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This paper revisits the relationship between Maxwell’s Electromagnetic Theory (EMT) and coordinate
transformations that can be implemented via tensors.  It is well known that under Lorentz transformation,
Maxwell’s equations are form-invariant (although of course not invariant in numerical values, except for a few
one-dimensional constructs).  That fact means Maxwell’s EMT fits well with Einstein’s Special Relativity Theory
(SRT).  This paper shows that the situation is almost the same under Galilean transformations, and possibly
other plausible transformations that may be considered in the future.  The only difference is that some con-
structs that are number-invariant under Lorentz transformation become only form-invariant under Galilean
transformation.  Thus the issue of form invariance for Maxwell’s equations is not a strong indicator in favor of
any particular kind of coordinate transformation.  That fact means Maxwell’s EMT fits well with just about any
reasonable variant of SRT.                      Key Words: electrodynamics of moving bodies, special relativity theory.

1.  Introduction

It is generally believed that Maxwell’s EMT is not invariant in
form under Galilean coordinate transformations [1-5], and since
Maxwell’s EMT is demonstrably form-invariant under Lorentz
transformations, that it must be uniquely linked to Einstein’s
SRT.  The present paper shows that this assessment is not in fact
justified.

The technique for showing form-invariance of Maxwell’s
equations under Galilean transformation is tensor analysis, as
displayed in  4 × 4  matrix algebra.  The early investigations of
Maxwell’s equations under Galilean transformation did not use
this approach, and missed a detail that it manages very well for
the user; namely, the distinction between ‘covariant’ and ‘con-
travariant’ behavior, and its realization in the appearance of +
and – signs.

Section 2 reviews current beliefs about the status of Max-
well’s equations in relation to Galilean coordinate transforma-
tions; namely, that Maxwell’s equations are not form-invariant
under Galilean transformations.  Weaknesses in the evidence for
that claim are pointed out.

Section 3 comes to the crux of the present argument; namely,
demonstrating that Maxwell’s equations are in fact form-
invariant under Galilean transformation of coordinates. Section 3,
supplemented by the Appendix, generalizes the demonstration
for quite arbitrary transformations.  Section 4 draws conclusions
about where we stand now.

2.  Some Current Beliefs About
     Maxwell’s Equations

It is widely believed [1-5] that Maxwell’s EMT represented a
real break with Newtonian physics.  For one thing, Newton’s
gravitational theory was a point-particle model with instantane-
ous action at a distance, whereas Maxwell’s EMT is a field theory
with finite signal propagation speed.  For another thing, New-
ton’s theory had a gravitational ‘potential’ that created a force
that, when integrated around a closed path, yielded zero,
whereas Maxwell’s EMT has fields, and hence forces, with ‘curl’;
i.e. non-zero closed path integrals, mandating some subtle change

in the definition of the word ‘potential’.  Most importantly, it
seems, Newton’s equations were clearly form-invariant under
Galilean coordinate transformation, whereas Maxwell’s equa-
tions are everywhere said to lack form-invariance under Galilean
transformation.

Refs. [1-5] provide a fair sampling of what is still current be-
lief about Maxwell’s equations vis a vis Galilean coordinate trans-
formations.  Møller [1] said “…the velocity of light must have the
same constant value  c  in all systems of inertia,…This is obvi-
ously in conflict with the usual kinematical concepts [Galilean]
…”  Feynman [2] said, “…according to Galilean transformation
the apparent speed of…light [for a moving observer]…should
not be  c …” and “…Lorentz noticed a remarkable and curious
thing…Maxwell’s equations remain in the same form when [Lor-
entz] transformation is applied to them!”  Jackson [3] said, “The
form of the wave equation is not invariant under Galilean trans-
formations.  Furthermore, no kinematic transformation can [pre-
serve the form]…”  Phipps [4] said, “…the [Galilean] invariance
of Maxwell’s equation [involving curl  E ] is spoiled by a[n extra]
term…”  Gray [5] said, “Maxwell derived his equations with re-
spect to a particular reference frame…so that they are not invari-
ant with respect to the full Galilean group.”

Among the five authors cited, only Jackson [3] and Phipps [4]
displayed some mathematics to justify their claim of non-
invariance for Maxwell’s equations under Galilean transforma-

tion.  Jackson looked at the D’Alembertian operator    in a wave

equation 
  
 ψ = 0 :

   

 = ∂2 / ∂ ′xi
2

i
∑ − 1

c2
∂2 / ∂ ′t 2 = ′∇ 2 − 1

c2
∂2 / ∂ ′t 2

He said that applying Galilean transformation with velocity  v
produces

    
′  = ∇2 − 1

c2
∂2 / ∂t2 − 2

c2
vi∇ ∂

∂t
− 1

c2
vi∇vi∇

and that the terms 
    −(2 / c2)vi∇∂ / ∂t − (1 / c2)vi∇vi∇  spoil the

form invariance of the wave equation.  But is this right?  Jackson



Whitney: Galilean Maxwell Vol. 7, No. 12

used the chain rule 
    ∂ / ∂ ′t = ∂ / ∂t + (1 / c)vi∇  to form the opera-

tor   ∂
2 / ∂ ′t 2  from   ∂

2 / ∂t2 .  But one could reasonably argue that

he should have discussed forming  ′∇ 2  from  ∇
2  too; i.e., he

should have explicitly formed both operators in primed coordi-

nates.  Indeed, one could argue that a mixed expression, with  ∇
2

and   ∂
2 / ∂ ′t 2 , just doesn’t have meaning.  And what of the ψ

function on which the D’Alembertian operates?  Is that a function
of the four variables   ct, x, y, z  individually, or of some overall
characteristic of those variables, such as squared length?

Phipps looked at the two Maxwell equations involving curl.
He first looked at

    

∇ × E + 1
c
∂
∂t

B = ′∇ × ′E + 1
c

∂
∂ ′t

+ ′v i ′∇
⎛
⎝⎜

⎞
⎠⎟

′B

                                         = ′∇ × ′E + 1
c

∂
∂ ′t

′B + 1
c

′v i ′∇( ) ′B = 0

in which  ′v  means  −v  [see his Eq. (4.14)].  He identified the

term 
    

1
c

′v i ′∇( ) ′B  as a form spoiler.  He also looked at

    

∇ × B − 1
c
∂
∂t

E − 4π
c

js = ′∇ × ′B − 1
c

∂
∂ ′t

+ ′v i ′∇
⎛
⎝⎜

⎞
⎠⎟

′E − 4π
c

′js − ′ρ ′v( )

= ′∇ × ′B − 1
c

∂
∂ ′t

′E − 4π
c

′js + − 1
c

( ′v i ′∇ ) ′E + 4π
c

′ρ ′v
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0

in which 
  
js  is a source current and ρ  is a charge density.  He

identified the terms displayed in curly brackets as form spoilers.
But is all this actually valid?  It comes from using the chain rule
to form   ∂ / ∂ ′t  from   ∂ / ∂t .  Should something similar be done
for ′∇ ?  And what of the  E  and  B ?  Is it critical that Phipps
liked to regard those as invariant?

Both the Jackson argument and the Phipps argument for  non-
invariance of Maxwell’s equations under Galilean transformation
leave so many questions because they are so focused on isolated
parts of the problem.  The questions move one to look for a more
global approach to the problem as a whole.

Note that both the Jackson argument and the Phipps argu-
ment just rely on the chain rule   (1 / c)∂ / ∂ ′t =

  (1 / c)∂ / ∂t + (V / c)∇  familiar from differential calculus, and so
could have been constructed very early, even before the devel-
opment of Einstein’s Special Relativity Theory (SRT).  Indeed, the
believed non-invariance of Maxwell’s EMT under Galilean trans-
formation, coupled with its demonstrable invariance under Lor-
entz transformation, was weighty evidence in favor of dropping
the idea of Galilean invariance, assuming Lorentz invariance in
the ‘Principle of Relativity’, and allowing the modifications to
Newton’s laws that SRT mandates.

SRT then produced a big gift for physics: an additional
mathematical technique for use in physics.  We received tensor
analysis into our routine tool kit.  That technique is useful for
making a more global approach to the Maxwell invariance prob-
lem.  The next Section shows how this works out.

3.  The Tensor / Matrix Approach
      to Maxwell’s EMT

One extremely important idea from tensor analysis is that,
under coordinate transformation, different mathematical objects
can exhibit different behaviors.  One behavior is called ‘covari-
ant’, meaning that the object transforms in the same way as
space-time coordinates.  Here the language is treacherous, since
the word ‘covariant’ is also commonly used to mean ‘form-
invariant’, and the word ‘invariant’, unmodified, is often used to
mean ‘number-invariant’, which is much stronger.  Another ten-
sor behavior is called ‘contravariant’, meaning the object trans-
forms in a contrary, inverse, way.  Here, too, the language will
turn out to be treacherous, as the present analysis will show a bit
further on.

The distinction between ‘covariant’ and ‘contravariant’ be-
haviors requires attention in applying coordinate transforma-
tions to the fields and differential operators in Maxwell’s equa-
tions.  This is well known in the case of Lorentz transformations,
but it has apparently not been tried out in the case of Galilean
transformations.  The following arguments will show that proper
attention results in form invariance for Maxwell’s equations un-
der Galilean transformations.

Maxwell theory never seems to need tensors with more than
two tensor indices, which means that simple matrices can be
used to display everything explicitly.  For tensors, the distinction
between covariant and contravariant is expressed by position of
indices: up or down.  For matrices, it is often revealed in the dif-
ference between row vectors and column vectors.

SRT invites us to think about coordinates   ct, x, y, z  as a 4-
dimensional column vector, that undergoes transformation by a

 4 × 4  matrix representing Lorentz transformation:

  

c ′t
′x

′y

′z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 1

1 − v2 / c2

1 −v / c 0 0
−v / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ct

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

The  v  is the speed of the new coordinate frame, here taken to be
along the  x  direction.  The minus signs mean the new coordi-
nate frame is moving forward along the  x  direction.  The coor-
dinate column vector, and other 4-dimensional column vectors
that transform in the same way, are called ‘covariant’.  Observe
that the Lorentz transformation matrix is symmetric.

SRT further invites us to think about row vectors with re-
versed sign on space coordinates.  Such constructs are called
‘contravariant’.  The Lorentz transformation of contravariant
coordinates goes:

  

c ′t − ′x − ′y − ′z⎡⎣ ⎤⎦ =

ct −x −y −z⎡⎣ ⎤⎦
1

1 − v2 / c2

1 +v / c 0 0
+v / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
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Observe that the Lorentz-transformation matrices for covariant
and contravariant objects are reversed in the sign of  v , and in-
versely related in multiplication:

  

1

1 − v2 / c2

1 +v / c 0 0
+v / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

                       
1

1 − v2 / c2

1 −v / c 0 0
−v / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

The ‘inverse’ property assures that the four-vector square length

  s
2 = c2t2 − x2 − y2 − z2  is number-invariant under Lorentz

transformation:

  

s2 = ct −x −y −z⎡⎣ ⎤⎦

ct

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

→ ′s 2 = c ′t − ′x − ′y − ′z⎡⎣ ⎤⎦

c ′t
′x

′y

′z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≡ s2

The corresponding Galilean transformation of covariant co-
ordinates is

  

c ′t
′x

′y

′z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ct

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   .

Observe that for Galilean transformations, no square root is
needed to normalize the transformation matrix.  Observe also
that the Galilean  V  (unlimited) replaces the Einsteinian  v  (lim-
ited to light speed  c ) inside the transformation matrix.  Observe
finally that only one off-diagonal term is needed in the transfor-
mation matrix.  Thus the Galilean transformation matrix is not
symmetric, like the Lorentz transformation matrix was.

The asymmetry of the Galilean transformation matrix creates
two new possibilities where the Lorentz transformation created
only one.  The transformation of contravariant coordinates could
go:

   

  

c ′t − ′x − ′y − ′z⎡⎣ ⎤⎦ = ct −x −y −z⎡⎣ ⎤⎦

1 0 0 0
+V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   ,

Or it could go:

   

  

c ′t − ′x − ′y − ′z⎡⎣ ⎤⎦ = ct −x −y −z⎡⎣ ⎤⎦

1 +V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   .

With the first option, the transformation matrices for con-
travariant and covariant coordinates are inverses, as in the Lor-
entz case.  But the contravariant transformation yields  c ′t =

  ct − xV / c , which differs from the covariant  c ′t = ct , which ex-
presses the universal time that one expects of a Galilean trans-

formation.  Furthermore, it yields contravariant  − ′x = −x , which
conflicts with  ′x = x −Vt , which defines a Galilean transforma-
tion.

With the second option, the transformation of contravariant
coordinates matches the covariant  c ′t = ct  and  ′x = x −Vt .  But
the transformation matrices for contravariant and covariant co-
ordinates are not inverses, as in the Lorentz case.  Instead, they
multiply to

  

1 +V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≡

1 −V 2 / c2 +V / c 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 .

This product matrix is unimodular, as in the Lorentz case, but
since it is not an identity matrix, it changes the coordinate four-
vector square length.  For example, the time-only square length

  s
2 = c2t2  transforms to the square length   ′s 2 =    c

2 ′t 2 −V 2 ′t 2 =

  (c
2 −V 2) ′t 2 .  This is in fact just what one should expect of a

Galilean transformation.  So for coordinates, we take the second
option, and we have form invariance of the square length, but
not number invariance.

Again, the language currently available is a little bit treacher-
ous: we presently have only the one word ‘contravariant’ to refer
to the two candidate transformation behaviors; This language
deficiency is unfortunate, and needs remedy.  Since the second
transformation behavior involves a matrix transposition, let us
invent the new name ‘trans-contravariant’ for it.  This detail
about matrix transposition never comes up with Lorentz trans-
formations, because Lorentz transformation matrices are sym-
metric.  It is something newly revealed because we are looking at
Galilean transformations.

We leave the name ‘contravariant’, or ’plain contravariant’ for
the first transformation behavior.  The difference between ‘con-
travariant’ and ‘transcontravariant’ is just this: ‘transcontravari-
ance’ is about ‘form invariance’, whereas ‘plain contravariance’ is
about number invariance. Form invariance, and hence transcon-
travariance, is what we need for coordinates.

An instance requiring number invariance comes up with dif-
ferential operators.  Consider the D’Alembertian operator

   =   −c−2∂2 / ∂t2 + ∇2  that Jackson [3] invoked.  Imagine it fac-
tored as

   
 = − 1

c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1
c
∂
∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥
tr

(Here ‘tr’ means ‘transpose’, an operation most handy for saving
display space!).

By definition of the word ‘covariant’, the covariant differen-
tial-operator column vector

  
c−1∂ / ∂t −∂ / ∂x −∂ / ∂y −∂ / ∂z⎡
⎣⎢

⎤
⎦⎥
tr

must transform like the covariant coordinate column vector:
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c−1∂ / ∂ ′t
−∂ / ∂ ′x

−∂ / ∂ ′y

−∂ / ∂ ′z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

  

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥   

c−1∂ / ∂t

−∂ / ∂x

−∂ / ∂y

−∂ / ∂z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   .

But how should the contravariant differential-operator row vec-
tor

  
c−1∂ / ∂ ′t ∂ / ∂ ′x ∂ / ∂ ′y ∂ / ∂ ′z⎡
⎣⎢

⎤
⎦⎥

be treated?
To answer this question, we can invoke a logical requirement:

all products of differential operators with their own variables of
differentiation have to be number invariant.  So we have to have

  

1
c

∂
∂ ′t

∂
∂ ′x

∂
∂ ′y

∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥

c ′t
′x

′y

′z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≡

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
+V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ct

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

  = 1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

ct

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

                                      ≡ 1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

ct

x

y

z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≡ 4

In short, the contravariant differential-operator row vector has to
have the plain contravariant behavior: the transformation matrix
for the contravariant differential-operator row vector has to be
the inverse of the covariant coordinate transformation matrix.

The plain contravariant transformation matrix assures that
under Galilean transformation the complete D’Alembertian op-
erator is invariant, just like the number 4 is invariant:

   

′  = − 1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
+V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

  

×

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

c−1∂ / ∂t

−∂ / ∂x

−∂ / ∂y

−∂ / ∂z

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

= − 1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
c
∂
∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥
tr

   
= − 1

c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1
c
∂
∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥
tr

≡ 

Thus under Galilean transformation, just as under Lorentz trans-
formation, the D’Alembertian is well and truly invariant.  So the
Jackson argument goes away.

Both Jackson [3] and Phipps [4] relied upon the chain rule
familiar from differential calculus, saying that

  c
−1∂ / ∂ ′t = c−1∂ / ∂t + (V / c)∂ / ∂x .  This familiar chain rule

emerges as the contravariant   c
−1∂ / ∂ ′t .  But another less familiar

complementing chain rule emerges from the covariant   −∂ / ∂ ′x ;

i.e.   −∂ / ∂ ′x = −∂ / ∂x − (V / c2)∂ / ∂t .  Forming the D’Alembertian

then creates canceling cross terms   (V / c2)∂2 / ∂x∂t  from

  c
−2∂2 / ∂ ′t 2  and   −(V / c2)∂2 / ∂t∂x  from   −∂

2 / ∂ ′x 2 .
The two complementing chain rules both emerge in the pre-

sent system of mathematics, because the system is representing
Maxwell’s equations, which have only one parameter  c , which
for a wave is equal to λν , wavelength times frequency.  So a
change in ν  (i.e. the change from   ∂ / ∂t  to   ∂ / ∂ ′t ) has to be bal-
anced by a change in wavelength λ , which is the inverse of wave
number  k , (i.e. the change from   ∂ / ∂x  to   ∂ / ∂ ′x ).

The familiar chain rule is saying that a single sensor moving
through a stationary spatial field pattern sees temporal changes
because of its motion.  The unfamiliar chain rule is saying that a
field pattern passing an array of sensors looks distorted.  The
reason for this is finite light speed: information about different
spatial points in the pattern arrives to one perception point at
different times.

Using only the first chain rule, without the second one, is
what led to the conclusions that both Jackson [3] and Phipps [4]
drew.  Now let us examine in detail the curl equations that
Phipps [4] considered,

   
∇ × E + 1

c
∂B / ∂t = 0    and   

   
∇ × B − 1

c
∂E / ∂t − 4π

c
js = 0    .

These equations can be put in matrix form by introducing the
field matrix and its dual (Ref. [3], Sect. 11.9).

   

  

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

   and   

  

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz −Ey −Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

   .

and recalling the contravariant differential operator

  
c−1∂ / ∂t ∂ / ∂x ∂ / ∂y ∂ / ∂z⎡
⎣⎢

⎤
⎦⎥ .

The first curl equation,    ∇ × E + c−1∂B / ∂t = 0 , amounts to the
spatial part of the row vector created by
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1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

= 0

The leftover time part is that other Maxwell equation,    ∇iB = 0 .
The second curl equation,

   
   
∇ × B − c−1∂E / ∂t − (4π / c)js = 0    ,

amounts to the spatial part of the row vector resulting from

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

                                                −4π ρ
jx

c

jy

c

jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

tr

= 0

The leftover time part is that other Maxwell equation,   ∇iE =

 4πρ .

Now how do all these things transform under Galilean trans-
formation?  (The equations below get quite long, so I use the
Russian convention of repeating the symbols = , + , −  and ×
from one line to the next line.)
1.  We already know

  

1
c

∂
∂ ′t

∂
∂ ′x

∂
∂ ′y

∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥ =

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

  

1 0 0 0
+V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2.  The 
  
ρ jx / c jy / c jz / c⎡
⎣

⎤
⎦  transforms like 

 
ct x y z⎡⎣ ⎤⎦ ;

i.e.,

 

′ρ
′jx

c

′jy

c

′jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

 

ρ
jx

c

jy

c

jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

3.  The two field matrices transform as

  

0 − ′Ex − ′Ey − ′Ez

′Ex 0 − ′Bz ′By

′Ey ′Bz 0 − ′Bx

′Ez − ′By ′Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

=

  

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥   

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

and

  

0 − ′Bx − ′By − ′Bz

′Bx 0 ′Ez − ′Ey

′By − ′Ez 0 ′Ex

′Bz ′Ey − ′Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

=

  

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥   

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

When all these transformed vectors and matrices are put to-
gether, we have

  

1
c

∂
∂ ′t

∂
∂ ′x

∂
∂ ′y

∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥

  

0 − ′Bx − ′By − ′Bz

′Bx 0 ′Ez − ′Ey

′By − ′Ez 0 ′Ex

′Bz ′Ey − ′Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

=

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
+V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

×

  

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

=

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

×

  

×

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 0 ×

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 0

And we have

  

1
c

∂
∂ ′t

∂
∂ ′x

∂
∂ ′y

∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥

0 − ′Ex − ′Ey − ′Ez

′Ex 0 − ′Bz ′By

′Ey ′Bz 0 − ′Bx

′Ez − ′By ′Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

  

−4π ′ρ
′jx

c

′jy

c
′j

c z

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
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=

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

1 0 0 0
+V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

×

  

1 0 0 0
−V / c 1 0 0

0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

  

−4π ρ
jx

c

jy

c

jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

=

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

  

− 4π ρ 1
c

jx
1
c

jy
1
c

jz

⎡

⎣
⎢

⎤

⎦
⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

  

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

= 0 ×

  

1 −V / c 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 = 0

So the transformed vectors and matrices fit together just like
the untransformed ones did: as tight as Lego blocks.  There can
be no doubt that the vector / matrix equations retain their form
under Galilean transformation.  This suggests that that under
Galilean transformation, the two Maxwell curl equations, like the
square line element, are form-invariant, although not number-
invariant.  Indeed, all four Maxwell equations are form-invariant
under Galilean transformation.  What changes status are derived

constructs like   Φ
2 − A2 , or   E

2 − c2B2 , which, like the line ele-

ment   s
2 = c2t2 − x2 − y2 − z2 , are number-invariant under Lor-

entz transformation, but only form-invariant under Galilean
transformations.  The things remaining number-invariant are
parameters like  e  and  c .  Such parameters are simply numbers,
and not the result of some vector inner product, or matrix prod-
uct / tensor contraction, any of which can change from number-
invariant under Lorentz transformation to form-invariant under
Galilean transformations.

4.  More General Velocity Transformations

As a matter of fact, it is possible to state the matrix relation-
ships of Sect. 5 in a more abstract and general way that accom-

modates Lorentz transformations 
 

L⎡⎣ ⎤⎦ , Galilean transformations

 
G⎡⎣ ⎤⎦ , and indeed any other arbitrary velocity transformations

 
A⎡⎣ ⎤⎦  that may at some future time be of interest.  The most useful

relationships go:

1.
  

c ′t ′x ′y ′z⎡⎣ ⎤⎦
tr

= A⎡⎣ ⎤⎦ ct x y z⎡⎣ ⎤⎦
tr

,

  
c ′t − ′x − ′y − ′z⎡⎣ ⎤⎦ = ct −x −y −z⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦

−1⎡
⎣⎢

⎤
⎦⎥
tr

2. 
  

1
c

∂
∂ ′t

− ∂
∂ ′x

− ∂
∂ ′y

− ∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥
tr

= A⎡⎣ ⎤⎦
1
c
∂
∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥
tr

  

1
c

∂
∂ ′t

∂
∂ ′x

∂
∂ ′y

∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥ =

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥   

A⎡⎣ ⎤⎦
−1

3.
  

′ρ ′jx ′jy ′jz
⎡
⎣

⎤
⎦
tr

=
 

A⎡⎣ ⎤⎦   
ρ jx jy jz
⎡
⎣

⎤
⎦
tr

 
′ρ ′jx ′jy ′jz

⎡
⎣

⎤
⎦ =  

ρ jx jy jz
⎡
⎣

⎤
⎦   

A⎡⎣ ⎤⎦
tr

4.

  

0 − ′Ex − ′Ey − ′Ez

′Ex 0 − ′Bz ′By

′Ey ′Bz 0 − ′Bx

′Ez − ′By ′Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
 

A⎡⎣ ⎤⎦

  

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  
A⎡⎣ ⎤⎦

tr

  

0 − ′Bx − ′By − ′Bz

′Bx 0 ′Ez − ′Ey

′By − ′Ez 0 ′Ex

′Bz ′Ey − ′Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
 

A⎡⎣ ⎤⎦

  

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  
A⎡⎣ ⎤⎦

tr

The only requirement here is that the transformation matrix

 
A⎡⎣ ⎤⎦  be invertible; i.e. be not singular; i.e. not have its determi-

nant be equal to zero.
A further trivial extension also accommodates simple rota-

tions; see Appendix 1.

5.  Conclusions

This author hopes that readers are now thoroughly disabused
of the 20th century belief that Maxwell’s equations imply that
Galilean transformations are obsolete.  The key to recognizing
this fact is to focus on the distinction between form-invariance
and number-invariance.  The Lorentz transformations that replace
Galilean transformations in Einstein’s SRT leave lots of things
form-invariant, but not number-invariant.  Galilean transforma-
tions just leave a few more things form-invariant, but not num-
ber-invariant.  That does not mean that form-invariance is at all
spoiled.  Only those few things that were number-invariant in
the Lorentz case are affected at all, and they only to the extent of
losing their number-invariance, and falling back to form-
invariance.

The truth apparently is this: Maxwell’s equations are simply
indifferent about coordinate transformations.  Expressed in tensor
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/ matrix form, they retain that same form under any physically
plausible kind of coordinate transformation.  Only the specific
numbers in the matrices change with the kind of coordinate
transformation done.  So Galilean coordinate transformation
does not in fact spoil the form of Maxwell’s equations, as is
commonly believed.

Indeed, it has been brought to my attention that this truth is
already known among the mathematical cognoscenti; see [6].  So,
what should the broader physics community now do with the
truth?  It seems obvious that we should, first of all, stop repeating
the erroneous idea that Galilean coordinate transformations are
incompatible with Maxwell’s equations.  Perpetuating a revealed
error is corrosive to the whole idea of science, so let us stop it!
Moreover, I think we should not just let such errors quietly die
(which they don’t); we should call them out into the open.  Only
then will future generations not repeat the same errors.  Science
is supposed to be a self-correcting enterprise; let it actually be so.

And we can use this truth as a ‘teaching moment’.  It suggests
a more generally useful exploration technique.  One can call it
‘active anachronism’, meaning the deliberate use of a more re-
cently adopted mathematical technique on a problem that was
much earlier pronounced ‘completely settled’.  This technique
should be very useful for future investigations.

Let me conclude by noting that this particular issue about
Galilean invariance of Maxwell’s equations is one of several,
which when taken together, open the door to study of alterna-
tives to Einstein’s SRT.  This author’s particular interest is in an
alternative [7] that can be founded in the computable behavior of
Maxwell’s coupled differential equations for electric and mag-
netic fields, rather than in Einstein’s Second Postulate, which by
comparison seems rather ad hoc .  This new foundation leads to an
extended version of SRT that is similar to Einstein’s SRT for prob-
lems where Einstein’s SRT has traditionally been applied and
tested, but also somewhat expanded in scope, so that it performs
in areas where SRT has previously been thought to offer only an
incomplete description of the physics – such as inside atoms,
where quantization emerges.  In [7] I did not have the name for it
that I like to use today: ‘Maxwell Relativity’.  Maxwell Relativity
is wider in scope that Einstein’s SRT, and in fact includes Gali-
lean Relativity, as well as other alternatives yet to be named.
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Appendix 1.  Simple Rotations

A general coordinate transformation can include not only a
velocity change, but also a simple rotation, which leaves the
time-like coordinate alone.  The transformation matrix for simple

rotation is unitary 
 
U⎡⎣ ⎤⎦ , meaning its transpose is the same thing

as its inverse.  Only one of those operations, and it doesn’t matter
which one, need be used.  The reason for this is the change in

coordinate-frame ‘handedness’ in changing from   +x, +y, +z  to

  −x, −y, −z .  The most useful transformations go:

1.    
  

c ′t ′x ′y ′z⎡⎣ ⎤⎦
tr

= U⎡⎣ ⎤⎦ ct x y z⎡⎣ ⎤⎦
tr

   ,

   
  

c ′t − ′x − ′y − ′z⎡⎣ ⎤⎦ = ct −x −y −z⎡⎣ ⎤⎦ U⎡⎣ ⎤⎦
tr

   .

2.    
  

1
c

∂
∂ ′t

∂
∂ ′x

∂
∂ ′y

∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥ =

  

1
c
∂
∂t

∂
∂x

∂
∂y

∂
∂z

⎡

⎣
⎢

⎤

⎦
⎥   

U⎡⎣ ⎤⎦
tr

   ,

  

1
c

∂
∂ ′t

− ∂
∂ ′x

− ∂
∂ ′y

− ∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥
tr

=
 
U⎡⎣ ⎤⎦

  

1
c

∂
∂ ′t

− ∂
∂ ′x

− ∂
∂ ′y

− ∂
∂ ′z

⎡

⎣
⎢

⎤

⎦
⎥
tr

.

3.    

  

′ρ
′jx

c

′jy

c

′jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

tr

=

  

U⎡⎣ ⎤⎦ ρ
jx

c

jy

c

jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

tr

   ,

   

 

′ρ
′jx

c

′jy

c

′jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

 

ρ
jx

c

jy

c

jz

c

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥   

U⎡⎣ ⎤⎦
tr

   .

4.

  

0 − ′Ex − ′Ey − ′Ez

′Ex 0 − ′Bz ′By

′Ey ′Bz 0 − ′Bx

′Ez − ′By ′Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
 
U⎡⎣ ⎤⎦

  

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  
U⎡⎣ ⎤⎦

tr
,

  

0 − ′Bx − ′By − ′Bz

′Bx 0 ′Ez − ′Ey

′By − ′Ez 0 ′Ex

′Bz ′Ey − ′Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
 
U⎡⎣ ⎤⎦

  

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  
U⎡⎣ ⎤⎦

tr
.

The most general arbitrary coordinate transformation can be

written as a product, either 
 

P⎡⎣ ⎤⎦ = U⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ , or 
 

P⎡⎣ ⎤⎦ = ′A⎡⎣ ⎤⎦ U⎡⎣ ⎤⎦ ,

as the user chooses, with 
  

′A⎡⎣ ⎤⎦ = U⎡⎣ ⎤⎦ A⎡⎣ ⎤⎦ U⎡⎣ ⎤⎦
tr

.
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