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Abstract
RELATIVISTIC RIGID BODY HKOYICH !
Robert Beniett
Dr. J. L. Anderson
ey, 1971

The definition of rigidity as invarisnt distance
between body points leads in clazssicel theory to 6
degrees of freedom, but in relativistic theory lezds
only to further restrictions on the motion or to con-
tradictions. As the criterion for rigid body motion
this paper vproposes a relativisticelly inveriant 6
parameter group of motions defined with respect to the
instantaneous rest frame of the object's ENS tensor.

The 6 arbitrary constants arising from motional freedom
are used to specify the center and axes of rctation,

For the free body in specizl relativity, the
velocity and mass density are found to be constant, while
the rotational motion satisfies the Euler equations. It
is shown that the often-discussed spiral motion is
absent, principally due to the chcice of center of mass.
Generalization to external fields and forces is made,
and the special csse of the electromagnetic field is
solved in detail.

The rigid body definition is formulsted in
generalized coordinates and the motion obtained by
expansion of these coordinates about the body center.
The expansion is terminated by neglecting field deriv-
atives beyond a certzin order, »nd not by assumptions
concerning the body's internal structure. For complete-—
ness the approximetions are carried out to second order.

In zero and first order, the center of msss follows
the usuzl geodesic path, but differs in the second
order due to terms coupling derivatives Of the Riemann
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tensor to the spin.

Tor the rotationzl motioan in first aprroximstion
a new spin equation is obizined. VWhen applied to
planetary motion, this equation reduces to the classical
Fuler equation with s2n external grazvitational torque
and correctly predicts the earth's astroncmicsl precession,
Finally it is proven that the relativistic correction
to precession of order 1/'(:2 for an earth satellite
provides a possible test of the validity of this
proposed relativistic spin eguation.
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SECTION 1

Introduction and Definitions
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1.1 Historical Review
The definition of a rigid body and the description
of its motion within the framework of relativity theory
has plagued physics since the turn of the century. This
paper describes an attempt to resolve this chronic problem,
In the classical mechanics of Newton a rigid bedy
is one in which the distance between two body points is
constant for any time t, distance and time being
measured in a Galilean coordinate system. Since time is
absolute, this definition amounts to a constraint on
the motion,

(f - A3)* = Cy (1.1)

the /lL being the spatial body coordinates and the C,'_j

a set of ccnstants., If this constreint is to be satisfied
for arbitrary body motion, then it is necessary that six
independent coordinates representing . three trasslational
and three rotational degreces of freedom be specified
(G1). The location of a point in the bedy will then be

given by
X ab) = 2+ R eab

X"((:‘a"‘Y =
(1.2)
In 1910 Born (Bl) attempted to bring this clsssical
conceptb into the theory of relativity. We will present
here an outline of +the Born rigidity condition as given
by Anderson (Al).
If q‘)((_ﬁ,),_‘-,)are the Lagrangian ccordinates of a
body element, then
P = xhn by (1.3)
are the points lying along a streamline. ‘The displace-

ments between streamlines with coordinates d” and
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a" + daf' are

§x¥¢= da* q’* (1.4)
The velocity M« of a budy element is given by

H= b = W
AL _%._L) Ay
MPMF=1 (1.5)

It follows that

9% §xb = &a‘ﬁb(%)-: Xa‘%fg

v
=&¢6 x':gqx: =SX A“(‘V (1.6)
v

ajl_é‘ = Aplv AKX .7

The projection operator onto the ,Space normal to a
streamline is

and

oPP\/ = 7}4\/‘,{4’4,&(\,

GPFV = g"‘v _M"Av
JPP\//AV= (ST OP,‘VOPVF =0P"r
The projection of g)d" onto this space is

Sxh = 0Pk, §yv (1.10)

and the prcjection of its velocity is

St = Phog S/~ Ph(Pp d Ib 8t )
= 0PFp &x by +oprv(—%&\x,‘ (;(%%f\gxe

= OP"() J‘X\/ /«{l\/ "UP}‘V/(/(I;KAKA() J)(?

or

where

(1.9)
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= OPV(, Sx¥ b i 8% -OP"f Sx"/b(ﬂ B,
OPPr gx“ Me)KdPKv
ZXv? F( A\alv = _SXrOPquj"(J Mf'\/

]

It

(1.11)
Eqs. (1.10) znd (1.11) represent the position and
velocity of qb+ 4" relative to ab , since
W = ot ap=0.
5 g r (1.12)

Z’U’vmay be rewritten as

Sask = $x f[qurg—tf(ﬂplv ““"1(’\]
+LPHPH (4o ctlhge __/%WW + [A_'fgg 3

Sot'= gx"{ why + ot +e3_§h,§

(1.13)
where the quantities in brackets are the rotation ((,U,‘V) .
shear (6H) ana expansion ( @ ) of the element.
If the infinitesimel distance between two stream—
lines measured in the space orthogonal to them is

A== = 17’“, Sxkix= q?rvz"f‘ng (1.14)

then the Born rigid bcdy condition requires that t.is
orthogonal interval between neighboring streamlines
remain constant for all motions of the bedy,

& 45 =o (2.15)

From Eq. (1.14) we find that
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% A= =j: GPB‘“ gx“i :X'/=&LgUFF‘V§x"§'U"
= Bﬁraprvgx“gx(’ 2 Wt v“@ 8 S"(;g £é

(1.16)
Thus, arbitrary motion of the Bora rigid body is
charscterized as being free of shear and expansion,
(;',‘f =8 =0. (1.7
Unfortunately this conditicn was later shown by
Herglotz (H1) and E8ther (W11) to restrict the motion
to three degrees of freedom. (Bqth authors catalcgued
the permissible groups of motion and Herglotz demonstrat-—
ed that if one point of the body haes a prescribed motion,
the entire body motion is completely determined.)
Recent authors have used a discrste set of points
in their definition (M1, ©1) or confined the rigidity
to the surface (HM1).
In clessical mechanics, the success of the rigid
body ebstraction is based on its correct predictions
for the motion of many solid objects, Any pronosed
relativistic generalizetion of this ide=l construct
must satisfy the same dynamical test.
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1.2 Definiticn of Rigidity

Wle begin by gsreralizing the classical represent-
ation ¢f a point in the rizid body. Ba. (1.2). o

xHx @y = 2K + Lk, enab ¢ 1)
The XPO«\E'Oare the curvilinesr cosrdinates of en arbitrery
streamline in the body, where
X is & monotonic parameter labeling the rzth,
i"(ﬂre}presents 2 translation to the streasmline from the
origin,

L\"‘;{,\\are a trizd of space-like vectors orthonormzl to the
streamline, describing the ori
the §xt3

ZQ"? ere three distoace perameters on & XA = coastant
hypersurface § .

tetion with respcet to

If we define the streemline's tangent vector at
o =0 as M
S _wt= k=l
A \ (2.2)
then the set %1)4‘; L\‘Ag. constitute en orthonormal tetrad

5 w‘dgsatisfying
{/\Fi‘r\@r\ =g$¢k s L\P& L\*V-'—' 7}“/2({\“')‘“—“\

Wy = 8y - wbas, < Hk,
t’\ﬁlx = ‘7'6(17’.«/“,{

By differentiating with resnect to A

L L\@r + Wt C\Fr& =9,
Webfi= 0.8 = nfs .0

These relations may be used to mrove that the distance

(2.3)
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from the origin on X

xHOn &) - 240 = R¥x o) = LN ab
represents a rotation. Since

4 - i (Weatlieah) %&Gﬁ&c\’o (2.6)
'DJ‘ is constant in length. Angles are preserved’ because

ROE RO\ @Y e = [RUR oo,

"\kbab L\Vcaxl-c 7',.v =~ &;g.abde = lal ’G{IWG‘

: - &=0 (2.7)
Thus, the geometric character of any A= constant

hypersurface & is that of = planr:) since any vector
_Rp in the surface is normel to the time-like vector

@ ’
F ?*(x\a)«ﬁ«(\\=k“b@ab=o (2.8)
Zq. (2:1) may be expressed in differential form as

2.\, 0~
> da™

In the case of an arbitrary metric PV(X)Jlthe

parallel transport of the basis vectors W o in Z

results in

\(rlhlc + PF:v(X\ X‘/lla)(“-|c, =0,

(2.5)

5 =
=-’X‘L;\e_—'0‘ (2.9)

(.10)
which expresses the rigid body constraiant in zeneral-
ized coordinates,
The dynemics of the budy are given by the set of

16 basis vectors J.g . But there are 1C orthonormality
conditions, Eq. (2.3), expressing relations among the

w%, and so there zre only six independent descriptors
of the mction, as -was also true classically. We may
take thess to be the 3 ‘l)p"(k)of translation aad the 3
Euler angles of rotation implicitly contzined in

Wale®, 4, po] -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 Instantanecus Rest Freme

We srecify the structure »f the body with resvect
to an inertizl frame of reference {Xfi by means of a2
spatially bounded energy-momsntum-sitress (E1S) tensor

—Vy%ﬁ&ﬂd reserve the last letters of the Grecsk

alvhebet for indices in this system. The first letters
of the alphabet will denote indices in the body frame,
s0 that :I:"(’(ﬂ and}(’:(\‘q")mill represent the body's 3LS
tensor a2and internal coordinates.

In the bedy system of coordinates we define the
instantanecus rest frame (IRF) as

T*=0, (3-1)

This definitiocn corresponds to ( but does not
coincide with) the derivation of a fluid's "prouper"
frame given explicitly by Landau and Lifschitz,(LLI),
an@ implicitly assumed by cther rauthors (B2, F1 FLl).

Ve mey formulate this definition in a geometri-
cally invariaant wey by transforming to the spece freme:

=0 - Teof- SgoT“a"O (3.2)

?’x éé"—”‘ -8 %A!‘%s =° (3.3)

Multiply by X

Note that BL"TW %d%% X‘, =0 (3.4)

mu= % (3.5)

is a time-like vector normsl t¢ =& ) = couastant

hypersurface, and
it
(3.6)

is the tangent vector to any sireamline vassing through
the hypersurface. Therefore,

M'[(—“f = MmemrTf“’=A("T‘°° (3.7)
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This equation stetes that the oreratir A((ﬂ\y possesses a
time-1ike eigenvector)fnéj'kv, with eigenvalve 1.

Because

MVM‘A—T"" =T (3.8)

the contraction of the body's EMS tensor with the
surfzce normal moves along the strsamlines.

Note that
a) the analysis is independent of any rigid constraints
on the body,
b) one csn always find an IRF for any ENS teunsor of
matter,
¢) physically the IRF refers to & reference frame in
which thers is no flow of energy or momentum flux.
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11.

1.4 Conseguences of the Six Degress of Frzedom.

If four arbitrary constants are added %o -7_-?(
the motion is unaffected,
gt = L = ot

AN\ (4.1)
C relates to 2 temporal shift of origin, while &
T ]

represents the zrbitrariness of spatial origin in the
body system gé@g arising from traaslational fre:dom.
The indefinite plecement of origin may be removed

(indeed, must be removed to obtain :
vleteness and rhysical soluticn of =
natursl way by letting the first m

themetical com—

uy motion) in a
nt of the energy
density vanish in the body £ -
TN = 14 =0, €=  (4.2)

These three conditions spﬂc:u'; the world line cf the
"center of energy" and the orlgln cf the tetrad

Wle also observe that the friad ‘1"0. is defined
modulo a rotation. That is, consider 2n gssociated
triad gL‘ ’;\g which is rotated around the original EL\G\Z,

REO) =Ry, RYRS =85 (403)
Then
K’:. /v[, 71‘\’ = l’)Pc. .Eo. {/\V&?k ,7"';; S‘CA-RCG:RAI,= (Clb)

Kk T = L\PﬂZ"aﬂ)}‘ =0
(4.4)

The orientation of the triad {L\ gw:l.th respect to the
body can be set unambiguously by chossing the

principal axes which diagonalize the second moments of
the energy density,

I s o .
Th8 :S‘GQ”af da=lo T o | =T
o o I (no sum)
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Since € is positive defiuite, the three off-diagonal

terms cen alwzys be made to
value of X\ and the choice can be mzintained

sh fer a perticular

throughout the motion by aprlying the appropriate
rotation.

Thus a set of triads cen always be found vhich
satisfies the orthogonality conditions and poiats
along the principal axes, regardless of the body motion.
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13.

1.5 Kinematics — Functional Representation of the
Vierbein.

Wle obtain an explicit form for the gwd_g, based
on the work of Nodvick (N2), which will be required
for calculations in genersl relativity.

I. The inertial space freme S.

leasured with respect to S, the cocrdinates of
a point in the rigid body are

K = fx %3 = fee, 2+ Kol (5.2)

and the world line of the energy center in S is given

R ) = (<t 2w) oo
and
- ,‘ -
o = 4t = Gy )
3 "I/’L
= = (- 1.
¥ %:— (- é) (5.3)

are the components of a unit 4-vector tangent to the
world line at time t. The 4-vectors ﬁh’are unit
vectors along the space axes X , and 13,\@) is a
unit 4—Xec)1:or directed along the time axis x° =ct.
The A are or%%?zﬁ%%,: gl"’

II. The rest system S'.

The energy system is at rest in S'; for arbitrary
body motion this is a non-inertial system which consists
of a sequence of inertial systems, the members of the
sequence being in a one-to-one correspondence with
the time parameter t. For a fixed value of t, S'
coincides with the inertial frame which is related to
the spece framé S by a Lorentz transformation,

(5.4)
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¥ RS
Y &'“:«-qs“;«fmcrn

L’Av(ﬂ =

(5.5)

[

« The unit vectors in S' ,2_“‘] , are related to
A
A by

AW = 29 (5.6)
The A‘ Q‘) are constant, but mei“’(ﬂ vary with t; by
differentiating (5.6), we find
A= A AW lj‘fl—"vﬁl'm‘;—/\vyﬁl(ﬂ(s.ﬂ
A = 218 (™ Tp =T (5.8)
A" == T ¥ (0“‘1&131)] (5.9)
In generzl the system S' has a "spatial component of
rotation", /\N,\.\ . This is the Thomas effect, result-
ing from the fact that two successive non-collinear
Lorentz transformations are equivalent to a single
Lorentz transformation plus a spatial rotation.
To see the effect of this transformetion on the
tetrad d\% , return to the derivative of the
orthogonality conditions, Ea. (3.8),

L;"A L\ﬂv t u(ol L'\dv 20\
and multiply by kv‘g N
v

Wy ~- ks W = (e Feer bR (5209
e ‘glf\": :’,LH"- - (’U'é&(f ) (5.11)

The f(y" have been normalizeg by choice of path

parameter,so the first term is zero. Thus the
acceleration

14.
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at = &Ff-—(.‘;\‘r/’@v) [o\"a_ (5.12)
is 2lways in the space-like hypersurface spaniazd by
the triad a .,

However, when =l ,

U\F«, =~ (S, + (AN (/'\q\/) Wy,

= -‘U"(’l'rv{«"»‘)—wq ALy (5.13)
so the change in the triad {L\"bz contains "sratial
components of rotation", (second term), as well as
components in the direction of mction ( -’Gf‘ ).

We may now employ the fact that the triad is de-
fined by the orthogonality conditions modulo a
rotation (previously discussed in Chap 1.4) to remove

the A"a . R
III. The rest system T. '

The energy center is also at rest in system T.
This sys‘cem,like S', is a non-inertial system made up
of a sequence of inertial systems; the time axis of
T is parsllel to that ¢f S* for all t, but the space
axes rotate relative to the space axes of S'. The
orientation of the unit vectors in T, _’é(&\ , relative

to A'M | is specifisd by the Huler angles (a‘_\c()ﬂgpr)
contained in the transformaticn
Ay — /i =
€ ) _To(r‘ )é\_ q"\ (5.14)
1 o
_—
[ g = (5.15)
0 T

15.
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16.

e e on S Sy iy ooy temgaadsig lsgs:
| I
The -c«%wf-mers«'-iwh:--<~:~+Ts’«~rr+<~vefmérw%: shaaf,
Sl sl I - sl e ang, I e,
£ o _~—p = (5.16)
=Ty, f-TeTe-n e
JL‘_(’O = =0 (5.17)

These angles will be required to change in the course
of the motion in such a2 way thet they compensate for
the /\Mmof system S'; with this requirement the
system T will have no components propcrtional to ‘/\"1 ,
but then the space axes of T will precess relative to

S (Thomas precession). v
According tc'the preceding,
A AW A
A4 = b o L e (5.18)

v v ~1 T
L\:xv= L*‘Y;rva.‘) T ““_:va) ‘O;Vs
Woe =MT0 +1hoTva
(L\htl)wl =(L"\/Tva_)-| =TY Lvt‘
(5.19)
From Eq. (5.13) the spatial component of rotaticn in
A H is

["\av L\VB = (_f_d(a Lfv +-r<F ‘Lfv)( LvrTa-L)
= -i—qf Trb ‘(‘qu) /\{a‘Trb

= T T + TaR AT,
(5.20)
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17.

e choose T"“v so that L’\‘Vlf\vh = Oand multinrly
—b T .
by T ope [Tee :
0= TmTrat A" 0=~ A
p (5.21)
YWhen this constraint is setisfied,
/U_" =- L\kd. (tfv’qu
Rhy = ot [ (5.22)

These equaticns do not depend on the particular spsce
frame S from which we sterted and have the seme form
for 81l inertial systems (relativistically covariant).
All inertiel observers will sgree thst l'-\ 1, in system
T has no component normal to /U'}A if the coastraint,
Eq. (5.21), is satisfied.

IV. The body system B

The space axes of B are fixed in the body af"kd ‘the
energy center is at rest. The criectaticn of the L,(‘d\
relative to the é(&) is given by the Zuler engles
(6)4)‘0.11) contained in the rotation _R\(d\ y

PO = RYL £ (5.23)

Since RK& is a rotaticn similar in form to "T"'z ,
it will cbey the Egs. (5.15) to (5.17) if T is replaced
by R and the subscript v on the Duler angles is dropped.

Changes in these angles are determined by the
dynamical equations of motion. If R‘* is the displace-
ment from the energy center to a fixed element in the
rigid body, then T{" is zero and Rmremain constant
throughout the motion (ef. Sect. 3. Egs. 9 to 11).

V. Summary.
The passage from the space frame S to the body
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freme B is accomplished through the vierbein representa-
tion

L\Fp = L1(v TV&—R"F

(5.24)
k= Lkv_r’dﬂa(ﬁ-l_"v'i‘vufl{&f +LPVTV&;K<P i
LY AR

=K ] 13

L\‘a LI"‘T Rg‘(‘L LKLM q (5.26)
k- | ¥ e

YL Sm_-%_{&%_.\ (5.27)

L[t o | TRt
T = rm (5.28)

o Tra
_n:\ o~ e AM _ ’O«‘f" ,Um)(5-29)
e =TT R "‘%L,.( TR

°© :‘i".wve‘:tilrl ~ &, 0 A S
R 'o Arwkwf% -
|

GTS«.“@‘_ “}L“S““&rw -é UN#‘_ qﬁ_Sw.a‘-Su*r (5 30)
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