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The possibility of explaining time dilation as a dynamic cause-and-effect phenomenon is explored
by calculating the rates of three elementary electromagnetic clocks in a stationary and in a moving
reference frame. The operation of the clocks is based on the interaction between a field-experiencing
electric point charge and different field-producing electric charge configurations. The calculations
show that, when the clocks move, they run as predicted by the special relativity theory. The slowing
down of the three moving clocks is due to a different electromagnetic field produced by the moving
field-producing charges (and hence due to a different force acting on the field-experiencing charges)
as well as due to a change of the effective mass of the moving field-experiencing charges. Thus, for
the clocks under consideration, time dilation can be considered a dynamic cause-and-effect
phenomenon and not merely a kinematic effect, as time dilation is usually explained in conventional
presentations of the special relativity theory. © 1996 American Association of Physics Teachers.

L. INTRODUCTION

A fundamental concept in Einstein’s special relativity
theory is the concept of time dilation, according to which
time slows down in a reference frame moving relative to the
reference frame assumed to be at rest (laboratory).1 In con-
ventional presentations of the special relativity theory, time
dilation is treated as a kinematic effect. The question of
whether or not time dilation can also be explained as a dy-
namic cause-and-effect phenomenon is usually not dis-
cussed. Naturally, insofar as time dilation is supposed to hold
for any clock mechanism whatsoever, an all-inclusive dy-
namic (causal) interpretation of time dilation is hardly pos-
sible. But it should be possible to provide a causal interpre-
tation of time dilation for some specific clock mechanisms.
The aim of this paper is to provide such an interpretation of
time dilation for some very simple clocks. The basic idea of
the paper is as follows.

As a physical entity, time is defined in terms of specific
measurement procedures, which for the purpose of the
present discussion may be described simply as ‘‘observing
the rate of clocks.”” Therefore the operational manifestation
of time dilation is the slowing down of the rate of clocks that
are located in moving reference frames. But a clock is a
physical apparatus or device and is subject to the laws of
physics in accordance with which the clock is constructed.
Hence, if the clock runs slower when it is located in a mov-
ing reference frame, its slower rate should be explainable on
the basis of the specific laws responsible for the operation of
the clock. The laws of electromagnetism are especially well
known for both stationary and moving systems. For the pur-
pose of this paper it is natural therefore to consider clocks
operating on the basis of electromagnetic laws.

II. THE THEORY

Clock #1. Consider a ring of radius a carrying a uniformly
distributed charge g, . Let the axis of the ring be the x axis.
The electric field on the axis of the ring is’

q1x
= i 1
E 471'60(t12+x2)3 ! )

A charge q,, whose polarity is opposite to that of q,, is

placed on the x axis near the center of the ring at a distance
x from the center and is constrained to move only along the
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axis.? If q, is sufficiently close to the center, so that x<a,
which we assume to be the case, the force on g, is essen-
tially

9192%

F=- 47ega

5 i 2

Let the ring be fixed in the laboratory and let the mass of
q, be my. Since the force given by Eq. (2) is a linear restor-
ing force, the ring and the charge constitute a simple har-
monic oscillator, and the period of oscillations of g, is*

1/2 172
T=2,.,( ﬂ) =4773/2aa/2("10€0) ‘
Fix 9192

Clearly, the ring and the charge may be considered to
constitute a clock and can be used for measuring time in
terms of the period of oscillations 7.

Let us now assume that the same ring and the charge g,
are located in a reference frame moving along the x axis with
velocity v relative to the laboratory. By symmetry, the elec-
tric field on the axis of the ring is the same as the x compo-
nent of the electric field of a moving point charge g, whose
perpendicular distance from the axis is a. The electric field
of a moving point charge is given by’

_ q(1-v%/c?)

" 4qregri[1—(v?/c?)sin® 9] T
where v is the velocity of the charge, ¢ is the velocity of
light, r is the vector from the position of the charge to the
point of observation, and @ is the angle between r and v; the
subscript m is used to indicate that the field under consider-
ation is that of the moving charge. Thus the electric field on
the axis of the ring is now

E — q:(1-v?/cP)x .

" 4areg(at+x2) 1 —-v2a* cH(a?+xH)] '

Assuming, as before, that x<€a, we then have for the force
on q,

©)

@)

®)

_ q192X ;
dmega’(1—v3c?) 2™
Let us also assume that the velocity v of the moving refer-

ence frame is much larger than the maximum velocity of g,
relative to the ring. In this case the velocity of g, relative to

(6)

F,=
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the laboratory is essentially v, and the longitudinal mass® of
q, is
my
M A= @

The period of oscillations of g, is therefore

12
F,,,/x)
~ (m047reoa3(1 _Uz/cz)l/z) 12
I ST R

T,,,=27r(

M 12
— A 32,302 0%0
4 ((1—02/02)41‘12) ®
so that
=g T ©)

Thus the period of oscillations of a in the moving refer-
ence frame is by the factor (1—v?/c?) ™2 longer than the
period of oscillations of g, in the laboratory. Hence our
clock consisting of the charged ring and the point charge
runs slower when the clock is moving, and the rate of the
moving clock is (1—v2/c?)~ " times the rate of the same
stationary clock.’

Clock #2. Consider two point charges of the same magni-
tude and polarity located on the z axis at distances *a from
the origin. Let the magnitude of each charge be ¢, and let the
charges be fixed in the laboratory. A point charge gq,, whose
polarity is opposite to that of the first two charges and whose
mass is my, is placed on the y axis at a distance y close to
the origin (y<€a) and is constrained to move along the axis.
The electric field at the location of g, is now

_ q1y .
E= ey Y 10

which, after neglecting y? in the denominator, becomes

o qy
T 2mepa’ J- (11)

The force on g, is therefore

9192
Tmeed® (12

Except for the direction and the factor 2 instead of 4 in the
denominator, this is the same force as that given by Eq. (2).
Therefore g, executes a simple harmonic motion with the
period

12 172
mo mo€
T=27r(———) =(2ma 3/2(—) . 13

Fly (2ma) 919> (13)

Let us now assume that the three charges are placed in a
reference frame moving along the x axis with velocity v
relative to the laboratory. In determining the force on q,, we
must now take into account that g, is subjected not only to
the electric field but also to the magnetic field. As seen from
the laboratory, the force on g, is therefore the Lorentz force®

F,=q,(E,+vxB,), (14)
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where E,, is the electric field, and B,, is the magnetic flux
density field produced at the location of g, by the moving
charges q, .

The electric field at the location of g, is given by Eq. (4)
with g=gq,, r=yj, r=(a*+y?)"2, sin #=1, and with the
factor 2 instead of 4 in the denominator, that is

g1(1-v¥/c?)y

'”=27reo(a2+y2)3/2[1—vz/cz]mj’ (15)
which, after neglecting y2, becomes
q1y (16)

m=2ﬂ,€0a3(1 _U2/C2)1/2J-
Since the electric and magnetic fields of any uniformly
moving charge distribution are connected by the formula®
vXE,
B,=—>", 17

we have for the Lorentz force acting on g,

9192 . vXx(vXj)
=— +
FL 27r60a3(1—v2/c2)1/2 J 02 ’ (18)
or
2\ 172
_ 9492 v .
F = Tred’ (1 c—z') J. (19)

Using now the transverse mass® of q,

S 20
mt_(l_vz/c )1/ 4 ( )
we obtain for the period of oscillations of g,
12 1/2
mn, mg€o
Tp=2ml——| =(2 3/2(—7—2—) .
™ 7T(FL/J“) (27a) (1-v%/c”)q9192
Once again therefore
T,= . T 22
" (1-vP ) (22)

Clock #3. Consider two point charges g, and g, of the
same polarity located at a distance r one from the other. Let
g1 be fixed in the laboratory and let ¢, be free to move under
the action of g, . The force exerted by ¢, upon ¢, is

914>

W r. (23)
If r is sufficiently large, and if g, moves only a short dis-
tance, which we assume to be the case, we can ignore the
variation of the force with r, so that the force can be consid-
ered essentially constant.’ Let the mass of g, be my. The
distance traveled by g, during a time interval At (as mea-
sured by the “‘standard clock’’ in the laboratory) is then

F 9192
_— 2 _ 1 *tc 2
2m, (A1) 8megmyr? (A0)° (24)
Hence we can use the two charges as a clock for measuring
time intervals in terms of the distance d traveled by q,. By
Eq. (24), the formula for converting d into At is

8mwegmor? 172
Atz(#d) ,
9192

d=

(25)
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Note that the rate of our two-charge clock depends on how
fast g, travels under the action of g : the larger is A¢ corre-
sponding to a given d, the slower is the rate of the clock.

Let us now assume that we have a second two-charge
clock, identical with the one just described, but located in a
reference frame that moves along the x axis with velocity v
relative to the laboratory. Let us also assume that the line
joining the two charges is perpendicular to v, and let us
assume that the velocity which g, acquires under the action
of g, is much smaller than v. As seen from the laboratory,
the force on g, is then the Lorentz force

FL=q2(Em+vam)7 (26)
where E,, is the electric field, and B,, is the magnetic flux
density field produced at the location of g, by the moving

1 .
Since the line joining the two charges is perpendicular to
v, so that sin #=1 in Eq. (4), the electric field E,, is

q1
E’”=47re0r3(1 —v2/c?)1? T, (27)
and the magnetic flux density field is
B _VXE,,, q1 -8
mT T 4meprici(1-v¥ )2 vxr. @8
Hence the Lorentz force on g, is
B 9192 VX(VXr)
FL_47'r450r3(1—vz/cz)1/2 (r c? ’ 29
or
24 172
9192 v
L=m:)—r—3(l—c—2) r. (30)

Using now the transverse mass of q, [see Eq. (20)], we
obtain for the distance traveled by g, under the action of g4

Fy ,_ q192(1—v%/c?) )
=5 T R 2 >
dn = (Bt =2 (At) (1)
where the subscripts m are used to indicate that we are now
dealing with the moving two-charge clock. According to Eq.
(31), the time interval needed for g, to travel through the
distance d,, is

8 wegmor? 12

At,=\——— v d . 32

R S (32)

Let us now compare At and At,, corresponding to equal

distances traveled by g, under the action of g, in the station-

ary and in the moving two-charge clock, that is, correspond-
ing to

d,=d. (33)

From Egs. (25), (32), and (33) we have

At,= (34)

1
d=o%c 37 At.
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Thus At,, is by the factor (1—v%/c?) ™2 longer than At.
Hence our moving two-charge clock runs (1— v/ cz) -2
times slower than the identical stationary clock.!!

1. SUMMARY

Conventional presentations of the special relativity theory
treat time dilation as a strictly kinematic effect and do not
provide a dynamic cause-and-effect type explanation of the
dilation. The calculations presented in this paper show that at
least in some cases time dilation can be explained also dy-
namically.

1See, for example, A. R. French, Special Relativity (Norton, New York,
1968), pp. 97-104.
2See, for example, A. Hudson and R. Nelson, University Physics (Saunders,
New York, 1990), 2nd ed., pp. 572-573.
3The charge must be constrained to stay on the axis because otherwise it is
unstable with respect to a lateral displacement.
4See, for example, Ref. 2, pp. 338-339.

3This equation (in a different notation) was first derived by Oliver Heavi-
side. See Oliver Heaviside, ‘“The Electromagnetic Effects of a Moving
Charge,”” The Electrician 22, 147148 (1888); Oliver Heaviside, ‘‘On the
Electromagnetic Effects due to the Motion of Electricity Through a Di-
electric,”” Philos. Mag, 27, 324-339 (1889). For a modern derivation see,
for example, David J. Griffiths, Introduction to Electrodynamics (Prentice-
Hall, Englewood Cliffs, NJ, 1981) 2nd ed., pp. 421-425. For another
derivation see Ref. 9(b), below.

See, for example, Herbert Goldstein, Classical Mechanics (Addison-
Wesley, Cambridge, MA, 1951), p. 205; Carl G. Adler, ‘‘Does mass really
depend on velocity, dad?”’ Am. J. Phys. 55(8), 739-743 (1987).
"Similar clocks can be constructed by replacing the charged ring by two or
more equal point charges in the yz plane arranged symmetrically relative
to the x axis. A different numerical factor will then appear in Egs. (2) and
(6), but Eq. (9) (the time dilation equation) will remain the same.
8See, for example, Ref. 2, p. 691.

%See, for example, (a) W. G. V. Rosser, Classical Electromagnetism via
Relativity (Plenum, New York, 1968), p. 39; (b) for a more direct proof see
Oleg D. Jefimenko, ‘“Direct calculation of the electric and magnetic fields
of an electric point charge moving with constant velocity,”” Am. J. Phys.
62(1), 79-85 (1994).

10This approximation has no effect on the conclusions reached in the paper,
because, as we shall presently see, the dependence of the force on r is
exactly the same for the charges in the laboratory and for the charges in
the moving reference frame. However, neglecting the dependence of the
force on r simplifies the calculations and eliminates irrelevant algebraic
manipulations.

A clock similar to Clock #3 can be constructed by replacing the point
charge g, by a long line charge of uniform line density X lying along the
z axis and having its midpoint at the origin. The point charge g, is then
placed on the y axis at a distance r from the origin. The electric field
produced by the stationary line charge at the location of g, is

E= >
T 27er )
and the electric field produced by the same line charge moving along the x

axis is

A
E”’_Zweor(l -vilcz)l;”'
(This formula was first obtained by Oliver Heaviside; see his articles cited
in Ref. 5, above). The remaining equations are practically the same as for
Clock #3, and the time dilation is once again given by Eq. (34).
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