COMPLEX QUANTITIES AND THEIR USE IN
ELECTRICAL ENGINEERING.

i ——

BY CHAS. PROTEUS STEINMETZ,

I.—IxTRODUCTION.

In the following, I shall outline a method of calculating alter-
nate current phenomena, which, I believe, differs from former
methods essentially in so far, as it allows us to represent the alter-
nate current, the sine-function of time, by a constant numerical
quantity, and thereby eliminates the independent variable *time”
altogether from the calculation of alternate current phenomena.

Herefrom results a considerable simplification of methods.
Where before we had to deal with periodic functions of an in-
dependent variable, time, we have now to add, subtract, ete.,
constant quantities—a matter of elementary algebra—while
problems like the discussion of circuits containing distributed
capacity, which before involved the integration of differential
equations containing zwo independent variables: “time” and
“ distance,” are now reduced to a differential equation with one
independent variable only, “ distance,” which can easily be in-
tegrated in its most general form.

Even the restriction to sine-waves, incident to this method, is
no limitation, since we can reconstruct in the usual way the com-
plex harmonic wave from its component sine-waves; though al-
most always the assumption of the alternate current as a true
sine-wave is warranted by practical experience, and only under
rather exceptional circumstances the higher harmonics become
noticeable.

In the graphical treatment of alternate current phenomena
different representations have been used. It is a remarkable
fact, however, that the simplest graphical representation of
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84 STEINMETZ ON COMPLEX QUANTITIES.

periodic functions, the common, well-known polar coordinates;
with #ime as angle or amplitude, and the instantancous values of
the function as radwi vectores, which has proved its usefulness
through centuries in other branches of science, and which is
known to every mechanical engineer from the Zeuner diagram
of valve motions of the steam engine, and should consequently
be known to every electrical engineer also, it is remarkable that
this polar diagram has been utterly neglected, and even where it
has been used, it has been misunderstood, and the sine-wave rep-
resented—instead of by ome circle—by two circles, whereby
the phase of the wave becomes indefinite,and hence the diagram

Fie. 1.

useless. In its place diagrams have been proposed, where re-
volving lines represent the instantaneous values by their projec-
tions upon a fixed line, etc., which diagrams evidently are not
able to give as plain and intelligible a conception of the varia-
tion of instantaneous values, a8 a curve with the instantaneous
values as radii, and the time as angle. It is easy to understand
then, that graphical calculations of alternate current phenomena
have found almost no entrance yet into the engineering practice.

In graphical representations of alternate currents, we shall
make use, therefore, of the Polar Coordinate System, repre-
senting the ¢ime by the angle ¢ as amplitude, counting from an
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initial radius 0 A chosen as zero time or starting point, in posi-
tive direction or counter-clockwise,* and representing the time of
one complete period by one complete revolution or 360° = 2 .

The instantaneous values of the periodic function are repre-
sented by the length of the radii vectores o B = #, correspond-
ing to the different angles ¢ or times 7, and every periodic
function is hereby represented by a closed curve (Fig. 1). Atany
time ¢, represented by angle or amplitude ¢, the instantaneous
value of the periodic function is cut out on the movable radius
by its intersection o B with the characteristic curve ¢ of the func-

8!

Fia. 2.

tion, and is positive, if in the direction of the radius, negative,
if in opposition.

The sinewave is represented by one circle (Fig. 2).

The diameter o ¢ of the circle, which represents the sine-wave,
is called the <nfensity of the sine-wave, and its amplitude,
A O B = @, is called the phase of the sine-wave.

The sine-wave is completely determined and characterized by
intensity and phase.

It is obvious, that the phase is of interest only as difference of
phase, where several waves of different phases are under con-
sideration.

" *This direction of rotation has been chosen as positive, since it is the direc-
tion of rotation of celestial bodies. :
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Where only the vntegral values of the sine-wave, and not its
instantaneous values are required, the characteristic circle ¢ of
the sine-wave can be dropped, and its diameter o c considered as
the representatation of the sine-wave in the polar-diagram, and
in this case we can go a step further, and instead of using the

macymum value of the wave as its representation, use the ¢ffect-
mazimum valus

%)

‘Where, however, the characteristic circle is drawn with the
effective value as diameter, the instantaneous values, when taken
from the diagram, have to be enlarged by 42,

we value, which in the sine wave is =

8¢

Fe. 8.

We see herefrom, that: ,

“In polar coordinates, the sine-wave 18 represented in in-
tensity and phase by a vector o c, and in combining or dis-
solving sine-wawes, they are to be combined or dissolved by the
parallelogram or polygon of sinewaves.”

For the purpose of calculation, the sine-wave is represented
by two constants: C, @, intensity and phase.

In this case the combination of sine-waves by the Law of
Parallelogram, involves the use of trigonometric functions.

The sine-wave can be represented also by its rectangular co-
ordinates, a and b (Fig. 3), where:
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a= (Ccos @
b = Csn a

Here a and b are the two rectangular components of the sine-
wave.

This representation of the sine-waves by their rectangular
components @ and b is very useful in so far as it avoids the use of
trigonometric functions. To combine sine-waves, we have sim-
ply to add or subtract their rectangular components. For
instance, if @ and b are the rectangular components of one sine-
wave, ¢' and &' those of another, the resultant or combined sine-
wave has the rectangular components a 4 ¢' and b + 5.

To distinguish the horizontal and the vertical components of
sine-waves, 80 a8 not to mix them up in a calculation of any
greater length, we may mark the ones, for instance, the vertical
components, by a distinguishing index, as for instance, by the
addition of the letter j, and may thus represent the sine-wave by
the expression:

a+t+s0b
which means, that a is the horizontal, 5 the vertical component
of the sine-wave, and both are combined to the resultant wave:

C= & I¥
which has the phase:
tan @ = é-
a

Analogous, @ — j b means a sine-wave with & as horizontal,
and — b as vertical component, etc. _

For the first,j is nothing but a distinguishing index without
numerical meaning.

A wave, differing in phase from the wave a 4 j b by 180°, or
one-half period, is represented in polar coordinates by a vector
of opposite direction, hence denoted by the algebraic expression :
—a—jb.

This means:

“ Multiplying the algebraic expression a 4 j b of the sine-
wave by — 1, means reversing the wave, or rotating it by 180° =
one-half period.

A wave of equal strength, but lagging 90° = one-quarter
period behind @ + j b, has the horizontal component — 3, and
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the vertical component a, hence is represented algebraically by
the symbol:
Jja—0b.
Multiplying, however: a 4 7 b by 7, we get:
Ja+7%
hence, if we define the—until now meaningless—symbol j so, as
to say, that: :
F=—1
hence: ’ J@e4+40) =j5a—0b,
we have:

“ Multipling the algebraic expression a -+ j b of the sine-wave
by j, means rotating the wave by 90°, or one-quarter period, that
18, retarding the wave by one-quarter period.”

In the same way:

“ Multiplying by — j, means advancing the wave by one-
quarter period.”’

J# = — 1 means:

j = ¢ 1, that is:
“j 18 the imaginary unit, and the sine-wave s represented by a
complex vmaginary quantity @ + 7 5.”

Herefrom we get the result :

“ In the polar diagram of time, the sine-wave 13 represented
wn intensity as well as phase by one complex quantity :

a+ib,
where a is the horizontal, b the vertical component of the wave,
the intensity <s given by: C = ¥a* + B

and the phase by : tan & = Z_
and it 18 a = Ccos @
b = Csin @

hence the wave: a 4 j b can also be expressed by :
C (cos & + 7 sin @).”

Since we have seen that sine-waves are combined by adding
their rectangular components, we have :

“ Sine-waves are combined by adding their complex algebraic
expressions.”’

For instance, the sine-waves:

a-+47b

and a4
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combined give the wave:

A+jB=(a+a)+50+b)

As seen, the combination of sine-waves is reduced hereby to
the elementary algebra of complex quantities.

If C =¢ -+ jcis asine-wave of alternate current, and » is
the resistance, the &. M. F. consumed by the resistance is in phase
with the current, and equal to current times resistance, hence
it is

rC=rec+jreo.

If L is the “coefficient of self-induction,” ors =27z N L
the “inductive resistance” or ‘ ohmic inductance,” which in
the following shall be called the “inductance,”’ the . M. F. pro-
duced by the inductance (counter E. M. F. of self-induction) is
equal to current times inductance, and lags 90° behind the cur-
rent, hence it is represented by the algebraic expression :

JeC
and the E. M. F. required to overcome the inductance is conse-
quently :
—jsC
that is, 90° ahead of the current (or, in the usual expression, the
current lags 90° behind the . M. Fr.).

Hence, the . M. F. required to overcome the resistance » and
the inductance ¢ is :

(r—j980C
that is:

“I = r—j 818 the expression of the impedance, in complex
gquantities, where r = resistance, 8 = 2 1 N L = inductance.”

Hence, if C = ¢ 4 7 ¢' is the current, the . M. r. required to
overcome the impedance / = » — j s is:

E=71C=(r—j8)(c+ o), hence,since # = —1:

=@rect+sc)+j(rct—so)
or,if £ = e+ jeé'is the impressed . M. r,and 7 = » — 5 2 is
the impedance, the current flowing through the circuit is:

o E_etjé
— I~ r—7s

or, multiplying numerator and denominator by (» + 5 8), to elim-
inate the imaginary from the denominator :

et+geN(r+j8 er—eas .eér+tes
C = - = PFF e T Exe
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If K is the capacity of a condenser, connected in series into
a circuit of current C = ¢ 4 j ¢!, the E. M. F. impressed upon

. . 4 o
the .terminals of the condenser is £ = 3= & I dnd lags 90

behind the current, hence represented by :
Y

E=j27tNK=jk0’

where k = 2—;%770@ be called the “ capacity inductance”

or simply “snductance” of the condenser. Capacity induc-
tance is of opposite sign to magnetic inductance.

That means:

“If r = resistance,

L = coefficient of self<induction, hence s = 2z N L = in-
ductance, :

. 1 .\ s |
K = capacity, hence k = YA NE™ capacity inductance,

I=1r —j (s — k) ia the impedance of the circuit, and Ohm’s
law 18 re-established :

E=1C¢C,

. /_é‘
_I,

F

I=7p

in @ more general form, however, giving not only the intensity,
but alwo the phase of the sine-wawes, by their expression in com-
plex quantities.”

In the following we shall outline the application of complex
quantities to various problems of alternate and polyphase cur-
rents, and shall show that these complex quantities can be ope-
rated upon like ordinary algebraic numbers, so that for the solu-
tion of most of the problems of alternate and polyphase cur-
rents, elementary algebra is sufficient.

Algebraic operations with complex quantities :

Js=—1
a-+jb=c(cod -+ jsin @)
c= VEFH,

tankw = q
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Ifa+470=a+70,it mustbe: a = a', b = b
Addition and subtraction:
@e+s0)x@+jd)y=@xa)+50+8)
Maultiplication :
@478 @ +58) = (@a —b8) +5 (@b + b al).
Division :
a+jb (@+4+70)@—j8) aad+60  ,a'bd—ab
a‘—{—jb': a"—{—b” = a12+512+1‘;u—+"sz‘
Difference of phase between :

a + 7 b= ¢ (cos @+ jsin @) and,
a'+ 58 = ¢ (cos @ + 7 sin @'):

b b

~1 - tan &' — tan @ E_&':M‘

tan (&' — &) = T e G tan &' =1 b5 ad +b¥
-1
aa

Moultiplication by — 1 means reversion, or rotation by 180° =
one-half period.

Multiplication by 7 means rotation by 90°, or retardation by
one-quarter period.

Moultiplication by — j means rotation by — 90°, or advance
by one-quarter period.

Multiplication by cos @ - j sin & means rotation by angle .

II. Circurts ConrainiNe REesisTANCE, INDUCTANCE £ND
Caracrry.
Having now established Ohm’s law as the fundamental law of
alternate currents, in its complex form :
E=1C¢C,
where it represents not only the ¢ntensity, but the phase of the
electric quantities also, we can by simple application of Ohm’slaw
—in the same way as in continuous current circuits, keeping in
mind, however, that %, C, I are complex quantities—dissolve and
calculate any alternate current circuit, or network of circuits,
containing resistance, inductance, or capacity in any combination,
without meeting with greater difficulties than are met with in
continuous current circuits. Indeed, the continuous current dis-
tribution appears as a particular case of the general problem,
characterized by the disappearance of all imaginary terms.
As an instance, we shall apply this method to an nductive
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circutt, shunted by a condenser, and fed through inductive
mains, upon which a constant alternate k. . F. is impressed, as
shown diagramamatically in Fig. 4.
Let » = resistance,
L = coefficient of self-induction, hence
8 = 2 ©# N L = inductance, and :
I = r —j 8 = impedance of consamer circuit.
Let 7, = resistance of condenser leads,
K = capacity, hence

—_ 1 _ ity i .
k= STNE = capacity inductance, and :

I, = r, 4+ j & = impedance of condenser circuit.
Let 7, = resistance,

L, = coefficient of self-induction, hence

8, =2n N L, = inductance, and:

TIT0-

[—

Frea. 4.

1, = r — j 8, = impedance of the two main leads.
Let £, = E. . F. impressed upon the circuit.
We have then, if, £ = . M. 7. at ends of main leads, or at
terminals of consumer and condenser circuit :

Current in consumer circuit, 0 = "%‘
Current in condenser circuit, ¢, = _Ej_
1
Hence, total current, Co=0C+0C,=F (_17. + _11__)
1

E. M. F. consumed in main leads £* = C, /, = E(I" + 19.)
T '

Hence, total k. m. F. B =E+E=F { 1 +7+ }
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E, I,
L,T+ 1,1, ¥ 17,

. . Eo Io (I+ 11)
E. M. F. consumed by main leads, £"' = I T4 1,1, + 11,

or, E. M. F. at end of main leads, ¥ =

Current in consumer circuit, = —? =7 ygu f" 1{ 1+ 77
0 041 1
Current in condenser circuit, ¢} = % T IE 0 [I 77
0 041 1
Total current, 0°=0+a=111_‘;9”1‘i)u
] o41 1
Substituting herein the values,
I, =, —J %
I =r—js
L =mr +j k
and, LI+ 1L, L+ 1L=a—jb,

where, a=r,r+r.r+rr—s, 8+ 8 k4 sk
b=s8,r+8mrmtsrt+sro—rik—rk
we get

E = 2o lrrt ak)bria— k)b ob)—alrs—r) |
C= E,%{(ﬁ@—kb?—}—j(r,b—{—k:;)}
C= _%{(ra+eb)+j(rb—m)}

Co= 2 e+ o+ 0—B)B) 456+ np—Ge—ba) |
As an instance, we may consider the case: .
E:, = 100 VOItB,
7o = 1 ohm} r=2 ohm} rn =0 }
8, = 10 ohm 8 = 10 ohm k = 20 ohm
[,=1—10j I=2-—10; I, =20j
hence a = 302
b=—30
Substituting these values, we get,
E, = 100,

E = 68.0 (98 + .17j),
E'= 351 (94 — .34 ),
C = 6.6(10 4 .99 7),
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C, = 3.4 (17— .98%),
C, = 3.4(374 .935),
where the complex quantities are represented in the form ¢ (cos
@ -+ 7 gin @), so that the numerical value in front of the paren-
thesis gives the effective intensity, the parenthesis gives the plase
of the alternate current or E. M. F. |
This means: Of the 100 volts impressed, 35.1 volts are con-
sumed by the leads, and 68.0 volts left at the end of the line.
The main current of 3.4 amperes divides into the consunmer
current of 6.6 amperes, and the condenser current of 3.4
amperes.
Increasing, however, the capacity X that is reducing the capac-
ity inductance to £ = 10, or /; = 10 j, we get:

a = 102,
b=0.
- Hence: £, = 100,

E =100 (.98 + .20 5),
E' = 19.9 (.10 — .99 5),
¢ = 9.8y,
C, = 10 (.20 — .98 5),
C, = 1.98.

Here, though the leads consume 19.9 volts, still the full
potential of 100 volts is left at their end.

1.98 amperes in the main line divide into two branch currents,
of 9.8 and of 10 amperes. We have here one of the frequent
cases, where one alternate current divides into two branches, so
that either branch current is larger than the undivided or total
current.

Increasing the capacity still further to & = 5, or 1, = 5,
gives:

a=2,
b = 15.
Hence: E, =100,

E = 337 (.32 — .95 j),
E' = 318 (— .08 4 j),
C = 33.0 (99 + 13 ),
C, = 96.3 (1 4 .06 ).
C, = 63.6 (1 + .03 5),
That means, in the leads self-induction consumes an k. m. F. of
318 volts, and still 337 volts exist at the end of the line, giving




STEINMETZ ON COMPLEX QUANTITIES. 45

a rise of potential in the leads of 237 volts, due to the combined .
effect of self-induction and capacity.

The main current of 63.6 amperes divides into the two branch
currents of 33.0 and 96.3 amperes.

The current which passes over the line i is far larger than the
current which in the absence of capacity would be permitted by
the dead resistance of the line. While in this case 63.6 amperes
flow over the line, a continuous . M. ¥. of 100 volts would send

only = 33.3 amperes over the line; and with an alter-

£,
7o + 7
nating E. M. F., but without capacity the current would be limited
to 4.95 amperes only, since in this case :

E. - 100 ,
= o = ; .= 4.95 (.15 .99 7).
=t —iEte 3—20; (154.99)

Even by short-circuiting the line, we get only:

E, 100
Co= 757, = T—107 = 10 (1 +.99),

or 10 amperes over the line.

Hence we have in this arrangement of a eondenser shunted to
the inductive circuit and fed by inductive mains, the curious re-
sult that a short-circuit at the terminals of the consumer circuit
reduces the line current to about one-sixth.

As a further instance, we may consider the problem :

“ What 18 the maximum power which can be transmitteg over
an tnductive line snto a noninductive resistance, as lights, und
how fur can this output be increased by the wuse of shunted

capacity.”
Let, r, = resistance,
8, — inductance,
hence, I, = r,—j 8, = impedance of the line.

Let » = resistance of the consumer circuit, which is shunted
by the capacity inductance %.

r and k& are to be determined as to make the power in the
receiving circuit: C* r, a maximum.

In a continuous current circuct the maximum output is

E.
reached, if » =7, or £ = -2-°‘, where £, is the E. M. F. at the

E,

beginning, %'the . u. r. at the end of the line,and ¢ =, T

hence :
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E,
P=q

Hence, if E:, =100, 7, = 1, it is: P = 2,500 watts.

Very much less is the maximum output of an alternate cur-
rent cvrcust. With an alternate . M. r. %, but without the use
of a condenser, the impedance of the whole circuit is:

I=r,+47r '_j 80,

hence the current: ¢ = E—T E(::';—{;;-‘I-:i; o)

at efficiency 50 per cent.

E, ro + 7
{ ¥(r, + 7 + & +J V(ro—{—r)‘-{-e,'}

SV F e
the . M. F. at end of line:
- E,r ( e
FOr= T | Voo T Ve

3
hence the power: P = E 0 =& +E,’.)a T ot

The condition of maximum output is,

L2 g
or
that is,
= (r + ro) + &' — 2 7 (r 4 7,), o1,
P = ros + 802)
) r o= ¥4 &},
and the maximum output is,
P E"-————-—’
B 2 ;rﬁ + V ro2 + 802§
r . ‘/ roz ’+' 'go2

at the efficiency,

T o U
In the instance, £, = 100, r, = 1, 8, = 10 is:
P = 453 watts, against 2,500 watts with continuous currents.
If, however, we shunt the receiver circuit by capacity induc-
tance k, we have,

Leads, 1;) = 7o _.7 8os

Consumer circuit, I =r8=0,

Condenser circuit, Li=45kr=20,
hence, by substituting in the equations derived in the first part
of this chapter,
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a=1r,r+ 8 k
b=gr—k(r,+17)

0= Bt (—b+ja,

and,

or, substituting,

tanai:-_ﬁ

b
_ Ek
T Ya+P

Ekr . . .
E=Cr= W(cosw—{—ysmw)

and, c (cos @ -+ J sin @)

hence, power,
E2Rr Eldr
P=CFKE—=7="0 = 0
a*+ & (;or'*"ok)g'i‘(ao"__kro'—kr)z
The condition of the maximum output P is,
sP_ ,8P _ d
- %3%="°

that is,

Bolted)=r 002+ [ — k) ks, = r2 + 62
hence,

k= 7o + &
80
r = Z‘L’._-tﬁz
7o
substituting this in P, we get:
p=E
4r,’
the same condition as for continuous current.

That means,

“ No matter how large the self-induction of an alternating
current circuil 18, by a proper use of shunted capacity the out-
pwt of the curcuit can always be raised to the same as for con-
tinuous currents; that ts, the effect of self-induction upon the
output can entirely.and completely be annihilated.”
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JII. Tae ALTERNATE CURRENT TRANSFORMER.

A. General Remarks.

In the coils of an alternate current transformer, k. M. F. is in-
duced by the alternations of the magnetism, which is produced
by the combined magnetizing effect of primary and secondary
current.

If, M = maximam magnetism,

N = frequency (complete cycles per second),
n = number of turns,
the gffective intensity of the induced E. M. F. is,

E= ¢¥2zn N M10°®
=444n N M 108
Hence, if E. M. F., frequency and number of turns are given,
or chosen, this formula gives the maaimum magnetism,

E10t
M= n f—rnN

To produce the magnetism M of the transformer, a M. M. F.
F'is required, which is determined from the shape and the mag-
netic characteristic of the iron, in the usual manner.

At no load, or open secondary circuit, the M. M. r. F'is fur-
nished by the “exciting current,” improperly called the “leakage
current?”’

The energy of this current is the energy consumed by hystere-
sis and eddy-currents in the iron; its intensity represents the
M. M. F. '

This current is not a sine-wave, but is distorted by hysteresis.
It reaches its maximum together with the maximum of magnet-
ism, but passes through zero long before the magnetism.

This exciting current can be dissolved in two components:
a senewane Cy, of squal intensity and equal power with the ex-
citing current, and a wattless complex higher hurmonie.

Practically this separation is made by the electro-dynamometer.
Connecting ammeter, voltmeter and wattmeter into the
primary of an alternate current transformer, at open secondary
circuit the instrument readings give the current (;, in intensity
and phase, but suppress the higher harmonics.

In Fig. 5 such a wave is shown in rectangular coordinates.
The sine-wave of magnetism is represented by the dotted curve
M, the exciting current by the distorted curve ¢, which is sepa-
rated into the sine-wave C,, and the higher harmonic C.
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As seen, the higher harmonic is small, even in a closed circuit
transformer, compared with the exciting current C,,, and since
Cso itself is only a few per cent. of the whole primary current,
the higher harmonic can for all practical purposes be suppressed.

All tests made on transformers by electro-dynamometer
methods suppress the higher harmonic anyway.

Representing the exciting current by a sine-wave C,, of equal
effective intensity and equal power with the distorted wave, the
exciting current is advanced in phase against the magnetism by
an angle @, which may be called the “angle of hysteretic ad-
vance of phase.” This angle a is very small in all open circuit
transformers, but may be as large as 40° to 50° in closed circuit
transformers.

We can now in the usual manner dissolve the sine-wave of ex-
citing current C,, into its two rectangular components:

h, the  hysteretic energy current” at right angles with the
magnetism, hence in phase with the induced k. M. F., and, there-
fore representing consumption of energy ; and,

¢, the “ magnetizing current” in phase with the magnetism,
hence at right angles with the induced k. m. F., and, therefore,
wattless.

Ak = C,, 8in «, and can be calculated from the loss of energy
by hysteresis (and eddies), for it is:

h— energy consumed by hysteresis
primary E. M, F, ’
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And since C,, can be calculated from shape and characteristic
of the iron, the angle of hysteretic advance of phase « is given
by :

sin & = _’f-
Coo
The magnetizing current ¢ = C,, cos « does not consume

energy (except by resistance), and can be supplied by a condenser
of suitable capacity shunted to the transformer.

Since in the closed circuit transformer A, which cannot be
supplied by a condenser, is not much smaller than C,, there is
no advantage in using a condenser on a closed circuit transformer.
In an open circuit transformer, however, or transformer motor,
Cso is very much larger than A, and a condenser may be of ad-
vantage in reducing the exciting current from C,, to A.

B.—The Closed Circuit Lighting Trangformer.

The alternate current transformer with closed magnetic cir-
cuit, when feeding into a non-inductive resistance, as lights, can
be characterized by four constants :

p = resistance loss as fraction of the total transformed power:

p =t % at full load.

¢ = hysteretic loss as fraction of the total transformed power:

__ hysteretic loss -
€ — W at fll}l loa.d.

¢ = E. M. F. of self-induction as fraction of total E. M. F.:

__scl f-induction

o = total m‘ at fu]l load.

t = magnetizing current as fraction of total current:

magnetizing current
total current at full load.

Denoting
In primary: In secondary :

N, and 7, = number of turns.
7o «“ ” = resistances.
C, “ C, = currents.
£, “ E = induced E. M. F.’s.
F “ E, = E. M. F.’8 at terminals.
C, «“ ! = currents at full load.

we have then :
Clr,  Clry,

p=-pg + g
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g = )74 where

§ = magnetism leaking between primary and secondary.
M = magnetism surrounding both primary and secondary.

A
== a‘,,
g
T=w
Hence at the fraction # of full lead.
_ G
A

choosing the induced k. m. F. a8 the real axis of coordinates,
the magnetism as the imaginary axis of coordinates), we have,
Primary exciting current, Coo=h+jg
Primary current correspond-% c =M ¢
. - = 1
ing to secondary current C),

hence, total primary current, (, = 0+ Cp= 1‘1 ()H.. h+7y
Co _ h +.7 g

and, ratio of currents, o=
1 no

Since, however,
oo—h+yg-0'e+yr> (s+zr>--0‘+,,”,

we have, substituted,
Ratio of Currents.

c, _n ¢ . T |
=ty gy

;ln‘.. '\/ ( ) (_l;.)‘ or, for medium and large load,
=an"'{ t3 +2t9‘}

The E. M. F. at the secondary terminals is,
E =E—Cr=E {I—P-g %
at the primary terminals,

E=E+CG—jo)=F {1+p0—jou,
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. . &
hence, since E,="2FE,
ny

Ratio qf E. M. F.8 al terminals.
E _ 2,
E——{l—}—-pd jd’ly}

— T {1—}-;:(9-{-92_-}

N

Difference of phase @ between E. M. F. at primary terminals
and primary currents.

Since we have seen, that multiplying a complex quantity by
(cos @ -+ j sin w), means rotating its vector by angle @, the
difference of phase between primary current and . M. F., © ig,
given by,

¢, = a (cos @ +} 7 sin @) £
Co

or, @ (cos w 4 7 8in @) = o

where @ is the difference of phase, and @ a constant.
Since in the present case the secondary current is in phase

E,

with the secondary E. M. F., it is, & = o
1

combining this with the foregoing, we have,

a b (cos w + 7 sin w) = _g_ ‘f
1 >

s T +Hi
:('Zo) +p;—-;f(9’
:(_”_1)’{1—,”9-}- +ijad 455

and,

Difference of phase betiween primary current and k. M. v. at
terminals.

tanw:aé‘—lr—-‘;_
' 4
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hence:
“ With varying load 8, the difference of phase @ or the lug,

Jtrst decreases, reaches a mintmum at o 8 =_;or &= V'E ,
¢

and afterwards increases again.”
At light loads it is mainly the magnetizing current r, at large
load the self-induction o, which determine the lag.

The formula, tan @ = o & + % is only an approximation, and

ceases to hold for any light load, where we have to use the
complete expression. '

T
az?+_-5-

tan w =

B
1“‘{’!"”*'[—9‘

The efficiency is, 1 — (pt9 +%), and the .

Loss cosfficient, p¢9+§

. . e 3 . y
hence a minimum at, § = /\/ —-, the point of maximum efficiency.
‘l)

Let, as an instance, be:

.710:10 p:.02 e = .03
n, o = .06 v = .08
hence,
at full load, # =1,
.(../CT'«: =.1(1 4 .03 4 .0032) = .1033
1
i’ = 10 (1 4 .02 4 .0018) = 10.22
t

tan 0 = .06 4 .08 = .14, or, w = 3°,
energy factor, cos w — .99
at 100% overload, & = 2,
Co
G
E,

SR = 10(1 .04 4 0072) = 1047
“t

= .1 (1 + .015 + .0008) = .1016

s
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tan w = .12 4 .04 = .16, or, @ 9°,

energy factor, cos w = .99
at one-half load :

3 =.5: %‘—: =.1 (14 .06 4 .0128) = .1073.

% = 10 (1 4 .01 4 .0005) = 10.11.
t
tan @=.03-4-.16=.19, or @=11° energy factor : cos @=.98.
at one-tenth load :
Co
<= 1(14.3+4.32) = .162.
or more exactly,

=.1 YA+ 3¢ F .8 = .153.

E“10(1+ .002 -+ .0000) = 10.02.

tan @ = .006 4- .8 = .808.
or more exactly,
.006+4-.8 - - ax
= m:m, or @=32°, energy factor: cos &=.85,
at open secondary :
.0
tan w = —O—g = 2.67, or & = 70°, energy factor: cos v = .34,

the minimum lag takes place at:
§= ’\/-—— = 1.155,

or 154 per cent. overload, and is:
tan &=.0693+4.0693=.1386, or =7.9°,energy factor: cos ¢=.99,
the efficiency is & maximum at:

8 =A/08_ 1905

.02
or 224 per cent. overload, and is :
1—.0245 —.0245 = .951, or 95.1 per cent.

C.—@enera’ Fguations of Alternate Current Transformer.

The foregoing considerations will apply strictly only to the
closed circuit transformer, where p, 6% ¢, 7* are so small that their
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products and higher powers may be neglected when feeding into
a non-inductive resistance.

The open circuit transformer, and in general the transformer
feeding into an inductive circuit—in which case ¢ and r become
of greatly increased importance—requires & fuller consideration.

Let:

n, and #, = number of turns,

r,  r, = resistance,

8, = 2n N L,and s, = 2 # N L, = self-inductances, hence:

I, =r,—7j 8 and I, = », — j 8, = impedances of the two
transformer coils.

The secondary terminals may be connected to a circuit of re-
gistance /2 and inductance 8, hence of impedance /= R — 7 3.

Then we have:

Magnetism: J M.
Secondary induced . M. F.: £, = V27a0, N M 10~

Primary induced . M. F.: £, = 4270, N M 10~* %" E.

Second : =72 =r 2
€econdary current: VS TF LT RF) —7(8F#)
or: C=a+jb,
where:
E(R+m) E (S + &)

C=RIryFEFay CTEF IO Tar

Primary current corresponding hereto:

Primary exciting current:

Coo=h+jg
hence, total primary current:

n (n
¢, =0+ Cﬂ,,:(;la—i-ﬁ)—{—_;(?—;b—{—g)

or: C, =c¢+ jd,
where:
nlE(R+7'1) Lohd = —'E(S+81)
o e Sy ALl E oy Ea

herefrom we get :
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E. M. F. consumed by primary impedance :
C, Io = (e +j d) (7'0 "_j 30)
=(cr,+ ds)+7(@r, —cs,).
.E. M. F. consummed by secondary impedance :
=(@+jb(—jsa)
=(ar,+b8)+50r —aas).
hence, E. M. F. at secondary terminals:

E =E — (I =E, %1___(‘”'1+b'91);,.7(b7'1—a8,)}.

E. M. F. 8t primary terminals:

E=E+CIL=E{1+ (cro+deo>+y<dr‘.——cso>§

Substituting now in €, C,, k£, E the values of a, b, ¢, d, we
get:
Secondary current:
___E®R4r) . ES+s)
SEF T ST VR T @ F ey

Primary current :

g B+ i g . E(S+a) %
“ElEryrers T Ty FSTar Y
E. M. F. at secondary terminals,

_ _r(B4r)+-8(S+8) Sri—Rs,
B= B = e =B sy |

E. M. F. af primary terminals,

E= R m ) s | et

+i [ mErE s B L g —ah]

the general equations of the alternate current transformer,
representing the currents and E. M. F.’8 in intensity and phase.
In general, the percentage of resistance in inductance will be
the same, or can without noticeable error be assumed the same
in primary as in secondary circuit.
That means,

¢,
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substituting this, we get,
E. M. F. at secondary terminals,
E =E[1—A—jB]
E. M. F. at primary terminals,

E:%E}{lq‘—ﬁ.+jB}+(‘I’oﬁ'+8og)+j("'og—'80,‘)

where,

A =7'1(R+7'1)+”1(S+31)
(B + )+ (8 + &)
B — "mnS—s8 R
(B + )+ (S+ &)
Therefore we get for the closed circuit transformer, feeding
into a non-inductive resistance, § = O.

g=%%1+ﬂi{—f§-}

at full load.

IV. DistriBuTED CAPAcITY, INDUOTANCE, LEAKAGE AND
REsIsTANCE.

In many cases, especially in long circuits, as lines conveying
alternate power currents at high potentials over long distances
by overhead conductors or underground cables, or very feeble
carrents at extremely high frequency, as telephone currents, the
consideration of the resistance—which consumes k. M. F. in
phase with the current—and of the #nductance —which con-
sumes E. M. F. in quadrature with the current—is not sufficient
for the explanation of the phenomena taking place in the line,
but several other factors have to be taken into account.

In long lines, especially at high potentials, the electrostatic
capacity of the line is suflicient to consume noticeable currents.
The charging current of the line-condenser is proportional to
the difference of potential, and one-quarter period ahead of the
E. M. F. Hence it will either increase or decrease the main cur-
rent, according to the relative phase of the main current and
the E. u. 7.

In consequence hereof, the current will change in the line
.from point to point, in intensity as well as phase, and the . u.
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F’s consumed by resistance and inductance will, therefore,
change also from point to point, being dependent upon the
current. |

In considering the effect of capacity, it is not permissible,
however, to neglect the inductance, since in overhead lines the
inductance is usually at least of the same magnitude as the con-
denser effect, and is not negligible in concentric cables even.
In the latter, however, and to a lesser extent everywhere else,
still other factors have to be considered.

The line consumes not only currents in gquadrature with the
E. M. F., but also currents in phase with the k. M. r.

Since no insulator has an infinite resistance, and at higher
potentials not only leakage, but even direct escape of electricity
into the air takes place by “silent discharge,” we have to recog-
nize the existence of a current approximately proportional, and
in phase with the E. M. r. of the line. This current represents
-consumption of energy,and is therefore analogous to the . M. F.
consumed by resistance, while the condenser current, and the k.
M. F. of inductance are wattless.

Furthermore, the alternate current passing over the line in-
duces in all neighboring conductors secondary currents, which
react upon the primary current and thereby introduce E. M. F.’s
of mutual tnductance into the primary circuit.

Mutual inductance is neither in phase nor in quadrature with
the current, and can, therefore, be dissolved into an energy com-
ponent of mutual inductance—which acts like an increase of re-
gistance—in phase with the current, and a wattless component, in
quadrature with the current—which decreases the self-inductance.

The mutual inductance is by no means negligible, as for in-
stance, its disturbing influence in telephone circuits shows.

The alternate potential of the line induces by electrostatic in-
Jluence electric charges in neighboring conductors outside of the
circuit, which retain corresponding opposite charges in the line
wires. This electrostatic influence requires the expenditure of a
current, proportional to the E. M. F., and consisting of an energy
component, in phase with the k. M. F., and a wattless component,
in quadrature thereto.

The alternate electro-magnetic field of force, set up by the
line current, causes in some materials a loss of energy by elec-
tro-magnetic hysteresis, requiring the expenditure of an E. M. r.
in phase with the current, which acts like an increase of resis-,
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tance. The wattless component of this k. M. r. disappears
under “inductance,” or rather we must say, that the Aysteretic
E. M. F. i8 the energy component of inductance. This magnetic
hysteresis loss may take place in the conductor proper, if iron
wires are used, and will then be very serious at high frequencies,
as with telephone currents, or it may take place in the iron
armor of the cable, etc.

The effect of the “eddy currents” is referred to already under
“ mutual inductance,” whose energy component it is.

The alternating electrostatic field of force, expends energy in
dielectrics by what I called “ dielectric hysteresis.” In concen-
tric cables, where the electrostatic gradient in the dielectric is
comparatively large, the dielectric hysteresis may at high poten-
tials even consume more energy than the ohmic resistance.

The dielectric hysteresis appears in the circuit as consumption
of 3 current, whose component in phase with the . M. F. is the
“ dielectric energy current”—the component in quadrature with
the E. M. F. disappears in the “condenser current,” whose energy
component the dielectric energy current is.

Besides this, there is the increase of ohmic resistance due to
unequal distribution of current, which, however, is practically
never large enough to be noticeable.

Hence we have the phenomena:

LResistance—consumes E. M. F. in phase with current.

Self-inductance, and its energy component electro-magnetic
hysteresis.

Mutual inductance, and its energy component eddy currents.

Leakage—consumes current in phase with k. u. F.

Capacity, and its energy component dielectric hysterests.

Influence.

This gives, as the most general case, per unit length of line;
E. M. F.’8 consumed in phase with the current C, and = r C,
representing consumption of energy and due to:

Resistance, and its increase by unequal current distribution.
Energy component of self-induction, or electro-magnetic

hysteresis.
Energy component of mutual inductance, or induced
currents.

E. M. F.’8 consumed in quadrature with the current C, and =
& C, being wattless, and due to:
Selfinductance.
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Mutual inductance.

Currents consumed in phase with the . u. ¥. E and = ¢ E,
representing consumption of energy, and due to:

Leakage through the insulation, including silent discharge.
Energy component of capacity, or diclectric hysterests.
Energy component of electrostatic influence.

Currents consumed in quadrature with the 5. m. v. E and =

x E, being wattless, and due to:
Capacity.
Electrostatic tnfluence.

Hence we get four constants:

r, 8, O, x.

representing the coefficient, per unit length of line, of:
E. M. F.’8 consumed in phase with current, 7.
E. M. F.’s consumed in quadrature with current, s.
Currents consumed in phase with . M. F., J.
Currents consumed in quadrature with . M. r., x.

This line we may assume now as feeding into a recetver circutt
of any description, and determine current and E. M. F. at any
point of the circuit:

That is:

E. M. F. and current (differing in phase by any desired angle)
may be given at the terminals of the receiver circuit. To be
determined is the E. M. F. and the current at any point of the
line, for instance at the generator terminals.

Or:

Impedance / = R — j § of receiver circuit, and .E. M. F. E, at
generator terminals are given. Current and . M. F. at any point
of circuit are to be determined, ete.

The cases, which are usually and solely treated:

1. Current = O at end of line, that is open circuit.

2. E. M. F. = O at end of line, that is line grounded, and

3. Line of infinite length
are evidently of little practical interest, but of importance is
only the case of a line feeding into an inductive or non-indue-
tive receiver circuit.

Of the four line constants, 7, 8, &, x, usually:

7 is mainly the resistance, per unit length of line.
8 is mainly = 2 = N L, where L = coefficient of self-induction,
per unit length of line.
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& is mainly = % , where 7 the insulation resistance, per unit

length of line.
x is mainly = 2 = & K, where A = the capacity, per unit length

of line.
Counting now the distance 2 from a point ‘O of the line, which
has the E. M. F., E =¢-+4j¢
the current, C=c+Jj¢

and counting 2 positive in the direction of rising energy,
counting « negative in the direction of decreasing energy,
we have at any point «, in the line differential & «:
Leakage current, Edde
Capacity current, — j Exd @
hence, total current consnmed by d = -
dC=E{@—jxdw,or:

g_g = E($ —j %) (1)
E. M. F. consumed by resistance, Crde

E. M. F. consumed by inductance, —j Csd
hence, total . M. F. consumed by d :

dE=C(r—jsdezor:

L0y ()
These Fundamental Differential Equations (1.) and (2.) are
symmetrical in € and Z.
Differentiating these equations:

d*C_dE, .
a7 —as I o
CE_dC ., )
dF dw ' Y

* and substituting (3.) in (1.) and (2.), gives:
A E e .
a2 =L@ —jnr—j9 (4)
dr*C _ i s
Sz = 0@ —jnr—j9 (5.)

The Differential Equation of C and of E.
These Differential Equations are identical, and consequently
C and E are functions differing by their limiting conditions
only.
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These equations (4.) and (5.) are of the form :

d*w _ Y ey
Y —w@—jn—j0) )
and are integrated by :
w = ae”r

where ¢ is the base of natural logarithms.
For, differentiating this, we get:

d*w

T = vaer=vw
hence :
=@ —j0lr—Jj9 | (7)
or: v=% yE—7AC—79
hence, the complete integral is ;
w=qetrr | phevr (8.)

where a and b are the two constants of integration.
Substituting :

v=a—j3 9.)
in (7.), we have:

(@—gpBf =@ —jnr—ja)or:

& — & dr—axs8

2apf =destxr (10.)
herefrom: &+ 2 = yF + &) +48)
and: a=/\/1}§V(:V—{-:ﬁ)(r‘—{—s’)+(¢9~r—-x§)}(u’)

B=A 31y F+DE+)—Br—x9)

substituting (9.) in (8.):

(a4B)x ~(a—jb)x
wW=ace + b

. ar -ax
=ac¢ (cosfx—gjsinBa)+be (cos x4 7sinfa)
ar -ar ar -ar
w={(ae +be )cosfar—jlae —be )sinfea (12.)
the general solution of differential equations (4.) and (5.)
Differentiating (8.) gives:

d w or —-ox

72 =v(ae —bdbe )
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hence, substituting (9.):

ZZ (@—jf)i(ae —be Jeosfz—j(ae +be )sin Bz }(13.)

substituting now C for w, and substituting (13.) in (1 ), and
writing :
(@—jfa=4
(e—gpPdb=2R
we get the
General Integral Equations qf the Problem.

C =

{(Ae +Be )cosﬁw——j(Ae ——Be )sin Ba}
a Jﬂ (14)

—-ar

E= {(Ae —Be )cosﬁw—j(Aeam—{—Bs )sinﬁa;}J

19-——‘7::
where 4 and B are the Constants of Integration.
If: C, = ¢, + j ¢, is the current,
E = ¢ + je'is the e M. F,, (15.)
at the point: 2 = 0, '
We get, substituting (15.) in (14.)
A = {(ac,+Pe)")+-(Fer+xe ) 7 {(ae'—Pe)4-(Fe'—xep) |
2 B= {(ue,+Be'y—(Pe,-+-xe' ) +7 {(ac'—Be)—(de,'—xe)) } {
If: I'= R —j8isthe impedance of the receiver circuit, and
E=6+1je (17.)
is the E. M. F. at the dynamo terminals, and
! = length of line, we get at: » = O:

(16.)

-t
E=57
hence :
G- 4l
j;gzlf:% (18))

andat: ¢ =1{:

1
E’zﬁ—.ﬂ

—-al al -al
Yeos3l—j(Ae + Be )sin,ez}(lg.)
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Equations (18.) and (19.) determine the constants A and B,
which, substituted in (14.), give the final integral equations.

The length: z, = 2—; is a complete wave leﬁgth, that means,

in the distance o, = ..2_.;.7 the phase of current and E. M. F. repeat,
/

in half this distance they are just opposite. Hence the remark-
able condition exists in & very long line, that at different points
at the same time the currents flow in opposite directions, and the
E. M. F.’s are opposite.

The Difference of phase between current and E. M. F. at any
point of the line is determined by :

¢

I(cosw—}-jsinw):—_E,

where 7 is a constant.

Hence, @ varies from point to point, oscillating around a
medium position w,, , which it approaches at infinity.

This difference of phase, towards which current and E. M. F.
tend at infinity, is determined by :

1 (cos wy, + 7 8in wy ) = Co

Ex
—r
or, substituting for C, and £ their values, sine¢ = O, and
or
A e (cos 3 x — sin 3 z) cancels:
. . $—3
1 (cos wey, + 78N Wy ) = a—:;,;
_ (@430 —jlax—3d)
@+ 7
3% — ax

= — 20,
tan wqy S (20.)
This angle w,, = 0, that is, current and . M. F. come more

and more in phase with each other, if: 34 — ax = O, thatis:
a+ 3=¢+xor:
& —F _ P2

$r—zxg__ P —x

S8+ xr 2dx’

substituting (10.), gives:
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hence, expanded :
r+e=28=ax (21.)
that ia:
“The ratio of resistance to inductance equals the ratio of
leakeage to capacity.”’

+30 ’l \ 40,000
sl J | ' A N 000
) ia‘ \p JA \\ d "( \%m
: \ ' N P
—30 | , ) .‘ e = 52,000
N []
20 , | \L\‘ // ,/ 19,000
e gr——
30 ! // lelm
_«," / w‘:.'::J(fm
/] // o
/o0 / / lezo 22,000
Cs)-( ,/ ’1/ 200 000]
' - / ,/ 180 1L,ooo
\\_—‘/ '.v
g et 180 1s,000]
v
v 140 14,000,
2R s
/ \ /’/ 120 12,000
E \\ DLl .’/ 100 10,000
i . h S r=|
\\-. ‘/ $ :qi 80 8,000
/ =
c / o= 000 so_ 16,000
\ {/ 8,000 ]
\ k | 40 14,000]
[
\r 20 2,000
| A L 3L 5L 3L
n=lo ry 7 T L | |2

Fia. 6.

This angle w,, = 45° that is, current and k. . r. differ by
one-eighth period, if: 3 & —ax = a 8 4 3 x, that is:

a__ &+ x
BT 8 —x
or: .
ré4sx=0 (22.)
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that is:

“Two of the four line constants must be = O, either # and z
or ¢ and &.”

As an instance, in Fig. 6 a line diagram is shown, with the
distances from the receiver end as abscissee. Figure 6 repre-
sents one and a half complete waves, and gives total effective
current, total E. m. F., and difference of phase between both, as
functions of the distance from receiver circuit, under the condi-
tions:

E. M. F. at receiving end : 10,000 volts, hence: £, = ¢, = 10,000.

Current at receiving end: 65 amperes at .385 energy coeffi-
cient, that is:

01 = +j 01‘ = 25 + 60'7‘.
Line constants per unit length:

r=1 = 2 X% 10°®
s =4 Cox= 20 X 108
hence: a= 495 x 103

g = 28.36 x 10—*
@+ F = .829 x 10
2n
= L = 2 =
one complete period of wave propagation.
A = 1.012 — 1.206 7
B = 8124 .T94,
These values substituted give:

221.5 = length of line, correspouding to

( o ~ar
O= % e (47.3cosfr+27.48in By —e (22.3 cos3r4-32.68in J2)

e —

8

e (27.4cosfr—47.3sin 3r) ¢ (52 6 cos Fx—22.3 8in ﬁa')}

&

E= {e (6450cospBr+441( Dsmﬂa')+= (%530008]1&'——44108111‘12')’
)
{

ar -azx
+j1e (4410cos3z—64508in3x)—e (4410cosfkr—3530sinz) |
tan @ = B0 =4 _ - o7y Wy = — 4.2°.

ait+ 3x
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Some Particular Cases.
1. Open Circuit at End of Line.

xr= 0. ¢, = 0.
A=e+z2e)+j(@e —2xe)=—B
hence: .
K= 1 A{(eu—}-e_m)cos ?:r—'(eu-— w) i %
. F—7x1 i J € ‘smﬂ:v" ;
(= 1,_,A;(eu—s-m)cosﬁw—-j(cu—}-sm)sin ,?w}
«a—3 3 { ‘
B. Line Grounded at End.
r = 0. E = 0.
A=@e,+pgeN+j@et —3e¢) =B,
hence:
A 1 ) (sm‘—— e_(w) cos fa—j (eu+ e-") 8in ?m}
‘ c?—-jx‘ | ' ¢
c= -1, 'l%(cw—{—ew)cos ?.r-—"(cu—e—a‘r)six;?m?-
—a—jﬁ" _ t J A

C. Infinitely Long Conductors.
Replacing # by — «, that is, counting distance positive in the
direction of decreasing energy, we have:
= a: C =0, F= 0:
hence: B =0

1 -

and: E:(,__jxxle (cos 3 & 4 7 8in 3 )
: 1 —azx

(= a—j3 Ae (cos 3z + jsin 3 x)

revolving decay of the wave.
The total tmpedance of the infinite circuit is:

o
I==
C
—¢—Jd
I’-—-—jl
_(@d4+3x0—j5(38—axn

#+ 2
“The infinitely long conductor acts like an impedance
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I = % — 7 ‘.9._1;,2..___{—___:‘.5, that is, like a resistance

R = _'l:;____-_l_;_%f’ combined with an inductance § = ".?l';—:_%z."
Herefrom we get the difference of phase between k. m. ¥. and
) S8 _p3d—ax
current: tan @ = R= s T ax

which is constant at all points of the line:
If: $ = 0,8 = O, we have: a = 3 = /\/%r-, hence:
tan @ = 1, or: w = 45°.

that is, current and v. M. F. differ by one-eighth period.

P T
EE

D. Generator Feeding into Closed Circuit:
Let « = O be the center of the cable. It is then:

0, = (.,
E=—E,,

hence: = Qatx = O,

that means, the equations are the same as in B., where the line
is grounded at » = 0.

V. PorLypHAsSE SYSTEMS.

In polyphase systems, we have two ways of connecting the n
circuits of an n-phase generator with each other and with the line.
1. The star connection, represented diagrammatically in Fig. 7,
where the n-circuits, containing . m. Fr.’s differing from each
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other by ! ofa period, are connected together at one end into a
n

neutral povnt O—which may either be grounded or not—while
the other ends of the circuit are connected to the line-wires, and:

2. The rng connection, represented by Fig. 8, where the n
generator circuits are connected in closed circuit, and the n line
wires connected to the points of contact of adjacent circuits.

Outside of the generator the two systems are identical.

The consumer circnits may now either be connected between
any pairs or sets of line-wires, or between the wires and a neutral
point O, which may be grounded, or connected to the neutral
point of the generator O.

1. Let now, in the star connection of generator, £ be the E.

333 3 \
REERY
TEID:

Fie. 8.

B A AYAVAV, V.

M. r. of one branch of the generator, and let 1, 2, . . . » be the
generator circuits.

Since the E. m. F.s of adjacent circuits differ by l of a period,

2717 , and rotation bv 2% s represented algebraically by mul-

tiplication with:

2n 27 _ U1
= cos 22 27 /1 1.
€ osn-}—Jmn - 4 (1.)

The k. M. F. in any circuit ¢ is:
E=¢F (2.)

Hence, if C; is the current in circuit 4, and 7 is the impedance
per generator circunit, we have:
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E. M. F. at terminal ¢ of generator:
Ei=E—CI=¢E—C;I (8.)
And the k. M. F. at the end of a line of impedance /; , con-
nected to terniinal ¢ '
E.=E—CGU+L)=¢E—-CUI+1L) &)
Let now E;, denote the difference of potential between any
pair of terminals < and x,

where: E;, = — K. : (5.0
we have:
E. M. F. of generator, acting between terminals < and x:
E;':r —_ (Ex' - e.r) ]f (6')
Difference of potential between generator terminals ¢ and x:
Eiyf=E—e)YE-—-T(C:—C,) (7)

Difference of potential hetween lines ¢ and x:
Ey=—eYE—I(C—C)—: Ci— 1. C.)(8)
If now C;, represents the current, which passes from line ¢ to
x (and which is determined by the impedance 7;, of the appars-
tus connected between < and x:
y _ &
G =52
and if (), denotes the current passing from line ¢ to neutrsl
point O, we have:

0:‘ = E"' (/yr'x (9‘)
0
Furthermore, if the neutral points O and O’ are insulated.
2:’ C; = 0
: > (IU.)
2:’ cy:'o: 0 ’
! J

If, however, the neutral point O and (' are grounded, or
connected together:

ér‘ C; = éa‘ C. (11)
1 1

2. In the case of the ring connected generator, the generator
E. M. F.8:

sl ‘.l
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Take the place of the . M. F.’s
| Eiity
of the star connection, hence the E. M. F. between any pair of
terminals ¢ and x is:

SE+Eirit ... +E)=ES#d  (12)

All the other considerations remain essentially the same, so
that:
“ Any polyphase system of the k. M. F.’s:
E=¢FE i=19...n e=41 (13)
can be dissolved by Ohm’s law:
E=01 (14.)

3

and Kirchhoff’s laws:
2 FE = 0O in any closed circuit, (15.)

2 C = O at any point of distribution.” (16.)

It would carry me too far for the scope of this paper, to enter

further into the general theory of the polyphase systems, and it

may be sufficient therefore, to show in a particular instance,

taken from the threephase system, what remarkable phenomena
can be expected in polyphase systems.

Unbalanced Threephase System.

Let, in a threephase system, Fig. 9, with star connected
generator,

E ek ekl
be the . M. ¥.’s of the three generator branches, where:
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_—1—jy3
2
Let_/ = impedance per generator branch,

7, = impedance per line,
and:let one pair of lines be connected by an impedance /Z,.
We have then, if C = the current flowing in this loaded

branch—the two other branches being nnloaded, or open—that
is, the system ‘“unbalanced.”

E
e K o (17)
e E
E—-cC1
e+ C1 L (18)
& F
E—C(I+ 1)
eE+CUI+ 1)} (9)
e F ]
Hence, differences of potential at generator terminals:
E(1—e) — 2 01 —loaded branch.

L)

€

E. M. F, in generator circuits:

Potentials at generator terminals:

-

Potentials at end of lines:

e F(1—e+ C7 } - (20)
QE(— e+ 1 —unloaded branches.
Difference of potential at ends of line:
EF(l1—e—2C({+ 1) —loaded branch.
(21.)

e EQ—eo+C(I+ 1) -
—unl i
SEQ—& + O+ 1) % unloaded branches J
Hence, current in loaded branch:
0= Fl—e&—20Cu+ 1)
= T )

or, expanded:
= Fd—¢ to be expected, si 22
0_12+2(1+L),aswas e expected, since  (22.)
I, + 2 (I + 1)) is the total impedance, £ (1 — &) the k. . F. of

this circuit.
Substituting (22.) in (20.) and (21.), we get:
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Difference of potential at generator terminals:

EQ—¢) (1 — 1,+22(5+ L))_
E 1——6)(€+1;‘:+: 2‘(]1"—F 75)

(II + 1}'))

E(1—¢ (e’+ji_+ 5

—Tloaded branch.

—unloaded branches.

Difference of potential at ends of line:

, e+ 1)
]‘(1"5)(1 /2+2(1+/,“))
\ I+4
EQ—9(e+ y5rrin) |

I+ 1,
E(I—E)(ez+l,+2(1+1,s)

These are three different values.

—Tloaded branch.

—unloaded branches.

That means:

|

8

> (23)

(24.)

“ Loading in a three phase system one branch only, the poten-
tials of the two unloaded branches become unequal also.”

It is self evident, that this phenomenon of unbalancing does not
take place in the three phase system only, but just as well in any
other polyphase system, and that the amount of unbalancing de-
pends upon the constants of the circuit, hence, can by a proper
arrangement be reduced to almost nil, or can be exaggerated

greatly by an improper choice of

circuit constant.

As an instance, we may consider the nnmerical example:
Generator k. M. F. 100 volts between terminals, hence:

FE(l—e

Resistance per generator branch,
Inductance per generator branch,

= 100

.01 ohins.
.05 ohms.

Hence, impedance per generator branch, .01 — .05 ;.

Case 1. Non-inductive lineof .1 ohms. |
' Non-inductive loadof .1 ohms. !

Case 2. Non-inductive line of .1 ohms. |
Inductive  load of — 4 ohms. !

(Case 3. Inductive  line of — .17 ohms. |
Inductive  load of — 7 ohms. !

(‘ase 4. Inductive line of — .17 ohms. |
Non-inductive loadof .1 ohms. !
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Substituting these values in equations (22.), (23.) and (24.) we
get (writing all the quantities in the form, ¢ (cos @ + 5 sin w):

1. Non-inductive line and non-inductive load; /; =.1, ly= 1:
O=81.6(.994-.08))

E= 98.0( .994.08/) E,=81.6( .99-+.08)
E= 95.9(—.514.867) F=92.6(—.44+.907)
Ey=102.9(—.47—.88) F3=98.71(—.41—.91))
2. Non-inductive line, induetive load: 7, = .1, [; = — j:
C=89.0(.204.98/)
E90.9 E= $9.1( .98—.20/)
E=97.8(—.+74.8%)) £5=104.9(—.424.927)
Ey=97.8(—47—.88)) Fy= 89.3(—.40—.867)
3. Inductive line and inductive load: /, = — .14, l,= — ;:
C="72.0(.014))
Ei=92.8(1— 1)) £=18.41— .01y)
£5=98.8( —.474.88)) F5=95.6( —.414-.91))
F3=98.7( —.48—.88)) Fy=94.6( —.41—.91j)
4. Inductive line, non-inductive load: /, = — 13 /f, = 1:
C=94.0(.96+4.28))
E= 959 .99-+.09)) K= 94.1( .96-4.28))
E= 95.2(—.50+.86)) E,= 88.1(—.52+.85j)
e =102.7(—.47—.88;) Ff3=109.6(—.41—.91j)

Remarkable is in 1. and in 4. the rise of potential in the line
in the branch £,

Apperently these values look rather irregular, sometimes the
one, sometimes the other unloaded branch being higher. Look-
ing closer into it, however, we can not fail to see the regularity
displayed in the variation of potential, which makes it possible
to control this phenomenon.

Lynn, Mess., July, 1898,

Discussion.

Pror. MacrarLane:—I wish to make a remark in regard to
the fundamental principle of the use of complex quantities.
The letter j was first introduced as a distingunishing index with-
out mathematical meaning, and afterwards defined by the equa-
tion 5 = — 1. Such definition is ambiguous, for it refers to
orthogonal projection of a straight line upon another straight line,
and the ri Et angle may be at the former straight line or at the
latter. The latter case is the ordinary meaning.
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It is not true that algebra is limited or bounded by the ordi-
nary complex quantity. There is a more general complex quan-
tity which applies to space, and of which the complex quantity
in a plane is only a special case.

Mgz. SteixMegTZ:—In introducing 7, first as distingnishing index
and then defining it as ¥ — 1 my object was to intreduce the
complex quantity in an elementary and graphical manner, without
reference to higher mathematics. To make the reasoning more

complete, I might have added that the definition j = ¢ —1
does not contniﬁict the original definition of j as index without
numerical meaning, since in the range of ordinary numbers
¥ — 1 is meaninglese. _

From the mathematical standpoint the complex quantity can
directly be introduced withount further explanation, since in pure
mathematics, for instance, the theory of Functions, the plane, is
known as the standard representation of the complex quantity.

Referring to Prof. Macfarlane’s last remark, my meaning is
that the complex quantity is the last and most general algebraic
number. No further generalization of numbers exists which
fulfills the fundamental condition of braic numbers, that if a
product is zero one of the factors must be zero. This is the rea-
son why the complex quantity of the higher order does not prove
as useful in space as the algebraic complex quantity in the plane.

The following paper was then read :




