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PREFACE

This book is a sequel to my Electricity and Magnetism,
2nd ed., (Electret Scientific, Star City, 1989) and Causality,
Electromagnetic Induction, and Gravitation, (Electret Scientific,
Star City, 1992). It is a result of a further exploration of the
classical theory of fields in search of heretofore overlooked
relations between physical quantities and heretofore overlooked
applications of the theory. The book is divided into two parts. The
first part, Chapters 1 to 5, presents the fundamentals of the theory
of electromagnetic retardation with emphasis on recently
discovered relations and recently developed mathematical
techniques. The second part, Chapters 6 to 11, presents the
fundamentals of the theory of relativity based entirely on the
theory of electromagnetic retardation developed in the first part.

Electromagnetic retardation is as yet a fairly obscure concept,
and therefore an explanation of what it is and why a book needs
to be written about it is in order.

Electric and magnetic fields propagate with finite velocity.
Therefore there always is a time delay before a change in
electromagnetic conditions initiated at a point of space can
produce an effect at any other point of space. This time delay is
called electromagnetic retardation. Recent studies have shown that
electromagnetic retardation is of overriding importance for the
general electromagnetic theory and, by extension, for the entire
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classical theory of fields. We now know that electromagnetic
retardation manifests itself in many different ways including, but
not limited to, electromagnetic cause-and-effect relations,
electromagnetic waves generated by oscillating electric charges
and currents, electromagnetic fields and potentials of time-
dependent charge and current distributions, electromagnetic fields
of moving charge distributions, mechanical relations between
time-dependent or moving charges and currents, dynamics of
atomic systems, time relations in moving electromagnetic systems,
and the visual appearance of moving bodies. Perhaps the most
important recently discovered aspect of the now evolving theory
of electromagnetic retardation is that this theory leads to, and
duplicates, many electromagnetic relations that are customarily
considered to constitute consequences of relativistic
electrodynamics. In fact, it is now clear that there exists an
intimate relation between the theory of electromagnetic retardation
and the theory of relativity. Obviously then, the phenomenon of
electromagnetic retardation and its theoretical representation must
be thoroughly understood and investigated.

In contrast with the theory of electromagnetic retardation, the
theory of relativity is fairly familiar. However, as far as its
scientific essence is concerned, the theory of relativity means
different things to different people. It is important therefore to
give a clear definition of the expression "theory of relativity" as
it is used in this book.

In this book, "theory of relativity" (or "relativity theory," or
simply "relativity") is used as a collective term for the body of
equations, methods, and techniques whereby physical quantities
measured in one inertial frame of reference can be correlated with
physical quantities measured in any other inertial frame of
reference.

As already mentioned, there exists an intimate relation
between the theory of electromagnetic retardation and the theory
of relativity. On the basis of this relation, all the fundamental
equations of the theory of relativity, including equations of
relativistic electrodynamics and relativistic mechanics, are derived
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PREFACE vii

in Chapters 6 to 8 in a natural and direct way from equations of
the theory of electromagnetic retardation without any postulates,
conjectures, or hypotheses. As a result, Maxwellian electro-
magnetism, electromagnetic retardation, and the theory of
relativity are united in this book into one simple, clear, and
harmonious theory of electromagnetic phenomena and of
mechanical interactions between moving bodies.

An important consequence of the theory of relativity
developed in the above manner is the revelation of certain basic
errors in the interpretation and use of Einstein’s special relativity
theory. The nature of these errors and the ways to avoid them are
explained in Chapter 9.

One of the most controversial elements of Einstein’s special
relativity theory is his idea of universal kinematic time dilation,
according to which the rate of all moving physical and biological
"clocks" is uniformly dilated in consequence of nothing other than
the relative motion of the clocks. As is shown in Chapter 10,
moving elementary electromagnetic clocks indeed run slower than
the same stationary clocks, but their slower rate is a consequence
of dynamic interactions and depends on both the velocity and the
construction of the clocks.

An extension of the theory of relativity, as it is developed in
this book, leads to a covariant theory of gravitation analogous to
relativistic electrodynamics. This extension is presented in Chapter
11, the concluding chapter of the book.

Although the book presents the results of original research, it
is written in the style of a textbook and contains numerous
illustrative examples demonstrating various applications of the
theory developed in the book. Therefore it can be used not only
for independent reading, but also as a supplementary textbook in
courses on electromagnetic theory and on the theory of relativity.

I am pleased to acknowledge with gratitude a stimulating
exchange of correspondence with P. Hillion, J. J. Smulsky, V. N.
Strel’tsov, and W. E. V. Rosser on some aspects of the theory of
relativity, and with M. A. Heald on the subject of electromagnetic
retardation.
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I am very grateful to S. W. Durland and D. K. Walker for
carefully reading the manuscript and for their most useful
suggestions and recommendations.

Special thanks are due to Yu. G. Kosarev who believes that
retardation is a universal phenomenon that should be properly
treated in a new branch of physics which he proposes to call
"retardics." His comments are highly appreciated.

Finally, I am very grateful to my wife Valentina for
proofreading the numerous versions of the manuscript and for
otherwise helping me to make the book ready for publication.

Oleg D. Jefimenko
April 14, 1997

PREFACE TO
THE SECOND EDITION

The second edition of this book is intended to update the
presentation of the subject matter and to correct the misprints and
other errors that appeared in the first edition. Sections 8-2, 9-4,
and 11-3 have been rewritten. Two new Appendixes have been
added. Particularly important is Appendix 3, containing an analysis
of the physical nature of electric and magnetic forces and
presenting a novel interpretation of the "near-action” mechanism
of electromagnetic interactions.

I am pleased to express my gratitude to my wife Valentina for
her assistance in the preparation of this edition of the book.

Oleg D. Jefimenko
March 31, 2004
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RETARDED INTEGRALS
AND OPERATIONS WITH
RETARDED QUANTITIES

The fundamental laws of electromagnetism are represented
mathematically by Maxwell’s electromagnetic equations. The
general solution of these equations for electromagnetic fields in a
vacuum is expressed in terms of "retarded" field integrals which
constitute the basic mathematical element in the general theory of
time-dependent  electromagnetic  phenomena. A thorough
understanding of the properties and use of retarded integrals is
therefore indispensable for formulation and application of the
theory. In this chapter we shall acquaint ourselves with retarded
integrals and with operations involving quantities and expressions
appearing in these integrals.

1-1. Vector Wave Fields and Retarded Integrals'

The vector wave field is the field of a vector V which satisfies
the inhomogeneous wave equation (also known as the general
wave equation)

2
vxvxV+L19Y gy, (1-1.1)
c? 01?2

where K is some vector function of space and time which, for
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simplicity, will be assumed here to be zero outside a finite region
of space (this differential equation constitutes a mathematical
expression for a wave-like disturbance that propagates in space
with the speed c).

An important property of a vector wave field is that this field
can be represented by the retarded field integral and retarded
potentials, as explained in the following theorem.

The Wave Field Theorem. A vector field V satisfying Eq. (1-
1.1) and vanishing at infinity can be represented by the retarded
integral

V=- ijwdva (1-1.2)
4w r

where the brackets are the "retardation symbol," to be explained
below, and r is the distance from the source point P'(x', y', 2')
where the volume element of integration, dV’, is located to the
field point P(x, y, z) where V is being determined; the primed
operator V' operates on the source-point coordinates only. (Note:
The integration in the above integral is over all space; except
when noted otherwise, the integration in all integrals that follow
is also over all space.)

The derivation of Eq. (1-1.2) is mostly of historical interest
and will not be presented here.? In lieu of the derivation we shall
show in Example 1-2.3 that Eq. (1-1.1) is satisfied by V given by
Eq. (1-1.2).

Corollary 1. A vector field V satisfying Eq. (1-1.1), vanishing
at infinity, and having zero divergence outside a finite region of
space can be represented by the retarded scalar potential ¢ and the
retarded vector potential A as

V=-Vp+VXxA, (1-1.3)

with ¢ and A given by
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V-V +K
o = %][__r;lldw 0, (1-1.4)
and
A= L[y A (1-1.5)
47l 1 0

where K, and K, are the ordinary potentials of the function K of
Eq. (1-1.1) (so that K = — VK, + V X K,), both vanishing at
infinity, and ¢, and A, are arbitrary constants.

Corollary II. A vector field V satisfying Eq. (1-1.1),
vanishing at infinity, and having zero divergence outside a finite
region of space can be represented by the retarded scalar potential
¢ and the retarded vector W as

V=-Vo+W, (1-1.6)
with
/.
o - L] V- Vgy: + o, 1-1.7)
4T r
and
w=-L[Bayow, (1-1.8)
Y U

where ¢, and W, are arbitrary constants. The proof of these
corollaries is presented in Examples 1-2.1 and 1-2.2.

The retardation symbol [ ] indicates a special space and time
dependence of the quantities to which it is applied and is defined
by the identity

1 = fx'.y'.2' t-rlo), (1-1.9)

where ¢ is the time for which the retarded integrals are evaluated.
Thus the value of a function placed between the retardation
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symbol [ ] is not that which the function has at the time ¢ for
which the integrals are evaluated, but that which it had at some
earlier time ¢t' = ¢t — r/c, or, as one says, the function is retarded.

The integrals of retarded quantities, or refarded integrals, are
mathematical expressions reflecting the phenomenon of "final
signal speed" - that is, the fact that a certain time r/c must elapse
before the results of some event at the point x', y’, z' can produce
an effect at the point x, y, z separated from the point x’, y’, z' by
a distance r.

Retarded integrals are closely associated with the principle of
causality. According to this principle, all present phenomena are
exclusively determined by past events. Therefore equations
depicting causal relations between physical phenomena must, in
general, be equations where a present-time quantity (the effect)
relates to one or more quantities (causes) that existed at some
previous time. As we shall presently see, in electromagnetic
theory retarded integrals are "causal equations" expressing electric
and magnetic fields and potentials in terms of their causative
sources: the electric charge density p and the electric current
density J.?

1-2. Mathematical Operations with Retarded Quantities

Mathematical manipulations with retarded integrals frequently
require applications of the operator V to retarded quantities. When
applying V to such functions, one should take into account that
they depend on space coordinates not only explicitly, but also
implicitly through

r={@-xy+@ -y P+ " (1-2.1)
appearing in the retarded time ¢’ ~ r/c. One also should take into

account that V may operate with respect to x, y, z coordinates as
well as with respect to x’, y’, z’ coordinates. Finally, one should
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take into account that a V operation may be performed upon a
retarded quantity taken at the instant # = constant as well as at the
instant ' = t — r/c = constant (the latter operation is identical
with the corresponding operation upon the same unretarded
quantity, combined with the subsequent "retardation" of the
resulting expression by replacing in this expression ¢ by t — r/c).

Let us designate an unspecified scalar or vector function fix’,
y', 7', f), together with an appropriate multiplication sign, if
needed, by X. To avoid ambiguities with V operations involving
X, we shall employ special notations, as follows. If an operation
is to be performed with respect to primed coordinates, we shall
use the primed operator V' in writing this operation, and we shall
use the ordinary operator V for designating operations with
respect to unprimed coordinates. If an operation upon a retarded
X is to be performed considering the retarded time ¢ — r/c as
constant, we shall denote the operation as [VX] or [V'X], placing
both the operator and the function upon which it operates between
the retardation brackets, and we shall use the ordinary notations
VI[X] or V'[X] for operations upon retarded functions when these
operations are to be performed considering the present time f,
rather than ¢ — r/c, as constant.

We shall frequently use expressions and operations involving
the radius vector connecting a volume element dV' of an electric
charge or current (the source point x', y’, z') with the point of
observation (the field point x, y, z). If this radius vector is
directed toward the field point, we shall designate it as r, if it is
directed toward the source point, we shall designate it as r’.
Likewise, we shall designate the corresponding unit vectors as r,
and r',. Observe that sincer = (x —x)i + (y — y)j + (z —
ZDkandr' = (x' —x)i+ (' — yj + (@' — 2k, the vector r'
= —r, so that the result of any operation upon r’ or r’ with V or
V' is the negative of the result of the same operation upon r or 7,
and the result of any operation upon r, r’, r or ' with V is the
negative of the result of the same operation with V'.

!
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We shall now derive several useful operational equations for
retarded functions. Let us consider the operation a[X])/dx’ | ;. . ,»
where [X] is some retarded scalar or vector function.* Taking into
account that retarded functions depend on x’, y’, and z’ not only
directly, but also indirectly through r, we can write

oX]|  _ aIX] .0

oIX] OIX] _0X] L8@-rlo) (10
ox’ Iy ax! ly2lu-ne O(t-rlc)

xl’yl’zl ax/

We can simplify the last expression by noting that

% T [ﬁ)ﬁ] , (1-2.3)
a@-ric)lxy.z Latlxy.o
and that, by Eq. (1-2.1),
a-ric)y _ x-x' _ cosoz’ 1-2.4)
ox’ cr c

where cos « is the direction cosine of vector r with respect to the
x axis (Fig. 1.1). We then obtain

a[X] _ 0[X] . cosa[OX]

—_— —_ . (1-2.5)
ax’ lyze  ax! lyzu-ne ¢ Lot

x’,y’,z’

Analogous expressions can be obtained also for d[X]/dy’ | .. .,
and for 8[X)/dz' | ., ,- If we now multiply these expressions by
the unit vectors i, j, and k, respectively, and then add them
together, we obtain the following operational equation

X] = [v'X] + e[¥X 1-2.6

V/[X] = [V'X] ?[W], (1-2.6)
where
o= I _ia-x) +jo-y) + k@z-2)

Loy r (1-2.7)

icosae + jcosB + kcosy

is the unit vector directed along r toward the point x, y, z (cos 3
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A -x:}.’;z

PAPYY e |

x)?)’z a\

=Y

V4

Fig. 1.1 The direction cosine of r with respect to the x axis is coso
= (x — x’)/r.

and cos <y are the direction cosines of r with respect to the y and
Z axis, respectively).

In a similar manner we can obtain the corresponding equation
for the unprimed V (assuming that X does not explicitly depend
onx,Yy,2) rax

VIX] = - _z[_]. (1-2.8)
clor

Combining Egs. (1-2.8) and (1-2.6), we obtain an equation
correlating one unprimed V operation with two primed V
operations

[V/X] = V[X] + V/[X]. (1-2.9)

Differentiating V{[X]/r} and using Eq. (1-2.9), we obtain the

correlation

X o nX v | ndX] | vrx) VIX] (1210
r

r r2 r r2 r

and, combining the first and the last term of the last part of Eq.
(1-2.10), we obtain a useful equation

VXl v X, v XT 1-2.11)
r r r
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Another useful equation is obtained by eliminating V[X] from
the middle part of Eq. (1-2.10) by means of Eq. (1-2.8):

vXl_ o nIX1 Tyox) (1-2.12)
r r? rcl ot
Finally we note that, since
aX] _ d[X]

, (1-2.13)

a(t-ric) ot

we have, by Egs. (1-2.3) and (1-2.13),
[%] - 9X] (1-2.14)

ot ot

v

Example 1-2.1 Prove Corollary I to the wave field theorem,
assuming that V - V, K|, and K, are zero outside a finite region of
space.

Expressing in Eq. (1-1.2) Kas K = — VK, + V x K, and
using Eq. (1-2.11), we have
v - V) -
V=-LJ[V(V V) K1y
4T r
V/(V! - V)+V'K -V’ x
- LJ[ V- N+VE Kl gy (1-2.15)
4 r
- - _lfvwdw —_I__IV’M(W’
47 r 4T r
. _I_IVx[_KZ]dV’ + _I_Jv' « Iy
4T r 4T r

The second and the fourth integrals of the last expression can
be transformed into surface integrals by using vector identities (V-
20) and (V-21) (see Appendix for a list of vector identities). But
since, by supposition V + V, K|, and K, are zero outside a finite
region of space, while the surface integrals are taken over all space,
the integrals vanish. We thus have
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V/ «V+K
V=-1[V[ + ‘]dV’+1

1 _[Vx K v -2.16)
4T r T r

Factoring V out from under the integral signs (we can do so
because the integration is with respect to primed coordinates, while
V operates upon the unprimed coordinates) and designating the
resulting integrals as ¢ — ¢, and A — A,, we obtain Corollary I to
the wave field theorem.

Example 1-2.2 Prove Corollary II to the wave field theorem.
As in the preceding example, we have

1ol .
v-- L[FC VR - Ly Vg
47r r 4T

-
- Lw [V - V1 1, LI (1-2.17)
4T r 4r ) r

The second integral of the last expression is, as in Example 1-2.1,
zero. We thus have

41r r 47r r

T V<47r.I v r ] dV,) 417rl—[$dw'

(1-2.18)

Designating the first integral as ¢ — ¢, and the second integral
as W — W, we obtain Corollary II to the wave field theorem.

Example 1-2.3 Show that V given by Eq. (1-1.2) satisfies Eq. (1-
1.1)
Using vector identity (V-16), we can rewrite Eq. (1-1.1) as

VIV - 12‘;" VV-V)-K =Z, (1-2.19)
&

c

where we have denoted V(V - V) — K as Z for simplicity.
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Let us now divide the volume of integration in Eq. (1-1.2) into
two parts: Vol, and Vol,. Let Vol, be a very small region close to
the point of observation, so that within this region the retardation
can be neglected. We then have from Eq. (1-1.2)

V. - - _1_I Z 4y, (1-2.20)
1 47 ) vol1 p

where the integral is not retarded. But this integral represents the
well-known solution of the Poisson equation’®

vV, = Z. (1-2.21)

The contribution of Vol; to V?V in Eq. (1-2.19) is therefore given
by Eq. (1-2.21).

Let us now determine the contribution of Vol, to V?V in Eq. (1-
2.19). From Eq. (1-1.2) we have

vy =v2(—i[ [_Z]dV')=—iI vy 1222
2 4 Jvo2 47 ) Vo2 r

where we have placed V? under the integral sign, because V?
operates upon the unprimed coordinates, while the integration is
with respect to primed coordinates.

We can evaluate the last integral in Eq. (1-2.22) by integrating,
in turn, the x, y, and z components of the integrand. Taking into
account that V? can be expressed as V -+ V, using Egs. (1-2.12),
(1-2.8), and (1-2.14), and remembering that V « r = 3, V(1/r") =
— (/P*Hr, and r * r, = r, we find, after somewhat lengthy but
very simple calculations®

2
vey, = - L[ Ty (1-2.23)
* 4 J vol2 e 29t

Since similar equation can be obtained also for the y and z
components of V,, Eq. (1-2.22) becomes
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V2V, =

2 P[Z] -
\ ﬂj T8 av. (1-2.24)

vol2 ye29t?

Factoring out %/c*0¢*, we have

2
vV, = L(— ij _@dv'), (1-2.25)
2 c20t? 41 ) vei2 r

or, by Eq. (1-1.2), remembering that Z = V(V - V) — K,

v
viv, = __2. (1-2.26)
i
The contribution of Vol, to V?V in Eq. (1-2.19) is therefore given
by Eq. (1-2.26).
Adding now Egs. (1-2.21) and (1-2.26), we obtain

Y
: + 7. (1-2.27)

2 -
VAV, + V) = pErY

Since Vol, can be made as small as we please compared to Vol,,
8°V,/c*07 can likewise be made as small as we please compared to
8°V,/c*0F. Therefore, assuming that Vol, < Vol,, we can add
0°V,/3d7 to the right side of Eq. (1-2.27) without affecting the
equation. We then have

v vy -2V OV, @ 1-2.28
\% (V1+ 2)- 626t2+c26t2+ = czatz(V1+V2)+Z, (1-2.28)
or
2
VAV, + V) - c?aﬁ(v‘ +V) =2, (1229

so that V, + V,, and therefore V given by Eq. (1-1.2) does indeed

satisfy Eq. (1-1.1). N
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RETARDED INTEGRALS FOR
ELECTROMAGNETIC FIELDS
AND POTENTIALS

A basic problem in electromagnetic theory is the obtaining
of equations expressing electric and magnetic fields and potentials
in terms of their causative sources: electric charges and currents.
In the case of time-dependent systems, the most general equations
expressing electric and magnetic fields and potentials in terms of
charges and currents involve retarded integrals. Electric and
magnetic fields and potentials expressed in terms of retarded
integrals are called retarded electric and magnetic fields and
potentials. In this chapter we shall derive several types of
equations for retarded fields and potentials of time-dependent
charge and current distributions and shall give examples of the use
of these equations.

2-1. Maxwell’s Equations and the Wave Field Theorem

The basic electromagnetic field laws are represented by four
Maxwell’s equations which, in their differential form, are!

V-D =p 2-1.1)

V-B

0 2-1.2)

15
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VXE - - B (2-1.3)
a7
and
VxH=J+%, (2-1.4)

where E is the electric field vector, D is the electric displacement
vector, H is the magnetic field vector, B is the magnetic flux den-
sity vector, J is the electric current density vector, and p is the
electric charge density. For fields in a vacuum (the only fields
with which we shall be concerned in this book), Maxwell’s
equations are supplemented by the two constitutive equations

D = ¢E 2-1.5)
and

B = pH, (2-1.6)
where ¢, is the permittivity of space and p, is the permeability of
space. (The names and designations of electromagnetic quantities
used in this book are the same as those used in Ref. 1.)

In Maxwell’s equations electric and magnetic fields are linked
together in an intricate manner, and neither field is explicitly
represented in terms of its sources. However, with the help of the
vector wave field theorem introduced in Section 1.1 we can
express each field in terms of its causative sources. To do so, we
shall first convert Egs. (2-1.1) - (2-1.4) into two inhomogeneous
wave equations, thereby separating the two fields one from the
other.

Taking the curl of Eq. (2-1.3) and using Eq. (2-1.6), we have

a a
VXVXE=-_VxB=-4_VxH. 2-1.7
ot Fog; ( )

Eliminating V X H by means of Eq. (2-1.4) and using Eq. (2-
1.5), we obtain
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aJ D ’E
VXVXE = ~Rogs —;,Lo_a_lE = 'F‘o% —soﬁ‘o%ﬁ- (2-1.8)

Rearranging terms and replacing &u, by 1/¢*, we finally obtain

1 0’E aJ
V><V><E+?W =—pOE. 2-1.9)

Taking now the curl of Eq. (2-1.4) and using Eq. (2-1.5), we
have

VXVxH=VxJ+2VxD=VxJ+gIVxE. (2110

Eliminating V X E by means of Eq. (2-1.3) and using Eq. (2-
1.6), we obtain

VX UxH=VxJ -5, 5B cvxI e, 0. @11
Tar* ar?
Rearranging terms and replacing gqu, by 1/c?, we finally obtain

°H

—r VX (2-1.12)

VXVxH + L
C2

Equations (2-1.9) and (2-1.12) are the general electromagnetic
wave equations for the electric and magnetic fields, respectively.
Applying Eq. (1-1.2) (the vector wave field theorem) to Egs. (2-
1.9) and (2-1.12), we can write for the electric field

[V’ V' E)+p— ZJ

E - - __[ tav. (2-1.13)
4T r

and for the magnetic field



18 CHAPTER 2 RETARDED FIELDS AND POTENTIALS

b J[v/(v'-H)—v'xJ

il av’, (2-1.14)
47

P
where E and H are determined for the instant ¢, and the quantities
in the brackets are taken at the corresponding retarded time ¢’ =
t — ric (c is the velocity of light in a vacuum).

2-2. Solution of Maxwell’s Equations in Termns of Retarded
Integrals

According to Egs. (2-1.1) and (2-1.5), V « E = p/g,, and

according to Eqs. (2-1.2) and (2-1.6), V - H = 0. Applying these
relations to Eqs (2-1.13) and (2-1.14) and noting that gou, = 1/¢2,

we obtain
ry
E--_1 j av (2-2.1)
dre, r
and
!
H - [[V XN gy (2-2.2)
4T r

Equations (2-2.1) and (2-2.2) constitute solutions of
Maxwell’s equations for fields in a vacuum and represent the
electric and magnetic fields in terms of their causative sources: the
electric charge and current distributions.? Since the fields in Egs.
(2-2.1) and (2-2.2) are expressed in terms of retarded integrals,
these fields are called retarded fields.

There are several special forms into which Eqs. (2-2.1) and
(2-2.2) can be transformed. One such special form is obtained
from Egs. (2-2.1) and (2-2.2) by eliminating from them the spatial
derivatives. This can be done as follows.

Writing Eq. (2-2.1) in terms of two integrals and using vector
identity (V-33) to transform the first integral, we have
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o | U[v'p]dv, 11 aJ]dV,}

dre ) 7 ot (2-2.3)
el oo 1)

The second integral in the last expression can be transformed into
a surface integral by means of vector identity (V-20). But this
integral vanishes, because p is confined to a finite region of space,
while the surface of integration is at infinity. Transforming the
integrand in the first integral by means of vector identity (V-34)
and using r, = r/r, we then obtain for the electric field

E=_1_I{£’! la"]} avi -1 II[OJ]dV’ (2-2.4)

4me, I U3 r2cl ot 4me,c? or

Similarly, applying vector identities (V-33) and (V-21) to Eq.
(2-2.2), taking into account that there are no currents at infinity,
and using vector identity (V-34), we obtain for the magnetic field

H - 47r[ {[;” 1 [%‘H}erV’ (2-2.5)

Observe that in Eqgs. (2-2.4) and (2-2.5) the vector r is directed
toward the point of observation (the field point).

Equation (2-2.4) represents a generalization of the electrostatic
Coulomb’s field integral to time-dependent systems and reduces
to that integral in the case of time-independent fields in a vacuum.
Likewise, Eq. (2-2.5) represents a generalization of the Biot-
Savart’s integral for magnetic fields and reduces to that integral
in the case of time-independent systems.>

Another form of the field equation for E can be obtained as
follows. According to the conservation of electric charge law (the
continuity law),*
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dp
o

Therefore the contribution that dp/0t makes to the first integral in
Eq. (2-2.4) can be expressed as

/ .
IL @]rdv’ - - Jurdw. 2-2.7)
ricl ot r

=-V.J. (2-2.6)

Using now vector identity (V-30) with r, = r/r for transforming
the last integral, and using vector identity (V-8), we obtain

V' -3, (V-] - [ovon
-[ ri rdV’—J( P g r)dV’ (2-2.3)

=I(‘ [J] r[J] vl [aJ/az]r) v

r? r? ric?

Next, using vector identity (V-23), we transform the first term in
the integrand of the last integral, obtaining

J_IC:V’ - Dlgyr - f%(ﬂ}. -dS’) . HE.Z]_ V’)%dV’. (2-2.9)

r? r r

Since the integration is over all space, and since there is no
current at infinity, the surface integral in Eq. (2-2.9) vanishes.
Applying vector identity (V-4) to the integrand of the remaining
integral in Eq. (2-2.9) and remembering that a V' operation upon
r is the negative of the same V operation (see Chapter 1, p. 7),
we then have

j_r_vf gy - j[‘“ av’. (2-2.10)
c r? cr?

From Egs. (2-2.7), (2-2.8), (2-2.9), and (2-2.10), we obtain
therefore
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jr—ic[%]dv -~ [ - Eypr Loy 21

Substituting Eq. (2-2.11) into Eq. (2-2.4) and taking into account
that V'(1/7%) = 2r/r*, we finally obtain®

- 1 j[p] /
) o 2-2.12)

1 I{E-Zr.[ﬂ._r.— r [aJ]°r+ 1 _aLI_]}dV’.

dwec )\ r? r4 rclar rclof

It is important to note that although in Egs. (2-2.1)-(2-2.12)
the charge density, the current density, and their derivatives are
retarded, retardation can frequently be neglected, in which case
the above equations can be used with ordinary (unretarded) charge
density, current density, and their derivatives. Let us define the
"characteristic time" of an electromagnetic system as the time T
during which the charge density, the current density, or their
temporal derivatives experience a significant change. For
example, in the case of periodic charge and current variations, T
may be assumed to be the period of the oscillations, and in the
case of monotonously changing charges and currents, T may be
assumed to be the time during which the charge density, the
current density, or their temporal derivatives change by a factor
of two. Let us now assume that the largest linear dimensions of
the system under consideration is L. If T and L satisfy the relation

T > Llc, (2-2.13)

then no significant change occurs in the system during the time
that the electric or magnetic field signal moves across the system,
and therefore the retardation in the propagation of the electric or
magnetic fields within the system is negligible. In Section 2.5 we
shall discuss in some detail electromagnetic effects in systems to
which Eq. (2-2.13) applies.
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v

Example 2-2.1 A thin circular ring of radius a and cross-sectional
area s carries a uniformly distributed charge ¢g. At ¢ = O the ring
starts to rotate with constant angular acceleration « about its
symmetry axis which is also the x axis of rectangular coordinates
(Fig. 2.1). Find the electric and magnetic fields at a point x on the
axis for t > 0.

Fig. 2.1 Calculation of the

electric and magnetic fields

x  on the axis of a charged
ring rotating with angular
acceleration a.

The current density J created by the rotating ring is J = pv =
pwal, = patal,, where p is the charge density in the ring, w is the
angular velocity of the ring, and 6, is a unit vector in the circular
direction (right-handed with respect to x). The time derivative of J
is 0J/0t = paab,. In terms of g, the current density and the
derivative are J = (qot/27s)8, and 8J/0t = (qo/27s)0,.

To find the electric field, we can use Eq. (2-2.4). Since dJ/d¢
is in the circular direction, and since r is the same for all points of
the ring, the second integral in Eq. (2-2.4) makes no contribution
to the electric field on the axis (the contributions of any two volume
elements on the opposite ends of a diameter cancel each other).
Since the charge density does not depend on time, the contribution
of the first integral is

E=1[

P rav’, (2-2.14)
dme, ) r?

r

which is identical with the expression for the electrostatic field
produced by a stationary charge density p. The solution of Eq. (2-
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2.14) for a charged ring is well known,® and therefore we shall
reproduce it here without calculations. It is
E=-__ ¥ j (2-2.15)
4me(a® +x2)*"
To find the magnetic field, we can use Eq. (2-2.5). Expressing
[J] and [0J/07] in Eq. (2-2.5) in terms of ¢, «, s, and 0,, we have

H - LH‘J"‘(”’/% v 9 0u}xrdV/
4T 2wsrd Y ric2ws

=iH gt g 9% g . 9% 0u}xrdV’ (2-2.16)
4t ) 2qsr? ric2ws r’c2ms

- LH 9ot }erV’.
473 Qgsp3 ¥

The current formed by the ring is filamentary. Its magnitude is
I = Js = qat/2w. Since the current is filamentary, the volume
element dV' in Eq. (2-2.16) can be written as sdl’', where dl’ is a
length element along the circumference of the ring. Furthermore,
we can combine #, and dl’ into the vector dl' = dl’§,. We then
have from Eq. (2-2.16)

H - - _1_<f_[_rxdl’, (2-2.17)
4 ) p3

which is identical with the expression for the magnetic field
produced by a time-independent filamentary current /. The solution
of Eq. (2-2.17) for a ring current is well known.” It is

2
H=-_12 (2-2.18)
2((12 +x2)3/2

or, substituting I = gat/27,
2
H-__ 9% (2-2.19)
4m(a® +x%)>*"

The surprising result of this example is that neither the electric
nor the magnetic field on the axis of the rotating ring is affected by
retardation.
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Example 2-2.2 Electromagnetic waves can be generated by a
radiating "electric dipole antenna." It consists of a piece of straight
open wire which carries a current

I = I sinwt. (2-2.20)

The current in the wire is produced by cutting the wire in the
middle and connecting the two parts to a source of alternating
current. If the length / of the antenna is much smaller than the
wavelength of the generated waves, [ < A = 27c/w, the antenna is
called a "Hertzian dipole." In a Hertzian dipole the current is the
same along the entire length of the antenna. Find the magnetic and
electric fields produced by the Hertzian dipole shown in Fig. 2.2,
at a large distance r > [ from the dipole.

z T k
6 /
\ ry . .
ol ¢?’\ Fig. 2.2 Calculation of the
)

electric and magnetic fields
generated by an electric
dipole antenna. (The unit
vector ¢, is directed into
the page.)

To find the magnetic field, we can use Eq. (2-2.5). Since the
current in the antenna is filamentary, we can replace the volume
integral in this equation by a line integral (note that for a
filamentary current JdV' = Jsdl' = Idl', where s is the cross-
section area of the conductor, and dl’ is a length element vector in
the direction of J). Furthermore, since the antenna is along the z
axis, we can write Eq. (2-2.5) as

H-_L J {L’l + L "’_’]}k xrdl’. (2-2.21)
4 I\ 3 p2c0l0t
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Differentiating Eq. (2-2.20), replacing ¢ in Eq. (2-2.20) and in
its derivative by the retarded time ¢ — r/c, and substituting the
resulting expressions in Eq. (2-2.21), we then have

H=__
4T 3

1 Hlosinw(t -rlc) . I wcosw(t - r/c)}k xrdl’. (2:2.22)
r r’c

Since, by supposition, r > N = 27c/w, the first term in this
integral is much smaller than the second term and can be neglected.
Since r > I, r may be considered the same for all points of the
antenna. The integral reduces therefore to the product of the second
integrand and the length of the antenna

_ Lywcosw(t - rlc)

H kXxrl, (2-2.23)

4mric
or, in terms of the coordinates shown in Fig. 2.2,

1y (-l
_ Ifwcoswlt - ric) indg, . (2-2.24)

dTrc

To find the electric field, we can use Eq. (2-2.12). Since we
are only interested in the electric field at a large distance from the
antenna, we can neglect in Eq. (2-2.12) all terms that approach zero
at infinity faster than as 1/r. We then have

E - __1_[{1 ﬂ]-r -1 ﬂ}}dV’, (2-2.25)
4mec?) (rilon rlot

which we can write similar to Eq. (2-2.22) as

E = 1 Hr(k.r)lowcosw(t -rlc) - Elowcosw(t - r/c)}dl’.
4me c? r? r
(2-2.26)
Taking into account that kK < r = r cos ¢, and replacing the
integral, as before, by the product of the integrand and the length
of the antenna, we obtain

E (2-2.27)

_ Hjwcosw(t - r/C){rcos0 _ k)
4me rc? Vo '
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Resolving r, and 8, shown in Fig. 2.2 into components along the z
and x axes, we can easily find that

rcosf _ Kk
r

Therefore we finally have

=r,cosf - k =sindé, . (2-2.28)

E - H wcosw(t - r/c)

sindé,. (2-2.29)
4mere?

An alternative method for obtaining Eq. (2-2.29) is to apply
Maxwell’s Eq. (2-1.4) to Eq. (2-2.24) and to integrate the result
with respect to 2.}

Example 2-2.3 Another system capable of generating electro-
magnetic waves is the radiating "magnetic dipole antenna,” shown
in Fig. 2.3. It consists of a circular loop of wire carrying a current

I = I;sinwt. (2-2.30)

Assuming that the radius of the loop is a, find the electric and
magnetic fields produced by this antenna at a large distance r > A\
= 27c/w > a from it.

zAKk
7
\ ru . )
_ b,z Fig. 2.3 Calculation of the

r>>a u 4 '
) o electric and magnetic fields
— | F u  generated by a magnetic
- ; )
a dipole an'tem.m. (Tﬁe unit
- x, 1 vector ¢, is directed into the
I=I0 smawft page.)

We shall find the electric field produced by the antenna by
using Eq. (2-2.4). Assuming that the antenna has no net charge, we
only need to consider the second integral in this equation. Since the
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current in the antenna is filamentary, the volume integral can be
replaced by a line integral (see Example 2-2.2). Differentiating then
Eq. (2-2.30) and replacing ¢ in the derivative by ¢t — r/c, we can
write Eq. (2-2.4) as

E = -

1 (}; I wcosw(t - r/c) v
r

, 2-2.31

4me,c? ( )
where dl' has the same direction as the current in the loop.
Transforming the integral in Eq. (2-2.31) by means of vector
identity (V-18), factoring out the constants, and using vector
identity (V-25), we have

E - - I de’  y/ Cosw(t = 1/c)
4’;‘3002 4 (2-2.32)
= + _Oio_ I {— ﬂsinw(t -ric) + lcosw(t - r/c)}ru x ds’.
dme,c? rc r?

But w/c = 2m/\ and, by the statement of the problem, r > \.
Therefore the second term in the last integral may be neglected, and
we obtain

g b jsinw(t—r/c)

P r,xds’.  (2-2.33)
71'806 r

Now, since r > a, we can replace the integral by the product of
the integrand and the surface area of the antenna, so that

E - - 1,9 sinw(t - ric)

r,Xxkma?, (2-2.34)
4mec? r

or

_ L*a’sinw(t - rlc)

E inb¢,. (2-2.35)

3
de.cor

The magnetic field can be determined from Eq. (2-2.5). Since
we are only interested in the magnetic field at a large distance from
the antenna, we can neglect in Eq. (2-2.5) the first term in the
integrand (it is proportional to 1/7%, and for large r is negligible
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compared with the second term, which is proportional to 1/r). We
then have, replacing as before volume integration by line
integration,

1 [ lywcosw(t -r/c)
L - r

H - xdl’.  (2-2.36)

4 ric
Since r » a, r may be considered the same at all points of the
antenna, and therefore we may factor out r/r, obtaining

H - - 1 r><(J;Iowcosco(t—r/c)dl,.

= (2-2.37)
4mcer r

But the integral in Eq. (2-2.37) is the same as in Eq. (2-2.31) for
E. By Egs. (2-2.37) and (2-2.31)-(2-2.35), we then have

H - Iow2a2 sinw(t - r/c)

o 5 sinfrXx ¢,. (2-2.38)
c r

or
2,42 .

_ Lwa® sinw(t - ric)
4c? r

H = sinfd . (2-2.39)

A

2-3. Surface Integrals for Retarded Electric and Magnetic
Fields

A remarkable feature of Egs. (2-2.1) and (2-2.2) is that they
correlate the electric field with the gradient of the charge
distribution and correlate the magnetic field with the curl of the
current distribution rather than with the charge and current
distribution as such. Hence, the equations may be interpreted as
indicating that the electric and magnetic fields are associated not
with electric charges and currents, but rather with the
inhomogeneities in the distribution of charges and currents (a
homogeneous, or uniform, charge distribution has zero gradient,
and a homogeneous, or uniform, current distribution has zero
curl).
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A frequently encountered charge or current distribution is a
distribution in which the charge or current changes abruptly from
a finite value in the interior of the distribution to zero outside the
distribution. For this type of charge and current distribution, Eqgs.
(2-2.1) and (2-2.2) can be transformed into special forms that are
more convenient to use than Egs. (2-2.1) and (2-2.2) themselves.

Consider first Eq. (2-2.1). In this equation the part of the
integral involving Vp can be separated into two integrals: the
integral over the boundary layer of the charge distribution under
consideration and the integral over the interior of the charge
distribution:

1 lep]dv/z 1 [ [V/p]dV/+ 1 I [V/p]dV/ (2-31)
dme,) dme, I 4re, Im 1 '

The first integral on the right of Eq. (2-3.1) can be transformed
by using vector identity (V-33):

1 J (V01 gy - 1 J viPlgyrs 1 j v Blay:
41['80 Bl r 47(80 B.1 r 47('80 B r (2_3 2)

In Eq. (2-3.2), V in the first integral on the right operates upon
the field point coordinates only. Therefore it can be factored out
from under the integral sign. The integrand in this integral will
then be [p]/r. Since both [p] and r are finite, while the integration
is over the volume of the boundary layer whose thickness, and
therefore volume, can be assumed to be as small as we please, the
integral vanishes. The second integral on the right of Eq. (2-3.2)
can be transformed into a surface integral by using vector identity
(V-20). Equation (2-3.2) can be written therefore as

/
1 J [V/p] av’ = 1 ._[p_]dS/ , (2-3.3)
dme, ) Blwer 1 4we, ) Blayer 1

where the surface integral is extended over both surfaces (exterior
and interior) of the boundary layer.
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In Eq. (2-3.3), dS’ of the exterior surface is directed into the
space outside the charge distribution, while dS’ of the interior
surface is directed into the charge distribution. However, since
there is no charge outside the charge distribution, the integral over
the exterior surface vanishes. Since the boundary layer can be
made as thin as we please, we can make the interior surface of the
boundary layer coincide with the surface of the charge
distribution. Reversing the sign in front of the surface integral, we
can write then Eq. (2-3.3) as

R Plas, @234
B.layer

4me, r 4we, ) Boundary  r

where the integration is now over the surface of the charge

distribution, and where the surface element vector dS’ is directed,

as usual, from the charge distribution into the surrounding space.
From Egs. (2-2.1), (2-3.1), and (2-3.4) we obtain

E-_L Vlgg- L[ Telgyr- 1 jl[ﬂ}dv'.
4e, | Boundary ™y dme, dmr 4mec?) rlor

(2-3.5)
This equation becomes especially simple in the case of a constant
(uniform) charge distribution surrounded by a free space. In this
case Vp in the interior of the distribution is zero, and Eq. (2-3.5)
simplifies to

E=-_1_ Wlye - 1 jl[ﬂ]dv'. (2-3.6)
4e, ) Boundary "y 4me,cr ) rioe

Consider now Eq. (2-2.2). Just as in the case of Eq. (2-2.1),
we can separate the integral in Eq. (2-2.2) into an integral over
the boundary layer of the current distribution and an integral over
the interior of the distribution. By the same reasoning as that used
to simplify Eq. (2-3.2), we find that the integral over the
boundary layer can be written as
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= V' X3 4y - =, vxHay. @37
41 ) B.layer r 47 ) B.layer r

Transforming the integral on the right of Eq. (2-3.7) into a
surface integral by means of vector identity (V-21), and taking
into account that there is no current in the space outside the
current distribution, we obtain, just as we obtained Eq. (2-3.4),

L V' X0 gy - L Wl us, 238
41 ) B.layer r 47 J Boundary
where the integration is over the surface of the current
distribution, and the surface element vector dS' is directed from
the current distribution into the surrounding space.

Equation (2-2.2) can be written therefore as

o Bxay « L[ Xy 239
47]' Boundary r 41 ) Intenor r

For the special case of V X J = 0 in the interior of the current

distribution, Eq. (2-3.9) simplifies to

1 Wy as. (2-3.10)

H=_"
47 ) Boundary  p
v
Example 2-3.1 A thin, uniformly charged disk of charge density
p, radius a, and thickness b rotates with constant angular
acceleration « about its axis, which is also the x axis of rectangular
coordinates. The midplane of the disk coincides with the yz plane
of the coordinates, and the rotation of the disk is right-handed
relative to the x axis (Fig. 2.4). Using Egs. (2-3.6) and (2-3.9), find
the electric and magnetic fields produced by the disk at a point of
the x axis, if at ¢ = O the angular velocity of the disk is @ = 0.
The disk creates a convection current J = pv = pwRl, =
patRl,, where R is the distance from the center of the disk, and 6,
is a unit vector in the circular direction (right-handed with respect
to «). The time derivative of J is dJ/0t = paRf,. To find V' X J,
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Fig. 2.4 Calculation of the
electric and magnetic fields on
the axis of a charged disk
»\\-p rotating with constant angular
acceleration o.

we use the relation v = @ X R and vector identity (V-12). Taking
into account that w is not a function of coordinates, we then obtain

V' xJ=V'X(wXR)=p[w(V'-R) -(w - V)R], (2-3.11)
and since R = y'j + z'k, while v + V' = wd/dx’', we have
V' XJ =2p0 =2pat = 2pati. (2-3.12)

Examining now Eq. (2-3.6) and taking into account that dJ/0¢
is in the circular direction, we recognize that the second integral in
Eq. (2-3.6) vanishes by symmetry (see Example 2-2.1). And since
p does not depend on time, we see from Eq. (2-3.6) that the electric
field of the disk is the ordinary electrostatic field given by

E-_1! Pas = _P " 2313

4we, ) Boundary r 4me, ) Boundary

Let us now evaluate the surface integral in Eq. (2-3.13). By the
symmetry of the system, only the two flat surfaces of the disk
contribute to the field on the axis. The back surface is located at x’
= — b/2, the front surface is located at x’ = + b/2. The direction
of the surface element vector dS' is — i for the back surface and +
1 for the front surface. We have therefore

- pi Jm 27RdR + oi J“ 27 RdAR
dwe, JO [R?2+(x +b/2)?12  4mey ) 0 [R? +(x -b/2)7]?

= - PL a2 s+ BI2)2 - (x +B12) - [@® + (x ~B/2)2] + (x - bI2)}.
2¢, (2-3.14)
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Since b < x, we can use the relation

[a? +(x £ b/2)"]V* =[a? +x? £ xb]V* =(a? +x»)'?[1 +xb/2(a® +x?)].

(2-3.15)
Substituting Eq. (2-3.15) into Eq. (2-3.14), we obtain after
elementary simplifications

pbl_ X

- (2-3.16)

E:

To find the magnetic field, we use Eq. (2-3.9). Substituting [J]
= paR(t-r/c)8, and [V' X J] = 2pa(t — r/c)iinto Eq. (2-3.9), we
have

=_1_ paR(t—r/c)o %dS’ +LI 2pa(t—r/c)dV,
4 J Boundary r " 41 ) int r (2_317)

By the symmetry of the system, only the curved surface of the disk
contributes to the first integral. At this surface R = a, r = (a* +
)2, 60, x dS' = — idS’, and the surface itself is S’ = 2mab. In
the second integral r is r = (R* + x*)'? and the volume element is
dV' = b2wRdR. The magnetic field is therefore

__.paalt-(a*+x»?/c*2wab _ ipc j = (R?+x2)V%/¢?
H=- #0170 AY) 1€ o nbRAR
1 41r(a2+x2)1/2 2T (R2+x2)”2 ™
- patazb +i paa b +lpOltb(a +x2)1/2 _lpOla b (2_3. 18)
2(a*+x?)”? 2c 7c
or

H = ipabt(a? +x2)‘”[1 - (2-3.19)

o)

It is interesting to note that neither the electric nor the magnetic
field of the rotating disk is retarded, just as was the case with the
fields of the rotating ring discussed in Example 2-2.1 (see,
however, Example 2-4.2).

A
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2-4. Retarded Potentials for Electric and Magnetic Fields

The calculation of time-dependent electric and magnetic fields
can sometimes be simplified by using retarded electromagnetic
potentials.

For the calculation of magnetic fields in a vacuum it is
convenient to use the potentials defined in Corollary I of Section
1-1. Substituting in Egs. (1-1.3), (1-1.4), and (1-1.5) V = B, V
V=V --B=0, K =0,and K, = p,J [because by Egs (2-
1.12) and (1-1.1) K = V X J in the wave equation for H, so that
K = u,V X J in the wave equations for B = puH], and leaving
out, as usual, ¢, and A,, we have

B - VXA, (2-4.1)
where
A=l | B gy (2-4.2)
ar ) r

If the current is filamentary, this equation reduces to
a-tofUa, 2-4.3)
4wl r

where dl’ is a length element vector in the direction of the
current.

For the calculation of electric fields in a vacuum it is
convemnient to use the potentials defined in Corollary II of Section
1-1. Substituting in Egs. (1-1.6), (1-1.7), and (1-1.8) V = E, V
- E=V - (Dley) = pleyg, K = — pydJ/ot [see Eq. (2-1.9)], and
leaving out ¢, and W, we have

E=-Vp+W, (2-4.4)
where
o= _1_ | o] gy (2-4.5)
dmey) 1
while
_ p’o 1 aJ] /
W=-_"’|2|=|@aV’. 2-4.6
47rj rlotr ( )
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Using Eq. (1-2.14) and taking into account that the integration
in Eq. (2-4.6) involves space coordinates only, we can factor out
d/0t from under the integral sign, obtaining

A YT P

Therefore, according to Eq. (2-4.2), Eq. (2-4.4) can be written as

E-=-Vp- ‘;_*‘t‘, (2-4.8)

where A is the retarded magnetic vector potential given by Eq. (2-
4.2) or Eq. (2-4.3).

The potentials ¢ and A given by Egs. (2-4.5) and (2-4.2) are
the retarded electromagnetic potentials. They represent a
generalization of the ordinary electric and magnetic potentials ¢
and A and reduce to them in the case of time-independent fields
in a vacuum.’

v
Example 2-4.1 Show that the retarded potentials ¢ and A satisfy
Lorenz’s condition

ad
V-A=- eO,LOT‘f (2-4.9)
From Egs. (2—4.5) and (1-2.14) we have
Op _ 0 [P] l[ap] /
= av’. (2-4.10
~fotoy jatr 47rjr6 ( )

But according to the continuity law, Eq. (2-2.6),

- dp = [V/. 2-4
so that

0(,0 (V' -J] ./
—__“av’. 2-4.12
" Eotogr ot 4t j r ( )

Transforming the integral in Eq. (2-4.12) by means of vector
identity (V-27), we have
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acp [J] / ) / [J] / 4
2 VeldadV +_2 |V - 224V, 2-4.13
0 ar at 47[‘.[ r 47[‘,[ r ( )

The last integral can be transformed into a surface integral by
means of the vector identity (V-19), and since there is no current at
infinity, the surface integral is zero, and so is the last integral. In
the first integral, V can be factored out from under the integral
sign. Therefore we obtain

- e, 0P "(’;;’ ver| [‘:] av’. 2-4.14)

Eliminating the last integral in Eq. (2-4.14) by means of Eq. (2-
4.2), we obtain Lorenz’s condition.

Example 2-4.2 Find the electric and magnetic fields at all points
of space far from the rotating ring described in Example 2-2.1 (Fig.

2.5).
¢ / S t.B
Fig. 2.5 Calculation of the electric

\ and magnetic fields far from the
4 '9. | charged ring rotating with constant

a, S’ angular acceleration. (The unit vector
* r>>a ¢, is directed into the page.)

At large distances from the ring, the ring constitutes a point
charge ¢, which does not depend on time. Therefore the electric
potential of the ring is the ordinary electrostatic potential

o=_-91_. (2-4.15)

Since the ring constitutes a convection line current / = got/2,
the magnetic vector potential of the ring is, by Eq. (2-4.3),
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qo(t-ric)2m d - qotp, ({) dr qauo

A - Zf‘i; ’ -1 §dv (2-4.16)

The last integral on the right of Eq. (2-4.16) is zero. The remaining
integral can be transformed into a surface integral by means of
vector identity (V-18). We then obtain

I

1 / 1
qa ”’0 dl qa ,“'0 l 2 dS / (2_4. 17)
r

where r’, is a unit vector directed from the point of observation
toward the surface element dS’.

Now, since the point of observation is far from the ring, the
integral can be replaced by the (vector) product of the integrand and
the surface area S’ of the ring, so that the vector potential is

ot
S B s - - Iy wy, (24.18)
8r2r? 872r?

where r, is a unit vector directed from the ring toward the point of
observation. The magnitude of the vector S’ is ma?, and the direction
is along the x axis. Designating the angle between r, and S’ as 6,
we then have for the vector potential

2

a“ol,
A = - L Togingg,, (2-4.19)

87r

where ¢, is a unit vector in the circular direction left-handed
relative to the x axis.
By Eq. (2-4.1), the magnetic flux density field associated with
this vector potential is
qa’orp,
8wr3

B=V XA =

(2cosfr +sindf ) (2-4.20)

(we do not reproduce the actual calculation of V X A, since it is
not important for the purpose of the present example; the
calculation is done by using the expressions for the curl of a vector
in spherical coordinates'®). It is interesting to note that this field is
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an ordinary (unretarded) field of a current dipole,'! and that on the
x axis (8 = 0) it reduces to the field found in Example 2-2.1 (for
x > a).

Let us now find the electric field of the ring. By Eq. (2-4.8),
(2-4.15), and (2-4.19), we have

a’o
B = ot * g S009, (24.21)
0

or, using g, = 1/¢,

2
E-_4Y4 T, + ‘1‘1"2‘2sin0¢u. (2-4.22)
dmeyr 8me,c’r

It is interesting to note that although the electric field of the
ring does not depend on ¢, the presence of the ¢, term makes the
field different from the electrostatic field of the ring. This term
represents the contribution of [8J/07] in Eq. (2-2.1) and represents
the "electrokinetic field" (see Section 2-5). In the case under
consideration, the electrokinetic field is circular and is directed
opposite to the current in the ring.

On the x axis, the electric field of the ring reduces to the field
found in Example 2-2.1.

A

2-5. Electromagnetic Induction

Electromagnetic induction is frequently explained as a
phenomenon in which a changing magnetic field produces an
electric field ("Faraday induction") and a changing electric field
produces a magnetic field ("Maxwell induction").

A detailed examination of the causal relations in time-
dependent electric and magnetic fields shows, however, that
neither of the two fields can create the other.> The causal
equations for electric and magnetic fields in a vacuum are the
retarded field equations discussed in Sections 2-2 and 2-3.
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According to Egs. (2-2.1), (2-2.2), (2-2.4), (2-2.5), and (2-
2.12), in time-variable systems electric and magnetic fields are
always created simultaneously, because they have a common
causative source: the changing electric current 8J/9z. Once
created, the two fields coexist from then on without any effect
upon each other. Therefore electromagnetic induction as a
phenomenon in which one of the fields creates the other is an
illusion. The illusion of the "mutual creation" arises from the fact
that in time-dependent systems the two fields always appear
prominently together, while their causative sources (the time-
variable current in particular) remain in the background.

As can be seen from Eq. (2-2.1) or from Eq. (2-2.4), a time-
variable electric current creates an electric field parallel to that
current (parallel to [8J/0r]). This field exerts an electric force on
the charges in nearby conductors thereby creating induced electric
currents in the conductors. Thus, the term "electromagnetic
induction” is actually a misnomer, since no magnetic effect is
involved in the phenomenon, and since the induced current is
caused solely by the time-variable electric current and by the
electric field produced by that current.

The electric field produced by a time-variable current differs
in two important respects from the ordinary electric field produced
by electric charges at rest: first, the field produced by a current
is directed along the current rather than along a radius vector, and
second, the field exists only as long as the current is changing in
time. Therefore the electric force caused by this field is also
different from the ordinary electric (electrostatic) force: it is
directed along the current and it lasts only as long as the current
is changing. Unlike the electrostatic force, which is always an
attraction or repulsion between electric charges, the electric force
due to a time-variable current is a dragging force: it causes
electric charges to move parallel (or anti-parallel) relative to the
direction of the current. If the time-variable current is a
convection current, then the force that this current exerts on
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neighboring charges causes them to move parallel to the
convection current, rather than toward or away from the charges
forming the convection current [the total force is, of course, given
by all the terms in Eq. (2-2.1) or Eq. (2-2.4)].

Since the electric field created by time-variable currents is
very different from all other fields encountered in electromagnetic
phenomena, a special name should be given to it. Taking into
account that the cause of this field is a motion of electric charges
(current), we may call it the electrokinetic field, and we may call
the force which this field exerts on an electric charge the
electrokinetic force.” Of course, we could simply call this field
the "induced field." However, such a name would not reflect the
special nature and properties of this field.

Let us designate the electrokinetic field by the vector E,.
From Eq. (2-2.4) we thus have

E - - __l__jl ﬂ}dva (2-5.1)
4me,c?) rlot

The electrokinetic field provides a precise and clear ex-
planation of one of the most remarkable properties of electromag-
netic induction: Lenz’s law. Consider a straight current-carrying
conductor parallel to another conductor. According to Lenz’s law,
the current induced in the second conductor is opposite to the
inducing current in the first conductor when the inducing current
is increasing, and is in the same direction as the inducing current
when the inducing current is decreasing. In the past no convincing
explanation of this effect was known. But the electrokinetic field
provides the definitive explanation of Lenz’s law: by Eq. (2-5.1),
the sign (direction) of the electrokinetic field is opposite to the
sign of the time derivative of the inducing current. When the
derivative is positive, the electrokinetic field is opposite to the
inducing current; when the derivative is negative, the
electrokinetic field is in the same direction as the inducing
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current. Since the induced current is caused by the electrokinetic
field, the direction of this field determines the direction of the
induced current: opposite to the inducing current when that
current increases (positive derivative), the same as the inducing
current when the inducing current decreases (negative derivative).

Of course, since the direction of the inducing current usually
varies from point to point in space, the ultimate direction of the
electrokinetic field and of the current that it produces is
determined, in general, by the combined effect of all the current
elements of the inducing current in the integral of Eq. (2-5.1).

The electrokinetic field also gives a simple explanation of the
fact (first noted by Faraday) that the strongest induced current is
produced between parallel conductors, whereas no induction takes
place between conductors at right angles to each other. This
phenomenon is now easily understood from the fact that the
electrokinetic field due to a straight conductor carrying an
inducing current is always parallel to the conductor.

Although we have been discussing the electrokinetic field as
the cause of induced currents in conductors, its significance is
much more general. This field can exist anywhere in space and
can manifest itself as a pure force field by its action on free
electric charges. Of course, because of the ¢* in the denominator
in Eq. (2-5.1), the electrokinetic field cannot be particularly
strong except when the current changes very fast. This is probably
the main reason why this field was ignored in the past. Another
reason is the temporal (transient) nature of this field.

But even weak electric fields can produce strong currents in
conductors, and that is why the current-producing effect of the
electrokinetic field is much more prominent than its force effect
on electric charges in free space.

If we compare Eq. (2-5.1) with Eq. (2-4.2) for the retarded
magnetic vector potential A produced by a current J, we
recognize that the electrokinetic field is equal to the negative time
derivative of A (observe that u, = 1/g,%):
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0A
E, -5 (2-5.2)
However, although Eq. (2-5.2) correlates the electrokinetic field
with the magnetic vector potential, there is no causal link between
the two: the correlation merely reflects the fact that both the
electrokinetic field and the magnetic vector potential are
simultaneously caused by the same electric current.

Important as it is, the electrokinetic field has not been studied
(or even recognized as a special force field) until very recently,
although the fact that the time derivative of the retarded vector
potential is associated with an electric field has been known for a
long time.

Electromagnetic induction is a phenomenon associated with
relatively slow current variations and with electromagnetic fields
extending over relatively small regions of space (rapid current
variations and time-variable fields extending over long distances
are dealt with on the basis of radiation theory; see Examples 2-2.2
and 2-2.3). More specifically, electromagnetic induction applies
to systems satisfying Eq. (2-2.13). Therefore, as far as
electromagnetic induction is concerned, the retardation in the
propagation of the electric field from the inducing current to the
conductor in which the induced current is created can be ignored.
Removing the retardation symbol [ ] in Eq. (2-5.1) and factoring
out 9/0¢, we then obtain for the electrokinetic field

= - E(LILW/). 2-5.3)
0t\4me,c?) r

v

Example 2-5.1 A conducting circular ring of radius R is placed
outside a long coaxial solenoid of n turns, radius a and length L,
carrying a current I (Fig. 2.6). Using Eq. (2-5.3) find the
electrokinetic field and then the voltage induced in the ring when
the current in the solenoid is changing. Observe that according to
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the conventional explanation of electromagnetic induction, the
voltage and the current in the ring is induced by the changing
magnetic field at the location of the ring. But this explanation does
not work in the present case, because there is no magnetic field at
the location of the ring (except for the end-effect field of the
solenoid, which is negligible).

Fig. 2.6 Calculation of the voltage induced in a conducting ring
placed outside a solenoid carrying a variable current.

Let the axis of the solenoid be the x axis of a rectangular
system of coordinates, let the ring be in the yz plane, and let the
ends of the solenoid be at x = — L/2 and x = L/2. To find the
electrokinetic field induced by the solenoid in the ring, we shall
consider a point of the ring located on the y axis. We can represent
this point by the vector Rj. Consider next a point on the surface of
the solenoid at a distance x from the yz plane. Combining
cylindrical and rectangular coordinates, we can represent that point
by the vector b = xi + a cosfj + a sinfk. The distance between
the two pointsisthenr = Rj — b = — xi + (R — a cosb)j —
a sindk, so that for r in Eq. (2-5.3) we have, by adding the squares
of the components of r and taking the square root of the sum, r =
(* + R* + @® — 2Ra cosf)"?. The current density in the solenoid
can be written as J = (nl/Lw)8, = (nl/Lw)(— sindj + cosfk),
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where [ is the current in the solenoid, w is the thickness of the
current sheet, and 6, is a unit vector in the direction of the current.
The volume element to be used in Eq. (2-5.3) can be written as dV’
= wad0dx.

By the symmetry of the system, the contribution of the y
component of J to the electrokinetic field is zero. Equation (2-5.3)
becomes therefore (we replace 1/,¢* by )

=- 6(# 0 rwr/z nicos bk wadde) (2-5.4)
ko 9t\dr Jo J e Lw(R? +a? -2Racosh +x2)”? ’
or
#nla 27 L2
Ek=—9_(k°_j  pEp—. Zmdﬂdx). (2-5.5)
0r\ 4rnL Jo J-12(R?2+q?-2Racosf +x?)

Integrating by parts over 4, we obtain

E, =

i (k poniRa? r" J L2 sin*0

- Ik dﬁdx). 2.5.
o\ 4wxL Jo J-2 (R*+a%-2Racosf +x2)*? (2-5.6)

Integrating over x and taking into account that L > R, a, we
obtain

E - - 3(k"‘0”IR‘12[2“ sin?f

3\ 27L Jo (R®+a’-2Racosd)

dB). 2-5.7)

The integral in Eq. (2-5.7) is just w/R>. The electrokinetic
field generated at the point Rj of the ring by the current in the
solenoid is therefore (replacing k by 6,)

2

E, - - E(a ﬂ) (2-5.8)
or\ “ 2RL

and the voltage induced in the ring is

nma? ol (2-5.9)

"L ot

Vg = $E,-dl = E27R = - 1
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RETARDED INTEGRALS FOR
ELECTRIC AND MAGNETIC
FIELDS AND POTENTIALS OF
MOVING CHARGES

In this chapter we shall learn how retarded integrals for
electric and magnetic fields and potentials can be used for finding
electric and magnetic fields and potentials of moving electric
charge distributions. We shall also discover important relations
between the electric and magnetic fields for two special cases of
moving charge distributions: an arbitrary charge distribution
moving with constant velocity and a point charge in arbitrary
motion.

3-1. Using Retarded Integrals for Finding Electric and
Magnetic Fields and Potentials of Moving Charge Distributions

A time-variable electric charge distribution always involves a
movement of electric charges. For example, if the density of a
charge distribution changes with time, then some electric charges
change their location within the charge distribution or move to or
from the charge distribution. Conversely, a moving charge
distribution is inevitably a time-variable charge distribution
because it creates charge density in regions of space which it

46
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enters and eliminates charge density from the regions of space
which it leaves. Consequently, the electric and magnetic fields of
a moving charge distribution can be determined from retarded
field (or retarded potential) equations derived in Chapter 2 for the
general case of time-dependent charge and current distributions.

To use retarded field integrals for finding electric and
magnetic fields of moving charge distributions, we need to express
the time derivatives dp/d¢ and 3J/d¢ in terms of the velocity of the
charge distribution under consideration. This can be done as
follows. Consider a stationary charge distribution of density p as
a function of x', y', z',

p=px’,y',z". (3-1.1)

If this charge distribution moves with velocity v without changing
its density, the total time derivative of p is
/
do _0p  8p dx'  dp dy’+ dp dz’ _dp

=Py T T+ P =Py eV,
d 0t ox' dt 9y’ dt 9z’ dt 0Ot

(3-1.2)
Since p remains the same as the charge moves, dp/dt = 0, so that
dp /
— =-v-Vp. 3-1.3
a v-Vip (3-1.3)

A moving charge distribution constitutes a current whose density
is J = pv. Therefore

aJ - dpv) -
ot ot

Observe that in the retarded field integrals derived in Chapter
2, the denominator r representing the distance between the volume
element dV' and the point of observation is not a function of time.
Therefore it is not a function of time also in the case of moving
charge distributions. A moving charge distribution must be
considered as moving past different volume elements of space
associated with different but fixed »’s. The question arises, if dV’

-(v-V'p)v +p% =—(v-Vp)v+pv. (3-1.4)
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is a volume element of space, rather than a volume element of a
moving charge distribution, how does one introduce the volume
of the charge distribution into the field integrals? To answer this
question, let us examine how the electric and magnetic fields of
a moving charge distribution are created.

The phenomenon of retardation indicates that time-dependent
charge distributions send out electric (and magnetic) field
"signals" that propagate in all directions with the velocity of light.
The electric or magnetic field created by a time-variable charge
distribution at the point of observation is the result of the signals
sent out by all the individual charges within the distribution and
simultaneously "received" at the point of observation at the instant
t. But different charges within the distribution are at different
distances from the point of observation, and the times needed for
the signals originating from the different charges to arrive at the
point of observation are different. Therefore the signals that are
received at the point of observation simultaneously at the instant
t are sent out from the different charges within the distribution at
different retarded times ' = ¢t — r/c. For a moving charge
distribution these times are different not only because different
charges within the distribution are located at different distances
from the point of observation, but also because the location of
these charges changes as the charge distribution moves. As a
result, the region of space from which the field signals responsible
for the field at the point of observation are sent is not equal to the
region of space, or volume, occupied by the charge distribution
when it is at rest.

Consider a charge distribution of length / moving against the
x axis with a constant velocity v. The electric field E of the
charge is observed at the point O (Fig. 3.1). A field signal is sent
from the trailing end of the distribution when this end is at the
distance r, from the point of observation. A field signal is sent
from the leading end, when this end is at the distance r, from the
point of observation. Since the leading end is closer to the point
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of observation than the trailing end, the field signal from the
leading end must be sent at a later time, if it is to arrive at the
point of observation simultaneously with the signal sent from the
trailing end. The difference in the times needed for the two
signals to arrive at the point of observation is r,/c — r,/c. During
this time the charge distribution moves a distance (r;/c — r,/c)v.
Hence the distance /* between the two points from which the two
signals are sent is

I*=(r,-r)vic +1. (3-1.5)

Fig. 3.1 For the two field
signals to arrive simultaneously
at O, the field signal originating
from the leading end of the
moving charge must be sent later
than the field signal originating
from the trailing end of the
charge.

In this chapter we shall be mainly concerned with the special
case of charge distributions for which r,,r, > I*. In this case (see
Fig. 3.2), r, —r, = I* cos ¢ = I*(r - v)/rv, where r is the
distance between the midpoint of /* and the point of observation,
and ¢ is the angle between r and v. Substituting this expression
for r, — r, in Eq. (3-1.5), we have

1> =1*(r-v)rc+l, (3-1.6)
or
1
I*=___° | 3-1.7
1-(r-v)/rc ( )

Therefore, as already mentioned, the region of space from which
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Fig. 3.2 Geometrical
relations between r, ¢,
and I* when r,, r, >
I*. The significance of
the vector 1* will be
explained later.

the moving charge sends out the field signals resulting in the
electric and magnetic fields created at the point of observation is
not equal to the region of space (volume) actually occupied by the
charge. In the case of a charge distribution whose linear
dimensions are small compared with the distance from the charge
to the point of observation, this region of space, usually called the
effective volume, or the retarded volume, AV',, is

AV!

AV = —— |
1-(r-v)/rc

(3-1.8)
where AV’ is the actual volume of the charge [this equation is
obtained from Eq. (3-1.7) by noting that the volume dimensions
perpendicular to the direction of motion are not affected by
retardation, and that the dimensions along the direction of motion
change in accordance with Eq. (3-1.7)].

Although the distance /* given by Eq. (3-1.5) or Eq. (3-1.7)
is a distance between two points in space rather than a length of
an object, it is usually called the retarded length of the charge. In
fact, it is actually the "visual" length of a rapidly moving body,
as the length of the body would appear to a stationary observer.
As follows from Eq. (3-1.7), the retarded length of a body
moving toward the observer is longer, and the retarded length of
a body moving away from the observer is shorter, than the actual
length of the body.' It should be emphasized that Egs. (3-1.6)-(3-
1.8) hold only for charges or bodies observed from a distance
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much greater than the linear dimensions of the charge or body.
For a general case, the retarded length or volume of a body
cannot be expressed by a simple formula, but can be calculated in
terms of the actual length of the body once the position of the
body at the time of observation is given (Section 4-3).

Another effect of retardation that needs to be taken into
account when applying retarded field equations to moving charge
distributions is an apparent distortion of the shape of a moving
charge distribution. The distribution appears to change its shape
because the retarded times for different points within the
distribution are different.

I I | «— /e —»|
v
) S
R P P P

O

A A

Fig. 3.3 Geometrical relations between the "present position
vector" 1, and the "retarded position vector" r for a charge
distribution moving with velocity v in the negative x direction.

Consider a charge distribution moving against the x axis with
a velocity v and observed from a point O (Fig. 3.3). The retarded
volume element dV’ of the charge distribution is at the point P
and is represented by the vector r. The present position of the
same volume element is at the point P, and is represented by the
vector r,. The distance Ax’ from P to P, is the distance that the
charge travels during the time that it takes the field signal to
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propagate from P to O, that is, Ax' = v(r/c). We shall now show
that, within the charge, any line parallel to the y axis when the
charge is at rest or at its present position appears to be slanted
when the charge is moving and is at a retarded position.

First, let us note that according to Fig. 3.3 the relation
between the x component of the present position vector r, and the
x and y components of the retarded position vector r is (as usual,
we use primes to indicate source-point coordinates)

/

x! = x4 +vrlc, (3-1.9)

or
/

x! = xg+ @y, (3-1.10)

Differentiating Eq. (3-1.10) while keeping x,' constant, we have

@ yio) (3-1.11)
ay’  rl-(lo&x'ID]’

which can be written as

Ay | «—— rvic ——»|

o

Fig. 3.4 A charge at its retarded position appears to be elongated
and its vertical lines appear to be slanted.
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¥=

Fig. 3.5 Explanation of the vectors 1* and a*. The vector 1*
represents the retarded length of the moving charge, the vector a*
represents the "slanted" thickness of the charge.

dx’ _ y'vic _ y'vlc _  (vlc)sing
dy’  Ml-(lc)cosp]l rI-(c-v)irc] 1-(r-v)irc’
(3-1.12)

Thus, according to Eq. (3-1.12), a vertical line (x,’ = constant,
dx,'/dy,’ = 0) within the charge at the present position appears to
be slanted when the charge is viewed at its retarded position (Fig.
3.4), and the angle « of the slant is given by

cota = __ IV (3-1.13)
r[1 -(r-v)/rc]

In the derivations presented later in Chapter 4, we shall
consider a moving charge in the shape of a rectangular prism of
length [ and thickness a. For determining the magnetic and
electric fields of such a charge we shall make use of two special
vectors shown in Fig. 3.5: the vector I* representing the retarded
length of the charge, given by

r--__ L (3-1.14)
1-(r-v)/rc
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and the vector a* representing the "slanted" thickness of the
charge, given by (note thatr - v = x'v)

2% = ay'vlc

j= ay'vlc . a(r-x'vic)
ri1-(r - v)/rc] r[l-(r-v)/rc] rll1-(r-v)/rc]
(3-1.15)
We shall also use the following relation derived in Example
3-1.1 for a charge moving with acceleration v = dv/0t'

v/ 1 - F-rlc+(r-¥r/c? (3-1.16)
[r-(r-v)ic] r[1=(r - v)/rc]?

Note that if v = 0 (motion with constant velocity), Eq. (3-1.16)
becomes

v/ 1 . __r-mle 37
[r-(-v)/c] r1-(-v)/rcP

In dealing with retarded integrals for moving electric charges,
we shall frequently use the expression

r-(r-v)lc, (3-1.18)

where r is the retarded position vector joiming a retarded volume
element dV' of a moving charge distribution with the point of
observation. If the charge distribution moves with a constant
velocity v, this expression can be converted to the present position
of the charge distribution, that is, to the position occupied by the
volume element dV’ of the charge distribution at the instant for
which the electric and magnetic fields are being determined. This
can be done as follows.

First, assuming that the charge distribution moves in the
negative x direction and assuming that dV’ is in the xy plane, we
see from Fig. 3.3 that the present position vector r, of dV’ can be
expressed in terms of the retarded position vector r as

r, =r-rvlc. (3-1.19)
Next, we write Eq. (3-1.18) as
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[r-(r-v)c]=[r-x"vic]

(3-1.20)
=[(r-x"vIcy 1" =[r?-2rx'vic+x"*v¥c?"?.

Adding and subtracting x’? and 7v*/c? to the right side of Eq. (3-
1.20), we then have

[r-(r-v)c] (3-1.21)
=[r?-2m/vic+x"v¥c?t +x'* =x"* +rv?¥c? -rv?/c?] 2.

Let us now collect the terms on the right of Eq. (3-1.21) into
three groups:

x* = 2m'vic + rvi/c? (3-1.22)
rt - x’?, (3-1.23)

and
x'v2c? - riv¥c?, (3-1.24)

By Eq. (3-1.9), the first group represents x,'?, where x,’ is the
distance between the yz plane and the volume element dV' of the
moving charge at its present position. The second group is simply
y'%, where y’ is the (constant) y coordinate of the volume element
dV'. And the third group is —y'>v*/c*>. We can write therefore

[r-(r - v)/c] =l +y'% -y 2y2/c?)in

—(v!2 112 20 A 12 (412 Ly 1212 (3-1.25)
=(xg +y YHL -y I(xy” +y 3.

But, as can be seen from Fig. 3.3, x> + y'? = ry%, and y'%/(x,*
+ y'%) = sin® 8, where 4 is the angle between r, and the velocity
vector v. Therefore

[r=(@r-v)cl=r[1-(r-v)/rc]=r{1-(v¥cHsin*0}'?, (3-1.26)

where all the quantities in the last expression are present time
quantities. In obtaining Eqs. (3-1.25) and (3-1.26) we assumed
that the volume element dV’ of the moving charge was located in
the xy plane. Clearly, however, the two equations are valid even
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if dV' is not in that plane, provided that we replace in these
equations y' by y'? + 7%

Expressions involving the retarded position vector r and its
magnitude r have a very peculiar and important property which
should be kept in mind when dealing with moving charges and
currents. As already mentioned, a moving charge is assumed to
move through different but fixed points of space. Therefore
neither the retarded position vector r nor its magnitude r explicitly
appearing in retarded integrals is a function of time. On the other
hand, in the case of moving charges and currents, the distance r
appearing in the retarded time ¢’ = ¢ — r/c is variable and
therefore is a function of time. The same applies to Egs. (3-1.7) -

(3-1.17) presented above and to all similar expressions.

v

Example 3-1.1 Derive Eq. (3-1.16).

Let us arrange a rectangular system of coordinates so that the
acceleration vector of the moving charge is in the xy plane and the
velocity vector is in the negative x direction. Let the point of
observation be at the origin. The position vector of the charge is

then r = — x'i — y'j. Using vector identity (V-7), we have
v 1 - Vir-@ewie (397
[r-(r-v)ic] [r-(r-v)/c?

In differentiating the numerator in Eq. (3-1.27), we should
remember that the numerator is retarded. However, as explained in
Section 3-1, neither the position vector r nor its magnitude r
appearing in retarded integrals is a function of time and therefore
neither is affected by retardation (the charge moves through
different but fixed points of space). The only quantity in the
numerator affected by retardation is the velocity v which is a
function of the retarded time ¢ — r/c and does change as the charge
moves. Hence we can write, making use of vector identity (V-5),
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[r-(r-v)/c] [r-(@r-v)/c]?
-r,~(1/c)V'[r - v]
[r-@-v)/icl

v/ 1 __V'r-v'[(r - v)/c]

(3-1.28)

To evaluate V'[r - v], we first use vector identity (V-30),
obtaining

Viir-v]=[V/(r-v)] + |90 ")} (3-1.29)
cl ot
The first expression on the right can be evaluated with the help of
vector identity (V-6). Note that in this expression V' operates upon
unretarded quantities. Therefore we have

Vi@ v)=(V)v+r X (V' xv) +(v - VO)r +vx(V’ xr). (3-1.30)

Since all the quantities in this equation are unretarded, and since the
unretarded v does not depend on spatial coordinates, the first two
terms on the right of this equation vanish. Since V' X r = 0, the
last term vanishes also. By vector identity (V-4), the remaining
term is simply — v. We thus obtain

Vik-v)=-v. (3-1.31)

Taking into account that r in the last term of Eq. (3-1.29) is not
a function of time, we have

r,fo( - v)] [

c

r
=_4[r-¥].  (3-1.32)
c

Combining Egs. (3-1.28), (3-1.29), (3-1.31), and (3-1.32),
factoring out r in the denominator, and multiplying the numerator
and the denominator by r, we finally obtain

v/ 1 _ r-rlc+(r-¥ric? (3-1.33)
[r=(r-v)/c] Pll--v)/rc?
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Although all quantities in this equation refer to the retarded position
of the charge, to avoid an exceedingly cumbersome notation we do
not place them between the retardation brackets.

A

3-2. Correlation Between the Electric and the Magnetic Field
of a Moving Charge Distribution

There are two special cases of moving charge distributions for
which there exist simple correlations between the electric and the
magnetic field produced by the distributions. The first case is that
of an arbitrary charge distribution moving with constant velocity.
The second case is that of a point charge moving with
acceleration.

Consider first a charge distribution of arbitrary size and shape
moving with constant velocity v. Let us form the vector product
of g;v and Eq. (2-2.1). Since v is a constant vector, we can place
it under the integral sign, so that

v X [V’p + ii{}
c? ot
av’. (3-2.1)

gv X E =-_Lj

4T r

If a charge distribution moves with constant velocity v, then by
Eq. (3-1.4) the derivative 0J/0¢ is parallel to v. Therefore the
product v X [8J/df] vanishes, and since v is not affected by
retardation, Eq. (3-2.1) simplifies to

!
ey XE = - _l_jwdvf. (32.2)
47 r

Using now the vector identity

V' x(vp) = (V xXv)p - vxVp (3-2.3)
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and taking into account that V' X v = 0 and that vo = J, we
obtain from Eq. (3-2.2)

ev X E = j V' XJ] gy (3-2.4)
4T r

which, by Eq. (2-2.2), is the same as

H =¢yv XE. (3-2.5)

Since poH = B, and ¢, = 1/c% this equation can also be
written as

B = (v X E)/c?. (3-2.6)

Observe that E in Eqgs. (3-2.5) and (3-2.6) is the electric field
produced by a moving charge distribution.

It is interesting to note that since, in the present case, the term
dJ/dt in Eq. (3-2.1) makes no contribution to v X E, we can
write Eq. (3-2.6), using Eq. (2-2.1), as

/
B--yx__| J[Vp]dv’- vxﬁjﬁﬂldv', (3-2.7)
4mect! 4l 1

and, assuming that the velocity is along the x axis, so that v X
i=0,as

J [(V, +V2)0] av’

r

B-= vx__
4T

(3-2.8)
where only the components of V' perpendicular to v occur.
Furthermore, using Eq. (2-2.4) and taking into account that dJ/d¢
makes no contribution to v X E and that v X i = 0, we can
write Eq. (3-2.6) as
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B=v><_1_j{[p] 1 ap]}(};J+zk)dV’

4me,cd L3

—vx _Hﬂ L a"}(yJ +Zk)dv’.

4 ) L p3

(3-2.9)

As it follows from Egs. (3-1.7) and (3-1.8), for slowly
moving charge distributions the retardation can be neglected, in
which case Eq. (3-2.6) reduces to

B = (v x E)/c2, (3-2.10)

where E is the ordinary electrostatic field of the charge
distribution under consideration. Likewise, Egs. (3-2.7) - (3-2.9)
reduce to the corresponding equations involving unretarded charge
densities.

Consider now a point charge moving with acceleration. Let us
assume that the retarded position of the point charge is given by
the vector r, and let us form the cross product of r/(ru,c) and Eq.
(2-2.12). Assuming that r for a moving point charge can be
considered the same throughout the entire volume occupied by the
charge, we can place r/r under the integral signs.> Noting that r
x r = 0, we then obtain

rxE _ 1 H[J] [aJ]}x rdv’, (3-2.11)

2
HCr 4TEpC r

and, taking into account that gu,c® = 1 and using Eq. (2-2.5), we
immediately obtain

H-XE (3-2.12)
HoCT
or
B - *XE (3-2.13)

cr
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where r is the retarded position vector connecting the moving
point charge with the point of observation. Equations (3-2.12) and
(3-2.13) show that the magnetic field of a moving point charge is
perpendicular to the electric field produced by the charge and to
the radius vector joining the retarded position of the charge with
the point of observation.’

It is interesting to note that for a point charge moving with
constant velocity, Eqgs. (3-2.5) and (3-2.6) as well as Eqs. (3-
2.12) and (3-2.13) hold, because Eqgs. (3-2.12) and (3-2.13) are
true for any acceleration, including zero acceleration. However,
it is important to remember that Egs. (3-2.12) and (3-2.13)
involve the retarded position vector r. If the acceleration is zero,
Eq. (3-2.13) reduces to Eq. (3-2.6), as is shown in Example 4-
1.1.

References and Remarks for Chapter 3

1. The retarded length should not be confused with the relativistic
"Lorentz-contracted length." See Section 9-1.

2. This procedure is generally applicable to stationary point
charges only. For moving point charges its applicability depends on
certain parameters of the system under consideration. See Section
4-7 (in particular Eqs. 4-7.1 and 4-7.2) for details.

3. It is important to stress that Eqgs. (3-2.12) and (3-2.13),
although usually presented in the literature as perfectly true, are
actually only approximately correct. See Section 4-7 for details.



ELECTRIC AND MAGNETIC
FIELDS AND POTENTIALS OF
MOVING POINT AND LINE
CHARGES

The finite propagation speed of electric and magnetic
fields has a profound effect on the electric and magnetic fields and
potentials associated with moving charge distributions. In this
chapter we shall use retarded integrals for determining electric and
magnetic fields and potentials of the two simplest types of moving
charge distributions: a moving point charge and a moving line
charge.

4-1. The Electric Field of a Uniformly Moving Point Charge'

Any stationary charge distribution viewed from a sufficiently
large distance constitutes a "point charge."* Consider a charge
distribution of total charge q and density p confined to a small
rectangular prism (Fig. 4.1) whose center is located at the point
x', y' in the xy plane of a rectangular system of coordinates, and
whose sides [, a, and b are parallel to the x, y, and z axis,
respectively. Let the point of observation be at the origin of the
coordinates, and let the distance between the center of the prism
and the origin be r, > a, b, I. Viewed from the origin, this

62
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Fig. 4.1 A charge of uniform density p is confined to a small
rectangular prism. The total charge of the prism is q. The charge
constitutes a point charge when viewed from a distance large
compared to the linear dimensions of the prism.

charge distribution constitutes a point charge.® Let the charge
move with uniform velocity v = — vi. We want to find the
electric and magnetic fields of this charge at the point of
observation.

To find the electric field produced by this charge, we shall
use Eq. (2-2.1). First we eliminate from Eq. (2-2.1) the term with
the current density J. We can do so with the help of Eq. (3-1.4).
Since the velocity of our charge is v = v,i = — vi, and since the
charge moves without acceleration so that v = 0, Eq. (3-1.4)
gives

g = - (vxﬂ)v = vzﬂl (4-1.1)
ot ox' ox’

Substituting Eq. (4-1.1) into Eq. (2-2.1), we then have for the
electric field of the charge
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Fig. 4.2 When the charge shown in Fig. 4.1 is moving and is at a
retarded position, its apparent length, shape, and thickness of its
front and back surface layers are no longer the same as for the
stationary charge. (All ¥’s meet at the origin).

[

-

oy @412

Observe that in this equation V' and 8/0x’ operate on the
unretarded p, so that in computing V'p and dp/0x’ we must use the
ordinary, unretarded, shape and size of the prism. Since p is
constant within the prism, V'p = 0 within it, and the only
contribution to V'p comes from the surface layer of the prism,
where p changes from p (inside the prism) to 0 (outside the prism).
Let the thickness of the surface layer be w. Taking into account that
V’'p represents the rate of change of p in the direction of the
greatest rate of change, we then have V'p = (p/w)n,,, where n,, is
a unit vector normal to the surface layer and pointing info the
prism. Hence V'p for the right, left, top, bottom, front, and back
surfaces of the charge (prism) are — (o/w)i, (o/w)i, —(p/w)j, (o/w)j,
—(p/w)k, and (p/w)k, respectively. Likewise, dp/dx' is zero
in the interior of the charge and is different from zero only in the
left and in the right surface layers of the charge, where
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’5"4\/

Fig. 4.3 The relations between r;, r,, and a* for the moving
charge at a retarded position. (The two r’s meet at the origin.)

dp/dx’' = p/w in the left surface layer and dp/dx’ = — p/w in the
right surface layer.

The volume integral of Eq. (4-1.2) can be split therefore into
six integrals, one over each of the six surface layers
corresponding to the six surfaces of the charge (prism). However,
since the center of the charge is in the xy plane (z' = 0), the
integrals over the two surface layers parallel to the xy plane cancel
each other, because V’'p for one of the layers is opposite to that
for the other layer, while r is the same for both layers. Thus only
the four integrals over the layers parallel to the xz and yz planes
remain. Let us designate the retarded distances from these layers
to the point of observation as r, r,, r;, and r, (see Figs. 4.2 and
4.3). Since the linear dimensions of the charge are much smaller
than r,, r,, r;, and r,, we can replace each integral over a surface
layer by the product of the integrand and the volume of the
corresponding layer. However, the integration in Eq. (4-1.2) is
over the effective (retarded) volume of the charge, and therefore
we must use not the true volume of the surface layers, but their
effective volume. The effective volume of the surface layers is not
the same as their actual volume, because, in accordance with Eq.
(3-1.7), the length [ of the two layers parallel to the xz plane must
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be replaced by
I = ! , (4-1.3)
1-(r-v)/rc
and because, also in accordance with Eq. (3-1.7), the thickness w
of the two layers parallel to the yz plane must be replaced by
. w

-__ " (4-1.4)
1-(r-wv)/rc

Equation (4-1.2) becomes therefore

= o P b (=) + 22 w1+ 22 b ()

47"3 r ry (4-1.5)
+p/wbl wj + ( )(‘O/wabw1 i+ p/wabw2 (- 1))}
P

4 2

or, substituting /* and w* from Eqgs. (4-1.3) and (4-1.4),

E = - 1 [ plw abw(-i)+__ﬂ__abwi
dme)lr -r - vic r,-r,-vlc

_ P i) + —__bIWJ (4-1.6)
ry-ryev/c r,-r,*vlc

2
o iy LR P e |
c?Nr -r =vic r,-r,*vlic

+

which simplifies to
2
o Bt b
4me, c2N\ry-ry=vic r-r -vic
el
+ - 1ji.
r4—r4-v/c ry,-ryevic

As can be seen from Figs. 4.2 and 4.3, the differences of the
fractions in these equations are simply the increments of the
function 1/(r - r - v/c) associated with the displacement of the tail

4-1.7)




SECTION 4-1 UNIFORMLY MOVING POINT CHARGE 67

of r over the distances represented by the vector I* [in the i
component of Eq. (4-1.7)] and by the vector a* [in the j
component of Eq. (4-1.7)]. Therefore we can write Eq. (4-1.7) as*

2
£ gl )
4re, c? r-revlic
g S
r-r-vlic

Substituting the gradient from Eq. (3-1.17) (remembering that v
= () and substituting I* and a* from Egs. (3-1.14) and (3-1.15),
we have

(4-1.8)

_ pb [(1 _ vz)( r-rlc i) la .
4me, 2N\ -revirc) I1-revirc

_ /
o) N et o LCIY | N Ly @-1.9)
r’(1-r - v/rc)? r(l-r-v/rc)

. ( r -rvlc ) r-x'vlc ]
. alj
31 -r « v/rc)? r(1-r-v/rc)

Simplifying and taking into account thatr « i = — x', r » j =
—y,vei=—v,vej=0,andr - v= x'v, we obtain
2
E = pabl [(1 —v_)(—x’ +rvic)i
4mer’[L-r - vircPll 2
+ (—x’+rv/c)y/:/6j + (—y/)’_"‘_'L’Ej] (4-1.10)
r
pabl [(1 vz) /e ( vz) ]
- —_J(~x'i-rvic) +\1 - _|(- ,
4me,r[1-r - vircPl ¢? ( ) c? =3

and finally, noting thatr = — x'i — y'j, and that pabl = g,

g - _ q1-vich) [r_ﬁ]. (4-1.11)
dmer[L-revircPl ¢
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Equation (4-1.11) expresses E in terms of the retarded
position of the charge specified by the retarded position vector r
(see Fig. 3.4). Usually it is desirable to express E in terms of the
present position of the charge specified by the present position
vector r, (see Fig. 3.4). We can convert Eq. (4-1.11) from r to
r, by using Egs. (3-1.19) and (3-1.26). According to Eq. (3-1.19),

r-rlc =r, (4-1.12)

so that the last factor in Eq. (4-1.11) is simply the present position
vector r,. Substituting Eq. (4-1.12) and Eq. (3-1.26) into Eq. (4-
1.11), we obtain the desired equation for the electric field of a
uniformly moving point charge expressed in terms of the present
position of the charge

g(1 - v?/c?) - (4-1.13)

E =
47r80r03 {1-?%c?sin’0}>? ¢

This equation (in a different notation) was first derived by Oliver
Heaviside in 1888 on the basis of Maxwell’s equations by using
the "operational calculus" that he invented.’

\Krf / Fig. 4.4 As was first noticed by
\ / Heaviside, the electric field of a
moving point charge concentrates
‘ @ ___w itself in the direction
perpendicular to the direction of
motion of the charge and

/ / j l\\\ decreases along the line of the

motion.

There are two interesting properties of Eq. (4-1.13). First, as
was noted by Heaviside, with increasing velocity of the charge the
electric field of the charge concentrates itself more and more
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about the equatorial plane, § = 7/2, and decreases along the line
of motion, § = 0. This effect is shown in Fig. 4.4. Second, the
electric field appears to originate at the charge in its present
position. This, of course, is merely an illusion, because by
supposition the distance between the charge and the point of
observation is much greater than the linear dimensions of the
charge, so that neither Eq. (4-1.11) nor Eq. (4-1.13) gives us any
information concerning the structure of the field close to the
charge. Note also that because of the finite speed of the
propagation of the field signals and light signals one can never
observe the charge at its present position. In fact, the charge could
have stopped after sending the field signal from its retarded
position, and even then Eq. (4-1.13) would remain valid, although
in this case Eq. (4-1.13) would apply to the "projected," or
"anticipated,” present position of the charge.

v
Example 4-1.1 Show that for a point charge moving without
acceleration Eq. (3-2.13) reduces to (3-2.6).

According to Eq. (4-1.12), the retarded position vector of the
charge can be expressed in terms of the present position as

r =r,+rvic. 4-1.14)
Substituting Eq. (4-1.14) into Eq. (3-2.13), we have

rxE _ (r+rv/ic)xE  rXE NG
cr cr cr

B =

OXE " (4.1.15
Ccr

Since, by Eq. (4-1.13), E is directed along r,, r, X E = 0, and we
are left with
B = (v X E)/c?, (4-1.16)

which was to be proved.

Example 4-1.2 Equation (4-1.13) represents a "snapshot" of the
electric field of a moving point charge, since it does not express the
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field as a function of time. Modify Eq. (4-1.13) so that it shows
how the field changes as the charge moves.

Let us assume that the "snapshot" is for # = 0. If the charge
moves in the — x direction, the functional dependence of E on the
x coordinate will be preserved for ¢t # 0 if we express Eq. (4-1.13)
in terms of x," and replace x,’ by x,’ — vt. From Egs. (3-1.26) and
(3-1.25), we have

ro{l _(VZ/CZ)Sinze}l/Z = (xéz +y /2 _y/zvz/cz)uz

, (4-1.17)
= [xo +(1 -v¥cy?]'2.

Replacing in Eq. (4-1.17) x,’ by x,/ — vt, we obtain
{1 -(v¥cHsin?0}'? = [(x, - vi2 +(1-v¥cHy’]"2,  (4-1.18)

where x,’ is now the x coordinate of the point charge at t = 0.
Expressing r, in terms of its components and replacing x,’ by x," —
vt, we similarly have r, = —(x,/ — vA)i — y'j. Therefore Eq. (4-
1.13) can be written as

g(1 - vc){(x, - vi)i +y'j}

E =- ’
47r80{(x0/ - vt)2 +(1 -Vz/Cz)y/2}3/2

(4-1.19)

where the dependence of E on ¢ is shown explicitly. This equation
holds for the charge moving parallel to the x axis in the xy plane.
If it moves parallel to the x axis anywhere in space, y'* in this
equation should be replaced by (y'2 + z'2). A

4-2. The Magnetic Field of a Uniformly Moving Point Charge

Although by using Eq. (2-2.2) or Eq. (2-2.5), we can find the
magnetic field of a uniformly moving point charge in the same
manner as we found the electric field in Section 4-1 (see Example
4-2.1), it is much easier to find it from the known electric field by
using Eq. (3-2.5) or Eq. (3-2.6).
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Applying Eq. (3-2.5) to Eq. (4-1.11), we obtain for the
magnetic field in terms of the retarded position of the charge

S| Uk W OV ) @-2.1)
47r3[1-r - v/rc)?

Applying Eq. (3-2.5) to Eq. (4-1.13), we obtain for the
magnetic field in terms of the present position of the charge

—v2/r2
H=__ 907V [yxr). @422
4mry{1 -(v¥c?)sin’0}>>

v

Example 4-2.1 Find the magnetic field of a uniformly moving
point charge shown in Fig. 4.1 by using Eq. (2-2.2),

H=J4W*”wa (4-2.3)
4T r

To use Eq. (4-2.3), we need to know V' X J associated with
the charge under consideration. The moving charge constitutes a
current density J = pv. Since v is not a function of x', y’, z', we
have V' X J = V'p X v. But p is constant within the charge, and
therefore the only contribution to V' X J comes from the surface
layer of the charge, where p changes from p (inside the charge) to
0 (outside the charge). Using the values for V'p obtained in Section
4-1, we then have for V' X J of the top, bottom, front, and back
surface layers of the charge (prism) —pv/wk, pv/wk, pv/wj, and
—p/wj, respectively; the left and right surface layers make no
contribution to V' X J, because v and V’'p are parallel (or
antiparallel) there. Furthermore, since V' X J in the front surface
layer is opposite to V' X J in the back surface layer, while both
surface layers are at the same distance r from the point of
observation, the contributions of these two layers to the integral in
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Eq. (4-2.3) cancel each other, so that only the top and the bottom

surface layers contribute to the magnetic field of the charge.
Since the linear dimensions of the charge are much smaller than

r; and r,, (see Fig. 4.3), we can replace the integrals over the two
surface layers by the product of the integrand and the volumes of
the corresponding layers. Using Eq. (4-2.3) and taking into account
the effective volume of the boundary layers (see Sections 3-1 and
4-1), we have, as in Eqs. (4-1.5)-(4-1.7),

H- - Zl___pv_/w_/_wblk - L’W_/_wbzk]
7("'3 r3 v/C r4 r4 vV/C (4-24)
__ ol 1 _ 1 ]k
4t lr,-r,ovic r,-r,-vicl

The difference of the two fractions in the last expression is
simply the increment of the function 1/(r - r « v/c) associated with
the displacement of the tail of r over the distance represented by the
vector a* (see Fig 4.3). Therefore, using Eqs. (3-1.17) and (3-
1.15), we can write Eq. (4-2.4) as

H- - pbvl[( r-rvlc -i) y'vic
ar Wp3d-re-virc} /r(l-r-virc) (4-2.5)
. ( r-ric ) r-x'vic ]k
r31-r-vire® Jrd-revire) I
Simplifying and taking into account thatr * i = —x',r « j = —
y,vei=—-v,vej=0,andr - v = x'v, we obtain
H=- av [(=x"+rvic)y'virc +(=y")(1 -x'vIrc)]k

4rr3[l -r-v/rc)?

_ qv[1-v¥cy’ X
amr3[1-r-vircP ’ (4-2.6)

which, noting that vy'’k = v X r, is the same as Eq. (4-2.1).°
A
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4-3. The Electric and Magnetic Fields of a Line Charge
Uniformly Moving Along its Length

Consider a line charge of finite length L, cross-sectional area
S, charge density p, and linear charge density A = pS moving
with constant velocity v parallel to the x axis of a rectangular
system of coordinates in the negative direction of the axis and at
a distance R above the axis (Fig. 4.5). Let the point of
observation O be at the origin. What is the electric field at O at
the time z when the leading end of the charge is at a distance L,
from the y axis?

We can find the electric field of the moving charge by using
Eq. (2-2.1) or Eq. (2-2.4) if we know the retarded position of the

Li—|———Vr/C—
-L 2""' _ A%
EZZZ77Zz7z72z2z22222 _/I; PSR
[}
i —al x| LY

A A

Fig. 4.5 A line charge of linear density \ is moving with constant
velocity v. The retarded positions of the trailing and leading ends
of the charge are x,’ and x,’, respectively. The present positions of
the two ends are L, and L,, respectively. The distance between the
trajectory of the charge and the x axis is R. The point of
observation O is at the origin. The "retarded,” or "effective,”
length of the charge is longer than its true length.
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charge corresponding to the time for which the field is computed.
We can determine this position as follows.

First, let us determine the retarded position x,’ of the leading
end of the charge corresponding to the time #, that is, the position
from which the leading end sends out its field signal which arrives
at O at the time ¢. If the retarded distance between O and the
leading end is r,, then the time it takes for the signal to travel
from the leading end to O is r,/c. During this time the charge
travels a distance v(r,/c). Therefore at the moment when the
leading end sends out its field signal, the position of the leading
end is

x, =L, + rylc. (4-3.1)

Next, let us find the retarded position x,’ of the trailing end
of the charge corresponding to the time ¢. If the retarded distance
between O and the trailing end is r,, then the time it takes for the
signal to travel from the trailing end to O is r,/c. During this time
the charge travels a distance v(r,/c). Hence, at the moment when
the trailing end sends out its signal, the position of the trailing end
is

x| =L, +rylc. (4-3.2)

The x component of the electric field. We are now ready to
find the electric field of the charge by using Eq. (2-2.1) or Eq. (2-
2.4). The easiest way to find the x component of the electric field
of the charge under consideration is to use Eq. (2-2.1). According
to this equation, the x component of the field is due to the x
components of [V'p] and [0J/df] of the moving charge. For the
line charge under consideration, these components exist only at
the leading and trailing ends of the charge and are the same as for
the moving charged prism discussed in the preceding sections of
this chapter: [V'p], = (o/w)i for the leading end, and [V'p],
= — (p/w)i for the trailing end, [8J/df], = — (V’p/w)i for the
leading end, and [8J/d¢], = (V’p/w)i for the trailing end, where w
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is the thickness of the surface layer of the charge (this is the
actual thickness, not the retarded one). Since the surface layer of
the charge may be assumed as thin as one wishes, the retarded
volume integral in Eq. (2-2.1), as far as the x component of the
field is concerned, reduces to the product of the integrand and the
volume of the surface layers of the leading and trailing ends of the
charge at their retarded positions. By Eq. (4-1.4), for the leading
end, this volume is, using the asterisk to indicate values evaluated
at retarded positions,

wS

w,S=___" | 4-3.3
2 1-(r, - Vir,c @3.3)
and for the trailing end it is
w'S=__ W (4-3.4)
1-(r, - v)irc
The x component of the electric field is therefore
E=_PSU-vic) 1 - 1 ) (4-3.5)
* 4re, \r,[1-(r,*)/r,c] r[1-(c +v)/rcll
or
—12/p2
E = - IN¢! v/c)( 1/ _ 1/ ) (4-3.6)
4me, r,-xvic  r-xvlc

Equation (4-3.6) gives the electric field in terms of the
retarded position of the charge. We shall now convert it to the
present position of the charge (that is, the actual position of the
charge at the time 7). The calculations are similar to those used for
deriving Egs. (3-1.20)-(3-1.26). First, we note that, by Eq. (4-
3.1),

Ly = x3° - 2ryvic + rvic?. 4-3.7)

Next, we write the denominator of the first fraction inside the
parentheses of Eq. (4-3.6) as
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1y =xavic =[(r, =X VISP =(r ~2rx; vic +x] v¥c?)?. (4-3.8)

Adding and subtracting x'? and »,*/c? to the right side of Eq. (4-
3.8), we then have

/
r,=xvlc (4-3.9)
2 / 12 12 12 2 2
=(ry =2rxyvic+x, vict+x,” =x, +ryvict —rvic?)'2.

Let us now collect the terms on the right of Eq. (4-3.9) into three
groups:

X - 2rx,vic + rviic? (4-3.10)
2 -x?, (4-3.11)

and 12
x, v¥c? - rjvic?. (4-3.12)

By Eq. (4-3.7), the first group represents L,>. The second group
is simply R*(see Fig. 4.5). And the third group is — R»*/c%.

Similar relations hold for the denominator of the second
fraction inside the parentheses of Eq. (4-3.6). Therefore Eq. (4-
3.6) transforms to

g =M -v¥c?) 1 ) 1
’ ameR  L(L}/R*+1-v¥c?)'2  (L}/R?+1 -v3/c?H)2 ’
(4-3.13)

where only the present time quantities appear.

The y component of the electric field. The easiest way to find
the y component of the electric field of the charge under
consideration is to use Eq. (2-2.4). Only the first integral of Eq.
(2-2.4) makes a contribution to the y component of the field,
because 8J/0¢ has no y component. Separating this integral into
two integrals, we then have
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- 1 I (o] p 1 J 1 00] /
E = - Rav’ RdV'. (4-3.14
Y 4me, ) 73 47r80 T2l a ( )

The first integral in Eq. (4-3.14) is the same as for a stationary
charge, except that the integration must be extended over the
retarded (effective) length of the charge. Designating the
contribution of the first integral as E,, and noting that r = (x> +
R»'2, we obtain

_ 1 (p ' pS r" R /
E = - j_RdV = - dx’, (4-3.15
by ey r3 dmey ) (x/* +RHM? ( )
or / / / /
E =__NM [ X ) ]= N (xz _xl)
ly 41r80R (x1/2+R2)1/2 (x2’+R2)”2 47"30R 'r_z 'r_l ’

(4-3.16)
In order to evaluate the contribution of E, of the second
integral of Eq. (4-3.14) to the total field, we must determine the
value of the derivative [dp/0f]. According to the notation
convention for retarded quantities explained in Chapter 1, this
derivative is the ordinary derivative dp/d¢ used at the retarded
position of the moving charge. By Eq. (3-1.3), taking into account
that for our charge v = — vi, [dp/0f] is then simply vdp/dx'.
Since p is constant within the line charge, only the leading and the
trailing ends of the charge contribute to this expression, and the
contributions are vp/w and — vp/w, respectively. The electric field
E,, is therefore

R vp/w R voIw 1
E, = - I avy I avy, (4-3.17
Zy Amec) g2 2 41rsoc r - )

where the integration is over the surface layers of the leading and
trailing ends of the charge at the retarded positions of the charge.
Since the thickness of the surface layers is much smaller than r,
and r,, we can replace the integrals, as before for E,, by the
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products of the integrands and the volumes of integration (the
volumes of the respective surface layers). Using the relations dV,’
= wy*S, dV,' = w;*S, and using Eqs. (4-3.3) and (4-3.4) , we
then have

. T L Ll —
L dmecl r22 -ryr,*v)lc r12 -y, - v)le
(4-3.18)
_ MR] 1 - 1 ]
47rsoclr1(r1 -x{ vlc) ryr, ~X VI€)

Adding Egs. (4-3.16) and (4-3.18), we obtain for the y
component of the field

po N[, Rwe xR
PodmeRL r o r(r-x(vic) T ry(r,-xyvic) 4-3.19)
O [xz’ (r,=x;vlc) -R*Ic  x{(r,-x{vic) -sz/c]
4me R L ry(r, - xz’ vlc) r(r, —xll v/c)
or
_ A [le r, -x)2vlc-R™lc x| r, -x{vlc -sz/c} (4-3.20)
Y 4meRl r,(r, =X, vIc) r (r,=x{vic) '

But x,"v/c + R*/c = rlc and x,’VIc + RWI/c = r>lc.
Therefore

/ /

A {xz -ryvlc X —rlv/c)

y 7 7 :
dmeR\r —xjvic  r -x/vic

Now, by Eq. (4-3.1), x,/ — ryv/lc = L,, and by Eq. (4-3.2),
x,' — rvlc = L,. Substituting L, and L, into Eq. (4-3.21) and
transforming the denominators to the present position quantities by
means of Egs. (4-3.7)-(4-3.12), just as we did in Eq. (4-3.6), we
finally obtain

__ A L, _ L, (43.22)
Y Ame RVWLZIR* +1 -vHcH™  (LYR*+1 -v¥cH)'™R

(4-3.21)
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The magnetic field. Although we could find the magnetic field
of the moving line charge from Eq. (2-2.2) or from Eq. (2-2.5),
it is much simpler to find it from the electric field of the charge.
According to Eq. (3-2.5), the magnetic field H of any uniformly
moving charge distribution is always

H = ¢vXxE, (4-3.23)

where E is the electric field of the moving charge distribution.
Since v = — vi, the only non-vanishing component of the cross
product in Eq. (4-3.23) is the z component involving E, only.
Substituting v and Eq. (4-3.22) into Eq. (4-3.23) and denoting A\v
as the current /, we obtain

H-k_ ! L, L, (4-3.24)

4TR?L(L2/R* +1-v¥c)  (L}/R*+1 -v¥c?)2

4-4. The Electric Field of a Point Charge in Arbitrary Motion

As before, we consider a constant charge distribution of total
charge g and density p confined to a small rectangular prism (Fig.
4.6) whose center is located at the point x’, y' in the xy plane of
a rectangular system of coordinates, and whose sides /, a, and b
are parallel to the x, y, and z axis, respectively. The point of
observation is at the origin. The distance of the center of the
prism from the point of observation (the origin) is r, > a, b, [,
so that the prism constitutes a point charge.> We shall assume that
at the retarded time ¢' the center of the prism moves with velocity
v in the negative x direction and has an acceleration V.

For a given present time ¢, the retarded times associated with
different points of the prism are different, corresponding to
different retarded distances of these points from the point of
observation. Therefore the retarded velocities of the different
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ry>>abl

o -

Fig. 4.6 A charge of uniform density p is confined to a small
rectangular prism. The charge constitutes a point charge when
viewed from a distance large compared to its linear dimensions.

points of the prism are also different. If the prism is sufficiently
far from the point of observation, which we assume to be the
case, the difference between the retarded times corresponding to
different points of the prism is very small, and therefore the
retarded acceleration of the prism may be assumed to have the
same value v for all points of the prism, even if in reality the
acceleration is variable. Therefore the velocities of the different
points of the prism can be calculated from velocity formulas for
motion with constant acceleration.

As we shall presently see, in addition to the velocity of the
center of the prism, we only need the velocities of the right, left,
top, and bottom surfaces of the prism. Let the distances of these
surfaces from the point of observation be r,, r,, r;, and r,, as
shown in Fig. 4.7. The time interval between the retarded time
for the center of the prism and for its left or right surface is then
approximately (r,—r,)/2c (see Section 3.1), and the time interval
between the retarded time for the center of the prism and for its
top or bottom surface is approximately (r;—r,)/2c. Therefore the
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Fig. 4.7 When the charge shown in Fig. 4.6 is in a state of
accelerated motion and is at a retarded position, its apparent
length, shape, and thickness of its surface layers are no longer the
same as for the stationary charge. The distances from the center of
the charge and from the four surface layers to the point of
observation are represented by the vectors r, 'y, Iy, Iy, and r,. All
five ¥’s meet at the point of observation (origin of coordinates). The
acceleration vector is in the xy plane.

(approximate) retarded velocities of the right, left, top, and
bottom surfaces of the prism are, respectively, v, = v — ¥(r, —
r)2c, v, = Vv + ¥(r, — r)/2c, vy = v — V(r; — ry)/2c, and v,
=V + V(r; — ry)l2c.

As was explained in Section 3-1, the apparent size and shape
of the prism in its retarded position is not the same as that of the
prism when it is at rest. In particular, if the prism moves in the
— x direction, the prism appears to be longer, it appears to be
slanted, and the effective volume of the prism and of its surface
layers changes (Fig. 4.7). As a result, the following geometrical
relations hold for the moving prism at its retarded position:

The apparent length of the prism is, by Eq. (3-1.7),

o=t (4-4.1)
1-r-virc

The apparent volume of the prism is, by Eq. (3-1.8),
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@l = P (4-4.2)
1-r-virc
By the same equations, the apparent volume of the right surface
layer (distance r, from the origin) is

@w); = ¥ (4-4.3)
L-r +v,/rc
the apparent volume of the left surface layer (distance r, from the
origin) is
@wy; = P, (4-4.4)
1-r,-v,/rc
the apparent volume of the top surface layer (distance r; from the
origin) is
awy; = v . (4-4.5)
L-r,-v,/rc
and the apparent volume of the bottom surface layer (distance r,
from the origin) is
o (4-4.6)
l-r,-v,/rc
We shall find the electric field of our accelerating point
charge by using Eq. (2-2.1)

1 dJ
Y
[ p c? ot

r

av’. (2-2.1)

E--__|
4me,

Consider first the contribution of the gradient of the charge
density, V'p, to the field. Since p is constant within the charge,
V'p = 0 within it, so that the only contribution to V'p comes
from the surface layer of the charge, where p changes from 0
(outside the charge) to p (inside the charge). Let the actual
thickness of the surface layer of the charge be w. Taking into
account that V'p represents the rate of change of p in the direction
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of the greatest rate of change, we then have V'p = (o/w)n,,
where n;, is a unit vector normal to the surface layer and pointing
into the charge.” Since the center of the charge is in the xy plane
(' = 0), the integrals over the two surface layers parallel to the
xy plane cancel each other, because V'p for one of the layers is
opposite to that for the other layer, while 7 is the same for both
layers. Thus, as far as V’'p is concerned, only the four integrals
over the layers parallel to the xz and yz planes remain. Referring
to Figs. 4.6 and 4.7, they are the right, left, top, and bottom
surface layers, and V'p associated with these surface layers is,
respectively —(po/w)i, (o/w)i, —(p/w)j, and (p/w)j (these are the
same relations that we used for finding the electric field of a
uniformly moving point charge in Section 4.1).

Assuming that ry, r,, r;, and r, are much larger than /*, we
can replace the integrals over the four layers by the products of
the integrands and the retarded volumes of the layers, which gives

- ["’W(abw>1 (-1)+ 22 (abw); 1+ 2L @b ()
"2 " (4-4.7)
+M(lbw);wj]— 1 j[‘”’at]dv'.
r, 4me,c? r

Let us designate the part of Eq. (4-4.7) which explicitly
depends on p as E,. Using Eqs. (4-4.3)-(4-4.6) and cancelling w,
we can write then

1 1 .
[
P dmel\rfl-r, v, /rc} rf{l-r, -v,/rc} o

+( 1 1 )blj].
r4{1—r4-v4/r4c} rdl-r, -v,/rc}

(4-4.8)

The differences of the fractions in this equation are simply the
increments of the function 1/(r - r - v/c) associated with the
displacement of the tail of r over a small distance represented by
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the vector 1* [in the i component of Eq. (4-4.8)] and by the vector
a* [in the j component of Eq. (4-4.8)]. Therefore, just as we did
in the case of Eq. (4-1.7), we can write Eq. (4-4.8) as

LY AT PO

Using Egs. (3-1.16), (3-1.14), and (3-1.15), we now have

_ pb [(r -rvic+(r-Vr/c? i) la ;
4 47r£0l r3(1-r-v/rc)? 1-rev/rc
+(r -rvic +(r « V)ric? i) y'vlc alj (4-4.10)
r3(1-r -« v/rc)? r(l-r-v/rc)
+(r—rv/c +(r * V)r/c? ) r-x'vic alj]
31 -r « v/rc)? r(l-r-v/rc)

Simplifying and taking into account thatr « i = — x',r « j =
—y,vei=—-vy,ve+j=0,andr - v = x'v, we obtain
pabl

. {[-x’ +mvlc-(rV)x'/cYi

) 4me,r?[1-r « v/rc]P
/
+[-x"+rvlc - (r - V)x’/cz]y_:/cj

—x/ (4-4.11)
H[oy! - @0yl LR

- pabl
4meyr [l -r - v/rcP
+(vy[eHj -y j - - ¥)y'lcj].

[=x’i-rvic - (r < V)x'/c?i

Since we are not interested in the acceleration-independent
field E, (this field was found in Section 4-1), we shall drop in Eq.
(4-4.11) the terms that do not contain the acceleration v, and shall
designate the rest of the equations as E,,, with the subscript "4"
standing for "acceleration."” Noting thatr = — x'i — y'j, and that
pabl = g, we then obtain
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- q(r-v)r , (4-4.12)
dregic?(1-r- virc)

Ap

Consider now the contribution of 8J/dt to the field. By Eq. (3-

1.4), we have
8 _d(pv) _
ot ot

-(v-V'p)v +p%2 =—(v-Vp)v+pv. (4-4.13)

However, because the retarded velocity is different in different
regions (points) of the charge, we must evaluate Eq. (4-4.13)
separately for each region under consideration. There are five
such regions: the interior of the charge, the right surface, the left
surface, the top surface, and the bottom surface.

In the interior of the charge, V’p = 0. Therefore for the
interior we have

o (4-4.14)
o PV

At the right surface, V'p=(dp/dx")i=—(p/w)i, and the velocity
is v,. By Eq. (4-4.13), for the right surface we therefore have

aJ,
L=—(v, - V')V, +pV, = -(v, _)v +pV, =(p/W)v, v, +p¥,.
o \44.15)
or
’a_z] = (p/w)(v, v, + wv), (4-4.16)
and since we can make w as small as we please,
aJ,
¥ = (p/W)v,v,. (4-4.17)

At the left surface, V'p = dp/dx'i = p/wi, and the velocity is
v,.Therefore, by the same reasoning as in the case of Eq. (4-

4.16), 53

_513 = - (p/W)v,y,. (4-4.18)
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At the top surface, V'p = dp/dy’j = — p/wj, and the velocity is
v,;. Therefore,

aJ.
T: = (0/W)vyv,. (4-4.19)

At the bottom surface, V'p = dp/dy'j=p/wj, and the velocity is
v,. Therefore
a0J
6_t4 = = (p/w)v,yv,. (4-4.20)
Let us now designate the integral in Eq. (4-4.7) as E;. Since,
by supposition, all ’s for the charge (prism) are much larger than
the linear dimensions of the charge, we can replace the integration
by the product of the respective integrands and the volumes of the
five regions that contribute to dJ/d¢t. Using Eqs. (4-4.14), (4-
4.17)-(4-4.20) and (4-4.2)-(4-4.6), we then have

v abl
R A (4-4.21)
+p(vv abw )—p(vv abw )
I B § A B I T B} A R I
rw 1-r ev,/rcl rw 1-r,-v,/rc
0 Ibw ) 0 ( bw )
+ Py % - £ e A
r3w( ¥ -1, - v, /rel rw\ Y T v irc
or
i V¥ v,V
dmecBy = T+ ab( M b )
e r(1 -r - v/rc) b r,-r, -v,/c r,-r,-v,/c
v,V v,V
+pbl( SALBI A ) (4-4.22)
ry,-Yyevilc r,-r,ev,/c

Since the linear dimensions of the charge are very small
compared to the r’s, the difference of the fractions in the last two
terms of Eq. (4-4.22) can be regarded as the total differential
(increment) df = (8f/dx")dx’ + (df/0y')dy’ of the functions
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Vv

x (4-4.23)
r-rev/c
and
o (4-4.24)
r-revlc

corresponding to the displacements of the tail of r by I* and by
a*, respectively (see Fig. 4.7).

Using Eq. (3-1.16), noting that r = — x'i — y’j, noting that
v, = 0 (because v is parallel to the x axis), and remembering that
v and v are functions of the retarded time t' = ¢t — r/c, so that
ov/ox' = (9v/dt')ot'/ax’ = (dv/dt')x'/rc = vx'lrc with similar
expressions for dv/dy’, dv/dx’, and dv/dy’, we have for the needed
partial derivatives of the two functions

9 A )_ -x" = lc-(r-¥)x'lc?
0x’\r[1 —(l’ ° v)/rc] * 7'3[1 —(l' . V)/"C]2 (4_425)
vy +vvx’
ric[1-(r - v)/rcl’

o ) _ vyx'! (4-4.26)
ax \r[1=(r - v)/rc] rc[l-@r-v)/rc]’
and
K2 (_Vyv_) - WY wan
ay’\r[1-(r - v)/rc] r¥c[1-(r - v)/rc]

In evaluating Eq. (4-4.22) with the help of Egs. (4-4.25)-(4-4.27),
we shall omit from Eq. (4-4.25) the terms not containing v, since
they only contribute to the acceleration-independent field E,,
which we already found in Section 4-1. Combining Eqgs. (4-4.22),
(4-4.25)-(4-4.27), (3-1.14), and (3-1.15), we then have, denoting
the acceleration-dependent field as E;, ,
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88
v
ey = = )
[ -vv(r-v)x’ Wy +v¥)x’ ] I
+pa - .
r3c(1-r-virc)* rc(1-r-virc)l (1-r-virc)
p [ vvx' o aylvic (4-4.28)
ric(1-r-v/rcy r(d-r-v/irc)
. vy’ . a(r—r-v/c)]
r’c(1-r-virc) rd-r-virc)l
or
v
dmeoc By = r(1 —1"1 - v/rc)

- - V)x/
q VI XT e (4-4.29)
réc(1-r-v/rclre(1-r-virc)y ~*

+

9 Iy/! ¥ /
e hvxywv v,vy/'(r - v)
vx' -2~ —yyvy '+ 217 |
y
rc rc
Sincer + v=x'v= —x'vandsince —v.x' — v,y =

v - r (see Figs. 4.6 and 4.7), Eq. (4-4.29) reduces to

41e K, = 7(1‘%?77@ (4-4.30)
+ 9 v - v)(r-v) +(r < V)V +(r - V)V,

r’c(1 -r - v/rc)*lre(1-r - v/rc)

which after elementary simplifications becomes

E - qv + g - Vv (4-4.31)
M 4re (1 -1 - virc?  dmeciri(1-revirc)
0 0

Finally, in accordance with Eq. (4-4.7), subtracting Eq. (4-4.31)
from Eq. (4-4.12), we obtain for E,
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q@r « v)r _ q(r-vyv
2,3(] —p » 3 r2(1-r- }
dme,cor E;lv revire)  Amec’r’(1-x-vire)’ 4 4 35y

4me,c?r(1-r - virc) ’

which can be written in a simpler form as

_ q {rx[(r - .%v)xv]} . (4-4.33)

A 4me,ricX(1 -r « virc)®

The total electric field is the sum of the acceleration-
independent field E, given by Eq. (4-1.11) and of E, given by
Eq. (4-4.33). Adding Egs. (4-1.11) and (4-4.33), we obtain for
the total electric field of a point charge in arbitrary motion

E-= q {(r—ﬁXl -.v_z)+r><[(r—_r_‘:)x l}}
4meyr3(1-r  virc)’ c c? c c?

(4-4.34)
Note that r, , v, v, and v in this equation are retarded.

v

Example 4-4.1 A point charge moves with constant speed along a
circle of radius r (Fig 4.8). Find the electric and magnetic fields
produced by the charge at the center of the circle and discuss the
significance of the resulting equations for electrodynamics of atomic
systems.

For circular motion v = (V/F)r. Substituting v into Eq. (4-
4.34), taking into account that r «+ v = 0, and simplifying, we
obtain

2
E-_J4 {r(l-v_)-vi}. (4-4.35)
47r80r3 c? c

Equation (4-4.35) expresses the electric field in terms of the
retarded position of the charge. Let us convert this expression to the
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P ©

r

S

Fig. 4.8 Geometrical relations between the 'present position
vector" r, and the "retarded position vector" r for a point charge
q moving with velocity v in a circular orbit. The field signal
originates at the "retarded" point P and propagates with velocity ¢
toward the center of the orbit O. By the time the signal reaches the
center of the orbit, the charge has moved an angular distance wr/c
along the orbit and is at the "present position" point P,. (Note.: The
length of the arc between P nd P, is exaggerated. Since v < c, the
arc should be shorter than the radius of the orbit.)

present position of the charge. We can do so by resolving the
retarded position vector r and the retarded velocity vector v into
their components along the present position vector r, and the
present velocity vector v,. Since the angle between the present
position vector and the retarded position vector is §, — § = wr/c =
v/c, where w is the angular velocity of the charge, we obtain for the
two components of E

2
E = 9 {(1 -_v_)rcos wic) + M sin (v/c)}, (4-4.36)
© 4meyr? c? c
2
E, = _1 {(1 - _v_)rsin wic) - %V cos (v/c)}, (4-4.37)
© A4meyr? c? c
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and for the total field

2
E = q : {[(1 - %)COS Wic) + X SiIl(V/C)]rO
4meyr c ¢ (4-4.38)

+ [(1 - :‘)—z)% sin(v/c) - _c’: cos(v/ C)}Vo}-

The most obvious practical application of Eq. (4-4.38) is for the
case when we can neglect v/c to powers higher than 3. Expanding
sin(v/c) and cos(v/c) in Eq. (4-4.38) into power series of v/c and
dropping terms containing v/c to powers higher than 3, we have

E - _‘1_{(1 _v_2)r0 2 2vo}. (4-4.39)
4me,r? 2c? 3c3

To find the magnetic field, we apply Eq. (3-2.12) to the electric
field given by Eq. (4-4.35). This gives

2
H=_9 rx {r(l =Y
4mepyric c?

_ vf}, (4-4.40)
C

or, sincer X r = 0, and /g, = ¢,

H=_9 [vxr]. (4-4.41)
47r?

Although v and r in Eq. (4-4.41) are retarded, their cross
product is not affected by conversion to the present velocity vector
and present position vector of the charge, because the cross product
is the same for all points of the orbit. Therefore the magnetic field
given by Eq. (4-4.41) is exactly as expected from the Biot-Savart
law. But Eqgs. (4-4.38) and (4-4.39) for the electric field are quite
unexpected. Intuitively, one would expect the field to be the
Coulomb field [possibly with the factor (1 — v*/¢?)] directed to the
center of the orbit. Contrary to expectations, the true electric field
of a point charge moving with constant speed in a circular orbit is
very different from the Coulomb field: First, the field has a
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component parallel to the instantaneous velocity vector, and thus is
not directed to the center of the orbit. Second, the field is not
proportional to 1/7%. Third, the factor in the radial component of the
field is (1 — v*/2¢) rather than (1 — V*/c?).

As far as atomic systems are concerned, it is clear from the
derivations presented above that the Coulomb law cannot be used
as a rigorous basis for any atomic model. The problem is that, even
if the electric field of the nucleus is exactly a Coulomb field, so that
the electric force exerted by the nucleus on electrons is the ordinary
1/7* force, the electric force exerted by electrons on the nucleus is,
by Eqgs. (4-4.38) and (4-4.39), neither radial nor proportional to
1/7 [the fact that Eqs. (4-4.38) and (4-4.39) have been obtained for
a circular, rather than for an elliptical, orbit cannot possibly
change the essence of the information provided by Egs. (4-4.38)
and (4-4.39)]. Therefore any atomic model based on Coulomb field
or Coulomb potential can at best be only approximately correct,
although the corrections associated with the acceleration of the
electrons are clearly very small.®

A

4-5. The Magnetic Field of a Point Charge in Arbitrary Motion

Although by using Eq. (2-2.2) or Eq. (2-2.5) we can find the
magnetic field produced by a point charge in arbitrary motion in
the same manner as we found the electric field in Section 4-4 (see
Example 4-5.1), it is much easier to find it from the known
electric field by using Eq. (3-2.12).

Applying Eq. (3-2.12) to Eq. (4-4.33) and using ey, = 1/c?,
we obtain for the acceleration part of the magnetic field after
elementary simplifications

P —LaL LSS
4mric(l -r - virc)*Lre(l -r « v/rc)
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Applying Eq. (3-2.12) to Eq. (4-4.34) and using eou, = 1/¢7,
we obtain for the total magnetic field after elementary
simplifications

= q 1—V2/C2+T’V/C2(vxr)+‘.’xr (4_52)
4rr®(1 -r-virc)*L r(l-r-v/rc) )

v

Example 4-5.1 Find the magnetic field of an accelerating point
charge shown in Figs. 4.6 and 4.7 by using Eq. (2-2.2).

Since J = pv, V' X J=V' X pv =V'p X Vv + pV' X v. But
v is not a point function (there is no "velocity field"), and therefore
Vi Xxv=0and V' XJ = V'p X v. As we already know from
Sections 4-1 and 4-4, V'p for our charge is only different from
zero at the surface layers of the charge. Therefore the only
contribution to the integral in Eq. (2-2.2) comes from the right,
left, top, and bottom surface layers, where V'p is —(o/w)i, (o/w)i,
—(p/w)j, and (p/w)j, respectively (by symmetry, the contributions
of the front and back surface layers cancel). Since [V’ X J] in the
integral of Eq. (2-2.2) is retarded, the velocity in the expression
[V'p x v] is the retarded velocity of each surface under
consideration. By supposition, the distances from the charge to the
point of observation is much larger than /*. Therefore the integral
in Eq. (2-2.2) can be replaced by the integrand and the volume of
integration (the respective volumes of the surface layers).
Substituting into [V' X J] = [V'p X v] = — [v X V’'p] the above
expressions for V'p, and using Eqs. (2-2.2) and (4-4.3)-(4-4.6), we
then have

_ abw (v, X1) _ abw (v, X i)
drwlr{l-r - v,/rc} rf{l-r,-v,/rc} (4-5.3)
biw(v, X j) blw(v, X J)

{11, v,inc] ril-r,-vjirc)
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or
H- i[( L xia
4 \[r,-r, > v,/c]l [r,-1,*v,/c] (4-5.4)
+( i Y% )x 'bl} |
[ry-ry e vy/c] [r,-r = v,/c] o)

The differences of the fractions in Eq. (4-5.4), just as before in
Eq. (4-4.22), are the increments of the functions given by Eqs. (4-
4.23) and (4-4.24), except that v, and v, in the numerators are now
absent. By Eqs. (4-4.25) and (4-4.26), taking into account that v, =
0, the corresponding partial derivatives are

F) ( v )_ -x’—rvx/c-(roi')x’/czv
' \r-revic r3(1-rev/rc) (4-5.5)
vx'

ric(1-r-virc)’

and
O )_ -y~ (e ¥y/c?
=v
dy'\r-r-v/c) r3(1 -r-v/rc)? (4-5.6)
i vy

r2c(1-revirc)

In evaluating Eq. (4-5.4) with the help of Egs. (4-5.5) and (4-
5.6), we shall omit from Eqs. (4-5.5) and (4-5.6) the terms not
containing v, since they only contribute to Hy, (the magnetic field
of a uniformly moving charge), which we do not need. Combining
Egs. (4-5.4), (4-5.5), (4-5.6), (3-1.14), and (3-1-15), we then have
for the acceleration-dependent field

=_£_[( -v(r-v)x' vx! )xi- abl

4 4T\ P32 -revire) ric(l-r-virc) 1-r-v/rc

+( -v(r-v)x' vx! )x'- ably 'vic @-5.7)
ric¥1-revirc) r*(l-r-v/rc) r(1-r-v/rc)

+( -v(r-vy' vy' )x‘- ably (1 -r+v/rc) .
r3’c 1 -revirc)y r2c(l-re-v/rc) r(1-r-v/rc)
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Expanding Eq. (4-5.7), taking into account that v X i = 0, and
simplifying, we obtain

H - q [—'x' /. V(e v)y’ '—'x"},
4 4xric(l -r-virc)? ek rc(1-r-v/rc) TRl
(4-5.8)
Butix’ + jy' = —r,and v X jy' = — v X r (because v is
parallel to the x axis). Therefore Eq. (4-5.8) can be written as
H,- 7 er+lli29;ﬁ4. (4-5.9)
47rc(l -r « v/rc)? re(1-r = v/rc)

The total magnetic field of an accelerating point charge is the
sum of Eq. (4-2.1), representing the magnetic field of a uniformly
moving point charge, and Eq. (4-5.9), representing the effect of the
acceleration of the charge on the field. Adding Egs. (4-2.1) and (4-
5.9), we obtain

_ q [1-vc?+(r-¥)/c?
4r¥(1 -r-virc)’l r(1-r-v/rc)

wxr)+YXT| (4-5.10)

Observe that Eqgs. (4-5.9) and (4-5.10) express the magnetic field

in terms of the retarded position of the charge. A

4-6. Electric and Magnetic Potentials of a Moving Point
Charge

Electric and magnetic potentials produced by a moving point
charge g can be easily obtained from Egs. (2-4.5) and (2-4.2).

A "point charge" is a charge distribution viewed from a
distance large compared to the linear dimensions of the charge
distribution. Therefore, for a point charge, the distance r in the
integrals of Egs. (2-4.5) and (2-4.2) may be considered the same
for all volume elements of the charge, and therefore each integral
may be replaced by the product of the integrand and the retarded
volume of the charge AV'.
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By Egs. (2-4.5) and (3-1.8), we then have for the electric
scalar potential of a moving point charge

/
Y= P AV/ret = L4 (4-6.1)
dme,r dre,r(1-r-v/rc)

or, replacing pAV' by g,

_ q ) (4-6.2)
dweyr(l-r-vlrc)

From Egs. (2-4.2) and (3-1.8) we similarly have for the
magnetic vector potential of a moving point charge

pJ AV’

PN ,
47r(1 -r - v/rc)

4-6.3
drr ( )

ret
and since J = pv,

- oV , (4-6.4)
4rr(l1-r-v/rc)

Equations (4-6.2) and (4-6.4) are called the Liénard-Wiechert
potentials.®'° They express the potentials of a moving point charge
in terms of the retarded position of the charge. If the charge
moves with constant velocity, Liénard-Wiechert potentials can be
converted to the present position of the charge. Transforming the
denominators of Egs. (4-6.2) and (4-6.4) with the help of Eq. (3-
1.26), we obtain for a point charge moving with constant velocity

- q (4-6.5)
4 4meyr[1 - (v c?sin?6]'?

and

- M , (4-6.6)
47ry[1 -(v¥c?sin?6]"?

where r, is the present position radius vector, and @ is the angle
between v and ry,.
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v
Example 4-6.1 Equations (4-6.5) and (4-6.6) represent the

"instantaneous" potential of a uniformly moving point charge. Since
the charge is moving, the potentials change as the time goes by.
How should they be written to show explicitly their time
dependence?

Assuming that the charge moves in the negative x direction, the
x coordinate of the charge diminishes with time according to x,’ —
vt, where x,' is the value of the x coordinate at 1 = 0. Expressing
the denominators in Eqgs. (4-6.5) and (4-6.6) in terms of Cartesian
coordinates by means of Eq. (3-1.26) and (3-1.25), and replacing
x,' by x,/ — vt, we obtain the time-dependent expressions for the
potentials

- q
0= (4-6.7)
4me [(xg - vi)> +(1 -v¥c?y'?]?
and
A = T . (4-6.8)
4m[(xy - vi): +(1 -v¥c?)y'*]”? A

4-7. How Accurate are the Equations for the Fields and
Potentials Obtained in this Chapter?

The equations for the electric and magnetic fields of a point
charge in arbitrary motion were first derived in 1898 by A.
Liénard® from the potentials which we now call the Liénard-
Wiechert potentials [Eqgs. (4-6.2) and (4-6.4)]. These potentials
were first derived by Liénard in 1898 and later by Wiechert in
1900.%1° Both Liénard and Wiechert obtained the potentials from
the retarded integrals for the electric and magnetic potentials of a
time-dependent charge distribution in a manner similar to our
derivations presented in Section 4-6.

Liénard invented a special method for integrating retarded
potential integrals for the case of a charge distribution of "very
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small dimensions." The essence of the method was that, because
of the motion of the charge, the region of space from which the
charge "sends" electric and magnetic field signals is not the same
as the volume occupied by the stationary charge. According to
Liénard, if the region occupied by the stationary charge is Q, then
the integration is to be extended over the region Q/[1 - (u/V) cos
(u,r)], "en prenant pour u et r une valeur moyenne," that is, by
using average values for the velocity of the charge u and for the
distance from the charge to the point of observation r (Liénard
used V for the velocity of light). One should note that Liénard did
not specify how these average values were supposed to be
determined, and that, by using an "average value" for the velocity
of the moving charge, he eliminated the need for taking into
account a possible acceleration of the charge. Assuming then that
the charge was "concentrated" at a "single point," Liénard
obtained his "point charge" potentials.

Wiechert’s derivation was essentially the same as that of
Liénard. However, instead of using the average values for the
velocity and distance, he simply factored out 1/r from under the
integral sign because, according to him, "die Variation des
Nenners » kommt bei unendlich kleinen Dimensionen nicht in
Betrach," that is, because in the case of the infinitesimal volume
of the charge, r could be regarded as constant over the volume of
integration.

It is clear that since Liénard used average values of the
integrand in obtaining his potentials, the potentials could not be
exact. And it is also clear that Wiechert was wrong when he
referred to the volume of integration as "infinitesimal." Even if
the actual volume of the charge is "infinitesimal," the volume of
integration is not - in fact, according to Eq. (3-1.8), it can be
infinitely large, if the velocity of the charge is equal to the
velocity of light and if the charge moves toward the point of
observation!
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The conventional derivations of potentials and fields of
moving electric charges now used in most textbooks on electricity
and magnetism are basically the same as those used by Liénard
and therefore are subject to the same misgivings.

Our derivations of the electric and magnetic fields of a
moving point charge presented in this chapter differ in two
important aspects from the conventional derivations of these
fields: (1) the fields are derived directly from the general field
equations for an arbitrary time-dependent charge and current
distribution, and (2) the derivations clearly reveal the physical
effects responsible for the characteristic properties of the fields.
In contrast, the conventional derivations, based on the Liénard-
Wiechert potentials, hide these physical effects behind a physically
obscure mathematical procedure required for transforming the
potentials into the fields.! It is difficult to ascertain the range of
validity of Egs. (4-1.11), (4-1.13), (4-4.34) and (4-5.2) on the
basis of conventional derivation. But our direct derivations show
very clearly what restrictions apply to these equations and how the
restrictions originate.

In obtaining the expressions for E and H of moving point
charges we used several approximations. Our first approximation
was the replacement of the integrals in Egs. (2-2.1) and (2-2.2) by
the products of the integrands and the volumes of integration. This
can only be done if the relation r > I* is satisfied. Therefore, by
Eq. (3-1.7), our E and H expressions for moving point charges'
are subject to the restriction

l l

> = , 4-7.1
s 1-rev/rc 1-(v/c)cosod ( )

where [ is the length of the "point charge," v is the velocity of the
charge, r is the retarded position vector joining the charge with
the point of observation, and ¢ is the angle between v and r.
Since Eq. (4-7.1) must hold for all values of ¢, including ¢ = 0,
the velocity of the charge is subject to the restriction
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v < c(1-1/7). (4-7.2)

Consider now the approximations that we used for taking into
account the acceleration of the charge. The retarded time intervals
between the center and the right-left and top-bottom surfaces of
the charge are (r, — r)/2c = (I cos¢)/[2c(1 — r-v/rc)] and (ry
— r)l2c = (a sing)/[2c(1 — r-v/rc)], respectively (see Figs.
4.7, 3.2, and 4.3)." For Eq. (4-7.1) to hold, the increment in the
velocity of the charge during these time intervals must be less than
¢ — v. Hence the restrictions on the acceleration of the charge in
the direction of the x axis is

V(r,-r)/2c < c-v, (4-7.3)
or
v < 2(c -v)(c-vcos®) ‘ (4-7.4)
x Icos¢

A similar restriction applies to the acceleration in any other
direction. Since the largest possible value for cos ¢ and sin ¢ is
1, we obtain from Eq. (4-7.4) for the general case of the
acceleration v

b

y < 2 (4-7.5)
I

where L is the length of the "point charge" in the direction of the
acceleration.
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under consideration the displacements 1* and a* are very small
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ELECTRIC AND MAGNETIC
FIELDS AND POTENTIALS OF
AN ARBITRARY CHARGE
DISTRIBUTION MOVING WITH
CONSTANT VELOCITY

Electric and magnetic fields and potentials produced by
any time-independent stationary charge and current distribution
can be calculated with relative ease by a variety of methods. But
calculating fields of time-dependent charge and current
distributions, and the fields of moving charge distributions in
particular, still remains a formidable task. In this chapter we shall
obtain general formulas that allow one to determine the fields and
potentials of any uniformly moving charge distribution directly
and simply in terms of present time integrals that are not much
different from the integrals for fields of stationary charges.

5-1. Converting Retarded Field Integrals for Uniformly
Moving Charge Distributions into Present-Time (Present-
Position) Integrals

As we already know from Chapters 2 and 3, electric and
magnetic fields of moving charge distributions can be found from

103
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the retarded integrals

[V’p + ig}
1 c? ot
E - - j av’ (5-1.1)
4me, r
and
H-_L j (V' X J] gy (5-1.2)
4T r
or from
1 [o] 1|0dp / 1 1{0J
o e e L s
dmey ) L p3 i ricl ot r 4me,c?) rlot )
and
H - LH@ +L{"’_J xrdv'. (5-1.4)
4wt riclot

We shall presently show that for time-independent charge
distributions moving with constant velocity, these integrals can be
converted to the "present” position of the charge distribution, so
that the integration is performed not over the retarded, or
effective, volume (see Section 3-1), but over the real volume that
the charge distribution occupies at the moment ¢ for which the
fields are being determined.

The conversion is based on certain properties and relations
involving retarded integrals and retarded quantities which are
reviewed below.

Although in the retarded integrals the retardation symbol [ ]
usually appears only in the numerators of the integrands, all
quantities in the integrals are retarded. In particular, the volume
element dV’ stands for the retarded volume element dV',,, = [dV']
= d[x']d[y']d[z’'], r stands for the retarded distance [r], and r
stands for the retarded position vector [r]. Note that [Vp] means
"ordinary Vp used at retarded position," [dp/df] means "derivative
of ordinary p with respect to ordinary time used at retarded
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position," and [0J/3f] means "derivative of ordinary J with respect
to ordinary time used at retarded position."

In the derivations that follow, we shall assume that the point
of observation is atx = y = z = 0, and we shall only consider
a time-independent charge distribution moving with constant
velocity in the —x direction. For such a charge distribution,
because the charge density is not a function of time, [p] = p, and,
because v is constant, [v] = v. Also, as explained in Section 3-1
[see Egs. (3-1.8), (3-1.3), (3-1.4), (3-1.25), and (3-1.26)], the
following relations hold for such a charge distribution

@y -_4av. (5-1.5)
1-[rev]/rc
0 . _ . -, 00 i
Tt - v V/p - v5;7’ (5 16)
0J ap .
W eV = 290 (5-1.7
- (v+Vp)v v ax'l )

Y I 212 12 (12 12\ 2 A 21102
[r] =[x vl/c={xo" +y""+2"* - (y"* +z2"?/c?} (5-1.8)
={x62+(yl2 +Z/2)(l _v2/c2)}1/2={x62+(y/2 +Z/2)/,Y2}1/2’
[we are using the standard abbreviation y = 1/(1 — v*/c*"4], and
[r] - [r - vl/c = r,{1 - (v¥/c)sin?0 }12, (5-1.9)

where sin’0 = (y'? + z'?)/(x,’> + y'* + z'?) and 6 is the angle
between the velocity vector v and the vector [ry] joining [dV']
with the point of observation. For clarity, all retarded quantities
and expressions in the above equations are placed between square
brackets; the quantities without brackets, and the quantities
between braces in Eq. (5-1.8) and (5-1.9) in particular, are
present-time quantities. Observe that Eq. (5-1.8) is obtained from
Eq. (3-1.25) by replacing y'? by y’> + z'% the replacement is
needed because we no longer deal with a point charge and
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therefore cannot assume that the charge is confined to the xy
plane.

We can now proceed with the conversion of Egs. (5-1.1)- (5-
1.4). Once again, we shall only consider a time-independent
charge distribution moving with constant velocity v = — vi.

Converting Eq. (5-1.1). Using Egs. (5-1.5) and (5-1.7) and
remembering that p and v are not affected by retardation and that
V'p in Eq. (5-1.1) is the ordinary gradient, we can write Eq. (5-
1.1) as

E = - av’

1 jV’p—(v-V’p)v/c2
dme, [r-r-vic]

1 jV’p -i(v2/cH(dp/dx") dv'
4Te, [r-r-v/c] ’

(5-1.10)

where only the denominator is retarded. Converting the retarded
denominator in Eq. (5-1.10) with the help of Eq. (5-1.8), we
obtain the desired equation (we are omitting the subscript "0" at
x' for simplicity)

1 lV’p —i(vz/cz)(ap/ax/)dv/’ (5-1.11)
dme, ) (x2a(yP ez ) 2}

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (5-1.11) can be written in an alternative form. Using
Eq. (5-1.9) for converting the denominator of the integrand in Eq.
(5-1.10), we obtain (omitting the subscript "0" at r for simplicity)

E = - 1 lV’p —i(vZ/cz)(ap/Ox’) dv'. (5_1_12)
dmey ) r{1-(v¥c?sin?6}'?

An even simpler expression for E of a moving charge
distribution can be obtained from Eq. (5-1.1) if the density of the
charge under consideration is constant within the volume occupied
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by the charge. As was shown in Section 2-3, in this case the
charge gradient exists only at the surface of the charge, and the
volume integral reduces to a surface integral. Equation (5-1.12)
becomes then

) ds’ -_Fi(vzlcz)dy’dz’ , (5-1.13)
dmey ) r{l -(v?¥/c?sin?4}?

where the surface element vector dS’ is directed from the charge
distribution into the surrounding space, and the sign in front of i
is the same as that of dp/dx’ .

v

Example 5-1.1. A thin ring of width w, thickness b, and radius a
> b carries a uniformly distributed charge g and moves with
velocity v = — vi along the x axis, which is also the symmetry axis
of the ring (Fig. 5.1). Find the electric field produced by the ring
at the origin of coordinates when the center of the ring is at a
distance x’ from the origin.

Fig. 5.1 A thin ring of charge q moves with velocity v = — vi
along the x axis. Find the electric field at the origin.

We can solve this problem by using Eq. (5-1.13). By
symmetry, only the front (leading) and the back (trailing) surface
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of the ring contribute to the electric field at the origin. Let the
distances from the front and the back surface of the ring to the
origin be r; and r,. We then have r, = [(x' — w/2)* + a’]'?, r, =
[(x' + wi2)? + a’]'?, sinf, = a/[(x’ — wi2)* + a’]'?, sinf, =
all(x" + w/2)*> + a*]'*. Equation (5-1.13) becomes therefore

E-_P “ -{1-v¥c*dy'dz'i +j‘ {1-v¥cHdy'dz’i )’
dmey\J r {1 -(v¥c?sin?d }'? I r,{1-(?/c?)sin?,}"?
(5-1.14)
where the integration is over the two flat surfaces of the ring.
Substituting the above values for ry, r,, sind;, and sinf, and taking
into account that the area of each flat surface of the ring is 27ab,
we then have

E

e -vZ/c2)21rab( -1
{

4me (x!' -wi2)*+a?-v2a?/c?}"?

0 (5-1.15)

+W +a?-v? 2 2)
+
{(x’ /2)2 a a’lc }1/

or

E - iq(l -v?/c?) ( 1

7 2 —v2/n2\ 421172
dmegw  \{(x/ +w/2)*+(1 -v?/c?)a?} (5-1.16)

} 1
{67 -wi2P+(1 -v2/c2)a2}“2)'

Example 5-1.2. An infinitely long, thin, straight ribbon of width a
and thickness b carries a charge of uniform density p and moves
along its length with velocity v = — vi (Fig. 5.2). The plane of the
ribbon is in the xz plane of rectangular coordinates and the center
line of the ribbon is on the x axis. Find the electric and magnetic
fields produced by the ribbon at the point P(0, 0, R).

We can solve this problem by using Egs. (5-1.13) and (3-2.5).
According to Eq. (5-1.13), the only contribution to the electric field
of the ribbon at P comes from the edges of the ribbon located at
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Fig. 5.2 An infinitely long thin ribbon of charge density p moves
with uniform velocity v = — vi along the x axis of rectangular
coordinates. Find the electric and magnetic fields produced by the
ribbon at the point P.

z' = a/2and 7z’ = — a/2. Let us assume that the ends of the ribbon
are at x’ = — L, and x' = L,. By Egs. (5-1.13), (5-1-9), and (5-
1.8), we then have
E-_P qu kbdx' _rz kbdx'
4me )\ oL, (x2+(R-al2Iy3"? L+ (R +al2)H B
_kpb / /2 2/0 20172
= In{x’ + {x'*+(R ~-al2)?/ -1.
4mo{( {2+ (R-al2y 1y ") (5-1.17)
- In(x/ +{x"*+(R +a/2)2/’Yz}”2)}|L: )
or

E

_ kpb [ln L,+{L}?+R-al2)}y}"?
4me, | -L +{L}*+R-a/2)*/y* }'?
L, +{L, +R +al2)*Iy*}"* ]
-L+{LE+R+al2PIy* }2)

(5-1.18)

Since R — a < L,,L, and R + a < L,,L,, we can expand the
expressions in the braces and keep only the leading terms, obtaining
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_ kpb [m L,+L,+(R-al2)*2L,y*
4me =L, +L, +(R-a/2)*2Ly*
2 2
o LatL R al2yi2Lyy 5-1.19)
-L +L, +(R+al2)*2Ly*
Kpb ll 2L, +R-al22L7? 2L, + R +al2}/2LY
= n -In
(R —(1/2)2/2L|‘y2 (R +(1/2)2/2L1'y2

0

dme,

and, finally,

E - kPb jp B*a2) (5-1.20)
2me, (R-al2)

To find the magnetic field, we will use Eq. (3-2.5). By Egs. (3-
2.5) and (5-1.20), we have

H = ey xE = (- 1xk)p”’1 (R+al2)  (5.1.21)
2t (R-aR)

or

H-jlby ®rad) o 1, Reald) (s
2t (R-al2) ) 3ra R-al2)

where J is the current density and [ is the current formed by the
ribbon.

Observe that Eq. (5-1.22) is the same as that obtained for this
current configuration by means of Biot-Savart’s law (or its
equivalent),! which, taking into account the diversity and
complexity of the theoretical considerations leading to Eqgs. (5-1.13)
and (3-2.5), and observing that Egs. (5-1.13) and (3-2.5) appear to
have no connection with Biot-Savart’s law, is quite remarkable.

A

Converting Eq. (5-1.3). As before, we assume that the charge
is time independent and moves with constant velocity v = — vi.
Using Egs. (5-1.6) and (5-1.7), we can write Eq. (5-1.3) as
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E - 41 I[p3]rdv, . . 1 Cj' —[v-V’p]r+2v[v-V’p]r/cdv,'
T
T 1 K r (5-1.23)

Note that V’p in this equation represents the ordinary
gradient, that is, the gradient with respect to the ordinary source-
point coordinates. For the calculations that follow, we need to
convert V'p into the gradient with respect to the retarded
coordinates. According to Eq. (3-1.7),

dx'] = & (5-1.24)
1-[r-vl/[rlc’
and therefore

9 . 1 9 (5-1.25)
ax’ 1-[r-v)/[rlc d[x']

Since v is along the x axis, the y’' and z' are not affected by
retardation, so that 3/dy’ = 4/d[y’] and /37" = 0/0[z']. Hence

cvia < V1 [V'1i0] 5.1.26
[v+V'p] TVl ( )

Substituting this expression into Eq. (5-1.23), we obtain

- <V
E-_! j Prav'+ L j (rie v -V gy, (5-1.27)
4mwey ) rar? dweyc e r2(1-v - r/rc)

where all the quantities under the integral signs are retarded, and
where we have replaced the retardation brackets in the integrands
by the subscript "ret" at the integral signs.

Let us designate the last term in Eq. (5-1.27) as E,. We have

1 j (Vr/C _r)V . V,p dV/ ) (5'128)
ret

> e ) rA1-v - rirc)

To convert this integral to the present position of the charge, we
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shall first eliminate V'p from it. To do so, we shall write Eq. (5-
1.28) in terms of its Cartesian components. For the x component

we have, remembering that v = — viand thatr = — (x'i + y'j
+ z'k),
E,-- L[ Qhexlv-Vagy  (5129)
drec e r¥(1-ver/rc)

Let us now factor out v+ and let us write the integral as a
difference of two integrals,

. e\
E,=- Y| Qremx)Vh gy (5-1.30)
dwe,Cdree r%(1-v + r/rc)

Ve {I v (vric-x")p dV’-f oV (vrlc-x") dV’}.
471'800 ret r2(1 —vor/rc) ret r2(1-v-r/rc)

The first integral in the last expression can be converted into
a surface integral by means of Gauss’s theorem of vector analysis
[vector identity (V-19)], and since there is no charge outside the
charge distribution under consideration, the integral vanishes.
Differentiating the integrand in the second integral, collecting
terms, reintroducing v+ under the integral sign, and simplifying,
we obtain

E,= av’

¥ 4re,

1 f p {v¥c?-2verirc+(v-rirc)}x’ -(vic?-1yvrlc
ret r3(1 -v+r/rc)?
(5-1.31)
Proceeding in the same manner with the y and z components
of Eq. (5-1.28), we obtain

1 j {v¥c?-2v erirc+(v -rirc)’}y’ av’
ret

= 5-1.32
¥ 4re, r3(1 -v « r/rc)? ¢ )




SECTION 5-1 PRESENT-TIME FIELD INTEGRALS 113

and

- 1 I {v¥c?-2v er/rc+(verirc)*}z’ av' (5-1.33)
4mey ) ra r3(1-v - r/rc)?

Multiplying Eqgs. (5-1.31)-(5-1.33), respectively, by i, j, and
k and then adding them together, we again obtain a single vector
equation for E,:

E,- 1 jp{2v-r/rc—(v-r/rc)’—vzlcz}r+(v2/c2-l)vr/cdw
4Ty Jra r3}(1 -ver/rc)? (5-1.34)

Let us now rewrite Eq. (5-1.27) using Eq. (5-1.34) for the
second integral of Eq. (5-1.27). We then have

E-_1 f P rav! (5-1.35)
47!'80 ret 13

L1 j {2v-r/rc (v -r/rep-v2icr + 2/ c? - Dyvrlc 4
4TE Jrer r3(1-v « r/rc)? .

Adding the two integrals, we obtain

g | f p A V)X -vrle) pyr  (5-1.36)
dmeyd e r3(1-ver/rc)

We shall now convert the retarded integral in Eq. (5-1.36) to
the present position of the charge. Replacing the retarded dV’ in
Eq. (5-1.36) by ordinary dV' with the help of Eq. (5-1.5) and
writing 1/92 for 1 — v*/c*, we have

_ 1 [ p(lel-vlrkie) 4y (5-1.37)
4me? ) P -v - [x)/[A)

where, since p, v, v, and ¢ do not depend on time, only r and r
are retarded. But according to Eq. (3-1.19), the present-position
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vector r, and the retarded position vector r are connected by the

relation
r, = [r] - v[rl/c, (5-1.38)

so that the numerator in Eq. (5-1.37) is simply the present-
position vector r,. Furthermore, according to Eq. (5-1.9), the
denominator is simply

re {1 -(v¥c)sin?f}*2, (5-1.39)
where r, is the distance from the present-position volume element

dV' to the point of observation, and § is the angle between v and
r,. Hence Eq. (5-1.37) can be written as '

E-_L | fTo av', (5-1.40)
amegy* ) 3 {1 -(v¥/c)sin?6 )32

where the integration is over the volume of the charge at its
present position.

v
Example 5-1.3. An irregularly shaped electric charge distribution
of total charge g moves with constant velocity v = vi. The longest
linear dimension of the charge distribution is a. Find the electric
field produced by the charge at a distance r > a from the charge.

We can solve the problem by using Eq. (5-1.40). Since r > a,
we can assume r and 4 to be the same for all points of the charge.
Therefore we can factor out r and the denominator of the integrand
in Eq. (5-1.40), obtaining

E - fo [oav
4megy?ro {1 - (v¥/c) sin? 6}

qr,

47r£0'yzr03 {1-@?*c?sin*6}*? '

(5-1.41)

A
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Converting Eqs. (5-1.2) and (5-1.4). The retarded integrals
for the magnetic fields in Eq. (5-1.2) and (5-1.4) can be converted
to the present position of the charge in the same manner as the
integrals in Egs. (5-1.1) and (5-1.3) for the electric field.
However, there is no need to resort to this conversion process,
because by Eq. (3-2.5) the electric and magnetic fields of any
uniformly moving charge distribution are connected by the
relation

H = ¢vxE. (5-1.42)

From Egs. (5-1.12) and (5-1.42) we then have, noting that
vxi=0,

H=-1 [ vxVip av'.  (5-1.43)
4 ) r {1 -(v¥c?)sin*6}'”

From Egs. (5-1.13) and (5-1.42) we have

H-" v xdS’ , (5-1.44)
a7 ) T-02Ic) s 0}

And from Egs. (5-1.40) and (5-1.42) we have

- 1 ] pv xr, av. (5-1.45)
4my* ) rd {1 - (v¥/c)sing 32

5-2. Converting Retarded Potential Integrals for Uniformly
Moving Charge Distributions into Present-Time (Present
Position) Integrals

We know from Chapter 2, Eqgs. (2-4.5) and (2-4.2), that the
electric potential ¢ and the magnetic vector potential A of time-
variable charge and current distributions in a vacuum can be
found from the retarded integrals
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- _1 [l gy 5-2.1
v 47r£OI Tdv ( )
and
A=ﬁ[ﬂdw. (5-2.2)
Tl r

As we shall presently see, for time-independent charge
distributions moving with constant velocity, these integrals can be
converted to the "present” position of the charge, so that the
integration is performed not over the retarded volume, but over
the volume that the charge distribution occupies at the moment ¢
for which the potentials are being determined.?

Converting Eq. (5-2.1). Using Eq. (5-1.5) and remembering
that p and v are not affected by retardation, we can write Eq. (5-
2.1) as

.1 J o /
= av’, 5-2.3
¢ dmwe,d [r-r-vlic] ( )

where only the denominator is retarded. Converting the retarded
denominator in Eq. (5-2.3) with the help of Eq. (5-1.8), we obtain
the desired equation (omitting the subscript "0" for simplicity)

_ 1 J o / _
= dv’, (5-2.4)
. 41r80 {x12 +(},/2 +Z/2)/,),2}1/2

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (5-2.4) can be written in an alternative form. Using
Egs. (5-1.8) and (5-1.9) for converting the denominator of the
integrand in Eq. (5-2.4), we obtain

1 J 0 /
= av’. (5-2.5)
¢ dme, ) r{l -(v¥c?sin?4}1?
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Equations (5-2.4) and (5-2.5) can be further modified so that
the potential is expressed not in terms of the charge density p as
such, but in terms of Vp (that is, in terms of the "charge
inhomogeneities"). This can be done as follows.>

Taking into account that the position vector r is directed

toward the point of observation, so thatr = — x'i — y'j — z'k
and V' r = — 3, we write
I ro = r .V
{x/2+(y/2 +Z/2)/,yz}1/2 {x’2+(y’2 +Z/2)/,YZ}1/2
+pV/ . r
{x’2+(y’2+z’2)/72}”2
_ r V- 3p
{x/2+(y/2 +Z/2)/,YZ}1/2 {x’2+(y’2+z’2)/'y2}“2
Cre {xiv@j+2’ R (5-2.6)
{x/2+(y/2 +Z/2)/72}3/2 )
r-Vop 20

B 2+ () 2+ 7 DA B Py

Using Eq. (5-2.6) and Eq. (5-2.4), we can now express the
potential as

¢=-81 fV/. 2 /er 72 21/2dv/
TE, X+ +2vY (5-2.7)
o L r-ve av'.
87|-30 {x/2+(y/2 +Z/2)/72}”2

The first integral in this equation can be transformed into a
surface integral over all space by means of Gauss’s theorem of
vector analysis [vector identity (V-19)], and, since there are no
charges at infinity, the integral vanishes. Hence the potential can
be written as
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1 I r- V/p /
= av’, (5-2.8)
@ 871'80 {x/2+(y/2+zl2)/,},2}1/2

or, by using Eqgs. (5-1.8) and (5-1.9), as

1 I re V/p /
= av'. (5-2.9)
v 8me, ! r{l -(v¥/c?sin’g }'”

Equations (5-2.8) and (5-2.9) can be written in a much
simpler form, if p is constant within the charge distribution. In
this case V'p is different from zero only in the surface layer of the
charge distribution, where the charge changes from p within the
distribution to zero outside the distribution. We then have V'p =
(p/7T)n,, where 7 is the thickness of the surface layer of the
distribution, and n, is a unit vector normal to the surface of the
distribution and directed into the distribution. The volume
element dV'’ in Egs. (5-2.8) and (5-2.9) becomes then 7dS’, where
dS' is a surface area element of the distribution, and therefore
Eqgs. (5-2.8) and (5-2.9) reduce to

0 r- dStl,w
8Tey ) {x /2 +(y'2+z'D) Iy} ’

o= - (5-2.10)
and
o r- dS(/,w

, (5-2.11)
8me, ) r{l -(v¥c?sin’6}1?

Y=

where dS,,, is a surface element vector directed from the charge
distribution into the surrounding space.

Converting Eq. (5-2.2). The current density produced by a
uniformly moving charge distribution is J = pv with v = const.
Since pog, =1/c*, the vector potential A for such a charge
distribution is, by Egs. (5-2.2) and (5-2.1), A = vg/c*. Hence,
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using Egs. (5-2.5), (5-2.9), and (5-2.11), we have

A=Y (5-2.12)
C2
- v [ o / _

= dav’, (5-2.13)

4me,c? ) r{l -(v¥/c?)sin*0}"?
A=_"Y J r-vi v, (5-2.14)

87e,c?d r{l-(v¥c?)sin?}'?

and
/

W r-dSo (5-2.15)

8re,c?) r{l-(v¥cHsin®0 )2’

and similar expressions corresponding to Eqs. (5-2.4), (5-2.8),
and (5-2.10):

A- | : av', (52.16)

47|'80C2 {x/2+(y/2 +z/2)/72}1/2
A=-_"Y J r-vp av'. (5-2.17)
87!'80C2 {x/2+(y/2+z/2)/,),2}1/2
/
A--_d r - S (5-2.18)
87!’8062 {x/2+(y/2+z/2)/,),2}1/2
v
Example 5-2.1. An irregularly shaped electric charge distribution
of total charge g moves with constant velocity v = — vi. The

longest linear dimension of the charge distribution is a. Find the
electric and magnetic potentials produced by the charge at a
distance r > a from the charge.
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We can solve the problem by using Egs. (5-2.5) and (5-2.13).
Since r > a, we can assume r and 8 to be the same for all points
of the charge. Therefore we can factor out the denominator of the
integrands in Eq. (5-2.5) and (5-2.13), obtaining

Q= 9 , (5-2.19)
dmer{l-(v¥c?sin’g}'"*

A = vq i (5-2.20)
dmec?r{l - (v¥c?)sin’*6}"?

A

5-3. Some Peculiarities of the Expressions for the Fields and
Potentials Derived in this Chapter

Three peculiarities of the equations for the electric and
magnetic fields and potentials derived in this chapter should be
noted.

First, in the equations developed in the preceding chapters we
used both retarded and present-time (present position) coordinates,
and therefore we needed to use different notation for the two types
of coordinates. In particular, we designated the present position
vector as r, and the x component of this vector as x,’, while we
designated the retarded position vector as r and its x component
as x'. However, since all the resulting expressions for the fields
and potentials developed in this chapter are for the present
position of the charge distributions, there is no longer a need to
use the subscript "0" at r or x'. Therefore, in the field and
potential equations obtained in this chapter r and x’ stand for the
present-time (present position) coordinates.

Second, in deriving our equations for the potentials of moving
charge distributions, we assumed that the field point (the point for
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which the potentials are determined) was at the origin. However,
in practical application of the potentials it is usually necessary to
differentiate the potentials with respect to the field point. In
particular, for finding electric and magnetic fields from potentials
it is necessary to operate upon the electric and magnetic potentials
with the operator V (which operates upon the field point
coordinates). Therefore, in general, the field point must be
allowed to vary.

We can easily convert our equations for the potentials (and
fields) into equations with a variable field point. Let us designate
the coordinates of this point as x, y, and z. If we then replace the
x',y’, and z' coordinates appearing explicitly or implicitly in our
equations for potentials or fields by (x — x'), (y — y'), and (z —
7'), respectively, the new equations will apply to fields and
potentials determined for the field point x, y, z. However, if the
charge density p within the charge distribution under consideration
is constant, we can differentiate the potentials with respect to the
field point without actually replacing the x', y’, z' coordinates at
all, because in this case, by vector identity (V-27), the only
difference between the differentiation of the integrands with
respect to x’, y’, z' and with respect to x, y, z is in the sign of the
resulting expression. Thus, in the case of constant p, we can
compute electric and magnetic fields from the potentials derived
in this chapter without changing the coordinates, provided that
after placing V under the integral sign we replace it by —V’ (see
Example 5-3.1).

Third, all the fields and potentials derived in this chapter are
"snapshots" representing only the instantaneous values of the
observed fields and potentials. In reality the fields and potentials
of a moving charge distribution vary as the charge distribution
moves relative to the point of observation. For practical
applications it may be necessary to determine time derivatives of
the fields and potentials. Therefore, in general, the fields and
potentials must be expressed as a function of time. This can be
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easily done by noting that as a charge distribution moves (with
constant speed), the present position of dV' (or dS') is given by
x' F vt (the minus applies to motion against the x axis, the plus
applies to the motion in the direction of the x axis). Thus all we
need to do for introducing the time dependence into the fields and
potentials derived in this chapter is to replace x' appearing
explicitly or implicitly in our field and potential equations by x’
¥ v (see Example 5-3.1, see also Examples 4-1.2 and 4-6.1).

v

Example 5-3.1 A very long hollow cylinder of wall thickness b
and radius a > b carries a uniformly distributed charge of density
p and moves with velocity v = — vi along the x axis, which is also
the symmetry axis of the cylinder (Fig. 5.3). Find the electric field
produced by the cylinder at the origin of coordinates when the
leading end of the cylinder is at a distance x’ from the origin.

O

Fig. 5.3 A very long cylinder of charge density p moves with
uniform velocity v = — vi along the x axis. Find the electric field
produced by the cylinder at the origin.

We shall solve this problem by using Egs. (5-2.4) and (5-2.16).
Applying the relation E = — Vo — 0A/d¢ [this is Eq. (2-4.8)
derived in Section 2.4] to Egs. (5-2.4) and (5-2.16), we obtain
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e w]
ame, ! {x+ (242" Iy} (5-3.1)

-i( | o dV’).
0t \4me c? {x?+@?+z"?) 1y 312

In Eq. (5-3.1), V operates upon the field point coordinates x,
y, z, which do not appear in Eq. (5-3.1). However, as explained
above, for constant p we can leave the first integral in Eq. (5-3.1)
as it now is, provided that for the actual differentiation we replace
V by —V'. Placing V under the integral sign and replacing it by
—V', we have for the part of the electric field due to ¢ (using E =
E, + E)

E-_! jv/ p av'. (532
@ 47rgo {xl2+(yl2+zl2)/72}112

To differentiate the second integral in Eq. (5-3.1), we must first
express the integrand as a function of 7. Replacing x' in the
integrand by x' — w, placing 8/0¢ under the integral sign, and
differentiating the integrand, we then have for the part of the
electric field due to A

E =-_7Y I p(x' vy av’, (53.3)
47(806'2 {(xl __vt)2+(y/2 +Z/2)/,YZ}3I2

or, setting £ = 0,

A

—-_V I vx'p av', (53.4)
47['806'2 {X/2+(y/2 +Z/2)/,YZ}3/2

which, as one can easily verify by direct differentiation, is the same
as

E,=-_" v- jv' p av'. (53.5)
47|'80C2 {xl2+(yl2 +z/2)/,Y2}1/2
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The total field is therefore

- 1 j / p dav’
47|-go {x’2+(y’2 +z/2)/,Yz}l/2

-2 v v p av'.
47|-£Oc2 {x/2+(y/2 _,_2/2)/,),2}1/2

(5-3.6)

Using now Gauss’s theorem of vector analysis [vector identity
(V-19)], we can convert the two integrals into integrals over the
surface of the cylinder, obtaining*

- P {,% dsout
dme, {x'2+(y'2+z’2)/72}”2 (5-3.7)

g B )
2 X+ 2+ 2D PR ’

where dS,,, is a surface element vector directed outward from the
volume of the cylinder.

By the symmetry of the system, the electric field at the point of
observation has only the x component. The only surfaces of the
cylinder contributing to that component are the surfaces of the
leading and trailing ends of the cylinder. However, since the
cylinder is very long, the contribution of the trailing end is
negligible. Furthermore, since the cylinder’s wall is thin, the
integration over the leading end can be replaced by the
multiplication of the integrand by the surface area S = 2mab of the
leading end’s wall. Taking into account that v = — vi, that for the
leading end y'* + z'?> = a%, dS,, = — dSi, and v - dS,, = vdS,
we finally obtain for the "snapshot” of the electric field produced
by the cylinder at the point of observation

E = - pab(l-vzlcz) i (5-3.8)
2e{x"*+a¥(1 -v¥cH}?
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Example 5-3.2 A line charge of length 2L and linear charge
density A moves along its length with constant velocity v = — vi
in the xy plane of a rectangular system of coordinates at a distance
y = R above the x axis. The point of observation is at the origin.
Find the electric potential, the electric field, and the magnetic field
at the origin at the moment when the two ends of the charge are at
equal distances L from the y axis and then obtain the limiting value
of the fields for a very long charge.

To find the electric potential, we use Eq. (5-2.4) with pdV’
replaced by Adx'. Integrating over the length of the line charge we
then have

1 [t A /
$ 7 e e
Teo T x"T+y ") (5-3.9)
= 47r30 ln{xl+(x12+y/2/,yz)1/2}I{L’
or
o = {L+(L2+y/2/,YZ)1/2} (5-310)

L)

To find the electric field, we differentiate Eq. (5-3.10) with
respect to y', using the positive derivative (by symmetry, the vector
potential makes no contribution to the electric field at the origin).
The result is

E-=- A j=- A j. (5-3.11)
2mwey (L+y Iy LY 2me R(1+RYYLH'?

The magnetic field of the line charge is, by Egs. (5-3.11) and
(3-2.5),

_ \v K. (5-3.12)
27R(1 +R*y’LH'?

For a very long charge, L > R, so that Egs. (5-3.11) and (5-
3.12) reduce to
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E=--_" (5-3.13)
27!'80R
and
H- Nk (5-3.14)
2TR

It is interesting to note that the electric field given by Eq. (5-
3.13) is the same as that of a stationary infinitely long line charge,
and that the magnetic field given by Eq. (5-3.14) is the same as the
magnetic field produced by a current / = Av.>

A
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FROM ELECTROMAGNETIC
RETARDATION TO RELATIVITY

In the preceding chapters we saw how electric and
magnetic fields and potentials of moving charge distributions
could be determined on the basis of the theory of electromagnetic
retardation. In this and in several chapters that follow we shall
acquaint ourselves with an alternative method of determining the
fields and potentials of moving charge distributions. This
alternative method is based on the principle of relativity and its
application to electromagnetic phenomena.

6-1. Relativistic Electromagnetism, Relativistic Termimology,
the Principle of Relativity, and Theories of Relativity

We shall enter now into the domain of relativistic
electromagnetism. The theory of relativistic electromagnetism
makes use of some special words and expressions a clear
understanding of which is imperative for a proper understanding
and use of the theory. A frequently used word in that theory is the
laboratory. The laboratory is simply a place where instruments
and devices for measuring and observing physical phenomena are
located. Unless otherwise stated, the laboratory is assumed to be
stationary. Another frequently used expression is the frame of
reference. Physically, a frame of reference is the same as the
laboratory. However, a frame of reference can be stationary as

129
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well as moving and is depicted graphically by a set of Cartesian
axes of coordinates. In this book, we shall always denote a
stationary frame of reference by the symbol X, and a moving
frame of reference by the symbol X'. A special case of a moving
frame of reference is a frame of reference moving with constant
speed along a straight line. Such a frame of reference is called the
inertial frame of reference. In this book we shall only use inertial
frames of reference.

Relativistic electromagnetism combines basic electromagnetic
laws with the principle of relativity. The principle of relativity was
first enunciated in 1632 by Galileo as a statement of the fact that
there are no experiments or observations whereby one could
distinguish the state of uniform motion along a straight line from
the state of rest. However, in accordance with the level of
scientific knowledge of his times, Galileo supported this statement
by citing only mechanical experiments and observations with an
indirect reference to the laws of optics. At the beginning of the
20th century, Lorentz, Poincaré, Larmor, and Einstein, in
separate works, demonstrated that the principle of relativity was
applicable to electromagnetic phenomena as well.

The expression relativity theory (or simply relativity), as it is
now used in physics, has several different meanings. In particular,
one differentiates between the relativity theory of Lorentz and
Poincaré, Einstein’s special relativity theory, and Einstein’s
general relativity theory.

Einstein’s general relativity theory is his theory of gravitation
and has little in common with other "relativities." The Lorentz-
Poincaré relativity theory and Einstein’s special relativity theory'
have at least two things in common: they affirm the principle of
relativity and they describe physical phenomena (mainly
electromagnetic) associated with rapidly moving particles.

The significance of the Lorentz-Poincaré relativity theory, the
significance of Einstein’s special relativity theory, the difference
between the two theories, and the allocation of priorities in the
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development of these theories are the subjects of considerable
controversy.>** However, there is no doubt that Einstein’s special
relativity theory is uniquely original insofar as the central point of
the theory is the idea of the "relativity of space and time" closely
associated with Einstein’s concepts of "relativistic length
contraction" and "relativistic time dilation."*

Relativistic electromagnetism and relativistic mechanics are
usually presented in textbooks as consequences of Einstein’s
special relativity theory. However, in this book we shall use a
novel approach to relativity, quite different from those used by
Einstein, Lorentz, or Poincaré. We shall develop relativistic
electromagnetism solely on the basis of electromagnetic
retardation combined with the principle of relativity without any
additional postulates, hypotheses, or conjectures. In turn, starting
with relativistic electromagnetism, we shall develop relativistic
mechanics, likewise without any additional postulates, hypotheses,
or conjectures.

6-2. Equations for Transforming Electric and Magnetic Fields
of Uniformly Moving Charge Distributions into Electric and
Magnetic Fields of the Same Stationary Charge Distributions®

Consider a charge distribution of density p moving with
constant velocity v = v.i = — vi. According to Eq. (5-1.11), the
electric field of such a charge distribution is given by the present-
time integral

E = - 1 J V’p—i(vzlcz)ap/ax’ dV/, (6-21)
amey ) {x2+(y"2 +z'%) Iy}

or, factoring out v,

E--_Y JV/p -i(vz/cz)ap/ax’dv,’ (6-2.2)
47r80 (,sz/2+y/2 +z/2)1/2
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where we use the standard abbreviation

) = 1 (6-2.3)
(1-v?c?)\?
Now, since J = pvand v = v,i = — vi, we have
- 0402 - - ey "(p") = (le ( ) (6-2.4)
ox’
or
- 1(v2/cz) (6-2.5)

Equation (6-2.2) becomes therefore

av'. (6-2.6)

_ v [ Vo + e, /0x")i
B J (,sz/2 +y/2 +z/2)1/2

4me,

The magnetic flux density field produced by the moving

charge distribution is then, according to Eq. (3-2.6), taking into
account that v X i = 0 and using 1/¢*> = &g,

B - - ﬁj VXV  ay
2 2 2
(,sz// PRI 62.7)
Ty \" X pv /
j (Yx T +y Eag AR av

or, since pv = pvi = Ji,

Vit VI xJi , .
_J( 212 12, I av’. (6-2.8)
YXTUry “+z

For the same stationary charge distribution, the field equations
corresponding to Egs. (6-2.6) and (6-2.8) are’
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E--_1 j Vo av (6-2.9)
47rgo (x/Z +y/2 +z/2)1/2

and B -0 (6-2.10)

We shall now obtain a set of transformation equations which
convert Egs. (6-2.6) and (6-2.8) into Eqs. (6-2.9) and (6-2.10).
The extraordinary significance of these transformation equations
will become clear later, when we shall use them as the foundation
for developing the theory of relativistic electromagnetism.

Since we are dealing with similar quantities relating to the
moving and to the stationary charge distribution, we shall denote
quantities pertaining to the moving charge distribution by subscript
"m" and those pertaining to the stationary charge distribution by
subscript "s," except when the relations are self-evident.

Let us write Egs. (6-2.6) and (6-2.8) in terms of their
Cartesian components. From Eq. (6-2.6) we have, resolving V'p
into its Cartesian components,

/ 2
E =-_2 j(a/a" Wo+ CIENT} i (2.1
4mey ) (Px 2 4y 4z DR
E, = -1 J dp/dy’ v’ (6-2.12)
47['80 (,ylez +y 2 +Z/2)1/2
| 0p102" _ gqyr (62.13)
4mey ) (y2x 24y sz )i

From Eq. (6-2.8) we similarly have, resolving V' X Ji into its
Cartesian components [see vector identity (V-11)],

B_ =0, (6-2.14)
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/
o[ W% gy 6219
ym 47 (72x’2 +y/2 +z/2 112
!
B = - l‘ﬁj 07,19y v’ (6-2.16)
an 4 (72x’2 +y/2 +z/2)1/2

Let us also write Eqs. (6-2.9) and (6-2.10), representing the
electric and magnetic fields of the stationary charge distribution,
in terms of the Cartesian components. From Eq. (6-2.9) we have

E,=- L[ 0 v, 62.107)
47|'80 (x/2+y 12 +Z/2)1/2

E =-_1 j /oy gy (6-2.18)
» ATy ) (17 4y 2eg AR

— 1 ap/az’ / 6-2.19

Ea = 41801()6/2,,_),/2_,_2/2 mV (6-2.19)

From Eq. (6-2.10) we have
Bxs = Bys = Bz; = O. (6‘2.20)

The transformations that we seek are those that transform Eqgs.
(6-2.11)-(6-2.16) into Egs. (6-2.17)-(6-2.20).

Clearly, to achieve the desired transformations, we need to
transform the denominators of the integrands in Egs. (6-2.11)-(6-
2.13) into the denominators of the integrands in Eqs. (6-2.17)-(6-
2.19). Comparing Egs. (6-2.11)-(6-2.13) with Eqgs. (6-2.17)-(6-
2.19), we recognize that the desired transformation of the
denominators will be achieved if we use?

x; = yx), (6-2.21)
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y! =yl (6-2.22)
2 =z, (6-2.23)

because the denominators of the integrands in Egs. (6-2.11)-(6-
2.16) can then be written as (x,2+ y,’+ z,/)"? = (x"?+ y?+
7'%),' and thus become the same as in Egs. (6-2.17)-(6-2.19).
Observe that this transformation simply changes the scale units of
the x axis for the stationary charge distribution and does not alter
the physical significance of Egs. (6-2.17)-(6-2.20). However, if
we change the scale units of the x axis for the stationary charge
distribution, then the derivatives d/dx’ in Egs. (6-2.11) and (6-
2.17) are no longer equal. According to Eq. (6-2.21), the
correlation between them is now

Bl e

Likewise, the volume elements dV' = dx'dy’'dz’ in the equations
for the moving and for the stationary charge distribution are no
longer the same. The correlation between them is now

dv! = ydv,!. (6-2.25)

If we now substitute Egs. (6-2.21)-(6-2.25) into Egs. (6-2.11)-

(6-2.16), we obtain, using subscripts "s" and "m" in the
integrands to keep track of the transformation steps,

/ 2
E =-_% J O10x)Ap I3yt (6-2.26)
xm 471'80 (x/2 +y/2 +z/2);/2

/
__ 1 J (9/9y"),p,, av'. (6227
4mey ) (x/2+y!2 47212

ym
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) 1 (@/0z")p,, . -
By o ] S dv];  (6:2.28)
TE ) (x/2+y /242,

B =0, (6-2.29)

_ Ko I (a/azl)s"xm dV, (6-2.30)
ym T A (x2+y"? _,_Z/Z):/? 7

B - - pvo l (a/ay/)ijm dV/ (6'2.31)
T R e

Comparing the numerators in Eq. (6-2.17) and Eq. (6-2.26),
we immediately recognize that the equation for transforming the
numerator in Eq. (6-2.26) into the numerator in Eq. (6-2.17) is

p, = o + (WIcHI Y, (6-2.32)
Substituting Eq. (6-2.32) into Eq. (6-2.26), we obtain

av!.  (6-2.33)

xm

1 l (8/0x")p,
47r£0 (x/z +y 12 +le)_:/2

All we now need to complete the transformation of Eq. (6-
2.11) into Eq. (6-2.17) is to replace E,,, on the left of Eq. (6-2.33)
by E, We denote this transformation step by the field
transformation equation

E -E,. (6-2.34)

Examining the remaining Eqs. (6-2.27)-(6-2.31), we recognize
that in order to use Eq. (6-2.32) with these equations we need to
combine equations for E, and B,. Noting that pee, = 1/c,
combining Eqs. (6-2.27)-(6-2.28) with Eqs. (6-2.30)-(6-2.31) so
that the expression y{p + (v/c>J} appears in the combined
equations, using Eqs. (6-2.18) and (6-2.19) as the transformation
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"targets," and using Eq. (6-2.32), we recognize that the remaining
transformation equations for the electric field must be

Eys = Y(Ey + VvB),, (6-2.35)
E, =vE, - VBy)m- (6-2.36)

Examining again Eqs. (6-2.27)-(6-2.31), remembering that J,
= — vp, and using Eq. (6-2.20) as the transformation "target",
we tentatively identify the transformation equations for the
magnetic field as

B, =B_, (6-2.37)
B, = ¥(B, - VE,Ic?),, (6-2.38)
B, = v(B, + VE,Ic?), (6-2.39)

(these equations must be considered tentative because the factor
v in them is as yet uncertain; the need for it will be established in
the next section).

As was stated in Sections 4-1, 4-6, and 5-3 (6ee Examples 4-
1.2, 4-6.1, and 5-3.1), Eqgs. (6-2.6), (6-2.7), and the subsequent
equations for the fields of the moving charge distribution are
"snapshots” representing instantaneous fields of the charge
distribution observed at ¢ = 0. Therefore also Eq. (6-2.21) is only
valid for ¢t = 0, so that x,' = yx,,,.,. We shall now put Eq. (6-
2.21) into a more general form by assuming that the time of
observation is an unspecified ¢. Since the charge distribution
moves with velocity v in the negative direction of the x axis, the
present position of the distribution is shifted toward smaller values
of x, in accordance with

X = (o = Vi) (6-2.40)

m

as ¢ increases. Hence, for a general case, Eq. (6-2.21) must be
replaced by
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xsl = y(x’ +Vl),, (6-2.41)

where x’ is the x coordinate of dV’, at the time ¢. Note that
although x," in Eq. (6-2.41) appears to depend on time, in reality
it does not depend on time since by Eq. (6-2.40) (x" + vp),, =

!
X m,t=0"

6-3. Inverse Transformations

According to the principle of relativity, it is impossible to tell
whether the charge which we call "moving" really moves with
velocity v = — vi relative to our laboratory and relative to the
charge that we call "stationary," or whether the laboratory with
the charge which we call "stationary" moves with velocity v = vi
relative to the charge that we call "moving." Consequently, the
transformation equations obtained in Section 6-2 should be
applicable not only for transforming the fields of a moving charge
distribution into the fields of a stationary charge distribution, but
also for transforming the fields of a stationary charge distribution
into the fields of a moving charge distribution by simply reversing
the sign in front of v and transposing the subscripts m and s.
From Egs. (6-2.41), (6-2.22), (6-2.23), (6-2.32), and (6-2.34)-(6-
2.39) we obtain therefore the following set of inverse
transformation equations (equations for transforming fields of a
stationary charge distribution into the fields of the same moving
charge distribution)

Xp = Y -v),, (6-3.1)
yh =yl (6-3.2)
2. =17/, (6-3.3)

0, = ¥{p - WicHI},, (6-3.4)
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E, =E_ (6-3.5)

E, =Y, - vB),, (6-3.6)
E, =YE, + vB),, (6-3.7)
B, =B, (6-3.8)

B, =B, + VE,/c?),, (6-3.9)
B, = y(B, - VE,/cY,. (6-3.10)

Observe that Egs. (6-3.6), (6-3.7), (6-3.9), and (6-3.10) can
also be obtained by solving Eq. (6-2.35), (6-2.36), (6-2.38), and
(6-2.39) for the components of E, and B, in terms of the
components of E; and B,. Eliminating B, between Eqs. (6-2.35)
and (6-2.39), eliminating B, between Egs. (6-2.36) and (6-2.38)),
eliminating E,, between Egs. (6-2.36) and (6-2.38), and
eliminating £, between Egs. (6-2.35) and (6-2.39), we obtain
Egs. (6-3.6), (6-3.7), (6-3.9), and (6-3.10) directly, without
invoking the principle of relativity. However, the equations so
obtained clearly confirm the principle of relativity for electric and
magnetic fields.

We shall now supplement our transformation equations by
four more equations. Solving Egs. (6-2.32) and (6-3.4) for J,, and
J..,» we obtain

J, =y, +vo), (6-3.11)
and

I, =vJ, - v),. (6-3.12)
Solving Egs. (6-2.41) and (6-3.1) for ¢, and #,, we obtain

o=y + wx'ic?),, (6-3.13)
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and
t,o= @ - w'lc?,. (6-3.14)

Let us now prove the need for the factor vy in Eqgs. (6-2.38)
and (6-2.39). According to Eq. (3-2.6), a uniformly moving
charge distribution always creates a magnetic flux density field
given by

B, = (vXE)/c?, (6-3.15)

where E,, is the electric field produced by the moving charge
distribution. Consider, for example, the y component of B,,. If v
= — vi, then by Eq. (6-3.15), this component is

B, = VE, Ic’. (6-3.16)

ym

But by Eq. (6-3.9), the same component is (noting that for a
stationary charge B, = 0)

B,, = YE,Ic*. (6-3.17)

Now, according to Eq. (6-3.7), E,, = YE,, so that Eq. (6-3.17)
can be written as

B, = VE, Ic?, (6-3.18)

ym

which is exactly the same as Eq. (6-3.16). Clearly, if the factor
v were not present in Eq. (6-3.9), then the factor 1/y would
appear in Eq. (6-3.18), the agreement between Eq. (6-3.16) and
Eq. (6-3.18) would not be possible, and therefore our
transformation equations for B would be incorrect. But since Eq.
(6-3.9) has been obtained from Eq. (6-2.38), the factor 7y must be
present also in Eq. (6-2.38) [and therefore in Eq. (6-2.39) as
well].

Note that none of the transformation equations obtained in this
and in the preceding section of the book constitute actual
equalities between the quantities involved. These equations are
merely prescriptions for obtaining electric and magnetic fields of
a stationary charge distribution from the fields of the same moving
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charge distribution by replacing quantities pertaining to the
moving charge distribution by quantities pertaining to the
stationary charge distribution and vice versa.

6-4. Equations for Transforming Electric and Magnetic
Potentials of Uniformly Moving Charge Distributions into
Electric and Magnetic Potentials of the Same Stationary
Charge Distributions and Vice Versa

According to Eq. (5-2.4), the electric scalar potential of a
uniformly moving charge distribution is given by the present-time
integral

o, = J p av',  (64.1)
47(80 {x/2+(y/2+2/2)/72}1/2

or, factoring out 7,

Y p v’ (6.4.2)

Pm = 41r80[ (vzx’2+y’2+z’2)“2

and, according to Eq. (5-2.16), the magnetic vector potential is
given by the present-time integral

-V [ p av',  (6-4.3)
m 47l‘80C2 {x/2+(y/2+z/2)/,)/2}1/2
or
A, - p Qv (64.4)
4me,c?) (YT 4y P ez )2

For the same stationary charge distribution, the potential equations
corresponding to Egs. (6-4.2) and (6-4.4) are®

1 [ o /
= av -4.
Sos 47T80 (x/2 +y 12 +Z/2)1/2 (6 5)
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and
A, =0. (6-4.6)
We shall now obtain a set of simple transformation equations
that convert Egs. (6-4.2) and (6-4.4) into Eqs. (6-4.5) and (6-4.6).
As before, since we are dealing with similar quantities relating
to the moving and to the stationary charge distribution, we shall
denote quantities pertaining to the moving charge distribution by
subscript "m" and those pertaining to the stationary charge
distribution by subscript "s," except when the relations are
self-evident.
Let us write Eqs (6-4.4) and (6-4.6) in terms of their
Cartesian components. Assuming, as before, that the charge

distribution under consideration moves with velocity v = — vi,
and using v,o = J,, we have from Eq. (6-4.4)
-1 | d av',  (647)
xm 47rsoc2 ('yzx’Z +y’2 +Z/2)1/2
4, =0, (6-4.8)
4, =0. (6-4.9)

From Eq. (6-4.6), we obtain
AXS = Ayx = AZS = 0. (6'4.10)

We seek transformation equations that convert Eq. (6-4.2) into
Eq. (6-4.5) and Egs. (6-4.7)-(6-4.9) into Eq. (6-4.10). Clearly, to
achieve the desired transformations, we need to transform the
denominator in the integrand of Eq. (6-4.2) into the denominator
of Egs. (6-4.5). However, we have already found that this
transformation can be achieved by using Egs. (6-2.21)-(6-2.23).
Of course, if we use Egs. (6-2.21)-(6-2.23), then we must also
use Eq. (6-2.25) for transforming the volume elements in the
integrals of Egs. (6-4.2) and (6-4.7). Naturally, we want
to use as few transformation equations for all electric and
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magnetic quantities and formulas as possible, and since we have
already obtained Eq. (6-2.32) for transforming p, we shall use Eq.
(6-2.32) now again.

Using Egs. (6-2.21)-(6-2.23), (6-2.25), and (6-2.32) for
substituting x’, y', z', dV’, and p in Eq. (6-4.5) , we obtain

2
oy l 0+ Vg (6411)
PoAmey ) (q 2y ez

Examining Eq. (6-4.11), we recognize that the integral in it
is a combination of Eqgs. (6-4.2) and (6-4.7), so that Eq. (6-4.11)
can be written as

o, = Yo + VAx)m’ (6-4.12)

which is the desired transformation equation for the scalar
potential.

Remembering that vo = — J, and combining Egs. (6-4.2)
and (6-4.7) so that A,; = O [as required by Eq. (6-4.10)], we find
that the transformation equation for the x component of the
magnetic vector potential is

A, =v{A, + (vicHe}, (6-4.13)

(this equation must be considered tentative because the factor -y in
it is as yet uncertain; we shall prove the need for it shortly).

For the remaining components of A, we obtain by comparing
Egs. (6-4.8), (6-4.9), and (6-4.10)

Ay, = A, (6-4.14)

A, =4, (6-4.15)

As in the case of transformation equations for electric and
magnetic fields, the relativity principle demands that the inverse
transformation equations should be obtainable from Egs. (6-4.12)-
(6-4.15) by simply reversing the sign in front of v and transposing
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"non

the subscripts "s" and "m." The inverse transformation equations
are therefore

@, = Ve - vA),, (6-4.16)
A, =74, - VcHel,, (6-4.17)
4, = A, (6-4.18)

A =A.. (6-4.19)

m t4)

Let us now prove the need for the factor vy in Egs. (6-4.13)
and (6-4.17). According to Eq. (5-2.12), the magnetic and electric
potentials of a uniformly moving charge distribution are connected
by the equation

A, =vyp lc?. (6-4.20)

Consider the x component of A,. If v = — vi, then by Eq. (6-
4.20), this component is

A, = - vp,lct. (6-4.21)

But by Eq. (6-4.17), the same component is (noting that for a
stationary charge 4,, = 0)

A, = - yvplc?. (6-4.22)

xm

Now, according to Eq. (6-4.16), ¢, = yg,, so that Eq. (6-4.22)
can be written as
A, = - vp,lc?, (6-4.23)

xm

which is exactly the same as Eq. (6-4.21). Clearly, if the factor
v were not present in Eq. (6-4.17), then the factor 1/y would
appear in Eq. (6-4.23), the agreement between Eq. (6-4.21) and
Eq. (6-4.23) would not be possible, and therefore our
transformation equations for A would be incorrect. But since Eq.
(6-4.17) has been obtained from Eq. (6-4.13), the factor y must
be present also in Eq. (6-4.13).
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Note that none of the transformation equations obtained in this
section of the book constitute actual equalities between the
quantities involved. These equations are merely prescriptions for
obtaining electric and magnetic potentials of a stationary charge
distribution from the potentials of the same moving charge
distribution by replacing quantities pertaining to the moving
charge distribution by quantities pertaining to the stationary charge
distribution and vice versa.

References and Remarks for Chapter 6

1. The name "relativity theory" ("Relativtheorie" in German) was
coined by Max Planck as an abbreviation for the Lorentz-Einstein
("Lorentz-Einsteinsche") electrodynamic theory and its application
to the motion of the electron [see Max Planck, "Die Kaufmannschen
Messungen der Ablenkbarkeit der 3-Strahlen in ihrer Bedeutung fiir
die Dynamik der Elektronen," Phys. Z. 7, 753-761 (1906); A. H.
Bucherer, in the discussion section of this article, called Einstein’s
theory the "Relativititstheorie"]. Einstein used the name "relativity
theory" ("Relativititstheorie") for the first time in his article "Die
vom Relativititsprinzip geforderte Trigheit der Energie," Ann.
Phys. 23, 371-384 (1907).

2. According to E. T. Whittaker (author of the highly respected
A History of the Theories of Aether and Electricity), Einstein’s
contribution to relativity theory was minimal. Referring to
Einstein’s famous article "Zur Elektrodynamik bewegter Korper,"
Ann. Phys. 17, 891-921 (1905), Whittaker says : "In the autumn of
the same year [1905]. . . , Einstein published a paper which set
forth the relativity theory of Poincaré and Lorentz with some
amplifications, and which attracted much attention" [see E. T.
Whittaker, A History of the Theories of Aether and Electricity
(Thomas Nelson, London, 1953) Vol. II, Chapt. 2 ("The Relativity
Theory of Poincaré and Lorentz") p. 40]. Whittaker’s assessment
is contrasted, for example, with that by Arthur I. Miller [author of
the very detailed "biography and analysis of the (Einstein’s)
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relativity paper set into its historical context"]. Miller describes
Einstein’s 1905 article as follows: "Page for page Einstein’s
relativity paper is unparalleled in the history of science in its depth,
breadth and sheer intellectual virtuosity. . . the consequences of the
special relativity theory changed mankind’s very view of its relation
to cosmos. . ." [see Arthur 1. Miller, "Albert Einstein’s Special
Theory of Relativity, (Addison-Wesley, Reading, Massachusetts,
1981) p. xiii].

3. According to K. N. Schaffner (a very thorough investigator of
the history of Lorentz’s and Einstein’s relativity theories) ". . . it
is clear that Lorentz’s theory and Einstein’s theory are rather
different theories — but it is exceedingly difficult precisely to define
the difference" [Kenneth F. Schaffner, "The Lorentz Electron
Theory of Relativity," Am. J. Phys. 37, 498-513 (1969)]. See also
Charles Scribner, Jr., "Henri Poincaré and the Principle of
Relativity," Am. J. Phys. 32, 672-678 (1964); Stanley Goldberg,
"Henri Poincaré and Einstein’s Theory of Relativity," Am. J. Phys.
35, 934-944 (1967); C. Kittel, "Larmor and the Prehistory of the
Lorentz Transformation," Am. J. Phys. 42, 726-729 (1974).

4. The controversy is partly caused by the fact that neither of the
two articles on relativity published by Einstein in 1905 [the first
article was "Zur Elektrodynamik bewegter Korper," Ann. Phys. 17,
891-921 (1905), the second article was "Ist die Trigheit eines
Korpers von seinem Energieinhalt abhingig?," Ann. Phys. 18, 639-
641 (1905)] has any references to works by other authors, although
Lorentz transformations of coordinates and time, transformations of
electric and magnetic fields, etc., which Einstein used in his first
paper were well known in 1905 from the works of Lorentz,
Larmor, and Poincaré (see Refs. 1 and 2 in Chapter 7). In this
connection it is noteworthy that the editors of the Collected Papers
of H. Poincaré specifically pointed out that the method of clock
synchronization by means of light signals used by Einstein in his
first relativity article was due to Poincaré. They also stated that
from the mathematical point of view Einstein’s 1905 article
presented nothing more than what had been published by Lorentz
and Poincaré ("Le célebre Mémoir de A. Einstein Zur
Elektrodynamik bewegter Kérper n’apportant rien de plus au point
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de vue mathématique que les publications de H. A. Lorentz et de
H. Poincaré") [see Ouvres de Henri Poincaré, (Gauthier-Villars,
Paris, 1954) Vol. IX, pp. 698, 699 (this volume contains most of
Poincaré’s papers pertaining to relativity); see also Handbuch der
Physik, (Springer, Berlin, 1927) Vol. XII, p. 270]. It is also
noteworthy that A. I. Miller in his comprehensive book on the
history of Einstein’s special relativity theory (see Ref. 2, above)
decided not to discuss Larmor’s contribution to relativity theory
"because in my opinion Larmor’s work had an indirect effect, if
any, on Lorentz’s thinking toward the electron theory of 1904" (p.
114). Taking into account that as early as 1900 Larmor, in his book
Aether and Matter (Cambridge U. P., Cambridge, 1900), published
(in his own notation) all basic relativistic transformation equations
for time and space coordinates and for electromagnetic quantities
which Einstein presented in his first 1905 article, and that in 1895
Poincaré devoted a large article (in four separate parts) to Larmor’s
carlier work, Miller’s decision only perpetuates the controversy.
5. See Albert Einstein, The Meaning of Relativity, (Princeton
University Press, Princeton, New Jersey, 1950), pp. 30, 31, 36 and
A. Einstein "Die Relativititstheorie" in E. Lecher, ed., Physik, 2nd
¢d., (Teubner, Leipzig, 1925) pp. 791-793.

6. See also Oleg D. Jefimenko, "Retardation and relativity:
Derivation of Lorentz-Einstein transformations from retarded
integrals for electric and magnetic fields," Am. J. Phys. 63, 267-
272 (1995).

7. Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989) pp. 93 and 343. Observe that
Egs. (6-2.9) and (6-2.10) can be obtained from Eqs. (6-2.6) and (6-
2.8) by setting v = O and J = 0.

8. Itis important to note that in the transformation equations that
we are deducing, the "=" sign does not signify the equality of the
quantities on the two sides of the equations; it only shows that the
quantities which it connects can be substituted one for the other.
9. See, for example, Ref. 7, pp. 120 and 364. Observe that Eqs.
(6-4.5) and (6-4.6) can be obtained from Eqs. (6-4.2) and (6-4.4)
by setting v = 0.



THE ESSENTIALS OF
RELATIVISTIC
ELECTRODYNAMICS

Relativistic electrodynamics provides powerful yet simple
methods for solving a variety of problems involving uniformly
moving electromagnetic systems. In this chapter we shall
familiarize ourselves with the basic equations of relativistic
electrodynamics, their properties, consequences, and methods of
their application.

7-1. Basic Relativistic Transformation Equations

The basic equations of relativistic electrodynamics are the
transformation equations for coordinates, time, and
electromagnetic quantities derived in Chapter 6. However, in
relativistic electrodynamics these equations have a somewhat
different physical meaning and are customarily expressed in a
notation different from the notation used in Chapter 6.

To convert the equations derived in Chapter 6 into the
standard relativistic form, we shall now assume that the stationary
charge distribution used in Chapter 6 is located in a reference
frame X’ uniformly moving with respect to the laboratory
(reference frame X). Since the charge is at rest in X', all

" n

quantities with subscript "s" used in Chapter 6 apply now to

148
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measurements performed in that reference frame. And since the
reference frame L' together with the charge distribution moves
with respect to the laboratory (reference frame L), all quantities
with subscripts "m" apply now to measurements performed in the
laboratory. The transformation equations derived in Chapter 6
applied to a charge distribution moving with a velocity v = — vi,
that is, in the negative direction of the x axis. In relativistic
electrodynamics the reference frame L’ is usually assumed to
move with a velocity v = vi, that is, in the positive direction of
the x axis, and both frames ¥ and X' are assumed to have a
common x axis and a common xy plane (Fig. 7.1). Furthermore,
in relativistic electrodynamics the quantities pertaining to the
moving and the stationary charge distribution are customarily
designated not by means of subscripts, but by using primes for
identifying the quantities measured in the moving frame £’ and by
using ordinary notation for the quantities measured in the
laboratory.

AV Yy
Fig. 7.1 Reference
Jframe Y' moves with
velocity v with respect to z !
the laboratory (reference v={ v—>
ame L). > -~
Jrame L) Y . -

To put the transformation equations obtained in Chapter 6 into
the customary relativistic form, we need therefore to modify these
equations as follows: omit the subscript "m," replace the subscript
"s" by a prime, and reverse the sign in front of v. Observe that
we no longer can denote the field point coordinates by primes,
since the primes must now be used only for denoting quantities
measured in the moving reference system. Therefore, before
making any other modifications, we must first remove the primes
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from the transformation equations obtained in Chapter 6. Finally,
since we shall not use retarded quantities in relativistic equations,
we shall use the square brackets in relativistic equations and
elsewhere as the ordinary algebraic symbols.

After making the indicated changes of notation, we then
obtain for the quantities measured in X expressed in terms of the
quantities measured in X':

(a) For the space and time coordinates

x =y’ +vt'), (7-1.1)
y =y’, (7-1.2)
2=z, (7-1.3)
t =@ +vx'lc?. (7-1.4)
(b) For the electric field
E =E, (7-1.5)
E, = ¥(E, +vB,), (7-1.6)
E, = y(E; - vB)). (7-1.7)
(c) For the magnetic flux density field
B - Bx/’ (7-1.8)
B, = Y(B, - VE;Ic?), (7-1.9)
B, = y(B, + VE/IcY). (7-1.10)
(d) For the charge and current densities
p =o' + WIcHJ], (7-1.11)
J.o=yJy +v'), (7-1.12)
I, =, (7-1.13)

J, =, (7-1.14)
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[Egs. (7-1.13) and (7-1.14) follow from the fact that J, and J, do
not enter into the transformation equations obtained in Chapter 6].
(e) For the scalar and vector potentials

@ = (¢ +VA)), (7-1.15)
A, = YA + (vicHP'], (7-1.16)
A, =4y, (7-1.17)

4, =4, (7-1.18)

For the quantities measured in X' expressed in terms of the
quantities measured in ¥ we similarly obtain:

(a) For the space and time coordinates

x' = y(x-w), (7-1.19)
y' =y, (7-1.20)
' =2z, (7-1.21)
t! =yt - wxlc?). (7-1.22)
(b) For the electric field
E) = E, (7-1.23)
E = Y(E, - vB), (7-1.24)
/o -
E; = v(E, + vB). (7-1.25)
(c) For the magnetic flux density field
B! =B, (7-1.26)
B/ = y(B, + VE,c?), (7-1.27)

B/ = y(B, - VE,/c?). (7-1.28)
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(d) For charge and current densities

o' =l - (icH], (7-1.29)
J' =vU, - vp), (7-1.30)
I, =1, (7-1.31)

J', =1, (7-1.32)

(e) For the scalar and vector potentials

¢ =7 -v4), (7-1.33)
Al = vlA, - WcHg), (7-1.34)
Al =4, (7-1.35)

4/ = 4, (7-1.36)

The relativistic transformation equations for coordinates, time,
and electric and magnetic fields are usually called the Lorentz
transformation  equations." The relativistic transformation
equations for electric and magnetic fields together with the
transformation equations for the electric charge and current
density are sometimes called the Lorentz-Einstein transformation
equations.” The relativistic transformation equations for scalar and
vector potentials are due to Poincaré® but do not carry his name.

In the derivations that follow, we shall frequently use
"hybrid" transformation equations obtained from the "regular”
transformation equations listed above by transposing their terms
so that an unprimed or a primed quantity becomes associated with
both a primed quantity and an unprimed quantity. An example of
such a hybrid equation is

E, = E/Iy + vB, (7-1.37)
obtained from Eq. (7-1.24).
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7-2. Transformation Equations for Velocity and Acceleration

Since relativistic electrodynamics is primarily concerned with
moving electromagnetic systems, we need to know how to
transform velocity and acceleration from one reference frame to
another.

Let us first obtain transformation equations for velocity.* Let
an object move with a velocity whose x, y, and z components
measured in the rest frame ¥ are dx/dt = u,, dy/dt = u,, and
dz/dt = u, Let the corresponding components measured in the
moving frame X' be dx'/dt’ = u,’, dy'/dt' = u/, and dz'/dt’ =
u,'. Differentiating Egs. (7-1.1)-(7-1.4), we have

dx = y(dx' +vdt') = y(u, +v)dt’, (7-2.1)
dy =dy’, (7-2.2)
dz = dz7’, (7-2.3)

dt = y(dt’ + vdx'/c?) = (1 +vu/cHat’ . (7-2.4)

Dividing Egs. (7-2.1)-(7-2.3) by Eq. (7-2.4), we obtain
transformation equations for the velocity

/
o= (7-2.5)
1 +vu!/c?
u/
u = (7-2.6)
Y(1 +vu;/c?)
u/
w = —_° 7-2.7)

4

(1 +vux'/cz).

The inverse transformation equations are obtained, as usual,
by transposing the primes and changing the sign in front of v.



154 CHAPTER 7 RELATIVISTIC ELECTRODYNAMICS

They are
S (7-2.8)
1 -vu /c*
W= o (7-2.9)
(1 -vu /c?)
ul = “ (7-2.10)

v(1 - vu lc?) ’

Let us now obtain transformation equations for an
acceleration.® Let an object move with an acceleration whose x,
y, and z components measured in the rest frame X are du,/dt = a,,
du/dt = a,, and du/dt = a,. Let the corresponding components
measured in the moving frame L’ be du,'/dt’ = a, du,'/dt’ =
a,/’, and du,'/dt’ = a;'.

Differentiating Eqs. (7-2.5)-(7-2.7), we obtain

(1 +vu/Ictdu] - (! +vvdu!lc* (1 -v¥cDdu]

du, = /
(A +vu!lc)? (A +vu!lc??
i dux/ (7-2.11)
Y1 + v IcH)? ’
(1 +vu, Ic¥)du, -u, vdu, Ic* du, u, vdu, Ic?
u.= = - ,
’ (1 +vu!Ic?)? v +vul i) (1 +vu!lc?)?
(7-2.12)
(1 +vu] Ic¥du, -u) vdu) Ic* du; u, vdu,/c*
u = = - .
‘ (1 +vu! Ic?)? v(1 +vulicd) (1 +vu) lc??
(7-2.13)

Dividing Egs. (7-2.11)-(7-2.13) by Eq. (7-2.4), we obtain
transformation equations for the acceleration
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/
a,

a = , (7-2.14)
Y1 +vu!/c?)?
a, u)va, /c? (7-2.15)
a = - , -Z.
o2 vl ied? QA +vul e}
/ 1112
4 = a, _ uva, lc . (7-2.16)

O v e A v ic?)?

The inverse transformation equations are

al = % (7-2.17)
Y1 -vu, /c??
2
Y 4 ., wyalc (7-2.18)

V(A -vuic?? Y1 -vulc?)’

2
/o a, uyalc

. . (72.19)
Y(1 -vu,/c?? (1 -vulc?)’

Let us now obtain a transformation equation for the expression
1 — u"/c?, which frequently occurs in relativistic calculations.

Consider a charge distribution moving with velocity u’ in the
reference frame L’. The magnitude of u’ is given by

u? =ul* + uy/2 +u”. (7-2.20)
Using Eqgs. (7-2.8)-(7-2.10), we can write Eq. (7-2.20) as

n o @ -V @l ul)(1-v2/c?
u'® = )

7-2.
(A -vu, /c?? (722D

For the y and z components of u in ¥ we have

w o+ ul=ut-ul (7-2.22)



156 CHAPTER 7 RELATIVISTIC ELECTRODYNAMICS

Combining Egs. (7-2.21) and (7-2.22) and dividing by ¢?, we can
write for 1 — u"/c?

(u,/c -vic) +uc? -ullcd)(1 -v¥ic?)

1-u"*c?=1 i , (7-2.23)
1 -vu,/c)
which after simplifications becomes
1-uer = __Lowller (7-2.24)
Y -vu /c?)?
The inverse transformation equation is, as usual,
1202
1-w2)e? = L7u’e (1-2.25)

A1 +vu) /c2)? .

7-3. Transformation Equations for Partial Derivatives with
Respect to Coordinates and Time

We have arrived at the relativistic transformation equations for
coordinates, time, fields, and potentials by converting electric and
magnetic fields of a moving charge distribution into the
corresponding fields of a stationary charge distribution. As we
know from Chapter 2, the electric and magnetic field equations
that we used for this purpose are solutions of Maxwell’s
equations. We may suspect therefore that Maxwell’s equations
themselves can be transformed from one reference frame to
another by means of the same transformation equations. We shall
explore this possibility in the next section.

Since Maxwell’s equations involve partial differentiation with
respect to space coordinates as well as partial differentiation with
respect to time, we need to know how to transform these
operations from one reference frame to another.

Let us first find the equations for transforming d/dx and 0/0¢
from the rest frame X (laboratory) to the moving frame E'. The
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transformation must take into account that, according to Egs. (7-
1.1) and (7-1.4), a variation of x alone or ¢ alone in ¥ is
associated with a variation of both x' and ¢’ in £’, so that for the
purpose of the transformation, a function of x or ¢ must be treated
as a function of x’ and ¢'.

For d/0x we then have

I (73.1)
0x  9x’ Ox o’ Ox
Now, by Eq. (7-1.19), 0x'/0x = v, and by Eq. (7-1.22), d¢'/dx
= — yv/c*. Therefore Eq. (7-3.1) becomes

9. (i - 1_"’_). (73.2)
0x ax"  c*or’

The inverse equation, obtained by transposing the primes and
changing the sign in front of v, is

d i} v 0
=y o+ (7-3.3
o o - 2 i) )
The corresponding hybrid equations are
9 .10, v (7-3.4)
ax’  yox  c?or
and
i} - 1 0 _ v 0 (7_35)
ox  yax' cror
For /0t we similarly have
o0 0 (7-3.6)
o  9x’' ot o’ ot
By Eq. (7-1.19), 0x'/0t = — v, and by Eq. (7-1.22), 0¢'/0t =
7. Therefore Eq. (7-3.6) becomes
0-("_ ‘9) (137
o o el )
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The inverse equation is

0 _ (0 6) (7-3.8)
a Na " Vax) <

The corresponding hybrid equations are

o6 10 ,,90 (7-3.9)
ot/ v 0t ox’

and
6 .19 _,0 (7-3.10)
ot yar ox

By Egs. (7-1.2) and (7-1.3) or (7-1.20) and (7-1.21), the
derivatives with respect to y and z transform simply as

9 _ 0 (7-3.11)
ay oy’

and
0 i}
9.9 (1-3.12)
0z oz’

7-4. The Invariance of the Cartesian Components of Maxwell’s
Equations under Relativistic Transformations

The significance of the relativistic transformations presented
in the preceding sections of this chapter is twofold: First, the
transformations make it possible to correlate electromagnetic
quantities measured in different reference frames. Second, as we
shall now show, subject to certain limitations to be explained
below, Maxwell’s equations are invariant with respect to these
transformations.® Therefore also solutions of Maxwell’s equations
are invariant with respect to these transformations. This means,
among other things, that with the help of relativistic
transformations we can obtain solutions to problems involving
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uniformly moving electromagnetic systems by merely applying
rclativistic transformations to solutions obtained for the same
stationary electromagnetic systems. And since electric and
magnetic fields of stationary electromagnetic systems can be easily
determined, relativistic transformations provide a powerful and
convenient special method for analyzing uniformly moving
clectromagnetic systems and solving problems pertaining to these
systems.

Let us now show that Maxwell’s equations (two of them only
in their scalar form) are invariant with respect to relativistic
ransformations. Some special methods based on this invariance
will be developed and demonstrated in the next chapter.

Transformation of V .+ D = p. Remembering that D = g E
and writing Maxwell’s Eq. (2-1.1) in terms of Cartesian
components, we have

x

o0x

Using the hybrid Eq. (7-3.5) and Eq. (7-1.5), using Eq. (7-3.11)
and the hybrid Eq. (7-1.37), using Eq. (7-3.12) and the hybrid
cquation for E, obtained from Eqgs. (7-1.25), and using the hybrid
equation for p obtained from Eq. (7-1.29), we can write Eq. (7-
4.1) as

&

. OE, 4l
En—— Ey—— = . -4,
an Oaz p )

)M v OE oE, 0B ) o 0B
E—— " Ey——— * & + EV—— + &, - gy
Y0x c? ot yay’ dy y0z’ 0z
SLYRN (7-4.2)
Y c?

Rearranging, we have
1 (GEOEX/ . 0 E, . OEOEZ/)
¥\ ax’ ay’ 0z’

= lp’ —sov(g}_z - E;_y) + _v.(.l + agOE").
dy 0z c2\* ot

(7-4.3)
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However, since B = p H, since g, = 1/c?, and since ¢E = D,
the last two terms in Eq. (7-4.3) are simply the x component of
the expression
Y- vxH + T+ ?P.), (7-4.4)
c? ot
which by Maxwell’s Eq. (2-1.4) is zero. Hence, dropping the last
two terms in Eq. (7-4.3), cancelling v, replacing ¢;E' by D', and
restoring the vector notation, we obtain

V' eD =p’. (7-4.5)

Thus Maxwell’s Eq. (2-1.1) is invariant under relativistic
transformations.

Transformation of V. - B = (. Writing Maxwell’s Eq. (2-
1.2) in terms of Cartesian components, we have

98, , 98, [ 9B _,. (7-4.6)
ox ady 0z

Using the hybrid Eq. (7-3.5) and Eq. (7-1.8), using Egs. (7-3.11),
(7-3.12) and the hybrid equations for B, and B, obtained from
Egs. (7-1.27) and (7-1.28), we can write Eq. (7-4.6) as

/ / /
08 _v0B, 0B vOE 9B vOE _, (147
yox' ¢* 0t qdy’ 20y iz’ c* 0z

Multiplying by v and rearranging, we have

0B, 0B, 0B, v [(GEZ aEy) 3B,
+ + =yl - 2|+
ax’  dy’ oz’ c*l\ dy 0z ot
However, the expression in the brackets is simply the x
component of the expression

]. (7-4.8)

L(VX E + ﬂ’.), (7-4.9)
c? Jt
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which by Maxwell’s Eq. (2-1.3) is zero. Replacing the right side
ol Eq. (7-4.8) by zero and restoring the vector notation, we obtain

V' -B' =0. (7-4.10)

Thus Maxwell’s Eq. (2-1.2) is invariant under relativistic
transformations.

Transformation of V X E = — 0B/dt. Writing Maxwell’s
lig. (2-1.3) in terms of Cartesian components, we have

(OE OE, ) J((‘)E OE, ) (OE OEX)
gy 0z 0z ox ox ay (7-4.11)
0B, 0B 0B
= -2 -j2 -k__Z.
ot ot ot

Using Eqgs. (7-3.11), (7-3.12), (7-1.5)-(7-1.8), and (7-3.7), we
can write Eq. (7-4.11) as

= v T
Oy’ ay’ dz’ az’
/
az ax ox ay’
_ ( 3B, 3B, ) 0B, 0B
- i -j=2

- > - k_Z2.
i o’ v ox’ ot ot

According to Eq. (7-4.10), the terms with the derivatives
0B'\/ox', 0B',/dy’, B',/0z' in Eq. (7-4.12) vanish, so that the
cquation simplifies to

OE) oE/\ . aE; OE, 0E.  OE]
Y— -y y)w( ) k(_y—_)
/ / /
9 CE o Ox (1-4.13)
08! _ 0B, 0B,
= - iy— - .

Using Egs. (7-1.7), (7-1.6), (7-1.9), and (7-1.10), we can write
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Eq. (7-4.13) as

i( OF, aE;)+,[aE; ) a(Ez’—vB;)]+k[76(Ey+sz’)_aEx’

'Yay’ 'Yaz’ az’ R ox dy’
0B . O(B,-VE/Ic?) _ O(B]+vE]Ic?)
=yt —j -k z y (7-4.14)
" o’ I ot v ot
or, rearranging, as
.| OE, aE;)
nwy—m— - —
('Y ady’ E az’
/ / / / / /
+j[6E)r _ (aEZ +_V_aEZ )] . k[ (aEy +16Ey) _ aEx]
az’ ox c? ot ox c? ot ay’
oB] . (0B 0B/ oB] 4B/
-y —jv( Y ey y)_k ( 2 Ly ) (7-4.15)
ar’ ot ox ot ox
which, by Egs. (7-3.3) and (7-3.8), is
.| OE] 0E,\ ./0E; OE] 0E,  OE]
1(7 7~ /)+( T /)+k(_/_——/
ay 0z 0z Ox Ox dy
, , , (7-4.16)
. 0B, 0B 0B,
- T J T k '
ot ot or’

Comparing the x, y, and z components of the left side of Eq.
(7-4.16) with those of the right side, we find that the components
have the same form as the components of Eq. (7-4.11) (the factor
7 in the x components cancels if one compares only the individual
components of the left and the right side of the equation). Thus
the Cartesian components of Maxwell’s Eq. (2-1.3) are invariant
under relativistic transformations, but the equation itself is not
invariant because, due to the presence of v in the x components
of Eq. (7-4.16), Eq. (7-4.16) is not the same as Eq. (7-4.11).
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Transformation of V. X H = J + 0D/dt. Remembering that
D = ¢FE and writing Maxwell’s Eq. (2-1.4) in terms of Cartesian
components, we have

- _=
Ox dy
. . . OE  _ OFE 0E
=i + le + kJ, + ig; T + &y 0ty + ke 0;'

(0H 0H, ) (OH 0H, )

vk ( 0H, O0H,
ay 0z 0z  Ox )

(7-4.17)

Using Eqgs. (7-1.2), (7-1.3), (7-1.5), (7-1.8)-(7-1.10), (7-1.12)-(7-
1.14), and (7-3.7), and remembering that B = u H, we can write
Fq. (7-4.17) as

| OH] OE, 0H, OE,
l(’y_/. v 23,7 Yo Y 2 /)

ay poC 0y 0z poC 0z

H, 0H, H,

+j(aH 0 ) k( 9 ) (7-4.18)

9z ox 0x ay’

0E; OE, JE, OE,

=iy(J} +vp)+JJ +kJ; +1£O'y(a —VF) +jgg—2 Ot +ke, Otz'

According to Eq. (7-4.5) and taking into account that 1/p,c*
= &, the terms with the derivatives dE",/dx’, OE’,/dy’, OE',/07’
and p’ in Eq. (7-4.18) vanish, so that the equation simplifies to

[ OH] OH/\ (0H, 0H,  (0H, 6 0H,
i ilg - a5

Yay _’Yy ] az’  Ox W—ay’
oE]

+8
5 ey

(7-4.19)
=iyJ] +jJ; +KJ; +ive,

0t

Using Eqgs. (7-1.6), (7-1.7), (7-1.9), and (7-1.10), we can write
Eq. (7-4.19) as
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) (aH; aH;)
i _

v ay/ dz'
/
. oH! _70(H2’+vEy’/,¢0c2)]+k[7 O(H, -VE, Iu,c? ) 0H/!
az’ dx ox ay’
) ) . OE! . O +vB)) d(E] -vB))
=iyJ, +jJ) +kJ, +ive, 7 +jegy yat : +k£0'y__z_5t__y_
(7-4.20)

or, noting that &,B = H/c?, 1/u,c* = €, and rearranging, as

] ( 0H, OHy’ )
i -

¥ dy’ ! a9z’
+j[aH; _ (aH; +laH;)]+k[ (aH; +16H;)_6Hx’]
0z' ox 2 ot ox ¢? Ot ay’
7-4.21)
_ o] (
=l,ij/ +JJy/ +k]z/+rygo a7
. (0E] OE] O0E] OE]
”780( A ) +k7£°{ "V )
which, by Egs. (7-3.3) and (7-3.8), is
. [0H] 9H)\ (0H, 0H, 0H, 98H,
'v(ay’ ) az/)”(az’ ) 6x’)+k(0x’ 3y
7 422

O, 0E) 0E]
. / ./ ! . X . 'y z
=iyJ, +jJ, +KJ, +ive; =7 +j&, 577 +ke, O

Comparing the x, y, and z components of the left side of Eq.
(7-4.22) with those of the right side, we find that the components
have the same form as the components of Eq. (7-4.17) (the factor
7 in the x components cancels if one equates only the individual
components of the left and the right side of the equation). Thus
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the Cartesian components of Maxwell’s Eq. (2-1.4) are invariant
under relativistic transformations, but the equation itself is not
invariant because, due to the presence of vy in the x components
of Eq. (7-4.22), Eq. (7-4.22) is not the same as Eq. (7-4.17).7

7-5. Testing Relativistic Transformations

Although we have no reason to doubt the correctness of our
derivations and the correctness of the relativistic transformations
that we have obtained, it is instructive to test some of the
transformation equations. We can do so by using relativistic
ransformations for solving some problems whose solution is
already known on the basis of general electromagnetic laws.

Correlation between electric and magnetic fields of a moving
charge distribution. For the first test, let us see what effect
relativistic transformations have on the relation between the
electric and magnetic fields of a moving point charge. Consider
the equation expressing the magnetic flux density field B of a
uniformly moving charge distribution in terms of the electric field
E and the velocity u of the distribution [Eq. (3-2.10)]

B = (ux E)/c2. (7-5.1)

By the relativity principle, this equation should not depend on the
reference frame in which E, u, and B are measured. Let us see if
this conclusion is supported by our transformation equations.

Let a charge distribution move with velocity u’ with respect
lo a reference frame L', which moves with velocity v = vi with
respect to the laboratory. In £’ Eq. (7-5.1) is then

B’ = (u/ x E')/c?. (7-5.2)

We shall now transform this equation to the laboratory frame. To
do so we first write Eq. (7-5.2) in terms of its Cartesian
components
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B! = WE] -u/E))c? (7-5.3)
B, = WE] -uE})c? (7-5.4)
B/ = WE -uE})c*. (1-5.5)

Substituting into Eqgs. (7-5.3)-(7-5.5) E,’ from Eq. (7-1.5) and the
hybrid equations for E,’, and E,' obtained from Eq. (7-1.6) and
(7-1.7), we have

B! = [u)(E,/y +vB)) ~u(E,ly ~vB)))ic?  (1-5.6)
B] = [WE, -u/(E,ly +vB))lic* (7-5.7)
B! = [u/(E, /v -vB)) -u E]ic?. (7-5.8)

We shall now simplify Eq. (7-5.6) with the help of Eq. (7-
5.2) by using the relation

w B =u- (ll/ X E/)/CZ = O, (7_59)
from which it follows that
uB] +u/B = - ulB,. (7-5.10)

Substituting Eq. (7-5.10) into Eq. (7-5.6), we obtain

! / Ip!
B, = (uE,/y -uwE Iy -vu/B,)lc? (7-5.11)
or
B/(1 +vu/lc) = WE Iy -uwEnic?,  (1-5.12)
so that
u/ u/ 1
B, = > __E - . pll @513

vd +vilicd T v vl 1cy) e’
which, by Egs. (7-1.26), (7-2.6), and (7-2.7), is
B, = WE, -ukE)/c*. (7-5.14)
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Rearranging now Eq. (7-5.7), we have

B/(1+vullc?) = (wE, -u/EIv)Ic? (7-5.15)
or , /
B = _E-_— " _g]l. 0519
A +vulicd © vy +vulcd) “lc?

Substituting B," from Eq. (7-1.27), we obtain

/

V(B +VE, Ic?) = [ - EZ]L (7-5.17)
(1 +vu, /cz) ¥(1 +vu, /c?) “lc
or
o, u; 1
By = ; E - - vE]
Ly(1 +vu, /c?) (1 +vu, /cz) c?

u, E, - u!(1-v¥c?d +v(l +vu, /cz) ] 1
-2

Ly +vu)1c?) * (1 +vu)/c?) c
- / /

% p- % F]lz (7-5.18)
Ly(1 +vu, /c?) 1 +vulc?)

which, by Egs. (7-2.7) and (7-2.5), is
B, = WE, -ukE,)lc*. (7-5.19)
Clearly, Eq. (7-.5.5) transforms in the same manner into
B, = WE, -uk)c*. (7-5.20)

Recombining Egs. (7-5.14), (7-5.19), and (7-5.20) into a
single vector equation, we finally obtain Eq. (7-5.1) thus
demonstrating the validity of our transformations.

Electric field of a moving point charge. For the second test,
let us see what effect relativistic transformations have on the
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electric field of a moving point charge. Consider a point charge
g moving with constant velocity u’ = u'i relative to a reference
frame X', which moves with velocity v = vi relative to the
laboratory (reference frame ¥). Let the charge be in the x'y’
plane, let the point of observation in £’ be atx’ = 0, y' = 0,
z' = 0, let the time of observation in £’ be ¢’ = 0, and let the
point of observationin X be atx = 0, y = 0, z = 0. As usual,
let the x' axis coincide with the x axis, and let the x"y’ plane
coincide with the xy plane.
The electric field produced by ¢ in ¥’ is, by Eq. (4-1.19),

el + v
g -uTIH&i+y' D (71-5.21)

47l'80{)(30/2 +(1 __uIZ/CZ)y /2}3/2

E =

where x,’ is the x’ coordinate of the point charge at ¢ = 0. If our
relativistic transformation equations are correct, then the only
effect of these transformations on Eq. (7-5.21) when the equation
is transformed to the reference frame X should be the absence of
the primes in the equation.

To perform the transformation, let us first write the equation
in terms of its Cartesian components. We have

g(l-u?lc)xg

47re20{)c0’2 +(1-u'?/c?y’?}"?

E - (7-5.22)

and
B - g(1-u'*c)y’ . (7-5.23)
47rso{)c0’2 +(1-u'?c?)y’?pr

Substituting now into Eq. (7-5.22) Egs. (7-1.23), (7-2.24), (7-
1.20), and the hybrid equation for x' obtained from Eq. (7-1.1)
with ¢/ = 0, and noting that in the case under consideration u,'
= u', we obtain
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E = q(1 -u*/cHxly

b dme (1 -vu /ey + (1 -ulcd)yH(1 -vulcHy?}?
q(1 -u?/c®(1 -vulc?x

dme {xX(1 ~vulc?? +(1 -u*/cHy?}? .

(7-5.24)

Now, since in X' the charge was observed at ' = 0, x in Eq.
(7-5.24) is, according to Eq. (7-1.22), the position of the charge
at ¢ = vx/c*. But to make the electric field given by Eq. (7-5.24)
correspond to the field observed in L', the time of observation in
¥ must be the same as in L', that is, ¢ = 0. Therefore we must
replace x in Eq. (7-5.24) by x,, the position occupied by the
charge at ¢ = 0. Setting

X =X, +vut =x,+ u(vx/cz) (7-5.25)

and solving for x, we obtain
x=__ 0 (7-5.26)
1 - vul/c?

Substituting Eq. (7-5.26) into Eq. (7-5.24), we obtain
q(1 -u?/c?)x,

E._

- _ (1-5.27)
47reo{x02 +(1 -u?/cHy?}

For transforming Eq. (7-5.23), we need to use Eq. (7-1.24)
which contains B,. To obtain B,, we use Eq. (7-5.1), which gives
(note that the velocity of the charge in L is u)

B, = uE,/c*. (7-5.28)
Substituting Eq. (7-5.28) into Eq. (7-1.24), we obtain
E = YE,(1 - vu/c?). (7-5.29)

Substituting now into Eq. (7-5.23) Egs. (7-5.29), (7-2.24), (7-
1.20), and the hybrid equation for x’' obtained from Eq. (7-1.1)
with ¢/ = 0, and taking into account that in the case under
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consideration u," = u’', we obtain

YE,(1 -vulc?)
- q(1 -u*/c?)y
4mey* (1 -vu/c?H{x2/v* +(1 —u?/c®) v (1 -vulc?)?y >

= q(1 -u’lc®)(1 -vulc)yy (7-5.30)
47['80{)62(1 -vu/c??+(1 _uZ/CZ)yZ}:«;/z

or
E- q(1 -u*/c%)y . (7-5.31)
T dme (1 -vulc?) +(1-utlc?)y? P

Substituting Eq. (7-5.26) into Eq. (7-5.31), we obtain

E- g(1-u’/c?y ’ (7-5.32)
4me {xg + (1 -u?/cy?}”

Recombining Eqgs. (7-5.32) and (7-5.27) into a single vector
equation, we finally obtain

g-_1 —u/c?)(x i + ¥i)

_ , (7-5.33)
47rso{x§ +(1 -u?/c?y?}3”?

thus once again demonstrating the validity of our transformations.?

7-6. The Method of Corresponding States

In 1895, H. A. Lorentz enunciated a theorem, which he
called the theorem of corresponding states, according to which to
any electromagnetic system that is a function of space and time
coordinates in the rest frame X, there corresponds an
electromagnetic system in the moving frame X', being the same
function of space and time coordinates (primed coordinates) in
L'.° The theorem constitutes one of the most effective tools of
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relativistic electrodynamics, making possible a very simple
derivation of various equations for electric and magnetic fields of
uniformly moving charge distributions from the corresponding
clectrostatic and magnetostatic equations. Several examples of the
use of this theorem are provided below.

v

Example 7-6.1 The electric field of a stationary charge distribution
can be found from"!

E--_1 ijidv. (7-6.1)
dwey) r

Using Eq. (7-6.1) and appropriate transformation equations, find the
clectric field produced by a charge distribution moving with
uniform velocity v = vi.

Let us apply Eq. (7-6.1) to a charge distribution p' resting in
a reference frame X' which moves with respect to the laboratory
(reference frame E) with constant velocity v = vi. The Cartesian
components of the electric field E’ produced by p’ in this reference
frame are the same as those of Eq. (7-6.1) with V, p, r, and dV
replaced by the corresponding primed quantities, that is

r_ 1 (d/0x")p’ Lo s
b dme, I (x"?+y"?+7'? 1i2dx dy'dz’, (7-6.2)
A @/8y")p’ o s
e 4me, I (x?+y’?+7'? uzdx dy'dz’, (7-6.3)
= (81027)p’ 1y ! doi 7-6.4
¢ 47|'£0 J (x/2+y/2+z/2 I/de dy dz . ( . )

Since the electric field in ' does not depend on time, we are
(ree to choose the time of observation ¢’ in L’ and therefore, by Eq.
(7-1.4), the time of observation ¢ in X. For simplicity we shall use

= 0. Also since the electric field in L’ does not depend on time,
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so that d/0t' = 0, the derivative d/0x', by Eq. (7-3.2), transforms
into 8/~y0x. Taking into account that there is no magnetic field in L'
(because the charge distribution is at rest there) and using Egs. (7-
1.5)-(7-1.7), (7-1.19) with ¢t = 0, (7-1.20), (7-1.21), and (7-1.11)
with J,' = O (because there is no current in X') we transform Eqgs.
(7-6.2)-(7-6.4) into

= 1 (0/v0x)p Iy _
o [ d dz, (7-6.5)
x dmey ) [(yx)? +y? +z2 (vx)dydz
o [ d dz, (7-6.6)
’ ! 47!'80 [('Y)C)z +y2 +22]1/2 ('Yx)dy Z
-- (0/02)p Iy
e I d dz, (7-6.7)
AV 47['80 [(yx)? "’yz +7212 (yx)dydz
or
E = - 1 I (0/0x)p v 768
x 478072 [x2 "'()’2 .,_22)/,)/2]1/2 >
y 47!'30 [x2 +(y2 +Z2)/’Y2]1/2

! | 060 4y, (7-6.10)
47,-80 [x2+(y2 +ZZ)/,YZ]1/2

The denominators in Eqs. (7-6.8)-(7-6.10) can be simplified with
the help of Egs. (5-1.8) and (5-1.9). Multiplying Eqs. (7-6.8)-(7-
6.10) by i, j, and k, respectively, adding the equations, and
observing that 1/y* = 1 — V*/¢%, we obtain

1 JVp—i(vZ/C2)(6/ax)P av.  (1-6.11)
4me, ) r[1-(v¥c?)sin’4]"?

Observe that, except for notation, Eq. (7-6.11) is the same as
Eq. (5-1.12) that we obtained by converting the retarded integral
for the electric field given by Eq. (5-1.1) into the present-position
integral [the primes in Eq. (5-1.12) were used to indicate the
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source-point coordinates; in Eq. (7-6.11) these coordinates appear
without primes, because in relativistic electrodynamics the primes
arc used for identifying quantities in moving reference frames].

Iixample 7-6.2 The best known expression for calculating electric
ficlds of stationary charges is the "Coulomb’s field" equation'

E-_L [2av. (7-6.12)
dmey ) P

Convert this equation into the equation for the electric field
produced by a charge distribution moving with constant velocity and
vbtain the corresponding equation for the magnetic field produced
hy the moving charge distribution.

Consider a charge distribution p’ resting in a reference frame
L' which moves, as usual, with respect to the laboratory (reference
frame Y) with constant velocity v = wi. The electric field E’
produced by p’ in L' may be found from Eq. (7-6.12). Let us
rewrite this equation in terms of its Cartesian components (using
primed coordinates, since the coordinates are in X')

E - 1 J o' x’ d'dy'dy!,  (1-6.13)
47|'80 (x/2+y/2+z/23/2

g L[ 0 _aaya, (614
Y dme, ) (x 24y ey 2P ’

E- L P2 pidylag . (1-6.15)
47rgo (xll +y/2 +z/2)3/2

To find the electric and magnetic fields that the charge
distribution produces in the laboratory, we shall apply to Egs. (7-
6,13)-(7-6.15) our relativistic transformation equations. Since the
electric field in the moving reference frame X' does not depend on
lime, we shall use, for simplicity, ¢ = O for the time of observation
in the stationary reference frame X. Taking into account that there



174 CHAPTER 7 RELATIVISTIC ELECTRODYNAMICS

is no magnetic field in X' (because the charge distribution is at rest
there) and using Eqgs. (7-1.5)-(7-1.7), (7-1.19)-(7-1.21), and (7-
1.11) with J.' = O (because there is no current in ') we transform
Egs. (7-6.13)-(7-6.15) into

1 j( OCNYE__ giyodydz  (7-6.16)

x = 47780 ,YZxZ +y2+22)3/2
or
E =_1 J px av (7-6.17)
x drey? ) 2+ IR
. 1 I /)y : .
= dyodydz;  (7-6.18)
v dmey ) (v +y?+z?)? (e
or
E = — |2 ___av, (619
47(8072 [x2 +(yZ +22)/,YZ]3/2
and, similarly,
E - _ 1L J pz dv. (7-6.20)
z 41l’80‘Yz [xz +0,2+22)/,Yz]3/2

The denominators in Egs. (7-6.17), (7-6.19), and (7-6.20) can
be simplified with the help of Egs. (5-1.8) and (5-1.9).
Recombining Egs. (7-6.17), (7-6.19), and (7-6.20) into a single
vector equation, we then obtain

E-_1 I pr__ av.  (7-6.21)
dmepy* ) r’[1 -(v¥/c?)sin’ 0P

Observe that, except for notation, Eq. (7-6.21) is the same as
Eq. (5-1.40) which we obtained by converting retarded integrals
into present-time integrals.

Although the magnetic field produced by this charge
distribution could be found by applying relativistic transformations
[Egs. (7-1.8)-(7-1.10) in particular] to Egs. (7-6.13)-(7-6.15), it is
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much easier to find it by applying Eq. (3-2.6) to Eq. (7-6.21).
Clearly, this would yield Eq. (5-1.45).

Example 7-6.3 The electric field at a distance R from a stationary
line charge with endpoints at x, = L, and x, = L,, as in Fig. 4.5,
is

E =_ [ 1 - 1 ] (7-6.22)
AmeRLWL IR +1)"?  (L;IR*+1)"

E -~ A [ L, . L ] (7-6.23)
g dmeR*LWLIIR?+1)>  (LFIR*+1)"

where A is the line density of the charge, and where the point of
observation is at the origin.’* What is the electric field of this line
charge if the charge moves parallel to the x axis?

Let us suppose that the charge is at rest in a reference frame L’
which is moving with velocity v = vi relative to the laboratory
ieference frame T along their common x axis. In the X’ frame the
v component of the electric field of the line charge is, by Eq. (7-
0,22),

E =N 1 - 1 . (7-6.24)
4me R LR +1)'?  (L'ZR?+1)?

To find the corresponding electric field in the ¥ frame, we
transform E,’, R', N\’, and L' by using Egs. (7-1.23), (7-1.20), (7-
1.11), and (7-1.19) (observe that N’ transforms like p’, R’
transforms like y’, and L' transforms like x'). Selecting ¢ = O for
the time of observation in ¥ (we can choose ¢ at will because the
charge is time-independent in ') and noting that J', = 0O because
(he charge is stationary in £', we obtain from Eq. (7-6.24) after
clementary simplifications

o N1 = Ve 1 1

K dre R L(LYR? +1-v¥c)” B (LZIR? +1 -v?/c?)2 )
(7-6.25)
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Note that Eq. (7-6.25) is exactly the same as Eq. (4-3.13) that we
obtained by using the retarded field calculations.
By Eq. (7-6.23), the y component of the electric field in the &'
frame, where the charge is stationary, is
)\ / L/ L/
E = - ! - 2 . (7-6.26)
4me R7PLLR+1)'2 (L3R +1)"?

Using Egs. (7-1.6), (7-1.20), (7-1.11), and (7-1.19) for
transforming E,’, R’, ', and L’ and taking into account that there

is no magnetic field in X’ (because the charge is at rest there) we
obtain from Eq. (7-6.26) after elementary simplifications

A [ L, L,

E- _  (7-6.27)
? 4me RAULHR2+1-v¥cH)™ (LR +1 -v¥cH)2

which also is exactly the same as Eq. (4-3.22) obtained from
classical calculations.

Example 7-6.4 The scalar potential of a stationary charge
distribution can be found from the well-known equation

o= 1 jf’.dv. (7-6.28)
dme, ) r

Convert Eq. (7-6.28) into the scalar potential produced by a charge
distribution moving with constant velocity v = v i.

Consider a charge distribution p’ at rest in a reference frame X’
which moves with respect to the laboratory with uniform velocity
v = vi. The electric potential ¢’ produced by p’ in this reference
frame is given by Eq. (7-6.28) with ¢, p, r, and dV replaced by the
corresponding primed quantities, that is

o = 1 jp_’dV'. (7-6.29)
dmwe, d r!
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To find the potential in the laboratory, we transform the primed
quantities in Eq. (7-6.29) into the corresponding unprimed
quantities. Setting # = 0 and using Eqs. (7-1.19)-(7-1.21), (7-1.11),
and (7-1.15) with J.' = 0 and 4, = 0 (because there is no current
nnd no magnetic field in £'), we obtain

.1 j( P dewdydz,  (1-6.30)

v dre, ) (P vy )
or, simplifying and using Egs. (5-1.8) and (5-1.9),
o= j  ____av, (7631
dwe, ) r[1 - (v¥c?)sin?0]'?

which, except for notation, is the same as Eq.(5-2.5) that was
obtained from a retarded potential integral.

Example 7-6.5 The scalar potential of a stationary charge
distribution whose charge density is constant throughout the volume
occupied by the distribution can be found from the equation'*

- p4r -6.

R RN (7-6.32)
where dS,,, is a surface element vector directed from the charge
distribution into the surrounding space. Convert Eq. (7-6.32) into
the scalar potential produced by a charge distribution moving with
constant velocity v = vi.

Consider a charge distribution p’ at rest in a reference frame X’
which moves with respect to the laboratory (reference frame X) with
uniform velocity v = vi. The electric potential ¢’ produced by p’
in this reference frame is given by Eq. (7-6.32) with ¢, p, r, 1,
and dS replaced by the corresponding primed quantities:

o= - P 4T s (7-6.33)
8me, ) r/ out
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To find the potential in the laboratory, we transform the primed
quantities in Eq. (7-6.33) into the equivalent expressions in terms
of unprimed quantities. First, however, we expand the dot product
in Eq. (7-6.33), obtaining
o= - o ['dy'd' +y'dy'dx’ +z’dx’dy’)aw‘ (7-6.34)
8Te, r!

Now, setting ¢ = 0 and using Eqgs. (7-1.19)-(7-1.21), (7-1.11), and
(7-1.15) with J,” = 0 and 4,' = 0 (because there is no current and
no magnetic field in X'), we have

. (7-6.35)

_oly (_# (yxdydz + ydzydx + zydxdy),,
87['6 (,yxz +y2 +ZZ)1/2

or, simplifying, using Eqs. (5-1.8) and (5-1.9), and restoring the
vector notation,
. 8w (7636
8me, ) r[1 - (v¥/c?)sin®0]"?

which, except for notation, is the same as Eq. (5-2.11) obtained
from a retarded potential integral. A
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FROM RELATIVISTIC
ELECTROMAGNETISM TO
RELATIVISTIC MECHANICS

Electric and magnetic fields are force fields. They exert
forces on charged bodies and affect the state of motion of these
hodies. The study of the motion of bodies under the action of
different forces is the domain of mechanics. However, classical
mechanics was developed much earlier than electromagnetic
theory and before the advent of relativistic electrodynamics. It is
vlear therefore that classical mechanics needs to be reformulated
lo make it compatible with relativistic electrodynamics. The
mechanics thus reformulated is called relativistic mechanics. Its
fundamentals are presented in this chapter on the basis of already
teveloped relations of relativistic electrodynamics.

8-1. Transformation of the Lorentz Force

In Chapter 7 we derived relativistic transformation equations
for electric and magnetic fields. Electric and magnetic fields are
force fields. We may expect, therefore, that our transformation
cquations for electric and magnetic fields could be converted into
force transformation equations. To explore this possibility we shall
proceed as follows.'?

181
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The force experienced by a point charge g moving with
velocity u in the presence of an electric field E and a magnetic
flux density field B is given by the Lorentz force law?

F = g(E +u X B). (8-1.1)

This law does not depend on the inertial reference frame in which
g, u, E, and B are measured. Therefore in an inertial reference
frame X’ moving with velocity v relative to the laboratory
(reference frame X) in the direction of their common x axis,
Lorentz force law can be written as

F/ = gE’ +u’ xB'), (8-1.2)

where the primes are used to indicate quantities measured in the
moving reference frame (there is no prime on g because the
charge does not depend on the velocity with which it moves). All
we need to do to obtain an equation transforming F’ to F is to
express E, u, and B in Eq. (8-1.1) in terms of primed quantities
and to group the latter together in the form of Eq. (8-1.2).
However, when dealing with relativistic transformation, it is
usually much simpler to write the transformation equations in
terms of the Cartesian components of the vectors involved rather
than in terms of the vectors themselves. In terms of the
components, Egs. (8-1.1) and (8-1.2) are

F, = q(E +uB, -uB), (8-1.3)
F, =gqE +uB -uB), (8-1.4)
F, = q(E,+uB, -uB); (8-1.5)
and
F! = q(E! +u/B, -uB)), (8-1.6)
F) = q(E +u/B/ -u/B)), (8-1.7)

F, = q(E] +u/B/ -u/B/). (8-1.8)
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Transformation equation for the x component of F.
Substituting Eqgs. (7-1.5), (7-2.6), (7-1.10), (7-2.7), and (7-1.9)
into Eq. (8-1.3) and cancelling gamma, we have

/ / /
e Y g Bt (g2 @19
1+vu, 12V et +vu!Ic?\ c?

Adding and subtracting

IR Y
vu, u, B

c(1 +vu]ic?) ,

we obtain
/ / / /
F =q[EX/ u, /B’ VE, )_ u, /By’- VE, )}
l+vu’/cz\ 2! 1wvu!/c?\ c?
vu, u, B vy u B,
cX1+vulcd)  c2(1+vu)lc?)
PR
Y v/ ic? e (8-1.10)
_ u (g’ VE, vuy/Bx/
B, - +
1+va!/c?\ 7 c? c?
/
vu
=q[Ex’+____y—< B! +E; +u B)
cX1+vu!/c)\V

/
—_L( B! Ez’+uy’B,,’)].
cX1+vu)lcH\V

Adding and subtracting #,'B,’ inside the parentheses of the
first term and u,'B,’ inside the parentheses of the second term of
the last expression, we then have
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/

Vu

F = q[E;+___y__(_B’+u B! -u/B! +E/ +u/B] )
cX(1+vulcH)\ Vv

/ (8-1.11)
vu, N
" —_— _B u,B) -uB) -E, +u/B/|.
X1 +vulc)\V
Simplifying Eq. (8-1.11), we obtain
/ 2 2
Fx=q[Ex’+ e v /c) u/B! +E] +uB)
c2(1 +vulc?)\ v
v, lcz(l + Vi, /c2) /B ~E! +u'B] )]
- +u,
c2(1 +vulcd)) v
(8-1.12)
or
vu,
F.= q[Ex/ +uy/BZ’—uZ/By'+___.______(E +u, B! -u, 'B )
c(1 +vu)/c?)
, (8-1.13)
v, Il il
+ .—/Ez +u,B, -u,B, ||
cH1 +vu,/c?)

Comparing Eq. (8-1.13) with Egs. (8-1.6), (8-1.7), and (8-
1.8), we recognize that Eq. (8-1.13) can be written as
vu, v,
F =F!+ Y F) + : F/, (8-1.14)
c¥1+vu!lc? c2(1 +vu)/c?)

which is the transformation equation for obtaining the x
component of the force measured in the laboratory system from
the x, ¥, and z components of the force measured in the moving
system.

Transformation equation for the y component of F.
Substituting Eqgs. (7-1.6), (7-2.7), (7-1.8), (7-2.5), and (7-1.10)
into Eq. (8-1.4), we have
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/ /
u U, +v
F,=qv(E)+vB)) + B -—— Y(B‘u _viEy/ﬂ
Y(1 +vu, /c?) 1+vu,/c?

c
(8-1.15)
l‘actoring out
T
1+vu/c?
simplifying, and rearranging, we obtain
/
vu
Fo= Ty [(E’+vB’)(1+ ")
Y Teval el c?
/ vz) / / ( % /)]
+u,(l-_\B, - (u, +v)|B, + _.E
z( SR e (8-1.16)

v2 V2 v2
_17/_2[(1 —_Z)E; ! (1 -_2)32’ . uZ’(l - __2)31 ]
1+vu,/c c c c

/ I'n! I'n!
Tl
X

or, with Eq. (8-1.7),

F=—1 __F, (8-1.17)
Y1 +vu, /c?)

which is the transformation equation for obtaining the y
component of the force measured in the laboratory system from
the y component of the force measured in the moving system.
Transformation equation for the z component of F.
Substituting Egs. (7-1.7), (7-2.5), (7-1.9), (7-2.6), and (7-1.8)
into Eq. (8-1.5) and proceeding as we did for deriving Eq. (8-
1.17), we get
Fo=— 1 __F, (8-1.18)
Y1 +vu, /c?)

which is the transformation equation for obtaining the z
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component of the force measured in the laboratory system from
the z component of the force measured in the moving system.

Inverse transformation equations for F. The transformation
equations that we have obtained are for transforming forces from
the moving (primed) reference frame to the laboratory (stationary)
reference frame. The inverse transformations can be derived in the
same manner. However, as usual, the inverse transformations can
be obtained without additional derivations by simply switching
primes from the primed to the unprimed quantities and reversing
the sign in front of v. The result is

Flep-_ " p__ "™ g (119
Yok -vu /ey 7 cAl-vulcH t

1
F-__ 1 g (8-1.20)
Y v -vu/c? ’
and

Fl = ﬁFZ' (8-1.21)
Y1 -vu lc

8-2. Transformation of Electromagnetic Energy and
Momentum of a Parallel-Plate Capacitor

We shall deduce transformation formulas for mechanical
energy and momentum from transformation formulas for
electromagnetic energy and momentum of an electromagnetic
system that closely resembles a mass particle. Since a typical mass
particle is neutral and is confined to a limited region of space, a
corresponding electromagnetic system should also be neutral and
should be confined to a limited region of space. A small thin
parallel-plate capacitor, whose end effects are neglected, satisfies
these requirements.
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Let the charges on the plates of the capacitor be +¢ and — gq.
The energy of electric interaction of the capacitor’s plates with
each other is then*

U, = qop, (8-2.1)

where ¢ is the potential produced by the charge of one of the
plates at the location of the other plate.

If the capacitor moves with velocity u in a direction parallel
lo its plates, the charges move with the plates and constitute
electric currents, a magnetic field is created in the space between
the plates, and there is then also the energy of magnetic
interaction of the capacitor’s plates,

U,=qu-A, (8-2.2)

where A is the magnetic vector potential produced by the current
formed by the charge of one of the plates at the location of the
other plate.’

Furthermore, if the capacitor moves, there exists an
electromagnetic momentum associated with the charge of one of
the plates and the magnetic vector potential produced by the
current formed by the charge of the other plate,

G = gA. (8-2.3)

Equation (8-2.3) can be obtained as follows. The
clectromagnetic momentum contained in an electromagnetic field
of the capacitor is®

G = 2y | ExHaV, (8-2.4)

where E is the electric field and H is the magnetic field, and the
integration is extended over the region where the two fields are
present. Since in a vacuum, by Eqgs. (2-1.5) and (2-1.6), pH =
B and ¢;E = D, and since, by Eq. (2-4.1), B = V X A, we can
write Eq. (8-2.4) as

G - ij (VX A)dV. (8-2.5)
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Let us apply vector identity (V-22) to Eq. (8-2.5). We obtain

§@-2)ds - §AD-a9) - §DA-dS) (5256
- I[Dx(VxA)+Ax(V><D)—D(V-A)-A(V-D)]dV,

where the integration is over the space occupied by the capacitor.
Let D be due to the charge of one of the capacitor’s plates and let
A be due to the current formed by the charge of the other plate.
By symmetry, the surface integrals vanish. Also, by Eq. (2-1.1),
V - D = p, and, since H and E are time-independent, by Egs.
(2-1.3) and (2-1.5), V x D = 0, and by Egs. (2-1.6) and (2-4.9),
V - A = 0. Therefore Eq. (8-2.6) reduces to

[Dx (VxA)dV = [Apdv. (8-2.7)

By symmetry, A is constant on the capacitor’s plate containing
p, and therefor A can be factored out from the last integral in Eq.
(8-2-7). Since [ pdV = q, we then obtain Eq. (8-2.3) from Eqgs.
(8-2.7) and (8-2.5).

Let us now assume that the capacitor is at rest in a reference
frame ¥’ which moves with velocity v = vi relative to the
laboratory (reference frame X). By Eq. (8-2.1), the energy of
electric interaction of the capacitor’s plates in £’ is

Ul =q¢'. (8-2.8)

Let us now express U,’ in terms of the quantities measured in the
laboratory. Using Eq. (7-1.33) for transforming ¢’, we have
U. = qv(p -vA) (8-2.9)

* U, = v(ge-qA). (8-2.10)

However, by Eq. (8-2.1), g¢ is the energy of electric interaction
of the capacitor’s plates as measured in the laboratory [this
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relation is valid for a moving capacitor as long as the capacitor
moves with uniform velocity because, by Eq. (2.4.8), E is then
equal to —Vo] and by Eq. (8-2.2), gvA, is the energy of magnetic
interaction of the capacitor’s plates as measured in the laboratory.
llence the transformation equation for the electric interaction
energy for our capacitor is

U, =yU,-U,). (8-2.11)
As usual, the inverse transformation equation is
U, = y(U, +U,) (8-2.12)

[the "+" sign follows from Eq. (8-2.10), where there isa "—" in
front of gv].

Observe that instead of interpreting the term gvA, in Eq. (8-
2.10) as the magnetic interaction energy, we can interpret it,
nccording to Eq. (8-2.3), as the product of v and the x component
of the electromagnetic momentum G,. Therefore we can also write
Eq. (8-2.11) as

U =y(U,-vG,), (8-2.13)
nnd Eq. (8-2.12) as
U, = v(U, +vG;). (8-2.14)

Let us now obtain transformation equations for the
clectromagnetic momentum G of our capacitor. Writing Eq. (8-
2.3) in terms of Cartesian components and using Eqs. (7-1.34)-(7-
1.36), we can express the electromagnetic momentum G’
measured in X’ in terms of the electric and magnetic potentials
measured in the laboratory as

G, = qylA, - (vIc)gl, (8-2.15)

o -
G, =qA,, (8-2.16)

y

G = qA. (8-2.17)

4
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However, ¢A,, qA,, and qA, are the components of the
electromagnetic momentum associated with g as measured in the
laboratory, and gy is the electric interaction energy as measured
in the laboratory. Hence, by Egs. (8-2.15)-(8-2.17) we have for
the transformation of electromagnetic momentum of the capacitor

le - ,Y[Gx_(v/CZ)Ue]’ (8-218)
Gy/ = G,, (8-2.19)
G =G, (8-2.20)

The inverse transformation equations are then

G, = 7I[G] + (vIc®)U/], (8-2.21)
G, = G,, (8-2.22)
G =G,. (8-2.23)

8-3. Relativistic Expression for Mechanical Momentum

Let a charged particle of mass m move with velocity u = u,i
at the moment of observation in the laboratory reference frame X.
Observed in a reference frame L' which moves with velocity v =
vi = u,i relative to the laboratory, the particle is at rest. Let there
be an electric field in L' acting on the particle with a force F'.
Since the particle is at rest in L', it obeys the well-known laws of
classical mechanics there. In particular, it experiences an
acceleration under the action of F' according to Newton’s second
law, so that, considering the x component of the force, we have

F' = ma!, (8-3.1)

where a,’ is the acceleration of the particle in L' (note that
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although the particle is at rest in L', so thatu,’ = 0, a,/'# O if a
force acts upon the particle).

Let us convert Eq. (8-3.1) to the laboratory reference frame.
Taking into account that »," = u," = u," = 0 and that v = u,, and
replacing in Eq. (8-3.1) F,' by F, and a,’ by a, with the help of
Egs. (8-1.14) and (7-2.14), we have
F. = y'ma,. (8-3.2)

x

Consider now the relation

d u, (1-uglc®) Pdu, fdr +[uglcX(1-uglc?) ] du, /dt
dl (1 —uf/CZ)W] 1-ullc?
~ 1 du, _ 1

(8-3.3)

Since by supposition X' moves with velocity v = u,i, so that u,
= v, the fraction in the last term is the same as 7y* so that we can
write

a __“_] . (8-3.4)
atl(1-ulicyel 7

Combining Egs. (8-3.2) and (8-3.4), we obtain

F=-=29 __”L_] (8-3.5)

S Gt

But, by Newton’s second law, the force acting on a body is
equal to the rate of change of the momentum of the body.
Therefore the x component of the mechanical momentum of the
particle under consideration is not p, = mu,, as it is defined in
classical mechanics, but

ik (8-3.6)

Pe= ————
tA-ulie)©”
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For the y component of the force acting on the particle in X’

we have
F' = ma’. (8-3.7)

y y

Let us convert Eq. (8-3.7) to the laboratory reference frame.
Taking into account that " = u,/ = u,’ = 0 and that v = u,, and
replacing in Eq. (8-3.7) F, by F, and a,’ by a, with the help of
Egs. (8-1.17) and (7-2.15), we have

VF, = ¥ma, (83.8)

or
| = yma,. (8-3.9)

Consider now the relation

d[ u, ]_ a —uf/c2)“2duy/dt “[”y”x/c2(1 —uf/c2)”2]dux/dt
dr (1—143/02)1/2 1 —ll,cz/C2 (8—3.10)
- _awa-_ 1 g

(1 -u/ct (1 -u7lcH'?

(in obtaining this relation we took into account that u, = O,
because by supposition u = vi, so that only the x component of
u is different from zero). Since u, = v, the fraction in the last

term of Eq. (8-3.10) is the same as v, so that we can write

ﬁ[_”y_] - va. (8-3.11)
drl(1 -ulic?)\®

Combining Egs. (8-3.9) and (8-3.11), we obtain

F = i[_’m‘y_], (8-3.12)
Toodtla-ulieyn

Therefore the y component of the mechanical momentum of the
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particle under consideration is not p, = mu,, as it is defined in
classical mechanics, but

- (8-3.13)

p, = — .
T A-ulich”?

By the same procedure we find that the z component of the
mechanical momentum of the particle is

mu,

M N N— (8-3.14)
(1 -ul/cH)'?

Combining Egs. (8-3.6), (8-3.13), and (8-3.14) into a single
vector equation, and remembering that by supposition u = u,i and
v = ui, so that u = v, we obtain for the relativistic momentum
of a particle of mass m moving with velocity u’

mu

p = . (8-3.15)
(1 _uZ/CZ)l/Z

Observe that if a particle moves with a velocity much smaller than

¢, its relativistic momentum reduces to the classical mechanical

momentum
= mu. (8-3.16)

pu <c

8-4. Relativistic Mass, Longitudinal Mass, and Transverse
Mass

We can write Eq. (8-3.15) in the classical form by introducing
the concept of a velocity-dependent relativistic mass, defined as

_ m -
T ¢4D

where m is the ordinary mass measured when the body under
consideration is at rest, sometimes called the proper mass, or the
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rest mass. In terms of relativistic mass, the mechanical momentum
given by Eq. (8-3.15) becomes

p =mu. (8-4.2)

The utility of the concept of relativistic mass is highly
questionable and we shall not use the concepts or expressions
"relativistic mass," "proper mass," or "rest mass" in this book.?

There are, however, two other "masses" in relativity theory,
which occasionally have useful applications (see Chapter 10).
Their meaning is explained below. '

The primary significance of Eq. (8-3.15) is that with the help
of this equation it becomes possible to determine the acceleration,
velocity, and trajectory of particles moving under the influence of
external forces with speeds close to ¢. From Newton’s second law
and Eq. (8-3.15), we have

F-9_4d L] (8-4.3)
dt dt (1 _uZ/CZ)IIZ
Differentiating, we have
m du muu du (8-4.4)

= _— * _—
(1 _uZ/CZ)IIZ dt C2(1 _uZ/CZ)S/Z dt

Using Eq. (8-4.3), we can also write
(F ‘u

)u={£[ mu . u}u={d[ mu }u}u

c? dil(1-u?cH?] ¢ lal(1-u%c)?] 2

=[ muu ]du +[ mu*aul/c? }du (8-4.5)
cX1-u¥c?)'"? ar 1 -u¥cH" ar

_ muu [1—u2/c2+u2/c2]du _ muu du
AA-u¥cAH”l 1-u¥c? Tdt A1-ulcH @

or

_mm i (E_E)u (8-4.6)
cX(1-u?c?? dt c?
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Substituting Eq. (8-4.6) into Eq. (8-4.4), solving the resulting
cquation for du/dr and replacing du/dt by a, we obtain

a = F-(F-uwuwc? (8-4.7)
m/(1-u?lc?"?

Examining Eq. (8-4.7) we notice that contrary to the laws of
classical mechanics, because of the presence of the vector u in the
numerator of Eq. (8-4.7), the direction of the acceleration of a
particle is, in general, not parallel to the direction of the force
applied to the particle [note, however, that if u < ¢, so that u?/c?
is negligible, Eq. (8-4.7) becomes the ordinary Newtonian
cquation of motion]. Let us now take a closer look at Eq. (8-4.7).

Let us assume that the applied force is in the direction of the
velocity of the particle ("longitudinal” direction). In this case (F -
wu = Fu’, and Eq. (8-4.7) becomes

F"(l -uz/Cz) _ F"

m/(1-u¥cH™  mi(1-ucd?’

ay = (8-4.8)

so that in this case the acceleration is parallel to the force. If we
now define the longitudinal mass as

my = _n (8-4.9)
(1 -u?/c?’?
we can write Eq. (8-4.8) as
a, = ﬂ, (8-4.10)
m
[
which, except for the subscripts " || ", looks just like the classical

equation for the acceleration of a particle.

Let us now assume that the force is applied in a direction
perpendicular to the velocity of the particle ("transverse”
direction). In this case the last term in the numerator of Eq. (8-
4.7) vanishes, and the equation becomes
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a, = FL (8-4.11)
m/(1 -u?/c?'"?
so that also in this case the acceleration is parallel to the force. If
we now define the transverse mass as

m, =7 __ (8-4.12)
(1 -u?c?)'?

we can write Eq. (8-4.11) as

a, - /fz_l (8-4.13)
1

which, except for the subscripts " 1", also looks just like the

classical equation for the acceleration of a particle.’

In the past it was thought that the formulas for the relativistic
mass, the transverse mass and the longitudinal mass indicated that
the mass of a body depended on the velocity of the body. This
interpretation of the formulas is now generally rejected, and the
formulas are regarded merely as definitions of abbreviations that
simplify the writing of certain equations but have no physical
significance as such.

8-5. Transformation Equations for Mechanical Force, Energy,
and Momentum

The principle of relativity demands that if a body is in
equilibrium under the action of forces in a moving reference
frame, it must remain in equilibrium under the action of forces in
the laboratory. A charged body cannot be in a state of stable
equilibrium under the action of electric forces alone (this
statement is known as the "Earnshaw theorem"). Therefore
mechanical forces must be present to keep the body in
equilibrium. But if the transformation equations for mechanical
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forces are not the same as those for electromagnetic forces, then
i charged body in a state of equilibrium in a moving reference
frame will not be in equilibrium in the laboratory. Hence the
(ransformation equations for mechanical forces must be the same
as Egs. (8-1.14), (8-1.17), (8-1.18), and (8-1.19)-(8-1.21), that is

/ /

vu vu

F =Fl+ A : g, (85.1)
c(1 +vu)/c?) c(1 +vu)/c?)
F=— 1 __F, (8-5.2)
Y1 +vu,/c?
F, - __;F;; (8-5.3)
Y(1 +vu,/c?
and
Fl=F-_"% F Y _F, (854

Yot -vu e ) c*(1-vu lc? e

F-_1 F, (8-5.5)
v -vu/c?H "’

A S (8-5.6)
YA -vu lc? ¢

By inspection we see that equations for F, and F,' can also be
written as
F e F + (vIcd)(F' - o)

x

(8-5.7)

1+vu//c?
and
_ F, - (vIc’)(F - )

1-vu, /c?

F! (8-5.8)

Note that for v < c these equations reduce to the ordinary
equations of Newtonian mechanics (according to which a force is
not affected by the motion of an inertial reference frame).
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The laws of conservation of energy and momentum demand
that in any interaction between bodies and electromagnetic fields
both the energy and momentum must be conserved. This means
that the electromagnetic energy of interaction between electric
charges and currents and the electromagnetic momentum
associated with these charges and currents can be converted into
mechanical energy and momentum and vice versa. Therefore,
taking into account the similarity between the capacitor discussed
in Section 8-2 and a mass particle, the transformation equations
for the energy and momentum derived in Section 8-2 should be
applicable to mechanical energy and momentum of mass particles.

If we designate the mechanical energy of a body by W and its
mechanical momentum by p, then from Egs. (8-2.13) and (8-3.14)
we obtain for the mechanical energy and momentum of the body

W= y(W-wp,) (8-5.9)
and
W = y(W +wp)), (8-5.10)

where, as usual, the primed quantities are measured in the moving
reference frame L', and the unprimed quantities are measured in
the laboratory.

From Eq. (8-2.18)-(8-2.20) and (8-2.21)-(8-2.23) we obtain

pi = 7lp, - (WlcHW], (8-5.11)
Py =D, (8-5.12)
p. =p, (8-5.13)

The inverse transformation equations are
p, = vlp! + (WIcHW'], (8-5.14)

P, = Py, (8-5.15)
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p, = p. (8-5.16)

A rigorous derivation of Egs. (8-5.9)-(8-5.16) is presented in
Appendix 2.

8-6. Transformation of Torque

Torque is defined by the equation
T =rxF, (8-6.1)

where F is the force and r is the vector joining the pivot with the
point of application of the force. In terms of Cartesian
components, Eq. (8-6.1) is

T, = rsz -rsz, 8-6.2)
Ty = rzFx - erz’ (8—63)
T, =rF, -rF, (8-6.4)

Let us assume that the system experiencing the torque is at
rest in the reference frame L’ which is moving with uniform
velocity v = vi relative to the laboratory reference frame X.
Choosing ¢ = 0 as the time of observation in I, transforming the
components of r by means of Eqgs. (7-1.19)-(7-1.21) (the r
components transform like x, y, z), and transforming the
components of F by means of Egs. (8-5.1)-(8-5.3) (note that since
the system under consideration is at rest in X', u’ = 0), we have

T =r/(F/ly) -r/(F,)Iy) = (r)F/ -r/F)ly, (86.5)

T, = r,F; - ({IV)(F; 1Y)

1}

rF - (r[F))v*, (8-6.6)

T, = (r{IV)F,Iy) -1, F;

(rF)IY -1 Fy . (86.7)



200 CHAPTER 8 RELATIVISTIC MECHANICS

In the moving reference frame L' the torque components are

T =r/F -rlF/, (8-6.3)
T, =r/F -r/F], (8-6.9)
T =r/F] -r)F]. (8-6.10)

Comparing Eqs. (8-6.5)-(8-6.7) with Egs. (8-6.8)-(8-6.10), and
noting that 1/4*> = 1 — V*/c?, we recognize that the components
of T can be expressed in terms of the components of T’ as follows

T, =TI, (8-6.11)

T, = T, +(V¥c)HrF/, (8-6.12)
/ /

T, = T, -(v¥cHr/F, . (8-6.13)

The inverse transformation equations (for the system at rest in X)
are obtained by simply transposing the primes from the left to the
right side of Egs. (8-6.11)-(8-6.13).

8-7. Rest Energy, Kinetic Energy, and the Relation between
Relativistic and Classical Mechanics

It is not difficult to see that there appears to be a serious
problem with the transformation equations for mechanical energy
and momentum derived in Section 8-5. Suppose that in the X’
reference frame a body of mass m is at rest and no external forces
act on the body. In this case W' and p' are zero. But then, by
Eqgs. (8-5.10) and (8-5.14)-(8-5.16), W and p are zero also in the
laboratory, which is obviously wrong, since the mass moves
relative to the laboratory (its velocity is that of the frame X') and
thus has both kinetic energy and momentum there. Thus either our
transformation equations are wrong, or the energy of a body must
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be different from zero even when the body is at rest and no forces
act upon it.

A charged body has energy even if it is at rest and in the
absence of an external electric field — its energy is due to the
electric self-field of the body. Since all bodies contain electric
charges in them, it is reasonable to assume that all bodies possess
a certain amount of self-energy.’® Thus there are very good
reasons to assume that a body at rest possesses energy even in the
absence of external forces acting upon it.

Since according to Eq. (8-3.15) the mechanical momentum of
a body at rest is zero, Eq. (8-5.11) allows us to determine what
the self-energy of a body should be so that our energy and
momentum transformation equations would be free from
contradictions. Consider a body at rest in £’ moving with velocity
v = ui relative to the laboratory. Since p’ is then zero and p, =
p, Eq. (8-5.11) can be written as

0 = v[p-WcHw]. (8-7.1)

Hence, solving Eq. (8-7.1) for W, we obtain the correlation
between the energy and momentum of a body moving with
velocity u

w=<P 8-7.2)
u
which can also be written as
_ uWw -7
P=—- (8-7.3)

Let us now substitute in Eq. (8-7.2) the expression for the
mechanical momentum given by Eq. (8-3.15). We obtain

W= _ Cmu 8-7.4)
u(l - u*/cH"

so that the energy of a body moving with velocity u is

- mc? -7
e &7
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from which it follows that the self-energy of a body at rest, or its
"rest energy," is

W = mc?. (8-7.6)
This equation is generally known as Einstein’s mass-energy
equation, and is usually written as £ = mc*;, we prefer to

designate the energy by the symbol W, so as not to confuse the
energy with the electric field.!"'"> Note that since the rest energy
is expressed in terms of m and ¢, both of which are invariant
under relativistic transformations, Eq. (8-7.6) holds for any
inertial frame of reference.

The energy given by Eq. (8-7.5) is the total energy of a
moving body, that is, its kinetic energy together with its rest
energy. Subtracting Eq. (8-7.6) from Eq. (8-7.5), we obtain the
kinetic energy

K= mc2[—1_ - 1]_ 8-7.7)
(1 _uZ/CZ)I/Z

If the velocity of the body under consideration is much

smaller than ¢, Eq. (8-7.7) can be written as

K,_, = mc2[1 +u?/2c? - 1] (8-7.8)
or
mu?
e - =5 3-7.9)

which, except for the subscript, is the familiar expression for the
kinetic energy of classical mechanics.

In the preceding sections of this chapter we found that
relativistic equations for force and mechanical momentum reduce
to the corresponding classical expressions if the velocity of the
moving reference frame or the velocity of the body under
consideration is much less than c. As we have just seen, also the
relativistic expression for the energy of a moving body reduces to
the classical expression for the kinetic energy of the body if the
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velocity of the body is much less than c. It is clear therefore that
relativistic mechanics has a wider range of applicability than
classical mechanics, and that classical mechanics may be regarded
as a subset of relativistic mechanics. On the other hand, the only
presently known objects which can move with velocities
comparable to that of light and can be used for experimentation
are charged microscopic (atomic) particles. Therefore classical
mechanics is, in general, perfectly adequate for analyzing and
describing kinematic and dynamic relations involving common
macroscopic bodies. However, as will be shown in Chapter 11,
relativistic mechanics should be applicable also to planetary
systems, including our Solar system.

v
Example 8-7.1 Equation (8-7.5) for the mechanical energy of a
moving body was derived for the laboratory reference frame. Show
that it is valid for any inertial reference frame.

Let us transform Eq. (8-7.5) to a reference frame £’ moving
with respect to the laboratory with velocity v = ui. Using Eqgs. (8-
5.9), (8-7.5) and (8-3.6), we have

W’:y mec? -y mu, =y mcz ( —Z)
(1 _uZ/CZ)I/Z (1 _uZ/CZ)I/Z (1 _uZ/CZ)I/Z C2
(8-7.10)

Simplifying the last expression with the help of Eq. (7-2.24), we

obtain
2
W' = mc (8-7.11)

- (1 _u/Z/CZ)I/Z ’

Thus the energy expression that we have derived for the laboratory
frame is valid for all inertial frames.

Example 8-7.2 Equation (8-3.15) for the mechanical momentum of
a moving body was derived for the laboratory reference frame.
Show that it is valid for any inertial frame.
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Consider first the x component of Eq. (8-3.15). Using Eqgs. (8-
5.11), (8-3.15), and (8-7.5), we can write

p/='y[ mu, —(l\ mc? }ry m -v).
oA w1 -u¥c) " T (1 -uH )R

(8-7.12)
Multiplying and dividing the last expression by 1 — vu, /¢ and
using Eq. (7-2.8), we have

m u -v
P = ’Y(l -uzfcz)”z(l - vu)(/cz)(1 -y /e) (8-7.13)
" e
which, by Eq. (7-2.24), is
p. = mi; (8-7.14)

x - (1 _u/Z/CZ)I/Z.

Consider now the y component of Eq. (8-3.15). Using Egs. (8-

5.12), (8-3.15), and (7-2.9), we can write

! _ 2
Py/ ) mit, - mu, y(1 = vu,/c?) (87.15)
(1 -u?c?)" (1 -u¥c?H'?
which, by Eq. (7-2.4), is
/

e T (8-7.16)

(1 - u/2/c2)1/2

The equation for the z component of Eq. (8-3.15) is clearly
similar to Eq. (8-7.16). Combining the equations for the
components of p’ into a single vector equation, we obtain

p = m (8-7.17)
a _u/z/cz)l/z'

Thus the expression for mechanical momentum that we have
derived for the laboratory frame is valid for all inertial frames.
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published by M. Abraham (who also invented the names for the two
masses) in "Dynamik des Elektrons,” Gottinger Nachr. 20-41
(1902). The correct expressions for the two masses were published
by H. A. Lorentz in "Electromagnetic Phenomena in a System
Moving with any Velocity less than Light," Proc. Acad. Sci.
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Amsterdam 6, 809-834 (1904). A. Einstein in his "Zur
Elektrodynamik bewegter Korper," Ann. Phys. 17, 891-921 (1905),
referring to the idea of the two masses as "customary point of
view," obtained expressions for the two masses but his expression
for the transverse mass was incorrect.

10. As early as 1881, J. J. Thomson concluded that a charged body
has an additional mass proportional to the electrostatic energy of the
body. See J. J. Thomson, "On the electric and magnetic effects
produced by the motion of electrified bodies,"” Philos. Mag. 11,
229-249 (1881). Of course, it is now common knowledge that most
of the self-energy of a body is not the electric but the nuclear self-
energy.

11. It was Einstein who first suggested that "the mass of a body is
a measure of its energy content."” See A. Einstein, "Ist die Tragheit
eines Kdrpers von seinem Energieinhalt abhdngig?," Ann. Phys. 18,
639-641 (1905). He arrived at this conclusion by considering two
pulses of light emitted by a body at rest. According to Poincaré,
[see H. Poincaré, "La théoric de Lorentz et la principe de
réaction,"” in Recuel de travaux offerts par les auteurs a H. A.
Lorentz (Nijhoff, The Hague, 1900), pp. 252-278], a pulse of light
has a mass equal to E/¢*, where E is the energy of the pulse.
Einstein reasoned that when light was emitted by a body, the mass
of the body decreased accordingly. For the origin and history of the
equation E = mc* see E. T. Whittaker, A History of the Theories
of Aether and Electricity (Thomas Nelson, London, 1953) Vol. II,
Chapt. 2 ("The Relativity Theory of Poincaré and Lorentz") pp. 51-
54 and Arthur 1. Miller, "Albert Einstein’s Special Theory of
Relativity (Addison-Wesley, Reading, Massachusetts, 1981) pp.
352-374 and references thereto.

12. An interesting derivation of this equation based entirely on pre-
relativistic mechanics is given in J. J. Smulsky, The
Electromagnetic and Gravitational Actions (Nauka, Novosibirsk,
1994) pp. 156-157.



COMMON MISCONCEPTIONS
ABOUT RELATIVITY THEORY

There is a widespread belief that according to relativity
theory the length of a body becomes shorter when the body
moves. This is incorrect. The length of a body is defined as the
length measured when the body is at rest relative to the observer
and is an invariant quantity. There is also a widespread belief that
individual relativistic transformation equations have a physical
significance of their own and can be used independently one from
the other. This is also wrong. Although some relativistic
transformation equations may be used individually, in general
relativistic transformation equations must be used collectively, so
that all transformable quantities in the system under consideration
are properly transformed. These and similar errors in the
understanding of relativistic concepts and equations frequently
result in incorrect representations of physical phenomena and in
various relativistic "paradoxes” that have caused some scientists
to criticize and even to reject relativity theory as such. In this
chapter we shall discuss some of these errors and show the ways
to avoid them.

9-1. The Lorentz Length Contraction

In 1887, A. A. Michelson and E. W. Morley carried out an
experiment' attempting to detect the "world ether,” which was
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thought to be the invisible medium occupying the entire universe
and transmitting electromagnetic effects and radiation. In spite of
the great sensitivity of their apparatus, no ether was detected. In
an attempt to explain the negative result of the experiment without
abandoning the idea of the ether, G. F. Fitzgerald in 1889 and H.
A. Lorentz in 1892 proposed a hypothesis®® that, because of an
interaction with the ether, all bodies are contracted in the direction
of their motion relative to the ether by a factor (1 — V*/c*)"2.
This hypothesis provides a plausible explanation of the
transformation equation for the x coordinate [our Eq. (7-1.1)] in
the Lorentz-Poincaré relativity theory, and the effect (albeit
hypothetical) became known as "Lorentz contraction. "

A. Einstein in his famous 1905 article* discarded the idea of
world ether as "superfluous" and presented a derivation of the
Lorentz transformation equations of coordinates and time on the
basis of his postulates of relativity and of independence of the
velocity of light on the velocity of the emitter.’ However, while
rejecting the reality of ether, he accepted length contraction of
moving bodies as an observable effect, and stated that all moving
objects "viewed" from a stationary system appear shortened in the
ratio 1 to (1 — v*/c*)'2. He also suggested the following method
for measuring the length of a moving object (rod): observers in
the stationary system ascertain at what points of the stationary
system the two ends of the moving rod are located at the same
time ¢; the distance between these two points is the "length of the
moving rod." In a later paper Einstein emphasized that this was
a measuring procedure fundamentally different from the procedure
used for measuring the length of stationary objects.® Therefore
Einstein’s measuring procedure actually constituted the definition
of the new quantity, which he called "length of a moving body,"
different from "length" in the conventional sense.” Clearly then,
to say that the "length of a moving body" is shorter than the
"length" of a body is not the same as to say that the body
becomes shorter when it moves. Moreover, it is far from clear
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how the visual appearance of a moving body can be associated
with Einstein’s measuring procedure, since the visual appearance
is an optical effect unrelated to the measuring procedure proposed
by Einstein. It is not surprising therefore that the reality of length
contraction and its concrete effect on the appearance of moving
hodies has been a subject of considerable controversy and re-
cvaluation.® It should be noted that although Einstein’s relativistic
length contraction has nothing to do with the world ether, it
continues to be known as the "Lorentz contraction."

Taking into account that in Chapters 6 and 7 we obtained
correct relativistic transformation equations on the basis of the
retarded length and volume of moving charge distributions, taking
into account that Lorentz contraction requires not one but two
observers (two points of observation) for its exact manifestation,
and taking into account that electromagnetic fields and light
propagate with the same speed, we have hardly any choice but to
conclude that the relativistically correct visual shape of a moving
body is its retarded shape. We then also have a clear answer to
why the retarded field theory, without using Lorentz contraction
for determining the effective shape of the moving charge, yields
relativistically correct fields of the charge (see Chapter 5 and
Sections 7-5 and 7-6). The answer is very simple: as a physical
phenomenon the relativistic (kinematic) Lorentz contraction does
not exist. And the fact that the several revisions of this concept
had no ill effect on relativistic electrodynamics or on any other
branch of physics is an excellent indication that the concept does
not represent a physical phenomenon in the conventional sense.

v

Example 9-1.1 In 1888, on the basis of Maxwell’s equations,
Oliver Heaviside® obtained the equation for the electric field of a
point charge g moving with constant velocity v
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' AY
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Fig. 9.1 A line charge is moving with velocity v = — vi. To obtain

the correct expression for the electric field of the charge, one must
use the ordinary length of the charge (Fig. 9.1a). If the Loreniz-
contracted length is used (Fig. 9.1b), the resulting field is incorrect.

E - q(1 - v?ic?) r (9-1.1)
4meg (1 -(vUcd)sind]?

where r is the vector connecting the point charge with the point of
observation, and 8 is the angle between v and r. We obtained the
same equation in Chapter 4 [Eq. (4-1.13)] on the basis of electro-
magnetic retardation, and we obtained its integral form in Chapter
7 [Eq. (7-6.21)] by using relativistic transformations. Thus there is
no doubt that this equation is correct. In Section 4-3 we found on
the basis of electromagnetic retardation the equations for the electric
field of a moving line charge [Eqgs. (4-3.13) and (4-3.22)]

_A(1-v¥c?) 1 _ 1 _ ]
* dre R [(L2/R?+1-v?/c?H)\2 (L2R? +1 -y?c?)\2 ’
(9-1.2)
| L, - L ] (9-1.3)
v 4me R (L2IR?+1-v¥Hc)V2  (LHR?+1-v¥/c?)\2

In Chapter 7 we obtained the same equations on the basis of
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relativistic transformations [Egs. (7-6.25) and (7-6.27)]. Thus there
is no doubt that also these two equations are correct.'® Show that
the same two equations can be obtained by integrating Heaviside’s
Iig. (9-1.1) over the actual length of the moving charge, but not by
Integrating over the Lorentz-contracted length (thus demonstrating
{hat Lorentz contraction is not a true physical effect).

Replacing in Eq. (9-1.1) g by Ndx and integrating the x
component of Eq. (9-1.1) between L, and L, (see Fig. 9.1), we
ublain for E, (observe that r is directed toward the point of
nbscrvation so that its x and y components are negative)

o= - M IL’ (1 -v*c?
R 4meyd L[l - (v¥/c?) sin?0]?
_ _ M1 -v¥ch JLz xdx (9-1.4)
47('80 L, [xz +R2(1 _v2/c2)]3/2

_ A —v2/cz)[ 1 _ 1
4meR - L(LIR?+1-v¥cH)'2  (L;/R*+1-v¥cH)\?

lior E, we similarly obtain

B = - 2 [ A ovie)
’ 4me, b1 - (v¥ c?)sin®0]?
K
4me, L, [x2+R¥1-v¥cHP?
= A [ L, _ L
4me R2LLR +1-v2c)2  (LYRZ+1-v¥cH)2 ’

These are exactly the same equations as Egs. (9-1.2) and (9-1.3).

Let us now assume that the line charge is Lorentz contracted.
Then its charge density will be not A but A, = yA (because the total
charge must remain unchanged). Furthermore, if the position of the
lcading end of the charge is L,, then the position of the trailing end
willbe L, = L, + (L, — L,)/vy. Therefore the Lorentz-contracted
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versions of Egs. (9-1.4) and (9-1.5) are

e _vz/cz)[ 1 1 ]
* o Ame R (L2 /R +1-v¥cR) 2 (LZR?+1 -v2c)”
9-1.6
and ( )
SN ] L. - L ] (9-1.7)
Y 4w RA(LZIR? +1 -v¥HcH)?  (LLIR?+1-v?/c?)2

which are quite different from the correct Eqgs. (9-1.2) and (9-1.3).
A

9-2. The Electric Field of a Moving Parallel-Plate Capacitor

A typical elementary problem involving electromagnetic
transformation equations is the problem of finding the electric
field of a parallel-plate capacitor moving with uniform velocity in
a direction parallel to its plates. In some textbooks on
electromagnetic theory and relativity this problem is solved as
follows: "The electric field in the stationary capacitor is E = 0/g,.
If the capacitor is moving, the length of the plates is Lorentz-
contracted by the factor vy, so that the surface charge density ¢ of
the capacitor is increased by the factor . Therefore the electric
field E,, in the moving capacitor is

E = E (9-2.1)

m 5?

where E; is the electric field in the stationary capacitor."!!

In some textbooks the same problem is solved as follows:
"Let the plates of the capacitor be parallel to the xz plane. The
electric field in the stationary capacitor is then E.. Using the
Lorentz-Einstein transformation equation for the y component of
the electric field [our Eq. (7-1.6)] and taking into account that
there is no magnetic field in the stationary capacitor, we obtain
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E, =1E, (9-2.2)

for the electric field in the moving capacitor."”

Similar solutions are frequently presented for the electric field
of an infinitely long line charge uniformly moving in the direction
of its length. Invoking the Lorentz length contraction and the
corresponding increase of the charge density, or using the
transformation equation for the perpendicular component of the
clectric field, the equation for the electric field of a moving line
charge is "shown to be"

(9-2.3)

where \ is the line charge density of the stationary charge, and r
is the vector directed from the line charge to the point of
observation at right angles to the line charge.

Clearly, Eq. (9-2.3) is compatible with Eqs. (9-2.1) and (9-
2.2) because the electric field of a parallel-plate capacitor can be
regarded as a superposition of the electric fields of infinitesimally
narrow charged ribbons whose fields (dE,) are given by Eq. (9-
2.3) with A\ = ¢ dw, where w is the width of the capacitor plates.

Equation (9-2.3) for the electric field of the moving infinitely
long line charge is, however, not at all as obvious as it is claimed
to be. In fact, if the electric field of the moving line charge is
determined by integrating Heaviside’s equation for the electric
field of a moving point charge (see Example 9-1.1) the result is'

A

E = _°"
" 2w’

r = Es, (9-2.4)
that is, the field of the moving infinitely long line charge is
exactly the same as the field of the same stationary line charge.
But if the correct electric field of an infinitely long line charge
moving along its length is the same as that of the stationary line
charge, then also the correct electric field of a parallel-plate
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capacitor moving in a direction parallel to its plates is the same as
the field of the stationary capacitor, that is

E, =E, (9-2.5)

rather than the field given by Eq. (9-2.1) or Eq. (9-2.2).

Consider now the magnetic field. According to Eq. (3-2.6),
the magnetic flux density field B, of any charge distribution
moving with uniform velocity v is connected with the electric field
of this distribution by

B_ = (vxE,)lc?. 9-2.6)

Therefore, if the electric field of the moving capacitor is
correctly given by Egs. (9-2.1) or (9-2.2), then the magnetic flux
density field of this capacitor should be [using the vector notation
Es = (0/ 80)j]

B = J0yxj = Ypovk, 9-2.7)
c’,

where we have used ¢> = 1/g, p,. Likewise, if the electric field

of a moving infinite line charge is correctly given by Eq. (9-2.3),

then the magnetic flux density field of this charge should be

A
B, = " yxr=T"vxr 9-2.8)
c2meyr? 27r?

But if the electric fields of the moving capacitor and of the
line charge are correctly given by Egs. (9-2.5) and (9-2.4),
respectively, then the corresponding magnetic flux density fields
should be
B - % vxj = povk, ©-2.9

c%,
and

B = M yxr=Fuxr. (9210

" c2we,r? 27r?
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In Maxwellian electrodynamics the convection current density
is defined as pv in terms of the stationary p, so that the current
produced by a line charge moving with velocity v along its length
is A\v, where A\ is the stationary line charge density . By Ampere’s
law'®, the magnetic field of the moving line charge is then given
by Eq. (9-2.10) rather than by Eq. (9-2.8), and therefore the
correct electric field of the moving line charge must be the field
given by Eq. (9-2.4) rather than by Eq. (9-2.3).

One could argue, of course, that the convection current should
be properly defined as +ypv rather than as pv. But if one so
redefines the convection current, then one must accept that
Maxwell’s equations themselves are incorrect (because Maxwell’s
equation for VXH involves pv rather than ypv)." And if one
accepts that Maxwell’s equations are incorrect, then one must also
accept that relativistic electrodynamics is incorrect, since it is
based on Maxwell’s equations. Thus, unless we are willing to
reject the most fundamental relations of both classical and the
relativistic electrodynamics, we must conclude that Eq. (9-2.3),
and therefore Egs. (9-2.1) and (9-2.2), are wrong.

Obviously then, the reasoning upon which Egs. (9-2.1), (9-
2.2) and (9-2.3) are based is wrong. In order to understand the
fallacy of the arguments leading to Egs. (9-2.1), (9-2.2), and (9-
2.3) it is necessary to look into the origin of the relativistic
transformation equations.

The Lorentz transformation equations (see Section 7-1) were
first discovered by Lorentz and by other scientists as relations
that, when used in the aggregate, made it possible to adapt
Maxwell’s equations to uniformly moving reference frames
without changing the mathematical form of these equations.’® The
same transformation equations were also obtained by Einstein as
relations that made Maxwell’s equations valid for uniformly
moving coordinate systems.'®

We obtained these equations in Chapters 6 and 7 by
considering retarded electric and magnetic fields. Our derivations
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show very clearly that none of the Lorentz transformation
equations can be ignored when transforming electric or magnetic
fields from one reference frame to another. Therefore one cannot
obtain correct expressions for electric and magnetic fields by
means of Lorentz transformations unless all transformable
quantities involved in the system under considerations are
transformed.

Thus the true significance of the Lorentz transformation
equations is not in what this or that individual equation may mean,
but in the fact that when taken together, and only when taken
together,!” they constitute an "operator,” a "machine," that allows
one to convert Maxwell’s equations, and therefore all solutions of
Maxwell’s equations, from one inertial reference frame to another.

Obviously then, none of the relativistic transformation
equations may be regarded as ordinary physical equations
expressing physical laws or relationships between physical
quantities. Relativistic transformation equations must be regarded
as prescriptions for replacing one ser of quantities by another ser
in order to obtain relations between quantities pertaining to one
inertial frame of reference from the corresponding relations
between quantities pertaining to another inertial frame of
reference.

The error in the reasoning leading to Egs. (9-2.1), (9-2.2),
and (9-2.3) is now clear: the equations were obtained by assuming
that a single relativistic transformation equation had an
independent physical validity and by transforming just one of the
transformable quantities involved in the system under
consideration [of course, invoking the non-existent Lorentz
contraction for obtaining Eq. (9-2.1) or Eq. (9-2.3) was also
wrong, as explained in Section 9-1].

The correct application of relativistic transformations for
obtaining the electric and magnetic fields of a moving parallel-
plate capacitor is shown in the next section.
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9-3. Using Lorentz Transformations for Finding Electric and
Magnetic Fields of a Moving Parallel-Plate Capacitor

We shall now show the correct use of Lorentz transformation
equations for determining the electric and magnetic fields of the
moving capacitor discussed in Section 9-2 (the correct electric and
magnetic fields of the moving line charge were already obtained
in Section 4-3 as well as in Example 7-6.3 and there is no need
lo repeat the calculations here).

p/' 4
o’ o
I E Hite fi—
o/ o,
Z'—D—V x! b X
@ - ®

Fig. 9.2 The electric field in a moving parallel-plate capacitor
(Fig. 9.2b) is the same as when the capacitor is at rest (Fig. 9.2a).
(The distance between the plates is assumed to be very small.)

In the reference frame L’ co-moving with the capacitor the
electric field of the capacitor is'® (we assume that the capacitor is
thin and that its plates are parallel to the xz plane, see Fig. 9.2)

E =2 (9-3.1)
&y

There are two transformable quantities in this equation: E,’ and

o'. Using Egs. (7-1.5)-(7-1.7) and (7-1.11), taking into account

that 0’ = p'w, where w is the thickness of the capacitor’s plates

[which, by Eq. (7-1.2) is not affected by transformations], and

taking into account that there is no current and no magnetic field
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in the X' frame, we obtain for the electric field of the moving
capacitor as measured in the laboratory

E_o 9-32)
Y e,

or
E =2, 9-3.3)
Yy 80

which is exactly the same field as in the stationary capacitor. In
the vector notation we then have
E,=E, (9-3.49)
in agreement with Eq. (9-2.5).
Using Eqgs. (7-1.8)-(7-1.10), taking into account that E,' = 0
and that there is no magnetic field in the £’ frame, and using Egs.

(7-1.6) and (9-3.3), we obtain for the magnetic flux density field
of the moving capacitor as measured in the laboratory

_ TE,
- 7

E
= Lis 2yk = ﬂogvk, (9-35)
Yec

B k

C

which is the same as Eq. (9-2.9) (we omit the subscript "m" here
as superfluous).

9-4. The Right-Angle Lever Paradox

Numerous "relativistic paradoxes” can be found in the
literature on relativity. They usually reflect a lack of
understanding of the physical significance of relativistic equations.
One of the oldest of such paradoxes is the so-called "right-angle
lever," or "L-shaped lever paradox,"” also known as the "Lewis-
Tolman lever paradox." It was first reported in 1909."°
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®

Fig. 9.3 The right-angle lever is in equilibrium in the moving
reference frame (Fig. 9.3a) but, according to seemingly correct
calculations, should be rotating when observed in the stationary
reference frame (Fig. 9.3b).

The essence of the paradox is as follows. Consider an L-
shaped lever at rest in the reference frame L' moving with
velocity v relative to the laboratory frame I (Fig. 9.3). Two equal
forces F' are applied to the lever at right angles to the arms and
at equal distances L' from the pivot P. Since

LF) =L/F =L'F', (9-4.1)
(L', and L', are lever arms along the x and y axes) the torque is
T' =L/F) -L/F =0, (9-4.2)

so that the lever is in equilibrium in £'. Using now Eqgs. (8-6.11)-
(8-6.13) to transform the torque to the laboratory frame Z, and
substituting 7," = 0, we obtain

T, = - WYcHr F) = - (VYIcAL/F, . (9-4.3)

Thus in the laboratory frame X the lever experiences a net torque
and appears to be not in equilibrium. This result is considered to
be a paradox, because by the principle of relativity, if a physical
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system is in equilibrium in one inertial reference frame, it is in
equilibrium when observed in any other inertial reference frame.

Numerous articles in scientific journals have been devoted to
this paradox proposing a variety of solutions of ever increasing
complexity,® and many books on relativity have described the
paradox without arriving at a meaningful solution. Some authors,
unable to present an acceptable solution, prefer to leave the
paradox unsolved. Thus, for example, after explaining the
paradox, the author of an authoritative and comprehensive book
on special relativity theory concludes by saying: "We shall let the
reader contemplate about it."

A

®)

Fig. 9.4 The right-angle lever paradox can be resolved if instead
of the unspecified abstract forces one uses real physical forces, such
as the forces created by two interacting opposite electric charges.

To reveal the error in the reasoning leading to this paradox,
let us consider the system shown in Fig. 9.4. This system is
similar to the one shown in Fig. 9.3, except that instead of the
two undefined forces applied to the lever, the forces applied to the
lever are now caused by two equal and opposite electric charges
g, and g, placed on the two arms of the lever at equal distances L
from the pivot. In the £’ reference frame, the forces between the
charges are purely electrostatic, each charge exerting on the other
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a force of the same magnitude but in opposite direction

2

F=12%,___4a . (9-4.4)
4reyr”’ 4me,r”

where ¢ is the magnitude of the charges, r' is the distance
between the charges, and r’ is directed from the field-producing
to the field-experiencing charge. By the symmetry of the system,
the net force and torque acting on the lever is zero.

Consider now the same lever with the two charges as
observed in the laboratory reference frame L. Let us first analyze
the lever in terms of classical electrodynamics without any
reference to the relativity theory. Since the lever with the charges
moves with respect to the laboratory, the electric field produced
by each of the two charges is now, according to Heaviside’s Eq.
(4-1.13),

_ q(1-v?c? r, (9-4.5)
4me,r (1 -(v¥c?)sin’gP?

where § is the angle between the velocity vector of the field-
producing charge v and vector r directed from the field-producing
to the field-experiencing charge. The electric force exerted by the
charges one upon the other is now

F- - g*(A-vieh) (9-4.6)
4mer®[1 -(v¥/c?)sin’0]?

Again, by the symmetry of the system, the net force and the net
torque experienced by the lever due to electric interaction between
the charges is zero.

However, a moving charge produces a magnetic field, and if
a charge moves in a magnetic field it experiences a Lorentz force.
Thus, in the laboratory reference frame not only the electric
interaction between the charges but also the magnetic interaction
must be taken into account.
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Consider the magnetic field produced by the charge g, located
in the horizontal arm of the lever. The charge moves with velocity
v = vi. According to Egs. (3-2.6) and (9-4.5), the magnetic field
(as measured in the laboratory) produced by this charge at the
point where the charge g, is located is

q,(1-v*/c?

= . xr,  (9-4.7)
4me,cr’[1 - (v c? sin’g]*?

where r is directed from g, to g,.
Since the charge g, moves through this field with velocity v
= vi, it experiences a magnetic force F, = ¢,v X B,, or

q,9,(1 -vic?

= vx(vxr). (9-4.8)
2 dwe e[l - (v¥c?)sin?o]? (vxr)

Expanding the triple cross product in Eq. (9-4.8) by means of
vector identity (V-3), we have

VX (VXD = V(D) -r(veY) = ven) v, (949

and if we express r in terms of its Cartesian components as r =
— Li — Lj and use v = vi, we find that the triple product
reduces to

VX (VXT) = vi[vi « (-Li - Lj)] -vX-Li - Lj) = vLj. (9-4.10)

The force experienced by the charge g, due to the magnetic field
produced by the charge ¢, is therefore

2 2(1-v2c?)L .
F, - - ("_) g% 9411
? & mer T - (1) s

Since this force is directed along the vertical lever arm, it
produces no torque on the lever.

Consider now the magnetic field produced by the charge g,
located in the vertical arm of the lever. The charge g, moves with
velocity v = vi. According to Eqs. (3-2.6) and (9-4.5), the
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magnetic field produced by this charge at the point where the
charge ¢, is located is

g,(1-v¥c?)

2 4me,c’r’[1 - (v¥Hc?) sin®0]?

xr, (9-4.12)

where r is directed from g, to q;.
The charge g, moves through this field with velocity v = vi
and therefore experiences a magnetic force F; = q;v X B,, or

q,9,(1 -v?/c?

, = : vX((vXxr). (9-4.13)
4me,c?ri[1 - (v¥c?)sin®0]*?

The triple cross product in Eq. (9-4.13) is the same as in Eq. (9-
4.9), and if we express r in terms of its Cartesian components as
r = Li + Lj and use v = vi, we find that the triple product
reduces to

vX (vXr) = vilvi + (Li + Lj)] - v¥(Li +Lj) = - v3Lj. (9-4.14)

The force experienced by the charge g, due to the magnetic field
produced by the charge g, is therefore

F - (V_Z) gA-VIAL 5 (9-4.15)
o2 4re, 31 -(v¥c?) sin®f]?

This force is perpendicular to the horizontal lever arm and
therefore produces a torque

T = rxF, = ("_2) PA-VIeL? o (9.4.16)
c*/ ameyr’[1 - (v¥c?) sin®0]>

Thus, the appearance of the torque on the moving lever carrying
the two charges is an electromagnetic rather than a relativistic
effect.

Let us now analyze the lever with the two charges by means
of relativistic transformation. Assuming for simplicity that the
vertical arm of the lever is on the y axis and that the charge g, is
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at the origin of coordinates, we have, by Eq. (9-4.4), for the
vertical component of the force experienced by the charge g, in
the moving reference frame X’

Fh=_1% y q’ Yy, (9-4.17)
dmer’”? 4me (x> +y?)¥

where x' and y’ are the coordinates of q,. By Eq. (9-4.3), the
torque experienced by the lever in I can then be written as

T - (Kf) ’xy" (9-4.18)
fo\e? 4me (x/? +y!?)n

Transforming x’ and y’ to the corresponding values in X by means
of Egs. (7-1.19) and (7-1.20) with r = 0 (we are free to choose
the time of observation in X because the lever is stationary in X'),
we obtain

T =(ﬁ\ vy . (V_Z\ a’ vy (9-4.19)
c2lawe (v +y* 2 \c?lame (0 +yy?)

Expanding v, usingx = L,y = L, X + y* = A, /(> + y?) =
sin’f and using vector notation, we can write Eq. (9-4.19) as

T - (V_z) @A-vIeIL? (9420
c*l 4meyri[1 -(v?/c?)sin’0)*?

which is exactly the same torque as that given by Eq. (9-4.16)
obtained by direct electromagnetic calculations. Since the
relativistic transformations of the torque associated with
electromagnetic forces acting on the lever yield the same results
as the direct calculations, there is no doubt that the appearance of
the torque in our electromagnetic version of the lever is not a
relativistic effect. This strongly suggests that the original right-
angle lever paradox, although discovered on the bases of
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relativistic transformations, is actually not a relativistic paradox as
such.

In this connections let us note that the lever and the forces
upon which the original paradox was based (see Fig. 9.3), did not
represent a real physical system. Indeed, the forces indicated in
Iig. 9.3 are unspecified abstract forces of unknown origin and
unknown mode of action, and the lever itself is not a material
physical body but merely a drawing lacking any physical
properties. Since the lever with its forces does not represent an
real physical system, it should not be surprising that transforming
it to a different frame of reference yields absurd results.

Let us therefore concentrate on the electromagnetic version of
the lever shown in Fig. 9.4. In this system the lever is subjected
to real physical forces. However, the system is physically
incomplete because the physical properties of the lever have not
been specified. Quite clearly, unless the lever itself exerts forces
on the two charges, thus preventing them (and the arms of the
lever) form moving toward each other, the system cannot be in
equilibrium in the ¥’ reference frame — the lever will simply
collapse. We can introduce the forces needed to keep the lever in
equilibrium in X’ by assuming that the lever has some rigidity and
elasticity. However, it is much simpler to assume that the lever,
although rigid, does not itself exert any forces on the charges and
that the needed forces are provided by a sufficiently strong elastic
rod inserted into the lever between the two points where the two
charges are located (line r in Fig 9.4). We assume, of course, that
the lever and the rod are nonconductors.

We now have a sufficiently complete physical system in the
reference frame L'. The system involves not just two, but four
forces: (1) the electric force F',, attracting the charge g, to the
charge ¢,, (2) an equal in magnitude but oppositely directed
"elastic" force F',, exerted by the rod on the charge ¢, and
keeping the charge g, at rest, (3) the electric force F',, attracting
the charge g, to the charge ¢, and (4) an equal in magnitude but
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oppositely directed "elastic” force F’,, exerted by the rod on the
charge g, keeping the charge ¢, at rest.
For the y component of the total force applied to the lever at
the location of the charge g, we now have
Fyp = - Fjpj + Fyj =0, (9-4.21)
and for the x component of the total force applied to the lever at
the location of the charge g, we now have

Fh =Fhi-FhLi=0. (9-4.22)

These are the only force components that could contribute to the
torque in X', but since both of them are equal to zero, there is no
torque in £'. Using now Egs. (8-6.11)-(8-6.13), we find that there
is no torque in the reference frame ¥ either and that specifically,
by Eq. (8-6.13),
T, =T, -(v*cd)r/F) =0-0 = 0. (9-4.23)
Thus, by inserting an elastic rod into our lever carrying
electric charges and by converting thereby the original incomplete
physical system into a reasonably complete one, we have removed
the paradox as far as the relativistic transformations are
concerned. But what do we now obtain from direct calculations?
Quite clearly, the presence of the rod has no effect on the
electromagnetic forces, and therefore Egs. (9-4.4)-(9-4.16) still
hold, and the torque represented by Eq. (9-4.16) still acts on the
level in the reference frame L. Expressed in terms of the F,,
component of the electromagnetic force acting on the charge g,
this torque is

Telecm’c =F y12L k. (9-424)

However, we now also have a torque due to the y component of
the elastic force of the rod
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T, = F,, Lk, (9-4.25)
and since Fy;, = — F),, (otherwise the lever would collapse), the

two torques cancel each other. Thus once again we find that our
lever with electric charges is in equilibrium in the laboratory just
as it is in the moving reference frame X'.

An important consequence of this result is that although we
have derived force and then torque transformation equations in
Chapter 8 by initially considering electromagnetic forces only,
these transformation equations apply to any forces by which
electromagnetic forces can be balanced.

Clearly, the right-angle lever paradox is merely a result of an
incomplete statement of the problem, when instead of real
physical forces one uses unspecified forces F, and F, applied to an
imaginary lever that has no physical properties. The pertinent
physical effects that take place when the forces are clearly defined
and are applied to a physically meaningful lever are then ignored.

As was explained in Section 9-2, relativistic transformations
cannot yield correct results unless all transformable quantities in
the system under consideration are transformed. In the original
calculations leading to the right-angle lever paradox, the fact that
the lever could not be in equilibrium in the reference frame L'
without some forces equalizing the applied forces F,' and F,’ was
ignored. Thus, important transformable quantities were left out of
the calculations, and the paradox inevitably followed. Obviously,
the paradox would not have resulted if forces counteracting the
applied forces and preventing the lever from collapsing were taken
into account.

Similar to the right-angle lever paradox is the "Trouton-Noble
paradox."? In this paradox, an "inexplicable" torque appears to
act on a moving parallel-plate capacitor, although there is no
torque on the stationary capacitor. The paradox arises from
ignoring mechanical forces that prevent the capacitor’s plates from
moving toward each other.
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9-5. Is the Magnetic Field due to an Electric Current a
Relativistic Effect?

Several authors have asserted that the magnetic field due to an
electric current is a relativistic effect. This assertion is based on
the fact that if the interaction between electric charges is entirely
due to an electric field in the laboratory, then relativistic
transformation equations manifest the existence of a magnetic
interaction between these charges in a moving reference frame.?

It is shown below that one could assert with equal justification
that the electric field, rather than the magnetic field, is a
relativistic effect. Therefore, since it is impossible for both fields
to be relativistic effects, neither field should be regarded as a
relativistic effect.?

F B4 Ay
A v A
- - —1
v I 4. v | A
R R
' v ¥
D—» ®
Z d X Z'—PV 9 x!
- o

Fig. 9.5 In the laboratory reference frame ¥ (Fig. 9.5a) the point
charge q experiences a magnetic force. But in the moving reference
frame X' (Fig. 9.5b) the charge experiences an electric force.

Consider two very long ("infinitely long") line charges of
opposite polarity adjacent to each other along their entire length
and observed in the laboratory reference frame E. Let the charges
be parallel to the x axis and let the magnitude of the line charge
density in each line charge be \. Let the positive line charge move
with velocity v = vi and let the negative line charge move with
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velocity v = — vi (Fig. 9.5). Let us now assume that a positive
point charge g is present in the xy plane at a distance R from the
line charges and let us assume that it moves with velocity v in the
positive direction of the x axis.

In the laboratory reference frame I, the two line charges
constitute a current 2\v. By Ampere’s law," the magnetic flux
density field that this current produces at the location of ¢ is

AvXR
B = ”"—j‘rR_W (9-5.1)

where v = vi, and where R is the vector joining the line charge
with g and directed toward q. The force exerted by B on q is

F = q(vXB) = q(v X, ”XR), (9-5.2)
TR?
or
ING
F=-pdYV R, (9-5.3)
Ho TR?

Let us now look at the two line charges and the point charge
from a reference frame X’ moving with velocity v = vi relative
to the laboratory. The point charge q is stationary in this reference
frame and therefore experiences no magnetic force at all.

However, according to the force transformation equations
[Egs. (8-1.14), (8-1.17) and (8-1.18) with u,’ = u/ = u,’ = 0],
if q experiences a force F (in the y direction) in the laboratory,
then the force F’ that it experiences in the moving reference frame
L’ can be found by using the transformation

F/ = F({1 -v¥c?»™2, (9-5.4)
which, with Eq. (9-5.3), becomes
2

F/=-p— IV R (9-5.5)
TR2(1 -vc?)”

[R is the same in both reference frames because of Eq. (7-1.2)].
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Of course, Eq. (9-5.5) is not really meaningful unless \ in it
is transformed to A’ pertaining to the moving reference frame Z'.
To transform A to N’ we use Eq. (7-1.29)

o' =ylp-icHJ ]. (9-5.6)

The charge density p in the laboratory reference frame is p =
(\; + A_)/S = 0 and the current density is J, = 2A\v/S, where
S is the cross-sectional area of the positive and the negative line
charge. Substituting p and J, into Eq. (9-5.6) and multiplying by
S, we obtain the transformation relation

N o= - 72)\\12 - 2Av2 (9_57)

c2 (:2(1 _vz/cz)l/z'

Substituting Eq. (9-5.7) into Eq. (9-5.5), we obtain for the
force acting on the point charge ¢ in the moving reference frame
El

2 /
F - ,LO‘;‘I;‘ZR, (9-5.8)
.
and, since p,c* = 1/g,
F/ = 2‘1_’;;”11, (9-5.9)
TE

which is exactly what we would have obtained for the force
exerted on ¢ in the moving reference frame L’ by the electric field
produced to the line charge of density N\’ as measured in the
moving reference frame £’.%

As is clear from Egs. (9-5.1)-(9-5.9), relativistic force
transformation equations manifest the presence of an electric field
in X' when the interactions between electric charges are assumed
to be entirely due to a magnetic force in X. We could interpret
this result as evidence that the electric field is a relativistic effect.
But the well-known fact? that similar calculations manifest the
presence of a magnetic field in ¥’, if the interactions between the
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charges are assumed to be entirely due to an electric field in L,
makes such an interpretation impossible (unless we are willing to
classify both the magnetic and the electric field as relativistic
¢ffects, which is absurd). We must conclude therefore that neither
the magnetic nor the electric field is a relativistic effect.”

The only correct interpretation of the above calculations must
then be that interactions between electric charges that are either
entirely velocity independent or entirely velocity dependent is
incompatible with the relativity theory. Both fields — the electric
field (producing a force independent of the velocity of the charge
experiencing the force) and the magnetic field (producing a force
dependent on the velocity of the charge experiencing the force) —
are necessary to make interactions between electric charges
relativistically correct. By inference then, any force field
compatible with relativity theory must have an electric-like
"subfield" and a magnetic-like "subfield." In fact, as is shown in
Chapter 11, this is exactly what happens in the case of
gravitational fields.

References and Remarks for Chapter 9

1. A. A. Michelson and E. W. Morley, "On the Relative Motion
of the Earth and the Luminiferous Ether," Amer. J. Sci. 34, 333-
345 (1887). For a discussion see, for example, A. P. French,
Special Relativity (Norton, New York, 1968) pp. 37-58.

2. G. F. Fitzgerald, "The Ether and the Earth’s Atmosphere,"
Science 13, 390 (1889). An interesting account of the history of
I'itzgerald’s hypothesis is given in A. M. Bork "The Firzgerald
Contraction Hypothesis," ISIS 57, 199-207 (1966) and in S. G.
Brush, "Note on the History of the Fitzgerald-Lorentz Contraction,"
ISIS 58, 230-232 (1967).

3. H. A. Lorentz, "The relative Motion of the Earth and the
Ether,"” Versl. Kon. Acad. Wetensch. Amsterdam 1, 74-78 (1892).



232 CHAPTER 9 CORRECT USE OF RELATIVITY

4. A. Einstein, "Zur Elektrodynamik bewegter Korper," Ann.
Phys. 17, 891-921 (1905).

5. The significance and validity of Einstein’s derivation of
transformation equations for coordinates and tinie is questionable.
According to the authoritative and highly regarded book by A. I.
Miller, Albert Einstein’s Special Theory of Relativity (Addison-
Wesley, Reading, Massachusetts, 1991) p. 216, "In sunimary, on
the basis of this chapter it seenis as if Einstein knew beforehand the
spatial portion of the relativistic transformation and an approxiniate
version of the correct time coordinate. . . It is difficult to imagine
that Einstein first derived the relativistic transformations by the
niethod described in the 1905 paper; in fact, he never used this
niethod again." '

6. A. Einstein "Die Relativititstheorie" in E. Lecher, ed., Physik,
2nd ed., (Teubner, Leipzig, 1925) p. 791.

7. It may be noted that Einstein’s procedure for measuring the
length of a moving body cannot actually be implemented. Since
neither the trajectory nor the length of a moving body is known
beforehand, the procedure requires that observers with clocks
should be placed in each and every point of space, which is clearly
inipossible; moreover, to nieasure the lengths of mnioving
niicroscopic particles (electrons, for example) the observers and the
clocks would have to be of subatoniic dimensions; etc, etc.

8. See, for examiple, J. Terrell, "Invisibility of the Lorentz
Contraction," Phys. Rev. 116, 1014-1045 (1959); Roy Weinstein,
"Observation of length by a single observer," Ami. J. Phys. 28,
607-610 (1960); V. F. Weisskopf, "The visual appearance of
rapidly noving objects," Phys. Today 13, 24-27 (1960); A. Gamba,
"Physical quantities in different reference systems according to
relativity," Am. J. Phys. 35, 83-89 (1967); G. D. Scott and M. R.
Viner, "The geometrical appearance of large objects moving at
relativistic speeds,” Am. J. Phys. 33, 534-536 (1965); V. N.
Strel’tsov, "On the relativistic length," Found. Phys. 6 293-8
(1976); Kevin G. Suffern, "The apparent shape of a nioving
sphere,” Ani. J. Phys. 56, 729-733 (1988); V. N. Strel’tsov, "The
Question is: Are Fast-Moving Scales Contracted or Elongated?,"
Hadronic J. 17, 105-114 (1994).



REFERENCES AND REMARKS FOR CHAPTER 9 233

9. Oliver Heaviside, "The Electromagnetic Effects of a Moving
Charge," The Electrician 22, 147-148 (1888); Oliver Heaviside,
"On the Electromagnetic Effects due to the Motion of Electricity
Through a Dielectric," Phil. Mag. 27, 324-339 (1889). Observe that
Heaviside’s equation is relativistically correct [see Egs. (7-5.20), (7-
5.31), (7-6.21)]. The first relativistic derivation of the electric field
of a point charge was done by H. Poincaré in "Sur la dynamique de
I’électron,” Ren. Circ. Mat. Palermo 21, 129-175 (1906).

10. See also Oleg D. Jefimenko, "Retardation and relativity: The
case of a moving line charge," Am. J. Phys. 63, 454-459 (1995).
11. It may be noted that as a sequel to this solution some authors
then use Eq. (9-2.1) for "deriving" the Lorentz-Einstein
transformation equation for the perpendicular component of the
clectric field.

12. See, for example, A. P. French, Special Relativity (Norton,
New York, 1968) pp. 250-253. The same result is obtained from
Eq. (9-1.5) by assuming that L, is negative and that |L,|, L, > R.
In this case 1—V*/¢* in the denominator of the last part of Eq. (9-
1.5) is negligible, and Eq. (9-1.5) reduces to Eq. (9-2.4). See also
Example 5-3.2.

13. See, for example, Oleg D. IJefimenko, Electricity and
Magnetism, 2nd ed., (Electret Scientific, Star City, 1989) p. 328-
332.

14. For an extended discussion of problems arising from using
Lorentz-contracted charge density in Maxwell’s equations see Oleg
D. Jefimenko, "On the relativistic invariance of Maxwell’s
cquations,” Z. Naturforsch. 54a, 637-644 (1999).

15. See Chapter 7, Refs. 1, 2, 6.

16. See Ref. 4.

17. However, certain surrogates, such as relativistic force
transformation equations, can sometimes be used in lieu of the
Lorentz field transformation equations.

18. See, for example, Ref. 13, p. 114.

19. G. N. Lewis and R. C. Tolman, "The Principle of Relativity,
and Non-Newtonian Mechanics," Philos. Mag. 18, 510-523 (1909).
20. Among the proposed solutions are: to redefine the torque, to
invoke elastic forces in the lever, to reexamine the relation between



234 CHAPTER 9 CORRECT USE OF RELATIVITY

torque and angular momentum, to invoke energy flow in the lever,
to redefine the concept of force, etc. See J. W. Butler, "The Lewis-
Tolman Lever Paradox," Am. J. Phys. 38, 360-368 (1970); J.
Charles Nickerson and Robert T. McAdory, "Right angle paradox, "
Am. J. Phys. 43, 615-621 (1975); G. Cavalleri, @. Grdn, and G.
Spinelli, "Comment on the article 'Right-angle level paradox’ by J.
C. Nickerson and R. T. McAdory,”" Am. J. Phys. 46, 108-109
(1978); D. Garth Jensen, "The paradox of the L-shaped object,"
Am. J. Phys. 57, 553-555 (1989).

21. For a description, electromagnetic analysis and further
references see Oleg D. Jefimenko, J. Phys. A: Math. Gen. 32,
3755-3762 (1999). Note, however, that although this article
correctly demonstrates the conservation of momentum in the system
under consideration, the resolution of the paradox suggested in this
article is incorrect.

22. See, for example, E. M. Purcell, Electricity and Magnetism,
2nd ed., (McGraw-Hill, New York, 1985) pp. 192-196 or V. D.
Barger and M. G. Olsson, Classical Electricity and Magnetism
(Allyn and Bacon, Boston, 1987) pp. 513-515.

23. See also Oleg D. Jefimenko, "Is magnetic field due to an
electric current a relativistic effect?,” Eur. J. Phys. 17, 180-182
(1996).

24. See, for example, Ref. 13, pp. 89-90 and 98-99.

25. For some other misinterpretations of the relativity theory see
Oleg D. Jefimenko, "On the experimental proofs of relativistic
length contraction and time dilation," Z. Naturforsch. 53a, 977-982
(1998).



10

THE RATE OF MOVING CLOCKS

One of the most enduring relativistic paradoxes is the so-
called "clock paradox" (commonly known as the "twin paradox"),
according to which time runs slower in moving reference frames
than in stationary reference frames. This "time dilation" is
considered to be a purely kinematic relativistic effect, a
consequence of nothing more than relative motion. Several
experiments appear to support the reality of time dilation.
However, in the preceding chapters we saw that certain
clectromagnetic and mechanical interactions between moving
bodies are easily overlooked because of their subtleness and their
difference from the familiar interactions between stationary
bodies. It is conceivable therefore that moving clocks may run
slower than stationary clocks as a result of some heretofore
ignored interactions affecting moving clocks, rather than as a
result of their motion as such. With this idea in mind, we shall
compare in this chapter the rates of some primitive
clectromagnetic "clocks" resting in the laboratory with the rates
of the same "clocks" moving with respect to the laboratory by
using well-established laws of electromagnetism and mechanics.

10-1. The Idea of Time Dilation

The idea that some physical phenomena occur at a slower rate
when the system in which the phenomena take place is moving
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with respect to the observer dates back to 1897, when Joseph
Larmor, using transformations for length and time analogous to
Lorentz transformations, concluded that the periods of orbiting
electrons are shorter by the factor v in the rest system than in the
moving system.! Albert Einstein in his famous 1905 paper
interpreted the Lorentz transformation equation of coordinates and
time as indicating that the rate of a moving clock, "when viewed
from the stationary system," is slower by the factor v than the
rate of the same clock at rest in the stationary system.? Later he
generalized this statement by declaring that "a living organism
after any lengthy flight could be returned to its original spot in a
scarcely altered condition, while corresponding organism which
had remained in the original position had already long since given
way to new generations” and that "every happening in a physical
system slows down when this system is set in translational
motion. "*>* Thus, according to Einstein, not only clocks run slow,
but time itself is "dilated" in systems that move with respect to the
systems considered to be stationary (laboratory).

The idea of the slowing down of moving clocks as a strictly
kinematic effect was unacceptable to many of Einstein’s
contemporaries® and the idea of time dilation remains to this day
one of the most controversial aspects of Einstein’s special
relativity theory®. However, experiments on the radioactive decay
of fast mesons show that their decay occurs indeed at a rate
slower by the factor y (within experimental errors) than for
resting or slowly-moving mesons.”®

As a physical entity, time is defined in terms of specific
measurement procedures, which may be described simply as
"observing the rate of clocks." But a clock is a physical apparatus
or device and is subject to the laws of physics in accordance with
which the clock is constructed. Therefore, if a clock slows down
when it moves, its slower rate should be explainable on the basis
of the specific laws responsible for the operation of the clock. For
some inexplicable reason, apparently nobody has attempted to
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calculate and compare the rates of any types of stationary and
moving clocks, although such a calculation would be of the utmost
significance as a means of resolving the above-mentioned
controversy and as an answer to the question of whether or not
the slow rate of moving clocks (if it can be confirmed by
calculations) can be explained as a dynamic cause-and-effect
phenomenon rather than as the kinematic effect enunciated by
[linstein.

Naturally, insofar as, according to Einstein, the slowing down
is supposed to hold for any clock mechanism whatsoever, an
all-inclusive dynamic (causal) interpretation of the slow rate of
moving clocks is hardly possible. But it should be possible to
provide a causal interpretation of the slow rate for at least some
specific well-defined clock mechanisms. With this idea in mind,
we shall compute and compare in this chapter the rates of twelve
stationary elementary electromagnetic "clocks” with the rates of
the same moving "clocks." We shall base our calculations on the
fundamental laws of electromagnetism and mechanics with no
input from relativity theory [although we shall use the longitudinal
and transverse masses, which may be regarded either as
cxperimentally obtained quantities, or as relativistic concepts (see
Section 8-4 and Ref. 9 in Chapter 8]. The operation of our clocks
will be based on the interaction between a field-experiencing
clectric point charge and different field-producing electric charge
configurations.

As we shall see, some moving clocks do indeed run in
agreement with the Einstein’s theory,® but others do not.

10-2. Clocks Running in Accordance with Einstein’s Special
Relativity Theory

Clock #1. Consider a ring of radius a carrying a uniformly
distributed charge ¢g,. Let the axis of the ring be the x axis, and
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let the center of the ring be the origin of rectangular coordinates
(Fig. 10.1). The electric field on the axis of the ring is'

Fig. 10.1 A point charge q, is placed

on the axis of an oppositely charged

ring carrying a charge q,. The point
X charge oscillates along the x axis
about the center of the ring. This
system can be used as a primitive
clock.

- N* i (10-2.1)

A charge ¢,, whose polarity is opposite to that of ¢, and whose
mass is m,, is placed on the x axis near the center of the ring at
a distance x from the center and is constrained to move only along
the axis.!' By Eq. (10-2.1), if g, is sufficiently close to the center,

so that x < a, which we assume to be the case, the force on g,
F = g,E, is essentially

F-- 0% (10-2.2)
dmea’

Let the ring be fixed in the laboratory. Since the force given
by Eq. (10-2.2) is a linear restoring force, the ring and the charge
constitute a simple harmonic oscillator, and the period of the
oscillations of g, is

2
T = 27r(_’"_°)" - 47r3/2a3/2(ﬁ9f3)”2. (10-2.3)
Flx 9,9,

Clearly, the ring and the charge may be considered to
constitute a clock and can be used for measuring time in terms of
the period of oscillations 7.
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Let us now assume that the same ring and the charge g, are
located in a reference frame moving along the x axis with velocity
v = vi relative to the laboratory. By symmetry, the electric field
on the axis of the ring is the same as the x component of the
clectric field of a moving point charge g, whose perpendicular
distance from the axis is a. The electric field of a moving point
charge is given by Heaviside’s Eq. (4-1.13)2

E - q(1-v%c?) r, (10-2.4)
" Ame i1 -(v¥c?)sin®01?

where v is the velocity of the charge, c is the velocity of light, r
is the vector from the present position of the charge to the point
of observation, and @ is the angle between r and v; the subscript
m is used to indicate that the field under consideration is that of
the moving charge. Since ©» = (a*> + x%*? and since sin?) =
@*/(@* + x*), we have for the field on the axis of the ring

q,(1-vcHx

m 4me(a® +xH1 -vZa®/c¥(a* +xH)?

i. (10-2.5)

Assuming, as before, that x < a, we'then have for the force
on g,

- - 99> i (10-2.6)
" 4mea’(1-vcH?

l.et us also assume that the velocity v of the moving reference
frame is much larger than the maximum velocity of g, relative to
ihe ring. In this case the velocity of g, relative to the laboratory
is essentially v, and the longitudinal mass of g, is, by Eq. (8-4.9),

"y (10-2.7)

My =
(1 -v?c?*?

‘The period of the oscillations of g, is therefore
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T, 27;( mny )1/2 2 mAmea’(1 —v2/c2)1/2]1/2
- o
V222
F Ix (1-v¥cH*q,q, (102.8)
= 473 3/2[_080_]1/2
(1-vchHq,q,
so that
Ty = s T (10-2.9)

Thus the period of the oscillations of g, located in the moving
reference frame, as observed from the laboratory (stationary)
reference frame, is by the factor (1 — v*/c*) ™' longer than the
period of the oscillations of g, in the laboratory. Hence our clock
consisting of the charged ring and the point charge runs slower
when the clock is moving, and the rate of the moving clock is
(1— V*/c*)~"2 = v times the rate of the same stationary clock.

Clock #2. Consider two point charges of the same magnitude
and polarity located at the points +a of the y axis. Let the
magnitude of each charge be g, and let the charges be fixed in the
laboratory. A point charge ¢,, whose polarity is opposite to that
of the first two charges and whose mass is m,, is placed at a point
x of the x axis close to the origin (x < a) (Fig. 10.2). By the
same reasoning as in the case of Clock #1, the force on g, is

F-- 1%, (10-2.10)
27e,a’

Therefore this system, too, is a harmonic oscillator, and the
period of oscillations of g, is

Moo )“2- (10-2.11)

m.\12
T - 27r(_i) - (27ra)3'2(
Fix 9.9,
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Q9
Fig. 10.2 A point charge gq, i
oscillates under the action of the two | x
. , -« D
fixed point charges q, whose polarity o7 4,
is opposite to that of q,. This system ‘i Ny
can be used as a primitive clock.
Q9

Clearly, the three charges can be regarded as a clock for
measuring time in terms of the period of oscillations 7.

As in the case of Clock #1, if the three charges are placed in
a reference frame moving along the x axis with velocity v = vi
relative to the laboratory, the charge ¢, will experience a force

- - 9 9%* i (10-2.12)
" 2me,a¥(1-vc)?

Therefore g, will oscillate with a period

m.eé 1/2
T - (27ra)3’2[$_] o (102.13)
1-v¥c?Hq,q,
so that
- 1 7 (10-2.14)
m (1 _vzlcz)l/z
Hence our clock consisting of the three charges runs slower
when the clock is moving, and the rate of the moving clock is (1
— V/c?) ™2 = v times the rate of the same stationary clock.

Clock #3. Consider now the same system of three charges but
in a different configuration relative to the coordinate axes. Let the
q, charges be located on the z axis at distances +a from the
origin, and let the charge g, be located on the y axis at a distance
y close to the origin (y < a) (Fig. 10.3). The electric field at the
location of ¢, is now
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*J’
*

,® 9 Fig. 10.3 A point charge gq,

+ o) q,a oscillates along the y axis under the

24 /5/ 2 > action of the two fixed point charges

a/T l q, whose polarity is opposite to that
®'C'] 1 of q,. This system can be used as a

primitive clock.

- 7Y : (10-2.15)
Trega® ry) '

which, after neglecting y* in the denominator, becomes

E-_1"; (10-2.16)
2mea’

The force on g, is therefore

F-- 2%, (10-2.17)
2mea’

Except for the direction, this is the same force as that given by
Eq. (10-2.10). Therefore g, executes a simple harmonic motion
with the period given by Eq. (10-2.11) (with x replaced by y).

Let us now assume that the three charges are placed in a
reference frame moving along the x axis with velocity v = vi
relative to the laboratory. In determining the force on ¢,, we must
now take into account that g, is subjected not only to the electric
field but also to the magnetic field. As seen from the laboratory,
the force on g, is therefore the Lorentz force (we assume, as
before, that the velocity of g, is essentially v)

F, =¢,E,_ +vxB)), (10-2.18)

where E,, is the electric field, and B,, is the magnetic flux density
field produced at the location of g, by the moving charges gq,.
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The electric field at the location of g, is given by Eq. (10-2.4)
withg = q,, r = yj, r = (@ + y)"?, sinf = 1, and with the
factor 2 instead of 4 in the denominator, that is

—v2/p2
. advicy o (102.19)
m 27!'80((!2 +y2)3/2[1 _vz/c2]3/2

which, after neglecting y*, becomes

E - 4 j. (10-2.20)
2mea’(1-v¥c?H)?

By Eq. (3-2.6), the electric and magnetic fields of a uniformly
moving charge distribution are connected by the formula

B, = (vXE )/c%. (10-2.21)

‘Therefore, by Eq. (10-2.18), (10-2.20), and (10-2.21), we have
for the Lorentz force acting on g,

S 9,9, -+V><(V><J')] (10-2.22)
C 2med )T &
or
R (LI O Y (10-2.23)
L 3 2
2meQa c

Using now the transverse mass of g, [see Eq. (8-4.12)]

M (10-2.24)

m, = ——
1 1 -vcH”
we obtain for the period of the oscillations of ¢,

T - 27r(ml )m - (27ra)3’2[__m°8‘)__]m, (10-2.25)
Fly (1-v¥cHq,q,
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Once again therefore

- 1 T (10-2.26)
m (1 -V2/02)1/2
so that our clock consisting of the three charges runs slower when
the clock is moving, and the rate of the moving clock is (1 —
V*/c®)~2 = + times the rate of the same stationary clock.

Clock #4. Consider two point charges g, and g, of the same
polarity located at a distance r one from the other (Fig. 10.4). Let
q; be fixed in the laboratory and let g, be free to move under the
action of g,. The force exerted by g, upon g, is

F-_1% . (10-2.27)
dme,r’

@4, Fig. 10.4 A point charge q, moves under
the action of the point charge q, whose
polarity is the same as that of q,. This
A ©49, Y system can be used as a primitive clock.

e edas

r

If r is sufficiently large, and if g, moves only a short distance,
which we assume to be the case, we can ignore the variation of
the force with r, so that the force can be considered essentially
constant.”® Let the mass of g, be m,. The distance traveled by g,
during a time interval Az (as measured by the "standard clock" in
the laboratory) is then

d=F ap=-_9% (A (10-2.28)
2m, 8Temyr?

Hence we can use the two charges as a clock for measuring time

intervals in terms of the distance d traveled by ¢,. By Eq. (10-

2.28), the formula for converting d into At is
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2
At = (M d)m. (10-2.29)
0.9

Note that the rate of our two-charge clock depends on how fast g,
travels under the action of g;: for a given d, the larger At is, the
slower the rate of the clock.

Let us now assume that we have a second two-charge clock,
identical with the one just described, but located in a reference
frame that moves along the x axis with velocity v = vi relative to
the laboratory. Let us also assume that the line joining the two
charges is perpendicular to v, and let us assume that the velocity
which ¢, acquires under the action of g, is much smaller than v.
As seen from the laboratory, the force on ¢, is then the Lorentz
force

F, = ¢,(E, +vXB ), (10-2.30)

where E,, is the electric field, and B,, is the magnetic flux density
field produced at the location of g, by the moving g;.

Since the line joining the two charges is perpendicular to v,
so that sin § = 1 in Eq. (10-2.4), the electric field E,, is

- 9 r (10-2.31)
" 4me A -vHcH?

and the magnetic flux density field is

_ vXE _ q,
c? dmerici(1-v¥c?)'”?

m

v xr. (10-2.32)

Hence the Lorentz force on g, is

_ 9,9,
L dme (1 -vUcH”

r+YX0X0 } (10-2.33)
Cc

or



246 CHAPTER 10 THE RATE OF MOVING CLOCKS

F, - 2% (1_v2)‘”r_ (10-2.34)

dmerd\ 2

Using now the transverse mass of q, [see Eq. (8-4.12)], we
obtain for the distance traveled by ¢, under the action of g,

d, =

Fo iar Y - M(mm)z, (10-2.35)
2m | 8meym,r?

where the subscripts m are used to indicate that we are now
dealing with the moving two-charge clock. According to Eq. (10-
2.35), the time interval needed for ¢, to travel through the
distance d,, is

2 rn
Ar = [ Bmemr” L 1* (10-2.36)

" lgq(1-vic) "
Let us now compare At and Atf, corresponding to equal
distances traveled by g, under the action of ¢, in the stationary
and in the moving two-charge clock, that is, corresponding to

d =d. (10-2.37)
From Egs. (10-2.29), (10-2.36), and (10-2.37) we have

- 1 At (10-2.38)
" (1 -v¥cH?
Thus At, is by the factor (1 — Vv*/c®)™"? longer than At.
Hence our moving two-charge clock runs (1 — V/c»)™1? = y
times slower than the identical stationary clock.

Clock #5. This clock is similar to Clock #4 just discussed,
except that the fixed point charge g, is now replaced by a long
line charge of uniform line density A lying along the z axis of
rectangular coordinates and having its midpoint at the origin (Fig.
10.5). The point charge q (no subscript is needed now) is placed
on the y axis at a distance r from the origin.
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TF
®9q
Fig. 10.5 A point charge q moves
under the action of the line charge \ I% 5
whose polarity is the same as that of 7 AE—
q. This system can be used as a /ﬂ
primitive clock.

¥z

The electric field produced by the line charge at the location
of q is"

E-_"j, (10-2.39)
2meyr

and the force exerted by the line charge upon g is

F=-_9"; (10-2.40)
2meyr

As before, if r is sufficiently large, and if ¢ moves only a
short distance, which we assume to be the case, we can ignore the
variation of the force with r, so that the force can be considered
essentially constant.”® Let the mass of ¢ be m, The distance
traveled by ¢ during a time interval Ar (as measured by the
"standard clock” in the laboratory) is then

d =

F o = (10-2.41)

2m, 4me myr

Hence we can use this line charge and the point charge as a clock
for measuring time in terms of the distance d traveled by ¢ in
accordance with

At = (4“0’"0’ d)”z, (10-2.42)
gA
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Let us now assume that we have a second clock, identical
with the one just described, but located in a reference frame
moving along the x axis with velocity v relative to the laboratory.
Let us also assume that the velocity which g acquires under the
action of the line charge is much smaller than v. As seen from the
laboratory, the force on g is then the Lorentz force

F, =qE,+vXxB,), (10-2.43)

where E,, is the electric field, and B,, is the magnetic flux density
field produced at the location of g by the moving line charge.
The electric field of the moving line charge can be found by
integrating Eq. (10-2.4). Since the integration is rather simple, we
shall not reproduce it here and shall merely state the result:!

- A ; (10-2.44)
" 2meg(l -vz/cz)”z’] ’ '

The Lorentz force acting on ¢ is therefore, by Egs. (10-2.43),
(10-2.21) and (10-2.44),
- g [i , VXV X))
L 27raor(1—v2/cz)”2l c?

g\ [1_v2
2megr\ 2

12
) j. (10-2.45)

Using now the transverse mass of q [see Eq. (8-4.12)], we
obtain for the distance traveled by g under the action of the line
charge

d = F, (ar 2 = gr( 'VZ/CZ)(A,m)2_ (10-2.46)
2m | dwemyr

The time interval needed for g to travel through the distance d,, is
then
dmegmr 112

_ (10-2.47)
gr(1-v¥cd) "

m

Let us now compare Ar and Af, corresponding to equal
distances traveled by ¢ under the action of A in the laboratory and
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in the moving reference frame, that is, corresponding to
d, =d. (10-2.48)

From Egs. (10-2.42), (10-2.47), and (10-2.48) we have

1
=~ AL (10-2.49)
m (1 _VZ/CZ)I/Z
Thus At,, is by the factor (1 — v*/c*)~'? longer than Az. Hence
our moving clock consisting of the line charge and the point
charge runs (1 — V?/c?) "2 = v times slower than the identical
stationary clock.

Fig. 10.6 A point charge q oscillates /
along the x axis under the action of

two fixed line charges \. This system
can be used as a primitive clock.

Clock #6. This clock is similar to Clock #2 except that instead
of the two point charges two infinitely long line charges of line
charge density A are now placed in the yz plane parallel to the z
axis at distances +a from the axis. The point charge g (there is
no need for a subscript now) is again on the x axis close to the
origin (x < a) (Fig. 10.6).

The electric field produced by the line charges at the location
of ¢qis"

E-_ M (10-2.50)
TE(a? +x?)
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or, since x < a,
E=-_M i (10-2.51)
TEa’
The force experienced by q is therefore a linear restoring
force

F-- 9N, (10-2.52)
T’

causing g to oscillate with the period

172
T = ZW(E)

} 27ra< Moo )”2_ (10-2.53)
Fix 2N

Let us now assume that the same field-producing line charges
X\ and the point charge q are located in a reference frame moving
along the x axis with velocity v = vi relative to the laboratory.

As seen from the laboratory, g now experiences an electric
field which can be obtained by integrating Eq. (10-2.4) and is®

N1 -v?/c?)i”

xi, (10-2.54)
" welx?+a¥(1-v¥cY)
or, since x < a,
- A . (10-2.55)
" wead(1-vHcH'"?
The force acting upon q is therefore
F = - A - (10-2.56)

m X1
mea’(1-v¥c?H)'?

causing q to oscillate with the period [observe that we must now
use the longitudinal mass, see Eq. (8-4.9)]

T - 27r( | )"2 _ 27ra(_”‘°%L_)”2_ (10-2.57)
" F,Ix (1 -v¥cHgh
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Thus, by Eqgs. (10-2.53) and (10-2.57), the relation between
the periods of our moving Clock #6 and of the same stationary
clock is

- 1 T (10-2.58)
m (1 _v2/C2)1/2

Once again T,, is by the factor (1 — v*/c?)~'? longer than T.
Hence our moving Clock #6 runs (1 — v/c»)™? = + times
slower than the identical stationary clock.

10-3. Clocks that do not Run in Accordance with Einstein’s
Special Relativity Theory

Clock #7. This clock is the same as Clock #3 except that the
field-producing charges g, are now placed along the x axis at the
points +a of the axis. The point charge ¢, is again on the y axis
close to the origin (y < a) (Fig. 10.7).

oscillates along the y axis under K

the action of two fixed point ®<—a ); a—>® — %
charges q,. This system can be 4, q,

used as a primitive clock.

Fig. 10.7 A point charge q, *
309,

Clearly, the period of the oscillations of g, in the laboratory
frame is the same as for Clock #3, that is

1/2 172
T - 24&) - (2m>w(.”ﬁ) .03
Fly 9,9,
Let us now assume that the same field-producing charges q,
and the charge ¢, are located in a reference frame moving along
the x axis with velocity v = vi relative to the laboratory.



252 CHAPTER 10 THE RATE OF MOVING CLOCKS

As seen from the laboratory, ¢, now experiences an electric
field and a magnetic field. The electric field is given by Eq. (10-
2.4) with g = q,, r = yj, r = (@ + Y)'?, sin’d = y/(@® + y?),
and the factor 2 instead of 4 in the denominator, that is

—y2/p2
E, - 9,d-vic)y i, (1032)
m 27?80((12"'}’2)3/2{1 _(v2/c2)|'y2/(a2+y2)]}3/2

or, remembering that y < a and neglecting y* and y*/(a* + y?),

—v2/p2
S ad-vicy, (10-3.3)
2mea’

E

The magnetic field, according to Egs. (10-2.21) and (10-3.3),
is
-2
9Ty (10-3.4)

B m
2mec’a’

The Lorentz force on g, is therefore

_ q1q2(1 _VZ/CZ)y

F, - j+V><(VXJ')], (10-3.5)
2mea’ c?
or 21,2\2
F, - - 2ad-viey . (10-3.6)
2mea’

Using now the transverse mass of g, [see Eq. (8-4.12)]

my
m, = > (10-3.7)
1 1 -vIc?H)?
we obtain for the period of the oscillations of g,
m0£0

12
. (10-3.8)
A -vicHig.q,

m 172
T, -2 i) e 3'2[
' W(FL/y 27a)
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Thus the relation between the periods of this moving clock
and of the same stationary clock is

- 1 N
m = (1 -2 T, (10-3.9)

so that although our clock consisting of the three charges runs
slower when the clock is moving, the rate of the moving clock is
(1 = V*/c*)™>* = 4*? times the rate of the same stationary clock.

lig. 10.8 A point charge q moves ?F
under the action of the fixed line o4
charge . This system can be used as Ir
a primitive clock. = r

Clock #8. This clock is similar to Clock #5, except that the
line charge is now placed along the x axis (the midpoint of the
line charge is, as before, at the origin; see Fig. 10.8. If the clock
is stationary, the force on g is the same as in the case of Clock #5
and is given by Eq. (10-2.40). Therefore the distance traveled by
q during a time interval At (as measured by the "standard clock"”
in the laboratory) is also the same as for Clock #5 and is given by
Fq. (10-2.41). Consequently, the time interval needed for g to
travel through the distance d is also the same as for Clock #5
given by Eq. (10-2.42), that is

(10-3.10)

4me mr |2
At =( oo d)

2N

Let us now assume that a second line-charge point-charge
clock, identical with the one just described, is located in a
reference frame that is moving along the x axis with velocity v =
vi relative to the laboratory.
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By Eq. (5-3.13) or Eq. (9-2.4) the electric field produced by
the moving infinitely long line charge is the same as the field
produced by the stationary charge, so that [see Eq. (10-2.39)]'

E -_ ;. (10-3.11)
2mer

The magnetic field produced by the line charge is then, by
Eq. (10-2.21)

B_ - N vxj, (10-3.12)
2me cr

and the Lorentz force acting on q is

_ [ XX tl_V_z)j_ (10-3.13)

Lo 2meprl c? 2mer\ 2

Using now the transverse mass of q [see Eq. (8-4.12)], we
obtain for the distance traveled by g under the action of the line
charge

F — 12/ 232
d, = Lt (ary = DAV 5y (103.14)
2m | dwemyr

The time interval needed for g to travel through the distance 4, is
then
dmemyr

gh(1 -v¥c?r T

m

(10-3.15)

Let us now compare Af and Af, corresponding to equal
distances traveled by g under the action of \ in the laboratory and
in the moving reference frame, that is, corresponding to

d, =d. (10-3.16)
From Egs. (10-3.10), (10-3.15), and (10-3.16) we have

- 1 AL (10-3.17)
m (1 _v2/c2)3/4
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Hence although our clock consisting of a line charge and a
point charge runs slower when the clock is moving, the rate of the
moving clock is (1 — v*/c?~* = 4?2 times the rate of the same
stationary clock.

. . ?J’
Fig. 10.9 A point
charge q oscillates L‘* 72 0
along the y axis under j")@ q/a X
the action of two line ¥ 4 >
charges N. This system a’ l
can be used as a A_» w
primitive clock. }/z

Clock #9. This clock is similar to Clock #3 except that instead
of the two point charges two infinitely long line charges of line
charge density A are now placed in the xz plane parallel to the x
axis at distances ta from the axis. The point charge g (there is
no need for the subscript now) is again on the y axis close to the
origin (y < a) (Fig. 10.9).

The electric field produced by the line charges at the location
of g is"

E = Vo, (10-3.18)
me(a® +y?)

or, since y < a,

E-_Nj (10-3.19)
TEa’
The force experienced by ¢q is therefore a linear restoring
force

F--_9; (10-3.20)
TE?

causing g to oscillate with the period
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N [ Y Nl A
Fly 2

Let us now assume that the same field-producing line charges
A and the point charge g are located in a reference frame moving
along the x axis with velocity v = vi relative to the laboratory.

As seen from the laboratory, ¢ now experiences an electric
field and a magnetic field. The electric field, by Eq. (5-3.13) or
Eq. (9-2.4), is the same as the field produced by the stationary
line charges, that is

E -_MN . (10-3.22)
" wea?

The magnetic field, according to Eq. (9-2.10), is

B, = M _yxj. (10-3.23)
Tea’c?

The Lorentz force on q is therefore

F, = - D [;.yxXOxD) (10-3.24)
rega’l c?
or
F, = - DAV, (10-3.25)
Tea’

Using now the transverse mass of q [see Eq. (8-4.12)], we
obtain for the period of the oscillations of ¢q

myE,™

12
_ M 1 (10-3.26)
(1 -v2c?*g\

12
T - 27r(ml) - 27a
" F.ly

Thus the relation between the periods of this moving clock
and of the same stationary clock is
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- 1 7 (10-3.27)
m (1 _v2/c2)3/4
%0 that although our Clock #9 runs slower when the clock is
moving, the rate of the moving clock is (1 — V¥/c?) ™ = ¥
times the rate of the same stationary clock.

y
lig. 10.10 A point charge q *
moves along the y axis under the TF
action of a charged plate ®9q
carrying a surface charge a. This ]
system can be used as a primitive /
clock.

Clock #10. Consider a large uniformly charged plate of
surface charge density g. Let the plate be in the xz plane with its
center at the origin. A point charge g of the same polarity as the
plate is placed on the y axis not far from the plate (Fig. 10.10).
Let the plate be fixed in the laboratory and let g be free to move
under the action of g. The electric field produced by o at the
location of q is

E-=-21j (10-3.28)
2¢,

The force exerted on ¢ is therefore

F - %4;. (10-3.29)
2¢,
Let the mass of g be m,. The distance traveled by g during a
time interval Ar (as measured by the "standard clock" in the
laboratory) is then

d=_F = _%9 arp. (10-3.30)

2m, de,m,
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Hence we can use the plate and the charge as a clock for
measuring time intervals in terms of the distance d traveled by gq.
The formula for converting d into At is, by Eq. (10-3.30),

Ar = (480”’od)”2_ (10-3.31)
oq

Let us now assume that we have a second clock, identical
with the one just described, but located in a reference frame that
moves along the x axis with velocity v = vi relative to the
laboratory. Let us also assume that the velocity which g acquires
under the action of ¢ is much smaller than v. As seen from the
laboratory, the force on g is then the Lorentz force

FL = q(Em +v X Bm) s (10-3.32)

where E,, is the electric field, and B,, is the magnetic flux density

field produced at the location of q by the moving plate.
According to Section 9-2, the electric field E,, produced by

the moving plate is the same as that of the stationary plate, that

iSl7

E =ij. (10-3.33)
" 2,

The Lorentz force acting on ¢ is then

P, - i, XXOXD ] 09l Vs 10334
L 280 c? 280 c?

Using now the fransverse mass of q [see Eq. (8-4.12)], we
obtain for the distance traveled by g under the action of the plate
F L

d = (Ary2 = S9L-VIEN" 5y 2 (10-3.35)
2m | 4e.m

00

According to Eq. (10-3.35), the time interval needed for g to
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truvel through the distance d,, is

i, degmy )“2, (10-3.36)
" ogq(1-v¥cH¥? ™

Let us now compare Ar and Ar, corresponding to equal
distances traveled by g under the action of the charged plate in the
slationary and in the moving clock, that is, corresponding to

d,=d. (10-3.37)
From Egs. (10-3.31), (10-3.36), and (10-3.37) we have

- 1 -
= mm, (10-3.38)
Hence although our clock consisting of a charged plate and
the point charge runs slower when the clock is moving, the rate
ol the moving clock is (1 — v*/c®)~¥* = 432 times the rate of the
sime stationary clock.

4 X
LD —
Fig. 10.11 A point charge q moves /| F
tlong the x axis under the action of a
charged plate carrying a surface
charge a. This system can be used as
a primitive clock. L

Clock #11. This clock is the same as the one just discussed,
except that the plate is now in the yz plane and the point charge
q is on the x axis. The clock at rest in the laboratory behaves
exactly like Clock #10, and therefore Eq. (10-3.31) applies also
to the present clock, so that
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(10-3.39)

o - (410"
0q

The electric field produced at the location of g by the moving
plate, as seen from the laboratory, can be obtained by integrating
Eq. (10-2.4). However, this time we shall obtain the field by
making use of the method of corresponding states (see Section 7-
6). Taking into account that the charge and the surface area of the
plate are invariant under Lorentz transformations and using Eq.
(7-1.5), we find that the electric field of the moving plate at the
location of ¢ is the same as that of the stationary plate."
Furthermore, since the electric field is parallel to the velocity of
the plate, the plate produces no magnetic field at the location of
g. Hence the force exerted by the moving plate on ¢ is

F = 99; (10-3.40)
” 280
Using the longitudinal mass [see Eq. (8-4.9)],
my =0, (10-3.41)
(1 -V2/02)3/2
we then find that the distance traveled by g under the action of the
moving plate, as seen from the laboratory, is

d

m

2 312
= 99A-VIEYT v (10-3.42)
2m I 4e,m,
so that
J[ e 1 (10-3.43)
" lag@-v¥c?Hr ™
Hence although our clock consisting of a charged plate and
the point charge runs slower when the clock is moving, the rate
of the moving clock is (1 — v?/c®)~>* = 4?2 times the rate of the

same stationary clock.
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/
Fig. 10.12 A point charge q, moves along r F
the x axis under the action of the point 2? ’?-—’
charge q,. This system can be used as a 7k z
primitive clock.

Clock #12. This clock is the same as Clock #4, except that the
line joining the two charges is parallel to the x axis (Fig. 10.12).

In the laboratory, the clock functions exactly as Clock #4, so
that the time interval given by Eq. (10-2.29)

2
Af = (Md)m (10-3.44)
4,4,

applies also to the present clock.

When the clock moves along the x axis with velocity v = vi
relative to the laboratory, the electric field due to charge gq,
becomes, according to Eq. (10-2.4),

q,(1-v*c?
=___  ’r

E (10-3.45)
" 4me,r’
and the force on g, becomes
—v2/p2
p - 2%A-vie) (10-3.46)
" 4meyr’

Using the longitudinal mass [see Eq. (8-4.9)], we find that the
distance traveled by g, under the action of ¢, is now

2/ ,2\52
- DRUVIN ) (103.47)
2m|| 87r£0m0r

d

m

and the time interval needed for g, to travel the distance d,, is
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8me m 1 1/2
At = oo

m = qlqz(l _vz/CZ)SIZ m (10-348)

Let us now compare Ar and Af, corresponding to equal
distances traveled by g, under the action of ¢, in the stationary
and in the moving two-charge clock, that is, corresponding to

d, =d. (10-3.49)
From Egs. (10-3.44), (10-3.48), and (10-3.49) we obtain

1
S v (10-3.50)
m (1 _vz/CZ)SM
Thus At,, is by the factor (1 — V*/c®~>* longer than At.
Hence our moving two-charge clock runs (1 — v¥/c?) ™5 = %2
times slower than the identical stationary clock.

10-4. Reconciling the Theory with Experimental Data

As we have seen, the primitive electromagnetic clocks
discussed above run slow when the clocks move, but their rate
depends on the type of the clock and even on the orientation of
the clock relative to the direction of motion. Thus, contrary to
Einstein’s conception, the slowing down of the moving clocks is
a dynamic rather than a kinematic effect, and the slowing down
is not, in general, proportional to y. Therefore, if "time" is that
which is measured by physical devices (clocks), there is no such
thing as time dilation depending solely on the velocity of the
clocks and being the same for all the clocks moving with the same
velocity.

In fact, our calculations show that the slowing down of the
clocks is not really a relativistic effect at all. The calculations that
we used were based on the laws of classical electromagnetism
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(classical field equations and Lorentz force law) with no input
from relativity theory except for the longitudinal and transverse
masses (which just as well may be considered to be experimentally
obtained relations).!* However, as one can easily see, even if we
used the ordinary classical expression for the mass, we would still
find that moving clocks run slow. Therefore relativity theory at
best improves the accuracy of the calculations but does not affect
the qualitative physical essence of our results.

Furthermore, relativity theory, which, as we have seen, is
derived from, and is based upon, the laws of electromagnetism,
does not provide us with any information on the rate of processes
other than the electromagnetic ones. In particular, it does not
provide us with any information on the rate of biological effects,
such as aging. Therefore the widely popularized idea, allegedly
supported by relativity theory, that space travelers moving with a
velocity close to the velocity of light age slower than their
FEarthbound twins is no more than an attractive hypothesis having
no adequate scientific foundation.” Actually, as far as space travel
is concerned, it is very likely that interstellar magnetic fields and
other external factors will have a much stronger effect on the rate
of the clocks and on the condition of space travelers than any
kinematic relativistic effects.

But what about experiments’ that are interpreted as proofs of
the reality of time dilation? The only thing that these experiments
really prove is that the rate of certain physical phenomena is
slower in systems moving at very high speeds, which, as we have
just seen, need not be regarded as a relativistic effect. Therefore
it is more prudent to interpret these experiments as indicating the
existence of certain velocity-dependent interactions in the systems
under consideration similar to the electromagnetic interactions that
made the clocks discussed in this chapter run slower when in
motion. More experiments and greater accuracy are definitely
needed in order to elucidate the nature of these interactions and
the numerical factor (or factors) by which time-dependent
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phenomena in moving systems differ from the same phenomena
in stationary systems.

Finally, it is important to note that we have developed in this
book all the essential elements of the theory of relativity as a
direct mathematical and logical extension of classical
electromagnetic theory without ever using the concepts of clock
synchronization,”” Lorentz contraction, and time dilation.
Therefore, although clock synchronization, Lorentz contraction,
and time dilation are indispensable elements in Einstein’s approach
to the development of the theory of relativity,?? they cannot be
considered to constitute elements of the theory itself.?
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GRAVITATION AND
COVARIANCE

Recent advances in the theory of time-dependent
Newtonian gravitational fields provide the foundation for a new
approach to the study of gravitation and to the investigation of the
connection between gravitation and other physical phenomena and
effects. The basic equations representing time-dependent
gravitational fields and interactions are very similar to the basic
equations representing time-dependent electromagnetic fields and
interactions, and most electromagnetic equations, including
Maxwell’s equations and retarded field equations, have their
gravitational counterparts. In this chapter we shall explore the
analogy between electromagnetism and gravitation and, on the
basis of this analogy, shall develop a relativistic theory of
gravitation analogous to relativistic electrodynamics and
incorporating relativistic mechanics. Then we shall briefly discuss
the so-called "covariant formulation" of electromagnetic and
gravitational equations.

11-1. Analogy of Electromagnetism with Gravitation
According to the theory of time-dependent gravitational

fields,! gravitational forces are associated with two fields: the
ordinary Newtonian gravitational field g and the cogravitational

267
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field K (also known as the gravimagnetic field or Heaviside’s
field®). Just like the electric field, the gravitational field g acts on
stationary as well as on moving bodies, whereas the
cogravitational field acts only on moving bodies. The two fields
are assumed to propagate with a finite velocity ¢. The value of
this velocity is as yet unknown. However, it is generally assumed
that it is the same as that of the velocity of light. A summary of
the basic gravitational equations for time-dependent gravitational
and cogravitational fields is presented below.’> The equations
included in this summary are separated in three categories:

(1) Basic definition equations for gravitational fields

Gravitational field g

g = Fim, (11-1.1)
Cogravitational field K
F = m(uxK), (11-1.2)
Mass density p
p = dml/dV, (11-1.3)

Mass current density J
J = pou. (11-14)

(2) Basic differential equations for gravitational fields

V-g = - 47Gp, (11-1.5)
V:-K =0, (11-1.6)
dK
Vxg = - > 11-1.7
8 ot.
4G 1 og
VxK = - il 11-1.8)
c? T c* ot (
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(3) Basic causal equations for gravitational fields

r
K- - EI[V/ XN av, (11-1.10)
c? r
g = - GHE’J +_1_M}r av' + Ejl[@]dv/ (11-1.11)
rZ rc ot )" ctlrior ’

= -G g1, 1 o) ' (11-1.12
K ?H? _rz_at_}xrudV. ( )

Observe that for time-independent systems Eq. (11-1.11) reduces
to the ordinary Newtonian gravitational field.

Let us now list the basic electromagnetic equations for fields
in a vacuum. Arranging them in categories similar to those used
for gravitational equations, we have:

(1) Basic definitions

Electric field E

E = Fl/q, (11-1.13)
Magnetic flux density field B
F = g(uxB), (11-1.14)

Electric charge density p
p = dql/dV, (11-1.15)
Electric convection current J

J = pu. (11-1.16)
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(2) Maxwell’s equations for electromagnetic fields in a vacuum

V-E = pl,, (11-1.17)
VB =0, (11-1.18)
VXE = - 9B (11-1.19)
at
1 0E
VXB = . (11-1.20
’“"0 + C2 at )

(3) Basic causal electromagnetic equations

g-. 1 J[V’p +(1/c?)(03/01)] av’. (11-1.21)
47e, r
and
/
g=to J V! X3 gy (11-1.22)
ar r

If we compare the gravitational equations listed above with the
electromagnetic equations, we find that to each gravitational
equation there corresponds an electromagnetic equation. The
corresponding equations are identical except for the symbols and
constants occurring in them. The relations between the
corresponding symbols and constants are shown in Table 11-1.

It is clear that most equations derivable from the basic
electromagnetic equations listed above have their gravitational
counterparts, and that various gravitational equations can be
obtained from the corresponding electromagnetic equations by
simply replacing the electromagnetic symbols and constants by the
corresponding gravitational symbols and constants in accordance
with Table 11-1 (note, however, that mass has only one "polarity").
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Table 11-1

Corresponding Electromagnetic and Gravitational
Symbols and Constants

Electric Gravitational
q (charge) m (mass)
p (volume charge density) o (volume mass density)
o (surface charge density) o (surface mass density)
N (line charge density) A (line mass density)
J (convection current density) J (mass current density)
E (electric field) g (gravitational field)
B (magnetic field) K (cogravitational field)
¢ (scalar potential) ¢ (scalar potential)
A (vector potential) A (vector potential)
&, (permittivity of space) —-1/47G
o (permeability of space) -4 G/
—1/4mey or —pcH4T G (gravitational constant)
¢ (velocity of light) ¢ (velocity of gravitation)

It is important to keep in mind, however, that only
electromagnetic equations for fields in a vacuum have their
gravitational counterparts, and only the electromagnetic symbols
listed in Table 11-1 can be directly replaced by the corresponding
gravitational symbols. In all other cases the following conversion
procedure should be used:

(1) If an electromagnetic equation is for fields in the presence
of material media, reduce the equation to fields in a vacuum.

(2) If the equations contain field vectors D or H, replace them
by E or B, using the relations D = ¢E and B = pyH.

(3) Use Table 11-1 to replace electromagnetic symbols by the
corresponding gravitational symbols.*
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v

Example 11-1.1 Using the analogy between electromagnetic and
gravitational equations, convert Egs. (3-2.6), (3-2.13), (4-1.13), 4-
2.2), (4-4.34), (4-5.10), (4-6.5), (4-6.6), and (5-1.11).

Replacing in Eq. (3-2.6) E by g and B by K, we obtain for the
cogravitational field associated with the gravitational field of a mass
distribution moving with velocity v

K = (v X g)/c?. (11-1.23)

Replacing in Eq. (3-2.13) E by g and B by K, we obtain for
the cogravitational field associated with the gravitational field of a
point mass in arbitrary motion

K=-I%8g (11-1.24)
Ccr

Replacing in Eq. (4-1.13) Eby g, ¢, by —1/47G, and q by m,
we obtain for the gravitational field of a uniformly moving point
mass in terms of the present position of the mass® ¢

m-vie?) (11-1.25)

g=-G-
r5[1 = (v?/c?) sin?0]**?

Replacing in Eq. (4-2.2) H by B/p,, B by K, p, by —47G/c?,
and g by m, we obtain for the cogravitational field of a uniformly
moving point mass in terms of the present position of the mass

— 2,2
K=-G6_"0VIC) [yxr). (11-1.26)
c?ry{1 - (v*c? sin®0}*"

Replacing in Eq. (4-4.34) E by g, ¢, by —1/47G, and q by m,
we obtain for the gravitational field of a point mass moving with
acceleration (in terms of the retarded position of the mass)

g= _Gr3_(1——T”fv_/r_E)—3{(r - gX1 —Z_z)+rx[(r - g)x %1},(1 1-1.27)
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Replacing in Eq. (4-5.10) H by B/y,, B by K, p, by —4wG/c?,
and g by m, we obtain for the cogravitational field of a point mass
moving with acceleration (in terms of the retarded position of the
mass)

K=-G m 1-v2/c2+r-\‘r/c2(vxr)+v><r
c2r¥(1-r-virc)*l r(1-r-vlrc) c I
(11-1.28)

Replacing in Eq. (4-6.5) ¢, by —1/47G and q by m, we obtain
for the gravitational scalar potential of a uniformly moving point
mass (in terms of the present position of the mass)

¢=-G m _ (11-1.29)
r[1 = (v*/c?sin*6]'”
Replacing in Eq. (4-6.6) p, by —47wG/c* and g by m, we obtain
for the cogravitational vector potential of a uniformly moving point
mass (in terms of the present position of the mass)

A=-G mv . (11-1.30)
cry[1-(v¥c?)sin?0]"?

Replacing in Eq. (5-1.11) E by g and ¢, by —1/47G, we obtain
for the gravitational field of a mass distribution of density o moving
with constant speed (in terms of the present position of the mass)

g - GJ V'p —i(v*/c?)(@p)/0X") i (11-1.31)
{xO/2+(y/2+z/2)/,YZ}1/2

Example 11-1.2 Consider a planet moving in a circular orbit about
a central body. Using the electric field obtained in Example 4-4.1,
discuss the consequences of retardation on the motion of the central
body and on the planets whose orbits are interior relative to the
orbit of the planet under consideration.’

Replacing in Eq. (4-4.39) E by g, &, by —1/47G, and q by m,
we obtain for the gravitational field produced by the planet at the
center of the orbit
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m v? 2rv?
g - —G_{<1—_2?)r0— a4 v (113

According to Eq. (11-1.32), the gravitational field produced by
the planet is quite different from Newton’s gravitational field. In
particular, because of the presence of the component in the
direction of the instantaneous velocity vector, the field is not even
radial. In our solar system, this new component of the gravitational
field may have important consequences both on the motion of the
Sun and on the motion of planets. Although the field given by Eq.
(11-1.32) is for the center of the orbit, this field should be
approximately correct within a certain region of space around the
center of the orbit. As far as the Sun is concerned, the new
component of the gravitational field exerts then a torque on the Sun
and causes it to rotate in the direction of the orbital velocity of the
planet.

Because of the new component of the gravitational field, outer
planets should produce a similar effect on the motion of the inner
planets, causing an acceleration (and deceleration) of their orbital
velocities and, what is most important, causing a secular motion of
the large axes of the orbits of the inner planets in the direction of
the orbital velocity of the outer planets.

In the middle of the last century, Urbain Le Verrier found that
Newton’s gravitational law was incapable of explaining certain
discrepancies between the observed and calculated parameters of
planetary motions. In particular, he computed the secular
perturbations of the motion of Mercury under the action of the other
planets and found that there was an inexplicable "residual"
precession of Mercury’s perihelion. According to the presently
accepted data, the precession of Mercury’s perihelion is
approximately 575 seconds of arc per century, of which 532
seconds can be attributed to Newtonian attraction between Mercury
and other planets, while about 43 seconds cannot be explained on
the basis of Newton’s gravitational law. It was the greatest triumph
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of Einstein’s general relativity theory when, on the basis of this
theory, Einstein explained the residual 43 seconds in the precession
of Mercury’s perihelion. In fact, to this day most of the credibility
ol the general relativity theory is directly attributable to the amazing
uccuracy of this explanation and therefore indirectly attributable to
the accuracy of celestial mechanics based on Newton’s gravitational
law.

But according to Eq. (11-1.32), the precession of Mercury’s
perihelion caused by other planets may be different from the
presently accepted 532 seconds. Furthermore, the gravitational field
experienced by a planet in the reference frame of the planet is not
i Newtonian field, but the field given by Eq. (11-1.25) or, more
uccurately, by Eq. (11-1.27). And there is also a cogravitational
ficld created by the Sun. Therefore the true "residual” precession
(if it exists at all) may be quite different from the presently accepted
43 seconds. Thus the explanation of the residual precession of
Mercury by the general relativity theory can hardly be considered
ns definitive.

A

11-2. Relativistic Transformation Equations for Gravitational
nnd Cogravitational Fields

In Chapters 6 and 7 we derived relativistic transformation
equations for electric and magnetic fields starting from Eq. (5-
1.11) representing the electric field of a uniformly moving charge
distribution and Eq. (3-2.6) expressing the magnetic field of a
uniformly moving charge distribution in terms of its electric field.
As was shown in Example 11-1.1, the gravitational counterparts
of these equations are Eqs. (11-1.31) and (11-1.23), which differ
from the electromagnetic equations only by the field symbols and
by the factor and sign in front of the integral in Eq. (11-1.31) and
in the corresponding time-independent equation. Therefore the
same calculations that led to the relativistic transformation
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equations for electromagnetic fields can be duplicated for deriving
relativistic transformation equations for the gravitational-
cogravitational fields. The only difference between the resulting
equations and the corresponding electromagnetic equations will
then be the appearance of the components of g and K in the
gravitational-cogravitational equations instead of the components
of E and B in the corresponding electromagnetic equations.?

The same holds for the relativistic transformation equations
for potentials (see Section 6-4), except that in the case of
potentials there is no need to change the symbols.

Thus there is actually no need to derive the relativistic
transformation equations for the gravitational-cogravitational fields
and potentials. All we need to do for obtaining these equations is
to replace the components of E and B in Eqs. (7-1.5)-(7-1.10) and
(7-1.23)-(7-1.28) by the corresponding components of g and K
and to copy Egs. (7-1.1)-(7-1.4), (7-1.11)-(7-1.18), (7-1.19)-(7-
1.22) and (7-1.29)-(7-1.36). The resulting relativistic
transformation equations for the quantities measured in X
expressed in terms of the quantities measured in X' are:

(a) For the space and time coordinates (these equations are the
same as those derived in Chapters 6 and 7 by considering electric
and magnetic fields)

x =y +wt’y, (11-2.1)
y =y, (11-2.2)
- (11-2.3)

t =@ +vx'lcy. (11-2.4)

(b) For the gravitational field

g =gl (11-2.5)
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g, = V(g - VK)).

(c) For the cogravitational field
K =K/,

/ /
K, = v(K, - vg, lc?),
K, = yK] + vglc?).

(d) For the mass and mass current densities
p =o' + vIcH],

J, =y + vy,
/
J =,
J, =T

(e) For the gravitational scalar potential and the
cogravitational vector potential

@ = (¢ +VA4)),
A = y[4] + (IcHP'],
/
A =4,

/
L= A

(11-2.6)

(11-2.7)

(11-2.8)
(11-2.9)

(11-2.10)

(11-2.11)
(11-2.12)
(11-2.13)

(11-2.14)

(11-2.15)
(11-2.16)
(11-2.17)

(11-2.18)

Relativistic equations for the quantities measured in X’

expressed in terms of the quantities measured in I are:

(a) For the space and time coordinates (these equations are the
same as those derived in Chapters 6 and 7 by considering electric

and magnetic fields)
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x! = yx-v),

t' =y - wic?.
(b) For the gravitational field

[

8 = &
g =@, - k),
g =1, + VK).
(c) For the cogravitational field
K/ =K,
Ky = y(K, + vg,/c?),
K, = (K, - vg,lc?.
(d) For the mass and mass current densities

' =ylp - WcHI],

Ji =y, - vp),

(e) For the gravitational scalar potential and the
cogravitational vector potential

¢ =v(p - VA),

A; = +l4, - (VcdHql,

(11-2.19)
(11-2.20)
(11-2.21)
(11-2.22)

(11-2.23)
(11-2.24)

(11-2.25)

(11-2.26)
(11-2.27)

(11-2.28)

(11-2.29)
(11-2.30)
(11-2.31)

(11-2.32)

(11-2.33)

(11-2.34)
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A = (11-2.35)
Al =4, (11-2.36)

Quite clearly, transformation equations obtained in Chapter 7
for quantities not containing electric and magnetic fields or their
components (such as velocity, acceleration, gradient, etc.) remain
valid for gravitational-cogravitational fields as well.

\4

Example 11-2.1 The Newtonian equation for the gravitational field
of a stationary point mass is
g=-G2r. (11-2.37)
r
Starting with this equation and using relativistic transformation
obtain the equation for the gravitational field of a point mass
moving with uniform velocity v parallel to the x axis.

For simplicity, let us assume that the gravitational field is in the
xy plane. In this case r in Eq. (11-2.37) is r = (x* + y* ).

To obtain the gravitational field of the mass when the mass
moves with constant speed parallel to the x axis, we shall assume
that the mass is located in a reference frame X’ which moves with
velocity v = vi relative to the laboratory (reference frame ). By
Eq. (11-2.37), in the reference frame X’ the x component of the
field is given by

/ m /

g = - Gmx , (11-2.38)
and the y component is given by
/ m
=-G——___y'. 11-2.39
8y (xl2 +y/2)3/2y ( )

Since the mass is stationary in ', we are free to choose the time of
observation in X. We choose ¢ = 0. Equation (11-2.5) tells us that
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to find g, of the moving mass, we must replace g,’ on the left of
Eq. (11-2.38) by g,, while Eq. (11-2.19) tells us that, since ¢ = 0,
we must replace x' in Eq. (11-2.38) by yx [observe that in Eq. (11-
2.38) x appears in the numerator and in the denominator]. Finally,
Eq. (11-2.20) tells us that y’ in the denominator of Eq. (11-2.38)
must be replaced by y. Making the substitutions, we obtain for g,
of the moving point mass

g =-G— " _yx=-G__" ___x (11-2.40
x [(v0)? +y2 2 PxZ+y2y?)"

To obtain the y component of the field of the moving mass, we
shall use Egs. (11-2.6), (11-2.19), and again Eq. (11-2.20). Since
K = 0 for the stationary mass, Eq. (11-2.6) tells us that, to find g,
of the moving mass, we must replace g, on the left of Eq. (11-
2.39) by g,/v, while Egs. (11-2.19) and (11-2.20) tell us that we
must replace x’ in Eq. (11-2.39) by yx and y’ by y. Making the
substitutions, we then obtain for g, of the moving point mass

= — m -
g, = GW)J, (11-2.41)
or
= - m -
& = G,Yz(xz,,_yz/,yz)a/zy' (11-2.42)

Replacing now 7 in Egs. (11-2.40) and (11-2.42) by 1/(1 —
v2/c?)'2, factoring out x* + y* from the denominator, taking into
account that r = xi + yj, where i and j are unit vectors in the
direction of the x and y axes, and noting that y*/(x*> + y*) = sin’f,
where 6 is the angle between v and r, we finally obtain

- - g md-vie) (11-2.43)
31 -v¥c)sin20P?

which is the same equation (the "Heaviside equation") that we
obtained in Example 11-1.1 [Eq. (11-1.25)] by transforming
electromagnetic equations into gravitational equations [r and r in
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Eq. (11-2.43) represent the present position of the mass and are
therefore the same as 7, and r, in Eq. (11-1.25)].

Note that in applying relativistic transformations we did not
transform the mass m. Just like the electric charge ¢, the
gravitational mass of a body is invariant under relativistic
transformations. In fact, the inertial mass is also invariant, as was
¢xplained in Section 8-4.

A

11-3. Relativistic Gravitation and Relativistic Mechanics

In Chapter 8 we developed relativistic mechanics on the basis
of the force, momentum, and energy relations pertaining to
clectromagnetic fields. Now we need to determine whether the
same relativistic mechanics applies to gravitational interaction.

First we note that the gravitational counterpart of the Lorentz

force law is®
F = m(g +uxK), (11-3.1)

where F is the force acting on a point mass m moving with
velocity u in the presence of a gravitational field g and a
cogravitational field K. This law does not depend on the inertial
reference frame in which m, u, g, and K are measured.
lixamining the calculations used in Section 8-1 for obtaining force
transformation equations on the basis of Lorentz force law, we
recognize that the same calculations can be used for obtaining the
same force transformation equations on the basis of Eq. (11-3.1).
Therefore the relativistic force transformation equations obtained
in Section 8-5 are valid for both electromagnetic interactions and
gravitational interactions.

Of course, the analogy between electromagnetic and
gravitational fields and forces is not perfect. In particular, since
there are no repulsive gravitational forces, there is no gravitational
counterpart of the parallel-plate capacitor, which we used in
Sections 8-2 and 8-5 for obtaining transformation equations for
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mechanical energy and momentum. However, as is shown in
Appendix 2, the same transformation equations can be rigorously
derived from force transformation equations obtained in Section
8-5. And since these transformation equations are valid for
gravitational interactions, the transformation equations for energy
and momentum obtained in Section 8-5 are also valid for
gravitational interactions.

It must be noted that the constant ¢ appearing in the various
equations derived and used in Chapters 6-10, represents the
velocity of propagation of electromagnetic fields in vacuum,
which is the same as the velocity of light. The velocity of
propagation of gravitational fields is not known, “although it is
generally believed to be equal to the velocity of light.' If the
velocity of propagation of gravitational fields is not the same as
the velocity of light, our relativistic transformation equations for
gravitation would still remain correct, but the gravitational force
and momentum equations would then contain ¢ different from ¢
appearing in the corresponding electromagnetic equations.
Therefore the mechanical behavior of rapidly moving bodies
involved in gravitational interactions would be different from the
behavior of rapidly moving bodies involved in electromagnetic
interactions. In effect, there would be two different mechanics -
the "gravitational-cogravitational mechanics," and the "electro-
magnetic mechanics" - involving different effective masses,
different effective momenta, and different rest energies.

A possibility exists that our gravitational relativistic
transformation equations are not entirely correct. According to
Einstein’s mass-energy equation, any energy has a certain mass.
But any mass is a source of gravitation. Therefore the
gravitational field of a mass distribution may be caused not only
by the mass of the distribution as such, but also by the
gravitational energy of this distribution.'’ If this effect is taken
into account, the equation for the divergence of the gravitational
field, Eq. (11-1.5), becomes only approximately correct, and all
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equations derived with the help of Eq. (11-1.5) become also only
approximately correct. It is important to note, however, that this
effect, if it exists, is extremely small.™

v

Example 11-3.1 A reference frame L’ is fixed on a spherical
planet. The planet moves with velocity v = vi relative to the
laboratory reference frame X along their common x and x' axes.
The center of the planet is on the x' axis. A pendulum of length /'
is located on the planet on the x’ axis. The pendulum bob, when at
rest, is on the x' axis, the mass of the bob is m, the acceleration of
gravity on the planet is g’. The period of pendulum’s oscillations is
12
Pl
8

(a) Show that this formula is invariant under relativistic
transformations. (b) Assuming that the entire mass of the planet is
concentrated at its center, find how the motion of the planet affects
the period of the pendulum observed from X.

(a) Let the time of observation in £ be ¢ = 0. Transforming /'
by means of Eq. (11-2.19) and transforming g' by means of Eq. (7-
2.14), we obtain ” i

T = 2«(.‘%’_) = lzr(i) (11-3.3)
Y8 YO8

Now, T" is a time increment measured at a fixed location in X'. By
Eq. (11-2.4), we then have T' = T/y and therefore

T = 27r(i)m, (11-3.4)

g
where all the quantities are as observed in .
(b) If the entire mass of the moving planet is concentrated at its
center, the force F acting on the pendulum bob as observed from
L is, by Egs. (11-2.37) and (11-2.43), F = y~°F,,,,, where F,,,

is the force acting on the bob as observed in X’. Using the

(11-3.2)
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longitudinal mass [see Eq. (8-4.9)] of the pendulum bob, we obtain
for g on the moving planet as observed from X, ¢ = Fim,, =
Y FpaneY /m = y7°g’. Substituting g into Eq. (11-3.4), we find
that the period of the pendulum located on the moving planet but
observed from X is

;o ;e
T=27r( ) =27r( ) _ el (11-3.5)

(Compare this result with that for Clock #12 in Chapter 10.)

11-4. Covariant Formulation of the Electromagnetic and of the
Gravitational-Cogravitational Theories"

In 1906, H. Poincaré discovered that Lorentz transformations
of coordinates and time could be associated with an imaginary
four-dimensional "space" represented by four "orthogonal" axes,
three of which were the ordinary space axes while the fourth was
the time axis calibrated in units of iz, where i = V/-1.% The effect
of the Lorentz transformations applied to a position vector in this
four-dimensional space could be interpreted as a change of the
components of this vector caused by a rotation of the axes around
the origin. The idea of associating relativistic transformations with
geometrical relations in four-dimensional space was later
developed by Hermann Minkowski,” who laid the foundation of
what is known as the covariant formulation of electrodynamics.

Whereas in the standard formulation of electrodynamics the
basic mathematical elements are scalars and vectors in ordinary
three-dimensional space, in the covariant formulation the basic
mathematical elements are scalars ("Lorentzian scalars"), 4-
vectors, and 4-tensors in the four-dimensional space ("Minkowski
space").

There are two commonly used notations for 4-vectors. In the
so-called "covariant" notation a 4-vector A is identified by its four
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components written as A;, 4,, 4;, A4, or, for brevity, as 4, with
p accepting the values of 1, 2, 3, and 4. In the so-called
"contravariant” notation a 4-vector A is identified by its four
components written as 4°, A', A%, A%, or, for brevity, as A* with
u accepting the values of 0, 1, 2, and 3.'® We shall only use the
covariant notation and shall designate 4-vectors by bold italic
letters. In the covariant notation the first three components of a 4-
vector are the components along the ordinary space axes while the
fourth component is along the time axis.

The exact definition of what particular entity constitutes a 4-
vector starts with the definition of the "position 4-vector" r in the
laboratory reference frame ¥ as

r=(x,x,X%,x) = (x,y,z,ict) = (r,icty, (11-4.1)

where r inside the last parentheses is used as an abbreviation for
the three components of r along the actual space axes.'” In the
moving reference frame X' the position vector is then

Fo= ol xly = (ly! 2 iet!y = (¢ ict’). (11-4.2)

If one applies Lorentz transformations of coordinates and time to
Eq. (11-4.2), one obtains (see Example 11-4.1)

ro= [y, +iBx,), X, X, v, — iBx)], (11-4.3)

where 8 = v/c. But since the effect of Lorentz transformations on
the components of r is the same as a rotation of the axes in the
four-dimensional space, and since the rotation of the axes should
affect the components of all 4-vectors in a similar way, one
defines any 4-vector

A = (A,4,,4,,4) = (A,ica) (11-4.4)

as an entity that transforms under a relativistic transformation
("Lorentz transformation"), just like r does, into

A" = [YA, +iBA), A, A, ¥(A4, - iBA)].  (11-4.5)



286 CHAPTER 11 GRAVITATION AND COVARIANCE

Now, Eq. (11-4.5) can be written as
Al = ],4),4],4)) = (A, ica'). (11-4.6)

Thus a 4-vector, by its very definition, retains its form under the
Lorentz transformation, or, as one says, is "Lorentz covariant,"
or "space-time covariant," or simply "covariant." Therefore any
physical law expressed as a relation between 4-vectors remains the
same in all uniformly moving reference frames and thus
automatically satisfies the principle of relativity.

An example of an electromagnetic 4-vector is the
electromagnetic "current density" 4-vector

J = (11’125-]3;‘]4) = Jx,Jy,JZ,iCp). (11‘4.7)

Observe that J incorporates the components of the ordinary
current density J and the charge density p into a single entity.

Not all frame-independent physical quantities can be
incorporated into 4-vectors. In particular, it is impossible to
express the electric and magnetic field vectors in the form of 4-
vectors. However, electric and magnetic fields can be
incorporated into the covariant "electromagnetic 4-tensor"
compatible with the 4-vector formulation of the current density
and of other electromagnetic quantities. This electromagnetic 4-
tensor is designated as F,, and is defined as

[0 B, -B, -iEIc]

z y
-B 0 B -iElc
F = ¢ * Y, (11-4.8)
my B, -B, 0 -iElc

LiEx/c iE/c iE/c 0 |
where the subscript u indicates the row (1, 2, 3, 4 top to bottom)
and the subscript v indicates the column (1, 2, 3, 4 left to right).
As an example of the use and applications of the covariant
formulation of electromagnetism, consider the equation
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oF
2 o= . 11-4.9
3 pol, ( )

4
v=1

With p = 4 (see Example 11-4.2) this equation represents
Maxwell’s equation (in terms of its Cartesian components)

V-E=2°. (11-4.10)
80
With p = 1, 2, 3 (see Example 11-4.2) the same equation
represents Maxwell’s equation (in terms of its Cartesian
components)

1 0E
VXB-___ = . 11-4.11
o201 P'OJ ( )

Likewise, the equation (see Example 11-4.3)

OF, , 9F, M o=0 11-4.12)
+ =
ox, O0x  0x, ’ (1.

w

where p # v # N = 1, 2, 3, 4 represents the remaining two
Maxwell’s equations

V-B=0 (11-4.13)
and
VXE = - % (11-4.14)

Covariant formulation is considered by some authors to be the
most appropriate formulation for expressing the laws of physics
in a frame-independent form. It is also believed to be by some
authors more concise and occasionally more informative than the
conventional formulation. Since any equation invariant under
relativistic transformations should be expressible in a covariant
form, and since the principle of relativity is considered to be a
fundamental law of nature, the laws of physics that cannot be



288 CHAPTER 11 GRAVITATION AND COVARIANCE

expressed in a covariant form are considered by some authors to
be incomplete or incorrect.'®

Newton’s gravitational law is an example of a physical law
that cannot be expressed in a covariant form. The problem of
finding an invariant form of the law of gravitation was first
considered by Poincaré, but without success.!® It is interesting to
note that Poincaré attempted to solve the problem on the basis of
just one gravitational field (the gravitational analog of the
electrostatic field). But even if the theory of gravitation is built
upon two fields, as we have done in this chapter, a covariant
theory of gravitation is not possible unless the gravitational mass,
just like the electric charge, does not depend on the ‘velocity with
which the mass moves.

Until recently it was generally believed that the mass of a
moving body was a function of the velocity of the body (see
Section 8-4) and thus was not invariant under relativistic
transformations. The alleged noninvariance of mass under
relativistic transformations was the most important reason for
questioning the possibility of a theory of gravitation analogous to
the theory of electromagnetism. If mass, unlike the electric
charge, is not invariant, then the analogy between
electromagnetism and gravitation is not sufficiently complete to
allow a construction of a relativistic gravitational theory similar to
relativistic electrodynamics based on the gravitational field vector,
with or without the addition of a second (the cogravitational) field
vector. A theory of gravitation was therefore created by Einstein
based not on the concept of the gravitational force field, but on
the concept of the "curvature of space."?

However, as we now know, neither the gravitational nor the
inertial mass depends on the velocity with which a body moves.
In fact, as far as the principle of relativity, relativistic transforma-
tions of all pertinent quantities, and relativistic mechanics are
concerned, the analogy between electromagnetism and gravitation-
cogravitation is complete. Therefore a covariant formulation of the
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theory of gravitation based on gravitational-cogravitational fields
is not only possible but can be constructed straightaway from the
covariant theory of electromagnetism by a mere substitution of
symbols and constants in accordance with Table 11-1.

Thus, for example, the 4-vector mass current can be obtained
from Eq. (11-4.7) [according to Table 11-1, none of the symbols
or constants in Eq. (11-4.7) need to be replaced]; the result is

J = U Ipdyd) = U Jicp).  (11-4.15)

Likewise, the gravitational-cogravitational field tensor can be
obtained from Eq. (11-4.8), this time by replacing, with the help
of Table 11-1, the components of E by the corresponding
components of g and the components of B by the corresponding
components of K; the result is

[0 K, -K, -iglc]

4
-K, 0 K -igl
F,6 = ) . (11-4.16)
# K -K 0 -iglc

y

ig./c igy/c ig,Je 0

Finally, from Eqs. (11-4.9), (11-4.12) and Table 11-1 we
obtain for the basic laws of gravitational-cogravitational fields

i aF‘uV 47|'G

= - J 11-4.17
v=1 axv c2 # ( )
and
oF , OF, OF
LR . N B (11-4.18)
ox, 6xu Ox,

It should be kept in mind, however, that ¢ in the gravitational
equations stands for the speed of propagation of gravitational-
cogravitational fields, which is generally assumed to be the same
as the speed of light, but has never been actually measured.
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v

Example 11-4.1 Starting with Eq. (11-4.2) derive Eq. (11-4.3).
Applying Egs. (7-1.19)-(7-1.22) to the x’, y', z’, and ict'

components of r’ in Eq. (11-4.2), we obtain

r = [y(x - vt),y,z,icy(t - vx/c?)]
= [y(x - victlic),y,z,y(ict - icvx/c?)]
= {vy[x +i(v/c)ict],y, z, ylict - i(v/c)x]}.

(11-4.19)

Replacing in Eq. (11-4.19) x, y, z, and ict by x,, x,, x5, x,, and
replacing v/c by B, we obtain Eq. (11-4.3).

Example 11-4.2 Show that Eq. (11-4.9) is equivalent to Eqgs. (11-
4.10) and (11-4.11).

Replacing in Eq. (11-4.9) F, by F,,, substituting x, y, z, and ict
for x,, x,, x;, and x,, respectively, using, according to Eq. (11-4.8),
Fy = iE/c, Fyp = iEJc, Fyy = IE/c, and F,, = 0, and using,
according to Eq. (11-4.7), J, = icp, we have

0GEJc) QGE/c) OGEJO) a0

- wicp, (11-4.20)
% 3y az oGy 1o

and since u,¢* = 1/g,, we obtain Eq. (11-4.10) (written in terms of
Cartesian components).
Setting in Eq. (11-4.9) p = 1, we similarly obtain

00 0B, 0B, OWEJO _ ., (1421
ox dy 0z  0(ic) 0"

or
0B, 0B, OE, = u., (11-4.22)
dy 0z ct g

which is the x component of Eq. (11-4.11). Setting p = 2 and then
p = 3, we obtain the y and z components of Eq. (11-4.11).
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Example 11-4.3 Show that Eq. (11-4.12) is equivalent to Egs. (11-
4.13), and (11-4.14).
Setting in Eq. (11-4.12) p = 1, » = 2, A = 3, and using Eq.
(11-4.8), we obtain
0B, . 0B, 0B, 0 (11-4.23)
JR— —_—t 7 = -4,
dz 0dx dy ’
which is the same as Eq. (11-4.13).
Setting in Eq. (11-4.12) p = 2, v = 3, A = 4, and using Egs.
(11-4.8), we obtain
0B 0(-iE, /c) 6(iEy/c)
+ + =

x

0, 11-4.24
d(ict) dy 0z ( )
or
OE, OE, 0B (11425
A -2)

which is the x component of Eq. (11-4.14). The remaining two
components are obtained in the same manner by setting u = 1, v =
IAN=4andpu=1,v =2, A =4,

Example 11-4.4 Show that Eq. (11-4.17) is equivalent to Egs. (11-
1.5), and (11-1.8) and that Eq. (11-4.18) is equivalent to Eqs. (11-
1.6), and (11-1.7).

Replacing in Eq. (11-4.17) F,, by F,,, substituting x, y, z, and
ict for x,, x,, x;, and x,, respectively, using, according to Eq. (11-
4.16), F,, = ig,/c, Fy, = ig)/c, Fy3 = ig,/c, and F,, = 0, and using,
according to Eq. (11-4.15), J, = icp, we have

a(ig./c) . 6(igy/c) . a(ig,/c) . 30 471G

=-471G, (11-4.26
o 3y i T S e )

which, after cancelling i and c, becomes the same as Eq. (11-1.5).

Setting in Eq. (11-4.17) p = 1, and using, according to Eq. 11-
4.16), F;; = 0, F, = K, Fi; = — K, Fy, = — ig,/c, we similarly
obtain
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00 0K, 0K, 0Ugld) _ 4rG,  (11.4.27)
ox 0dy 0z a(ict) ct

or
0K, 0K _ 416, L% (1409
dy 0z ¢t %t
which is the x component of Eq. (11-1.8). Likewise, setting u = 2
and then p = 3 in Eq. (11-4.17) and using Eq. (11-4.16), we obtain
the y and z components of Eq. (11-1.8).
Setting in Eq. (11-4.18) p = 1, » = 2, N = 3, and using Eq.
(11-4.16), we obtain
oK, 0K 9Ky, (11-4.29)
0z O0x Oy
which is the same as Eq. (11-1.6).
Setting in Eq. (11-4.18) p = 2, v = 3, N = 4, and using Eq.
(11-4.16), we similarly obtain
dg, dg, 0K

98 %% T (11-4.30)
ay 0z ot

which is the x component of Eq. (11-1.7). The remaining two
components are obtained in the same manner by setting u = 1, » =

B,AN=4andp=1,v =2, N=4
A

References and Remarks for Chapter 11

1. See Oleg D. Jefimenko, Causality, Electromagnetic Induction,
and Gravitation, 2nd ed., (Electret Scientific, Star City, 2000),
Chapters 4-8.

2. The existence of a second gravitational field, similar to the
magnetic field, was first suggested by Oliver Heaviside in his two-
part article "A Gravitational and Electromagnetic Analogy,” The
Electrician 31, 281-282 and 359 (1893).



REFERENCES AND REMARKS FOR CHAPTER 11 293

3. Although most of these equations are new, the idea of
developing Newton’s gravitational theory in a manner analogous to
the electromagnetic theory is not new (see Ref. 2). Unfortunately,
it was abandoned at its very genesis because of the rapid and
forceful development of Einstein’s relativity theories, which have
imposed severe restrictions on what is considered by many to
constitute "competent” scientific work. In fact, Einstein’s general
relativity theory is considered by some scientists to be the definitive
theory of gravitation, making all alternative gravitational theories
cither superfluous or "unscientific." However, the recently
discovered retarded equations for gravitational and cogravitational
fields [see Ref. 1 and Eqgs. (11-1.11) and (11-1.12) (causal gravita-
tional equations); see also Example 11-1.2] point out a path for an
unquestionably legitimate new inquiry into the nature and properties
of gravitational fields and interactions. Until this path is fully
¢xplored, one cannot accept any gravitational theory as "definitive. "
4. Many gravitational equations obtained by transforming the
corresponding electromagnetic equations are given in Ref. 1, pp.
106-111.

5. This equation was first derived by Heaviside in 1893. See
Ref.2.

6. For a direct derivation of this equation see Oleg D. Jefimenko,
"Gravitational Field of a Point Mass Moving with Uniform Linear
or Circular Velocity," Galilean Electrodynamics 5, 25-33 (1994).
7. This problem is discussed in detail in Ref. 6.

8. See also Oleg D. Jefimenko, "Derivation of Relativistic
Transformations for Gravitational Fields from Retarded Field
Integrals,” Galilean Electrodynamics 6, 23-30 (1995).

9. See Ref. 1, pp. 80-84 and 128-129.

10. See also Ref. 1, pp. 136-137.

11. For a detailed discussion of this effect, including the possibility
of antigravitational mass distributions arising from it, see Ref. 1 pp,
140-158.

12. It is possible that relativistic electrodynamics is also only
approximately correct, since it is valid only for electromagnetic
fields in a perfect vacuum. However, there is some evidence that a
perfect vacuum does not exist, and that electromagnetic fields in



294 CHAPTER 11 GRAVITATION AND COVARIANCE

"empty" space are affected by what is known as "polarization of the
vacuum."

13. The purpose of this section is merely to make clear that the
relativistic theory of gravitation outlined in the preceding sections
of this chapter can be expressed in a covariant form without any
modifications or additions. Only the most basic information on the
covariant formulation is presented in this section. For detailed
expositions of covariant electrodynamics the reader is referred to
such books as E. J. Konopinski, Electromagnetic Fields and
Relativistic Particles, (McGraw-Hill, New York, 1981); J. D.
Jackson, Classical Electrodynamics, 3rd. ed., (Wiley, New York,
1999); F. Sauter and R. Becker, Electromagnetic Fields and
Interactions, (Blaisdell, New York, 1964); W. K. H. Panofsky and
M. Phillips, Classical Electricity and Magnetism, 2nd ed.,
(Addison-Wesley, Reading, Massachusetts, 1962). For an
elementary introduction to 4-vectors see W. G. V. Rosser,
Introductory Relativity, (Plenum, New York, 1967).

14. H. Poincaré, "Sur la Dynamique de L’Electron," Rend. Circ.
mat. Palermo 21, 129-176 (1906).

15. H. Minkowski, "Die Grundlagen fiir die elektromagnetischen
Vorginge in bewegter Korpern," Gottinger Nachr. 53-111 (1908).
16. In the contravariant representation of 4-vectors the time axis is
calibrated in units of 7 rather than in units of iz, the sequence of the
components of the 4-vectors is denoted as 0, 1, 2, and 3, with the
t component being the 0 component.

17. They may or may not be equal to the Cartesian components of
the corresponding vectors in the three-dimensional space.

18. This view is unquestionably wrong, since, according to it, even
Maxwell’s equations in their vector form should be classified as
"incomplete” or "incorrect" (see Section 7.4). Note also that
covariant formulation changes the form of equations but does not
create new physical laws and thus is of a very limited utility.

19. See Ref. 12 and H. Poincaré, "La Dynamique de L’Electron,"
in Revue général des Sciences pures et appliquées 19, 386-402
(1908).

20. A. Einstein, "Grundlage der allgemeinen Relativititstheorie,"
Ann. Pys. 49, 769-822 (1916).
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APPENDIX 1
Vector Identities

In the vector identities listed below ¢ and U are scalar point
functions; A, B, and C are vector point functions; X is a scalar or
vector point function of primed coordinates and incorporates an
appropriate multiplication sign (dot or cross for vectors).

Box product

(V-1) A:(BxC) = B-(CxA) = C-(AxB)
(V-2) A-(BXC) = (AXB):C = - (BXA):C

"BAC CAB" expansion
(V-3) AX(BxC) = BA:C) - C(A-B)

"Do nothing " identity
(V-4) A-V)r=-A-V)r' =A

Identities for the calculation of gradient

(V-5) V(pU) = ¢VU + UVp
(V-6) V(A-B)=(A-V)B+AX(VXB)+(B-V)A+B X (VX A)

n

V-7) Vo, Uy =¥ ¥ vy,
= oU,
Identities for the calculation of divergence

(V-8) V-(pA) = pV-A + A-Vp
(V-9) V- (AXB) =B-VXA - A-VXB

4

(V-10) V-AU, - U) = ¥ VU,-g_g
i=1 i
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Identities for the calculation of curl
(V-11) VX (pA) = opVX A + Vo XA

(V-12) VX (AXB)=(B-V)A+A(V-B)-(A-V)B-B(V-A)

(V-13) VXAU,-U) = Y VUx 2_3
i=1 i

Repeated application of V

(V-14) V-(VXA) =0
(V-15) VXVU =0
(V-16) VX(VXA) = V(V-A) - VA

Identities for the calculation of line and surface integrals
(v-17)  §A-dl = [VxA-dS  (Stokes's theorem)
(V-18) {fUdl - [asxvu

Identities for the calculation of surface and volume integrals

(V-19) #A-dS = IV-AdV (Gauss’s theorem)

(V-20) fuas = [vuav
(V-21) faxas = - [vxaav
(V-22) ‘f<A'B>dS - $B(A-dS) - c}?A(B-ds>

- [[Ax(VxB) +BX(V X A) - A(V-B) - B(V-A)]dV

(V-23) ffA(B-dS) - [[(v ‘B)A + B - V)A]dV
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Helmholtz’s (Poisson’s) theorem

vag v=--f TOW-TXTXNgy
47 J an space r

Operations with V in Helmholtz’s (Poisson’s) integrals

(V-25) v VX, X
r r u r2

X) _ X)

(V-26) v® -
(V-27) V) Ly X L g ®
r r r

Retarded (causal) integrals

2
[V’(V’-V) VXV xV)y- LIV
(v28) v=-_l ¢* 0]
4_71' All space r
[VIZV _ 1 aZV]
1 c? o2
- V=-__ av’'
(V 29) 47} au space r

Operations with V in retarded (causal) integrals

et = oy Fu X
(V-30) vIX] = v - e 8
- _ LalX]
(V-31) vy = - 29
(V-32) [V'X] = V[X] + V'[X]
(V-33) VXl .y Xl g [X]
r r r
X] _ _ nIXl _rfex
(V=39 v -
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APPENDIX 2
Transformation Equations for Momentum and Energy

When a force F acts on a particle during some time interval ¢,
‘he momentum p of the particle changes according to the formula

Ap = Jth (A-2.1)
or, in terms of components,

Ap, = J Fdt, (A-2.2)

Ap, = J F,dt, (A-2.3)

Ap, = J Ft. (A-2.4)

Likewise, when a force acts on a particle over some straight

distance s, the energy W of the particle changes according to the
formula
AW = J F-ds (A-2.5)

or, in terms of components,

AW = | (F.dx+F,dy +F,dz). (A-2.6)

Let us now apply Egs. (A-2.2)-(A-2.4) to a particle in the
reference frame X’ which is moving with uniform velocity v = vi
relative to the laboratory reference frame L. We have

Ap) = J Flar', (A-2.7)
Ap, = I Fyat’, (A-2.8)
Ap! = J Fldt' . (A-2.9)

Substituting Eq. (8-5.4) into Eq. (A-2.7), we obtain
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, Vi Vi
;= [IF. - Y __F - :___Fldt’ (A-2.10)
ap ” c(1-vu/ch ’  cH1-vu lc?) Z]

Transposing the primes and changing the sign in front of v in
Eq. (7-2.4), we have

dt’ =vy(1 - vu_IcHdt. (A-2.11)

Substituting Eq. (A-2.11) into Eq. (A-2.10) and simplifying, we
obtain

ap! = v[IF, - VICOWFE, +uF, +uF)ldr . (A-2.12)

However, udt = dx, udt = dy and udt = dz. Therefore, by Eqs.
(A-2.2) and (A-2.6), Eq. (A-2.12) yields

Ap, = y[Ap, - (VIcHAW] . (A-2.13)

From Egs. (A-2.8), (8-5.5), (A-2.11), and (A-2.3) we similarly

obtain
/

Ap) = Ap,, (A-2.14)
and from Egs. (A-2.9), (8-5.6), (A-2.11), and (A-2.4) we obtain
Ap! = Ap,. (A-2.15)

If the particle starts from rest in the reference frame X', Eq.
(A-2.13)-(A-2.15) become

pi = vlp, - IcHW, (A-2.16)
P, =p, (A-2.17)
p. =p,. (A-2.18)

Transposing the primes and changing the sign in front of v we obtain
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p, = vlp! +(cHW'], (A-2.19)
p, = py (A-2.20)
p, =P, . (A-2.21)

Equations (A-2.16)-(A-2.21) are the transformation equations
for mechanical momentum that we obtained in Section 8-5 by a
different method.

Solving Egs. (A-2.16) and (A-2.19) for W, we have

W' = y(W-wp) (A-2.22)
and, transposing the prime and changing the sign in front of v,
W = y(W' +vp)), (A-2.23)

which are the transformation equations for mechanical energy that
we obtained in Section 8-5 by a different method.
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APPENDIX 3
The Physical Nature of Electric and Magnetic Forces

I. Introduction

Electric and magnetic forces are fundamental electromagnetic
concepts. Electric and magnetic fields are defined in terms of
electric and magnetic forces. Many relativistic transformations
crucially depend on the properties of these forces. And yet we know
very little about their physical nature. Why do they occur? How
are they created? Where do they originate? How are they
transmitted? How do they act? Where do they act?

To find the answers to some of these questions, three different
properties of electric and magnetic forces are analyzed below: the
mode of force propagation and action, the point (or points) to which
the forces are applied, and the role that these forces play in the
conversion of electromagnetic energy. As a result of this analysis,
a new insight emerges into the physical nature of electric and
magnetic forces, and a new interpretation of the mechanism of
electromagnetic interactions presents itself.

II. Transmission and Action of Electric and Magnetic Forces

The famous electric force law discovered by Coulomb implied
that electric forces originated from charges, were transmitted
through space instantaneously, and acted on distant charges without
any delay. However, the “action-at-a-distance” theory of electric
and magnetic forces based on Coulomb’s law for electric charges
and on a similar law for magnetic poles was not fruitful and helped
little toward a better understanding or utilization of electricity and
magnetism.

Faraday, who founded the concept of electric and magnetic
fields, interpreted electric and magnetic forces as fundamental
properties of these fields. Maxwell transformed Faraday’s
qualitative ideas into a mathematical form and developed the
“near-action” theory of electric and magnetic forces. According to



ELECTRIC AND MAGNETIC FORCES 303

Maxwell, electric and magnetic forces on charges and currents were
due to electric and magnetic fields, as they existed at the location
of the charges and currents experiencing these forces. The
near-action theory of electric and magnetic forces is universally
accepted to the present day.

Force is usually understood as a "push or pull". Faraday
suggested that electric and magnetic fields possessed "physical lines
of force" that created tension along their directions and pressure in
perpendicular directions. However we now know that "lines of
force" (or "field lines") are only a means for pictorial representation
of electric and magnetic fields, but not a true physical entity.

Force can also be understood as a “stress or strain”. Maxwell
regarded electric and magnetic fields as a special state of an elastic
ether occupying all space and proposed new electromagnetic force
equations, “electric and magnetic stress tensors”, based on the
existence of this ether. He believed that electric and magnetic forces
were transmitted from one charged body to another through
adjacent elements of the ether stressed by these bodies. However,
the present-day science denies the existence of an elastic ether.

In fact, among the various known properties of electric and
magnetic fields there is nothing that can be unambiguously
interpreted as a push or pull or as a stress or strain mechanism.
How do then electric and magnetic forces really act? Quite clearly,
if neither Faraday’s lines of force nor Maxwell’s elastic ether exist,
then the true mechanism of electromagnetic interactions is still
unexplained. As we shall see, the calculations presented in the
following three sections provide a very compelling idea of what this
mechanism really is.

III. The points to which electric force is applied in charged
bodies

The fundamental electromagnetic force equation is the Lorentz
force equation
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F = p[(waB)dv, (A3.1)

where F is the force acting on a charge distribution of density p, E
is the electric field at the location of p, v is the velocity of the
charge distribution, and B is the magnetic flux density at the
location of p; the integration is over the volume occupied by the
charge distribution.

The Lorentz force equation is one of the most important and
one of the most frequently used electromagnetic equations. Its
validity is unquestionable. However, it is only one of the several
equivalent force equations. A very interesting and, for.the present
discussion, very significant property of these equations is that they
show that it is impossible to identify unambiguously the points upon
which electric or magnetic forces act in a charged body.

Fig. A3.1. Calculation of electric force
between two uniformly charged dielec-
tric plates. Depending on the method
—— %  of calculation, the force acts on
different points of the right plate or
even on the imaginary plane between

N\,
I* d+| d<<a the plates.

Let us first consider the electric force. Let us calculate by
several different methods the force with which two thin, uniformly
charged dielectric plates of opposite polarity attract each other. We
shall assume that the two plates are circular, each of radius a and
thickness ¢ (Fig. A3.1). The left plate carries a uniformly distributed
positive charge g of density p and is in the yz plane of rectangular
coordinates with its center at the origin. The right plate carries a
uniformly distributed negative charge —gq of density o, = —p; its
left surface is at a small distance x = d from the left plate. We
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shall assume that d < a, in which case the end effects of the
two-plate system can be neglected and the electric field in the space
between the plates can be considered uniform.' (Our two-plate
system is similar to a thin parallel-plate capacitor, but, unlike the
capacitor, has charge distributions of well-defined thickness, which
is important for the calculations that follow.)

(a) Force computed from the Lorentz equation. The electric
field produced by the Ieft plate at the location of the right plate is

E=_9 ;, A3.2
2me a’ (432

where i is a unit vector along the x axis. By Eq. (A3.1), the force
acting on the right plate, taking into account that E is constant and
that § p,,, dV = — g, is then

q2
F = i. (A3.3)
2mea’

Observe that, according to Eq. (A3.1), the force is applied to each
individual charge element pdV within the right plate.

(b) Force computed from electric scalar potential. The electric
force between charged bodies can be computed not only by using
the Lorentz equation, but also by several other, equivalent,
equations. One such equation for the electric force acting on charge
distribution of constant density is >

F-- p<fgodS, (A3.4)

In this equation, ¢ is the electric scalar potential due to the
force-producing charge distribution at the Ilocation of the
force-experiencing charge distribution, the integration is over the
surface of the force-experiencing charge distribution, and dS is a
surface element vector directed from the force-experiencing charge
distribution into the surrounding space.
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The electric scalar potential produced by the left plate at a
distance x from the origin is (as can be verified by evaluating E =
- Vo)

Q= - q X+Py, (A3.5)
2mega’

where ¢, is a reference potential at x = 0. According to Eq.
(A3.5), the potential produced by left plate at the location of the left
surface of the right plate is

2d +Py» (A3.6)
and the potential produced by the left plate at the location of the
right surface of the right plate is

¢, = - —L_(d+)+q,. (A3.7)
21ea’

The surface of integration in Eq. (A3.4) consists of two flat
surfaces and the circular rim of the right plate. By symmetry, the
circular rim makes no contribution to integral in Eq. (A3.4), so that
only the two flat surfaces contribute to the integral. By Eq. (A3.4),
the force on the right plate is therefore

F=-p, (— d+ )(—7ra2i o |-—9 (d+t)+o |ra’
S\ 2mea’ i ) ~Pren 27e,a? )%
cp Ap--_ 9
_p’i n=- 1. A38
1 2¢, 2mea’ (A3.8)

Observe that although the force shown by Eq. (A3.8) is exactly the
same as that computed from the Lorentz equation, it acts, according
to Eq. (A3.4) and to our calculations, not on the charge elements
within the right plate, but on the flat surfaces of the right plate.
(c) Force computed from electric vector potential. An electric
field can be represented not only by its scalar potential, but also by
its vector potential (however, the electric vector potential is defined
only for the region of space external to the charge distribution that
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produces the vector potential).* The force acting on a uniform
charge distribution can be calculated by using the electric vector
potential according to the formula®

F - —p(fods. (A3.9)

In this equation, A is the electric vector potential due to the
force-producing charge distribution at the Iocation of the
force-experiencing charge distribution, the integration is over the
surface of the force-experiencing charge distribution, and dS is a
surface element vector directed from the force-experiencing charge
distribution into the surrounding space.

The electric vector potential produced by the left plate for x >
0 is (as can be verified by evaluating E =V X A)

A=_T 4, (A3.10)
dreqa

where r is a perpendicular distance from the x axis, and 6, is a
right-handed circular unit vector around the x axis. By Eq. (A3.9),
the force on the right plate is then

F=-puf " __g,xds. (A3.11)

The surface of integration in Eq. (A3.11) consists of the two
flat surfaces and the circular rim of the right plate. By symmetry,
the contributions of the two flat surfaces to the integral in Eq.
(A3.11) cancel. The only nonvamishing contribution to the integral
comes from the rim of the plate. Since the thickness of the plate is
t, the surface element vector of the rim is dS = dl ,, where dl ,
is a vector representing a Iength element of the rim and directed
radially outward from the rim. The force on the right plate is
therefore
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= P 4:;1 z02+ Oux oy = = Prigy 41;1; z 2D
o 0 0 (A3.12)
2mea’

Observe that although the force shown by Eq. (A3.12) is
exactly the same as that computed from the Lorentz equation, it
acts, according to Eq. (A3.9) and to our calculations, not on the
charge elements within the right plate, but on the rim of the right
plate.

(d) Force computed from Maxwell stress integral. Finally, let
us compute the force acting on the right plate by using the Maxwell
stress integral’® (Maxwell stress tensor)

F = - %)CszdS s 30+E<E .dS).  (A3.13)

where E is the total electric field at an arbitrary surface
("Maxwellian surface") enclosing the charge distribution under
consideration, and dS is a surface element vector of the surface (dS
is directed outward from the space enclosed).

For the Maxwellian surface let us use an infinitely large
hemispherical surface, whose flat part passes between the two
charged plates. The total electric field (the field produced by the
two plates together) in the space between the plates is

E = nqazi, (A3.14)
0

and is zero at infinity. Therefore the Maxwell stress integral for this
particular Maxwellian surface is

2
F=-f’£[( q )dS+goj 9 i( g i-dS),(A3.15)
2 ) \rea? Tea’ \Tea’

where the integration is only over the flat surface passing between
the plates, and where the surface element vector dS = — dSi. Since
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the edge effects of the plates are neglected, there is no electric field
except directly between the plates. Hence, Eq. (A3.15) reduces to

& 2 2
F:_O( 1 )wazi—ao( 9 )wazi, (A3.16)
2 \mega? TE@a’

or

2
F=--_9 ;. (A3.17)
2me,a’

Once again we have obtained exactly the same force as before
from the Lorentz equation. However, according to Eq. (A.13) and
to our calculations, the force acts not on the charge elements within
the right plate and not even on the plate itself, but on an imaginary
plane passing between the two plates.

IV. The points to which magnetic force is applied in
current-carrying conductors

Let us now consider the magnetic force. Let us calculate by
several different methods the force between a long, straight
current-carrying wire and a segment of a long, straight current-
carrying bar of rectangular cross-section placed parallel to the wire

Fig. A3.2. Calculation of
magnetic force between
current-carrying wire and
bar. Depending on the
method of calculation, the
Jorce acts on different points
of the bar or even on the
imaginary plane between the
wire and the bar.

(Fig. A3.2). The wire is at x = — d/2 in the xz plane of
rectangular coordinates and carries a current / in the z direction.
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The central line of the bar is also in the xz plane at x = d/2. The
length of the bar segment is L, its thickness is a. The distance d
between the wire and the bar is much larger than the thickness of
the bar. The bar carries a current / (the same as that of the wire) of
density J’ in the z direction [so that J’ = (I/a@*)k]. The flat surfaces
of the bar are parallel to the xz and yz planes.

(a) Force computed from the Lorentz equation. The magnetic
flux-density field produced by the wire at the location of the bar is

p- ol (A3.18)
2wd

where j is a unit vector in the direction of the y axis. Replacing in
the Lorentz equation, Eq. (1), pv by J’, we find that the bar is
attracted to the wire with a force

L pola’L

rL
F=I(J’><B)a2dz=J’ )
0 2wd

k x i.(A3.19
dl( )

Observe that, according to Eq. (A3.19), the force acts on each
individual current element J’'a’dz along the bar segment.

(b) Force computed from magnetic vector potential. The force
acting on a uniform current distribution can be calculated by using
the magnetic vector potential according to the formula®

F - {(A . J)dS . (A3.20)

In this equation, A is the magnetic vector potential due to the
force-producing current distribution at the location of the
force-experiencing current distribution, the integration is over the
surface of the force-experiencing current distribution, and dS is a
surface element vector directed from the force-experiencing current
distribution into the surrounding space.

The vector potential produced by the wire is, in cylindrical
coordinates,®
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A - -

kol ok, (A3.21)
2T

where r is the distance from the wire. The force on the bar is then,
by Egs. (A3.20) and (A3.21),

I 1’
o lnr@ - 3yas = - 43”0 mrdS. (A3.22)
27 2T

F = -

By symmetry, the horizontal surfaces of the bar make no
contribution to Eq. (A3.22), so that the force on the bar is,
remembering that a < < d and replacing the integrals over the
vertical surfaces by the product of the integrand and the surface
area,

24 '
F-- “3 —_In(d -ai2)al(-}) - Y Ind +a/2)aL)
™
w1 -an) (A3.23)

27 (1 +a/2d)
or, since a < < d,
p, 17’ aL
T

F =

rL
2ai2d)i = - P25 (A3.24)
27d

Observe that although the force shown by Eq. (A3.24) is
exactly the same as that computed from the Lorentz equation, it
acts, according to Eq. (A3.20) and to our calculations, not on the
current elements in the bar, but on the vertical surfaces of the bar.

(c) Force computed from magnetic scalar potential. The force
acting on a uniform current distribution can be calculated by using
the magnetic scalar potential according to the formula®

F = - od xds. (43.25)

In this equation, ¢ is the magnetic scalar potential due to the
force-producing current distribution at the location of the
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force-experiencing current distribution, the integration is over the
surface of the force-experiencing current distribution, and dS is a
surface element vector directed from the force-experiencing current
distribution into the surrounding space.

The scalar potential produced by the wire is, in rectangular
coordinates,?

0= - 7%tan-l[y/(d/z .x] for y>0  (A3.26)
and
0 = 2Ltan-l[—y/(d/z vx)] for y<O0. (A3.27)
™

By symmetry, the only contribution to the integral in Eq.
(A3.25) is made by the horizontal surfaces of the bar. On the upper
horizontal surface y = a/2, and on the lower horizontal surface y
= — a/2. Therefore, since a < < x, the potentials for the upper
and the lower horizontal surfaces of the bar can be written as

Ia

=-___"7  for >0 A3.28
LA v e Y (A3.28)
and I
p=__%  for y<O, (A3.29)
d7(dl2 + %)

respectively. Because a < < d, the integration over the horizontal
surfaces in Eq. (A3.25) can be replaced by the product of the
surface area and the average value of the potentials on these
surfaces (that is, potentials at x = d/2), which yields

Ia . la .
F = - p -2 J'La(k x 12 yira x (<1, (A3.30
#047“1 ak X j) + p'°47rdj La[ -1, ( )
or I'La? rL
F-- k= - k,  (A3.30)
bo—rd ar

Observe that although the force shown by Eq. (A3.31) is
exactly the same as that computed from the Lorentz equation, it
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acts, according to Eq. (A3.25) and to our calculations, not on the
current elements in the bar, but on the horizontal surfaces of the
bar.

(d) Force computed from Maxwell stress integral. Finally, Iet
us compute the force acting on the bar by using the Maxwell stress
integral’ (Maxwell stress tensor)

F-- %{szs g fHE-d),  (A3.32)

where H is the total magnetic field at an arbitrary surface
("Maxwellian surface") enclosing the current distribution under
consideration, and dS is a surface element vector of the surface (dS
is directed outward from the space enclosed).

For the Maxwellian surface Iet us use an infinitely large
hemicylindrical surface enclosing the bar, with the flat part of the
surface in the yz plane. The total magnetic field (the field produced
by the wire and the bar together) at the points of the yz plane is®

=1 [__X_]l , (A3.33)

Tl@ny?+y?
and on the cylindrical part of the surface it is

H-"Le, (A3.34)

Tr
where r is the radius of the cylindrical surface, and @, is a unit
vector in the circular direction in the xy plane, right-handed with
respect to the direction of the current in the wire and in the bar.
However, the cylindrical part of the Maxwellian surface makes no
contribution to the integrals in Eq. (A3.32), because the area of this
surface is proportional to r, while the integrands in Eq. (A3.32), by
Eq. (A3.34), are proportional to 1/77, and because, by supposition,
r approaches infinity on this surface. Thus the only contribution to
the integrals in Eq. (A3.32) is made by the flat part of the
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Maxwellian surface, where the magnetic field is given by Eq.
(A3.33). Substituting Eq. (A3.33) into Eq. (A3.32), we have

-3 :(‘f?)z[ (at/2)y2+y2rdS o : (é)z[(_dﬁ)yTJiria o
(A3.35)

where the integration is only over the flat surface in the xy plane.
Since on this surface dS = Ldy(—i), Eq. (A3.35) reduces to

2L = 2
F--it I [ y }dy. (A3.36)
277 | L@y

Integrating, we obtain

2L +00
F--itd {- y +_1.tan"_y_} (A3.37)
2m2 U 2[@d/2)?+y? d drl-

=]

or

2 2
F=- iﬁ(lldl) - ML (s
272 \d2 d2 2rd
Once again we have obtained exactly the same force as that
computed from the Lorentz equation. However, according to Eq.
(A3.32) and to our calculations, the force acts not on the current
elements in the bar, and not even on the bar itself, but on an
imaginary plane located between the bar and the wire.

V. Energy transfer in electromagnetic fields

Let us now look into the process by means of which energy is
transferred from an electromagnetic field to a charged body located
in this field. Consider a charge distribution g of arbitrary shape and
size moving in the presence of a uniform electric field E = Ei. Let
the velocity of g at the moment of observation be v = i, and let
the magnetic field created by the moving g be H._.

The influx of the energy U into the moving charge distribution
is given by
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- §p.as,, (A3.39)
ar

where P is the Poynting vector®

P-ExH,. (A3.40)

The integration in Eq. (A3.39) is over the surface of the moving
charge distribution, and the surface element vector dS,, is directed
into the charge distribution. Substituting Eq. (A3.40) into Eq.
(A3.39) and changing dS,, to the standard dS directed out of the
charge distribution, we have for the rate at which the kinetic energy
of g increases

dUu _

L - - fExH, -as - - $E-H xds. (A3.41)

Factoring out E (which is a constant vector) and using Gauss’s
theorem of vector analysis to transform the Iast surface integral into
a volume integral, we have

& -E-[vxHav. (A3.42)
dt

Replacing now V X H_, in accordance with Maxwell’s equation for
V x H, by pv, where p is the density of the moving charge
distribution, we have

2 -E-[pvav. (A3.43)
dt
Finally, factoring out v and replacing the integral over the charge

density by the charge g, we obtain

au _

aU _E-v. A3.44
a Y (A3.44)

Observe that we have obtained this result without ever referring
to the force acting on the charge distribution. According to our
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calculations, the kinetic energy that the charge g receives from the
electric field in which it is located does not involve any force action
at all and occurs entirely due to the energy influx into g via the
Poynting vector. [However, Eq. (A3.44) can be interpreted as the
product of the force gE acting on the charge distribution and of the
velocity of the charge distribution.]

VI. Discussion

Let us now summarize what we have found above about the
properties of electric and magnetic forces.

(a) Origin, transmission and the mode of action of electric and
magnetic forces. Consciously or subconsciously we associate
electric and magnetic forces with some invisible "threads" (after
Faraday’s "physical lines of force") that "attach" themselves to
electric charges and currents or we associate these forces with
"stresses” in electric and magnetic fields (after Maxwell’s "stress
tensors"). But, as explained in Section II, in the absence of such
threads and in the absence of an elastic ether (neither of which is
accepted by the present-day science) there must be a different
explanation of the origin, transmission and the mode of action of
electric and magnetic forces.

(b) Points of application of electric and magnetic forces. We
customarily accept that electric and magnetic forces act on some
specific points within charged bodies. But, as the examples
presented in Sections III and IV show, it is impossible to define
unambiguously the point or points upon which electric and magnetic
forces act. Depending on the method of calculation, electric and
magnetic forces appear to act upon entirely different parts of
electric charges or even not on the charges themselves, but on
imaginary surfaces in the space around the charges.

(c) Conversion of field energy into the energy of moving
charges. We customarily believe that a moving body changes its
energy as a result of force action upon the body. But, as shown in
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Section V, electric field energy is converted into kinetic energy of
moving charges by a direct process - an influx via the Poynting
vector not involving any force action whatsoever.

The findings that we have just enumerated do not quite agree
with the concept of force in the conventional meaning of the word.
Conventionally, and as defined in Newtonian mechanics, where the
concept originated, force is inevitably associated with some device
or mechanism that exerts "push or pull" or "stress or strain". But
no such device or mechanism exists in electric and magnetic fields.
Furthermore, in Newtonian mechanics, the point of application of
a force is always clearly identifiable - in fact, the motion of a body
resulting from the application of a force depends crucially on the
point to which the force is applied. But in electromagnetic systems
the point of application of an electric or magnetic force appears to
be quite irrelevant, taking into account that such a point is not
uniquely defined. In Newtonian mechanics a moving body increases
its energy because a force acts on the body. But in electromagnetic
systems energy transfer may apparently take place without
participation of a force, since the transfer occurs by means of direct
energy influx into the charged body.

So, what exactly are electric and magnetic forces? To what are
they applied? How are they transmitted and by what mechanism do
they affect the motion of charged bodies?

All we can actually say about electric and magnetic forces is
that electric and magnetic fields affect the state of motion (or the
shape) of charges and currents located in these fields. We can
account for these changes by evaluating certain surface or volume
integrals involving electric and magnetic fields or potentials.
Certainly, there is no objective reason to ascribe to any of these
integrals or calculations a greater physical significance than to any
other.'® But then we must accept that our various force equations,
including the Lorentz force equation itself, are merely means for
predicting the outcome of certain electromagnetic events, and do not
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actually provide any information about electric and magnetic forces
as a physical reality.

The question arises therefore: Is it possible to explain the
various effects that we attribute to electric and magnetic forces
without referring to electromagnetic force equations? A hint of such
an explanation is found in the example on the energy transfer
presented in Section V. This example shows that the energy of an
electric field is converted into the kinetic energy of a charged body
by direct influx of field energy into the body. However, whenever
the kinetic energy of a body changes, its velocity changes, and
therefore its momentum changes. Clearly, for a body isolated in an
electric or magnetic field, the only source of momentum must be
this field. Hence, an influx of field energy into a moving body must
be accompanied by an influx of field momentum into the body.
And, in fact, there is a known mechanism for such a momentum
influx in electromagnetic systems.

As is generally accepted, the electromagnetic field is a
repository of electromagnetic momentum. The electromagnetic
momentum interacts with the mechanical momentum G,, of an
electric charge or current distribution according to the equation'!

4G _ IIO(EXH)dV
@ 2l T

0 (A3.45)
-[_; <j§ (e B2 +u,HD)dS —aotf E(E, - dS) - ,Lotf HH, - dS)] :

where ¢ is the velocity of light, E, is the total electric field (the
external electric field plus the electric field created by the charge
itself) and H, is the total magnetic field (the external magnetic field
plus the magnetic field created by the charge or current itself) of the
system under consideration. The first integral (volume integral) in
Eq. (A3.45) is evaluated over an arbitrary region of space
containing the charge under consideration and represents the rate of
change of electromagnetic momentum within this region. The
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remaining integrals (surface integrals) are evaluated over the
boundary surface enclosing the region over which the first integral
is evaluated and represent the flux of electromagnetic momentum
through this surface.

Equation (A3.45) shows that the increase of the mechanical
momentum of the charge occurs at the expense of the
electromagnetic momentum lost by the region in which the charge
is located, as well as at the expense of the electromagnetic
momentum entering the region from the surrounding space.

It is important to note that although Eq. (A3.45) is usually
presented in textbooks as an equation derived from the Lorentz
force equation, only its mathematical form is actually derived. The
physical significance of the terms appearing in it is either
interpreted'! or postulated. In particular, the volume integral in Eq.
(A3.45) is either interpreted or postulated as representing the
electromagnetic momentum, and the surface integrals are similarly
interpreted or postulated as representing the flux of electromagnetic
momentum. Therefore, as far as the physical significance of Eq.
(A3.45) is concemed, the equation is not really a consequence of
the Lorentz force equation, but rather a fundamental equation in its
own right. On the other hand, as is shown below, Lorentz force
equation follows from Eq. (A3.45) rigorously and directly.

Let us apply to the surface integrals in Eq. (A3.45) the vector
identity

lcfA?ds - {A(A -dS) = j[A X(VXA) - A(V - A)]dV,
2 (A3.46)
where A is an arbitrary vector field. We obtain

daG 1 J d
—"=-_1| —_(E xH)dV
dt c? at( ) (A3.47)

+ j [&,(V *E)E+u(V - H)H - £ ,E X (V XE) - H X (V x H)]dV .

(omitting subscripts "¢" for brevity). Now, by Maxwell’s equations,
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d d
V-E=p, pV-H=0, VxE=-_$, vxH =3+ 28

ot
(A3.48)

Substituting these expressions into Eq. (A3.47), we have

aG 1 I 0

—_"=-_|_(ExH)dV

at c? at(E ) (A3.49)

i
+ “pE+soEx( "OH) Hx(J+ a‘;E)]dV

Since g, = 1/ and H X 0¢E/0t = — 0¢;E/0t X H, the

expressions containing the time derivatives cancel, and we are left
with

aG
at

z o= I(PE—yOH xJdV = J(pE +J xB)dV. (A3.50)

which is the Lorentz force equation, except that instead of the usual
force on the left side of the equation we have the rate of change of
the mechanical momentum of the charge and current distribution
subjected to the fields E and B.

In connection with the above derivation, it may be noted that
for time-independent systems Eq. (A3.45) reduces to Maxwell’s
stress integrals for electric and magnetic fields (with the rate of
change of mechanical momentum in place of the usual force)

4G,
Sn--2 2§ e o)A + e B (B, - d9) + o H(H, - dS) .
(A3.51)

Although Eq. (A3.45) is well known, it has been customarily
interpreted as a conservation of momentum formula, whereas it has
a much greater significance as a relation revealing the existence of
a direct process for converting (exchanging) electromagnetic
momentum into mechanical momentum and vice versa. Since the
effect of a force cannot be distinguished from that of a change of
mechanical momentum, and since force is a much more familiar
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concept than momentum, we naturally see "force actions"” in electric
and magnetic fields, although, as explained above, certain aspects
of such actions are ambiguous, and although what unquestionably
does happen according to Eq. (A3.45) is a straightforward
momentum exchange between the electromagnetic field and the
body (charge) located in this electromagnetic field.

But how can a momentum exchange create a static force? As a
matter of fact, Newtonian mechanics gives us a hint of such a
possibility. Note that when a projectile is fired into a ballistic
pendulum, the pendulum deflects (experiences a force) as a
consequence of momentum transfer from the projectile to the
pendulum. The pendulum will sustain its deflection (that is, will
appear to be subjected to a static force) if projectiles are fired into
it in rapid succession. Thus, in mechanical systems, transferring or
delivering mechanical momentum to a body can imitate a static
force. It is therefore entirely possible that in electric and magnetic
systems electrostatic and magnetostatic forces are imitated in an
analogous manner by electromagnetic momentum flux into (or out
of) the objects seemingly experiencing these forces. Does it mean
that in electromagnetic fields there exist some "electromagnetic
projectiles” carrying electromagnetic momentum? Time will tell.'?

VII. Conclusion

The examples and calculations presented in this Appendix show
that force in electric and magnetic systems is a convenient and
important mathematical device, but not the physical effect, entity,
or agent as we know force in mechanics. They also show that in
electric and magnetic systems there occurs a direct exchange of
momentum between the electromagnetic field and charges or
currents located in this field; this momentum exchange is perceived
as an electric or magnetic force. Thus, what we call "force" in
electric and magnetic systems is a actually a surrogate for the
momentum transfer phenomenon.
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When a charged body moves in an electric or magnetic field,
its mechanical momentum changes as a result of direct momentum
transfer from the electromagnetic field to the body (or vice versa).
The rate of change of the mechanical momentum of the body is
completely accounted for in magnitude and direction by the influx
of electromagnetic momentum into the body or efflux of mechanical
momentum into the field.

Moreover, even if a charged body does not move, the
electrostatic force that it experiences in an external electric field can
be attributed to momentum transfer from the field to the body (and
vice versa), just as when the body does move. This follows from
the obvious fact that although for an observer co-moving with the
body the body is stationary, one can always find a reference frame
in which the body is moving relative to the observer, but the
momentum transfer process cannot be affected by the location or
motion of the observer.

Electric and magnetic forces can be calculated from Maxwell’s
stress integrals, Eq. (A3.51). Maxwell’s stress integrals are surface
integrals exactly the same as those in our Eq. (A3.45). And since
surface integrals in Eq. (A3.45) represent electromagnetic
momentum flux, they must represent electromagnetic momentum
flux also in Eq. (A3.51), rather than a stress in the ether, as
originally thought by Maxwell.

Although Eq. (A3.45) is usually considered a derived equation
subordinate to Lorentz force equation, our analysis shows that Eq.
(A3.45) is a fundamental electromagnetic equation, and that it is
quite correct to regard Lorentz force equation as a consequence of
Eq. (A3.45). Of course, the validity and the utmost practical
significance of the Lorentz force equation is indisputable, however,
it tells us nothing at all about the physical nature of electric and
magnetic forces. That information is clearly provided by Eq.
(A3.45): we see electric and magnetic force actions where,
according to Eq. (A3.45), there is a direct transfer of
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electromagnetic momentum into the mechanical momentum (and
vice versa). The momentum transfer is closely related to the direct
transfer of electric and magnetic field energy into the mechanical
energy (and vice versa) via the Poynting vector, and, in fact, is
inseparable from the energy transfer.'*

ILLUSTRATIVE EXAMPLES

We shall illustrate the details of electromagnetic momentum
transfer into mechanical momentum occurring in accordance with
Eq. (A3.45) by the two following examples.

Example I. A cylindrical electric charge moving in a uniform
electric field.

Consider a positive electric charge g in the shape of a long
cylinder of Iength / and radius a, moving in a uniform electric field
E. Let [ > a, let E be directed along the z axis of a cylindrical
system of coordinates, so that E = Ek (where Kk is a unit vector in
the direction of the z axis), Iet the axis of the cylinder coincide with
the z axis, and Iet the cylinder move at the time of observation with
velocity v < ¢ along the z axis (Fig. A3.3).
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Fig. A3.3. (a) A positive electric charge q in the shape of a long
cylinder moves with velocity v in an external electric field E. (b)
End view of the charge (the charge moves out of page). E_ is the
electric self-field of the moving charge, H, is the magnetic self-field
of the moving charge
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Since / > a, we can neglect the end effects of the cylinder, in
which case the electric field produced by the cylinder outside the
cylinder, taking into account that v < c, is

-4
=1 r, A3E.1
¢ 2melr ( )
where r, is a unit vector at right angles to the axis of the cylinder
directed from the axis into the surrounding space. The total electric
field outside the cylinder is the sum of the cylinder’s field E, and
of the external field E = Ek in which the cylinder moves:

E =_9 r +Ex, A3E.2
b 2melr ¢ ( )
The magnetic field created by the cylinder outside the cylinder
1S
= 2y A3E.3
< 2mr”’ ¢ )
where 6, is a unit vector in circular direction right-handed with
respect to the velocity vector v (and therefore right-handed with
respect to the z axis). Since there is no other magnetic field in the
system, H_ is the total magnetic field H, of the system.

Let us construct a cylindrical surface enclosing the cylinder just
outside the cylinder, and let us apply the first integral of Eq.
(A3.45) to the enclosed volume and apply the remaining integrals
to the surface by which the cylinder is enclosed. Since the electric
and magnetic fields inside the cylinder are not functions of time,
and since we neglect the end effects of the cylinder, the first
integral in Eq. (A3.45) (volume integral) vanishes, and Eq. (A3.45)
reduces to

aG
Don o L (el DS + 2, E (R, - dS) + o H.(H, - S)
dt 2 (A3E.4)
The first integral in this equation vanishes by symmetry [to every
dS at a point of the cylindrical surface there corresponds an equal
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but opposite dS at a diametrically opposite point, while E’=
(q/4meorl)® +2q/4eyrir, « EK+E* = (q/4meyrl)*+E* and H? are the
same at both points, and on the two flat ends of the cylinder dS’s
are also in opposite directions, while E* and H are the same at
both ends]. The last integral vanishes because on the cylindrical
surface H, is perpendicular to dS, and on the two flat ends of the
cylinder dS’s are in opposite directions, while H, is the same at
both ends. Thus only the second integral survives in Eq. (A3E.4),
so that

dG

dat

" - e E(E,-dS) . (A3E.5)

Substituting into Eq. (A3E.5) E, from Eq. (A3E.2) and taking into
account that at the surface of the cylinder r = a, we obtain

dG
o= 80(}; (Lr + Ek)[( 9 r + Ek)-dS]. (A3E.6)
dt 2megla 2megla

On the cylindrical surface Ek is perpendicular to dS, so that Fk - dS
= 0, and on the flat ends of the cylinder dS’s are in opposite
directions, while Ek is the same at both ends. Hence Eq. (A3E.6)
reduces to

ZG_'" = 80#; (Lru + Ek)( q ru-dS) . (A3E.7)
dt 2wegla 2wela

Factoring out the constants and taking into account that r, is parallel
to dS on the cylindrical surface (so that r,-dS = dS) and
perpendicular to dS on the flat ends (so that the flat ends make no
contribution to the integral), we obtain

aG
m. 4 H 9 . EkldS,  (A3E.8)
dt 27la ) \2weyla “

where the integration is now only over the cylindrical surface. Since
to every r, at a point of the cylindrical surface there corresponds an
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equal but opposite r, at a diametrically opposite point, the first term
of the integrand makes no contribution to the integral, and we have

4G
Som . [ EkdS A3E.9
dt 27la ) ( )

Factoring out Ek and integrating over the cylindrical surface, we
finally obtain

qEk
27la

4G
m o qu[ds

D GER 2rla = gEk . (A3E.10
& 2l mla = gk ( )

Thus the rate of change of the mechanical momentum of the
cylinder is gEKk, just as it should be according to the conventional
formula for the force exerted by the electric field on an electric
charge.

Example II. A cylindrical electric charge moving in a uniform
magnetic field

Consider again a positive electric charge ¢ in the shape of a
long cylinder of length / and radius a, this time moving in a
uniform magnetic field H. Let H be directed along the x axis of a
rectangular system of coordinates, so that H = Hi (where i is a unit
vector in the direction of the x axis), let the axis of the cylinder
coincide with the z axis, let / > a, and let the cylinder move at the
time of observation with velocity v < c¢ along the z axis (Fig.
A3.4). As before, we shall neglect the end effects of the cylinder.

The electric field produced by the cylinder is again

=_9 ¢ . A3E.11
¢ 2medr “ ( )

Since there is no external electric field, E, is the total electric field
E, of the system.
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Fig. A3.4. (a) A positive electric charge q in the shape of a long
cylinder moves with velocity v in an external magnetic field H=Hi.
(b) End view of the charge (the charge moves out of page). H, is
the magnetic self-field of the moving charge, 8, is a circular unit
vector, dS is a surface element vector, 0 is the angle between the
negative y axis and dS.

As before, the magnetic field created by the cylinder is

=2, (A3E.12)
27lr

but now there is an external magnetic field H, so that the total
magnetic field in the system is H, = H, + H, or

H =2
27lr

(A3E.13)

Let us again construct a cylindrical surface enclosing the
cylinder just outside the cylinder, and let us apply the first integral
of Eq. (A3.45) to the enclosed volume and apply the remaining
integrals to the surface by which the cylinder is enclosed. Since the
electric and magnetic fields inside the cylinder are not functions of
time, and since we neglect the end effects of the cylinder, the first
integral in Eq. (A3.45) (the volume integral) vanishes, and Eq.
(A3.45) again reduces to Eq. (A3E.4).
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In the first integral of Eq. (A3E.4), E is the same at all points
of the cylindrical surface and the same at both ends of the cylinder,
and therefore, by symmetry, makes no contribution to the integral.
But H? = (qv/2«lr)* + 2qvi2=ird, « Hi + H = (qvi27lr)* +
(qvHITlr)cosd + H* (see Fig. A3.4b), so that although (qv/2wlr)*
and H* are constant and make no contribution to the integral,
(gvH/7lIr)cosf is different at different points of the surface of
integration. Therefore Eq. (A3E.4) now becomes

’T‘ 2§uquHcosadS+ao§E(E s) + s H,(H, - S) .
(A3E.14)

The second integral in Eq. (A3E.14) vanishes because on the
cylindrical surface E, < dS = EdS and because to every r, at a
point of the cylindrical surface there corresponds an equal but
opposite r, at a diametrically opposite point, while at the two flat
ends of the cylinder dS’s are in opposite directions and E, is the
same at both ends. Thus Eq. (A3E.14) becomes

ff p.o_cosBdS . ,Loiﬁ H(H, -dS). (A3E.15)

Substituting into Eq. (A3E.15) H, from Eq. (A3E.13), and
taking into account that at the surface of the cylinder r = a, we
obtain

dG
== qVHcosﬁdS
dt 2 Tla
A’ H‘)[(_q__() H‘) dS]. A3E.16
+M°(f(27rla T 27la A ( )

On the cylindrical surface 6, is perpendicular to dS, so that §,+ dS
= 0, and on the flat ends of the cylinder dS’s are in opposite
directions, while H, is the same at both ends. Hence Eq. (A3E.16)
reduces to
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dGm - ,‘LO§ qVH

a 2Tk

cosodswoﬂ A Hi)(Hi -dS) .

2mla (A3E.17)
Noting that i « dS = dS,, where dS, is the x component of dS, and
noting that on the flat endsi + dS = 0 (because dS is perpendicular
to the x axis there), we obtain

dt 2

aG,, _ #ol qvH

= i cosfdS +p,ol (Zq‘; 0, + Hi)Hde ,

ma (A3E.18)
where the integration is now only over the cylindrical surface. Since
to every dS, at a point of the cylindrical surface there corresponds
an equal but opposite dS, at a diametrically opposite point, while Hi
is everywhere the same, Hi makes no contribution to the Iast
integral, and we obtain, factoring out the constants,

dG _ mgvH moqvH

d l cosdS +
dt 2wla 27la

[o.ds,. (a3E.19

In rectangular coordinates, dS = al[(sinf)i — (cosb)jldh, 0, =
(cosd)i + (sind)j, and dS, = al(sinf)dd. Substituting dS, 6, and ds,
into Eq. (A3E.19) and integrating over # from O to 27, we have

1}

dG HJ (2r
dtm %UO (-sinfi +cosfj)cosfaldl

2T
+ ]0 (cosfi +sindj)alsinfdf (A3E.20)

vH
- B (7 )
2T

or
dG

m. _

= BogvHj . (A3E.21)

Thus the rate of change of the mechanical momentum of the
cylinder is gvBj, just as it should be according to the Lorentz force
formula.
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References and Remarks for Appendix 3

1. The illustrative examples used in this Appendix are deliberately
very simple, since their sole purpose is to elucidate as clearly and
as simply as possible the ideas presented here.

2. Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989), pp. 210-211.

3. Oleg D. Jefimenko, "Direct calculation of electric and magnetic
forces from potential”, Am. J. Phys., §8, 625-631 (1990).

4. The possibility of expressing the electrostatic fields by vector
potentials is not well known. Since V-(VXA)=0, the vector
potential for electrostatic field can only be used in charge-free
regions of space, where V-E=0. This limitation of the electric
vector potential is probably the reason why it is practically ignored
in textbooks.

5. See, for example, Ref. 2, pp. 215-216.
6. See, for example, Ref. 2, pp. 366-367.
7. See, for example, Ref. 2, pp. 446-447.
8. See, for example, Ref. 2, pp. 334-335.
9. See, for example, Ref. 2, pp. 508-509.

10. Historically, the most important force equation is the
Coulomb’s force equation. But within the logical framework of
electromagnetic field theory Coulomb’s equation is a derived
equation and is not more significant than any other force equation.
See Ref 2, pp. 186-209 and pp. 427-440 (for magnetic fields).
11. See, for example, J. D. Jackson, Classical Electrodynamics,
3rd ed., (Wiley, New York, 1999), pp. 260-262.

12. See, for example, Ref. 2, p. 58.

13. It may be noted that in quantum electrodynamics
electromagnetic interactions are assumed to be mediated by photons.
14. Similar conclusions apply to gravitational forces. See O. D.
Jefimenko, "Retardics and Gravitation," a paper presented at the IV
Siberian Conference on Mathematical Problems of Space-Time
Physics of Complex Systems (FPV-2002), Novosibirsk, July 28-31,
2002. See also M. R. Edwards, Ed., Pushing Gravity (Apeiron,
Montreal, 2002).
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of moving point charge, 95-99
of stationary charge, 141, 143
of uniformly moving charge
distribution, 116, 118, 120-
122, 176-178
retarded, 34, 35, 115-119
snapshot of, 121
transformation of, 141, 151, 152

Electrokinetic
field, 40-44
force, 40
Electromagnetic,
energy transformation, 186-189



Electromagnetic (continued),
field tensor, 286
induction, 38-43
momentum, 187, 189, 197,
224, 318-323
flux of, 318-322
Electron, 289
orbital motion of, 92
slower period of revolution of,
236
Electrostatic
field, 60, 171, 173, 175
potential, 176, 177
Energy,
conservation of, 198, 302,
314-318, 323
electromagnetic, transformation
of, 186-189
flux of, 314, 316-318
kinetic, 202, 315-318
mechanical, transformation of,
198, 203, 299-301
Ether, 207-209, 303, 316, 322

Faraday, M. 41, 302, 303, 316

Faraday induction, 38

Farley, F. J. M., 265

Field, J. H., 265

Field, see Cogravitational field,
Electric field, Electromagnetic
field, Force field, Gravimagnetic
field, Gravitational field,
Heaviside field

Field point, 4

Field signal, 48, 69, 74

Field tensor,
electromagnetic, 286
gravitational, 289

Fisch, D. H. 265

Fitzgerald, G. F., 208, 231

Fitzgerald-Lorentz contraction, 208

Flegel, W., 265

Force (see also Lorentz’s force),

INDEX
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electromagnetic, physical nature
of, 302-330
gravitational, 281-283, 330
Lorentz’s, transformation of,
181-186
mechanical, transformation of,
196-197, 229
Force field, 41, 42, 231, 288
Four-vector, 284-286, 289
Four-tensor, 286
Frame of reference,
202, 216
inertial, 120
moving, 130, 182
stationary, (see also Rest frame)
130
French, A. P., 233, 265

129, 130,

Galilean relativity, 130
Galilei, Galileo, 130
Gamba, A., 232
Gamov, G. 265
Gauss’s theorem, 297
General wave equation, 3, 16
Goldberg, S., 146
Gradient, 28, 82, 106, 107, 111,
296
retarded, 101
Gravimagnetic field, see
Cogravitational field
Gravitation, 130, 267, 268, 271,
281, 284, 288, 289
time-dependent, 267-269, 272-
275
velocity of propagation, 268,
282, 289
Gravitational
current density, transformation
of, 277, 278
field, 277, 279, 283, 289
of accelerating mass, 272
of uniformly moving mass
distribution, 273
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Gravitational (continued),
field,
of uniformly moving point
mass, 272, 279, 280
retarded, 269, 272
time-dependent, 267269
transformation of, 276-278
tensor, 299
mechanics, 281-284
potential, 273
Griffiths, D. J., 102
Gron, 9., 233

Hall, D. B., 265
Hattersley, H. C., 265
Hayden, H. C., 264
Heald, M. A., vii, 14
Heaviside, Oliver, 68, 101,209,
227, 232, 265, 266, 292, 293
Heaviside’s
equation,
for moving point charge, 68,
210, 211, 213, 221, 239
for moving point mass, 272,
280
field, 268
Helmholtz’s theorem, 298
Hillion, P., vii
Hybrid transformation equations,
152

Inertial frame of reference, 130,
182, 202, 203, 216, 220

Inhomogeneous wave equation, 3,

16
Integrals,

present position, 106, 107, 114,

115, 116, 117, 131, 132, 141
retarded, see Retarded integrals
Invariance,

of Maxwell equations, 158165

of charge, 28, 106, 107, 117
of mass, 202, 281, 288
Jackson, J. D., 294, 330

Jefimenko, O. D., 45, 100-102,
125, 147, 180, 205, 233, 234,
265, 292, 293, 330

Jensen, D. G., 233

Kinetic energy, 200, 202
Kirchhoff, G., 14
Kittel, C., 146, 264
Konopinski, E. J., 294
Kosarev, Yu. G., viii
Krienen, F. 265
Kuzmin, S. V., 102

Laboratory, 129, 138, 239-261
Lange, F., 265
Larmor, J., 130, 146, 147, 178-
180, 264
Lecher, E., 147, 232, 264
Length, 207, 208
apparent, 64, 81
contraction of, 207-209, 211-
213, 216
retarded, see Retarded length
Lenz’s law, 40
Le Verrier, U., 274
Lewis, G. N., 218, 233
Liénard, 96-99, 102
Liénard-Wiechert potentials, 96,
97, 99
Light signal, 69
Line charge, 73-79, 125, 175,
176, 210-214, 218, 228, 229,
248, 250, 254, 256
Longitudinal mass, 195, 205, 239,
250, 260, 261, 263
Lorentz, H. A., 130, 145, 146,
170, 178-180, 205, 215, 231
Lorentz’s,
contraction, 61, 207- 209,211-
213, 216, 232, 233,264
force, 182, 221, 242, 243, 245,
248, 252, 254, 256, 258, 262,
281, 303-312, 314, 317, 319,
320, 322, 329



Lorentz’s (continued),
transformations (see also
Relativistic transformations),
146, 152, 178, 179, 208, 215-
217, 236, 260, 284, 285
as an operator, 216
Lorentz-Einstein,
electrodynamic theory, 145
transformations, 152, 212, 265
Lorentz-Fitzgerald contraction,
208
Lorentz-Poincaré relativity theory,
130, 145-147, 208
Lorenz’s condition, 35, 36

Magnetic field,
of accelerating point charge,
91-95
of charged cylinder, 324, 327
of electric current, 228, 310
of electric dipole antenna, 24,
25
of Hertzian dipole, 24, 25
of magnetic dipole antenna, 27
of solenoid, 43
of rotating disk, 33
of rotating ring, 23, 37
of uniformly moving
charge distribution, 115, 132
charged ribbon, 110
line charge, 79, 229, 254,
256
parallel-plate capacitor, 214,
218
point charge, 70-72, 93, 95,
222, 243, 245, 252
related to electric field, 58-61,
69, 165-167
retarded, 18, 19, 31, 95
snapshot of, 137
transformations of, 131-139,
150, 151
Magnetic,
force, 222, 223,228-230
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potential, 37, 41, 42,96-99,
119-121, 141-144, 310-312,
317, 330

Marion, J. B., 14
Mass, see also Longitudinal mass,

Relativistic mass, Rest mass,
Transverse mass

density, transformation of, 277,
278

does not depend on velocity,
196, 288

proper, 193

Mass-energy relation, 202
Maxwell’s equations, 3, 15, 16,

18, 68, 156, 158, 165, 179,

180, 209, 215, 216, 233, 267,

271, 287, 294, 319

invariance of Cartesian
components of, 158-165, 180

non-invariance of the vector
form of, 162, 165, 180

solutions of, 18

Maxwell’s induction, 38

Maxwell’s stress integral, 308,
313, 322

Maxwell’s stress tensor, 303, 308,
313, 316

McAdory, R. T., 233

McQuistan, R. B., 14

Mechanics, relativistic, 190-204,
267, 281, 288

Mercury, perihelion displacement
of, 274, 275

Mesons, 236, 265

Method of corresponding states
170-178

Michelson, A. A., 207, 231

Michelson-Morley experiment, 207

Miller, A. 1., 145-147, 206, 208,
232, 264

Minkowski, H., 284, 294

Momentum,
conservation of, 225
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Momentum (continued),
electromagnetic, 187, 189, 198,
224, 318-323
mechanical, 190-193, 306, 318-
323, 329
transformation of, 198, 204
299-301
Morley, E. W., 207, 231

Near-action, viii, 302, 303
Newton, 293
Newton’s,
gravitational law, 101, 275, 288
gravitational field, 267, 274
second law, 190, 191, 193
Nickerson, J. C., 233

Okun, L. B., 205
Olsson, M. G., 233

Panofsky, W. K. H., 45, 306
Paradoxes, relativistic, 207, 218-
227, 235, 266
Parallel-plate capacitor, 186-190,
212-218
Partial derivatives, transformation
of, 156-158
Pendulum, 283, 284
Phillips, M., 45, 294
Picasso, E., 265
Planck, Max, 145, 205
Planetary motion, 101, 273-275
Poincaré, H., 130, 131, 145, 152,
179, 180, 206, 232, 284, 294
Point charge, 60-72, 79-100, 213,
238-261
Poisson’s,
equation, 12
theorem, 298
Position,
present, 51-54, 56, 58, 60, 61,
64, 65, 68, 69, 71, 73-76, 81,
83, 89, 90, 91, 96, 99, 104,
105, 114, 120, 273, 274

retarded, 51, 52, 54, 65, 68,
73-75, 104, 105, 114
projected present, 69
Position vector, 7, 61, 90, 91, 99,
104, 114, 117, 120, 285, 286
Postulates, Einstein’s, 208
Potential, see also Cogravitational
potential, Electric potential,
Electromagnetic potential,
Gravitational potential, Magnetic
potential
electromagnetic, transformation
of, 141-144, 151, 152
of moving charge distribution,
115-120, 177, 178"
of moving point charge, 95-100
of rotating ring, 36, 37
of stationary charge distribution,
141, 176, 177
retarded, 4, 5, 34, 35, 41, 42,
115-119
Poynting vector, 315-317, 323
Present position, see Position
Present time, 6, 7
Present time quantities, 6, 55, 76,
78, 105, 106
Principle,
of causality, 6
of relativity, 129-131, 138, 139
Purcell, E. M., 233

Quantities, corresponding electric
and gravitational, 271

Reference frame, 129-149
inertial, 130, 182, 202, 203,
216, 220
moving, 130, 148, 149, 182
stationary, 130, 148, 149
Relativistic,
electrodynamics, 148, 149
electromagnetism, 129, 131,
133



Relativistic (continued),
force, 196-197, 202, 230, 281
mass, 193-196
mechanics, 190-204, 267, 281,
288
momentum, 190-193, 202
paradoxes, 207, 218, 227-235,
266
transformations, 158-178, 215,
216, 281, 284, 285, 288
of acceleration, 154-156
of charge density, 150, 152
of cogravitational field, 278,
279
of coordinates, 150, 151,
178, 276, 278
of current density, 150, 152
of electric and magnetic
fields, 150-152, 179
of electric and magnetic
potentials, 151, 152
of electromagnetic energy,
186-188
of electromagnetic
momentum, 186-190
of gravitational fields, 276-
278
of gravitational potentials,
277-279
of Lorentz force, 181-186
of mass density, 277-278
of mass-current density, 277,
278
of mechanical energy, 198
of mechanical force, 196,

197, 229

of mechanical momentum,
198

of partial derivatives, 156-
158

of time, 150, 151, 178, 226,
278

of torque, 199, 200
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of velocity, 153, 154, 156
Relativity, Galilean, 130
general, 130, 275, 293
of space and time, 131
principle, 129-131, 138, 139,
165
special, 130, 131, 213, 236,
237, 251, 266
theory, 130, 131, 180, 207,
231, 263, 264, 266
of Einstein, 130, 145-147,
251, 266, 275, 293
of Lorentz and Poincaré,
130, 145-147, 208
Rest energy, 200-202
Rest frame, 153, 154, 156, 170
Rest mass, 193
Retardation, 56
Retarded, (see also Field, Position,
Potential, Time, Volume)
function, 6, 8
integrals, 3-6, 10-12, 18, 104,
113, 115, 172, 298
surface, 30, 31
length, 50, 51, 53, 73, 77, 209
quantities, 3, 6, 10, 104, 105,
111, 150, 298
Retardation symbol, 5, 104
Richardson, O. W., 14
Right-angle lever paradox, 218-
227
Rosser, W. E. V., vii, 294
Rossi, B., 265
von Ruden, W., 265
Sandin, T. R., 205
Sauter, F., 14, 294
Scale units, 135
Schaffner, K. F., 146, 180
Scott, G. D., 232
Scribner, Jr., C., 146
Self-energy, 201
Shape, apparent, 51-53, 64, 8,
232
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Signal speed, 6

Smulsky, J. J., vii, 206

Smith, J. H., 265

Solenoid, 42-44

Source point, 4

Spinelli, G., 233

Stokes’s theorem, 297

Strel’tsov, V. N., vii, 232

Subfield, 231

Suffern, K. G., 232

Sun, 274,275

Surface integrals, 30-33, 107,
118, 297, 305, 307, 308, 310,
313-315, 322, 324-329,

Symbols, corresponding electric
and gravitational, 271

Tensor,
electromagnetic, 286
gravitational-cogravitational,
289
Maxwell’s stress, 303, 308,
313, 316
Terrell, J., 232
Theory of relativity, see Relativity
theory,
Thomson, J. J., 178, 206
Time dilation, 131, 235-237,
262-264
experimental verification of,
236, 263,
Time,
retarded, 6, 7, 18, 48, 56, 80,
87
present, 6, 7
transformation of, 139, 140,
150, 151
Time-dependent gravitational
equations, 267-269, 272, 273,
276-284, 289, 291
Tolman, R. C., 218, 233
Torque, 199, 200, 219-227, 274
transformation of, 199, 200

Transformation, see under the type
or name of transformation, such
as Coordinate transformation,
Electric field transformation,
Lorentz transformation, etc.

Transverse mass, 195, 205, 245,
246, 248, 252, 254, 263

Twin paradox, 235

Vacuum polarization, 294
Vector identities, 297, 298
Vector wave field theorem, 4, 10,
11, 16, 17
Velocity,
of electromagnetic propagation,
18
of gravitation, 268, 283
of light, 18, 48, 98, 268, 283
relativistic addition of, 153, 179
retarded, 81, 85, 93
transformation of, 153-156
Viner, M. R., 232
Visual appearance of moving
bodies, 209, 232
Voigt, W., 179
Voltage, induced in ring, 42-44
Volume,
apparent, 82
effective, 50, 65, 72, 81, 104
element, retarded, 50, 51, 54,
55, 95, 104, 105, 113
retarded, 65, 104, 116, 209

Walker, D. K., viii

Wave field theorem, 4, 10, 11,
16, 17

Waves, electromagnetic, 24, 26

Weinstein, R., 232

Weisskopf, V. F., 232

Whittaker, E. T., 145, 205

Wiechert, 96-99, 102

Zapffe, C. A., 264



Corrections to the 2nd Edition of
ELECTROMAGNETIC RETARDATION AND
THEORY OF RELATIVITY

P. 274, last paragraph, first line: Change "last century" to
"nineteenth century".

2

q

2i to
21r80a

P. 305, Eq. (A3.3): Change F =

2
F--_9 i,
2meqa

P. 325, Line 2: Change (q/4meyrl)*+2q/4meyrir, - Ek+E? to
(q/4megrl)*+(2q/dmeyr)r, - EK+E2.

P. 328, Line 4: Change (qv/2«xIr)* + 2qv/2wird, - Hi + H*
to (qvi2win)* + (2qvi2xir)d, - Hi + H* .





