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Summary. I present a review of the study of optical phenomena in 
moving bodies during the 19th century. I show how H.A. Lorentz, 
using a step-by-step approach, succeeded in explaining these 
phenomena, and how he arrived at his relativistic formulas. I 
highlight H. Poincaré's important role as a critic of existing theories. 
In particular, I discuss his synchronization of remote clocks, which 
clarifies the meaning of Lorentz's "local time".

Abstract. I present a review of the study of optical phenomena in 
moving bodies during the 19th century. I show how Lorentz's 
progressive stages approach successfully explained these 
phenomena and how he finally got his relativistic formulae. The 
important role of H. Poincaré as a critic reviewer of existent theory 
is underlined. I discuss with some details the Poincaré's distant 
clocks synchronisation, which clarifies the meaning of Lorentz's 
local time.

Introduction.

The contrast between the following two quotations clearly illustrates the 
difference in appreciation of the difficulty of achieving a conceptual change, 
depending on whether we judge it before or long after it has taken place.

"Much research has been done on the influence of earth movement. The 
results have always been negative. But if these
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In fact, according to the prevailing theories, compensation would only be 
approximate, and it was to be expected that precise methods would yield 
positive results. (. ). We
carried out experiments that should have detected first-order terms; the 
results were negative; could this be due to chance? No one accepted this; a 
general explanation was sought, and Lorentz found it; he showed that first-
order terms should destroy themselves, but second-order terms were not. 
Then more precise experiments were carried out; they too were negative; it 
couldn't be the effect of chance either; an explanation was needed; one was 
found; one is always found; hypotheses are the least lacking fund. But that's 
not enough; who doesn't feel that it's still leaving too great a role to chance? 
Could it not also be a coincidence that a certain circumstance comes just at 
the right moment to destroy the terms of the first order, and that another 
circumstance, quite different, but just as opportune, takes on the task of 
destroying those of the second order? No, we must find the same explanation 
for both, and then everything leads us to believe that this explanation will 
also apply to higher-order terms, and that the mutual destruction of these 
terms will be rigorous and absolute."

Henri Poincaré, "Science and Hypothesis", (1902).

When I asked him how he had learned of the Michelson-Morley 
experiment, he told me that he had become aware of it through the writings 
of H.A. Lorentz, but only after 1905 had it come to his attention![S.'s italics] 
"Otherwise", he said, "I would have mentioned it in my paper." He continued 
to say that experimental results which had influenced him most were the 
observations on stellar aberration and Fizeau's measurements on the speed of 
light in moving water. "They were enough," he said.'

R.S. Shankland, "Conversations with A. Einstein", (4 Feb.1950).

My presentation aims to follow, step by step, albeit in summary form, the 
long road that led 19th-century physicists from an approach to optics with 
the ether playing an essential role as an absolute reference point to a 
relativistic theory in which the ether no longer plays a kinematic role.
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1. From mechanical ether to electromagnetic ether(1)

The early 19th century saw a rapid transition from the corpuscular theory 
of light proposed by Newton (1675) to a wave theory proposed by Huygens 
(1690). In 1801, Th. Young (1773-1829) provided the first convincing 
evidence of this, notably by showing that adding light to light can cause the 
absence of light (interference).

At the time, a wave theory could only be a mechanical theory. By 
accepting this theory, we also admit the existence of a universal medium, 
present in the best vacuums (notably the interstellar void) as well as in all 
transparent, heavy bodies, whose vibrations we perceive as light. Augustin 
Fresnel (1788-1827) championed this idea. In an impressive series of works 
from 1815 to his death, he established so m a n y  results that the wave 
theory was later considered definitively proven. After Fresnel, physicists 
believed they could assert that light was merely a certain mode of vibration 
of a universal fluid: the ether. This reduced the task of optics to studying the 
physical properties of this fluid.

However, this study was to reveal some very strange properties, such as 
the exclusively transverse vibration of the ether, as indicated by the 
polarization of light. It also raised important questions about the relationship 
between aether and heavy matter:

- was the ether of the vacuum exactly the same as the ether of 
transparent bodies?

- do dispersive phenomena indicate a diversification of t h e  ether in 
transparent bodies, depending on the frequency of vibrations?

- did transparent moving bodies drag the ether along with them?
It is, of course, the latter question that will be examined in today's talk, 

since it was of crucial importance for the conceptual change that took place 
at the beginning of the 20th century: the birth of special relativity.

(1) For the preparation of this first paragraph, I made extensive use of E.T. Whittaker: "A 
History of Aether and Electricity", [Wh-51].
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When, around 1865, the progress of electricity and magnetism was 
masterfully synthesized by J.C. Maxwell (1813-1879), it became clear that 
the ether of optics could be identified with that of electromagnetism (Faraday 
ether). Maxwell (1813-1879), it became clear that the ether of optics and the 
ether of electromagnetism (Faraday ether) could be identified. This solved 
certain problems, such as that of exclusively transverse polarization. Others 
arose, such as deciding whether Fresnel's polarization vector corresponded to 
electric or magnetic vibration. Theories diversified on the basis of these 
questions, and the problem of ether entrainment in the motion of matter 
reappeared as one of the distinguishing elements between these theories.

Fresnel had already solved the problem of ether entrainment as part of his 
mechanical theory of optics, proposing a partial entrainment solution as early 
as 1822:

- when a transparent body of refractive index n has a velocity v relative 
to the immobile ether, the ether contained in this body is partially 
entrained in this movement, in proportion:

1
α = 1 - 

n 2
; (1)

- Consequently, the velocities of the material body in the ether (v) and 
of light in the material body when at rest in the ether (c/n, c being the 
speed of light in a vacuum and n being the refractive index of the 
body(2) ) only partially add up. For a propagation of light parallel to 
the speed of the material body, we thus obtain:

V = c ± (1 - 1 
)v (2)

n n 2

Fresnel's theoretical reasoning is presented in Appendix 1 (1a). Here, the 
ether is considered a genuine fluid with mechanical properties. In contrast, I 
also present in this Appendix the

(2) This of course refers to the wave theory of light. The speed would be nc in t h e  case of a 
corpuscular theory. The question was settled experimentally by Foucault and Fizeau in 1850: 
light travels faster in air than in water and, consequently, light propagation is wave-like.
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Lorentz's reasoning (1886) where the electromagnetic ether, which has lost 
its mechanical properties and is perpetually at rest, appears to be entrained à 
la Fresnel (1b). I also present (1c) the purely kinematic reasoning of von 
Laue [La-07] where, without ether, a pseudo-drive simply results from 
Einstein's relativistic law of velocity composition.

In the second half of the 19th century, Fresnel's result was verified quite 
satisfactorily by various experiments, which we will now review:

- Fizeau experiment (1851). A monochromatic beam is split in two by 
a semi-transparent mirror m, and these two beams travel along the 
same path but in opposite directions. Part of this path takes place in a 
stream of water, which is assumed to partially entrain its ether 
(Fig.1).

Fig. 1: Schematic diagram of the Fizeau 
experiment; m: semi-transparent mirror, 
M: mirror(s).
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The bangs are due to the phase difference Δφ between the two light paths 
1 and 2, corresponding to the difference in the travel times of these paths 
when the  aether is entrained by the water current: Δφ = 2u ν Δt, where ν is 
the frequency of light. For the direction of the water current shown in the 
figure, we have:

⎡ ]⎮ ⎮Δt = t - t = 2 L  1  - 1  = -4 L α n2 β + O(β2 ) (3)
1 2 ⎮ c⎮

⎣ 
n

+ α 
v

c ⎮
- α v ⎮

n ⎦
where: 2L is the path length of light in water, n is the refractive index of 
water, v is the current velocity (β = v/c) and α is the ether entrainment 
coefficient. To preserve only the effect of ether entrainment by the current, 
we observe the displacement of the bangs when the direction of the current is 
reversed. The α coefficient is thus measured; the experimental result is 
compatible with the value predicted by Fresnel.

- Hoek experiment (1868). A monochromatic beam is split in two by a 
semi-transparent mirror m, and the two beams travel along the same 
path but in opposite directions. Part of the path is through water (or 
quartz)(Fig.2). As the apparatus is driven by the movement of the 
Earth in the ether, we hope to demonstrate the partial ether drive of 
the water (or quartz) from a displacement of the interference bangs 
when the whole apparatus is rotated 180º around m.

c
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Fig. 2: Schematic diagram of Hoek's experiment.

The experiment shows no displacement of the bangs, thus confirming 
the value of the entrainment coefficient predicted by Fresnel! And indeed:

- as the device is driven by the Earth at speed v, light propagates 
through it at speed c ± v in the empty part, and at speed (c/n)
± (α -1)v in t h e  part containing water (or quartz);

- if we disregard the travel time in identical sections for both beams (of 
no interest), we have:

beam 1: t1
L

= c + (α - 
1) v

L+
c + v , (4)

beam 2: t2

n

L
= c - (α -1) v

L+
c - 
v

, (5)

n

i.e. a difference in journey time equal to:
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n2 ⎡ ] 2Δt = t L- t = 2 1β α -1 + +O (β ) ; (6)
2 1 c ⎮⎣ n2 ⎮⎦

this difference is effectively zero (to first order in β) if a α the value 
proposed by Fresnel.

- Airy experiment (1871). The aim of this experiment is to 
demonstrate the partial entrainment of the aether by the Earth's 
motion, by observing a difference in the angle of astronomical 
aberration, depending on whether the telescope is empty or full of 
water. A word of explanation about aberration is useful. We know 
that it's the opening angle of a small apparent annual circular 
motion of the so-called fixed stars, around a mean position. This 
apparent motion is easily understood by the following velocity 
composition diagram (Fig.3):

Fig. 3: Velocity composition diagram for aberration.
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- Let's imagine an observer O observing the fixed star E, and let's 
carry the vector OE of length c, the speed of light, in the direction 
from O to E. This is the speed of light;

- if the Sun is moving at speed s relative to this star, an observer at 
rest relative to the Sun will see the star in the OEm direction;

- as the Earth itself performs an annual revolution around the Sun, the 
image is still displaced at each instant by the vector t of the Earth's 
instantaneous speed relative to the Sun; the terrestrial observer 
therefore sees the star in the direction OE', which annually describes 
a small cone around the "mean" direction OEm;

- the angle of aberration is the angle ε of aperture of this cone.

To estimate the angle ε, we assume that the relative speeds of the celestial 
bodies are very small compared to the speed of light (this is of course the 
case for the Earth/Sun relative speed, t ≅30 km/s, and we assume the same 
for the Sun/star relative speed, s << c). Under these conditions, we have: OE 
≅ OEm ≅ OE' , and ε ≅ t/c ≅ 10-4 . If we now use a telescope full of water 
to observe the star, the angle measured is obviously the angle after refraction 
in the telescope , from which we reconstruct the angle of incident aberration 
by Descartes' law (for such small angles, i = n r); but this angle of refraction 
itself corresponds to an aberration coefficient determined by new velocities: 
c/n instead of c , and (1- α) t instead of t, to account for the partial 
entrainment of the ether by the water in the terrestrial telescope. This gives 
us a new value f o r  the angle of aberration:

ε' = n 
(1 - α)t = n2 (1- α) ε. (7)
(c/ n)

The experiment gives ε ' ≈ ε, which shows that the entrainment 
coefficient has α a value very close to that proposed by Fresnel.

These experiments have given Fresnel's entrainment coefficient (often 
called Fizeau's coefficient, because of its first experimental determination) 
the status of an experimental truth that we have to live with anyway. In the 
remainder of this talk, I'll show how it conditioned the long march towards 
relativity, following the efforts of two of the world's leading physicists.
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major participants in this collective effort:

- H.A. Lorentz (1853-1928), Doctor of Physics in 1875, with a thesis 
on a microscopic dynamic theory of the reflection and refraction of 
light.(3)

- J.H. Poincaré (1854-1912), Polytechnicien and Doctor of 
Mathematics in 1875, with a thesis on partial differential 
equations(4) .

2. Lorentz's electrodynamics, from 1875 to 1904.

The central idea of Lorentz's theory is that matter is ultimately nothing 
more than an empty medium (or, more accurately, ether at absolute rest) in 
which electrified particles, called "ions" and later "electrons", move, creating 
and being subjected to electromagnetic fields(5) Lorentz can thus provide a 
qualitative and often even quantitative dynamic explanation of most 
phenomena concerning the interaction of matter and light for matter 
considered "at rest" in the ether: emission, absorption, refractive index, 
dispersion, light scattering, .. etc.(6) .

Lorentz's model of a perpetually quiescent aether seems likely to conflict 
with Fresnel's partially entrained aether. Lorentz therefore sought to justify 
the existence of an "apparent" Fresnel entrainment. In 1886, he succeeded in 
justifying the Fresnel coefficient within the framework of his model; he even 
improved the Fresnel formula by introducing a  dispersion correction due to 
the Doppler effect:

1
α = 1 - 

n 2
1 dn

- n dλ ; (8)

this Doppler correction will be demonstrated experimentally by

(3) "Over der terugkaatsing en breking van het licht", Universiteit Leiden.
(4) " On the integration of partial differential equations with any number of unknowns", University of 
Paris.
(5) The basic formulas of Maxwell's and Lorentz's theories are given in Appendix 2.
(6) A notable exception is, of course, the photoelectric effect, which requires t h e  
introduction of Planck's quantum of action (Einstein 1905).
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Zeeman in 1911. Lorentz's reasoning is presented in Appendix 1, following 
Fresnel's (1b, 1d).

Lorentz thus arrives at an important conclusion: it seems that the 
appearance of a drive, given by the Fresnel coefficient, makes it impossible 
to demonstrate the motion of material bodies in relation to the ether, at least 
to first order in the velocity ratio β = v/c. We would therefore have to turn to 
experiments demonstrating

2
effects of order β . This is precisely the case with A. Michelson
(1881), which we will now consider (Fig.4).

A monochromatic beam is split in two by a semi-transparent mirror m, 
and these two beams travel back and forth along two different paths of equal 
length L, one (//) parallel to the movement of the earth in the ether, the other 
( ⊥ ) perpendicular to this movement. We hope to demonstrate the 
movement of the apparatus in the ether by the displacement of the 
interference bangs when the whole apparatus is rotated 90º around m.
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c 1 - β 2

⎮

Fig.4: Diagram of the Michelson experiment.

We do have journey times:

⎡ 1
t// = L⎮ +

1 ] = 2 
L 1

, (9)2⎣ c - v c + v⎦ c 1- β

t⊥ = = 2 
L 1

, (10)

i.e. a difference in travel time:

2
c

L2 + (v t )2
⊥
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⎛ ⎠

L ⎛ 1 1 ⎞ L 2 4

Δt = t// - t⊥ = 
2

⎮
c ⎮1- β 2

 ⎮ = β
1- β2 ⎮ c

+ O(β ) . (11)

Michelson's 1881 experiment showed no displacement of the bangs. 
Michelson concludes that the ether is totally entrained, in accordance with 
Stokes' theory, and in contradiction with Fresnel's theory (ether partially 
entrained), and also with Lorentz's alternative theory (ether not entrained + 
dynamic effect giving the appearance of partial entrainment). Lorentz reacted 
only to point out a minor error in his reasoning, which, by reducing 
Michelson's expected effect by half(7) , rendered the experiment inconclusive 
because it was at the limit of experimental error. He therefore maintained his 
view of an untrained ether. But a few years later, the experiment having 
become much more precise thanks to a considerable lengthening of the light 
paths (A. Michelson and E. Morley, 1887), and the experimental result 
remaining negative, Lorentz had to find a solution. He came up with the 
astonishing proposal of a contraction of the longitudinal arm caused by the 
ether wind(8) ! In fact, the ether wind would cause a contraction in the 
direction of motion of all material bodies, making the arm contraction 
undetectable by direct measurement (since all bodies are affected in the same 
way). The contraction of the arm can only be demonstrated indirectly, by the 
negative result of Michelson and Morley's optical experiment. The ad hoc 
contraction must then be :

1
δL = L⊥ - L// ≈ 2 

L β2 . (12)

This is a typical example of interpreting an experimental result for the sole 
purpose of saving a theory.

In fact, Lorentz is becoming aware of the need to change something about his

(7) Michelson had not taken into account the displacement of the equipment during the outward 
journey.
return of light on the perpendicular arm, giving t

⊥

β2 .

= 2 L/c and therefore Δt = 2 (L/c)

(8) The same proposition was made simultaneously and quite independently by G.F. 
FitzGerald (1892).

-
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electrodynamics. In an important 1895 paper entitled "Versuch einer Theorie 
der elektrischen und optischen Erscheinungen in bewegten Körpern" [Lo-
95], he introduced two concepts which were to prove essential for t h e  
subsequent history of the birth of special relativity:

- local time:
v x 

t' = t - c2
(13)

2
to ensure Dalembertian invariance (to terms of order β
a Galilean transformation of velocity v along x ;

after

- the corresponding states, i.e., an ad-hoc transformation of the electric 
and magnetic fields so as to ensure the identity of electro-optical phenomena 
(always within terms of order β2 ) for bodies moving in the ether.

If necessary, the theory is completed by Lorentz-FitzGerald contraction 
corrections. This ensures that the Earth's motion in the ether cannot be 
demonstrated up to second order.

These early Lorentz transformations and the modifications introduced in 
1904 are described in Appendix 3.

The year 1896 saw the triumph of Lorentz's microscopic 
electrodynamics, with his calculation of the Zeeman effect and Zeeman's 
remarkable experimental verification of details predicted by the theory (line 
polarization under different observational circumstances). Remember that 
this is a "classical" electrodynamics approach based on the perturbation of 
atomic electron motion by a constant, homogeneous magnetic field. The 
theory contains only one parameter, the ratio e/m of charge to electron 
mass(9) , and Zeeman's experimental work actually measured this ratio (in 
magnitude and sign) a year before J.J. Thomson's determination (Cf. [Lo-
02], [Ro-65]). Lorentz and Zeeman

(9) I t  w a s  an extraordinary stroke of luck that the first Zeeman observations concerned 
"normal" Zeeman lines, for which the action quantum h disappears from quantum calculations, 
allowing a classical approach. Subsequently, Lorentz tried in vain to understand the 
"anomalous" Zeeman effect within the framework of his model. The "anomalous" Zeeman 
effect only became comprehensible after the introduction of the electron' s spin and magnetic 
moment (Uhlenbeck and Goudsmit, 1925).
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would see their work rewarded with the 1902 Nobel Prize in Physics.

Following Poincaré's criticisms and Larmor's work, around 1900 Lorentz 
gave "the little push" needed to obtain the covariance of electro-optical 
phenomena, including terms in β2 . Finally, in 1904, he published 
"Electromagnetic phenomena in a system moving with any velocity less than 
that of light" [Lo-04], which can be considered the crowning achievement of 
his work on the electrodynamics of moving bodies. It includes (see Appendix 
3):

- the correct Lorentz transformation;

- the corresponding state theorem for all orders in v/c;

- his formulation of electron dynamics, in which the electron, whose 
mass would be of purely electromagnetic origin, is deformed by its 
motion in the ether (Lorentz-FitzGerald contraction). Lorentz's 
inertia of the electron is manifested by two "masses"(10) varying 
differently with speed:

- transverse mass: m⊥

- longitudinal mass: m//

= m0

(1 - β ) 
21/2

= m0

(1 - β ) 
23/2

, (14)

(15)

These results were confirmed t h e  following year by the relativistic 
dynamics of the electron founded by H. Poincaré.

To conclude this brief overview of Lorentz's work, we can state that:

- Lorentzian electrodynamics lies at the very heart of our modern 
relativistic and quantum concepts. It is the (classical) prototype of 
a microscopic approach to matter-light interaction phenomena, to 
be succeeded by quantum electrodynamics (see, for example, 
Heitler's book,

(10) To avoid confusion with our modern (relativistic) ideas, let's remember that mass is 
here the coefficient of acceleration (i.e. the second derivative of position with respect to time) 
in an equation of motion whose second member is the Lorentz force.
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[He-54]). It revealed the need to correct the Galilean transformation 
formulas, and even, after much trial and error, to obtain a true 
relativistic covariance.

- however, Lorentz cannot be considered the first of the "relativists". 
Not only because his thinking rests firmly on a conception of the 
ether as a privileged medium, but above all, because his basic 
transformation remains Galileo's transformation, which he then 
arranges with his theorem of corresponding states. In so doing, this 
theorem comes back to the old idea of "saving appearances". Once 
appearances had been saved, Lorentz did not bother to reconsider 
the role of the ether.

This revision of the ether's role was made by Poincaré and Einstein, each 
in his own way:

- Poincaré retained the idea of the existence of an ether as an active 
medium, the seat of electromagnetic phenomena. But he discovered 
the group structure of Lorentz transformations and skilfully used it 
to reduce the ether to being kinematically just one of an infinite 
number of equivalent inertial reference frames. In this way, he 
eliminates the ether "de facto", removing any possibility of studying 
its specific properties through electro-optical phenomena [Po-05], 
[Po-06].

- Einstein, much more radical, eliminates the ether "de jure" by 
constructing relativistic kinematics without any reference to 
absolute space [Ei-05].

3. J. H. Poincaré physicist.

Henri Poincaré is without doubt one of the greatest mathematicians of the 
late 19th century. His immense mathematical output covers all the classical 
fields of mathematics: arithmetic, geometry, algebra, analysis, differential 
and partial differential equations, analysis situs (topology). Importantly, 
Poincaré was one of the founding masters of continuous group theory (1884 -
1901), and between 1899 and 1901, he devoted two large memoirs to the 
general exposition of this theory. Poincaré was also a great mechanic: 
analytical mechanics,
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continuum mechanics, celestial mechanics (King of Sweden Prize for his 
revolutionary approach to the 3-body problem in 1889). All these 
mathematical tools would be of great importance in his approach to the 
principle of relativity.

We often forget these days that Poincaré was also a great physicist. He is 
the founding father of mathematical physics, which aims to put all the rigor 
of mathematical reasoning at the service of physics. If we refer to the 
corresponding part of the analysis of his scientific work, which he wrote in 
1901, we find for the period 1887-1901 (Cf. [Po-01]):

- 18 dissertations (1887-1892) on differential equations in 
mathematical physics;

- 9 memoirs (1890-1894) on Hertzian waves;

- 36 memoirs (1889-1901) on the criticism of physical theories;

- numerous (printed) lectures on mathematical physics, often 
containing a critical review of current theories (Cf. in particular, his 
"Théorie mathématique de la lumière" of 1889, and his "Électricité 
et Optique" of 1890, which presents and discusses the theories of 
electromagnetism and electro-optics, according to Maxwell's 
"successors").

In 1895, Poincaré published under the general title "À propos de la théorie de
M. Larmor", a series of four articles (published between April and November 
1895 in L'Éclairage électrique), 57 pages in all [Po-95]. These are reflections 
(and calculations) on the theories of electro-optics, i.e., on the adaptation of 
the "mechanical" theories of optics by Fresnel, Neumann and Mac Cullagh, 
to a "Maxwellian" vision by Larmor, Helmholtz, Lorentz, J.-J. Thomson, and 
Hertz. Poincaré proposes three criteria for these attempts a t  adaptation to 
constitute an acceptable theory. At the very least, they must:

1) to account for Fizeau's drive coefficient;
2) guarantee the conservation of electricity and magnetism;
3) guarantee the validity of the principle: action = reaction.
He notes that none of the proposed theories satisfies all three criteria 
simultaneously: for example, Hertz's theory satisfies criteria 2) and 3).
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but not the first; Lorentz's theory satisfies criteria 1) and 2) but not the third; 
... etc. And Poincaré states his "provisional conclusions":

"(...). We must therefore give up trying to develop a perfectly satisfactory 
theory and provisionally stick to the least defective of all, which appears to 
be Lorentz's (...). It seems to me very difficult to admit that the principle of 
reaction is violated, even in appearance, and that it is no longer true if we 
consider only the actions undergone by weightable matter and if we leave 
aside the reaction of this matter on the ether. At some point, therefore, we 
will have to modify our ideas in some important respect, and break the 
framework into which we seek to fit both optical and electrical phenomena. 
But even if we confine ourselves to optical phenomena proper, what we have 
said so far to explain the partial entrainment of waves is not satisfactory. 
Experience has revealed a host of facts which can be summed up in the 
following formula: it is impossible to make manifest the absolute motion of 
matter, or better still the relative motion of matter in relation to the ether; all 
that can be demonstrated is the motion of weightable matter in relation to 
weightable matter...(...)."

From then on, Poincaré followed Lorentz's work very closely. In an 
article entitled "La théorie de Lorentz et le principe de réaction" (Lorentz's 
theory and the principle of reaction), published in 1900 in a tribute to the 
twenty-fifth anniversary of Lorentz's thesis [Po-00], he did not hesitate to 
return to the difficulty pointed out and proposed a solution: if we consider 
electromagnetic energy as a fictitious fluid endowed with inertia(11) , there is 
conservation of momentum in emission and absorption, at least to first order 
in β(12) . But the compensation is not simple:

"... For compensation to take place, phenomena must be related, not to 
true time t, but to a certain local time t' defined as follows (...).", and 
Poincaré explains that "local Lorentz time" (formula 13) corresponds to the 
synchronization of clocks at a distance by

(11) In our current notation, if we denote the electric and magnetic fields of the 

electromagnetic wave by E and H and the Maxwellian energy density by ρ: ρ = (
E2+H2

)/8u , 
then the inertial mass density proposed by Poincaré is μ =

 ρ/c2
.

(12) But not to higher orders, "... unless we make a certain complementary hypothesis that I 
won't discuss for the moment." (this refers to Lorentz's "nudges" and in particular to the 
Lorentz-FitzGerald contraction).
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the exchange of light signals, under the illusion that the speed of light is the 
same in both directions, irrespective of movement relative to the ether. In 
fact, he invented the idea of synchronizing the clocks of distant observers by 
exchanging light signals(13) . Poincaré doesn't go into detail about how this 
was achieved, but it's easy to reconstruct his reasoning. I'll devote Appendix 
4 to this question of local Lorentz-Poincaré time.

Keeping a close eye on the evolution of Lorentz's ideas, Poincaré slowly 
moved towards a fundamental revision of the Galilean principle of relative 
motion, while maintaining the idea of the existence of an electro-optical 
ether. He spoke about this at the St. Louis Conference (USA, 1904), where 
he stated for the first time the "Principle of Relativity" [Po-04]: the laws of 
physical phenomena are the same for a fixed observer and for an observer 
driven in uniform translational motion (in other words,... relative to the 
ether). After the St-Louis Conference, he wrote to Lorentz(14) to point out 
that, in their last form, the Lorentz transformations form a group and that, if 
the second parameter f(15) of these transformations must depend only on the 
first (i.e. the relative velocity of the reference frames), this second parameter 
is necessarily equal to one. This letter contains explicitly, but without 
comment, the relativistic formula for the addition of velocities. Clearly, 
Poincaré was on the verge of creating a new dynamic based on the principle 
of relativity he had enunciated at the Saint-Louis Conference.

It may come as a surprise to some that the third major player in the 
creation of special relativity, Albert Einstein, has not been given a prominent 
place in this lecture, the only one whose name has gone down in history (at 
least, the history told to our students). This was because the talk was devoted 
to the long march towards new ideas, and Einstein, born in 1879, clearly had 
no opportunity to take part. Brought up to speed by the gigantic efforts of his 
predecessors, he easily climbed to the final summit, bringing with him the 
new idea of relativistic kinematics,

(13) The problem of setting remote clocks was already discussed by Poincaré in 1898, in an 
article entitled "La mesure du temps" [Po-98].
(14) Letter discovered fairly recently by Miller (Cf. Mi-81); the date is uncertain, but 
somewhere between autumn 1904 and spring 1905.
(15) This parameter is designated by the letter l by Lorentz and Poincaré; I write f to avoid 
typographical confusion with the number 1 in the calculations presented in the Appendices.
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while sherpas Lorentz and Poincaré (who reached the summit at the same 
time as Einstein) persisted in building an essentially dynamic approach. 
There has often been debate about the importance of the respective roles 
played by Lorentz, Poincaré and Einstein in the construction of special 
relativity. Most authors agree in attributing it to Einstein alone, with 
preparatory but not yet relativistic work by Lorentz and Poincaré (Cf. for 
example: [To-71], [Mi-81], [Pa-82]). For an alternative view, with a detailed 
comparison of Einstein's and Poincaré's relativistic constructions in 1905, see 
references [Pi-99] and [Re-02].

4- Appendices.

Appendix1-Fresnel-Fizeau drag coefficient. 1a) according to 

Fresnel (1822).

The basic idea was Young's: the refractive index reflects the 
"concentration" of ether in matter. Fresnel clarified the hypothesis by 
admitting that the density of ether is proportional to the square of the 
refractive index. If ρ0 and ρ1 are the ether densities, respectively in vacuum 
and in a transparent substance of index n, then we have:

ρ1 = ρ0 n2 . (16)

If the transparent body has a velocity v relative to the aether, Fresnel 
considers that only the excess aether is entrained, so that the aether's center 
of gravity moves at speed:

w =  ρ1 - ρ0 v =
ρ1

n2 -1
n 2

v (17)

This speed must be added to (or subtracted from) the speed c/n of light 
in the transparent body at rest:

c ⎛V =  ± ⎮1 - 1 ⎞
2 ⎮ v . (18)

n ⎛ n ⎠
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P = 
(

- 1)E = (n -1). [force exerted on the load unit].

H E

1b) according to Lorentz (1886).

Light propagation in a dielectric is described b y  Maxwell's equations 
(without charge or current):

div
→

D = 0 div
→

→
B = 0

→

rot
→ 
- 1 бD = 0

c бt
rot

→ 
+ 1 бB = 0 (19)

c бt

completed by the constituent relations:
→ →
B = H (magnetic permeability μ = 1) (20)

→ → → → 2D = εE = E + 4 uP (dielectric constant ε =n , n = refractive index)
(21)

Lorentz hypothesis:

- the constitutive relationship (21) is to be considered as follows:
→ →

4u ε 2 .

- if the dielectric is in motion, the force exerted on the charge unit is 
(Lorentz force):

→ → → → →
E → E' = E + v 

×
c

and the polarization should be replaced by:

H , (22)

→ → → → →
4uP = (ε - 1)E' = (n2 - 1) (E + v ×

c
H ). (23)

Let's consider a dielectric moving relative to the ether at speed v along 
the z axis, and let's study a plane wave propagating in this dielectric along 
the same z direction:

→
E = E

→
1x exp [i(kz - ω t)]. (24)
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By substituting this solution into Maxwell's equations, we can easily calculate 
the wave's propagation speed,

V = ω / k , (25)

and we find, according to the different cases and dynamic hypotheses:

- if n=1 (no medium polarization) : V = ± c , (26)

- if n>1 and the dielectric at rest in the ether: V = ± c/n , (27)

- if n>1 and the dielectric has a velocity v relative to the ether:
→ →

a) according to Maxwell : 4uP = (n2 - 1)E

⇒ V =± c + 1 
(1- 1 

)v + O(cβ2 ) ; (28)
n 2 n2

→ → → →
b) according to Lorentz: 4uP = (n2 - 1) (E + v × H )

c

⇒ V =± c + (1 - 1 
)v +O(cβ2 ) ; (29)

n n2

Note that this dynamic calculation leads to an "appearance" of ether 
entrainment. Polarization current" plays an essential role here, and the 
"relativistic" correction of the Lorentz force is required to obtain the 
"correct" Fizeau entrainment coefficient.

1c) according to von Laue (1907).

The Fresnel coefficient results from a simple application of the 
Einsteinian relativistic rule of velocity composition: that of light in the 
dielectric when the latter is considered at rest (c/n), and that of the moving 
dielectric (v):
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= 
ω1

V = ±c / n + v  c ⎛  1 
⎞ β2 ). (30)

(c / n)v =± 
1 ±

c 2

+ ⎮1 -
⎛ 2 ⎮v + O(c 

n ⎠

The ether has disappeared; speeds are those measured in the inertial 
laboratory where we work.

1d) dispersion correction (Lorentz 1886).

For Fresnel, this correction is non-existent; we would have to imagine 
that each frequency corresponds to a different density of ether.

For Lorentz, and also for von Laue, it's a Doppler correction that needs to 
be made when the refractive index is dispersive. Indeed, the frequency 
perceived by the observer ω0 differs from the frequency in the moving body ω1 

due t o  the Doppler effect:

⎛ v ⎞
ω0  ⎮1 ±  ⎮,

⎛ c ⎠
(31)

2
(exactly for Lorentz, t o  order β for von Laue). The result is that

the index used in the above formulas must be corrected:

n = n(ω ) = n(ω ⎛ dn 
⎞

ω - ω ) ; (32)

1 0 )+ ⎮ ⎮ (  1 0
⎛ dω ⎠

the correction is of order β and must therefore be made only on the first 
term c/n :

c c ω dn c 1 dn
 →  + v  =  - v  . (33)

n nn dω nn dλ

This is Lorentz's dispersive correction, verified by Zeeman in 1911.

Appendix 2- Maxwell's and Lorentz's theories.

Maxwell: a 4-field theory (electric field E, magnetic field H, electric 
displacement D and magnetic induction B), with

n
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e
i=1

given external electricity sources (electricity density ρ and current density 
j). The differential equations are supplemented by phenomenological 
constitutive equations between the fields.

- Maxwell's equations :
→ →

div D = 4 uρ, div B = 0, (34)
→

→ 1 бD 4 u →=
→→ 1 бB = 0, (35)

rot H -
c бt

j , rot E +
c c бt

- constitutive equations:
→
B = μ

→
H (magnetic permeability μ) (35a)

→ → → →
D = εE = E + 4 uP (dielectric constant ε) (35b)

Lorentz: this is electrodynamics with 2 microscopic fields (electric field 
e, magnetic field h) and charged particles. These particles participate in the 
sources (if necessary, known external sources can be added, as in Maxwell), 
but they are also dynamically subjected to a force F created by the fields. 
The constitutive equations are those of vacuum, i.e., with Lorentz units: ε0 = 1 
, μ0 = 1.

→ N → (36)
div e = 4 u ∑ ρi , div h = 0,

i=1

→ 1 б→
4 u N →

→
→ 1 бh

rot h - =
c бt

c ∑ ρ uii  rot e + c бt = 0,

→  ⎛→ ⎞
F = ρ ⎮e(i) + ui × h(i)⎮. (37)

i i ⎛ c ⎠

In formula (37) giving the Lorentz force exerted on the particle
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i, the notation e(i), h(i) represents the electric and magnetic fields a t  t h e  
location of particle i at the moment in question.

Lorentz's aim was to derive macroscopic properties f r o m  these 
microscopic equations.

Appendix 3 - The Lorentz transformation and corresponding states.

1) We go from the motionless aether to another frame of reference in 
uniform rectilinear motion (MRU) by a Galilean transformation:

(38)

t → tr = t ;

- speeds add up like Galileo's;
- fields are transformed scalarly, but the partial derivative w i t h  respect to 
time becomes the "material derivative" of continuous media:

б → б - v
 б 

. (39)
бt бt бx

2) A change in the kinematic variables and a change in the 
electromagnetic state are effected; this is what Lorentz calls "passing to the 
corresponding states".

Change in kinematic variables:

x' = fγ xr = fγ (x - vt),
y' = f yr = f y,
z' = f zr = f z,
t' = f tr /γ - fγ v xr / c =2 fγ (t - v x / c2 ),

(40)

- contact details:

x → xr = x - vt,
y → yr = y,
z → zr = z,
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with, in his 1895 work (Versuch ) :

f = 1 and γ = 1 , (41)

and in his final work of 1904:

2 -1/2
any f and γ = ( 1 - β ) . (42)

The transition from variables (x,y,z,t) to variables (x',y',z',t') is the actual 
Lorentz transformation when we choose (42) with f = 1. Note that, for 
Lorentz, this transformation results from a rather complex approach: the 
basic transformation remains the Galilean transformation, and we then "save 
appearances" by an ad hoc transformation that constitutes the kinematic part 
of the corresponding state theorem.

Lorentz uses a highly complex dynamic reasoning to show that, within 
the framework of his electron theory, where the parameter f depends only on 
the velocity v (principle of relative motion), then this parameter necessarily 
has the value 1. Poincaré wrote to him (late 1904 or early 1905?) to point out 
that this result results more simply from the requirement that the 
transformations (40) and (42), restricted to the single parameter v by the 
hypothesis f
= f(v), continue to form a group.

t' is a "local time" in the following sense: an observer A located in a
x-coordinate point

A
in the ether, but in motion because linked to the

MRU system, shifts its time by the indicated amount, whatever the event it is 
considering. As early as 1900, Poincaré showed that local Lorentz time was 
the natural result of adjusting the clocks in the MRU system, under the 
illusion that light propagates with the same speed in all directions (see 
Appendix 4).

Change of electromagnetic state :
For fields: (43)

E' = 1 
E E' = γ 

(E -β H ) E' = γ 
(E + β H )

x f 2 x y f 2 y z z f 2 z y
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H ' = 1 H H ' = γ (H + β E 
)

H ' = γ 
(H - β E )

x f 2 x y f 2 y z z f 2 z y

and for charge (ρ) and current (ρu) densities: (44)

ρ' = 1 ρ , u' = γ2 (u - v), u' = γ u 
,

u' = γ u .

γ f 3 x x y y z z

These corresponding states ensure, according to Lorentz, the identity of 
the description of electromagnetic phenomena in both systems (to the first 
order in β in the "Versuch ..." of 1895 and to all orders in β in the final 
work of 1904). In reality, there is still a small error in the transformation of 
charge and current densities. This point was eventually corrected by Poincaré 
[Po-05, Po-06] and Einstein [Ei-05], who were thus the first to correctly write 
down the transformation of Maxwell's dynamics.

Appendix 4- Local time according to Poincaré.

In his tribute to Lorentz published in 1900 [Po-00], Poincaré explains 
how the principle of relative motion (to first order in v/c) can be rescued in 
Lorentz's  1895 theory, thanks to certain term compensations, and writes the 
following sentence:

"For compensation to take place, phenomena must be related, not to true 
time t, but to a certain local time t' defined as follows. I suppose that 
observers placed at different points, set their watches by means of luminous 
signals; that they try to correct these signals for the time of transmission, but 
that ignoring the translational movement of which they are animated and 
believing consequently that the signals are transmitted equally fast in both 
directions, they limit themselves to crossing observations by sending a signal 
from A to B, then another from B to A. The local time t' is the time marked 
by the watches set in this way.

If then V = 1/ € K0 is the speed of light, and v is the translation of 
the earth, which I assume to be parallel to the positive x axis, we have:

t' = t - vx / V2 . "
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In 1904, at the St. Louis Conference, he used essentially the same 
formulation [Po-04], with the difference that the principle of relative motion 
was then saved at all orders in v/c by Lorentz's very recent work [Lo-04], 
which ad-hoc introduces the Lorentz-FitzGerald contraction into his 
transformations, so Poincaré presents this contraction as an additional 
hypothesis(16) . The local Lorentz time is then (see formulas 40 and 42):

t' = fγ (t - vx / c2 ), any f and γ = (1 - β )2−1/2 . (45) 

In his 1904 paper [Lo-04], Lorentz establishes (rather painfully)
that, in his theory of the electron, the scaling factor f that must be considered 
dependent on v (principle of relative motion) reduces to unity.

Poincaré left no calculations showing how he arrived at his interpretation 
of local Lorentz time. The first person to show explicitly by calculation the 
link between the times used by observers in relative motion was Einstein [Ei-
05]. He thus explained the method of setting clocks by exchanging light 
signals. In his presentation of local time, Poincaré insists on the need to cross 
signals, which Einstein does by using the instantaneous return to A (by 
reflection) of the signal received by B. This is indeed the simplest method for 
crossing signals, because we can then easily control the instants of sending 
and receiving, both in the moving frame of reference and in the ether. I used 
it in a study on the question of "Poincaré's third hypothesis" (Cf. ref. Re-00). 
But signals can just as easily be crossed without immediate reflection. So 
let's see how Poincaré must have reasoned.

In 1900, Poincaré came across the following formulas from Lorentz, 
which link a frame of reference at rest in the ether, where the "true time" of 
mechanics is used (frame of reference x, t), to another frame of reference in 
uniform motion at speed v relative to the first, where local time is used 
(frame of reference

(16) Some have severely criticized this "third hypothesis" of Poincaré's, without taking into 
account either the time when it was first formulated, or the simplifications that it is sometimes 
good to make in presentations aimed at a public not specialized in these questions (Cf. for 
example [Pa-82]). I believe I have done justice to these criticisms in my article [Re-00]. See 
also the rest of this Appendix.
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x', t')(17)

x' = x - v t, (46 a)

t' = t - vx / c2 . (46 b)

Formula 46a is clearly the Galilean formula of uniform translation, with 
the conventions of coinciding coordinate system origins at time zero and the 
use of the same units in both reference frames. Formula 46b defines the local 
Lorentz time, i.e. the time t'(x') required by an observer whose coordinate is 
x' in the moving reference frame, so that electro-optical phenomena appear 
to him as if he were at rest in the ether, at least to first order in v/c. Here, too, 
we apply the conventions of coincidence of origins and the same running of 
clocks.

In 1904, Lorentz introduced an ad-hoc factor into his formulas (see 
formulas 40 and 42), this time with the aim of achieving invariance of 
electro-optical phenomena at all orders in v/c. In Galilean formula 47a, it is 
clear that this factor corresponds to a change of length scale in the moving 
frame of reference: if a rigid bar of length L in the moving frame of 
reference appears contracted (or dilated) by a factor g in the frame of 
reference at rest, i.e. if its measurement there is gL, we must effectively write 
the Galilean transformation in the form:

x' = g−1 (x - vt). (47 a)

Now we need to understand how the process of synchronizing clocks by 
means of crossed optical signals will lead Poincaré to time.

-1
(46b) in 1900 and at local time (47b) with the same g factor in 1904:

t' = g−1 (t - vx / c2 ). (47 b)

(17) The other two space coordinates y and z are omitted here for simplicity of discussion. I'll 
come back to these coordinates later.
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Formulas 46 and 47 define coordinate changes (x, t) → (x', t') that are 
linear (corresponding to the homogeneity o f  space and time in the two 
reference frames), and homogeneous (thanks to the origin conventions). 
Formulas 46 can be considered as a special case of 47 when lengths are not 
modified by motion relative to the ether (g = 1). We therefore need to show 
how synchronization by cross-exchange of optical signals determines the 
coefficients a and b of the linear form:

t' = a t  + bx, (48)

and leads to answer 47b. Recall that the synchronization rule defined by 
Poincaré can be translated as follows:

- observers A and B are linked to the moving frame of reference, whose 
speed in the ether they do not know. A can be placed at the origin of the
coordinates and B at the point with x' coordinates

B
= L; distance AB is

is equal to L in the m o v i n g  frame of reference, and is equal to gL in the ether 
frame of reference.

- when A's watch indicates time t'.
A

= 0, A sends a signal
to B, and asks B to adjust his watch to receive the signal.
over time t'

B
= L/c; (having no idea of its movement relative to

the ether, A believes in good faith that the speed of light in his frame of 
reference is c);

- but as a precaution, the two observers are going to carry out a check
by the reverse operation: when B's watch indicates the time t'

B
= t' , B

0
sends an optical signal to A, and invites A to check that his watch
indicates time t'.

A
= t'

0
+ L/c on signal reception. Watches

are then synchronized, as if the inertial frame of reference were at rest in the 
ether.

We'll see that these two operations define two equations that allow us to 
calculate the coefficients a and b of transformation 48. The result is the 
transition from an a priori synchronized chronology in the ether (true time t) 
to a synchronized chronology in the frame of reference in motion relative to 
the ether, under the illusion that this system is at rest, since the speed of light 
is the same in both directions.
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The signal from A reaches B after a path of length D , estimated at
1

in the ether frame of reference, is equal to the distance AB (i.e., gL)
increased by the displacement of the moving frame of reference vt , where t is the 
time taken

1 1
by light to make this journey:

D1 = gL + vt1 = ct1 . (49)

This gives us the instant t :
1

gL
t1 =

c - 
v

, (50)

and the x (t ) coordinate of B when it receives the signal from A (in fact, x (t ) =
B 1B 1

D ):
1

cx (t ) = gL . (51)
B1   c - v

B's watch then marks time t'.
1

= L/c. By replacing these
given i n  equation 48, we obtain an initial relationship f o r  determining the 
coefficients a and b:

L gL = (a + b c) . (52)
c c - v

For the crossed signal, we need to proceed in the same way. At local time t'
0

of B corresponds to the true ether time t0 given by (48):

t'0 = a t0 + b (gL + v t0 ). (53)

The light now travels against the direction of motion of the moving frame of 
reference, and the travel time in real time is (see equation 50):

t2 - t 0
gL=

c + v . (54)
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At true time t
2

of the arrival of the signal at A, it has the coordinate vt
2

in the ether frame of reference, and his watch must mark the local time 
t'.

0
. So we have a second equation:

+ L/c

t' + L = a t + b v t , (55)
0 c 2 2

which becomes by replacement according to (53) and (54):

L gL = (a - b c) . (56)
c c + v

Equations 52 and 56 determine the coefficients a and b of the local 
synchronization time in the moving frame of reference:

t' = 1 
(t - vx / c2 ). (57)

g

Equations 46, 47 and 57 show that Poincaré was right when, in 1900 and 
without the contraction hypothesis (i.e. with g = 1), he associated local time 
(46b) with Galileo's transformation of space (46a). And he was right again 
when, in 1904 and with t h e  contraction hypothesis, he

-12 2 -1/2
introduced the same factor g = γ = (1- v /c ) in local time 47b and
in the Lorentz 47a space transformation. But this demonstration also shows 
that, at this stage, the contraction parameter g is arbitrary. We therefore need 
to introduce a new element to remove this ambiguity.

We know that the ambiguity can be removed when we also consider the 
transformation of y and z coordinates, perpendicular to motion. Einstein [Ei-
05] shows that these coordinates are transformed by a factor f(v)(18) and that 

what we call g is equal to ϕ(v)(
1-β2

)
-1/2 

.
Using the relativistic principle, which allows the roles of the two frames of 
reference to be reversed, Einstein demonstrated that ϕ(v) ϕ(-v) = 1. He then 
proceeded to synchronize the optical signals with immediate feedback for 
two observers, A and B, located respectively at the origin and at a point of 
reference.

(18) In fact, this is Lorentz's factor f (eq. 42); in the Einsteinian approach, it can only depend 
on v by virtue of the principle of relative motion.



From Fresnel's ether to special relativity 53

coordinate y' = L on the moving axis y'. It then follows, by symmetry, that 
ϕ(v) is necessarily an even function of v. Hence, ϕ(v) = 1. Hence, ϕ(v) = 1. 
Clearly, consideration of the other two coordinates and the relativistic 
principle of reversing the role of the two reference frames (there's no ether in 
Einstein 1905!) demonstrates that the contraction factor of

2 1/2
Lorentz g can only be (1-β ) .

The ambiguity is also removed by Poincaré [Po-05], who notes that 
Lorentz transformations (eqs. 40 and 42) form a group(19) , of which simple 
transformations (along x and t only) on the one hand, and space rotations on 
the other, are subgroups (subgroup of boosts, and subgroup of rotations). 
Making skilful use of these subgroups, Poincaré demonstrated that Lorentz's 
factor f, when constrained to depend only on the relative velocity v (principle 
of relative motion!), is an even function of v, and ultimately necessarily has 
the value 1.

It is possible to come very close to this conclusion simply by considering 
the transformations according to x and t. If we impose that these 
transformations form a group(20) (boosts group), and that the contraction 
factor g depends only on the relative velocity of the reference frames, we 
obtain an important restriction on the explicit form of g. Let's show that if 
frame of reference (x' , t') is linked to the ether frame of reference by a 
velocity transformation v1, and if frame of reference (x'' , t'') is also
linked to the ether frame of reference by a velocity transformation v , then the

2
two moving reference frames are linked by a velocity transformation v3 . 
The calculation is a simple substitution in the formulas; it gives effectively:

x''(t', x') = g−1 ( x' - v t'), (53a)
3 3

t''(t', x') = g−1 (t' - v x' / c2 ), (58b)
3 3

with:

(19) Today referred to as L∏+ .
(20) This is tantamount to denying the ether any privileged kinematic role. Any observer bound to an 
inertial frame of reference can rightly believe himself to be at rest in the ether.
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1 2

g3
1

- the well-known rule of relativistic velocity composition:

v = v1 - v2
3 1 - (v v )/ c2

; (59)

- a composition law for the parameter g :

g = g2

1

1 -(v / c)2

, (60)
1 -(v1v2 )/ c2

which should lead to its value being set as a function of speed.
Thus, to satisfy the relativistic principle "à la Poincaré" (... everyone can, 

quite rightly, believe themselves to be at rest in the ether...), the contraction 
coefficient g must satisfy the equation with two independent variables x and 
y :

⎛ y - x ⎞ g(y) 1 - (x / c)2g 
⎮1 - x y / c2 ⎮ = 

g(x) 1 - x y/ c2
 . (61)

⎛ ⎠

For y = x , we naturally find g(0) = 1; then taking y = x + ε , where ε is 
infinitely small, and expanding equation 61 to first order in ε, we obtain the 
differential equation:

g'(x) = g (x)
g'(0) - x /c 2

, (62)
1 - (x /c)2

which contains the arbitrary parameter g'(0) . The solution corresponding to the 
initial condition g(0) = 1 is :

g(x) =
cg '(0) / 2

. (63)

We can see that the requirement that the transformations (x, t) form a 
group ("boosts" group) is not enough to completely determine the contraction 
factor g (v). We still need an additional "little push", even if this push reduces 
to a very weakened postulate: either that g(v) is an even function of v (as in 
Poincaré's letter to Lorentz; footnote 14), or even (even more weakly) that the 
parameter

1- (x / c)2 ⎡1 + x / c]
⎮⎣1 - x / c⎮⎦
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g'(0) is zero. In Poincaré's approach prior to his great 1905 paper, the 
Lorentz contraction factor therefore represents an independent postulate.
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