is “
4
x(t) = FOU@) + | U@F'(t — ) dr (3-197)

where T has the same meaning as in Eq. (3-195).

As an example of the use of the convolution integral, let us calculate the
response of an underdamped mass-spring-damper system to a unit step
forcing function, that is,

F(t) = u(?)

Using the impulse response of Eq. (3—192) and the convolution integral in
the form given by Eq. (3-195), we obtain

—fwaT
U(t) = :ki’/%? sin won/T — €2 7 u(t — 7) dr

= g [ s e/ T dr

Evaluating this integral, the result is

U(t) = —1—[1 e gmt(COSwn«\/I—t—é‘rzt—i—

Z 7 - sin w,A/1 — ¢2 tﬂ

&
ST =¢
in agreement with the result obtained in Eq. (3-190) by other methods.

Continuing this discussion of the application of superposition methods
to linear systems, using the mass-spring-damper as an example, let us con-
sider further the unit step and unit impulse responses. From the definition
of the delta function given by Egs. (3-137) and (3-138) we see that the step
function u(t) can be expressed as

ut) = [ Sy dr (3-198)

— oo

Differentiating both sides of this equation with respect to ¢, noting that ¢
occurs in the upper limit of the integral, we obtain

a'u(t)

—8(t) (3-199)

Now let us calculate the umt-lmpulse response of a system in terms of
its unit step response. First, we can use Eq. (3-195) to obtain

Ut) = j: W) u(t — 7)dr (3-200)

where we note that u(t — ) = 0 for 7 > t. But U(¢) can also be written in
the form

U(t) = UO)u(t) + j au

(r)dr ~ (3-201)

Sl = i st o Lt

PO SR I A R P i
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where we take
ar ©0) = 11m (e) (e > 0)

in order to avoid difficulties with discontinuities in the derivative at the
origin.

Equating the right-hand sides of Egs. (3-200) and (3-201) and differenti-
ating with respect to time, we obtain

J h(T)é(t — v)dT = U@0)S(¢) + — dU
where we recall from Eq. (3-199) that the derivative of a unit step function
is a unit impulse. Now, it can be seen from Eq. (3—138) that

f C () 8(t — Ty dT = h(t) (3-202)

since h(T) is essentially constant in the infinitesimal interval around = = ¢
and the integrand is zero for 7 % t. Hence we obtain the important result:

) = U©)8(t) + 2Y " v (3-203)
This means that the unit impulse response is the time derivative of the unit
step response. In case there is a discontinuity in U(¢) at ¢ = 0, we must include
an impulse of magnitude U(0) to account for the sharp leading edge. This
last situation is not common in mechanical systems because it implies that
the response magnitude does not drop off to zero in the limit for an increas-
ingly high input frequency.

We observe, then, that the unit impulse response is the time derivative
of the unit step response and, furthermore, that the unit impulse function
is the time derivative of the unit step function. Thus a differentiation of the
input function has resulted in the differentiation of the response. Since a
general input or output function can be considered to be composed of a
sequence of small superimposed step functions, or as a sequence of impulses,
and since the superposition principle applies to these linear systems, we con-
clude that the differentiation of a general input to a linear system results in
the differentiation of the output. In other words, if x(¢) is the response of
a given system to an input F(¢), then x(¢) is the response of the same system
to an input F(t), where, of course, allowance is made for non-zero initial
values of x(¢) or F(¢) in the manner previously described.

Example 3-9. Find the steady-state response of an undamped mass-
spring system to an input force which is a square wave of amplitude 4 and
period T (see Fig. 3-23).

Our approach will be to represent the square wave by its Fourier series
and to sum the steady-state responses to the individual terms in order to
obtain the complete steady-state solution.
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Fig. 3-23. A square wave of amplitude A, period T.
In general, a periodic function f(¢) of period T can be represented by the
Fourier series

)y = 9o 4 z a, cosg-’?T”—’ + z b, sin 2”]1’ t (3-204)

where

a, = TJ | S cos Z”T’”dt (n=0,1,2,..)
(3-205)

2 (T2 2nmt .
bn_—T mf(t)sm T d (m=1,2,3..)

In this instance, we have taken the origin for the square wave such that
it is an even function of time. Consequently, it can be seen from Eq. (3-205)
that all the b, are zero. Solving for the a,, we obtain

(n = 0)
_ 24 (™ 2n7rt
COs ——— dt =
JT/4 2Asmn—27t n=1,2,3..)
Thus the Fourier series representétion of the square wave is
A 4 2wt 1 6t 1 107t
F(t) = [1 + — (cos — — 7§ €08 = + 5 €08 —7— — - )] (3-206)

where we note that the constant term is the average value of the function.
For convenience we shall use the notation
_ 2m
T
Then, obtaining the steady-state response for each term from Eq. (3-184)
and setting ¢ = 0, we obtain the total response

A [ 4 COS nwt ]

x 1 —_—

* T 2k t a3 n%;]d 1 — (w/wn)*
The procedure used here to calculate the steady-state response of a mass-
spring system to a square wave input can be extended to calculate the steady-
state response of a more general linear time-invariant system which is excited

(3-207)

a bl
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by a periodic function. One merely represents the input function by its
Fourier series and sums the solutions resulting from the sinusoidal or con-
stant input terms considered separately.

3-8. COULOMB FRICTION

We have seen that a lumped viscous damper is a linear element, that
is, the force which it exerts on the external system varies linearly with the
relative velocity of its ends. It is also dissipative because the force always
opposes this relative motion, and thereby continuously absorbs energy so
long as the relative velocity exists. |

Now let us consider the force associated with Coulomb or sliding friction.
This sort of force is dissipative, like other frictional forces, but is not linear.
As an illustration of Coulomb friction, suppose block 4 slides with a velocity
v, relative to block B, as shown in Fig. 3-24. The force of block B acting

z

'/

A | et

]

<

_,.LN
(@) v (b)
Fig. 3-24. The force of Coulomb friction.

on block 4 has a component N which is normal to the flat contact surface
and a component pN parallel to that surface and opposing the relative
motion. The classical law of sliding friction states that this frictional force
is directly proportional to the normal force N, but is independent of the

contact area and the magnitude of the relative velocity, so long as sliding
exists. Thus we can state that

F, = —puN sgn (v,) (3-208)

where the coefficient of sliding friction i depends only upon the roughness
of the sliding surfaces and the materials used. Also, the function sgn (v,) has
the value +1, depending upon the sign of its argument; in this case, the
sign of v,. The Coulomb friction force F, is plotted against the relative
velocity v, in Fig. 3-24(b) for the case of a constant normal force N,
assuming the positive directions for F, and v, are the same. :

The case of v, = 0, that is, no sliding, deserves some comment. The
force of friction in this case can have any magnitude less than that required
to initiate sliding, the actual magnitude normally being obtained from the
equations of statics. Actually, the force required to initiate sliding is some-
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what larger than that required to sustain it. We shall assume, however, that -
the maximum frictional force magnitude is N, as shown in Fig. 3-24(b).
With these assumptions, it can be seen that the direction of the force of block
B acting on block 4 must lie within an angle ¢ from the normal to the surface,
where

| tand = | © (3-209)
Furthermore, when slipping actually occuis, the angle between this force
and the normal is exactly ¢, since j is the ratio of the tangential and normal
components. Thus the force vector lies on, or within, a cone of semivertex
angle ¢ whose symmetry axis is normal to the contact surface.

For a more general case, it is helpful to consider the force of sliding 2
friction as arising from a frictional shear stress at the contact area that is =
equal to p times the normal pressure. This gives the same results for the
simpler cases, such as sliding blocks, but aids in the analysis of more com-
plicated situations, such as those involving curved contact surfaces or non-
uniform pressure or velocity distributions.

As an example of this approach, consider the frictional moment arising
from the flat end of a circular rotating shaft of radius a being pressed against
a plane surface with a total force N. Assuming a uniform normal pressure
or compressive stress at the contact area 4, we obtain a uniform frictional |
stress of magnitude §

s AP

which is everywhere in a direction normal to a radial line drawn from the i
center of the circular contact area. It can be seen (Fig. 3-25) that the moment

St Sae

Fig. 3-25. Frictional stresses on a rotating circular surface.

due to an annular element of width dr and area 27zr dr is

wN

B 2t dr .

dM =

e

The total frictional moment is

,,,,,
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a
2—5—2]—\[ i rrdr = % wiNa
indicating that the average moment arm is 2a/3.

If 1 = 0, the contact surface is said to be perfectly smooth. On the other
hand, a perfectly rough surface corresponds to g = oo, and implies that
no slipping can occur. Both bodies must have the same velocity at any
points of contact in the latter case, and the relative motion consists of rolling
motion at the contact points.

The energy lost due to friction can be calculated by multiplying the
frictional force on a given elemental area by the relative velocity at that
point and integrating over the contact area and over the required time
interval. It can be seen that no energy is dissipated in friction for either a
perfectly smooth or a perfectly rough surface. In the former case, the fric-

tion force is zero; in the latter case, the relative velocity at the point of con-
tact is zero.

M =

Example 3-10. Block A can slide relative to block B which, in turn, can
slide on a perfectly smooth horizontal plane (Fig. 3-26). If the initial veloc-
ities are v,(0) = v, and v,(0) = 0O, find the final velocities of the two blocks
and the distance that A slides relative to B.

p 4 —

No friction
8

1T NANAEARAARARRRRR T RREAR AN AANA NN
Fig. 3-26. Coulomb friction between sliding blocks.

The final velocity v, is the same for both blocks and can be obtained
by applying the principle of conservation of linear momentum, since there
is no net external force acting on the system consisting of the two blocks.

Equating the total linear momenta before and after the sliding of 4 on B, '
we obtain

mAUO = (mA_ + mB)?)f
or

_ _M4b 210
YT i+ my (3 )

The distance d that A slides relative to B can be obtained by equating
the change of kinetic energy during the sliding process to the work done
against friction; that is,

3 — (- ma)v; = umgd (3-211)

where we note that the normal force at the contact surface is m,g. Solving
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for the distance d from Eqgs. (3-210) and (3-211), we obtain
o m ) ¥ myy _
d = (me— ) S = Zgonty G2

Another approach to this problem is to use the principle of work and
kinetic energy on each mass separately. For block 4, we equate the work
done against the friction force to the loss in kinetic energy.

1 3
I_LmAng - TmA'U% — %m,ﬂ)} (3—213)

where x, is the absolute displacement of 4 during the sliding process. Simi-
larly, the work done by the friction force acting on block B is equated to
the increase in its kinetic energy.

leAng - —%mlﬂ)g« (3—214)

The displacement of A relative to B is, from Eqgs. (3-213) and (3-214),

d=xA—xB:Zi-§[vﬁ—(l+r—n';~B)vzf]

A

Substituting for v, from Eq. (3-210), we obtain

d= Y [1 _ (___1____)]
21Lg 1 + my/my,
— My
21g(my + my)

in agreement with Eq. (3-212).

Example 3-11. A mass-spring system is connected as shown in Fig.
3-27(a). There is Coulomb friction between the mass and the horizontal
surface on which it slides. If the mass is released from a positive initial dis-
placement x,, measured from the unstressed position of the spring, solve
for x as a function of time.

Assuming that the initial spring force —kx, is greater in magnitude
than the friction force pmg, the initial acceleration is negative. So long as
the velocity x is negative, the differential equation for the motion is

mx + kx = pmg (x < 0) (3-215)
Conversely, if x is positive, the corresponding equation is
mx + kx = —umg (x> 0) . (3-216)

Although the Coulomb friction force is nonlinear in nature, it can be seen
that Eqgs. (3-215) and (3-216) are both linear. Thus, the nonlinearity con-
sists of switching between the two linear equations, the choice being deter-
mined by the sign of x. Superposition does not apply to this system because
the switching does not occur as an explicit function of time, but is deter-
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Fig. 3-27. A mass-spring system with Coulomb damping.

mined by the response. Thus it could occur at various times, depending
upon the forcing function and initial conditions.

The solution can be obtained in the same manner as fbr an undamped
mass-spring system that is excited by a constant force (see Example 3-6),
except that the sign of the forcing function must be reversed after each half-
cycle of the response. We have seen that the response to a step function
input consists of an oscillation about the static equilibrium position. From
Egs. (3-215) and (3-216), we can see that the static equilibrium positions
(in this case, the steady-state solutions) are

x, = £H78 | (3-217)

for x << 0 or x > 0, respectively. Hence the solution for the first half-cycle is

x:wnL(xo—H—mﬁ)coswnt (0<t<£)
k » k Wn

where @, = ~/k/m. After a half-cycle the displacement is

x = —x, + 21478
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The second half-cycle is an oscillation about — pumg/k, as given by

x = —HME (x0—3-l-j’-mg)coswnt (£<t<2—”)
k k @y @y

In a similar fashion, the solution for the succeeding half-cycles consists of
oscillations about one or the other of the two dashed lines of Fig. 3-27(b)
and, for the nth half-cycle, is found to be

x = (—1)"“‘5—"”—@g + [xo —(2n-1) w-;c"—g} COS w, !

k
[(n—l)n’<t<nn}

@y W,

(3-218)

provided, of course, that x, > (2n — 1)umg/k. If the latter inequality does
not hold, then the oscillation has stopped permanently at
x = (1) (xo — “mg) (”—” < t) (3-219)
k @,
where » in this case is the total number of half-cycles which occur.

We have assumed that x, is positive. It is clear, however, that, if x, were
negative, the solution would proceed in a manner similar to the foregoing
solution after the first half-cycle.

It can be seen from Eq. (3-217) that the oscillation amplitude decreases
by 2umg/k per half-cycle. Therefore a straight line can be drawn through
successive positive (or negative) peaks of the oscillation. This is in contrast
to the exponential envelope that occurs with linear damping. Another point
of interest is that the period is 27 /e, whenever oscillations occur, regard-
less of j1; whereas the period for the case of a linear damper increases with
the damping ratio. |

3-9. THE SIMPLE PENDULUM

As another important example of particle motion, consider a simple
pendulum of length / whose mass m moves on a vertical circular path centered

Fig. 3-28. A simple pendulum showing the external forces acting
on the particle of mass m.
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at the fixed support point O (Fig. 3-28). This system has one degree of
freedom, the corresponding coordinate € being the angular position of the
mass m measured from the downward vertical through O.

The differential equation of motion can be obtained by applying Newton’s

law of motion in terms of the tangential components of force and accelera-
tion.

F; = —mgsin § = mlf
or
6 + % sin = 0 (3-220)
Consider first the case of small motion in which |f| < 1, implying that
sinf = 6
Equation (3-220) is linearized by this assumption and becomes
6 + % =0 (3-221)

This equation is of the familiar form associated with harmonic oscillators

such as the undamped mass-spring system discussed earlier (Example 3-6).
The solution can be seen to be of the form

0 = 6y sin w,(t — t,) (3-222)

o, — @ (3-223)

and where 6, is the amplitude of the oscillation and #, is the time of a passage
through 6 = 0 in the positive direction.

Next, let us consider the general case of motions of the simple pendulum
where 6 is not necessarily small. Rather than integrating Eq. (3-220)
directly, we can obtain the first integral of the motion by using the principle
of conservation of energy. In this case, taking point O as the reference
level for potential energy, the total energy is found to be

E= % mi*6* — mgl cos 0 (3-224)

where

Again assuming that 6, is the maximum value of ¢, we can evaluate E at this
point, obtaining

E = —mglcos b, (3-225)
Therefore, from Egs. (3-224) and (3-225), we can write

§ = 215 (cos 6 — cos 6,) (3-226)

or, separating the variables and integrating,

/[l db
—_ . = ] 3-227
b=t 2g.[o/\/cosﬁ—cos 6, ( )
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where ¢ — ¢, is the time interval from the passage through ¢ = 0 in the pos
tive direction until reaching the angle 6. This is an elliptic integral. It cg
be put in a standard form by making the substitutions

0o and _ sin (6/2)

k—sm2 Sln¢_m

Noting that
cosfy =1 — 2sin2-02—° =1 — 2k?
and

cosf =1 —Zsinz—g—: 1 — 2k? sin? ¢

we obtain by differentiation that

2k cos p do
A1 — k? sin? ¢

Hence we can write Eq. (3-227) in the following form:

t_to—fj «/1—k231n2<ﬁ

t— ty= \/% F(, k) (3-228)

df =

or

where

o de
F6. 0 = || =g 29
This integral is known as Legendre’s elliptic integral of the first kind. It can
be seen that the time required to reach a certain angle 6, or its correspond- - = *
ing value of ¢, depends upon maximum amplitude 6, which is expressed in
terms of the modulus k. B

The period T of the oscillation is four times the interval required for {
the movement from § = 0to 6 = 00, or from ¢ = 0 to ¢ = /2.

T= 4[ I " W1 — k2 sin? ¢ - 4\/% ki) (3—230). 1

where K(k) = F(x/2, k) is called the complete elliptic integral of the first 24
kind. For example, if §, = =/2, then k = 1/o/2 and we find from the tables
that K = 1.8541, resulting in a period T = 7.4164+/l/g. This is approxi-
mately 18 per cent longer than the period 27z4/I/g which applies for the case
of small motion. In general, the period increases for increasing ¢, and becomes ~§
infinite for 6, = =. e |

Equation (3-228) can be expressed in the form

sin ¢ = sn @(r — 1) 3-231)
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where the sn function is known as the Jacobian elliptic function of the first
kind. It is periodic in its argument with a period 4K, the shape of the func-
tion depending upon the modulus k.

For the case k < 1, that is, for small motion, we can use the approxi-
mation
sn x = sin x ' (3-232)
and, from Eq. (3-231), we obtain

Slnt;b:——:smf(t—to)

in agreement with the expression given in Eq. (3-222) for the linearized
equations. This result can also be obtained directly from Eq. (3-227) by
expanding the cosine functions and keeping the first two terms.

If kK = 1, corresponding to 6, = =, the elliptic function becomes

sn x = tanh x (3-233)
This equation can be checked by making the substitution
y = sin ¢

in Eq. (3-229) and evaluating the integral. We obtain
_ (Y _dy _ -1
F = L T—35 = tanh~! y
which, when substituted into Eq. (3-228), results in

y=sing = tanh@ (t — o) (3-234)

Comparing Egs. (3-231) and (3-234), we see that Eq. (3-233) applies.

The previous solutions for the motion of a simple pendulum have assumed
that § = O whenever § = +6,. Now we consider the case where the particle
proceeds continuously around the circle in the same direction, correspond-
ing to a total energy E > mgl. Suppose that § = 6, when § = 0 and ¢ = ¢,.
Then, using Eq. (3-224), we find that the total energy is

1

E = 7ml‘°-6"§ — mgl
and, from the principle of conservation of energy, we obtain
—é——mlzé“’ — mglcos 0 = %m[%"ﬁ — mgl

or
j2 __ A2 28’
6% = 6; — T(l — cos 6)
. 4g 6
= 6} (1 — 28 gin? )
’ 16: 2
We see from energy considerations that 82 > 4g/l. So let us define

(3-235)
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k2:%<1 and ¢ =

0
Then Eq. (3-235) can be written in the form
¢t = 163(1 — k*sin® ¢)
from which we obtain

f—ty = = 03 F(é, k) (3-236)

il

A1 — k2 sin? ¢
Thus the solution is again expressed in terms of elliptic integrals of the first
kind. Again we use the sn function to express the motion of the angle 6 as

a function of time.
9 _ Gt — 1) 53
Sin - = sn 5 (3-237)
The period of a complete revolution is twice the time required for 6 to go
from O to . Hence, from Eq. (3-236),

4 T 4
r=7 F( z k) 7 Ko (3-238)

It can be seen that the period decreases continuously with increasing
0, if 62> 4g/l. This effect arises from two sources: (1) the 6, term in the
denominator of the right-hand side of Eq. (2-238), (2) the inverse variation
~ of k with 6,, causing the value of the complete elliptic integral K to decrease
with increasing 6,. As 6, becomes very large, the modulus k approaches
zero and, from Egs. (3-232) and (3-237),

0 ; éo(t - to)

indicating nearly uniform motion .around the circular path.

3-10. EXAMPLES

Now let us consider several examples whose solutions illustrate the
application of various principles of particle dynamics.

Example 3-12. A projectile is fired from the top of a cliff onto a level

- plain which is 1000 ft below. Its initial velocity is 500 ft/sec and it lands at

a point such that the trajectory makes an angle of 70° with respect to the

“horizontal. What is its slant range, that is, the distance between the ﬁrmg
point and the impact point?

The principal difficulty encountered in the analysis of this problem is
that the speed is given at 0ne point of the trajectory and the direction at
another. This is in contrast to the usual situation where complete initial
conditions are given. Nevertheless, we 8an proceed by first calculating the
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X
IO*OO ft 70°
. P
Fig. 3-29. The trajectory of a projectile fired onto a lower target.

impact velocity at P (Fig. 3-29). Using the principle of conservation of
energy and assuming that the reference level for potential energy is at P,
we see that the kinetic energy at P is equal to the kinetic energy plus the
potential energy at O. Thus,

_é. mis = 1000 mg + % m(500)?

or
v3 = 2000g + 250,000 = 3.144 x 10° ft?/sec?
vp = 560.7 ft/sec

Now we can use the reversibility property of conservative systems and
calculate the trajectory due to firing a projectile backwards from point P to
O with an initial velocity v, = 560.7 ft/sec and an initial angle ¥ = 70°.
The horizontal range x can be obtained from Eq. (3-17) by multiplying
through by 2v} cos® Y/g and setting y = 1000 ft. We find that

2 v5 sin 2y x 4 2v; cos? oy

y=0
or, assuming g = 32.2 ft/sec?,

x2 —6.28 x 108x + 228 x 108 =0
The roots are

x1,2 - 390 ft, 5890 ft

From Fig. 3-29, it can be seen that the larger root is the one giving the hori-
zontal distance of point O from point P, the smaller root corresponding to
the other crossing of the line y = 1000 ft. Finally, the total range is

R = ~/x* + y* = A/5890% + 10002 = 5980 ft

A second method of solution again involves the reverse trajectory from
P to O, but after calculating v,, we compute the vertex altitude and the
corresponding time, using Eqgs. (3-19) and (3-21). The result is

_ Bty —
yv—2—gsm v = 4320 ft

Vy

2 siny = 16.40 sec
2 Y

t, =
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Next we calculate the time to fall from the vertex a distance of 4320 — 1000 =
3320 ft. From Eq. (3-9), we obtain

t, = 4/2(31” —g 1000) _ 14.35 sec

Hence, the total time of flight is
t=1t, + t, = 30.75 sec

and, from Eq. (3-15), the horizontal range is
X = vyt cosy = 5890 ft

in agreement with the previous result.

Example 3-13. A particle of mass m starts from rest and slides on a
frictionless track around a vertical circular loop of radius a, as shown in
Fig. 3-30(a). Find the minimum starting height # above the bottom of the
loop in order that the particle will not leave the track at any point.

First consider the free-body diagram shown in Fig. 3-30(b). Since the
track is fixed and frictionless, the force R which it exerts on the particle is

l

(a)

(b)

Fig. 3-30. A particle sliding around a smooth vertical loop.

normal to the direction of motion at that point and does no work. The only
external force that works on the particle is the force of gravity and so we
can use conservation of energy principles in solving for its speed at any
point. Choosing the reference level for potential energy at the bottom of

the loop, we find that

e o o SUTE




SEC. 3-10 : DYNAMICS OF A PARTICLE 123

mgh = T%—mv? + mga(l — cos 6)

or
v? = 2g(h — a + acos6) (3-239)
for any position on the loop.

Next let us determine the conditions such that the particle will just fail
to leave the track. It is clear that the particle cannot leave on the straight
portions and therefore we shall consider only the circular loop. We assume
that sliding occurs on the interior surface, implying that R must be positive
at all times when the particle is in contact with the track. Hence the required
conditions for the particle to leave the track are that R << 0 and R = 0.
The borderline case occurs when the minimum value of R is zero, that is,
when the conditions R = 0 and R = 0 occur simultaneously.

Applying Newton’s law of motion to the radial component of the force
and the acceleration, we see that

mgcos § — R = ma,
or, substituting for a, from Eq. (2-54),

R = "_Zijf + mg cos ¢ (3-240)

From Eqgs. (3-239) and (3-240), we obtain

R = 3mgcos § + 2mg (% _ 1) (3-241)
and it follows that
R = —3mgsin 6 (3-242)
Setting R and R equal to zero smwltaneously we find from Egs. (3-241)
and (3-242) that
0 = = rad h :-3— a
Hence the particle does not leave the track if # > 5a4/2. It may be seen that
the centripetal acceleration at § = # is just equal to the acceleration of
gravity for the borderline case where R = 0 at this point. Also note from

Eq. (3-241) that the minimum value of R always occurs at § = 7 if the
particle remains on the track.

Example 3-14. A particle having a mass m and a velocity v,, in the y
direction is projected onto a horizontal belt that is moving with a uniform
velocity v, in the x direction, as shown in Fig. 3-31(a). There is a coefficient
of sliding friction j1 between the particle and the belt. Assuming that the
particle first touches the belt at the origin of the fixed xy coordinate system
and remains on the belt, find the coordinates (x, y) of the point where slid-

ing stops.
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Fig. 3-31. The path of a particle sliding on a moving belt.

In the analysis of this problem we first note that the fixed xy coordinate
system and also an x’y’ coordinate system which translates uniformly with
the belt are both inertial systems. Because the frictional force depends upon
the motion of the particle relative to the belt, it is more convenient to con-
sider first the motion relative to the x’'y’ system. As viewed by an observer
riding with the belt, the particle moves initially with a velocity component
v, in the positive ' direction and a component v, in the negative x’ direc-
tion, as shown in Fig. 3-31(b). The path of the particle relative to the belt
is a straight line since the frictional force directly opposes the motion and

there are no horizontal forces perpendicular to the path.
Let us use the principle of work and kinetic energy to find the stopping

CHAP. 3 I
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point in the x’y’ frame. The work done against friction is equal to the loss
of kinetic energy, or

umgd = % m (v, + v3)

where d is the stopping distance and the normal force is mg. Hence the
stopping distance is

— l 2 2
d = m(vm + v,)

Assuming that the particle moved onto the belt at the origin of the x'y’
system, we can take components of d in the x’ and )’ directions to find the
stopping point in the primed system. Thus we obtain that

Ve d T e
UL+ v 2Ug b

/ Um Um

= d _—
Y N+ v 2ug

NV + 0}

are the coordinates of the stopping point.

We have seen that the force of friction during sliding is pmg. Therefore,
the particle has a constant deceleration of magnitude j1g as it moves along
its straight path. It follows that the time required to stop sliding is just the
original speed in the primed system divided by 11 g.

= /J,Lg'\/v?”jL V2

To convert the stof)ping position back to the fixed xy coordinate system,
let us use the following equations:
x =X + vt y=y

Evaluating these equations at the time when sliding stops, we obtain

_ Y P P — Unm 9 0
x—zﬂg«/'varvb, —mﬁervb

A second method of solution is to work entirely in the fixed xy frame.
From this viewpoint, it is no longer obvious that the acceleration is constant
in direction, although its magnitude must be jtg as long as sliding continues.

The direction of the acceleration, however, is always opposite to the relative
velocity, so we can write

g, =2 - e Vs U

i dt A (v, = v)? + vy
a :%,: —ug Yy
boodr N (v — v) + vy

and therefore
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dv, _ Vs — 0,
dv, Vy
or
dv, j‘dvy
Vg — Vp v,

Integrating, we obtain
In(v, —v,) =Inv, + InC
or
v, = Cv, + v,

Evaluating the constant C from initial conditions we find that

v
V= —=2 0, + v,

This allows the acceleration components to be evaluated, with the result
that
a,. = Mg__%__
’ NV + v
NV + v}
thereby confirming that the acceleration is constant in direction.
The time required for the velocity v, to reach zero is

ay

at which time the velocity v, is
Ve = dgl = Uy

which is just the belt velocity. So the sliding in the x and y directions stops
simultaneously. From Eq. (3-7), the position of the particle is

R I R
X = — agt _zug/\/vm+'vb

— 1 2 _ Um 2 3
y—’l)mt—{“iayt —ﬂ—g«/’vm—i—vb

in agreement with our previous results. The path of the particle relative to
the fixed xy system is parabolic while sliding occurs, as shown in Fig. 3-31(c).
This results from the fact that the force of sliding friction acts like a uniform
force field in this case.

Comparing the two methods of solution, it can be seen that the proper
choice of a reference frame can result in a considerable simplification in the
analysis of a problem. In this example, both the xy and x'y’ systems are
inertial, but the motion relative to the belt, and hence the direction of the

B L e —
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frictional force, are much more easily visualized when viewed from the
primed system.
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PROBLEMS

3-1. A smooth sphere of mass m
and radius r is squeezed between two
massless levers, each of length /, which
are inclined at an angle ¢ with the
vertical. If a force P is applied between
the ends of the levers, as shown, what
is the vertical acceleration of the sphere
when ¢ = 30°? Consider the mass of
the sphere to be concentrated at its
center.

3-2. A tube rotates in the horizontal
xy plane with a constant angular
velocity o about the z axis. A particle
of mass m is released from a radial
distance of 1 ft when the tube is in the

N
NN
\\
JE
/
NN\

Fig. P3-2 Fig. P3-3
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position shown. If the tube is frictionless, find the direction and magnitude of the
velocity of the particle as it leaves the tube.

3-3. A particle of mass m is supported by two elastic cords, each having a
nominal length / and tension 7. Assuming that the transverse displacement y is
much smaller than either / or 7T/k, where k is the stiffness coefficient of each cord,
solve for the natural frequency of the transverse motion.

3-4. A particle of mass m is projected vertically upward with an initial velocity
v,. If the drag force of the air is bv?, where b is constant, solve for the upward
velocity » as a function of time. Also solve for » as a function of the vertical
displacement z. What is z,,,x? Assume v is positive.

3-5. Consider the free motion of an underdamped mass-spring-damper system
such as that in Sec. 3-7. For each cycle of oscillation, what is the interval between
the time of maximum velocity and the time at which the displacement is zero?

3-6. Consider an underdamped mass-spring-damper system. Using the weight-
ing function and the method of convolution, find the steady-state response to the
forcing function F(¢) = F, cos wt.

3-7. A mass m and a spring of stiffness & are connected in series and lie on
a horizontal floor. At ¢t = 0, the free end of the initially unstressed spring is moved
at a constant speed v, in a straight line directly away from the mass. Assuming a
friction coefficient (L between the mass and the floor, solve for the displacement of
the mass as a function of time.

3-8. Suppose that the cartesian components of the force F acting upon a
certain particle are each given as a function of its position (x,y,z). Show that if
oF,|0y = oF,[ox, 0F,|0z = 0F,/ox, and 0F,/0z = 0F,/dy in a given region, where
these partial derivatives are continuous functions, then the force field is con-
servative.

3-9. Given that the force acting on a particle has the following components:
F,= —x+y, F,=x—y+ y%, F, = 0. Solve for the potential energy V.

3-10. Calculate the energy necessary to put a satellite of mass m into a circular
orbit at an altitude 4 above the earth’s surface. Assume a spherical earth of radius
R and neglect the effects of atmospheric drag and the spin of the earth.

3-11. A particle of mass m is fastened to an inextensible wire of length / to
form a spherical pendulum. Using spherical coordinates to describe the position
of the particle, where & is measured from the upward vertical, the initial angular
velocities are §, and 450. Find the initial values of: (a) the angular accelerations
¢ and §; (b) the force in the wire.

3-12. A particle of mass m moves under the action of gravity on the inner surface
of a smooth inverted right circular cone of vertex angle 26. Using a spherical
coordinate system with its origin at the vertex of the cone, find the maximum value
of the distance r of the particle from the vertex, assuming that @ = 30° and the
initial conditions of the motion are r(0) = a, r(0) = 0, and ¢;(0) = 4./¢g|a.

3-13. A thin flexible rope of negligible mass is wrapped around a cylinder of
radius a that is rotating with a constant angular velocity of () rad/sec. A particle-
of mass m is attached to the end of the rope. Assuming that the rope does not slip
relative to the cylinder, but can unwind such that a straight portion of length / is
produced, write a differential equation of motion for the particle in terms of the
single dependent/ variable /. If the initial conditions are /(0) = 0, /(0) = a{), solve
for / and the tensile force in the rope as functions of time.

o SR (U T ..Ef',.: =8
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Fig. P3-13 Fig. P3-14

3-14. A particle of mass m is displaced slightly from its equilibrium position
at the top of a smooth fixed sphere of radius r, and it slides because of gravity.
Through what angular displacement 6 does the particle move before it leaves
the sphere?

3-15. A small fixed tube is shaped in the form of a vertical helix of radius a
and helix angle ry, that is, the tube always makes an angle y with the horizontal.
A particle of mass m slides down the tube under the action of gravity. If there is
a coefficient of friction |1 between the tube and the particle, what is the steady-state
speed of the particle? Let o = 30° and assume that [t < 1/4/3.

3-16. A particle of mass m is embedded at a distance ;R from the center of
a massless circular disk of radius R which can roll without slipping on the inside
surface of a fixed circular cylinder of
radius 3R. The disk is released with
zero velocity from the position shown
and rolls because of gravity, all motion
taking place in the same vertical plane.
Find: (a) the maximum velocity of the
particle during the resulting motion;
(b) the reaction force acting on the disk
at the point of contact when it is at its
lowest position.




DYNAMICS OF A SYSTEM OF PARTICLES

In the previous chapter, we discussed some of the more important prin-
ciples and techniques to be used in the analysis of the motion of a single
particle. When one considers the dynamics of a group of interacting particles,
one may still look at individual particles, but in addition, certain over-all
‘aspects of the motion of the system may be calculated without specifically

solving for the individual motions. It is with these extensions and generali-

zations of previously discussed principles that this chapter will be primarily

concerned. In addition, the chapter will discuss particular applications,
such as the collision and rocket propulsion problems.

4-1. THE EQUATIONS OF MOTION

Consider first a system of n particles, of which three are shown in Fig.
4-1. The forces applied to a given particle may be classified as external or
internal, according to their source. The fotal force on the ith particle arising
from sources external to the system of n particles is designated by F; and is
known as an external force. All interaction forces among the particles are
known as internal forces and are designated by individual force vectors of
the form f;;, where the first subscript indicates the particle on which the force
acts and the second subscript indicates the acting particle.

f2l m,

f23 F2

x
Fig. 4-1. The forces acting on a system of particles.
130
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From Newton’s law of action and reaction, we know that the interac-
tion forces between any two particles are equal and opposite:

f;j = - it ‘ (4—‘1)

Also, these forces are assumed to be collinear, that is, they act along the
straight line connecting the particles. It can be seen that

fu:O

in agreement with Eq. (4-1), indicating the fact that a particle cannot exert
a force on itself which affects its motion.

Now let us sum all the forces acting on the ith particle. Including both
external and internal forces, we can write the equation of motion in the form:

mi,=F + 36, (=1,2,...,n) (4-2)
i=1

where m; is the mass of the ith particle and r; is its position vector relative
to the fixed point O. Next we sum Eq. (4-2) over all n particles, obtaining

gl m;¥; = El F, + 2;1 El f;; (4-3)
But, from Eq. (4-1), we see that

since the internal forces always occur in equal and opposite pairs. Also, we
note that the total mass m is

o El mi (4—5)
and the center of mass location is given by
_ 1z
=™ (4-6)
The total external force is
F=3F, 4-7)
i=1

Therefore Eq. (4-3) can be written in the form
F = mfi, (4-8)

This result has the familiar form of a force being equal to the product
of a mass and an acceleration. It indicates that the motion of the center of
mass of a system of particles is the same_as if the entire mass of the system
were concentrated at the center of mass ‘and -were driven by the sum of all
the forces external to the system.

To illustrate this point, the trajectory of a bomb in a vacuum is sometimes
used. If the bomb explodes, then the center of mass of all the fragments
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continues on thesame path as the bomb would have taken had it not ex-
ploded. This result is accurate if the total external force acting on particles of
the bomb is riot_ changed by the explosion. It is clear, however, that for the
case of motion through the air, the external drag force would be vastly in-
creased after the explosion, thereby altering the path of the center of mass.
Also, for the case of certain conservative forces, a nonuniform gravitational
field, for example, the total external force is altered by replacing a system of
particles by a single particle at the center of mass and calculating the force
on this particle.

It should be emphasized, then, that although Eq. (4-8) has general validity,
the force F is calculated for the actual system of particles and not, in general,
on the basis of a single particle of total mass m located at the center of mass.

4-2. WORK AND KINETIC ENERGY

We have seen that Eq. (4-6) is identical in mathematical form to the
equation of motion for a single particle. It is apparent, then, that a set of
principles similar to those for a single particle also applies to the motion of
the center of mass of a system of particles.

Let us assume that the center of mass of the system moves from A4, to B,
under the action of the external forces F; whose sum is F. Then, taking the
line integral of each side of Eq. (4-8) over the path of the center of mass,
we obtain a result similar to that obtained previously in Eq. (3-67). It is

Be B

F - dr, = = m! (4-9)
A 2 Ae

X
Fig. 4-2. Position vectors of the center of mass and of a typical
particle during an arbitrary displacement.
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where g, is the absolute velocity of the center of mass. This equation states
that if one considers the sum of the external forces to be acting at the center
of mass of the system, then the work done by the total external force in
moving over the path of the center of mass is equal to the change in the trans-
lational kinetic energy associated with the motion of the center of mass.
Note that the work expressed by the integral on the left side of Eq.
(4-9) does not include that work done by the internal forces, nor is it even
the total work of the external forces. To clarify this point, let us calculate
the total work done by all the forces, external as well as internal. Consldermg

‘_J_ﬁrst the ith particle, the work done by all the forces acting on m; as it moves

from A; to B is
: B, n
W= [ (Fo+ 31,) - dr, (4-10)
Ay Jj=1

But, as shown in Fig. 4-2, we can express the posmon of the ith particle as
the sum
I =T, + P (4-11)

where p; is the position vector of the ith particle relative to the center of mass.

So, substituting Eq. (4-11) into (4-10) and summing over all n particles, we
obtain the total work

-

n n By
=g Wem 8, (For §1) - @r v dp)

or

W= z C(F + zf”) . dr, + z; At(F + Zf“)odpi 4-12)

where the limits on the second integral refer, in this case, to the position of
the ith particle relative to the position of the center of mass of the system.

_——The first integral on the right side of Eq. (4-12) can be simplified by using

Egs. (4-4) and (4-7). We note that r, and the limits of integration are not
dependent upon the summation index i, and therefore the summations can
be carried out before the integration. The second integral cannot be sim-
plified, since p; is a function of i. With these changes, we obtain

W= F dr, + z:, J (F + z fz,) . dp, (4-13)
Thus we see that the total work can be considered as the sum of two parts:
(1) the work done by the total external force acting through the displacement
of the center of mass; (2) the summation of the work done on all particles
by both the external and internal forces on each particle acting through the
displacement of that particle relative to the center of mass.

Now, for each particle, the principle of work and kinetic energy applies,
SO we can write
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By

]. ° ° 1 o ° « i/ ° ° °
W= g miioby| = mfe- . + 28 o+ i e P)

where we have substituted for r; from Eq. (4-11). Summing over all particles,
we find that

B,
4

W= 3 W= m

where p; is the relative velocity of m;, as viewed by a nonrotating obServern
moving with the center of mass. Here we have used the notation:

pi = P't * P
But we see from Eq. (4-6) that

(4-14)

By
A

B, . n o By 1 77.‘ o
) PR m —
. + I, i=21 101 N + D) El m; p;

£

n n
mr, = 2_} mr; = z}l m;(r. + p;)

i=1
= mr, + izn; m; p;
=1
and, consequently, that
,-§ myp; =0 , (4-15)

in agreement with the original assumption that p; is measured from the
center of mass. Also, of course,

El m;p; = 0 (4-16)
and therefore Eq. (4-14) reduces to
_ 1 2 |% - 1 . |2 *
W=_—-mvi| + X =p; (4-17) .
2 4, {21 2 4, 7

The right-hand side of Eq. (4-17) represents the sum of the increases in
kinetic energy of the individual particles, or, in other words, the increase in
the total kinetic energy of the system. Thus we can write

in a manner similar to Eq. (3-70) which was derived for a single particle.
In this case, T, and T represent the total kinetic energy of the system at the
beginning and at the end, respectively, of the line integrations. It is apparent
from Eq. (4-17) that the total kinetic energy is

T=Lme+ 3 Lmg (4-19)

2 i=1 2
Now Eq. (4-18) is valid for an arbitrary interval. So if we consider the
case where the work and the change in kinetic energy are evaluated during

an infinitesimal time interval A¢, we can write
AW = AT
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or, in the limit as A¢ approaches zero, we obtain

W=T (4-20)

Thus the rate of increase of the total kinetic energy is equal to the rate at
which work is done on the system, that is, it is the instantaneous power
associated with the external and internal forces.

Returning now to a further consideration of work and kinetic energy
relationships, we find from Egs. (4-9), (4-13), and (4-17) that

n By n n By
SR+ 50) - doi= 5 5 m (4-21)
i=1 v A4y Jj=1 = {
Hence the work done by the external and internal forces in moving through
displacements relative to the center of mass is equal to the increase in the
kinetic energy of relative motion. It is important to note that the relative
velocity p; can arise from rigid body rotations in which the particle separa-
tions do not change with time, as well as in the more obvious case of changing
particle separations. ‘

Referring again to Eqgs. (4-9), (4-19), and (4-21), we can summarize the
results of this section as follows:

1. The total kinetic energy is equal to that due to the total mass moving
with velocity of the center of mass plus that due to the motions of the in-
dividual particles relative to the center of mass.

2. The work done by the external forces in moving through the displace-
ment of the center of mass is equal to the increase in the kinetic energy due
to the total mass moving with the velocity of the center of mass.

3. The work done by the external plus the internal forces in moving
through displacements relative to the center of mass is equal to the increase
in the kinetic energy associated with the relative motions.

4-3. CONSERVATION OF MECHANICAL
ENERGY

The principle of conservation of mechanical energy was developed in
Sec. 3-3 for the case of a single particle. Now let us extend this principle to
apply to a system of particles. First, recall from Eq. (4-8) that the motion of
the center of mass is the same as though it were a particle with a mass equal
to the total mass m and acted upon by the total external force F. Therefore,
if the total external force is derivable from a potential function involving the
center of mass position only, then, by analogy to the results obtained pre-

viously for a single particle, the center of mass moves such that the energy
E, is constant.

E =T+ V, (4-22)
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T, is the kinetic energy due to the translational motion of the center of mass,
and V, is the potential energy associated with the position of the center of
mass. It can be seen that it is possible for conservation of the energy E. to
occur even in the case of dissipative internal forces.

For the case where the internal as well as the external forces are conser-
vative, that is, they are derivable from a potential function involving the
coordinates only, we find that the total energy F is conserved, where

E=T+V (4-23)

In this case, T is the sum of the kinetic energies of the individual particles,
or it can be considered to be the sum of the portion due to the motion of
the center of mass plus the portion due to motion relative to the center of
mass, as in Eq. (4-19). The potential energy V is often just the sum of the
potential energy due to gravity and that due to the deformations of elastic
elements such as springs. In any event, the potential energy of n particles
_ in a three-dimensional space can be written in the form:

V= V(xy, Xy - - - » X3n) (4-24)

since we assume that the system may have as many as 3n degrees of freedom.
Thus, as in Eq. (3-89), we find that if a small increase in x, results in a small
displacement of a certain particle in a given direction, then the force

_ oV
Fy= —3o (4-25)

acts on the given particle in the direction of increasing x,. This is the total
force and includes, in general, both internal and external forces.

For the case of a system in which both conservative and nonconservative
forces are acting, one can use work and energy concepts in place of a strict

\

X1I T . [ Mo ——t
my ¥

fre

jre

Fig. 4-3. Atwood’s machine.
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conservation of energy. For example, if W, represents the work done on
the system by nonconservative internal and external forces in going from con-
figuration A4 to configuration B, then

w,=E, — E, (4-26)

where the total energies F, and E, include potential energy terms corre-

sponding to all the forces doing work on the system except for the noncon-
servative forces. ‘

Example 4-1. Atwood’s Machine. Two masses m,; and m, are connected
by a massless, inextensible rope which passes over a pulley, as shown in Fig.
4-3. Neglecting the mass and the bearing friction of the pulley, find the ac-
celeration of m, and the tension in the rope as the system moves under the
action of gravity.

Let us use the coordinates x, and x, to designate the vertical displacements
of m, and m,, respectively, measured from some nominal position. Since the
rope is inextensible, we see that

X, = —X, (4-27)

Also, the pulley exerts no inertial or frictional forces on the rope and there-
fore the tension 7 is uniform throughout its length.

First we shall solve the problem using Newton’s law of motion for each -
mass separately. Each mass has two forces acting on it, namely, the rope
force T and the gravitational force. Thus we can write

ml)'fl - T— m]g
myXy =T — myg

Subtracting the second equation from the first and noting from Eq. (4-27)
that ¥, = —x,, we obtain

(m, + my)%, = (my — my)g
or '

P, = (Ze 4-28
5= () g (4-28)

The tension T is found by substituting this result into the first equation of
motion, yielding

T — (M) g (4-29)

My + My

Next, let us solve for x,, using the principle of work and kinetic energy.
Assuming that m, and m, comprise the system under consideration, we see
that the work done on the system in an infinitesimal displacement is

dW = (T - mlg) dx, + (T — m,g) dx,

- (m2 — ml)g dxl
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since dx; = —dx,. Now, the total work done in a certain displacement x,
is equal to the total kinetic energy of the system at the end of that interval,
assuming that the system started from rest. Noting that the force (m, — m,)g
is constant, we can write

(my — my)gx, = %mlfc"{ + %mzx‘é = %(ml + my) X} (4-30)
where we recall that X, = —X,. Differentiating this equation with respect

to time and dividing by x, (which is not zero, in general), we obtain
(my — my)g = (m, + my)%,

in agreement with the previous result of Eq. (4-28).

It is interesting to note that the rope tension 7" does not enter into the
expression for the work on the left side of Eq. (4-30). Although the rope does
positive or negative work on m, and m, individually, the total work done

by the rope is zero for any displacement consistent with the constraint that

X, = —X,. Thus the rope and pulley system constitute what is known as
a workless constraint. '

One can always neglect the forces due to workless constraints when ap-
plying energy methods. For example, the potential energy function includes
just those terms corresponding to gravitational forces when applying con-
servation of energy principles to Atwood’s machine. Assuming that the
system starts from rest at x, = x, = 0 and that the potential energy refer-
ence is chosen such that ¥ = 0 initially, we see that the total energy is zero,
or

mgx, + mygx, + %mlx% + %mz x3=0

Substituting x, = —x, and x, = —X,, we obtain
1 .
(m, — my)gx, + 7(m1 + my)x; =0

in agreement with Eq. (4-30).

Example 4-2. Masses m, and m, are connected by a spring of stiffness
k. If a constant force F is applied to m, at t = 0 as shown in Fig. 4-4, and
assuming that the masses can slide without friction on the horizontal surface,
solve for the displacement x, as a function of time. Initially, the system

"—"”.‘1 l—"”‘z

my my
V22200l sids

F

== —"‘""T
r’>-<

Fig. 4-4. A mass-spring system in rectilinear motion.
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starts from rest with x, = x, = 0 and with the spring unstressed. (m, = m,
= m.)

Let the displacement of the center of mass of the system, measured from
its initial position, be x..

X, = %(x1 + X,) (4-31)

From Eq. (4-8), we see that the motion of the center of mass is the same as
if the total force F were applied to a particle of mass 2m. Thus

F = 2m3, (4-32)

Integrating twice and evaluating the constants of integration from the ini-
tial conditions x.(0) = 0 and x,(0) = 0, we obtain

X, = Z% T (4-33)

in agreement with the general result previously given in Eq. (3-7).
Now let us write the equation of motion for m,. The spring force is k(x,
— X,) acting to the left on m,, and so we obtain

F_ k(xl - xg) - m)'C'l
or, substituting for x, from Eq. (4-31),
F — 2k(x, — x.) = mX, (4-34)

Assuming for convenience that the center of the spring coincides with the
center of mass, we can interpret the term 2k(x, — x.) in the last equation as
being the force on m, due to the compression (x; — x.) of the half-spring
of stiffness 2k.!

Next, we divide Eq. (4-32) by 2 and subtract it from Eq. (4-34). We obtain
the equation

1
2
which is in the standard form of a mass-spring system being excited by a

step function of magnitude LF. We can write down the solution immediately
by analogy to the results previously obtained in Eq. (3-115) or in Eq. (3-190).

_F 2k '
Xp = Xe = Zp (1 — €OS —’—n—t) (4-36)

m(i, — %) + 2k(x; — x) = = F (4-35)

Finally, from Egs. (4-33) and (4-36), the solution for x, is seen to be

'In general, if we think of dividing springs or of connecting several similar springs
in series, the stiffness varies inversely with the unstressed length. On the other hand, if
n similar springs of stiffness k are connected in parallel, the over-all stiffness is nk. These

Tules can be checked easily by noting that springs connected in series all have the same

force applied but the extensions are additive, whereas similar springs connected in parallel

Aall have the same extension but the forces are additive.
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x= o F (1 cos /2 {) (4-37)

It is instructive to use the known solution for this example to illustrate
some of the ideas which have been presented concerning work and energy.
Let us evaluate the kinetic energy using Eq. (4-19). From Eq. (4-33), we see
that

and from Eq. (4-36), we obtain _
o s e .o FPo. . 2k
Pi = P2 = (xl xc) — Smk Sin E‘t

Thus the total kinetic energy is

T = t2+—sm \/2k
4m

The potential energy of the spring is found by using Eq. (3-102).
V= _;'k(xl — Xxp)* = 2k(x; — X.)*

F2

8k

Therefore the total energy is

F? F? 7%
E=T+ V=711 +4k(1—cos m)

Now the work done by the external force F is just
F

o, Fﬂ(_ /Zk)
4mt+4k1 cos mt

(l—cos %:)

W:Fxl =

Therefore we see that W = E, which agrees with Eq. (4-26) for the present |

case where the initial total energy is zero.

4-4. LINEAR IMPULSE AND MOMENTUM

Consider again Eq. (4-8) which relates the total external force to the
motion of the center of mass.
F = mf,

Both sides of this equation can be integrated with respect to time over the

interval ¢, to t,, yielding

13}

TFdt = m(ve — v.)) (4-38)
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where v,; and v,, are the velocities of the center of mass at times #, and ¢,,
respectively. The integral on the left is the total impulse & of the external
forces during the given interval. The right side of the equation represents

the change in the total linear momentum p during the same interval, as we
shall demonstrate.

The total linear momentum of a system of particles is just the vector sum
of the individual momenta.

P = Enl m;V; (4-39)
i=1
where v; is the absolute velocity of m;. But from Eq. (4-6), we see that

n n
mi, = >, m;i; = Zlmivi
i=1 im

and therefore

p = mv, (4-40)
From Egs. (4-38) and (4-40), we obtain the result:
G =Pps — P (4-41)

which is the principle of linear impulse and momentum for a system of par-
ticles. Note that because the internal forces occur in equal and opposite
pairs, they do not contribute to the impulse &, and hence have no influence
on the total linear momentum of the system.

Equation (4-38) or Eq. (4-41) could have been written in terms of car-
tesian components as follows:

~

Lo
t% - F_»c dt - m(xcg — Xcl)
Ly

rls

Fy = | Fydt = m(P.. — Ye1) (4-42)

v £y

r~

2
F, = J, det: m(zc2 - Z.cl)

where (x,, y., z.) is the center of mass location.

It can be seen that if any component of the total impulse is zero, then
the momentum is conserved in this direction. Furthermore, if there are no
external forces acting on the system, whatever the nature of the internal
forces, then the total momentum is constant. This is the principle of
conservation of linear momentum as it applies to a system of particles. It is
particularly useful in the analysis of problems in which the internal forces
are not accurately known, as in collision and explosion problems. Examples
of the use of linear impulse and momentum methods will be found in Secs.

4-7 and 4-8 where problems involving collisions and also rocket propulsion
will be discussed.
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4-5. ANGULAR MOMENTUM

In Sec. 3-6, we developed equations for the angular momentum of a single
particle and also its time rate of change, using a point fixed in inertial space
as a reference. In this section, we extend this development to apply to a systerﬁ
of particles, and in doing so several possible reference points will be con-
sidered.

Fixed Reference Point. Consider the total angular momentum of a system
of n particles, taking as a reference the fixed point O, as shown in Fig. 4-5.
Using Eq. (3-143), we find that the angular momentum of the particle m; is

X

Fig. 4-5. Position vectors for a system of particles.

H, = r; x mi, (4-43)

The total angular momentum of the system is found by summing the angular
momenta of the individual particles. Thus

H = ZH = Y1, x My, (4-44)

i=1
Now let us differentiate Eq. (4-44) with respect to time, obtaining
HzinzxmimeiZfixmm
=1 =1
. (4-45)
= 2 I X m;f;
i=1

since ; X ¥; = 0. The equation of motion can be written for each particle,'
as in Eq. (4-2). Then, substituting for each m;¥; in terms of the applied forces,
we obtain

HZéhXFi%—iﬁlrinu (4—46)

We have assumed that the internal forces occur in equal, opposite, and col-
linear pairs. Therefore,
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i i: r, xf;; =0 (4-47)

i=1 j=1

since, for each f;;, there is an f;; = —f;; having the same line of action and
therefore an equal and opposite moment about O. The expression for the

total moment about O due to the external forces acting on the system is
thus reduced to

M=3rxF (4-48)
i=1
From Egs. (4-46), (4-47), and (4-48), we obtain
M =H (4-49)

Hence we see that, for a system of particles, the time rate of change of the
angular momentum about a fixed point O is equal to the total moment about
O of the external forces acting on the system.

Reference Point at the Center of Mass. If we substitute r;, = r, + p; into

the expression given in Eq. (4-44) for the angular momentum about the
fixed point O, we obtain

H = El (rc + py) x my(t, + p;)

n n n
=Te X M + Te X 3 m;p; + Zlmipixfwr leixmz-pi
i= i= i=

From Egs. (4-15) and (4-16), which assume that p; is measured from the
center of mass, we see that the two middle terms on the right are zero. Hence
the preceding expression for H can be written in the form:

H=r, x m + 21 PRy (4-50)
or
H =1, x mt, + H, (4-51)
where '
H, = Zn) P;: X mipi (4—52)
i=1

Here we have the important result that the total angular momentum of a
system of particles about a fixed point O is equal to the angular momentum
of a particle of mass m moving with the velocity of the center of mass plus
the angular momentum H, about the center of mass. More explicitly, we see
from Eq. (4-52) that H, is the angular momentum of the system with respect
to the center of mass, as viewed by a nonrotating observer moving with the
center of mass. :

Now let us differentiate Eq. (4-50) with respect to time, obtaining

=1, x mi, + 3 p; X mfs (4-53)
i=1



144  DYNAMICS OF A SYSTEM OF PARTICLES CHAP. 4

where again we have used the fact that all terms involving the cross product
of a vector with itself are zero. Of course, F = mf, and, from Eq. (4-52),

I:Ic = E} P: X miﬁi : (4_54)

so Eq. (4-53) can be written in the form
H=rxF+H (4-55)

The moment about O due to external forces is

M:z‘{rixFi:;(rcﬁ—pi)xFi

=1 xF+ 3 p xF (4-56)

But M = H, as stated in Eq. (4-49), and therefore we obtain from Egs.
(4-55) and (4-56) that

M, = M, (4-57)
where

M, = 2‘1 o: x F, (4-58)

It is seen that M, is the moment of the external forces about the center of
mass.
Comparing Eqgs. (4-49) and (4-57) we see that they are of identical form.
So we can state that if the chosen reference point is either (1) fixed in inertial
space or (2) at the center of mass of the system, then the time rate of change
of the angular momentum of a system of particles about the given reference
point is equal to the moment about that point of the external forces acting
on the system. It will be shown that this equation can apply to certain other
reference points as well, but these are associated with rather special cases.
- The equation M = H implies equality of each of its components. So we
can apply Eq. (3-148) to a system of particles.

M, = H,
M,=H, (4-59)
M, =H,

where the cartesian reference frame either is fixed or is translating with the
center of mass. More generally, we can write

M, = H, (4-60)

where the components are taken in the direction of an arbitrary unit vector

e, that is fixed in space.
From Eq. (4-49) or Eq. (4-57) we see that, if the moment of the external

forces about either a fixed point or about the center of mass is zero, then the

e . P e = T L (4 ev
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angular momentum about the same point is conserved. This is the principle
of conservation of angular momentum as it applies to a system of particles.
Similarly, if a certain component M, remains zero, then the corresponding
angular momentum about a fixed axis through the reference point and paral-
lel to e, is conserved. '

It can be seen that the use of the center of mass as a reference point has
some interesting and important consequences. We note that the equation
M, = H, does not involve in its detailed representation given by Eqs. (4-54)
and (4-58) any terms involving r, or its derivatives. Similarly, the equation
F = mf, does not contain explicit terms in p; or its derivatives. Therefore,
if the total force F does not depend upon the relative positions of the par-
ticles, and if the moment M, does not depend upon the motion of the center
of mass, then the translational and rotational (H.) portions of the total
motion are independent and can be calculated separately. Furthermore, if
in addition all forces are independent of the motion of the center of mass,
then the work and kinetic energy relationship of Eq. (4-21) for any motion
relative to the center of mass can be evaluated separately from that of Eq.
(4-9) for the motion of the center of mass.

Another interesting characteristic of the choice of a nonrotating reference
frame which translates with the center of mass is that, in general, it is a non-
inertial frame. Hence, it can be seen that the rotational equation of motion,
M = H, is frequently written with respect to a noninertial reference. Being
able to use the center of mass as a reference point for the rotational equations

simplifies considerably the analysis of rigid-body motion, as we shall see
in Chapters 7 and 8.

Arbitrary Reference Point. Consider the angular momentum of a system
of particles relative to an arbitrary point P, that is, as viewed by a nonrota-
ting observer who is moving with P. Let the xyz frame of Fig. 4-6 be fixed

X

Fig. 4-6. Position vectors for a system of particles,
using an arbitrary reference point.
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in inertial space and let the point P move in an arbitrary manner relative to
this frame. Noting that the vectors p; and p. originate at the reference
point P, we see that

r,=1I,+ p; (4—61)
I.=1Tr, + @, (4-62)
Also, the center of mass location relative to P is
1z
Pc = m & miei (4—63)

and the angular momentum about P is
H, = 2}1 P: X mip.i (4-64)

Equation (4-51) expresses the angular momentum about O in terms of
its value relative to the center of mass. In a similar fashion, the angular
momentum about the reference point P can be written in the form:

H, = p. x mp. + H, (4-65)

From Egs. (4-51) and (4-65), we obtain the following equation relating H
and H,:

H=H, — p. x mp. + ¥, X mf, (4-66)

where we recall that H is the angular momentum with respect to the fixed
point O. Differentiating with respect to time, we obtain

H=H, - p, x mp, + r, x mf,
= I:I,, — p. x m(f, — B)) + (r, + p.) X mf,
Noting that F = mf, and collecting terms, we find that
 H=W,+r1,xF+ p, x mi, (4-67)
But the moment about O is
M=3rxF=r,xF+3%pxF
or, noting that
M, = iz;l p: x F, (4-68)
we obtain
M=r,xF+ M, (4-69)

Now, taking the origin O as the reference point, M = H, and therefore from -
Eqgs. (4-67) and (4-69), we see that

M, — p. x mi, = I:Ip (4-70)
A comparison of this result with Egs. (4-49) and (4-57) reveals that the
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choice of an arbitrary reference point has resulted in the additional term
—p. X mi,. If P is fixed or moves with constant velocity, then ¥, = 0 and the
term is zero. Also, if P is at the center of mass, then p, = 0 and the term is
zero, in agreement with our earlier results. Note that if p, and ¥, are parallel,
the term again disappears. This last case is not common but can be applied
in certain situations, such as in the rolling motion of a wheel, the reference
point being taken at the instantaneous center.

The physical interpretation of this term is that it is the moment about
P of the inertial force —mi, which arises because the nonrotating reference
frame moving with P is not an inertial frame. This inertial force can be con-
sidered as the resultant of individual inertial forces —m;¥, acting at each of
the particles. Thus, we can use the standard form of the equation, M = H,
even for the case of an accelerating reference point, if we include the inertial
forces due to t,, as well as the actual external forces, in calculating M. This
applies to all systems of particles and to a general motion of the reference
point P, provided that the internal forces occur in equal, opposite, and col-
linear pairs. '

In a similar fashion, the equation of motion F = mf, can be applied with
respect to a nonrotating but accelerating frame if the inertial force —mf, is
included in F as an additional external force. Thus we are led to the following
general rule: All the results and principles derivable from Newton’s laws of
motion relative to an inertial frame can be extended to apply to an accelera-
ting but nonrotating frame if the inertial forces associated with the acceleration
of the frame are considered as additional external forces acting on the system.

This rule applies to all calculations, including those of work, kinetic
energy, linear or angular momentum, and so on. We see, for example, that
the original introduction of inertial forces in connection with d’Alembert’s
principle (Sec. 1-5) can be viewed as the special case where the reference
frame translates with the particle. Hence there is no motion relative to this
frame and the particle is in static equilibrium, with the true external forces
being balanced by the inertial force.

When should one choose an inertial frame and when should one choose
a noninertial frame in solving for the motions of a system of particles? For
the most part, it is advisable to consider dynamics problems from the view-
point of an observer fixed in an inertial frame and to include only the true
external forces acting on a particle or set of particles when applying Newton’s
equation of motion. On the other hand, certain problems are made simpler
by adopting the viewpoint of an accelerating observer. An important example
of the latter is the choice of the center of mass as a reference point for the
analysis of the rotational aspects of the motion, as in Eq. (4-57).

The arbitrary reference point P is also very convenient for certain prob-
lems. One example is the case where the motion of a given point in the sys-
tem is a known function of time. Choosing this point as the reference point
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P, one can calculate immediately the inertial forces —m;¥,. Furthermore,
the external force acting at P has no moment about P and therefore it need
not be determined in solving for the rotational motion. Another example is
in the formulation of the dynamical equations for a space vehicle with moving -
parts. It is convenient to choose a reference point that is fixed in one member
of the system and to specify the location of the various parts relative to this
reference, as they would appear to an observer riding with the vehicle at the
reference point. As a simple illustration, suppose we wish to calculate the
total kinetic energy of a system of particles, using the arbitrary point P as
a reference. Referring to Fig. 4-6, it can be seen that the kinetic energy is

]. r J o 1 L . ° o °
T = 7;1 m;r; o I; = —E-zl mi(l'p + p;) ° (l'p -+ Pz)
:Limlii‘{“l—imlp%—i_ %miﬁi°i'p
2 5 2 & i=1
which can be simplified further using Egs. (4-5) and (4-63) to yield
T = ;_mr + L Emp1+mr,, Py 4-71)

Thus we have the theorem of Kénig: The total kinetic energy of a system is
equal to the sum of (1) the kinetic energy due to a particle of total mass m
moving with the reference point P, (2) the kinetic energy due to the motion
of the system relative to P, (3) the scalar product of the linear momentum
vector of a particle of mass m moving with P, and the velocity vector of the
center of mass motion relative to P. For the case where P coincides with the
center of mass, p. = 0 and the expression for the total kinetic energy reduces

to that of Eq. (4-19).

(= xc)

- L aww—] M2 fe=—
i i k. F/2
(0)
-
s am | m1
F/2 2k

(b)
Fig. 4-7. A mass-spring system as viewed from a reference
frame translating with the center of mass.

REpo,

o 1




SEC. 4-5 DYNAMICS OF A SYSTEM OF PARTICLES 149

Example 4-3. Let us solve for the motion of mass m, relative to the center
of mass in the system of Example 4-2, using a noninertial reference frame
which is translating with the center of mass.

First recall that the acceleration of the center of mass is equal to the
total external force divided by the total mass.

F

Xe = 5

Therefore the inertial force acting on each mass due to the acceleration of
the reference frame is —mXx, = —1F, as shown in Fig. 4-7(a). Adding the
external and the inertial forces on each mass, we see that a symmetrical sit-
uation results with respect to the center of mass position, that is, each mass
has a resultant force of magnitude 1F applied to it and both forces are direct-
ed toward the center of mass. Therefore, since the physical system and also
the forces exhibit a symmetry about the center of mass, we need to analyze
only one-half of the system, as shown in Fig. 4-7(b). Letting z = x;, — x,,
we can immediately write the equation of motion

mzi + 2kz = %F
corresponding to a simple mass-spring system with spring stiffness 2k and
with a constant force of magnitude 1F applied at ¢ = 0. Using the results

previously derived in Eq. (3-190) for a unit step response, we can solve for

z, obtaining
F [2k
27 ik (1 IR ™ )

which is identical to the solution for (x, — x.) given in Example 4-2.
Because we have chosen the center of mass as the reference, and also in
accordance with the symmetry about this point, we find that

X; — Xg = Xg — Xs

in agreement with Eq. (4-31). Hence, the solution for x, can be obtained
directly from the solutions for x, and x,.

Example 4-4. A particle of mass m;, moves on a frictionless, horizontal
plane. It is connected to a second particle of mass m, by an inextensible
string which passes through a small hole at point O, as shown in Fig. 4-8.
If the second mass moves only along a vertical line through O, and if the
initial conditions are #(0) = r,, #(0) = 0, 6(0) = w,, find the minimum value
of r and the maximum force in the string during the ensuing motion. As-
sume m; = m, = m and ry,w; = g/3. \

This system is conservative, so let us first find an expressmn for the total
energy. The velocity of mass m;, is given by o2 = 72 + r26% and the velocity
of m, is v, = F. If we measure the potential energy of m, from its value when
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Pi
mp

Fig. 4-8. A system consisting of two particles connected
by an inextensible string, one particle moving on a hori-
zontal plane and the other along a vertical axis.

r = 0, we can write the total energy in the form:
E=T+V=mP+ %mrzﬁ'2 + mgr (4-72)

But, from the initial conditions, we see that

E = —;-mr?,w% + mgr, (4-73)
Also, the angular momentum of m, about O is constant since the total moment
M about O is zero. This results because the total external force acting on
m, arises from the string tension, and its line of action passes through O.
Hence, using the principle of conservation of angular momentum, we can

write
H = mrt = mriw,

from which we obtain
’ : 0 (o 2
= (o)’ o, (4-74)

Equating the right-hand sides of Egs. (4-72) and (4-73) and substituting for
6 from Eq. (4-74), we obtain

¥ 3603 1 P
2 + mgr = =—mriw; + mgr, (4-75)

-2
mrc + m )

To find the minimum value of r, we set # = 0, and after collecting and rear-
ranging terms, the roots are found from
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Dividing out the known factor (r — r,), since it is given that 7 = 0 and
r = r, initially, we obtain

r2

9.9 9.3
@qt @yl
— @ly . @l _

2g 2g

which has a single positive root, corresponding to r,,, in this case.

2,2
. @0l / ﬁzz’_):i
Friin 4g (1 + l + w(g)ro 2 o

If the initial values of r and 6 are such that r,e? > g, the preceding general
expression is valid but corresponds to r,,.,, in which case r,;, = r,.
To find the maximum force in the string, let us differentiate Eq. (4-75)

with respect to time and solve for #. The result is

_ney 1

27 T 28
Now, the vertical acceleration of m, is 7, and therefore from Newton’s law
of motion, we obtain

. - 1 mrio?
P — mg =mi or P—ng—i— 3

It is clear that P is a maximum for a minimum length r. Therefore, sub-
stituting r = 1r, into the foregoing expression, we obtain
_ 11

P max ? mg

4-6. ANGULAR IMPULSE

An equation relating the change in the angular momentum to the total
angular impulse can be derived for the case of a system of particles in a
manner similar to that used in obtaining Eq. (3-154) for a single particle.
We have seen from Eqgs. (4-49) and (4-57) that

M=H

applies to a system of particles when the reference point is fixed or is at the
center of mass. Integration of this equation with respect to time over the
interval ¢, to ¢, results in the principle of angular impulse and momentum:

where the total angular impulse acting on the system due to external forces is
ts '
A = | Mdt 4-77)
Ly

As we have seen, the internal forces occur in equal, opposite, and collinear
pairs, and therefore they cancel out in this calculation.
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If we perform a similar integration on Eq. (4-70), we obtain
t2
Hpg - le - %p - Pc X mi:p dt (4—78)
. ty :

The integral on the right can be interpreted as the angular impulse about P
due to the inertial forces arising from the acceleration of the reference frame

translating with P.

4-7. COLLISIONS

One of the important types of interactions between two bodies occurs
during a collision. In order to be able to treat the colliding bodies as par-
ticles, we shall consider the special case of impact between smooth spheres.
Nevertheless, the analysis of this case will involve many of the important
concepts used in the solution of more complex problems. |

Consider, then, the case of two smooth spheres whose centers of mass
coincide with their geometrical centers. At the moment of impact, the inter-
action forces are normal to the common tangent plane at the first point
of contact, and therefore the line of action of these forces is coincident with
the line of centers. Hence no rotational motion is introduced and the prob-
lem reduces to one of particle motion. Furthermore, let us assume that the
spheres move in the same plane before impact, that is, the velocity vectors
and the line of centers at impact all lie in the same plane. As shown in Fig.
4-9, v, represents a velocity component along the line of centers just before
impact, and v, represents a velocity component perpendicular to the line of
centers, the velocities being relative to an inertial frame.

Before impact After impact

Fig. 4-9. The normal and tangential components of
velocity of colliding spheres.

Let us assume that the forces between the colliding spheres at the moment
of impact are impulsive in nature. In other words, the forces are very large

compared to other forces acting at the same time and are of very short dura-

tion. Thus they are best described by specifying their total impulse rather
than by making any attempt to give their variation with time. So let & be

L,

{ it
Tl s
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the total impulse at the moment of impact in this case. It acts to the left
on m, and to the right on m,, in each case being normal to the common

tangent plane at the point of contact. Using the equation of linear impulse
and momentum on each particle, we see that

F = m(Vp1 — Vn1) = My(Vny — Vro)
or
MUy + MyVny = M Vg + MUy, (4-79)
where the primes refer to velocities after impact. There is no impulse on the

spheres in the tangential direction, and therefore the velocity components
in this direction are unchanged.

vy = v,
& ‘,1 (4-80)
Vig = Uys
Hence we obtain that
myvyy + Myvy, = MV, + myv) (4-81)

We see from Eqs. (4-79) and (4-81) that the normal and tangential compo-
nents of the linear momentum are conserved during impact and therefore the
total linear momentum of the system is conserved. This result is to be
expected, since there are no external forces acting on the system.

For the case where other forces are acting on the system, Egs. (4—79)
(4-80), and (4-81) still apply, provided that these other forces are not impul-
sive forces applied at the instant of impact. The other forces can be neglected
because their total impulse during the infinitesimal interval of impact is
itself infinitesimal. Of course, they cannot be neglected, in general, during
the longer time interval before and after impact.

In order to solve for the motion of the system, we must solve for the two
tangential and the two normal components of the velocity after impact.
The tangential components are given by Eq. (4-80). Another equation,
however, is required in addition to Eq. (4-79) in order to be able to solve for
both v;, and vy, This additional equation relates the normal components
of the relative velocities of approach and separation. It is

/

Vg — Uy = €(Un; — Vn) (0<e<]) (4-82)

where e is known as the coefficient of restitution. The coefficient of restitution

depends upon the composition of the bodiés and also, to some extent, upon

their shape, size, and impact velocities. For our purposes, we shall consider

the coefficient of restitution to be a constant for a given pair of substances.
Solving for v, and o}, from Egs. (4-79) and (4-82), we obtain

o =t emy, (Lt em,

m, + my, m; + my

| (4-83)
o, =Lt &m, o m—em,

m; + m, m; + my
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If e = 0, the normal velocities after impact are equal and the collision is
said to be inelastic. If e = 1, then, in accordance with Eq. (4-82), the relative
velocities of approach and separation have the same magnitude. This case
is known as perfectly elastic impact.

We have seen that the total linear momentum is conserved during impact.
For all cases except perfectly elastic collisions, however, there is a loss of
kinetic energy. This loss in the total mechanical energy appears as heat result-
ing from plastic deformations or as internal vibrations that are not included
in the analysis and are finally dissipated as heat due to internal friction losses.

It is interesting to view the collision process from the standpoint of an
inertial observer translating with the center of mass. We assume that no
external forces are acting on the system of two colliding spheres and therefore
the center of mass moves in a straight line at constant speed throughout the
collision. Because we have taken the center of mass as the reference, we
find that )

v =~y
nlr — m1 n2
(4-84)
vy = —D2y
A m, L2
Then, substituting Eq. (4-84) into Eq. (4-83), we obtain
Vny = —eUp
(4-85)
Vng = — €Uy

Of course, the tangential components are unchanged in accordance with
Eq. (4-80).

From this point of view, it is clear that, for perfectly elastic collisions
(e = 1), the normal velocity components are reversed in direction but un-
changed in magnitude. Therefore, there is no loss of kinetic energy associ-
ated with motion relative to the center of mass. Furthermore, there is no
change in the velocity of the center of mass; hence the total kinetic energy
relative to a fixed system is also unchanged by the collision, as can be seen
by referring to Eq. (4-19).

On the other hand, for the case of inelastic impact (e = 0), we obtain
v = vny = 0. Therefore, we see that the kinetic energy due to normal veloc-
ity components relative to the center of mass is entirely lost as a result of
the collision.

In general, we can write the total kinetic energy of two colliding spheres
in the form o

T=T,+T, + T, (4-86)

where T, is the kinetic energy due to the motion of the center of mass,
T, is the kinetic energy due to the tangential components of the velocity
relative to the center of mass, and T, is the kinetic energy due to the normal
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components of the velocity relative to the center of mass. Using primes to
indicate the corresponding quantities after the collision, we find that

Té =T
T, =T, (4-87)
T, = e*T,

Another approach which gives a better insight into the physical nature
of the collision process is obtained by considering the impact to occur in
two phases. First is the compression phase, during which elastic deformations
of the spheres occur and the relative normal velocity is reduced to zero.
At this point, the second or restitution phase begins and lasts until the spheres
separate. Now, a portion of the total collision impulse & which is applied
to a given sphere occurs during the compression phase and the remainder

occurs during the restitution. Calling these impulses &% and %, respec-
tively, we see that

I =+ F (4-88)

All impulses on a given sphere occur in the same direction (normal to the
common tangent plane), so we need to consider only their magnitudes. Fur-
thermore, since the change in the velocity of a given mass is directly pro-
portional to the applied impulse, we conclude from Eq. (4-85) that

F = e (4-89)

Thus we could equally well define the coefficient of restitution as the ratio
of the restitution impulse to the compression impulse.

We assumed originally that both spheres move in the same plane before
impact. We saw from the results of the analysis that no forces are produced
during the collision which would cause the motion to deviate from that plane.

" Hence the entire motion takes place within the given plane. But upon fur-

ther study, it becomes apparent that the original requirement was not neces-
sary since an inertial reference can always be found such that the initial
velocities and the line of centers at impact all lie in the same plane. An
example of such a reference frame is one which translates with the center
of mass. Another example is a reference frame which translates with the
initial velocity of one of the spheres. Thus the results which we have
obtained are valid for the general case of colliding spheres if we choose a
proper reference frame from which to view the motion.

Example 4-5. A ball is dropped from a height of 10 ft onto a level floor.
If the coefficient of restitution e = 0.9, how long will it take the ball to come
to rest? What is the total distance traveled by the ball?

Let us use the notation that v, is the speed with which the ball hits the
floor on the nth bounce. The floor is assumed to have zero velocity at all
times; therefore, from Eq. (4-82),
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Unyy = €Uy

since the speed with which the ball hits the floor on a given bounce is just
the speed with which it rebounded from the previous bounce. The time inter-

val between the nth and (n + 1)st bounce is

20541 _ 2ev,
g g

since it is twice the time required for the ball to stop momentarily at the peak
height after rebounding with a speed ev,. Now, the time required to hit the
floor the first time after being dropped from a height 4 is, from Eq. (3-9),

2h
and the speed at the first impact is
v, = gt, = ~/2gh
Thus the total time required for the ball to come to rest is
t=t+t, +t, + ---
=t(1 + 2¢e + 2e* + --+)

SWEIIER:

1l —e

l, =

) — 15.0 sec

The distance traveled between the nth and (n + 1)st bounce is 24,, where
h,, is the rebound height after the nth bounce.

2 2 42
hn vn+l _ e vn

\ 2g 2g
; So we see that the total distance traveled along the path is
s=h+ 2h + 2h, + [
= h(l + 26 + 2¢* + ---) J
s

= h(15) = 9531 |
Note that the number of bounces is, in theory, infinite, even though the
total time and distance are finite. &

. Example 4-6. Mass m,, moving along the x axis with velocity », hits m,
and sticks to it (Fig. 4-10). If all three particles are of equal mass m, and if
m, and m; are connected by a rigid, massless rod, as shown, find the motion
o of the particles after impact. All partlcles can move without friction on the
; horizontal xy plane.

First, we notice that the total linear momentum of the system of three
j particles is conserved, since.no external forces act on the system. Next, we
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Rigid,
massless rod

Fig. 4-10. Impact of a partially constrained system.

see that the rod can transmit axial forces only. It is impossible for bending
moments to occur at either end of the rod because a moment cannot be ap-
plied to a point mass. This follows, because a point mass has no means of
resisting with an equal and opposite inertial moment. The lack of bending
moments at either end requires that no shear forces or bending moments
occur in the rod.

Now consider the inertial properties of the system consisting of masses
m, and m; and the rod. Suppose a unit axial impulse is applied at m, in a
direction along the rod. In this case, masses m, and m; move in the axial
direction with velocities equal to 1/2m, as though the impulse were applied
to a single particle of mass 2m. Next consider a unit transverse impulse applied
at m,. In this case, the rod exerts no forces at the instant of the impulse, and
mass m, moves with a transverse velocity 1/m. |

We can apply these observations by writing expressions for the axial and
transverse components of the linear momentum. We note that the velocity
component along the rod after impact is the same for all three masses. Call-
ing this velocity v, we can write the equation for conservation of the axial
component of linear momentum, obtaining

,\/ﬂ = 3mv,,
or
M
¢T3 2

Similarly, we find that the equation of momentum conservation in the trans-
verse direction is

mv

ﬁ = 2mv;
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“or
| r— Y
Ve — 2 »\/—2—
where v; is the transverse component of the velocity of m, and m, immediately
after impact. The velocity of m; just after impact is entirely axial, since it
receives an impulse in this direction through the rod.
The velocities of (m; + m,;) and m; immediately after impact are as shown
in Fig. 4-11. Throughou% the whole problem, that is, before, during, and

y
v/3/2

Path of c.m.

—————— | S ————— -
1
v/3/2 3/2

{
X
v/2v/2

Fig. 4-11. Velocity components immediately after impact.

after impact, the center of mass of the system moves with a constant velocity
v/3 in the direction of the positive x axis along a line y = //3+/2. After
impact, the system rotates at a constant angular rate » which is found by
dividing the difference in the transverse components of velocity at the two
ends by the rod length /. In this case,

v
®T /2
Note that the total angular momentum about the center of mass is constant
throughout the problem. Its magnitude is

~ mol
=377

Example 4-7. Solve Example 4-6 for the case of perfectly elastic impact
between m, and m,.

We assume that the spheres m, and m, are perfectly smooth. Therefore
the impulse occurring during impact must be normal to the tangent plane
at the point of contact, that is, it is along the x axis. If we designate the
magnitude of this impulse by &, we can solve for the velocities of the three
masses immediately after impact in terms of & . Using the equation of linear
impulse and momentum, Eq. (4-41), we see that the velocity of m, after

Lok -
e LT EN 5 rreser—
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Fig. 4-12. Velocity components after elastic impact.
impact is

, F
V=0 ——
m

as shown in Fig. 4-12. Taking axial and transverse components of the total

impulse & which is acting on (m, + m;), we find that the axial component
of velocity for m, and m; is

, F
Yo = 2 2 m
since the effective mass resisting this impulse is 2m. In a similar manner, we
find that the transverse velocity of m, is ’
v, = i
TN 2 m

since the effective mass in this case is m.

Now we use Eq. (4-82), the defining equation for the coeflicient of res-

titution in terms of normal velocity components. Setting e = 1, correspond-
ing to perfectly elastic impact, we obtain

or -
a. /{ﬂ,’[ﬁﬁ
from which we obtain
_ 8 -
T b
Therefore,
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Let us calculate the total kinetic energy after impact. Designating the .

kinetic energy of masses m,, m,, and m; by T, T, and T3, respectively, we
find that

, 1 o mMy?
1= 5 MU= 5y
, 1 19 9 20mo?
T2——2—m(va + v) 79
, 1 w _ 4mo?
Ts = 5 mva = 75
giving
T’=T§+T4+T§:% W

We see that the total kinetic energy 7" is equal to the original kinetic energy,
thereby illustrating once again that energy is conserved in a perfectly elastic
collision.

An interesting aspect of this example is the calculation of the effective
mass of the system composed of m, and m;, insofar as it affects m, during
the collision. We have seen that the effective mass for an axial collision is
2m, whereas the effective mass for a transverse collision is m. Hence we might
expect the effective mass in this case to lie somewhere between these values.
Using Eq. (4-83) and letting e = 1, we find that

m—m v
'U{ — eff,v - _ .
m + My 7
from which we obtain
_ 4
Meer = —3—’”

for this case in which the impact occurs at 45° from the axis of the rod.

More generally, we can think of a unit impulse being applied to m,, and
noting that the effective mass is inversely proportional to the velocity change
in the direction of the impulse. Now, the velocity changes in the direction
of the impulse due to the axial and transverse components of the impulse
are additive. Therefore, assuming that the impulse occurs at an angle «
measured from the axial direction, we find that

1 cos?’a , sinfa

e — + p— , (4-90)

where m, and m, are the effective masses for axial and transverse impulses,
respectively. The factors cos’? a and sin? a occur because first the axial or
transverse components of the impulse are used, and then components of
the corresponding velocities must be taken in the direction of the impulse.
In this particular case where a = 45°, we obtain

e i
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Meee  2M

3
dm

3 [

in agreement with our previous results.

It should be emphasized again that the effective mass of the system
composed of m, and m; refers to its effect on m, during a collision. In this
respect, it (or the reciprocal, 1/m.) resembles an input impedance of
electrical circuit theory. Note that the actual mass 2m is used in calculations
of the change in the velocity of the center of mass of m, and m;.

4-8. THE ROCKET PROBLEM

- Particle Mechanics Approach. An important application of the dynamical
principles which we have obtained for a system of particles is in the analysis
of rocket propulsion, that is, propulsion by means of reaction forces due to
the ejection of mass. Of particular importance in this analysis are two equa-
tions: the equation of motion and the equation of linear impulse and momen-

tum. From Eqs. (4-3) and (4—4) we can write the equation of motion in the
form

= 3 F, = > m¥, (4-91)
i=1 i=1

Also, from Egs. (4-38), (4-39), and (4-41), we see that the equation of

linear impulse and momentum can be written in the form

tz n tg
g — F dt = Z mivi (4'—92)
14} i=1 t)

where it is understood that the system must consist of the same set of parti-
cles throughout the interval from ¢, to t,.

As a simplified example of the rocket problem, consider the system shown
in Fig. 4-13. Assume that the rocket is operating in a vacuum in the absence
of gravitational forces. The area of the nozzle exit is 4, and the average pres-
sure of the exhaust gases at this area is p,. The average exit velocity of the
exhaust gases relative to the rocket is v,. Assume also that the mass of the
unburned fuel plus the rocket structure is given by

m = m, — bt (4-93)

where b is the rate at which fuel is burned and ejected from the rocket. The
burning rate b is normally assumed to be constant during the burning inter-

val, but, in general, . |
b e PeAeve ‘ (4—94)

where p. is the average density of the discharged gases at the exit area A..
Let us take as the system of particles under consideration the total mass
m of the rocket at time ¢. We think of the distributed mass as a large number



162 DYNAMICS OF A SYSTEM OF PARTICLES CHAP. 4
Pehe —= m >
JE———
74
At time ¢

(@)

bat
0 PAe m - bAt >
-l :

V-Ve e
v+ Av

At time t + At

(b)
Fig. 4-13. The rocket system at successive instants of time.

of discrete particles. As the fuel burns, some of these particles are ejected
through the nozzle. Although the mass of the unburned fuel is decreasing,
we assume that this is due entirely to the ejection of mass, the masses of the
individual particles remaining constant throughout the burning process.
Thus, when we consider the same system again after an interval Az, we must
include the mass b At which has been ejected during that interval.

Now let us use the equation of impulse and momentum to calculate the
change in the rocket velocity. The total impulse acting to the right on the
system during the interval At is of magnitude

F = p,A. At (4-95)

since the only external force on the system is due to the pressure p, acting
at the exit area. (Although the rocket is moving in a vacuum, the pressure
P. €xists because the exhaust gases are not fully expanded at the exit of the
nozzle.) The total momentum of the system at time ¢ is mv. On the other hand,
the total momentum at time ¢ + At is

(m—bAt)(v + Av) + b At(v — v,)

where the positive direction is to the right. The first term in this last expres-
sion is the momentum of the rocket structure and unburned fuel and the
second term is the momentum of the mass & At which has been ejected during
the interval At and which has an absolute velocity v — v,. Therefore, equating
the total impulse & to the change in the total linear momentum in that
direction, we obtain ‘

peA. At = (m — b At)(v + Av) + b At(v — v,) — mv
which simplifies to 4

T LT ,;;fl__ﬁ = -
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PeAe At = m Av — bv, At — b Av At (4-96)
Dividing by At and taking the limit as At approaches zero, we find that
my = p.A. +bv, 4-97)

where the last term of Eq. (4-96) has been neglected because Av approaches
zero as At approaches zero.

Equation (4-97) can also be written in the form

F, = mp (4-98)
where F, is known as the static thrust of the rocket.
F,=p.A. + bv, (4-99)

To see that this is actually the static thrust, suppose that the rocket of Fig.
4-13 is held fixed by a test stand, as shown in Fig. 4-14. The static thrust
F; is the force that is transmitted by the test stand to the earth and is also
the force on the rocket that is required to keep it stationary. In this case, the

bat B v=0
= >
b ad
e pg
e
Fs
L

Fig. 4-14. The forces acting on a rocket in a test stand.

total external force acting on the system is (F, — p.4.) in a rearward direction.
The rocket itself has no momentum; the only momentum is that of the ex-

haust gases. So, if we use the principle of linear impulse and momentum,
we obtain

(F, — p.A.) At = by, At
or

F;=p.A. + bv,

in agreement with Eq. (4-99). Note that we have again been careful to include
the same particles in the system at the beginning and at the end of the
interval At.

~ In our discussion of the rocket problem, we have assumed that the total
momentum of the gases inside the rocket is constant, as viewed by an obser-
ver traveling with the rocket. In other words, we have assumed a situation
of steady internal flow relative to the rocket. Hence we have represented
changes in the linear momentum of the total mass contained within the rocket
as changes in the product mwv. Although this assumption is not strictly true,
it is accurate enough for most purposes. Also, we have previously considered
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that the rocket is moving in a vacuum. In case it is moving in the atmosphere,
then p. can be viewed as the average gauge pressure at the exit. Any ad-
ditional external forces due to aerodynamic drag, gravity, and so on, can
be included in the analysis by adding the corresponding force components
to the right side of Eq. (4-97). '

Returning now to a consideration of Eq. (4-98), it can be seen that the
static thrust F, is the total force acting on the mass of the rocket structure
and unburned fuel for the original case of free flight in a vacuum. This total
force F, consists of the exit pressure force p, A4, and the jet reaction force
bv,. Thus we see that the total force is equal to the product of the instan-
taneous mass and the corresponding absolute acceleration, even for the case
of a system whose mass is changing. Hence Newton’s equation of motion

F = ma

applies instantaneously to a group of particles of total mass m whose center
of mass has an absolute acceleration a. This is true even though the system
consists of a slightly different set of particles at successive instants of time
due, in this particular case, to the expulsion of mass from the rocket. The
principal precaution to be taken here is to remember that a is the accelera-
tion of the center of mass of the particles composing the system at the given
instant. It is not necessarily equal to ., since the position vector r, may change

z

Control volume

Fig. 4-15. A general control volume showing a mass
element pdV and a surface element dA.
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because different particles compose the system at different times. For exam-
ple, the center of mass of a rocket on a test stand may move without the
rocket itself moving. More generally, we can use Eq. (4-91), remembering
that it applies instantaneously to any system so long as the summations of
external forces and momenta are over the same set of particles.

It should be noted in passing that the equation

_ 4
dt

applies to systems whose particles have a changing mass due to relativistic
effects, but does not apply to systems whose total mass is changing because
particles are continuously entering or leaving the system.

(mv)

Control Volume Approach. Another approach to the derivation of the
rocket acceleration equation is provided by an analysis of the material within
a control volume bounded by a closed mathematical surface (Fig. 4-15).
The control volume may move or change its shape and, in general, there is
a mass flow through its surface. In this rather general approach, the problem
is to express the time rate of change of the linear momentum of the material
within the control volume in terms of the external forces acting on it.

As the system under consideration, let us take the material within the
control volume at time ¢. The total linear momentum of this system is

p=| pvav (4-100)
i

where p and v are the mass density and the absolute velocity, respectively,
of the material within the volume element dV. The integral is taken over the
entire control volume V.

Now, if we evaluate the same integral at time ¢ + A¢, we find that a
slightly different set of particles is within the control volume. So, in order
to follow the original set of particles, we calculate the momentum of all
particles within the control volume at ¢ + Atf, and then we must add the
momentum of all the “native” particles that left the control volume in the
infinitesimal interval At, and subtract the momentum of all the “foreign”
particles that entered during the same interval. Therefore, at time ¢ + At,
the momentum of the original set of particles is

[JV py dV]HAt + At JA pv(v, « dA)

where the second integral accounts for the momentum of the particles enter-
ing or leaving the control volume in the interval Az. This integral is over
the entire surface of the control volume, dA being a surface element whose
orientation is specified by the outward-pointing normal vector. The vector
v, is the velocity, relative to the surface, of the particles that are entering or

leaving. Thus p(v, - dA) At represents the mass crossing the surface element
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dA in the interval At, with a positive v, « dA referring to leaving native par-
ticles and a negative v, « dA, referring to entering foreign particles. Multiply-
ing each mass element crossing the boundary surface by its absolute velocity
v and integrating over all elements, we obtain a correction term which can
be interpreted as the net momentum outflow from the control volume during
the interval At. Changes in v or v, during this interval can be neglected.

Thus we see that the change in the linear momentum of the original system
of particles in the interval Az is given by

AP = [JV Py dV:\HAz B [JIF Py dV]z + Ar .L pv(v, - dA)

Dividing this expression by Af and taking the limit as Az approaches zero,
we obtain the time rate of change of the total linear momentum of the par-
ticles included within the control volume at the given time . This result,
by Newton’s law of motion, must equal the total external force F applied
to the mass within the control volume. Therefore we see that

d
F = EJV ovdV + jA ov(v, « dA) (4-101)

The volume integral may be interpreted from the Eulerian viewpoint of
considering v (or pv) as a vector field which is a function of position and time.
The integration is taken over the control volume at each instant without
following the path of any particular particle as time proceeds. Thus the
integral represents the instantaneous value of the total linear momentum of
all material within the control volume. This momentum may change because
of changes in the flow field or changes in the control volume, or both. General-
ly, however, the control volume is chosen such that certain aspects of the
flow are steady, thereby simplifying the analysis.

Note that the force F may include field forces as well as contact forces
so long as the source is external to the control volume. Internal forces, such
as those due to viscosity and internal pressures, do not enter the problem,
except possibly as a cause of external contact forces at the boundary.

Now let us apply Eq. (4-101) to the rocket problem which we analyzed
previously by the particle mechanics approach. We take a control volume
which includes the rocket and moves with it, as shown in Fig. 4-16. Note

Contro! volume
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Fig. 4-16. A control volume enclosing the rocket.
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that the exit area of the rocket is a portion of the surface of the control
volume. The total external force acting on the material within the control
volume is due to the exit pressure p, acting over the flat exit area 4.. Hence,

F=p.A.e, (4-102)

where the force acts to the right in the direction of the unit vector e,. Evaluat-
ing the other terms of Eq. (4-101), we obtain '

L_ pvdV = mue,

or
d ° ° . .
Eﬁide:mw+mw%_Om—WM% (4-103)

where m is evaluated from Eq. (4-93). Again we neglect changes in the mo-
mentum of the jet relative to the rocket as it flows within the control volume.
The jet exhaust furnishes the only particles crossing the surface of the con-
trol volume, their relative velocity being v, to the left, corresponding to an
absolute velocity v — v, to the right. Therefore, using Eq. (4-94), we find that

fpﬂnwﬁﬁqu—mm@%:b@—mka (4-104)
A
Now we can evaluate Eq. (4-101), obtaining

peA.e, = [md — bv + b(v — v,)]e,
or
mv = p.A. + bv, (4-105)
in agreement with Eq. (4-97).
Another approach to this problem which again makes use of the control
volume concept is obtained directly from the equation of motion for a system
of particles, as given by Eq. (4-91). Taking the system to consist of all the

material within the control volume at the given instant, we can replace the
summation by an integration for this case of distributed mass, obtaining

F=[ pidv (4-106)
;

where v is the absolute acceleration of the mass in the given volume element.
In the language of fluid mechanics, it is a substantial derivative.

This result appears to be more simple than Eq. (4-101), but is frequently
more difficult to apply because the integral involves an acceleration field
rather than a velocity field. Thus we need to know the acceleration of all
particles within the control volume instead of being able to integrate the
- velocity or momentum distribution over the control volume first and then
differentiate with respect to time.

To illustrate the use of Eq. (4-106), let us calculate the acceleration of
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the rocket of Fig. 4-16, using the same control volume. Again we obtain
that the total external force is

F = Pe Aeea

Now, the acceleration ¥ of any particle is equal to the acceleration of the
rocket plus the acceleration of the particle relative to the rocket. This relative
acceleration is zero everywhere except for those gas particles which are being
accelerated rearward until they achieve the relative velocity —w, at the exit
of the nozzle. Regardless of the precise acceleration history of a certain gas
particle, but assuming that the internal flow is steady, there is, in effect,
a mass b being accelerated from zero relative velocity to — v, during each unit
of time. Therefore, the integral of the relative acceleration term is —bv, and
the entire integral becomes

j pvdV = (mi — bvy)e, (4-107)
v

Hence we again obtain
mvy = p. A, + bv,

in agreement with our earlier results.

We have seen that it might be convenient for the absolute acceleration
v to be written in terms of an acceleration relative to a noninertial reference
frame such as the rocket body. The reason for choosing such a reference
frame is that the flow, or a portion of it, is steady as viewed by an observer
in this frame. For a general noninertial frame which is rotating at an angular
rate @, as well as translating, we can use the notation of Eq. (2-106) and
obtain

V=R+exXp+oxX(@Xp)+ 20X (P), + (), (4-108)

The expression for v is then integrated term by term in order to evaluate the

volume integral of Eq. (4-106).
Again choosing the rocket problem as an example, suppose we let the
moving frame and the control volume be fixed in the rocket. Then w = O,

and
v=R + (0):
We see that
[ pRav = mie, (4-109)
v
Also,

[ p@yav = pi,av

where, in this case of a control volume of constant dimensions, v, is the

velocity relative to the control volume of the mass element p dV. But, from
Egs. (4-101) and (4-106), we obtain ‘

.
3
e e AP
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o d _
J‘vadV——JEJvadV—l— L oV (v, « dA) (4-110)

This equality holds for a general vector field v and does not require that the
reference frame be inertial. Therefore, we can apply it to the case of the
relative velocity v,, obtaining

. d
= 33 r - r r°dA
_[,,vadV il J‘V pv, dV -+ .[A pv,(v ) (@-111)

= —PeAevgea - _bveea

where the volume integral on the right is constant for this case of steady
flow and hence its time derivative is zero. Thus, equating the external force

F to the sum of the expressions obtained in Eqs. (4-109) and (4-111), we
once again find that

mv = p.A, + bv,

Now let us extend the control volume approach to rotational motion
about an arbitrary point P. We assume that the control volume can move
and change shape. The angular momentum H, is defined in the manner
of Eq. (4-64) and refers to the total angular momentum about P of the
material within the control volume, as viewed by a nonrotating observer

translating with P. Writing Eq. (4-70) in an integral form analogous to that
of Eq. (4-101), we obtain

M, — p, X mF, = —g—tfrpvapdV—}- Lpvap(v,edA) (4-112)

where M, is the total moment about P due to external forces acting on the
mass within the control volume. Also, p is the position vector of the mass
element relative to P, p. is the position vector of the center of mass relative
to P, and v, is velocity relative to P of a particle at the position p. As before,
v, refers to the velocity relative to the surface element dA of the particles
crossing it. Note that p. x I, is zero if we choose a fixed point or the center
of mass as the reference point P.

In a similar fashion, we can obtain the rotational counterpart of Eq.
(4-106). Again choosing an arbitrary reference point P, we obtain

M, — p. X mi, = | pp X a,dV (4-113)
Vv

where a, is the acceleration relative to P of the particle at the position p,
as viewed by a nonrotating observer. In case the flow is more easily observed

by a rotating observer, a, may be expressed in terms of a general vector
equation such as Eq. (4-108).

Example 4-8. Water of density p enters a pipe along a vertical transverse
axis through O, about which the pipe rotates at a constant angular rate

o (Fig. 4-17). The water leaves with a relative velocity v, through a nozzle
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Fig. 4-17. A pipe and nozzle whirling in the horizontal
plane about a vertical axis through O.

of exit area A, at a distance / from the axis at O. If the nozzle axis is hori-
zontal and at an angle a from the radial direction, find the moment M

applied to the system.

Let us apply Eq. (4-112), choosing as a reference point the fixed point
O. The control volume includes the pipe and nozzle and rotates with them.
We assume that the water enters the control volume with no angular momen-
tum about O. It leaves the control volume through the nozzle exit. Con-
sider first the term, p x v,. We see that only transverse components of v,
contribute to this vector product. Furthermore, it is directed vertically at all
times. Since the flow is steady relative to the pipe, we see that

d
a?jvpvapdVZO

At the nozzle, we obtain

p Xv,=I{w,sina + lo)e,
where e, = e, x e;,. Therefore, integrating over the nozzle exit only, since the
surface integral is zero elsewhere, we find that

j pp X V, (¥, + dA) = pv,A.l(v, sina + lw)e,
A

Of course, £, = 0 because the reference point is fixed. Hence an evaluation
of Eq. (4-112) yields the following result:

M = pv. A l(v.sina + lw)e,

In case the external moment is zero, then we find that the steady-state rota-
tion rate is

—v, sina
=TT

Integration of the Rocket Equation. Let us return now to the differential ¥
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equation for rocket flight in a vacuum with no gravitational forces. We
found in Egs. (4-98) and (4-99) that

my = p.A, + bv, = F;

where the thrust F; is assumed to be constant. We wish to integrate with
respect to mass rather than time, so let us make the substitution

0 dvdm _ o do
dt T dmdt dm
which changes the differential equation to the following form:
dv . F, _
In = " bm (4-114)

Now we integrate between the initial and final (usually burnout) conditions,

using the subscripts 0 and f, respectively, as the corresponding designations.
Thus,

v F(™dm | 3

Lodv__ 2= (4-115)
or

v, — vy = %m% (4-116)

It can be seen for this case in which no gravitational or aerodynamic
forces are acting that the velocity gain v, — v, is independent of the burning
time for a given mass ratio my/m,, assuming that F,/b is constant. The coef-
ficient F;/b has the units of impulse per unit mass. Usually, it is specified in
terms of the specific impulse

oy
= e
which is the total impulse per pound of propellant, the weight being meas-

ured at the earth’s surface. It can be seen that if the pressure force is small
compared to F;, then

L, (4-117)

N/Ue

sp —

g

indicating that the specific impulse is a measure of the effective exhaust
velocity. Typical values of the specific impulse of chemical propellants are
in the range from 200 to 350 sec.

From Eqgs. (4-116) and (4-117), we see that the velocity change, written
in terms of the specific impulse is

v, — vy = I,gIn T (4-118)
my .
Similarly, at any time during burning, the velocity ¥ and mass m are related
by the equation:
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v =10, + I8 ln%' (4-119)

For the case in which the rocket is fired vertically upward in a uniform
gravitational field, the effect of the gravitational force can be superimposed
upon the solution of Eq. (4-119) since we are concerned with a linear dif-
ferential equation. Thus we obtain

v=1v,— gt + I,gn % (4-120)

which applies for any time during burning. After burnout, we let m = m;,
and the equation remains valid for this case also.

Example 4-9. A two-stage sounding rocket is to be fired vertically from
the earth (Fig. 4-18). Each stage, individually, has a mass ratio equal to
9, the total weight of the first stage being 360 1b and that of the second stage
being 90 1b. Assuming that an instrument package weighing 30 1b is mounted
atop the second stage and that a 20-sec coasting period occurs between first-
stage burnout and the ignition of the second stage, find the maximum altitude
reached by the second stage plus instruments. The burning time is assumed
to be very short and the change in the acceleration of gravity is neglected
during the coasting period before second-stage ignition. The specific impulse
of the propellant is /;, = 250 sec. Assume a nonrotating earth and neglect
atmospheric drag.

301b

1O 1b
+

80Ib fuel

401b
+

320 Ib fuel

/ AN

Fig. 4-18. A two-stage rocket and payload.
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It can be seen that the effective mass ratio for each stage is the same,
namely,

m, 480 120

m, 160 _ 40 °

where we assume that the first stage is detached before the second stage is
ignited. Using Eq. (4-118), we find that the velocity gained per stage is

v, — vy = (250)(32.2) In 3 = 8850 ft/sec

From Egs. (3-6) and (3-7), we see that the velocity and altitude after the
20-sec coasting period are

v = 8850 — (32.2)(20) = 8206 ft/sec
h = (8850)(20) — 1(32.2)(20)? = 170,600 ft

After second-stage burnout, this velocity has increased to 8206 + 8850
= 17,056 ft/sec. Now we can find the maximum altitude by using conser-

vation of energy. From Eqgs. (3-69) and (3-97), we see that the total energy
per unit mass is

1 . 1706 x 10°]""
7 (1706 x 10° — (32.2)(3960)(5280) [1 + (3960)(5280)}

— —5223 x 10® ft*/sec?

where we have assumed that the earth’s radius R = 3960 miles. Using Eq.
(3-97) again for the case where the kinetic energy is zero, we set the poten-
tial energy per unit mass equal to the total energy per unit mass previously
calculated, and thereby we are able to solve for the maximum altitude.

B = (3960)(5280) [(32-§£(§§63)§%§80) _ 1] — 6.030 x 10° ft = 1140 mi

It is interesting to note that if a constant acceleration of gravity g = 32.2
ft/sec® had been used throughout, the maximum height would have been
calculated to be only 890 miles. So the variation of the gravitational force
with altitude has a significant effect in this example. Note also that the coast-
ing before second-stage ignition resulted in a delay of 20 sec in obtaining
the velocity increase due to this second stage, that is, the velocity was 8850
ft/sec lower than it could have been for a period of 20 sec. Therefore the
maximum altitude was reduced by 1.77 x 10°ft or 33.5 miles. In the practical
case, of course, atmospheric drag forces which are strongly dependent upon
velocity would occur. Thus the coasting to a higher altitude with its lower
atmospheric density before igniting the second stage actually resultsin smaller
losses than if the stages were fired in quick succession.
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4-9. EXAMPLES

Example 4-10. Mass m, hits m, with inelastic impact (e = 0) while slid-
ing horizontally with velocity » along the common line of centers of the
three equal masses—Fig. 4-19(a). Initially, masses m, and m; are stationary
and the spring is unstressed. Find (a) the velocities of m,, m,, and m; imme-

[ne mec R

k

ﬂh el |/ fnz ___AAAA_;_ fn3
77777 VS 4044 ///////////-::£4/ SIS 77 77
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k
2m AMW— m

J7777777 77777777 777777777777 7777777777777

(b)

v/6 v/3
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v/4 v/4 v/4
s s D
2k 2k
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(d)

Fig. 4-19. An inelastic collision and subsequent motion,
as viewed from three inertial reference frames.

diately after impact, (b) the maximum kinetic energy of m;, (c) the minimum
kinetic energy of m,. (d) the maximum compression of the spring, (e) the final
motion of m,.

This example is one-dimensional in nature and no external forces act
on the system in this direction. Therefore linear momentum is conserved
throughout the problem. Because e = 0, we see from Eq. (4-82) that masses
m, and m, will move at the same velocity immediately after impact, result-
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ing in the equivalent system shown in Fig. 4-19(b). Calling this velocity
v, we can use the principle of conservation of linear momentum to obtain

mv = 2mv,
or
1
’1)’ = —
2 2

where m is the mass of each particle. Mass m; does not move at the time of
impact because the spring is initially unstressed and therefore (m, + m,)
must move through a finite displacement before any force acts on m;.

At all times after the impact, the total energy is conserved. It is equal to
the kinetic energy just after impact, since no potential energy is stored in
the spring at this time. So, writing the general expression for the total energy
and setting it equal to the kinetic energy just after impact, we obtain

1

mvi + vai + %k(x2 — x;)2 =

mo?

4
where v, and v; are the velocities of (m, + m,) and m;, respectively. Also,

using the principle of conservation of linear momentum and assuming that
m, and m, continue to move together, we see that

2mv, + mv; = mv
from which we obtain

Vy, = %(v — v3)

Because the total energy is conserved, the total kinetic energy will be maxi-
mum when the potential energy is minimum, that is, zero. This occurs when
X, = X;, corresponding to an unstressed spring. So, setting x, = x; and sub-
stituting for v, in the energy equation, we find that

1, 1

_— 2
7'03 =V

Ti-(’l) — '03)2 -+
or
v;(3v; — 20) =0
from which we obtain the roots

v;= 0, %v
Now, to find the extreme values of the kinetic energy associated with
the individual particles, we note that these values occur when the individual
velocities reach extreme values, that is, when the accelerations are zero. But
this occurs for a zero spring force, or x, = x;. Therefore, it can be seen that
the extreme values of the kinetic energy of the individual particles occur when
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the total kinetic energy is maximum. It is clear, then, that the maximum
kinetic energy of m; occurs for v; = 2v/3, that is, for the largest root.

1 2v\* _ 2 g
(T3)max — 7 m (T) = ? mv

Because the total linear momentum is conserved, we see that (v,).;, occurs
at the same time as (v3)nax. At this time, the total momentum is

2m (V) min + %— mv = mv

or

('U 2)min - %

The corresponding kinetic energy of m, is
2 2
(Tﬂ)min - %m (‘%’) == Tr]"g‘"

The maximum compression of the spring occurs when the relative veloc-
ity of its two ends is zero, in which case all three particles are moving with
the same velocity. Again, we use the conservation of linear momentum to
solve for the common velocity at this time.

v, = vy = 2
3

Now we substitute these values into the general energy equation, obtaining

v \? 1 v \? | e m??
m(——) —l———m(T) —1~7k(x2 X3) =7

3 2

from which we find that the maximum spring compression is

(X2 — X3)max = 4/'6’% v

We have omitted the other sign on the square root because it implies tension
in the spring.
In order to solve for the final motion of m,, we recall that m, hit m, ;

inelastically, but this does not imply that they move together indefinitely. ~
In fact, m, cannot accelerate to the right, since we assume that m, cannot
exert a pull on it. So, at the first instant in which m, accelerates to the right,
m, and m, will separate. This occurs when m, accelerates from its minimum
velocity /6. From this time onward, m;, moves at a constant velocity v/6.
Meanwhile, the center of mass of m, and m; translates uniformly at a velocity
5v/12, as can be seen from momentum considerations. So m, is left behind
permanently. Masses m, and m; continue to oscillate relative to their center
of mass, and since the initial separation occurs at the moment of (¥3)min

and (v3).ax, these extremes are never exceeded.
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Before leaving this example, note that it could have been solved by con-
sidering the whole process from the viewpoint of an observer translating
uniformly with the center of mass of the system. In this case, the system im-
mediately after impact appears as shown in Fig. 4-19(c). The center of mass
is fixed in this system and is located at one-third of the distance between
(m, + m,) and m;. Using a procedure similar to that of Example 4-2, we see
that the center of mass divides the spring into two portions with the spring
constant of each being inversely proportional to its unstressed length. Fur-
thermore, it can be seen that two mass-spring systems are formed, each with
the natural frequency w, = /3k/2m. Thus the motion of each mass relative
to the center of mass is sinusoidal in nature, the initial velocities being as
shown in Fig. 4-19(c).

But we have seen that only one half-cycle of this motion occurs before
m, and m, separate. After this separation, we might choose an inertial re-
ference which translates uniformly with the center of mass of m, and m;.
From this reference frame, the situation at the time of separation appears
as shown in Fig. 4-19(d). We see that m, and m; oscillate at a frequency
w. = ~/2k[m. Meanwhile, m, is being left behind with an average separation

velocity of v/4. In each case, absolute velocities are found by adding the
velocity of the reference frame.

Example 4-11. Two equal masses slide on a smooth horizontal plane and
are connected by a parallel spring-damper combination, as shown in Fig.
4-20. The separation of the two masses is (/, + x), the coordinate x being
the extension of the spring from its unstressed length /,. Initially, x = O,
x = 0, and one mass is motionless, whereas the other mass has a transverse
velocity v,. After reaching the steady-state motion, we find that the spring
has stretched to twice its original length. Solve for v, as a function of the
other system parameters and compute the fraction of the original energy

v=0

(1, + x) 3 LTJC

Fig. 4-20. The initial motion of the system of Example 4-11.
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which has been dissipated in the damper. Consider the masses as particles. 3
We can solve for the angular rotation rate as a function of x by writing

the equation of conservation of angular momentum about the center of mass.

First, we note from Eq. (4-43) that the angular momentum of a single par- i |

ticle in plane motion is A

H=mre (4-121)

where o is the absolute angular rate with which the particle moves about
the reference point and r is its radial distance from that point. So, taking
the center of mass as the reference, we see that the total angular momentum

of the system is

_ m(lo + x) _ mlyv,
H = — ®=—

where the constant term on the right was evaluated from initial conditions.
Hence we find that

l()vo ‘;-'«

= 0% _ 4-122

o (0, + x)° ( ) i

It can be seen that the damper is dissipating energy except when x = 0.

So, in the steady-state motion, x = 0 and x = /,. From Eq. (4-122), we see

that the steady-state value of w is

B Y Y TR

_

@ = 4, 1

But in the steady state the spring force is equal to the mass times the centri- ﬁ
petal acceleration. From Egs. (2-53) and (3-101), we see that g
“f

2 MU

mloa)s - 1610 - k[() :‘1

Therefore,

1)0:410”7](1-

1
To find the energy loss in the damper, we calculate first the initial energy |
E; of the system. Using a fixed reference frame, we see that |

E:%mhﬂm

since all the energy is associated with one ‘particle as kinetic energy. The
final potential energy stored in the spring is

V, = ki

Il o g s Fre ey oo
e R S R AR

The final kinetic energy is the sum of the kinetic energy due to the motion '
of the center of mass and that due to the motion relative to the center of

mass.
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7}:m(%f+nﬁﬁ=dmg

Therefore the final energy is
a=n+m=%m

The fractional loss of energy is

E— B 5

E; 16
It is interesting to note that if an inertial frame had been chosen which
translates with the center of mass, then the fractional energy loss would have

been greater, namely, 2. For either reference frame, however, the magnitude
of the energy loss is the same.

Example 4-12. The point of support O of a simple pendulum of length
/ moves with a horizontal displacement

x = A sin ot
in the plane of the motion in ¢ [see Fig. 4-21(a)]. Find the differential equa-
tion of motion.

We shall analyze this problem from the point of view of an observer in
a noninertial reference frame which translates with the support point O.
Using the principles discussed in Sec. 4-5 for the case of an arbitrary refer-

(a) (b)
Fig. 4-21. A simple pendulum with a moving support.

ence point, we see that we must introduce a horizontal inertial force —mx
in addition to the usual external forces. Now we consider the point O to be

- fixed and solve the dynamical problem shown in Fig. 4-21(b).

The angular momentum about O is

H = mi*é
and therefore
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H=ml*§ |
where the positive direction for H is taken out of the page. Also, the moment
due to the gravitational and inertial forces shown in Fig. 4-21(b) is
M = —mxlcos § — mglsin 6
= ml(Aw? cos 0 sin wt — g sin 6)
Now we set M = H and obtain the differential equation:

5+§—sin6=4—lﬂ2cosesinwt

Note that the foregoing procedure is equivalent to using Eq. (4-70) directly.
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PROBLEMS

4-1. What is the minimum spring compression & necessary to cause m, to
leave the floor after m, is suddenly released with zero velocity? Measure & from

my T g
b

mp

77777777 77777777777777,
Fig. P4-1
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the unstressed length of the spring and assume that all motion is in the vertical
direction.

4-2. A chain of length L and mass m rests on a horizontal table. If there is
a coefficient of friction i between the chain and the table top, find the velocity of
the chain as it leaves the table, assuming that it is released from the position shown.

The initial overhang is a, where a > (wL/(1 + W), and the chain is guided without
friction around the corner.

4-3. A system consists of two par-
ticles of equal mass m which slide on Tw
a rigid massless rod that rotates freely -
about a vertical axis at O. Solve for the |<__ ’ r -"
radial interaction force between the par- d - o o
ticles which will cause their distance m m
from the axis to vary according to the
f:rmula, r= r.o.+ A sin B, v-vher.e Fig. P4-3

< ro. The initial angular velocity is
@o-

4-4. A tennis ball bouncing on a
concrete surface is found to have a y
coefficient of restitution e = 0.90. If
such a ball of mass m is lying motion-
less on a horizontal concrete surface,
what downward impulse must be ap- N
plied to it by a racket to cause it to
rise one foot into the air? Give as- 45° r——

| sumptions. l \
' 4-5. A ball is thrown with an initial

X
velocity v, at an angle , above the UB
horizontal. It hits a smooth vertical .
. . Fig. P4-6
wall at a horizontal distance s and
rebounds to the point from which it
was thrown. Assuming a coefficient of

restitution e at the wall, and neglecting }4—~ A ———»i )

all forces exerted by the air, solve for 4524\ i

the required angle ry,. m 5, —v 5
4-6. A smooth sphere A of mass m, @ o

i

!

i traveling with velocity v = »,i, hits a \/ A y
] similar sphere B such that the angle @1
{

{

i

T

between the line of centers and the 4{&
negative x axis is 45°. Assuming that
the coefficient of restitution is e = 0.90, @p

find the velocities of 4 and B after
impact.

- 4-7. Bodies B, and B, each consist ‘ ]
i ; - of two small spheres of equal mass m @JL—
g connected by a rigid massless rod of
,%» : length /. Initially, B, is motionless and Fig. P4-7
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B, is moving such that «, = 0 and the velocity of its mass center is v, = v,i. Two
of the smooth spheres hit, as shown in the figure, with their line of centers at
45° to each rod during impact. Assuming that all motion takes place in a plane
and the coefficient of restitution is ¢ = 0.5, solve for the linear and angular
velocities of B, and B, immediately after impact. Consider the spheres as particles.

4-8. Two particles of mass m;, and m,, respectively, are connected by a string
of length /. Initially, the particles are separated by a distance / and are motionless
on a smooth horizontal plane. Then m, is given a horizontal impulse of magnitude
F = mg, in a direction perpendicular to the string. Solve for the motion of the
system and the tension in the string.

4-9. Masses m, and m, are initially at rest and the spring of length /, is
unstressed. Then mass m,, traveling with velocity v, in a direction perpendicular
to the spring, hits m, inelastically and sticks to it. In the ensuing motion the spring
stretches to a maximum length 3/,. Solve for »,, assuming that the masses are equal
and can be considered as particles.

— mz | —p—
@ % )

my=Mmp=mz=m k% <—
l
o e=0.8
F |
> 3m m
ms - Y
L7177 777777777777 7777777777/ /)7
Fig. P4-9 Fig. P4-10

4-10. A block of mass 3m and a sphere of mass m are initially motionless and
are separated by a distance / on a smooth horizontal plane, as shown. At ¢ = 0,
a constant horizontal force F is applied to the block, causing it to hit the sphere
repeatedly. Assuming a coefficient of restitution ¢ = 0.8 for collisions between the
block and the sphere, solve for the velocity of the system when the bouncing stops.

4-11. A particle of mass m can slide without friction along a fixed horizontal

wire coinciding with the x axis. Another particle of mass m, moves with a constant |

speed v, along the line y = h from x = —oco to x = oo. If the particle m is initially
at the origin and if an attractive force of magnitude K/r? exists between the two
particles, where r is their separation, solve for the maximum speed of m.

4-12. Solve for the maximum speed of particle m in problem 4-11 if m, starts
at x = —oo with velocity » = v, and both particles can slide freely along their
respective wires which are separated by a distance A.

4-13. A coiled flexible rope of uniform mass p per unit length lies on a hori-

zontal surface. Then, at ¢ = 0, one end is raised vertically with a constant velocity

v. Find the force F which is required to lift the end of the rope.
4-14. A flexible rope of mass p per unit length and total length / is suspended
so that its upper end is at a height # above a horizontal floor, where & >l

P A g e i e
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Suddenly it is released, hitting the floor inelastically. Find the force on the floor
as a function of time.

4-15. Material is fed at a rate bg Ib/sec and with essentially zero absolute
velocity from a hopper onto a belt of total mass m. It sticks to the belt until it
reaches a small pulley at B, at which point it falls off. If the belt is inclined at 30°
to the horizontal, and if the material is put on the belt at a distance / from where

it falls off, find the steady-state speed v of the belt motion. The pulleys are fric-
tionless.

%
=
Z m ...V..),.
A S s A
7

Fig. P4-15 Fig. P4-16

4-16. A jet of water of cross-section 4, density p, and absolute velocity v,
moves horizontally and hits a block of mass m inelastically, that is, the water
leaves with a zero horizontal component of velocity relative to the block. Find
the terminal velocity of the block, assuming a coefficient of friction (L between the
block and the horizontal plane upon which it slides. ‘

4-17. A rocket of mass ratio 10 (exclusive of payload) is used to carry a 50 1b:.
payload to an altitude R/4 above the earth’s surface. (a) Assuming a specific impulse
I;, = 250 sec and the earth radius R = 3960 miles, find the minimum total weight...
necessary to accomplish this result. Neglect the effects of atmospheric drag and
the earth’s rotation, and assume a very short burning time. (b) Suppose that a
two-stage rocket is used to accomplish the same result. Each stage has mass ratio

- of 10 (exclusive of payload). Assuming that the stages are fired in quick succession

and the first stage is five times as heavy as the second, what is the minimum total
weight in this case? (c) If we now assume a 10 sec burning time for each rocket,
solve for the maximum accelerations of the rocket systems of parts (a) and (b).

4-18. A particle of mass m strikes a horizontal floor while traveling with
velocity », at an angle of 45° from the vertical. Assuming that the coefficient of
restitution for normal impact is e = 1 and the coefficient of friction is £ = 0.10,
find: (a) the rebound angle and speed immediately after the first bounce and (b)

| the position and motion of the particle:after a long time.

4-19. Spheres A and B are slightly separated and move to the right with
velocity », as shown. Sphere C moves to the left with velocity » along the common

line of centers. If each sphere has the same mass m, and if the coefficient of resti-
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tution for collisions between spheres is unity; find the velocities of 4, B, and C
after all impacts have occurred for the following cases: (a) 4 and B are not
connected; (b) 4 and B are connected by a short inelastic string of negligible
mass; (c) 4 and B are connected by a rigid massiess rod. '

-
v v v v v “
[~
OO0 O OO0 ¢
[~
L~
[~
B
A B c my me .
[~
Z
-
my =mp=m
Fig. P4-19 Fig. P4-20

4-20. A system consisting of two equal spherical masses connected by a spring
is sliding on a smooth horizontal floor with velocity v, along its line of centers. It
hits a vertical wall and rebounds along its path of approach. Suppose that the
coefficient of restitution e for the system is defined as the ratio of the speed of the
center of mass as the system moves away from the wall compared to its approach
speed v,. Solve for e for the cases where the coefficient of restitution ¢’ for a single

mass is: (a) zero; (b) unity.
4-21. The support point O of a

///,0'—L—+ simple pendulum of mass m and length
/// / is given a uniform horizontal accele-
s ration ¥ — a. If the initial conditions '

/4/ lg are 8(0) = 0, 6(0) = 0, x(0) = 0, find
27 1 the limits on @ in the ensuing motion. :
7 Assuming that a = 4/ 3 g, solve for !

( the period of the motion.
4-22. Suppose that the support ‘
point O of the simple pendulum in the
‘ previous problem is given a constant

. m horizontal acceleration a = 2g. What ‘]

Fig. P4-21 is the angular velocity when the pen- ]

dulum first becomes horizontal ? 4

4-23. Particles m, and m,, each of mass m, are connected by an inextensible
weightless string of length 4/. Initially, each particle is sliding with velocity » along
parallel paths separated by a distance 4/ on a smoothrhorizontal floor. Suddenly S
a point on the string at a distance / from particle m, strikes a fixed vertical nail
of negligible diameter that projects from the floor. Assuming that the particles 1
proceed to whirl in opposite directions without colliding, and the string can slide
freely on the nail, find for the ensuing motion: (a) the maximum distance of m,
from the nail; (b) the minimum tensile force in the string.

4-24. Consider again the gyroscope of problem 2-12. Assuming that the rotor
mass m is uniformly distributed along the rim, solve for the uniform precession
rate cj) under the influence of gravity by using d’Alembert’s principle and equating
the magnitudes of the inertial and gravitational moments about O.
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ORBITAL MOTION

This chapter is primarily concerned with the calculation of some of the
important characteristics of the path in space followed by a particle as it
moves in a gravitational field. We studied the motion of a particle in a uni-
form gravitational field in Sec. 3-1. Here we shall emphasize the path or
orbit of a particle which experiences an inverse-square attraction toward
a point. |
Although the development of the subject is made in the context of
particle motion, the results are applicable to many cases of translational
motion of extended bodies of arbitrary shape, the principal restriction being
that the external gravitational field be essentially uniform in the region
occupied by the body at any given moment. For locally homogeneous
fields, it follows directly from Eq. (4-8) that the translational motion is the
same as though the entire mass were concentrated at the mass center.

5-1. KEPLER’S LAWS AND NEWTON’S LAW OF GRAVITATION

Kepler’s Laws of Planetary Motion. The principal factors affecting the
gravitational force on a body were originally discovered by studying plane-
tary motions. Johannes Kepler, after a careful analysis of the observational
data of Tycho Brahe, found that he could predict the motions of the planets
if he assumed the following laws:

I. The orbit of each planet is an ellipse with the sun at one focus.

II. The radius vector drawn from the sun to a planet sweeps over equal
areas in equal times.
IT1. The squares of the periods of the planets are proportional to the cubes
of the semimajor axes of their respective orbits.

These are Kepler’s laws. The first two laws were published in 1609 and
the third in 1619. Thus, they preceded Newton’s laws of motion by nearly
seventy years. As a matter of fact, Newton deduced the law of gravitation
from Kepler’s laws and his own laws of motion. |

As the chapter proceeds, we shall obtain Kepler’s laws as a natural
result of our analysis of the two-body problem and indicate the reasons

185
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for the small inaccuracies which occur when they are applied to the planetary
orbits of the solar system.

Newton’s Law of Gravitation. One of Newton’s principal contributions
to the development of mechanics is his law of gravitation which may be
stated as follows:

Any two particles attract each other with a force which acts along the
line joining them and which has a magnitude that is directly proportional
to the product of the masses and inversely proportional to the square of
the distance between them.

The quantitative aspects of the law of gravitation may be stated in the
form of the equation:

F, = —g™m (5-1)

r2

where m, and m, are the masses of the particles, r is their separation, and
G is a universal constant which is independent of the nature of the masses
or their location in space. In terms of commonly used units,

G = 6.67 x 10~8cm®/gmsec? = 3.44 x 1072ft*/Ibsec!

The minus sign signifies that F, is an attracting force.

Gravitational Potential and Potential Energy. We saw from Eq. (3-91)
that if the force acting on a body is given by — K/r?, then the potential
energy is of the form

K
V=—-= (5-2)

where we have chosen the zero reference for potential energy at r = oo,
that is, for an infinite separation of the particles. So, for the foregoing case
of the gravitational attraction between two particles, we find that

K = Gm,m, (5-3)

Now let us consider the force acting on a unit mass due to the presence
of a second mass m,. Setting m, = 1, we see from Eq. (5-1) that the force
can be written in the form
Gm,

r2

L . (5-4)

where e, is a unit vector directed from m, toward the unit mass. By moving
the unit mass, the vector f can be evaluated at all points in space (except

at m,). The force at each point is a measure of the intensity of the gravita-

tional field due to m, and is called the gravitational field strength. We note

that the dimensions of f are those of force per unit mass, or acceleration. In
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fact, f is just the absolute acceleration which the unit mass would have if it &8
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were released at the given point. Hence it can be considered as the accelera-
tion of gravity at that point.

We saw in Eq. (3-88) that the force exerted by a conservative force
field is

F=-VV
It is clear, then, that for this case in which m; = 1, we can write

f=—-V¢ (5-5)
where

¢:_@% (5-6)
This expression represents the potential energy per unit mass, that is, for
m, = 1, and is known as the gravitational potential.

If we wish to find the force on a unit mass due to the presence of n other
particles, then we sum the individual forces. For example, if r; is the position
vector of the unit mass relative to m;, then, from Eq. (5-4), we see that

=Xfi=-Gx % (5-7)

where f; is the force on the unit mass due to m,. Note that the forces act
independently and no shielding or other effects occur whereby the interaction
of one pair of masses is influenced by the presence of other masses.

In a similar fashion, we find that the total potential at a given point due
to the n particles is

where ¢; is the potential due to m; at a distance r;. Since the potential ¢ is
a scalar function of position, it is often preferable to calculate the field
strength f due to several particles by first calculating ¢ as the sum of the ¢
and then finding f as the negative gradient of ¢, rather than performing the
vector additions directly according to Eq. (5-7).

Earlier, for the case of two particles, we defined the potential ¢ at a
given point as the potential energy per unit mass. The potential energy,
however, can also be considered as the work required to move the system
from a standard configuration to the given one (Sec. 3-3). So in this case,
the potential ¢ is just the work done against the field in bringing a unit mass
from infinity to the given point. Note that it does not include the work
required to assemble the n masses in their given positions and hence is not
directly related to the total potential energy of the system.

To clarify this point, let us calculate the total potential energy of a

| system of n particles. For any two particles, m; and m, the potential energy

is given by
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V= _Gmm, (5-9)
ri
where r;; is the distance between m; and mj; Summing over all pairs of
particles, we obtain the total potential energy of the system:

v=Llssr,=-9357% (#]) (5-10)
2 i=1 j=1 2 i=1 j=1

where the factor 4 occurs because the double summation includes each
term twice. It can be seen that the expressions given in Eqs. (5-8) and (5-10)

are quite different.

The Gravitational Field of a Sphere. Now let us find the gravitational
field due to a sphere whose mass is distributed with spherical symmetry,
that is, the density depends only upon the distance from the center and is
essentially constant over a thin spherical shell whose center coincides with
that of the sphere. If we calculate first the potential due to a thin spherical
shell, we can obtain the potential for the case of a sphere by superimposing
the results for shells whose radii vary from zero to the radius of the sphere.

Consider, then, a thin spherical
shell (Fig. 5-1) having a radius a
and a constant mass o per unit area.
Taking an area element in the form
of a ring of width a df and mass

dm = 2ma®o sin 0 db

we see that all points on the ring
are a constant distance / from a
) _ _ point P lying on its axis of sym-
Fig. 5-1. A spherical shell, showing metry. Therefore, from Eq. (5-8),

i lati .
an arca el?ment used in calculating we find that the potential at P due
the potential at P. .. ,
to the ring is

dp = _G;im

m;m;

Noting that

[ = a® 4+ r* — 2arcos
and integrating over the entire shell, we obtain an expression for the
potential at P in the following form:

b = _J" 27a® Go sin 0 df
4 o A/a? + r* — 2arcos

- 2wy )]

where we choose the upper sign for r > a and the lower sign for r < a.

The total mass m of the shell is the surface density o times the area, or
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m = 4ra’c

Therefore the potential due to a thin shell is

p=-%  (>aq (5-11)
p=-"  (<a (5-12)

Using Eq. (5-5), we see that the gravitational force per unit mass is

f— —(i’;” e, (r>a) (5-13)

for points outside the shell and f = 0 for all points inside the shell. Hence
we find that the external gravitational field of a thin spherical shell is the
same as if its entire mass were concentrated at the center. On the other hand,
the shell exerts no gravitational force on a particle which is located at any
point within the shell.

If we consider a solid sphere to be composed of concentric spherical
shells, then it can be seen that the external field is just that due to the sum
of the masses of the shells concentrated at their common center. In other
words, the potential ¢ external to the sphere can be written in the form

b= —— (r>a) (5-14)
where m is the total mass of the sphere and r is the distance from the center

to the given point. The corresponding gravitational field strength is

Gm

f=— el ’(r > a) : (5-15)

where e, is a radial unit vector. For a point P inside an isolated homogeneous
sphere, we see that the gravitational field is due to that portion of the mass

which lies inside a spherical surface through P. Assuming a uniform density
p, we find that this mass is

3

m=23 zor
and therefore
f— —.13"_ zGore,  (r < a) (5-16)

Hence, as one proceeds radially outward from the center of a homogeneous
sphere, the gravitational field strength increases linearly with distance until
the surface of the sphere is reached. Then it decreases as the inverse square
of the distance.

We have seen that the force of a sphere on an external particle is identical

to that exerted by the mass of the sphere concentrated at its center. By the
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ma

Fig. 5-2. A circular disk of mass m; with a particle
m, on its axis of symmetry.

law of action and reaction, the force of the particle on the sphere can be
calculated in the same fashion. Thus it follows that the interaction forces
between two or more spheres are calculated by considering the mass of each
to be concentrated at its center. This is true, of course, even for the case of
close spacing in which the distance between centers is not much greater than

the sum of the radii.
Example 5-1. Given a thin homogeneous disk of radius @ and mass m;.
A particle of mass m, is placed at a distance / from the disk on its axis of

symmetry (Fig. 5-2). Initially both are motionless in free space, but they
ultimately collide, because of the gravitational attraction. Find the relative

velocity at the time of collision. Assume a < /.
First let us calculate the potential ¢ at m,. The potential due to a circular

ring of radius r and width dr is
dp = — Gdm _ _ 2Gmrdr
VIS L POV I E

since all points on the ring are at the same distance from m, and we assume
a uniform surface density o = m,/mwa®. Integrating, we obtain the potential
on the axis of symmetry at a distance / from tne disk.

__(* 2Gmyrdr _ 2Gml B B
A v L War -

So we find that the initial potential energy is qf>m2, or!
Vo= —28MMe (s )

'We do not consider the potential energy of the disk itself since it undergoes no changes
in this example
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The final potential energy V,, occurring just before impact, is found by
setting / = 0 in the foregoing expression, since, from symmetry considera-
tions, the impact must occur at the center of the disk.

v, = __2Gnczllm2

We assumed that ¢ </ and therefore we can expand the square root
in powers of a?/I? to obtain the approximation

v, =~ __G'mllm2

Hence the change in potential energy is

Vo — V, = Gmym, (% _ %) (5-18)

From the principle of conservation of energy, we see that the total kinetic
energy just before impact is equal to V, — V,, that is,

1 1

7mlv?+7m2'v§:(;mlm2(2 1)

a 1
Also, since there are no external forces on the system, the total linear
momentum is conserved. Therefore,

m
muv, + mw, =0 or v,= —"o

2

Substituting this expression for v, into the energy equation, we obtain

Lot (1) (2-1
2mlv, 1+m2 = Gm,m, - ]

v = m [__Z_G.__.(i__l_)]m
! 2lmy + my\ a [

So the relative velocity at impact is

1/2
Vrer = Vy — Vy = (1 + Z—;) 12 :[ZG (m1 + m2) (%‘ - —}‘):l

Note that this relative velocity does not depend upon the magnitude of
the individual masses, but only on their sum.

or

5-2. THE TWO-BODY PROBLEM

Absolute and Relative Motions. Let us consider the mutual gravitational
attraction between two spherical masses m; and m,. We shall assume that
the mass distributions are spherically symmetric and therefore that each

can be considered as a particle in calculating the motiens-of-their centers.

s
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Fig. 5-3. A two-body system showing position vectors.

Furthermore, let us assume an isolated system, implying that we can choose
an inertial frame of reference which translates with the center of mass. Let
r, and r, be the position vectors of m, and m, respectively, relative to the
center of mass (Fig. 5-3).
Using Newton’s law of gravitation, we see that the mutual force
between m, and m, is :
o _ Gm m, .
frze =fu = AL (5-19)
where we use the convention of Fig. 4-1 that internal forces of repulsion
are considered to be positive. Since r, and r, are measured from the center
of mass, it is apparent that
nh _m ' (5-20)

ry m,

and therefore the force on m, can be written in the form:

Jie = —Iri (5-21)
1
where
K, = Gmm (5-22)
[1 + (m,/m,)]?
Similarly,
. (5-23)
r
where
Gm,m,
K, = (5-24)

[1 + (my/m,)P

It can be seen from Eqs. (5-21) and (5-23) that the force on each mass -

varies inversely as the square of its distance from the center of mass. But
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problem reduces to the problem of finding the motion of a particle which is
attracted by an inverse-square force toward a fixed point.

Another approach which is often convenient is to solve for the motion
of one mass relative to the other. Usually we solve for the motion of the

smaller mass relative to the larger. So let the position vector of m, relative
to m, be

r=r — T, (5-25)
Now, using Eq. (5-19) and Newton’s equation of motion, we see that
£, = m,§, = —myf, = ~@7gﬁ’_%r (5-26)

From Egs. (5-25) and (5-26) we have

F= i b = -Gk ), (5-27)

and therefore we obtain
_mam, o 5-28
m, & m, r 19 ( )

We can interpret this result as follows: The motion of m, relative to
m, is the same as if m, were fixed and m, were replaced by a reduced mass
m,m,

SR Lo Lile T 5-29
m i+ m, ( )

the force f,, being unchangéd.

Now let us calculate the kinetic energy of the system relative to an inertial
frame moving with the center of mass. Assuming that m, and m, each move
about the center of mass at an angular rate o, we find that

T = 2 (3 + Rot) + ma(i + rhe?) (5-30)
Using Eq. (5-20) we obtain
r:r1+r2:r1(m—l—n—:Tm—2‘) :rz(@%‘l_’_”_z> (5—31)
Therefore the kinetic energy can be expressed as follows:
= _1_. m, )2 22 2 2 1 (____’17_1___)2 :2 2 9
T= g (Gl) @+ e+ gm () ¢ )
which reduces to
T = é_ m, (7 + ro?) (5-32)

where mj is the reduced mass given by Eq. (5-29).
This result shows that the correct kinetic energy is obtained by

assuming m, is fixed and using the reduced mass mj in place of m, in the .

&
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standard equation for the kinetic energy. Also, we see that the potential
energy is

V- __Gmym, _ _ Gmim,

> . (5-33)

where
m; = (m, + m,) (5-34)

Hence, if we assume that m, is fixed and replace the masses m, and m, by
m{ and mj, respectively, then the calculation of the forces, relative motions,
and energies of the system will be correct. Furthermore, the proper angular
momentum is obtained by using these assumptions. We assume that stand-
ard methods are used, such as Newton’s laws of motion and gravitation,
and the conservation of energy and angular momentum.

What has been accomplished in the foregoing development is to perform
the analysis with respect to a noninertial frame translating with m,. It can be
seen that the same relative motion could have been obtained by changing
the system parameters in several other ways if that were the only objective.
By making the additional requirement that the gravitational force be
unchanged, however, we insure that the energy relationships are preserved
as well, since the work done by gravity involves a relative displacement.

The Orbit Equation. We have shown that the two-body problem can be
to a fixed point. So let us consider the case of a particle of mass m being
attracted to a fixed attracting focus
F, as shown in Fig. 5-4.
____First we notice that the motion
" is confined to the plane described
by the radius vector and the velocity
vector of the particle, the reason
being that the only force on the
particle is in the negative radial
direction; hence the acceleration
also is in this plane at all times.

F Using polar coordinates, where r is
Fig. 5-4. The polar coordinates of a measured from a fixed focus and 6
particle m which undergoes an in- is measured from a fixed reference
verse-square attraction toward a line, we can write the equation of

fixed attracting focus F. motion in terms of the r and 6 com-

ponents of force and acceleration.
F, = ma, = m(# — r6?) (5-35)
and |
F; = mag = m(rf + 2¢/6) (5-36)

..'l_n}...niv_,.

=
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It is convenient to consider the force per unit mass. Thus we can write
= B (5-37)

where [ i1s a positive constant. It can be seen from Eq. (5-34) that, for the
case of the two-body problem in which m, is considered to be fixed,

p= G(my + my) (5-38)

The value of p could be obtained in a similar fashion for the cases of the
motion of m, or of m, about their common center of mass.
From Eqgs. (5-35) and (5-37), we obtain

Since Fy = 0, we see from Eq. (5-36) that
6 + 276 =0

or, equivalently,
d 240y — _
=5 (r*0) =0 (5-40)

Equations (5-39) and (5-40) are the differential equations of motion for the
particle m.

By integrating Eq. (5-40) directly, we obtain
h = r2é (5-41)
where 4 is a constant. It can be seen from Eq. (3-150) that 4 is the angular
momentum per unit mass; hence Eq. (5-41) states that the angular momen-
tum of the particle with respect to the attracting focus F is conserved.
Note that Eq. (5-39) is a nonlinear differential equation as it stands.

Also, the independent variable is time, whereas we would prefer to solve
for r directly as a function of 4. In order to avoid these difficulties, let us

make the substitution
_1- _
r=— (5-42)
and note from Eq. (5-41) that

6 = hu? (5-43)
In addition, we find that

P v mas (5-44)
and
. dudd o, . du

Making these substitutions into Eq. (5-39) we obtain
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— 3612‘ — 2P = '”l_lmz
or
d2
d_eg t+ou= hﬂ (5-46)

This differential equation has the same mathematical form as the equa-
tion for an undamped mass-spring system with a constant forcing term,
such as we discussed in Example 3-6. Hence the general solution can be
written immediately. It is

u= -k + Ccos (6 — ) (5-47)

where C and 6, are constants.

The constants can be evaluated by considering the system when 6 = 6,.
From Egs. (5-44) and (5-47), we see that 7/ = 0 at this time; therefore the
total energy e per unit mass is

_ L e M 1, _ _
e = =r - 2hu pu (5-48)

Substituting for u from Eq. (5-47), we obtain

:liﬁ(“ +C) —u(“ +C>

2 h? h?
e
=2 o

Solving for C, we find that

C = \/ i’ h2 (5-49)

where we arbitrarily choose the positive square root, since any further sign
changes can be handled by the choice of §,. It is apparent, however, that
the choice of 6, specifies the direction of the reference line from which & is
measured. So let us set 8, = O for convenience. Then we obtain the orbit

equation
=4 (1 + 1+ 2
n p?

h* [
1 + ~/1 + (2eh?/u?)cos 6

Note that r = r,;, when 6 = 0; therefore # is measured from a line drawn
from F to the closest point of the orbit. |

Now e and 4 are independent of the particle position in a given orbit
and are known as the dynamical constants of the orbit. It can be seen that,

) (5-50)

or

r— (5-51)
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for a given gravitational coefficient u, the size and shape of an orbit are
entirely determined by these two constants.

It is interesting to calculate the rate at which the line from the attracting
center to the particle sweeps out area. This so-called areal velocity is

S B i ~
A—-2—r6—-2h (5-52)
and is constant for any given orbit. Hence Kepler’s second law, stating that

the areal velocity of each planet is constant, is equivalent to the statement

that the angular momentum due to the orbital motion of each planet about
the sun is constant.

5-3. THE GEOMETRY OF CONIC SECTIONS

The equation for the orbit given in Eq. (5-50) or (5-51) is the polar co-
ordinate representation of a class of curves known as conic sections. First,
we shall present the geometrical characteristics of conic sections that are
most important for our purposes. Then, with this background, we shall be
able to correlate the geometrical characteristics of the various possible
orbits with the dynamical constants e and A.

The equation of a general conic section, written in terms of polar
coordinates, is

[

r:1+eCOS(9

(5-53)

where [ is the semilatus rectum and e is the eccentricity. It can be seen that

Directrix

A

2a >

Fig. 5-5. An ellipse.
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verning the size of the conic section and represents the

is the parameter go - .
I1s P & hand, the eccentricity e determines

value of r for § = +m/2. On the other

its shape, as we will show. ‘ . .
" SE;llli);se. The ellipse is @ conic section for which 0 < ¢ < 1. (We consider

the circle as the special case for wh‘ich €= .0.) An .ellipS? can be defined as
the locus of points whos¢ distance from & glven.pomt Fisa constant- factc?r
¢ multiplied by its distance from a straight line kpown as the directrix
(Fig. 5-5). It can also be defined as the’ 1f)CUS of points such that thc? sum
of the distances to two foci, F and F', is a constant length 2a .V&fhl-Ch is
also the length of the major axis. The distance between t.he foci is just e
times the length of the major axis. 1f can be seen from Fig. 5._5 that the
semiminor axis b is related to the semimajor axis a by the equation

h=avl—¢ (5-54)

and Fig. 5-3 we obtain that the minimum value of r,

From Eq. (5-53) 18
that is, the perigee distance.” 13
ry = r]"‘ =a(l —¢) (5-55)

- =
" <

. ; 31 j i .
In a similar fashion, the maximum VU< of r, the apogee distance, is found

to be

re = g "V -=a(l + e) (5-56)

o AT

From Eqgs. (5-55) and (3-36) we s22 223l

== ro) (5-57)
why a is someumes known as the mean distance.’

indicating the reason : ta
Also. we obtain from hese equati-is 3L €XpIession for the eccentricity e,
’

that is, |
€ = {—» r. — rp) (5—'58)
From either Eq. (5-331 27 (5-56) wx i=d that
J=ni =€) | (5-59)
and therefore the gensi 2quatior =t =1 ellipse, as given in Eq. (5-53), can
also be written in the S>Cowing 1073
Nl 1)} (5-60)

This is the equation < an ellimes = terms of its geometrical constants a

and e.
We shall use the 1eTis Jerigee anc Z=E=2
: mwut the eat™

they apply only to orbis . _ .
);Ngﬁaythat g is not T Iverage Qii== #ith respect to time.

with reference to general orbits. Strictly,

= AR e 2

A e

L8 WS 5. il
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The area of an ellipse can be calculated by noting that it is just the
projected area of a circle of radius a onto a nonparallel plane, resulting in
a foreshortening ratio b/a for all
lines parallel to the minor axis.

Hence the total area of the ellipse is
A= na® (%) — zab  (5-61)
Parabola. For a given perigee
distance r,, we can see from Eqg.
(5-55) that, as the eccentricity e of
an ellipse approaches unity, the
semimajor axis ¢ approaches infinity.
Also, the vacant focus F' recedes
toward infinity. In the limit, e = 1,
and the conic section has the form
of a parabola, as shown in Fig. 5-6.
Setting e = 1 in Eq. (5-53), we see
that the equation of the parabola is
/
"= Ticse 0%

where, in this case, . Directrix

[ = 2r, (5-63) Fig. 5-6. A parabola.
in accordance with Eq. (5-55).

Hyperbola. If we set ¢ > 1 in Eq. (5-53), the resulting curve is a hyper-
bola. The principal geometrical parameters are shown in Fig. 5-7. The

P .
r b
0
\ & Ve

waew«—oe—»\

Fig. 5-7. A hyperbola.
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hyperbola can be defined as the locus of points such that the differénce of
their distances from two fixed foci F and F’ is a constant length 2a where,
as in the case of an ellipse, the separation of the foci is 2ae. It can be seen
that the denominator of the right-hand side of Eq. (5-53) can change sign,
with the result that the hyperbola has two parts or branches. These branches
are separated by a distance 24, and a line of this length joining the vertices
is known as the major axis. The two branches approach asymptotes making
an angle ¢ with the major axis, where '

¢ = cos™! % (5-64)

as we can verify by noting that the magnitude of r approaches infinity as
6 approaches cos™!(— 1/e).
The semiminor axis b is defined as the distance from the vertex to an

asymptote, measured in a direction perpendicular to the major axis. From
Fig. 5-7, we see that

b=atan¢ = a/e* — 1 (5-65)
Also, setting § = 0 in Eq. (5-53), we obtain
_ e _
rp——l“:—e—a(e 1) (5 66)
Therefore
[ =a(e? — 1) (5-67)
and hence the general equation of the hyperbola can be written in the form:
_a(e —1) _
r_l—i—eCOSH (5-68)

We should note that if F is the attracting focus, then the actual path of
a particle will be along the nearer branch of the hyperbola. For the case of

inverse-square repulsion by the same focus, the particle moves along the
other branch. '

5-4. ORBITAL RELATIONSHIPS

Dynamical and Geometrical Constants. We saw as a result of Eq. (5-51)
that the size and shape_of the orbit are determined by the dynamical con-
stants e and 4. On the othmmmction can be ex-

ms of the geometrical constants @ and e. Now let us determine
how the dynamical and geometrical constants are related.

First we compare Eqs. (5-51) and (5-53) and find that

e=J1+2622
m

(5-69)

R T C A IR R
A, .
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and

h2
| = — 5-70
a (5-70)
Also, we see from Egs. (5-59), (5-67) and (5-70) that the semimajor axis

can be written in the form

— 5-71
a n(l — €?) ( )
or, substituting for ¢ from Eq. (5-69),
e -

where the choice of sign refers to the elliptic and hyperbolic cases,
respectively. Incidentally, this sign convention will be continued throughout
this chapter, that is, the upper sign refers to an elliptic orbit and the lower
sign refers to a hyperbolic orbit. Notice that for a certain mass m and a
given gravitational coefficient u, the semilatus rectum [ is a function of the
angular momentum only, and the semimajor axis a is a function of the
total energy only.

We have defined a and g to be positive quantities. Therefore we see
from Eq. (5-72) that the total energy must be negative for an elliptic orbit
and positive for a hyperbolic orbit. For the borderline case of a parabolic
orbit, the total energy is zero.

In general, the total energy per unit mass is just the sum of the kinetic
and potential energies:

1, p B
e= 5 - (5-73)

where v is the speed of the particle in orbit. It can be seen that energy is
conserved; therefore e can be considered as the residual kinetic energy as
r approaches infinity. For the hyperbolic case, e is positive and the particle
retains a finite speed at infinity and therefore escapes from the influence of
the attracting center. On the other hand, e is negative in the case of an
elliptic orbit, and the particle cannot escape because the kinetic energy must
be positive or zero at all times. For the parabolic case, e = 0 and the
particle has zero velocity at infinity.
From Egs. (5-72) and (5-73), we obtain the following equation:
2 _ 1

v = p (T ¥ 7) | (5-74)
This result, which is known as the vis viva integral, is essentially a statement
of the conservation of energy. It indicates a remarkable fact, namely, that
if a particle at a distance r from the focus F has a certain speed v, then the

semimajor axis of its orbit is the same, regardless of the direction in which
the particle is moving.
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For the particular case of a circular orbit, we note that » = a, and obtain
from Eq. (5-74) that

v? = i (e = 0) (5-75)
and from Eq. (5-73),

put— —--E p— —

e= —7 (e =0) (5-76)

Finally, it is convenient at times to write the equation for the general
conic in terms of r,. From Egs. (5-53), (5-55), and (5-66), we find that

_ (1 + ¢

1 + ecosd (3-77)

this equation being valid for both the elliptic and hyperbolic cases. Now let

us define r, as the value of r corresponding to § = =. From Eq. (5-77), .

we obtain
_ rp(1 + ¢€)
@ 1 —e¢
or
_ta—1p _
G_ra—i—r,, (5-78)

Note that r, is negative for the hyperbolic case, its magnitude being the
distance from F to the vertex of the second branch.

Orbital Period. The period T of the motion in an elliptical orbit is found

by dividing the total area by the areal velocity. From Egs. (5-52), (5-54),
and (5-61), we find that

T — mwab _ 27ra2«/1 — €?
A h

But from Eq. (5-71) we see that
=a/pa(l — &)

3
T =2n,/% - (5-79
m/ﬂ (5-79)

This is a statement of Kepler’s third law. We note that it applies exactly
for the case of a particle being attracted to a fixed point by an inverse-square
force. But for the two-body problem in which the motion of m, is calculated
relative to m,, we recall that p = G(m, + m,). Hence, when we consider

and therefore the period is

the solar system, the period depends to some extent upon the mass m, of

the planet. This dependence turns out to be quite small because m, > m;,
that is, the sun’s mass is many times larger than that of any of the planets.

B -<
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" Eccentric Anomaly. We have discussed some of the most important
factors influencing the form and size of the various orbits associated with
an inverse-square attracting force. When one introduces the fime element
into the analysis, either to find the position as function of time or vice versa,
then the calculations are aided by introducing another geometrical param-
eter E known as the eccentric anomaly (Fig. 5-8).

Fig. 5-8. True and eccentric anomalies.

Recall that an ellipse can be considered as the projection of a circle of
radius a onto a nonparallel plane, resulting in a foreshortening factor b/a
for all lines parallel to the minor axis. Reversing this process, we find that
the point P on the ellipse corresponds to P’ on the auxiliary circle. The
angle E measured at the center O, giving the position of P’ relative to the
perigee, is known as the eccentric anomaly. On the other hand, the familiar
angle @ giving the actual position P, as seen from the focus F, is known as

the true anomaly. An equation relating £ and 6 is found from Fig. 5-8 by
noting that

AP = L2 AP’
- a
where b/a is the foreshortening ratio. Hence

rsin g = 2 (qsin E) = av/T = & sin E (5-80)

and, using the general equation for an ellipse given in Eq. (5—60), we obtain

sin E = ~1 — ¢’sing (5-81)
1 + ecosd
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Also, we see from Fig. 5-8 that
rcos § = a(cos E — ¢) (5-82)

Now, if we square Eqgs. (5-80) and (5-82) and add, we obtain the orbit
equation in terms of the eccentric anomaly, that is,

r=a(l — ecos E) (5-83)
From Egs. (5-82) and (5-83), we obtain
_ e+ cost
cos £ = T+ ccosd (5-84)

Finally, from Eqs. (5-81) and (5-84), another equation relating E and 6
is obtained.

E  sinFE 0

_ 1 —e v _

5-5. TIME AND POSITION

Elliptic Orbit. Now let us obtain an expression relating the time to the
position in an elliptical orbit. We shall use the convention that time ¢ is
measured from the instant of perigee passage. First, we recall from Kepler’s
second law that the radius vector FP of Fig. 5-8 sweeps out equal areas in
equal times. Similarly, the line FP’ sweeps over equal areas in equal times —
since, as we have seen, FP is the projection of FP’ onto the orbital plane
and all areas are reduced by the constant factor b/a as a result of this pro-
jection. So the area swept over by FP' is the total area multiplied by the
fractional period since perigee passage, or za’t/T. But this area is just the

area of a sector of vertex angle E minus the area of the triangle OFP’. So
we can write

”‘;t = _;_ :F — %azesyinE
or, using Eq. (5-79), |
[ = J% (E — esin E) (5-86)
This equation can also be written in the form
:g%’,_tzE—esinE (5-87)

where the mean anomaly M is the angular displacement from perigee of a
line moving at the average angular rate 27/T. This is known as Kepler’s
equation. v

In order to calculate the time required between any two points 6, and
6, in an elliptical orbit, we merely evaluate ¢, — t,, where ¢, and ¢, are the




SEC. 5-5 ORBITAL MOTION 205

corresponding times since perigee. This is accomplished in each case by first
evaluating the eccentric anomaly E from a knowledge of ¢ and 8; then the
time is obtained from Kepler’s equation.

The reverse problem, namely, that of finding the position if the time
since perigee is given, is more difficult. It involves solving Kepler’s equation
for the eccentric anomaly when the mean anomaly is given, and this requires
the solution of a transcendental equation. The computation is often accom-
plished by a method of successive approximations.*

Parabolic Orbit. For a parabolic orbit, a knowledge of the perigee
distance r, and either r or # is sufficient to establish the true anomaly & at
that time. This can be seen by noting from Egs. (5-62) and (5-63) that

2r,

cos 0 ==F- (5-88)

Differentiating Eq. (5-88) with respect to time and multiplying by r?, we
obtain

r26sin @ = 2r,F
But we recall from Egs. (5-41), (5-63), and (5-70) that

h=r=x2r,1 (5-89)
and therefore
sing = /2>y (5-90)
Hence we obtain
6 _ sinf _ 7 .
BN = T cosf g (3-91)

indicating that ¢ can also be found from a knowledge of the distance » and
the radial and transverse components of velocity.

To obtain the time since perigee for a parabolic orbit, we note from
Eq. (5-89) and the general equation of the parabola that

do _ 1
dt — 2

-7 x/?-—rp Jo cos? (6/2) (6/2)

Evaluating this integral, we obtain

28 6 1 6 .
t = Jﬁ (tan7 + 5 tan? 7) (5-92)

‘For a discussion of the solution of Kepler’s equation, see F. R. Moulton, An Intro-

duction to Celestial Mechanics (2nd rev. ed.; New York: The Macmillan Company, 1914),
pp. 160

N2 2
yr (1 + cos b))

or
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Of course, an exactly parabolic orbit will not exist in practice. On the

other hand, the use of Eq. (5-86) in calculating times for elliptical orbits

where ¢ =~ 1 is not satisfactory because the period 7 becomes very large

and the mean anomaly M becomes very small, resulting in an inaccurate

product. These difficulties can be largely avoided if we expand Eq. (5-86)
in terms of the deviation & of the eccentricity from unity and the true
anomaly 6. Using Eq. (5-85) and neglecting terms of order &2 or higher, we
obtain

~ [2r; 8 0 1 (1 38\ g2t _ 8 si} -
t = F”[(l—l—f)tanz 3(1 4)tan2 S tans 2| (5-93)
where

§=1—c¢ (5-94)

This equation gives results with less than 1 per cent error if —0.2 << 8 << 0.2

and —(m/2) < 6 < (/2). Note that it apphes to both the hyperbolic and
elliptic cases.

Hyperbolic Orbit. We have seen that the equations applying to hyper- _.

bolic orbits are usually quite similar to those for elliptic orbits. This similarity

applies to the time equations as well. So rather than presenting an explicit

derivation for hyperbolic orbits, we shall transform the results obtained
previously for the elliptical case, using Table 5-1 which lists corresponding
quantities.

TABLE 5-1. CORRESPONDING QUANTITIES

Elliptic Orbit Hyperbolic Orbit
a —a
b ib
g g
r r
t t
€ €
rp rp
n n
e e
h h
v v
E —iF

First we define an auxiliary variable F which is analogous to the eccentric
anomaly for elliptic orbits. Corresponding to Eq. (5-85), we obtain

F_ [e—1 6 N
tanh7 = mtanT (5-95)

and, corresponding to Eq. (5-86), the time since perigee is found to be
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t = \/% (e sinh F — F) (5-96)

Also, corresponding to Eq. (5-83), we obtain
r = a(ecosh F — 1) (5-97)

The time equations for hyperbolic orbits can also be written in terms
of circular functions. If we let

sinh F = tan H (5-98)

where H is another auxiliary variable, then, using Egs. (5-95) and (5-96),
it can be shown that

e — 1 6

H m— —
tan 5 = —G——_—*_—ltan7 (5-99)
and
t = @ |:e tan H — In tan (% + %):l (5-100)
Also, corresponding to Eq. (5-97) we obtain
— € - —
r=a (CosH 1) (5-101)

5-6. SATELLITE ORBITS ABOUT THE EARTH

In recent years, the advent of artificial satellites has greatly increased
the interest in orbits about the earth. In this brief treatment of the subject,
we shall review previously derived material in the context of earth orbits
and restate some of the equations in terms of dimensionless ratios which are
particularly applicable to this case. Note, however, that the results of this
section can also be used for orbits about the other planets or the sun if
proper adjustments are made in the numerical values of various coefficients.

Circular Orbit. We recall from Eq. (5-38) that if the motion of a satellite
is desired relative to the earth, then we use a gravitational coefficient

p = G(m, + my) (5-102)
where m, is the mass of the earth and m; is the mass of the satellite. For
the case of artificial satellites, we see that m, < m. and therefore we can
neglect m; in calculating 1. Also, the reduced mass in this case is just the
satellite mass, as can be seen from Eq. (5-29).

Another approach is to express j in terms of the acceleration of gravity
g, at the surface of a spherical nonrotating earth. Setting the gravitational

force per unit mass equal to the acceleration at the earth’s surface, we obtain
from Eq. (5-37) that.
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or

1= goR’ (5-103)
where R is the radius of the earth.

R = 20.91 x 10°ft = 3960 miles
go = 32.2 ft/sec? = 7.90 x 10* miles/hr?
i = 1.407 x 10 ft3/sec? = 1.239 x 10'? miles?/hr?

Now suppose that a satellite is in a circular orbit at the earth’s surface,
assuming no atmospheric drag. Noting that the gravitational attraction per
unit mass is equal to the centripetal acceleration, we obtain

Ve
8o = R
or
v, = ~/8oR (5-104)

where v, is the speed of a body in a circular orbit at the earth’s surface.
- v, = 25,950 ft/sec = 17,690 mileé/hr
From Egs. (5-103) and (5-104) we obtain p in terms of v,.
L = Rv2 (5-105)
Similarly, for a general circular orbit about the earth, the speed v is

found by equating the magnitudes of the gravitational and centrifugal forces
per unit mass. Thus, in accordance with Eq. (5-75),

v_K
ror
or, using Egs. (5-104) and (5-105), we obtain
v = vmfﬂ — R,/& (5-106)
r r
The total energy is found from Egs. (5-76) and (5-105). It is
_ _R'U% _ &R
e=—5*= 57 (5-107)
The period of a circular orbit at the earth’s surface is

__ 27nR

c —

= 1.407 hr = 84.4 min

[+

For a general circular orbit of radius f, we obtain from Kepler’s third law
that the period is b

T = (.]%)3’2 T, (5-108)
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General Orbit. Suppose that an
earth satellite has a speed » and a
flight path angle v at a certain point
in its orbit. The angle <y is measured
positive upward from the local hori-
zontal to the velocity vector v, as
shown in Fig. 5-9. We will show that
a knowled