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PREFACE TO THE ENGLISH TRANSLATION

THERE does not exist to-day in the English language a
general advanced text upon Optics which embodies the im-
portant advances in both theory and experiment which have
been made within the last decade.

Preston’s «“Theory of Light ” is at present the only gen-
eral text upon Optics in English. Satisfactory as this work
is for the purposes of the general student, it approaches the
subject from the historical standpoint and contains no funda-
mental development of some of the important theories which
are fast becoming the basis of modern optics. Thus it touches
but slightly upon the theory of optical instruments—a branch
of optics which has received at the hands of Abbe and his fol-
lowers a most extensive and beautiful development ; it gives
a most meagre presentation of the electromagnetic theory—
a theory which has recently been brought into particular
prominence by the work of Lorentz, Zeeman, and others ; and
it contains no discussion whatever of the application of the
laws of thermodynamics to the study of radiation.

The book by Heath, the last edition of which appeared in
1895, well supplies the lack in the field of Geometrical Optics,
and Basset’s « Treatise on Physical Optics ” (1892) is a valua-
ble and advanced presentation of many aspects of the wave
theory. But no complete development of the electromagnetic
theory in all its bearings, and no comprehensive discussion of

1



iv PREFACE TO THE ENGLISH TRANSLATION

the relation between the laws of radiation and the principles of
thermodynamics, have yet been attempted in any general text
in English. ,

It is in precisely these two respects that the ¢ Lehrbuch der
Optik ” by Professor Paul Drude (Leipzig, 1900) particularly
excels. Therefore in making this book, written by one who
has contributed so largely to the progress which has been
made in Optics within the last ten years, accessible to the
English-speaking public, the translators have rendered a very
important service to English and American students of
Physics.

No one who desires to gain an insight into the most mod-
ern aspects of optical research can afford to be unfamiliar with
this remarkably original and consecutive presentation of the
subject of Optics.

A. A. MICHELSON.

UNIvERSITY oF CHICAGO,
February, 1902.



AUTHOR’S PREFACE

THE purpose of the present book is to introduce the reader
who is already familiar with the fundamental concepts of the
differential and integral calculus into the domain of optics
in such a way that he may be able both to understand the
aims and results of the most recent investigation and, in addi-
tion, to follow the original works in detail.

The book was written at the request of the pubiisher—a
request to which I gladly responded, not only because I
shared his view that a modern text embracing the entire
domain was wanting, but also because I hoped to obtain for
myself some new ideas from the deeper insight into the sub-
ject which writing in book form necessitates. In the second
and third sections of the Physical Optics I have advanced some
new theories. In the rest of the book I have merely endeav-
ored to present in the simplest possible way results already
published.

Since I had a text-book in mind rather than a compen-
dium, I have avoided the citation of such references as bear
only upon the historical development of optics. The few refer-
ences which I have included are merely intended to serve the
reader for more complete information upon those points
which can find only brief presentation in the text, especially
in the case of the more recent investigations which have not
yet found place in the text-books.
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In order to keep in touch with experiment and attain the
simplest possible presentation of the subject I have chosen a
synthetic method. The simplest experiments lead into the
domain of geometrical optics, in which but few assumptions
need to be made as to the nature of light. Hence I have
begun with geometrical optics, following closely the excellent
treatment given by Czapski in “ Winkelmann’s Handbuch der
Physik ” and by Lommer in the ninth edition of the ¢ Miiller-
Pouillet” text.

The first section of the Physical Optics, which follows the
Geometrical, treats of those general properties of light from
which the conclusion is drawn that light consists in a periodic
change of condition which is propagated with finite velocity in
the form of transverse waves. In this section I have included,
as an important advance upon most previous texts, Sommer-
feld’s rigorous solution of the simplest case of diffraction,
Cornu’s geometric representation of Fresnel's integrals, and,
on the experimental side, Michelson’s echelon spectroscope.

In the second section, for the sake of the treatment of the
optical properties of different bodies, an extension of the
hypotheses as to the nature of light became for the first time
necessary. In accordance with the purpose of the book I have
merely mentioned the mechanical theories of light; but the
electromagnetic theory, which permits the simplest and most
consistent treatment of optical relations, I have presented in
the following form :

Let X, Y, Z, and «, B, y represent respectively the com-
ponents of the electric and magnetic forces (the first measured
in electrostatic units); also let /., 7,, /,,and s, s,, 5, represent
the components of the electric and magnetic current densities,

r . . T
ie. p times the number of electric or magnetic lines of force

which pass in unit time through a unit surface at rest with
reference to the ether ; then, if ¢ represent the ratio of the
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electromagnetic to the electrostatic unit, the following funda-
mental equations always hold :

The number of lines of force is defined in the usual way.
The particular optical properties of bodies first make their
appearance in the equations which connect the electric and
magnetic current densities with the electric and magnetic
forces. Let these equations be called the substance equations
in order to distinguish them from the above jfundamental
equations. Since these substance equations are developed
for non-homogeneous bodies, i.e. for bodies whose properties
vary from point to point, and since the fundamental equa-
tions hold in a// cases, both the differential equations of the
electric and magnetic forces and the equations of condition
which must be fulfilled at the surface of a body are imme-
diately obtained.

In the process of setting up ‘“ substance and fundamental
equations ” I have again proceeded synthetically in that I
have deduced them from the simplest electric and magnetic
experiments. Since the book is to treat mainly of optics this
process can here be but briefly sketched. For a more com-
plete development the reader is referred to my book ¢ Physik
des Aethers auf elektromagnetische Grundlage ” (Enke, 1894).

In this way however, no explanation of the phenomena of
dispersion is obtained because pure electromagnetic experi-
ments lead to conclusions in what may be called the domain
of macrophysical properties only. For the explanation of
optical dispersion a hypothesis as to the microphysical proper-
ties of bodies must be made. As such I have made use of
the ion-hypothesis introduced by Helmholtz because it seemed
to me the simplest, most intelligible, and most consistent way
of presenting not only dispersion, absorption, and rotary
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polarization, but also magneto-optical phenomena and the
optical properties of bodies in motion. These two last-named
subjects I have thought it especially necessary to consider
because the first has acquired new interest from Zeeman’s dis-
covery, and the second has received at the hands of H. A.
Lorentz a development as comprehensive as it is elegant.
This theory of Lorentz I have attempted to simplify by the
elimination of all quantities which are not necessary to optics.
With respect to magneto-optical phenomena I have pointed
out that it is, in general, impossible to explain them by the
mere supposition that ions set in motion in a magnetic field
are subject to a deflecting force, but that in the case of the
strongly magnetic metals the ions must be in such a continuous
motion as to produce Ampére’s molecular currents. This
supposition also disposes at once of the hitherto unanswered
question as to why the permeability of iron and, in fact, of all
other substances must be assumed equal to that of the free
ether for those vibrations which produce light.

The application of the ion-hypothesis leads also to some
new dispersion formula for the natural and magnetic rotation
of the plane of polarization, formulae which are experimentally
verified. Furthermore, in the case of the metals, the ion-
hypothesis leads to dispersion formulae which make the con-
tinuity of the optical and electrical properties of the metals
depend essentially upon the inertia of the ions, and which have
also been experimentally verified within the narrow limits thus
far accessible to observation.

The third section of the book is concerned with the rela-
tion of optics to thermodynamics and (in the third chapter) to
the kinetic theory of gases. The pioneer theoretical work in
these subjects was done by Kirchhoff, Clausius, Boltzmann,
and W. Wien, and the many fruitful experimental investiga-
tions in radiation which have been more recently undertaken
show clearly that theory and experiment reach most perfect
development through their mutual support.
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Imbued with this conviction, I have written this book in the
endeavor to make the theory accessible to that wider circle of
readers who have not the time to undertake the study of the
original works. I can make no claim to such completeness as
is aimed at in Mascart’s excellent treatise, or in Winkelmann’s
Handbuch. For the sake of brevity I have passed over many
interesting and important fields of optical investigation. My
purpose is attained if these pages strengthen the reader in
the view that optics is not an old and worn-out branch of
Physics, but that in it also there pulses a new life whose further
nourishing must be inviting to every one.

Mr. F. Kiebitz has given me efficient assistance in the
reading of the proof.

LE1pzIG, January, 1g00.



INTRODUCTION

MANY optical phenomena, among them those which have
found the most extensive practical application, take place in
accordance with the following fundamental laws:

1. The law of the rectilinear propagation of light;

2. The law of the independence of the different portions of
a beam of light;

3. The law of reflection;

4. The law of refraction.

Since these four fundamental laws relate only to the
geometrical determination of the propagation of light, conclu-
sions concerning certain geometrical relations in optics may
be reached by making them the starting-point of the analysis
without taking account of other properties of light. Hence
these fundamental laws constitute a sufficient foundation for
so-called geometrical optics, and no especial hypothesis which
enters more closely into the nature of light is needed to make
the superstructure complete.

In contrast with geometrical optics stands physical optics,
which deals with other than the purely geometrical properties,
and which enters more closely into the relation of the physical
properties of different bodies to light phenomena. The best
success in making a convenient classification of the great
multitude of these phenomena has been attained by devising
particular hypotheses as to the nature of light.

From the standpoint of physical optics the four above-men-
tioned fundamental laws appear only as very close approxima-

X1



xii INTRODUCTION

tions. However, it is possible to state within what limits the
laws of geometrical optics are accurate, i.e. under what cir-
cumstances their consequences deviate from the actual facts.

This circumstance must be borne in mind if geometrical
optics is to be treated as a field for real discipline in physics
rather than one for the practice of pure mathematics. The
truly complete theory of optical instruments can only be
developed from the standpoint of physical optics; but since,
as has been already remarked, the laws of geometrical optics
furnish in most cases very close approximations to the actual
facts, it seems justifiable to follow out the consequences of
these laws even in such complicated cases as arise in the
theory of optical instruments.
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PART 1
GEOMETRICAL OPTICS

CHAPTER 1
THE FUNDAMENTAL LAWS

1. Direct Experiment.—The four fundamental laws stated
above are obtained by direct experiment.

The rectilinear propagation of light is shown by the shadow
of an opaque body which a point source of light £ casts upon
a screen S. If the opaque body contains an aperture L, then
the edge of the shadow cast upon the screen is found to be the
intersection of S with a cone whose vertex lies in the source P
and whose surface passes through the periphery of the aper-
ture L.

If the aperture is made smaller, the boundary of the shadow
upon the screen S contracts. Moreover it becomes indefinite
when L is made very small (e.g. less than 7 mm.), for
points upon the screen which lie within the geometrical shadow
now receive light from 2. However, it is to be observed
that a true point source can never be realized, and, on account
of the finite extent of the source, the edge of the shadow could
never  be perfectly sharp even if light were propagated in
straight lines (umbra and penumbra). Nevertheless, in the
case of a very small opening L (say of about one tenth mme.
diameter) the light is spread out behind Z upon the screen so
far that i this case the propagation cannot possibly be recti-
linear.
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The same result is obtained if the shadow which an opaque
body S’ casts upon the screen S is studied, instead of the
spreading out of the light which has passed through a hole in
an opaque object. If S’ is sufficiently small, rectilinear
propagation of light from 2 does not take place. It is there-
fore necessary to bear in mind that the law of the rectilinear
propagation of light holds only when the free opening through
which the light passes, or the screens which prevent its passage,
are not too small.

In order to conveniently describe the propagation of light
from a source P to a screen S, it is customary to say that 7
sends 7ays to S. The path of a ray of light is then defined
by the fact that its effect upon S can be cut off only by an
obstacle that lies in the path of the ray itself. When the
propagation of light is rectilinear the rays are straight lines,
as when light from P passes through a sufficiently large open-
ing in an opaque body. In this case it is customary to say
that 2 sends a beam of light through Z.

Since by diminishing L the result upon the screen S is the
same as though the influence of certain of the rays proceeding
from P were simply removed while that of the other rays
remained unchanged, it follows that ke different parts of a
beam of light are independent of one another.

This law too breaks down if the diminution of the open-
ing L is carried too far. But in that case the conception of
light rays propagated in straight lines is altogether untenable.

The concept of light rays is then merely introduced for
convenience. It is altogether impossible to isolate a single
ray and prove its physical existence. For the more one tries
to attain this end by narrowing the beam, the less does light
proceed in straight lines, and the more does the concept of
light rays lose its physical significance.

If the homogeneity of the space in which the light rays exist
is disturbed by the introduction of some substance, the rays
undergo a sudden change of direction at its surface: each ray
splits up into two, a reflected and a refracted ray. If the sur-
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face of the body upon which the light falls is plane, then the
plane of incidence is that plane which is defined by the incident
ray and the normal A to the surface, and the angle of
tncidence ¢ is the angle included between these two direc-
tions.

The following laws hold: 7he reflected and refracted rays
both lie in the plane of incidence. The angle of reflection (the
angle included between /V and the reflected ray) zs equal to the
angle of incidence. The angle of refraction ¢' (angle included
between /V and the refracted ray) bears to the angle of incidence
the relation

sin ¢
sin¢’:”’ e e e e . (I)

in which # is a constant for any given color, and is called the
index of refraction of the body with reference to the surround-
ing medium.—Unless otherwise specified the index of refraction
with respect to air will be understood.—For all transparent
liquids and solids 7 is greater than z.

If a body 4 is separated from air by a thin plane parallel
plate of some other body B, the light is refracted at both sur-
faces of the plate in accordance with equation (1); i.e.

sin ¢ sin ¢’
- =R G =2
sin ¢I b sin ¢// ab ?

in which ¢ represents the angle of incidence in air, ¢’ the
angle of refraction in the body B, ¢ the angle of refraction in
the body 4, 7, the index of refraction of A with respect to air,
n,, the index of refraction of 4 with respect to B; therefore

sin ¢
sin @7 e

If the plate B is infinitely thin, the formula still holds. The
case does not then differ from that at first considered, viz.
that of simple refraction between the body 4 and air. The
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last equation in combination with (1) then gives, 7, denoting
the index of refraction of 4 with respect to air,

ny= 1 R,

-
or B )
By = n,n,,

i.e. the index of refraction of A with respect to B is equal to
the ratio of the indices of A and B with respect to air.

If the case considered had been that of an infinitely thin
plate 4 placed upon the body 5, the same process of reason-
ing would have given

My, =m0,
Hence

Ny =117,
i.e. the index of A with respect to B s the reciprocal of the
index of B with respect to A.

The law of refraction stated in (1) permits, then, the con-
clusion that ¢’ may also be regarded as the angle of incidence
in the body, and ¢ as the angle of refraction in the surround-
ing medium; i.e. tkhat the direction of propagation may be
reversed without changing the patk of the rays. For the case
of reflection it is at once evident that this principle of reversi-
bility also holds.

Therefore equation (1), which corresponds to the passage
of light from a body A4 to a body B or the reverse, may be
put in the symmetrical form

nesing,=mn,-sing,, . . . . . (3)
in which ¢, and ¢, denote the angles included between the
normal /V and the directions of the ray in 4 and B respec-
tively, and #, and #, the respective indices with respect to
some medium like air or the free ether.

The difference between the index # of a body with respect
to air and its index #», with respect to a vacuum is very small.
From (2)

my=mn:n', . . . . . . . (4)
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in which »’ denotes the index of a vacuum with respect to air.
Its value at atmospheric pressure and 0° C. is

n'=1:1.00029. . . . . . . (5)
According to equation (3) there exists a refracted ray (¢,)
to correspond to every possible incident ray ¢, only when
n, < ny; forif n, > n,, and if
. 7,
snn¢,>;, B ()

a

then sin ¢, > 1; i.e. there is no real angle of refraction ¢,
In that case no refraction occurs at the surface, but reflection
only. The whole intensity of the incident ray must then be
contained in the reflected ray; i.e. there is total reflection.

In all other cases (partial reflection) the intensity of the
incident light is divided between the reflected and the re-
fracted rays according to a law which will be more fully
considered later (Section 2, Chapter II). Here the observa-
tion must suffice that, in general, for transparent bodies the
refracted ray contains much more light than the reflected.
Only in the case of the metals does the latter contain almost
the entire intensity of the incident light. It is also to be
observed that the law of reflection holds for very opaque bodies,
like the metals, but the law of refraction is no longer correct
in the form given in (1) or (3). This point will be more fully
discussed later (Section 2, Chapter IV).

The different qualities perceptible in light are called colors.
The refractive index depends on the color, and, when referred
to air, increases, for transparent bodies, as the color changes
from red through yellow to blue. The spreading out of white
light into a spectrum by passage through a prism is due to this
change of index with the color, and is called dzspersion.

If the surface of the body upon which the light falls is not
plane but curved, it may still be looked upon as made up of
very small elementary planes (the tangent planes), and the
paths of the light rays may be constructed according to the
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above laws. However, this process is reliable only when the
curvature of the surface does not exceed a certain limit, i.e.
when the surface may be considered smooth.

Rough surfaces exhibit irregular (diffuse) reflection and
refraction and act as though they themselves emitted light.
The surface of a body is visible only because of diffuse reflec-
tion and refraction. The surface of a perfect mirror is invisi-
ble. Only objects which lie outside of the mirror, and whose
rays are reflected by it, are seen.

2. Law of the Extreme Path.*—All of these experi-
mental facts as to the direction of light rays are comprehended
in the law of the extreme path. If a ray of light in passing
from a point P to a point P’ experiences any number of reflec-
tions and refractions, then the sum of the products of the
index of refraction of each medium by the distance traversed
in it, i.e. 37/, has a maximum or minimum value; i.e. it
differs from a like sum for all other paths which are infinitely
close to the actual path by terms of the second or higher order.
Thus if & denotes the variation of the first order,

62”[ = 0. e e e e 4. (7)

The product, index of refraction times distance traversed,
is known as the optical length of the ray.

In order to prove the proposition for a single refraction let
POP' be the actual path of the light (Fig. 1), OF the inter-
section of the plane of incidence PON with the surface (tan-
gent plane) of the refracting body, O’ a point on the surface
of the refracting body infinitely near to O, so that 00’
makes any angle # with the plane of incidence, i.e. with the
line OE. Then it is to be proved that, to terms of the second
or higher order,

nPO4n'-OP =n-PO' + 40P, . . (8)

*<Extreme’ is here used to denote either greatest or least (maximum or
minimum).—TR.
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in which # and #’ represent the indices of refraction of the
adjoining media.

If a perpendicular OR be dropped from O upon PO and a
perpendicular OR’ upon P’CQ’, then, to terms of the second

order,
PO =PO+RO, OP =0P —OR.. . (9
Also, to the same degree of approximation,
RO = 00'.cos POO’, O'R' = 00'-cos P'O0'. (10)
N

Y
ty

pr

FiG. 1.

In order to calculate cos POO’ imagine an axis 0D perpen-
dicular to ON and OF, and introduce the direction cosines of
the lines PO and OO’ referred to a rectangular system of
coordinates whose axes are OV, OF, and OD. If ¢ represent
the angle of incidence POJ, then, disregarding the sign, the
direction cosines of PO are

cos ¢, Sin @, O,

those of OO are
0, cos ¥, sin 9.

According to a principle of analytical geometry the cosine
of the angle between any two lines is equal to the sum of the
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products of the corresponding direction cosines of the lines with
reference to a system of rectangular coordinates, i.e.

cos POO' = sin ¢-cos 9,
and similarly

cos P00’ = sin ¢'-cos 9,

in which ¢’ represents the angle of refraction.
Then, from (9) and (10),

n.PO +#-OP = n.PO+ »n-00 .sin ¢+cos 9
+ 7 0P — #'-00’ -sin ¢"-cos 9.
Since now from the law of refraction the relation exists
7n.sin ¢ = #’'-sin ¢/,

it follows that equation (8) holds for any position whatever
of the point O" which is infinitely close to O.

For the case of a single reflection equation (7) may be
more simply proved. It then takes the form

PO+ OP)=0o, . . . . . (11)
in which (Fig. 2) PO and OF’ denote the actual path of the
ray. If P, be that point which is symmetrical to 2 with

Pl

16, 2.
respect to the tangent plane OF of the refracting body, then

for every point O in the tangent plane, PO = P,0’. The
length of the path of the light from P to 2’ for a single reflec-
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tion at the tangent plane OF is, then, for every position of the
point O, equal to P,0" -} O'P’. Now this length is a mini-
mum if 2, O’, and P’ lie in a straight line. But in that case
the point O’ actually coincides with the point O which is
determined by the law of reflection. But since the property
of a minimum (as well as of a maximum) is expressed by the
vanishing of the first derivative, i.e. by equation (11), there-
fore equation (7) is proved for a single reflection.

It is to be observed that the vanishing of the first derivative
is the condition of a maximum as well as of a minimum. In
the case in which the refracting body is actually bounded by a
plane, it follows at once from the construction given that the
path of the light in reflection is a minimum. It may also be
proved, as will be more fully shown later on, that in the case
of refraction the actual path is a minimum if the refracting
body is bounded by a plane. Hence this principle has often
been called the law of least path.

When, however, the surface of the refracting or reflecting
body is curved, then the path of the light is a minimum or a
maximum according to the nature of the curvature. The
vanishing of the first derivative is the only property which is
common to all cases, and this also is entirely sufficient for the
determination of the path of the ray.

A clear comprehension of the subject is facilitated by the
introduction of the so-called aplaratic surface, which is a sur-
face such that from every point upon it the sum of the optical
paths to two points 2 and P’ is constant. For such a surface
the derivative, not only of the first order, but also of any
other order, of the sum of the optical paths vanishes.

In the case of reflection the aplanatic surface, defined by

P44+ PA=constant C, . . . . (12)

is an ellipsoid of revolution having the points 2 and P’ as foci.

If SOS’ represents a section of a mirror (Fig. 3) and O
a point upon it such that PO and P’O are incident and
reflected rays, then the aplanatic surface A0A’, which
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passes through the point O and corresponds to the points 2
and P’, must evidently be tangent to the mirror SOS’ at O,
since at this point the first derivative of the optical paths
vanishes for both surfaces. If now, as in the figure, the mirror
SOS’ is more concave than the aplanatic surface, then the
optical path PO 4+ OF is a maximum, otherwise a minimum.

F1a. 3.

The proof of this appears at once from the figure, since for all
points (¥ within the ellipsoid 404’ whose equation is given
in (12), the sum PO 4 OP’is smaller than the constant C,
while for all points outside, this sum is larger than C, and for
the actual point of reflection O, it is equal to C.

In the case of refraction the aplanatic surface, defined by

n-PA 4-n'-P'A = constant C,

is a so-called Cartesian oval which must be convex towards
the less refractive medium (in Fig. 4 #» < #’), and indeed more
convex than a sphere described about 2’ as a centre.

This aplanatic surface also separates the regions for whose
points O’ the sum of the optical paths #. PO 4-#'- PO > C
from those for which that sum < C. The former regions lie
on the side of the aplanatic surface toward the less refractive
medium (left in the figure), the latter on the side toward the
more refractive medium (right in the figure).

If now SOS’ represents a section of the surface between the
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two media, and PO, P’O the actual path which the light takes
in accordance with the law of refraction, then the length of the
path through O is a maximum or a minimum according as
SOS’ is more or less convex toward the less refracting medium

A
Fia. 4.

than the aplanatic surface 40A4’. The proof appears at once
from the figure.

If, for example, SOS’ is a plane, the length of the path is
a minimum. In the case shown in the figure the length of the
path is a maximum.

Since, as will be shown later, the index of refraction is
inversely proportional to the velocity, the optical path #/ is
proportional to the time which the light requires to travel the
distance /. The principle of least path is then identical with
Fermat's principle of least time, but it is evident from the
above that, under certain circumstances, the time may also be
a maximum.

Since 627/ = 0 holds for each single reflection or refrac-
tion, the equation 62#/ = o may at once be applied to the
case of any number of reflections and refractions.

3. The Law of Malus.—Geometrically considered there
are two different kinds of ray systems: those which may be
cut at right angles by a properly constructed surface # (ortho-
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tomic system), and those for which no such surface F can be
found (anorthotomic system). With the help of the preceding
principle the law of Malus can now be proved. This law is
stated thus: An orthotomic system of rays remains orthotomic
after any number of veflections and refractions. From the
standpoint of the wave theory, which makes the rays the
normals to the wave front, the law is self-evident. But it can
also be deduced from the fundamental geometrical laws already
used.

Let (Fig. 5) ABCDE and A’B'C’D’'E’ be two rays infinitely
close together and let their initial direction be normal to a
, surface 7. If L rcpresents the total

optical distance from A to £, then
it may be proved that every ray
whose total path, measured from its
origin A, A’, etc., has the same
optical length Z, is normal to a sur-
face F’ which is the locus of the ends
E, E’, etc., of those paths. For
the purpose of the proof let 4’8 and
E’'D be drawn.
According to the law of extreme
path stated above, the length of
the path 4’B'C’"D’'E’ must be equal to that of the infinitely
near path A’BCDE’, i.e. equal to L, which is also the length
of the path ABCDE. If now from the two optical distances
A'BCDE’ and ABCDE the common portion BCD be sub-
tracted, it follows that

Fic. 5.

n-AB+n'.DE =n.A'B -+ n'.DE,

in which # represents the index of the medium between the
surfaces 7 and B, and #’ that of the medium between D
and £/’. But since AR = A’'B, because 48 is by hypothesis
normal to 7, it follows that

DE = DFE’,



THE FUNDAMENTAL LAWS 13

i.e. DE is perpendicular to the surface #’. In like manner
it may be proved that any other ray LYE’ is normal to F'.
Rays which are emitted by a luminous point are normal to
a surface £, which is the surface of any sphere described about
the luminous point as a centre. Since every source of light
may be looked upon as a complex of luminous points, it
follows that g/t rays always form an orthotomic system.



CHAPTER II
GEOMETRICAL THEORY OF OPTICAL IMAGES

1. The Concept of Optical Images.—If in the neighbor-
hood of a luminous point /7 there are refracting and reflecting
bodies having any arbitrary arrangement, then, in general,
there passes through any point P’ in space one and only one
ray of light, i.e. the direction which light takes from P to P’
is completely determined. Nevertheless certain points P’ may
be found at which two or more of the rays emitted by 2 inter-
sect. If a large number of the rays emitted by 2 intersect in
a point 7’, then P’ is called the optical image of P. The
intensity of the light at P’ will clearly be a maximum. If the
actual intersection of the rays is at 7’, the image is called real;
if P’ is merely the intersection of the backward prolongation
of the rays, the image is called vzrtual. The simplest exam-
ple of a virtual image is found in the reflection of a luminous
point P in a plane mirror. The image P’ lies at that point
which is placed symmetrically to 2P with respect to the mirror.
Real images may be distinguished from virtual by the direct
illumination which they produce upon a suitably placed rough
surface such as a piece of white paper. In the case of plane
mirrors, for instance, no light whatever reaches the point P’.
Nevertheless virtual images may be transformed into real by
certain optical means. Thus a virtual image can be seen be-
cause it is transformed by the eye into a real image which
illumines a certain spot on the retina.

The cross-section of the bundle of rays which is brought
together in the image may have finite length and breadth or
may be infinitely narrow so as in the limit to have but one
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dimension. Consider, for example, the case of a single refrac-
tion. If the surface of the refracting body is the aplanatic
surface for the two points £ and P’, then a beam of any size
which has its origin in 2 will be brought together in P’; for
all rays which start from £ and strike the aplanatic surface
must intersect in 7, since for all of them the total optical dis-
tance from 2 to P’ is the same.

If the surface of the refracting body has not the form of the
aplanatic surface, then the number of rays which intersect in
P is smaller the greater the difference in the form of the two
surfaces (which are necessarily tangent to each other, see
page 10). In order that an infinitely narrow, i.e. a plane,
beam may come to intersection in 7', the curvature of the sur-
faces at the point of tangency must be the same at least in one
plane. If the curvature of the two surfaces is the same at O
for two and therefore for all planes, then a solid elementary
beam will come to intersection in P’; and if, finally, a finite
section of the surface of the refracting body coincides with the
aplanatic surface, then a beam of finite cross-section will come
to intersection in £’.

Since the direction of light may be reversed, it is possible
to interchange the source 2 and its image P’, i.e. a source at
P’ has its image at . On account of this reciprocal relation-
ship P and P’ are called conjugate points.

2. General Formula for Images.— Assume that by means
of reflection or refraction all the points P of a given space are
imaged in points 7’ of a second space. The former space will
be called the odject space; the latter, the image space. From
the definition of an optical image it follows that for every ray
which passes through P there is a conjugate ray passing
through 7”. Two rays in the object space which intersect at
P must correspond to two conjugate rays which intersect in
the image space, the intersection being at the point 7’ which
is conjugate to P. For every point P there is then but one
conjugate point 7. If four points P, P,P,P, of the object space
lie in a plane, then the rays which connect any two pairs of
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these points intersect, e.g. the ray P AP, cuts the ray P, P, in
the point 4. Therefore the conjugate rays P’ P', and P' P’
also intersect in a point, namely in 4’ the image of 4. Hence
the four images P/P,/P/P/ also lie in a plane. In other
words, to every point, ray, or plane in the one space there
corresponds one, and but one, point, ray, or plane in the
other. Such a relation of two spaces is called in geometry a
collinear relationship.

The analytical expression of the collinear relationship can
be easily obtained. Let x, y, # be the coordinates of a point
P of the object space referred to one rectangular system, and
%', y’, & the coordinates of the point P’ referred to another
rectangular system chosen for the image space; then to every
%, ¥, & there corresponds one and only one &', y/, 2/, and vice
versa. This is only possible if

x,_a‘x—[—b‘y—l—c‘z—!-le

T ar+tbyeczt-d’
,_ax+bytartd | C oW
V= Tart by featd |
z,_a3x+53y+633+d3

T ar~+bycztd°

in which a, &, ¢, d are constants. That is, for any given
~, ¥, 2, the values of #, y, 2 may be calculated from the
three linear equations (1); and inversely, given values of x, y,
z determine 2/, y’, 2’. If the right-hand side of equations (1)
were not the quotient of two linear functions of #, y, 2, then
for every 1’, y/, & there would be several values of x, y, 2.
Furthermore the denominator of this quotient must be one and
the same linear function (ax 4 &y 4 cz + &), since otherwise
a plane in the image space

Ax 4+ By +C2+D =o0
would not again correspond to a plane
Ax+ By+Ce+D=o0
in the object space.
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If the equations (1) be solved for z, y, and 2z, forms analo-
gous to (I) are obtained; thus

_allxl_l__ élrJ’I_*_L_llzl_l__ dl/
F= T Fby yeaga - - @

From (1) it follows that for

ar-t+by+czt+d=0 =y =2 =w.
Similarly from (2) for
ax'+by 4 +d =0 r=y=2z=o0w.

The plane ax + by -}- ¢z - d = o is called the focal plane
& of the object space. The images P’ of its points P lie at
infinity. Two rays which originate in a point 2 of this focal
plane correspond to two parallel rays in the image space.

The plane a's’ 4 &'y’ + '3’ 4+ d’ = o is called the focal
plane §' of the image space. Parallel rays in the object space
correspond to conjugate rays in the image space which inter-
sect in some point of this focal plane .

In case @ = & = ¢ = o, equations (1) show that to finite
values of x, y, # correspond finite values of &/, y/, 2’; and, in-
versely, since, when a, 4, and ¢ are zero, a’, &', ¢ are also
zero, to finite values of #’, y’, 2 correspond finite values of
x, y, 2. In this case, which is realized in telescopes, there
are no focal planes at finite distances.

3. Images Formed by Coaxial Surfaces.—In optical in-
struments it is often the case that the formation of the image
takes place symmetrically with respect to an axis; e.g. this
is true if the surfaces of the refracting or reflecting bodies are
surfaces of revolution having a common axis, in particular, sur-
faces of spheres whose centres lie in a straight line.

From symmetry the image 7’ of a point P must lie in the
plane which passes through the point 2 and the axis of the
system, and it is entirely sufficient, for the study of the image
formation, if the relations between the object and image in
such a meridian plane are known.
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If the xy plane of the object space and the 2y’ plane of the
image space be made to coincide with this meridian plane, and
if the axis of symmetry be taken as both the x and the x” axis,
then the # and 2’ coordinates no longer appear in equations (1).
They then reduce to

gl td artbytd, 3)
ar + by + 4’ ax + by +d

The coordinate axes of the xy and the x’y’ systems are

then parallel and the » and 2’ axes lie in the same line. The

origin O’ for the image space is in general distinct from the

origin O for the object space. The positive direction of x will

be taken as the direction of the incident light (from left to

y v

Fic. 6.

right); the positive direction of 17, the opposite, i.e. from
right to left. The positive direction of y and y’ will be taken
upward (see Fig. 6).

From symmetry it is evident that 1’ does not change its
value when y changes sign. Therefore in equations (3)
b, = 6 =o. Italso follows from symmetry that a change in
sign of y produces merely a change in sign of y'. Hence
a, = d, = 0 and equations (3) reduce to

,_axr+d by
¥=rtd Y T arga @

Five constants thus remain, but their ratios alone are

sufficient to determine the formation of the image. Hence
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there are in general four characteristic constants whick deter-
mine the formation of images by coaxial surfaces.
The solution of equations (4) for x and y gives
_dy' — 4 __ad—ad, ' )
Z—ar " (5

xr= o V=
a, — ax o,

The equation of the focal plane of the object space is
axr 4- d = o, that of the focal plane of the image space
ar’ — a, = 0. The intersections # and F' of these planes
with the axis of the system are called the principal foci.

If the principal focus F of the object space be taken as the
origin of x, and likewise the principal focus /" of the image
space as the origin of 17, then, if 1, x, represent the coordi-
nates measured from the focal planes, ax, will replace ax 4 4
and — ax,, 2, — a¥’. Then from equations (4)

ad, — ad ! b
ry = NG %:tz—;o )

Hence only two characteristic constants remain in the
equations. The other two were taken up in fixing the posi-
tions of the focal planes. For these two complex constants
simpler expressions will be introduced by writing (dropping
subscripts)

v YV _ A
xx' = ff, 7:;:];, N ¢4

In this equation x and x' are the distances of the object and
the image from the principal focal planes F and §' respectively.

The ratio y’:y is called the magnification. It is 1 for
x = f,i.e. ¥ = f. This relation defines two planes § and
$’ which are at right angles to the axis of the system. These
planes are called the unit planes. Their points of intersection
H and A’ with the axis of the system are called unit points.

The unit planes are characterized by the fact that the dis-
tance from the axis of any point P in one unit plane is equal to
that of the conjugate point P’ in the other unit plane. The two
remaining constants / and /' of equation (7) denote, in accord-
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ance with the above, the distance of the unit planes , ' from
the focal planes , §'. The constant f is called the foca/
length of the object space; f', the focal length of the image
space. The direction of f is positive when the ray falls first
upon the focal plane §, then upon the unit plane §; for /7 the
case is the reverse. In Fig. 7 both focal lengths are positive.

The significance of the focal lengths can be made clear in
the following way: Parallel rays in the object space must have
conjugate rays in the image space which intersect in some
point in the focal plane §’ distant, say, y’ from the axis. The
value of ' evidently depends on the angle of inclination # of
the incident ray with respect to the axis. If # = o, it follows
from symmetry that ' = o, i.e. rays parallel to the axis have
conjugate rays which intersect in the principal focus #’. But

’
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if # is not equal to zero, consider a ray PFA which passes
through the first principal focus %, and cuts the unit plane
in A (Fig. 7). The ray which is conjugate to it, 4’P’, must
evidently be parallel to the axis since the first ray passes
through /. Furthermore, from the property of the unit planes,
A and A’ are equally distant from the axis. Consequently
the distance from the axis ' of the image which is formed by
a parallel beam incident at an angle « is, as appears at once
from Fig. 7,
Yy =ftanwu . . . . . (8)
Hence the following law: Z7%e focal length of the object
space s equal to the ratio of the lincar magnitude of an image
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Jormed in the focal plane of the image space to the apparent
(angulary magnitude of its infinitely distant object. A similar
definition holds of course for the focal length f” of the image
space, as is seen by conceiving the incident beam of parallel
rays to pass first through the image space and then to come
to a focus in the focal plane §.

If in Fig. 7 A’P’ be conceived as the incident ray, so that
the functions of the image and object spaces are interchanged,
then the following may be given as the definition of the focal
length £, which will then mean the focal length of the image
space:

The focal length of the tmage space is equal to the distance
between the axis and any ray of the object space whick is
parallel to the axis divided by the tangent of the inclination of
its conjugate ray.

Equation (8) may be obtained directly from (7) by making
tan # = y:x and tan #’ = y":x’. Since x and &’ are taken
positive in opposite directions and y and y’ in the same direc-
tion, it follows that # and #' are positive in different directions.
The angle of inclination u of a ray in the object space is positive
if the ray goes upward from left to vight; the angle of inclina-
tion u' of a ray in the image space is positive if the ray goes
downward from left to vight.

The magnification depends, as equation.(7) shows, upon
x, the distance of the object from the principal focus F, and
upon f, the focal length. It is, however, independent of y,
i.e. the image of a plane object which is perpendicular to the
axis of the system is similar to the object. On the other hand
the image of a solid object is not similar to the object, as is
evident at once from the dependence of the magnification
upon x. Furthermore it is easily shown from (7) that the
magnification in depth, i.e. the ratio of the increment 4+’ of
' to an increment dx of x, is proportional to the square of the
lateral magnification.

Let a ray in the object space intersect the unit plane § in



22 THEORY OF OPTICS

A and the axis in P (Fig. 8). Its angle of inclination # with
respect to the axis is given by

arr_ A

PH — f—2X

if x taken with the proper sign represents the distance of P
from F.

tan # =

%7

7
- N

Fic. 8.

The angle of inclination #’ of the conjugate ray with respect

to the axis is given by
AH  AH
P/Hl _ f/ — x/?
if ' represent the distance of P’ from /', and P’ and A’ are
the points conjugate to 2 and 4. On account of the property
of the unit planes 44 = A'H’; then by combination of the
last two equations with (7),

tans  f—x x _ f

tanu ~ f—2 " F T 1 ©

tan # =

The ratio of the tangents of inclination of conjugate rays is
called the convergence ratio or the angular magnification. It
is seen from equation (Q) that it is independent of # and #'.

The angular magnification = — 1 for x = f' or 2’ = f.
The two conjugate points X and K’ thus determined are called
the nodal points of the system. They are characterized by the



GEOMETRICAL THEORY OF OPTICAL IMAGES 23

fact that a ray through one nodal point K is comjugate and
parallel to a ray through the other nodal point K'. The posi-
tion of the nodal points for positive focal lengths fand /7 is

F¢ ge’

/ 4
yd

7 K / 'K T

FiG. 9.

shown in Fig. 9. KA and K'A’ are two conjugate rays. It
follows from the figure that 2he distance between the two nodal
points 1s the same as that between the two wnit points. If
f= /', the nodal points coincide with the unit points.
Multiplication of the second of equations (7) by (g9) gives
¥ tan o/ S
m = — 7-, e e e e (IO)
If ¢ be the distance of an object £ from the unit plane §,
and ¢’ the distance of its image from the unit plane ’, ¢ and
¢’ being positive if P lies in front of (to the left of) § and P’
behind (to the right of ) §’, then

e=f—uzx =f =2
Hence the first of equations (7) gives
S, 7
S =EL . . (11)

I4

The same equation holds if ¢ and ¢’ are the distances of P
and P’ from any two conjugate planes which are perpendicular
to the axis, and / and /' the distances of the principal foci from
these planes. This result may be easily deduced from (7).
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4. Construction of Conjugate Points.—A simple graphical
interpretation may be given to equation
’ (11). If ABCD (Fig. 10) is a rectangle
with the sides f and f’, then any
straight line ECE’ intersects the pro-
ﬁ, longations of fand f” at such distances
. from A that the conditions AE = ¢ and
4 " B E  AFE = ¢ satisfy equation (11).

Fi6. ro0. It is also possible to use the unit
plane and the principal focus to determine the point 2’ conju-
gate to . Draw (Fig. 11) from £ a ray PA parallel to the
axis and a ray PF passing through the principal focus F.

E
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B B P
Fic. 11.

A'F’ is conjugate to P4, A’ being at the same distance from
the axis as 4; also P'B’, parallel to the axis, is conjugate to
PFB, B being at the same distance from the axis as B. The
intersection of these two rays is the conjugate point sought.
The nodal points may also be conveniently used for this con-
struction.

The construction shown in Fig. 11 cannot be used when P
and 7’ lie upon the axis. Let a ray from 2 intersect the focal
plane ¥ at a distance g and the unit plane £ at a distance /%
from the axis (Fig. 12). Let the conjugate ray intersect §’
and §§ at the distances 4/(= %) and g’. Then from the figure

&_ _PF -z g PF =i
kR faPr— < b T S ¥PET =
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and by addition, since from equation (7) xz" = ff7,

g+g _ 2 —fr—fr (12)
I S ey

P’ may then be found by laying off in the focal plane ' the

distance g’ = % — g, and in the unit plane ' the distance

I I’
F F’

T

Frc. 12.

/' = %, and drawing a straight line through the two points thus
determined. g and g’ are to be taken negative if they lie
below the axis.

5. Classification of the Different Kinds of Optical Sys-
tems.—The different kinds of optical systems differ from one
another only in the signs of the focal lengths fand /.

If the two focal lengths have the same sign, the system is
concurrent, i.e. if the object moves from left to right (x in-
creases), the image likewise moves from left to right
(#' decreases). This follows at once from equation (7) by
taking into account the directions in which x and 2" are con-
sidered positive (see above, p. 18 ). It will be seen later that
this kind of image formation occurs if the image is due to
refraction alone or to an even number of reflections or to a
combination of the two. Since this kind of image formation is
most frequently produced by refraction alone, it is also called
dioptric.
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If the two focal lengths have opposite signs the system is
contracurrent, i.e. if the object moves from left to right, the
image moves from right to left, as appears from the formula
xx’ = ff’. This case occurs if the image is produced by an odd
number of reflections or by a combination of an odd number of
such with refractions. This kind of image formation is called
katoptric. 'When it occurs the direction of propagation of the
light in the image space is opposite to that in the object space,
so that both cases may be included under the law: 7z a// cases
of tmage formation if a point P be concetved to move along a ray
in the direction in whick the light travels, the image P’ of that
point moves along the conjugate ray in the direction in which
the light travels.

Among dioptric systems a distinction is made between those
having positive and those having negative focal lengths. The
former systems are called convergent, the latter divergent,
because a bundle of parallel rays, after passing the unit plane
O’ of the image space, is rendered convergent by the former,
divergent by the latter. No distinction between systems on
the ground that their foci are real or virtual can be made, for
it will be seen later that many divergent systems (e.g. the
microscope) have real foci.

By similar definition katoptric systems which have a nega-
tive focal length in the image space are called convergent,—
for in reflection the direction of propagation of the light is
reversed.

There are therefore the four following kinds of optical
systems:

Lo a. Convergent: + f, 4 f'.
Dioptric.... {b. Divergent: —f, —/f'.

a. Convergent: 1 f, f.

Katoptric. . {b. Divergent: —f, 4 f'.

6. Telescopic Systems.—Thus far it has been assumed
that the focal planes lie at finite distances. If they lie at
infinity the case is that of a telescopic system, and the coeffi-
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cient a vanishes from equations (4), which then reduce by a
suitable choice cf the origin of the x coordinates to

F=ax, y=8y. . . . . . (13)
Since £ = o when x = 0, it is evident that any two conjugate
points may serve as origins from which » and +’ are measured.
It follows from equation (13) that the magnification in breadth
and depth are constant. The angular magnification is also
constant, for, given any two conjugate rays OP and O'F”, their
intersections with the axis of the system may serve as the
origins. If then a point P of the first ray has the coordinates
x, y, and its conjugate point £’ the coordinates ', y’, the
tangents of the angles of inclination are

tanu=y:x, tano' =y 1 2.
Hence by (13)
tan % 1tan u = B : a. N ¢ 7

a must be positive for katoptric (contracurrent) systems, nega-
tive for dioptric (concurrent) systems. For the latter it is
evident from (14) and a consideration of the way in which 2
and #' are taken positive (see above, p. 21) that for positive
erect images of infinitely distant objects are formed, for nega-
tive @B, inverted images. There are therefore four different
kinds of telescopic systems depending upon the signs of a
and S.
Equations (14) and (13) give
gy tan o'
—ytanu = o e e (IS)

A comparison of this equation with (10) (p. 23) shows that
for telescopic systems the two focal lengths, though both
infinite, have a finite ratio. Thus

7‘,: - ;. e e e .. (16)

If =/, as is the case in telescopes and in all instru-
ments in which the index of refraction of the object space is.
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equal to that of the image space (cf. equation (g), Chapter III),

then a = — . Hence from (14)
tan #' ttan = — 1: B.
This convergence ratio (angular magnification) is called in the
case of telescopes merely the magnification I, . From (13)
yiy=-=I, . . . . . . (14)

i.e. for telescopes the reciprocal of the lateral magnification is
numerically equal to the angular magnification.

7. Combinations of Systems.—A series of several systems
must be equivalent to a single system. Here again attention
will be confined to coaxial systems. If £, and f{’ are the focal
lengths of the first system alone, and £, and £, those of the
second, and fand f” those of the combination, then both the
focal lengths and the positions of the principal foci of the com-
bination can be calculated or constructed if the distance
F/'F,= 4 (Fig. 13) is known. This distance will be called
for brevity the separation of the two systems 1 and 2, and will
be considered positive if )’ lies to the left of F,, otherwise
negative.

A ray S (Fig. 13), which is parallel to the axis and at a
e, 96/ oG |9 e’

%

Fic. 13.

distance y from it, will be transformed by system 1 into the
ray S,, which passes through the principal focus # of that
system. S, will be transformed by system 2 into the ray S,
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The point of intersection of this ray with the axis is the prin-
cipal focus of the image space of the combination. Its position
can be calculated from the fact that /|’ and 7’ are conjugate
points of the second system, i.e. (cf. eq. 7)

FJF’ :f”;z, N (94
in which F'F is positive if £’ lies to the right of #,”. F’ may
be determined graphically from the construction given above
on page 25, since the intersection of S, and S” with the focal
planes F, and F, are at such distances g and g’ from the axis
that ¢ + &' = 5,

The intersection 4’ of S’ with S must lie in the unit plane
§’ of the image space of the combination. Thus &’ is deter-
mined, and, in consequence, the focal length f’ of the com-
bination, which is the distance from §’ of the principal focus 7’
of the combination. From the construction and the figure it
follows that /' is negative when 4 is positive.
/' may be determined analytically from the angle of incli-
nation #’ of the ray S’. For S, the relation holds:
tan #, = y : f,
in which #, is to be taken with the opposite sign if S, is con-
sidered the object ray of the second system. Now by (9),
tanz 4
tan #, = ?7

or since tan #, = — y : f/,
4
tan 2’ = — oy
iz
Further, since (cf. the law, p. 21) y : /" = tan #/, it follows
that
Sy
f':——-lA—z. B € 1)

A similar consideration of a ray parallel to the axis in the
image space and its conjugate ray in the object space gives

fz—fllffz,. N € ()
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and for the distance of the principal focus F of the combination
from the principal focus 7,

FR = f;;l ’
in which FF| is positive if 7 lies to the left of 7,.

Equations (17), (18), (19), and (20) contain the character-
istic constants of the combination calculated from those of the
systems which unite to form it.

Precisely the same process may be employed when the
combination contains more than two systems.

If the separation 4 of the two systems is zero, the focal
lengths # and /' are infinitely great, i.e. the system is tele-
scopic. The ratio of the focal lengths, which remains finite,
is given by (18) and (19). Thus

S _ AL

fl = _f? f—.z e e e e e e (21)
From the consideration of an incident ray parallel to the axis
the lateral magnification »’ : y is seen to be

Viy=B=—f:f. . . . . (22
By means of (21), (22), and (16) the constant @, which repre-
sents the magnification in depth (¢f. equation (13)) is found.
Thus

B ¢ 10))

x'__a_ Loy
TEA= =S (23)

Hence by (14) the angular magnification is
tana' tanu=Bra=f:7. . . . (29

The above considerations as to the graphical or analytical
determination of the constants of a combination must be
somewhat modified if the combination contains one or more
telescopic systems. The result can, however, be easily
obtained by constructing or calculating the path through the
successive systems of an incident ray which is parallel to
the axis.



CHAPTER 1III
PHYSICAL CONDITIONS FOR IMAGE FORMATION

ABBE’S geometrical theory of the formation of optical
images, which overlooks entirely the question of their physical
realization, has been presented in the previous chapter, because
the general laws thus obtained must be used for every special
case of image formation no matter by what particular physical
means the images are produced. The concept of focal points
and focal lengths, for instance, is inherent in the concept of
an image no matter whether the latter is produced by lenses
or by mirrors or by any other means.

In this chapter it will appear that the formation of optical
images as described ideally and without limitations in the
previous chapter is physically impossible, e.g. the image of
an object of finite size cannot be formed when the rays have
too great a divergence.

It has already been shown on page 13 that, whatever the
divergence of the beam, the image of one point may be pro-
duced by reflection or refraction at an aplanatic surface. Images
of other points are not produced by widely divergent rays, since
the form of the aplanatic surface depends upon the position of
the point. For this reason the more detailed treatment of
special aplanatic surfaces has no particular physical interest.
In what follows only the formation of images by refracting and
reflecting spherical surfaces will be treated, since, on account
of the ease of manufacture, these alone are used in optical
instruments; and since, in any case, for the reason mentioned
above, no other forms of reflecting or refracting surfaces furnish
ideal optical images.

31
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It will appear that the formation of optical images can be
practically accomplished by means of refracting or reflecting
spherical surfaces if certain limitations are imposed, namely,
limitations either upon the size of the object, or upon the
divergence of the rays producing the image.

1. Refraction at a Spherical Surface.—In a medium of
index #, let a ray PA fall upon a sphere of a more strongly
refractive substance of index #’ (Fig. 14). Let the radius of

the sphere be 7, its centre C. In order to find the path of the

refracted ray, construct about C two spheres 1 and 2 of radii
i

n 7 .
"= and 7, = " (method of Weierstrass).

Let PA meet sphere 1 in B; draw B( intersecting sphere
2 in D. Then AD is the refracted ray. This is at once
evident from the fact that the triangles ADC and BAC
are similar., For AC:CD = BC:CA =#»n":n. Hence the
X DAC = X ABC = ¢, the angle of refraction, and since
X BAC = ¢, the angle of incidence, it follows that

sin @:sin ¢ = BC:AC = #': n,
which is the law of refraction.
If in this way the paths of different rays from the point P
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be constructed, it becomes evident from the figure that these
rays will not all intersect in the same point 2. Hence no
image is formed by widely divergent rays. Further it appears
from the above construction that all rays which intersect the
sphere at any point, and whose prolongations pass through
B, are refracted to the point D. Inversely all rays which
start from D have their virtual intersection in B. Hence upon
every Sstraight line passing through the centre C of a sphere

of radius v, therve ave two points at distances from C of
U

r and v respectively which, for all rays, stand in the relation

of object and virtual (not real) image. These two points are
called the aplanatic points of the sphere.

If # and #' represent the angles of inclination with respect
to the axis BD of two rays which start from the aplanatic
points B and D, i.e. if

X ABC=1u, X ADC=uw,

then, as was shown above, L ABC = XL DAC = u. From
a consideration of the triangle ADC it follows that

sin# :sinu=AC:CD=n":n. . . . (1)
In this case then the ratio of the sines of the angles of inclina-
tion of the conjugate rays is independent of #, not, as in equa-
tion (9) on page 22, the ratio of the tangents. The difference
between the two cases lies in this, that, before, the image of
a portion of space was assumed to be formed, while now only
the image of a surface formed by widely divergent rays is
under consideration. The two concentric spherical surfaces 1
and 2 of Fig. 14 are the loci of all pairs of aplanatic points B
and D. To be sure, the relation of these two surfaces is not
collinear in the sense in which this term was used above,
because the surfaces are not planes. If s and s’ represent the
areas of two conjugate elements of these surfaces, then, since
their ratio must be the same as that of the entire spherical
snrfaces I and 2,
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Hence equation (1) may be written:
sinf .57 =sin*a’-s".w% . . . . (2)

It will be seen later that this equation always holds for two
surface elements s and s’ which have the relation of object and
image no matter by what particular arrangement the image is
produced.

In order to obtain the image of a portion of space by means
of refraction at a spherical surface, the divergence of the rays
which form the image must be taken very small. Let PA
(Fig. 15) be an incident ray, AP’ the refracted ray, and PCF’

FiG. 15.

the line joining P with the centre of the sphere €. Then from
the triangle PAC,

sin ¢ :sin @ = PH | r: PA,
and from the triangle P’AC,

sin ¢ :sina = PPH—»r:PA,
Hence by division,

sin¢_n’_ PH--» PA
snd—n-—PE—7 P4 * * + O

Now assume that A lies infinitely near to 7, i.e. that the angle
APH is very small, so that P4 may be considered equal to
PH, and P'A to P'H. Also let

PH=¢, PH=/.
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Then from (3)

et+r e o
é—re  n

or

e+e,=r.......(4)

In which » is to be taken positive if the sphere is convex
toward the incident light, i.e. if C lies to the right of 4. ¢ is
positive if 2 lies to the left of /7; ¢ is positive if 7’ lies to the
right of Z. To every ¢ there corresponds a definite ¢’ which
is independent of the position of the ray P4, i.e. an image
of a portion of space which lies close to the axis PC is formed
by rays which lie close to PC.

A comparison of equation (4) with equation (11) on page
23 shows that the focal lengths of the system are

7
f:rn’—n’ f,:rn’—n’ RN )
and that the two unit planes § and &’ coincide and are tan-
gent to the sphere at the point 7. Since fand f’ have the
same sign, it follows, from the criterion on page 25 above,
that the system is dioptric or concurrent. If #’ > 7, a convex
curvature (positive ») means a convergent system. Real
images (¢’ > o) are formed so long as ¢ >/ Such images
are also inverted.
Equation (10) on page 23 becomes
y' tan o’ 7
_—vtanu:_;”' L . (6)

By the former convention the angles of inclination # and #’ of
conjugate rays are taken positive in different ways. If they
are taken positive in the same way the notation 'z will be used
instead of #/, i.e. ’# = — #’. Hence the last equation may
be written:

mytanu=mn’y'tan’u. . . . . . (7)
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In this equation a quantity which is not changed by refrac-
tion appears,—an oplical invariant. This quantity remains
constant when refraction takes place at any number of coaxial
spherical surfaces. For such a case let # be the index of
refraction of the first medium, #’ that of the last; then equa-
tion (7) holds. But since in general for every system, from
equation (10), page 23,

Y tana f

ft;n—z?:f’" s s e .(8)
there results from a combination with (7)

fiff=n:ny, o« o . . . . (9)
i.e. In the formation of images by a sysiem of coaxtal refract-
ing spherical surfaces the ratio of the jfocal lengths of the
system is equal to the ratio of the indices of refraction of the
first and last media. If, for example, these two media are
air, as is the case with lenses, mirrors, and most optical instru-
ments, the two focal lengths are equal.

2. Reflection at a Spherical Surface.—Let the radius » be
considered positive for a convex, negative for a concave mirror.

A

Fic. 16.

By the law of reflection (Fig. 16) X PAC = X P AC.
Hence from geometry

PA:PA=PC:PC. . . . . (10

If the ray PA makes a large angle with the axis PC, then
the position of the point of intersection P’ of the conjugate ray
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with the axis varies with the angle. In that case no image of
the point P exists. But if the angle 4PC is so small that the
angle itself may be used in place of its sine, then for every
point 2 there exists a definite conjugate point 7', i.e. an image
is now formed. It is then permissible to set P4 = PH,
P'A = P'H, so that (10) becomes

PH:PH=PC:PC, . . . . (11)

or if PH = ¢, PPH = — ¢, then, since 7 in the figure is nega-
tive,

| S
—;——}-;—,:;.. e e e (12)

A comparison of this with equation (11) on page 23 shows
that the focal lengths of the system are

I

f=_;r, f’:—}—%r; < e (13)

that the two unit planes § and §’ coincide with the plane
tangent to the sphere at the vertex //; that the two principal
foci coincide in the mid-point between C and //; and that the
nodal points coincide at the centre C of the sphere. The
signs of ¢ and ¢’ are determined by the definition on page 23.
Since f and /' have opposite signs, it follows, from the
criterion given on page 25, that the system is katoptric or con-
tracurrent. By the conventions on page 26 a negative 7, i.e.
a concave mirror, corresponds to a convergent system; on the
other hand a convex mirror corresponds to a divergent system.
A comparison of equations (13) and (5) shows that the
results here obtained for reflection at a spherical surface may
be deduced from the former results for refraction at such a sur-
face by writing »’: 2 = — 1. In fact when #': # = — 1, the
law of refraction passes into the law of reflection. Use may
be made of this fact when a combination of several refracting
or reflecting surfaces is under consideration. Equation (g)
holds for all such cases and shows that a positive ratio f:
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always results from a combination of an even number of reflec~
tions from spherical surfaces or from a combination of any
number of refractions, i.e. such systems are dioptric or concur-
rent (cf. page 23).

The relation between image and object may be clearly
brought out from Fig. 17, which relates to a concave mirror.
The numbers 7, 2, 3, . . . § represent points of the object at a
constant height above the axis of the system. The numbers
7 and § which lie behind the mirror correspond to wirtual
objects, i.e. the incident rays start toward these points, but fall
upon the mirror and are reflected before coming to an intersec-
tion at them. Real rays are represented in Fig. 17 by

FiG. 17.

continuous lines, virtual rays by dotted lines. The points
I, 2,3,...8 are the images of the points 7, 2, 3, . . . &.
Since the latter lie in a straight line parallel to the axis, the
former must also lie in a straight line which passes through the
principal focus / and through point 6, the intersection of the
object ray with the mirror, i.e. with the unit plane. The con-
tinuous line denotes real images; the dotted line, virtual im-
ages. Any image point 2’ may be constructed (cf. page 24)
by drawing through the object 2 and the principal focus # a
straight line which intersects the mirror, i.e. the unit plane, in
some point 4,. If now through 4, a line be drawn parallel
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to the axis, this line will intersect the previously constructed
image line in the point sought, namely 2’. From the figure it
may be clearly seen that the images of distant objects are real
and inverted, those of objects which lie in front of the mirror
within the focal length are virtual and erect, and those of virtual
objects behind the mirror are real, erect, and lie in front of the
mirror.

Fig. 18 shows the relative positions of object and image

for a convex mirror. Itis evident that the images of all real
objects are virtual, erect, and reduced; that for virtual objects
which lie within the focal length behind the mirror the images
are real, erect, and enlarged; and that for more distant virtual
objects the images are also virtual.

P ¢ P 7
FiG. 19.
Equation (11) asserts that PCP"H are four harmonic points.

The image of an object 2 may, with the aid of a proposition
of synthetic geometry, be constructed in the following way:
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From any point L (Fig. 19) draw two rays LC and LA, and
then draw any other ray POB. Let O be the intersection of
DH with BC: then LO intersects the straight line PH in a
point 2’ which is conjugate to . For a convex mirror the
construction is precisely the same, but the physical meaning of
the points € and A is interchanged.

3. Lenses.—The optical characteristics of systems com-
posed of two coaxial spherical surfaces (lenses) can be directly
deduced from § 7 of Chapter II. The radii of curvature 7,
and 7, are taken positive in accordance with the conventions
given above (§ 1); i.e. the radius of a spherical surface is
considered positive if the surface is convex toward the inci-
dent ray (convex toward the left). Consider the case of a lens
of index » surrounded by air. Let the thickness of the lens,
i.e. the distance between its vertices S, and S, (Fig. 20), be

6 / 4 G
ﬁ' —— f; PP
F b3 s! S o
n

denoted by &. If the focal lengths of the first refracting sur-
face are denoted by f, and f,, those of the second surface by
/, and £/, then the separation 4 of the two systems (cf. page
28) is given by

o

F1c. 20.

d=d~f'~f, . « « . . (1@

and, by (5),

I n n

1
7
f1=rln_l' -fl/=rl”__l’ fz=rzl_”'f;=rzl_”' (15)
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Hence by equations (19) and (18) of Chapter 11 (page 29)
the focal lengths of the combination are
n o 77,
—1 dn—1)—nr 4 nr, ° (16)

F=r=

while the positions of the principal foci # and /7 of the com-
bination are given by equations (17) and (20) of Chapter II
(page 29). By these equations the distance o of the principal
focus F in front of the vertex S, and the distance o’ of the
principal focus /7’ behind the vertex S, are, since ¢ = FF, 4 £,
and o/ = F/F' + [/,

v dn—1)+nr
T n—1 dn—1)—nr +ur,

o 2 L —dr—1)fnr
n—1 dn—1)—nr +nr, '

(17)

(18)

If / represents the distance of the first unit plane § in front
of the vertex S, and /' the distance of the second unit plane
&’ behind the vertex S,, then f+ /2= ¢ and f' 4 = o,
and, from (16), (17), and (18), it follows that

. rd
= dn—1) —ur, +nr, = " " (19)
r__ _rzd
4 Tdn—1)—nr,fur, T 77 (20)

Also, since the distance p between the two unit planes § and
$'is p = d+ 2+ 7, it follows that

d—r +r,
— 1) —nr,+nr, (21)

Since /= f’, the nodal and unit points coincide (cf. page 23).

From these equations it appears that the character of the
system is not determined by the radii », and 7, alone, but that
the thickness & of the lens is also an essential element. For
example, a double convex lens (», positive, 7, negative), of
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not too great thickness &, acts as a convergent system, i.e.
possesses a positive focal length; on the other hand it acts as
a divergent system when 4 is very great.

4. Thin Lenses.—In practice it often occurs that the thick-
ness & of the lens is so small that &(z — 1) is negligible in
comparison with #z(», — »,). Excluding the case in which
7, = r,, which occurs in concavo-convex lenses of equal radii,
equation (16) gives for the focal lengths of the lens

f:f’z(

n— 1)(r,— 7,

— 7 1
12 or

I ( 1 1 (22)

7=l =)

while equations (19), (20), and (21) show that the unit planes

nearly coincide with the nearly coincident tangent planes at
the two vertices S, and §,.

More accurately these equations give, when &z — 1) is

neglected in comparison to #(7, — 7,),
d 7, , d
= ———1— W=+ "

’
nor,— 7,

7, PR

2
v, n

(23)

Thus the distance p between the two unijt planes is indepen-
dent of the radii of the lens. Forz = 1.5, p = 34. For both
double-convex and double-concave lenses, since 4 and /#’ are
negative, the unit planes lie inside of the lens. For equal
curvature », = — 7,, and for = 1.5, A=/ = — 1d, i.e.
the distance of the unit planes from the surface is one third
the thickness of the lens. When 7, and #, have the same sign
the lens is concavo-convex and the unit planes may lie outside
of it.
Lenses of positive focal lengths (convergent lenses) include

Double-convex lenses (», > 0, 7, < 0),
Plano-convex lenses (7, > 0, 7, = )
Concavo-convex lenses (», > 0, 7, > 0, 7, > 7)),
in short all lenses which are thicker in the middle than at the
edges.
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Lenses of negative focal length (divergent lenses) include
Double-concave lenses (r, < 0, 7,> 0),
Plano-concave lenses (r, = «, 7, > 0),
Convexo-concave lenses (», > 0, 7, >0, r, < 7)),

i.e. all lenses which are thinner in the middle than at the
edges.*

The relation between imagec and object is shown diagram-
matically in Figs. 21 and 22, which are to be interpreted in

Fic. 21.

the same way as Figs. 17 and 18. From these it appears that
whether convergent lenses produce real or virtual images of

r'ﬁ',‘

F1G. 22.

real objects depends upon the distance of the object from the
lens; but divergent lenses produce only virtual images of real

* The terms collective (dioptric), for systems of positive focal length, dispersive,
for those of negative focal length, have been chosen on account of this property of
lenses. A lens of positive focal length renders an incident beam more convergent,
one of negative focal length renders it more divergent. When images are formed
by a system of lenses, or, in general, when the unit planes do not coincide, say,
with the first refracting surface, the conclusion as to whether the system is con-
vergent or divergent cannot be so immediately drawn. Then recourse must be
had to the definition on page 26,
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objects. However, divergent lenses produce real, upright,
and enlarged images of virtual objects which lie behind the
lens and inside of the principal focus.

If two thin lenses of focal lengths £, and £, are united to
form a coaxial system, then the separation 4 (cf. page 40) is
4 = —(f, +/,). Hence, from equation (19) of Chapter II
(page 29), the focal length of the combination is

_ N _
or
}:}.l—l——}; e e e e e (24)

It is customary to call the reciprocal of the focal length of
a lens its power. Hence the law: 77e power of a combination
of thin lenses is equal to the sum of the powers of the separate
lenses.

5. Experimental Determination of Focal Length.—For
thin lenses, in which the two unit planes are to be considered
as practically coincident, it is sufficient to determine the posi-
tions of an object and its image in order to deduce the focal
length. For example, equation (11) of Chapter 11, page 23,
reduces here, since f = f, to

1

1 I
.e_..l._?: 7 e e e e e . (25)

Since the positions of real images are most conveniently
determined by the aid of a screen. concave lenses, which
furnish only virtual images of real objects, are often combined
with a convex lens of known power so that the combination
furnishes a real image. The focal length of the concave lens
is then easily obtained from (24) when the focal length of the
combination has been experimentally determined. This pro-
cedure is not permissible for thick lenses nor for optical systems
generally. The positions of the principal foci are readily deter-
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mined by means of an incident beam of parallel rays. If then
the positions of an object and its image with respect to the
principal foci be determined, equations (7), on page 19, or (9),
on page 22, give at once the focal length f ( = f').

Upon the definition of the focal length given in Chapter II,
page 20 (cf. equation (8)), viz.,

f=yitanw, . . . . . . (26)

it is easy to base a rigorous method for the determination of
focal length. Thus it is only necessary to measure the angular
magnitude # of an infinitely distant object, and the linear mag-
nitude ' of its image. This method is particularly convenient
to apply to the objectives of telescopes which are mounted
upon a graduated circle so that it is at once possible to read
off the visual angle u.

If the object of linear magnitude y is not at infinity, but is
at a distance ¢ from the unit plane §, while its image of linear
magnitude »’ is at a distance ¢’ from the unit plane §’, then

YViy=—¢e, .o . . L (2))

because, when £ = f’, the nodes coincide with the unit points,
i.e. object and image subtend equal angles at the unit points.
By eliminating ¢ and ¢’ from (25) and (27) it follows that

4 4
= = T 1
f — v (28)

7y Ty
Now if either ¢ or ¢’ are chosen large, then without appreci-
able error the one so chosen may be measured from the centre
of the optical system (e.g. the lens), at least unless the unit
planes are very far from it. Then either of equations (28)
may be used for the determination of the focal length f when
¢ or ¢ and the magnification »’: y have been measured.

The location of the positions of the object or image may
be avoided by finding the magnification for two positions of
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the object which are a measured distance / apart. For, from

(7), page 19,
=7 G)="F

S

hence

S=—, . . . . . (29
5.~ &),

in which (y: »’), denotes the reciprocal of the magnification for
the position x of the object, (¥ :»"), the reciprocal of the mag-
nification for a position x 4- / of the object. / is positive if, in
passing to its second position, the object has moved the dis-
tance / in the direction of the incident light (i.e. from left to
right).

Abbe’s focometer, by means of which the focal lengths of
microscope objectives can be determined, is based upon this
principle. For the measurement of the size of the image 5’ a
second microscope is used. Such a microscope, or even a
simple magnifying-glass, may of course be used for the meas-
urement of a real as well as of a virtual image, so that this
method is also applicable to divergent lenses, in short to all
cases.*

6. Astigmatic Systems.—In the previous sections it has
been shown that elementary beams whose rays have but a
small inclination to the axis and which proceed from points
either on the axis or in its immediate neighborhood may be
brought to a focus by means of coaxial spherical surfaces.
In this case all the rays of the beam intersect in a single point
of the image space, or, in short, the beam is JAomocentric in
the image space. What occurs when one of the limitations
imposed above is dropped will now be considered, i.e. an

* A more detailed account of the focometer and of the determination of focal
lengths is given by Czapski in Winkelmann, Handbuch der Physik, Optik,
pp. 285-296.
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elementary beam /aving any inclination to the axis will now
be assumed to proceed from a point P.

In this case the beam is, in general, no longer homocentric
in the image space. An elementary beam which has started
from a luminous point 2 and has suffered reflections and re-
fractions upon surfaces of any arbitrary form is so constituted
that, by the law of Malus (cf. page 12), it must be classed
as an orthotomic beam, i.e. it may be conceived as made up
of the normals /V to a certain elementary surface 2. These
normals, however, do not in general intersect in a point.
Nevertheless geometry shows that upon every surface = there
are two systems of curves which intersect at right angles (the
so-called lines of curvature) whose normals, which are also at
right angles to the surface 2, intersect.

If a plane elementary beam whose rays in the image space
are normal to an element /| of a line of curvature be alone
considered, it is evident that an image will be formed. The
image is located at the centre of curvature of this element /,
since its normals intersect at that point. Since every element
/, of a line of curvature is intersected at right angles by some
other element /, of another line of curvature, a second elemen-
tary beam always exists which also produces an image, but
the positions of these two images do not coincide, since in
general the curvature of /, is different from that of Z,

What sort of an image of an object 2 will then in general
be formed by any elementary beam of #47e¢ dimensions? Let
1, 2, 3, 4 (Fig. 23) represent the four intersections of the four
lines of curvature which bound the element 42 of the :sur-
face =. Let the curves 7-2 and 3—4 be horizontal, 2—7 and
1—4 vertical. Let the normals at the points r and 2 intersect
at r2, those at 7 and 4 at 37. Since the curvature of the line
72 differs by an infinitely small amount from that of the line
3—4, the points of intersection 72 and 34 lie at almost the same
distance from the surface 2. Hence the line p, which connects
the points 72 and 34 is also nearly perpendicular to the ray S
which passes through the middle of #2 and is normal to it.
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This ray is called the principal ray of that elementary beam
which is composed of the normals to #2. From the symmetry
of the figure it is also evident that the line p, must be parallel
to the lines 2-7 and r-y, i.e. it is vertical. The normals to
any horizontal line of curvature intersect at some point of the
line p,.

2

P 12 7%
i % s
- 7 2
34 23
A
FiG, 23.

Likewise the normals to any vertical line of curvature
intersect at some point of the line p, which connects 74 and 23.
Also, p, must be horizontal and at right angles to S. These
two lines p, and p,, which are perpendicular both to one another
and to the principal ray, are called the two focal lines of the
elementary beam. The planes determined by the principal
ray S and the two focal lines g, and p, are called the focal planes
of the beam. It can then be said that in general the image of a
luminous point 2, formed by any elementary beam, consists of
two focal lines which are at right angles to each other and to
the principal ray, and lie a certain distance apart. This dis-
tance is called the astigmatic difference. Only in special cases,
as when the curvatures of the two systems of lines of curvature
are the same, does a homocentric crossing of the rays and a true
image formation take place. This present more general kind
of image formation will be called astigmatic in order to dis-
tinguish it from that considered above.*

A sharp, recognizable image of a collection of object points
P is not formed by an astigmatic system. Only when the

* Stigma means focus, hence an astigmatic beam is one which has no focus.
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object is a straight line can a straight-line image be formed;
and only then when the line object is so placed that all the
focal lines which are the images of all the points 2 of the line
object coincide. Since the image of every point consists of
two focal lines p and p, which are at right angles to each
other, there are also two positions of the line object go° apart
which give rise to a line image. These two images lie at
different distances from the surface =.

Similarly there are two orientations of a system of parallel
straight lines which give rise to an image consisting of parallel
straight lines.

If the object is a right-angled cross or a network of lines
at right angles, there is one definite orientation for which an
image of one line of the cross or of one system of parallel lines
of the network is formed in a certain plane 5, of the image
space; while in another plane P, of the image space an image
of the other line of the cross or of the other system of lines of
the network is formed. This phenomenon is a good test for
astigmatism.

Astigmatic images must in general be formed when the
elementary refracting or reflecting surface has two different
curvatures. Thus cylindrical lenses, for example, show marked
astigmatism. Reflection or refraction at a spherical surface
also renders a homocentric elementary beam astigmatic when
the incidence is oblique.

In order to enter more fully into the consideration of this
case, let the point object 2, the centre C of the sphere, and
the point 4 in which the principal ray of the elementary beam
emitted by £ strikes the spherical surface, lie in the plane of
the figure (Fig. 24). Let the line P4 be represented by s,
the line 47, by 5, Now since

APAP, = APAC 4 4CAP,,
it follows that

ss, sin (¢ — @') = s7 sin ¢ + 5,7 sin ¢/,
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in which ¢ and ¢’ denote the angles of incidence and refrac-
tion respectively, and » the radius of the sphere. Since now
by the law of refraction sin ¢ = 7 sin ¢/, it follows from the
last equation that

55,(n cos ¢’ — cos @) = srn 4 s, or

1 7  #ncos ¢ — cos @

sts= p .« (39

It is evident that all rays emitted by P which have the same
angle of inclination # with the axis must, after refraction, cross

FiG. 24.

the axis at the same point 2, The beam made up of such
rays is called a sagittal beam. 1t has a focal point at 2,

On the other hand a meridional beam, i.e. one whose rays
all lie in the plane PAC, has a different focal point 2. Let
PB be a ray infinitely near to 24, and let its angle of inclina-
tion to the axis be # -+ 4u and its direction after refraction
BP,. Then X BP A is to be considered as the increment 2z’
of #', and LBCA as the increment da of a. It is at once
evident that

s.du=ABcos @, s,.du' =AB.cos¢, r.da=AB. (31)

But since

d=adu O=a—u,



PHYSICAL CONDITIONS FOR IMAGE FORMATION s1

it follows that

dop = da + du = AB(:T-F coi ¢),
I cos ¢’
d¢' = da — du’=AB(;- p ) . . (32)

1
But a differentiation of the equation of refraction sin ¢ =
# sin ¢’ gives
cos ¢.dpp = ncos ¢ .de¢'.
Substituting in this the values of d¢ and d¢’ taken from (32),
there results
cos’ ¢ ncost ¢ ncos ¢’ —cos @

S Sl v

e (33)

From (33) and (30) different values s, and s, corresponding to
the same s are obtained, i.e. 2 is imaged astigmatically. The
astigmatic difference is greater the greater the obliquity of the
incident beam, i.e. the greater the value of ¢. It appears
from (30) and (33) that this astigmatic difference vanishes, i.e.
s, = s,=s', only whens = — »s’. This condition determines
the two aplanatic points of the sphere mentioned on page 33.
The equations for a reflecting spherical surface may be
deduced from equations (30) and (33) by substituting in them

n= —1,ie ¢ = — ¢ (cf. page 37). Thus for this case*
I I cos ¢ I 1 2
s s, r ' s s, rcoseg (34)

Or by subtraction,

I——;_—_Z( ! —cos¢),

7\cos [

or

(35)

.

2 .
= sin @ tan ¢, .

* For a convex mirror 7 is positive; for a concave, negative.
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an equation which shows clearly how the astigmatism increases
with the angle of incidence. This increase is so rapid that the
astigmatism caused by the curvature of the earth may, by
suitable means, be detected in a beam reflected from the sur-
face of a free liquid such as a mercury horizon. Thus if the
reflected image of a distant rectangular network be observed in
a telescope of 7.5 m. focal length and } m. aperture, the
astigmatic difference amounts to {5 mm., i.e. the positions in
which the one or the other system of lines of the network is
in sharp focus are {{; mm. apart. In the giant telescope of
the Lick Observatory in California this astigmatic difference
amounts to ;% mm. Thus the phenomena of astigmatism may
be made use of in testing the accuracy of the surface of a plane
mirror. Instead of using the difference in the positions of the
images of the two systems of lines of the network, the angle
of incidence being as large as possible, the difference in the
sharpness of the images of the two systems may be taken as
the criterion. For this purpose a network of dotted lines may
be used to advantage.

7. Means of Widening the Limits of Image Formation.
—1It has been shown above that an image can be formed by
refraction or reflection at coaxial spherical surfaces only when
the object consists of points lying close to the axis and the
inclination to the axis of the rays forming the image is small.
If the elementary beam has too large an inclination to the
axis, then, as was shown in the last paragraph, no image can
be formed unless all the rays of the beam lie in one plane.

Now such arrangements as have been thus far considered
for the formation of images would in practice be utterly use-
less. For not only would the images be extremely faint if
they were produced by single elementary beams, but also, as
will be shown in the physical theory (cf. Section 1, Chapter
IV), single elementary beams can never produce sharp images,
but only diffraction patterns.

Hence it is necessary to look about for means of widening
the limits hitherto set upon image formation. In the first place
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the limited sensitiveness of the eye comes to our assistance:
we are unable to distinguish two luminous points as separate
unless they subtend at the eye an angle of at least one minute.
Hence a mathematically exact point image is not necessary,
and for this reason alone the beam which produces the image
does not need to be elementary in the mathematical sense, i.e.
one of infinitely small divergence.

By a certain compromise between the requirements it is
possible to attain a still further widening of the limits. Thus
it is possible to form an image with a broadly divergent beam
if the object is an element upon the axis, or to form an image
of an extended object if only beams of small divergence are
used. The realization of the first case precludes the possibility
of the realization of the second at the same time, and wvice
versa.

That the image of a point upon the axis can be formed by
a widely divergent beam has been shown on page 33 in con-
nection with the consideration of aplanatic surfaces. But this
result can also be approximately attained by the use of a suit-
able arrangement of coaxial spherical surfaces. This may be
shown from a theoretical consideration of so-called splerical
abervation. To be sure the images of adjacent points would
not in general be formed by beams of wide divergence. In
fact the image of a surface element perpendicular to the axis
can be formed by beams of wide divergence only if the so-
called sine law is fulfilled. The objectives of microscopes and
telescopes must be so constructed as to satisfy this law.

The problem of forming an image of a large object by a
relatively narrow beam must be solved in the construction of
the eyepieces of optical instruments and of photographic
systems. In the latter the beam may be quite divergent, since,
under some circumstances (portrait photography), only fairly
sharp images are required. These different problems in image
formation will be more carefully considered later. The forma-
tion of images in the ideal sense first considered, i.e. when the
objects have any size and the beams any divergence, is, to be
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sure, impossible, if for no other reason, simply because, as
will be seen later, the sine law cannot be simultaneously ful-
filled for more than one position of the object.

8. Spherical Aberration.—If from a point 2 on the axis
two rays S, and S, are emitted of which S, makes a very small
angle with the axis, while S, makes a finite angle #, then,
after refraction at coaxial spherical surfaces, the image rays S’
and S, in general intersect the axis in two different points P/’
and P,. The distance between these two points is known as
the spherical aberration (longitudinal aberration). In case the
angle # which the ray S, makes with the axis is not too great,
this aberration may be calculated with the aid of a series of
ascending powers of . If, however, « is large, a direct
trigonometrical determination of the path of each ray is to be
preferred. This calculation wiil not be given here in detail.*
For relatively thin convergent lenses, when the object is
distant, the image P, formed by rays lying close to the axis
is farther from the léns than the image P, formed by the more
oblique rays. Such a lens, i.e. one for which 7, lies nearer
to the object than 2, is said to be undercorrected. Inversely,
a lens for which 2, is more remote from the object than 2, is
said to be owercorrected. Neglecting all terms of the power
series in # save the first, which contains #2 as a factor, there
results for this so-called aéberration of the first order, if the
object P is very distant,

BR{2—272 4 n® | a(n + 2n*—27°%) | o%?}
Jo2n(n— 11 — opf
in which / represents the radius of the aperture of the lens,

fits focal length, # its index of refraction, and o the ratio of
its radii of curvature, i.e.

e=P'P/ =— , (36)

C=rire . (37)

* For a more complete discussion cf. Winkelmann’s Handbuch der Physik,
Optik, p. 99 sq.;Miiller-Pouillet’s Lehrbuch d. Physik, gth Ed. p. 487 ; or Heath,
Geometrical Optics.
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The signs of », and 7», are determined by the conventions
adopted on page 40; for example, for a double-convex lens
7, is positive, 7, negative. PP, is negative for an undercor-
rected lens, positive for an overcorrected one. Further, the
ratio 4 :jf is called the relative aperture of the lens. It
appears then from (36) that if ¢ remains constant, the ratio
of the aberration PP, to the focal length f is directly pro-
portional to the square of the relative aperture of the lens.

For given values of fand /% the aberration reaches a mini-
mum for a particular value ¢’ of the ratio of the radii.* By

(36) this value is

,  4+n—2n
o _—_”(I+2”) B 1))
Forn=1.5, 0 = — 1:6. This condition may be realized

either with a double-convex or a double-concave lens. The
surface of greater curvature must be turned toward the incident
beam. But if the object lies near the principal focus of the
lens, the best image is formed if the surface of lesser curvature
is turned toward the object; for this case can be deduced from
that above considered, i.e. that of a distant object, by simply
interchanging the roles of object and image.t For 2 = 2,
(38) gives ¢’ = + }. This condition is realized in a con-
vexo-concave lens whose convex side is turned toward a dis-
tant object .

The following table shows the magnitude of the longi-
tudinal aberration e for two different indices of refraction and
for different values of the ratio o of the radii. f has been
assumed equal to 1 m. and %:f= {4, i.e. Z=10cm. The
so-called lateral aberration C, i.e. the radius of the circle
which the rays passing through the edge of a lens form upon

* This minimum is never zero. A complete disappearance of the aberration
of the first order can only be attained by properly chovsing the thickness of the
lens as well as the ratio of the radii.

+ 1t follows at once that the form of the lens which gives minimum aberration
depends upon the position of the object.
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a screen placed at the focal point 2/, is obtained, as appears
at once from a construction of the paths of the rays, by multi-
plication of the longitudinal aberration by the relative aperture
% :f, i.e. in this case by 4. Thus the lateral aberration
determines the radius of the illuminated disc which the outside
rays from a luminous point 2 form upon a screen placed in the
plane in which 2 is sharply imaged by the axial rays.

f=1m. /= 10cm.

n=13 n=12
Formoflens....oeeeevenn vun. o —€ 4 o | —e€ g
Front face plane.............. o 4.5 cm|4.5 mm| o |2 cm|2 mm
Both sides alike............... — 1 |I.67 “|1.67 *“ | —1 |1 B S
Rear face plane............... o [L17 ‘117 * o |o.5 ‘“|o.5 ¢
Most advantageous form ..... — 4 107 “ 1oy { + 1 044 “lo.gg"

That a plano-convex lens produces less aberration when its
convex side is turned toward a distant object than when the
sides are reversed seems probable from the fact that in the first
case the rays are refracted at both surfaces of the lens, in the
second only at one; and it is at least plausible that the dis-
tribution of the refraction between two surfaces is unfavorable
to aberration. The table further shows that the most favor-
able form of lens has but little advantage over a suitably placed
plano-convex lens. Hence, on account of the greater ease of
construction, the latter is generally used.

Finally the table shows that the aberration is very much
less if, for a given focal length, the index of refraction is made
large. This conclusion also holds when the aberration of a
higher order than the first is considered, i.e. when the remain-
ing terms of the power series in # are no longer neglected.
Likewise the aberration is appreciably diminished when a
single lens is replaced by an equivalent system of several



PHYSICAL CONDITIONS FOR IMAGE FORMATION 57

lenses.* By selecting for the compound system lenses of
different form, it is pessible to cause the aberration not only
of the first but also of still higher orders to vanish.+ One
system can be made to accomplish this for more than one
position of the object on the axis, but never for a finite length
of the axis.

When the angle of inclination # is large, as in microscope
objectives in which # sometimes reaches a value of go°, the
power series in % cannot be used for the determination of the
aberration. It is then more practicable to determine the paths
of several rays by trigonometrical calculation, and to find by
trial the best form and arrangement of lenses. There is, how-
ever, a way, depending upon the use of the aplanatic points of
a sphere mentioned on page 33, of diminishing the divergence
of rays proceeding from near objects without introducing aber-
ration, i.e. it is possible to produce virtual images of any size,
which are free from aberration.

Let lens 7 (Fig. 25) be plano-convex, for example, a hemi-

F1c. 25.

spherical lens of radius 7,, and let its plane surface be turned
toward the object 2. If the medium between 2 and this lens
has the same index 7, as the lens, then refraction of the rays

*In this case, to be sure, the brightness of the image suffers somewhat on
account of the increased loss of light by reflection.

4 Thus the aberration of the first order can be corrected by a suitable com-
bination of 2 convergent and a divergent lens.
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proceeding from the object first takes place at the rear surface
of the lens; and if the distance of P from the centre of curva-
ture C, of the back surface is 7, : », then the emergent rays
produce at a distance ##, from (| a virtual image P, free from
aberration. If now behind lens 7 there be placed a second
concavo-convex lens 2 whose front surface has its centre of
curvature in 2, and whose rear surface has such a radius 7, that
P, lies in the aplanatic point of this sphere 7, (the index of
lens 2 being #,), then the rays are refracted only at this rear
surface, and indeed in such a way that they form a virtual
image £, which lies at a distance #,, from the centre of curva-
ture C, of the rear surface of lens 2, and which again is entirely
free from aberration. By addition of a third, fourth, etc.,
concavo-convex lens it is possible to produce successive virtual
images P,, P,, etc., lying farther and farther to the left, i.e.
it is possible to diminish successively the divergence of the
rays without introducing aberration.

This principle, due to Amici, is often actually employed in
the construction of microscope objectives. Nevertheless no
more than the first two lenses are constructed according to this
principle, since otherwise the chromatic errors which are intro-
duced are too large to be compensated (cf. below).

9. The Law of Sines.—In general it does not follow that
if a widely divergent beam from a point £ upon the axis gives
rise to an image /' which is free from aberration, a surface
element do perpendicular to the axis at £ will be imaged in
a surface element do’ at 2’. In order that this may be the
case the so-called sine law must also be fulfilled. This law
requires that if # and #’ are the angles of inclination of any two
conjugate rays passing through 2 and 7, sin % : sin #’ = const.

According to Abbe systems which are free from aberra-
tion for two points 2 and P’ on the axis and which fulfil the
sine law for these points are called aeplanatic systems. The
points P and P’ are called the aplanatic points of the system.
The aplanatic points of a sphere mentioned on page 33 fulfil
these conditions, since by equation (2), page 24. the ratio of the
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sines is constant. The two foci of a concave mirror whose
surface is an ellipsoid of revolution are not aplanatic points
although they are free from aberration.

It was shown above (page 22, equation (9), Chapter II)
that when the image of an object of any size is formed by a
collinear system, tan « : tan 2’ = const. Unless # and #' are
very small, this condition is incompatible with the sine law,
and, since the latter must always be fulfilled in the formation
of the image of a surface element, it follows that @ posnt-for-
point imaging of objects of any size by widely divergent beams
(s physically impossible.

Only when # and #' are very small can both conditions be
simultaneously fulfilled. In this case, whenever an image /'
is formed of 7, an image do’ will be formed at P’ of the surface
clement do at P. But if » is large, even though the spherical
aberration be entirely eliminated for points on the axis, unless
the sine condition is fulfilled the images of points which lie to
one side of the axis become discs of the same order of magni-
tude as the distances of the points from the axis. According
to Abbe this blurring of the images of points lying off the axis is
due to the fact that the different zones of a spherically corrected
system produce images of a surface element of different linear
magnifications.

The mathematical condition for the constancy of this linear
magnification is, according to Abbe, the sine law.* The same
conclusion was reached in different ways by Clausius t and v.
Helmholtz{. Their proofs, which rest upon considerations of
energy and photometry, will be presented in the third division
of the book. Here a simple proof due to Hockin§ will be
given which depends only on the law that the optical lengths
of all rays between two conjugate points must be equal (cf.

* Carl's Repert. f. Physik, 1881, 16, p. 303.

1 R. Clausius, Mechanische Wirmetheorie, 1887, 3d Ed. 1, p. 315.
1 v. Helmholtz, Pogg. Ann. Jubelbd. 1874, p. 557.

§ Hockin, Jour. Roy. Microsc. Soc. 1884, (2), 4. p. 337.
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page 9).*¥ Let the image of P (Fig. 26) formed by an axial
ray P4 and a ray PS of inclination # lie at the axial point /.
Also let the image of the infinitely near point 2, formed by a
ray P A, parallel to the axis, and a ray .S, parallel to PS,
lie at the point 2’. The ray #'P conjugate to P A4, must
evidently pass through the principal focus #’ of the image
space. If now the optical distance between the points 2 and
P’ along the path through A4 be represented by (PAPF’), that

Fi1G. 26.

along the path through SS§ by (PSS'P’), and if a similar
notation be used for the optical lengths of the rays proceeding
from 2, then the principle of extreme path gives
(PAPY= (PSSP, (PAF'P/y= (PSS P,

and hence

(PAP) — (PLAF'P))= (PSSP — (PSS/'P)). . (39)
Now since 7’ is conjugate to an infinitely distant object 7 on
the axis, (7PAF'y = (TP, A, F"). Butevidently 7P = TP,
since PP, is perpendicular to the axis. Hence by subtraction

(PAFy=(PAF"). . . . . . (40)

* According to Bruns (Abh. d. sachs. Ges. d. Wiss. Bd. 21, p. 325) the sine
law can be based upon still more general considerations, namely, upon the law of
Malus (cf. p. 12) and the existence of conjugate rays.
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Further, since PP/ is perpendicular to the axis, it follows
that when PP/ is small F'P" = F'P/. Hence by addition
(PAFP)Y=(PAFP)),

i.e. the left side of equation (39) vanishes. Thus
(PSSPYy= (P S, S/P). . . . . (41)

Now if 7/ is the intersection of the rays #’S” and P,S/, then
F is conjugate to an infinitely distant object 7}, the rays from
which make an angle # with the axis. Hence if a perpendic-
ular PV be dropped from 2 upon P.S,, an equation similar to
(40) is obtained; thus

(PSS'F/Y=(NSS/FH. . . . . (42)
By subtraction of this equation from (41),

(FP)=—(NPY+ (F/P). . . . (43)
If now 7 is the index of the object space, #’ that of the image

space, then, if the unbracketed letters signify geometrical
lengths,

(NP)=n- NP, =n-PP.sinu. . . . (44)
Further, if PV’ be drawn perpendicular to /,'P’, then, since
PP/ is infinitely small,
(F/P)Y—(F/PY=w NP =n -PP/.sinu. . (45)
Equation (43) in connection with (44) and (45) then gives
n-PP -sinu=n-PP/ sinu.
If y denote the linear magnitude PP, of the object, and y’ the
linear magnitude £’P) of the image, then
sinu __ny
sin '~ ny’

(46)

Thus it is proved that if the linear magnification is con-
stant the ratio of the sines is constant, and, in addition, the
value of this constant is determined. This value agrees with
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that obtained in equation (2), page 34, for the aplanatic points
of a sphere.

The sine law cannot be fulfilled for two different points on
the axis. For if 7" and P’ (Fig. 27) are the images of £ and
P,, then, by the principle of equal optical lengths,

(PAPY= (PSS'P"), (P AP'Y= (L SS/P)), . (47)
in which 2S and AP.S, are any two parallel rays of inclina-
tion #.

F1c. 27.

Subtraction of the two equations (47) and a process o
reasoning exactly like the above gives
PPY—(PP)=—(PN)+(NP),
or
n-PP(1—cosu)y=n" P'P (1 —cos),

i.e.
sint g #'-P'P/
sin? 3/~ w.PP "t (48)

This equation is then the condition for the formation, by a
beam of large divergence, of the image of two neighboring
points upon the axis, i.e, an image of an element of the axis.

However this condition and the sine law cannot be fulfilled
at the same time. Zhus an optical system can be made
aplanatic for but one position of the object
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The fulfilment of the sine law is especially important in the
case of microscope objectives. Although this was not known
from theory when the earlier microscopes were made, it can be
experimentally proved, as Abbe has shown, that these old
microscope objectives which furnish good images actually
satisfy the sine law although they were constructed from
purely empirical principles.

10. Images of Large Surfaces by Narrow Beams.—It
is necessary in the first place to eliminate astigmatism (cf.
page 46). But no law can be deduced theoretically for accom-
plishing this, at least when the angle of inclination of the rays
with respect to the axis is large. Recourse must then be had
to practical experience and to trigonometric calculation. Itis
to be remarked that the astigmatism is dependent not only
upon the form of the lenses, but also upon the position of the
stop.

Two further requirements, which are indeed not absolutely
essential but are nevertheless very desirable, are usually im-

F1G. 28.

posed upon the image. First it must be plane, i.e. free from
bulging, and second its separate parts must have the same
magnification, i.e. it must be free from distortion. The first
requirement is especially important for photographic objectives.
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For a complete treatment of the analytical conditions for this
requirement cf. Czapski, in Winkelmann’s Handbuch der
Physik, Optik, page 124.

The analytical condition for freedom from distortion may
be readily determined. Let PP P, (Fig. 28) be an object
plane, P'P/P, the conjugate image plane. The beams from
the object are always limited by a stop of definite size
which may be either the rim of a lens or some specially intro-
duced diaphragm. This stop determines the position of a
virtual aperture B, the so-called entrance-pupil, which is so
situated that the principal rays of the beams from the objects
P, P,, etc., pass through its centre. Likewise the beams in
the image space are limited by a similar aperture B, the
so-called exiz-pupil, which is the image of the entrance-pupil.*
If / and /° are the distances of the entrance-pupil and the exit-
pupil from the object and image planes respectively, then, from
the figure,

tan v, = PP, : tanu, = PP, : ],
tan #/ = PP’ : ', tanu/= PP/ :1I.

If the magnification is to be constant, then the following rela-
tion must exist:

PP/ PP =PP: PP,
hence

4 ’
tan z,' tan #,

B = Gnw const. . . . . (49)

Hence for constant magnification the ratio of the tangents of the
angles of inclination of the principal vays must be constant. In
this case it is customary to call the intersections of the prin-
cipal rays with the axis, i.e. the centres of the pupils, or2/o-
scopic points. Hence it may be said that, if 2ke smage is to
be free from distortion, the centres of perspective of object and
image must be orthoscopic points. Hence the positions of the
pupils are of great importance.

* For further treatment see Chapter IV,
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An example taken from photographic optics shows how the
condition of orthoscopy may be most simply fulfilled for the
case of a projecting lens. Let R (Fig. 29) be a stop on either
side of which two similar lens systems 7 and 2 are symmetrically
placed. The whole system is then called a symmetrical double
objective. Let S and S’ represent two conjugate principal
rays. The optical image of the stop R with respect to the
system 7 is evidently the entrance-pupil, for, since all principal
rays must actually pass through the centre of the stop R, the
prolongations of the incident principal rays .S must pass through
the centre of B, the optical image of R with respect to 7.
Likewise B’, the optical image of R with respect to 2, is the
exit-pupil. It follows at once from the symmetry of arrange-
ment that # is always equal to #/, i.e. the condition of orthos-
copy is fulfilled.
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Such symmetrical double objectives possess, by virtue of
their symmetry, two other advantages: On the one hand, the
meridional beams are brought to a sharper focus,* and, on the
other, chromatic errors, which will be more fully treated in the
next paragraph, are more easily avoided, The result # = #/,
which means that conjugate principal rays are parallel, is
altogether independent of the index of refraction of the system,

* The elimination of the error of coma is here meant. Cf. Miller-Pouillet,
Optik, P- 774
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and hence also of the color of the light. If now each of the
two systems r and 2 is achromatic with respect to the position
of the image which it forms of the stop R, i.e. if the posi-
tions of the entrance- and exit-pupils are independent of the
color,* then the principal rays of one color coincide with those
of every other color. But this means that the images formed
in the image plane are the same size for all colors. To be
sure, the position of sharpest focus is, strictly speaking, some-
what different for the different colors, but if a screen be placed
in sharp focus for yellow, for instance, then the images of
other colors, which lie at the intersections of the principal
rays, are only slightly out of focus. If then the principal rays
coincide for all colors, the image will be nearly free from
chromatic error.

The astigmatism and the bulging of the image depend upon
the distance of the lenses 7 and 2 from the stop R. In
general, as the distance apart of the two lenses increases the
image becomes flatter, i.e. the bulging decreases, while the
astigmatism increases. Only by the use of the new kinds of
glass made by Schott in Jena, one of which combines large
dispersion with small index and another small dispersion with,
large index, have astigmatic flat images become possible.
This will be more fully considered in Chapter V under the head
of Optical Instruments.

11. Chromatic Aberration of Dioptric Systems.—Thus
far the index of refraction of a substance has been treated as
though it were a constant, but it is to be remembered that for
a given substance it is different for each of the different colors
contained in white light. For all transparent bodies the index
continuously increases as the color changes from the red to
the blue end of the spectrum. The following table contains
the indices for three colors and for two different kinds of glass.
n. is the index for the red light corresponding to the Fraun-

* As will be seen later, this achromatizing can be attained with sufficient accu.
racy; on the other hand it is not possible at the same time to make the sizes of the
different images of & independent of the color.
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hofer line C of the solar spectrum (identical with the red
hydrogen line), 7, that for the yellow sodium light, and 7, that
for the blue hydrogen line.

Ny —n
Glass. = £ <
ass. ne np g y = P
Calcium-silicate-crown,..... 1.5153 1.5179 1.5239 0.0166
Ordinary silicate-flint....... 1.6143 1.6202 1.6314 0.0276

The last column contains the so-called disgersive power v,

of the substance. It is defined by the relation
v-‘_—":z—F—__—”IC. N (1))
D

It is practically immaterial whether 7, or the index for any
other color be taken for the denominator, for such a change
can never affect the value of » by more than 2 per cent.

Since now the constants of a lens system depend upon the
index, an image of a white object must in general show colors,
i.e. the differently colored images of a white object differ from
one another in position and size.

In order to make the red and blue images coincide, i.e. in
order to make the system ackromatic for red and blue, it is
necessary not only that the focal lengths, but also that the
unit planes, be identical for both colors. In many cases a
partial correction of the chromatic aberration is sufficient.
Thus a system may be achromatized either by making the focal
length, and hence the magnification, the same for all colors;
or by making the rays of all colors come to a focus in the same
plane. In the former case, though the magnification is the
same, the images of all colors do not lie in one plane; in the
latter, though these images lie in one plane, they differ in size.
A system may be achromatized one way or the other according
to the purpose for which it is intended, the choice depending
upon whether the magnification or the position of the image is
most important.
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A system which has been achromatized for two colors,
e.g. red and blue, is not in general achromatic for all other
colors, because the ratio of the dispersions of different sub-
stances in different parts of the spectrum is not constant.
The chromatic errors which remain because of this and which
give rise to the so-called secondary spectra are for the most
part unimportant for practical purposes. Their influence can
be still farther reduced either by choosing refracting bodies for
which the lack of proportionality between the dispersions is as
small as possible, or by achromatizing for three colors. The
chromatic errors which remain after this correction are called
spectra of the third order.

The choice of the colors which are to be used in practice
in the correction of the chromatic aberration depends upon the
use for which the optical instrument is designed. For a system
which is to be used for photography, in which the blue rays
are most effective, the two colors chosen will be nearer the
blue end of the spectrum than in the case of an instrument
which is to be used in connection with the human eye, for
which the yellow-green light is most effective. In the latter
case it is easy to decide experimentally what two colors can be
brought together with the best result. Thus two prisms of
different kinds of glass are so arranged upon the table of a
spectrometer that they furnish an almost achromatic image
of the slit; for instance, for a given position of the table
of the spectrometer, let them bring together the rays C
and #. If now the table be turned, the image of the slit will
in general appear colored; but there will be one position in
which the image has least color. From this position of the
prism it is easy to calculate what two colors emerge from the
prism exactly parallel. These, then, are the two colors which
can be used with the best effect for achromatizing instruments
intended for eye observations.

Even a single thick lens may be achromatized either with
reference to the focal length or with reference to the position
7" the focus. But in practice the cases in which thin lenses
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are used are more important. When such lenses are com-
bined, the chromatic differences of the unit planes may be
neglected without appreciable error, since, in this case, these
planes always lie within the lens (cf. page 42). If then the
focal lengths be achromatized, the system is almost perfectly
achromatic, i.e. both for the position and magnitude of the
image.

Now the focal length /| of a thin lens whose index for a
given color is #, is given by the equation (cf. eq. (22), page 42)

I I 1
_7;: (n, — I)(—;l - "_1’) = (4= Dk, - . (51)
in which 4, is an abbreviation for the difference of the curva-
tures of the faces of the lens.

Also, by (24) on page 44, the focal length f of a combina-
tion of two thin lenses whose separate focal lengths are /, and
/, is given by

I I I

7:7;_1.72.. Coe e (52)

For an increment &z, of the index 7, corresponding to a
change of color, the increment of the reciprocal of the focal
length is, from (51),

I dn, 1 v
A(F)=dnoby == 2L

fl) 1°% n — 1 fl fl (53)
in which », represents the dispersive power of the material of
lens 1 between the two colors which are used. If the focal
ength f of the combination is to be the same for both colors,
it follows from (52) and (53) that

sr=d(F)+a(F)= T+ =0 . o

This equation contains the condition for achromatism. It
also shows, since », and », always have the same sign no
matter what materials are used for 1 and 2, that tke separate
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Jocal lengths of a thin double achromatic lens always have
oppostie signs.

From (54) and (52) it follows that the expressions for the
separate focal lengths are

11 11

A —.7”2_”1, Z— _71’2— Z (55)
Hence in a combination of positive focal length the lens with
the smaller dispersive power has the positive, that with the
larger dispersive power the negative, focal le<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>