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The Soviet physicist V.A. Pock 1s well know by m.mm for his
work in quantun mechanics, particelarly in connestion with the Hartree—
Pock theory of sslf-cousiatent fields, The purpose of this collection
uuumhlﬁor—lunmhuk'-nnmmm on the propega-

Tock's early pepers on
tMD ﬂb’u‘ (tho nm ﬂn papers h QM. collection) lypﬁrﬂ in
sh almost Eowsver, all of his more recent work has

‘been published tll hlllhl &H i n!.lu“ll unimown cutside the Soviet
The translations in this collection bave been dascd upon tl‘nlh¢

tions obtained from seversl sources. Nr, Herman V. Cottony of
National Burean of Standards and Miss A, nmnemvuu«-nh

A3 ¢ this eollection, The translator of Chapter i3 W
Inown to the editors. The translaf
Norrie D, Priedman, VILI, IX, and X were made by Morris D,

, Ino., Newtoaville,
made in Gooperation with Lincoln Lador

According to the Library of Congress scheme for the transliterstion
of the Bussian alphabet, Fock's nane appears as Pok, However, because
of the ore general use in scientific literature of the form Fock the
editors bave retained this form in this collecticn.

NikLo
P.B,, Jr.



v,

CHTENIS

INTRODUCTION: V.b, POCK!S SONTRIBUTIQHS 1O

DIFFRACTION ‘l'l’.&
(ﬁgy;{ Aaksadpvl 17-3z, Printing House
the Acadeay v c‘o.r zscow, 1956)s
NEN4 METHODS IN DIFFRACII(N THEORT
(Eai2osopnienl Magazise 22, U9-155, 1948).

‘THE DLITRIET: OR CF CURRENTS TIDUCED BY A PLANZ WAVE O
TEE SURFACE CF A CONDUZTOR
(ol of Plugloy, S, 10, 110-136, 1946).

DIPFRACTION OF RADIO WAVES AROUND THE EARTH'S SURPACR
(Jowrnel of Purejos, [=5K, 2, 255266, 19«5).

1. Statement Of the Probiem and its Solution
in the Fora of Series

2, The Sumation Forwmla

3. The mmm of the Herta Function for
the Ilurvizased Region

4 m-pum Exprosszons for the Hankel Punct

5. Bwnmw of the Herts Purction mn in
the Pemmbra K

6. Drscussian ot the Expression for the Ferts
Ruansiion

SOLUTIN OF THE FACEI M OF FROTAGATION OF ELSCTROMAGNETIC
HA:'IS TEE FARTHIS SURFACE BY THE METHOD OF PARABOLIC
ERQUAT.

(Jeaal, of Bosicn, (59, A3 2%, 16}

1, Tre Dive of o Plane Earth
a? a Spherisal Easth

mmcrun«zvluvzwmmsmmw‘

Ma Boriss, 1558, 599-409, 1964,

1. The Geometrizal Aspect of the Protlea
2, Stmplified Haxveills Bquations
3, Simplified Bawoary Corditions
4o Determinatics of the Pleld Coaponent Ky

"

VEE ¥R B 8 -

o
&

W

85

BEBs %

» —ninble to DTIC d008, 2%



50
6.

. mmnuwmmrnnmmmmxm
ACCOUNT FOR

CHTENTS (cont'd)
Deternination of the Camponent Fy and the
Otber Pield Coaponents
The Field in the Rlunimated Repten
Conclusicn

(UE (sere m.). a. At

Differential humn- -vﬂ ‘the Boundary
Conditdons of the Probl

. Trensfer to M.-nlul\hll Quantities
tions

Salution of
Investigation of the Solution for the Reglon

of Direot Vishility
otmsﬂmuformm
of the Pemmbrs (Pinite X and Y)

VII, THEORY OF RADIOWAVE PROPAGATION IN AN INHCMOGENECUS
ATMOSPHERE POR A RAISED SOURCE
(A (gox. Bis.)) 2y 700, 2950,

1.

.
Applicetion of the Generel
Superrafraction Case (Semum nmph)
Appraximste Forzulas for Teras with Low
Attenuation

VIII. THE FIELD FROM A VERTICAL AND A HORIZONTAL DIPOLE,
BAISZD ABOVE THE EARTH'S SURPACE
@, 12, 716929, 2949).

1.
2,
3.

Vortical Ralsed Dipole, Solutiem in
Seriss Form
Approxizate Series Sumuation for the Herts

o0
The M.tn-um Factor

ks Baflectis

56
[
T

lbrh»ﬁl !ln?.rhd Dlwl.. Prizary Plald
Series for the Total
Approximte kpu-um for the Mald

B K &E K FEE

5 EE &

ESESES

SNRERE & §



1.
2,
3.

'PRESNEL DIFFRACTIQN PROM
i, 3, 567-5%, 195).

CONTENTS (cont'd)
CONVEX BODIES
Porgrulas for the Attenuation Factor

Baformlation of the Attenuation Factor
Computation of the Integral

4o Bvaluation of the Integral

5o

FRESVEL HEFLECTION LAWS
(s, 3, 308-319, 18).

The Attenuation Pactor in the Reglen of
the Shadow-Cone
AND DIFFRACTION LAWS

Preanel Refleotion Lawva
Cross-Section of a Bean of Reflested Rays
Klectromagnetio Field of the mm,aa Vave

he Diffrection Laws in the Pemmbra

Investigation of the Expressions for

Plelds 3n the un and mmwumuq Reglons
Comparison of the Diffrestion Formila with the
Presnel Porwula for the Line-af-Sight Region

II,  OENERALIZATION OF THE REFLECTION PORMIAS TO THR CASE CP
mwummmnnmuwmzw
ARBITRARY PORM
(&2, 29, 962-978, 1950),

1,

uI.

APPROXIMA!
PRESENCE OF

Fresnel F

‘orwalas
2, MOM'AA! Gecmetry of the Reflecting

CrernSeotion of the Buntle of Reflected Rays
Calculation of the Determinant

Differential awut.ry of the Wave Surface

Reflection Formla

Befleotion of the Spherical Wave from the

Surfase of a Sphere

\TE FCRMULA POR DISTANCE OF THE HORIZON IN THE

(Badioteidy. § Edektr. J, 560-57h, 1956).

Initial Pormilas
Normal Rafrsction Case

of
Equstion with a Cosffiolent Having a ¥intmm
Investigation of the Attenuation Pactor
Pormla for the Distanc

253
257

2%

BERRRZ B E 3

H

i1

¥RE B



CONTENTS (conttd)
XITI, OF RAD"OWAVE PROPAGATICN NEAR THE HORIZOM WITH
‘SUPERRFRACTI
(Badaotaldy. § Bektr. ), 575-592, 1956).
1. Introduction
2, On the Hortson Conceft in the Presemce of
« Tropospheric Waveguide Near the Earth
3. Pundanental Formlas
e BRaflection Formla
S Husariodl Results in Hondimensional Coordinates
6, Atvenuation Tastor i Deep & sm.. lnuu Series
7. Mmerical Re
APPRIDIX:  APPROCINATE
L
oo
‘aﬁﬂﬁ# BRURR R
1%8), ’

Mthn for Soviet Journals
(gez, gﬂ ) xmmu Akcademid Fauk
kaia (Balletin af uao Am-w
of smnm u mx Physice Seriee).
gzﬁnmm Exsperimentalnol 4 ‘lhnntunukd
28 (Jouul of Experimental and
Phyeics).

Uspekhi Fizichesikikh Nauk (Progress of
m’mm Sciences). ¢ *

ggﬁ%. Fy ., Badioteiniia 1 Elektrontla
ering and Klectronics)

'BOUNDARY CONDITICNS FOR THE
(C FIELD (M THE SURPACE OP A




V.A, POCK'S CONTRIBUTIONS 70 DIFPRACTION THEORY

V.A, Pook bocase 1 in problems
recently, Within a short time he suscoeded in obtaining numerous
results which are very important both in theoretical and in prectical
aspects. By forecasting the paths of further investigations in this
field, they are epochal in theory,

The salution of the problems of electromagnetic wuve diffraction
consists of finding solutions of the Maxwell equstions subject to
spocific initial and boundary conditions on the diffrecting surface and
rediation conditions at infinity, The inftial conditions are often re=
Flaced by the requirenent that the solutiom be sinusoidal in tims.

Pock devoted himsslf to an analysie of problems of the last kind, Prior
to the Fook investigations in the theory of electromagnetic ave dif-
fraction, only solutions for a small rumber of problens for cbstacles

of a epecific shape were known, such aet the Infinite wedge, cylinders -
edroular, elliptic and parsbolic - and also for the ephers. In addi-
tion, the problem of froma of 1 solved
¥ Pock hinself in 194k, should be added to the above lst.
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The previcus solutions of the problens mentioned above, which
vars represented by suries or by integrals, were not very useful in
the important prectical case when the wavelength is smal) in compsrison
to the dimeneions of the obstacle, and they should be considered as
only the firet step in solving the problem, The next step must be the
derivation of formilas fram which qualitative physical consequances
oan be obtained and which are, in addition, suitable for practical
computations, Hence, one of the possible directions of work in dife
fraction theory was the development of & method of isolating the prin~
cipal parts out of the complex formilas which constitute the emot
solution of the problem, The Poock imvestigations were made in thie
direction when solving the problems of diffrsstion from a conducting
sphere as well ae from a paraboloid of revolution, Naturally, the
method cited is applicable only in those few cases when en axact solu-
tion oan be 1. an urgent need
existed for the creation of an spproximate method of solving diffrec-
tion problems which, vhile being general, would lesd to relatively
sinple formulas,

The fundamental works of Pock on diffraction are devoted to the
construction of such an approximate method and to the solution of a
mamber of practicsl important problems by using this method., Pook
developed and used the parebolic equation method proposed by Leantovich.
‘This peruitted him to give not only new simplified derivations of
results he had obtained sarlier by other msans but also to generalite

u



then in various directions (to take the finite conductivity of the
‘ody 4nto accounty to determine the field olose to the surface as well
a0 on the surface itself; o take ataospheric inhamogenedties into so=
sount in the probles of diffractden of redicwaves arcund the sarth’s
surface),

A0 10 every approxinate aethod of sclving boundary valus protlems,
the Fock method 1s based on the smallness of certain parameters en-
countered in the proflem, The quantities vhich are usially mall in
the problens of redioave diffrection arer -k and 4, e
F el » ;&g! 1is the oamplex dielectric constant of the diffreoting
bodyj A 16 the wavelength of the inoident vave; B is & quantity of the
order of the radius of ourvature of the surface of the body,

1t |7) = © (perfest conductor), then the field within the condus-

tor is zero, 1,e,, it is inown in advance. This circunstance permits
the diffraciion problem to be forwulated only for the space outside the
body, vhich leads to substantial simplification, The situstion in the
imperfect conductor oase 1s similar if the inequalities |%|»>1 and
%},ﬁi >3 1 are satisfied,

In this case, the fleld within the oonductor appears %o be van-
1shingly small everywhere except in a surface layer of thickness of
order  A/|7)], vhere the influence of this layer ean be teken into
account by using boundary corditions for the external field

@ T T geag) - g eny et
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0T 30 3ys 3, 70 the components of the current demsity) By o, o
are the unit veotor componente mormal to the body surface. Acad. N.A,
Leontovich first suggested the aforexentionsd conditions in & rather
airtoret form.

the of the d 4,

problem is thereby reduced to a problem involving the fields exterior
to the body, A further essential simplification in problems of redio-
vave diffrection from bodies of arbitrary shape Tesults from the prin-
olle of the fis1d being looal in the half-shadow region.

If the alestromagnetio fisld near the surface of & conducting
body were to be detertined successfully, and, thersfors, the current
distribution in the surfece layer, then the solution of the diffrection
protlens would be attained by simple well-known formulas for the vector
potential, The field in the lluninated region near the body ¢ mbject,
With & high degree of sccuracy, to the Fresnel laws of reflection, and,
therefore, can be deternined sasily} the field decrsases Tapidly to
sero in the shedow regian,

the 1ink 1n the salution of
the diffraction problems is the transition reglon (half~shadow) located
near the gecmetric shadow bountary amd with the shape of & band of width
@ = /Z5E , vhere B, is the radius of curvature of & normal ssoticn
of the body In the inoident plane,
Pock wuccesdsd 1n showing that the alectronagnetio field in the
Balf-shadow region 19, to the ascuracy of quantities of the order of
iv



1’/;5 , of losal character, 1,0,, it dependsonly on the malues

of the incident 'ave f1eld in the nelghborhood of the given point, on
the geametric shaps of the body nesr this point, and on the electrlc

propertiss of the conduotor,

After the principle of the losal f1e1d had besn established, there
reaained only to tind the solution of the diffrectien probles for a
convex body of suffiolently genaral shaps, end to derive the approxi-
sate formdas for the fisld on its surface, It is convenient to take
the parsboloid of revalution as such s body, In salving the problem of
plane wave diffraction from & pareboloid, V.A, Pock used separstion of
warisbles in parabolic wordinates, He constructed the exact solution
1n the forn of integrale and perforned the approximte calculation of
these integrale under the assumption that ka>> 1, vhers k ie the
vave number and & 10 a parameter of the paratolold of revoluticmc
ReyP-n1-a2 =0,

The characterfstis direoticn of the work en diffractior. explained

above 1s sufficient o indicste the important principles of the methods
developed, Basicslly, these methods reduce to the followings

Pook indicated an effective method of approximately evaluating ine
“inite series and integrals {containing a large parameter) which repre-
sent the exact soluticns of certain problems of electromagnetic wave
diffraction, This method permitted him to develop, for exmple, &
rigorcus theory on radicvave diffrsotion around the eerth's surface

bye ‘o of




Around the Earth's Surface”, 1946)%, He sas aloo tha first to setablish

the very important principle of the locsl charecter of the electromage

netic field in the half-snadow reglon,  using  «idely the Loontorich
2 1n the of redicave

problems,

This work afforded him the opportunity to construct an appraximate,
but yot eufficlently acourate for praciical needs, theory of radicave
diffraction from condustors of arbitrary abaps ae well as a theory of
rediowve propagation aromd the sarth taidng iahamogeneities of the
ataosphere into account. The erplanation of this theory 1o given in
*Theory of Radiowave in an for a
Ratned Source®, (1950)%

These works on diffraction hsve played a very important part in the
history of this question and, at the present time are among the clesrest
attatnasnts in diffrection theory and its spplications, Let us tum to
& more detailed explanation of soae of these works.

The problem of rediowave diffrection in a wacum relative to a ocon-
ducting sphere 1s solved in "Diffraction of Radiowaves Around the Earth's
Surface?,

Lot the sphere be of radius a and be charasterised by the di-
eleotric constant € , the conductivity ¢ and the magnetio permeadility
@ity, Lot the spharical coordinates (r,0,g) be introdused and lat &
vortioal alectric dipale be placed at the point © = b, 8 = 0, re
B> o The electrompetis Teld exoited by such & dipole can be ex-
Prossed by means of the Herta funotion U(r,0,9) which satisties the

equation
LY



(2 Aty - 0

Bonce, 1 order o deternine the value of tae field on the sphere's
surface, 1t 1 sufficlent to kndw the quantitiea:

®) - Wesy) we U] - 3;"")

In 1908, Kie obtained an analytical representation for the function
U as an infinite series of spherioal funstions, The extremely poor
convergance of the seriss prevented qualitative physical consequences
from being obtained and prevented prectical use of the aforamentioned
exact solution of the probles, 4 major step toward a practical wse of
these series vas made by Watsen in 1918, But the transformed form of
the solution was still unsatisfactory, both because of its complexity
an becauss 1t vas only applicable in the geamstric shadow reglon
(1.0., far fron the horizcn). Only in 1945 did Fock sucesd in obtain
1ng an expression for the Rerts funotion suitable for all cases.

Fock traneforns the weries for U, and U, into couplex integrals,
But, in contrast to the precedirg suthors vho tended to reduce the
integrals to & sum of residuss, Fock isolated from the integrals a
principal ters vhich ylelds sufficiently exsct values for the functions
investigated,

It was shown in this work that if wvaves psssing through the thick=
ness of the eerth and weves oircumsoribing the earth because of dif-
fraction are neglested bocause of their mallness, then the valus of
Uy oan be represented by the following integral

LT



i N
U, - %j reir e 6 dr | whers
e

[OF L brog U9
;" *ar.)_r‘ xy_ *(l,,-){ _Ll[n-)
© 6 ( foreld-fetgh),

 Go)=yfZ I/,,.;, o YL 47
® Xnpr. Yol p.2gca-
Znp) o * u €2~ 1s the wvslegth)

©) K= 0fy; yaeel L

PU4A7; 8) 48 the Nypergemetric fumoticn; the contour C s a line
Antersecting the positive part of the real axis going dowmard {to the
left of the poles of @(v))s
A aintlar integral o obtained for Uy, The essantial feature of
this method of approach 1s that the integrals obtained can be caloulated
easily and with grest asourasy for azy value of 8,
LTI



The oharactoristio paremster of the aforenentianed integrals s
e quattty 7=/ Broos 7 Mhere 7+ 10 the angle batween the
wvortical at the obsermation pdln't and the sourve diresticn, If p>» 1
and the observer 1e in the 1ine of sight region (rore socurately: it
X cosTS >1, vhere b is the height of the source adove the earth),
then the « ~uation of the integrals leads to the wall-imown "reflece
tion formila", This evalustion of the integrals lesds to the Veylwan
dor Pol formila valdd for pointe at large distances from the source
but ot41l well within the Line-of-sight.

The balf-shadow reglm (wbere p w 1), for vhich approximte
values of the fisld were not knows) 1s of grestest interest, A method
1s indicated in this work of evalusting the integrale for this case
a0d the following forwala is obtained

Pt 4 1t w(t-3)
o) o, - Smetd ng' C{ORETTAC NG
T
1n which wi(t) 10 the complex Alrey function related to the Rankel
function of ona thind order by the relatica

AHoh [2- ).

The contour " goss from i@ % O and from O to * @ j
-5 J

@ xe (g () - ) T

EH

@ wmw -




The formila for the half-shadow reglon 1s the zain result of this
work, It is applicable in all cases of practical intarest, It trans-
forms 1mo the Weylevan der Pol formuls far from geometrin shadow in
the line-of-sight reglon, This formila can be reduced to a rapidly
converging series vhen the transitfon is made into the shadow reglon
shere (- p)>>1,

In the work *Soluticn of the Problem of Propagation of Rlectro-
magnetic Waves Along the Earth's Surface by the Method of Parabolic
Equatfons® (written jolntly with M,A, Leontorich)¥, a protle is
analysed which is similar to the problaa in the paper mentioned above
bat the nethod 1s easentislly different,

The {nfluence of the earth!s surface is taken into account by the
Leottovich approximate boundary conditions and terms in the field equa-
tions are neglested vhich are amall and are of the order of nﬁm
‘l.. . As a result, the Mapproxirate® formilation of the problea for
the spherioal sarth case is sizplified substantially and 1s reduced to
the problea of solving the parabolic equation

3) _Bi\v_. 5[..1)._09_!] °,

in the region exterior to the earth and subjest to the additional
conditions

) (v—)'l = 0 and n.-?2 -0

240
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It i» d4fficult to estimate the error introduced by discarding the
geall” torms when using this method, To do this the vell-enve
Preamel "reflection® formila mist also be considered, The eesential
advantage of the parsbolio equation method is its great simplicity as
well as the possibility of solving more complex problens (for example,
wave diffraction from bodies of arbdtrary shape).

In this work the first case ccosidered is that in wich the
oarth {s assumed to be planar, Then the spherical earth case is con-
sidered and the sane formilas are obtained by using the parebolic
oquaticn method &8 Bad been previcusly obtained by approximately
suming the series vhish yleld the @mct solution of the problem,
The agreenent between results obtained by these two methods provides
a justification for the use of the parsbo.ic equation method in
problens of rediovave diffraction fram good conductors. Fock used
this method widely in later works on diffraction,

In the vork "Propagation af the Direct ¥ave Around the Earth with
Due Account for Diffraction and Muouun".’ the problem is solved
under the assumption that the surface of the earth is homogeneous as
ol as thet the dielectric constant of the air is a functiam € (b)
oaly of the helght b= -a of points abore the horiaca, & vertisal
43pole perfoming barmonic oscillations defined by the fastor =0t
43 placed on the surface of the earth at the point r=a, 8 =0,

A rapidly varying factor is isolsted from the Herts function U
A o ngw "slowdy® varying functicn U, 1is introduced by means of the

=
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Miere o = a is the length of arc on the terrestrial sphere from the
point shers the dipole s to the point above the esrth at vhich the
observer e eituated,

The author neglects quantities of erder (,_) 1n the equation
obtained for U, After introdustion of the nondimensional varisbles x
and y by means of the formulas

6) ]7 78 &= ’h_k"

where I _f’w 4s the equivalent radiue of the
<+ 2,0,

earth's purface, and after introducing the new function w by means of
the formla
£,0)v%
22

3
the probles 1e reduosd to determining the functim w(x,y) from the
oquation
2%

as) ——’ 1T ¢y0e gy = 0@ >0)

an

under the conditions
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a9 —_.P‘I -0 u.(-l._..li). o0,
ody o ;-:g 7=

and the nstural radistion condition for b>>1. The quntities q
and g, entering in the formilss reduced above, have the follodng
values

1fa* 0) " -
@) q- u@f};—: ¢ -ﬁ@,[ &)- “”-z;m].

Zavestigetion of the equation for w sbowe that if g =0 and Af
the radius a ie replaced by the equivalent radius of the earth %,
then the mathemtical provlem is Tediced to wctly the same fora as
when the atmoophore 1s absent. In the generel case, g can be con-
idored a3 8 function of the product Ay, where ,a--;—’ 1

a mal) parameter, The solution of the problem is successfully repre-
suated by the contour integrals

kY 2 4
&F S‘m Gt a,

VT 3t .«
r t14 o

@) " -

Were £(7,t) 1o an catire transcendentsl function with a definite be-
Bavior at infinity and sstisfying the equstions

(2) %0 [r-terstan)e = o
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The contour [ 1s infinite and encloses ths first quadrent of the
t plane,

Investigation of the solution of the problem constructed shows
that the lave of gecmetric optics are correct in the line-of-sight
region far from tis hordzon, The following inequality is the condition
for this
(23)

‘The solution trensforms into ths Weyl-van der Pol forrula for emall
values of x and y and for large valuss of p = ’/92_' cos o

The investigation of the eolution in the half-shadow region permits the
conclusion that the wave reaches the horizon with an amplitude ind
phase corresponding to the laws of geametric optios for an unbounded
medium and undergoes diffraction according to the law of the focal
field in the half-shadow region at the horizon,

This result agrees completely with the ideas of L,I, Mandel'shtem
that the properties of the soil are essential not along the whola ray
trajectory in radiowave propagation along the earth!s eurface but only
4n that region where the “ransaitter or receivers are located,

Let us turn to the work in which the problem diffractien from an
arbitrary convex surface is analyzed.

An alectromagnetic wave incident on & conductor excites surface
currents shich, in tumn, are sources of scattersd vaves, Consequently,

v



un essential step in the salution of the plane vave diffraction prob-
Jem from & conductor of arbitrary shape is to find the currents excited
on its surface,

In the work, "The Distribution of Currents Induced by & Plans Wave
on the Surface of & com:\u-.‘ the current distridution excited by a
plane vave on the surface of & convex, perfectly conducting, suffi-
clently smcoth body of arbitrary shape is analyzed umler the condition
that the length of the eleotremagnetic weve is very msall in comparison
with the body dimensions and the redid of curvature of ite swrface, A
fundanental resilt of the work is the proof that the field has looal
character nesr the goametric shadow boundaries,

It ia shown 4n the work that when the incident wave is polarized
wvith the electric vector in the plane of incidence the current distri-
bution near the boundaries cited is expressed through a universal
(1dentical for all bodies) function 0(f) of the argunent § = -{.,
vhore £/ 1s the dlstance fron the geometric shedow boundaries meas-
ured in the incident plane and 4 i the vidth of the half-shadow
region, An analytio expression is derived for the function G(¢£) and
dotailed tables are given,

The solution of the problem of the cwrrent distribution is hased
essentially on the study of the solution of the integral equation for
the eurrent density § on the surface of the perfect conductor, If
the monochromatic elsctromgnatio vave B = B ¢" X 114 on the
conductor and 4f the following notation is introduced



(@) £ o a-vat® T . o300,

then the following integral equstion is obtained for the surface cun
Tent, density

ta,

@ Fx[Px (-]

whers ¥ 1s the unit vector normal to the conductor surface; ¥ and
T/ are radius vectors of fixed points of the surface and of points with
the surface olement a3’ and R = |77 .

As an uwo-tm;.un of the integral equation in the case of very
large values of k (i,s,, szall vavelengthe A ) shows, it can be con—
sidersd, with snough accuracy, that T = 2§*% on the {lluminated part
of the surface (which corresponds to Presnel reflection theory and
T=0 1n the shadow part, In the naighborhood of the geometrical
ahadow boundaries, the integral equation shows that in a bandwidth of
order

@) /3

“here B, 1s the radius of curvature of a section of the body surfece

bty the incident plane, the current demsity and, therefore, the field

bas an approxinate value dependent only on the valus of the exteral

rie1a B in the potnt under the geometric

18tios of the surface elensat and oo the electric propertiss of the

confuctor, Such & Tesult means that universal formlas for the current
=i




enaiiy on the eurface of & perfect conduotor in the half-shadow re-
ion oan be obtaioed froa the solution of the diffracticn probles for
the particular ease of a convex surface, The universal formias neo-
tioned are cbtained by coneldering the problem of plans save diffrag-
tisa from s paredoloid of revelutisa.

The remlt is

“G
(20 T TN - 1'7f', ~
where -(z)umaup\qunm:mml‘ 1s & contour in the
ocmplex plase golng from nfinity to sero along the line arg = 4
and from sero to infinity along the positive part of the real axis, An
investigaticn of the ssymptotis valuss of G(€) for large positive and
begative valuss of £ shows that the current density 3° traneforms
continuously when the traneition is made frum the half-shadow into the
Line-of-sight or into the shadow regions, into the values 23°% amd
7= 0, respectively. Detailed tables ars constructed for the function
(.

The result of the preceding work 1s generalized in "Pield of a
Pane Wave Near the Surface of a Conducting Body® in that, first, the
1414 10 deternined not only on the body surface iteelf but also in &
cortain surface layer vith thickness smll in camparison with the redii
of ourvature) second, the body is comsidered to be not & perfest, but
only a good condustor in the sense thet the M.A. Leontovish conditions
bald for the tangential field companents on ite eurface, Furthemors,

xvid



the polarisstion of the incident wave may be such that the edectric
vector 1ies in or is parps dioular to the plane of incidence,

Lat us discuss the Fock work, "Fresnel Diffraction from Convex
Bottenr, a552)

Considered in this work is the diffrection fram e sphere, Wherein
refraction of the atmosphers is not taken into account, It is con~
sidered that the source and the observer are above the surface of the
earth, where by is the source helght and h, 1is the helght of the
obsorvation point, The field 1s expressed through the two salutions U
and w of the squatis AU ¢ k% = 0, The following notations are
4introduced in addition to those used previcusly:

.

(28) n = (4 Ty 7, - (%) Sy

v - i
(29) q-(—"f\; IR zqu-(%)‘(q-u '
The folloving formilas bold near the surface of the spheret
3 L (x )
30) . oy ¥ (x,7,729) 3

s
1) v "o ¥ (xanurea) o

and the attemustion factor V is axpressed by a certain contour imtegral

containing tvo Airey fuctions. ALL these resulte sre contained in the

work "Field from a Vertical and Horizontal Dipole, Ralsec Slightly Above
xvisy



\be Bartd's Surfase®, (1949)® and 1n the 1951 work, an approximte ex-
proseton 18 given for ¥ in the reglen of the shadow sons. Henos, 1t
s considered that the paremeter defined by the formula

02) #’-—Ef»

LE
1s Large and the quantity € « x = ffff - ofT7 is fiatte or mall,
Tw functions are introdused

ol § L [
() - dac
03 0 7;;[ * ]
24 n 3
(%) &l ..fl .M;r‘i‘z .
ETRT)

Then the appreximate expression V(x)7), 75,9) 1is the following for
£ 0 in the shadow cone

0s) v . bl
[

.“’0[,.:(,.5) -glf) * .L;’ ].
72 ha?

Ve 40 not cite the expression for @, o The principal tern e
K2(£), proportional to the Fresnel integral, It is independmt of
the matertal of the dody. o the

Ploture (Fresnel diffraction) determined by this term 1s the background
Qependent on the function g(€) varies slowdy in comparison with the
Principal term. This backgroumi depends on the materfal of the dif-
fracting voay,

xx
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grilils tarsgh Harrds D. Frisiaad, fne.s
See Appendix to this colleotion af Pock pipers.
Ses Chapter VI of this sollestion,

Ses Chapter IV of this collecticns

See Chapter VI of this collection.

Ses Chapter II of this collection,

See Chapter IX of thts callestion.

See Chapter VIII of this ccllection,



I. NEW MBTHODS IN DIFFRACTION THEORY

V. A. Fock

The general problem of the thoory.or diffraction of electro-
magnetic waves oonsists in finding & solution of Maxwell's
equations, having prescribed singularities (r1e1d sources)
and satisfying prescribed boundary conditions and conditions
at infinity.

The solution of this problem presents serious methe-
matical difficulties, which arise chiefly from the necessity
of taking into account the geometrical shape of the obstacles
on which the wave is falling. The problem is somewhat
simplified 1if only monochromatic waves of given frequency
are considered, but the difficulties are still so great, that
the problem has not yet been solved, except in cases when the
obstacle is of a particularly simple form, The best known of

thuse are the ca: of a perfectly reflecting half-plane or a

wedge, the cases of a sphere and a circular cylinder.

The ca

of an elliptic and a parabolic cylinder have
4180 been considered, and the field of a plane wave incident
©ON a perfectly reflecting paraboloid of revolution (oblique
incidence) has recently been obtained by the author. In the
few canes enumerated a rigorous solution of the problem in the
#om of an infinite series of integrals has been obtained.

()



The aim of 8 theory is to give a picture reproducing all
the qualitative and quantitative features of the phenomenon

coneidered. This aim is not until the soluti

1s of a sufficiently simple form. If the rigorous solution has
a complicated analytical form, it constitutes only the first
step; a second step must be made - the derdivation of formulasd
suitable for numerical calculations.

This second step may be &s difficult as the first one. To
glve an example, we may mention that the problem of diffraction
of ele’ctm-m@euc waves around a sphere was solved rigorously
some 40 years ago (Mie). This problem includes that of the
propagation of radio-waves along the surface of the earth.
Owing to the slow convergence of the series involved, the
general solution could, however, not be applied to the latter
problem until 1918, when a transformation of the original series
into another rapidly converging series was found (Watson). But
the improved form of tho solution was still unsatisfactory in
some respects, being very complicated and applicable only in
the region of the geometrical shadow (far beyond the line of
horizon). A far more satisfactory form of the solution,
‘applicable in all cases of practical importance, has been

1

recently found by the author.” Thue, the way from the rigorous

theoretical to the appr 1 one took about

40 years of research.

(2)



To find first a rigorous solution of a diffraction problem
and then to transform it into another form suitable for numerical
calculations - this straightforWard method is, however, of a very
1imited application. It can only be applied to the few problems
admitting a rigorous solution in form of series of integrals.

In other cases (especially when the diffracting obstacle
1s of arbitrary shape) attempts have been made to reduce the
problem to integral equations, 'l'hu; attempts have proved
successful from the theoretical point of view; but with the

2

exception of a paper by the author,” no use has been made of

the integral 131 for the p: 1 of the

problem, the general theory of integral equations being quite
useless for purposes of numerical calculation.

An approximate method, lurﬂgnnuy general and leading
to sufficiently simple formula# is thus urgently needed. In

the following we shall outline the principal ideas of such a

method, proposed and developed by the author.

Bvery approximate method is based on the smallness of some
parameters involved in the problem. We have to consider whioh
of the parameters of our problem may be regarded as small.

We are usually concerned with the propagation of waves in
air, 1.e., in a medium with properties widely different from
those of the bodies (: ): The electrical
properties of these bodies are characterized by means of the

complex dielectric permeability

)



q-tql%’:—’ )

(¢ denotes as usual the dielectric constant, t - the conductivity
of the medium, @ - the freq ). Now 1t 1s 1 that in

most cases |n) > 1. Thus we may choose as one of the small
parameters of the prodlem tue inverse value of |q| or the
quantity 1: _|[a) .

Next, the wave-length A in vacuo is usually very much
smaller than the radii of curvature of the scattering bodies.
We thus have another small parameter - the quotient 2.:R, where
R 18 the radius of curvature of the obstacle. It is convenient

to take .nstead the quantity

4R

R (2)

1.
n
In ad2ition to the two small parameters defined above,
there may be others, depending on the position of the point
of observation. For instance, in the problem of the propaga-
tion of radio waves along the earth surface the angle of
inclination of the ray to the horizon may be regarded as small.
Let us consider the consequencea of the fact that the
parameters 1:. |v|| and 1:m are small. In the limiting case
| L} I « o (perfect conductor) a great simplification arises
from the fact that the field 1s known beforehand inaide the
conductor (this field being equal to zero). We can confine
ourselves to the space outaide the conductor by prescribing

(%)



proper boundary conditions to the field in air (the tangential
components of the electrical vector should vanish at the sur-
face). A similar situation afises if m 1s very large.
The field ineide the body 1s in this case very small except
in a thin surface layer (skin-effect), and the influence of
this layer may be accounted for by stating boundary conditions
for the external field. These are of the form

:_vr 3= B - nE) = nH, - nHy, ete., ()

where “x‘ Jy, Jz) 1s the surface current density vector,
(nyg» L™ n') the unit vector of the normal to the surface,
Ey, the normal component of the electric field, the meaning
of the other symbols being evident. These conditions, first
stated by Leontovich’ in a somewhat different form, apply if
lql > 1 end if KR [[n] > 1 (K=2m: ). The latter in-
equality signifies that the thickness of the skin layer should
be small as compared with the radius of curvature of the
obstacle. Conditions (3) may be easily generalized for
arbitrary values of the magnetic permeability m.
Consequently the smallness of 1: [ql permits us to
confine our attention to the field outside and on the body,
which constitutes an important simplification of the problem.
We now proceed to examine the nfluerce of the amallncas

of the wave-length,

(5)



As well known, in the limiting case of small wave-lengths
the laws of geometrical optics become valid. Particularly, the
boundary of the shadow on the surface of the body becomes sharp
and well defined. On the ong side of the boundary — in the
1lluminated region — the field obeys very nearly Frensnel's
laws of reflection, and on the dark side the field rapidly
decreases to zero.

The approximation given by the geometrical optics is,
however, not sufficient for our purposes. The point of interest
for us is the diffraction phenomenon in its strict sense, i.e.,
the bending of the ray around the obstacle. This phenomenon
cannot be treated by the means of geometrical optics, and to
give a theory of this phenomenon a more accurate solution of
the field equations is required.

The author succeeded in finding this solution by mea:
a new principle which may be called "The Principle of the Local

of

Field in the Penumbra Reglon".

This principle consists in the following: - The transition
from light to shadow on the surface of the body takes place in
a narrow strip along the boundary of the geometrical shadow.
The width of this strip is of the order

3
ae [2R2, )

where R, is the radius of curvature of the normal section of
the body by the plane of incidence. .It may be proved that,

(6)



with r;eueet of emall quantities of ths order jg » the
f1eld in this strip has a local, character: 1t depends only

on the value of the field of the incident wave in the neighbor-
hood of the point considered, on the geometrical shape of the
body near the point and on the elec;,rlcn properties of the
material of the body. The fleld near a given point on the
strip does not depend m its values at distant points and can
be calculated separately.

To establish the principle of the local field and to derive
explicit formul:zs for this field we have used two different
methods .

One of these (2) applies to the case of an absolute con-
ductor ari gives the values of the fleld on its surface., We
stars with the integral equation for the surface current density

J. This 1s of the form
1 x [gix(z - 2] | ase
Je 2‘191 + ﬁf{nx XRZ z % (5)

£=(1- 1km)eKR (6)
The vector J°* (external current density) is defined by the
expression (3), where H is replaced by H®X, the magnetic
vector of the external field; z 1s the radius vector of the
point of observation, z' that of the point of integration;

Re |z - 2| 1s the length of the chord between z and z';

[}



n 1s the value of the unit vector of the norma} at z. A qualita-
tive study of the integral equation permits us to establish the
principle of the local field. This principle once established,
we have to find a solution of the diffraction problem for.a con-
vex body of a particular shape and to derive approximate formulas
for the field on its surface. In virtue of the principle of the
local field, these formulas hold for any other convex body having
at the point considered the same values of the principal radii of
curvature. (The particular body must of course be sufficiently
general to possess points with any prescribed values of principal
radii of curvature; actually a paraboloid of revolution has been
used). Proceeding in this way we arrive at a general formula
for the surface values of the tangential components of the
magnetic fleld or, which amounts to the same, for the surface

current density vector. This formula is of the form

3= 5" a(e, o) )

where the argument & in G denotes the quantity

=t 0f2n2 10, ®)

4 being the distance fran the boundary of the geometrical shadow,
measured along the ray {i.e., along the line of intersection of

the plane of incidence with the surface of the body) and taken
positive in the direotion of the shadow and negative in the
opposite direction. The function G(€, O) 1s defined by the integral

(&)
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where C 1s a contour in the eo-;}lex t-plane running from
infinity to zero along the line arc t = §* and from zero
to infinity along the positive real axis.

The function o(t) may be called the complex Airy's °
function; it 1s defined by the differentlal equation

o"(t) = ta(t) (10)

and by the for large negt values
of t

at) me T () VA e [s§ (-c)’/?]. (11)

The function G(€,0) tends to the limit O = 2 for large
negative values of €, while its modulus decreases exponentially
for large positive values of ¢. Formula (T) reproduces thus '
the gradual decreaee of the field amplitude when passing I'rom
11ght to shadow.

"The same results may be obtained by another method®
which allows us to generalize them in two respects. Firstly,
the body need not be a perfect conduotor, but may have a
finite conductivity, Af only the doundary conditipns (3) are
applicable. Secondly, the field is obtained not only on the
surface of the body, but also near the surface {st distances
that are small a’c compared with the radii of curvature). The
method consists in simplifying Mixwell's’ equations and boundary

(9)



conditions by neglecting quantities of the order of the square
of the small parameters 1= Jm and 1 : m. The wave equation
for the amplitude 1s thereby replaced by a parabolic equation
of Schrodinger's type. The simplified equations are valid in
a limited region near a point on the penumbra strip.

The solution of these equations may be performed by means
of the separation of variables and yields the field in the region
considered and especially in the penumbra strip on the body.
Introducing the complex quantity

R
“'ﬁ‘jlﬁ’ ’x (12)

(the modulus | g 1s thus the quotient of the two small para-

meters), we may write instead of (T)

= ale, @), (13)

where
°("°)"%'}'"-lﬁ'[h"‘(ﬂ%%' o9

the contour C being the same 88 in (9). These formulas give
thus the distribution of currents on the penumbra strip on the '~
body and generalize our previous formulas (7) and (9f. The
formulas for the field near the surface are more complicated
and will not be written here.

It is to be noted that in the outward portion of the strip,
where the 1lluminated reglon begins, approximate expressions can
be derived from our formulas that coincide with expressions for

(10)
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the field obtained by superposing the incident and the reflected
wave and using Fresnel's coeff{iclents of reflection. On the
other hand, in the opposite portion of the strip the field is
practically zero. Thus our !’omulfu constitute the missing
1ink Joining the two regions where the laws of geometrical
optics may be applied. Together with Fresnel's formulas they
allow us to compute the field near and on the whole surface of
the diffracting body. .

In some problems this is all that is required. In the
problem of propagation of waves around the earth's surface,
for instance, we are only concerned with the field on helghts
not exceeding ten killometers--a quantity that is small as com-
pared with the earth's radius (6380km.). In this instance
our formulas, 1f modified so as to include the case when the
source 1s near or on the surface, give the required solution.

In other problems, however, the fleld at large distances
from the scattering body is needed. In spite of the fact that
our formulas are valid only in the region near the surface,
they provide a means to calculate the field at large distances
also. Indeed, the field of the scattered wave is generated
by the currents induced on the surface (in the skin-layer)
by the incident wave. These currents are given by our formulas.
Thue, by applying well-known theorems on .the vector potential
due to a given current distribution, we may, in principle,
calculate the field for arbitrary distances from the reflect-

ing body.
(11)
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The prineiple of the local field in the penumbra region
provides thus a basis for the approximate solution of the problen
of diffraction in the general case of a convex body of arbitrary
shape..
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11. THE D!S'I‘RIMION OF CURRENTS INDUCED BY A PLANE WAVE
ON THE SURFACE OF A CONDUCTOR

V. Fock

The distribution of currents, induced on the
surface of an perfectly conducting body by an incident
plane wave is considered. The body is supposed to be
conver and to have & continuously varying curvature.
The wave length \ of the incident wave ia .uppoled to
be small as compared with the dimensions of the body
and with the radii of curvature of its surface. It
1s shown-that the current distribution in the vicinity
of the geometrical shadow is expressible in terms of
an universal function G(€
d.pqndin‘ on the argument §=2/d, where s
tance from the boundary of the geometrical -hldow.
mca.ul‘ed in the plane of incidence, and d is the width

3
of the penunbra region G- 2 82, R, 16 the radius of

curvature of the normal section of the body by the plane
of ineidence ). For the function G(£) an analytical
expression is derived and tables are computed.

Let us consider a perfectly conducting body on the surface
of which a plane wave 1s The surface
of the conductor is supposed to be convex, with a continuously
varying curvature. The incident wave induces on the conductor
electrical currents, which in their turn become a source of the
scattered wave. If the current distribution on the conductor
1s determined, then the calculation of the field of the scat-
tered wave may be performed by applying the well-known formulas
for the vector-potential. Hence the essential step in solving
the probler of diffraction of a plane wave by a perfect con-
ductor is to find the currents induced on 1ts surface.

[$))
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‘The present paper is a preliminary report on our work
ooncerning the approximate solution of this problem,

1. Let us denote by J the surface current density on the
conductor. The veotor J is defined for every point on the sur-
face and ie directed along the tangent to the surface., It is

letely by its two the
third component (noml to the surface) bo&ng equal to zero.

It may be shown that the vector § nulﬂn the follow-
ing integral equation:

Jm2g®% 4 f{ u[.ﬂ%l‘-_r‘)l g}, @ (1.01)
on surf

with

fu(1- Ry iR | (1.02)

In thie equation R is the length of the chord joining the two
points of the surface: the fixed point r(x,y,z), for which the
integral is evaluated, and the varisble point r!(x',y',z'),
whose coordinates are functions of the integration variables.
n is a unit vector of the normal to the surface at the point

r, d8' 1a the surface element at r' and k is the absolute vulue
of the wave vector.

The quantity J°* 1o an "externel" current density defined
by the formula

£regy [newen ], (1.03)
where H®* 1s the value of the magnetic field of the incident
wave on the surface ("external” field).

If the dependence of the external ﬂold upon the nooﬂimul
1s nnn by tho faotor

(2)
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elk(oxdyen) (1.08)

then the current density may he sought in the form of a product
of a similar factor with a slowly varying funetion of coordina-
tes. The integral (1.01) after dividing by (1.0k) takes the
form

I.j,u« [Rratxr-mepty-n)ar(z'-2}] gasi , (1.05)
where ¢ 1s a slowly varying function. If the wave length 1s

sufficiently small as compared with the dimensions of the
body, the value of the integral will be approximately

1.2 R, (1.06)
% cos 8

where the point x' y' z' 1s connected with the point x y 2 as
1t 1s shovm in Figs. 1 and 2, and 6 13 the angle of incidence
of the ray.

g

23 4
Pig. 1 Fig. 2

The analytical connection between the points x' y' 2'
and x y z 18 given by the following formulas. Let n' denote
the unit vector of the normal at the point x' y' 2' and let

)



uozn;‘ cos 6=a' ,
a@zn", cos G =g , (r.o7)

Y +2n} cos 6=y,

cos 6= - (m;oen;ow;) . (1.08)

The quantities o', B', y' are the direction cosines of the ray
reflected at the point x' y' z',
With these notaticns, we have either:

z -z
R

3

=y (1.09)

or

; 22 =y (1.20)
R

the formulas (1.09) being valid, if the point x' y' z' is
situated on the illuminated part of the surface (Fig. 1),
while (1.10) are valid, if this point is situated on the
shadow part of the surface. In the latter case the "reflected”
ray is fictitious.

With the same degree of approximation as in formula (1.06)
the integral equation (1,01) allows the following solution:

J= 24°% on the illuminated part, (1.11)
J == 0 on the shadow part.
Near the boundary of the geometrical shadow (where cos & @0),
formula (1.06) o 8 to be valid and expression (1.11) does
not give a gradual transition from light to shadow.
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2. In order to obtain for the currents an expression
valid in the transition region also, it is necessary to use a
pore exact solution, It is rather difficult to derive it
atrectly from the integral equation, but we have succeeded
to obtain 1t in an indirect way, on the basis of the follow-
1ng considerations.

First of all, it 1s seen from Figs. 1 and 2 that if the
point x ¥ z lles near the geometrical boundary of the shadow,
the point x' y' z' lies also near this boundary and near the
point x ¥ z. Therefore, the value of the integral (1.01) is
determined by the values of the integrand in the ngighborhood
of the point for which the integral is evaluated. Thus, in
the region of the penumbra (near the geometrical boundary of
the shadow) the fleld has a local character. Secondly, the
investigation of the integral equation (carried out under the
assumption that the chord can be repiaced by its projection
on the tangent plane) shows that the width of the penumbra
regicn 13 of tne order of

a="|2 ) (2.01)

where R° 18 the radius of curvature of the section of the body
surface by the plane of incidence. But in a region of width
d and in a certain more extended region the nucleus of the
integral equation depends essentially only on the curvature
of the surface in the neighborhood of a given point (i.e. on
the second but not on the higher derivatives of the surface
squation with respect to coordinates).

Hence 1t follows, that all bodles with a smoothly vary-
ing curvature have the same current distribution in the penumbra
region, if only the curvatures and the incident wave are the
same near the point under consideration.

(5)



the problem for any particular case, we oan obtain universal
formulas for the field on the surface of a perfect conductor, !
These formulas immediately apply to the region of the penumbra, |
but the field may be considered as known everywhere on the sur- %
face, since for the illuminated region and for the remote shaded
region the expressions (1.11) are valid. i

The results stated permit us to infer that, 1f we solve ‘

3. The derivation of these universal formulas 18 too
complicated to be given in any detailed form in & short paper.
We confine ourselves to some indications as to the method, and
to the statement of the result, which may be done in quite a
simple way.

The considerations developed above show, thit for the
derivation of the general formulas we can start from an exact
solution of the problem of diffraction of a plane wave by
some convex body with a smoothly varying curvature. The sur-
face of the body must, of course, be sufficiently general, 1.e.
must possess points with given values of the principal radii
of curvature.

There are two cases in which exact solutions of the problem
are known, namely, the case of a sphere and the case of & circu-
lar ¢ylinder (in the last case the incidence of the wave is
supposed to be ncrmal). These bodies are, however, not sufficlently
general: for a sphere the two radii of curvature are equal, and
for a cylinder one of the radii 1s infinite. The simplest of
the bodies heving arbitrary values of the curvature radii are:
the ellipsoid and the paraboloid of revolution. For these bodies
only the generai form of the solution of the scalar wave equation
1s imown; the complete solution of Maxwell's equation for the
given physical problem appears to be unknow'.

In our work we have obtained the required solution for the
paraboloid of revolution (particularly the values of the tangential

(6)
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components of the magnetic field on its surface) and have used
this solution to derive the approximate formulas.

Let the equation of the paraboloid have the form
4y 20z-ala0. (3.01)

The components of the field of the incident wave are

10

E,=Bycos se, u =0,
0, Ho=E ¢, (3.02)
-Esinse®; wo=o0,
where
Q =k (x8in & + z cos 8) . (3.03)
$
Fig. 3
If the parsbolic coordinates:
u=k (r+2z);
vak (r-2z); (3.08)

¢ =arc u§
(W]



with
r--]x +¥° 42t (3.05)

are introduced, the equation of the paraboloid becomes

v =v, mka . {3.06)
For the generalized (covariant) tangential components of

the external magnetic field we have the expressions:

E
2w+ HE = 2 fw el P10 (507
K

E —
- 2w HYY + n:" = =2 fuw o118 (308
k
In the new coordinates the expression for I has the form

n=},‘;(u-f)cns6‘ uwe 8in 8 cos ¢ . (3.09)

For the same components of the total field expressions in form
of Fourier series with respect to the angle ¢ are obtained.
The coefficlents of sin 8¢ and cos 8¢ in these series are
definite integrals with respect to the parameter t, involving
some complicated functions of u, v, &, 8, t. These series
and integrals can be transformed into double integrals of

the form

g, Jw

2m k 8in &

~18¢+1t 15t5% @ at
s »

21Ul +Hy = sle,t) e

(3.10)
where the function g(s,t) 13 defined in the following way. Let
¢ {v,8,t) be an integral of the differential equation

®)
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2
'—05) t=0 (3.11)
w2

having 8t v-»0 an asymptotic expression

PREATSEE - U G I S |
atas 3 oY r,z,z‘)(;-;-n;
1es-1t 1 (3.12)
2 "o

where F,, is an asymptotic series of the form

1 1, alasl +1) 1
Fag (\ﬂ.S.;) =1 #'I'a ;4—‘—1-1?2‘1—)-:!4’ (3.13)

We put
1t ce-1t )
-1 3 s T\z./ T ( H

@@ (0,8,-t-1) + & (s%4t?) €2 (v,8,-t41)
(3.14)

N(s,t)=1 e

where o 18 considered to be the quantity (3.06).

‘Then
1s 2
gls,t)me 2 ¢ (u,841,%) § (v,3-1,8) (s-1t) N (5,8) . (3.15)

With g(s,t) having this value, the expression (3.10)
1 valid, if -n/2 < ¢ < n/2, In the cases m/2 < ¢ ¢
3m/2 and -3m/2 < ¢ < -n/2 we have to take for g(s,t) a
somewhat different expression. which we shall not
(9
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write down here. The integration in (3.1C) with respect to the
variable t 18 to be made along the real axis from - o to + @
and with respect to s a“ong the imaginary axis from - 1 ®to
+ 100, The value of -21u M, + )l‘ 1e obtained from (3.10), if
we replace ¢ by -4, :
‘The double integral can be evaluated approximately under

- the assumption, that the value of v=ka is very large. Let us
introduce the quantity

uv 8in & cos ¢ - © cos &

t= [0 (wm)] 7% (etn 8 ’ (.16

Tt ie easy to verify that on the geometrical boundary of the
shadow £ =0) but in general & will be large, of the order of
nl/’. Therefore, when evaluating the integrals we shall con-
sider v to be very large and £ to be arbitrary (in general,
finite). It can be shown, that under these assumptions the
following approximate exp:essions for the integrals are valid

With a relative error of the order of v-2/3;

E
2tuH, +Hye Jwelf*+ g1y, (an

E,
el s Hem e [well a3

3
where 3
1 42 18t
e > L e dv
a(8) = e N I - ('; (3.19)

the symbol l‘l denoting a ocontour running from infinity to the

origin along ﬂ:.o ray arc z=2/3 v and from the origin to infinity
along the ray arc s=0 (the positive real axis).

(10)
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The function w(t) whose derivative 1s involved in the
yntegrand has ‘been studied in our previous paper® . w(t)
patisfies the differential equation

'
¥ (t)= tw (1), (3.20)

and can be written in the form of an integral

1o
u(‘l’)'-,-—%- }[ A R (3.21)

2

where the contour denoted by l‘e runs from infinity to the
origin along the arc zs= - 2/3 m and from the origin to
infinity along the positive real axis.

Comparison of (3.17) and (3.18) with (3.07) and (3.08)
glves

Hyg -u:: G (8) . (3.22)

Thus the tangential components of the total magnetic field
are equal to the tangential components of the external field
multiplied by a certain complex function of a single variable €.
A similar relation exists between the total and the "external”
current density, namely

3= a0 (o) . (3.23)

Let us examine the geometrical meaning of the variable & in
more detall. Consider the section of the paraboloid surface
by the plane of incidence passing through the given point
WJ(Fig. b). We denote by § the distance of the given point from

#Journ. of Phys., 2:255, 1945.

(1)
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Flg. 4

the geometrical boundary of the shadow, considered positive in
the direction of the shadow and negative in the direction of the
1ight. The distance } 13 measured in the plane of incidence.
Let R, be the radius of curvature of the surface section and

k = 27/\ the absolute value of the wave vector.

Then the quantity

3
e Ky s a4 (3.21)
RO

[whero d is the width (2,01) of the penumbra ng:on] 15 easily
seen to coincide with the quantity (3.16) defined for a parabolold
of revolution, Since we know beforehand that formulas (3.22) and
(3.23) are quite general, we conclude that they are valid for all
bodice with a given curvature, if ¢ 1s given by (3.24).

»

(12)
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These formulas give the transition from the shadow to the
11ght.

Por large positive values of £ the function G(£) 1s approxi.
mately equal to

)
ae) = coi(j T ne (3.25)

where a, b, ¢ are known numbers; namely

2 =0,509% ; ba=0.8823; cm=1.8325. (3.26)

owing to the factor % the function G(&) decreased rapidly.
This corresponds to the decrease of the amplitude in the shadow
region.

For large negative valuee of £ the function G(§) admits an
asymptotic expansion of the form

o(£)=2¢2—230. .. (3.27)

and tends to a 1imit which 1s equal to 2. This 1imiting value
corresponds to formulas (1.11) for the 1lluminated region. The
discontinuous function (1.11) is thus replaced in our more exact
solution by the continuous function (3.23). This enables us to
calculate the distribution of currents on the surface of a con-
ducting body with sufficient accuracy.

In the Appendix are given tables of the function G defined
by (3.19) and of the function g related to O by the equation

3

1
G(x) = e &(x} (3.28)

and expressible in form of the integral

13)



26

(x)= =2 Pl (3.29)
R Jooww ’

1

The function G(x) 1s tabulated for values of x from x - 4.5 to

x =1 with interval 0.1, and the function g(x) 1s tabulated for 2
range of values of X from xa - 1 to x=4.5 with the same interval.
For values of x less than xwm - 4.5 expresalon (3.27) may be used,
and for values of x greater than x=4.5 formula (3.25) becomes
applicable.

APPENDIX
1 2
Table of the function G(x)=e > 8(x)

x Re 0 In G la| arc G
- 45 1.3998 -0,0055 1.9998 - 930"
- b 1.9997 -0.0059 1.9997 - 100"
- b3 | 1.9997 -0.0063 1.9997 - 10's50"
- k2 1.9996 -0.0067 1.9997 - 1vken
-4 1.9996 -0.0073 1.9996 - 12130t
- k0 1.9995 -0.0078 1.9995 - 1320"
-39 1.9994% -0.0084 1.9995 - 13t
-3.8 1.9994 -0.0090 1.9994 - 15'30"
- 3.7 1.9992 -0.0098 1.9993 - 16'50"
-3.6 1.9991 -0.0106 1.9991 - 1810"
- 3.5 1.9990 | -0.0125 | 1.9990 - 19v%0"
-3 1.999 -0.012 1.999 - o
-33 1.999 -0.013 1.999 - 2

(1)



"T’ Re 6 Ina lal are @

.32 1.998 -0.015 1.998 - 26
.3 1.998 -0.016* 1.998 - 28"
. 3.0 1.998 1.998 -
.29 1.997 1.997 - 3w
. 2.8 1.996 -0.022 1.996 -
. 2.7 1.996 -0.024 1.996 - 41
. 2.6 1.995 -0.026 1.995 - ke
.25 1.993 -0.029 1.994 - s
-2 1.992 -0.033 1.992 - 56
.23 1.990 -0.036 1.990 - 1%3
- 2.2 1.988 -0.040 1.988 - 1%0'
- 2.1 1.985 -0.045 1.985 - 1018t
- 2.0 1.981 -0.050 1.982 - 127"
- 1.9 1.977 -0.056 1.977 - 197
- 1.8 1.971 -0.062 1.972 - 104
- 1.7 1.965 -0.068 1.966 - 1958
- 1.6 1.956 -0.075 1.958 - 2011
- 1.5 1.946 -0.082 1.948 - 2%5°
R 1.933 -0.090 1.936 - 2%o0
- 1.3 1.919 -0.008 1.921 - 295t
-1.2 1.901 -0.105 1.904 - 3%0
-1 1.880 -0.113 1.884 - 3%
- 1.0 1.857 -0.119 1.861 - 300
- 0.9 1.829 -0.123 1.833 - 3%1
-0.8 1.798 -0.126 1.802 - 4°00"
- 0.7 1.762 -0.126 1.766 - %05
- 0.6 1.722 -0.122 1.726 - Loo3
- 0.5 1.678 -0.115 1.682 - 3054
- 0.4 1.630 -0.103 1.633 - 3936
-3 1.578 -0.086 1.580 - 3906
- e.2 1.522 -0.063 1.523 - 2%2
- 0.1 1.462 -0.034 1.463 - 1%

(15)
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x Re G no le] arc @
° 1.399 0 1.399 0%00"
0.1 1.333 o.040 | 1.33% 1%
0.2 1.263 0.086 | 1.266 3%5¢
0.3 1.189 0.137 | 1.197 6°35
0.4 11 0193 | 1.128 9%1!
0.5 1.029 0.252. | 1.059 13%s
0.6 0.951 0.3:12 | 0.991 18%:z¢
0.7 0.856 0.373 | 0.924 23°u7"
0.8 0.74% 0.432 | 0.860 30%08"
0.9 0.638 0.884 | 0.798 37%22"
1.0 0.515 0.529 | 0.738 45%u41
-1 2
Table of the function g(x)= e 3 a(x)
x Re g Ing lel arc g
- 1.0 1.79% 0.495 | 1.861 15261
- 09 1.805 , 0320 | 1.833 10%H:
- 0.8 1.793 “ 0.8 | 1.802 507"
- 0.7 1.765 035 | 1.766 2%28"
- 06 1.726 ¢.00> | 1.726 %0k
- 0.5 1.681 - o.085 | 1.6682 - 1%
- 0.4 1.632 - 0.068 | 1.633 - %23
- 03 1.578 - o.0om | 1.580 - 2%
- 0.2 1.522 -0.05% | 1.523 - 2%
- 01 1.462 - 0.0 | 1.463 - 1%0
° 1.399 0 1.399 o®00*

(16)




x Re g Im g |g| arc g

0.1 1.333 0.040 | 1.334 1%43
0.2 1.263 0.083 | 1.266 3%s¢
0.3 1.190 0.127 | 1.297 &%u1
0.4 1.115 0.169 | 1.128 80370
0.5 1.038 0.209 | 1.059 1%
0.6 0.961 0.284 | 0.991 14°%14¢
0.7 0.883 0.274 | 0.92% 17°18¢
0.8 0.806 0.299 | 0.660 20°19"
0.9 0.732 0.317 | 0.798 23%27"
1.0 0.660 0.331 | 0.738 26°38¢
1.1 0.591 0.339 | o.682 29%0°
1.2 0.521 0.343 | 0.628 33%62+
1.3 0.467 0.342 | 0.578 36°13
1.4 0.411 0.338 | 0.532 39%25"
1.5 0.360 0.330 | o.u88 42°341
1.6 0.313 0.320 | o0.448 45%2"
1.7 0.270 0.309 [ 0.410 48°u8"
1.8 0.232 2.960 | 0.376 51%3¢
1.9 0.197 0.281 | 0.343 54%56¢
2.0 0.167 0.267 | 0.315 57%59"
2.1 0.140 0.252 | 0.289 61%0°
2.2 0.116 0.237 | 0.264 64°00"
2.3 0.095 o.222 | o.212 66°58"
2.4 0.076 0.208 | 0.z21 6956
2.5 0.0596 0.1936 | 0.2025 72%54"
2.6 0.0453 0.1797 | 0.1853 7551
2.7 0.0330 0.1664 | 0.1696 78%71
2.8 0.0228 0.1536 | 0.1552 81%3"
2.9 0.0133 . 0.8 | o.1821 84°39+
3.0 - €.0055 0.1299 | 0.1300 87%41
3.1 - 0.0010 0.1290 | 0.1190 90°30"
3.2 -~ 0.0065 0.1088 | 0.1089 93%25¢

Qan




x Re g Img ls l are g

3.3 - 0.0110 0.0991 0.0997 96°20*
3.4 - 0.0147 0.0901 0.0913 99°15¢
3.5 - 0.0176 0.0817 0.9836 102°10"
3.6 - 0.0199 0.0739 [ o©.0765 105%05
3.7 - 0.0216 0.0666 | 0.0700 108%0!
3.8 - 0.0229 0.0599 0.0041 110%55¢
3.9 - 0.0237 0.0537 | 0.0587 113%0
5.0 - 0.0242 0.0480 0.0537 116°45"
w1 - 0.0244 0.0428 | o.0n92 119%0°
4.2 - 0.0243 0.0380 0.0451 122%35¢
5.3 - 0.0240 0.0336 0.0413 12530+
' - 0.0235 0.0296 | 0.0378 128%25¢
(X - 0.0228 0.0260 0.0346 131%0°

(18)
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1IL DIFFRACTION OF RADIO WAVES'AROUND THE EARTH'S SURFACE
V. Fock

The problem of the propagaticn of radioc waves
around the homogeneous surface of the earth is inves-
tigated, The diffracticr effects are considered but
the influence of the ionesphere is reglected. The aim
of the paper is to derive formulas for the wave ampli-
tude as a function of the elevation of the source, its
distance from the point of observation (situated on
the surface of the earth), of the wave length and of
electrical properties of the soil. The main result is
the derivation of an expression for the attenuation
factor in form of an integral. This erpression is
valid for all the values of parameters which are of
practical interest. In the limiting cases the well-
known formulas are obtained: the Weyl—van der Pol
formula for illuminated region and the formula which
corresponds to the first term in Watson's series for
the shaded reglon (the latter in a slightly corrected
form). Essentially new is the investigation of the
region of the penumbra (near the liie of horizon).
Formulas are obtained which give a continuous trarsi-
tion from the 1lluminated region to the shaded one.
Methods for numerical calculations of sums and inte-
grals involved in the problem are elaborated.

INTRODUCTION ®
There are many papers devoted to the problem of the dif-
fraction of radio waves around the surface of the esrth. A
review of more recent investigations may be found in a paper
by B. Vvedensky.?
The interest in this problem is Justified by the fact,
that at small distances, of the order of a few hundreds of

"4 short,account of the result. of this paper is given
note.l

in our
1
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kilometres, the refraction of radio waves in the lonized layers
of the atmosphere may be neglected and the decisive role in the
propagation of radio waves is played oy the diffraction.

In spite of the fact that a rigorous solution of the pro-
blem of diffraction by the sphere had been already obtained
some decades earlier, no practically suitable approximate solu-
tion has been proposed up to now. In this paper we intend to
£111 up this gap.

1. STATEMENT OF THE PROBLEM AND ITS SOLUTION
IN THE FORM OF SERIES

We denote by r, 6, ¢ spherical coordinates with origin
at the center of the earth globe.

The equation of the earth's surface (considered as smcoth)
is r = a, where a is the radius of the earth. Let us suppose
that a vertical electric dipole is located at the point r = b,
8 v 0 (where b>a). Suppressing the time-dependent factor e 1%t
in the field components, we can express these components by
means of the Hertz function U which depen&on r and € only. De-
noting by k the absolute value of the wave vector we obtain for
the field in the ainr:

PR |
'mnw(“"'g'"a)i

5—( 3,) (1.01)

I(‘=-£k »

(2)
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che other components being equal to zero.
Similar equations hold for the field in the eanth.
The function U satisfies for r > a the equation
2+ k2 =0, {1.02)
and the radiation condition at infinity
11m ("’“ - ke u) -o. (1.03)
T+ 00

If b > a, 1. e. if the source (dipole) 18 located over
the earth's surface and not on the surface 1itself, U must have
a singularity at the point r = b, 6 = 0, such that

ikR
U= 51— +ur (1.04)
and U* remains finite if kR » 0. In this formula
R= Vr? 402 - 2rb cos 6 (1.05)
1s the distance irom the dipole. On the earth's surfaae the
Hertz function U has to satisfy the boundary conditions which

ensure the of the 1 Eg and n..
If we denote the Herft function within the earth by v,
these boundary conditions will have the form:

g Uy a% (ru) = 5"; (rUy) forr e a. (1.06)

Ky =

For 0 ¢ r ¢ a {within the earth) the function U, has to
satisfy an equation similar to (1.02) and to remain finite.

The quantity k, in formula (1.06) and 1in subsequent
formulas 18 determined by the equation

12 = a4 g 426 (1.07)

)
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and by the condition Inf{k,) > 0. It is useful to introduce

instead of the uonauctlvity of the earth 6, a length "8 which
characterizes the speeiﬂc ruutunec of ‘the earth. We put

*xcfma (108
For sea water 'thn values of ¢ vary from 0.05 cm (v;ery salty
water) to 0,5 cn (dcarcely salty water).® For the soil'thfs
length is hundreds ‘or' thousands times ‘greater. Introducing
the complex induotive capacity of. the earth v
s N . N N
nee+d ;%, Log)

we have

Lk [ (1.10)
The solution of our problam in the form of series is well

known. We write.down the 'noeel'ury,romulu, without giving
their derivation

¥ (x) = V Tneg ()3
. L. (1.11)
. [(RS) <y 251 w0, .

where J_(x) is the Bessel function ahd llsl)(x) 15 the Hankel
function of the first kind. These functions are; connected by
the relation

L) - wyx-E(x) »ae “l112)
e a spesial notation for the »
of the function y_(x)1 ey '

" xn{x) valx) (1.13)

Yolx)
AW
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As seen from (1.01), the fleld on the earth's surface
may be expressed by the quantities
'
]
U "Upaai Vg =gr (P00 ge (1.18)
For these quantities the following series in legendre
polynomials may be obtained:
(2n + 1) £ (kb)
B p (cos 6), (1.15)
o8 Salka) - % X (ka8) 8 (ka)

©

1
Ya " ¥ab

2n b
v = - *2) G 00) xylkge) T (co8 8). (1.16)
s TR 1 (ka) - o Xnlkza) Glka)
Our task 1s to perform an approximate summation of these

series.

2. THE SUMMATION FORMULA
The sums we have to calculate are of the form

s -Zu(v)rv_’(co- o). (2.01)

where the summation 1is taken over half integral values of v,

In the sum (1.15) the function ¢(v)(disregarding a con-
stant factor) is equal to

[

o(v) = ¥ .
8. ylka) - i X3 0z8) €, _z{ka)

(2.02)

In the sum (1.16) this function differs from (2.02) by the
factor x, (4.

(5)
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Por the direct computation of the sun it would be neceesary
to take the number of the terms approximately equal to 2ka, 1, e,

to double the number of the wa which may be put around the

earth circumference. Since this number 1s enormous, it is evi-
dent, that such a direct summation is impossible. For the cal-
culavion of the sum S it is necessary to mske use of the fact
that ¢(v) 1s an analytical function and to transform this sum
into en integral, which is to be evaluated by some approximate
method. Such a transformation was firstly proposed by Watson®
1n 1918 and was then used by various authors. But all these
authors aimed to bring the expression obtained by this trana-
formation to the form of a sum of residues, while our aim 1s
er to investigate and

to separate out a main term which 1s e

to the of the . The method of com-

putation of the main term im not predetermined thereby.

When performing our transformation we have to bear in
mind the following general properties of the function ¢(v).
It 1s an analytical function of v meromorphic in the right
half-plane. It has poles only in the first quadrant and is
holomorphic in the fourth quadrant. It decreases at infinity
in such a way that all the integrals considered converge

The Legendre functions that enter (2.01) can be expre:
by means of the function

-10
o, s Lot AT p (4, 4, v+, 28 (2.03)
v v+ n

(6)
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where F denotes the hypergeometrical function. Denoting by

Gf and by Fj_, the expressions which are obtained from G, and
4 '

from Py g = ’v-il“’ 8) by replacing 6 by n - 6 we get:

1 1ve-13 -1ve41}
’[ Tofee Fuv]. (2.04)

PR S
vt T S Vz et
It 1s seen from (2.03) that if the values of v lie out-
side of a certain sector, which includes the negative real
axte, and 1f |v sin 0| 15 large, then the function G, (and
also av') 1s approximately equal to

a, ~Van. (2.05)

Substituting (2.05) in (2.04) we get the well known
asymptotic expression for "wg- 1 we denote by B(v) the
first term in formula (2.C4):

1 1vO-1F o
B(v) = —=——— ¢ T a 2.06'
(v) T o, § )

the following relation may be proved
Byt etlv-dm Py_y + 21 cos v B(v). (2.07)
We shall use this relatlon later on. We note that B(v)
1s holomorphic in the right half-plane.
Let us consider in the plane of the complex variable v
three contours: 1) the loop C, which starts at infinity on the

positive real axis, runs above the real axis, encirclee the

()
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origin counter-clockwise and returns to the starting point at
infinity running below the real axis; 2) the broken line C,,
which the first and is (in ite

horizontal part drawn slightly over the real axis) from the
left to the right alde; 3) the straight line c> which crosses
the origin and is inclined at a small angle to the imaginary
axis. This line is described from the top to the bottom and
1ies in the second and fourth quadrants.

We can write the sum S in the form

5. ,‘*,J‘ ve(v) sec va r:_g av, (2.08)

1

since the integral on the right-hand side reduces to the sum
of the residues in the points v = n + 4. The function ¢(v)
being halomorphic in the fourth quadrant, we may replace the

contour C) by the contours C, and c) and write

s=-% jvo(v) sec v PYy dv +
‘2
(2.09)
4+ %j va(v) sec v By _y dv.
This of the sum P to the usual

one; the integral along the contour (73 1s neglected because of
the emallness of the odd part of ¢(v) (an estimate of its magni-
tude will be given below), and the integral along €, 1s reduced



%

to the sum of residues. But we shall go a step further and
divide the integral along c2 into two parts: the wain term
and the correction term. Inserting in the integral the ex-

pression (2.07) for P:_* we shall have

s = Sl + S,‘, + S,. (2.10)
where
5 jvg(v) B(v) dv, (2.12)
4

S04 S vo(v) sec vn etV? Py av (2.12)

C2
5, =% S vo(v) sec vi BYy dv. (2.13)

S

The integrand in S, has no poles on the real axis (and
also in the fourth quadrant). Therefore, there is no difference,
whether we evaluate the integral sl along (:2 or along t:3~ Wwe
have denoted by C any contour, which is equivalent to cz or c,.

The representation of S as a sum of three integrals (2.10)
18 exact—there was made no neglection in our derivation. But
the estimation of the magnitude of S, and s) shows that these
integrals are negligibly small as compared to 51.

In fact, if we evaluate the integral 52 as a sum of resi-
dues at the poles of ¢(v) we shall see that its ratio to S, 1s

of the order

(9)
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§21v1 (7-0) (2.14)

where v, 1s the pole of ¢(v) nearest to the real axis. The
imaginary part of vy 1s positive and for large values of ka
will be

n(v) = c(ka)>/?, (2.15)

where ¢ 1s a pure number of the order of unity (for the per-
fect conductor ¢ = 0.70), Since ka is very large,of the order
of a million (for A = 40 m, ka = 105), 1t is clear, that the
quantity (2.15) will be large (for instance, equal to 70) and
the quantity (2.1%) will be neg)igibly small. (In our problem
€ cannot rcach the value 7 since in this case we have to take
into account the influence of ilonized layers of the atmosphere
and our formulas cease to be valid.)

The value of the integral s) 1s determined by the odd
part of ¢(v). But the odd part of this function will be of
the order

EECI (2.26)
Since the imaginary part of "2‘ is a positive and very large,
the value of (2.16) will be inconceivably small.

The following physical p.cLure gives a notion of the
smallness of the integrals 8§, and S). The integral S,‘, 1e the
amplitude of a wave which travelled once or several times
around the globe without refraction (by means of diffraction

enly). The integral s‘, 18 the amplitude of a wave which

(10)
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craversed & path equal to the dieameter of the globe with the
absorption which takes place within the earth. It is clear
that both the integrals are negligibly small as compared with
the amplitude of the wave which reached the observer through
the air by the nearest way.

Therefore with the whole permissible accuracy (i.e. with
an error which i3 negligibly small as compared with the errors
involved in the position of our physical problem) thz .um S
defined by (2.01) may be put equal to the integral S, alone.
This integral may be written in the form

5 . )
1 avzeme P,

vo(v) 1 a¥av, (2.17)

which follows from (2.11) when the expression (2.06) for B(v)

is 1inserted,

3. THE EVALUATION OF THE HERZ FUNCTION
FOR THE ILLUMINATED REGION

If ¢(v) 1s the function (2.02), then the relation between
the sum S and the quantity U, is
U - - ZS (3.01)
a kab B
Therefore, our approximate expression for U, may be

written

2n
2e 1ve o
v, s —2——— \vp(v) ¥ of av. 3.02
e nklbv2'1n0§ ) v (3-02)

(1)
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The position of the main part of the integration path in
(3.02) depends on the point for which the integral is evaluated,
In general the main part is in the vicinity of the point v = Vos

where

ab sin 6

(3.03)

The quantity hc 18 the length of the perpendicular dropped
from the earth's center on the ray (1. e, on the straight line
which connects the source and the point of observation).

For the approximate evaluation of the integral l’. it 18
necessary to obtain the asymptotic expressions for the furc-
tions n: and ¢(v) valld on the main part of the integration
path, Since Yo and Voo are large as compared with unity, we

may put according to (2.05)

a; = Yapv. (2.04)

For the Hankel functions involved in ¢(v) one may tenta-

tively use the Debye expression

(- 9)
[FT) Jpe— S— . (3.05)
v L)
where
2
€ -§ Vx -isdp. (3.06)
v

These exp: are valid the

162 - 2l 5 g4/ (3.01)

(12)
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40 satiefied. As to the functlon Xw-g("-a') its value near
the point v * v, may be represented with a sufficlent approxi-

sation by the expression .

2
X,y (kpa) = - Ml +— (3.08)
- kg
In order to make clear, in which cases the inequality
(3.07) 1s satisfied, let us introduce the parameter

P -(§5>‘/) cos v, (3.09)

where y 13 the angle between the verticai direction at the
observation point and the direction from this point to the
source.

It 1s easily seen that for v = Vor P * ka the inequality
(3.07) 1s equivalent to the condition that p should be large
and pcsitive. Such values of p correspond to the 1lluminated
region, The values of p of the order of unity (positive and
negative ores) correspond to the reglon of penumbra: the
special value p = 0 gives the boundary of the geometrical
shadow (horizon line). Large and negative values of p corres-
pond to the shadow region.

In this section we shall investigate the case of a large
positive p (11luminated region); other cases will be investiga-
ted in the next sections.

We have seen thai if p »1 the Debye expressions for the
Hankel functions are valid. Inserting these expressions into

(13)
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(3.02) and ueing (3.04) and (3.08) we get
s a2 - 2

- 2e b {y/kCa® - v

%a m;znuno‘/—'_j P

2V av
V!

(3.10)

‘% 1-

¥
where
w:ﬁ\,l -:;dp#v.. {3.11)
ka
1f the condition
kh cos ¥y » 1 (3.12)

1s satisfied, where h » D - a is the height of the source above
the earth, the integral {3.10) can be calculated by means of
the method of the steepest descent and the following “reflec-
tion formula" is obtained:

S1KR
O " F V- (3.13)

In this formula
Re 07 - 2ab cos 0 (3.14)

is the distance from the source,and W is the "attenuation
function” which in our case is equal to
2

L . (3.15)
1 4%;;1 -%-m‘ Yy - sec y

(14)
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The quantity U] defined by the series (1.16) aiffers
(4n our approximation) from U, by a constant factor only.

We have '

¥ Uy (3.16)

The last formula is true not only for the illuminated
region, but also in other cases.

1f condition (3.12) i3 not satisfied, the denominator
in the integrand (3.10) cannot be considered as slowly vary-
ing. If instead of (3.12) we suppose that the conditions:

2
1< :'F « (xa)?/3, (3a7)
1« kR & a/h, (3.18)

are satisfied (the inequality p » 1, being a consequence of
these conditions), the integral (3.10) can be approximately

calculaved by introducing a new integration variable u,

2
4' b x 2 (3.19)

For the function W in (3.13) the following approximate

according to

expression 1s obtained:

n _ KR oo y2
1{‘1/?7“5;1? (1 = 1) Al 00

T

(15)



where

Ho = H/R .21)

is the inclination of the ray to the horizon. The contour I

is a straight )ine which crosses the point u = Ho passing there
from the fourth to the second quadrant of the plane of u (or of
w - W, to be more exact). The integral (3.20) can be calculated
without any further approximation and gives the well-lmown

Weyl— van der Pol formula.

If we put
o -e‘%i‘rz@ B =¢‘E§ (3.22)
we shall have
W2 - uger (o Te‘z da. (3.23)
i®
To obtain the field from our exp for

U. and IJ‘ we have to differentiate these expressions by 6 which
1s easily done, since we may regard all factors in (3.13) ex-
cept e“‘n, as constants.

4. ASYMPTOTIC EXPRESSIONS FOR THE HANKEL FUNCTIONS

In the following we have to consider the case when the
point of observation is in the region of penumbra.
This case 1is characterized by the values of the parameter

p (positives or negatives) of the order unity. As the inequality

(16)
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c_g;) 1s not satlsfied in this case, the Mebye expressions
(3.05) for the Hankel functions are not valid on the sain part
of the integration contour and must be replaced by some others.
The new expressions for the Hankel functions suitable for our
purpose can be obtained from the asymptotic expressions which
are given in our previous paper’, or from the formulas given
in the well-known Watson's tl‘eltise“, but it 1s more simple to
deduce them independently.

Our aim 18 to find an approximate expression for the
Hankel function in terms of the function w(t), defined by

the integral

w(t) =

J_Se""/”) dz, (4.01)

the contour T running frun infinity to the origin along the
Tay arc ¢ = - 2n/3 and from the origin to infinity along the
ray arc z = O (the positive real axis). Tne function w(t)
satisfies the differential equation

wh(e) = tw(t) (.02)

with the initial conditions:

- L'es 1n/6) .
w(o) = ;—W e11/6) - 1 0899290710 + 10.6292708825,

") - 2"{_70/‘) &1(0/8) .+ 5, 7945704238 - 10.45874544B1 .
- (4.03)

Q7)
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w(t) 1s an integral transcendental function, which can be ex-

panded into & power series of the form:
3 6 9
w1 2w {3+ 25 + e + wEREEn )
K 7 410
s w@{es gy e oty « o ¢ o}
(4.08)
If we separate in w(t) the real and the imaginary parts
(for rexl values of t) putting
wit) = u(t) + 1v(t), (4.05)
then u(t) and v(t) will've two independant integrals of equa-
tion (4.02) connected by the relation
u'(t) v(t) - u(t) v'(t) =1, (4.06)

The p! 1 of these fu for large

negative values of t are obtained by separation of the real
and imaginery parts in the formulas:

yre

a 2,
w(t) = ST ()t eis( ¢ (4.07)

e

m 2
vy = e T i B3 (4.08)

For large positive values of t the asymptotic expressions

for u(t), v(t) and their derivatives are of the form

23/ 232
w ) =S w s ST (w09

(18)
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v(e) = %c-l/b - 3 3/

. _‘a/z
vi(e) = - f e (5.10)

From the series (4.04) the following relations are easily
deduced:

.n 2

w(te S) . Ee v(-t). (%.11)
2n a

wite 3) = 3 [ue) - ] . (x.12)

These relations describe the behavior. of w(t) in the complex
t-plane.

We note that w(t) is expressible in terms of the Hankel
function of the order 1/3 sccording to the formula

2n
w0 305 /2 (3 o). @3

After having enumerated the main properties of w(t), we

now procecd to deduce the asymptotic expression for the Hankel
function Hsl)(p) where v and p are large and nearly equal, so
that the ratio
=L =t (u.18)
»/2
remains bounded, while p tends to infinity.
The Nankel function Hsl)(g) adnits the integral represen-

tation

(19)
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W) = & 5: PR N G, (4.15)

where the contour C consists of & part of the straight line
Im{v) = - m described from - nl - ®to some point v = Vo With
Re(v,) <0 [e. 8. v, = (- 3) - tn], a straignt line join-
ing v, to the origin and, finally, the positive real axis des-
crited from the origin to infinity.

Let us express v through t, according to (4.1%), and

2= Aoy (4.26)

Considering t and z as finite and p as large, we can ex-

a new

pand the intergrand in (4.15) in a series of negative (frac-
tional) powers of p. Since the relevant part of the trans-

formed contour ¢ coincides with contour T' we can write
\-1/3 3 v2/3

e = &(8) S R (TN
(¥.17)

and evaluate the integral using (4.01). We thus obtain

1 % v2/3

HS, Yp) = - 4_7(5) [w(c) - éﬁ(g) FLE2 TS B N
(8.18)

In virtue of the differential equation (4.02) the fifth
derivative equals
Wty = 62w (1) + weu(e). (5.19)

(20)
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Inserting this in (4.18) and using (1.11) we get the
following expression for the function §,-1/2(p):

ty-2/2(p)5--(8 /6{'(2)-616(5)'“2/)[tzv'(t)ﬂw(d'..}. (4.20)

Differentlating this expression with respect to p (with
account of the dependence of t on p with v constant) we get

the following expresaion for the derivative:

ty1/200)= x(g)-lfﬂ{.-m-g; (8 *esorw (1-sewte . ,A}A(».m)

These expressions will be used in the next section.
§ 5. The expressions of the Herz function valid in the
penumbra region.

We rewrite the expression (3,02) for the Herz function

therein the 0; by its value
9/77V and the quantity sin @ before the integral by 6.
Ve get

F
v, - 2 S«v)-“’ /7. (5.00)
kab &

The contour C may be taken identical with contour CE'
which was defined m§ 2, or may be replaced by some contour
equivalent to cz. The main part of the integration path lies

in our cese (1.e. for finite values of the parameter p) near

(21)
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the point v = ka. Consequently, the function X‘_’(kz') involved
in (2.02) can be replaced by the value of (3.08) for v = ka.
Introducing this in ¢(v) we obtain:

[ )]
o) = vd (5.02)
I Ry < Gy qlia)
K5
For ‘v-'{ and its we must uee exp: valid
near the point v = ka. Such expressions were obtained in the
pr in (4.20) and {4.21) the prin-
cipal terms only we get:
' 1/6
¢,yta) = - 1(88) 7w, (5.03)
-1/6
g, k) = 1 ()7 wie, (5.00)

where the variable t 1, connected with v by the relation
1/3

v =k '(%ﬂ) €. (5.05)
The numerator in (5.02) 1s obtained from (5.03) by replacing
abydbandt by t', where

S 1/3

veio s ()77 0l (5.06)
Equating (5.05) and (5.06) we obtain the connection between t
and t'. Since the ratio h/a, where h * d - 8, is asall [ue

shall consider it of <he same order as (h)'a/jj we must neg-
lect 1t as compared to unity. We may then put

(22)
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trzt -y, {5.07)
where N
kh
. 5.08)
Y G ¢

1s @ quantity proportional to theé helght of the source over
the earth's surface., We may call y the reduced height of the
source. Hence, with neglect of terms of the order h/a or
(ka)"2/? ve have:

1/6
¢y yt0) = - 1 () e -, (5.09)

where t 1s determined by (5.05). (We have also replaced b by
& 1n the factor before w.)

Substitution of (5.03), (5.08) and (5.09) in (5.02) gives
the desired approximate expression for ¢(v).

If we put for the sake of brevity

1/3 2
- ka' X _ kK
Q=1 (?) KAy Fa B (5.10)

we obtain

o+ () s n (5.11)

Renembering formulas (1.09) and (1.10), we may write for
the quantity q

s V——
na =1+ 3{x/2nt
as1 (T) TR (5.12)

(23)
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or with the same accuracy

ea(my?____
q ‘(" We+1+ 1(n/2nt) (5.13)

This form is slightly more convenient for calculations.

We have now to substitute the value of ¢(v) from (5.11)
into (5.01) and introduce the integration variable t. Making
this substitution, we may replace the quantity ‘lTin the inte-
grand by the constant value Vika and also write b instead at
a in the factor before the integral. The resulting formula may

be written in the form:
tkao -1 (‘
- e ¥ fx (oaxt _wie -
U, =S 7 e ey o (5.14)
&

where x denotes the quantity
Y
x = ()%, (5.15)

which may be termed as the reduced horizontal distance from
Lhe source, while y and q have the values given by (5.08) and
(5.13). The contour C must be such that all the poles of the
integrand are comprised within the contour; as we shall see
later, they are all situated in the first quadrant of the t
plane. Thus we can carry out the integration in (5.14) from
ioto 0 and from 0 to + @

In order to get a more clear idea on the ratio of the
horizontal and the vertical scale in the varjables x and y,
we write the expression for the parameter p, as defined by

(22)



55

(3.43), in terms of x and y. From the consideration of the
triangle with vertices in the earth's center, in the source

3
point and in the point of observation, the following approxi-

mate expression 18 easily deduced:

» -(L‘})l/) cos v = By ke (5.16)

It follows that the equation of the horizon line is

y. Further we shall need the relation between the dis-
tance R from the source as measured along a straight line and

the 1 aé as along the arc of a

arent circle. Assuming a6 >> n, 1. e. )/ x > y, thie
relation may be written

KR = kab + @, (5.17)
where
‘é‘?"f;- (5.18)
6. DISCUSSION OF THE EXPRESSION FOR THE HER'Z FUNCTION

The expression obtained for the Hertz function is most

conveniently written in the form:
o1ka®
=&—V (uysa), (6.01)

where

-1 o wie - y)
V(x,¥,q) - e J—_S"'(" - qvl(c) (6.02)

(25)
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The quantity V may be called attenuation factor by analogy with
the quantity W, which was introduced earlier [aee (3.1})]. Let
us deiermine the connection between V and W. Since in the de-
nominators of sxpressions (3.13) and (6.01) the quantities R
and af can be considered as equal, it follows from (5.17)
W s veTido, (6.63)

We have now to investigate the expression (6.02) for V.
We shall first conslder the case of large positive values of
p(1lluminated ragion). This case has been already discussed
by another methcd (§ 3). But, as formula (6.02) w»3 obtained
for the case »f a finite p, it seems to be of interest to ver-
ify that it 13 also valld in the case of s large p. If p > 1,
the integration path may be deformed so as to cross the point
where -t = p. Its main part will be situated in the domain
of large riegative values of t, where expressions (4.07) and
(4.6€) icr w and w' ere applicable. Using them and applying

Lhe method of the steepest descent, we obtain

Vel r—f (6.04)
and in virtue of (0.03)
- 2
w TIAT ¢ (6.05)

The latter expression practically colneides with (2.15).
We note that in the case when x 1s ol the order of unity or

iarge the condition p >> 1 is sufficient for the applicability

(26)



57

of the method of steepest descent. If x 1s tmall, the further
condition ¥2 >> 2% 1s recessary. If the latter condition is

not satisfied but tae irequality

X <y << 1/x (6.06) -

is satlsfied instead, the integral can be calculated by another
method. Further simplificaticns in the asymptotic expression
for w(t - y) can be then made, ard the integral (6.02) reduces

"J—XJ_M’; a. (6.07)
v -1q

Taking V-t as integration variable, we are led to an

to the form

Lategral of the form (3.20) [with ¥ ¢ = (xa/2)Y/3 u ] and we
get again the Weyl-van der Pol formula (3.23) with the follow-

ing values of 6 and t:
- P
6o PNk, rae ', (6.08)
2V x
These values practically coincide with (3.22).

Let us now the most case when p

1s of the order of unity (positive or negative). We know that
this 1s the region of the penumbra, where the diffraction
erfects play che dominant part.

If the values of x and y are of the order of unity, the
most effective method of evaluation of the integral (6.02) 1s

the representation of this integral in form of a sum of residues

(27)
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taken at the poles of the integrand.
Denoting by t' b t‘(q) the roots of the equation

wi(t) - an(t) = 0 (6.05)
we obtain
-, i
Vig) <o om —"‘, o)

m - Q% w(ty)

The roote ts(q) are functions of the complex parameter q.
For the value q = 0 they reduce to the roots tj = t (0) of the
derivative w'(t) and for q * co they reduce to the roots tJ =
tg(cd of the function w(t). The phases of t; and :: are equal
to n/3, so that

o

iz
ey ] = [0 ]e 3. (6.11)

We give here the modull of the first five roots t; and c::

. o
s €y tg

1 1.01379 2.3381
2 3.2482i 4,08795
3 3.82010 5.52056
1] 6. 16331 6.78671
5 7.37218 7.99417

For large values of s we have approximately
2/3
lt"'s [%ﬂ(- - })] A
2/3
|cglg [é”—(s - %/‘. . (6.12)

(28)
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To calculate the roots for finite values of q we may use

the differential equation

1
P a2 (6.13)

which can be easily derived from (4.02). The root ts(q) is
determined either as that solution of (6.13) which at q = 0
reduces to i, or as that solution which at q = @ reduces to
t:. Both definitions are equivalent. Stu.ting from the first
definition, a series in ascending powers of q may be easily
constructed for t ; this series will converge for |q| < w::l
tarting from the second definition we may construct a series
1n descending (negative) powers of q; this will converge for
q >l\l—t:. These series shall not be written down here.
It may be notlced that the value of t, which for large values
of |q| 1s close to q2, 1s not a root of equation (6.09).

If Lhe condition Ye <«< ZI'\/::I 13 satisfied, we have the
approximate relation

w(ty - ¥)

N ety Nt - j‘—j vy 5). (6.14)

This relation permits us to estimate the value of remote

terms in the serles (6.10). If s is so'large that |q | << el
we have approximately t, = t. (0) = ti. It follows from this
and from expression (6.11) that the serles (6.10) is always

(29)
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convergent. But if x 18 small or if y is large, the series
converges slowly, and to calculate its sum a large number of
terms may be required.

In the shadow region, where p is large and negative, the
series (6.10) converges very rapidly and its sum approximately
reduces to its first term.

Our series (6.10) corresponds to that of Watson but has
the advantage of simplicity.

The fundamental formula (6.02) permits us to investigate
not only the 1imiting cases (large positive values of p-illumi-
rated region, large negative values of p-shadow region) but
also the intermediate cases, namely the region of the penumbra.
Wnile in the limiting cases our formula leads to an improvement
of formulas previously known (the reflection formula and the
Weyl-van der Pol fcrmula for the illuminated region and the
Watson series for the shadow region), in the transitional
penumbra region it ylelds essentially new results.

The case when x and y are large and p-finite (short waves,
penumbra) is of special interest. This case has not been in-
vestigated before as the known formulas are not valid here.

In what follows we shall derive approximate formulss, which
allow a complete discussion of this case.

We iatrodvce the quantity

z:x-Ay, (6.15)

(30)
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which represents the reduced distance measured from the boun-
dary of the geometrical shadow (and not from the source). In
the region of geometrical shadow we have z > 0, in the visidle
region z < 0. Our parameter p, expressed in terms of 2z and x,

takes the form

(6.16)

In our case x 18 large an z is finite; hence we have approxi-
mately p = - Z.

The main part of the integration path in (6.02) corres-
ponds now to values of t of the order of unity; but if y 1s
large and t finite we may use for w(t-y) the asymptotic ex-

pression (4.07) which gives

41 2y-t)¥2
W gy e g g S5O (6.17)
or approximately
sTap 122 g4, 6.16
'(‘_y)=91,—y e)y ¥ (¢ )

Inserting (6.18) into (6.02) and replacing in the factor
before the integral the quantity x¥ y¥ by unity, we get

2 . 3/2
iy ¥y
Viy,a) se v -y, (6.19)
where
1 "lt 6
vy(z,q) = 7= Ve ac. (6.20)
c
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‘The terms neglected in (6.19) are (for a finite z) of the
order of 1/ y (or of 1/x).

Therefore, the function V(X,y,q) of two arguments X,y and
of the parameter q reduces in our case to a function vl(z,q)
of a single argument z and of the same parameter q. The re-
sulting simplification is quite essential.

Let us now derive the relation connecting the attenuation
function W with the furction V,. We have the identity
H 22 -0 4 322- r . (6.21)
where @ has the value (5.18). Omitting in (6.21) the last

term we obtain from (6.03) and (6.19)
1

>
e vz (6.22)

‘Thus, in our approximation function W depends on x and y
oniy through z = x -'\/7.

The function Vl(z,q) 1s an intecgral transcendental func-
tion of the variable z. For a positive z we can evaluate the

integral (6.20) as a sunm of res:dves, and we get

@®
Ve =2V Z = elt 6.23)
8

—_—
= (% - Q%) w(ty)
(for 2 > 0),
where t, are the roots of equation (€.09) which were diecusaed
earlier, The larger 1s z the more rapidly converges the series

(6.23). For a sufficiently large positive z 1ts sum reduces to

(32)
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the first term. For finite negative values of z(e.g. -2 <2z

¢ 0) the integral (6.20) has to be evaluated by quadratures.
For large negative values of z this integral may be

evaluated by the method of -teepe-c descent, and we get

-(1,
vy(z,q) = ﬁ-é—:;;— . (6.24)

hecordtng to (6.22), this gives
W= 2/(1 + l}) (6.25)

Since approximately z = - p, this coincides with expres-
sion (6.05).

We note in conclusion that our fundamental formula (6.02)
can be obtained by the method of parabolic equation, proposed
by M. Leontovich 2nd applied by hin® to the derivaticn of the
Weyl-van der Pol formula. Tne application of leontovich's
method (in a slightly improved form) to our problem will be

given in a separate paper.
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v, SOLUTION OF THE PROBLEM OF PROPAGATION OF ELECTROMAGNETIC WAVES
*¥* “aLoNG THE EARTH'S SURFACE BY THE METHOD OF PARABOLIC EQUATION

M. Leontovich
and
V. Fock

The problem of propagation of electromagnetic
waves along the surface of the earth is solved by
the method of p-rlhouc equation proposed by Leon-
tovich. 1In the first section the surface of the
earth is eonsldar- plane and the well-known
Weyl-van der Pol formula is deduced., This formula
turns out t N the exact solution of the p.l‘lhouc

'y conditions
In the -ecnm »ecuor. the surface is considered as
spherical, and the resulting formula coincides with
that obtained by Fock by the method of summation of
infinite series representing the rigorous solution
of the probiem.

A new form of the solution of the problem of propagation
of electromagnetic waves from a vertical elementary dipole
situated at a given height above the ughericll surface of the
earth was given in a paper by Fock . In this solution
the field is calculated for points on the surface of the earth,
but according to the reciprocity theorem the same soluticn
gives directly the field at any point above the surface if the
dipole 1s located on the surface itself. In the present paper
it 1s shown that Fock's solution can also be obtaired by
another method, namely by reducing the problem to an equation
of parabolic type for the “attenuation function”.

*In the sequel these papers will be referred as I.

G
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The method of parabolic equation was proposed by Leontovich
and applied by him to the solution of the same problem for the
case of a plane earth. Since the considerations of the origina)
paper by Leontovich (’)“ need some modifications, we shall give
in what follows & new exposition of the method, applying it
firstly to the case of a plane earth and considering then the
case of a spherical earth,

1. THE CASE OF A PLANE EARTH

We assume the time-dependence of all the field componente
to be of the form e ***, In the following this factor shall be
omitted.

Let us denote Dy k the absolute value of the wave vector
and by n the complex inductive capacity of the earth:

ka @ qecradm o L (1.01)
The quantity
1= (1.02)

having the dimensions Of a length characterizes the specific
resistance of the earth (this length varies from some tenths
of a centimeter for sea water to ten and more meters for dry
s0il). Let U be the vertical component of the Hertz vector
(the Hertz function). This function satisfies the equation

o+ Py -0 (1.03)
We shall write the Hertz function in the form
(R
Ve W, (1.08)

This pap - will be referred in the sequel as II.

(2)
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where R 18 the distance from the point of observation to the
gource and the factor W is the so-called "attenuation function”.
s 1t 18 Jown, for kR0 the Hertz function tends to infinity
in such 8 way that W takes a finite value, We normalize W in
such a manner that this value shall be equal to unity (it being
supposed that both the source and the observation point remain
above the surface of the earth).

In the following we assume, however, that the source is
located on the earth's surface. Let us introduce cylindrical
coordinates r, z with the origin 15 the dipole and the z axis
4rawn vertically upwarde. On_the earth's surface we have z=0,
The distance R will be R= <J12 + 22 . The principal "large
parameter” of our problem is the quantity |n|. For large |nl
the attenuation function W is a slowly varying function of
coordinates, In order to characterize the slowness of its
variation it is useful to introduce the dimensionless coordinate: :

kr kz -
[ 5 (1.08)
Y™ T

and to consider W as a function of p and {. The derivatives
of W with respect to ite arguments will be then of the same
order of magnitude as the function W itself.

Substitution of (1.08) into equation (1.03) gives for
the function W(p,L) an equation, which can be simplified if
one supposes that the inclination angle of the ray to the
horizon is emall and that the distance from the source is at
least equal to several wave lengths. These assumptions yield
the inequalities:

2y, (1.06)
which are oquivalent to
5 Il 5 i
3 <2l ; p» b3l (1.07)

()
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Sinoe |n| 1s assumed to be large, the inequalities (1.07) hola
in a wide range of the values of p and { (and in any case for
values of p and { of the order of unity). If the inequalities
(1.07) are valid, the equation for W(p,{) assumes the form

' 32"0:0 '53"") (1.08)
dr

The terms omitted in (1.08) are of the order of 1/ In| es
compared with those retained.

‘The boundary condition for W on the earth's surface is
obtained from the condition for the Hertz vector

X, By (rorza0) (2.09)

3 _rq—

glven by Leontovich. It has the form

ﬂ.qlv-o (for ¢=0) (1.10)

a
-8
a -t 'J%L ot T (.11)

and & is the so-called loss angle, defined by

bmarctgpye s 0<8c¢d . (1.12)

In the 1imit |n|—c the range of the variations of p and
18 0<p<w, 0<C <@,

As a "condition at infinity" we may require that for all
positive values of p and ¢ [ with the possible exception of
the singular point pa0 of equation (1.08) ] the function ¥
should be bounded or such that the Hertz vector U is bounded.

(%)
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We now proceed to the formulation of the condition for
0 Since this 1s a point of some delicacy, we shall discuss
st 3n a more detailed way.

We must state, firstly, ﬂ\lt in the region clase to the
source, 1.e., for amall values of kR, the inequalities (1.07)
cease to be satisfied; the differential equation (1.08) and the
expression for W to be deduced from 1t become invalid. The
region of small kR 1s a “forbidden zone" for our approximate
sunction W, Therefore, the character of the singularity of the
exact Hertz function cannot be used for the purpose of obtain-
ing the required condition at p=0. For the atatement of this
condition we have to consider the properties of the Hertz
function for large values of kR.

It 18 known that for large values of kR the so-called
“pefiection formula" may be used. This formula gives an
approximation for the Hertz function in the whole space
above the earth’s surface, where the inclination of the ray
to the horizon ia not very small. If the Hertz function is
normalized as stated above, the reflection formuia may be
written

1
u=(14r)°R—n, (1.13)

= 008 dq e’ a.am
ncos y+ v|~01n21

is the Freenel coefficlent (y is the incidence angle and

cos ysz/R in our case). The reflection formula is certainly

valid in the reglon where the lnequalities

2
1B ke (1.15)

s)
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are satisfied, -
1r | n| te large ana 1r

1 z
==« Ewl, (1.16)

then the Fresnel coefficient f 1s close to unity, and we have
o1kR
Uw23d— . (ran

When expressed in dimensionless coordinates p,§, the inequalities
{1.15) and (1.16), which are necessary for forrula (1.17) to be
valid, become

2
1« ﬁ; «alp, (1.18)

1 <<§ <« 2 _Im (1.19)

To obtain the required condition for W at p—s0, we must
carry out a double limiting process: firstly |q|—’m and then
p=0. In the 1imit |n|—»Q.the right-hand sides of the in-
equalities may be dropped and we get

1« -s;_; 1 <<-§ . (1.20)

If these relations are satisfied, the Hertz funotion tends to
(1.17) and then

W2 ., (1.21)

Inequalities (1,20) are valid particularly for p—0, Lf {>0,
Hence the desired solution of (1.08) has to satisfy the condition

W - 2|0 for p—0 ana ¢ >0 . (2.22)

(6)
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HoweveT, since p=0 is a singular point of the equation for W,
condition (1.20) turns out to be not sufficient for the unique
determination of the solution, We replace it, therefore, by
» more stringent condition

!j;—_z-‘—.o for ps0 -and £ > 0 , (1.23)
1
which 18, as 1t will be seen later, a sufficlent one.

Thus, for the of the
W we have the differential equation (1,08), the boundary con-
ditions (1.10) and (1.23) and the condition of finiteness of
U in the region considered (for p > 0).

To simplify the differential equation, we make the sub-
stitution

2
e [Fe '53 LA (1.26)
Then the equation takes the form
a_:"l 1 ﬁ 0. (1.25)
3¢ ¥
The boundary condition for W) will be
awy
—L+q¥ =0 (for {=0). (1.26)

3

The condition at p= 0 becomes

2

1
W - L % ~0 (for p=0). (1.21)
¥

Since p=0 s & regular point of the equation for W, (in
Aistinction to the equation for W) condition (1.27) is a
sufficient one.

n
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Solving (1.25) by means of separation of variables, we
easily obtain a particular solution which satisfies the boundary
condition (1.26); namely

vy - ._"2’ (cos ¥¢ - :—1 sin v¢) , (1.28)

where V is the parameter of separation.

For real values of v this expression remains finite and
satisfies all conditions with the exception of (1.27). For
complex values of Vv (except the case vs= 1 1q1) expresaion
(1.28) becomes infinite when {—» and therefore, does not
satisfy the necessary conditions. If vai 1q1 this expression
transforns into the form

2
1 - 4
-eql Pra

. (1.29)
According to (1.11) and (1.12), we have
Feareq <3, (1.30)
and, consequently,
R (q) > 0; R (1g3) <0 . (1.3)

Hence the real parte of the coefficlents of p and { in (1.29)
are negative and expression (1.28) also satisfies all conditions
with the exception of (1.27).
In order to satisfy also the last condition; we construst
which 18 a of solutions of the two
fom (1.28) and (1.29)

2
-1v2, Q 103p - q,¢
U]-I o« (eo.vg..é.inv()r&)av&hq" 9t

(1.32)
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A easily zesn, the singulsrity of "l for p—40 is determined
by the behavior of £(v) for large values of v. The required
singularity can be represented’by the integral
@© 2
17 2 2
bl ¥ J‘ e 1P cop g avm—2 o W (1.33)
JF

Fre

It 18 clear, therefore, that at infinity the function f(v)
tends to & finite 1imit equal to the constant factor before
the integral in (1.33). Let us separate out in (1.32) the
term

17 F 2

. q,
Watot¥ e (eos vp - G2 min v() av, (1.34)
1 7
which corresponds to the limiting value of f(v). This term
may be transformed into

2

2
5y TJ'T-' L (.35
o

W] satisfies equation (1.25) and boundary conditions (1.26).
Por p—+0 we have

xg 13
e (W -2 o ')--2 e Yq (1.36)
(1 5 - : :
for any { > 0. Hence if we put

'1";"]'. » (1.37)
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the function vl' has to satisfy equation (1.25) and condition
(1.26), while condition (1.27) gives

P
=247e tql (for p=0, { > 0) , (1.38)

If we put in (1.32)

8
£r(v)= ? e (l + ((V)) . (1.39)
we get
12 F L2 q 1a%p-q,¢
W .l% o ¥ I etV (coa ¥- 2 stn v()‘(v) avene 2PTUT
(1.50)

and condition (1.38)becomes
®

ar

q 3

J. Qns vg - =X sin V() g(v) av »J:: ne et
v

0
=§ 9  (for¢>0) . (1.81)

‘The exponeritial function in (1,41) admits an integral
representation (valid for { > 0)

‘ @
VaZq J' ﬁ%:ruv. (1.42)
1
°

Multiplying this expression by q‘dc and integrating over { from
0 to { we obtain

(20)
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gubtracting (1.42) from (1.53) and muluplyiu by (w/e)q1
we get the equation

Q. - T
.q? T(col -2 stnvg) —Fl"—! + M0 1 =-—aq .,
J v ve 4 q) 2
(1.48)
which is to be compared with (1.41). Identifying (1.34) with
(1.41) we obtain
o

2
% 13
v)m - 5 A=L [re Q . 1.45)
sl oz = 3 (
According to (1.39), it follows

et ot ¥ ==, (1.46)

Vie——=e . .
o ¥e 4+ q]

Inserting this and the value (1.45) for A in (132), we arrive

at the following expression for the function ul:

1 7 2
'3 v v av
Woa e e P (vecos ¥{ - q, sin V()
1w {I (reos - q o) T
salp - a,¢
- + mq 0’91 ht r. (1.47)
It is for the of this to

replace the integral over the real axis by an integral over
the 1ine arc v= - m/4, since the new integral converges more
rapidly.

(1)
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In the sector

-fcamvco (1.48)

between the old and the new integration path there is, however,
a pole Ve - 1q,. The residue in this pole ezactly cancels the
additive term in (1.47), and we obtain

1/
L 1v3 v av
L3 !
H‘-J?. 3 (3 ,eo-v:-qlunv()m
0
(1.49)
We can write instead of this
-1 (n/8)
17 P 2
V= ]& o ¥ R ‘;'q (1.50)
g -
8ot/ 1

since the integrand in (1.49) is the even part of the integrand
in (1.50). We introduce a new variable of integration P putting
a X
vl Bt

e
we can shift the contour to the right at the distance {/2p,

then the new variable p will de a real quantity running from
- to+ 0.

. (1.51)

Putting for brevity

iz
° ‘q‘.ﬁ-a; . —‘—gf. N (1.52)

(12)



ki

- £F
e =2 e ¥ Ic‘" —L2rT_ 4. (1.53)
-I"F pP+o+T
- @

1t 18 convenient now to go from W, back to the original

function" W, ng to (1.24). We shall have
+
2
Ve 2 r &P _BET . g, (2.54)
" p+ro+ 1

This integral can be easily evaluated. It represents different
snalytic functions according to the sign of the imaginary part
of 6 + 1. But from (1.30) and (1.52) 1t follows

In(s) > 0, Im{z) >0, (1.55)

so that in our case Im(6 + t) > 0. In this case the irtegral
(1.54) 1s equal to
2 641
W 2 - ngem (041 % da (1 56)

100

This 1s the well known Weyl-van der Pol formuls, which we
have had to derive.
As 1t 15 seen from the derivatior, the conditions stated
above are sufficient to determine the function W in a unique
way. On the contrary, any expression of the form (1.32)
[unh £(v) and could be added
to the obtai without ng with condition (1.22).

(13)
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As it was already pointed out, the necessity of condition
(1.23) 1s connected with the fact that equation (1.08) for W
has a singularity at p =0 whereas equation (1.25) for ¥, has
no singularities.

The derivation of the Weyl-van der Pol formula by the
method of parabolic equation is but little 1er than the
lsual derivation, However, in cases more complicated than
the considered case of plane earth the use of this method
leads to much greater simplifications,

2, THE CASE OF A SPHERICAL EARTH

Let us denote by r, 6, ¢ spherical coordinates with the
origin in the center of the earth globe and with polar axis
diawn through the source (vertical dipole). The electric and
the magnetic fields can be expressed by means of the Herte
function as follows

(2.01)
(2.02)

The function U satisfies the differential equation
8+ K =0 (2.03)

and also certain boundary conditions on the surface of the globe
(P=aj. As in the plane case we shall consider ths modulus of
the complex inductive capacity n as a large quantity (compared
with unity). This assumption permits us to write the boundary

(%)



9

geions in &n approximate form pointed out by M. uoncoujh,
peatedly used for the solution of similar problems

plane case these conditions,are of the form (1.09)
they become

qonrd!
and 19
por the
ored By U8 above; for the spherical ¢

DLV .. Ky porrear . (2.08)
w '

3

enese conditions lead to the following relation for the field
components

g Hy (for r=a) . (2.05)

I

T.e character of the singularity of the Hertz function at the
point where the dipole 1s locatea 1s the same as in the planc
:ase, Namely, if the dipole and the point of observation are
iocated above the earth's surface and if R 18 their mutual
distance, then 1t must be

1im RU = 1 for kR~ 0 . (2.06)

»c shall look for the solution of the form

Vs P w (2.07)
A . .

Wiere W 1s the attenuation function. In the following we shall
conaider the dipole to be located on the earth's surface itself,
nd, therefore:

Re dr? 422 . 2w con 6 . (2.08)
Let us examine what are the .mall and "large" parzmeters,

Which characterize our problem. First of all, in tre c
Considered the wave length is extremely small as compared with

(15)
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the radius of the earth. Hente ka is very large, as compared
with unity (of the order of several millions).

In solving our problem we shall take this circumstance
into account from the very beginning; our aim is to find the
asymptotic 1imiting form of the solution for large values of
ka, Further, as pointed out above, we consider I n | to be
large as compared to unity. The ratio of the orders of magni-
tude of these two large parameters is to be examined later.

At last, we are ooncerned with distances although large as
compared with the wave length, but small as compared with the
radius of the earth.

The idea of our method consists in the following. For
large ka and large |n| the attenuation function W is a slowly
varying function of coordinates, 1. e. its relative variation
over one wave length ia very small. This is seen, for instance,
from the fact that in a very large region We1l + f, where [ ia
the Fresnel coefficient, (1.14). To expre the slowness of
the variation of W in an explicit form we shall introduce large
(as compared with the wave length) s of lengths: m. in
the direction of the radius vector (in the vertical djirection)
and ng in the direction of the meridian arc {in a horizontal
airection). Putting

reaemny; 6s S x (2.09).
we new ai 1onl 8 X,y and assume that
Wew (xy), (2.10)

and that the derivatives 3W/dx and 3W/dy arc of the same order
of magnitude as W itself (this expresses the slowness of the
variation of W). We shall show that by a sultable choice of
the scales m, and mg we can (in the case of large ka) obtain

Q6)
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for ¥ (x,¥) an equation and boundary conditions which do not
nvolve large parameters and which lead to a solution valid
1n the whole region considered.,

Under our assumptions the equation of the plane of the
porizon

rcos 8=a (2.11)
(*the boundary of the direct visibility") can be written in

the form o
rea+az (2.22)
or mz N
ny =g X, (2.13)

Pron considerations of physical nature it is clear that the
boundary of direct visibility must play an essential role in
our problem, Therefore, it is convenient to make its squa-
tion free from any parameters. This can be done by connecting

m, and my by the relation 5

]

L (2.1%)
in virtue of which the equation of the boundary of direct
visibility assumes the form

ymx®, (2.15)

As mentioned above, we look for the solution in the region
where 8 << /2. Therefore, we require that to small values
of @ should correspond values of x of the order of unity.
This will be the case if mg << & or, if we put » = a/A,
we oust consider A as & large number (as compared with unity).
Bquations (2.01) transform into

rea 1+2—:, s eeX (2.16)

and the distance A from the dipole (formula (2.08)], when
expressed in terms of x and y, reduces to

2 2
n:-i{lo# (v#;i!--:—)}. (2.17)

Qan
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where in the curly brackets the omitted terms are of the order
1/A~ and higher,

Let us now derive the approximate differential equation
for the attenuation function W. If R is the radius vector drawm
from the dipole, then from (2.03) and (2.07) follows the equatiep

Au»z(m-i)w-o. (2.18)

Transformed to polar coordinatcs equation (2,18) takes the form

R, 2w 1 3%, ctg 0N
gz*rbr’r ¢’ r 30'

¢§ 1k -%‘) {(r - & cos 8) g 4-:-5111 og}-o .(2.19)

Making a further transformation from the variables r and 6
to x and y and 1n the dif 1on thus
obtained only terms of the higheet order in A, we get

0;—"3{<x41)-a!0z} -0 . (2.20)

We note that the omitted terms are of the order 1/A° compared
with those written down.

As yet we have not fixed the value of the large parameter A.
We cin try to choose its value in such a manner that for ka-em
equation (2.20) does not contain any parameters and that s
possesses & solution satisfying the necessary conditions. This
1s only 1f A7 18 propos 1 to ka. , we put

wa \/3
®

As (2.21)

and equation (2.20) takes the form
2,
:—,‘;oz [éoﬁ)%o%]-o. (2.22)
(18)
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Ve note *hat this equation 1s simply the equation for the zero-
order term W ) tn the expansion

.
1
wal Ll (2.23)

Besides the 1on that A% 1s propo 1 to ka, one could
consider two more possibilities, Firstly, we could suppose that

2

2. —»0 for ka—® (2.24)

ka
or, secondly, that

e

aad for ka—p® . (2.25)

In the firet case the limiting form of the equation would be
649 Yoo, (2.26)
and in the second case:
2,
;_yg =0. (2.21)

However, 1t 18

y to prove that the solutions of these equa-
tions cannot satisfy the boundary conditione. Thus the only
admissible assumption 1s that made above.

We have now to formulate the boundary conditions. Using
(2.17) and (2.21) and retaining only the terms of highest order
with respect to A we obtain from (2.04) and (2.07)

P—‘;;—m"ls -1 —J__—:- (™) (for yao)  (2.28)

or in the same approximation

M, —"¢‘)l-n (for ym0) . (2.29)
£ (-IT z
{19)
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‘This boundary condition involves the complex quantity

/3 1

q-tﬁ -t (;-”—") =" (2.30)

which may be written in the form

asfa] . o, (2.31)
where the value of q, 1s given by (1.11) mIqJ- 1. Since

lal 18 the ratio of two large parameters, the value of this
quantity can be large as well as small.

We introduce a length b (which 1e independent of the wave
length)
o= (

2/5
LTE SRS ‘(%5) . (2.33)

Then the quantity q can bde written in the form

q=n/t ﬁ . (2.3%)

As it 1e seen from Table 1, the parameter a variet for sea
water and for different kinds of soil in relatively narrow

2/5°/5 (232

and put

(20)



TABLE 1
6 2
So11 =2 «
) in mptews

Sea water very salty, . . 2.10’ 0,003 26.6{ 60 (0,010
Sea water scarcely salty. 16 0.016 69.8| 80 {0.016
DILEO « =« v v e b wow e e.ms 0.032 105 80 | 0.028
oamp . - - v ... .| 100 |06 | 216 |15 |0.009
Moist soll R lﬂs 1.6 1110 15 |0.022
and mwn‘vl} 3.2 1680 | 15 [0.029
Fresh clean water . . . . 10 16 3420 | 80 |0.29
Dry eoil. , . . . . . . 10 160 17500 9 0.0E

eoeoee e 0] 220

Note. The first column gives the ratio of the conductivity of
mercury 6, to the conductivity of a given 801l 6. The
conductivity of mercury taken to be o =10440 (8 * om)"l,

linits (approximately from 0,01 to 0.03 and for dry soil to
0,08), whereas the length 27b varies from tens to thousands

of meters. Therefore, n will be very large (such that |q|

18 of the order of ‘2) only for very short waves and dry soils.
In the general case, however, we must consider l ql as finite
and retain q in the boundary condition which we shall write

in the form

%’ . (q +45) Wm0 (for ym0) . (2.39)

(a1)
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It ie interesting to compare the equations and the boundary
conditions for the two cases considered (the case of the plane
earth and that of the spherical earth). Putting

paaf?x c=laly, (2.36)

we g0 back from our variables x,y to the old dimensionless
variables p,{ used in §1. Introducing in (2.22) and (2.35)
the variables p,{ we cbtain the equations

Py .4 LY

o Y [39 ¢(v 4-|-;L|3) b(] o, (2.1
2 . -
3‘661¢—52H>u 0, (2.38)

where the terms of the order —LP are due to the curvature of
q

the earth. By omitting these terms, we return to equations
(1.08) and (1,10) for the plane earth.

¥e have now to formulate the condition at x=0. The
corresponding condition for the plane earth has been discussed
in §1. It has been shown there that we cannot utilize directly
the character of the singularity of the Hertz function in the
source, but have to consider the region, where the "reflection
formula" (1.13) or its limiting form (1.17) is valid and have
to compare these formulas with the desired solution in that
Tegion, .

For the spherical earth the condition at x=0 does not
41ffer essantially from the corresponding condition for the
Plane earth, and we can write it in the form

l—’o for x—0 and y > 0 (2.3)

(22)
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in close analogy to (1.23).

'mu-, our problem 18 to obtain the furu:uon W from the

tion (2.22), (2.35) and (2.39),

ma the condition that W remsina finite for all y > O.

The solution of this problem, which is of purely mathe-
matical nature, can be obtained as follows.

First of all, we simplify the differential equation
(2.22) by the substitution

Weme °v, (2.50)
where

L.x 2, 2.0
°°-ux 2 12 (2

The 1 of the w, follows
from tom\lh (2.17) which can be written in the form

kR = ka6 + w, . (2.42)

Thus @, is the difference between the distance R measured
along the straight line and the corresponding length of the
arc {measured along the earth's surface), both quantities
being expressed in wave numbers. According to (2.40) and
(2.42) we have

1kR

e Ve .1k.5

v, .43

80 that the from W to V to the 1

of the phase factor e1¥2® instead of o1k}

Inserting (2.40) into the differential equation for W and
using the relation®

(23)
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2-2ax+X ,(__a) ‘E‘A,“
dy x 3y ?x

2
a1,
k% 2x

—!ox—o(-—)v-a, (2.45)

This equation (like the original one) has & singularity
at x«0, but this eingularity can be removed by the substitution

(2.4%)

we obtain

v=JT ¥ . (2.46)
The result is

oM W
3—!!»1— + YUy =0 . (2.47)

The boundary condition for W, is the same as for V, namely:

o}
sy— + qvl =0 (for ye0) . (2.48)

Ve note that this condition 1s most simply obtained direotly
trom (2.28) [mmr than from (2.35) ] .
Pinally, the condition for x-—»0 is
2
w. -—20"*7-’0 (for x0 and y > 0) (2.%9)
1 4 x

(24)
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pransition from W to \l) llmp]»lfiil the problem considerably.
pirstlys equation (2.47) 1s not only free from a singularity at
290, but 8lso ite coefficients; do not contain the argument x;
therefore, 1t & soluble by the method of separation of variables.
secondly, the coefficient in the boundary conditlon (2.48) does
not involve x. From the fact that x=0 ie & regular point of
squation (2.47), 1t follows also that condition (2.49) for x=0
(together with the other boundary condition) is sufficient far
a unique determination of "l'

We shall solve equation (2.09) by the classical method of

p of . par of
the form
¥, = X(x) ¥(y) {2.50)
we get the following equations for X and ¥
Fovs-1f=e, (2.51)
where t 1s the parameter of separation. Hence
X et X, (2.52)
Y ely-t)T=o. (2.53)
The solution of equations (2.52) and (2.53) 1s
X(x) = 6**%, (2.5%)
YHy)ww(t-y), (2.55)

where w(t) 1s an integral of the -qution'

w"(t) = tw(t) . (2.56)
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For w(t) we may take the function

13
tz .=z
w(t) = —.r% j . > az , (2.57)

where the contour I’ 1s a broken line drawn from infinity to
zero along the straight line arc z & - 2n/3 and from gero to
infinity along the positive real axis. The function w(t)

1s an iritegral transcendental function which can be expressed
through the Hankel function of the first kind and of the order
1/3 sccording to the formula .

"
RS o _]?(- ot nf;; [§ (- c)z/’] . (2.58)

The properties of w(t) are summarized in I, The function
w(t - y) remains finite for y~»+ oo, The second integral of
equation (2.53) which may be written in the form

o
Y, () mw [-hi_ (t- y)] (2.59)

does not pol this property and must be rejected. Expression
(2.50) will satisfy the boundary condition (2,48) if we choose
the parameter t so as to satis{y the relation

wit) - qw(t) =0 . (2.60)

As 1t was shown in I all roots ty of this equation 1ie
in the first quadrant of the t-plane; the distant roots are
situated near the straight line arc tsw/3. Therefrom follows
that the function

(26)
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ixty
W= w(ty = ¥) (2.61)
remaine finite for all positive values of x and y, satisfies
the differentisl equation (2.47) and the boundary condition
(2.48). A1l these conditions .are nlo satisfied by the functicn .,
1xt
. = e X w(t - y)

P T T e (2.62)

where C 18 a closed contour in the t-plane containing the roots
of (2.60) and ¥{t, is holomorphic inside this contour.

We have now to satisfy equation (2.49). This can be done
by a suitable cholce of the contour C and of the funotion y(t).
It 1s clear that the contour C must go to infinity, since the
integral along any finite contour cannot have a singularity
at x=0. The singularity is oaused by distant parts of the
contour. But for large values of |t | the following asymptotic
expressions are valid

E20
. -2 garet <]
EA T 3 3)
"“ = qu(t) * ( )(2.6})
, v
- I A ( %’ arc t (3—-

where arc ¥t %mt(cnthonynm c-?oraret--?
the two expressions coinocide ). The contour C has two branchies
going to infinity. We shall ‘draw one of them along the positive
imaginary axis (from i to 0) and the othér along the positive
real axis (from 0 to + @); the lower expreesion (2.63) 1s valid
on the first branch, the upper - on the second branch. The
singularity of the integral (2,62) for x=0 is the same as that
of the integral

(27)
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1o
W - J’ R LIV S RECLE TR W
1 - .

3 I 4t

(2.6%)

This 1s true in spite of the fact that the asymptotic expressiong
(2.63) are invalid for small and finite values of t, because the
integrals over the parts of the path
remain finite and have no singularities.

Assuning the function y¥(t) holomorphic and bounded in the
first quadrant we can replace the upper 1imit in the second
integral by 1 ca Then, putting t=1p%, we get

13t L2
W=z ¥ e I 42 g (2.65)
-
But we have
+ @
2 1
j BT g LT . (2.66)
Mo .

Therefore, if we suppose that y(t) 1s & constant quantity equal
to
-1 %’
e e F, (2.67)

Kes

we obtain

W= —.‘% o (2.68)

which is the required singularity of Hl‘ Inserting the obtained
value of ¥(t: in (2.62) we are led to consider the integral

(28)
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n
- L ""I % (e -
¥ = c?“—)f—“—(gat, (2.69)

which satisfies the differential equation and the boundary
conditions and has the required singularity for x =0, However,
we cannot yet assert that the integral (2.69) gives the solu-
tion of our problem. In fact, the more general form (2.62)

of the integral will have the same singularity, if the function
w(t) 18 in the first and tends to &
constant value (2.67) at infinity. The more general integral
satisfies the following relation

::g ("1 - J——:_— o ﬁ) =£(y) , (2.70)

where f(y) 1s some bounded function, the form of which depends
on y(t). But if y(t) 1s a constant, the function f(y) turns
out to vanish identically. This can be shown by evaluating
the integral (2.69) by the method of ateepest descent (the
main part ¢’ the integration path lies in the neighborhood

of the potnt t=- [y - 28)/22]2, 1. e. for large negative
values of t). We shall not perform these calculations since
similar ones are made in I.

Hence expreasion (2.69) satisfies all conditions ineclud-
1ing (2.49).

We shall not attempt to give here a rigorous proof of
the uniqueness of the solution, but it is clear that by adding
expressions of the form (2.61) to the solution obtained con-
aition (2.49) 1a violated. :

Going back, according to (2.46), to the function V,
we get the following expression for this function:

(29)



94

13 1xt
Vix v, aee ‘F;,I Sl e . 2y
c

Using (2,43) and sudbstituting in the denominator of (2.07)
a6 for R, we come to the final expression for the Hertz function!

S1Ka0
U= V(x, ¥, Q) . (2.72)

‘This expression ooincides exactly with that obtained in I by
the method of summation of series.

A detailed discussion of the expression obtained was given
in I and shall not be repeated here,

Comparing the two methods of derivation of formula (2.71)
we arrive at the following conclusions. The method of the
summation of series is more cumbersome but it is at the same
time more rigorous. This is connected with the fact that all
approximatione are made in the ready solution, which makes the.
estimation of the order of disregarded terms easier. The method
permits 8180 to use condition (2,06) directly without resorting
to the "reflection foromla" which requires a foundation itself.
On the other hand, for the method of parabolic equation it 1s

that all are made in the initial

equations, This requires delicate reasoning which 1is difficult
to perform with & complete rigour. The lack of rigour is com

by the 1icity of the second method.
This simplicity 18 the ohief advantage of the method since it
glves the possibility to find approximate solutions of other
more diffioult prodlems of the same kind where the exact solu-
tion is unimown,

(30
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V. THE FIELD OF A PLANE WAVE NEAR THE SURFACE
OF A CONDUCTING BODY

V. Fock

For the field induced b’ ln incidlnt plane wave
n and near the surfac: of & dy of finite
te l‘onlll l rived, Sinc
glive 0 the numnt diltrihllti’oll 1n
> 50 the surface, they
ans of deﬂniu umuu-) ot
ances from the body, yield-
thus an approximate solution of the general
41 raction problem,

INTRODUCTION

In our paper "Distribution of Currents Induced by a Plane
Wave on the Surface of & Conductor™ +he following fundamental
result hae been obtained. The values of the tangential com-
ponents of the totsl magnetic field on the surface of a perfect
conductor are equal to the surface values of the corresponding
components of the field of the incident wave multiplied by a
certain universal function G(£), depending on the argument
§=4/d, where L is the distance from the geometrical boundary
of the shadow, measured in the plane of inc¢idence and d is the
width of the penumbra region. The quantity d is equal to

3
a= _q%‘, B2, where X 1s the wave length and R 1 the curva-

ture radius of the normal section of the surface by the plane
of incidence. The surface current density being proportional
and directed at right angles to the magnetic field. This
result irmmediately givee the current distribution on the sur-
face, the knowledge of which enables the calculation of the

amplitude of the scatter wave,
w
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In this paper we intend to generalize this result in two
respects.

Firstly, we shall find the field distribution not only on
the surface of the body, but also in its neighborhood (at dias-
tances that are emall as compared with the curvature radil of
the surface). Secondly, we shall not consider the body to be
a perfect conductor but shall regard it instead as a good con-
ductor only in the sense that on its surface the Leontovich

aitl for the 1 field are valid.

The method we shall use will also differ from that used
in the previous paper. In the previous paper we have obtalned
our result by making use of the local character of the field
in the penumbra region. We started from the exact solution
0i uiw problem for a particular case and then parformed the
approximate summation of the series. By the principle of the
lccas ileld the result could be applied to the general case
also. Now we shall find the solution directly for the general
casz of an arbitrary surface, using the method of parabolic

t1 by L ana loped in our common
paper? for the case of a point source (dipole), located on a
plane or on a spherical surface

1. THE QEOMETRICAL ASPECT OF THE PROBLEM
Consider a convex body and a plane wave incident in the
direction of the x axis. I[f the equation of the surface of the
body is
£ (x,y,z) =0, (1.01)

then the equation of the curve, representing the boundery of
the geowetrical shadow on the surface, will be obtained from
the equation of the surface and the relation
Lo, (2.02)
[

(2)
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Let us take on the surface a point lying on the boundary
of the geometrical shadow and consider it to be the origin of
our coordinate system. The t axis we direct along the normal
to the surface (towards the air). Since on the shadow boundary
the normal is perpendicular to the direction of the wave, the
2 axis 80 chosen will be perpendicular to our x axis. The
gtrection of the y axis we choose in such a way as to obtain
a right-handed coordinate system.

In the vicinity of any given point the equation of the
surface will be of the form

2+ 3 (ax® + 2bxy + cy?) =0 . (1.03)

ince the surface 18 convex and the z axis is directed to the
convex side we have

a>0; c>0; ac-b2>»0, (1.04)

‘The equation of the cylindrical surface which separates
the region of the g ical shadow 18 ob d by el
x from (1,01) and (1.02). In our case this equation will be
of the form

248D g2, (1.05)
2

The curvature radius of the normal section of the surface by
the plane of incidence is equal to
1
Ry=3 - (1.06)

Our problem 1s to find the electromagnetic field near the
surface, at distances (from the surface and from the origin)
that are small as compared to the curvature radius no.

(3)



2. SIMPLIFIED MAXWELL'S EQUATIONS

We suppose the time Jependence of the field components to
be of the form ¢"1%% and omit this factor in the following. By
k we denote the absolute value of the wave vector

ka2 e, (2.01)
Each of the field . 1
RPN (2.02)

where A 1s the Laplace operator, Since we deal with a field,
due to & plane wave traveling in the direction of the X axis,
we. shall separate out the factor ' in ¥ and put

el g, (2.03)
Then ¥® will satisfy the equation
L L L 14 a*
o e e aR UL I (2.08)
ax’ dy’ ?z ¥x
The field components satisfy the Maxwell equations
u
~Z . =1k etc., (2.05)
EM B
w a
=z . = - 1k ete. (2.06)
E2E B
Let us now separate out in each of the field components the
factor c”ﬂ and put
B B eI, or; By oM, ete, (2.07)

)
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In this way we obtaln for the quartltles marked by an asterisk
the equations:

-
4 (2.08)
w o
=2 kRS = - ik E*, L (2.09)
z ox “
-aipx + ik H; = . ik E* .
%

We shall now introduce an assumption which will be of
primary importance for the following; namely, we suppose tlat
the quantities with erisks are slowly varying functions of
coordinates in the sense that their relative variation along
the distance of one wave length 1s small.

Besides, we suppose that the variation of these quantities
1ir the z direction (normal to the surface) takes place ¥ore
rapidly than in the x and y directlons (parallel to the surface).

These assumptions can be stated in the form

()
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HeQ) EeE ) ) e

m and m' being dimensionless parameters and

' Md»m»1. (2.11)

The truth of these assumptions follows from the fact that the
final solution (which 1s unique) actually satisfies them.

It follows from these assumptions that the second deriva-
tives with respect to x and y in equation (2,08) are emall as
compared to the second derivative with respect to z, Hence
this equation takes the form

32" v udL 3" Y (2.12)

It follows from (2.12) that m' 1s of the order of m2 and we can
put
m=o? (2.13)

The relations (2.10) can now be written in the form

3
ar* ;¢ ¥ ) Ad D
i1 =o<;:2!): %no(fzy), —--o( ) (2a%)

From relations (2.14) (that are valid for all the field
componenta) it follows that in equation (2.12) the terms omitted
are of the order 1/m? as compared with those written down.
Terma of this order of magnitude shall always be neglected in
the following.

(6)
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Let us estimate on the basis of (2.14) the order of magni-
tude of the different terme in equations (2.08) ard (2.09). In
¢oing this, we consider and HP the principal quantities
to which ell the other q\unuti’n ere to be compared. As to
the relative order of magnitude of H? and )i:. we shall suppoae
tne order of one of these quantities to differ from that of
tre order, at the most, by the factor m.

From the first equation (2.09) we

E, =u(§na;) oo(:? n;) . (2.15)

Inserting this :stimation into the second equation (2.08) we
see that the term 3Eg/3z 1s very small (of the order of 1/n?)

t

as compared to the term 1k H;- On the other hang, it 1s
airectly from (2.18) that the term JE3/dx is of the order 1/m

en

as compared with ik ES. The term of this order of magnitude
nust be disregarded. Then the second equation (2.08) gives

simply E_*= h; Similarly the third equation (2.08) gives
g - and the first equation (2.08) shows that B} will be

of th: order
wowof(d, He) vo(Lu2) . (2.16)
% ms‘ Y, o 2

Trese values are also in agreement with equations (2.09).

Hence all the field corponents may be expressed, with
neglect of small quantities, in terms of H? ancd }* . Since
these expressions do not involve derivatives with respest to
X, they have the same form for the field components without
an asterisk, namely:

(1)
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Boh.
(2.17)
AR
1 ﬂ(! o,
ll‘ ; % ¢a—z— .

Tne last equation can be obtained also directly from div H = 0,
To these equations we must add the Helmholtz equation for each
of the field components or the equation of the form (2,12) for
the quantities with asterisks.

3. SIMPLIFIED BOUNDARY CONDITIONS

As shown by Leontovich, if the absolute value of the com-
plex inductive capacity of the medium

LEXESS - (3.00)

is great as compared to unity, there is no need to consider
the field within the medium, but one may take into account the
influence of the medium on the field in the air by meane of
the bourdary conditions, the ti t1al

of this field on the surface of the reflecting body.

Leontovich's conditions (to be more correct, their genere-
1ization to the case when the magnetic permeability of the
medium 1s different from unity) can be written in the form of
three equations:

(®)
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&-nxsnsgeyﬂz-nzl,) »
g, - v‘n’E(‘z u!.n,n,) . oo
‘z'"zan'_l%‘l_(‘x“)'-n}'"’) '

only two of which are independent.

In these equations Nys ny. n, are components of the unit
vector of the normal to the aurface and E; has the value

. (3.03)

It can be shown that the conditions (3.02) are valid if
the following inequalities are satisfied

|1, (3.06)

R, I[rul »1, (3.05)

where R, is the emallest curvature radius of the normal section
of the surface,

In the case of a '» in which the a1 cur-
rent is negligible, these inequalities have the following mean-
ing. According to the first inequality the square of the depth
of the skin-effect layer must be emall as compared to the square
of the wave length in air. According to the second inequality
this depth must be small as compared with the curvature radius
of the normal section of the surface.

In the following we put ths magnetic permeability equal to
unity and transform conditions (3.02) using the relations
5- H, and E,™- lly obtained above, From (3.02) we get

(9)
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(:‘ni)z‘- (nx+
(o) e (j_T) (ny B+ ) - oD

Using for H, the (2.16) and 1dering the quan-

J:_) (o8- 1) o (3.06)

tity ﬁ to be large (of the order of m or larger), we infer that
the left-hand side of (3.07) is small as compared with the sepa-
rate terms of the right-hand side. Replacing this quantity by
zero we obtain instead of (3.07)

ny Hy+n, H =0, (3.08)

Using this relation we get from (3.06)

n E = »(nx¢-.r:=)uy . (3.09)

We may insert in this relation the expreasion for S‘ from the
first equation (2.17). Since tne y axis has a tangentlal (or
an almost t tial) we can diff te (3.08)
with respect to y and put

W%&Qn:% =0 . (3.10)

We have omitted in equation (3,10) small terms, depend-
ing upon the surface curvature and similar to those which have

been when the (3.02). as a
result we obtain from (3.09)
¥, 3 N
n’g'l ¢n‘a—:! = - ik ("x oﬁ) By . (3a1)

(10)
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rte boundary tains orly one . Having
yn mind the dependence of Hy upon x, we can write with the sare

accuracy .

Ay k
ey --lﬁ Hy oy (3.12)

where in the left-hand side the derivative is taken along the
normal. Now, timating the order of megnitude of the first
term 1n the left-hand side of (211) and considering n, end ny
to be small of the order of 1/m, we infer that this first

term is snall as compared with the second one. We shall write,
therefore,

?:1 = -1k (nx o]%.) H . (3.23)

In addition to the cifferentiel equation and the boundary
conéition on the surface of the bocy, the quantity Hy must
satisfy the following requirement (condition at infinity).

In the 1lluminated region at large distances from the shadow
bouncary the part of He, Which has the phase of the incident
weve, must have a preseribed amplituce. (Under large distances
We mear the distances whioh are still small in conparison with
the surface ourvature radii although they involve many wave
lengths.)

Thus, the field oczponent Hy (and, therefore, E) hus been
oopletely separated from the other field components: 1%
satisfies a separate differential equation, a separate bcundary
cordition on the surface cf the body and & separate conditior
at infinity. These conditiors determine ny in a unique way.

After having determined &I' ve can find H, from the
differential equation, condition (3.08) on the surfase of the

(11)
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body and from the condition at infinity. The latter candition
consists in the requirement that the part of H', which corres-
ponds to the incident wave, must have a given amplitude. Pinally,
‘knowing uy and l:' we can determine all the other field com-
ponents from equations (2.17).

*%.  DETERMINATION OF THE FIELD COMPONENT Hy
Let us put

= lg ok ye (%.01)

where H 1a the amplitude of the incident waveaat infinity.
According to (2.12) and (3.13) the function Y¥must satisfy
the equation

Py F
2ik — = 0 (4,02
it !

and the boundnry‘ eondition

3104‘ ik (u»by 0?) % -0 (%.03)
on tne surface
t+3 (.x? + 2bxy + cyz) =0, (4.08)

Ve have replaced n, in (4.03) by its approximate value
obtained from the equation of the surface.

Suppose that the function l" depends upon the coordinates
X, ¥, z only by means of two variables

Com (ax +by) , (%.05)
¢ = 2an® [:4,% .lzﬁéWQG,z)]' (4,08)
na)



102

where m 18 a lorge pareveter a2 defined telow. The
sceles of the quantities € eni ¢ cser in suth & wsy hat

equation (1.05) (giving the »
the fore

=y in spece) tekes

(=

(s.07)
The values of the varisble ; 2an be cnly non-negative ar<
these of the vuriatle £ can be both positive and negative,
In the 11lumincted reglon cf the space we neve € < [T

&nd in the shaded ore & > .j ¢ , where the square ruct ie teken
with & positive sign.

Czl:ulating the “ferivatives we cbtair:

(4.08)
(+.9)
anc equetion (4.02) tekes the form
e, ( : N
St L [EF )
< za’a \d¢

We now choose the p:razster m in such 2 way ae t make
the coeff{icient in this equitizn ejuzl te unity

=
r
:‘"I"-" .J . (#22)

8ince wa consider the wave lergtin to be

Ppared with the curvature radius of the surface, the vi!

our perameter m will actuslly be large. The expreseic:

the Cerivatives oan now be written in the following form:
(13)
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, (4.12)

(4.13)

It is seen from these equations that the eatimates (2.14)
will be valid, provided the derivatives of ¥ * with respect to
§ and to { are of the order of Y# itself.

Equation (2.10) takes the form

2. (av- av:;)
1 (80, 3% o, (BT}
ar e e

The boundary condition (%.03) becomes

A, ieve sqrvan, (3.25)
x

where we have put for brevity:

qeim oL (4.16)

The quantity q will be, in general, finite, but can be
aleo small (for a ery good conductor) or large (for an alzoet
plane surface). . .

The condition at infinity for ¥ *.consists in the follow-
ing. In the illuminated region that part of ¥ *, th: phase of
which vanishes, must have an amplitude equal to unity,

To simplify the differentisl equation we put

. 3
via EPHEA (ran

(14)
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‘Then the equation and the doundary condition for V will

be
v, v
1 & o, 4,18
0_(! + N" V- (4.18)
N, qvwo, gmo. (4.19)
L4

The condition at infinity (large negative values of ) becomes

- 18,
v -c,.“ e - Ve (%.20)

Wher: V* corresponds to the reflected wave, We denote ‘by
¢ the prase of the first term in (4.20)

¢=K -"L) » (4.21)

and by ¢ the phase of V ¢ . The phase ¢ * can be determined
by cal-ulating from geom:trical considerations the phase differ-
ence ¢ *- ¢ between the reflected and the incident wave and by
using the known value (4.21) of the phase ¢.

It can be shown that the phase ¢ * 80 determined is equal
to the extremum value of the function

eemt+d(c-uY2-3(-0¥2, (a2

i.e. equal tc the value of t, for which 3¢* /3t = 0. Stimilarly
the given phase (4.21) 1s equsl to the extremum value of the
function

dmtl '§ (¢ - 02 R (3.23)

We omit the derivation, since it 1s rather cumbersome and
since the result can be obteined in a purely analytical way
from the final form of the solution (see §6).

(15)
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Equation (4.18) coincides with that which occurs in the
problem of diffraction of radio waves around the earth's sur.
face. This equation (with different conditions at infinity)
was investigated in our previous paper.

Equation (4.18) admits particular solutions of the form

ve et a0y, (v.2)
where w(t) is an integral of the ordinary differential equa-
tion of the second order

w'(t) = tw(t) . (%.25)

We shall need both integrals of equation (4.25). As one
of these integrals we take the function

1
wy (%) 'j'i' j en 3 2 az , (&.26)

n

where the contour rl goes from infinity to the origin along the
ray arc z = -% m and then returns to infinity along the ray

arc z = 0 (along the positive real axis). Another (linearly
independent) integral is the function

) 2t - % 23
v | e az,  (s.27)
T2
where the contour l'2 is an image of the contour l" in the real
axis of the z plans. Por real values of t the functions wy (t)
and vy (t) ar: complex,conjugatas. We shall have
wy (t) = u (t) + v (t) ,1

(4.28)
o (8) = u (2) - v (v) J
(16)



gor Teal functions u(t) and v(t) and their derivatives exten-
Jive four-figure tatles (range from t = - g.oo to t=+9.00,
gntervel 0.02) have been calculated by us.

The asymptotic expression fér w)(t). valid for large
regative velues of t (end also in & certain sector in the
plane cf the complex variable t) has the form

W)= (-0 exp (1§ (-2 44 §) . 29
Similarly
wylt) = (- 7Y exp ( 12(-0¥2 .y g) . (4.30)

Prom (%.23) and (4.30) we sez thet the phase of the
expression
e (-0 (5.31)

is Just equal to ¢; and we know that the extremum of ¢ gives
the phuse of the incident wave. Therefore, we can expect that
the integratlon of the functlon (4.31) along & contour which
pa near the point of the extremum of the phase, gives an
expression, the phase of which 1s equal to thet of the incident
wave (4.21). 1In fact, makirg use of the relations:

@ 1
L J'."“,,(p) weed” (exy 0, (5.22)
"
-
127 4z
.2(9. 3') =2 ° v(p), (x.32)

.
the following eg\nnty may te proved
e -1 &

R H-13 1

T

A (v-g e, (on

an
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where the contour C is described along the ray arc z = % n from

infinity to the origin and along the ray arc z = --} n from the
origin to infinity.

On the other hand, if the function f(t) is such that its
phase for large negative values of t 1s equal to -; (- t)’lz

then the phase of the expression

el

v (t-0) £(t) (5.35)

15 equal to ¢+ [in formule (5.22)] . Hence, integrating exp-
rosaton (4.35) along & contour, which passes in the vicinity
of the point of the extremum of the phase, we obtain an expres-
sion which has a phase equal to that of the incident wave.

From these considerations it follows that we may seek the
expression for V in the form
1 18t
Ve -2 € wo(t - €) - £(t) w(t - £)} at . (4.36)
[ s -0}
[
This expression satisfies equation (4.18) and the condition

at infinity (5.20). To satisfy also the boundary conditions
(8.19) we have to determine the function f(t) from the relation

wa(t) = aup(e) = £(6) {w1e) - aq(0)} (531

whenee '
wo(t) - quy(t)

r .
() = W (t) - awy(t)

(5.38)

It 1s not eifficult to see from (4.29) and (4.30) that
the obtained function f(t) has the correct phase.

(18)
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We, finally, obtain

1 16 w, (t)-qw,(t)
—_— t-g) - —?—-— t- dat .
E o e wy (E)-qw, (¢) o
(4.39)
with this value of V the expression
By (R MO 1E/3) (4,50}
gives the y component of the magnetic field.
Usirg the relation
w(t) wp(e) = wylt) wy(t) = - 21 (4.42)

it is eesy to verify that at { =0 (on the surface of the body)
the expression (4,39) for V becomes

el 10 at . -
v I ¢ %, (t) - qw(t) (8.12)

Inserting this in (4.40), we arrive at the following
conclusion. The tangential components Ilt‘ of the magneti:

f1eld on the surfece of the body are equal to their values
¥y for the external field, multiplied by a certain uriversal

function of the reduced distance ¢ from the shadow bourdery
ane of the parameter q (the latter depends uporn the wave
lergth and the properties of the body). We have

Hog =K 0(L,a) L (5.%9)

(19)
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where
W _3 e
G(g,q) we b J e e (4.58)

This result is in agreement with that obtained in our pre-
vious paper® by a wholly different method and represents its
generalization to the case of a finite electrical conductivity
of the body.

For a perfect conductor q = 0 we have

6(¢,0) = a(e) , (4.45)
where G(8) 1s a function tabulated in our previous p-per.l
We note that the quantity V determined by (4.42) occurred
also in our solution’ of the problem of the propagation of radio
waves around the:carth's surface [u was denoted there by

vi(ea].

5. DETERMINATION OF THE COMPONENT "!
AND THE OTHER FIELD COMPONENTS

We have still to the of the
field H, with help of the oonditions formulated at the end of
$3.

We begin with a particular case, when the magnetic vector
1s polarized parallel to the z axis. Then = 0 and, according
to the results of § 4, we have in our approximation H =0 in
all the region . Then, to the
condition (3.08), we shall have H, = 0 on the surface of the body.

(20)
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Iet us put
= et oo, (5.01)
wnere H) 18 the amplitude of the incident wave at infirity.

The function ®* must satisfy the equation
2 .
i AP L A (5.02)
9z 2

and the boundary conditlon

©*=0 on the surface of the body. (5.03)

The condition at infinity wil) be the same as the condition
for ¥

We assume thot ¢ ® {epencds on the same variables £, { as
v * 2nd make the substitution

16¢ + 1063/3)
e 9. (5.08)

oo =

Since ®e satisfies the same equation as Y®, the cquatlon
for U coincides with equation (4.18) for V. For the determins-
tion of J we obtain, therefore, the cquation

e R L .
18 -0 N
2o 3 +l =m0, (5.05)
the boundary condition
Vw0 forfwo, {5.08)

and the condltion at infinity

3
8¢ - 1
Ume & - 1(e7/3) (5.01)
where U® corresponds to the refleoted wave.

(21)
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If we assume for U an expression of the form (4.36), the
function f(t) therein will be determined from equation (5.06)
and we obtain

10
ZJlT Jcl € {"z““)'

Inserting (5.08) and (5.04) into (5.01) we obtain the solution
of our problem for the particuler case ) =0.

Consider now the general case., The boundary conditlon on
the surface has the form

us wy(t)
"

5 -l(c.;)} a . (5.08)

Hy = - (bx vcy) Hy (5.09)

where Hy is inown. Using the identity

bx 4 oy e (ax +by) + (5.20)
we can write instead of (5.09)
2
Hy=- B (ax + by) Ky - 2020 v H (5.11)

But, in virtue of the boundary condition (3.13), for Hy we
have on the surface

3
(uovy)u,-éb—zx-.r—"l_u,. (5.12)

Inserting this value into (5.11) we get

I £ T W IR
K, .(k > F‘? " v Hy (5.13)

(22)



119

Tais equality is certainly vaiié on the surface or the
poly. But oWwing to the fact that the derivetives with respsct
to y ET7e not involved in equation (4.02), the right-hand side
of (5.13) [unitke thac of (5.12)] sat1ectes also tho approxi-
pate wave equation in space, Therefore, the value of l(' in
space can differ (rom the velue of the right-harc side (5.13)
only by & quantity which is & solutior of the approximate wave
equation and which vanishes on the surfsce. But & quantity
naving a1l these properties is eitner the functien e'™® o
or zny function proportioral to it {where tas proportionality
fastor can ¢epend on y).

The abcve consiceratlons pesrmit us te Getermire the' com-
plste expression for “z in a simple way. We rewrite eguztion
(5.13) inserting for uy the expressior (4.01). We get

2
s’-~%!§e”"‘{1§[?\f"q?'] 2P .Y,y!‘} .

~

(5.18)
If we adé to the right-hand sice cf (5.1%) terms propert-
toral to e’¥X ¢ ¢ cna vanishing on ths surface, we car alss
write

1 v (324
S Xk EE [-—mu‘-en
L a of

(5.15)
e -

B QI (3
EACTREL R S

We srall row show that tris expressicn is valié¢ not only
on the surfase but also in spece (withir the wnole region con-
sicered). It is obvious that It satlsfies the approximete weve
equation and the boundery conéitions. It remeins only to show
that it satisfies also the condition &t irfinity. This becomee

(23) Copy avallable t> DTIC doss not

omit fally legible reproduction
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evident if We note that in the derivative 3¥*/d{ and also in
the difference ¥ ¢ the amplitude of the term corresponding
to the incident wave vani Hence at infinity only the
term proportional to u‘; will correspond to the incident wave,

and this term has a correct amplitude.

W have obtained the components Hy and H,. The remaining

components can be determined from the simplified Maxwell equa-
tions (2.17). Omitting small terms we obtain

1 fix Jv®
=-i 0. = (5.16)
Ho= i DGt 28 (5.17)
x
The of the field 18 now

6. THE FIELD IN THE ILLUMINATED REGION

In order to investigate the field in the illuminated region
we have to deduce for the functions U and V given by (5.08) ana
(4.39) asymptotic expressions, valid for large negative values
of €.

We put according to (4.21)

smer-3 0. (6.01)
Then we have

Umel® _ye, (6.02)

(6.03)
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where
L I SO (t-¢g)ae (6.08)
PYE: T e at. .

R 34 18t wylt) - awy(t)
vée e 2T wlt-0et. (6.05 -
2 e wi(t) - qwy(t)

The phase of the integrands in U® &nd V *1s equal to the
expression

srmte+ 2002302, (6.06)

wnich wa3 considered above [formu (i.zz)] .
In the point of the extremum of the phase we have

1v=3e-3¢, (6.07)
Je-50-30. (6.08)

where we put for brevity

s--l +30, (6.09)

the root being taken positive.
The extremum value of the phase is equal to

=t (3637 - 2) . (6.10)

In the following we shall always use the symbol 1" %o
denote this extremum valie, Applying the method of staionsry
phase we deduce for U® the asymptotic expression

(25)
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yomete’ 3 §§ . (6.11)

The integrand in V® aiffers from that in U® by a slowly
varying factor, which is for large negative values of t approxi-

mately equal to
w,:, /) -a q-1 ' t
= . (6.12)
Q’l /w) -a ass Jot
Therefore the asymptotic value of V® will differ from that

of U® by the factor (6.12) taken in the extremum point. Hence
we have

ve zelf® I§.§i “_'é_w . (6.13)

a+3(6-28)

Let us elucidate the geometrical meaning of the formulas
obtained.

We consider the ray, which goes after reflectlion through
the point “i¥.z; Determining the coordinates X,.¥, of the point
of the surface, where the reflection took place, we obtain the
followirg approximate formulas, valid for gliding incidence

X, ®mX-8; Yo=Y, (6.14)

amSt (6.15)

Geometrically e 1s the length of the path, traversed by
the ray after reflection. The cosine of the incldence angle
18 equal to

(26)
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- 1
con 8= - (ax, +by) = 3 (0 - 280 . (6.16)
e exact value of the difference X, - X + 8 1s

Xy - X + 8 =28 cos%o . (6.17)

the phase difference of the reflected and the incident wave
is proportional to this quantity. We have

6o~ 6 mKk(x, ~ X +8) =2 ks 008%0 . (6.18)

Inserting in (6.18) the values of » and of cos 6 from
(6.15) and (6.16) and using (4.11) we obtain

co-oudloan) (c-20)?, (6.19)
It 1s easy o verily that (6.19) is equal to the differ-
erce of the quantities (6.10) an¢ (6.01).

Hence the phase difference of the two terms in (6.02) and
(6.03) 1s i agreement with the results obtained from geometri-
cal optics.

Consider row the amplitude of the reflected wave.
Inserting (6.11) in (€.02) we shall have

Uselt oot ) 32 (6.20)

Using the expression (4.16) for q and the value /{£.16) for
cos 6 an¢ inserting (6.13) in (6.03) we obtain

Vmel® | G100 I g 1ocos 5 6o
1 +cos 8 I"-
(27)
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The function U corresponds to the case when the polariza.
tion of the incident wave 18 such that the electrical vector iy
perpendicular to the plane of incidence. The function V cor-
responds to the case of an electrical vector parallel to the
plane of incidence. It 1s easy to see that in both cases our
formulas give the correct values of the Fresnel coefficients.

7. CONCLUSION

The formulas obtained above give immediately the field
in the vioinity of any point situatsd on the surface of a con-
ducting body on the boundary of the geometrical shadow. Since
this point may be chosen in an arbitrary way, our formulas give
also the field in a certain ring-shaped region, adjacent to
the closed 1ine, which represents the boundary of the geo-
metrical shadow on the surface (penumbra region), Consider
now the fleld outside this region, but still near the surface
(at aistances from the surface, that are small as compared with
1te curvature radius). In the shaded part of this spatial
region we may put (he field amplitude equal to zero. Indeed
the solution 1y as the distance
from the shadow boundary increases, and if the quantity

¢+ J?i- positive and large, this solution can be considered
practically to be zero. We thus obtain a continuous transition
to complete shadow. Let us now consider the 1lluminated region.
In § 6 we have meen that in the remote part of the illuminated
region our formulas give a field which coincides with that
obtained from the Presnel formulas. Hence it follows that if
we use our formulas in the penumbra region and calculate the
fleld with the help of Fresnel's formulas in the illuminated
one, we shall obtain a continuous transition from penumbra to
11ght.

(28)
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Ir. this way our formulas permit us to determine the field
on ané near the whole surface of the bocy (Within 2 certein
1eyer). Particularly, they give the current distributior,
gnduced by an incident plane wave on the surface of the body.
put if the current distribution 1s known, the fleld of the
seattercd wave can be determined in the whole space (also at
Jarge distances from the body) by applying well-inocwn formulas
for the vector-potential due to given currents.

As a final result cur fcraulas give thus & complete
(thcugh approximate) solution of the probler of diffraction
of & plane wave by & conducting convex body of arbitrary ehape,
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VI. PROPAGATION OF THE DYRECT WAVE AROUND THE
BARTH WITH DUE ACCOUNT FOR DIFFRACTION AND REFRACTION

V. A. Fock

Introduction

Having assumed the homogeneity of the earth's surface,
the propagation of the radio waves around the earth is con-
Ad1tioned basically by the following three considerations:
diffraction around the convex surfacc of the earth, refrac-
tion in the lower layers of the atmosphere, and reflection
from the ionosphere. At short distances, of the order of a
hundred or several hundred kilometers, the reflection from
ionosphere plays no role. But at distances of the order of
a thou.Ind or several thousand kilometers the reflection {rom
the ionosphere begins to play a substantial role, because the
direct wave begins to have added to it the reflected waves
which have substantially greater intensity than the direct
wave.

However, even at these great distances it is possible,
under certain conditions, to separate the direct wave and to
observe it independently. Its study is of important practicai
interest for the methods of T .
For this reason the development of a theory which would give
the amplitude and phase of the direct wave up to the uitimate

istances, presents a very important problem for practical
Purposes.

p/2¢
o
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The theory of direct wave must teke account of both the
diffraction and the refraction. Nevertheless, in view of the
complexity of the task, in the majority of the theoretical
investigations the atmospheric refraction either is not taken
into the account at all or is treated very crudely, using
methods of geometrical optios. The extremely important concept
of the equivalent radius of the earth has not received adequate
theoretical foundation in this case. The concept has been
introduced on the basis of considerations of bent rays, and
yet, in the region of the penumbra and particularly in the
region of the umbra, the concept of ray as such loses its
significance. In connection with this, those conditions
under which the replacement of the earth's radius by the
equivalent radiue is permiseible have not been made clear.

In this paper we shall give an approximate solution
of the Maxwell's equations for the Hertzian vector which will
take account of both the diffraction and the refraction. This
solution 1s valid for very general assumptions regarding the
variations of the index of refraction with height.

In certain practically important cases this solution
may be by fu by us in our 1
of the problem of propegation of radio waves in homogeneous
atmosphere. These functions are partially tabulated; in
those cases where there are tables the computation of the
field with due account for refraction precents little work.
Incidentally, we shall give the basis for the concept of the
equivaleni radius of the earth and shall show that this con-
cept is applicable in the region of the umbra and penumbra
(where the geometrical optics are not applicable) and shall
make clear the conditions when the employment of the concept
of an equivalent radius of the earth 1a permissible.

(2)
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1. Differential Equations snd Tre Foundary
Conditione cf The Problem

let us designate by r, 6, ‘and ® une erherical coordinates
«ttn the origin et the center of the < zpnere and with
Lre poiar axis pessing trrough the transmittirg
(r.211 assume the dipole to be loo
carss and we shall study the field in the alr, fJhe radius of
wne earth we shall designate by 8. The dielectric corstant of
the air we shall assume to be & function of height h ¢ v - a
above the surface of the earth.

€zeh), nev-a (1.01)

A8 1in the case of the homogeneous atmosphere, the come
penent fleids in the eir may be expresse3 by Hertzian funmction

. e huve:
a1 _ 2 (maﬂ),
rsin @ 3@ 3¢

IERE AR .
B u (" aa)' e

Ei

whereas the remaining conponent fleids are equal to zero.
Tne time deperdence of the field we express by e 1" where

- - (3.08)

Here Ao 18 the wave length 1n free space (12 our probiem

it 1s necessary to distingnish it from that in the air). The
velue of the dielectric constant of the air at the surface of
the earth we shail 2erote by €, = £(C), and we saali denote by

(3] Gopy avallalle to DTIC doss nat
pemmit fully legible ropioductian
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the wave number evaluated at the surface of the earth.

The field, expressed by the formulas (1.02) and (1.04)
will satisfy Maxwell's equations if the function U satisfies
the equation

2 (er)) + 22 (uno— sl emzo.
A \e ar Tremeoe

(.om)
Let us introduce a new function

Uy 3 e lnn e v (1.08)

This function must satisfy the equation:

2
(— RN T i, vyl +1@v
o2 | 3? u uun 1 :

(1.09)

0.

The field at the surface of the earth must satisfy
Leontovich's conditions
Eg= - Hy » {1.10)

a2
v

N1 (4n/e) 6, (1.11)

where

is the complex dieleotric constant of the soll. Leontovich's
condition will be satisfied if the function U; satisfies the
condition

»
e ® - iu—°-‘—°- oy (at r = a) . (1.12)

» T

. (%)
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In the function U, let us separate out a rapidly varying

fastor by assuming

Uy = elke? gy . gthe g, (1.13)
sreve K has the significance (1.06) and s = a0 is the length
of the arc along the earth's surface from the point where the

stpole 1s located to the point where the field is being computed.
yar function U, we obtaln the ejuation

1 1 .
=+ (:.mé—s) v, (1.14)

where €' denotes the derivative of €(h)=¢(r-a) with respest to r.

The equation (1.14) 1s so written that the left-hand
jortion contains the most important terms wiiie the right
h3and side contains corrective terms, which, as we shail show,
ray be replaced by zero.

Upon evaluating the order of magnitude of the resul®an:
we may take advantage of the results obtained for the case of
homogeneous atmosphere. If we introduce the large parameter

L ,’jg (1.25)

¥, 3, .
Doz (k) . ;ho(ﬁguz) . nae

where the symbol 0 stands for "of the order of".

(5)



On the other hard, if we exclude from our considerationa
the oncsphere (uhere ¢ may become zero) thern tac gradient
of the logarithm of € will be of the order cf the curvature
of the eartn's surface so tha:

&= o(.li) R (1.a7n)

From this it is seen thut separate terms of the left side of

(1.14) will be of the order not less than ﬁz U, , while on
the right side the terms containing the derivatives, will be
of the arderf: U,. As regards the terms containing sin’ o
in the denominator then under condition

ks >>m {1.18)
these terms likewise will be small. In this way, by dropping
the nagaltude of the order —; as compsred with unity, we shall
be able to substitute zero l'or the right side of equation (1.1%)
after which we shall obtain

.‘!sz_-_,. 1.
= ..ae‘( ) (119)

This 1e a parabolic equation of our problem which resembles
in form the Schroedinger equatior. of the quantum mechanics.
We car meke further eimpiification in this eguation by
making use of the approximate equality
1-8 220, (1.20)
b3
Introjucing, in addition to that, in place of the angle 6 the
length of the arc s © aé and s and h as
variables, we arrive at

¥, W, ,fe€-c 2
gr’m‘;‘”‘ -—‘o—" Uy 0. (1.21)
(6)



23

¢ oormdary condition for 'J2 a% the surface of the earth will
cc the same as for Up» namely

¥, €

ey
* n 2

(ath =0) . (1.22)

The condition at infinity® (h—cd maybe obtained from
considevation of the phase of the Hertzian function. If we
iet

vafulet® oy, = [u,|etle - ke) (1.23)

Then, eince we are considering the wave coming from the source,
the phase of ¢ must increase with increase in height h. -From
this we obtain the condition

2,,, 1.24)
dn

#rootnate:

We are taking an opportunity to correct an inaccuracy
zermitted in the discussion of the conditions at infinity
the article by K. A. Leontovich and V. A. Fock.? In this
article during the solution of the protlem for spherical earth
there was set a requirement that not only the Hertzian function
but also all separite items of the series representing it
(independent vartial solutions) remained finite with unlimited
ircrease of the variable (proportional to the height h).
Actuaily this requirement is not met. Nevertheless, the
partial soluticns were selected correctly and all of the
remaining results of above article are also correct. Tae
reasons given for the selection cf the pertial solutions
must be rerlaced by the condition for the phroee, anzlogous

to our condition gﬁ > 0. 1Instead of that it was also per-
.:ible to mequire exponential attenuation of the wave in
the presence of unlimited incresse of the variable x, pro-
portional to the horizontal distance e.

(]
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which must be fulfilled, at least for eufficlently large values
of h.

In addition to the above requiremerts, the Eertzian fune-
tion U, and also function U, must remain finite ard continuous
throughout the entire space with the exception of the regius:
1mmediately adjacent to'the source.

For a 8 to the (1.21) it remains
for us to formulate a condition which must be satisfied by
function UZ in the region immediate to the source. First, it
1 apparent that in the immediate neighborhood of the source
equation (1.18) 1s invalid, and equation (1.21) itself 1s no
longer correct. For this reason the region must, nevertheless,
remain in the "wave zone". For example, we may take a region
where a "reflection formula" applies, and obtain the desired
condition by demanding that the sought solution in this reglon
be in conformity with a reflection formula.

The reflectior formula has the form
1kR
v .L;. Qs+, (1.25)

where f 1s the Fresnel coefficient. Because we are making use
of the boundary conditions of Leontovich (1.10) we thereby
assume thuth‘» 1. If we, in addition, will assume that

h << 8, 1.e., consider low anglea of ray above the earth's
surface, then we can assume

(1.26)

2
Rzg+B, = .
28 hfi+s

Substituting these expressions in (1.25), we come to the con-
clusion that in the region where the "reflection formula" is
applicable the function

0,2 o faine v (1.2m

8)
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pust be trarsformed into the form 5

kh'

2n [ 15
I e ° (1.28)

hin+s
In+e
automaticaliy, this condition 1s equivalent to the requiremert

that when s—»0 ind h > 0 the function U, has a property
characterized by the cordition

wn?
zeoﬁ ei %) . 0. (1.29)

(U, -
-0 2

I
More detailed basis for the condition (1.29) may be
found in the work by M. and V. Fock,

Let us note thet in place of corditions (1.29) and (1.28)
we could have set up still a more stringent condition, requiring
that in that region where the influence of the curvature of
the earth's surface and of the ty of the
already ceases and where the formula of Weyl-van der Pol is
applicuble®, our solution should pass into the solution by
Weyl van der Pol.

2. Tranafer to Dimensionless Quantities
The differential equation for function “2' derived by
us, takes the form:
¥y, 3, (s - zn)
2 42k 02 , 2 o , 20 -
SF-#AKB‘ + K < rx)%ho. (2.01)

Let us consider the coefficient of Uy in this equation. Having
denoted by 66 the value of the gradient of the dielectric

#* Pootnote:

The range of application of the formula Weylevan der Pol
was investigated in detail in our work.!

9)
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conctant near the surface of the earth, we can separate out
of the expression for € the linear term and express the co-
efficient of U, in the form

. .
2(“‘0 )., 2| L% %" (2 ‘a)
% sB) 2|l (2. 2)n |,
Tt S N
2.02)

Now let

(2.03)

M

et
The quantity (2.03) 1s the @ifference between the curvature
of the earth‘s surface and the curvature of the ray, while
the quantity a¥ 1s commonly designated as the equivalent
radius of the earth. Adopting the nomenclature of (2.03)
we can write the formula (2.02) in the form

€ - € 2
kz( ‘°°+% =% na+e,  (2.08)

where:
N i '
8%, \"% ‘o) . (2.05)

A8 can be seen from (2.05) the quentity g 1o expressed
in dimensionless units and depends upon the average gradient
(avereged along the height) of the dielectric constant of the
a1r®®and the value of the gradient at the earth's surface.
In the case of normal atmosphere the magritude g is positive
but 1n case of temperature inversion it may become negative
and then only starting with a certain height will again
become positive. The absolute magnitude of g is usually not
greater than 0.2 or 0.3, With h—ym the theoretical

## Footnote:
Calculated from the surface of the earth to the given

helght. (10)
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gignificance of g becomes £—=% ang with h = 0 will be g * 0.
In the case of normal atmosphere the quantity g changes very
slowly, but in case of inversion its change tekes place con-
sidersbly faster. ‘.
Substituting expression (2.04) in the differential equa-
tion (2.01) we obtain
32

v, w, 2 :
Wozxksro:‘-h(1¢;)v2=o. (2.06)

For investigation of equation (2.06) it is convenient
to change from h and s to dimensionless quantities. For thls
purpose we shall introduce vertical and horizontal scales.

3f )lz.oi
L = 155 (2.07
1 2 1 )
and we denote
n 2
iy, 2 (2.08
L 51 &%)

In order to simplify the condition (1.29), we will also change
to & new dimensionless functlon W,, assuming

AT

1

. (2.09)

In addition to that let

-
LERUN ii:x)“-;- -;" (2.10)
Jn J ]

Ueing the new notation, the differential equation, the
boundary condition, and the
are written

1)
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G
Yo

W, .
gziufq(us)wﬁo. (211
a0 (with y = 0) (2.12)
— QN = with y = .
™ 1
1 ul.‘ﬁ_:*?)m (v50) (2.13)

In addition to that, there remains in force the condition for
phase of ¢ = ks #argtll » namely

EC) > 6 (wita y > 1) (2.14)
¥y .

The quantity g entering in the equation (2.11) was
determined above [tomuh (2.05)} as a function of height h.
Denote by h° Some height characterizing the rate of change
of the gradient of the dielectric constant of the air, e.g.,
that height interval within which the gradient changes by
e = 2,718 times. (For normal atmosphere h, = T4OOM; in other
cases it 1s possible only to denote the order of magnitude of
h, which 1s all that we need.) The quantity g we may regard
as a function of the ratio h/ho‘

& =elh/m), glo)=0, (2.5}

considering that the derivative of this function relative

to its "argument” will be of the order of unity. With the
transfer to the dimensionless quantities (2.08), we must regard
8 as & function of y. Since h = h,¥, we shall have

& = g(By} {2.16)

(12)
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R K (2am)
Al R P )

In the future we shall regard the parameter § as a small
quantity. In order to evaluate its order of magnitude assume
hy ° T%00M (normal atmosphere) and replace the equivalent
radius g' by the geometrical radius &. Then for A = 1 M,

A * 100 M, and A = 1000 M there shall be obtained correspond-
ingly = 0.006, p = 0.0°7, § * 0.13, B = 0.58. In case of
inversion, the magnitude of h, will be significantly less and
the parameter p will become small only for proportionately
shorter wavelengths.

wrere

3. Solution of Equations

If in the equation
%, W,
\ N
S?-*lf" [ + ] W =0 (3.01)

we assume £ = 0, because g(0) * 0, the functio: g ¥211 like-
wise become equal to zero, 8nd the equation Wiil Lccume the
same as that which was discussed and solved ttu‘lth!f with

the boundary corditions (2.12) and (2.13)) in our previous
work devoted to the investigation of the case of homogeneous
atmosprere. However, it is important to note that the condi-
tion g = 0 not to the of the ty
of the atmosphere, but to the more general assumption of con-
stancy of gradient of the dielectric constant. The formulas
obtained are the same as in the case of homogeneous atmosphere
with the 1 that in the for x, y, and g
in place of the radius of the earth a, there is involved the
equivalent radius a¥. In this way, the smallness of the
ragnitude p determines the degree of exactness with which it

(13)
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1s possible tc employ (for finite vaiues of y) the concept op
the equivalent Tadius.

The solution for B = O was obtzined by us in the form of
an integral containing the complex Airy function. The lattep
1s that solution of the differentlal equation

w'(t) = tw(t) . (3.02)
which has, for large negative values of t, the asyr~ “otic
expression

17 _’1‘ 1§(.‘)3/z
Wty =e T (-t) ' e (3.03)

‘The soiution for g(By) = O has the form

.y
T 1 ixt _w'(t -
wett g [l oo

whzre the contour ranges fromt = 1 %o t = 0 and from t = 0
tot » coel® (0¢ac 3) enclosing €11 of the roots of the
denominator of the function under the integral. (This contour
can, of course, be replaced by some other equivalent contour.)
This solutior. coincides with that which was obtained earlier
in our first paper.

Vlin;:.l‘nllo‘ou. method we shall attempt to find a solu-
tion for our equations for the general case of @ ¥ 0. At
the same time we shall not mske the assumption that B 1s emall
and only later, with the aim of simplifying the obtained general
solution, will we make use of a restriction “egarding the small-
ness of B.

The equation (3.01) permits separation of the variables.
Partial solutions of the equation (3.10) having the form of
a function of x multiplying a function of y containing an
arbitrary parameter t, will be written as

(14)
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Ve ey, 0, (3.05)

shere £(y, t) satisfies the aquation
,
2
a°r ,
a_y!’ [y-tﬁn‘ay]]fio. (3.06)

prom the theory of differential equations it i3 known that
if the initial value (i.e. its value with y ® 0) of the
function f and its derivative with respect to y are entlre
functions of the parameter t, then the integral of the equa-
tion (3.06) will be an entire transcendental function of t.
W shall designate by f(y, t) that integral of the equation
(3.06) which ia an entire transcendental function of t and
permits, for large values of the difference y - t (or ite
real part), the asymptotic representation

17 E
Ce ¥
oy, t) = exp |t [t +ug(Bu) aul.
':Iy -t + yg(ey) )

(3.07)

The lower limit of v in the integrai which appears in
the exponential may be taken arbitrarily. The coct‘fl.el:nt <
®may be a function of parameter t. The phase factor 01 ¥ 18
@dded 1n order that, with g = 0 and ¢ = t, the expression
(3.07) wina into the Xp for the
function

£y, t) = ow(t - y) . (3.08)
The expresslon (3.07) was ;ﬁ&en in accordance with the
Tequirement % > 0, imposed on the phase.
Designating by f£(y, t) the integral of equstion (3.06)
Just determined, we shall consider the expression

(15)
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Where the contour ' has the form analogous to contour C in
the integral (3.08).

First, let us note that the function under the integral
18 uniquely determined by the conditions laid down previously,
because the factor C which remained unevaluated in (3.07) has
been eliminated.

y
Further, the function under the integral in (3.09) repr--

sents a meromorphic function of the complex variable t; th2

only singular points in it are the roots of the denominator.

investigation of the roots of the denominator in (3.09)
1s difficult to carry out with full rigor. For such investiga-
tion it is necessary to know the behavior of the function g(By)
with complex values of y in the vicinity of arg y § . However,
on the basis of certain not fully rigorous considerations which
we shall not cite here, it can be expected that if the function
g(By) will remain small in the indicated complex region (e.g.,
J&l < 3), then the roots will be located in the same way as in
the case g = U, 1.e., in the first quadrant of the plane t in
the vicinity of arg t = § . In any case it will be so for
small values of parameter B.

It 16 also necessary for us to know the behavior of the
function f(y, t) for positive values of t - y (and also in the
certain asector of the t-plane including the positive real axis).
The desired 1on will be by the .
analytical continuation of expression (3.07) through the third |
and fourth quadrants of the plane t, becauc: in the first are
localed the roota of f(y, t). It will have the form

(16)
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T
= C
I t) T ﬁ—.zw—) exp[ l‘ ‘t - u - ug (Bu) au] .

(3.10)

If we assume here that g = O and take T = t, then this
expression will lead, as did (3.07), to the asymptotic expres-
sion for the function (3.08).

Knowing the location of the roots and the behavior of the
function under the integral on both sides of the region where
the roots are located, it 1s then possible to take in the
integral (3.09) the contour T in such a way that it includes
all the roots of the denominator and goes away with branches
to infinity. For the initial branch of the contour (disappear-
ing into infinity) will hold correctly the asymptotic relation
(3.07) and for the terminal branch (disappearing into infinity}-
the expression (3.10). At the same time the integral taken
along this contour will be converging.

‘The preceding discussion had the purpose to show that the
expression (3.09) for the function V] has a definite mathematical
significance.

Let us show now that 1t eatisfies all conditions which
have been laid down. First, it is clear that it satisfies
the differential equation (3.01) because it 1s satisfied by
the function under the integral. Further, it satimfies the
boundary condition (2.12).

Wy

By_ + qu, =0 with y = 0 (3.11)
In fact, by differentiating in (3.09) under the sign of

the integral and then assaming y ® O, we shall see that the

numerator of the fraction will cancel with the denominator

and the function under the integral will be holomorphic, for

Qan
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&1
which reason the integral will become equal to zero. Then »‘
integral will become converging and, therefore, finite for
all positive values of x and y. It 1a not difficult to veripy
that 1t will satlsfy the condition for the phase % >0).

It remains for us to check whether the expression (3.09)
has the singularity near x = 0, which 1s required by the
condition (2.13), or, what is equivalent, to verify whether

at short distances from the source it gives the Weyl van der poy
|

formula or the reflection formula.

With the aid of the asymptotic expression (3.07) and (3.10)
for f(y, t}, 1t is possible to show that if x and y are small,
and the relation ¥ 1s large, then the principal portion of the
integration will lie ir the region of large negative values of
t. (The earlier contour can be deformed so that it passes
through this region.) Making use of the expression (3.07),
we obtain for large negative values of t:

y
e e exp[i,l‘ t +ug du].

£(o, t) y -t +yg (By)

(3.12)
From this
%%=x Iv-tn!s (ey) (3.13)
(.}.%bq) =1 J-t+q. (3.14)
y=0

But when y is small the term yg(By) 1a small compared with y
and we can write in place of (3.12)

Y
%
§§§A—:}= —=t exp [x 'I [t auf.(3.15)

y-t

(18)

|
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ot v2 note now that the same asymptotic expressions will be
ottatned for the same region if in place of f(y, t) we
pubstitute
Ty, &) = wlt -y) . (3.16)
put after such substitution the integral (3.09) will transform
1rto (3.04) and the latter gives, for small values of X, ¥
the Weyl-van der Pol formula, the reflection formula, and the
voundary condition (2.13).

We can also verify this more directly. Introducing the
urnble of integration p ¢ |- t and neglecting the quantities
y ond y as compared with p we find that .

f(y.-p)_ 1yp

— = e a7
(0, - %) !
and
12r 8
TW“I =ip+q (318)
=0

Substitution of these quantities in the integral (3.09) gives

.4 2
Lo ,]% ‘r otn® - ) e (3.19)
1‘2

where the contour T, intersects the positive real axis in the
Plane of p from below upwards (in the vicinity of point p =
If we should compute the integral (3.19) without neglecting
&nything, we shall arrive at the Weyl-van der Pol formula. :If
we compute it by the method of stationary phice we arrive at
the reflection formula. If we neglect the quaitity | q| in
comparison with A , we obtain an expression vhich will reduce
to zero the left side of (2.13) even bofore taking the limit.

By this 1t 1s proved that the expression (3.19) for W,
Tepresents the desired solution of our problem.

(19)



146

4. Investigation of The Solution for The Region of Direct
Visibility

Instead of function Wy it le more convenlent to consider
another function distinguished from W, by a factor [x. We
shall let

Vix, v @) T e }"J_ I ixt —‘Z-—Lac . oy

¢qr
o

Remembering the tions between the v, Uy,
Uy, and Wy, given by the formulas (1.08), (1.13), and (2.09),
and neglecting the distinction between r and a and between

€ and € when these quantities enter in the role of factors
for U we can write

vix, ¥, Q) (4.02)

where s, before 1s the horizontal distance, measured along
the arc of the earth's surface, and x, y, and q, are connected
with s, h, 1 by the relations

5 .

,y.%,q:il‘% ?*’ (4.03)
32 3

B Ii"-',;- hy = ‘;5 (%.04)

If s 1s small compared with the racius of the earth, then
instead of sin 2 1t 1s permissible to write lxwply% (as 1t

1s usually written), However, since the formulas remain
correct up to very great distances where the difference between
the sine and the arc become significant, we retain sin §

under the radical in (4.02).

(20)
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The function V(x, y, qQ) may be called the attenuation
factor; in those cases where 1t is permissible to consider
z 0 and to make use of the concept of the equivalent radius,
equstion (4.01) for V transforms into

4z
Al B [ R
r

w'(t) - qw(t)

The function (4.05) was investigated in detail in our
paper! and partially tabulated (for q = 0).
e investigation which follows will in Mn{ respects
parallel the similar investigation in our paper. ’

In the present section we shall regard the line-of-sight
reglon which corresponds to section VI of our paper.

Geometrical optics is valid in the line-of-sight reglon
remote from the horizon. If we make use of the expression
(3.12) and introduce the variable of integration p *= [- t,
we shall obtain for V an integral of the form

3 t
¥ [ ()
ey y+p +v (B9)/ p-ta

(.06)

Where for brevity we denote
¥
m--wzo’i,]uopz~ug(sy) au . (.07)

(Translator's Note: Do not confuse this uee .f @ for phase

with the use of w for angular 1i: the time
e ).

Computing the integral by the method of stationary phase,
We find the extremal of the phase

(2a1)
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[Tranllltor‘l Note: Condition that %—';' =01n ('1.01)]. 3

x_lj' du (%.08
§°]u4p!~us(au) )

and after several operations we arrive at the expression

veel® 2 R (3.09)

In this formula p represents a function of x and y
determined from equation (4.08). For g = 0 and also for
small values of x and y.

2
p=d=X
2x

B (4.10)
and the expression under the sign of the radicel in (4.09)
becomes equal to unity.

Formuia (4.09) is valid 21so in the case where the
magnitude of p is large end positive .

Our formules permit a simple discussion from the point
of view of geometrical optics. Actually the complete phase
daks +w (4.11)
of the function U represents a solution of the eikonel eguation
2 2 2
h = K2 h <
CYE - @ -2 6)
(2.12)

whick, after neglecting srmall quantities leads to the follow-
1nq equation for :

W o 2l
(i)2 + ng-.—' h(1 +8) , (5.13)

(22)
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e to the Tight 1s the quantity (2.0). After transfer to
e yariables x and y we obtain from (4.13)

(%;")2 N ERTL I (s.18)

Relationship (4.08) is an equation of the trajectory of
tne ray passing through the origin of the coordinates, and the
quantity P 1s the parameter of this trajectory. The geometrical
significance of the parameter p 1s:

[ F
pe 5%— cos a, (5.15)

where a 1s the angle between the ray and the vertical line

in the vicinity of the source. The complete phase ¢ is the
optical length of the path of the ray, reckoned from the source
: 2)

0 the point X, y. The quantity F‘-"ﬁ 1s equal to

F—Z‘Pﬁ=1or, (4.16)

where f 1s Fresnel coefficient.

Thus, in those cases where geometrical optics is applicable,
our formulas transform into the formulas of the geometrical
optics.

Formula (4.09) is applicable for the ultimate values of
X and y 1n that case where parameter p 1s positive and large.

If x and y are small the following condition becomes necessary

2 2
k'
e »1. (4.7}
If the condition (4,17) 1s not fulfilled, in the case of
small values of x and y and large values of p, the expression
(4.06) remains in force, but the integral must be calculated
differently, namely o must be replaced by - xp“ + yp and the

(23)
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fourth root must be replaced by unity, after which the in
1s reduced to form (3.19) (with a factor [x) and will give the
Weyl-van der Pol formula.

Let us note that if x and [y are large, and the parametey '
p small compared with these quantities, then the equation of
the trajectory {4.08) may be eolved approximately for p. We
shall have an approximation

b4
el Su - 4,
Iim ) 0

Under the seme conditions

wraly) +35°, (4.19)

where
y
w,(y) = I ]u +ug (Bu) du, (4.20)

and the symbol p must be interpreted as an abbdreviated designa-
tion for quantity (4.18).

T equation p = O gives the geometrical boundary of the
right part (4.18) becomes negative, then the
equation 1%.08) i1l not have a real answer for p; however,
function {4.1.) [and also (u.la)] retains significance also
in this case. This apparent discrepancy is explained by the
fact that the right-hand part of (4.08) 1s not an analytical
function of p near the region p = 0.

The expressions (4.18) and (4.19) will be encountered by
ue in the region of the penumbra where geometrical optics is
no longer applicable.

(2%
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" 1peves-igation of The Solution for The Reglon of The Penumbra
" (Finite X and Y)

The r2gion of the penumbrg is characterized by the fact
aat within 1t the parameter p, determined by the formula
(.10) 18 elther a positive or a negative quantity of the
order of unity.

If x and y are finite we may construct a series for V,
arranged according to poles of the function within the integral
atgn.

We shall have

13 5 : Xty v
Vs, v, a) me 2 fm . 2oy 1o 5y ’ (5.01)
e

where
P ar
D(t) » - —L—— ) (5.02)
o, & \oyex © yeo
and t represents a root of the equation
Yy )
A yar -0. (5.03)
dy

y=o
If B 1s not small then the computations using these
formulas is extremely complicated. For this reason in the
future we shall 1limit ourselves to the case of very small
values of B. At the same time, however, we shall not con-
sider as being small the product By, but shall alsoc consider
large values of y (of the order 1/8 and larger).

If B 1s small, then in computing the first roots of the
function (5.03) we can replace g(8y) by a linear function
s(By) = [9:'(0)]7 ® By . (5.04)
(25)



The physical significance of the coefficient B, is

8"y (%g)o =

where hy 1s the scale of height and <, 1s the value of the
second derivative of € with respect t helght at the surface
of the earth.

For small values of B, and finite values of y and t in
the role of the solution of the equation (3.06) we can take
the function

, (5.05)

8
£y, t) =w(t -y) - =2 [(zv +2t) Wit - y) +
15

o8 -] (5.06)

Substituting this expression in (5.03) we find for the
desired root the approximate expression
o
3+ Qtn q

B 2
t, =0+ 2 8(t0) - , K
n ,,‘15[(,,) T;‘TF] (s.07)

where t0 1s the root of the equation
'
@'(ty) - a(td) =0 . (5.08)

which was investigated in detail in reference [1]. For function
D(t) there is obtained the expression

D) = (t-d®) (1-38,t) +§ 8, - (5.09)
The height coefficients encountered in the formula (5.01)
£ly, ;)
£ s —BL .10
AY) EORN (5.10)

(26)
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gay be obtained by numerical integration of the differential
equation
a?r,

n =
v I [v -t tyE (by)] .20 (5.11)
'
for the initial conditions
£,(0) =1 and 00z -q. (5.12)

As long as y is finite (even though x may be very lerge)
the values of V(x, y, g) obtained in this way will, for small
values of @, differ but little from values for p » 0. More
or less -1;:1{1:-..: difference may appear only in the co-

x

effictent e I, giving the attenuation and added phase.
For this reason it 1s sufficient to apply the correction to
these coefficients.

If no special accuracy is required, it is possible to
neglect this correction and simply accept that in the case
under consideration the expression for V(r, y, g) coincides
with the one derived for the case of homogeneous atmosphere
{under the condition that the radius of the earth is replaced
by the equivalent radius). It 1s then possible to make use
of all the formulas and tables obtained for that case.

VI. Investigation of The Solution for The Reglon of Penumbra
(Large Values of X and Y)

The case presenting the greatest, from the practical
standpoint, interest is the one where x and y are very large
while the quantity

1 Au
= e e X (6.01)
z ‘[ Ju v ug ()
1s finite. We already pointed out that the eignificance of
p = 0 corresponds to the 1imit of direct visibility, where
{2n)
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positive values of p correspond to the region of line of 8ight
an  the negative values of p to the region beyond the horizon,
In this case, in computing the integral (4.01) for
V(x, ¥, q) it is necessary to keep in mind that the principa)
sector of integration will correspond to the finite values of
t where y is large. For this reason it is necessary to find
such analytical expression for f(y, t) which would be valid
both for very large and for finite values of y - t. This ia
found to be pcssible for the condition of small value of B,

Let us introduce the quantity X, defined by the equation

bA
$n¥2. J [f v+ () @ (6.c2)

or
T

%‘)/2 = J‘ [Fv-w (0 au, (6.03)
Y

where 1 is the root of the equation
T -t+18 (Br) = 0. (6.0%)

For- gmall values of 8, and for finite values of y and t.

B
Xzt-y r;(;fumuacz) . {5.05)

K o (6.06)

will present the solution of the equation (3.06) with an error
of the order of B for finite values of x and y of the order of

Then the function

£y, t)

(28)



s/: for l2:ge values of y and finite vaiues t. With the aid
, the expression (6.05) 1t 1s not difficult to prove that in
,Fmd‘ns (6.06) acconding to the powers of B, , the terms of
the series Up to B, inclusive are icentical with (5.06). low-
ever, tre expression (6.06) ie valid in those cases when (for
jarge values of y) the exparsion of (5.06) 1is not applicable.
1f the quantity X 1s ve~y large and negative (which takes place
ror 1arge values of y) then the expansion (6.06) is transformed
into the following:

ﬂ" ¥

¥

oty o[ [ TR o,
!

The latter coinciden with (3.07) if, in that equation,
one makes C = 1 and takes for T the root of the equation (6.04).
In this way, through the use of the formula (6.06) we have
verified that the same solution of the equation (3.06) will
have, for finite values of y, the expression (5.06) and for
large values of y, the expression (6.07).

{6.07)

Ve can now in evaiuating the integral

Vv @) e J— I ixt —ih—)— at (5.08)
r

bql'
o

make use of both expressicns (5.06) and (6.07) at the same
time, namely, substitute the exnression (6.07) in the numerator
and expressior (5.06) in the denominator. At the same tim: e
can to some extent simplify both expressions. Neglecting rminor
corrections, we snall, in place of (5.06), write simply

£y, t) 2wt -y) . (6.09)

(29)



and In tne forzula (6.07) in the cocfficlent befors the
exponential function we shall neglect the quantity t as
compared with y, and replace the exponent by the approximate
expression

¥y )
J IERCEX D) du=£Ju405(5u) -}

T

du .
e B

Using the notation of (4.16) and (4.20) we can write

.z B
oy, ¢ = Ie% R I L

As a result we are replacing the function f(y, t) in the
by the Airy and in the by the
exponential function.

Substituting (6.09) and (6.11) in the integral (6.08) we
will obtain

1w, (y)
Vn v @) - % 1 [ e a
oy me |2xay o Ie Y - ae(®)

(6.12)

The remaining integral can be evaluated by & known function.
n our work [1] 1t 15 denoted by

V(- pa) 7L —t X
(-p q) J‘ T e (6.13)

(6.10)

and investigated in detail. For the cases q » O and q *
there are tables.

Footnc ‘e
The tables for q = 0 are published tn [3].

(30)
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pormula (6.12) gives the coefficient of attenuation for
e region close to the hortzon. . It 1s interesting to compare
eris formula with the formula (4.09) valid in the region where
geometrical optics are applicable. Making use of (4.19) we
ona11 Write the expression (4.09) in the form

(1) lexg 2 e 3’3. (6.1%)

put 1n our work [1] it was shown that the function (6.13) has,
for iarge positive values of p, the asymptotic expression

i
VP o) s g e 3 ?. (6.15)

In this way our formula (6.12) 1s transformed in the line-of-
sight region into the formula of the geometric cptl

For negative values of p the expression f:ir "'1(‘ Ps Q)
may e written in the form

Pt
vil-p, a) = 12J" ) e, ) (6.16)

Where |p| 1s large (p < 0) this serfes is reduced to the
first term which gives the attenuation of the wave in the
reglon of umbrs 2cnording to the exponential law.

Function V) (- P, q) was first introduced in our works
devoted to the diffraction by a body of arbitrary form. In
these works there was estabtlished a principle of the local
field in the region of the penumbra and it was shown that
in that region the field is expressed by the function
V;(- p, q) heving a universal character.

The comparison of the formulas (412) and (6.14) allows
us to say in a certain sense, that the wave reaches the horizon
with and phase to the luws of

(1)
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geometrical optics for unlimited mediums and at the horizon
suffers diffraction according to the law of local fleld in the
reglon of the penumbra.

This picture is found to be 1in complete agreement with
the 1deas of L. I. Mandelstam in that in the propagation of
electromagnetic waves along the surface of the earth the
properties of the ground are significant not along the
entire trajectory of the ray, but only in that region
where there is located on the ground the transmitter and
the receiver ("line of departure” and "line of arrival"
area).

If we accept this picture then the rolution obtained
in this section may be applied to that case where the
properties of the earth's surface in different areas are
not equal, under the condition that in the function
Vi(- p, Q) the complex parameter q corresponds to the
properties of the ground in that area where the ray touches
the earth.
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THEORY OF N IN AN
FOR A RAISED SOURCE N

V. A. Pock

Introduction

Ve have developed the theory of radiowave propagation in
an atmosphere with dlelectric constant dependent on height [1]
for the case when the source 1s a vertical electric dlpole
sltuated on the earth's surface. On the other hand, we have
consldered [2] the case of a raised source (horizontal and
vertical electric and magnetic dipoles) assuming & homogereous
atmcsphere .

The formules derived in [1] for the general case of
arbitrary behavior of the refraction index, were developed
there in more detail assuming normal refraction when the
radiowave propagation has the same qualitatlve character as
1in a homogeneous atmosphere. The case of super refraction,
when the lower layer of the atmosphere acquires the character
of a wave guide, is of independent interest and werits spe<ial
consideration. In the present work, we consider this case in
detall. For its qualitative characteristics, the analogy
with the unsteady problem in quantum mechanics of the disper-
sion of a wave packet in a given force fieid appears to be
useful: apparently, this analogy has not been observed urtil
now.

The of 2 under the conditions
when the atmsophere acts as & wave guide was also studied by

)




P. E Krssnustkin by applying the normai mode method to planar-
lavered and spherical-layered media [3]. However, the interestiry
study of P, E. Krasnushkin has & predominantly qualitative
character and a number of eesentizl mathematical problems remain
unexplained; in particuler, the question of the spectrum of the
complex eigenvalues of the "normal waves" and the boundary
conditions for the corresponding "normal functions".

In Sec. 1 of the present work the fundamental equations
and the boundary conditions of the problem are set down. In
Sec. 2 the approximate form of the equations is considered
(Leontovich's parabolic tions) with the
boundary conditions and the conditions determining the singu-
lerity. In Sec. 3 an analogy 1is carried out between the
formulated problem and the unsteady prodlem of quantum mechanics.
After to 1 quantities (Sec. &),

2 study 1s made of the properties of the particular solutions
of the differential equations (Sec. 5), from which there is
then constructed a general sclution in the form of a contour
integral and a series (Sec. 6). The general theory is applied
then to the case of super refraction (Sec. 7) where an example
is considered in which the curve of the reduced refraction
index is assumed to be composed of two rectilinear segmerts.
In the last section (Sec. 8) there are derived approximate
formulas, analogous to the semi-classical quantum mechanics
formulas, for the of the coefficients
and the height factors. Q 1 on 1

methods are not touched upon in this work.

Section 1. Pundamental Equations and Limiting Conditions

Let us denote by r, 6, ¢, the spherical coordinates with
origin at the center of the earth and with the polar exis passing
through the radiating dipole. Let us derote the ecrth's radius

(2)
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by 8. We assume the dipole to be found at a height h' = b - a
above the earth's surface so that its coordinates will be
r=b, @ =0. Wewill consider the dielectric constant -f
the atr, €, to be a function of the height h & r - a, above
the earth's surface.

Tre field in air can be expressed according to the well-
known formulas through the Debye potentials u, v.

We have
£ 38N

o1 ¥(ery) PP

s -kl e (.ol

2,
oo B8 - 2%

£

W s -
lo_€ du 13 (rv
Ho * T T B ¢ 7 oF ro.o
du i 2
w208 ks SR J

The same expressions are applicable for the field within the
earth 1f we understand by € the complex dielectric constant
of the earth, The dependence on time is assumed here in the
form of the factor e"*®%  mre symbol &% denotes the Laplace
operator on a sphere:

” 1d & 1 ¥
i 3 -1:-9-5,) 4;2-5;; (1.03)

()
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Faxwell 8 «Gu-"icne will be satisfied if the functions u and v

satisfy:
1 °"£l) P +_, w=0  (1.04)
T OP €
and
180v) , &%, o, - .
1 + +8& evzo0 (1.05)
r A =
The of the t tial of the field
wili be guaranteed i1f the quantitles
eru , 13m0 -(—1 (1.06)

e dr
arc continuous.

By means of well-imown reasoning, thcre is obtained the
approximate form of the boundary conditions (Leontovich con-
ditions). If we put k = 2, denote the complex dielectric
conssant: of the earth by n and keep € for the diclectric
constant of alr, then we will have

?‘;Jl =tk (eru) (forr=a)  (1.07)
r

o

and

al;:) .k F (rv) ifor r = a) (1.08)

later we eh. ci.. : field for whichu 7/ 0, v =0
“vertically poisrizra’ wnd the field for which u = 0, v # O
"horizontally polarized” In this scnse, the field of a
vertical eiectric dipole remains vertically polarized in all
space, The field of a vertical magnetic dipole (horizontal
frame) has horizontal polarization everywhere. A horizontal

(%)
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electric dipoie exzites fields of both forms: both horizontally
en¢ verticelly palarized, In the case of 2 homogeneous 8Tmos-
phere, the vertically [ fleld with g
gistence more slowly than a 11y polerized. 1y,
the field from ¢ horizontal elsctric dipole at smell distances
from the source will e predominantly horlzoatally polarized,

but at large distences (in the reglon far bcyond the horizon)

the ¥ #ill de p 1y vertical.

The vortically polarized field can be expressed through
the function U (the Hestr function of a vertical electric
atpole) whic the following properties: U satisfies-the

same differentiel equetion (1.08) =nd the same boundary condi-
tione (i.CT) as u end has, near the source, a singula~ity of
the form

AkR
u--e—n—uv' (o)

where U rematrs finite, and

Re lrz¢bz-2:-b:o.9 B

Similarly, the horizontelly polarized field can be expressed
through the funztion W(the Hertz function of a vertical megnetic
dipole) which satisfies the same difforential equaticn (1.05)
and the same boundery conditions (1.08) as v and has ncer the
source a singularity of the form

(1.19)

(1.11)

wrerc W¥ reratns fintte.

The fields of the verticzl and horizontal electric and
megnetic dipoles with momert M &le expressed through the func-
tions U and W defined cbove.

(5)
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For *he vertical electric dipole we put

asBu; veo {1.12)

For the verticai magnetic dipole (horizontal loop) we have

ueo; vefw 1.13)

For *he horizontas electric dipole directed along the x axis
which ent¢rs into (1.01) and (1.02), the functions u and v are

de*termined from:

A'ul-H% %%f-:)::»;

(1.14)

where A® 18 the Laplace operator on a sphere ;1 03)
Finaily, for the horizontzi magnetic dipole directed along
the x zxis we have:
Mo un®ang
e
(1.15)

&y Hal ?;:+§)co-0

Therefore, in all four cases the study of the field reduces to
the etudy of the functions U and W.

Form of the

Section 2.

Turning to the app: form of the td let us
denote by € the value or the dilelectric constant of air near
the source (in practice we can put € s 1 ) and let us put

{6)
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8% ad (2.01)

such that @ 1s the horizontal distance between the source and
the point of observation, measured along the arc.
Instead of U and W let ue introduce the slowly varying

functions U, and W, by putting
ks

€€
Vi % (2.02)
and .
i A (2.03)
r[sine

As shown in [1], after neglecting small quantities the

equation in U, becomes

Py, 3,
géngikb—zeke(e-li% Uz 0 (2.04)
L3

Instead of r and 9, the quantities h (height) and s (horizontal
r1ahl In our app:

distance) are taken as
tion, the equation for \i,‘, will have the same form; viz,,

¥, W,
2, 2 12 2 N
21k + €-1+ V20 (2.0
2+ : ) R (2.05)
We call (2.04) and (2.05) the Leontovich parabolic equations.

In constructing the boundary conditions on the earth's
surface (h = 0) we can neglect the difference between the di-

electric constant in air and unity.
(1)



On the other hand, we can improve these conditions some. i
what by using our Tesults which were obtaired by the series
sumation method (see (2] ana [4]). is improvement reduces
to replecing n by 1 + 1 in (1.07), and replacing n by 1 - 1
in (1.08). As a result we obtain

2.2k y, (forn=o) (2.06)
|n41

and
z - 1k |n -1 W, (forh=0) (2.07)

Moreover, we should formulate the requirement that, in the
region near the source where the curvature of the earth's
surface and of the rays can be neglected, there should be a
reflecting formula for the earth plane. If the height of
the source above the earth 1s h' = b - a then this require-
ment means that in the aforementioned region there should be:

k(h-n')? heh)?2 b4 hr oo =2
uz:E.‘ e R v
8

e

(2.08)

h+h'+

L Khen? ) k(hen)?
28 28 h+h‘-lJ£-l
e + e .

h+hn' +8[n-1

(2.09)

The factors the second 1s are the approxi-
mate values of the Fresnel coefficients for vertical and horizonts!
polarization. These last two formulas are generalizations of our
fornula (1.28) of [1].

(8)
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Let us note that the expressions (2.08) ana (2.09) satisfy
approximately the boundary conditione (2.06) and (2.07).

In the case of a field above a perfectly conducting sur-
face (1 = 00) the boundary conditions (2.06) and (2.07) become

3u,
—220 (for h = 0) {2.10)

o (for h = 0) (2.11)

and the reflection formulas are written as

v, = E {exp [m 1‘;:‘—')3] + exp [lk -’ﬁ;’:—'ﬁ] (2.12)

exp [ik _(%ﬁ] - exp [m &%ﬁ] (2.13)

Section 3. Analogy With the Unsteady Problem
of Quantum Mechanice

The problem, in the pi of
wave propagation in a spherical layer with vlmble vefrac-
tion index is analogous to the quantum-mechanical problem of
the motion of & wave packet in a given force field.

Let us write Schroedinger's equation for the motion of
a particle of mass m, in & force field with the potential

energy 0. the particle by X, the time
by t, Planck's constant (divided by 21 by % we will have:
2, n on,
i SRPTY i .01
b2 z (3.01)

()]



s (3.01) with the Leontovich
eq\utlon (2.0%) or (2.05) for U, and ¥, we see that these
equations have ldenticul form with the conrdinlu X proportiona)
to the height h and the time t proportional to the horizontal
distance s and the potential energy © proportional to the
negative of € - 1 + 3= which differs from the so-called
reduced (or modified) refraction index

u-los( +->-1o‘6-1.§) (3.02)

only by a constant factor.

» the 1 for the
amplitude of the steady process coincides with the unsteady
form of the Schroedinger equation.

‘The resemblance between the two problems is not limited
to the agreement of the different‘al equations but extends to
the boundary and "initial" conditions.

There P to the case, in quantum
mechanics, of the self-conjugate differential equations and
boundary conditions, the problem in electromagnetics, of the
absence of absorption in air and on the earth, i.e., the case
when the refraction index of air is real and the earth is a
perfect conductor. This case is most interesting for the
superrefraction problem. Besides, the quantum-mechanical
methods can be generslized to the case when absorption is
present.

If the earth is a perfect conductor, then the boundary
conditions for U, and W, become (2.10) and (2.11) and the
of the qu 1 problem
to them are:

-0 (for x = 0) (3.03)
(10)
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ve0 (for x = 0) (3.04)

’
As regards the initial conditions, their general form consists
in essigning the initial value of the wave function

v = y,(x) (fort=0,0<¢x<®) (3.05)

The function y which satisfies the differential equation,
the initial and boundery conditions can be sought in the form
oo

¥(x,t) = I Flx,x',t) yo(x') dx (3.06)

For all x' the function F should satisfy the differential
equation

L5 R i Y,
Troel. Sea., .0n

and boundary eonditions of the form of (3.03) or (3.04)
(the same as y). In order that (3.06) should reduce to
"o(") at t = 0, F must, as t—»0 have a singularity, the
character of which 1s related to the boundary conditions.
In the case of the condition

o  (rrxo) (3.08)

the singularity of F must have the form

it 2] 12
ey o ¥ [ (oo [ o ] )

(3.09)
(1)
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In the case of the condition
P00 (for x = 0) (3.10)

the singularity of F should have the form

L im -x1)2 .
Flox,g) ve ¥ ]i. (m[u,(x x') ] e [ng(zﬁ) )
2mt ant me

(3.11)
Comparing these formulas with (2.12) and (2.13) we see that for
boundary the of F agrees

exactly with the singularity of U, and W,. Actually, equating
the height h to the coordinate x we should put

hexg b oex; £alt (3.12)
o

Expressing F through the variables h, h' and & we will have for
the boundary condition (3.08)

® = Fyolh,n',8) (3.13)

where F, satisfies the same equation as ‘12, the boundary condi-
tion

37,
—2 .0 (for h = 0) (3.14)

end has the singularity

=in "2
o+ [ (o [p2] ]
(3.15)
For the boundary condition (3.10) we put

P 2 ay(nn',0) (3.126)
(12)
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where 02 satisfies the same differential equation as '2' the
poundary condition

s (for h = 0) (3.7

and has the singularity

oz(n.h-.-)-. J_ ( un»n- } [m! ,)2])
(3.18)

Ve see that F, differs from Uz only by a constant faotor, as
does oz from '2' and we have exactly
1.‘!
et | w (3.19)
and

v, = 0 (3.20)

If we denote by f(h,s) the function which satisfies the
same equation and the same boundary conditions as U,‘, and takes,
for s = 0, the value

t(h,8) = l‘o(h) (ror 8 = 0) (3.21)

then we can write, on the basis of (3.19)

s %
f(ne) s e l’e%ﬁ f Up(nht,8) £o(nt) ant (3.22).
o

Sinilarly, 1f f(h,s) satisfieo the sume boundary conditions
a8 W, then

(13)



£(h,s)

- @
’ 1-5“; f Wy(n,hi,8) fo(n) an (3.23)
C

The last two formulas are correct not only for boundary condi-
tions corresponding to a perfe:tly conducting earth (when thers
1s an analogy with quantum mechanics) but even for the more
general boundary conditions (2.06) and (2.07) where the singu-
1evities of U, and W, are then given by (2.08) and (2.09).

If the funztion to(h) 18 not zero only in the neighborhood
of the point h = h', where the integral of f, over this region
1s finite, then f(h,z) will be proportional to "2 or '2.
respectively, for not toc small 8. Therefore, U, snd W,
correspond to & point source at the height h', as it should be.

In quantum-mechanical language, it can be said that the
function ¥, proportional to Uy or vel 1s the solution of the
problem of the dispersion of & wave packet originally concentrated
in the neighborhood of one point.

Prom quantum-mechanics, it is known that the speed of dis-
persion depends, essentially, on the form of the potential energy.
Let us imagine that the particle motion 1s bounded on one side
by an impermeable wall, If the potential energy 1s such that
the force is always directed out of the wall, then dispersion
tekes place rapidly. If the force holds the particles in some
regicn where the potential energy has a minimum, or near the
wall, then dispersion takes place slowly or not at all. In this
case the g admits a soluti
to the steady or almost-steady state.

T At the initial instant, the wave function of the almost-
steady state is not zero only in the region of minimum potential
energy. In the oourse of time, the amplitude of the wave function
4in this region deoreases, and disintegration of the initial

)
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simost-steady state takes place. The decrease ir the amplitude
ocsurs exponentially and the rapldity of disintegration 1s
characterized by the coefficient in the exponent, which 1s
cailed the disintegration conetant.

If the initial wave function itself 1s not a wave function
of the zlmost-steady state, the term corresponding to the almostf"
steady state can be separated out in its expansion and for large
values of time this will be the principal term.

In our electromegnetic prodlem, the horizontal distance

8 2cts the part of the time t of the quantum mechanics problem.
The decrease in the amplitude of the field with increasing

1 distance to the dai ion of the wave
packet, and the earth's surface (h = 0) acts like the wall.
The wall will be impermegble if the earth 18 an absolute

; for finite » the wall will be absorbent
and a decrease of the amplitude will take place not only at
the expense of waves escaping into the upper layers of the
atmosphere but at the expense of the earth absording it. As
we saw, the part of the potential energy is played by the
reduced refraction index, M, taken with the opposite sign.
Tae behavior of the reduced refraction index depending on
height is shown in Fig. 1.

Dependence of the
4 -d lhtnouon Index
on Heignt
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The solid curve is the of M with
The dotted continuation of the rectilinear part of the curve
oorresponds to the case when there is no superrefraction and
the "equivalent radius” of the earth can be introduced, which .
1s proportional to the angular coefficient of the line relative |
to the M axis, |

If the curve in Pig. 1 is considered as the potentisl !
energy curve, then it will be clear that the presence of the
maxtmamn for (-M) (minimum for M) which is charecteristic for

tion, 18 & dition for the o
an almost-steady state. Actually, if we denote by hy the
height to maximuwn 1 energy, then the

force in the region h < hy will be as though squeezing the
wave packet to the wall and not letting it go into the
h > hy reglon,

But in our el problem, the of an
almost-steady state denotes such wave propagation in which
its amplitude with abnormally
slowly, so that its coefficlent (

to constant disintegration) is abnormally small. Hence it
follows that the existence condition of the almost. dy
state 18 & condition of the possibdility of extra-far propaga-
tion of radio waves.

The analogy with quantum mechanics, which was ocarried out
here, permits formation of a qualitative picture of the phenomena

of extra-far radio wave This rnalogy 1s useful,
so that, certain mathematical methods applicable in quantum
can be into the domain,

On the other hand, the methods, developed by us, of solving
the radiowave propagation prodlems can be applied in quantum
mechanics. However, this question is beyond the scope of this
paper.

(26)
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Section 4. ion to Quantities

Let us return to the solution of the problem formulated
in Sec. 2. It 1s necessary to determine U, and W, which
satisfy the differential equations (2.04) and (2.05), the
boundary conditions (2.06) and (2.07) and the conditions
(2.08) and (2,09) cheracterizing the singularity. This
problem was solved, earlier, for two cases: a) inhomogeneous
atmosphere, source on the earth, and b) homogeneous atmosphere,
raised source. Now we show that this problem can be solved
for the general case of the inhomogeneous atmosphere and the
raised source. -

Let us transform, in our to the 1
quantities used in our previous work., To do this, let us
consider the ccefficient of U, in (2.04). This coefficlent
is proportional to the quantity

51,0106 um) (v.01)

where M(h) 1s the "modified” refraction index. We assume that,
starting with some height h = H, this quantity can be approxi-
mated by a linear function of h and we put

t_g_l¢g=ﬁ..'.*, (8.02)

where e 15 the sc-called equivalent radius of the earth and
G 1s some small constant (for example, a < 0.0005). In the
simplest case, it is possible %o consider that € = 1 for
h > H; then 1t is necessary to put a = O and a® = a.
In that region where {4.02) is correct, the equation for

U, decomes:

¥, ¥,

2
. (zufg) Teo (o)

an)



In order to get rid of the a in the last term, let us make the
substitution

Uy = c ol y (4.08)

where C is a constant which we dispose of later. Then (4.03)
1s reduced to

$*zm§.!¢u2-f-"5y-o (4.05)
Let us introduce the abbreviation
o () (5.0
and let us put
kt'szXIkh-wxm'-w' (u.01)

Then (%.05) ean be written

2
:—y§+1£oy!=o (4.08)

The eame substitutions reduce the more exact equation (2.04)
to the form:

?{; + 1% +rermr=o (4.09)

where
r(y) = 22 (' S142. za--'g’%) (.10

The quantity r(y) charascterizes the anomalous behavior of the
refraction index near the earth's surface. B8tarting with some
value y, r(y) can be set equal to zero. If we consider that
a=0and o = u, then sizply,

18)
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r(y) = mé(e - 1) (4.12)

qnere remains to express the boundary conditions and the con-
ditions characterizing the singularity in the new variables.
Setting

q= (v.12)
l'l +1
we will have
% +q¥s0 (for y = 0) L(%23)

Ve chose the constant C in (4.04) so that the equation analogous
to (3.22) can be written in the form

£(x,y) = [l(x.y.y') £(y') ey (a.18)

Then the equation defining the singularity of ¥, becomes

Y= e# exp [! x;x‘)z] + exp {ysy! 2] Y+ ¥+ 2igx
x

-EJﬂx Ix Yy +y' - 2qx
(2.15)
From the comparison of (2.08) with (%,15) we obtein
¢ =@ oxp (% (8.16)

The function W, differs from U, only in that the quantity
1
N+l

in the boundary conditions and in the equation

the 1s by Jn-1. This
(19)
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corresponds to replacing q by

q *n | (%.17)

In practice, it is possible to put q @ 1in all e

Along with Y we will consider the function
Viyra) = 2 X e [4] v (8.28)

which we will call the attenuation factor. The quantities
l]2 and U are expressed through V as follows:

v s et [Ty (3.19)

J(1ea)ks

V(x,y,¥'5q) (4.20)
oa oin 2

The function W is obtained from (4.20) by replacing q by q;.

Section 5. Properties of Particular Solutions
of the Differential Equations

In order to construct the function ¥ satisfying the formu-
lated conditions, it is to 1 31 the prope:
of particular solutions of (4.09) which are obtained by separa-
tion of variables. Putting

1e e p(yn) (5.01)
we obtain for f(y,t)
2,
%§+[y0r(y)-t]t=0 (5.02)

(20)
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Let us denote the solutions of (5.02) through °(y,t) and
#(y,t), which satisfy the initial conditionst

2@0,8) =13 (’9“—") =0 (5.03)
¥ Ao
and
#0813 (BL.) - (5.08)
¥ Jso

The general solution of {5.02) will have the form
£ly,t) = K°%y,t) + 4*r%y,¢) (5.05)

On the other hand, if r(y) decreases sufficiently rapidly
28 y increases, then for real t (5.02) will have one integral
to the y of a factor 1y
of y) which will act a8 wy(t - y) for large y, and another
integral which will behave as nz(t = y) where %y 8nd w, are
complex Airy f which the of the
equation

§§+(y-t)-=o (5.06)

obtained from (5.02) by replacing r(y) by zero. The functions
%, and w, have the asymptotic expressions

1 § (v - )32
.

wlt-y) e Fou-o -1 (5.0m)

R .2
vzts-v)-. TRl LA R

(21)
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Consequently, the behavior of the general integral of (5.02)
as y—j@ for real t can be characterized by the constants
5% and (’:2 in the expression:

£(y,t) = Cyey(t - y) + Cwp(t - y) (5.09)

Let us establish the relation between the constants 4%, A%,
€y € (which can be functions of the parameter t).

By virtue of (5.02) and (5.06), we have:
ﬁy (- -ﬂ% -f % 2 - rly)fow(t -y)  (5.10)
In this equality, we cen put successively w = W, then w = wy

and then integrate between 0 and co. As a consequence of the
relation

ﬁw _ﬁ_ z21 (5.11)
¥ 2 oy !
we will have
ar O
ym (-2 & m—ﬁ) = 210) (5.12)
ana
;:‘ "y g -1 ;;—’) - 20, (5.13)

and, after integration, (5,10} ylelds:
@
216, = A%wy(t) + A%y(t) -f r(y) £(0,8) wylt - ¥) &y

° (5.13)

(22)
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and
@©

Aoy (6) + A% (t) ~[ r(y) £(y,t) wy(t - ¥) ay

(5.15)

26,

If, here, we substitute (5.05) in place of f(y,t) we odtain
the desired relation between the constants A°, 4%, ¢, 7,
in the form:

21c, - v{.;m ] (y) ©2,t) wlt - 3) &

+ A% w0 - [ r) £%0,5) wyle - ) ey
(56)
and
®
-210, = £° 4 w () -J‘r(vl £0,8) wlt - y) ay
T RO f w(y) M) mit - v) &y
° (5am)

Let us observe that the coefficients of the A° and I
in these equations are integral, transcendental functions
of t. Actuslly, %, t%, wy, w, are integral functions of t;
the integration can be carried out, in practice, between
finite 1imits since r(y) can be set equal to zero starting

(23)
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with some y. (The same conclusion will be correct and withoyy
this limitation on r(y) if only r(y) decreases sufficiently
rapidly at infinity.)

Hionce 1t follows that 1f the constants A° and A" will be
integral transcendental functions of t, thon the constants €
and Cz will have the sams charscter. mn allows us to apply
(5.16) and (5.17), derived for real t, in the osme of arbitrary
complex values of t also.

If we put

A(e) 2 wyle) - f o) 2vt) wlt - ) &y (5.28)

3
@

A=At 2= w(t) + J',(,) ©f,t) wit - y) dy  (5.9)

then

£,(0.8) = A3(t) 2(v,8) + aY(e) £(y,¢) (5.20)

will be that solution of (5.02) which behaves as wl(t -y) as
y—00 and which is At the same time an integral transcendental
function of t.

S8imilarly, if we put
e ae) zwye) - | o) T vyt - M) &y (5.21)
and

(24}
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@
= A5(8) = - wylt) - [r(y) 19(v,t) wplt - v) ay  (5.22)

.

then
o - -
£p(v,8) = A3(t) 100y,t) + Ax(e) £(y,t) (5.23)

will behave as ve(t - y) as y—yo0 and will be an integral
function of t. .

The integral f(y,t) will have the asymptotic expression

iﬂ’
rl(y.t)—-,‘-——- exp U~ t+r{u du
y-tory

(5.24)

and the integral f‘a(y.t) will have the asymptotic expression

-in y
ng ¥
el - I =
£a(y,t) -ﬂﬁ o.w[ 1J‘ u -t + r{u) du]
(5.25)

where c', ¢" and t are constants, If we put r(y) =0, 1 = t,
€' 3 c" = 1 then (5.24) and (5.25) will transform into the
asymptotic expressions (5.07) and (5.08) for w; and o

Ve already used the integral £)(y,t) in [1] where, now-
ever, 1t was juned without proof that such &n integral exists,
which has the asymptotic expression (5.24) and is, meanwhile,
an integral transcendental function of t. The proof of this
statement, which 1s reprodused Fere, oan be used elso for

1 (numericsl) of this integral.

(25)
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Por complex t the function fy(y,t) w1ll increase as y
increases and the integral of the squars of r‘(y,t), taken
over y from 0 to @ will diverge. However, for certain assump-
tlons on the behavior of r(y) in the complex plane, f,(y,t)
will behave as "1“") for complex y and will converge to zero

on the ray y = rel® (where o =§ ), 8o that the integral

2(y,0) ay (5.26)

will converge. Let us evaluate this integral. Differentiating
(5.02) with respect to t, we obtain

a (¥x L] A
- ac)’ [y +rv) - ¢] See (5.27)

Hence, from (5.02) we obtain the relation
¥,

2. (¥ LM
J‘r ay (ralat bth)J (5.28)

Putting, hers, £ = f)(y,t) and considering the upper limit of
integration to be equal to ma" we will have:

®eld

¥ 3, ar
l[ Bly,t) ay = - (:1 ay;: - M——*;—* (5.29)
°

Beotion 6. Construction of the Solution
as a Contour Integral or Series

In the previous paragraph we established the existence of
two integrals of the ordinary differential equation

(26)
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2

&t

¥ [yor(y)-z] rzo0 (6.01)
which are integral cal of the pi t
and have the asymptotic expaneions (5.24) and (5.25). These
integrals, which we denoted by f)(y,t) and f,(y,t), are deter-
mined by (5.20) and (5.23).

We show now that with the aid of f) and rz we can construct
contour integrale for V and ¥ which are the solutions of our
problem, Our reasoning will be similar to the reasoning
explained in Sec. 3 of [l] , and the final formulas will be
analogs of (2.24) ana (3.10) of [2].

Let us denote tne Wronsiian by Dy,(t):

¥y
£, % (6.02)

3,
Dyp(t) = 1) f -

and let us put

.
£,(0,) + afy(0,t)
p-hbehiihint Mt hiy
£3(0,t) +ary(0,¢)

F(t,y,¥'49) = T:m £,(0",t) 455(v,¢) -

(vt (6.03)

where the primes of the £, and "2 denote derivatives with
respect toy. Let us consider y' > y, and let us form the
integral

1ok S pyyna @ (6.08)

taken around a contour which envelops all the poles of the
integrand in a positive <. “ion.

(27)
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Prom the definition of P it follows that P 1s meromorphic
in t (1.e. for finite t has no singularities except poles).
The function P 1s completely determined even if the functions
tl and rz, which are part of it, are determined only to the

of a factor of y. Since, for all values
of t the integrale f) and f, are independent (this is seen
from their ), then the Dlz(t)

has no roots and the unique poles of F are the roots of the
equation
£(0,t) + af (0,8) = 0 (6.05)

If r(y) = 0 in (6.01) then we can put
£05,8) = wlt - 9) 5 £(0t) = wy(t - y)  (6.06)

Then

Dyplt) = - 21 (6.07)
and the expression (6.03) for F reduces to the formula
(2.21) considered in our work [2].

Let us show that ¥, defined by the contour integral
(6.04), satisfies all the conditions,

First of all, it is evident that Y satisfies the
differential equation (4.09) because the integrand satisfies
it. PFurthermore, Y satisfies the boundary condition (4.13)
since we have for all t and y'

g—;oqllo (for y = 0) (6.08)

There remains to show that ¥ has the necessary singularity.
With the aid of the asymptotic expressions (5.2%) and
(5.25) we oan show that if x,y are small and the ratio y/x
1a large then the principal part of the integration in (6.04)
will lie at large negative values of t. But if t is large

(28)
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and negative, then the term -t will play the main part in the

coefficient of f in the differential equation (6.01). Con-

sequently, for large negative t we will have, approximately:
i

£t (o) K (6.09)
ana
fo(m,t) ™ 1(0,) T AE (6.10)

Substituting these expressions in (6.03) for P, we obtain

Fe 2“1__t oo (100 [F] - ﬂ‘f:—j%“’ Lo 5]

(6.21)

Substitution of this value of P in the integral (6.04) ylelds
the Weyl-van der Pol formula for Y, which after neglecting
small quantities (in the second term) reduces to (4.15)
characterizing the singularity of Y.

Therefore, the correctness of (6.04) for ¥ is established.

It 1s not difficult to transform from the contour integral
(6.08) into a series, around the residues, referred to the
roots of (6.05). Let us write this equation in some detall.

Using (5.20) for f‘(y.t) and the initial values (5.03)
end (5.04) of £° and 1%, we obtain

£y(0,8) = A3(8) 5 £3(0,8) = AT(t) (6.22)
and (6.05) becomes
MORTTHORRY 6.13)

(29)
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Substituting here the values (5.18) and (5.19) of A: and A
we will have:

@,
W (8) - quy(e) - Jr(v) [f°(y.t) -atro]m e zo
(6.18)

We will call this the characteristic equation.

It s essential, for us, that the left side of the charac-
teristic equation be an integral transcendental function of t
and that it contain only the functions £°(y,t) and r%(y,t),
which can be obtained for all values of t by means of numerical
integration of the differentisl equation (5.02) with the
initial conditions (5.03) and (5.04). In that case when r(y),
starting with some y = y), 1s zero, (6.14) can be integrated
and the characteristic equation reduces to

et Lo n-atyn] s e & [P - aen]- o
(for y = 9,) (6.15)

The characteristic equation for the case of a homogeneous
atmosphere is

wy(t) - quy(e) 2 0 (6.16)

This don 18 from the 4 formula by putting
r(y) * 0 in (6.14) or by putting y = ¥, % 0 1n (6.15).

We denote the roots of the characteristic equation by
(@), @), ... (6.7
‘These roots will be functions of the parameter q.

(30)
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Let us compute the residues (6.04) numerically. From
(6.02) and (6.05) for y = 0 and t = t_ results

rylo,t) + ary(o,¢) ._a (6.18)
Dyplt) £,(0,t)

Moreover, the derivative with respect to t of the denominator
in (6.18) is

Py ( ary m
£+ - ) * -0t 6.19)
1 1;; dy 1(0:8) at ('
Consequently, the residue of Fat t = t, will be

aey 0508) £00t,)

(6.20)
dq fl(o,t-) l')(O,t')

ixt,
Taking the sum of expressions (6.20), multiplying by e ®,
we obtain the desired expansion of Y in the seriee

Jxty 8ty 100ty £,03.8,)

v (6.21)
= dq  £(0,t,)  £,(0,8,)
The quantities
LA 207ty) - qx‘(v.t.) (6.22)
7,00,5)

can be oalled the height factors. Let us note that the heignht
factors are expressed, according to (6.22), through the func-
tions £° and % whioh are evaluated directly by means of
numerical integration of (5.02).

(21)
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In that case when q 1s very large or wu). to infinity
perfect ) (6.21) should
be transformed by means of termwise multiplication into

2 o2
q° 11(0,¢,) 1

6.
T 6.23)

The reeult can be written

& 00.t) 50
Ye .1“' (2;‘_ _}u _}M (6.24)
= £(0,5,)  £y(0,t,)

The quantity
at £,(0,t)
2Ly, o (_g__. (6.25)
dq £,(0,¢)

will be finite for q—p . Let us note that from (6.19) and
(5.29) result

®© ia
rf(o.z)g%-f B ey (@=3) (6.2

Consequently, the series (6.21) can be written

.- Z ity r,(r.c:) 1,(v,t,) ©.21
T 0Q e
o

2(y,8,)dy J

In such a form, it reealls expansions in terms of eigenfunc-
tions. In (6.27) the "eigenvalues” are, however, complex and
the "normalized integrals" in the denominator converge only
for complex paths of integratiun,

(32)
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In order to trensform from ¥ to the attenuation factor V,
1t 1s sufficlent to recall (4.18)

Vix5y,9) = 2[R e -‘g’-'] '

In the case of a homogeneous atmosphere, when it 1s possible
to put r(y) = 0 and tl(y,t) . "1("") which results from our
formula, the expressions for V reduce to just what was derived
in our earlier work [2] by another method,

Section 7. Application of the General Theory to the Supers
refraction Case (Sohematic Example)

‘The analog, considered in Sec. 3, with the unsteady prob-
lems of quantum mechanics permits the formaticn of a qualita-
tive picture of the superrefraction phenomenon and thoase
conditions for which this phenomenon may occur, On the other
hand, the general expression, obtained in Sec. 6, for the
attenuation factor is sultable for quantitative computations
which, by right, require sufficiently complex calculations.

Let us write the expression for Y which is related to the
attenuation factor, For brevity, putting

£(y,6) = 1°(3,%) - ar¥,0) (7.01)
we will have, on the basis of (6.21)

& ixt  dt

Z e I."' £ly',t,) £(v,t,) (7.02)

where the ty are the roots of the trenscendental equation
(6.14), If r(y) = 0 fory> ¥)» this equation can be written
socording to (6.15) ast

03)
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Wy (teyy) £(yy,8) + wy(tey)) £ (yp,t) =0 (7.03)

where "i denotes the derivative with respect to the argument
(t-y) but not the derivative with respect to y. The paremeter
q enters into this equation by means of (7.01).

The determination of the conditions for which extra-far
propagation is possible reduces to the study of the roots of
the charaoteristic equations (6.14) or (7.03). In the absence
of superrefraction, the imaginary part of the roots of this
equation, which according to (7.02) yields the attenuation of
the waves with increasing distance, will be of the same order
as the real part. Wnhen there ia superrefraction, there exists
one or more roots with abnormally small imaginary part.

In onder to the of the
under which extra-far propagation can occur, let us consider
the following schematic example.

Let the function r(y) be the following

)= @ ewd) 5y -y (for o<y <y
(7.08)
r(y) =0 (for vy < 3)

This corresponds to the assumption that the graph of the
refraction index 1s a broken line as shown in Pig. 2,

(34)
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If the dlelectrio constant ¢ is concidered to vary thus:

--1-;(n-n1) (r.ornu\l)
a1 " (rernony) (7.93)

then the paraneter u> and y, w11l equal

3
AL TEW ,,-n,Jz? (7.06)

Therefore the paremeter i depends on the wave length, dut
the paremeter y) (the reduced height of the break point) -
will be proportional to 223,

We write the equations for f as

\ :—j§¢[(xou’)yl- ’y-c]r-o

(for y < ¥;)
(1.01)
2,
Li+-ttr0 (rry>y)
ay'
Let us introduce instesd of t the new parameter
- 1+ W)y,
t:———1 (7.08)
Y2
and instead of ¥, the new variable
Crt, +w (7.09)
The value ¢ 3 ¢ w111 correspond toyse= ¥y where
W rt-y (1.20)

(35)
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Equation (7.05) becomes

Srag (ot (ray
‘—CE 0 1 -

The Airy functions u(8) and v(#) will \: 1 .dependent solutions
of the latter. The functions r° and f will equal

1°(y) = ur(8,) V(&) - v'(8,) u(8)

(7.12)
2 =1 [ve)) wit) - ute) vin)]
By virtue of the relation
u'(€) v(e) - v'(8) u(t) =2 (7.13)

the functions £° and £¥ will satisfy the inttial condttions
(5.03) and (5.04). Introducing socording to (7.01) the
function

o) = -3 [aviey) + wvce)] o) + 2 [auey) + wurc0] vie)
(7.1%)
we obtain the ton 1f we the

values of £(y) and f'(y) for y ® y; in (7.03). This charac-
teristic equation oan be written as

BYG) ¢ av(ey) w6 )W (ufly) ¢ vigdw bRy
war(6,) + quity)  wu (8 (578)) + uleIw (4%8))

(7.185)

Let us assume that the magnitudes of 2Y and the parameter u
are sufficiently large. This means that the "potential well”
on Fig. 2 is sufficiently wide and deep. In such a ocase, the

(36)
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quantities &) and u?8) [tne argunents of the functions in the
right eide of (7.15)] will be large. By virtue of the asymp-
totic expansions

1 ’ _1
wt) =t e [;z”z]; CEE T [-§c’/?]

(7.16)
the right side of (7.15) will be very small and the charac-
teristic tion reduces, tor

wv'(8,) +qv(dg) = 0 (1.171)

This case will occur when the gradient of the dieleotric
conatant of air, at a sufficiently high region, will be
negative and larger th.n% , where a is the earth's redius;
then the curvature of the ray will be larger than the earth's

and formal of the "equivalent redius”
are regative.

The wave with 1 1 distance
is related to the imaginary part of t and, thus, with the
imaginary part of gg: ir (° were real there would be no attenua-
tion. Attenuation may occur for two reasons: absorption by
the earth and escape through the upper layer of the atmosphere.
Absorption in the earth is characterized by the complex para-
meter q. Bquation (7.17) corresponds to that case when the
attenuation occurs at the expense of absorption by the earth.
If the earth be an ab 'y it 18
necessary to put q * 0 for horizontal polarization and q » @
for vertical polarization. For q » 0, (7.17) reduces to

vi(g) =0 (for q £ 0) (7.18)
The roots will be real negative numbers
€, = -1.009 ; -3.248 ; -5.820 ; ... (1.19)
n
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Por q = @, (7.17) becomes
v(g,) = 0 (for q » @) (7.20)
and has the roots
¢, 3 -2.338; -5.088 5 -5.521 : (T.21)

Because g° 1s reel in these cases, there is no attenuation.

Equation (7.17) will a better to
(7.15) or LY (or its real part) be positive and sufficiently
large. Since

4ttt

this condition will be fulfilled starting with some root ‘o‘
Consequently, the number of roots with small imaginary part
will be finite.

Tt 1s possible to derive an approximate formula for the
don to &, Le by the right side of
(7.15). Let us denote by &, that root of (7.17) which we will
consider as the inaccurate value of g° and by A(° = the increment.
This £l 1s ined 1f we the value of {l,
1in the right side of (7.15), which equals

40 bt

The approximate value of the correction is obtained from the
equation

1 1 2 s 3/2] 1,28
“°‘i-goo {16 Wy nw[ 3“ e
(7.22)
(38)
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s=3Wen M (.23)

Let us note that the part of the is posi-
tive, This corresponds to the fact that leakage in the upper
layer increases attenuation.

The applicability condition of these formulas 1s a suf-
ficlently large value of uy;. Let us recall that we have,
according to (7.06):

Wy = hy (7.28)

where g is the gradient of the dielectric constant with opposite
sign, a 1s the earth's radius, and hl is the height of the break
point on Fig. 2.

The larger the value of Wy the larger the number of the
almost-steady states with small attenuation. It can be sald,
roughly, that the number of such states equals the number of
roots, §,, not the wyy (in lute magnitude).

The concept of the ray reflected from the upper boundary
layer and from the earth's surface becomes applicable only when
the number of almoat-ateady states (the number of terms in the
series (7.02) with low attenuation) becomes large. QOenerally,
the necessary condition for the applicability of the concepts
of geometric optica 18 the slow convergence of (7.02), when
a large number of terms will play a part. If there are one or
two terms in it (which can correspond to both almost-steady
and attenuation states) then the ray concept 1s not applicable
at all.

()
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Section 8. Approximate Formulas for Terms
With Low Attenuation

Using a method similar to that which is applied in quantum
can be derived for the height
factors corresponding to terms with low attenuation, and also
estimates can be given for that part of the damping coefficient
which corresponds to leakage through the upper layer.

In (6.01) let us put

¥+ r(y) = py) (8.01)
and let us write this equation thus

:y_z§ + [y -tJreo (8.02)

In the superrefraction ca the function p(y), proportional
to the reduced refraction index, will have a minimum and will
increase on both sides of it; to the left of the minimum the
largest value will be p(0) and to the right p(y) will increase
as y. If t lles between the least value of p(y) and p(0),
then the coefficient of f in (8.02) becomes zero for two values
of y which we will denote by 4 and Yo In the interval
¥) € ¥ < ¥, the quantity [p(y) - t] "Will be negative, and
outside this interval, positive.

The solution of (8.02) in the interval y; < ¥ < y, can
be expressed approximately, through Airy functions. Let us

put
¥,
J' [T ey =3¢ (8.03)
N

(40}
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Yo
th S e =3 (R (8.08)
4

.

and let us denote by S the sum of these quantities which is
independent of y

Y2
. Jljc_-F(y_) ay (8.05)
1

We can consider the magnitude of S to be large. With luc);
notation we have approximately:

L3

te H st + By vie)] (o080
e
l?—i'u—) [Astta) + 2rie] @0

§e3245¢%% = (8.08)

and also

and the constants A, By, A,, Bz are related through

A, =3meS; Bz oaed (8.09)

which
for (B 06) uxa (B o7) at ur;o vuun of ¢ and (2.

For y > y, we can determine {, by means of the equality

(a1)
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Y,
J‘ [ & ey = § g2 ©.10)
2

and using the previous expression (8.07) for f.
Similarly, for y < y; we oan put, in place of (8.03)

4
J' [P -t wv=3% (-2 (8.11)
y

and apply (8.06) for f.

Let us chose the constants A, B such that the function f
will be proportional to rl(y.t). We must put

Ay=Cy ;3 By=aC) (8.12)
and therefore

A s 30e S By = 2ce (8.13)

Then (8.06) and (8.07) become

4
| ¢ -
£,(y,8) = 2¢,0° ‘_1(,) {'“1) +de?® u(tl)} (8.14)
and
o ’
£(y,) = ¢, L o) () (8.15)

Similarly, the following approximate expressions are obtained
for tz(v,t):

(42)
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s e
1 1 -
e 2 2yt | {vul) S uul} (8.26)
and ’

foly,t) = ¢, | ey w(t)) (8.17)

In this approximation, the Wronskian Dl,‘,(t) appears to equal

Dyo(t) = - 2100, (8.18)
Por y < y) the funetions u(f)) and v(&;) will be of one order.
Ao & consequence of the smallness of the factor exp [-25) the
second terms in (B8.14) and (8.16) will represent emall correc-
tions [generally speaking, less than the error of the whole of
expression (8.14) or (5.16)]. Consequently, the functions
f) and t2 in the ¥y < ¥, resion will be almost proportional to
each other,

Discarding the small increments, the equation defining t
can be written:

(8), vt +avieg) = 0 (8.29)

at.

A 1
“nd ( ) denote the values of §, and at
a§ A 1 &

y = 0. This equation is analogous to (7.17).

It vields just that part of the attenuation coefficlent
of the wave which occurs for absorption by the earth. Since
the complex parameter q which characterizes the properties
of the ground, is known only very roughly, it is aufficlent

to take the coefficient (%'-y) 1n a rough approxination and
o
to put, according to (7.06),

(83)

Here €,




(8.20)

where @ 1s the radius of the earth and g is the gradient of
the 1 taken with ite sign. Then (8.19)
will reduce to (7.17) which was studied in the preceding
paragraph. The roots ¢, of {8.19) will be related to the
corresponding values of the parameter t through

"
k‘{' |‘f§*"““§f an=§(.¢°))/2 (8.21)

where "1 16 the lesser of the two values of the height h, b}

and hz, for which the radical becomes zero.

If &, is real, then hl and t are real; if ‘0 is complex,
then evaluation of the integral (B.21) requires anelytic

of the formula for € into the
complex doratin,

A necessary condition of the applicability of the previous
formulas is the smellness of the quantity .-28, where S has the
value (8.05). In the customary units, the integral which
expresses S, 1a written

h‘
k},f Lo (e-142) an (8.22)
Ju
1

Determining t from (B8.21), it is necessary to verify that the
integral 3 1s sufficiently large for this t.

In the case of an absolute conductor (Q = 0 ; q = o )
the approximate values of ‘o and t obtained from (8.19) and

()
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(8.21) are real. In this case, it can be said that the approxi-
mate value of the imaginary part is the correction to ¢,.

Putting
.
[ETRTS (8.23)
we will have -
I" o

We will not dwell on the derivation of this formula.

he}eS (8.28)

"
Slnﬁc ‘O is a small quantity, then the 1ncm=nl..

ag, * 1€, will correspond to the increment 4t = it = 3% ag ,

0 0 ]'(° 0

But the quantity (8.24) multiplied by i is the increment to
the integral (8.21). Consequently, we can determine t
(the imaginary part of t) from

LA
t.%(kf |-‘f§¢l-l+% an)--%.""s (8.25)
o

"
Since the derivative of the integral is negative, then t is
poeitive, which corresponde to attenuation.

‘The formulas which were obtained permit the derivation,

also, of for g . A to (6.19)
we have R
3¢ 10g T
aq - 1
2. ——1 8.26
3% S (8.26)

Substituting, here, the value of f), from (8.14) and neglecting
amall quantities, we obtain

(45)
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v (e,) vig,)

Here we can put, in a rough approximation,

(g;)o . :_:.g % (8.28)

[see formulas (7.08) and (7.09)]. Using the differential equa-
tion and the 1limiting conditions for v, we obtain:

.02 % 8.
- ;‘5 " (8.29)

g( )ae, v2(g)  ve,)

The firet terms of the seriee (6.21) which po low attenua-

tion, will be equal, in our approximation, to

JOPCY vu1 L paiee W8 V()

(% ._) vi(e,) vi3(e,) - g, vE(e,)
(8.30)
Where §) refers to the reduced height y'.
ir ‘o 1s 8o much larger in ahsolute value, that asymptotic
expressions can be used for v(go) and v' “o) then the denominator
in this formula will equal approximately

vi2E,) - g, VAL, - (8.31)

In conclusion, 1t 1s necesszry to emphasize that the formulas
derived in thie paragraph are based on rough approximations and
are intendad for rough computations. More exact computations
should be based on the rigorous theory explained in the previous
paragraphs.

(46)
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VII. THE PIELD FROM A VERTICAL AND A HORIZONTAL DIPOLE,
RAISED SLIGHTLY THE EARTH'S SURFACE

V. A. Fock

In the book "Diffraction of Radio Waves Around the Earth's
Mau"l we developed a general method for the summation of the
series representing the fleld from a dipole on the earth's sur-
face. The shape of the earth is assumed spherical. Ip that
work our method was applied to the case of a vertical dipole,
located on the surface. The case of a slightly raised vertical
dipole 1s of no less interest. We propose to analyze this case
in the present paper.

1. Vertical Railsed Dipole. Solution in Series Form.

We will employ the notation used in ref. 1. Let k be
the wave vector in air, 7 the complex dielectric constant of
ths earth, and k, = kn /2 the complex wave vector for the
earth, For simplicity we will not consider the atmospheric
refraction, and remember only? that calculation of the re-
fraction effect can be accomplished approximately, if we
replace the earth's geometric radius a by an equivalent
radiue a®,

e 1 r,8,8 to the
origin at the center of the earth and with the dipole along
the polar axis, The fleld components in air are expressed in
terns of the Hertz function U by the equations:

L 33, (smo%‘} (2.1)

E--12 (r g) (1.2)

Hym-1x § (1.3)

1 "aoL
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Let the eievation of the dipole above the earth's surface be
denoted by hab-a (so that b 1s the distance of the dipole from
the center of the earth). We introduce the functions ¥, (x) and
{n(x), related to the Bessel and Hankel functions as follows:

(%) = |% Y x) (1.4)
o= 4 g
=) _'T llm% (x) (1'5)

and we denote by xn(x) the logarithmic derivative

Xalx) = ¥ (%) / ¥y(x) (1.6)

and by P, (cos 8), the Legendre polynomial.

The expansion of the Hertz function U in the range
& T <b will then have the form:

v w}ﬁi tan1) ,000) [4plo) - tatir) ] By (con )
=1 . (1.71)

Wwhere
Ky¥plka) - oy, (ka) x,(ky8)

—_—_ 8]
et ia) - R okm) x0e8) 08

A

These equations are listed on p. 5 of ref. 1. Purther
calculation there, however, is carried out only for the case
T = a. We shall now free ourselves from this limitation.

(@)
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-+ Approximate Series Summation for the Hertz Function
For the approximate summation of the series we can apply
unchanged the method outlined in ref. 1. We write the series
(1.7) 1n the form:

v -i (n+3) o(n+§) P (cos 0) (2.1)
ned

where
on + 1) = B 6000 [0 - Ay L] (22)

We put n + :!l-- v and consider v as a complex variable.
The function ¢(v) 1s an analytic function of v with poles
only in the first quadrant. As shown in sec. 2, ref. 1, for
the condition ka >> 1 the sum (2.1) can be replaced to a good
approximation by the integral
x

B3

o gy IV e (2.3)

where the contour C goes from infinity in the second quadrant,
includes all poles of ¢(v) and extends to infinity in the first
quadrant with the complex variable v.

The principal portion of the contour will be that in
which

1/3
v =ka+ (ka/2) /; T (2.8)
while |¢| 18 bounded (since ka is assumed very large). The
quantity
1/3
m - (xa/2) (2.5)

P! the "lavge pa: " of our problem (we will
discard terms of the order of 1/a? in comparison with unity).

()
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This quantity will frequently be encountered in further
calculations.

Over most of the integration range we van replace the
functions ¥y, and ‘n by their asymptotic expansions in Airy
functions, investigated in detail in ref. 1. We shall consider
four Alry functionms: u(r), v(t), ul(‘r) and wz('r). These
functions represent solutione of the differential equat'on

wo(1) = 1 w(1) (2.6)
connected by the relations
H-‘(‘l’) = u(t) + 1v(r) u.‘,(f) = u(t) - v(t) (2.7)

For real t the functions u(t) and v(t) are real. The function
w) (1) 18 expressed in terms of the Hankel function of lst kind
ard of 1/3 order by the equation

U SRV Y AN ¢ 32
o= T oV w [§ (-1)J (2.8)

Sometimes we will write w(t) instead of wl(r).

The asymptotic expansions for the functions { and their
derivatives have the form:

fo0@) = - /2w x)  gh(ka) = 1m 2y 0n)  (2.9)
‘Taking the real parts, we obtain
v(ka) = 02 v() k) = 02 V(1) (20200

‘The quantity xn(ka) may, according to equation (5.21) in
ref. 1, be replaced by the expression

7
k,a) = - 1 |1»" --Ll-'ﬂ (2.11)
X, (k5 ;3 "
(8)
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putting also

g1 'IJ? - ]q—"}-r (2.12)
ard substituting in (1.8) we obtain

A - _,LJ_.J!.L‘J_ (2.13)

wy(t) - awy(7)

In the equation (2.2) for ¢(v) the functions ¥,(kr), &,(kr)
and (n(xb) enter. Their asymptotic expensions may be readily
obtained from the foregoing. We set

kh,
vy = K (r-a) = (2.18)
¥y = K (bea) = ? (2.15)

where hy is the source height, h) is the height of the point
of observation, and y, and y, ere the corresponding 'reduced
elevation:'. We then have

1,
Ln(kb) = - 1n /2 Wy (7-35) (2.16)
1/2
L) = = am wy(v-yy) (217)
1
Vpliw) = m /2 v{t-y,) (2.12)

and the function ¢(v) 1s written in the form

1

8(v) = =z B(1,¥1572,9) (2.19)
where
Fa \11(1'-'2){'(1-7)) ;.(L'J)-f-:-"ﬂ%) '1""1)} (2.20)

(5)



Expressing v in terms of A2 and Wa, We cen also write

'
1 Wy (1) = awy(v)

Fasw(ty)quy(tey;) « Soeo—=— w(r-y) b (2.22)
F MtV et (T - a0 1T

We must now substitute the expression for ¢(v) into (2.3).

the 1 8~ af, along
the circumference of the earth, and the ‘'reduced horizontal
distance"

3
x= (;5.‘, e-2 (2.22)
1
and replacing v /2 in (2.3) by the constant (xa)l/2, we obtain
.ikl
va- oo V (x,975309) (2.23)
where N
- Az 1/2
Veo ¥ (%) f.‘“ R(1,97,9p00) 81
(2.24)

This equation 18 velid for ¥y < ¥ai if on the other hand
¥y > Yo 1t 1s necessary to interchange R0y and ¥p 1n the equa-
ticn for F. The function V may be called the attenuation
factor.

3. ‘The Attenuation Factor

Turning now to a study of the attenuation factor, we examine
first several limiting ceses. We put y; = 0, corresponding to
the case when one of the points (source of point of observation}
1s located on the earth's surface. We then obtain

Wit - yp)
_—t——2
¥y (1) - aw (1)

(6)

7(5,0,55,9) = (3.1)
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and equation (2.24) for the attenuation factor is reduced to
equation (6.02) in ref. 1.

We now consider a second case. We take x and y, very

large, but the difference
- ]y2 =t (3.2)

a8 finite. in (2.21) the ¥y (1-y,) by 1ts
asymptotic expansion (eq\nuon B.oi in ref, 1), we have

e - ()70 g [
(%,¥15¥200) = \ 55 zJ'

wy(1) = awy(s) . B
{vz(-x Vo) ;lr(‘l)-—q\'l(") vy (t-y;) pax
(3.3)
The integral with the in

our work "The Field of a Plane Wave Near the Surface of a
Conducting Body™> (equation 4.39). This agreement is entirely
understandable, Indeed, for large x and Yar the source 18
remote from the point of observation and from the earth's
surface, 8o that a wave, proceeding from the source, may be
regarded as plane.

In the general case the integral (2.24) for V may be
evaluated as a sum of differences, The function F, defined
by (2.20) and (2.21), may be written in the form

£(35,7)
P =Wy (1-yp) m (3.4)
where
£{yy,1) = [w;(f) - w,(-)] v(t-y,) - E’l(') - qv(t)] wy(Tyy)

(3.5)
(%]



We note that for y) = O the function f and its derivative take
on the values
ar
fa1 --q (3.6)
oy

Hence it 1s not difficult to conclude that 1f T is a root of
the equation

W(1) - Qe (1) w0 T m Ty, .7

then the value of the function f coincides with the value of
the expression
wylty - ¥y)
18 1
Tlry7y) = £4l0) = (3.8)
178 -( 1 '1(‘.,

Which may be called the "height factor".

Evaluating the integral (2.24) as the sum of differences
at the points T = 7,, we obtain the following expression for

the attenuation factor V: V(x,¥15¥,,9) =
iz 1x7,
8w (T,-¥y) Wy (T,-¥,)
aTzJES:° 1171 112 (3.9)
1 T Ml (%)
which differs from our p P: for v,
to the case y) = 0 (see eq'n. 7.06 in ref. 1) only in that now

two height factors enter instead of one. The elevations y, and
¥, enter symmetrically in (3.9). Using (3.7) we can write
(3.9) 1n the form:

S
V- x zﬁz P, 5 WA U Y
T-t/@ wlrg) | it
et
(3.10)

This form is convenient for q large. In particular, for q = ©
we have

(8)
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_ tx1g ':'1(' vy) M (3g-v,)
v eV a_]"z '(io) :R;z)— (3.11)

8=l

where the quantities T§ are roots of the equation
wp) =0 (3.12)
1%y

‘The series thus obtained are convenlent for calculations in
the region of shadow. In the illw.inated region they converge
very slowly, but thers one may use a reflection formula, which
will be developed in the next section. In the penumbra region
one must resort to quadrature for the calculation of V..

%. Reflection Formula

We now consider the field in the illuminated region. We
may expect that in this case a reflection formula will be
obtained which applies to the reflection of spherical waves
from a spherical surface. In the integral (2.24) we may take
the expression (2.21) for F. This expression contains two
terms. The integrals from each of these terms separately may
not ge (only their ) but,
the method of stationary phase, we can confine ourselves to
the co@tidontim of that portion of the integration lying near
an extresum of the phese, and may then examine each integral
separetely.

We put

v _%‘T _E e R AR AR (4.1)

wy (1-97) wy(x-5,) av
(».2)

*_1.F [x 1xx ¥(%) = Wep()
k) POETC
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Then the atteruation factor V will be equal to the difference

vav.ve (4.3)

Assuming that the moat of the range of integration 1lies in the
region of large negative T and crosses the negative real axis
of T from left above to right below, we can replace vy and vy

by their to this reglon.
According to equation (8.03) in ref. 1, we may put
1 12 (yr)3/2
wlty)se ¥ g Mre 3 (5.4)

2§07

t3
wlzey) m e * (yer) M e (v.5)

Substituting (4.4) and (4.5) in (4.1) we obtain

ca
wole ¥ o[x 1o(7) dv (4.6)
DN f ¢ 1,0 (v30)

where
w() = xr + & (3, - 2 - § (02 w.n

Evaluating © from the condition w'(1) = 0, we have
2
Yp-¥y=¥ VoY #x’
271 2791
el [pmet il (4.8)
1 2x A 2x

We note that for (4.3) and (4.5) to apply, both quantities
(4.8) must be much greater than unity. The value w(t) at a gives
T we denote by w. This quantity is equal to

(ry¥p)

w- .—:;2— +Ex ) - & (%.9)
Application of “he method of stationary phase to the integral
(%.6) gives

WV oael®

(8.20)
i
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The quantity o hae a simple geometrical meaning, namely
® = k(R-8) (4.11)

where R 18 the distance between source and observation point,
considered as a straight line, ard s 1s the corresponding
horizontal distance, measured along the earth's circumference.
From this 1t ia clear that the quantity v° corresponds to an
incident wave.

We now examine the integral V®. Substituting in (4.2)
the asymptotic expansions (&.3) and (4.5), we obtain

in
ol [X [ot00) gutdw gt (812
2 -l— ¢ at f5 (v (ypmn) !
where .
1/2

o) mx s § iy -0 e G 2 Y (02 1)

Ve denote by T = - p° the root of the equation ¢ (t) = 0;
where p > 0. The quantity p is the root of the equation

lyl’Pz + y?w2 =20 +x (4.18)

which is reduced to a cubic equation. HWe denote by ¢ the value
of the phase ¢(t) at 7 = -pz. Using (4.14) we can eliminate
all the radicals except p and write ¢ in the form:

6 = - 362 x 4 20y 4, %) + xlyyayy) - §X’ (4.15)

Bvaluation of the integral V* by the method of stationary
phase gives

v [x o (3.16)
Ao 8 (v.17)

B xt -y -y
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The equation obtained has & simple geometrical interpreta.
tion. The quantity p is expressed as

p=ncosy= (%)V’ con y (4.18)

where y 18 the angle of incidence of the beas (Fig. 1).

Fig. 1

The factor (q - 1p)/(q + 1p) 1s the Presnel coefficient
with Teversed »ign. A° is the product of R/r; times the cor-
rection for epreading of the bundle of rays after reflection.
The phase ¢ is approximately given by

¢=kir) +7, -8) (.19)

where Ty e the path traversed by the beam after reflection.
The expreseion for the integral V thus obtained by the method
of stationary phase

1o gy 16
Ve ~§,-{§ A e (%.20)

agrees exactly with the reflection formula, It must be emphas‘zed
that this expression (and consequently sleo the reflection formuls)
1s valid only under the condition that p be sufficiontly large
oompared with unity (it is sufficient to require that p be greater
than 2, or better, p > 3).

(12)
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If x, by and v, are given, then p is determined from
(4.13). This eguation can be most simply molved in the
following way. We introduce a ngw unknown, z, putting

Ivlbp! -p=dx+2) (4.21)
lyz PN “3x-2 (4.22)

Solving (4.21) for p, we obtain

¥, .
Pegig-ilx+a) (¥.23)
while (4.22) gives
P -t x-a) (3.28)

Adding the two expressions for p, we obtain a cubic equation
22 - z(x® 4 2y) + 29p) + 2x(yy - ¥,) = 0 (5.25)
which 1s not difficult to solve., We set

I -; (2 + 2y, + 27,); (p>0) (4.26)

*(yy - 3p)
.1”-—(—’-,—2-(-’5'”«;) (x.27)
[
Then the root of (4.25) in which we are interested is
2 = 2p s1n (o/3) (4.28)

Using the cubic equation, one may write an expression for p
in terms of z in the form

m-ylvve-%(zzozz) (4.29)
(13)
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The expresaion for V can be simplified if we introduce the
quantity
pxexl.y -y,

x

21p,p%
-8 [#3) ™ ew

We note that x,z, and p) can be written approximately as

x .( k )1/’ (pl +r) ., 2 -(z—:!)l/’ (rl - rp)

(4.30)

We then have

2rlr
n = (% (v.32)
("1 + '2)
iy =0,
za-x, p=ly,-)/2x; pp =0 (4.33)

If yy = ¥p =¥, ¥ have
20, pay/x-%F P =% (b.38)
We now set x - [y = & as in (3.2) and increase x And_‘y—.

holding & finite. This correaponds to the traneition to an
incident plane wave. Putting for brevity

|e2 +3, =0 (8.35)
we have

se-x+d 00k, pelo-2), pedloet) (136
av )
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and equation (4.31) gives an expression for the integral of
(3.3) which coinoides with that obtained in § 6, ref. 3, for
the case of a plane wave (Note: The factor 2/27 in equation
6.19 of ref. 3 should be changed to 4/27).

5. Horizontal Blectrioal Dipole. Primary Field.

The f1eld of an electrical dipole may bde written in the
form:
Ee=grad divI - A, Hw - tkcurl I (5.1)

where I 18 the Hertz vector, directed along the axis of the
dipole and proportional to the quantity

1, = om (5.2)

where
R -.F:! S - Zoroos § (5.3)
Our spherical are to coordi-

nates by the relations

xmwreinOcos¢, y=rsinésing, z=rcos 6 (5.%)

Taking the dipole, located at x = 0, y = 0, z = b, as
directed along the x axis, and setting the coefficient of
proportionality between llx and llu as unity, we can write

Gy =0, By=0, O =0 (5.5)

The field components are obtained after substituting
the veotor (5.5) into equation (5.1). In the following we
shall need only the radial components of the primary dipole
field or the quantities Plr and PB!" proportional to them,
which because of the conditions

dvEa=0, divE=0 (5.6)
(5)
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are solutlons of the scalar wave equation. (5.1) and (5.5)
give the following expression for rl‘.r:

an in 6 Al
ooy o s 2 TR0 By
a 0
cos ¢ nnﬂa—ic—o-'-—-a&) 5.7)

Sirce lI° 1s related to r,0, and d only through R, we have
A, ein 6 A, an

cos 6 3;— 3!" -3 (5.8)
otn 0 52 + 2 (59
Therefore we can write instead of (5.7)
TE] = - cos ¢ % (§:—° ¢:3) (5.10)
The q y TH, 18 1y from (5.1) in the form
rx-lf, = 1k sin ¢ ;:2 (5.11)

In the last two equations we used the superscript o to
emphasize the fact that these equations refer to the primary
field.

On the other hand, the complete field can be expressed
by means of two auxiliary functions u and v according to the
equations

AT
2,
B b ER e & (5.12)
v
k4

1 2@
R L 2 it
(16)

»
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Ho= -ty
R ,
Hom by 3t 3 HW (5.13)

2 2
s, 1 3
Bye -t S B e

where &% is the Laplace operator on the sphere

2,
R AR R < R

The functions u and v may be considered as electrical and
magnetic Hertz functions; sometimes they are called Debye
potentials. Both of these function tiefy the scalar wave
equation.

The equations (5.12) give both the field in air and in
the earth. For air one must put for the earth k = ke -
(w/c) [ where o 1o the frequency; in the following we
will teke k to mean the value of this quantity for air.

The boundary conditions for the electrical and magnetic
Hertz function arise from the continulty of the tangential
components of the fleld at the earth's surface. Denoting by
the superscript 2 those quantities which refer to the field:
in the earth, we can write the boundary conditions in the form:

R T Tt ST 1) R PR
e, o 2l (5.16)

We must £ind the form of tie functions u = u® and v = v°,
corrasponding to the primary field in air. Adding the
expressions for rEj from (5.10) and (5.12), we obtain
A n
4%u w - cos ¢ % (3‘; + é) (5.17)
Qa7
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and aralogously
0 anﬂ
&0 v0 - -tk sin ¢ (5.18)
Out of these relations it 1s easy to determine u® and v°
1f we write I, in series form

1, -%’.ﬁ ; (2r91) €, (kb) ¥, (kr) B, (cos 6)
N (5.19)

valid for r < b. The results are more conveniently written
as

0
u°--cu-0%§ v°---1.n‘§- {5.20)
where P° ana Q° are new auxiliary functions which also satisfy

the scalar wave equation, but do not depend on the angle.
We have

®
Pk E Ty G (kb) ¥, () B, (cos 8)  (s.21;
[

@
i E oy G (k) 9, () B, (con ) (5.22)
ne=l

6. Series for the Total Field

We represent the functions u and v, in terms of which,
according to (5.12) and (5.13), the total field is expressed,
in the form:

u--co-t%;x v--un‘%’ (6.1)

(18)
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where P and Q satisfy the scalar wave equation and the follow-
1ing boundary conditions, arising from (5.15) and (5.16):

@p 2 P2 ﬂg.iﬁg‘_z’l, rea (6.2
PR P TR L) R 6:3)

and do not depend on the angle ¢. Keeping in mind the form
of the primary excitation (5.21), we can write series for
P in air and in the earth as follows:

@D
Pa- g Z s 6 (k) 1 (ke) - A, G (k)] By(con )

=l (6.3)
(a ¢<r<d)
@
ML E E TRy G (0) &y ¥, () Py(cos 6)
£ (6.5)
o<r<a

The boundary corditions (6.2) give for the coefficients
A, and A, the equations

W2 Ry €, (k2 + K2 A ¥, (kp) = kP ¥, (ke)
X AL (ka) + Xy AL ¥y lkp8) =k ¥y (ka) (6.6)
fran which \
\ - Ky ¥, (ia) ¥, (kz8) - k ¥, (ka) Yo (g0)
Ky &y (k@) ¥, (kp8) - K L (ka) ¥, (icp8)

(6.7)

. 12/,
Ky 8, (k) ¥, (kp8) - k &, (ka) ¥, (k8)

(19)

(6.8)
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Ve note that the coefficlent A, here is exactly the same as
in the series 1.7) for the Hertz function U of a vertical
dipole. Comparison of the series (1.7) and (6.3) for U and
for P shows that these functions are connected by the relation

oop - % + 3 (6.9)

This connection between P and U permits us in the following
to use the results at hand for the summation of series and to
express P in terms of the attenuation factor V which we have
already studied.

In analogous manner we can obtain series for the function
Q in air and in the earth. Remembering (5.22), we can write

e-i Z Ao g 00 [o,0) - 3, €000 7 lc0s 0)

n=l
(ac<rcn) {6.10)
Q2 'r S enu 2, (kb) n ¥, (k,7) By (cos 6)
nel
(0<r<a) (6.11)

The boundary conditions (6.3) give
o Snlka) + B, ¥, (ky8) = ¥,(ka)
, (6.12)
e, (:l()n) +ky B, ¥y (kz0) = u';(k.)

from which

(20)
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I (ka) ¥, (kp8) - kb (Ka) ()

T 6.13,
" g (ka) ¥, (ky8) - Kghy (ka1 icz8) (612)

B) = 1/ k) (ka) ¥ (icz8) - Ky G, (ka) ¥y(kza) (6.13)

Thus we have determined series for the function Q. We
note that Q 1s connected with the Hertz function for a
vertical magnetic dipole (horizontal space antenna). The
field from such & dipole can be represented by equations
(5.12) and {5.13), where we must put

uao, valw (6.15)

where the factor N is the magnetic moment, and the function
W 18 of the same nature as I, and satisfies the same boundary
conditions (5.16) as v.

For the functlon W in air we obtain an expansion of the
form

@
W E (2n2) £ [1p(00) - B, £,(r)] 2, (con 6)
= (6.16)

where B 1s given by (6.13). Comparison of the series
(6.10) and (6.16) for Q and for W yields the relatior
a*Q = ik W (6.17)

The same relation (with the same value of k = w/c) 1s obtained
for the value of these functions in the earth.

(21)



T. Approximate Expressions for the Field

Series for our functions P and Q are constructed analogously
to the series for U which was summed approximately in the preced.
ing sections. In addition, P is related to U through (6.9).
Therefore, it is not necessary to repeat the arguments which
led us to the summation of the series for U, and we can use
the results already obt d. For the of P we
use the relation

PO (1.1)
and the value (2.22) for U:

V(x,y1¥,59) {1.2)

It can be readily seen that in those approximations in
which (7.2) 1a valid, the application of the operator 4¢ to
functions of the type U or P 1s equivalent to multiplication
by -k%2. On the other hand, on the right side of (7.1) we
can neglect the term U/b in comparison with the derivative
U/ and express this derivative according to {2.15) as the
derivative with respect to y,. (7.1) then gives

%P - %% (7.3)
from which
Pa-—1 N (7.8)
a% o,

Analogously, one can express Q in terms of W on the basis of
(6.17). We obtain

Q= - (k) ¥ (7.5)
(22)
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We have already derived an approximate expression (7.2}
for U. An analogous expression can be derived for W. The
series (6.16) for W differs from the series (1.7) for U only
in that the coefficlent A, determined by (1.8), is replaced
in 1t by the coefficlent B determined by (6.13). With the
same degree of accuracy to which (2.12) is valid, we can
write .

5, 1 L0 -Gl .6
w (1) - qpm (1)

q' = an = n(n-1)¥2 (2.7)

Therefore W differs from U only by the substitution
of q for q), and we have

elks

W V(x,¥1 55 7.8
T’ (x,¥0¥509;) (7.8)

In practice one can put q) = © 1in all cases. Then the series
for V acquires the form (3.11).

We must now substitute the expressions obtained into the
equations for the fleld, To do this, we find first the
electrical and magnetic Hertz functions u and v. On the
basis of (6.1) we have

ek g‘yLz con ¢ (7.9)
ve-2Waing (7.10)

We substitute these expressions into (5.12) and (5.13),
retaining only the important terms and neglecting quantities
of order l/nz compared with unity. We then obtain the follow-
ing simple expressions:

(23)
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2
;r.-k"’un--‘—:- %—2- cos ¢

By =0 (1)

By =ifav e - ke Wain ¢

H,

ey e -2 Wsin g

r

Hy

These expressions give the field in 'reduced' units (the
moment of the electrical dipole is taken as unity). To obtain
the field in conventional units, the expressions must be
multiplied by the magnitude of the electrical moment.

We now compare the relations (7.12) with those for a
vertical magnetic dipole with unit moment. In accordance
with (6.15) we put u = 0; bv = W, obtaining

E,=0; E4=0; :‘-kev (7.13)

By = ¥ n.-%z %,";; g =0 (7.18)

‘Thus in the plane perpendicular to the electric dipole, its
field either coinoides with the field of a vertical magnetic
dipole (¢ = 3/2), or differs from 1t in sign (¢ = 7/2).

(24)
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In conclusion we may make & remark about the character
of the field at different distarces from the source. At
finite values of reduced horl:‘o::al distance x, the functions
U and W are of the same order. Since (7.11) and (7.12)
contain the large parameter m, tzen at such distances the
different fleld components will 20t be of the same order;
the electrical field will be almst horizontal and the
magnetic field almost vertical (she ratic of "small®
components to "large" will be of the order of 1/m). However,
in the region of deep shadow W x111 decrease faster than U.
Indeed, the decrease of these functions is characterized by
the factors

1x13 1x1y
e (for W) ant e (for U)

where 19 and 7, are the roots of the following equation
which have the smallest moduli:

WeD) - a¥ (1) =0, ¥y(r)) - aWy(ry) =0

For soll with good conductivity we may set q = 0;
q) = @ vhence

023383 1l w1019 &2
1 1

80 that the imaginary part of 12 will be larger than the
imaginary part of 7). The same relation holds in the
general case, because [q)| 18 always much larger than lq'.
Therefore the attenuation of W will occur more rapidly than
the attenuation of U, and for sufficiently large x, the
terms comprising U csn, in spite of the small factor 1/m,
predominate over the terms comprising W. This denotes for
the electrical field a tant from 1
to vertical polarization (with the reverse transition for
the magnetic field).

(25)
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IX. PRESNEL DIFFRACTION FROM CONVEX BODIES
V. A. Fock

The method of approximation based on Huyghens' principle
for computation of the diffraction permits us, a8 is well krown,
to determine the field of a wave which is diffracted by a thin
opaque screen. This field is expressed by Fresnel's integrale.

However, in the case where the diffracting body has &
finite curvature (radius of curvature large with respect to
wavelength) the problem of an approximate determination of
the field in the region of the geometrical shadow boundary
at large distance from the body has been unanswered up to now;
in particular it could not be clarified whether in thie case
the same expressions for the field (the Fresnel integrale),
with which one starts in analogy to the case of an infinitely
thin screen, are applicable. In the following paper we show
in the example of diffraction from a sphere, that also for a
body with finite curvature the main term 1n the expression
for the fleld behind this body is given by the Fresnel integrals.
This term does not depend on the material of the body (in the
same way 88 in the usual Freenel Diffraction). To the main
term there is added here an additional term, which constitutes
a sort of background, above which the Fresnel zones lie. Thi
additional term (and with it the background) depends, on the
contrary, on the electrical properties of the body from which
the wave is diffracted.

1. Formulas for The Attenustion Fector

We start out from our formulas for diffraction, which were
developed in our paper [1] . We have to summarize here the main
results of this paper.

(1)
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The field of a light point source (dipole), located at some
distance from the surface of the sphere, is given by two functiony
U and W, which rep: of the wave 1

&U + KU g (1.01)

and becomes singular at the source-point inrsuch & manner that

1kR
Um '_R" L0, (1.02)
Wnere R 16 the distance from the source and U° remains finite
for kR=+0.

The equations defining U, W differ in the form of the
boundary conditions, which we are not going to discuss here.

Let r, 6, ¢ be polar coordinates with origin at the center
of the sphere, and axis in direction of the dipole. The quantity
8 = a8, where a 1s the radius of the sphere, gives the distance
from the source to the observation point, computed on a large
circle. The height of the source above the sphere 1s denoted
by hy, the height of the observation point - by h,. Further

we introdjuce the parameter
e (1.03)

which we assume large, and let

xsﬂ—“j.-ni-m, (1.04)
22’

n i,
Hne i e (1.08)

(2)
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The complex dlelectric constant of the material of the sphere
we designate by n, and assume |n| > 1. Finally we let

cepFT i gmm 5T . 008

In our paper we showed, that in the vicinity of the surface

of the sphere (that 1s, at distances small compared to its

radius), the functions U and W are to be expressed by an
factor, in with:

.V (RyypQ) “(om

olks

w © OV (Ry¥ea) . 1.08
"I'T_'_‘."':; (x,915¥5:9)) (1.08)

The attenuation factor V may be represented for ¥y < Yo by
the contour integral:

.
V(v me ¢ |§ Ic“‘ P(t,y),3,0Q) @, (1.09)

where the function F may be written in the form:

Faw(t -y,) {v(t Sy Y lelowlel (- vl)}u

! = qv(t
w (t) - qw (t)

(1.10)

or in the form:
'
wolt) - quy(t)

EY - - -
Paz w(t-y) dwlt-y) O]

)
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Here w, (t) and wy(t) are the complex Airy-functions, which
of the aif: 1 equation

wi(t) ® tw(t) (1.122)

and which tend for large negative t asymptotically to the
following expressions:

2
.1 3 (- £)3/2 ,
(1.13)
12 (-
o 1 3 (-+)3/2 .

17 -3
Wt ~e ¥ (-1
ax L1
vty Von T
In the formula (1.10) there appears also one of the functions

u(t), v(t), which are defined by the equations

wi(8) mu(t) + 1v(t) ; wy(t) mu(t) - 1v(t) (1.%)

For t real both functions u(t), v(t) are real. For all values
of t we have:

2 Lt 4 "
- (u” ') - (6 s W '3 ’) =2 .
(1.15)

The contour C of the integral (1.09) encloses in positive
direction the first quadrant of the complex variable t (in this
first quadrant all the poles of the integrand are located).

We can choose for contour C a broken line, which goes from

in
w© e to 0 and from 0 to ® .

(4)
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2. of The Factor

In our previous pages [1, Z]we investigated the attenua-
tion factor V, first in the tl’uminlte(l region, where the
formula of reflection, corresponding to geometrical optics
holds, second in the shadow region, where the amplitudes of the
field decay exponentially, and finally in the transition region
(region of half-shadow). The region of the shadow-cone was
not investigated, and it is the purpose of the present work
to derive approximations for this region.

The shadow cone 1s that cone, tangent to the sphere, whose
apex is the source point. The equation of the shadow cone may
be written in the form

7. |r’ A er2 + b2 - 2rb cos 6 , (2.01)

or, after transition to the variables x,y,,¥,, and neglect of
small quantities:

JTI + JT;-;: . (2.02)

ng the attenuation factar
re very large,

Thus, we have the task of investiga®
V for the case, where the quantities X,y),¥,
but the differenc:.

fex- |y1 - (2.03)
remains finite. We note that the shadow region corresponds to

positive values of £, the 1lluminated region to negative values
of &.

(5)
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Under the integral (1.09) for V we may substitute for F
one of the two expressions (1.10) or (1.11), which are identical.
We decompose the contour C of the integral (1.09) into two
segments: that from cﬁ%{ to 0 we denote C,, that from 0 to
®=Cye On the firat segment we use for F the expression (1.11),
on the second segment the expresaion (1.10). Then we may write

Veo+7Y, (2.04)
where

13
osjg_e ¥ 5"[‘ X% (6 - y,) wylt - y) db 4
c
1

-

(2.05)

QJ’ elxt wilt - y) v(t -y))atp,
C.

2
17 I wilt) - qu,(t) ’
TrTl4 ixt 72 ~ %2
va- |2, Xt L 2w (t-y)w(t-y,)de
.ln 2 O] 1 1% 2
LY
ixt v () - qu(t
+ et L (8l o qv(t) (e Ly ) (b -y, o]
Wy () - qwy(t) 1 v 2
C,
?
(2.06)
The integrals which enter into ¢ do not depend on the parameter
q, vhich appears only in Y. Consequently, ® does not depend on
the electrical properties of the diffracting body; they influence

only the quantity Y. WNe see that ¢ corresponds to the Presnel

(6)
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portion of the diffraction and ¥ to the background, on which
the Fresuel Diffraction term 1s superimposed.

.
3. Computation of Tne Integral ¢

In the expression (2.05) for ¢ we may replace the integra- o
tion over C, by an integration from - @to 0. Using the
relation Vom Wy - f1iv we obtain:
©x0,+0,, (3.01)

where .

o
R 13
omi [T | o ey mlt-y)a, (3.02
1 2 1 2" "1 1

+@
)
o?sEe ¥ I."“ vt -y vt -yp)ae . (3.03)
-®

F.rst we compute the integral 02. For this purpose we make
use of the following integral-representation for wl(t, - yz)z

- -1
EACERA ',T_:—‘r SECARAR . (3.08)
—

Where the curve I~ consists of the segments from -1 to 0
and from O to . We note that on the curve [~ we have:

Rez 3 0. Substituting (3.04) and (3.03), we can carry thru
the integration over t with help of the formula:

(n
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+ 0
"% I efz + 1)t vt - y) at —ew{yl(z0u) 0% (z + 1x))|
©

- (3.05)

which holls for Rez b+ 0. Thereby we find
BRI P LT 2 _ (2
B3 e Py - ey,
r

= J—; (3.06)

The latter integral 1s easily computed, and we obtain finally

o, = ot0l7) |

2 (3.07)

with

(y, - )?
olx) = - xd e Lx (y vy 2l (3.08)

As we showed in our paper [)] , the quantity @ is the phase of
the inoident wave, and We have approximately:

©=kR-6s), 0.09)

where R and s designate the same quantities as in Section 1.
Thus the "integral ¢, corresponds to the incident wave,

We now pass to the evaluation of the integral 0]. Using
the integral-representation (3.04) for both factors w (e - v?)
and vl(t - y]) we arrive, camying out the integration over
t, at a double contour intesrai, for which one integration mey
be carried thru after a change of variables. Thereby we get:

(8 4
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in(2)
2,,,. J‘ ,j_(z el (3.20)

Where the contour C comes from positive imaginary infinity,
intersects the real axis to the right of the point z ax,
and then proceeds along the ray arc z © --g .

The value of the integral (3.10) at the point z=Xx is
according to (3.07) equal to the quantity ®,. Therefore, we
get, 1f we denote by C} a contour, which is similar to C, but
cuts the real axis to the left of the point z = xX.

covo,e talz)
@ 0 + ' g ‘r m . (3.11)

By means of this formula we can express the function ¢
approximately by means of Fresnel's integrale. To this purpose
we make use of the saddle-point method, where we note, however,

that the ratio

7 - 18 not a slowly-varying function. If we

equate the derivative of the phase w(z) to zero, we arrive at
the equation:

2 a2? (v 4y ¢ Uy - vpPmo, (3.12)
which has roots
z:tEiF, (3.13)
Of these four roots only the largest positive one is interesting:
2=+ 57, (3.1%)

(9)
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Since it 1lies closest to tnc.contour C. We call C;
a contour which reseambles C and C , but cuts the real axis
at a point z mz,. Using the relation (2.03) we set

x-zo-x-_ly_]-ﬁ;-e. (3.15)

If ¢ < 0, the contour co 1s equivalent to C and the integral
overllt yields ¢,. If &> O, then the contour C, 1s equivalent
to C and the integral over it ylelds ¢.

Near z = z, we have

o(z) = o, - w3z - z‘,)2 , (3.16)
with
2 2
0= alz) + < IRAR 3 LR (3.17)

2% (3.18)
P .]yz

for an approximate evaluation of the integral

I’ﬁ I elolz) % .19)
o

f(iz-x

We replace the quantity [z by the constant value [z, and
the functlon o(x) by the expression (3.16). If we set

. o
T
z mey +pe ’ (3.20)

(10)
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Then we can integrate over p from - ®to + . Thereby we
get
dp
— -
P-te

The latter integral ie expressible in terms of Freenel's
integrals, where for € > 0 and & < O it has different analytic
forms, namely:

- @ rue) fir g0,  (3.22)
‘[ p.g."" B - £ (- pg) fir € <0,(3.23)
with o
o) = o'“e -1 r—:— \[ e'“2 da. (3.28)

One sees easily, that

f(a) + (- a) m @ . (3.25)

If we introduce the usual Fresnel Integrale

a
2
cus-_fﬁ—."e“ da, (3.26)
o

we may write

a1y
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’("‘"_ﬁ—‘m 1 7 {(%-9 . 1(%-5)} . Gen

The asymptotic expression for f(a), which holds for large
values of a, 18

‘% 1.4
(;~ ;) 0.28)

the integral I by f(a) and remembers that

If one exprees!

this integral represents, for & > O the function 9, for & < 0 —
the function ¢ =6 - ©, defined by (3.07), one obtains
finelly:

“’o
e ° . ur(ue) (fer > 0) , (3.29)

Jx— M’o
-ge== ¢ ° .uf (-ut) (for & <o) . (3.30
.]’: Y2

These expressions hold under tho condition that l and J'}*;

are very large (the quantity u 18 of the order of the smaller
of these numbers). The quantity & may be regarded as finite
and emall, the product 4€ may be an arbitrary (large, finite

or small) number. If § is very small (and 1t may have arbitrary
8ign), then both exp: for ¢ 11y . This
follows from the equations of approximation:

x BXE g4 -1, (3.31)
.I’l Y2 .l’—1 *E
ofx) » 0, - u? 42 (3.32)

(12)
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in conjunetion with the formula (3.25). Por § ® 0 the two
expressions for ® coincide exactly.

.
&, Bvaluation of The Integral

We turn now to the result of the approximation formulae
for the integral ¥. We first inquire about the value of the
Antegral for that case, for which we have computed the value
of the integral @, namely for the case where the quantities
D1r J55 (ena wtth these alno u?) are very large, while
{=mx - %3 73 remains finite. Under these conditions that
portion of the contour of integration, on which the variable t
1e finite, ylelds the principal part. PFor finite t,and v and
Yo large, the product of the function " and the exponential
appearing under the integral in (2.06) equals:

1o 1t
B

ixt 1
eyt - yy) Wit - y,) & ge—
Jyl Y2

[1.:_:2 . o(;l,)] .01

Where for the sake of brevity we used the relation (3.17).

If we substitute this expression into the integral Y,
we obtain:

I o P )
re-ge—c °Jat) -2 ;(e)oo(—;), (u.02)
I}', £ W [

(13)
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S 3 Y e () - awylt) P
R 2 o rem
2
4 el 3 "
@
R J’ 1he vt - quit) g b, (v.03)
4 w () - any(t)

Making use of the properties of the Airy function (1.15),
we see immediately, that with
2n

1
tatie > (4.08)
there follows
124
n va(t) - awy(t) - g - L) ven o (3.05)
2 wl(t) - aw (t) %

wp(e) = qe 3 wp(er)

Substitution of (4.04) converts the first integral in (4.03)
into an integral over the positive-real axis. Omitting the
prime cnt, we get:

@ 2
s(g)-."ﬁ.—‘-fe'%e’—"). Y@ e 3 vy aee
- . 12n
wa(t) = ae 3 wy(t)

@™
1% 1 [m—, t) - g(t)
A J o L) -qls) gy, (2.06)

w (t) - qvl(e)

(18)
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The function v(t) in the numerator decreases rapidly with
increasing t, while the functions w,(t) and wy(t) in the
denominator inecrease as rapidly. Therefore, both integrale
converge very rapidly, and may be evaluated by quadratures,
The function g(8) may be developed in a Taylor-series in &;
the coefficients of this series may also be evaluated by
quadrature. For large, positive & the function g(¢) has
asymptotic behavior:

M
ge) = 23 .1, (v.0m)
2w T

i.e, of an expression, which no longer depends on q. The
renainder 18 of order e**% where t, is the firet root of
the equation -

wy(t) - auy(t) =0 (4.08)
For large ive ¢ the for g(t) has
the form:
13 1.2
R +1 - 15 &
et 1 T 8 % T "
s(l)-ur.toe 4;—T§e . (4.09)

If we substitute this expression in (4,02), we have to remember,
that this formula for Y applies only when the correction term,
which contains u? in the denominator, is small compared to th
main term. Necessary for the applicability of llke expressions
{4.02) and (4.09) is the condition

1« t«n  (£<0) . (4.10)

(15)
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5. The Attenuation Factor in The Region of The Shadow-Cony

In the preceding paragraph we found approximate expressions
for the integrala ¢ and ¥, whose sum ylelds the attenuation
factor v(x,yl,ye,q). Forming this sum, we obtain for §{ @ 0.

o Logn
e ke (ue) - a(e) A (3] (5.01)
u

v _IV: Y2

and for € ‘ []

ut(- ue) + g(e) - h—:'g RO N

. (5.02)

These expresaions are valié under condition, that the parameter
4, which s determined from tie equation

2 1
' QE’JY_; (5.03)

1s very large, while the quantity

t=x- [y - [% (5.08)

1s smell or finite.

Let us return to the geometrical meaning of these quantities.
According to the formulas (1.03) to (1.05) we have:

6 2
RE L S i S T (5.05)
ha

t= ‘;“5 (s - 73R - J7any . (5.06)

(16)



~
=
S

These large values of u correspond to short wavelengths and
are relatively large distances from the surface of the body
(the latter should still be small compared to its radii of
curvature), The quantity { is proportional to the distance
taken along (more exactly, parallel to) the surface of the
body, from the boundary of the geometrical shadow (the shadow
cone). For & < O the magnitude nztz ie approximately equal
to the phase difference between the incident and reflected
waves. The value & ® 0 corresponds to the boundary of the
shadow, positive correspond to the shadow, negative ¢ to the
1lluminated region.

Our formulas give the transition between light and shadow
at relatively large distances from the surface of the body.
Since the functions f and g and their derivatives with respect
to their arguments are, for finite values of these argu=ents,
of order 1, the term uf{ué) ylelds the main term in (3.(1)
for large values of u. This term ie proportional to the Fresnei
integral. It represents a rapidly-varying function of £, since
the argument of the Fresnel integral is uf, where u 1s a large
number. Thus the main term in the expression for V yields the
Freenel dirfraction. On this diffraction pattern there is
oupcrposcd an intensity which is represented by the function
g(t) and 1s slowly varying in comparison with the main term.
This "background" depends on the material of the diffracting
body (since g(¢) depends on g), while the Fresnel term is
independent thereof,

‘The expression derived here for the attenuation factor
should reduce, as going further away from the shadow cone in
both directions, to the previously derived formulas for the
shadow and the 1lluminated region, We check this: in the
shadow zone we have to have an exponential amplitude decay,
in the 1lluminated region — the reflection formula.

a7)
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Since we neglected in the formula (5.01) and in the asymptotic
expression (4.07) for g(f), terms which decrease exponentially
for large position &, we should get zero in our approximation
in the shadow zone. Actually we get from the asymptotic
expression (3.28) for the Presnel-function f(a):

.1 2F 1.1
uf(ug) = E e . (I -m> . (5.07)

On the other hand, the formula (4.07) yields:

.
L ey el ST /14
O I Rl St m) (5.08)

That is, the same expression. Thus for large positive € the
expression (5.01) for V actually tends to zero in our approxima-
tion.

Now we consider large negative values §. In the formula
(5.02) the first term of the asymptotic expression (4.09)
for g(&) cancels against uf(- u8), the second terms (which
contains the exponential function) ylelds:

RN S A~ SERLS B 1
V=e J"Jy%;e 5 .me . (5.09)

On the other nand, in the illuminated region the reflection
formula

2
1 -1 2191") ‘
V-e"'.(l-a-’—!-g‘ ’—;Lpl« {5.10)

holds, as shown in our previous paper [1] [the formula (4.31)
of that paper] . There w ¢ w(x), and the quantity p (which is
proportional to the cosine of the angle of incidence) is
defined by the equation:

(18)



o+

and for p, we have

+ |y2 e+ =2p+x (5.11)
.
P= 2p0x-§(y] +¥,) . (5.12)
To the approximation in which formula (5.09) holds, we have

p=.§¢T6£§,--§ . (513

2,
a2 s 28t L2,2, (5.18)

If we uvse these approximate equations, we see easily that the
forzula (5.09) gives Just the form of the
of reflection (5.10).

Thus, the formulas (5.01) and (5.08), which were derived for
the region near the shadow cone, reduce to those formulas which
hold in the regions adjoining this shadow cone on both sides,

And which were derived in our previous pages.

In conclusion, we make the following remarks about the
formulas derived here.

In the same manner as the starting formulas for V, also
the approximate formulas admit of transition to the case of
@ plane wave at suitable change of the expressions for the phase
of the incident wave. This transition coneists in letting x ard

Yo tend to infinity, while keeping th:‘r difference finite,

As was shown in our papers [2] and [3], our starting formulas
are valid in the case of a plane wave no% only for a sphere,
but also for & body of arbitrary shape, Therefore, may
regard the approxiration formulas derived here, which contain
the Fresnel integrals as special cases, as proven also for a

Q9)



252

body of arbitrary shape. It is also very probable that the
diffraction pattern found here (a Fresnel diffraction, super-
imposed on a background) is valid, at least qualitatively,
also 1in large cistances from the body. One may, therefore,
expect that the of the with
increasing distance from the body.
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X. FRESNEL REFLECTION LAWS AND DIFFRACTION LAWS
V. A. Pock

In 1821, the French sclentist Fresnel established formulas
determining the intensity and direction of oscillations in re-
flected and refrected rays of light incident cn the plane sur-
face of a transparent body.

Fresnel obtained his formulas on the basis of the elastic
theory of light under the assumption of the transverse oscilla-
tions of the elastic medium (ether) where he was obliged to
introduce special hypotheses on the elasticity and density of
the ether in media which differed from each other by the index
of refraction. This derivation does not correspond with the
modern view on the nature of light and has only historical
interest at the present time. However, the formulas themselves
were justified brilliantly by experiment and, later, as touch-
stones for the verification of the whole new theory of light.

In 1865, the electromagnetic theory of light, created by
Maxwell, appeared. which would sustain this verificatlion and,
moraover, would give an explanation of an unusually wide circle
of phenomena including those which were detected many years
later such as: radiowaves (Hertz, Popov), light pressure
(Lebedev) and many others.

The Fresnel reflection laws emerge from the Maxwell equa-
tions and the appropriate boundary conditions without any
additional hypotheses, where it appeara that the transverse
oscillations analyzed by Fresnel must be understood as the
oscillations of the electric vector.

The Fresnel laws are applicable not only to light but to
electromagnetic oscillation: of any freguency, including radio-
waves. On the other hand, the Fresnel laws are generalized

]

1



254

easlly to the case when the waves fall on the plane surface of
an absorbing body. The Fresnel formulas retain their form,
with this sole difference, that the index of refraction n'
must be replaced by a complex quantity; namely, the square root
of the complex dielectric constant of the medium.

The Fresnel formulas permit the direct expression of the
amplitude of the electromagnetic field of the reflected wave
through the amplitude of the incident wave field, where their
values on the reflecting surface are understood to be these
amplitudes. If a plane wave falls on the surface,and if the
reflecting surface itself 1e a plane, then the reflected-wave
field amplitudes at a certain distance from the surface will
be the same as on the surface itself; only the phase will depend
on the distance from the surface. If the reflecting surface
16 convex, then the incident, parallel beam of rays becomes
divergent after reflection. In such a case, when calculating
the reflected-wave amplitudes at a given distance from the
point where the refiection would occur, it 18 necessary to
introduce a correction factor into the amplitude which would
take into account the beam spreading after reflection. This
factor can be found from purely geometric considerations.

The electromagnetic-wave reflection laws are very simple
and for the app: in Fresnel
formulas. It is a much less satisfactory matter in the case
of the approximate formulation of the diffraction laws; i.e.,
the enveloping of an obstacle by the wave and its entrance
into the geometric shade region. All the known until very
recently approximate methods refer to the case of wave
diffraction from an obstacele with sharp edges, for example,
from an opaque screen with orifices. Basically, these methods
are refinements of the Huygens principle. The principal step
in this direction was made by Presnel himself. According to
the Huygens principle in the Fresnel formulation, part of the
1ight wave covared by the scraen does not act at all, but the

(2)
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uncovered reglons act just as though there were no screen at
all. A further improvement was made in 1882 by Kirchhoff
who proposed a formula for the amplitude of light waves out-
side a screen. The Kirchhoff -formula 18 a very flexible and
convenient means of 8olving approximately the problem of
diffraction from a screen with sharp edges but it does not
take into account the influence of the screen material and,
in general, does not take the limit conditions for the fleld
which result from the Maxwell equations, into account.

The next substantial step in the solution of the diffrac-
tion problem from a screen with sharp edges is related to
the finding of rigorous solutions to the Maxwell equations
for certain particular cases (half-plane, wedge). Here t.
work of Sommerfeld should be mentloned and also the work of
S. L. Sobolev and V. I. Smirnov, who approached the problem
from a new point of view (nonstationary process). The
extremely interesting proilems of the plane and cylindrical
waveguides with open ends (where the diffracted wave can be
sent backward) were solved recently by the young Soviet
scientist L. A. Vainshtein.

In contrast to the problem of diffraction from bodies
with sharp edges (screens and dlaphragms), no general

\pp! methods or app: formulas (similar to

the Kirchhoff formulas) have been proposed to solve the
problem of diffraction from bodies with continuously varying
curvature, to the present time. In order to find the field
obtainable because of the diffraction of the incident wave,
1t was proposed to solve the Maxwell equations with the
1imiting conditlons for each separate case, which is a very
complex mathematical problem.

The Fresnel reflection formulas are integral laws in the
sense that their use does not require the solution of the
differential equations because these formulas give explicit
expressions for the reflected wave amplitudes. Not only was

)
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the form of the appropriate integral law not known for the
phenomenon of diffraction from bodies of arbitrary shape,

but the fact of the existence of such & law was not established,
In other words, the possibllity was not established of writing
explicit expressions for the field amplitude of waves bending
around & body under any general assumpt.ons of the elsttrical
properties of the body material and on the shape of its surface,

To a known degree, this gap was filled in our works on
the diffraction of plane wa from the surface of a convex,
conducting body of arbitrary shape.

The assumption that the body rateriel 1s a good conductor
15 essentlal because it affords the possibility of using the
simplified, boundary conditlons for a field which M. A. Leon-
tovich established.

Considering the field near the body surface (at distances
which are small in cowparison with the radius of curvature of
the surface), we established that this fleld has local character
in the penumbra region. This means that the fleld in the
penumbra region for a given incident wavelength, amplitude
and polarization, depends only on the shape and propertles of
the body near the glven point, where it is expressed through
certain universal functions which can be tablulated once and
for a:l, Hence, Lt appears to be possible to formulate certain
general diffractlon laws thereby.

Our formulas for the field can be considered generalisa-
tlon of the Fresnel formulas - & generalization which includes
both the reflection and the diffraction laws.

Let us move, mentally, along the surface of & body from
its 1lluminated side to the shade. The incident and reflected
waves can be differentisted on the illuminated side, whers the
latter will be described well by the Fresnel formula. Wear
the geometric boundary of the shade, in the region of oblique
incident of the ray, both waves are already inseparable from
each other so that only consideration of the resultant field

(%)
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has meaning. Here, our formulas become valld while the Fresnel
formulas become inapplicable. We do not have waves of more or
less constant amplitude beyond the geometric shade boundaries
but we have a damping wave, i.e., a wave with amplitude decreas-
ing exponentially as the distance from the geometric shade
boundaries increases. Here, the diffraction phenomenon occurs
in 1ts proper sense, where the diffraction law 1s transformed
by our formulas.

From the above, it is clear that a region exists (namely,
the region of oblique ray incidence) where both our diffraction
formulas and the Fresnel formulas are correct simultaneously.
Evidently, one formula must transform into the other in this
region.

Later, we will cite the Fresnel formulas for an electro-
magnetic field and we will give their generalization which
permits taking into account the broadening of the beam after
it is reflected from a convex body. PFurthermore, we will
write the diffraction formulas we obtalned, we will aralyze
their 1imiting case and we will trace how they transform into
the Fresnel formulas in the region of oblique ray incidence.

1. Fresnel Reflection Laws

Let us denote the amplitudes of the electric and magnetic
vectors of an incident wave at a given point of the body sur-
face through !'(x;.l;..l;) and i;.n;.n;)‘ Let us denote the
co.m pondi..ng aumt.iu..el.{oz the reflected wave through
2°(8},E.,B7) and RO(HJ,H,H).  Furthermore, let ‘('x"y"z)
be the unit vector in the ircident ray direction and let

2" 3,85) be the unit vector in the reflected ray direction
and let H(nx,ny,n,) be the unit vector ncrmal to the body sur-
face at the incident point. According to the reflection law,
the 2%, % and 7 are related thus:

-2 . R2H (1.01)
(5)
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2R B con e, (1.02)

where @ 1s the incident angle. The & and a® are proportional
to the gradient of the phases of the incident and reflected

wa' Considering the amplitude to be a quintity which varies
slowly in comparison with the phase, we obtain from the Maxwell
equations for a vacuum:

[ax8) =5 aE =0, (1.03)
from which
[axu] =-8% anoeo, (1.08)
and similarly for the reflected wave:
[2"x 8] = u

[n’x Hj = -, &

, (1.05)

*z0 . (1.06)

Let us denote the magnetic permeability through u, the
complex dielectric constant of the substance of the reflecting
body through:

ne ey dng (.01

and let us introduce the Fresnel crafficients:

N fcos® - - sin%0 (1.08)
ncos & + jun - sin“e

Moo lcos 8 - - sin% (1.09)
Wwcos 8+ |un - sin%e

(6)
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Then the Fresnel formulas establishing the iclation between
the amplitudes of the incident and reflected waves can be written
thus:

(n°2" = N(n-E*) (1.20)
(n-5%) = M(n-H°) (1.11)

The amplitudee of the transmitted waves (penetrating the
substarice of the body) are not of interest and we will not
write the corresponding formulas.

Equations (1.05), (1.10) and (1.11) can be solved with
respect to the E® and H¥ vectors. Introducing the notation:

n-E® s EL; neHS s WY (1.12)

and expressing a® through a according to (1.01), we will have:

sin 6E° = - NES(n cos 26 + & cos 6) + M2 [nxa], (1.13)

sin? g% = - MHe(n cos 20 + a cos 6) - NE, [n x AJ . (aw

Such are the amplitudes of the reflected waves on the
body surface which result from the Fresnel formulac.

Relations for the total field can also be derived from
the preceding formulas. Denoting the total field on the body
surface through E and H and their normal comporents through
E, and H_ and sssuning:

) (1.15)

we will haver

otn? 6(E -n2) = x [2 B, {fe-nan)} +n [nxa],
i J—“ } L (1.16)

(W)



260

stn? 6 [n x K] :g,{a-n(a-n)}o xﬁunﬁmxa].

(1.a7)

1f |mu| >> 1, then x = 1 approximately and the right side
of (1.16) and (1.17) are mutually proportional. In this case:

E - nB, =‘E [rxH]). (1.18)

The last relaticn already does not contaln the vector a,
1.e., 18 independent of the incident wave direction. As shown
by M. A. Leontovich, 1t holds not only in the illuminated regio
where the Fresnel formulas are applicable but on the whole body
surface .

The following relations can also be derived from (1.16)

and (1.17):
(a-E) = (- cosO4 x H)"" s (1.19)

(a-h) = (- cosé + x H)"" . (1.20)

If the incident wave is plane so that the vector a has a
specific value, then the last relations can be used instead of
the Leontovich conditions (1.18). This is convenient when
oblique ray incidence is considered where sin 6 = 1 can be
substituted for x in (1.15).

2. Cross-Section of a Beam of Reflected Rays

In order to find the amplitude of the reflected waves at
a certain distance from the body surface, it 18 necessary to
have formulas for the cross-section of a beam resting on the
aS area of the body surface, having traversed the given path
8 after reflection. These formulas can be derived from well-
known formulas of differential geometry.

(8)



Let the equations of the reflecting surface be:
x o x(wv); ¥ = ygluv); oz ez (wy) (2.01)

where u,v are the Gaussian coordinate parameters. The square
of the element of arc on the surface can be written thus:

= ;Wau’ + 2g,,0u dv + g, 4v% = E gy dudv ,  (2.02)
uv

where the sum E 18 a shorthand notation for the middle term

0,

of this equality.

We will use notations for the covariant and contravariant
components of the vactors and tensors, by raising and lowering
the signs using the 'metric' tensor which enters into (2.02).
We will write the surface element thus:

as: feauav. (2.03)

Let us write the formulas for the vector components normal
to the surface and for their derivatives with respect to u,v.
We will have:

3, 3
JEnne %%ﬁ - %f ete. (2.00)
3n, 3
- E o 32 e, (2.05)

The last formula can be used to define o“: - the mixed
component of the second qué ‘ratic fcrm of the surface, If
Ry and n,‘, are the principal radii of curvature of the normal
cross-section of the surface, then we will haver

(9)
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"'n‘l‘l{;"‘u“v“‘v"u' (2.06)
,ll]_,,lg:.a-.o:-o:. (2.07)

‘The q ¥ K 18 the of the surface. We

will require the formula for tie Il° radius of curvature of a
normal cross-section of the surface by the plane of the
incident ray. It can be shown that if ky is the phase of the
incident wave, where

(grad 9221, (2.08)

Z g % ::° «stn? 0, (2.09)

u,v

where 6 18 the incldent angle and the derivatives are taken
at the y = y, values of the phase of the body surface. The
quantity R 1s then determined from the equality:

3 2
E s %% = -'1;“—9 . (2.10)
u,v °

Let us use the formulas written here to calculate the
normal cross-section of a beam of rays reflected from the dS
surface element.

Let us consider the equations:

yEy, 4+ n; A (2.11)
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1n which © 15 a certain glven quantity and «),Y,,2,.8y, 85,88
are functi of u,v from the (2.01) of
the surface and from the relatlon:

-

a*=a - 2nlam), (2.12)

where n 1s the normal vector at X,,¥,,Z, -

Evidently, e 1s the path traversed by the beam after
reflection. For constant s, (2.11) are the equations of a
certain surface parallel, in a known sense, to the reflecting
body surface. If we were to vary u,v between (u,u + du),
(v,v + dv), we would obtain a certain sectlon of the surface
(2.11). This section can be considered as the cross-section
of a beam of reflected rays resting on the element of the
surface dS = {g du dv . In order to obtain a normal beam
cross-section, we must project this section onto a plane
perpendicular to the reflected ray. Denoting the ares of
the normal section through D(s)dS, we will have

a} .; a?
3 dy %k
Dis)ds = du u ufduav, (2.13)
i dy
E -
from which:
ol -; a?
*x dy Ik
D(s) = = VNV VY I (2.1%)
= i ¥y i
B



We calculate this under the that
the incident wave is planar and that, therefore, the vector
a is independent of u,v.

After sufficiently complex computations, which we onmit
here, the following result is obtained:

D(s) = cos 8 + 28 (-oooZ;“" ;& ;—‘3 E
W

u,v

g % :vﬁ)o uKs? cos 6 . (2.15)

Using (2.06) - (2.10) cited above, we can write:

Dlo) = con 6 4 28 [(,{;,g;) cor? _*,?] Ny
(2.16)

where the values of Ry,R,,R, are taken at the point where
reflection occurred.

Bvidently, %E-E} ylelds the beam broadening, 1.e., the

ratlo of this crose-section at the distance s from the surface
(we measure along the ray) to the cross-section at the surfece
1tself.
3. BElectromagnetic Field of the Reflected Wave
Let the fleld of the incident plane wave equals
2el¥, 1%tV (3.01)

where E° and B® are constant amplitudes and

O-w-u(u)‘#yuyou:) (3.02)
15 the phase of the wave &t this space point.

(12)
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Introducing the value
@, = ky * k(xolx o Yoly + 2,8,) (3.03)

of the phase ¢ on the body surface, we will have for the
incident wave field on the body surface:
1ky, 1ky,
e °, e °. (3.08)

The reflected wave field on the body surface will equal:
1k, » 1K,
% °, e ©°, (3.05)

where E¥ and H*® are related to E° and H° through the Fresnel
fornulas (1.13) and (1.18). [Let us note, apropos of the
notation; that in (1.13) and (1.1), we considered the phase
factor e %o to be included in E°, K° and in B% K¥, but
since this factor is identical in both sides of (1.13) and
(1.15) then 1t dces not matter whether we understana the
total expressions (3.04) and (3.05) in these equalities or
their amplitudes.]

In the notation of this paragraph, E° and H® are constants
and B¥ and K® are slowly varying functions of the coordinate
point on the su:face.

Let us denote one of the reflected wave field components
through F. The value of F on the surface will be:

1ky,(u,v)

Fef(uv)e (3.06)

where f(u,v) is a slowly varying function and k is a large
parameter. In order to find F at a certain distance & from
the surface, we must know the solution of the wave equation:

FEYS R (3.07)

which satisfies the radiation condition and the limit condition
(3.06) on the surface. Treating k as a large parameter, the
approximate form of such & solution can be shown explicitly.

a3



Actually, let us consider the expression:

.m(vou) )

Pz fu,v) (3.08)

The u,v,s quantities can be interpreted as curvilinear coordinaty,
of a space point related to the x,y,z rectangular coordinates
through (2.11). The geometric meaning of these curvilinear

18 evident: the u,v the posi-
tion of that point on the body surface from which the ray,
ocoming from x,y,z, is reflected; the quantity s is the distance
traversed by the ray after reflection.

Therefore, P in (3.08) can be interpreted as a function of
the space point. It is evident that this function takes the
value (3.06) on the surface. It is also evident that it satisfies
the radiation condition and it corresponds to & scattered wave.
But, moreover, if the parameter k 18 large, then F satisfies the
wave equation approximately. Actually, it can be shown that
the equalities:

forsatre s o2 -1, (3.09)

av{r" “?-E% srad(y, + -)} 0. (3.10)

result from the definitiona of ¥, and D(s) and from {2.11).

On the basis of these equalities, it i 8y to verify
that second and first power terms in k drop out of (3.07)
after F is substituted therein and only zero degree terms
remain.

The correctness of (3.08) results, independently of the

Juet from optics
Actually, this expression must give the reflacted wave. But,
evidently, the phase of the reflected wave equals 1:('° +38).
As regards the amplitude, then, if we travel along a fine beam
of reflected rays, the amplitude must vary in inverse propor-
tion to the square root of the beam cross-section, as is given
by (3.08). (%)
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Therefore, this formula gives the reflected wave field
at the distance o from the surface when the field on the
surface itself 1s known.

Applying this formula to fhe electric and magnetic field
components, we obtain:

2o B%u,v). ,‘?{-.Q} .m(%“). (3.11)

Do) ,lk(vgee)
sy ° .

K= K% (u,v)- (3.12)

where E¥(u,v) and H*u,v) are the field amplitudes on the
body surface obtained from the Presnel formulas.

The formulas we obtained for the field are naturel
combinations of the reflection and geometric (rey) optics
lews. Both, separately, were known over a hundred years
8go: Fresnel found his reflection laws about 1820 and
Hamilton found the ray optics laws about 1830. In parti-
cular, Hamilton inew that the quantity, corresponding to
our D(s), 1s & second degree polynomial in 8. However, we
have not deen able to find any indicatlion, in the literature,
of the application of these results to the approximate
representation of reflected electromagnetic waves.

4, Diffraction Laws in the Penumbra Region

In the introduction, we already mentioned that the inci-
dent and reflected waves became mutually inseparable near the
geometric shade boundaries, in the reglon of oblique ray
incidence, and the Fresnel formulas become inapplicable.

We explain here, on the basis of our vork.l the idea of the
derivation of the diffraction formulas which give the field
1n this region and 81s0 in the penumbra and umbra regions.

Let us visualize a convex body on which a plane wave
falls in the x direction. Lat us select & point on the body

(15)
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surface which lies on the boundary of geometrio shade and let
us make it the origin. Let us direct the 2 axis along the
normal to the surface (towards the air), Since the normal
on the stade boundary is perpendioular to the wave direction,
then our x and z axes will be mutually perpendicular. We
select the y axis so that we will obtain a right-handed
coordinate system.

The equation of the surface in the neighborhood of this
point will be:

s+ @leady e a0, (5.01)
in which
820; c30; ac-v¥30. (4.02)

The radius of curvature of the normal ero ection of the

surface will equal:

Rr i (4.03)

Later, we will the 'large m

to the formula:
N, [k
. |—2 = |- (4.0k)
2 2a

and we will solve our problem by neglecting quantities of
order 5 1n comparison with unity.
n

Our 1dea is to find the electromagnetic field at a small,
compared to the radius of curvature R , distance from the origin.

Under our each field will be:
P otX (3.05)
where ¥* the al 71
:,- + 21k l .o, (4.06)

(16)
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All the field components can be expressed through lly and FIz

thus:
3, .3_1&)
iz,
BTk Y 4
e H, ,
" z (Ig.w)
E

p 5 - Hy
n-i (B ),
¥y
which can be considered as sinplified Maxwell equations.
M. AL the ap) limit

conditions for a field in air on the boundary of a good-
conducting body. They are correct under the conditions:

fw] » 15 xR, ' Fel»s (4.08)
and have the form [lu (1418)] '

l-nln-ﬁcnxll]. (5.09)

Later, we will corisider u = 1, The normal vector
in (4.09) 18 from the (5.03)
of the surface. We can put, approximately:

nx=uow;n,-bxoey;n’=1, (4.20)

because the squares of n, and can be neglected in comparison
with unity. We will consider the quantities ny, ny, B J.L to
be small of one order, &l

an




Under these assumptions, the limit conditions for fields
which aontain only % and H, can also be derived from (s.07)
and (4.09). They will be:

HpZomg My, (8.22)

?xoﬂ(nxﬁr—:-)&,=n¥;'-. (5.12)

Because of the smallness of nys the right sides of these equa-
tions are correction terms. In a first approximation, they can
be replaced by zero and the simpler limit conditions can be
analyzed:

H,30, (%.13)

i (n,«-ﬁ_—)u,:u. (3.18)

In the second approximation, and H, values obtained by
solving the differsntial equations with the limit conditions
(4.13) ana (2.18)* can be substituted into the right sides
of (8.11) and (4.12).

The solution must satisfy the conditions at infinity as
well as the differential equation and the limit conditions.
These former are the requirsment that the part of the solution
whioh corresponds to the plane wave should have a given
amplitude at infinity.

an inconsistency was admitted here
mnny, (Ut u) me (h ui were considered as the limit conditions.

and the
obtained in cm ﬂnu expression for H, .C-n (5. )0 buma‘ a.na
only the principal term in the cvro ssfon for K .29)
inaccuracy 1s correoted in this

(18)
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‘The mathematical problem formulated has a unique solution
which we will give here minus all the computations and being
1imited to definitions.

If we do not consider the &KX factor, the field will
depend on the coordinates only through the quantities:®

t=m (ax+by), (4.15)
¢ = 2am? [: + 4 (ax® + 2bxy + c2? )] B (4.16)

of which the second becomes zero on the surface. The constants,
characterizing the electric properties of the reflecting sur- "
face, enter into the field expression through the qulnuthn'

in ’,k
Q- iom= . (%.17)
F’ 8

All things the fleld 1s through
one universal (i.e., independent of the surface shape)
function V) (€,£,q) and through its limit value:

Vo (4,0 = V) (LE,@) . (4.18)

The V:'1 funotion can be represented as a definite integral
containing the complex Airy functions vl(t) and wy(t). These
latter are defined as the sol of the

w'(t) = tu(t) , (%.19)

#Morecver, the correction terms will contain y in a linear

#2170 we should use (1.19) and (1,20) uuuu of the Leon-
tovich conditions, we would obtain for q the scmewhat more

exact expression: -1—“' In 1.
(19)
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which have, for large t, the 1
1 3/2 n )
w(t) = ] (1 - ¢ 1 4,20
) (8) e $uvX2413 ), 20

walt) = -Ti.,: oxp (- 18wy ;). (a.21)

The expression for V) has the form:

5(8)-awy (t)
V,(8,8,q) = —— 1o fo (g - 2R L bae
1 (86,8a) = 5 dwy(-0) T w (¢
(8.22)

uhere the C contour goes along the Tay are t & § 7 from infinity
to zero and along the ray arc t = - % n from zero to infinity.

Por { = 0 (on the body surface) the V) expression simplifies
and becomes:

.1 18t at . E
v,(6,0,0) F[. Toem s ¢

This function 1s tabulated for a number of values of q; the
tables for q = O (absolutely-condusting body) are printed in
our work.

Having the definition of Vl(t,t,q), we oan write the
expression for the field. To do this, let us introduce the
functions:

[ R A AR XN (.28)
LR AN (3.25)

(20)



where
eru-30, (3.26)

and let us form the following expressions with their ald:

2
YN (1§q.'°‘ m) (&0, (von)

¥

o

"

"
elo

+

-1-«““’ -v) (0-1) , (k.28)
Then the 8, and K‘ magnetic field components will equal:
LR T W (%.29)
H!-% l(;c“""r»ugc""‘o, (4.30)

where lg and ll: are the amplitudes of the incident wave. All
four of the functions, 8, ¥, P, Q, satisfy the differential
equation of (4.06) type and will be of the same order of
magnitude. Since m is & large parameter, then the terms
containing © and ¥ will be the principal,and the term
containing P and Q will be corrective. The B, and H‘ field
components will be of the same order as the correction terms,
namely:

PEREY Tonk- 9 @a.3)

Rerdogede (v.32)

As regards the remaining electric field components, they
will equals
y "By s K - H . (%.33)
because of the simplified Maxwell equations (%.07).
Hence, we have all the field

(21)




5. of the for the
PFlelds in the Umbra and Direct-Visibility
Reglons

The diffraction formulas we derived, give the field near
a certain point on the surface of a conducting bedy in the
geometric umbra boundary. We show that they give a continuous
transition from the field corresponding to the Fresnel formulas
(for the direct-visibility region) to total shadow. Let us
start with the umbra region.

The integral (4.22) can be represented as the sum of
residues referred to the roots of the denominator of the
integrand. We havet

vi(8.8) = L z,r'z "“ , (5.00)

M) (5, - @ -u)

where t, 1s & root of the equation:

w(t,) - auy(t,) = 0. (5.02)
The tg roots lle near the ray arc t = § and increase in
absolute value. For sufficlently large positive values of
¢ r we can be limited to one term in the series of (5.01).
e , Af the (4.20) for wy is used
and if { is considered to bs large in comparison with tl in it,
then we obtain the approximate expression for Vi:

3/2 -
S LRI (R (SR

(5.03)
The quantity t, has the following values for q = 0O and q = GOt
1

vy (6,8,0)

(22)
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n

13

t) = 1,01879 - e (@=0), (5.08)
i1

L2 e > (gF @) (5.05)

In every case, both the real and the imaginary parts of t) are
positive, Hence, there follows that the VI1 ana Vz are the

®, ¥, P and Q functions related to them and, therefore, the
field, Will decrease exponentially as & - [T increases.

Let us note that the equality & - [T = 0 ylelds the
geometric boundary of the umbra. The increasing, positive
values of ¢ - [T correspond to points lying farther and
farther in the umbra region.

Where the magnitude of ¢ - [T 1s small (it can de of
eithcr sign) we there have the penumbra. We will not dwell
on methods of computing the V, function in this region; let
us say only that this function and, therefore, the field
varies continuously there.

Now, let us turn to the line-of-sight region where
13 -JT“ large and negative. In this case, it is impossible
to use the series (5.01) for V) and it is necessary to return
to the (4.22) integral. The term containing the wy(t - ()
in this integral can be computed exactly. It ylelds:

e T e . 2 olf .
%F'J.e wlt - Q) at=e?, (5.06)

where ¢ has the value:

sreg-3 0, (5.01)
which agrees with (4.26). Therefore, this term ylelds the
component unity in the © and ¥ functions and it corresponds
to an incident wave in the field expressions.

(23)
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The second term can be evaluated acocording to the -nuom,,
phase method as shown tn [1]. The phase extremun is obtained for
-t = p, where:

pe3 ([T - ) (5.08)

It 1s to the special

= Ie2 3. (5.09)

for the square root in the above formula. Let us note that p
has the same sign as ﬁ'- ¢ since p > 0 corresponds to the line-
of-sight region, p £ 0 to the geometric boundary of the umbra
and p < 0 to the unbra. We are interested now in large positive
values of p. Use of the stationary phase method for this case
yields for all the Vl:

vt = et E 2. (520

where the phase ¢ equals (5.07) and the phase “ equals:

& b (u’ - 362 - 28%) . (5.11)
Let us note that the phase difference ¢% - ¢ equals:
FoerF o0 (0202 (6-5) 2. (5.02)
Since 0'- ¢ goes to zero on the body surface, 6 = p » - ¢
for { = 0.

The quartity V, 1s obtained from (5.10) for q = @. The
¢ and Y functions related to V; and V, will equal approximately:

(24)



17

o1 otit-e |§~gﬁ§. (5.13)

®z1- .‘(“‘”'ﬁ‘ (5.14)

Not only the functions ¥ and ¢ themeelves enter into
the field expreasion but 8lso their derivatives with respect
to . All the factors, except the phase, can be considered
constant when forming the derivatives., Because:

3
ﬂ%ﬂﬁu-;un (5.15)
we will have:
g‘:’”’ (r-1); “-zu (0-1) . (5.16)

Evaluating P and Q by using these values, we obtain:

r-ﬂ-q—"’:zx—p(;bp-“' 2l!w)‘]?-’(‘.").

There remains but to substitute the expressions found
into (4.29) - (4.32) for the field. Hence, it is convenient
to denote the phase of the reflected wave by the one letter:

(5.17)

x*kx+e%- 0 (5.18)

With this notation, we will haver
1kx -4 1x
=) e - Xy
g eogae [§

(2, L_..v) * ox
(5.19)

cie 2

Q+ip
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o0 olx 1
Hy = MY ot* k3 |§ olXy

2
1 21 b =Y 1,
*i'g.,—." ﬂ“”‘.—ﬂ) I;.x,
’ (5.20)

Bos- . pi=iP E-“‘. (5.21)

q+1p

W2 '5 oiX (5.22)

and, moreover, l’ =H ‘z - - )ly

The first terms in (5.19) and (5.20) evidently yield the
incident wave and the remaining terms the reflected wave. In
the next paragraph, we show that the reflected wave corresponds,
in accuracy, to the Fresnel formula with a correction for beam
‘broadening.

6. Comparison of the Diffraction Formula With the
Fresnel Formula for the Line-of-8ight Region

Now, let us turn to the Presnel formulas. Putting p =1
in the Fresnel coefficients and considering |n a large quantity
and cos © to be emal) (of the order of e » we obtain for N

and Mr F

Me-1 (6.01)
Fec: 8 +1

We must put a, = 1, ® a, = 0 in the Fresnel formulas (1.13)
and (1,14) and we must oonsider n, and ny szall quantities for
which the squares can be neglected. Then these formulas yield
for the eleotric field:r




- ong
B om0, b (6.02)
e .un;.‘(un)n,ng
and for the magnetic field:
Y
#-n@—(n*l)nyll:, r (6.03)
AL ES D

In order ot obtain the reflected wave field at a certain
distance from the surface, it ie necessary, according to (3.11)
and (3.12), to multiply these expressions by the factor:

Ig{ﬁ} Sl o) (6.0%)

The value of these quantities, except s, must be taken at that
LN point where the reflection of the ray striking the
x,¥,2 point, occurred. Since the equation of the reflecting
surface ls:

7/

-

2,43 (x@+abxy +cy?)=0,  (6.05)
then we have:

ngTex,+by, ;) nyebx 4oy, ; ny 1. (6.06)

In evaluating D(s) according to the general formula (2.23),
we must neglect the last term since we are interested in the
f1eld at distances which are small in comparison with the
radius of curvature. The remaining terms yleld:

(en)
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D(s) = cos & + 2as = 2a

- ax, - by, - (6.07)

In order to make a comparison of the diffraction formulas
{5.19) - (5.22) and the Presnel formulas (6.02), (6.03), we
must establish the relationship between the X,,¥,.8 quantities
and the x,y,z coordinates (or the &,{,y quantities). This
relationship is given by (2.11), which becomes in our case:

X ®x,+8-2m.,,
¥ Ey, - 2enny (6.08)

z =z, - 2enen, .

Solving these equations, approximately, with respect to x,,y,
we obtain:
28 -6 _
ax, + b'yo = s - % >
YoV, (6.09)
6+48.0-
R
Hence:
2
Ny ¥ (6.10)

Purthermore, according to (5.12), (5.13), the phase x equals:

X+ o®- g i+ (6-p) p% e k(x+ 2o ) v klxg+8),
(6.11)
that is, it equals the phase of the reflected wave caloulated
according to geometric optios. Let us now calculate the
of D(s). (6.09) into (6.07), we obtain:

(28)



D(s) = 2, (6.12)
in which, evidently,
D(0) = cos 0= B . (6.13)
‘The last three formulas yleld:

ﬁ . J@ S e (6.14)

Therefore, the factor (6.14) which enters into all the
expressions for the reflected wave in the diffraction formulas
(5.19) - {5.22) agrees with the factor whioh enters into
(3.08) - (3.09) which are generalizations of the Fresnel
formulas. The quantitys

|§ 3-8 (6.15)
here yields the correction for beam hroadening.
There remains to verify that all the other quantities
in (5.19) - (5.22) agree with the Fresnel.
According to (4.17) and (6.13), we have:

g ; prmcose. (6.16)
n

I

Consequently:

-tp.1-Jncoss .
O en Py R (6m)

where N 18 the Presnel coefficient (6.01).

L El -
The value q = 0 n -1 leads to a rather more exact

value of N, namely:

woncoso-da-1
+Ju-1
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Using (6.19) and (6.17) as notation, we can write (5.19) -
(5.22) for the field thus:

lly-lgou"'o[mc- (l!;l)nyll:] ﬁe’x, (6.18}
ni-n:o”“¢[-u:-(uol)n’|¢]ﬁe‘x, (6.19)
5 c-2m0 K JT.‘X,~ (6.20)
Hy = - on K J_i_"" . 6.21)

Comparing these expressions with the Fresnel formulas
(6.02) and (6.03) we state that the factors with the m‘mcud-
of (6 14) agree in accuracy with their Fresnel values ly, o}
l: Hl The equalities '7 H, and E, = - DLI are satisfied
both in the case of our foﬂl\llll and in the case of the Fresnel
formulas.

Therefore, we showed that our formulas transform into the
generalized [by the introduction of the (614) factor] Fresnel
formulas in that part of the line-of-sight region where the
slope of the angle made by the ray with surface of the body
1s small.

In the penumbra and umbra regions our formulas yield a
diffraction picture.

REFERENCES
1. V.A. POCK, Izvestiia, AN USSR, phys
R4171-186, 1946.

2. V.A. POCK, Zh. Ekep. Theor. Mz, 12:693-702, 1945.

er., 10,

(30)



283

X1. OENERALIZATION OF THE REFLECTION PORMULAS TO THE CASE OF
REFLECTION OF AN ARBITRARY WAVE FROM A SURFACE OF ARBITRARY FORM

V. A. Pock
ABSTRACT

Fresnel formulas and the laws of Hamilton's ray
optics are used as a basis for derivation of expressions
for an electromagnetic field of an arbitrary wave re-
flected from a surface of erbitrary form, A correction
for the dilation of the pencil of rays after reflection
is considered. 1In the derivation the tensor form ot

18

used. n
point of reflection and the phase of the rvthcnd wave
ere considered as curvilinear cooux
jpecific case of a spherical wave ref:
phere, the formulas obtained are conpnrod wl\h thou
obtained from diffraction theory.

In our paper "The laws of Fresnel reflection and the laws
of diffraction” [Iubuequenuy referred to as (Ref. 1);I. 2 re-
flection formuls considering the cross section of the bundle
of reflected rays was derived for the case of a plane wave
reflected from & surface of an arbitrary form. This formula
was then compared with diffraction formulas valid irn the half-
shadow region.

In the present work the reflection formila is derived
for the cese of reflection of an arbitrary (not a plane) wave,
Our calculations are based on the application of the laws of
Fresnel reflection, established by him around 1820, and the

1
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laws of ray optics established by Hamilton around 1830, Our
results cannot be as pr: 11y new.

Irasmuch as the Presnel formulas are applied by us to the
electromagnevic field, however, and inasmuch as the laws of
the ray optics.are formulated by us with the aid of geometry
in its present day tensor form (which leads to extraordinary
lerge simplifications), our results may prove to be useful
for a practical application., For the convenience of the read-
er unfamiliar with the tensor form of differential geometry,
we present a corpilation (in Sect. 2) of the necessary form-
ulas.
1. Fresnel formulas
Let the fleld of an incident wave be represented by
ECelkY, Peik¥, (1.2)
where E° and H® denotes amplitude, and y ie the phase expressed
in unite of length, and
(gred )% = 1. .2
Por a plane wave, the amplitudes £° and §° are constant;
in the general case we shall consider the components of veotors
;l“ and l_l° as slowly variable functions of coordinates. In the
following, E° and H® are understood to be the values of the
amplitude of the field on the surface of a reflecting body.
The corresponding values for a reflected wave will be designe-
ted by £¥ana u?
Le., furthermore, a

8,8, )be 8 single vector in the direc-

(2)
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tion of an incident ray, 31(.}.;4)- 2 single vector in the
direction of a reflected ray, and n(nxnyng)- the single
vector of a normal to the surface of the body in the point of
reflection. According to the .h' of reflection, the values
51, 8 and n are related by a relation:

51 =a- 2‘11(:;!1)» (1.3)
moreover
alin = - an = cono, (1.%)

where 0 1s the angle of incidence, The values a and al are
proportional to the gradient of the phase of incident and re-
flected wave, the of the over
one wavelength, we obtain from the Maxwell equation for the

vacuum
kxs_°] « 1 B0, (1.5)
whence

[ox 8- - 59 aue e, (1.6)

and analogously for the reflected wave
falxgl] gl algl=o; a.n
[axm]--e4 tud=o. (1.8)

We designate by u the magnetic permeability, and by

nse+hm/o (1.9)

the complex dielectric constant of the substance of the re-
flecting body, and introduce the Fresnel coefficients

coe 6 - - 8inc @

N = Sos 0 #Enm = ;;;; ’ (1.10)

u.uco-t-sﬁ-un:'. (1.11)
wcos & +Vun - #in® @

[$)]
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Then Fresnel formulas, which define the relation between the
anplitudes of the incident and reflected wave, can be written

in the form:
(n:8)) = N(aE%), (1.12)
(n-1) = M(n:w0). (1.13)
The of the vave (which the

body of the substance) are of no interest to us, and we do not
write out the corresponding equations.
Bquations (1.7), (1.12) and (1.13) can be solved with
respect to vector E} and Al, Introduoing notations
n'E® = B n® e W3, (1.12)
and expressing al, according to (1.3), as a function of g, we
shall have:
81n2 6El = - NER (n cos 26 + g cos 6) + wi[n x o], (1.15)
810 oy = - MHR (n cos 26 + 8 cos 6) - NBg[:lx ). (1.26)
The latter formulas oan be written in a somewhat different

fora, if we replace g and al by a vector tangent to the surface

Bra+ncos@=al.pecos o, (.7
the square of which equals +
p2 =sin? 0, (1.18)

We shall have:
s1n2 681 = NES (n 8202 6 - } cos 6) + Wi3[n x u].(ms)
81n? o = MH3 (p #4n% 6 - b cos @) - NEQ[n x pJ-(1.20)
Buch are the amplitude values of a wave reflected from
the surface of the dody as dsrived from the Fresnel formulas.

(¥)



2. Diff ntial geometry of the reflecting sur
Let equation of the reflecting surface in a parametric
form be: )

x = x5(u,v); ¥ 3 ¥olu,v); 2 = go(u,v), (2.1)
where u,v are Gaussian coordinate parameters (curvilinear
coordinates on the surface).

Assuming
and determining analogously g, and g,,, we write the square
of the arc element on the surface in the form of:
462 = g,,du? + 2g,ydudv + gyydv2 (2.3)
or shorter
462 = B suut. )
n
We shall utilize the notetions for covariant and contra-
variant components of vectors and tensors by raising and
lowering the symbols with the aid of the "metric" tensor gyy
contained in (2.4).

If we let
* o uy - (8% (2.5)
then the contra-variant components of the metric tensor will
equal to:
o tuv, v, B ow o S 0
3 58 g8 T Rt

The totality of the values (2.6) 1s also called a tersor, which

1s inverse to the tensor §,,. The element of the surface will

(8)
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be written in the form:
a3 = Vg au av. (2.7)

In the following we shall deal with a covariant differen-
tiation on the eurface, For this, we assume

SCRLEE R L 1L T @8
where instead of the combination of u, v, we can also write u,u
or v,v and the letter w may take on the value of u,v. The
values uv,w called Christoffel's symbols, can be expressed
by derivatives of g‘“, and namely:

uv-] { -,ﬂ "‘“ﬁ (2.9)

In our case there are six Christoffel
of the form:

ymbols - three values

fuuu] =

t a
uu,v | = -
u

(2.10)

and the other three values obtained fram the preceding ones
by substitution of u with v, and oonversely. With their aid
we form "tensorial parameters" (or "Christoffel's symbols of
the second kind"), i.e. values:

1

e e faru) « Yo,
where each of the letters p, q and r may take on the values

u, v.

» (2.11)

Let f(u,v) be a certain funotion of the peu;t on the sur-

(6)
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face. The covariant components of its gradient on the sur-
face will be equal to:
w s /s £y = /v, (2.12)
and the contra-variant components will be
= giur s gV, £V s giVEy + gV, (2.13)

with the square of the gradient being equal to:

£+ gV = g""(g)? + g § 8& + ;""(&1})’ (2.18)

The square of the gradient is scalar, i.e. it 1s not depen-
dent upon the selection of the coordinste parameters u,v.

The second covariant derivative of the function f(u,v)
differs from the usual second derivative by the terms linear
in the first derivatives. We have

fug ® g‘% . er -t ar
LWy < 2P l“'\w ,; S g, (2.15)
fyv = ;5 "vv -ty % .

It can be proved that the totality of values fy,, fuy
and fy, represents a symmetrical tensor, and the expression
fuu u? 4 20, du av + £y, Av2 (2.16)
does not depend upon the choice of coordinates u,v.
Let us go over now to the formula for the vector compo-
nents of the normal to the surface and thei: derivatives with

Tespect to the parameters u and v; these latter are oonnected

n
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with the radii of the ~f the normal 131
of the surface. We have:
9o dxp _ g
Virs s R R w o ote (2.1

where letters “etc) msan two &nalogous expressions, obtained
by & cyclic re-arrangement of letters (x, y and ),
It 1s obvious that

x, 3y, 3, 3y, L
xSy T 00 e gy g e .
(2.18)
*x, kS &
auu'“x—!g’“v—g-‘"l;r::.
%v‘“aflqw*"y?uy—?w*";ﬁ. (2.19)

ow-nl%g"—+nyé—:;3+n,-:-:-;2.

On the strangth of the .qunion- (2.18), we can replace
here the usual mecond derivatives of X,, Yo, %o by the covariant
ones. As a matter of fact, by assuming in (2.15) successively
£ e xg, fum Yo, and £ = o, Bultiplying by ny, ny and n,, and
adding, we obtain on the left-hand side the linear combina-
tion of covariant second derivatives, and on the right, the
expressions (2,19), as on the right hand side, the members with
the first derivatives will be cancelled as a result of (2,18).
Hence, it follows that the totality of values 0, Oyy and Gy
represents & tensor, which will obviously be symmetriocsl,

8



291

On the strength of the same equations (2.18) taken with

the opposite sign, the values 0,

Jay S£C. can be written in the

form ol:
g s@‘gﬁ R (2.20)
Hence 1t follows that
-z Qyy du dv = dny dzg + dry dyo + dng . (2.21)
Assuming that
dn, = (dxg/R) + 6ny  ete, (2.22)

where the infinitely emall vector én is perpendicular to the
normal n and to the vector of displacement (dx,, dy,, dz,),
wWe obtain

- z gy du av = a6?/R, (2.23)

where 462 1s the square of the displacement vector producible
by expression (2.3). Relations (2.22) indicate that R is the
radius of curvature of the intersection of surface and the
plane containing the normal and displacement victor. Thus,
the formula (2.23) gives us an expression for the radius of

ature, R, in upon the of the plane
of the normel cross-section,

Solving equations (2,20) with respect to derivatives of
Ny, Ny and nz with respect to u,v, we obtain:

9)
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o,
P

e-age-ae,
where values G} are obtained from Q. through formulas analogous

to (2.13)
Desigrating the principal ourvature radii of the normal

(2.28)

cros: ction by Ry and R,, we have
K= 1/R(R) Rp) = ol o - a¥ of , (2.25)
(m) + (a/mg) = -0 = -a}-af. (2.26)

The value K is the Gaussian curvature of the surface.

3, Ore don of the bundle of reflected reys.

Fresnel formulas give the amplitude value of the reflected
wave on the surface of a body, For finding the amplitude of
the wave reflected at a certain distance from the surface, it
1s necessary to have the formulss for the cross-section of the
‘bundle, passing through a surface srea dS of the bedy, and which
after reflection has traversed the given distance s, Such formu-
las were carried out by us [un Ref. (1) ]tor the case, when the
incident wave is plans, In the present work we shall derive
them for a general case of an arbitrary incident wave.

Acoording to the law of reflection written in the form of
(1.17), single vectors g and al, characterizing the direction
of the incident 1nd reflected ray are expressed by the vector
} tangent to the surface according to the formulas:

(10)
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a=b-ncos 6, (3.1)
al et +ncoso, (3.2)

and moreover, .
nt e o; b2 seim?e, (3.3)

We designate by w(u,v) the value of phase y of the wave
incident upon point (u,v) on the surface of the body, Since
the vector 8 is the gradient of the phase function y, the
components of vector &, [unaen are tangent to the surface which,
on the strength of (3.1), are equal to the tangents of compo-
nents of vector b] can be expressed with the derivatives of m,
by u and v, These derivatives are, in turn, expressed by com-

ponents of vector b. We have
o x d oz,
B ThrEt ety Fe e gl
3 S ) 3z,
TN Sy R R
Combining this with the first equation (3.3), we can solve

these three equations for by, h)" and by, We obtain:
by = @ ;‘:ﬁ +a g—‘i ete. (3.5)

where the values @, o' are connected with the derivatives
@, @y by relationships analogous to (2.13).
The second equation in (3.3) can be written in the form:

Z‘uv“‘””gs‘w‘\.%=°\l°“"°"“v.une 8. (3.6)

(11)
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Thus, the angle of incidence 6 1s expressed directly by
Dy, Sy
We examine equations
x = xg + o8k ote. (3.7
which can be written in the form of
X 3 X, + 8by +8cos8ng etc, {3.8)

All values on the right side, except s, represent certain
known functions of point (u,v) on the surface. Coneidering
(u,v) ae constant, and varying s, we obtain the equation of the
ray reflected off point u, v. The parameter s is, obviously,
the path traversed by the ray after reflection. Since the
phase of the incident wave at the point of reflection 18 o(u,v),
the phase y of the reflected wave will then be equal to:

x * 8+ o(u,v). (3.9)
Expressing s in (3.7)in.terms of x, we obtain:

x = x4 (x - w)ag,

¥ =y + (x - @)a}, (3.10)

2 -2y + (x - @)a}
With a constant y formulas (3.10) represent parametric equa-
tions of the wave surface of the reflected wave.

If in formulas (3.10) we vary the values u, v within the
I'mits (u,u + du), (v,v + dv), we shall have a certain srea of
the wave surface. This area can be considered as an intersec-
tion by the wave surfaece of the bundle of reflected rays, which
1s passing through an area dS =Yg Gu dv. Since the rays are

(12)
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perpendicular to the wave surface, this cro: ction will be
normal., Designating its area with D(s)dS, we shall have

4 o

D(s)as du a0 (3.12)

A Az 2

d A
48 o

whence

D(s) = L (3.12)
[

v

Q@ o A
A2 %2 &
A% A¥ &

In these formulas, the values d x/du etc, denote deriva-
tives of expressions (3.10), evaluated for a constant x. The

value of the determinant, however, will not change, if they

are by with tent & as was done in our
worku). Actuelly, we have

(3x/du)y = (3x/du)y - ay 8 etc. (3.13)
and, as a result of such replacement, the second and third
1ines of the determinant will change to values proportional to
the elements of the first 1line. Geometrically, this means
that the intersection of the bundle by any surface (for example,
by the surface 8 « const.) being projected on a plane perpendi-
cular to the reflected ray, will produce a normal cro
of the bundle.

section

3)



4. Caleulation of the

A direct caloulation of the determinant (3.12) involves

Such may, however, be
considerably simplified, if in vectors contained in the first,
second and third line of the determinant, one would go from
components along the axes X, y, £ over to the components along
two tangent directions and direction of the normal to the re-
flecting surface.

Suppose we have a determinant

oA A
sx|B, By B (v.1)
C G G

¥e assume that N
2,
N hgen oy, e,
3 2
e S wa)
An = Axnx + Ayny + Apng,
whence conversely
Y- 2L TOTW
A “gewn"g’v_".uu,.n,, (*.3)
M:A“%-ql"%"—#lnn‘ .
Here A" and AY are connected with A, and A, by formulss analo-
gous to (2.13). An analogous will be.

(18)
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for two other vectors, B and C, contained in the determinant.
We shall have then

AN A
a -% By By By s (4.8)
G C ©Cpn
and also: N
L \ B
a-Vg|[B* B’ B, (8.5)
et v ¢,

In order to use these formulas for calculation of determinant

(3.12), we must assume that

ATk, Ay ma), a ozl
LUEY: S WY A NEY (2.6)

cx =§%, ¢y =§., ¢, = g
According to (3.2) and (3.3), we obtain then:
Ay = oy; Ay = wy; Ap s cos 6. (u.7)
The calculation of the new components of vectors B and C is

considerably more complex, We have

1
Bxléxﬁ-mnn}‘&‘-% (4.8)

and according to (1.17)

a,%q,l(;:__a(_w_ﬂo;“__) -

(15)
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According to formula (2.20), we have
an, o
DEmzomEs.ea. oo

Moreover, thie expression is aymmetrical with respect to u,v.
Now we calculate the value

- on, a;, ﬁl ab, ozo ) .10

As & result of formulas (3.4) this valus can be written in the
form:

R O s e
whence 1t is evident that b,y is likewlse symmetrical with
respect to u,v. Replacing here by, by, b, by expressions from
{3.5) and using (2.8), we can write this value in the form:

3% _ g l ] - 4.13)
buy = g0y - @ {wvs uf- @ fuv, v]. (
Introducing acoording to (2.11) the "tensor parameters"
T8rs we can alsa write:
= o - ¥ -
by = 58 - T - T oy (3.28)
Comparing this expression with (2.15), we recelve a simple

result: v
buy * Guv, (4.15)

where a,, is the second of @

This result is valid not only for notations (u,v), but also

for other combinations of notations (u,u) and (v,v).

(16)
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The obtained formulas enable us to find values By, By, C,
and Cy (shown further on). Into expressions for By and Cp,

there enter values

o, a

B ® v gt 4 vy gt 4y g2 (2.26)
W, m, &

By * iy E rmy g e n, £ (4.17)

Let us calculate one of them. As a result of (b'n) = O we
have: .
put-(bxgl':l+b’§ob¢%), (4.18)

In place of by, by and by, we substitute here expressions
(3.5), and making use of (2.20), we obtain:

By = Gyy o + Guy &'; (8.19)
analogously

By = Gyy 0 + Gyy @', (4.20)

Now we can write out the new components of all vectors.

We have
By = Buu - @y @y + 8(ayy - cos 8 Oyy),
By * Buy - @y @y + s(myy - cos 6 Ouv),
Bp = - @y cos 9+ 8(Oyy o + Ouy o’ + ﬂ‘:z_’l) (u.21)

Cu = Byu - wy @y + 8(ayy - cos 6 Gy,),
Cy 2 guv - @y wy + 8{ayy - cos 6 Oyy),
Cp= - @y cos 0+ .(o,,,. o+ Gy @’ + 2%1) . (8.22)

an
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Besides, according to (4.7)
Ay vy Ay Ty Ay = ocos 6.
With these values of A, B, C, the determinant D(s), which
glves the cross-section of the bundle of rays, will be equal to:

NN Ay
p(sy=dis, B Bl (a.23)
Cy Cy Cp
This exp: for the can be

simplified with the aid of relations
Ay o+ A, 0¥ + Ajcos 61,
By o' + By + By cos 6% 0, (¥.24)
Cy ¥ + Cy o + € cos 0= 0.
These relations can be easily checked. According to (3.6) we
have

oy o+ @, o = 81n? 0 = 1 - cos? 6. (.25)

Taking from this the with

respect to u and v (it coincides with the usual derivative),
we obtain by dividing by 2

oy &9 + @y oV = - cos 6 cgs 8)
vy 0¥ + oy @V » - cos 6 Acos ) (5.26)

Bubstituting into (k.24) the evident expressions (4.7),
(4.21) and (4.22) for the components of vectors A, B and C,

(28)
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and maxing use of (4.25) and (4.26), we are convinced in the
validity of relations (4.24). The qeometrical sense of these
relations 1s obvious. They express the fact that A is a
vector normal to the wave surface, while vectors B and C are
perpendicular to A.

Multiplying the third column in (4.23) by cos 6, and
making use of (4.24), we obtain

MnoAy 1
Die)cosondfn By o ¥ B By (4.27)
c, ¢ O S O

This expression acquires a more "elegant™ form, if we
introduce a symmetrical tensor
Tuy ® Buv = @y @y + 8{ayy - cos 6 Oyy). (4.28)

Aceording to (4.21) and (4.22) we shall have then

By * Tuur By * Tuvs (8.29)
Cy ® Tvus Cy * Tyys (4.30)
and the determinant (4.27) will take on the form of:
D (s) cos 6= 3 Taa v (8.31)
8l T ’

If we introduce the mixed components of tensor T, accord-

ing to the formulas:
m '2‘" Try (4.32)

(19)
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then instead of (4.31) we can write

NN
D (s) cos 6 = m o (%.33)
or expanding the determinant
D (s) eon.-’ltl’,‘-f"'l‘; (4.34)

Thus, the calculation of the determinant D(s) s reduced to the
calculation of the tensor Ty, which presents no difficulties.

Differsntial geometry of the wave surfi

According to (3.10), equations
x Xy + (x - @)l ete. (5.1)

Tepresent, with constant x, the parametric equations of the
reflected wave surface. Every point on the wave surface corres-
ponds to a definite point on the reflected surface, and namely,
with the one that lies on one and the seme ray. To these two
points there correspond one and the same v.lues of parameters
u,v. Parameters u,v and phase x can be interpreted as curvi-
linear coordinates in the space.

‘The square of the distance between two infinitely close
points will be in the form of:

a? - g oy qu av + 4. (5.2)

In this the of 1s dudy and cvdy
will be absent, but the square of the differential dy will enter

(20)
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with coefficient unity.
The quadratic form

ar? - 2 (“" du dv (5.3)
v

represents a square of an arc element on the wave surface.

We shall now find the coefficients of this quadratic
form. Recalling equations (4.6) for vectors B and C, we can
analogously to (2.8) write

LR YIRS DO (5-3)
In calculating the scalar product and the squares of vectora
B and C, we can make use of their comporents (¥.21) and (b.22)
We ehall have, for example
F:-% 655 +8% (5.5)

Using (3.24) and introducing notations:

¥V 2 g+ (P 0'/eos? 0), (5.6)
we may write
8 = z ¥ 3, B, 5.1
i

Replacing the notations beneath the summation sign by
letters p,q, and making use of (4.29), we obtain according
to the rays from (5.4):

Bt ; LIS Ty (5.8)

(21)
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Analogously,

L gv“ Ty T, 5.9
5y - g P37y Toge (5.10)

Thus, the coefficients of quadratic form (5.3) are expressed

directly through temsor T .. By designating with &' the determi.

nent 1 1 1 1 -1
&% By By - By Sy (5.12)
(a discriminant of a quadratic form) we have on the basis of
equations (5.8) to (5.10)
&' = Der Y (et 1,02, (5.12)
whence
' =g (5.13)
The element dsl of the surface of a reflected wave, correspond-
ing to the element d8 of the reflecting surface, is equal to:
as! = ;/87 du av = D(s) V& du dv = D(s)ds, (5.14)
as 1t should be.
Values T, are linear, and values ‘:v are quadratic func-

tions of 8. With s = 0, we have
8, (0) =1, (0) = gy -, o (5.15)

We note that this tensor 1s inverse to that of V.
With an arbitrary s, we can write

(22)



TTyy (8) = Ty, (0) + 6T, (0). (5.16)
where, acoording to (¥.28)
T\.IV (o) = “\w" cos 0 q\l’v; (5711)
and also
&, (3) =Ty, (0) + 28 &, (0) ._.22; P, (0) Ty, (0)
: (5.18)

We go over to the calculation of the second quadratic
form, determiping the curvature radii of the wave surface.
The determination of it is analogous to (2.20), only instead
of the vector n, we must substitute vector ’1 of the normal
to the wave surface, and in place of values OK°/3' ete, --
the values dx/dv etc., 1.e. the components of “vector” ¢
(4.6). According to this determination we have

1 1 1

a, a,
AR e B G
But this expression has already been found by us when calcu-
1ating g),. Using (4.8), we can write

- 8al, (8) = (B, - (%) + @ad) €, + ..., (5.20)

where the denotes the of N

according to exes y and z,
Bence:
80}, (s) = BC - C, = g, (8) - T, (o). (5.21)

Thus, the coefficients of the first and second quadratic form

(23)
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are connected with tensor 'l‘uv(-) by a relation:
&y (8) + 80, (8) =T, (s). (5.22)

From this as well as from (5.16) and (5.18) we can find also
the evident expression for a:v (8), namely

-0, () =T, (0) 4 'xw” T 0 Ty (o), (.23)

In particular, with 8 = 0, as a result of (5.17), there will
be 2
-0 {0) = ®,y - cos 8 Q. (5.24)
In this manner, for the reflected wave we have found both
the first as well as the second form.
Analogous calculations can be carried out also for the

incident wave. For this, it is sufficient to replace in (3.7)
and 1n other formulas s’

8 as negetive, 80 that (-s) 1s a distance calculadble along the

with a2 g lromn (3.1)}, and consider

Tay up to the point incidence on the surface. We shall limit
ourselves by introducing the formulas for the values of coeffi-
clents ;?w {0) and O:V (0) of the first and second quadratic
!‘oﬂ_m of the incident wave in the point of incidence of the ray.
We shall have
5,00 = &, - @, @ (5.25)
- aﬂv(ol S q +cos 60, (5.26)

From these formulas, it 1a evident that values go, and
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&), converge on the reflecting body, but those for 3, and
G}, differ by their sign in the tern containing cos 6. It is
convenient tc use relation {5.26) in the case, when the inci-

dent wave 1s plane: then a:v = 0 and, consequently,

@,y * - co8 8 G, (5.27)
Inserting this value in (4.28) we obtain
Tyy = By - @, @, - 28 cos 00, (5.28)
Calculating the value D(s) according to formula (4.34)
and using (4.25), we shall have after reduction by cos 8,

D(s) = cos 6 - 28 (a cos? 0 + o u') + us? cos 0 K.
(5.29)

Here K and G have values (2.25) and (2.26). In order to ex-

plain the geametrical sense of the sum, contained in the
second term of (5.29), we note that if du and dv are compo-
nents of displacement on thre surfacc of a reflecting body in
the plane of the incident ray, und d is the value of this
displacement, then we have

. o av o
W% " 5n 8 a6 " sInT - (5.30)
) with Ry the radius of of the

intercection of the surfacé with the plane of incidence, we
have

1 du dr 1
-l;-zowagﬁr—,—im' go‘w o', (5.31)
0 0

(25)
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Inserting this value of the sum into (5.29) and expressing @
and K, according to (2.25) and (2.26) through principal radii
of curvature we have for the case of the incident plane wave
the following expresaion for D(s):

2 2
1 1 2 8in® 6 18’
D(s) = cos 6 + 28 + cos® 6 + + cos 6.
(R i i 4
(5.32)
This forwula was derived by us in our previous work(”.

6. Reflection formula

The results obtained enable us to find (in the approxima-
tion of geometric optics) the electromagnetic field of the re-
flected wave. The field of the incident wave we wrote in the

form BV, oty (6.1)
As ® (w,v) is the value of the phase ¥ on the surface of the
reflecting body, then on the surface of the body the field of
the incident wave will be equal to

B (u et 1 (u, v)et, (6.2)
where E° (u,v) and H° (u,v) - are valuea of amplitudes E° and
H° on the surface of the body. Knowing E° (u,v) ana H° (u,v),
it 1s possible to find from Freanel formulas (given in Sect.l)
the anplitude values of E' (u,v) and B! (u,v) of the field of
the reflected wave on the surface of the body. The field of
the reflected wave on this surface will be equal to

B (u, e B (u, v)e®, (6.3)
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Thus, the values (6.3) can be considered as known (at least
on the illuminated part of the surface, sufficiently distant
from the boundary of the shadow).

We must find the field at a certaln distance from the
surface. For each of the of the e

field this problem 18 reduced to the following: 1t 1s neces-
sary to find function F satisfying the wave equation
ar + k% = 0 (6.4

and the of and acqy ng on the surface

of the body the given value

B o=t v) etk@ (WY), (6.5)
In our case k i8 the major parameter, and f(u,v) is a slowly
variable function, The last
the sense that the derivatives, divided by k, of the function

ertion 1s to be understood in

in directions tangent to the surface are small in comparison
with the values of the function itself. It is easy in this
case to indicate an approximate solution of our problem.
Obviously, the phase of the desired function will be obtained
by replacing @ with

xeo+s, (6.6)
where 8 15 the path traversed by the ray after the reflection.
Its amplitude, however, will change inversely proportional to
the squars root of intersection area of the bundle of reflected
rays, Thus, we arrive st the formula:

¥ - £(u,v) VB(0)/D(s) 2%, (6.7}

(27)
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where x has the value of (6.6).
Formula (6.7) can be derived in the following manner. Let
us try to find P in the form:
P

(6.8)

where p and x' - are certain functions of the coordinates, not

upon the k. ng (6.8) into the wave
equation (6.4), we find

o+ K = e"‘l'[k""}’;(l - (srad x')’)~ 2K g3v (p grad x') + & (1)
Ve (6.9)

The equation of oscillatione will be approximately satis-
fied, if in expression (6.9) terms of the k° and k order are
equated to zero, For this the phase yx' and the amplitude square
p must satisfy the equations

(grad x')2 « 1, (6.10)
a1v (p grad x') = 0. (6.11)

Let us introduce now the curvilinear coordinates u,v,x,

with ngular Carteslan X, ¥, 2 by
means of relations (3.10), and write equations (6.10) and (6.11)

in these curvilinear nates. g to
formulas, analogous to (2.6), the tensor ‘1""
of g, deterninable by formulas (5.8) to (5.10), we shall have

instead of (6.10),

g;“" . e (6.12)

» inverse to that

(28)
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and instead of (6.11),
HEHOR e )
T

Bquation (6.12) 1s satisfied, if we let

X' = x. (6.14)
Bquation (6.13) is then reduced to the form:
L w/leh -0 (6.35)
and since according to (5.13)
Ve = Veie), (6.26)

where g is not dependent on x, it will be satisfied if we
assume that
#D (8) = o(u,v), (6.17)
where ¢ 1s an arbitrary function of u,v.
In order to have an agreement with (6.7), it 1s suffi-
sune that
VP = £lu,v) VO(0)/0(e). (6.18)

Thus, we have proved that function (6.7) approximately

clent to

satisfies the wave equetion (6.4). Obviously, it also satis-
fies the radiation condition (its phase increases with a
growing s). Finally, with & = 0, it is reduced to the given
function (6.5). Consequently, it satisfies all the require-
ments that wers set up.

Applying expression (6.7) to the field of the reflected

(29)
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wave, and adding to it the field of an incident wave, we shall
obtain the reflection formula in the form:

5 - % L By, v) D(0)/D (a) kX, (6.19)

H o= e 4 wl(u, v) D(0)/D (s) ekX, (6.20)

in conclusion, we wish to mention that if the reflected

body 1s convex, the reflection formula is applicable in the en-
tire illuminated space sufficiently removed from the boundaries
of the shadow (and at large distances from the body as well).
If, however, the body is concave, then with certain values of
8 it is possible to transform denominator D(s) into zero (focal
surfaces and lines). In the neighborhood of the focal lines
and surfaces, the geometric optics and, in particular, the re-
flection formula, are not applicable, since the condition that
an amplitude be a slowly varying function of coordinates 1s
not fulfilled.

Conversion of reflection formula on the shadow boundary
to the diffractional ones has been investigated (for the plane
incident wave and for amall distances from the surface of the
body) in our work(‘)'

As an example for the application of the derived formulas,
let us examine the reflection of a spherical wave from the sur-

face of a sphere. Let r, 6, ¢ be spherical coordinates., Equa-
tion of the reflected surface 1s in the form of r * a. The part

(30
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of the Qaussian parameters u,v 18 played by the angles 9, ¢,
80 that in our general forwulas we may assume
uso; veo. (7.1)
Let the source be located in point @ = 0, » = b, The
phase value of the wave incident on the surface of a sphere

will then be
©(0,8) = Va? + b2 - 2ab cos 6. (7.2)

The element of the surface of the sphere is written

6% = 22(a6% + s10? 6 46°), (1.3)

whence
& a2; Bgg = 0 By " o? s1n? 0, (1.%)
YE= s, (7.5)

& 1% g0 g% = 1/0% e 0). (1.6)
According to the property of the sphere, the second
differential formula will be proportional to the first, and
we shall have

g = - 85 gy =0 Oy =-a »1n? 0. (7.7)
The covariant derivatives of phase w will be equal to
wg = ab 8in 8/w; @y =0, (7.8)

and the contra-variant derivatives will be written as

a® = bsiné/(ac); o zo. (1.9)
The incidence angle of the ray (which we shall designate
now with v, since the letteré has already been assigned) will
(31)
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be determined from equations:

sin y = b ain 0/w; cos y = (b cos 8 - &)/n, (7.10)
resulting from (4.25). 1In order to calculate the second
covariant derivatives of the phase, let us construct according
to formulas (2.8) to (2.11) the Christoffel symbols. We have

o = 03 r:’=o; I

46 = - 8in 0 cos 8, (7.11)

e = 0; r:‘ 2 ctg 0; r:‘ 20,
Substituting these values into the general formulas (2.15), we
obtain

@gg = (ub/m’](b cos 8 - a)(b - a cos 0),

wgo * O (1.12)

- 2
@yq = {(ab/o) 8in° 6 c0s 0.
Now we can construct tensor ’l‘“v. We have

Tgg = (a%4?) (b con 6-0)2 + (sn/?) (b cos 6-a)(a? + b2- ab cos 6),

Tog = O (7.13)
Tos © a? s1n? 0 4+ (sa/w) o1rf 0 (2 cos 8 - a).

Let us go over now to the mixed components of 'l‘: etc., and
express b sin 6 and b cos € with the aid of (7.10) by a, © and ¥.
We obtain

5 » 208y "“'). (7.18)
Boi(oeor ey,

9 s
whereas Tge1g s 0.

8 + w) 008 y +

2)
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According to (4.3%) D(s) cos y 1s equal to the product
of values (7.13). Hence

o D(s) = ((- + o) cos v+ 22 (. +a+ 22 con -,). (7.15)
The expression is symmetrical with respect to s and .

Our results enable uu.lt once to wrfite out the reflec-
tion formula for the vertical component of the electric and
magretic Hertzian vector. which satisfies the scalar wave
equation.

Designating with letter R the distance from the source,
which equals

Rs¢/b2 4 1% - 20r cos 0 (7.16)
we shall have for the Hertzian electric vector

KR ke
U S e N vg{%} eike (7.17)

where N 18 the Fresnel coefficient (1.10). Por the Hertzian
magnetic vector, the formula will be the same, only instead
of N there will be another Fresnel's coefficient M.

Introducing for D(s) the expression (7.15), and assuming
for the sake of simplification that

28w/a(s + @) = ¢, (7.18)
we shall have
kR
- N cos k(o + 8
Libls ; ‘aolv(eelybcllufcleouyl‘ ( 2
(7.29)

(33)
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This formula can be compared with that obtained from the
diffraction formulas derived in our p‘per(a) for the case of
grazing ray incidence, and for distances from the surface of
the sphere, which are small as compared with its radius. The
formula indicated 1s reduced to the form:

2
v 'Q;E(l + Bt VF‘&'“’“) (7.20)

Here
prmcosy; pyrmey; q= im(4n-1/m), (r.21)

while 3
n =W ka/2. (7.22)

‘The necessary conditions of applicability of the reflection

formula (7.20) are the large positive values of the magnitude

P; if, however, p 18 of the order of unity, then the diffrac-

tion formulas will be valid.

It 1s not difficult to see that formula (7.20) in its due
approximation coincides with (7.19). As the values ¢, and cos y
are small relative to unity, therefore, their product in (7.19)
can be neglected. Further, the quantity @ + 8 in the denomina-
tor can be replaced with R. For the same quantity in the exponen-
tial function, we can use expression

2

w48 - R =8 cop (7.23)
whence approximately
k(w+ 8 -R) = kac,y cos? Y= z;lpa. (7.24)

(34)
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Furthernore,

cosy ._p
ey +e, P+py (1.25)

Finally, we have for small cos vy and for u =1

N2 (p+1)/(p - 1a). (7.26)
If we use these (P! , the between
(7.19) and (7.20) will be complete.

Bibliography
(1) V. Pock Uspekhi Piz. Nauk, 36, 308, 1948.
(2) V. Fock Zhurnal Eksp. i Teoret. Piz. 19, 916, 1949.

(25)



319

X1l. APPROXIMATE FORMULA FOR DISTANCE OF THE
IN THE OF TION

V. A, POCK

A derivation i given of & formula for the distance of radiowave
propagation (horixon distance) in the prasence of superrefraction.
The formula obtained is suitable for an atmospheric waveguide next
the earth in which the modified refractive index depends on the height
according to & hyperbolic law.

1. INTRODUCTION

A general formula for the attenustion factor was derived as s cedeur
um.ru in our work on the theory of radiowave propagation in an

! The we obtained is ap-
plicable for the very general case of arbitrary bshavior of the
refractive index depending on helght. The basic difficulty in using
our general formula is in solving the differential equation for the
height factor. This difficulty can be bypassed by using an asymptotic
solution of the equation (this method is based on the presence of &
large in the tion). Obtaining an i ex~
Ppression for the height factor, the integrand in the contour integral
can be written in explicit form and then it can be studied. A quali-
tative investigation of the integrand permits an estimate to be given
of these distances at which the attenuation factor starts to decrease
rapidly, in other words, the estimate of the horizon distance.

2. INITIAL FORMULAS

In the general case the fisld from & vertical and horizontal
electric and magaetic dipole is expressed by means of two Herts
functions, U and W, which satisfy the same differontial equaticans;

P38
4
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the iimit cord:tions for U and W are also of the
differant values for the coefficients. | Each of the Herte functions can

be expressed by means of the attenuation factor V thus:

ks

m

where & is the radius of the earth; @ is the horizontal distance
measured along an arc of the earth's globe; k .‘—{ is the absolate

value of the wave vector.

The factor V is more iently through
the the modified distance.
X
x=—=ye @
2m

and the modified heights of the corresponding points (scurce and
observation points):

3

where h and h' are heighte in length unite and m is the parameter:

mﬁ» “@

The equivalent radius of the earth does not play the role in
problems related to superrefraction that it plays in the normal
refraction case; consequently, we do not introduce it here. In addition
o the quantities listed, the attecuation factor V depends on the
parameter q which enters into the limit conditions. The parameter q
for the Hertz function U {verical polarization) equals:

%)

@
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where 1 is the complex dielectric constant of the medium. The
parameter q for the Herts function W (horizontal polarizatian)
equals

Qe im4ATT. ®

In practice, we can put q * @ in the last case since both the para-
meters m and 1 are large.

Hence, the attenuation factor V i
quantities x, y, ¥, q ¢ .

function of the nandimensiosal

V=Vix, y v, 4. (U]

In addition to the attenuation factor V, it is convenient to analyze
the function ¥ related thereto, whereby V is thus expressed:

vazdime VY. (8)

‘The function Y satisfies the differential equation

%}n%u'yo:(m Yeo, 9)
y
where

) s mi(e - 1), N 10)

1o which € = €{h) is the air dielectric constant as a function of the
height. Equation (9) is obtsined by a transformation to the nondimen-
sional quantities from the equation

Ey4 P K UREE SRR ITY
S
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in which the ¥ is to the modified ref;
index

M = 20° (5L uz)

The ¥ coefficient in Eq. (9) is conveniently dencted by a single
letter; we put

Ply) =y 4 2yl (1L}

We will have
i) = mi(e - 1420, i)
#0 that ply) is, in substance, the same modified refractive index but

through the height y.
Using the notation of Eq. (13h£q. (9) is written as

2,
3%
2, s%ﬁ-o PYY=0. s

The function ¥ satisfies the differential Eq. (15) and the limit
condition -

%a,,:om:y-m; 6}

atx =0, it has & singularity of the form
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In the general expression’ for the function ¥ as a contour

integral the integrand was expressed through the solution of the
equation

2 .
:—§ +RM e, it]
Y

where t is a complex parameter. (These solutions were called the
height factors above.}
In order to form the integrand, it is necessary to know both
solutions of Eq. (18); let us denote them by {,(y, 1) asd £(y, 1)
These functions have the following ssymptotic expressions for
y:

-
i

) 252 exp i f VAl - rds), a9
W et "

o X

o
£, (yt) 3 exp(~i f ) -t 20
Sl Rt SR

Here c', c", T are constants whose values not essential since
they drop out of the expression for Y- In the homogeneous stmosphere
case when p(y) =t, the functions ll(y. t) snd {,(y, t) reduce to the
complex Alry functions w)(t - y) and wy(t - y), in which we can then
putc' =c"=land TEt

Let ue put

3, A,
D, = :ﬁ} - t:T,l . @n

)
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Because of £q. (18), which {, and f, eatiefy, this quantity
is independent of y. a1, a1,

Let us denote the valuos “T "“W sty =0by£{0.1)
and £(0,t) and let us form the function

£510.0 + af(0,0)
Flt.y.y'q) rn‘ CAL RO B S, Lol
1 b £00,4) ¢ qf, (0,071

The function ¥ determined for y'Py by the contour integral!

"ll?f Ry, v dt, @)

taken over the contour enclosing all the poles of the integrand in &
positive direction, satisfies all the conditions set above and yields
a solution to our problem.

3. NORMAL REFRACTION CASE

The normal refraction case is characterized by the modified
refractive index M(h) being 8 monotonically increasing function of

the height h and, therefore, the cosfficient ply) is & monotonically
increasing function of y. In this case, tl(y, 1) and Lly,t) can

be expressed approximately by the complex Airy functions of argument ¢
defined by the equalities

!-ﬂ:l-“«au N @

ra ek, @5

)
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where b is a root of the equation
pib) =¢t. @6

The valua of £ near y = b will be 8 holomorphic fanction of y,
namely:

[T @n

We can put approximately
1 -\/Et EXUIEA o Fmw [}

and o the ssme approximation

g‘;y—‘..\/?yﬁ--l(g);:—lf--\/%v;(eh @

from which

D, =- 2. {30)

Here, replacing y by y' aad & by ¢', we obtain expr
for £,(y',0) and £,(y",t). The value of € corresponding to y = °
ia denoted by £, Using thesa notations, we obtain the following
approximate expreesion for F, defined by formula (22):

whit ) + (3P w (k)
r-,—,[‘ ‘,/.'- (e {wpte) - 22 2 (11
LA 1“ wu.‘w%».-m o
{3

)

m



326

‘When being substituted in formula (23), this expressicn can be
used to calculate the field in both the shadow rejion and in the line-
of - t region. The attenuation factor (as well as the function ¥)
is calculated in the shadow region by & residue series corresponding
1o the roots of the denominator

N g
w () + qq*: wylt) =0. ©2)

The function ¥ is calculated directly in the line-of-sight region
by using the contour integral in which the principsl part of the
integration will lie near real negative values of t. But the quantities ¢
€ and €' will aleo be negative for negative t values. Assuming th
quantities to be sufficiently large, the functions w, and w, can be
replaced by their asymptotic expressions:

LR e 4
= S 1 &)

[P S T ]
wyib) = e L) 3 3 . (4
Such & substitution reduces to the use of the ssymptotic

expressions in Eqs. (19) and (20) for £,(y,t) and fy(y.t). Con-
sequently, the following expression is obtained for the function F
faccording to formula (220):

i +
';m {m[.yf./;—(u: T a8
.s‘%mhj .)-u.ujm.,.]}

®
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This formula is & generalization of formula (6. 11). ! The latter can
be obtained from Eq. (35) by substituting eero for ply).

Substitution of Eq. (35) into the contour integral yleids an
axpressian, composed of two terms, for the attentustion factor,
the firat of which corresponds to an incident wave and the seccad to
a wave reflected once {rom the earth's surface with s Fresnel coef-
ficteat. The incident wave is the superposition of & wave with the
phase

¥
u(t)--ufﬁ(ul-tdu. 38)
Y

and the reflected wave is the superposition of a wave with the phace

'
O(ﬂ-nv‘fpu -tdu&j {u) - tdu. 7
° H

These to those of optics. The
integrala can be evaluated by the method of stationary phase, where
the phase of the incident wave will equal the extremum value of w(t)
and the phase of the reflacted wave will equal the extremum value
of p(t). The function wit) atwaine its extramum value for t determined
from the equation

,,-..n..“;S th-; b -0, (38)
Yy

and the function ¢(t) for t determined from

, .
voed f 4 min om

(L]
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The distance of the horizon fram the geometrical optics
viewpoint is determined from the condition that a reflected wave
with & real phase could reach up to this point. The least value
of t for which this still occurs is t = p{0). This value must
simultanecusly be a root of Eq. (39).

Therefore, the fallowing relation must exist between x, y and y'

"'l’jvﬁﬂ‘-“_pm‘% m‘hu-pﬁ‘ (40)
s

which yields the formula for distaace to the hor{zon under
normal refraction.

The more exact expression in Eq. (31) for F shows that it 1s
already impossible to use Eq. {35) at t = p{0). Actually, the
quantity £, becomes zero at this value of t and it {s, understandably,
inadmissible to use formulae (33) and (34). Nevertheless, it can
be conside.:d waat the value of x, determined from Eq. (40),
approximately gives the boundary defining the line-of -sight region
where the residue series is applicable. In other words, it can
be considered that the field amplitude starts to decrease rapidly
when x, incressing, passes through the value in Eq. (40). The
terminology "horizon distance" can be used in diffraction theory
in this sense.

4. ASYMPTOTIC INTEGRATION OF A DIFFERENTIAL EQUATION

WITH A COEFFICIENT HAVING A

The modified index of refraction will not be a monotant:

function of the height in the presence of superrefraction but it

will have one or more minimums corresponding to the separste
waveguide channels. We will consider the case of & single minimum:
we will call the corresponding height the inversion height and
will denote it by b,.

o)
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The coefficient ply) proportional to M(h) of the differential
equation

a¥ .
S entme=u “n
y

will also have one minimum at y = y; corresponding to h = hy.

We will consider ply) to be an analytic fuaction of y. The
equatior. p{y) = t will have two roots in the region intere
y=b) andy=b,.

Both roots will be real for t real and lying between p(0) and
P (v;)i the roots can be complex for other t values.

‘We must have such an sasymptotic expression for the functions
£){y)s f,(y) av would be valid uniformly for all the values of
y and t considered, with the exception of the value t = piy;} at
which the roots b) and b, coincide.

The expressions used in vection Z for £, and f, in terms of
the Airy function are not applicable here. Ite validity was based
on Eq. (41) reducing approximately to

g us:

2
:?‘.'-;nn. (42)

in which the coefficient for the unknown function now has the
monotonic character as In the initial equation, by means of the
substitution Eqs. (24)-(25) which defines £ as a holomorphic
function of y. Now, we must take as the standard equation

:—‘Qﬁg‘-g‘n).so 43

for the parabolic cylinder function instead of Eq. (42} for the Airy
function, since this is the most simple equation in *hich the

Qn
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coetticient for the unknown functior: bas the same charactoer (wity
& single as does the ply). Itis y

to select the substitution relating { to y 80 that the quantity ply) .
bocomes sero simultanaously with the quantity 4¢2 + v and 5o

that the corract asymptotic exprassions would be obtained for
large values of these quantities. The substitution

f Tt ay =4 j‘m“. “
b 2§

satisfies these conditions under the condition that the parameter v
is chosen so that

®, u
jx]piy) ~tdy -i f\/tz~4» dqz. [y
b, 24

The integral in the right side of (45) equala

2y

4 fFJL‘ 4 v dg =tnv. )

-2

Consequently, Eq. (45) can be written thue

d.
iov = f\/;(y) “tay. “n
b
1

02



3
It gives v a0 & function of . This function will be holomorphic
Bear tx ply,), namely, we will bave

Ply) -t

Vs W 4 ()

Putting

y
5= fﬁ(y) Tty “u9)
]

b ®.
8,03 )OI -1ayed fﬁm “tdy, (50)
H H

we can write the substitution (44) as
3
;.;o‘i- Ceavag. (s1)
s

The first part of this expression equals

4 M soar Lo ning £ e a0 Finav. 2
4

Hence we can conclude that the quantity § - S, +%ln v will be s
holomorphic function of v nesr v = 0 for {70 and the quantities
5-5,-% 1nvasd 8 will be holomorphic for {<0. But since

we know ¢< 08t y = 0 (em the earth's surface), the sum8 43 In v
will be a holomorphic function of v. This remark will be needed
Iater.

03
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The solutions of Eqs. (41) and {43), in the asymptotic approx-
imations under consideration, are related by the relation

NP (53

Solutions of £q. (43) are functions which are expressed by means of
the parabolic cylinder function D, (x) which satisfies the equation

2,
D s msrd -4 -0 (54
a?

The functions Dﬂ(l) have been well investigated. We will not
enumerate their properties but will refer to the book by Whittaker
and Watson ""Course of Mordern Analysis" where the principal
formulas aze given. The following series can be taken a:
D (z)

31 -‘I‘f © m-n P
D,(a) = 2ppy-e a2 ™. 69

Equation {43} is obtained from Eq. (54) by replacing 2 by £
expl-i ) and nt ) by iv. The functions

.

8 (@) -Dlv .21_ {e 48 (56)

%

it) =D e 0. [t
510 =1 - % e ¢
will be sclutions of Eq. (43). The quantities §,(C) and g,(C) will be

14



33

complex conjugates for real v and {.
There results from the properties of D, ()

WP se SPOR N ol JE
-0) = + { tl
80 e 8¢ W [y 58)

e et
et razmo?g—“o El "lm (59

Asymptotic exprensions for g(C) and g,(0) are esseatial to us.
In the region adjoining the positive real axis, we have

Using Eq. (52), we can also write

e vy
o - 7"". fzﬂznvw_‘.,,xg. I,/;zuvad, 61}
‘v

The latter expression is valid aluo for large v. The asymptotic
expression for g,(C) 1s obtained by replacing 4 by - i.

In order to obtain a formula valid near the negative real axia,
we must use relation (56). We will have

e n_v,iv
I " QRN T
50 e B "tz ’—.-p[{-j (2 avave (62
+ 4

as)
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v x v dv)
,_l]z—'_ THE 19 lvq&‘_gnﬁ-szohdv},
v

We are now in & position to construct the solution of Eq. (41)
which satisfies all the requirements.
Let us put
o vy
- i -Ylv-s)
CIM“’T T 77 o (63

Bacause of the properties of § noted above, the exponential in
Eq. (63) is & holomorphic function of v also near v = 0.
The function

5.0 = 0 fz{c‘ 5@ (68)

will be » suitable solution of the equation for the height factor. Above
the inversion layer (for S - 53 1) this function has the asymptatic
expression

i3
) sgm oS " 8%, (65)
APt
which results for Eq. (61).
Below the inversion layer (for 5 - SP1) the
for £, ly,t) will be

ymptotic expression

i5 - 215,  -vr

%
RN — 1
! ' VR -t

(16)
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where we put

-
X, :_p‘ T vevian “n

Ty -4

Using the known asymptotic expression for the function I't} - ),
it in easy to show that the function X, (v} tends to unity for large
positive values of v. Inasmuch as the second term ir Eq. (66) becomes
amall in comparison with the first for v 1, bath expressions
for £,(y,) will then agree ia form. However, it it
expreasions for {,(y,t) be valid not only for large, but aleo for small,
values of v down to v = 0 and that they be holomorphic functions of v
near v = 0.

The appropriate expressions for f(y,t) are obtained from the
preceding by substituting - i for i. In order to write *hem expli-
citly, let us put

ential that our

[igeT itg-finv-S)

:z(vl =e e . (68)
X0 = Nz T iy -viny) (9)
Ttz +in
Then
fln0 = cz(-)@.z(o . 0

and the asymptotic expr ions for {,(y,t) will be following

an



n
[3 ,1.48#26

Lyt = Ly o for S - 5 -
L =

L€ e x, 01 ST Sa2S , -ve ot s o
¢ 2 R o

for 8, - EE 2

Hence, the problem of the asymptotic integration of the height
factor equation has been solved.

5. INVESTIGATION OF THE ATTENUATION FACTOR

We must now substitute the expressions found for f,y,1) and
£(y,t) into formula (22) for F and we must investigate the attenuation
factor V or the function ¥ related thereto. For simplicity of writing ,
we will Jimit ourselves to the q = @ case, which corresponds to
horizontal polarization. The function F becomes in this case

1

(X
Fle v,y @ = 1,0 0 (0.0 - ey rf . 03
D), Pl

The Wronekiian Dll for the functions (64) and (70} equals the constant
value

Dy, =- 21, 714

which is most
(61). We will
consider two ¢

ily derived from the asymptotic expressions (65) and
ume that y'>y; 0 that S{y') - s°> 1 and let us
‘when the second height is also high and when it

is below the inversion layer. In the first case, we will conwider

118)
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S(y) - 5,31, which permite expressions (65) and (70) for £, and £,
to be used. In the second case, we shall consider 5, - S(y)1 and
we shall use expressions (66) and (72).

In the first case, we shall have

2i5,
- o © -
i GSly) - TS, [. w2, i i8-2i5

Fay —
o - o - o et e

The separate terms of this expression admit of an interpretation
on the basis of geometric optice. It is evident that & wave going

from sbove downward must have the phase factor ¢*'> and 2 wave
g0ing from below upward must have the phase factor o'5, Expression
(75) shows that there is only one wave going from sbove downward,
samely, an incident wave with the total phase

(75}

wit) = xt ¢ S{y') ~ Sly) (76}

we added the term xt here from the exponeatial in integral (23) .

This phase agrees with the phase Eq. (36) of the sormal refraction

case, as is natural, since this wave did not reach the inversion layer.
As regards the waves going upward from below, they will be an

innumberable are obtained by expanding the second

term of Eq. (75) in a power series ine”™. They will correspond

to waves, multiply reflected from the earth's surface and from the in-

version layer. The phase of waves reflected once from the earth's
surface will be
#(8) = >+ Sly") + 5 )+ arca2
y') + &ty % an

(19
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This expression differs from Eq. (37) in ita last term which cannot
be obtained from geometric optics. Thie term equals

r(i -iw

X2
arelzare—f——s 2vlnv - 20 [
X1 TG+ "

It becomes zero for large positive v but it plays an important part for
small v since, because of it, the whole phase $(t) remsins a halo-
morphic function of v near v x 0, in other words, near t = ply,).
Now let us analyse the case when the point y is below the in-
version layer, where S_ - 5 1.
Using expressions (66) and (72) and the equality

v

X0 x - e Fay, a9

we obtain after certain computations

iS(y') - 2iS,

Fogim—pe sl e
Yoyt -t Yoty -t Xy o™

In this case, there is not one but an innumerable quantity of
waves going downward from above since waves reflected from the
inversion layer as well as from the upper boundaries are added to
the incident wave. Moreover, there is an infinite quantity of wave
reflected from the earth and going upward from below. Al thes
waves are obtained formally by expanding Eq. (80) in a geometric
sion in powers of e "

The total phase of waves not reflected from the earth equale

w(t) = xt 4 S(y') - 8(y) - ave Xy (81)

{20)
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or

X
oft) =2 4 5y - S0 + areg . (82)
1
and the total phase of a wave reflected once is
A1) = xt + 8ly) + S(y) + 3 lrcrx; . (83)
z 1

The expression for wit) doss not agree with Eqs. (36) or (76}, which
is natural, since the incident wave passed through the inversion layer.
Exprossion (83) differs from Eq. (77) by the additional term having a
factor

Up to now, we spoke of the phases of the different terms of the
integrand. An integral over 1 in the attenuation factor corresponds
to each such term. If these integrale are evaluated by the method of
stationary phase, then each one gives a term in the attenuation factor
which represents & wave with s phase equal to the extremum value of
the phase of the integrand.

It is understood that we use such & method of evaluating the
attenuation factor only in the line-of-sight region; residue series must
be used in the ehadow region.

6. FORMULA FOR THE DISTANCE

We defined the horizon distance for normal refraction (section 2)
uch a value of the horitontal range x as would give the boundary
between the region of applicability of the reflection formula aad the
region of applicability of the residue series. For this value of x,
the extremum of the phase of the reflected wave must be the least
value of t for which the phase itself i# still real.

There are many reflected waves in the presence of superrefraction.
But we can expect that the principal part will be played by a wave

en
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reflected once form the earth's surface. Inasmuch 8s the "horizen
distance" is not & scricily defined concept, we rightly make it more
precise by interpreting it ae the hor:zon distance for & single reflectad
vave.

The phases of & single reflected wave are found in sec. 4.
According to Eqs (77) and (83), we will have for y'>¥;,y>%

w

¢ X

v(n)-noj/ﬁn)-:duof (u)-umnnx—‘ (84
% 5

1

and for y'5y, v&y;
Yy Y x
o) o xt 'j T <t du oj\];(u) - uuo{-uex—‘. (%)
)
4 4

These formulas ean be combined by putting

Y
X
Sety.n) = f‘ﬁm TTdu Q%Ireﬁ(yyyi) T
H
¥y
strn = V- tan ey 7
H

Then, both for y >y, and for y<y, we will have
2% i

#(t) = xt 4 85(y't) + S*{y,1). (88)
Let us note that 5% is & holomorphic function of t near ¢t = piy;).

Reasoning as in sec. 2, we obtain the following expression for
the horizon distance

G e WP )

@2)
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Let »-1 write this expresaion in a more explicit form. Acording to
Eq. (48) near t = ply) we will have

Pl
vw . (90}

©On the other hand, near v = 0

AL (€42 n2) [}
5 arc - 42n2v+... 1)
Ly

and therefore

1., X2
tucTI--v(c-lolnh)o.». N 92)

where €3 0.577 is the Euler constant. Comsequently, for y>y;

e 3 B & 1
.T.TJ‘W.W@H.M. 193
H

This expression has a limit for t3p(y;), v=0. The last term is
absent for y<y; and the value t = '(yi) can be substituted directly
into the integral. Consequently, for y¢ Yy we will have

y
4 | g o0

The presence of the secand term in formula {85) specifi
dependence of the horizon distance on the wavelength. In order to
clarify this dependence, let us turn form the modified x, y coordinates
to the usual s, b where o is the range

(23)
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and h is the height.

Denoting the modified refractive index without the 10° by p(h), we
will have

Py = 2mpth, 98)

where m is the quantuty Eq. (4). We introduce the parameter T
instead of t by means of the relation

te2mlr. (3)
Then
h
f BT tau =k f\/z.-m T o
4
t=ket. 19)

Now, the quantity v will equal approximately

v V;"&T [ANEE 99

The distance formula is obtained fram the coadition
+3 -0morr - uny, 100)

where the phase ¢ is assumed to be expressed by the new quantities.
Let us put

h
Fin) = J'm-i_h!;mm h<hy. o1}

(269
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4Ak(u(h)) - 1),
=l C+in
o [ T ey (© o T fuon
(for h> 1)

Then the formula for the horizon distance obtained from condition
Eq. (100) is written as

s = Fh') + F(h) . (103)

Let us compare the values of the horizon distance for identical
heights but for different wave lengths. The wavelength enters into
the expression for F(h) only for h>h; and only into the logarithmic
term. Let the hmm di-unu equal " for A= \l = X, and

, for ), "E the di of exprdssions (103),
w' obtain

20 w n m lnr(er >IN

(104)

cay = i « e 10y for b,
2% W‘Wj %, Vg R, i

(105)

This difference depends only on the behavior of the modified re-
fractive index near its mintmum except for the ratio of the wave
lengths.

Let ue apply our general formula to the case when the modified re-
fractive index u(h) depends on the height according to a hyperbolic law

b - b)2

[
Wb = wihg +3 TR (106)

@5



where a is the radius of the earth's globe; ! is & parameter. In
this case

) = m—_ia . o
N

The iategrals in §{t) will be elliptic but they are evaluated elemen-
tarily for 7 = u(b) and we obrain the following expressions for Fia):

Fib) = -VZa(h + 1) + V2m +

(108
,@ I % 1 vy wd
i’, -
for h(h‘
F(b) NZah +3)+ 2a1 - (109}

B o | Y X Y L3
ER O O s

fcr h> b

where

2 3
2k"(h, 41)
a0 ;f_tz_"’“{cl o ,._+_] 10

Here

C)-7ln2-QQCII.M9< am

(26}
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For comparison, let us note that the horizon distance in the
absence of refraction equals, as is known,

o aVEn sVaan. w2

Hence, the increase in the horizon distance because of refraction

aquals

o -0t [Fn) -VERRD + [F(R) -VERR] (113)

We assumed in all the praceding reasoning that the heights h
and h' are small in comparison with the radius of the earth a. But
the preceding formulas are applicable when a wave comes from in-
finity (for example, (rom the sun). The differcnce Fih') - {Zaht
has a finite limit for h'-s 0, namely:

alim {F(bY) -VZab'] = 114)
v ) VB i
VEac #—li—x.mo as .
Replacing the firet two terme in Eq. (112) by their limit values,

we obtain the following expressions for the increase in the horizon
distance:

o0 = 2y2m -JZatht ) -VZan 4 As + 15}

b+ 0} \ﬁ'n w‘]ﬁn \/nin N
NSt ":JhTo_‘ ~

for hhy

@n
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oo 0V Waalh ¢d Mzah ¢ 280 - (116)

n) ;0 4+ l!;’
Jhﬁl -W " Jhon-?

The "l

angle"

st mn

corresponds to this increase in the distance. Since the present theory
does not take refraction in the high layers of the atmosphere into
account, it is necessary to add the value of normal refraction cnthe
horicon to Eq. {117) for a comparison with the observad lead angle.
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XIII, ON RADICWAVE PROPACATIOR NEAR THE HORIZON
WITH SUPERBEFRACTIOR

e mn-mau antenna 1s situated high above the inversion
and the receiving anterna is within the invarsion layer
at s lov elevation (or ccaversely).
results obtained indicate the -w
Guoing the horison it analysing very remote pmﬁw they
give an estimate of the possible values of the atterustion
faotor at the horizon and also indicate the dependence of the

the mﬁu of an.r, oentineter and shorter wave-
langthe in the

1. INTRODUCTIGR

The theary of rediovave propagaticn sbove & spberisal earth in the
presence of an for which the ndex
dopends only on the beight vas worked out in the work of V.A. Pock (1,2).
An investigation wes given in the second of thess works, of the attmu-
atica faotor in an inhomogensous ataosphere near the horison, where the
concept of the horison is defined for an inhemogenecus stmcephers of
soy kind, The definition of the horison introduced in (2) in the case
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of an inhamogensous atavephere without an inversion of the reduced
1index of refreotion colncides with the boundaries of the shadow which
Terults from the laws of geomstris opties. If an inversiea of the re-
@uced index of refrestism exists, then the horison is found from more
@mot wve considerstions) ia this case, its statemnt depends ca the
‘wavelength,

If 4 1o asrmed that the sttemuation feotor dsoreases repidly
with distance bayend the borison, then (ss was done in (2)) the renge
of the horisen ean cenditienally be considered to daternine the range
of redimave prepagation, Therefers, a simple formila s ebtaimed for
the runge of rediemve propagation with euper-refrection, The heights
of the receiviag and treamdtting antennes, the wavelength and the
paramsters sharacterising the M-profile all enter into this formila,
The Tange fermila for a reduosd index of refrection dependmt on the
Belght according to a hyperbolic lav((2), § 5) sesumes an espectally
sixple form,

‘The analysis of very lang propegaticn using the horison camcept,
given 1a (2), requires certain improvements, howerer, First ef all, it
10 desireble te olarify whieh valuss the attemustion fastor at the
horisen assumes and hev the sttecuatien fsotor nesr the borizon depends
on the distange, the wavelength and the parsmetsrs of the inversior
layer (the hedght of this layer, its everage gradiemnt, eto,). To do
this, 1t i evidently necessary to evaluate the attemuation factor in
sartain partioular cases inasmnch &s this problem is mot sudject te

@)
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solution in & general form, Hencs, 1f we wplain bow rapddly the at~
tenuation fastor decresses in the shedow region (beond the horison)
and how rapidly it incresses to a valus of the order of Wity vhen de-
parting from the horteen 1ato the Line-cf-slght reglon, the ve there-
Yy confira to what degree the horison determines the Tange of radio-
ave propagstion in practioal cases.

In view of the enormour tedimm fnvolved in compitarion of the at-
tenuation fastor during sups:-refrestion, the saloulations oan coly be
mde for » seall mumber of typlual cases, Here it 1s lmpossiBls to
perform any sxhaustive calculaticns, as for normal radiowsve propaga-
tion, Heaos, we wers limited to the caloulation of the sttemmtion
fuctor sa & Amotisn of the noodtiensional coordisate £ fa four cases
which snabled the depeddence of the sttecusticn faotor o the borison-
tal ddstance betwemn points, for & fixed Mecurve and for fixed beights
of corresponding points to be constructed for four wavelengthe, re-
forred a9 1:3:9:127 (see Seotion 7).

In (his Wy, it sppears to be possible to atke more precise the
maaning of ihe range of the horison and the range of propgation and
0 ansver a zusber of quastions formalsted above, in particular, the
question of the dependence of the very-laog propagation phenceson oa
the wavelength,

Let us recall that the anelysis of ancmslous propegation given in
(2) 1s applicatle if and only if oue of the corresponding points is
soovs the inversion layer near the sarth vills the other podnt can be

()]
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edther within this layer or above it, Consequently, when computing
the attenuation factor we were limited to the case when one point is
high above the inversion layer and the other is within the layer at a
height equal to one=fifth the height of ths inversion poinmt.
2, I THE HORIZOW CONCEPT IV THE PRESENCE OF A
TROPOSPHERIC WAVEGUICE NEAR THE RARTH

Lot us consider in more detail the horisan scocept when & wve-
guide (1aversicn layer) existe near the earth,

Piret, let va recall the rey trestasmt of normal and anamalous
propagation (see (3), pp. 16, 17). The reduced index of refrection ie
a linssr function of the beight for & homogeneous atmosphers,

The rays, lssuing from the source Q, have the shaps of curves ine
vorted convexly to the ¢ axia (Pig. 1a) oa the s, b plans (s is the
detance along the eartd, b 1s the height). The Borison 00! iy deter-
mined by the ray Q00 which touches the earth at the point O, To the
Tight of the horiton line 00' is the shadow region which the field

only because of o the left is the line-af-
sight region, The reflesticn formila, according to which the fiald is
cbtained as & result af the interfarence of the direst rey QP with the
ray QPIP reflectsd from the earth, 1s approximately applicable for
points 1n the «ight Teglon (to the left of the 0OV

barison),
Rays from the sourve Q located within an etmospaeric waveguide,
mﬁ.m,dh“tli(m; 1b) are convex upward {from the s
@)
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b = for superrefraction - uendm‘ o ;oamm optios)
0 = for superrefraction - aseording to wve optics

(ia)
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axis) vithin the weveguide and sre convex downard (as in Fig, 1a)
sbove the wvequide, Consequently, the ray QL passes into space above
2o saveguide but the ray Q2 appears to be 'trapped! within the wave-
guide, These two kinds of Tays are separsted by the limiting ray Q0
*hich approaches the helght b = by ssyEptotically as ¢ —ses . Besides
the direct rays, reys reflected from the earth, aa QL''1 for exanple,
are incident on the epsce above the inversion layer and are ssparated
from the trapped rays by another limiting ray QO"0' which spproashes
the height by saymptotically after & aingle reflection from the earth,
AlL ray {esuing from a source within the angle 0Q0* formed by both the
Uaiting rays eppear to be trupped,

In this exanple, the lavs of gecmetric optics lesd to the conclu-
sfon that & horison is absent both within and above the vaveguide,
Actually, direct rays issuing from Q witbin the angle 1Q0 and reflected
Tays fssuing from vithin the angle 1°Q0" pass through cbservation
points situated above the wvavegulde to the right of the rays 1 and 1Y,
They penetrate the whole space abore the waveguide to the right of the
rays 1 end 1! and, consequently, the reglon of geomstric shadow and,
therefore, the horison ars absent.

Howsver, 1t 1s stay to see that the laws of geometric optice are
not spplisable to the limiting rays Q0 and Q0% and to rays close to
the liniting, Prom the preceding, it is clear that precisely these
rays transport (aocording to the geametric optics laws) electromag-
netic energy to long distances above the weveguide. Hemoe, there

)
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follows that mve corsdderations smst be drawa upoa in order to solve
the quastion of the horison and the range of propagation with euper~
refrsction,

This wes done 1n (2) where 5t wes shown that thers 1s & cerialn
‘bowndary 010t (Pig. 10) in the space above the wevequide, o the right
of which a ray reflected from the earth cannot penstrate. This bomdary
0101 15 the borison 1n the presscs of an iaversicn layer since to the
Fight of this boundary, 1.0, 1n the shedow reglon, the f1eld (s i
Fig. 1a) can only pecetrste because of diffrection,

Beaides the bowndary 0'0} there is still the boundary 00, to the
Fight of vhloh direct rays which do not experience reflection from the
sarth, cannot penetrate, The boundary 010! 1s to the right of the
bomdary 00 since a rey, wheo reflectsd from the earth, appesrs to be
o the Fight of a direct ray parsllel thersto (sse the rays @ and
QU*L' on Pigure 1b), Direct rays do net pasa inte the 00 - 010! band,
consequently, the total fisld in this band s not subject to the my
treataent, The total electromagretic fisld to the left of the boundary
00 is obtained by the superpositica of the direct and reflected rays.

Because of such a Yalus for the boundary 00 = the liaits of ap-
plizability of the reflection formils = it 1s expedient to introduss &
special designation for {t1 we call it the direct wave horisn, In
ocontrast, we call the boundary 0'0'the reflested wrs horisca, Mhile
thess horisas coinoide for normal propagstion, they mist be differvati~
ated 1n the case of ancmalous propegation.

()



‘The horisons 0'0' and Q0 an Pig. 1o replace the limiting rays
Q00! and QO (Pig. 1b), obtained from geometrio optics, in the weve
ploture,
These general considerstions will be mds mors precise in Section 4,
3. FUNDAMENTAL PORMULAS

e fector ¥ 4n an for vhich
he refractive index depands caly oo beight can be represented as the
contour integreli

@ ayty) = q(-x-f) z { o p(e,yry) at

‘When an inversion layer is present near the sarth, if ons of the corre-
spending points is above the layer and the other is Within it, then the
following approxinate expressions (see (2), Section 4) can be taken for
the integrand Fi

ap {186 - a‘]}-m s(y)
BET L 5GT = € [Xy) o (213)) - 20 ")

Bere y' and 7 are the nondinensional heights of the scurce amd the
obsermation polnt (71> 7, Where 7 > 7, 404 y.c 7, vhere 7, 16 the
nondizensional height of the lnversica point); x ie the nondinensioasl
lstance betwem the source and the obeervaticn point and p(y) is &

faotion related to the reduoed refrastive index X(h) by the formulss

@) Fuyy) -
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5

) m-% -m-az(.p%), ..(!a)

where n is the refrective index of airj & ie the redius of the earth.
We assume that the funotion M(b) has ths same shape as on Pige. 1b
and 1e. Consequently, for given t, the equation

W) ) -t =0

bas two roote 7y and y,. Taess roots are real and positive for plyy}

< t <p(0); they are camplex conjugates for < plyy)) they coincide

for t = p(y;) and then y3 = y5 = 7. 1In gemeral, there can be other

Teots (negative or complex) besides these two but they are of no valus,
The quantities S(y), S(y') and S, are given by the formlas:

’
s - fﬁm—-tm g - [ AP -t e
: K
5 » 7
%3 o R Y oY
° °

wherein the redisal y/p(y) = ¢ must be taken in the sritinetic sense
for positive real 7 for ¢ < p(r,). In order io evaluste S for
t<plyy), the redisal =t oust be continued analytically into
the region of camplex y. We will comsider that p(y) 1e an analytic
funotion (see Formula (8) below) admitting of such a continuation,

(®
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The quantity »* 1s dstermined frem the formula:

L 2
) r-ﬁ'{ oty

The quantity / is also real for real valuss of ¢, vhers the sign af
¥ 1o chosen from the folloving relaticns, The function p(y) can be
Teplaced, fory.yz,wunmnw--fmwm-um.

o) = i) 30 G - 5y
and the integral (6) can, aftervard, be caleulated d we cbtain the
following approximsts formula for & w ptyi)

pO,) - ¢
) Ve —k
177Gy

In conformance with this, we consider V>0 for t< ’(’1) and V<O for
t>p(ry). Pormila (6) 1s rewritten thus for plyy) < t <p(0):

T2
(0 r--."'f T &
1

viore £ -50) >0 awd <7,
The funotion X(v) 1s determined by the formulas

) Xo) -—}—)——“"’ b Sad 2 L)
r#-w

(O]
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shere the principal value &s taken for In v at »>0 [t< pz))] ¢
Honce. :
Qo) XN—1 a8 sea

When eveluating the sttenuation factor for large values of ¥, 3t
13 nsceasary to take into account that the function ply) must satisfy
the foliowing relation as y—so» @

1in
an oo PO =] = 0
Consequently, representing S(y') as follows:

7 .

st -,of ,/y—-w~3{[ﬁf?ff‘-v’r_-€]~

we see thet the first camponent increases without lizmit as y'— . (the
infinite part equals %—y"‘- £977) and the second tends to a finite
1imii if the difference p(y) - y approaches zero rapidly enough (for
example, Just as for the function p(y) according te (18) .

Let us introduce the quantity £ a3 the limit

T .
(12) & - ’li'.ls(,-) S5 -% e ﬁ']
Substituting the following for large values of y!
2 Y
sG-S, = F3 -t e,

and replocing the quantity yhG7) = L in the denominator of (2) by
{/y‘" » We obtain the atteruation factor as

Q0)
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) Vg - .;l;'_’ =14 ™ wew
where N
) " - %’L—ﬂj’ Hgtan o
¢
and
) ain 30)

a5 o) = o Rmteasy) - 1]

The funotion V) (£,7) is related to the attenustion fastor V by the
eane forwula (13) as in the theory of normal radiovave propagation,
Just as in this latter theory, it ie matural to call V) the attenuatim
faotor of plane waves, Since we sball svaluste only ¥, subsequently,
we ahall often desigute V) as simply the attenuation factor,

Let us tntroduce the variable § which equals

8) [ X

nto V). The gecastrioal meaning of § follows frea Pig. 2, stere T
T denctes the point at viich the incident

— »

Plane wave (or spherical rave from & re-
mote source) touches the earth's surfece,
The quantity § 1e related to the angle
@ = IC? (P 1a the obsermation podnt, C 13
the center of the earth) or with the dise
rig. 2. o:;-gmuuu.u tance ¢ = 40 along the earth whish cor-
Tesponds to it, Yy means of th relaticns

)
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»
an - -l ..(.*)
Lot us note that the point of tangency T corresponds to the path of &
Tey in & homogeneous atmosphere,

‘The {afinite ccntour C in the plane of the complex variabtle t,
over which the integrale for V and V) are taken, is arbitrary to a con-
sidereble degree and should be chossn 80 that the integrel can be
evaluated vith the least difficulty, particularly, in such & way that
the principal part of the integration would be as emll as possible,
Bemoe, the contour ¢ should encircle all the poles of the integrand in
& positive direction so that they would be above the contour C. It
would appear to be more convenlent to take the contour shown in Fig, 3,

dth 1te breakepoint efther at t = p(yy)

"p;.:.(’i) oF scmevbat to the left (sos the e of

Sectian (6) as the contour of integra=

Pig. 3. Contour C in the tHea,
camplex ¢t - p(yy) plane.

As 19 seen from (5) and (6), integrales of the form [/PG) - € &y
for different ¢ and for different liaite of integratics, incluting the
complex, eater into the integrand ¥(t,7). In order to faoilitate the

of these integrals, the law (54) we taken for the
Teduoed indax of refrection N(h) and, consequemtly, the functise p(y)
1s obtained according to (3) as

-5
a9 ) - "'1"77?_
a2



360

whereupon there Tesults fran (11) that
a9 By =g, e

Two paraneters, 7; and 7, are in (18), vhere 7, 1s the nondinensional
height of the izversion point. It is also wxpedient to introduce the
special notation

(20) Tegey
then
(@) oy - 2

Lot us note that (A) is & quadretic equation With the two reots 7y and
720 *hich foin at t = ply;), 1n the case of the hyperbolio lew.

The {ntegrals which ve nesd in the case of the hyperbolic law are
@pressed through alliptds integrale of the first and second kinds.
However, in the cases we considered, it appesred to be mors convenient
to evaluate thess integrals by expanaion in powers of the paramter a2,
hers

(22) A /LN ;"’ )

It is eufficlent to take several of the f4rst terms in these axpansions,
“hiioh aleo contain logarithalo camponents, since the prinaipal part of
the integration over C corresponds to very mmall values of the para-
moter a2, Later terms of the expansion are essential for the large
values of the parsmster T which ve took (ses the begiming of secticn 5)

W)
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only on thoss parts of the contour wbers the }hole integrend is itself
-1l

1a conolusicn, let us dwell on the amlytis contimation of the
funotions P(t,y',y) and ¥ (t,7) over the shole complex t plane, The
faot 1s that the quantities S(7), 8(r'), S, and  X(), which ater
into thess functicas, sre originally defined only on the resl axis for
t < plyy) (¥ > 0) where the arithastic values were take for the
redioals YRGSt ad  JPGT=T. Bowever, knoving the inte-
grand st t p(yy) sppears to be sufficient only for caloulations with
the reflection formula (see Secticn 4). The integrsnds must be lmown
for complex t in order to caleulsts the contour integrals, and this is
asconplished by using analytis contimation,

Here, it must be kept in mind that the exact functions P(t,y',y)
and ¥ (1,7) bave no singularities at the point t = ply;). However,
the aaymptotic expression (15) for the funetion ¥ (t,y) has a singulsr
point (a branch point) at ¢ = ply) (for expressions HF) - £ and for
S(7)) and at ¢t = p(0) (for S(y) amt £}, These eingular points are
obtained because we used the asymptotic expressions, Astually, there
are po branch points since the ot integrand must be mercmorphic.
Consequently, we typass the 'apparent singular pointe’ from below by
considering, for emaple, that argp(y) -t] = ¥ for ¢ >ply) and
wat HhFI -t = 1 YT HT), stere YT =pF) >0, In substance,
hls bypass s conditional since (2) is oot applicable for t > ply)
Because of the socalled Stokes phuncmencn. This phencaencn can only b

w)
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Deglected when the seotion t > p(y) gives & mmall gontritution to the
value of the contour integral, 8s oocurs in the cases vhich we consider,
The ebeck oaloulations viich we made by using parabolic oylinder fume-
tions (see (2], Section 3), which give a more exsct asymptotic repre~
setation of the integrand ¥ (4,7), confirmed both the qualitative md
the quantitative validity of the results obtained by usiug (15).

The funotica ¥ (t,7) aleo has poles corresponding to the roots of
Iquation (i5). Vhem the poles approach close te the conteur of intee
gratico, they mist be hypassed from below.

&, DBEFLECTION FORMULA

It 49 matarel to svalute the attemustion factor in the line-of-
sight regicn by the method of stationary puse since this method gives
the transition to the lava of gecmstric optics which is applicable far
@ough from the horisen, The method of stationary phasa can be spplied
to the integral of (14) as follows. Let us represent the integrand
on the resl axis as:

@ ¥4 1%'%){1 x::)(;zx-m
where
Q0 =« £, -30) + B, - axg X0)
bt $) o £ o3 emy-arg XD = 20r) 0 230)
(25) g X0 = viay-venD(y- 1)

Qs)
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(28) A--x}aq[-or.m,]

The following expressicn osn be written for all the integranis in
{14) for real ts
PR CIC BT 103)

- (TIEY
¢ S T e D

here

(28)

@(t) = §re D)
@) o fred(v)

Since ¥ 1s also real hers, then
(29) X « Ao

and 42V > 0, then

) W= s

The last formila shows that the abeclute valus of /A is less than
wity (i prtsonlar, [ Al far v =0 32 v20 [teplry)] et
1t tends repidly to 8670 as ¥ inareases. Gousequently, if we should
sesk the staticoary phiase pednt at t < Pyy), W oan Deglest the pase
of tbe dmomiator 1A, Then the stationary phase poiots t) sod
¢ of the first and second components 1n the right e3ds of (27) are
ebtained from the equations

o) @iy = 05 gt =0
1%



or
©2) £= -Quys §eo -y
iere the values of t and t; are differwt for given ¢ and 7.
Caleulations sbow that the functicns «(1'(t) sad ~@1(t) have o
maximm, Consequently, we find two values of ty and two values of t,
(a1 Jeast, 1f { 10 ot too large), Only valmes of t; and t; should be
taken hich correspend to the left half of the curves t <plyy) (a3<0)
1nagmuch as the phase of the dancainator 1 -/ ean e neglected only
for these values vhen determining the statiooary phase points,
Pinding the poiats t) and t7, we oan evalmte (i) by applying the
mthod of staticonary phase o sach component of (27). Thus, we arrive
at the reflecticn formila for the attemation fastor ¥y1

®  nen - wfsn)] ) sl sey)

WCT=5, 720 SGT =6 YTy
hare R
(3%) Ae) = m—

The first term of the reflectian formula (33) is the ground wave,
the ss00nd term 1s the wave reflected from the earth, This formula hes
the sams structure os the usual reflection forwnla of geometris optiss,
bowever, corrections, arising in the exaot analysis of wve passage
through & layer sdjodning the inversion point, are reflssted therein,

Lot us note that %) aad t; deorease as § desreases and the values

of ¥ corresponding therete imeresse. It is poesidle te write for large
mough positive V'
an
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05) Aeog X =y 2e2
“amd, the more simple 0aa be used for the
() ant $(¢) twnoticns
o = 2, -5

6)
) « 2 e8p)
where

E. - ‘b’”u ,3 ;(,-)._i.,-‘ogﬁ']

The reflection formala (33), for swh elmplifissticns, trensforms
1nto the waal reflestien formils resilting from the laws of gecmstris
optise in an ishamgenecus stavephere, Therafors, the latter is ap=
Plicable to rays smffisiently far from the lisiting reys @ and Q00 aa
Pig, 1b, more emctly, to those rays for wilsh V(ty) end v-(t,) are
large enough positive mumbers. s it 1s easy to conaider, we have
¥ = 0 for the Liniting reys themselves and gecmetric optice 1s mot
applicable to them,

Returning to the gensral reflsotion formmls (33), Lat us intreduce
the folloving notation for the mrimm values of -Q1(¢) and =&1(t)e

8) g oo [0 £ - 8O
Because of (24), the following inequality is always satisfieds
09) €<ty

as)



Henos, we see that the stationary phase point 4y and t, ean cly be
found for both oamponente in (27) 1f fefy, The equation @'(t) « 0
bas oo real solution for £ >4 and the ground wve Le not expressed by
the first oomponent of (03), Cecsequently, the valus ¢ = ) deter-
ines the borison of the ground wves (ses Sectisn 2), Sixilarly, the
vilse § = £ detarmices the Borison of the W¥es reflscted from the
artn,

The pysioal meaning of §7 1s that the electromagnetic waves
escape in the £'>€, regiom enly becsuse of diffrastim, consequently,
£« £, 1o the bomdary of the shadow regicn. The physicel meaning of
£ 1wt formls (33) ta tor £efy,

§ =€} 1s the bomndary of the Line-af-eight reglon, The region
£1< § < £, 12 the internetiate Tegion between both horisons,

Stoce the maximm values of the fumotioms <£1'(t) and -$1(s) are
attained oear the point t < p(yy), then the quantities

(AR (5T MPSATIF ARN CF J10) NP

will be vary close %o the quantities determined by (38), as we i1l show
by examples in Sectisa 5, Comsequently, the lecation of the horlson can
be deternined approximtely by o formala sush as (), vhich is mach mcre
iaple than to construot the grephe of the fuctione =01f(t) and -1 (t)
whioh are required for the use of (38). The formalae (M) for the kyper-
Welis lav (18) reduce to

w) 4 - o=ty & - ge0m
a9
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where

W2) [ ﬁ %‘7{ 'Yclo-:-nﬂ’)
il £y fwzl
@) 6@ = T | w2z
TR 2[ T A
and
() G = Ce7ln2-4 = 1429

(C 1a Buler's oonstant),

The ascand formila of (K1) gives (115) of [2] for the dietance of
the horison of the reflected waves when the tranaforsation is made to
the usual (dinensional) coordimtes. As we already sadd, the first
formuls deternines the distance of the grownd vave hordson,

In 1ot us note that formala (33) is applics~
ble to the caleulation of the sttemuation factor V) almost wp to the
grownd save borisan [*) tesls,

5. HMERICAL RESULTS IN MOWDIMENSIGMAL COORDINATES

o chose the folloving mmeriosl values of the parameters which
@ter iato the function p(y) (Formilas (18)-(20]) vhen caloulating the

fastor Vy for & Anversion laws
TNE L
30, 7y 7 T | pGy) | MO)slry) z_
1 040 | 39..4 | 2080 (28 0,542 2,08
2 3 9% 100  Po5 0,260 1
3 2.0 3.6 48,07 | 50,08 0,228 0.8
A 116 | 2.9 | B0 |82 0,060 0.3

(20)
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The funotions p(y) for the values of the pAramsters selected are

y
30| —
w12
—
A 1
—T1 4
[ ~Ply)
£ oo tamtish 2r)

Mg, A, Gl\nl
for the pu\-tno values of Tadle 1,

shown in Pig. 4. The choloe
we nade pernits the propige-
tdon of four vavelengths,
which are referred to as
13319127, to be caleulated for
& opeoifio Kprofile (see
Secticn 7), Hare the firet rov
of Table 1 carresponds to very

sbort wves and the fourth Tov corresponds to very loag weves,

u.mr-?ummu, 100,, ¥o assumed the hedght of one

of the corresponding poifite to be equal o cos £4fth the belght of the
Anversion layer. We took the other point at a great height above the
inversion layer - so grest & Deight that the attenuation factor ¥y ({,y)

of (13) could be used,

The four qurves of the attemuation faotor ¥y, whioh we caloulated

as & function of the variatle {, are given on Pig. 5. m-\uﬂyu

l!“‘ :‘
A\ H

w 3

q dh STaNeor

-+ > o
Y R o.00
. \ D o

2% T2 A 45 <5 955

m. mdummv af

muﬁ.),bmuh
the ommbers

of the Tows of Table 1 and te

of be surves of Pig. k.

(@)



1,2,3, and & on the curves show to which row of Table 1 and to which
p-ourve of Pig. 4 the given curve for the sttemution factor eorre-
sponds, The potat [[) on eash carve marks the location of the ground
wave horison and the point [ marks the locaticn of the Borizen of
waves refleted from the esrth, The points [, nesr the origin, vhich
are provided vith the sane ewbecripts 1, 2, 3, and 4, deteraine the
horfson (the lins-of-sight limit) for a homogeneous atmosphere; the
sorremponding valuas §, are obtained from the stmple formala € = /Y.
As 1s veen, long distance propagation cocurs in all four of the
cases considersd, and as should be expected, the most sharply expressed
1s 1a Curve 1, The of long-di
moootontcally when the transition i made to Curves 2, 3, and &, how-
over, the sttemuation fastor |Viw 0.1 for £'m 5 sccording to Curve 4
weile |V)| aerumas & valus four orders lower ([fy] 0.000013) for
the same ¢ and y but in a homogenecus atmosphere.

The values of the funotion |V)| at the horisens ) and [ are
#ven in Table 2,

It s seen therefrom that the valuss of the attemuation factor at
both horttans [7) and [, vary vithin surficiently wide Mmits, from
3-3,5 tiass, The valuss of |¥y| at the [, horison for normal
propagation and for the same values of 7 are given for comparisco an
Thle 2, A comparison of the coluwms shows that the valuss of the ate
tenuation fastor at the borison for normal propagation bave appraxi~
mtely the sims soatter as for ancmalous propagation to the [} ant
T, hordsccs, beosuse of the dependence o y.

(22)
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Table 2 Table 3
22
o L [ L [L ls[m]eg [ 262
10,09 [ 0,070 | 0,2 |2.08 | 1 [ 4911 |91 52,26 | 52,26
2 | 0,095 | 0,080 | 0,19 |1 2 | 2856 | 28,56 | 3070 | 30,7
3 | o.047 | 0,035 | 0.k (048 3 | 26,08 | 25.99 |37.52 [ 17,50
4 {0,001 | 0,023 0.0 0,23 || & | 867 | 845 | 9.52 | 9.30

It oan be noted that a sudden varistion in tho charaoter of the
propagation does not occur at the T') asd ‘l"z horizonst The attenuation
factor starts to decrease monotenically in the line-of-sight region to
the left of both horisons. In particulsr, this leads to the attenuation
factor being 2 - & tines less at the I') and T', horisons, according to
Tabls 2, than at tbe I| horison for nomal propagstica. Such a be-
Bavior of the attenuation faotor is apparently explained by diffraction
(more accurately, wave) phenomena, taken into account by the reflection
formula (33) and not incloded in the laws of geometric optics, Maving
value not only beyond the T} ami I hortsons tut to the lert as vall.

In order to explain the applicability of the siaple formlas (40)-
(W) to compute the distances of the T and T, horizons, let us ocm-
pare the reoults which they give in the cases we considered vith the
Tenults obtained from forwla (38).

Table 3 shows that both formelas give vary close nuabers. Conse~
quently, the simple formalas of (2) can be used to compute the distance
o the horisens in practical computations.

6, ATTENUATIOB PACTOR IN DEEP SHADE, RESIDUE SERIRS

It te to 4 the factor in desp
shade by using the residue series which is obtained from the integral (14)
@)



M
ty the usual method {see (1], Section €), In order to obtain the
Tealdve series, it is first necessary to obtain the exaot location of
the poles of the function T (t.y), i-e., the roots of the equaticn

s) 1-A =0

These roots are found near the cootour ¢ (Pig. 3) or vithin it. If we
dencte

8) Lt s t-ply)

then the valuss of [t for the roots which we found form Teble & in
hich the firet colum shows the mmber of the row in Table 1 and the
wocond colum shows the mumber of the root for this case,

Table &
No.| m Aty y
30
1 2| 0085+ 0.0009
2 | 0,063 + 1 0,08523
3 | -0.1633 +1 0,207 20|
Loy ous +1 0393
2|1 i domees oot | o
2 -017) +1 0329
311 | 0008 +1 02238 ° P )
2108 oL 0T | g g, mgmmu
b1 0,082 ¢4 0488 trapped and untrapped weves.
T2 '-oners +4 2008

The locaticn of the resl parts of the first thres roots of the
P(y) curve s shown on Fig. 6 for the first case. We ses that ocnly the
first oot corresponds 10 the ‘trapped! Mave in the ususl interpretes
tion, the other two roots yield waves vhish easily emerge bayond the

()
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aits of the inversion layer, from the geometrical optice vievpoint,
Eowever, these 'leakage’ vaves bave slight attenuation and partioipate
astively in the very-long projagstion process, Let us recall that
t = 117 ¢ 12,82 for norml projagation so that the third wave at-
temates ten tines more slouly in this case than the least attenated
wave wder aoreal AL the roots to
the "leakage’ vaves for the rest of the cases.

Lot us transform (45) to ¢ eluple approxtimste form which will
permit somparison with etber very-long jropagation theories, let ue
start vith the 'trepped’ waves whish heve alaost resl t betwesn
P(7y) and p(0) (wwoh a5 the first root in Tadle 4) and, therefors,
Bave Degative value of V' . Fer ¥ > 0, we put

W) Ve i lye ln-Hetr

Then we w11 Bave in addition to (10}
8) IV—r1 o V-

and we obtain fram (5)

[2) s, - 85-Tv
here
43
0 8- e
.

0 7, danotes the Least positive oot of (4), Taking thess foraules
xto aseommt (45) becomes
()]
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x1) 1 epis) = X0

If V is large and megative (strongly trapped waves) then we
obtain the following more simple equaticn becsuse of (48)

(52) S oGP oa e L2

hich corresponds %o the known charasteristic equation of trapped
wres (100 DL 5. 20).

Nov, 1st us imgine that ¥ is positive or complex with positive
real part, L,0,, Be t <p(y() or Re At < O, I this case, it is Dot
Posaible to determine the quantity 8; by using (50), if only beosuse it
1s not Inows whioh of the complex roots 7, and ¥, should be taken,
Hovever, nverting (49), we oan alvayw deternine S by using the
relationt
[C)] PRS2

and we agetn cbtatn (51) from (45). Since ve will alaays have X(19-1
for a sultable chotee of ere ¥as in (47)] and for |V|—se with the
«xmeption of are ¥ -{-m,-m-m, X(0) = 7%, then we can
consider X(¥) = 1 as & rirst, quite rough approximtion for the
"leakage’ rave and we again obtain (52).

Lat us note that the simplified equaticn (52) s also suitadle for
noraal propsgation vhen it is necessay to put p(y) = 7 andyy = ¢
in (50). Ve thus obtain frem (52)

o - [i A -%)r]: e]
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“hich corresponds approximataly to the Toots of the charaoteristis

equation for the homogensous staosphere,
In order to verify (52), we caloulated the valus of 8, for the
roots which we found acoording to (53) and we odtained the following

nambers as & result:

Tadle §
%o, |@a-pr 5 v
11| 23% 2,326 - 4 0,001 -o.'m s o.uuu
2| Suse 6,537 ¢ 4 0,047
3| 869 9,646 ¢ 1 0,009 x.m i l.m
A uom | 1378 e 10,005 1,800 - 4 2.8
2 1| 2a% 2,04 ¢ 1 0,062 0217 - 1 0.37%
2| sa%e 5.5 ¢ 1 0,01 0,867 - 1 1,646
3 1| 29% 2,15 » 4 0,01 0,360 = 4 0,776
2| sae 5,516 1 0,00 0,656 = 1 2,42
W 1| 20% 2,436 + 1 0,079 0,207 - 1 1,120
2| su 5,499 + 1 0,007 0,319 - 4 2,718

Henoe, ty caloulating S, for the roots found, we can ascribe the
subscript & to it by using the approximate relation (53).
Shown oa Fig. 7 is the attenation faotor in deep shade caloulated

i

-5

N 1\ 24 rwida]
oS

2 . \m

BT S

oaloulated using the residue series,

@)

A

by using the residus
serles for the firet case.
Pigure 7 shows that the
firet term of the residue
series, which corresponds
to the pole &y, only de-
termines the attemation



factor for { 3 150, 1.e., for 2 = am waves at » > 100G kn, Since
the first term has negligible attenuation, then the abolute value of
the sttenuation factor will be almost constant at such long ranges, the
awymptote on Fig. 7 is alaost horisontal. Let us note thet the attenua-
tion factor the amyuptote the of the
cscillations in the deep shade on Pig, 7. These oscillations caused

the interfarence of tha first and second 'aimple vaves:.

Here, the firet eimple wave with the least attegustian is exsited
very slightly by & veve inoident from above cato the tropospberis wave-
guide beosuse of whish this simple wave oan bave a decisive value coly
at very long ranges, The second and the third, in part, terms of the
residus weries have fundamental valus nesr the I') and T, hordaons.
‘This phenomenca must havs & general oharecter sinoe if the simple vave
40 'trapped® (see above) and almost doee not leak out of the inversion
layer (which s explained by its negligible attemuaticn) then 1t ia
almost not exoited by redistors above the inversion layer ascording to
reolprocity considerstions. Waver with large atteuation t0 & large
dagres panstrate the epace above the inversioa layer, conssquetly, they
are exoited wore strongly and play & fundementsl part near the horirons,

Beckuse of the circumstance noted, the T') and T') horiscas
aotually deternine (although in an appraxisate enough sense) loag dis=
tance redicwave propagetion even for strongly expressed supsrrefrection,
a0 1s seen frem Pig. 7.

(28)



376

The residus series is usually used as the basls for analyxing
very long propageticn. Eere it L5 sssued that only trapped wves can
have low attecuation (Bs Aty > 0). Asteally, waves wiich 'leak’ also
attecuate slightly in a namber of cases (Re At <0), Consequently,
-mmummuumumu-anm'mm--mmz‘
defined sccording to (A} (p. 258) contritate to very long propagation
in a tropospheric wveguide,

In conclueden, et Us Dote that several of the first tams of the
Tesidue series, as camprtations showed, PerRit the attecmation fastor
o be caloulsted witil 1t almoet Joins the reflectisn formls and, benos,
gote Tid of caloulations in quratures (see Secticm 3).

7. WUMERICAL EXSUL?S POR A CQMCARTB CASE

In order to faoilitate the physical analysis of the mmerical
sesults wiich we obtained in Seotion 5, we consider the corresponding
canorete case beredn,

‘The M-profile shown on Pig, 8 can be taken as an example and the
- sttmmtion fastor ¥y eaa be
for the following
// wavelengthe: 1) 3,33 ea; 2) 10
om 3) 30 cm) 4) 90 om as de
- done 1n Pig, 9, The mmbers cu
the ourves «f Pig. 9 indicats

2 3 MO)-M(y)  the waveleagths 1isted here,
Pg. o, t:q-l-u ofbyml

= 4ho3 B) 1= 804,0 ms N = 930,5
) = 153,53 M0) - Bly) = 0,30,

@9




mn

The lower horizontel scale 4s the rerge o in kiloosters and the upper
40 the angle © in degrees (ses Pig. 2). The left vertical scale ie
the ¥ (to the base 10) and the right hand scale is for valuss
of 1)

vl

B\ |WPn os
~ N q ke
. Py L ¢ o.08
LD e

\ a0ts

-msﬁé - e

Mg 9. Wodﬁ-n&munmw'lu(
for the vavelengthss 1 = 3,33 aaj 2 = 10 cm;
3 =30 am 4 =90 e,

Lat us note that the dispersion vas not taken into eccount in our
oomputations, We assume that the K curve hes the same shape for all
four wvelengths for which the sttenuation faotor V) is given on Fig. 9

The M curve on Pig, 8 i constructed according to the hyperbolic
law

. 2 benf?
s5) "o - i o2 Lo
4n which
() Aoy - '_:5

Tvo parametars are tncluled in the hypertolis laws by and [ wdth the

dimensionality of & height and related %o the nandimensional constats
74 and y 4 (18) by means of the relaticns

©0)
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(sm) :,-.—:11 ¥ --:-(1 . (;)W

1n wilsh By La the height of the Lversion point or, what s the sems,
the height of the atacspheris waveguide, 4s s easily sbown, the
Baight

(s0) |-|‘ol (1.%)

deteraines the radius of curvature of the N curve at the imversien pedst,

Aleo marked off alocg the borisoatal axie of Pig. 9 is the horiscn
T, tor s Tds horisa i deter=
xined by the Delgdt of the sheervatioa polnt b and i intependeat of
the wevelengthe Lot us note that we heve taken n--}\ln‘. e
izt T doteruines the position of the grousd weve borisen o sech
nmmmml‘zmm-mp.mu.tmhmm
ves reflected from the sarth (Sections 2 and &), Toe I am T,
borisons vary as the wavelengthe vary and, oonsequently, for esoh curve
fteelt,

In all cases the phenomencn of very long radiowave propagation ate
teuated as the wavalength inoreases can be sxpressed, Taking izt
oot the intense vardation of tbe vavelength s making the tran-
sition from one ourve te arsther (the wavelengths are in the 11319127
natio), 1t sbeuld be Wt the of the
faster on the wvelength 1s comparstively slight near the borimm,

@)
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The wvelength enters into the formula for the distance to the
Bartson (se (2], Seotior 5) only under the logarithe, Consequently,
the distances to the borisons gemerats an srittmetio progressics if
the wavelengths, 8s in Fig. 9, geerate A gecmetric progression, Eere,
however, the valuss of the sttenusticn faotor at botd the ') and the
T'; borisans depend 0o the vavalength 1o the stme degree as for pormal
radicvave propagation (see Table 2),

Because of these to Ldetify the of
rediowave propagaticn with the resoteness of the horimon of the gromnd
and reflected wavos mist be dane vith wme care, The distance of
propagation can be defined othervise, for exazple, as that mange in
shich the attenuation factor has the absdlute value 0,1, whare the
valuss of the sttemition fastor are etill lass at longer distances,
Por this last definition, the 'distanse of propagatica! is included
between the distances of the Iy and T, hordsons for the Curve L o
Tig. 9 and for the other ourves, this distance is less than the dis-
tance T} as soen from the figure, thess four distances geosrate an

1n & very rough Lot us note that
1t 1s ususlly sufficient to compute only ly using the reflsction formla
of Sestion 4 and by extrapolating the ourves thus obtained in order to
estimte the distance of propagation ascording to the 0,1 value,

The direct purpose of this paper (ses Section 1) was to verify the
forwilas for the distanse of rediowave propagetion darived in (2} ¥e
bave shown sbove that a sixple ar’ graphic poture of very-lceg rdicvave

062)




propagstion in the presence of an inversicn layer can be obtained by
introducing the boriscas of the direst and reflected waves, However,
e distance of promgation can ohly be ideatified with the distance of
ons of the hortsons in caly & suffiolemtly rough sezse. The fact is
that the decrease 1n the attenustion faotar (after the osolllations
terxinate in the Line-af-sight Tegicn) starts earlier than we arrive
at the firet horison, Consequently, se shown in Seotion 5, the attena-
stion faotor ¥, takes valos oo the Iy ent T, bortscns witeh are 2 =
4 tines less than ot the usmal T, boriscn for propagation in & hamo

genects Noreover, the faotor decresses near
tae T} «2a T, bortaons mueh wore slondy, wsterstendabiy, than for
sormal propagatien,

A1 these causes retuse to we '} ant T, hortsons obaracterising
the distance of redioweve propagation more roughly for ancmalous propae
tion than doss the T', hortson unter normal propagation. However, the
o0a1dility of ueing the Iy and T, nortsens for aa apprextmte eetie
mALe of the distance of propagaticn does not cause doubts, ae is eeen
Af only from & comparisca of the attenuation fastors near the horisons
and 1 deep shade oo Fig. 7,

It should be etressed that the N-profile we choss hus & weak encugh
daversion: the difference N(0) - K(hy) does not @mswed several tenthe,
In sertain oaees, eush an izversion can remsin unestablished in practise,
Bowver, our oaleulatisce ebow that even sach aa K-profile redieally
alters the sharscter of redioweve propagetion ad lasds to very long

propegation,
Lentagred University Aprid 27, 1956

)
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Appendix A

APPROXIMATE BOUNDARY -CONDITIONS FOR THE
ELECTROMAGNETIC FIELD ON THE SURFACE
OF A GOOD CONDUCTOR

M. A. Laontovich

The approximate boundary conditions on the surface of bodies
which have & large complox parmittivity have found application in
solving a number of problems concerning the propagation of elec-
tromagnetic waves.* In view of the fact that & vary detailed derivation
of such boundary conditions has yet to be published, this present
paper derives these boundary conditions and indicates the limita of
thalr applicability.

1. As we know, the problem of the propagation of electromag-
netic waves when "ideally conducting' bodies are present reduces to
the solution of the problem involved in the propagation of a field
outside these bodies under specific boundary conditions at the surface
of these bodies (the tangential components of the £ vector are equal
to zero). The problems involving the propagation of a field outside
good conductors (or, in general, outside bodies with & permittivity
which has a large modulus) can also, under known conditions, be
approximately reduced to the solution of the Maxwell equations for
external (with respect to these bodies) space when homogeneous
boundary conditions obtain at the surfaces of thess bodies.

T %Ia. L. Al'pert, to Los

J.Tech. Phys.(No. 16) 10:1358, 1940.
The approxi ‘boundary being d bere are

alio given in a book by A. N. Shcmukin titled *The Propagation

Radi> Waves, " 1940, p. 50, but the fully developed applications ot

these boundary conditions are not given.
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If the complex tor of the body
has & large modulus, then the wavelength ineide the body (and in the
case of an absorbing body the depth of penetration of the field into
the body) will ba small, s0 that inside the body the conditicns obiain
for the application of geometric optics. 1f, in addition to this, the
field varies slowly from point to point on the surface of the body on
the scale of a wavelength inside the body, and there are no sources
inside the body, then the field in the vicinity of the surface {inside
the body) will consiat of & wave which je propagated and attenuated
in the direction of the normal to the surface (into the interior) of the
body. This wave, generally speaking, is not a plane wave, but its
radius of 10 large in comparison to the gth of the
wave in the body and the depthe of its penctration. Therefore tos
firet approximation the slectric and magnetic vectors in the body
are parallel to the surface of the wave; they Jie in the plane which
s tangent to the surface of the body and are related with one another
in the same way that the electric and magnetic vectors are related

in & plane wave (that is,
£ .Vg BH)
are the complex electric and magaetic parmeabilities of the body).

Stace the tangential components of E and k]

of £ and H are related by the ssme expression

on the external side of the surface of the body; i therefore follows
that the following boundary conditions are fulfilled there:

Introducing the coordinate system (3., 5) which is such that x.
804 7 1o in the plane which is tangent o the surface of the body st

where B is the external normal to the surface of the body; ¢ and g
H are continuous, the
tangential compon E
& Bk A m
the point being investigated, and the § axis is dirscted into the
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interior of the body, it is possidle to write these boundary conditions
in the following manner:

l. !ﬁﬂy: Iy = *EHﬂ» @

2. Our problem consists of making the limits of applicability
for these boundary conditions more precise and of evaluating the errors
which are associated with the use of these boundary conditions. We
must therefore, in the firet place, evaluats errors which are sss0-
ciated with the depiction of the fisld in the form of & wave which is
proprgated into the interior of the body according 10 the laws of
ometric optics, and, in the second place, we must clarify under
what conditions this field can be represented in the form of & wave
of this type. The answer to the first problem is contained in & paper
by S. M. Rytov.* We shall reproduce here the results ofhis paper
in the form required for our analysis.

We shall examine & body with 8 complex permittivity €, with &
magnetic zermeability 1, ooth of which vary irom point to poi it ia
the body. Here we shall assume that the complex index of refraction
VER is & quantity which has & large modulus everywhere in the body.
ume that

JK.‘L(’.‘ralﬂ.

where q is a small parameter.
Having written the Maxwell equations:

Therefore, we

sikeEs:cunf, ikuHscun®
(k is the wave number in & vacuum, and the time function i
20 be of the form &%) in the following form:
TT¥5 M. Rytov.,L._Expt. and Theor: Phys. (No.2) 10; 18Q (1940}
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-tk Ve (VB = Cunt (/i) + Jpfiitnina),
Ve (VR = Cort (VeB) + LV Eiviag) .

and baving taken & amd\EH in the capacity of the field vactors,
we can coavince ourselves of the the fact that the large quantity ¢
or i is caly included in the form /@i ; howsvr the quantities ¢
and p taken separately are included in the form -: w uul-'l‘ ox
(1.e., only their relative variaticns have an effect).

In order to compose a solution which ylelds an approximation of
geametric optice we therefors assums that

‘:*.

“
i -}o ¥x f -}- (s
aad making use of formula (4), we obtain the following equations:
R ogfow B)d-é{c“ﬁ +3B. vln..]]
I R-E- -ﬁ{c‘mx .,}:x.vmq}

The solution for A and B is sought in the form of a power series of q:

()

x.x..a,..‘xzﬁ,‘.
l‘.!aoqi,n"i‘zo...

(]

obtain the following system of equations:

Koo B =0 i) VB, m0 @
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WA, + Hov 8] ‘&‘l“‘"-’; 4,‘»[5’,.7!-»]];

]
STH SR g{c..,.g.m. vm]} :
R e ﬂ-{cm ¥, .-gg.vlw]};

(o)

How Kz] -vE, &{cuufl o-i-[{l. vln]}

The zero-approximation Eqs. (8) yisld the approximation of
geometric optics. The condition for this sclvability is the "eikonal
equation”

tyw® bt an

{from which the complex function {x,y, 3} mwt be determined. At the
surface of the body the tangential camponents of the field in the body
must coincide with the tangentia) components on its external surface.
Since we assume that the field outside the body varies elowly,
it follows that ¢ = 0 on the surface of the body. From thie it follows
that the real and imaginary parts of y are proportional to one another:
surfaces with equal phases and equal amplitudes inside the body
(in this sero-approximaticn) coincids, and the normale to these
surfaces at points lying on the surface of the body coincide with the
normal to the surface of the body.

Tkus it is true in thie case that

o= -k, Qa2



where 2 is the external normal to the surface of the body. Equatiom{8)
pravide the the ralaticnship between tne field vectors, and this re-
lationship is the same as that for & plane wave; thus it follows that
1o the degree that we can limit ourselves to this approximation, the
conclusion drawn in § 1 is valid. In order 1o find the boundaries of

for thls s to calculate the subd-
sequent The are made
in the paper by 8. M. Rytov which we have cited above. Making use
of formula (34) of this paper and introducing the xa0d ¥ axes in the
tngent plane which are directed aloag the main cross sections of the
surface of the body, we obtain the following condition ( = const)
instead of the boundary Conditica {1}, (2:

‘lﬁ"r{”'ﬂ"ﬂ(v—l. --:-lo-’i%‘)} (a3

and a corresponding one for IY' Here [N and pyare the main radii
of curvature to the surface at the point being examined. From this
expresaion it s evident that we will obtain a correction of the

order ofS ana 21200 d (4 1o the dapth of penetraticn). When the
main zadli of curvature are equal the curvature does nat yield aay
correction in thie approximation; in addition, the corraction asso-
ciated with an inhomogeneity depends salely upon the variation of ¢
along the normal.

For & plane surface of a homogeneous body the firet-order
correctione are equal to sero, and in order to evaluate the errors
in this case it 1s nacessary to calculate the second approximation.
Making use of Formula (21) in the paper by 8. M. Rytov, we obtain
the boundary condition in the following form for this case:
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Let us note that if € and u depend upon x and y, it follows that
the corresponding corrections are aleo included in this approximation.

3. In deriving all of the formulas in this section we made the
following postulate: the field on the external surface of the body varies
slowly. In order to answer the second question whic™ has been posed
and in order to thus establish the limits of applicability of the boundary
conditions (1) it is necessary to clarify when the above postulate is
valid.

We shall at first suppose that the body has & large absorption (i.
we shall assume that /K is complex and that im €u is a large qmmy)
In that case we can assert that the condition of a slow field variation
the surface of the body is fulfilled at all
distances from the source which are large in comparison to & wave-
length inside the body and in comparison to the depth of penstration d
tneide the body. Even if the sources of the field are located on the very
surfuce of the body, waves which are propagated in the body and which
produc- & rapidly varying field will be attenuated at such distance.

Thus the conditions for the applicability of the boundary conditions(1)
for absorbing bodies will be the following. The depth of penetration
into the body and the wavelength in it must be small in comparison to
the wavelength in the space, in to the cos
from the sources of the field and in comparison to the radii of curvature
of the surface of the body. Variations of ¢ and i of the body ata dis-
tance equal to the wavelength in the body (or at a distance equal to the
deptk: of pentration) are small.

In the case where € and 4 are both real and there 16 no absorption
the situstion is different, and the fulfillment of considerably more
rigorous conditions is required in order for the boundary condition (1)

o apply.

In fact, in this case even if the sources lie far away from the
surface of the body (outside it), waves may be present in the body which
travel not only from the surface into the interior of the body but also

when the wave travers




from inside the body into the space outside. For example, if our ~
body is a plane-parallel plate and is irradiated by a plane wave, then
& wave will exist in it which is reflected from its rear surface and
‘which travels in the direction of the forward surface. Therefors the

of the boundary (1) which was made sbove is
inapplicable hare.

In the case where a body with large values of € and U has & plane
boundary and occuples as infinite half-space (the othur half-space is a
vacuum) there will be no such waves; however in this case the boundary
conditions ars applicable galy in the case when the sources are at
distancos {rom the body which are large in comparison with the wave-
length in the vacyum. However, if the source is located at the suriace
or close to the surface then, 8s we know, not caly waves with a velocity
5 are propagated along the surface of the body, but sleo waves with a.
velocity = which (from the upper side of the surface an well) creste
» rapidly varying field in the plane of the surface; thus in this case the

the slow of the field on the external
surface of the body (which we made L our derivation above) is untrue.

In conclusion let us provide the result of the soluticn of the problem
iavolved in the reflection of a plane wave from an infinite homogeneous
half-space (u = 1, € is large); this solution is obtained by means of
applying the app boundary A i of re-
flection in obtained which is equal to the followiag expr

.‘-‘F‘::uo-l )
by, Zrory

whers ¢ Is the angle of incidence. A comparison with the aceurate
Fresnel expression:

ion:




J‘E corg - V1 w? ¢
Re. B
/agoqoo 1-2ein’ e
shows that an error is obtained whichis in complete agreemant with

our general derivations; this error applies for real values of ¢ and is
of the order of—2sin" ¢.
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