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Preface to the Second Edition 

I first wrote An Introduction to Error Analysis because my experience teaching 
introductory laboratory classes for several years had convinced me of a serious need 
for a book that truly introduced the subject to the college science student. Several 
fine books on the topic were available, but none was really suitable for a student 
new to the subject. The favorable reception to the first edition confirmed the exis­
tence of that need and suggests the book met it. 

The continuing success of the first edition suggests it still meets that need. 
Nevertheless, after more than a decade, every author of a college textbook must 
surely feel obliged to improve and update the original version. Ideas for modifica­
tions came from several sources: suggestions from readers, the need to adapt the 
book to the wide availability of calculators and personal computers, and my own 
experiences in teaching from the book and finding portions that could be improved. 

Because of the overwhelmingly favorable reaction to the first edition, I have 
maintained its basic level and general approach. Hence, many revisions are simply 
changes in wording to improve clarity. A few changes are major, the most important 
of which are as follows: 

(1) The number of problems at the end of each chapter is nearly doubled to 
give users a wider choice and teachers the ability to vary their assigned problems 
from year to year. Needless to say, any given reader does not need to solve any­
where near the 264 problems offered; on the contrary, half a dozen problems from 
each chapter is probably sufficient. 

(2) Several readers recommended placing a few simple exercises regularly 
throughout the text to let readers check that they really understand the ideas just 
presented. Such exercises now appear as "Quick Checks," and I strongly urge stu­
dents new to the subject to try them all. If any Quick Check takes much longer than 
a minute or two, you probably need to reread the preceding few paragraphs. The 
answers to all Quick Checks are given in the answer section at the back of the book. 
Those who find this kind of exercise distracting can easily skip them. 

(3) Also new to this edition are complete summaries of all the important equa­
tions at the end of each chapter to supplement the first edition's brief summaries 
inside the front and back covers. These new summaries list all key equations from 
the chapter and from the problem sets as well. 

(4) Many new figures appear in this edition, particularly in the earlier chapters. 
The figures help make the text seem less intimidating and reflect my conscious xi 
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effort to encourage students to think more visually about uncertainties. I have ob­
served, for example, that many students grasp issues such as the consistency of 
measurements if they think visually in terms of error bars. 

(5) I have reorganized the problem sets at the end of each chapter in three ways. 
First, the Answers section at the back of the book now gives answers to all of 
the odd-numbered problems. (The first edition contained answers only to selected 
problems.) The new arrangement is simpler and more traditional. Second, as a rough 
guide to the level of difficulty of each problem, I have labeled the problems with a 
system of stars: One star ( *) indicates a simple exercise that should take no more 
than a couple of minutes if you understand the material. Two stars ( **) indicate a 
somewhat harder problem, and three stars (***) indicate a really searching prob­
lem that involves several different concepts and requires more time. I freely admit 
that the classification is extremely approximate, but students studying on their own 
should find these indications helpful, as may teachers choosing problems to assign 
to their students. 

Third, I have arranged the problems by section number. As soon as you have 
read Section N, you should be ready to try any problem listed for that section. 
Although this system is convenient for the student and the teacher, it seems to be 
currently out of favor. I assume this disfavor stems from the argument that the 
system might exclude the deep problems that involve many ideas from different 
sections. I consider this argument specious; a problem listed for Section N can, of 
course, involve ideas from many earlier sections and can, therefore, be just as gen­
eral and deep as any problem listed under a more general heading. 

(6) I have added problems that call for the use of computer spreadsheet pro­
grams such as Lotus 123 or Excel. None of these problems is specific to a particular 
system; rather, they urge the student to learn how to do various tasks using whatever 
system is available. Similarly, several problems encourage students to learn to use 
the built-in functions on their calculators to calculate standard deviations and the 
like. 

(7) I have added an appendix (Appendix E) to show two proofs that concern 
sample standard deviations: first, that, based on N measurements of a quantity, the 
best estimate of the true width of its distribution is the sample standard deviation 
with (N - 1) in the denominator, and second, that the uncertainty in this estimate is 
as given by Equation (5.46). These proofs are surprisingly difficult and not easily 
found in the literature. 

It is a pleasure to thank the many people who have made suggestions for this 
second edition. Among my friends and colleagues at the University of Colorado, the 
people who gave most generously of their time and knowledge were David Alexan­
der, Dana Anderson, David Bartlett, Barry Bruce, John Cumalat, Mike Dubson, Bill 
Ford, Mark Johnson, Jerry Leigh, Uriel Nauenberg, Bill O'Sullivan, Bob Ristinen, 
Rod Smythe, and Chris Zafiratos. At other institutions, I particularly want to thank 
R. G. Chambers of Leeds, England, Sharif Heger of the University of New Mexico, 
Steven Hoffmaster of Gonzaga University, Hilliard Macomber of the University of 
Northern Iowa, Mark Semon of Bates College, Peter Timbie of Brown University, 
and David Van Dyke of the University of Pennsylvania. I am deeply indebted to all 
of these people for their generous help. I am also most grateful to Bruce Armbruster 
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of University Science Books for his generous encouragement and support. Above 
all, I want to thank my wife Debby; I don't know how she puts up with the stresses 
and strains of book writing, but I am so grateful she does. 

J. R. Taylor 

September 1996 
Boulder, Colorado 



Preface to the First Edition 

All measurements, however careful and scientific, are subject to some uncertainties. 
Error analysis is the study and evaluation of these uncertainties, its two main func­
tions being to allow the scientist to estimate how large his uncertainties are, and to 
help him to reduce them when necessary. The analysis of uncertainties, or "errors," 
is a vital part of any scientific experiment, and error analysis is therefore an im­
portant part of any college course in experimental science. It can also be one of the 
most interesting parts of the course. The challenges of estimating uncertainties and 
of reducing them to a level that allows a proper conclusion to be drawn can turn a 
dull and routine set of measurements into a truly interesting exercise. 

This book is an introduction to error analysis for use with an introductory col­
lege course in experimental physics of the sort usually taken by freshmen or sopho­
mores in the sciences or engineering. I certainly do not claim that error analysis is 
the most (let alone the only) important part of such a course, but I have found that 
it is often the most abused and neglected part. In many such courses, error analysis 
is "taught" by handing out a couple of pages of notes containing a few formulas, 
and the student is then expected to get on with the job solo. The result is that error 
analysis becomes a meaningless ritual, in which the student adds a few lines of 
calculation to the end of each laboratory report, not because he or she understands 
why, but simply because the instructor has said to do so. 

I wrote this book with the conviction that any student, even one who has never 
heard of the subject, should be able to learn what error analysis is, why it is interest­
ing and important, and how to use the basic tools of the subject in laboratory reports. 
Part I of the book (Chapters 1 to 5) tries to do all this, with many examples of the 
kind of experiment encountered in teaching laboratories. The student who masters 
this material should then know and understand almost all the error analysis he or 
she would be expected to learn in a freshman laboratory course: error propagation, 
the use of elementary statistics, and their justification in terms of the normal distri­
bution. 

Part II contains a selection of more advanced topics: least-squares fitting, the 
correlation coefficient, the i2 test, and others. These would almost certainly not be 
included officially in a freshman laboratory course, although a few students might 
become interested in some of them. However, several of these topics would be 
needed in a second laboratory course, and it is primarily for that reason that I have 
included them. xv 
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xvi Introduction to Error Analysis 

I am well aware that there is all too little time to devote to a subject like error 
analysis in most laboratory courses. At the University of Colorado we give a one­
hour lecture in each of the first six weeks of our freshman laboratory course. These 
lectures, together with a few homework assignments using the problems at the ends 
of the chapters, have let us cover Chapters 1 through 4 in detail and Chapter 5 
briefly. This gives the students a working knowledge of error propagation and the 
elements of statistics, plus a nodding acquaintance with the underlying theory of the 
normal distribution. 

From several students' comments at Colorado, it was evident that the lectures 
were an unnecessary luxury for at least some of the students, who could probably 
have learned the necessary material from assigned reading and problem sets. I cer­
tainly believe the book could be studied without any help from lectures. 

Part II could be taught in a few lectures at the start of a second-year laboratory 
course (again supplemented with some assigned problems). But, even more than 
Part I, it was intended to be read by the student at any time that his or her own needs 
and interests might dictate. Its seven chapters are almost completely independent of 
one another, in order to encourage this kind of use. 

I have included a selection of problems at the end of each chapter; the reader 
does need to work several of these to master the techniques. Most calculations of 
errors are quite straightforward. A student who finds himself or herself doing many 
complicated calculations ( either in the problems of this book or in laboratory re­
ports) is almost certainly doing something in an unnecessarily difficult way. In order 
to give teachers and readers a good choice, I have included many more problems 
than the average reader need try. A reader who did one-third of the problems would 
be doing well. 

Inside the front and back covers are summaries of all the principal formulas. I 
hope the reader will find these a useful reference, both while studying the book and 
afterward. The summaries are organized by chapters, and will also, I hope, serve as 
brief reviews to which the reader can turn after studying each chapter. 

Within the text, a few statements-equations and rules of procedure-have been 
highlighted by a shaded background. This highlighting is reserved for statements 
that are important and are in their final form (that is, will not be modified by later 
work). You will definitely need to remember these statements, so they have been 
highlighted to bring them to your attention. 

The level of mathematics expected of the reader rises slowly through the book. 
The first two chapters require only algebra; Chapter 3 requires differentiation ( and 
partial differentiation in Section 3.11, which is optional); Chapter 5 needs a knowl­
edge of integration and the exponential function. In Part II, I assume that the reader 
is entirely comfortable with all these ideas. 

The book contains numerous examples of physics experiments, but an under­
standing of the underlying theory is not essential. Furthermore, the examples are 
mostly taken from elementary mechanics and optics to make it more likely that the 
student will already have studied the theory. The reader who needs it can find an 
account of the theory by looking at the index of any introductory physics text. 

Error analysis is a subject about which people feel passionately, and no single 
treatment can hope to please everyone. My own prejudice is that, when a choice 
has to be made between ease of understanding and strict rigor, a physics text should 
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choose the former. For example, on the controversial question of combining errors 
in quadrature versus direct addition, I have chosen to treat direct addition first, since 
the student can easily understand the arguments that lead to it. 

In the last few years, a dramatic change has occurred in student laboratories 
with the advent of the pocket calculator. This has a few unfortunate consequences­
most notably, the atrocious habit of quoting ridiculously insignificant figures just 
because the calculator produced them-but it is from almost every point of view a 
tremendous advantage, especially in error analysis. The pocket calculator allows one 
to compute, in a few seconds, means and standard deviations that previously would 
have taken hours. It renders unnecessary many tables, since one can now compute 
functions like the Gauss function more quickly than one could find them in a book 
of tables. I have tried to exploit this wonderful tool wherever possible. 

It is my pleasure to thank several people for their helpful comments and sugges­
tions. A preliminary edition of the book was used at several colleges, and I am 
grateful to many students and colleagues for their criticisms. Especially helpful were 
the comments of John Morrison and David Nesbitt at the University of Colorado, 
Professors Pratt and Schroeder at Michigan State, Professor Shugart at U.C. Berke­
ley, and Professor Semon at Bates College. Diane Casparian, Linda Frueh, and Con­
nie Gurule typed successive drafts beautifully and at great speed. Without my 
mother-in-law, Frances Kretschmann, the proofreading would never have been done 
in time. I am grateful to all of these people for their help; but above all I thank 
my wife, whose painstaking and ruthless editing improved the whole book beyond 
measure. 

J. R. Taylor 

November 1, 1981 
Boulder, Colorado 
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Part I 

I. Preliminary Description of Error Analysis 

2. How to Report and Use Uncertainties 

3. Propagation of Uncertainties 

4. Statistical Analysis of Random Uncertainties 

5. The Normal Distribution 

Part I introduces the basic ideas of error analysis as they are needed in a typical 
first-year, college physics laboratory. The first two chapters describe what error anal­
ysis is, why it is important, and how it can be used in a typical laboratory report. 
Chapter 3 describes error propagation, whereby uncertainties in the original mea­
surements "propagate" through calculations to cause uncertainties in the calculated 
final answers. Chapters 4 and 5 introduce the statistical methods with which the so­
called random uncertainties can be evaluated. 





Chapter I 

Preliminary Description 
of Error Analysis 

Error analysis is the study and evaluation of uncertainty in measurement. Experience 
has shown that no measurement, however carefully made, can be completely free 
of uncertainties. Because the whole structure and application of science depends on 
measurements, the ability to evaluate these uncertainties and keep them to a mini­
mum is crucially important. 

This first chapter describes some simple measurements that illustrate the inevita­
ble occurrence of experimental uncertainties and show the importance of knowing 
how large these uncertainties are. The chapter then describes how (in some simple 
cases, at least) the magnitude of the experimental uncertainties can be estimated 
realistically, often by means of little more than plain common sense. 

1.1 Errors as Uncertainties 

In science, the word error does not carry the usual connotations of the terms mistake 
or blunder. Error in a scientific measurement means the inevitable uncertainty that 
attends all measurements. As such, errors are not mistakes; you cannot eliminate 
them by being very careful. The best you can hope to do is to ensure that errors are 
as small as reasonably possible and to have a reliable estimate of how large they 
are. Most textbooks introduce additional definitions of error, and these are discussed 
later. For now, error is used exclusively in the sense of uncertainty, and the two 
words are used interchangeably. 

1.2 Inevitability of Uncertainty 

To illustrate the inevitable occurrence of uncertainties, we have only to examine any 
everyday measurement carefully. Consider, for example, a carpenter who must mea­
sure the height of a doorway before installing a door. As a first rough measurement, 
he might simply look at the doorway and estimate its height as 210 cm. This crude 
"measurement" is certainly subject to uncertainty. If pressed, the carpenter might 
express this uncertainty by admitting that the height could be anywhere between 
205 cm and 215 cm. 3 
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4 Chapter I: Preliminary Description of Error Analysis 

If he wanted a more accurate measurement, he would use a tape measure and 
might find the height is 211.3 cm. This measurement is certainly more precise than 
his original estimate, but it is obviously still subject to some uncertainty, because it 
is impossible for him to know the height to be exactly 211.3000 cm rather than 
211.3001 cm, for example. 

This remaining uncertainty has many sources, several of which are discussed in 
this book. Some causes could be removed if the carpenter took enough trouble. For 
example, one source of uncertainty might be that poor lighting hampers reading of 
the tape; this problem could be corrected by improving the lighting. 

On the other hand, some sources of uncertainty are intrinsic to the process of 
measurement and can never be removed entirely. For example, let us suppose the 
carpenter's tape is graduated in half-centimeters. The top of the door probably will 
not coincide precisely with one of the half-centimeter marks, and if it does not, the 
carpenter must estimate just where the top lies between two marks. Even if the top 
happens to coincide with one of the marks, the mark itself is perhaps a millimeter 
wide; so he must estimate just where the top lies within the mark. In either case, 
the carpenter ultimately must estimate where the top of the door lies relative to the 
markings on the tape, and this necessity causes some uncertainty in the measure­
ment. 

By buying a better tape with closer and finer markings, the carpenter can reduce 
his uncertainty but cannot eliminate it entirely. If he becomes obsessively deter­
mined to find the height of the door with the greatest precision technically possible, 
he could buy an expensive laser interferometer. But even the precision of an interfer­
ometer is limited to distances of the order of the wavelength of light ( about 
0.5 X 10-6 meters). Although the carpenter would now be able to measure the height 
with fantastic precision, he still would not know the height of the doorway exactly. 

Furthermore, as our carpenter strives for greater precision, he will encounter an 
important problem of principle. He will certainly find that the height is different in 
different places. Even in one place, he will find that the height varies if the tempera­
ture and humidity vary, or even if he accidentally rubs off a thin layer of dirt. In 
other words, he will find that there is no such thing as the height of the doorway. 
This kind of problem is called a problem of definition (the height of the door is not a 
well-defined quantity) and plays an important role in many scientific measurements. 

Our carpenter's experiences illustrate a point generally found to be true, that is, 
that no physical quantity (a length, time, or temperature, for example) can be mea­
sured with complete certainty. With care, we may be able to reduce the uncertainties 
until they are extremely small, but to eliminate them entirely is impossible. 

In everyday measurements, we do not usually bother to discuss uncertainties. 
Sometimes the uncertainties simply are not interesting. If we say that the distance 
between home and school is 3 miles, whether this means "somewhere between 2.5 
and 3.5 miles" or "somewhere between 2.99 and 3.01 miles" is usually unimportant. 
Often the uncertainties are important but can be allowed for instinctively and with­
out explicit consideration. When our carpenter fits his door, he must know its height 
with an uncertainty that is less than 1 mm or so. As long as the uncertainty is this 
small, the door will (for all practical purposes) be a perfect fit, and his concern with 
error analysis is at an end. 

alan
Highlight



Section 1.3 Importance of Knowing the Uncertainties 

1.3 Importance of Knowing the Uncertainties 

Our example of the carpenter measuring a doorway illustrates how uncertainties are 
always present in measurements. Let us now consider an example that illustrates 
more clearly the crucial importance of knowing how big these uncertainties are. 

Suppose we are faced with a problem like the one said to have been solved by 
Archimedes. We are asked to find out whether a crown is made of 18-karat gold, as 
claimed, or a cheaper alloy. Following Archimedes, we decide to test the crown's 
density p knowing that the densities of 18-karat gold and the suspected alloy are 

Pgold = 15.5 gram/cm3 

and 

Panoy = 13.8 gram/cm3 • 

If we can measure the density of the crown, we should be able ( as Archimedes 
suggested) to decide whether the crown is really gold by comparing p with the 
known densities Pgold and Panoy. 

Suppose we summon two experts in the measurement of density. The first ex­
pert, George, might make a quick measurement of p and report that his best estimate 
for p is 15 and that it almost certainly lies between 13.5 and 16.5 gram/cm3 . Our 
second expert, Martha, might take a little longer and then report a best estimate of 
13.9 and a probable range from 13.7 to 14.1 grarn/cm3. The findings of our two 
experts are summarized in Figure 1.1. 

Density p 
(gram/cm3) 

17 

16 

gold 

George- 15 

Martha I 14 
alloy 

13 

Figure 1.1. Two measurements of the density of a supposedly gold crown. The two black dots 
show George's and Martha's best estimates for the density; the two vertical error bars show their 
margins of error, the ranges within which they believe the density probably lies. George's uncer­
tainty is so large that both gold and the suspected alloy fall within his margins of error; there­
fore, his measurement does not determine which metal was used. Martha's uncertainty is appreci­
ably smaller, and her measurement shows clearly that the crown is not made of gold. 

5 



6 Chapter I: Preliminary Description of Error Analysis 

The first point to notice about these results is that although Martha's measure­
ment is much more precise, George's measurement is probably also correct. Each 
expert states a range within which he or she is confident p lies, and these ranges 
overlap; so it is perfectly possible (and even probable) that both statements are 
correct. 

Note next that the uncertainty in George's measurement is so large that his 
results are of no use. The densities of 18-karat gold and of the alloy both lie within 
his range, from 13.5 to 16.5 gram/cm3; so no conclusion can be drawn from 
George's measurements. On the other hand, Martha's measurements indicate clearly 
that the crown is not genuine; the density of the suspected alloy, 13.8, lies comfort­
ably inside Martha's estimated range of 13.7 to 14.1, but that of 18-karat gold, 
15.5, is far outside it. Evidently, if the measurements are to allow a conclusion, the 
experimental uncertainties must not be too large. The uncertainties do not need to be 
extremely small, however. In this respect, our example is typical of many scientific 
measurements, for which uncertainties have to be reasonably small (perhaps a few 
percent of the measured value) but for which extreme precision is often unnecessary. 

Because our decision hinges on Martha's claim that p lies between 13.7 and 
14.1 gram/cm3, she must give us sufficient reason to believe her claim. In other 
words, she must justify her stated range of values. This point is often overlooked by 
beginning students, who simply assert their uncertainties but omit any justification. 
Without a brief explanation of how the uncertainty was estimated, the assertion is 
almost useless. 

The most important point about our two experts' measurements is this: Like 
most scientific measurements, they would both have been useless if they had not 
included reliable statements of their uncertainties. In fact, if we knew only the two 
best estimates (15 for George and 13.9 for Martha), not only would we have been 
unable to draw a valid conclusion, but we could actually have been misled, because 
George's result (15) seems to suggest the crown is genuine. 

1.4 More Examples 

The examples in the past two sections were chosen, not for their great importance, 
but to introduce some principal features of error analysis. Thus, you can be excused 
for thinking them a little contrived. It is easy, however, to think of examples of 
great importance in almost any branch of applied or basic science. 

In the applied sciences, for example, the engineers designing a power plant 
must know the characteristics of the materials and fuels they plan to use. The manu­
facturer of a pocket calculator must know the properties of its various electronic 
components. In each case, somebody must measure the required parameters, and 
having measured them, must establish their reliability, which requires error analysis. 
Engineers concerned with the safety of airplanes, trains, or cars must understand the 
uncertainties in drivers' reaction times, in braking distances, and in a host of other 
variables; failure to carry out error analysis can lead to accidents such as that shown 
on the cover of this book. Even in a less scientific field, such as the manufacture of 
clothing, error analysis in the form of quality control plays a vital part. 
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Section 1.4 More Examples 

In the basic sciences, error analysis has an even more fundamental role. When 
any new theory is proposed, it must be tested against older theories by means of 
one or more experiments for which the new and old theories predict different out­
comes. In principle, a researcher simply performs the experiment and lets the out­
come decide between the rival theories. In practice, however, the situation is compli­
cated by the inevitable experimental uncertainties. These uncertainties must all be 
analyzed carefully and their effects reduced until the experiment singles out one 
acceptable theory. That is, the experimental results, with their uncertainties, must be 
consistent with the predictions of one theory and inconsistent with those of all 
known, reasonable alternatives. Obviously, the success of such a procedure depends 
critically on the scientist's understanding of error analysis and ability to convince 
others of this understanding. 

A famous example of such a test of a scientific theory is the measurement of 
the bending of light as it passes near the sun. When Einstein published his general 
theory of relativity in 1916, he pointed out that the theory predicted that light from 
a star would be bent through an angle a = 1.8" as it passes near the sun. The 
simplest classical theory would predict no bending ( a = 0), and a more careful 
classical analysis would predict (as Einstein himself noted in 1911) bending through 
an angle a = 0.9". In principle, all that was necessary was to observe a star when 
it was aligned with the edge of the sun and to measure the angle of bending a. If 
the result were a = 1.8", general relativity would be vindicated (at least for this 
phenomenon); if a were found to be O or 0.9", general relativity would be wrong 
and one of the older theories right. 

In practice, measuring the bending of light by the sun was extremely hard and 
was possible only during a solar eclipse. Nonetheless, in 1919 it was successfully 
measured by Dyson, Eddington, and Davidson, who reported their best estimate as 
a= 2", with 95% confidence that it lay between 1.7" and 2.3".1 Obviously, this 
result was consistent with general relativity and inconsistent with either of the older 
predictions. Therefore, it gave strong support to Einstein's theory of general rela­
tivity. 

At the time, this result was controversial. Many people suggested that the uncer­
tainties had been badly underestimated and hence that the experiment was inconclu­
sive. Subsequent experiments have tended to confirm Einstein's prediction and to 
vindicate the conclusion of Dyson, Eddington, and Davidson. The important point 
here is that the whole question hinged on the experimenters' ability to estimate 
reliably all their uncertainties and to convince everyone else they had done so. 

Students in introductory physics laboratories are not usually able to conduct 
definitive tests of new theories. Often, however, they do perform experiments that 
test existing physical theories. For example, Newton's theory of gravity predicts that 
bodies fall with constant acceleration g (under the appropriate conditions), and stu­
dents can conduct experiments to test whether this prediction is correct. At first, this 
kind of experiment may seem artificial and pointless because the theories have obvi-

1 This simplified account is based on the original paper of F. W. Dyson, A. S. Eddington, and C. Davidson 
(Philosophical Transactions of the Royal Society, 220A, 1920, 291). I have converted the probable error 
originally quoted into the 95% confidence limits. The precise significance of such confidence limits will be 
established in Chapter 5. 
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ously been tested many times with much more precision than possible in a teaching 
laboratory. Nonetheless, if you understand the crucial role of error analysis and 
accept the challenge to make the most precise test possible with the available equip­
ment, such experiments can be interesting and instructive exercises. 

1.5 Estimating Uncertainties When Reading Scales 

Thus far, we have considered several examples that illustrate why every measure­
ment suffers from uncertainties and why their magnitude is important to know. We 
have not yet discussed how we can actually evaluate the magnitude of an uncer­
tainty. Such evaluation can be fairly complicated and is the main topic of this book. 
Fortunately, reasonable estimates of the uncertainty of some simple measurements 
are easy to make, often using no more than common sense. Here and in Section 
1.6, I discuss examples of such measurements. An understanding of these examples 
will allow you to begin using error analysis in your experiments and will form the 
basis for later discussions. 

The first example is a measurement using a marked scale, such as the ruler in 
Figure 1.2 or the voltmeter in Figure 1.3. To measure the length of the pencil in 

millimeters 
0 10 20 30 40 50 

Figure 1.2. Measuring a length with a ruler. 

Figure 1.2, we must first place the end of the pencil opposite the zero of the ruler 
and then decide where the tip comes to on the ruler's scale. To measure the voltage 
in Figure 1.3, we have to decide where the needle points on the voltmeter's scale. 
If we assume the ruler and voltmeter are reliable, then in each case the main prob-

4 

volts 
5 

6 

Figure 1.3. A reading on a voltmeter. 
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lem is to decide where a certain point lies in relation to the scale markings. (Of 
course, if there is any possibility the ruler and voltmeter are not reliable, we will 
have to take this uncertainty into account as well.) 

The markings of the ruler in Figure 1.2 are fairly close together (1 mm apart). 
We might reasonably decide that the length shown is undoubtedly closer to 36 mm 
than it is to 35 or 37 mm but that no more precise reading is possible. In this case, 
we would state our conclusion as 

best estimate of length = 36 mm, 

probable range: 35.5 to 36.5 mm 

and would say that we have measured the length to the nearest millimeter. 

(1.1) 

This type of conclusion-that the quantity lies closer to a given mark than to 
either of its neighboring marks-is quite common. For this reason, many scientists 
introduce the convention that the statement "l = 36 mm" without any qualification 
is presumed to mean that l is closer to 36 than to 35 or 37; that is, 

l = 36 mm 

means 

35.5 mm :::; l ,;;; 36.5 mm. 

In the same way, an answer such as x = 1.27 without any stated uncertainty would 
be presumed to mean that x lies between 1.265 and 1.275. In this book, I do not 
use this convention but instead always indicate uncertainties explicitly. Nevertheless, 
you need to understand the convention and know that it applies to any number 
stated without an uncertainty, especially in this age of pocket calculators, which 
display many digits. If you unthinkingly copy a number such as 123.456 from your 
calculator without any qualification, then your reader is entitled to assume the num­
ber is definitely correct to six significant figures, which is very unlikely. 

The markings on the voltmeter shown in Figure 1.3 are more widely spaced 
than those on the ruler. Here, most observers would agree that you can do better 
than simply identify the mark to which the pointer is closest. Because the spacing 
is larger, you can realistically estimate where the pointer lies in the space between 
two marks. Thus, a reasonable conclusion for the voltage shown might be 

best estimate of voltage = 5.3 volts, 

probable range: 5.2 to 5.4 volts. 
(1.2) 

The process of estimating positions between the scale markings is called interpola­
tion. It is an important technique that can be improved with practice. 

Different observers might not agree with the precise estimates given in Equa­
tions (1.1) and (1.2). You might well decide that you could interpolate for the length 
in Figure 1.2 and measure it with a smaller uncertainty than that given in Equation 
(1.1). Nevertheless, few people would deny that Equations (1.1) and (1.2) are rea­
sonable estimates of the quantities concerned and of their probable uncertainties. 
Thus, we see that approximate estimation of uncertainties is fairly easy when the 
only problem is to locate a point on a marked scale. 
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1.6 Estimating Uncertainties in Repeatable Measurements 

Many measurements involve uncertainties that are much harder to estimate than 
those connected with locating points on a scale. For example, when we measure a 
time interval using a stopwatch, the main source of uncertainty is not the difficulty 
of reading the dial but our own unknown reaction time in starting and stopping the 
watch. Sometimes these kinds of uncertainty can be estimated reliably, if we can 
repeat the measurement several times. Suppose, for example, we time the period of 
a pendulum once and get an answer of 2.3 seconds. From one measurement, we 
can't say much about the experimental uncertainty. But if we repeat the measure­
ment and get 2.4 seconds, then we can immediately say that the uncertainty is 
probably of the order of 0.1 s. If a sequence of four timings gives the results (in 
seconds), 

2.3, 2.4, 2.5, 2.4, (1.3) 

then we can begin to make some fairly realistic estimates. 
First, a natural assumption is that the best estimate of the period is the average 2 

value, 2.4 s. 
Second, another reasonably safe assumption is that the correct period lies be­

tween the lowest value, 2.3, and the highest, 2.5. Thus, we might reasonably con­
clude that 

best estimate = average = 2.4 s, 

probable range: 2.3 to 2.5 s. 
(1.4) 

Whenever you can repeat the same measurement several times, the spread in 
your measured values gives a valuable indication of the uncertainty in your mea­
surements. In Chapters 4 and 5, I discuss statistical methods for treating such re­
peated measurements. Under the right conditions, these statistical methods give a 
more accurate estimate of uncertainty than we have found in Equation (1.4) using 
just common sense. A proper statistical treatment also has the advantage of giving 
an objective value for the uncertainty, independent of the observer's individual judg­
ment.3 Nevertheless, the estimate in statement (1.4) represents a simple, realistic 
conclusion to draw from the four measurements in (1.3). 

Repeated measurements such as those in (1.3) cannot always be relied on to 
reveal the uncertainties. First, we must be sure that the quantity measured is really 
the same quantity each time. Suppose, for example, we measure the breaking 
strength of two supposedly identical wires by breaking them (something we can't 
do more than once with each wire). If we get two different answers, this difference 
may indicate that our measurements were uncertain or that the two wires were not 
really identical. By itself, the difference between the two answers sheds no light on 
the reliability of our measurements. 

2 I will prove in Chapter 5 that the best estimate based on several measurements of a quantity is almost 
always the average of the measurements. 

3 Also, a proper statistical treatment usually gives a smaller uncertainty than the full range from the lowest 
to the highest observed value. Thus, upon looking at the four timings in (1.3), we have judged that the period 
is "probably" somewhere between 2.3 and 2.5 s. The statistical methods of Chapters 4 and 5 let us state with 
70% confidence that the period lies in the smaller range of 2.36 to 2.44 s. 
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Even when we can be sure we are measuring the same quantity each time, 
repeated measurements do not always reveal uncertainties. For example, suppose 
the clock used for the timings in (1.3) was running consistently 5% fast. Then, all 
timings made with it will be 5% too long, and no amount of repeating (with the 
same clock) will reveal this deficiency. Errors of this sort, which affect all measure­
ments in the same way, are called systematic errors and can be hard to detect, as 
discussed in Chapter 4. In this example, the remedy is to check the clock against a 
more reliable one. More generally, if the reliability of any measuring device is in 
doubt, it should clearly be checked against a device known to be more reliable. 

The examples discussed in this and the previous section show that experimental 
uncertainties sometimes can be estimated easily. On the other hand, many measure­
ments have uncertainties that are not so easily evaluated. Also, we ultimately want 
more precise values for the uncertainties than the simple estimates just discussed. 
These topics will occupy us from Chapter 3 onward. In Chapter 2, I assume tempo­
rarily that you know how to estimate the uncertainties in all quantities of interest, 
so that we can discuss how the uncertainties are best reported and how they are 
used in drawing an experimental conclusion. 
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Chapter 2 

How to Report and Use 
Uncertainties 

Having read Chapter 1, you should now have some idea of the importance of experi­
mental uncertainties and how they arise. You should also understand how uncertain­
ties can be estimated in a few simple situations. In this chapter, you will learn some 
basic notations and rules of error analysis and study examples of their use in typical 
experiments in a physics laboratory. The aim is to familiarize you with the basic 
vocabulary of error analysis and its use in the introductory laboratory. Chapter 3 
begins a systematic study of how uncertainties are actually evaluated. 

Sections 2.1 to 2.3 define several basic concepts in error analysis and discuss 
general rules for stating uncertainties. Sections 2.4 to 2.6 discuss how these ideas 
could be used in typical experiments in an introductory physics laboratory. Finally, 
Sections 2.7 to 2.9 introduce fractional uncertainty and discuss its significance. 

2.1 Best Estimate + Uncertainty 

We have seen that the correct way to state the result of measurement is to give a 
best estimate of the quantity and the range within which you are confident the 
quantity lies. For example, the result of the timings discussed in Section 1.6 was 
reported as 

best estimate of time = 2.4 s, (2.1) 
probable range: 2.3 to 2.5 s. 

Here, the best estimate, 2.4 s, lies at the midpoint of the estimated range of probable 
values, 2.3 to 2.5 s, as it has in all the examples. This relationship is obviously 
natural and pertains in most measurements. It allows the results of the measurement 
to be expressed in compact form. For example, the measurement of the time re­
corded in (2.1) is usually stated as follows: 

measured value of time = 2.4 ± 0.1 s. (2.2) 

This single equation is equivalent to the two statements in (2.1). 
In general, the result of any measurement of a quantity x is stated as 

(2.3) 13 
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This statement means, first, that the experimenter's best estimate for the quantity 
concerned is the number xbest, and second, that he or she is reasonably confident the 
quantity lies somewhere between xbest - & and xbest + &. The number & is called 
the uncertainty, or error, or margin of error in the measurement of x. For conve­
nience, the uncertainty & is always defined to be positive, so that xbest + & is 
always the highest probable value of the measured quantity and xbest - & the 
lowest. 

I have intentionally left the meaning of the range xbest - & to xbest + & some­
what vague, but it can sometimes be made more precise. In a simple measurement 
such as that of the height of a doorway, we can easily state a range xbest - & 
to xbest + & within which we are absolutely certain the measured quantity lies. 
Unfortunately, in most scientific measurements, such a statement is hard to make. 
In particular, to be completely certain that the measured quantity lies between 
xbest - & and xbest + &, we usually have to choose a value for & that is too large 
to be useful. To avoid this situation, we can sometimes choose a value for & that 
lets us state with a certain percent confidence that the actual quantity lies within the 
range xbest ± &. For instance, the public opinion polls conducted during elections 
are traditionally stated with margins of error that represent 95% confidence limits. 
The statement that 60% of the electorate favor Candidate A, with a margin of error 
of 3 percentage points (60 ± 3), means that the pollsters are 95% confident that the 
percent of voters favoring Candidate A is between 57 and 63; in other words, after 
many elections, we should expect the correct answer to have been inside the stated 
margins of error 95% of the times and outside these margins only 5% of the times. 

Obviously, we cannot state a percent confidence in our margins of error until 
we understand the statistical laws that govern the process of measurement. I return 
to this point in Chapter 4. For now, let us be content with defining the uncertainty 
& so that we are "reasonably certain" the measured quantity lies between xbest - & 
and Xbest + Sx. 

Quick Check1 2.1. (a) A student measures the length of a simple pendulum 
and reports his best estimate as 110 mm and the range in which the length 
probably lies as 108 to 112 mm. Rewrite this result in the standard form (2.3). 
(b) If another student reports her measurement of a current as/ = 3.05 ± 0.03 
amps, what is the range within which I probably lies? 

2.2 Significant Figures 

Several basic rules for stating uncertainties are worth emphasizing. First, because 
the quantity Sx is an estimate of an uncertainty, obviously it should not be stated 

1 These "Quick Checks" appear at intervals through the text to give you a chance to check your understand­
ing of the concept just introduced. They are straightforward exercises, and many can be done in your head. I 
urge you to take a moment to make sure you can do them; if you cannot, you should reread the preceding 
few paragraphs. 
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with too much precision. If we measure the acceleration of gravity g, it would be 
absurd to state a result like 

(measured g) = 9.82 ± 0.02385 m/s2. (2.4) 

The uncertainty in the measurement cannot conceivably be known to four significant 
figures. In high-precision work, uncertainties are sometimes stated with two signifi­
cant figures, but for our purposes we can state the following rule: 

(2.5) 

Thus, if some calculation yields the uncertainty og = 0.02385 m/s2, this answer 
should be rounded to og = 0.02 m/s2, and the conclusion (2.4) should be rewritten 
as 

(measured g) = 9.82 ± 0.02 m/s2. (2.6) 

An important practical consequence of this rule is that many error calculations can 
be carried out mentally without using a calculator or even pencil and paper. 

The rule (2.5) has only one significant exception. If the leading digit in the 
uncertainty &: is a 1, then keeping two significant figures in &: may be better. For 
example, suppose that some calculation gave the uncertainty &: = 0.14. Rounding 
this number to &: = 0.1 would be a substantial proportionate reduction, so we could 
argue that retaining two figures might be less misleading, and quote &: = 0.14. The 
same argument could perhaps be applied if the leading digit is a 2 but certainly not 
if it is any larger. 

Once the uncertainty in a measurement has been estimated, the significant fig­
ures in the measured value must be considered. A statement such as 

measured speed = 6051. 78 ± 30 m/s (2.7) 

is obviously ridiculous. The uncertainty of 30 means that the digit 5 might really be 
as small as 2 or as large as 8. Clearly the trailing digits 1, 7, and 8 have no signifi­
cance at all and should be rounded. That is, the correct statement of (2.7) is 

measured speed = 6050 ± 30 m/s. (2.8) 

The general rule is this: 

(2.9) 



16 Chapter 2: How to Report and Use Uncertainties 

For example, the answer 92.81 with an uncertainty of 0.3 should be rounded as 

92.8 ± 0.3. 

If its uncertainty is 3, then the same answer should be rounded as 

93 ± 3, 

and if the uncertainty is 30, then the answer should be 

90 ± 30. 

An important qualification to rules (2.5) and (2.9) is as follows: To reduce 
inaccuracies caused by rounding, any numbers to be used in subsequent calculations 
should normally retain at least one significant figure more than is finally justified. 
At the end of the calculations, the final answer should be rounded to remove these 
extra, insignificant figures. An electronic calculator will happily carry numbers with 
far more digits than are likely to be significant in any calculation you make in a 
laboratory. Obviously, these numbers do not need to be rounded in the middle of a 
calculation but certainly must be rounded appropriately for the final answers.2 

Note that the uncertainty in any measured quantity has the same dimensions as 
the measured quantity itself. Therefore, writing the units (m/s2, cm3, etc.) after both 
the answer and the uncertainty is clearer and more economical, as in Equations 
(2.6) and (2.8). By the same token, if a measured number is so large or small that 
it calls for scientific notation (the use of the form 3 X 103 instead of 3,000, for 
example), then it is simpler and clearer to put the answer and uncertainty in the 
same form. For example, the result 

measured charge = (1.61 ± 0.05) X 10- 19 coulombs 

is much easier to read and understand in this form than it would be in the form 

measured charge = 1.61 X 10- 19 ± 5 X 10- 21 coulombs. 

Quick Check 2.2. Rewrite each of the following measurements in its most 
appropriate form: 

(a) v = 8.123456 ± 0.0312 m/s 
(b) X = 3.1234 X 104 ± 2 m 
(c) m 5.6789 X 10-7 ± 3 X 10-9 kg. 

2.3 Discrepancy 

Before I address the question of how to use uncertainties in experimental reports, a 
few important terms should be introduced and defined. First, if two measurements 

2 Rule (2.9) has one more small exception. If the leading digit in the uncertainty is small ( a 1 or, perhaps, 
a 2), retaining one extra digit in the final answer may be appropriate. For example, an answer such as 3.6 ± 1 
is quite acceptable because one could argue that rounding it to 4 ± 1 would waste information. 
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of the same quantity disagree, we say there is a discrepancy. Numerically, we define 
the discrepancy between two measurements as their difference: 

(2.10) 

More specifically, each of the two measurements consists of a best estimate and an 
uncertainty, and we define the discrepancy as the difference between the two best 
estimates. For example, if two students measure the same resistance as follows 

Student A: 15 ± 1 ohms 

and 

Student B: 25 ± 2 ohms, 

their discrepancy is 

discrepancy = 25 - 15 = 10 ohms. 

Recognize that a discrepancy may or may not be significant. The two measure­
ments just discussed are illustrated in Figure 2.l(a), which shows clearly that the 
discrepancy of 10 ohms is significant because no single value of the resistance is 
compatible with both measurements. Obviously, at least one measurement is incor­
rect, and some careful checking is needed to find out what went wrong. 

t 30 t 30 
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(a) (b) 

Figure 2.1. (a) Two measurements of the same resistance. Each measurement includes a best 
estimate, shown by a block dot, and a range of probable values, shown by a vertical error bar. 
The discrepancy (difference between the two best estimates) is 10 ohms and is significant be­
cause it is much larger than the combined uncertainty in the two measurements. Almost cer­
tainly, at least one of the experimenters made a mistake. (b) Two different measurements of the 
same resistance. The discrepancy is again 10 ohms, but in this case it is insignificant because the 
stated margins of error overlap. There is no reason to doubt either measurement (although they 
could be criticized for being rather imprecise). 
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Suppose, on the other hand, two other students had reported these results: 

Student C: 16 ± 8 ohms 

and 

Student D: 26 ± 9 ohms. 

Here again, the discrepancy is 10 ohms, but in this case the discrepancy is insignifi­
cant because, as shown in Figure 2.l(b), the two students' margins of error overlap 
comfortably and both measurements could well be correct. The discrepancy between 
two measurements of the same quantity should be assessed not just by its size 
but, more importantly, by how big it is compared with the uncertainties in the 
measurements. 

In the teaching laboratory, you may be asked to measure a quantity that has 
been measured carefully many times before, and for which an accurate accepted 
value is known and published, for example, the electron's charge or the universal 
gas constant. This accepted value is not exact, of course; it is the result of measure­
ments and, like all measurements, has some uncertainty. Nonetheless, in many cases 
the accepted value is much more accurate than you could possibly achieve yourself. 
For example, the currently accepted value of the universal gas constant R is 

(accepted R) = 8.31451 ± 0.00007 J/(mol • K). (2.11) 

As expected, this value is uncertain, but the uncertainty is extremely small by the 
standards of most teaching laboratories. Thus, when you compare your measured 
value of such a constant with the accepted value, you can usually treat the accepted 
value as exact.3 

Although many experiments call for measurement of a quantity whose accepted 
value is known, few require measurement of a quantity whose true value is known. 4 

In fact, the true value of a measured quantity can almost never be known exactly 
and is, in fact, hard to define. Nevertheless, discussing the difference between a 
measured value and the corresponding true value is sometimes useful. Some authors 
call this difference the true error. 

2.4 Comparison of Measured and Accepted Values 

Performing an experiment without drawing some sort of c-:mclusion has little merit. 
A few experiments may have mainly qualitative results-the appearance of an inter­
ference pattern on a ripple tank or the color of light transmitted by some optical 
system-but the vast majority of experiments lead to quantitative conclusions, that 
is, to a statement of numerical results. It is important to recognize that the statement 
of a single measured number is completely uninteresting. Statements that the density 

3 Tiris is not always so. For example, if you look up the refractive index of glass, you find values ranging 
from 1.5 to 1.9, depending on the composition of the glass. In an experiment to measure the refractive index 
of a piece of glass whose composition is unknown, the accepted value is therefore no more than a rough guide 
to the expected answer. 

4 Here is an example: If you measure the ratio of a circle's circumference to its diameter, the true answer is 
exactly 7t. (Obviously such an experiment is rather contrived.) 
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Figure 2.2. Three measurements of the speed of sound at standard temperature and pressure. 
Because the accepted value (331 m/s) is within Student A's margins of error, her result is satis­
factory. The accepted value is just outside Student B's margin of error, but his measurement is 
nevertheless acceptable. The accepted value is far outside Student C's stated margins, and his 
measurement is definitely unsatisfactory. 

of some metal was measured as 9.3 ± 0.2 gram/cm3 or that the momentum of a 
cart was measured as 0.051 ± 0.004 kg·m/s are, by themselves, of no interest. An 
interesting conclusion must compare two or more numbers: a measurement with 
the accepted value, a measurement with a theoretically predicted value, or several 
measurements, to show that they are related to one another in accordance with some 
physical law. It is in such comparison of numbers that error analysis is so important. 
This and the next two sections discuss three typical experiments to illustrate how 
the estimated uncertainties are used to draw a conclusion. 

Perhaps the simplest type of experiment is a measurement of a quantity whose 
accepted value is known. As discussed, this exercise is a somewhat artificial experi­
ment peculiar to the teaching laboratory. The procedure is to measure the quantity, 
estimate the experimental uncertainty, and compare these values with the accepted 
value. Thus, in an experiment to measure the speed of sound in air (at standard 
temperature and pressure), Student A might arrive at the conclusion 

Ns measured speed = 329 ± 5 m/s, (2.12) 

compared with the 

accepted speed = 331 m/s. (2.13) 

Student A might choose to display this result graphically as in Figure 2.2. She 
should certainly include in her report both Equations (2.12) and (2.13) next to each 
other, so her readers can clearly appreciate her result. She should probably add an 
explicit statement that because the accepted value lies inside her margins of error, 
her measurement seems satisfactory. 

The meaning of the uncertainty & is that the correct value of x probably lies 
between xbest - & and xbest + &; it is certainly possible that the correct value lies 
slightly outside this range. Therefore, a measurement can be regarded as satisfactory 
even if the accepted value lies slightly outside the estimated range of the measured 
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value. For example, if Student B found the value 

B's measured speed = 325 ± 5 mis, 

he could certainly claim that his measurement is consistent with the accepted value 
of 331 m/s. 

On the other hand, if the accepted value is well outside the margins of error 
(the discrepancy is appreciably more than twice the uncertainty, say), there is reason 
to think something has gone wrong. For example, suppose the unlucky Student C 
finds 

C's measured speed = 345 ± 2 m/s (2.14) 

compared with the 

accepted speed = 331 m/s. (2.15) 

Student C's discrepancy is 14 m/s, which is seven times bigger than his stated 
uncertainty (see Figure 2.2). He will need to check his measurements and calcula­
tions to find out what has gone wrong. 

Unfortunately, the tracing of C's mistake may be a tedious business because of 
the numerous possibilities. He may have made a mistake in the measurements or 
calculations that led to the answer 345 m/s. He may have estimated his uncertainty 
incorrectly. (The answer 345 ± 15 m/s would have been acceptable.) He also might 
be comparing his measurement with the wrong accepted value. For example, the 
accepted value 331 m/s is the speed of sound at standard temperature and pressure. 
Because standard temperature is 0°C, there is a good chance the measured speed in 
(2.14) was not taken at standard temperature. In fact, if the measurement was made 
at 20°C (that is, normal room temperature), the correct accepted value for the speed 
of sound is 343 m/s, and the measurement would be entirely acceptable. 

Finally, and perhaps most likely, a discrepancy such as that between (2.14) and 
(2.15) may indicate some undetected source of systematic error (such as a clock 
that runs consistently slow, as discussed in Chapter 1). Detection of such systematic 
errors ( ones that consistently push the result in one direction) requires careful check­
ing of the calibration of all instruments and detailed review of all procedures. 

2.5 Comparison of Two Measured Numbers 

Many experiments involve measuring two numbers that theory predicts should be 
equal. For example, the law of conservation of momentum states that the total mo­
mentum of an isolated system is constant. To test it, we might perform a series of 
experiments with two carts that collide as they move along a frictionless track. We 
could measure the total momentum of the two carts before (p) and after (q) they 
collide and check whether p = q within experimental uncertainties. For a single pair 
of measurements, our results could be 

initial momentum p = 1.49 ± 0.03 kg·m/s 

and 

final momentum q 1.56 ± 0.06 kg·m/s. 
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Figure 2.3. Measured values of the total momentum of two carts before (p) and after (q) a col­
lision. Because the margins of error for p and q overlap, these measurements are certainly consis­
tent with conservation of momentum (which implies that p and q should be equal). 

Here, the range in which p probably lies (1.46 to 1.52) overlaps the range in which 
q probably lies (1.50 to 1.62). (See Figure 2.3.) Therefore, these measurements are 
consistent with conservation of momentum. If, on the other hand, the two probable 
ranges were not even close to overlapping, the measurements would be inconsistent 
with conservation of momentum, and we would have to check for mistakes in our 
measurements or calculations, for possible systematic errors, and for the possibility 
that some external forces (such as gravity or friction) are causing the momentum of 
the system to change. 

If we repeat similar pairs of measurements several times, what is the best way 
to display our results? First, using a table to record a sequence of similar measure­
ments is usually better than listing the results as several distinct statements. Second, 
the uncertainties often differ little from one measurement to the next. For example, 
we might convince ourselves that the uncertainties in all measurements of the initial 
momentum p are about Sp = 0.03 kg·m/s and that the uncertainties in the final q 
are all about 8q = 0.06 kg·m/s. If so, a good way to display our measurements 
would be as shown in Table 2.1. 

Table 2.1. Measured momenta (kg·m/s). 

Trial Initial momentum p Final momentum q 
number (all ±0.03) (all ±0.06) 

1 1.49 1.56 
2 3.10 3.12 
3 2.16 2.05 

etc. 

For each pair of measurements, the probable range of values for p overlaps ( or 
nearly overlaps) the range of values for q. If this overlap continues for all measure­
ments, our results can be pronounced consistent with conservation of momentum. 
Note that our experiment does not prove conservation of momentum; no experiment 
can. The best you can hope for is to conduct many more trials with progressively 
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Figure 2.4. Three trials in a test of the conservation of momentum. The student has measured 
the total momentum of two carts before and after they collide (p and q, respectively). If momen­
tum is conserved, the differences p - q should all be zero. The plot shows the value of p - q 
with its error bar for each trial. The expected value 0 is inside the margins of error in trials 1 
and 2 and only slightly outside in trial 3. Therefore, these results are consistent with the conser­
vation of momentum. 

Whether our results are consistent with conservation of momentum can now be seen 
at a glance by checking whether the numbers in the final column are consistent with 
zero (that is, are less than, or comparable with, the uncertainty 0.09). Alternatively, 
and perhaps even better, we could plot the results as in Figure 2.4 and check visu­
ally. Yet another way to achieve the same effect would be to calculate the ratios 
q!p, which should all be consistent with the expected value q/p = l. (Here, we 
would need to calculate the uncertainty in q!p, a problem discussed in Chapter 3.) 

Our discussion of the uncertainty in p - q applies to the difference of any two 
measured numbers. If we had measured any two numbers x and y and used our 
measured values to compute the difference x - y, by the argument just given, the 
resulting uncertainty in the difference would be the sum of the separate uncertainties 
in x and y. We have, therefore, established the following provisional rule: 

Uncertainty in a Difference 
(Provisional Rule) 

If two quantities x and y are measured with uncertainties ax 
and 5y, and if the measured values x and y are used to calculate 
the difference q = x - y, the uncertainty in q is the sum of 
the uncertainties in x and y: 

aq = ax+ ay. (2.18) 

I call this rule "provisional" because we will find in Chapter 3 that the uncertainty 
in the quantity q = x - y is often somewhat smaller than that given by Equation 
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(2.18). Thus, we will be replacing the provisional rule (2.18) by an "improved" 
rule-in which the uncertainty in q = x - y is given by the so-called quadratic 
sum of 5x and 5y, as defined in Equation (3.13). Because this improved rule gives 
a somewhat smaller uncertainty for q, you will want to use it when appropriate. For 
now, however, let us be content with the provisional rule (2.18) for three reasons: 
(1) The rule (2.18) is easy to understand-much more so than the improved rule of 
Chapter 3. (2) In most cases, the difference between the two rules is small. (3) The 
rule (2.18) always gives an upper bound on the uncertainty in q = x - y; thus, we 
know at least that the uncertainty in x - y is never worse than the answer given in 
(2.18). 

The result (2.18) is the first in a series of rules for the propagation of errors. 
To calculate a quantity q in terms of measured quantities x and y, we need to know 
how the uncertainties in x and y "propagate" to cause uncertainty in q. A complete 
discussion of error propagation appears in Chapter 3. 

Quick Check 2.3. In an experiment to measure the latent heat of ice, a student 
adds a chunk of ice to water in a styrofoam cup and observes the change in 
temperature as the ice melts. To determine the mass of ice added, she weighs 
the cup of water before and after she adds the ice and then takes the difference. 
If her two measurements were 

(mass of cup & water) = m1 = 203 ± 2 grams 

and 

(mass of cup, water, & ice) = m2 = 246 ± 3 grams, 

find her answer for the mass of ice, m2 - m1, with its uncertainty, as given by 
the provisional rule (2.18). 

2.6 Checking Relationships with a Graph 

Many physical laws imply that one quantity should be proportional to another. For 
example, Hooke's law states that the extension of a spring is proportional to the 
force stretching it, and Newton's law says that the acceleration of a body is propor­
tional to the total applied force. Many experiments in a teaching laboratory are 
designed to check this kind of proportionality. 

If one quantity y is proportional to some other quantity x, a graph of y against 
x is a straight line through the origin. Thus, to test whether y is proportional to x, 
you can plot the measured values of y against those of x and note whether the 
resulting points do lie on a straight line through the origin. Because a straight line 
is so easily recognizable, this method is a simple, effective way to check for propor­
tionality. 

To illustrate this use of graphs, let us imagine an experiment to test Hooke's 
law. This law, usually written as F = kx, asserts that the extension x of a spring is 
proportional to the force F stretching it, so x = Flk, where k is the "force constant" 
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of the spring. A simple way to test this law is to hang the spring vertically and 
suspend various masses m from it. Here, the force F is the weight mg of the load; 
so the extension should be 

(2.19) 

The extension x should be proportional to the load m, and a graph of x against m 
should be a straight line through the origin. 

If we measure x for a variety of different loads m and plot our measured values 
of x and m, the resulting points almost certainly will not lie exactly on a straight 
line. Suppose, for example, we measure the extension x for eight different loads m 
and get the results shown in Table 2.3. These values are plotted in Figure 2.S(a), 

Table 2.3. Load and extension. 

Load m (grams) 200 300 400 500 600 700 800 900 
(8m negligible) 

Extension x (cm) 1.1 1.5 1.9 2.8 3.4 3.5 4.6 5.4 
(all ±0.3) 

which also shows a possible straight line that passes through the origin and is rea­
sonably close to all eight points. As we should have expected, the eight points do 
not lie exactly on any line. The question is whether this result stems from experi­
mental uncertainties ( as we would hope), from mistakes we have made, or even 
from the possibility the extension x is not proportional to m. To answer this question, 
we must consider our uncertainties. 

As usual, the measured quantities, extensions x and masses m, are subject to 
uncertainty. For simplicity, let us suppose that the masses used are known very 
accurately, so that the uncertainty in m is negligible. Suppose, on the other hand, 
that all measurements of x have an uncertainty of approximately 0.3 cm (as indi­
cated in Table 2.3). For a load of 200 grams, for example, the extension would 
probably be in the range 1.1 ± 0.3 cm. Our first experimental point on the graph 
thus lies on the vertical line m = 200 grams, somewhere between x = 0.8 and 
x = 1.4 cm. This range is indicated in Figure 2.S(b ), which shows an error bar 
through each point to indicate the range in which it probably lies. Obviously, we 
should expect to find a straight line that goes through the origin and passes through 
or close to all the error bars. Figure 2.S(b) has such a line, so we conclude that the 
data on which Figure 2.S(b) is based are consistent with x being proportional to m. 

We saw in Equation (2.19) that the slope of the graph of x against mis g/k. By 
measuring the slope of the line in Figure 2.S(b ), we can therefore find the constant 
k of the spring. By drawing the steepest and least steep lines that fit the data reason­
ably well, we could also find the uncertainty in this value fork. (See Problem 2.18.) 

If the best straight line misses a high proportion of the error bars or if it misses 
any by a large distance (compared with the length of the error bars), our results 
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Figure 2.5. Three plots of extension x of a spring against the load m. (a) The data of Table 2.3 
without error bars. (b) The same data with error bars to show the uncertainties in x. (The uncer­
tainties in m are assumed to be negligible.) These data are consistent with the expected propor­
tionality of x and m. (c) A different set of data, which are inconsistent with x being proportional 
tom. 

would be inconsistent with x being proportional to m. This situation is illustrated in 
Figure 2.S(c). With the results shown there, we would have to recheck our measure­
ments and calculations (including the calculation of the uncertainties) and consider 
whether x is not proportional to m for some reason. [In Figure 2.5( c ), for instance, 
the first five points can be fitted to a straight line through the origin. This situation 
suggests that x may be proportional to m up to approximately 600 grams, but that 
Hooke's law breaks down at that point and the spring starts to stretch more rapidly.] 

Thus far, we have supposed that the uncertainty in the mass (which is plotted 
along the horizontal axis) is negligible and that the only uncertainties are in x, as 
shown by the vertical error bars. If both x and m are subject to appreciable uncer­
tainties the simplest way to display them is to draw vertical and horizontal error 
bars, whose lengths show the uncertainties in x and m respectively, as in Figure 2.6. 
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Figure 2.6. Measurements that have uncertainties in both variables can be shown by crosses 
made up of one error bar for each variable. 

Each cross in this plot corresponds to one measurement of x and m, in which x 
probably lies in the interval defined by the vertical bar of the cross and m probably 
in that defined by the horizontal bar. 

A slightly more complicated possibility is that some quantity may be expected 
to be proportional to a power of another. (For example, the distance traveled by a 
freely falling object in a time t is d = ½gt2 and is proportional to the square oft.) 
Let us suppose that y is expected to be proportional to x2. Then 

y = Ax2, (2.20) 

where A is some constant, and a graph of y against x should be a parabola with the 
general shape of Figure 2.7(a). If we were to measure a series of values for y and x 
and plot y against x, we might get a graph something like that in Figure 2.7(b). 
Unfortunately, visually judging whether a set of points such as these fit a parabola 
(or any other curve, except a straight line) is very hard. A better way to check that 
y oc x2 is to plot y against x squared. From Equation (2.20), we see that such a plot 
should be a straight line, which we can check easily as in Figure 2.7(c). 

y y y 

'----------+ X 

(a) (b) (c) 

Figure 2.7. (a) If y is proportional to x2, a graph of y against x should be a parabola with this 
general shape. (b) A plot of y against x for a set of measured values is hard to check visually for 
fit with a parabola. (c) On the other hand, a plot of y against x2 should be a straight line through 
the origin, which is easy to check. (In the case shown, we see easily that the points do fit a 
straight line through the origin.) 
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In the same way, if y = Ax" (where n is any power), a graph of y against x' 
should be a straight line, and by plotting the observed values of y against x', we 
can check easily for such a fit. There are various other situations in which a nonlin­
ear relation (that is, one that gives a curved-nonlinear-graph) can be converted 
into a linear one by a clever choice of variables to plot. Section 8.6 discusses an 
important example of such "linearization," which is worth mentioning briefly here. 
Often one variable y depends exponentionally on another variable x: 

y = Ae8x. 

(For example, the activity of a radioactive sample depends exponentially on time.) 
For such relations, the natural logarithm of y is easily shown to be linear in x; that 
is, a graph of ln(y) against x should be a straight line for an exponential relationship. 

Many other, nongraphical ways are available to check the proportionality of two 
quantities. For example, if y oc x, the ratio y/x should be constant. Thus, having 
tabulated the measured values of y and x, you could simply add a column to the 
table that shows the ratios y/x and check that these ratios are constant within their 
experimental uncertainties. Many calculators have a built-in function (called the 
correlation coefficient) to show how well a set of measurements fits a straight line. 
(This function is discussed in Section 9.3.) Even when another method is used to 
check that y oc x, making the graphical check as well is an excellent practice. Graphs 
such as those in Figures 2.S(b) and (c) show clearly how well (or badly) the mea­
surements verify the predictions; drawing such graphs helps you understand the 
experiment and the physical laws involved. 

2.7 Fractional Uncertainties 

The uncertainty & in a measurement, 

(measured x) = xbest ± &, 

indicates the reliability or precision of the measurement. The uncertainty & by itself 
does not tell the whole story, however. An uncertainty of one inch in a distance of 
one mile would indicate an unusually precise measurement, whereas an uncertainty 
of one inch in a distance of three inches would indicate a rather crude estimate. 
Obviously, the quality of a measurement is indicated not just by the uncertainty 
& but also by the ratio of & to xbest, which leads us to consider the fractional 
uncertainty, 

(2.21) 

(The fractional uncertainty is also called the relative uncertainty or the precision.) 
In this definition, the symbol /xbesi/ denotes the absolute value 5 of xbest· The uncer-

5The absolute value lxl of a number xis equal to x when xis positive but is obtained by omitting the minus 
sign if xis negative. We use the absolute value in (2.21) to guarantee that the fractional uncertainty, like the 
uncertainty & itself, is always positive, whether xbest is positive or negative. In practice, you can often arrange 
matters so that measured numbers are positive, and the absolute-value signs in (2.21) can then be omitted. 



Section 2.7 Fractional Uncertainties 29 

tainty & is sometimes called the absolute uncertainty to avoid confusion with the 
fractional uncertainty. 

In most serious measurements, the uncertainty & is much smaller than the 
measured value xbest· Because the fractional uncertainty &/lxbesil is therefore usually 
a small number, multiplying it by 100 and quoting it as the percentage uncertainty 
is often convenient. For example, the measurement 

has a fractional uncertainty 

length l = 50 ± 1 cm 

1cm 
50 cm 

0.02 

and a percentage uncertainty of 2%. Thus, the result (2.22) could be given as 

length l = 50 cm± 2%. 

(2.22) 

Note that although the absolute uncertainty 81 has the same units as /, the fractional 
uncertainty 81/llbesil is a dimensionless quantity, without units. Keeping this differ­
ence in mind can help you avoid the common mistake of confusing absolute uncer­
tainty with fractional uncertainty. 

The fractional uncertainty is an approximate indication of the quality of a mea­
surement, whatever the size of the quantity measured. Fractional uncertainties of 
10% or so are usually characteristic of fairly rough measurements. (A rough mea­
surement of 10 inches might have an uncertainty of 1 inch; a rough measurement 
of 10 miles might have an uncertainty of 1 mile.) Fractional uncertainties of 1 or 
2% are characteristic of reasonably careful measurements and are about the best to 
hope for in many experiments in the introductory physics laboratory. Fractional 
uncertainties much less than 1 % are often hard to achieve and are rather rare in the 
introductory laboratory. 

These divisions are, of course, extremely rough. A few simple measurements 
can have fractional uncertainties of 0.1 % or less with little trouble. A good tape 
measure can easily measure a distance of 10 feet with an uncertainty of ro inch, or 
approximately 0.1 %; a good timer can easily measure a period of an hour with an 
uncertainty of less than a second, or 0.03%. On the other hand, for many quantities 
that are very hard to measure, a 10% uncertainty would be regarded as an experi­
mental triumph. Large percentage uncertainties, therefore, do not necessarily mean 
that a measurement is scientifically useless. In fact, many important measurements 
in the history of physics had experimental uncertainties of 10% or more. Certainly 
plenty can be learned in the introductory physics laboratory from equipment that 
has a minimum uncertainty of a few percent. 

Quick Check 2.4. Convert the errors in the following measurements of the 
velocities of two carts on a track into fractional errors and percent errors: (a) 
v = 55 ± 2 cm/s; (b) u = -20 ± 2 cm/s. (c) A cart's kinetic energy is mea­
sured as K = 4.58 J ± 2%; rewrite this finding in terms of its absolute uncer­
tainty. (Because the uncertainties should be given to one significant figure, you 
ought to be able to do the calculations in your head.) 
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2.8 Significant Figures and Fractional Uncertainties 

The concept of fractional uncertainty is closely related to the familiar notion of 
significant figures. In fact, the number of significant figures in a quantity is an 
approximate indicator of the fractional uncertainty in that quantity. To clarify this 
connection, let us review briefly the notion of significant figures and recognize that 
this concept is both approximate and somewhat ambiguous. 

To a mathematician, the statement that x = 21 to two significant figures means 
unambiguously that x is closer to 21 than to either 20 or 22; thus, the number 21, 
with two significant figures, means 21 ± 0.5. To an experimental scientist, most 
numbers are numbers that have been read off a meter ( or calculated from numbers 
read off a meter). In particular, if a digital meter displays two significant figures and 
reads 21, it may mean 21 ± 0.5, but it may also mean 21 ± 1 or even something 
like 21 ± 5. (Many meters come with a manual that explains the actual uncertaint­
ies.) Under these circumstances, the statement that a measured number has two 
significant figures is only a rough indicator of its uncertainty. Rather than debate 
exactly how the concept should be defined, I will adopt a middle-of-the-road defini­
tion that 21 with two significant figures means 21 ± 1, and more generally that a 
number with N significant figures has an uncertainty of about 1 in the N th digit. 

Let us now consider two numbers, 

x = 21 and y = 0.21, 

both of which have been certified accurate to two significant figures. According to 
the convention just agreed to, these values mean 

x = 21 ± 1 and y = 0.21 ± 0.01. 

Although the two numbers both have two significant figures, they obviously have 
very different uncertainties. On the other hand, they both have the same fractional 
uncertainty, which in this case is 5%: 

& = oy = l_ = O.Ol = 0 05 r 5% 
X Y 21 0.21 • O "fl • 

Evidently, the statement that the numbers 21 and 0.21 (or 210, or 2.1, or 0.0021, 
etc.) have two significant figures is equivalent to saying that they are 5% uncertain. 
In the same way, 21.0, with three significant figures, is 0.5% uncertain, and so on. 

Unfortunately, this useful connection is only approximate. For example, the 
statement that s = 10, with two significant figures, means 

s = 10 ± 1 or 10 ± 10%. 

At the opposite extreme, t = 99 ( again with two significant figures) means 

t = 99 ± 1 or 99 ± 1 %. 

Evidently, the fractional uncertainty associated with two significant figures ranges 
from 1 % to 10%, depending on the first digit of the number concerned. 

The approximate correspondence between significant figures and fractional un­
certainties can be summarized as in Table 2.4. 
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Table 2.4. Approximate correspondence 
between significant figures and fractional 
uncertainties. 

Number of 
significant 

figures 

1 

2 

3 

Corresponding fractional 
uncertainty is 

between 

10% and 100% 
1% and 10% 

0.1% and 1% 

or roughly 

50% 
5% 
0.5% 

2.9 Multiplying Two Measured Numbers 

Perhaps the greatest importance of fractional errors emerges when we start multi­
plying measured numbers by each other. For example, to find the momentum of a 
body, we might measure its mass m and its velocity u and then multiply them to 
give the momentum p = mu. Both m and u are subject to uncertainties, which we 
will have to estimate. The problem, then, is to find the uncertainty in p that results 
from the known uncertainties in m and u. 

First, for convenience, let us rewrite the standard form 

(measured value of x) = xbest ± & 

in terms of the fractional uncertainty, as 

(measured value of x) = xbest( 1 ± ~ ). 
jxbest! 

For example, if the fractional uncertainty is 3%, we see from (2.23) that 

(measured value of x) = xbest( 1 ± 1~0); 

(2.23) 

that is, 3% uncertainty means that x probably lies between xbest times 0.97 and xbest 

times 1.03, 

(0.97) Xxbest ~ X ~ (1.03) X Xbest· 

We will find this a useful way to think about a measured number that we will have 
to multiply. 

Let us now return to our problem of calculating p = mu, when m and u have 
been measured, as 

(2.24) 

and 

(measured u) (2.25) 
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Because mbest and ubest are our best estimates for m and u, our best estimate for 
p = muis 

(best estimate for p) = Pbest = mbestubest· 

The largest probable values of m and u are given by (2.24) and (2.25) with the plus 
signs. Thus, the largest probable value for p = mu is 

(largest value for p) = mbestubesi{ 1 + _§!!!_ )( 1 + ~). 
jmbest! jubest! 

(2.26) 

The smallest probable value for p is given by a similar expression with two minus 
signs. Now, the product of the parentheses in (2.26) can be multiplied out as 

(1 + _§!!!_)(1 + ~) = 1 + Sm + ~ + _§!!!_~. (2.27) 
lmbest! jubest! jmbestl hest! jmbest! jubestl 

Because the two fractional uncertainties Sm!lmbestl and Su/jubestl are small numbers 
( a few percent, perhaps), their product is extremely small. Therefore, the last term 
in (2.27) can be neglected. Returning to (2.26), we find 

( Sm Su) (largest value of p) = mbestubest 1 + -- + -- • 
jmbest! jubest! 

The smallest probable value is given by a similar expression with two minus signs. 
Our measurements of m and u, therefore, lead to a value of p = mu given by 

(value of p) = mbestubest(l ± [ Sm + ~]). 
jmbest! jubestl 

Comparing this equation with the general form 

(value of p) = Pbesi{ 1 ± -3!__ ), 

jpbestl 

we see that the best estimate for pis Pbest = mbestubest (as we already knew) and that 
the fractional uncertainty in p is the sum of the fractional uncertainties in m and u, 

-3!__ = _§!!!_ + ~-
IPbestl jmbestl jubest! 

If, for example, we had the following measurements for m and u, 

m = 0.53 ± 0.01 kg 

and 

u = 9.1 ± 0.3 m/s, 

the best estimate for p = mu is 

(0.53) X (9.1) 4.82 kg·m/s. 
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To compute the uncertainty in p, we would first compute the fractional errors 

Sm 0.01 
0.53 = 0.02 = 2% 

and 

Su = 0.3 = 0.03 3%. 
Vbest 9.1 

The fractional uncertainty in p is then the sum: 

Sp = 2% + 3% = 5%. 
Pbest 

If we want to know the absolute uncertainty in p, we must multiply by Pbest: 

Sp 
Sp = p- X Pbest = 0.05 X 4.82 = 0.241. 

best 

We then round Sp and Aest to give us our final answer 

(value of p) = 4.8 ± 0.2 kg· m/s. 

The preceding considerations apply to any product of two measured quantities. 
We have therefore discovered our second general rule for the propagation of errors. 
If we measure any two quantities x and y and form their product, the uncertainties 
in the original two quantities "propagate" to cause an uncertainty in their product. 
This uncertainty is given by the following rule: 

Uncertainty in a Product 
(Provisional Rule) 

If two quantities x and y have been measured with small frac­
tional uncertainties &/lxbestl and Sy/lYbestl, and if the measured 
values of x and y are used to calculate the product q = xy, 
then the fractional uncertainty in q is the sum of the fractional 
uncertainties in x and y, 

& Sy --+--. 
lxbestl IYbestl 

(2.28) 

I call this rule "provisional," because, just as with the rule for uncertainty in a 
difference, I will replace it with a more precise rule later on. Two other features of 
this rule also need to be emphasized. First, the derivation of (2.28) required that the 
fractional uncertainties in x and y both be small enough that we could neglect their 
product. This requirement is almost always true in practice, and I will always as­
sume it. Nevertheless, remember that if the fractional uncertainties are not much 
smaller than 1, the rule (2.28) may not apply. Second, even when x and y have 
different dimensions, (2.28) balances dimensionally because all fractional uncertain­
ties are dimensionless. 
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In physics, we frequently multiply numbers together, and the rule (2.28) for 
finding the uncertainty in a product will obviously be an important tool in error 
analysis. For the moment, our main purpose is to emphasize that the uncertainty in 
any product q = xy is expressed most simply in terms of fractional uncertainties, as 
in (2.28). 

Quick Check 2.5. To find the area of a rectangular plate, a student measures 
its sides as l = 9.1 ± 0.1 cm and b = 3.3 ± 0.1 cm. Express these uncertainties 
as percent uncertainties and then find the student's answer for the area A = lb 
with its uncertainty. (Find the latter as a percent uncertainty first and then con­
vert to an absolute uncertainty. Do all error calculations in your head.) 

Principal Definitions and Equations of Chapter 2 

STANDARD FORM FOR STATING UNCERTAINTIES 

The standard form for reporting a measurement of a physical quantity x is 

(measured value of x) = Xbest ± &, 

where 

xbest (best estimate for x) 

and 

Bx = (uncertainty or error in the measurement). [See (2.3)] 

This statement expresses our confidence that the correct value of x probably lies in 
( or close to) the range from xbest - & to xbest + &. 

is 

DISCREPANCY 

The discrepancy between two measured values of the same physical quantity is 

discrepancy = difference between two measured 
values of the same quantity. 

FRACTIONAL UNCERTAINTY 

[See (2.10)] 

If x is measured in the standard form xbest ± &, the fractional uncertainty in x 

fractional uncertainty [See (2.21)] 



Problems for Chapter 2 35 

The percent uncertainty is just the fractional uncertainty expressed as a percentage 
(that is, multiplied by 100% ). 

We have found two provisional rules, (2.18) and (2.28), for error propagation 
that show how the uncertainties in two quantities x and y propagate to cause uncer­
tainties in calculations of the difference x - y or the product xy. A complete discus­
sion of error propagation appears in Chapter 3, where I show that the rules (2.18) 
and (2.28) can frequently be replaced with more refined rules (given in Section 3.6). 
For this reason, I have not reproduced (2.18) and (2.28) here. 

Problems for Chapter 2 

Notes: The problems at the end of each chapter are arranged by section number. A 
problem listed for a specific section may, of course, involve ideas from previous 
sections but does not require knowledge of later sections. The ref ore, you may try 
problems listed for a specific section as soon as you have read that section. 

The approximate difficulty of each problem is indicated by one, two, or three 
stars. A one-star problem should be straightforward and usually involves a single 
concept. Two-star problems are more difficult or require more work ( drawing a 
graph, for instance). Three-star problems are the most difficult and may require 
considerably more labor. 

Answers to the odd-numbered problems can be found in the Answers Section at 
the back of the book. 

For Section 2.1 : Best Estimate ± Uncertainty 

2.1. * In Chapter 1, a carpenter reported his measurement of the height of a door­
way by stating that his best estimate was 210 cm and that he was confident the 
height was between 205 and 215 cm. Rewrite this result in the standard form 
xbest ± &. Do the same for the measurements reported in Equations (1.1), (1.2), 
and (1.4). 

2.2. * A student studying the motion of a cart on an air track measures its posi­
tion, velocity, and acceleration at one instant, with the results shown in Table 2.5. 
Rewrite these results in the standard form xbest ± &. 

Table 2.5. Measurements of position, velocity, and 
acceleration; for Problem 2.2. 

Variable Best estimate Probable range 

Position, x 53.3 53.1 to 53.5 (cm) 
Velocity, v -13.5 -14.0 to -13.0 (cm/s) 
Acceleration, a 93 90 to 96 (cm/s2) 
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For Section 2.2: Significant Figures 

2.3. * Rewrite the following results in their clearest forms, with suitable numbers 
of significant figures: 

(a) measured height = 5.03 ± 0.04329 m 
(b) measured time = 1.5432 ± 1 s 
(c) measured charge = -3.21 X 10-19 ± 2.67 X 10-2° C 
(d) measured wavelength = 0.000,000,563 ± 0.000,000,07 m 
(e) measured momentum = 3.267 X 103 ± 42 g·cm/s. 

2.4. * Rewrite the following 
forms: 

equations in their clearest and most appropriate 

(a) X 

(b) t 
(c) X. 
(d) r 

3.323 ± 1.4 mm 
1,234,567 ± 54,321 s 
5.33 X 10-7 ± 3.21 X 10-9 m 

0.000,000,538 ± 0.000,000,03 mm 

For Section 2.3: Discrepancy 

2.5. * Two students measure the length of the same rod and report the results 
135 ± 3 mm and 137 ± 3 mm. Draw an illustration like that in Figure 2.1 to repre­
sent these two measurements. What is the discrepancy between the two measure­
ments, and is it significant? 

2.6. * Each of two research groups discovers a new elementary particle. The two 
reported masses are 

m1 = (7.8 ± 0.1) X 10-27 kg 

and 

m2 = (7.0 ± 0.2) X 10-27 kg. 

Draw an illustration like that in Figure 2.1 to represent these two measurements. 
The question arises whether these two measurements could actually be of the same 
particle. Based on the reported masses, would you say they are likely to be the same 
particle? In particular, what is the discrepancy in the two measurements (assuming 
they really are measurements of the same mass)? 

For Section 2.4: Comparison of Measured and Accepted Values 

2.7. * (a) A student measures the density of a liquid five times and gets the results 
(all in gram/cm3) 1.8, 2.0, 2.0, 1.9, and 1.8. What would you suggest as the best 
estimate and uncertainty based on these measurements? (b) The student is told that 
the accepted value is 1.85 gram/cm3. What is the discrepancy between the student's 
best estimate and the accepted value? Do you think it is significant? 

2.8. * 1\vo groups of students measure the charge of the electron and report their 
results as follows: 

Group A: e = (1.75 ± 0.04) X 10-19 C 
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and 

Group B: e = (1.62 ± 0.04) X 10-19 C. 

What should each group report for the discrepancy between its value and the ac­
cepted value, 

e = 1.60 X 10-19 C 

(with negligible uncertainty)? Draw an illustration similar to that in Figure 2.2 to 
show these results and the accepted value. Which of the results would you say is 
satisfactory? 

For Section 2.5: Comparison of Two Measured Numbers 

2.9. * In an experiment on the simple pendulum, a student uses a steel ball sus­
pended from a light string, as shown in Figure 2.8. The effective length l of the 

X 

Figure 2.8. A simple pendulum; for Problem 2.9. 

pendulum is the distance from the top of the string to the center of the ball, as 
shown. To find /, he first measures the distance x from the top of the string to the 
bottom of the ball and the radius r of the ball; he then subtracts to give l = x - r. 
If his two measurements are 

x = 95.8 ± 0.1 cm and r = 2.30 ± 0.02 cm, 

what should be his answer for the length l and its uncertainty, as given by the 
provisional rule (2.18)? 

2.10. * The time a carousel takes to make one revolution is measured by noting 
the starting and stopping times using the second hand of a wrist watch and sub­
tracting. If the starting and stopping times are uncertain by ± 1 second each, what 
is the uncertainty in the time for one revolution, as given by the provisional rule 
(2.18)? 

2.11. * In an experiment to check conservation of angular momentum, a student 
obtains the results shown in Table 2.6 for the initial and final angular momenta (L 
and L') of a rotating system. Add an extra column to the table to show the difference 
L - L' and its uncertainty. Are the student's results consistent with conservation of 
angular momentum? 
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Table 2.6. Initial and final 
angular momenta (in 
kg·m2/s ); for Problems 
2.11 and 2.14. 

Initial L Final L' 

3.0 ± 0.3 2.7 ± 0.6 
7.4 ± 0.5 8.0 ± 1 

14.3 ± 1 16.5 ± 1 
25 ± 2 24 ± 2 
32 ± 2 31 ± 2 
37 ± 2 41 ± 2 

2.12. * The acceleration a of a cart sliding down a frictionless incline with slope 
0 is expected to be gsin 0. To test this, a student measures the acceleration a of a 
cart on an incline for several different values of 0; she also calculates the corres­
ponding expected accelerations gsin 0 for each 0 and obtains the results shown in 
Table 2.7. Add a column to the table to show the discrepancies a - gsin 0 and their 
uncertainties. Do the results confirm that a is given by gsin 0? If not, can you 
suggest a reason they do not? 

Table 2.7. Measured and expected accelerations; 
for Problem 2.12. 

Trial Acceleration Expected acceleration 
number a (m/s2) gsin 0 (m/s2) 

1 2.04 ± 0.04 2.36 ± 0.1 
2 3.58 ± 0.06 3.88 ± 0.08 
3 4.32 ± 0.08 4.57 ± 0.05 
4 4.85 ± 0.09 5.05 ± 0.04 
5 5.53 ± 0.1 5.72 ± 0.03 

2.13. ** An experimenter measures the separate masses M and m of a car and 
trailer. He gives his results in the standard form Mbest ± SM and mbest ± Sm. What 
would be his best estimate for the total mass M + m? By considering the largest 
and smallest probable values of the total mass, show that his uncertainty in the total 
mass is just the sum of SM and Sm. State your arguments clearly; don't just write 
down the answer. (This problem provides another example of error propagation: The 
uncertainties in the measured numbers, M and m, propagate to cause an uncertainty 
in the sum M + m.) 

For Section 2.6: Checking Relationships with a Graph 

2.14. ** Using the data of Problem 2.11, make a plot of final angular momentum 
L' against initial angular momentum L for the experiment described there. (Include 
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vertical and horizontal error bars, and be sure to include the origin. As with all 
graphs, label your axes, including units, use squared paper, and choose the scales 
so that the graph fills a good proportion of the page.) On what curve would you 
expect the points to lie? Do they lie on this curve within experimental uncertainties? 

2.15. ** According to the ideal gas law, if the volume of a gas is kept constant, 
the pressure P should be proportional to the absolute temperature T. To check this 
proportionality, a student measures the pressure of a gas at five different tempera-
tures (always with the same volume) and gets the results shown in Table 2.8. Plot 
these results in a graph of P against T, and decide whether they confirm the expected 
proportionality of P and T. 

Table 2.8. Temperature and pressure 
of a gas; for Problem 2.15. 

Temperature (K) Pressure (atm) 
( negligible uncertainty) (all ±0.04) 

100 0.36 
150 0.46 
200 0.71 
250 0.83 
300 1.04 

2.16. ** You have learned (or will learn) in optics that certain lenses (namely, 
thin spherical lenses) can be characterized by a parameter called the focal length f 
and that if an object is placed at a distance p from the lens, the lens forms an image 
at a distance q, satisfying the lens equation, llf = (lip) + (liq), where f always has 
the same value for a given lens. To check if these ideas apply to a certain lens, a 
student places a small light bulb at various distances p from the lens and measures 
the location q of the corresponding images. She then calculates the corresponding 
values off from the lens equation and obtains the results shown in Table 2.9. Make 
a plot of f against p, with appropriate error bars, and decide if it is true that this 
particular lens has a unique focal length f 

Table 2.9. Object distances p (in cm) 
and corresponding focal lengths f (in 
cm); for Problem 2.16. 

Object distance p Focal length f 
( negligible uncertainty) (all ± 2) 

45 28 
55 34 
65 33 
75 37 
85 40 
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2.17. ** The power P delivered to a resistance R by a current I is supposed to 
be given by the relation P = RI2. To check this relation, a student sends several 
different currents through an unknown resistance immersed in a cup of water and 
measures the power delivered (by measuring the water's rise in temperature). Use 
the results shown in Table 2.10 to make plots of P against I and P against 12, 
including error bars. Use the second plot to decide if this experiment is consistent 
with the expected proportionality of P and 12. 

Table 2.1 O. Current I and power P; for 
Problem 2.17. 

Current I (amps) Power P (watts) 
(negligible uncertainty) (all ±50) 

1.5 270 
2.0 380 
2.5 620 
3.0 830 
3.5 1280 
4.0 1600 

2.18. *** If a stone is thrown vertically upward with speed v, it should rise to a 
height h given by v2 = 2gh. In particular, v2 should be proportional to h. To test 
this proportionality, a student measures v2 and h for seven different throws and gets 
the results shown in Table 2.11. (a) Make a plot of v2 against h, including vertical 
and horizontal error bars. (As usual, use squared paper, label your axes, and choose 
your scale sensibly.) Is your plot consistent with the prediction that v2 ex h? (b) The 
slope of your graph should be 2g. To find the slope, draw what seems to be the best 
straight line through the points and then measure its slope. To find the uncertainty 
in the slope, draw the steepest and least steep lines that seem to fit the data reason­
ably. The slopes of these lines give the largest and smallest probable values of the 
slope. Are your results consistent with the accepted value 2g = 19.6 m/s2? 

Table 2.11. Heights and 
speeds of a stone thrown 
vertically upward; for 
Problem 2.18. 

h (m) vz 
all ±0.05 (mz;sz) 

0.4 7 ± 3 
0.8 17 ± 3 
1.4 25 ± 3 
2.0 38 ± 4 
2.6 45 ± 5 
3.4 62 ± 5 
3.8 72 ± 6 
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2.19. *** In an experiment with a simple pendulum, a student decides to check 
whether the period T is independent of the amplitude A ( defined as the largest angle 
that the pendulum makes with the vertical during its oscillations). He obtains the 

Table 2.12. Amplitude and period 
of a pendulum; for Problem 2.19. 

Amplitude A ( deg) Period T (s) 

5±2 1.932 ± 0.005 
17 ± 2 1.94 ± 0.01 
25 ± 2 1.96 ± 0.01 
40 ± 4 2.01 ± 0.01 
53 ± 4 2.04 ± 0.01 
67 ± 6 2.12 ± 0.02 

results shown in Table 2.12. (a) Draw a graph of T against A. (Consider your choice 
of scales carefully. If you have any doubt about this choice, draw two graphs, one 
including the origin, A = T = 0, and one in which only values of T between 1.9 
and 2.2 s are shown.) Should the student conclude that the period is independent of 
the amplitude? (b) Discuss how the conclusions of part (a) would be affected if all 
the measured values of T had been uncertain by ± 0.3 s. 

For Section 2.7: Fractional Uncertainties 

2.20. * Compute the percentage uncertainties for the five measurements reported 
in Problem 2.3. (Remember to round to a reasonable number of significant figures.) 

2.21. * Compute the percentage uncertainties for the four measurements in Prob­
lem 2.4. 

2.22. * Convert the percent errors given for the following measurements into ab­
solute uncertainties and rewrite the results in the standard form xbest ± & rounded 
appropriately. 

(a) x 543.2 m ± 4% 
(b) v = -65.9 m/s ± 8% 
(c) A = 671 X 10-9 m ± 4% 

2.23. * A meter stick can be read to the nearest millimeter; a traveling microscope 
can be read to the nearest 0.1 mm. Suppose you want to measure a length of 2 cm 
with a precision of 1 %. Can you do so with the meter stick? Is it possible to do so 
with the microscope? 

2.24. * (a) A digital voltmeter reads voltages to the nearest thousandth of a volt. 
What will be its percent uncertainty in measuring a voltage of approximately 3 
volts? (b) A digital balance reads masses to the nearest hundredth of a gram. What 
will be its percent uncertainty in measuring a mass of approximately 6 grams? 

2.25. ** To find the acceleration of a cart, a student measures its initial and final 
velocities, vi and Vr, and computes the difference (vr - vJ Her data in two separate 
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Table 2.13. Initial and final 
velocities ( all in cm/s and all 
± 1 %); for Problem 2.25. 

First run 
Second run 

14.0 
19.0 

18.0 
19.6 

trials are shown in Table 2.13. All have an uncertainty of ± 1 %. (a) Calculate the 
absolute uncertainties in all four measurements; find the change (vr - vJ and its 
uncertainty in each run. (b) Compute the percent uncertainty for each of the two 
values of (vr - vJ. Your answers, especially for the second run, illustrate the disas­
trous results of finding a small number by taking the difference of two much larger 
numbers. 

For Section 2.8: Significant Figures and Fractional Uncertainties 

2.26. * (a) A student's calculator shows an answer 123.123. If the student decides 
that this number actually has only three significant figures, what are its absolute and 
fractional uncertainties? (To be definite, adopt the convention that a number with N 
significant figures is uncertain by ± 1 in the N th digit.) (b) Do the same for the 
number 1231.23. (c) Do the same for the number 321.321. (d) Do the fractional 
uncertainties lie in the range expected for three significant figures? 

2.27. ** (a) My calculator gives the answer x = 6.1234, but I know that x has a 
fractional uncertainty of 2%. Restate my answer in the standard form xbest ± & 
properly rounded. How many significant figures does the answer really have? (b) 
Do the same for y = 1.1234 with a fractional uncertainty of 2%. (c) Likewise, for 
z = 9.1234. 

For Section 2.9: Multiplying Two Measured Numbers 

2.28. * (a) A student measures two quantities a and b and obtains the results 
a= 11.5 ± 0.2 cm and b = 25.4 ± 0.2 s. She now calculates the product q = ab. 
Find her answer, giving both its percent and absolute uncertainties, as found using 
the provisional rule (2.28). (b) Repeat part (a) using a= 5.0 m ± 7% and b = 3.0 
N ± 1%. 

2.29. * (a) A student measures two quantities a and b and obtains the results 
a= 10 ± 1 N and b = 272 ± 1 s. He now calculates the product q = ab. Find his 
answer, giving both its percent and absolute uncertainties, as found using the provi­
sional rule (2.28). (b) Repeat part (a) using a = 3.0 ft ± 8% and b = 4.0 lb ± 2%. 

2.30. ** A well-known rule states that when two numbers are multiplied together, 
the answer will be reliable if rounded to the number of significant figures in the less 
precise of the original two numbers. (a) Using our rule (2.28) and the fact that 
significant figures correspond roughly to fractional uncertainties, prove that this rule 
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is approximately valid. (To be definite, treat the case that the less precise number 
has two significant figures.) (b) Show by example that the answer can actually be 
somewhat less precise than the "well-known" rule suggests. (This reduced precision 
is especially true if several numbers are multiplied together.) 

2.31. ** (a) A student measures two numbers x and y as 

x = 10 ± 1 and y = 20 ± 1. 

What is her best estimate for their product q = xy? Using the largest probable values 
for x and y (11 and 21), calculate the largest probable value of q. Similarly, find the 
smallest probable value of q, and hence the range in which q probably lies. Compare 
your result with that given by the rule (2.28). (b) Do the same for the measurements 

x = 10 ± 8 and y = 20 ± 15. 

[Remember that the rule (2.28) was derived by assuming that the fractional uncer­
tainties are much less than 1.] 





Chapter 3 

Propagation of Uncertainties 

Most physical quantities usually cannot be measured in a single direct measurement 
but are instead found in two distinct steps. First, we measure one or more quantities 
that can be measured directly and from which the quantity of interest can be calcu­
lated. Second, we use the measured values of these quantities to calculate the quan­
tity of interest itself. For example, to find the area of a rectangle, you actually 
measure its length l and height h and then calculate its area A as A = lh. Similarly, 
the most obvious way to find the velocity v of an object is to measure the distance 
traveled, d, and the time taken, t, and then to calculate v as v = d/t. Any reader 
with experience in an introductory laboratory can easily think of more examples. In 
fact, a little thought will show that almost all interesting measurements involve these 
two distinct steps of direct measurement followed by calculation. 

When a measurement involves these two steps, the estimation of uncertainties 
also involves two steps. We must first estimate the uncertainties in the quantities 
measured directly and then determine how these uncertainties "propagate" through 
the calculations to produce an uncertainty in the final answer.1 This propagation of 
errors is the main subject of this chapter. 

In fact, examples of propagation of errors were presented in Chapter 2. In Sec­
tion 2.5, I discussed what happens when two numbers x and y are measured and the 
results are used to calculate the difference q = x - y. We found that the uncertainty 
in q is just the sum 8q = & + Sy of the uncertainties in x and y. Section 2.9 dis­
cussed the product q = xy, and Problem 2.13 discussed the sum q = x + y. I review 
these cases in Section 3.3; the rest of this chapter is devoted to more general cases 
of propagation of uncertainties and includes several examples. 

Before I address error propagation in Section 3.3, I will briefly discuss the 
estimation of uncertainties in quantities measured directly in Sections 3.1 and 3.2. 
The methods presented in Chapter 1 are reviewed, and further examples are given 
of error estimation in direct measurements. 

Starting in Section 3.3, I will take up the propagation of errors. You will learn 
that almost all problems in error propagation can be solved using three simple rules. 

1 In Chapter 4, I discuss another way in which the final uncertainty can sometimes be estimated. If all 
measurements can be repeated several times, and if all uncertainties are known to be random in character, 
then the uncertainty in the quantity of interest can be estimated by examining the spread in answers. Even 
when this method is possible, it is usually best used as a check on the two-step procedure discussed in this 
chapter. 45 
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A single, more complicated, rule will also be presented that covers all cases and 
from which the three simpler rules can be derived. 

This chapter is long, but its length simply reflects its great importance. Error 
propagation is a technique you will use repeatedly in the laboratory, and you need 
to become familiar with the methods described here. The only exception is that the 
material of Section 3.11 is not used again until Section 5.6; thus, if the ideas of this 
chapter are all new to you, consider skipping Section 3.11 on your first reading. 

3.1 Uncertainties in Direct Measurements 

Almost all direct measurements involve reading a scale ( on a ruler, clock, or voltme­
ter, for example) or a digital display ( on a digital clock or voltmeter, for example). 
Some problems in scale reading were discussed in Section 1.5. Sometimes the main 
sources of uncertainty are the reading of the scale and the need to interpolate be­
tween the scale markings. In such situations, a reasonable estimate of the uncertainty 
is easily made. For example, if you have to measure a clearly defined length I with 
a ruler graduated in millimeters, you might reasonably decide that the length could 
be read to the nearest millimeter but no better. Here, the uncertainty 81 would be 
81 = 0.5 mm. If the scale markings are farther apart (as with tenths of an inch), you 
might reasonably decide you could read to one-fifth of a division, for example. In 
any case, the uncertainties associated with the reading of a scale can obviously be 
estimated quite easily and realistically. 

Unfortunately, other sources of uncertainty are frequently much more important 
than difficulties in scale reading. In measuring the distance between two points, your 
main problem may be to decide where those two points really are. For example, in 
an optics experiment, you may wish to measure the distance q from the center of a 
lens to a focused image, as in Figure 3.1. In practice, the lens is usually several 
millimeters thick, so locating its center is hard; if the lens comes in a bulky mount­
ing, as it often does, locating the center is even harder. Furthermore, the image may 
appear to be well-focused throughout a range of many millimeters. Even though the 
apparatus is mounted on an optical bench that is clearly graduated in millimeters, 
the uncertainty in the distance from lens to image could easily be a centimeter or 
so. Since this uncertainty arises because the two points concerned are not clearly 
defined, this kind of problem is called a problem of definition. 

image focused 
on this screen 

/ 

Figure 3.1. An image of the light bulb on the right is focused by the lens onto the screen at 
the left. 
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This example illustrates a serious danger in error estimation. If you look only 
at the scales and forget about other sources of uncertainty, you can badly underesti­
mate the total uncertainty. In fact, the beginning student's most common mistake is 
to overlook some sources of uncertainty and hence underestimate uncertainties, of­
ten by a factor of 10 or more. Of course, you must also avoid overestimating errors. 
Experimenters who decide to play safe and to quote generous uncertainties on all 
measurements may avoid embarrassing inconsistencies, but their measurements may 
not be of much use. Clearly, the ideal is to find all possible causes of uncertainty 
and estimate their effects accurately, which is often not quite as hard as it sounds. 

Superficially, at least, reading a digital meter is much easier than a conventional 
analog meter. Unless a digital meter is defective, it should display only significant 
figures. Thus, it is usually safe to say that the number of significant figures in a 
digital reading is precisely the number of figures displayed. Unfortunately, as dis­
cussed in Section 2.8, the exact meaning of significant figures is not always clear. 
Thus, a digital voltmeter that tells us that V = 81 microvolts could mean that the 
uncertainty is anything from 8V = 0.5 to 8V = 1 or more. Without a manual to tell 
you the uncertainty in a digital meter, a reasonable assumption is that the uncertainty 
in the final digit is ± 1 (so that the voltage just mentioned is V = 81 ± 1). 

The digital meter, even more than the analog scale, can give a misleading im­
pression of accuracy. For example, a student might use a digital timer to time the 
fall of a weight in an Atwood machine or similar device. If the timer displays 8.01 
seconds, the time of fall is apparently 

t = 8.01 ± 0.01 s. (3.1) 

However, the careful student who repeats the experiment under nearly identical 
conditions might find a second measurement of 8.41 s; that is, 

t = 8.41 ± 0.01 s. 

One likely explanation of this large discrepancy is that uncertainties in the starting 
procedure vary the initial conditions and hence the time of fall; that is, the measured 
times really are different. In any case, the accuracy claimed in Equation (3.1) clearly 
is ridiculously too good. Based on the two measurements made, a more realistic 
answer would be 

t = 8.2 ± 0.2 s. 

In particular, the uncertainty is some 20 times larger than suggested in Equation 
(3.1) based on the original single reading. 

This example brings us to another point mentioned in Chapter 1: Whenever a 
measurement can be repeated, it should usually be made several times. The resulting 
spread of values often provides a good indication of the uncertainties, and the aver­
age of the values is almost certainly more trustworthy than any one measurement. 
Chapters 4 and 5 discuss the statistical treatment of multiple measurements. Here, I 
emphasize only that if a measurement is repeatable, it should be repeated, both to 
obtain a more reliable answer (by averaging) and, more important, to get an estimate 
of the uncertainties. Unfortunately, as also mentioned in Chapter 1, repeating a mea­
surement does not always reveal uncertainties. If the measurement is subject to a 
systematic error, which pushes all results in the same direction (such as a clock that 
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runs slow), the spread in results will not reflect this systematic error. Eliminating 
such systematic errors requires careful checks of calibration and procedures. 

3.2 The Square-Root Rule for a Counting Experiment 

Another, different kind of direct measurement has an uncertainty that can be esti­
mated easily. Some experiments require you to count events that occur at random 
but have a definite average rate. For example, the babies born in a hospital arrive 
in a fairly random way, but in the long run births in any one hospital probably occur 
at a definite average rate. Imagine that a demographer who wants to know this rate 
counts 14 births in a certain two-week period at a local hospital. Based on this 
result, he would naturally say that his best estimate for the expected number of 
births in two weeks is 14. Unless he has made a mistake, 14 is exactly the number 
of births in the two-week period he chose to observe. Because of the random way 
births occur, however, 14 obviously may not equal the actual average number of 
births in all two-week periods. Perhaps this number is 13, 15, or even a fractional 
number such as 13.5 or 14.7. 

Evidently, the uncertainty in this kind of experiment is not in the observed 
number counted (14 in our example). Instead, the uncertainty is in how well this 
observed number approximates the true average number. The problem is to estimate 
how large this uncertainty is. Although I discuss the theory of these counting experi­
ments in Chapter 11, the answer is remarkably simple and is easily stated here: The 
uncertainty in any counted number of random events, as an estimate of the true 
average number, is the square root of the counted number. In our example, the 
demographer counted 14 births in a certain two-week period. Therefore, his uncer­
tainty is ffe = 4, and his final conclusion would be 

( average births in a two-week period) = 14 ± 4. 

To make this statement more general, suppose we count the occurrences of any 
event (such as the births of babies in a hospital) that occurs randomly but at a 
definite average rate. Suppose we count for a chosen time interval T (such as two 
weeks), and we denote the number of observed events by the Greek letter v. (Pro­
nounced "nu," this symbol is the Greek form of the letter n and stands for number.) 
Based on this experiment, our best estimate for the average number of events in 
time T is, of course, the observed number v, and the uncertainty in this estimate is 
the square root of the number, that is, -{;,. Therefore, our answer for the average 
number of events in time T is 

(3.2) 

I refer to this important result as the Square-Root Rule for Counting Experiments. 
Counting experiments of this type occur frequently in the physics laboratory. 

The most prominent example is in the study of radioactivity. In a radioactive mate­
rial, each nucleus decays at a random time, but the decays in a large sample occur 
at a definite average rate. To find this rate, you can simply count the number v of 
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decays in some convenient time interval T; the expected number of decays in time 
T, with its uncertainty, is then given by the square-root rule, (3.2). 

Quick Check 3.1. (a) To check the activity of a radioactive sample, an inspec­
tor places the sample in a liquid scintillation counter to count the number of 
decays in a two-minute interval and obtains 33 counts. What should he report 
as the number of decays produced by the sample in two minutes? (b) Suppose, 
instead, he had monitored the same sample for 50 minutes and obtained 907 
counts. What would be his answer for the number of decays in 50 minutes? (c) 
Find the percent uncertainties in these two measurements, and comment on the 
usefulness of counting for a longer period as in part (b ). 

3.3 Sums and Differences; Products and Quotients 

For the remainder of this chapter, I will suppose that we have measured one or 
more quantities x, y, ... , with corresponding uncertainties &, c5y, ... , and that we 
now wish to use the measured values of x, y, ... , to calculate the quantity of real 
interest, q. The calculation of q is usually straightforward; the problem is how the 
uncertainties, &, c5y, ... , propagate through the calculation and lead to an uncer­
tainty &j in the final value of q. 

SUMS AND DIFFERENCES 

Chapter 2 discussed what happens when you measure two quantities x and y 
and calculate their sum, x + y, or their difference, x - y. To estimate the uncertainty 
in the sum or difference, we had only to decide on their highest and lowest probable 
values. The highest and lowest probable values of x are xbest ± &, and those of y 
are Ybest ± c5y. Hence, the highest probable value of x + y is 

Xbest + Ybest + ( CU: + c5y ), 

and the lowest probable value is 

Xbest + Ybest - ( CU: + c5y). 

Thus, the best estimate for q = x + y is 

qbest = Xbest + Ybest, 

and its uncertainty is 

(3.3) 

A similar argument (be sure you can reconstruct it) shows that the uncertainty in 
the difference x - y is given by the same formula (3.3). That is, the uncertainty in 
either the sum x + y or the difference x - y is the sum & + c5y of the uncertainties 
in x and y. 
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If we have several numbers x, ... , w to be added or subtracted, then repeated 
application of (3.3) gives the following provisional rule. 

Uncertainty in Sums and Differences 
(Provisional Rule) 

If several quantities x, ... , w are measured with uncertain­
ties &, ... , Sw, and the measured values used to compute 

q = x + · • · + z - (u + · · · + w), 

then the uncertainty in the computed value of q is the sum, 

Sq=&+ .. ·+ Sz+ Su+ .. ·+ Sw, 

of all the original uncertainties. 

(3.4) 

In other words, when you add or subtract any number of quantities, the uncertainties 
in those quantities always add. As before, I use the sign = to emphasize that this 
rule is only provisional. 

Example: Adding and Subtracting Masses 

As a simple example of rule (3.4), suppose an experimenter mixes together the 
liquids in two flasks, having first measured their separate masses when full and 
empty, as follows: 

Ml mass of first flask and contents 

ml mass of first flask empty 

M2 mass of second flask and contents 

m2 mass of second flask empty 

He now calculates the total mass of liquid as 

M = M1 - m1 + M2 - m2 

540 ± 10 grams 

72 ± 1 grams 

940 ± 20 grams 

97 ± 1 grams 

= (540 - 72 + 940 - 97) grams = 1,311 grams. 

According to rule (3.4), the uncertainty in this answer is the sum of all four uncer­
tainties, 

Thus, his final answer (properly rounded) is 

(10 + 1 + 20 + 1) grams 
32 grams. 

total mass of liquid = 1,310 ± 30 grams. 
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Notice how the much smaller uncertainties in the masses of the empty flasks 
made a negligible contribution to the final uncertainty. This effect is important, and 
we will discuss it later on. With experience, you can learn to identify in advance 
those uncertainties that are negligible and can be ignored from the outset. Often, 
this can greatly simplify the calculation of uncertainties. 

PRODUCTS AND QUOTIENTS 

Section 2.9 discussed the uncertainty in the product q = xy of two measured 
quantities. We saw that, provided the fractional uncertainties concerned are small, 
the fractional uncertainty in q = xy is the sum of the fractional uncertainties in x 
and y. Rather than review the derivation of this result, I discuss here the similar 
case of the quotient q = x/y. As you will see, the uncertainty in a quotient is given 
by the same rule as for a product; that is, the fractional uncertainty in q = x/y is 
equal to the sum of the fractional uncertainties in x and y. 

Because uncertainties in products and quotients are best expressed in terms of 
fractional uncertainties, a shorthand notation for the latter will be helpful. Recall 
that if we measure some quantity x as 

(measured value of x) = xbest ± & 

in the usual way, then the fractional uncertainty in x is defined to be 

(fractional uncertainty in x) = ~-
lxbes1I 

(The absolute value in the denominator ensures that the fractional uncertainty is 
always positive, even when xbest is negative.) Because the symbol &/lxbestl is clumsy 
to write and read, from now on I will abbreviate it by omitting the subscript "best" 
and writing 

(fractional uncertainty in x) = & . 
lxl 

The result of measuring any quantity x can be expressed in terms of its frac­
tional error &/lxl as 

(value of x) = xbesll ± 8x/lxl). 

Therefore, the value of q = x/y can be written as 

( 1 f ) Xbest 1 ± &/lxl 
va ue o q = - . 

Ybest 1 ± 8y/lYI 

Our problem now is to find the extreme probable values of the second factor on the 
right. This factor is largest, for example, if the numerator has its largest value, 
1 + &/lxl, and the denominator has its smallest value, 1 - 8y!IYI- Thus, the largest 
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probable value for q = x/y is 

(largest value of q) 
Xbest 1 + &/lxl 

Ybest 1 - 8yf!YI 
(3.5) 

The last factor in expression (3.5) has the form (1 + a)/(1 - b), where the 
numbers a and b are normally small (that is, much less than 1). It can be simplified 
by two approximations. First, because b is small, the binomial theorem 2 implies 
that 

Therefore, 

1 + a 
1 - b 

1 
(1 - b) 

= 1 + b. 

= (1 + a)(l + b) 1 +a+ b + ab 

= 1 +a+ b, 

(3.6) 

where, in the second line, we have neglected the product ab of two small quantities. 
Returning to (3.5) and using these approximations, we find for the largest probable 
value of q = x/y 

Xbest ( & 8y) (largest value of q) = - 1 + - + - . 
Ybest lxl IYI 

A similar calculation shows that the smallest probable value is given by a similar 
expression with two minus signs. Combining these two, we find that 

Xbest ( [& 8y]) (value of q) = -- 1 ± - + - . 
Ybest lxl IYI 

Comparing this equation with the standard form, 

(value of q) = qbest (1 ± 8q ), 
lql 

we see that the best value for q is %est = xbesilYbest, as we would expect, and that 
the fractional uncertainty is 

8q & 8y - = -+-. 
lql lxl IYI 

(3.7) 

We conclude that when we divide or multiply two measured quantities x and y, 
the fractional uncertainty in the answer is the sum of the fractional uncertainties in 
x and y, as in (3.7). If we now multiply or divide a series of numbers, repeated 
application of this result leads to the following provisional rule. 

2The binomial theorem expresses 1/(1 - b) as the infinite series 1 + b + b2 + • • •. If bis much less than 
1, then 1/(1-b) = 1 +bas in (3.6). If you are unfamiliar with the binomial theorem, you can find more 
details in Problem 3.8. 
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Uncertainty in Products and Quotients 
(Provisional Rule) 

If several quantities x, ... , w are measured with small un­
certainties Bx, ... , 8w, and the measured values are used 
to compute 

x X • • • X Z 
q = 

u X •• • X w' 

then the fractional uncertainty in the computed value of q 
is the sum, 

8q Bx Bz Bu 8w 
- = -+···+-+-+···+-
lq/ lxl lzl lul lwl ' 

of the fractional uncertainties in x, ... , w. 

(3.8) 

Briefly, when quantities are multiplied or divided the fractional uncertainties add. 

Example: A Problem in Surveying 

In surveying, sometimes a value can be found for an inaccessible length l (such as 
the height of a tall tree) by measuring three other lengths 11, 12, 13 in terms of which 

l = l1l2 
l3 • 

Suppose we perform such an experiment and obtain the following results (in feet): 

z, = 200 ± 2, 

Our best estimate for l is 

12 = 5.5 ± 0.1, 13 = 10.0 ± 0.4. 

l = 200 X 5.5 = ll0 f 
best l0.0 t. 

According to (3.8), the fractional uncertainty in this answer is the sum of the frac­
tional uncertainties in 11, 12, and 13, which are 1 %, 2%, and 4%, respectively. Thus 

Bl 811 812 813 
= -+-+-z, 12 13 

(1 + 2 + 4)% 

7%, 

and our final answer is 

110 ± 8 ft. 
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Quick Check 3.2. Suppose you measure the three quantities x, y, and z as 
follows: 

X = 8.0 ± 0.2, y = 5.0 ± 0.1, z = 4.0 ± 0.1. 

Express the given uncertainties as percentages, and then calculate q = xy/z with 
its uncertainty 8q_ [ as given by the provisional rule (3.8)]. 

3.4 Two Important Special Cases 

Two important special cases of the rule (3.8) deserve mention. One concerns the 
product of two numbers, one of which has no uncertainty; the other involves a 
power (such as .x3) of a measured number. 

MEASURED QUANTITY TIMES EXACT NUMBER 

Suppose we measure a quantity x and then use the measured value to calculate 
the product q = Bx, where the number B has no uncertainty. For example, we might 
measure the diameter of a circle and then calculate its circumference, c = n X d; 
or we might measure the thickness T of 200 identical sheets of paper and then 
calculate the thickness of a single sheet as t = (1/200) X T. According to the rule 
(3.8), the fractional uncertainty in q = Bx is the sum of the fractional uncertainties 
in B and x. Because BB = 0, this implies that 

8q_ & 

JqJ JxJ 

That is, the fractional uncertainty in q = Bx (with B known exactly) is the same as 
that in x. We can express this result differently if we multiply through by JqJ = JBxJ 
to give 8q_ = JBJ Bx, and we have the following useful rule: 3 

(3.9) 

3This rule (3.9) was derived from the rule (3.8), which is provisional and will be replaced by the more 
complete rules (3.18) and (3.19). Fortunately, the same conclusion (3.9) follows from these improved rules. 
Thus (3.9) is already in its final form. 



' 
Section 3.4 Two Important Special Cases 55 

This rule is especially useful in measuring something inconveniently small but 
available many times over, such as the thickness of a sheet of paper or the time for 
a revolution of a rapidly spinning wheel. For example, if we measure the thickness 
T of 200 sheets of paper and get the answer 

(thickness of 200 sheets) = T = 1.3 ± 0.1 inches, 

it immediately follows that the thickness t of a single sheet is 

(thickness of one sheet) = t 
1 

200 X T 

0.0065 ± 0.0005 inches. 

Notice how this technique (measuring the thickness of several identical sheets and 
dividing by their number) makes easily possible a measurement that would other­
wise require quite sophisticated equipment and that this technique gives a remark­
ably small uncertainty. Of course, the sheets must be known to be equally thick. 

Quick Check 3.3. Suppose you measure the diameter of a circle as 

d = 5.0 ± 0.l cm 

and use this value to calculate the circumference c = red. What is your answer, 
with its uncertainty? 

POWERS 

The second special case of the rule (3.8) concerns the evaluation of a power of 
some measured quantity. For example, we might measure the speed v of some object 
and then, to find its kinetic energy ½mv2, calculate the square v2. Because v2 is just 
v Xv, it follows from (3.8) that the fractional uncertainty in v2 is twice the fractional 
uncertainty in v. More generally, from (3.8) the general rule for any power is clearly 
as follows. 

Uncertainty in a Power 

If the quantity x is measured with uncertainty & and the 
measured value is used to compute the power 

q = x', 

then the fractional uncertainty in q is n times that in x, 

& 
n-. 

lxl 
(3.10) 
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The derivation of this rule required that n be a positive integer. In fact, however, 
the rule generalizes to include any exponent n, as we will see later in Equation 
(3.26). 

Quick Check 3.4. To find the volume of a certain cube, you measure its side 
as 2.00 ± 0.02 cm. Convert this uncertainty to a percent and then find the 
volume with its uncertainty. 

Example: Measurement of g 

Suppose a student measures g, the acceleration of gravity, by measuring the time t 
for a stone to fall from a height h above the ground. After making several timings, 
she concludes that 

t = 1.6 ± 0.1 s, 

and she measures the height h as 

h = 46.2 ± 0.3 ft. 

Because his given by the well-known formula h = ½gt2, she now calculates gas 

g = 
2h 
t2 
2 X 46.2 ft 

(1.6 s)2 

What is the uncertainty in her answer? 

36.1 ft/s2. 

The uncertainty in her answer can be found by using the rules just developed. 
To this end, we need to know the fractional uncertainties in each of the factors in 
the expression g = 2h!t2 used to calculate g. The factor 2 has no uncertainty. The 
fractional uncertainties in h and t are 

and 

8h 
h 

0.3 
46.2 

0.7% 

8t 0.1 t = 1.6 = 6.3%. 

According to the rule (3.10), the fractional uncertainty of t2 is twice that oft. There­
fore, applying the rule (3.8) for products and quotients to the formula g = 2h/t2, we 
find the fractional uncertainty 

8g 
g 

8h+ 2 8t 
h t 
0.7% + 2 X (6.3%) 13.3%, (3.11) 
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and hence the uncertainty 

2 13.3 - 2 Sg = (36.1 ft/s ) x 100 - 4.80 ft/s . 

Thus, our student's final answer (properly rounded) is 

g = 36 ± 5 ft/s2. 

This example illustrates how simple the estimation of uncertainties can often 
i,e. It also illustrates how error analysis tells you not only the size of uncertainties 
but also how to reduce them. In this example, (3.11) shows that the largest contribu­
tion comes from the measurement of the time. If we want a more precise value of 
g, then the measurement of t must be improved; any attempt to improve the mea­
surement of h will be wasted effort. 

Finally, the accepted value of g is 32 ft/s2, which lies within our student's 
margins of error. Thus, she can conclude that her measurement, although not espe­
cially accurate, is perfectly consistent with the known value of g. 

3.5 Independent Uncertainties in a Sum 

The rules presented thus far can be summarized quickly: When measured quantities 
are added or subtracted, the uncertainties add; when measured quantities are 
multiplied or divided, the fractional uncertainties add. In this and the next section, 
I discuss how, under certain conditions, the uncertainties calculated by using these 
rules may be unnecessarily large. Specifically, you will see that if the original uncer­
tainties are independent and random, a more realistic (and smaller) estimate of the 
final uncertainty is given by similar rules in which the uncertainties ( or fractional 
uncertainties) are added in quadrature (a procedure defined shortly). 

Let us first consider computing the sum, q = x + y, of two numbers x and y 
that have been measured in the standard form 

(measured value of x) = xbest ± &, 

with a similar expression for y. The argument used in the last section was as follows: 
First, the best estimate for q = x + y is obviously %est = xbest + Ybest· Second, since 
the highest probable values for x and y are xbest + & and Ybest + Sy, the highest 
probable value for q is 

Xbest + Ybest + & + Sy. (3.12) 

Similarly, the lowest probable value of q is 

Xbest + Ybest - & - Sy. 

Therefore, we concluded, the value of q probably lies between these two numbers, 
and the uncertainty in q is 

Sq = & + Sy. 
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To see why this formula is likely to overestimate Sq, let us consider how the 
actual value of q could equal the highest extreme (3.12). Obviously, this occurs if 
we have underestimated x by the full amount & and underestimated y by the full 
oy, obviously, a fairly unlikely event. If x and y are measured independently and our 
errors are random in nature, we have a 50% chance that an underestimate of x is 
accompanied by an overestimate of y, or vice versa. Clearly, then, the probability 
we will underestimate both x and y by the full amounts & and 8y is fairly small. 
Therefore, the value Sq = & + 8y overstates our probable error. 

What constitutes a better estimate of Sq? The answer depends on precisely what 
we mean by uncertainties (that is, what we mean by the statement that q is "proba­
bly" somewhere between %est - Sq and qbest + Sq). It also depends on the statistical 
laws governing our errors in measurement. Chapter 5 discusses the normal, or 
Gauss, distribution, which describes measurements subject to random uncertainties. 
It shows that if the measurements of x and y are made independently and are both 
governed by the normal distribution, then the uncertainty in q = x + y is given by 

(3.13) 

When we combine two numbers by squaring them, adding the squares, and 
taking the square root, as in (3.13), the numbers are said to be added in quadrature. 
Thus, the rule embodied in (3.13) can be stated as follows: If the measurements of 
x and y are independent and subject only to random uncertainties, then the uncer­
tainty Sq in the calculated value of q = x + y is the sum in quadrature or quadratic 
sum of the uncertainties & and 8y. 

Compare the new expression (3.13) for the uncertainty in q = x + y with our 
old expression, 

Sq = & + 8y. (3.14) 

First, the new expression (3.13) is always smaller than the old (3.14), as we can see 
from a simple geometrical argument: For any two positive numbers a and b, the 
numbers a, b, and ✓a2 + b2 are the three sides of a right-angled triangle (Figure 
3.2). Because the length of any side of a triangle is always less than the sum of the 

✓a2 + bz 

~ 
b 

a 

Figure 3.2. Because any side of a triangle is less than the sum of the other 
two sides, the inequality ✓a2 + b2 < a + b is always true. 

other two sides, it follows that ✓a2 + b2 < a + b and hence that (3.13) is always 
less than (3.14). 

Because expression (3.13) for the uncertainty in q = x + y is always smaller 
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than (3.14), you should always use (3.13) when it is applicable. It is, however, not 
always applicable. Expression (3.13) reflects the possibility that an overestimate of 
x can be offset by an underestimate of y or vice versa, but there are measurements 
for which this cancellation is not possible. 

Suppose, for example, that q = x + y is the sum of two lengths x and y mea­
sured with the same steel tape. Suppose further that the main source of uncertainty 
is our fear that the tape was designed for use at a temperature different from the 
present temperature. If we don't know this temperature (and don't have a reliable 
tape for comparison), we have to recognize that our tape may be longer or shorter 
than its calibrated length and hence may yield readings under or over the correct 
length. This uncertainty can be easily allowed for. 4 The point, however, is that if 
the tape is too long, then we underestimate both x and y; and if the tape is too short, 
we overestimate both x and y. Thus, there is no possibility for the cancellations that 
justified using the sum in quadrature to compute the uncertainty in q = x + y. 

I will prove later (in Chapter 9) that, whether or not our errors are independent 
and random, the uncertainty in q = x + y is certainly no larger than the simple sum 
& + 8y: 

8q_ ,,s; & + 8y. (3.15) 

That is, our old expression (3.14) for 8q_ is actually an upper bound that holds in all 
cases. If we have any reason to suspect the errors in x and y are not independent 
and random ( as in the example of the steel tape measure), we are not justified in 
using the quadratic sum (3.13) for 8q. On the other hand, the bound (3.15) guaran­
tees that 8q_ is certainly no worse than & + 8y, and our safest course is to use the 
old rule 

8q_ = & + 8y. 

Often, whether uncertainties are added in quadrature or directly makes little 
difference. For example, suppose that x and y are lengths both measured with uncer­
tainties & = 8y = 2 mm. If we are sure these uncertainties are independent and 
random, we would estimate the error in x + y to be the sum in quadrature, 

✓(&)2 + (8y)2 = -/4+4 mm = 2.8 mm = 3 mm, 

but if we suspect that the uncertainties may not be independent, we would have to 
use the ordinary sum, 

& + 8y = (2 + 2) mm = 4 mm. 

In many experiments, the estimation of uncertainties is so crude that the difference 
between these two answers (3 mm and 4 mm) is unimportant. On the other hand, 
sometimes the sum in quadrature is significantly smaller than the ordinary sum. 
Also, rather surprisingly, the sum in quadrature is sometimes easier to compute than 
the ordinary sum. Examples of these effects are given in the next section. 

4 Suppose, for example, that the tape has a coefficient of expansion a= 10-5 per degree and that we decide 
that the difference between its calibration temperature and the present temperature is unlikely to be more than 
10 degrees. The tape is then unlikely to be more than 10-4, or 0.01 %, away from its correct length, and our 
uncertainty is therefore 0.01 %. 
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Quick Check 3.5. Suppose you measure the volumes of water in two beakers 
as 

V1 = 130 ± 6 ml and V2 = 65 ± 4 ml 

and then carefully pour the contents of the first into the second. What is your 
prediction for the total volume V = V1 + V2 with its uncertainty, SV, assuming 
the original uncertainties are independent and random? What would you give 
for SV if you suspected the original uncertainties were not independent? 

3.6 More About Independent Uncertainties 

In the previous section, I discussed how independent random uncertainties in two 
quantities x and y propagate to cause an uncertainty in the sum x + y. We saw that 
for this type of uncertainty the two errors should be added in quadrature. We can 
naturally consider the corresponding problem for differences, products, and quo­
tients. As we will see in Section 5.6, in all cases our previous rules (3.4) and (3.8) 
are modified only in that the sums of errors ( or fractional errors) are replaced by 
quadratic sums. Further, the old expressions (3.4) and (3.8) will be proven to be 
upper bounds that always hold whether or not the uncertainties are independent and 
random. Thus, the final versions of our two main rules are as follows: 

(3.16) 

(3.17) 

and 
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(3.18) 

(3.19) 

Notice that I have not yet justified the use of addition in quadrature for indepen­
dent random uncertainties. I have argued only that when the various uncertainties 
are independent and random, there is a good chance of partial cancellations of errors 
and that the resulting uncertainty ( or fractional uncertainty) should be smaller than 
the simple sum of the original uncertainties ( or fractional uncertainties); the sum in 
quadrature does have this property. I give a proper justification of its use in Chapter 
5. The bounds (3.17) and (3.19) are proved in Chapter 9. 

Example: Straight Addition vs Addition in Quadrature 

As discussed, sometimes there is no significant difference between uncertainties 
computed by addition in quadrature and those computed by straight addition. Often, 
however, there is a significant difference, and-surprisingly enough-the sum in 
quadrature is often much simpler to compute. To see how this situation can arise, 
consider the following example. 

Suppose we want to find the efficiency of a D.C. electric motor by using it to 
lift a mass m through a height h. The work accomplished is mgh, and the electric 
energy delivered to the motor is Vlt, where V is the applied voltage, / the current, 
and t the time for which the motor runs. The efficiency is then 

ff. . work done by motor mgh 
e 1c1ency, e = . Vlt . 

energy dehvered to motor 

Let us suppose that m, h, V, and / can all be measured with 1 % accuracy, 

(fractional uncertainty for m, h, V, and /) = 1 %, 
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and that the time t has an uncertainty of 5%, 

(fractional uncertainty fort) = 5%. 

(Of course, g is known with negligible uncertainty.) If we now compute the effi­
ciency e, then according to our old rule ("fractional errors add"), we have an uncer­
tainty 

8m 8h 8V 8/ at 
e 

= -+-+-+-+-
m h V I t 

(1 + 1 + 1 + 1 + 5)% = 9%. 

On the other hand, if we are confident that the various uncertainties are independent 
and random, then we can compute 8e/e by the quadratic sum to give 

8e 
e 

✓(1%)2 + (1%)2 + (1%)2 + (1%)2 + (5%)2 

--./29% = 5%. 

Clearly, the quadratic sum leads to a significantly smaller estimate for 8e. Further­
more, to one significant figure, the uncertainties in m, h, V, and / make no contribu­
tion at all to the uncertainty in e computed in this way; that is, to one significant 
figure, we have found (in this example) 

8e at 
e t 

This striking simplification is easily understood. When numbers are added in quad­
rature, they are squared first and then summed. The process of squaring greatly 
exaggerates the importance of the larger numbers. Thus, if one number is 5 times 
any of the others (as in our example), its square is 25 times that of the others, and 
we can usually neglect the others entirely. 

This example illustrates how combining errors in quadrature is usually better 
and often easier than computing them by straight addition. The example also illus­
trates the type of problem in which the errors are independent and for which addi­
tion in quadrature is justified. (For the moment I take for granted that the errors are 
random and will discuss this more difficult point in Chapter 4.) The five quantities 
measured (m, h, V, I, and t) are physically distinct quantities with different units and 
are measured by entirely different processes. For the sources of error in any quantity 
to be correlated with those in any other is almost inconceivable. Therefore, the 
errors can reasonably be treated as independent and combined in quadrature. 

Quick Check 3.6. Suppose you measure three numbers as follows: 

X = 200 ± 2, y = 50 ± 2, Z = 20 ± 1, 

where the three uncertainties are independent and random. What would you 
give for the values of q = x + y - z and r = xylz with their uncertainties? 
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3.7 Arbitrary Functions of One Variable 

You have now seen how uncertainties, both independent and otherwise, propagate 
through sums, differences, products, and quotients. However, many calculations re­
quire more complicated operations, such as computation of a sine, cosine, or square 
root, and you will need to know how uncertainties propagate in these cases. 

As an example, imagine finding the refractive index n of glass by measuring 
the critical angle 0. We know from elementary optics that n = 1/sin 0. Therefore, if 
we can measure the angle 0, we can easily calculate the refractive index n, but we 
must then decide what uncertainty 8n in n = 1/sin 0 results from the uncertainty 80 
in our measurement of 0. 

More generally, suppose we have measured a quantity x in the standard form 
xbest ± 8x and want to calculate some known function q(x), such as q(x) = 1/sinx 
or q(x) = "5. A simple way to think about this calculation is to draw a graph of 
q(x) as in Figure 3.3. The best estimate for q(x) is, of course, %est = q(xbest), and 
the values xbest and qbest are shown connected by the heavy lines in Figure 3.3. 

To decide on the uncertainty 8q, we employ the usual argument. The largest 
probable value of x is xbest + &; using the graph, we can immediately find the 
largest probable value of q, which is shown as qmax· Similarly, we can draw in the 
smallest probable value, qmin, as shown. If the uncertainty 8x is small (as we always 
suppose it is), then the section of graph involved in this construction is approxi­
mately straight, and qmax and qmin are easily seen to be equally spaced on either 
side of qbest· The uncertainty 8q can then be taken from the graph as either of the 
lengths shown, and we have found the value of q in the standard form qbest ± 8q. 

Occasionally, uncertainties are calculated from a graph as just described. (See 
Problems 3.26 and 3.30 for examples.) Usually, however, the function q(x) is known 

q q(x) 

--r;;------------------
qbest 1--_-_-+-l-fiq _____________________ .,, 

qmin 

~-------~--~-~--------x 
Xbest - fix t Xbest + fix 

Xbest 

Figure 3.3. Graph of q(x) vs x. If xis measured as xhest ± 8.x, then the best estimate for q(x) 
is qhest = q(xbesi)- The largest and smallest probable values of q(x) correspond to the values 
Xbest ± 8x of X. 
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q 

I 
I 
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I 
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I 
I 
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Xbe,,-8x t 
xbe,< 

Figure 3.4. If the slope of q(x) is negative, the maximum probable value of q corresponds to 
the minimum value of x, and vice versa. 

explicitly-q(x) = sinx or q(x) = -VX, for example-and the uncertainty Bq can be 
calculated analytically. From Figure 3.3, we see that 

(3.20) 

Now, a fundamental approximation of calculus asserts that, for any function q(x) 
and any sufficiently small increment u, 

q(x + u) - q(x) = ; u. 

Thus, provided the uncertainty ax is small ( as we always assume it is), we can 
rewrite the difference in (3.20) to give 

(3.21) 

Thus, to find the uncertainty Bq_, we just calculate the derivative dq/dx and multiply 
by the uncertainty Bx. 

The rule (3.21) is not quite in its final form. It was derived for a function, like 
that of Figure 3.3, whose slope is positive. Figure 3.4 shows a function with nega­
tive slope. Here, the maximum probable value qmax obviously corresponds to the 
minimum value of x, so that 

" _dq "·· uq = dx CM. (3.22) 

Because dq/dx is negative, we can write - dq/dx as jdq!dxl, and we have the follow­
ing general rule. 
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(3.23) 

This rule usually allows us to find 8q quickly and easily. Occasionally, if q(x) 
is very complicated, evaluating its derivative may be a nuisance, and going back to 
(3.20) is sometimes easier, as we discuss in Problem 3.32. Particularly if you have 
programmed your calculator or computer to find q(x), then finding q(xbest + &) and 
q(xbest) and their difference may be easier than differentiating q(x) explicitly. 

Example: Uncertainty in a Cosine 

As a simple application of the rule (3.23), suppose we have measured an angle 0 as 

0 = 20 ± 3° 

and that we wish to find cos 0. Our best estimate of cos 0 is, of course, 
cos 20° = 0.94, and according to (3.23), the uncertainty is 

8(cos 0) I d;:0180 

I sin 0 I 80 (in rad). (3.24) 

We have indicated that 80 must be expressed in radians, because the derivative of 
cos 0 is - sin 0 only if 0 is expressed in radians. Therefore, we rewrite 80 = 3° as 
80 = 0.05 rad; then (3.24) gives 

8(cos0) (sin20°) X 0.05 
0.34 X 0.05 = 0.02. 

Thus, our final answer is 

cos 0 0.94 ± 0.02. 

Quick Check 3.7. Suppose you measure x as 3.0 ± 0.1 and then calculate 
q = ex. What is your answer, with its uncertainty? (Remember that the deriva­
tive of ex is ex.) 

As another example of the rule (3.23), we can rederive and generalize a result 
found in Section 3.4. Suppose we measure the quantity x and then calculate the 
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power q(x) = x', where n is any known, fixed number, positive or negative. Ac­
cording to (3.23), the resulting uncertainty in q is 

If we divide both sides of this equation by /q/ = /x'/, we find that 

: = lnl:; (3.25) 

that is, the fractional uncertainty in q = x' is lnl times that in x. This result (3.25) is 
just the rule (3.10) found earlier, except that the result here is more general, because 
n can now be any number. For example, if n = 1/2, then q = '\P,:, and 

&/=!&. 
lq/ 2 /xi' 

that is, the fractional uncertainty in '\P,: is half that in x itself. Similarly, the fractional 
uncertainty in 1/x = x-1 is the same as that in X itself. 

The result (3.25) is just a special case of the rule (3.23). It is sufficiently im­
portant, however, to deserve separate statement as the following general rule. 

(3.26) 

Quick Check 3.8. If you measure x as 100 ± 6, what should you report for 
'\P,:, with its uncertainty? 

3.8 Propagation Step by Step 

We now have enough tools to handle almost any problem in the propagation of 
errors. Any calculation can be broken down into a sequence of steps, each involving 
just one of the following types of operation: (1) sums and differences; (2) products 
and quotients; and (3) computation of a function of one variable, such as x', sinx, 
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ex, or ln x. For example, we could calculate 

q = x(y - z sinu) (3.27) 

from the measured quantities x, y, z, and u in the following steps: Compute the 
function sinu, then the product of z and sinu, next the difference of y and z sinu, 
and finally the product of x and (y - z sinu). 

We know how uncertainties propagate through each of these separate opera­
tions. Thus, provided the various quantities involved are independent, we can calcu­
late the uncertainty in the final answer by proceeding in steps from the uncertainties 
in the original measurement. For example, if the quantities x, y, z, and u in (3.27) 
have been measured with corresponding uncertainties &, . . . , ou, we could calcu­
late the uncertainty in q as follows. First, find the uncertainty in the function sin u; 
knowing this, find the uncertainty in the product z sin u, and then that in the differ­
ence y - z sinu; finally, find the uncertainty in the complete product (3.27). 

Quick Check 3.9. Suppose you measure three numbers as follows: 

X = 200 ± 2, y = 50 ± 2, Z = 40 ± 2, 

where the three uncertainties are independent and random. Use step-by-step 
propagation to find the quantity q = x/(y - z) with its uncertainty. [First find 
the uncertainty in the difference y - z and then the quotient x/(y - z).] 

Before I discuss some examples of this step-by-step calculation of errors, let 
me emphasize three general points. First, because uncertainties in sums or differ­
ences involve absolute uncertainties (such as &) whereas those in products or quo­
tients involve fractional uncertainties (such as &/lxl), the calculations will require 
some facility in passing from absolute to fractional uncertainties and vice versa, as 
demonstrated below. 

Second, an important simplifying feature of all these calculations is that (as 
repeatedly emphasized) uncertainties are seldom needed to more than one significant 
figure. Hence, much of the calculation can be done rapidly in your head, and many 
smaller uncertainties can be completely neglected. In a typical experiment involving 
several trials, you may need to do a careful calculation on paper of all error propa­
gations for the first trial. After that, you will often find that all trials are sufficiently 
similar that no further calculation is needed or, at worst, that for subsequent trials 
the calculations of the first trial can be modified in your head. 

Finally, you need to be aware that you will sometimes encounter functions q(x) 
whose uncertainty cannot be found reliably by the stepwise method advocated here. 
These functions always involve at least one variable that appears more than once. 
Suppose, for example, that in place of the function (3.27), we had to evaluate 

q = y - xsiny. 
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This function is the difference of two terms, y and x sin y, but these two terms are 
definitely not independent because both depend on y. Thus, to estimate the uncer­
tainty, we would have to treat the terms as dependent (that is, add their uncertainties 
directly, not in quadrature). Under some circumstances, this treatment may seriously 
overestimate the true uncertainty. Faced with a function like this, we must recognize 
that a stepwise calculation may give an uncertainty that is unnecessarily big, and 
the only satisfactory procedure is then to use the general formula to be developed 
in Section 3.11. 

3. 9 Examples 

In this and the next section, I give three examples of the type of calculation encoun­
tered in introductory laboratories. None of these examples is especially complicated; 
in fact, few real problems are much more complicated than the ones described here. 

Example: Measurement of g with a Simple Pendulum 

As a first example, suppose that we measure g, the acceleration of gravity, usin,s_a 
simple pendulum. The period of such a pendulum is well known to be T = 2rc'\Jl/g, 
where l is the length of the pendulum. Thus, if l and T are measured, we can find 
gas 

(3.28) 

This result gives g as the product or quotient of three factors, 4rc2, l, and T 2. If 
the various uncertainties are independent and random, the fractional uncertainty in 
our answer is just the quadratic sum of the fractional uncertainties in these factors. 
The factor 4rc2 has no uncertainty, and the fractional uncertainty in T 2 is twice that 
in T: 

Thus, the fractional uncertainty in our answer for g will be 

og 

g 
(3.29) 

Suppose we measure the period T for one value of the length l and get the 
results 5 

l 92.95 ± 0.1 cm, 

T l.936 ± 0.004 s. 

5 Although at first sight an uncertainty 8T = 0.004 s may seem unrealistically small, you can easily achieve 
it by timing several oscillations. If you can measure with an accuracy of 0.1 s, as is certainly possible with a 
stopwatch, then by timing 25 oscillations you will find T within 0.004 s. 
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Our best estimate for g is easily found from (3.28) as 

= 41t2 X (92.95 cm) = 979 crn/s2 
gbest (1.936 s)2 • 

To find our uncertainty in g using (3.29), we need the fractional uncertainties in l 
and T. These are easily calculated (in the head) as 

8l 8T 
1 = 0.1% and T 0.2%. 

Substituting into (3.29), we find 

from which 

f>g = ✓(0.1)2 + (2 X 0.2)2 % 
g 

0.4%; 

8g = 0.004 X 979 cm/s2 = 4 cm/s2. 

Thus, based on these measurements, our final answer is 

g = 979 ± 4 cm/s2. 

Having found the measured value of g and its uncertainty, we would naturally com­
pare these values with the accepted value of g. If the latter has its usual value of 
981 cm/s2, the present value is entirely satisfactory. 

If this experiment is repeated ( as most such experiments should be) with differ­
ent values of the parameters, the uncertainty calculations usually do not need to be 
repeated in complete detail. We can often easily convince ourselves that all uncer­
tainties (in the answers for g) are close enough that no further calculations are 
needed; sometimes the uncertainty in a few representative values of g can be calcu­
lated and the remainder estimated by inspection. In any case, the best procedure is 
almost always to record the various values of l, T, and g and the corresponding 
uncertainties in a single table. (See Problem 3.40.) 

Example: Refractive Index Using Snell's Law 

If a ray of light passes from air into glass, the angles of incidence i and refraction 
rare defined as in Figure 3.5 and are related by Snell's law, sini = n sinr, where 
n is the refractive index of the glass. Thus, if you measure the angles i and r, you 

Air 

Glass 

Figure 3.5. The angles of incidence i and refraction r 
when a ray of light passes from air into glass. 



70 Chapter 3: Propagation of Uncertainties 

can calculate the refractive index n as 

n = 
sini 
sinr 

(3.30) 

The uncertainty in this answer is easily calculated. Because n is the quotient of 
sini and sinr, the fractional uncertainty in n is the quadratic sum of those in sini 
and sinr: 

8n 

n 
( 8 sini)2 (8sinr)2 . . + . . 

smz smr 

To find the fractional uncertainty in the sine of any angle 0, we note that 

8sin0 = I d~~ 0 180 

leas 01 80 (in rad). 

Thus, the fractional uncertainty is 

8sin0 
= lcot 01 80 (in rad). 

lsin01 

(3.31) 

(3.32) 

Suppose we now measure the angle r for a couple of values of i and get the 
results shown in the first two columns of Table 3.1 (with all measurements judged 
to be uncertain by ± 1 °, or 0.02 rad). The calculation of n = sin i/sin r is easily 
carried out as shown in the next three columns of Table 3.1. The uncertainty in n 
can then be found as in the last three columns; the fractional uncertainties in sin i 
and sinr are calculated using (3.32), and finally the fractional uncertainty in n is 
found using (3.31). 

Table 3.1. Finding the refractive index. 

i (deg) r (deg) 8sini 8sinr 8n 
all ± 1 all ± 1 sini sinr n lsinil lsinrl n 

20 13 0.342 0.225 1.52 5% 8% 9% 
40 23.5 0.643 0.399 1.61 2% 4% 5% 

Before making a series of measurements like the two shown in Table 3.1, you 
should think carefully how best to record the data and calculations. A tidy display 
like that in Table 3.1 makes the recording of data easier and reduces the danger of 
mistakes in calculation. It is also easier for the reader to follow and check. 

If you repeat an experiment like this one several times, the error calculations 
can become tedious if you do them for each repetition. If you have a programmable 
calculator, you may decide to write a program to do the repetitive calculations auto­
matically. You should recognize, however, that you almost never need to do the error 
calculations for all the repetitions; if you find the uncertainties in n corresponding to 
the smallest and largest values of i (and possibly a few intermediate values), then 
these uncertainties suffice for most purposes. 
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3.10 A More Complicated Example 

The two examples just given are typical of many experiments in the introductory 
physics laboratory. A few experiments require more complicated calculations, how­
ever. As an example of such an experiment, I discuss here the measurement of the 
acceleration of a cart rolling down a slope. 6 

Example: Acceleration of a Cart Down a Slope 

photocell 1 

Figure 3.6. A cart rolls down an incline of slope 0. Each photocell is connected to a timer to 
measure the time for the cart to pass it. 

Let us consider a cart rolling down an incline of slope 0 as in Figure 3.6. The 
expected acceleration is gsin 0 and, if we measure 0, we can easily calculate the 
expected acceleration and its uncertainty (Problem 3.42). We can measure the actual 
acceleration a by timing the cart past two photocells as shown, each connected to a 
timer. If the cart has length l and takes time t1 to pass the first photocell, its speed 
there is v1 = l/t1. In the same way, v2 = l!t2. (Strictly speaking, these speeds are 
the cart's average speeds while passing the two photocells. However, provided l is 
small, the difference between the average and instantaneous speeds is unimportant.) 
If the distance between the photocells is s, then the well-known formula 
v/ = v/ + 2as implies that 

a -
v/- v/ 

2s 

(3.33) 

Using this formula and the measured values of /, s, t1, and t2, we can easily find the 
observed acceleration and its uncertainty. 

6If you wish, you could omit this section without loss of continuity or return to study it in connection with 
Problem 3.42. 
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One set of data for this experiment, including uncertainties, was as follows (the 
numbers in parentheses are the corresponding percentage uncertainties, as you can 
easily check): 

l 5.00 ± 0.05 cm (1%) 

s = 100.0 ± 0.2 cm (0.2%) 
(3.34) 

t1 0.054 ± 0.001 s (2%) 

t2 0.031 ± 0.001 s (3%). 

From these values, we can immediately calculate the first factor in (3.33) as 
1212s = 0.125 cm. Because the fractional uncertainties in l and s are 1 % and 0.2%, 
that in 1212s is 

(fractional uncertainty in 1212s) 

✓(2 X 1%)2 + (0.2%)2 = 2%. 

(Note how the uncertainty in s makes no appreciable contribution and could have 
been ignored.) Therefore, 

1212s = 0.125 cm ± 2%. (3.35) 

To calculate the second factor in (3.33) and its uncertainty, we proceed in steps. 
Because the fractional uncertainty in t1 is 2%, that in lit/ is 4%. Thus, since 
t1 = 0.054 s, 

lit/ = 343 ± 14 s-2. 

In the same way, the fractional uncertainty in lit/ is 6% and 

lit/ = 1041 ± 62 s-2. 

Subtracting these ( and combining the errors in quadrature), we find 

1 1 
2 - 2 = 698 ± 64 s-2 (or 9%). 
t2 t1 

(3.36) 

Finally, according to (3.33), the required acceleration is the product of (3.35) 
and (3.36). Multiplying these equations together (and combining the fractional un­
certainties in quadrature), we obtain 

or 

a - (0.125 cm ± 2%) X (698 s-2 ± 9%) 

87 .3 cmls2 ± 9% 

a = 87 ± 8 cmls2 . (3.37) 

This answer could now be compared with the expected acceleration g sin 0, if the 
latter had been calculated. 

When the calculations leading to (3.37) are studied carefully, several interesting 
features emerge. First, the 2% uncertainty in the factor 1212s is completely swamped 
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by the 9% uncertainty in (lit/) - (lit/). If further calculations are needed for 
subsequent trials, the uncertainties in land s can therefore be ignored (so long as a 
quick check shows they are still just as unimportant). 

Another important feature of our calculation is the way in which the 2% and 
3% uncertainties in t1 and t2 grow when we evaluate lit/, lit/, and the difference 
(lit/) - (lit/), so that the final uncertainty is 9%. This growth results partly from 
taking squares and partly from taking the difference of large numbers. We could 
imagine extending the experiment to check the constancy of a by giving the cart an 
initial push, so that the speeds v1 and v2 are both larger. If we did, the times t1 and 
t2 would get smaller, and the effects just described would get worse (see Problem 
3.42). 

3.1 I General Formula for Error Propagation 7 

So far, we have established three main rules for the propagation of errors: that for 
sums and differences, that for products and quotients, and that for arbitrary functions 
of one variable. In the past three sections, we have seen how the computation of a 
complicated function can often be broken into steps and the uncertainty in the func­
tion computed stepwise using our three simple rules. 

In this final section, I give a single general formula from which all three of 
these rules can be derived and with which any problem in error propagation can be 
solved. Although this formula is often rather cumbersome to use, it is useful theoret­
ically. Furthermore, there are some problems in which, instead of calculating the 
uncertainty in steps as in the past three sections, you will do better to calculate it in 
one step by means of the general formula. 

To illustrate the kind of problem for which the one-step calculation is prefera­
ble, suppose that we measure three quantities x, y, and z and have to compute a 
function such as 

x+y 
q = X + Z 

(3.38) 

in which a variable appears more than once (x in this case). If we were to calculate 
the uncertainty Sq in steps, then we would first compute the uncertainties in the two 
sums x + y and x + z, and then that in their quotient. Proceeding in this way, we 
would completely miss the possibility that errors in the numerator due to errors in 
x may, to some extent, cancel errors in the denominator due to errors in x. To 
understand how this cancellation can happen, suppose that x, y, and z are all positive 
numbers, and consider what happens if our measurement of x is subject to error. If 
we overestimate x, we overestimate both x + y and x + z, and (to a large extent) 
these overestimates cancel one another when we calculate (x + y)l(x + z). Simi­
larly, an underestimate of x leads to underestimates of both x + y and x + z, which 
again cancel when we form the quotient. In either case, an error in x is substantially 

7You can postpone reading this section without a serious loss of continuity. The material covered here is 
not used again until Section 5.6. 
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canceled out of the quotient (x + y)J(x + z), and our stepwise calculation com­
pletely misses these cancellations. 

Whenever a function involves the same quantity more than once, as in (3.38), 
some errors may cancel themselves (an effect, sometimes called compensating er­
rors). If this cancellation is possible, then a stepwise calculation of the uncertainty 
may overestimate the final uncertainty. The only way to avoid this overestimation is 
to calculate the uncertainty in one step by using the method I will now develop. 8 

Let us suppose at first that we measure two quantities x and y and then calculate 
some function q = q(x, y). This function could be as simple as q = x + y or some­
thing more complicated such as q = (x3 + y) sin(xy). For a function q(x) of a single 
variable, we argued that if the best estimate for x is the number xbest, then the best 
estimate for q(x) is q(xbest). Next, we argued that the extreme (that is, largest and 
smallest) probable values of x are xbest ± & and that the corresponding extreme 
values of q are therefore 

q(xbest ± &). 

Finally, we used the approximation 

q(x + u) = q(x) + dq u 
dx 

(for any small increment u) to rewrite the extreme probable values (3.39) as 

(3.39) 

(3.40) 

(3.41) 

where the absolute value is to allow for the possibility that dq/dx may be negative. 
The result (3.41) means that 8q = ldq!dxl&. 

When q is a function of two variables, q(x, y), the argument is similar. If xbest 

and Ybest are the best estimates for x and y, we expect the best estimate for q to be 

in the usual way. To estimate the uncertainty in this result, we need to generalize 
the approximation (3.40) for a function of two variables. The required generalization 
is 

q(x + u, y + v) = q(x, y) + aq u + aq v, 
ax ay 

(3.42) 

where u and v are any small increments in x and y, and aqJax and aqJay are the so­
called partial derivatives of q with respect to x and y. That is, aqJax is the result of 
differentiating q with respect to x while treating y as fixed, and vice versa for aqJay. 
[For further discussion of partial derivatives and the approximation (3.42), see Prob­
lems 3.43 and 3.44.] 

The extreme probable values for x and y are xbest ± & and Ybest ± By. If we 
insert these values into (3.42) and recall that aqJax and aqJay may be positive or 

8 Sometimes a function that involves a variable more than once can be rewritten in a different form that 
does not. For example, q = xy - xz can be rewritten as q = x(y - z). In the second form, the uncertainty 
8q can be calculated in steps without any danger of overestimation. 
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negative, we find, for the extreme values of q, 

This means that the uncertainty in q(x, y) is 

(3.43) 

Before I discuss various generalizations of this new rule, let us apply it to rederive 
some familiar cases. Suppose, for instance, that 

q(x, y) = X + y; (3.44) 

that is, q is just the sum of x and y. The partial derivatives are both one, 

aq = 1 
ay , (3.45) 

and so, according to (3.43), 

&; = 8x + 8y. (3.46) 

This is just our original provisional rule that the uncertainty in x + y is the sum of 
the uncertainties in x and y. 

In much the same way, if q is the product q = xy, you can check that (3.43) 
implies the familiar rule that the fractional uncertainty in q is the sum of the frac­
tional uncertainties in x and y (see Problem 3.45). 

The rule (3.43) can be generalized in various ways. You will not be surprised 
to learn that when the uncertainties 8x and 8y are independent and random, the sum 
(3.43) can be replaced by a sum in quadrature. If the function q depends on more 
than two variables, then we simply add an extra term for each extra variable. In this 
way, we arrive at the following general rule (whose full justification will appear in 
Chapters 5 and 9). 

(3.47) 

(3.48) 
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Although the formulas (3.47) and (3.48) look fairly complicated, they are easy 
to understand if you think about them one term at a time. For example, suppose for 
a moment that among all the measured quantities, x, y, ... , z, only x is subject to 
any uncertainty. (That is, 8y = ... = 8z = 0.) Then (3.47) contains only one term 
and we would find 

sq = I :: I ax (if ay = • • • = 8z = 0). (3.49) 

In other words, the term Jaq/axJ8x by itself is the uncertainty, or partial uncertainty, 
in q caused by the uncertainty in x alone. In the same way, Jaq/ayJ8y is the partial 
uncertainty in q due to 8y alone, and so on. Referring back to (3.47), we see that 
the total uncertainty in q is the quadratic sum of the partial uncertainties due to each 
of the separate uncertainties &, 8y, ... , 8z (provided the latter are independent). 
This is a good way to think about the result (3.47), and it suggests the simplest way 
to use (3.47) to calculate the total uncertainty in q: First, calculate the partial uncer­
tainties in q due to &, 8y, ... , 8z separately, using (3.49) and its analogs for y, ... , 
z; then simply combine these separate uncertainties in quadrature to give the total 
uncertainty as in (3.47). 

In the same way, whether or not the uncertainties &, 8y, ... , 8z are indepen­
dent, the rule (3.48) says that the total uncertainty in q never exceeds the simple 
sum of the partial uncertainties due to each of &, 8y, ... , 8z separately. 

Example: Using the General Formula (3.47) 

To determine the quantity 

q = xzy _ xyz, 

a scientist measures x and y as follows: 

X = 3.0 ± 0.1 and y = 2.0 ± 0.1. 

What is his answer for q and its uncertainty, as given by (3.47)? 
His best estimate for q is easily seen to be %est = 6.0. To find Sq, we follow 

the steps just outlined. The uncertainty in q due to 8x alone, which we denote by 
8qx, is given by (3.49) as 

8qx ( error in q due to 8x alone) 

I!! I ax (3.50) 

12xy - y2l8x = 112 - 41 X 0.1 0.8. 

Similarly, the uncertainty in q due to 8y is 

( error in q due to 8y alone) 

I!! I ay (3.51) 

lx2 - 2xyl8y 19 - 121 X 0.1 0.3. 
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Finally, according to (3.47), the total uncertainty in q is the quadratic sum of these 
two partial uncertainties: 

Sq 

Thus, the final answer for q is 

✓( oqx)2 + ( &/y)2 

✓(0.8)2 + (0.3)2 

q 6.0 ± 0.9. 

(3.52) 

0.9. 

The use of (3.47) or (3.48) to calculate uncertainties is reasonably straightfor­
ward if you follow the procedure used in this example; that is, first calculate each 
separate contribution to oq and only then combine them to give the total uncertainty. 
This procedure breaks the problem into calculations small enough that you have a 
good chance of getting them right. It has the further advantage that it lets you see 
which of the measurements x, y, ... , z are the main contributors to the final uncer­
tainty. (For instance, in the example above, the contribution &/y = 0.3 was so small 
compared with oqx = 0.8 that the former could almost be ignored.) 

Generally speaking, when the stepwise propagation described in Sections 3.8 to 
3.10 is possible, it is usually simpler than the general rules (3.47) or (3.48) discussed 
here. Nevertheless, you must recognize that if the function q(x, ... , z) involves any 
variable more than once, there may be compensating errors; if so, a stepwise calcu­
lation may overestimate the final uncertainty, and calculating oq in one step using 
(3.47) or (3.48) is better. 

Principal Definitions and Equations of Chapter 3 

THE SQUARE-ROOT RULE FOR A COUNTING 
EXPERIMENT 

If we observe the occurrences of an event that happens at random but with a 
definite average rate and we count v occurrences in a time T, our estimate for the 
true average number is 

(average number of events in time T) = v ± ~- [See (3.2)] 

RULES FOR ERROR PROPAGATION 

The rules of error propagation refer to a situation in which we have found 
various quantities, x, ... , w with uncertainties ox, ... , ow and then use these values 
to calculate a quantity q. The uncertainties in x, ... , w "propagate" through the 
calculation to cause an uncertainty in q as follows: 
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Sums and Differences: If 

q = x + · · · + z - (u + · · · + w), 

then 

and 

Sq = ✓(&)2 + · · · + (8z)2 + (8u)2 + · · · + (8w)2 

(provided all errors are independent and random) 

Sq,;;; &+···+8z+8u+···+8w 
(always). [See (3.16) & (3.17)] 

Products and Quotients: If 

then 

and 

XX··· X z 
q = 

u X •• • X w' 

: ✓ ( ~r + --- + ( ~Zr + ( ~Ur + --- + ( ~r 
(provided all errors are independent and random) 

& 8z 8u 8w 
-+···+-+-+···+­
Ix! lzl Jul lwl 

(always). [See (3.18) & (3.19)] 

Measured Quantity Times Exact Number: If Bis known exactly and 

q = Bx, 

then 

Sq = JBI & or, equivalently, ~I 
Uncertainty in a Power: If n is an exact number and 

q = x!', 

then 

[See (3.9)] 

[See (3.26)] 

Uncertainty in a Function of One Variable: If q 
then 

q(x) is any function of x, 

[See (3.23)] 

Sometimes, if q(x) is complicated and if you have written a program to calculate 
q(x) then, instead of differentiating q(x), you may find it easier to use the equivalent 



Problems for Chapter 3 79 

formula, 

[See Problem 3.32) 

General Formula for Error Propagation: If q = q(x, ... , z) is any function of 
x, ... , z, then 

8q = (:!ax)2 + •·· + (!;sz)2 
(provided all errors are independent and random) 

and 

8q ~ l!!I ax+···+ l!!l az 

(always). [See (3.47) & (3.48)) 

Problems for Chapter 3 

For Section 3.2: The Square-Root Rule for a Counting Experiment 

3.1. * To measure the activity of a radioactive sample, two students count the 
alpha particles it emits. Student A watches for 3 minutes and counts 28 particles; 
Student B watches for 30 minutes and counts 310 particles. (a) What should Student 
A report for the average number emitted in 3 minutes, with his uncertainty? (b) 
What should Student B report for the average number emitted in 30 minutes, with 
her uncertainty? (c) What are the fractional uncertainties in the two measurements? 
Comment. 

3.2. * A nuclear physicist studies the particles ejected by a beam of radioactive 
nuclei. According to a proposed theory, the average rates at which particles are 
ejected in the forward and backward directions should be equal. To test this theory, 
he counts the total number ejected forward and backward in a certain 10-hour inter­
val and finds 998 forward and 1,037 backward. (a) What are the uncertainties asso­
ciated with these numbers? (b) Do these results cast any doubt on the theory that 
the average rates should be equal? 

3.3. * Most of the ideas of error analysis have important applications in many 
different fields. This applicability is especially true for the square-root rule (3.2) 
for counting experiments, as the following example illustrates. The normal average 
incidence of a certain kind of cancer has been established as 2 cases per 10,000 
people per year. The suspicion has been aired that a certain town (population 
20,000) suffers a high incidence of this cancer because of a nearby chemical dump. 
To test this claim, a reporter investigates the town's records for the past 4 years and 
finds 20 cases of the cancer. He calculates that the expected number is 16 (check 
this) and concludes that the observed rate is 25% more than expected. Is he justified 
in claiming that this result proves that the town has a higher than normal rate for 
this cancer? 
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3.4. ** As a sample of radioactive atoms decays, the number of atoms steadily 
diminishes and the sample's radioactivity decreases in proportion. To study this 
effect, a nuclear physicist monitors the particles ejected by a radioactive sample for 
2 hours. She counts the number of particles emitted in a I -minute period and repeats 
the measurement at half-hour intervals, with the following results: 

Time elapsed, t (hours): 0.0 0.5 1.0 1.5 2.0 
Number counted, v, in 1 min: 214 134 101 61 54 

(a) Plot the number counted against elapsed time, including error bars to show the 
uncertainty in the numbers. (Neglect any uncertainty in the elapsed time.) 
(b) Theory predicts that the number of emitted particles should diminish exponen­
tially as v = v0 exp(-rt), where (in this case) v0 = 200 and r = 0.693 h-1. On the 
same graph, plot this expected curve and comment on how well the data seem to fit 
the theoretical prediction. 

For Section 3.3: Sums and Differences; Products and Quotients 

3.5. * Using the provisional rules (3.4) and (3.8), compute the following: 
(a) (5 ± 1) + (8 ± 2) - (10 ± 4) 
(b) (5 ± 1) X (8 ± 2) 
(c) (10 ± 1)/(20 ± 2) 
(d) (30 ± 1) X (50 ± 1)/(5.0 ± 0.1) 

3.6. * Using the provisional rules (3.4) and (3.8), compute the following: 
(a) (3.5 ± 0.1) + (8.0 ± 0.2) - (5.0 ± 0.4) 
(b) (3.5 ± 0.1) X (8.0 ± 0.2) 
(c) (8.0 ± 0.2)/(5.0 ± 0.4) 
(d) (3.5 ± 0.1) X (8.0 ± 0.2)/(5.0 ± 0.4) 

3.7. * A student makes the following measurements: 

a = 5 ± 1 cm, b = 18 ± 2 cm, c = 12 ± 1 cm, 

t = 3.0 ± 0.5 s, m = 18 ± 1 gram 

Using the provisional rules (3.4) and (3.8), compute the following quantities with 
their uncertainties and percentage uncertainties: (a) a + b + c, (b) a + b - c, (c) 
ct, and (d) mb/t. 

3.8. ** The binomial theorem states that for any number n and any x with 
/x/ < 1, 

(1 + xr 1 n(n - 1) _2 n(n - l)(n - 2) __ 1 + nx + ~-~x- + ~-~~-~,,. + ... 
1·2 1·2·3 

(a) Show that if n is a positive integer, this infinite series terminates (that is, has 
only a finite number of nonzero terms). Write the series down explicitly for the 
cases n = 2 and n = 3. (b) Write down the binomial series for the case n = -1. 
This case gives an infinite series for 1/(1 + x), but when x is small, you get a good 
approximation if you keep just the first two terms: 

1 
-- = 1-x 
l+x ' 
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as quoted in (3.6). Calculate both sides of this approximation for each of the values 
x = 0.5, 0.1, and 0.01, and in each case find the percentage by which the approxi­
mation (1 - x) differs from the exact value of 1/(1 + x). 

For Section 3.4: Two Important Special Cases 

3.9. * I measure the diameter of a circular disc as d = 6.0 ± 0.l cm and use 
this value to calculate the circumference c = red and radius r = d/2. What are 
my answers? [The rule (3.9) for "measured quantity X exact number" applies to 
both of these calculations. In particular, you can write r as d X 1/2, where the 
number 1/2 is, of course, exact.] 

3.10. * I have a set of callipers that can measure thicknesses of a few inches with 
an uncertainty of ±0.005 inches. I measure the thickness of a deck of 52 cards and 
get 0.590 in. (a) If I now calculate the thickness of 1 card, what is my answer 
(including its uncertainty)? (b) I can improve this result by measuring several decks 
together. If I want to know the thickness of 1 card with an uncertainty of only 
0.00002 in, how many decks do I need to measure together? 

3.11. * With a good stopwatch and some practice, you can measure times ranging 
from approximately 1 second up to many minutes with an uncertainty of 0.1 second 
or so. Suppose that we wish to find the period T of a pendulum with T = 0.5 s. If 
we time 1 oscillation, we have an uncertainty of approximately 20%; but by timing 
several oscillations together, we can do much better, as the following questions 
illustrate: 

(a) If we measure the total time for 5 oscillations and get 2.4 ± 0.1 s, what is 
our final answer for r, with its absolute and percent uncertainties? [Remember the 
rule (3.9).] 

(b) What if we measure 20 oscillations and get 9.4 ± 0.1 s? 
(c) Could the uncertainty in T be improved indefinitely by timing more oscilla­

tions? 

3.12. * If x has been measured as 4.0 ± 0.1 cm, what should I report for x2 and 
.x3? Give percent and absolute uncertainties, as determined by the rule (3.10) for a 
power. 

3.13. * If I have measured the radius of a sphere as r = 2.0 ± 0.1 m, what should 
I report for the sphere's volume? 

3.14. * A visitor to a medieval castle measures the depth of a well by dropping a 
stone and timing its fall. She finds the time to fall is t = 3.0 ± 0.5 sec and calcu­
lates the depth as d = ½gt2. What is her conclusion, if she takes g = 9.80 m/s2 with 
negligible uncertainty? 

3.15. ** Two students are asked to measure the rate of emission of alpha particles 
from a certain radioactive sample. Student A watches for 2 minutes and counts 32 
particles. Student B watches for 1 hour and counts 786 particles. (The sample de­
cays slowly enough that the expected rate of emission can be assumed to be constant 
during the measurements.) (a) What is the uncertainty in Student A's result, 32, for 
the number of particles emitted in 2 minutes? (b) What is the uncertainty in Student 
B's result, 786, for the number of particles emitted in 1 hour? (c) Each student now 
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divides his count by his number of minutes to find the rate of emission in particles 
per minute. Assuming the times, 2 min and 60 min, have negligible uncertainty, 
what are the two students' answers for the rate, with their uncertainties? Comment. 

For Section 3.5: Independent Uncertainties in a Sum 

3.16. * A student measures five lengths: 

a = 50 ± 5, b = 30 ± 3, c = 60 ± 2, d = 40 ± 1, e = 5.8 ± 0.3 

(all in cm) and calculates the four sums a + b, a + c, a + d, a + e. Assuming the 
original errors were independent and random, find the uncertainties in her four an­
swers [rule (3.13), "errors add in quadrature"]. If she has reason to think the original 
errors were not independent, what would she have to give for her final uncertainties 
[rule (3.14), "errors add directly"]? Assuming the uncertainties are needed with only 
one significant figure, identify those cases in which the second uncertainty (that in 
b, c, d, e) can be entirely ignored. If you decide to do the additions in quadrature 
on a calculator, note that the conversion from rectangular to polar coordinates auto­
matically calculates ✓x2 + y2 for given x and y. 

3.17. * Evaluate each of the following: 
(a) (5.6 ± 0.7) + (3.70 ± 0.03) 
(b) (5.6 ± 0.7) + (2.3 ± 0.1) 
(c) (5.6 ± 0.7) + (4.1 ± 0.2) 
(d) (5.6 ± 0.7) + (1.9 ± 0.3) 

For each sum, consider both the case that the original uncertainties are independent 
and random ("errors add in quadrature") and that they are not ("errors add directly"). 
Assuming the uncertainties are needed with only one significant figure, identify 
those cases in which the second of the original uncertainties can be ignored entirely. 
If you decide to do the additions in quadrature on a calculator, note that the conver­
sion from rectangular to polar coordinates automatically calculates ✓x2 + y2 for 
given x and y. 

For Section 3.6: More About Independent Uncertainties 

3.18. * If you have not yet done it, do Problem 3.7 (assuming that the original 
uncertainties are not independent), and repeat each calculation assuming _that the 
original uncertainties are independent and random. Arrange your answers in a table 
so that you can compare the two different methods of propagating errors. 

3.19. * If you have not yet done it, do Problem 3.5 (assuming that the original 
uncertainties are not independent) and repeat each calculation assuming that the 
original uncertainties are independent and random. Arrange your answers in a table 
so that you can compare the two different methods of propagating errors. 

3.20. * If you have not yet done it, do Problem 3.6 (assuming that the original 
uncertainties are not independent) and repeat each calculation assuming that the 
original uncertainties are independent and random. Arrange your answers in a table 
so that you can compare the two different methods of propagating errors. 
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3.21. * (a) To find the velocity of a cart on a horizontal air track, a student mea-
sures the distance d it travels and the time taken t as 

d = 5.10 ± 0.01 m and t = 6.02 ± 0.02 s. 

What is his result for v = dlt, with its uncertainty? (b) If he measures the cart's 
mass as m = 0.711 ± 0.002 kg, what would be his answer for the momentum 
p = mv = mdlt? (Assume all errors are random and independent.) 

3.22. * A student is studying the properties of a resistor. She measures the current 
flowing through the resistor and the voltage across it as 

I = 2.10 ± 0.02 amps and V = 1.02 ± 0.01 volts. 

(a) What should be her calculated value for the power delivered to the resistor, 
P = Iv, with its uncertainty? (b) What for the resistance R = VII? (Assume the 
original uncertainties are independent. With / in amps and V in volts, the power P 
comes out in watts and the resistance R in ohms.) 

3.23. * In an experiment on the conservation of angular momentum, a student 
needs to find the angular momentum L of a uniform disc of mass M and radius R 
as it rotates with angular velocity w. She makes the following measurements: 

M 1.10 ± 0.01 kg, 

R 0.250 ± 0.005 m, 

w 21.5 ± 0.4 radls 

and then calculates L as L = WR2w. (The factor WR2 is just the moment of inertia 
of the uniform disc.) What is her answer for L with its uncertainty? (Consider the 
three original uncertainties independent and remember that the fractional uncertainty 
in R2 is twice that in R.) 

3.24. ** In his famous experiment with electrons, J.J. Thomson measured the 
"charge-to-mass ratio" r = elm, where e is the electron's charge and m its mass. A 
modern classroom version of this experiment finds the ratio r by accelerating elec­
trons through a voltage V and then bending them in a magnetic field. The ratio 
r = elm is given by the formula 

125 D2V 
32µ~N2 d212 • 

r - (3.53) 

In this equation, µ 0 is the permeability constant of the vacuum ( equal to 
47t X 10 - 7NIA2 exactly) and N is the number of turns in the coil that produces the 
magnetic field; D is the diameter of the field coils, V is the voltage that accelerates 
the electrons, dis the diameter of the electrons' curved path, and/ is the current in 
the field coils. A student makes the following measurements: 

N 72 (exactly) 

D 661 ± 2 mm 

V 45.0 ± 0.2 volts 

d 91.4 ± 0.5 mm 

I 2.48 ± 0.04 amps 
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(a) Find the student's answer for the charge-to-mass ratio of the electron, with its 
uncertainty. [Assume all uncertainties are independent and random. Note that the 
first factor in (3.53) is known exactly and can thus be treated as a single known 
constant, K. The second factor is a product and quotient of four numbers, D2, V, d 2, 
and /2, so the fractional uncertainty in the final answer is given by the rule (3.18). 
Remember that the fractional uncertainty in D 2 is twice that in D, and so on.] (b) 
How well does this answer agree with the accepted valuer = 1.759 X 1011 C/kg? 
(Note that you don't actually need to understand the theory of this experiment to do 
the problem. Nor do you need to worry about the units; if you use SI units for all 
the input quantities, the answer automatically comes out in the units given.) 

3.25. ** We know from the rule (3.10) for uncertainties in a power that if 
q = x2, the fractional uncertainty in q is twice that in x; 

Consider the following {fallacious) argument. We can regard x2 as x times x; so 

q = XX x; 

therefore, by the rule (3.18), 

f>q 
q 

( &;)2 + (f>x)Z = ~ fJx. 
x x lxl 

This conclusion is wrong. In a few sentences, explain why. 

For Section 3.7: Arbitrary Functions of One Variable 

3.26. * In nuclear physics, the energy of a subatomic article can be measured in 
various ways. One way is to measure how quickly the particle is stopped by an 
obstacle such as a piece of lead and then to use published graphs of energy versus 
stopping rate. Figure 3.7 shows such a graph for photons (the particles of light) in 
lead. The vertical axis shows the photons' energy E in MeV (millions of electron 
volts), and the horizontal axis shows the corresponding absorption coefficient µ in 
cm2/g. (The precise definition of this coefficient need not concern us here; µ is 
simply a suitable measure of how quickly the photon is stopped in the lead.) From 
this graph, you can obviously find the energy E of a photon as soon as you know 
its absorption coefficient µ. 
(a) A student observes a beam of photons (all with the same energy, E) and finds 
that their absorption coefficient in lead is µ = 0.10 ± 0.01 cm2/gram. Using the 
graph, find the energy E and the uncertainty BE. (You may find it helpful to draw 
on the graph the lines connecting the various points of interest, as done in Figure 
3.3.) (b) What answer would the student have found if he had measured 
µ = 0.22 ± 0.01 cm2/gram? 

3.27. * A student finds the refractive index n of a piece of glass by measuring the 
critical angle 0 for light passing from the glass into air as 0 = 41 ± 1 °. The relation 
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Figure 3.7. Energy E against absorption coefficientµ, for photons in lead; for Problem 3.26. 

between these is known to be n = 1/sin 0. Find the student's answer for n and use 
the rule (3.23) to find its uncertainty. (Don't forget to express 80 in radians.) 

3.28. * (a) According to theory, the period T of a simple pendulum is T = 
2rc-vi]i, where L is the length of the pendulum. If L is measured as 
L = 1.40 ± 0.01 m, what is the predicted value of T! (b) Would you say that a 
measured value of T = 2.39 ± 0.01 s is consistent with the theoretical prediction of 
part (a)? 

3.29. * (a) An experiment to measure Planck's constant h gives it in the form 
h = J0..113 where K is a constant known exactly and X. is the measured wavelength 
emitted by a hydrogen lamp. If a student has measured X. with a fractional uncer­
tainty she estimates as 0.3%, what will be the fractional uncertainty in her answer 
for h? Comment. (b) If the student's best estimate for h is 6.644 X 10-34 J·s, is her 
result in satisfactory agreement with the accepted value of 6.626 X 10-34 J-s? 

3.30. ** A spectrometer is a device for separating the different wavelengths in a 
beam of light and measuring the wavelengths. It deflects the different wavelengths 
through different angles 0, and, if the relation between the angle 0 and wavelength 
X. is known, the experimenter can find X. by measuring 0. Careful measurements 
with a certain spectrometer have established the calibration curve shown in Figure 
3.8; this figure is simply a graph of X. (in nanometers, or nm) against 0, obtained by 
measuring 0 for several accurately known wavelengths A.. A student directs a narrow 
beam of light from a hydrogen lamp through this spectrometer and finds that the 

85 
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Figure 3.8. Calibration curve of wavelength A against deflection 0 for a spectrometer; 
for Problem 3.30. 

light consists of just three well-defined wavelengths; that is, he sees three narrow 
beams (one red, one turquoise, and one violet) emerging at three different angles. 
He measures these angles as 

01 = 51.0 ± 0.2° 

02 52.6 ± 0.2° 

03 54.0 ± 0.2° 

(a) Use the calibration curve of Figure 3.8 to find the corresponding wavelengths 
A1, A2, and A3 with their uncertainties. (b) According to theory, these wavelengths 
should be 656, 486, and 434 nm. Are the student's measurements in satisfactory 
agreement with these theoretical values? (c) If the spectrometer has a vernier scale 
to read the angles, the angles can be measured with an uncertainty of 0.05° or even 
less. Let us suppose the three measurements above have uncertainties of ±0.05°. 
Given this new, smaller uncertainty in the angles and without drawing any more 
lines on the graph, use your answers from part (a) to find the new uncertainties in 
the three wavelengths, explaining clearly how you do it. (Hint: the calibration curve 
is nearly straight in the vicinity of any one measurement.) (d) To take advantage of 
more accurate measurements, an experimenter may need to enlarge the calibration 
curve. The inset in Figure 3.8 is an enlargement of the vicinity of the angle 02. Use 
this graph to find the wavelength A2 if 02 has been measured as 52. 72 ± 0.05°; 
check that your prediction for the uncertainty of A2 in part ( c) was correct. 

3.31. ** (a) An angle 0 is measured as 125 ± 2°, and this value is used to com­
pute sin 0. Using the rule (3.23), calculate sin 0 and its uncertainty. (b) If a is mea­
sured as abest ± &, and this value used to compute f(a) = ea, what are /best and 
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8f? If a= 3.0 ± 0.1, what are ea and its uncertainty? (c) Repeat part (b) for the 
function f(a) = In a. 

3.32. *** The rule (3.23), 8q = /dq!dx/&, usually allows the uncertainty in a 
function q(x) to be found quickly and easily. Occasionally, if q(x) is very compli­
cated, evaluating its derivative may be a nuisance, and going back to (3.20), from 
which (3.23) was derived, is sometimes easier. Note, however, that (3.20) was de­
rived for a function whose slope was positive; if the slope is negative, the signs 
need to be reversed, and the general form of (3.20) is 

(3.54) 

Particularly if you have programmed your calculator or computer to find q(x), then 
finding q(xbest + &) and q(xbest) and their difference will be easy. 
(a) If you have a computer or programmable calculator, write a program to calculate 
the function 

q(x) = (1 + x2)3 
x2 + cot x 

Use this program to find q(x) if x = 0.75 ± 0.1, using the new rule {3.54) to find 
8q. (b) If you have the courage, differentiate q(x) and check your value of 8q using 
the rule (3.23). 

3.33. *** Do Problem 3.32 but use the function 

( X + 2) q(x) = (1 - x2) cos ~ 

and the measured value x = 1. 70 ± 0.02. 

For Section 3.8: Propagation Step by Step 

3.34 * Use step-by-step propagation to find the following quantities (assuming 
that all given uncertainties are independent and random): 

(a) (20 ± 1) + [(5.0 ± 0.4) X (3.0 ± 0.2)] 

(b) (20 ± 1)/[(5.0 ± 0.1) - (3.0 ± 0.1)] 

(c) (1.5 ± 0.1) - 2 sin(30 ± 6°) 
[In part (c), the number 2 is exact.] 

3.35. * Use step-by-step propagation to find the following quantities (assuming 
that all given uncertainties are independent and random): 

(a) (20 ± 1) + [(50 ± 1)/(5.0 ± 0.2)] 

(b) (20 ± 1) X [(30 ± 1) - (24 ± 1)] 

(c) (2.0 ± 0.1) X tan (45 ± 3°) 

3.36. * Calculate the following quantities in steps as described in Section 3.8. 
Assume all uncertainties are independent and random. 

(a) (12 ± 1) X [(25 ± 3) - (10 ± 1)] 

(b) ✓16 ± 4 + (3.0 ± 0.1)3(2.0 ± 0.1) 
(c) (20 ± 2)e-c1.o ± 0-1) 
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3.37. * (a) To find the acceleration of a glider moving down a sloping air track, I 
measure its velocities (v1 and v2) at two points and the time tit takes between them, 
as follows: 

V1 = 0.21 ± 0.05, V2 = 0.85 ± 0.05 

(both in m/s) and 

t = 8.0 ± 0.1 s. 

Assuming all uncertainties are independent and random, what should I report for 
the acceleration, a = (v2 - v1)/t and its uncertainty? (b) I have calculated theoreti­
cally that the acceleration should be 0.13 ± 0.01 m/s2. Does my measurement agree 
with this prediction? 

3.38. * (a) As in Problem 3.37, I measure the velocities, v1 and u2, of a glider at 
two points on a sloping air track with the results given there. Instead of measuring 
the time between the two points, I measure the distance as 

d = 3.740 ± 0.002 m. 

If I now calculate the acceleration as a = (v/ - v/)!2d, what should be my answer 
with its uncertainty? (b) How well does it agree with my theoretical prediction that 
a = 0.13 ± 0.01 m/s2? 

3.39. ** (a) The glider on a horizontal air track is attached to a spring that causes 
it to oscillate back and forth. The total energy of the system is E = ½mv2 + ½kx2, 
where m is the glider's mass, v is its velocity, k is the spring's force constant, and 
x is the extension of the spring from equilibrium. A student makes the following 
measurements: 

m 

k 

0.230 ± 0.001 kg, 

1.03 ± 0.01 Nim, 

v = 0.89 ± 0.01 m/s, 

X - 0.551 ± 0.005 m. 

What is her answer for the total energy E? (b) She next measures the position Xmax 

of the glider at the extreme end of its oscillation, where v = 0, as 

Xmax = 0.698 ± 0.002 m. 

What is her value for the energy at the end point? (c) Are her results consistent with 
conservation of energy, which requires that these two energies should be the same? 

For Section 3.9: Examples 

3.40. ** Review the discussion of the simple pendulum in Section 3.9. In a real 
experiment, one should measure the period T for several different lengths l and 
hence obtain several different values of g for comparison. With a little thought, you 
can organize all data and calculations so that they appear in a single convenient 
tabulation, as in Table 3.2. Using Table 3.2 ( or some other arrangement that you 
prefer), calculate g and its uncertainty 8g for the four pairs of data shown. Are your 
answers consistent with the accepted value, 980 cm/s2? Comment on the variation 
of 8g as l gets smaller. (The answers given for the first pair of data will let you 
check your method of calculation.) 
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Table 3.2. Finding g with a pendulum; for Problem 3.40. 

l (cm) T (sec) g 81/l 8T/T 8g!g answer 
all ±0.1 all ±0.001 (cm/s2) (%) (%) (%) g ± 8g 

93.8 1.944 980 0.1 0.05 0.14 980 ± 1.4 
70.3 1.681 
45.7 1.358 
21.2 0.922 

3.41. ** Review the measurement of the refractive index of glass in Section 3.9. 
Using a table similar to Table 3.1, calculate the refractive index n and its fractional 
uncertainty for the data in Table 3.3. Are your answers consistent with the manufac­
turer's claim that n = 1.50? Comment on the variation in the uncertainties. (All 
angles are in degrees, i is the angle of incidence, r that of refraction.) 

Table 3.3. Refractive index data (in degrees); 
for Problem 3.41. 

i (all ±1) 10 20 30 50 

r (all ±1) 7 13 20 29 

For Section 3.10: A More Complicated Example 

70 

38 

3.42. *** Review the experiment in Section 3.10, in which a cart is rolled down 
an incline of slope 0. (a) If the cart's wheels are smooth and light, the expected 
acceleration is gsin 0. If 0 is measured as 5.4 ± 0.1 degrees, what are the expected 
acceleration and its uncertainty? (b) If the experiment is repeated giving the cart 
various pushes at the top of the slope, the data and all calculations can be recorded 
as usual, in a single tabulation like Table 3.4. Using Equation (3.33) for the acceler-

Table 3.4. Acceleration data; for Problem 3.42. 

t1 (s) t2 (s) 1 1 1 1 a 
all ±0.001 all ±0.001 t/ t/ t/ - t/ (cm/s2) 

0.054 ± 2% 0.031 ± 3% 343 ± 14 1040 ± 62 698 ± 64 87 ± 8 
0.038 0.027 
0.025 0.020 

ation (and the same values f2!2s = 0.125 cm ± 2% as before), calculate a and Ba 
for the data shown. Are the results consistent with the expected constancy of a and 
with the expected value gsin 0 of part (a)? Would pushing the cart harder to check 
the constancy of a at even higher speeds be worthwhile? Explain. 
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For Section 3.11: General Formula for Error Propagation 

3.43. * The partial derivative aq/ax of q(x, y) is obtained by differentiating q with 
respect to x while treating y as a constant. Write down the partial derivatives aq/ax 
and aq/ay for the three functions: 

(a) q(x, y) = x + y, (b) q(x, y) = xy, (c) q(x, y) = x2y3. 

3.44. ** The crucial approximation used in Section 3.11 relates the value of the 
function q at the point (x + u, y + v) to that at the nearby point (x, y): 

q(x + u, y + v) = q(x, y) + aq u + aq v 
ax ay 

(3.55) 

when u and v are small. Verify explicitly that this approximation is good for the 
three functions of Problem 3.43. That is, for each function, write both sides of 
Equation (3.55) exactly, and show that they are approximately equal when u and v 
are small. For example, if q(x, y) = xy, then the left side of Equation (3.55) is 

(x + u)(y + v) = xy + uy + xv + uv. 

As you will show, the right side of (3.55) is 

xy + yu + xv. 

If u and v are small, then uv can be neglected in the first expression, and the two 
expressions are approximately equal. 

3.45. * (a) For the function q(x, y) = xy, write the partial derivatives aq/ax and 
aq/ay. Suppose we measure x and y with uncertainties & and Sy and then calculate 
q(x, y). Using the general rules (3.47) and (3.48), write the uncertainty Sq both for 
the case when & and Sy are independent and random, and for the case when they 
are not. Divide through by JqJ = JxyJ, and show that you recover the simple rules 
(3.18) and (3.19) for the fractional uncertainty in a product. (b) Repeat part (a) for 
the function q(x, y) = x"y"', where n and m are known fixed numbers. (c) What do 
Equations (3.47) and (3.48) become when q(x) depends on only one variable? 

3.46. ** If you measure two independent variables as 

X = 6.0 ± 0.1 and y = 3.0 ± 0.1, 

and use these values to calculate q = xy + x2/y, what will be your answer and its 
uncertainty? [You must use the general rule (3.47) to find Sq. To simplify your 
calculation, do it by first finding the two separate contributions ¾x and &j_Y as 
defined in (3.50) and (3.51) and then combining them in quadrature.] 

3.47. ** The Atwood machine consists of two masses Mand m (with M > m) 
attached to the ends of a light string that passes over a light, frictionless pulley. 
When the masses are released, the mass M is easily shown to accelerate down with 
an acceleration 

M-m 
a - gM • +m 
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Suppose that M and m are measured as M = 100 ± 1 and m = 50 ± 1, both in 
grams. Use the general rule (3.47) to derive a formula for the uncertainty in the 
expected acceleration &z in terms of the masses and their uncertainties and then find 
8a for the given numbers. 

3.48. *** If we measure three independent quantities x, y, and z and then calcu­
late a function such as q = (x + y)!(x + z), then, as discussed at the beginning of 
Section 3.11, a stepwise calculation of the uncertainty in q may overestimate the 
uncertainty 8q. (a) Consider the measured values x = 20 ± 1, y = 2, and z = 0, and 
for simplicity, suppose that 8y and oz are negligible. Calculate the uncertainty 8q 
correctly using the general rule (3.47) and compare your result with what you would 
get if you were to calculate 8q in steps. (b) Do the same for the values x = 20 ± 1, 
y = -40, and z = 0. Explain any differences between parts (a) and (b). 

3.49. *** If an object is placed at a distance p from a lens and an image is 
formed at a distance q from the lens, the lens's focal length can be found as 

f = J!!j_ . 
p+q 

(3.56) 

[This equation follows from the "lens equation," llf =(lip)+ (liq).] (a) Use the 
general rule (3.47) to derive a formula for the uncertainty 8f in terms of p, q, and 
their uncertainties. (b) Starting from (3.56) directly, you cannot find 8f in steps 
because p and q both appear in numerator and denominator. Show, however, that f 
can be rewritten as 

1 
f = (lip) + (liq) 

Starting from this form, you can evaluate 8f in steps. Do so, and verify that you get 
the same answer as in part (a). 

3.50. *** Suppose you measure three independent variables as 

X = 10 ± 2, y = 7 ± 1, 0 = 40 ± 3°, 

and use these values to compute 

x+2 
q 

x + y cos(40) • 

What should be your answer for q and its uncertainty? Note that you cannot do the 
error propagation in steps here because the variable x appears in both numerator 
and denominator; therefore, you must use the general rule (3.47). 





Chapter 4 

Statistical Analysis of Random 
Uncertainties 

We have seen that one of the best ways to assess the reliability of a measurement 
is to repeat it several times and examine the different values obtained. In this chapter 
and Chapter 5, I describe statistical methods for analyzing measurements in this 
way. 

As noted before, not all types of experimental uncertainty can be assessed by 
statistical analysis based on repeated measurements. For this reason, uncertainties 
are classified into two groups: the random uncertainties, which can be treated statis­
tically, and the systematic uncertainties, which cannot. This distinction is described 
in Section 4.1. Most of the remainder of this chapter is devoted to random uncertain­
ties. Section 4.2 introduces, without formal justification, two important definitions 
related to a series of measured values x 1, ... , xN, all of some single quantity x. 

First, I define the average or mean x of x1, ... , xN. Under suitable conditions, x is 
the best estimate of x based on the measured values x 1, ... , xN. I then define the 
standard deviation of x 1, ... , xN, which is denoted ax and characterizes the average 
uncertainty in the separate measured values x 1, ... , xN. Section 4.3 gives an exam­
ple of the use of the standard deviation. 

Section 4.4 introduces the important notion of the standard deviation of the 
mean. This parameter is denoted ax and characterizes the uncertainty in the mean x 
as the best estimate for x. Section 4.5 gives examples of the standard deviation of 
the mean. Finally, in Section 4.6, I return to the vexing problem of systematic errors. 

Nowhere in this chapter do I attempt a complete justification of the methods 
described. The main aim is to introduce the basic formulas and describe how they 
are used. In Chapter 5, I give proper justifications, based on the important idea of 
the normal distribution curve. 

The relation of the material of this chapter (statistical analysis) to the material 
of Chapter 3 (error propagation) deserves mention. From a practical point of view, 
these two topics can be viewed as separate, though related, branches of error analy­
sis (somewhat as algebra and geometry are separate, though related, branches of 
mathematics). Both topics need to be mastered, because most experiments require 
the use of both. 

In a few kinds of experiments, the roles of error propagation and of statistical 
analysis are complementary. That is, the experiment can be analyzed using either 93 
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error propagation or statistical methods. Consider an example: Suppose you decide 
to measure the acceleration of gravity, g, b,r_measuring the period, T, and the length, 
l, of a simple pendulum. Since T = 21t'\Jl/g, you can find g as g = 41t2l/T2. You 
might decide to repeat this experiment using several different values of l and mea­
suring the corresponding period T for each. In this way, you would arrive at several 
values for g. To find the uncertainty in these values of g, you could proceed in 
either of two ways. If you can estimate realistically the uncertainties in your mea­
surements of 1 and T, you could propagate these uncertainties to find the uncertaint­
ies in your values of g. Alternatively, given your several values of g, you could 
analyze them statistically; in particular, their standard deviation will be a good mea­
sure of their uncertainty. Unfortunately, you do not truly have a choice of how to 
find the uncertainty. If the uncertainty can be found in these two ways, you really 
ought to do so both ways to check that they do give, at least approximately, the 
same answer. 

4.1 Random and Systematic Errors 

Experimental uncertainties that can be revealed by repeating the measurements are 
called random errors; those that cannot be revealed in this way are called systematic. 
To illustrate this distinction, let us consider some examples. Suppose first that we 
time a revolution of a steadily rotating turntable. One source of error will be our 
reaction time in starting and stopping the watch. If our reaction time were always 
exactly the same, these two delays would cancel one another. In practice, however, 
our reaction time will vary. We may delay more in starting, and so underestimate 
the time of a revolution; or we may delay more in stopping, and so overestimate 
the time. Since either possibility is equally likely, the sign of the effect is random. 
If we repeat the measurement several times, we will sometimes overestimate and 
sometimes underestimate. Thus, our variable reaction time will show up as a varia­
tion of the answers found. By analyzing the spread in results statistically, we can 
get a very reliable estimate of this kind of error. 

On the other hand, if our stopwatch is running consistently slow, then all our 
times will be underestimates, and no amount of repetition (with the same watch) 
will reveal this source of error. This kind of error is called systematic, because it 
always pushes our result in the same direction. (If the watch runs slow, we always 
underestimate; if the watch runs fast, we always overestimate.) Systematic errors 
cannot be discovered by the kind of statistical analysis contemplated here. 

As a second example of random versus systematic errors, suppose we have to 
measure some well-defined length with a ruler. One source of uncertainty will be 
the need to interpolate between scale markings; and this uncertainty is probably 
random. (When interpolating, we are probably just as likely to overestimate as to 
underestimate.) But there is also the possibility that our ruler has become distorted; 
and this source of uncertainty would probably be systematic. (If the ruler has 
stretched, we always underestimate; if it has shrunk, we always overestimate.) 

Just as in these two examples, almost all measurements are subject to both 
random and systematic uncertainties. You should have no difficulty finding more 
examples. In particular, notice that common sources of random uncertainties are 



Random: small 
Systematic: small 
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Random: large 
Systematic: small 
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Section 4.1 Random and Systematic Errors 

Random: small 
Systematic: large 

(b) 

Random: large 
Systematic: large 

(d) 

Figure 4.1. Random and systematic errors in target practice. (a) Because all shots arrived close 
to one another, we can tell the random errors are small. Because the distribution of shots is cen­
tered on the center of the target, the systematic errors are also small. (b) The random errors are 
still small, but the systematic ones are much larger-the shots are "systematically" off-center to­
ward the right. (c) Here, the random errors are large, but the systematic ones are small-the 
shots are widely scattered but not systematically off-center. (d) Here, both random and system­
atic errors are large. 

small errors of judgment by the observer ( as when interpolating), small disturbances 
of the apparatus (such as mechanical vibrations), problems of definition, and several 
others. Perhaps the most obvious cause of systematic error is the miscalibration of 
instruments, such as the watch that runs slow, the ruler that has been stretched, or a 
meter that is improperly zeroed. 

To get a better feel for the difference between random and systematic errors, 
consider the analogy shown in Figure 4.1. Here the "experiment" is a series of shots 
fired at a target; accurate "measurements" are shots that arrive close to the center. 
Random errors are caused by anything that makes the shots arrive at randomly 
different points. For example, the marksman may have an unsteady hand, or fluctu­
ating atmospheric conditions between the marksman and the target may distort the 
view of the target in a random way. Systematic errors arise if anything makes the 
shots arrive off-center in one "systematic" direction, for instance, if the gun's sights 
are misaligned. Note from Figure 4.1 how the results change according to the vari­
ous combinations of small or large random or systematic errors. 

Although Figure 4.1 is an excellent illustration of the effects of random and 
systematic errors, it is, nonetheless, misleading in one important respect. Because 

95 
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. . . . . 

Random: small 
Systematic: ? 

(a) 

Random: large 
Systematic: ? 

(c) 

.. . . . . . 

Random: small 
Systematic: ? 

(b) 

Random: large 
Systematic: ? 

(d) 

Figure 4.2. The same experiment as in Figure 4.1 redrawn without showing the position of the 
target. This situation corresponds closely to the one in most real experiments, in which we do 
not know the true value of the quantity being measured. Here, we can still assess the random er­
rors easily but cannot tell anything about the systematic ones. 

each of the four pictures shows the position of the target, we can tell at a glance 
whether a particular shot was accurate or not. In particular, the difference between 
the top two pictures is immediately evident. The shots in the left picture cluster 
around the target's center, whereas those in the right picture cluster around a point 
well off-center; clearly, therefore, the marksman responsible for the left picture had 
little systematic error, but the one responsible for the right picture had a lot more. 
Knowing the position of the target in Figure 4.1 corresponds, in a laboratory mea­
surement, to knowing the true value of the measured quantity, and in the vast major­
ity of real measurements, we do not know this true value. (If we knew the true 
value, we would usually not bother to measure it.) 

To improve the analogy of Figure 4.1 with most real experiments, we need to 
redraw it without the rings that show the position of the target, as in Figure 4.2. In 
these pictures, identifying the random errors is still easy. (The top two pictures still 
obviously have smaller random errors than the bottom two.) Determining which 
marksman had larger systematic errors, however, is impossible based on Figure 4.2. 
This situation is exactly what prevails in most real experiments; by examining the 
distribution of measured values, we can easily assess the random errors but get no 
guidance concerning the systematic errors. 
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The distinction between random and systematic errors is not always clear-cut, 
and a problem that causes random errors in one experiment may produce systematic 
errors in another. For example, if you position your head first to one side and then 
to another to read a typical meter (such as an ordinary clock), the reading on the 
meter changes. This effect, called parallax, means that a meter can be read correctly 
only if you position yourself directly in front of it. No matter how careful you are, 
you cannot always position your eye exactly in front of the meter; consequently, 
your measurements will have a small uncertainty due to parallax, and this uncer­
tainty will probably be random. On the other hand, a careless experimenter who 
places a meter to one side of his seat and forgets to worry about parallax will 
introduce a systematic error into all his readings. Thus, the same effect, parallax, can 
produce random uncertainties in one case, and systematic uncertainties in another. 

The treatment of random errors is different from that of systematic errors. The 
statistical methods described in the following sections give a reliable estimate of the 
random uncertainties, and, as we shall see, provide a well-defined procedure for 
reducing them. For the reasons just discussed, systematic uncertainties are usually 
hard to evaluate and even to detect. The experienced scientist has to learn to antici­
pate the possible sources of systematic error and to make sure that all systematic 
errors are much less than the required precision. Doing so will involve, for example, 
checking the meters against accepted standards and correcting them or buying better 
ones if necessary. Unfortunately, in the first-year physics laboratory, such checks are 
rarely possible, so the treatment of systematic errors is often awkward. This concept 
is discussed further in Section 4.6. For now, I will discuss experiments in which all 
sources of systematic error have been identified and made much smaller than the 
required precision. 

4.2 The Mean and Standard Deviation 

Suppose we need to measure some quantity x, and we have identified all sources of 
systematic error and reduced them to a negligible level. Because all remaining 
sources of uncertainty are random, we should be able to detect them by repeating 
the measurement several times. We might, for example, make the measurement five 
times and find the results 

71, 72, 72, 73, 71 (4.1) 

(where, for convenience, we have omitted any units). 
The first question we address is this: Given the five measured values (4.1), what 

should we take for our best estimate xbest of the quantity x? Reasonably, our best 
estimate would seem to be the average or mean x of the five values found, and in 
Chapter 5, I will prove that this choice is normally best. Thus, 

71 + 72 + 72 + 73 + 71 
5 

71.8. (4.2) 
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Here, the second line is simply the definition of the mean x for the numbers at 
hand.1 

More generally, suppose we make N measurements of the quantity x (all using 
the same equipment and procedures) and find the N values 

(4.3) 

Once again, the best estimate for x is usually the average of x1, ... , xN. That is, 

Xbest = X, (4.4) 

where 

(4.5) 

In the last line, I have introduced the useful sigma notation, according to which 

N 

LX; = LX; = LX; = x1 + x2 + • • • + xN; 
i=l 

the second and third expressions here are common abbreviations, which I will use 
when there is no danger of confusion. 

The concept of the average or mean is almost certainly familiar to most readers. 
Our next concept, that of the standard deviation, is probably less so. The standard 
deviation of the measurements x1, ... , xN is an estimate of the average uncertainty 
of the measurements x1, ... , xN and is determined as follows. 

Given that the mean x is our best estimate of the quantity x, it is natural to 
consider the difference X; - x = d;. This difference, often called the deviation ( or 
residual) of X; from x, tells us how much the ith measurement X; differs from the 
average x. If the deviations d; = X; - x are all very small, our measurements are all 
close together and presumably very precise. If some of the deviations are large, our 
measurements are obviously not so precise. 

To be sure you understand the idea of the deviation, let us calculate the devia­
tions for the set of five measurements reported in (4.1). These deviations can be 
listed as shown in Table 4.1. Notice that the deviations are not (of course) all the 
same size; d; is small if the ith measurement X; happens to be close to x, but d; is 
large if X; is far from x. Notice also that some of the d; are positive and some 
negative because some of the X; are bound to be higher than the average .x, and 
some are bound to be lower. 

To estimate the average reliability of the measurements x1, ... , x5, we might 
naturally try averaging the deviations d;. Unfortunately, as a glance at Table 4.1 
shows, the average of the deviations is zero. In fact, this average will be zero for 

1 In this age of pocket calculators, it is worth pointing out that an average such as ( 4.2) is easily calculated 
in your head. Because all the numbers are in the seventies, the same must be true of the .average. All that 
remains is to average the numbers 1, 2, 2, 3, 1 in the units place. These numbers obviously average to 
9/5 = 1.8, and our answer is x = 71.8. 
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Table 4.1. Calculation of deviations. 

Trial number Measured value Deviation 
X; d; = X; -.X 

1 71 -0.8 
2 72 0.2 
3 72 0.2 
4 73 1.2 
5 71 -0.8 

LX; = 359 'I.d; = 0.0 

mean, X = I.x;IN = 359/5 = 71.8 

any set of measurements x1, ... , xN because the definition of the average .x ensures 
that d; = X; - x is sometimes positive and sometimes negative in just such a way 
that d is zero (see Problem 4.4). Obviously, then, the average of the deviations is 
not a useful way to characterize the reliability of the measurements x1, ... , xN. 

The best way to avoid this annoyance is to square all the deviations, which will 
create a set of positive numbers, and then average these numbers. 2 If we then take 
the square root of the result, we obtain a quantity with the same units as x itself. 
This number is called the standard deviation of x1, ... , xN, and is denoted ax: 

(T = X (4.6) 

With this definition, the standard deviation can be described as the root mean square 
(or RMS) deviation of the measurements x1, ... , xN. It proves to be a useful way 
to characterize the reliability of the measurements. [As we will discuss shortly, the 
definition ( 4.6) is sometimes modified by replacing the denominator N by N - 1.] 

To calculate the standard deviation ax as defined by ( 4.6), we must compute the 
deviations d;, square them, average these squares, and then take the square root of 
the result. For the data of Table 4.1, we start this calculation in Table 4.2. 

Table 4.2. Calculation of the standard deviation. 

Trial number Measured value Deviation 
X; d; = X; -.X 

1 71 -0.8 
2 72 0.2 
3 72 0.2 
4 73 1.2 
5 71 -0.8 

LX; 359 'I.d; = 0.0 

x 359/5 = 71.8 

Deviation squared 
d-2 

l 

0.64 
0.04 
0.04 
1.44 
0.64 

2 Another possibility would be to take the absolute values ld;I and average them, but the average of the d/ 
proves more useful. The average of the ld;I is sometimes (misleadingly) called the average deviation. 
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Summing the numbers d/ in the fourth column of Table 4.2 and dividing by 5, 
we obtain the quantity ax 2 ( often called the variance of the measurements), 

z = _!_ '\:I d.2 = 2.80 = 0 56 
ax NL., , 5 . . 

Taking the square root, we find the standard deviation 

ax = 0.7. 

(4.7) 

(4.8) 

Thus the average uncertainty of the five measurements 71, 72, 72, 73, 71 is approxi­
mately 0.7. 

Unfortunately, the standard deviation has an alternative definition. There are 
theoretical arguments for replacing the factor Nin (4.6) by (N - 1) and defining 
the standard deviation ax of x 1, ... , xN as 

(4.9) 

I will not try here to prove that definition ( 4.9) of ax is better than ( 4.6), except to 
say that the new "improved" definition is obviously a little larger than the old one 
(4.6) and that (4.9) corrects a tendency for (4.6) to understate the uncertainty in the 
measurements x 1, ... , xN, especially if the number of measurements N is small. 
This tendency can be understood by considering the extreme ( and absurd) case that 
N = 1 (that is, we make only one measurement). Here, the average .x is equal to 
our one reading x1, and the one deviation is automatically zero. Therefore, the defi­
nition ( 4.6) gives the absurd result ax = 0. On the other hand, the definition ( 4.9) 
gives 0/0; that is, with definition (4.9), ax is undefined, which correctly reflects our 
total ignorance of the uncertainty after just one measurement. The definition ( 4.6) is 
sometimes called the population standard deviation and ( 4.9) the sample standard 
deviation. 

The difference between the two definitions ( 4.6) and ( 4.9) is almost always 
numerically insignificant. You should always repeat a measurement many times (at 
least five, and preferably many more). Even if you make only five measurements 
(N = 5), the difference between "1/N" = 2.2 and ✓N - 1 = 2 is, for most purposes, 
insignificant. For example, if we recalculate the standard deviation ( 4.8) using the 
improved definition (4.9), we obtain ax = 0.8 instead of ax = 0.7, not a very 
important difference. Nevertheless, you need to be aware of both definitions. In the 
physics laboratory, using the more conservative (that is, larger) definition (4.9) is 
almost always best, but in any case, your laboratory report should state clearly 
which definition you are using so that your readers can check the calculations for 
themselves. 

Quick Check 4.1. You measure the time for a cart to roll down the same 
length of track four times and get the following results: 

21, 24, 25, 22 
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(in seconds). Find the average time and the standard deviation as given by the 
improved definition ( 4. 9). 

To understand the notion of the standard deviation, you must be able to calcu­
late it yourself for simple cases such as that in Quick Check 4.1. Most scientific 
calculators, however, have a built-in function to do the calculation automatically, 
and you will certainly want to use this function for real experiments that involve 
numerous measurements. If you are not sure how to use your calculator to obtain 
standard deviations, take the time to learn, and then use the function to check your 
answer to Quick Check 4.1. Some calculators give you a choice of the definitions 
(4.6) or (4.9); some use just (4.9). Make sure you know what yours does. 

4.3 The Standard Deviation as the Uncertainty 
in a Single Measurement 

Recall the claim that the standard deviation ax characterizes the average uncertainty 
of the measurements x1, ... , xN from which it was calculated. In Chapter 5, I will 
justify this claim by proving the following more precise statement. If you measure 
the same quantity x many times, always using the same method, and if all your 
sources of uncertainty are small and random, then your results will be distributed 
around the true value Xirue in accordance with the so-called normal, or bell-shaped, 
curve. In particular, approximately 68% of your results 3 will fall within a distance 
ax on either side of Xirue; that is, 68% of your measurements will fall in the range 
Xtrue ± ax. 

In other words, if you make a single measurement (using the same method), the 
probability is 68% that your result will be within ax of the correct value. Thus, we 
can adopt ax to mean exactly what we have been calling "uncertainty." If you make 
one measurement of x, the uncertainty associated with this measurement can be 
taken to be 

with this choice, you can be 68% confident that the measurement is within 8x of 
the correct answer. 

To illustrate the application of these ideas, suppose we are given a box of 
similar springs and told to measure their spring constants k. We might measure the 
spring constants by loading each spring and observing the resulting extension or, 
perhaps better, by suspending a mass from each spring and timing its oscillations. 
Whatever method we choose, we need to know k and its uncertainty 8k for each 
spring, but it would be hopelessly time-consuming to repeat our measurements many 
times for each spring. Instead we reason as follows: If we measure k for the first 

3 As we will see, the exact number is 68.27 ... %, but stating this kind of number so precisely is obviously 
absurd. In fact, it is often best to think of this number as "about two thirds." 
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spring several (say, 5 or 10) times, then the mean of these measurements should 
give a good estimate of k for the first spring. More important for now, the standard 
deviation ak of these 5 or 10 measurements provides us with an estimate of the 
uncertainty in our method for measuring k. Provided our springs are all reasonably 
similar and we use the same method to measure each one, we can reasonably expect 
the same uncertainty in each measurement.4 Thus, for each subsequent spring we 
need to make only one measurement, and we can immediately state that the uncer­
tainty 8k is the standard deviation ak measured for the first spring, with a 68% 
confidence that our answer is within ak of the correct value. 

To illustrate these ideas numerically, we can imagine making 10 measurements 
on the first spring and obtaining the following measured values of k (in newtons/ 
meter): 

86, 85, 84, 89, 85, 89, 87, 85, 82, 85. (4.10) 

From these values, we can immediately calculate k = 85.7 Nim and, using the 
definition ( 4.9), 

ak 2.16 Nim 

= 2 N/m. 

(4.11) 

(4.12) 

The uncertainty in any one measurement of k is therefore approximately 2 N/m. If 
we now measure the second spring once and obtain the answer k = 71 N/m, we can 
without further ado take 8k = ak = 2 N/m and state with 68% confidence that k lies 
in the range 

(k for second spring) 71 ± 2 N/m. (4.13) . 

4.4 The Standard Deviation of the Mean 

If x 1, ... , xN are the results of N measurements of the same quantity x, then, as we 
have seen, our best estimate for the quantity x is their mean x. We have also seen 
that the standard deviation ax characterizes the average uncertainty of the separate 
measurements x 1, ... , xN. Our answer xbest = x, however, represents a judicious 
combination of all N measurements, and we have every reason to think it will be 
more reliable than any one of the measurements taken alone. In Chapter 5, I will 
prove that the uncertainty in the final answer xbest = x is given by the standard 
deviation ax divided by '\fN". This quantity is called the standard deviation of the 
mean, or SDOM, and is denoted ax: 

(4.14) 

(Other common names are standard error and standard error of the mean.) Thus, 
based on the N measured values x 1, ... , xN, we can state our final answer for the 

4 If some springs are very different from the first, our uncertainty in measuring them may be different. Thus, 
if the springs differ a lot, we would need to check our uncertainty by making several measurements for each 
of two or three different springs. 
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value of x as 

(value of x) = xbest ± &, 

where xbest = i, the mean of x 1, ... , xN, and & is the standard deviation of the 
mean, 

(4.15) 

As an example, we can consider the 10 measurements reported in ( 4.10) of the 
spring constant k of one spring. As we saw, the mean of these values is k = 85.7 
N/m, and the standard deviation is ak = 2.2 N/m. Therefore, the standard deviation 
of the mean is 

(4.16) 

and our final answer, based on these 10 measurements, would be that the spring has 

k = 85.7 ± 0.7 newtons/meter. (4.17) 

When you give an answer like this, you must state clearly what the numbers are­
namely, the mean and the standard deviation of the mean-so your readers can 
judge their significance for themselves. 

An important feature of the standard deviation of the mean, a:. = a)-,,/N, is 
the factor ~ in the denominator. The standard deviation ax represents the average 
uncertainty in the individual measurements x1, ... , xN. Thus, if we were to make 
some more measurements (using the same technique), the standard deviation ax 
would not change appreciably. On the other hand, the standard deviation of the 
mean, a)-,,/N, would slowly decrease as we increase N. This decrease is just what 
we would expect. If we make more measurements before computing an average, we 
would naturally expect the final result to be more reliable, and this improved relia­
bility is just what the denominator -,,/ii in (4.15) guarantees. This conclusion pro­
vides one obvious way to improve the precision of our measurements. 

Unfortunately, the factor -,,/ii grows rather slowly as we increase N. For exam­
ple, if we wish to improve our precision by a factor of 10 simply by increasing the 
number of measurements N, we will have to increase N by a factor of 100-a 
daunting prospect, to say the least! Furthermore, we are for the moment neglecting 
systematic errors, and these are not reduced by increasing the number of measure­
ments. Thus, in practice, if you want to increase your precision appreciably, you 
will probably do better to improve your technique than to rely merely on increased 
numbers of measurements. 

Quick Check 4.2. A student makes five measurements of e, the magnitude of 
the electron's charge, as follows: 

15; 17, 18, 14, 16, 

all in units of 10- 20 coulombs. Find her best estimate for e (as given by the 
mean) and its uncertainty (as given by the SDOM). 
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4.5 Examples 

In this section, I discuss two examples of simple experiments that make use of the 
ideas of the past three sections. 

Example: Area of a Rectangle 

As a first, simple application of the standard deviation of the mean, imagine that we 
have to measure very accurately the area A of a rectangular plate approximately 2.5 
cm X 5 cm. We first find the best available measuring device, which might be a 
vernier caliper, and then make several measurements of the length l and breadth b 
of the plate. To allow for irregularities in the sides, we make our measurements at 
several different positions, and to allow for small defects in the instrument, we use 
several different calipers (if available). We might make 10 measurements each of l 
and b and obtain the results shown in Table 4.3. 

Table 4.3. Length and breadth (in mm). 

b 

Measured values 

24.25, 24.26, 24.22, 24.28, 24.24 
24.25, 24.22, 24.26, 24.23, 24.24 

50.36, 50.35, 50.41, 50.37, 50.36 
50.32, 50.39, 50.38, 50.36, 50.38 

Mean SD SDOM 

l = 24.245 a't = 0.019 ay = 0.006 

b 50.368 ab 0.024 0.008 

Using the 10 observed values of /, you can quickly calculate the mean 7, the 
standard deviation CTz, and the standard deviation of the mean CTz, as shown in the 
columns labeled mean, SD, and SDOM. In the same way you can calculate b, CTb, 

and CTlj. Before doing any further calculations, you should examine these results to 
see if they seem reasonable. For example, the two standard deviations CTz and CTb are 
supposed to be the average uncertainty in the measurements of l and b. Because l 
and b were measured in exactly the same way, CTz and CTb should not differ signifi­
cantly from each other or from what we judge to be a reasonable uncertainty for 
the measurements. 

Having convinced yourself that the results so far are reasonable, you can 
quickly finish the calculations. The best estimate for the length is the mean 7 and 
the uncertainty is the SDOM CT1 ; so the final value for l is 

l = 24.245 ± 0.006 mm (or 0.025%); 

the number in parenthesis is the percentage uncertainty. Similarly, the value for b is 

b = 50.368 ± 0.008 mm (or 0.016%). 

Finally, the best estimate for the area A = lb is the product of these values, with a 
fractional uncertainty given by the quadratic sum of those in l and b ( assuming the 
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errors are independent): 

A (24.245 mm± 0.025%) X (50.368 mm± 0.016%) 

1221.17 mm2 ± 0.03% 

1221.2 ± 0.4 mm2. (4.18) 

To arrive at the answer ( 4.18) for A, we calculated the averages 7 and b, each 
with an uncertainty equal to the standard deviation of its mean. We then calculated 
the area A as the product of 7 and b and found the uncertainty by propagation of 
errors. We could have proceeded differently. For instance, we could have multiplied 
the first measured value of l by the first value of b to give a first answer for A. 
Continuing in this way we could have calculated 10 answers for A and then have 
subjected these 10 answers to statistical analysis, calculating A, CTA, and finally CTX­
If, however, the errors in l and b are independent and random, and if we make 
enough measurements, this alternative procedure will produce the same result as the 
first one.5 

Example: Another Spring 

As a second example, consider a case in which a statistical analysis cannot be 
applied to the direct measurements but can to the final answers. Suppose we wish 
to measure the spring constant k of a spring by timing the oscillations of a mass m 
fixed to its end. We know from elementary mechanics that the period for such 
oscillations is T = 2n~ Thus, by measuring T and m, we can find k as 

(4.19) 

The simplest way to find k is to take a single, accurately known mass m and make 
several careful measurements of T. For various reasons, however, timing T for sev­
eral different masses m may be more interesting. (For example, in this way, we 
could check that T rx. -y;;, as well as measure k.) We might then get a set ofreadings 
such as those in the first two lines of Table 4.4. 

Table 4.4. Measurement of spring constant k. 

Mass m (kg) 0.513 0.581 0.634 0.691 0.752 0.834 0.901 0.950 
Period T (s) 1.24 1.33 1.36 1.44 1.50 1.59 1.65 1.69 
k = 4rm/T2 13.17 12.97 etc. 

It obviously makes no sense to average the various different masses in the top 
line ( or the times in the second line) because they are not different measurements 
of the same quantity. Nor can we learn anything about the uncertainty in our mea­
surements by comparing the different values of m. On the other hand, we can com-

5 The second procedure has a certain illogic because there is no particular reason to associate the first 
measurement of l with the first measurement of b. Indeed, we might have measured l eight times and b twelve 
times; then we couldn't pair off values. Thus, our first procedure is logically preferable. 
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bine each value of m with its corresponding period T and calculate k, as in the final 
line of Table 4.4. Our answers for k in the bottom line are all measurements of the 
same quantity and so can be subjected to statistical analysis. In particular, our best 
estimate for k is the mean, k = 13.16 N/m, and our uncertainty is the standard 
deviation of the mean, <T7c = 0.06 Nim (see Problem 4.20). Thus, the final answer, 
based on the data of Table 4.4, is 

spring constant k = 13.16 ± 0.06 N/m. (4.20) 

If we had formed reasonable estimates of the uncertainties in our original mea­
surements of m and T, we could also have estimated the uncertainty in k by using 
error propagation, starting from these estimates for 8m and 8T. In this case, it would 
be a good idea to compare the final uncertainties in k obtained by the two methods. 

4.6 Systematic Errors 

In the past few sections, I have been taking for granted that all systematic errors 
were reduced to a negligible level before serious measurements began. Here, I take 
up again the disagreeable possibility of appreciable systematic errors. In the example 
just discussed, we may have been measuring m with a balance that read consistently 
high or low, or our timer may have been running consistently fast or slow. Neither 
of these systematic errors will show up in the comparison of our various answers 
for the spring constant k. As a result, the standard deviation of the mean <T7c can be 
regarded as the random component okran of the uncertainty 8k but is certainly not 
the total uncertainty 8k. Our problem is to decide how to estimate the systematic 
component oksys and then how to combine 8kran and oksys to give the complete 
uncertainty 8k. 

No simple theory tells us what to do about systematic errors. In fact, the only 
theory of systematic errors is that they must be identified and reduced until they are 
much less than the required precision. In a teaching laboratory, however, this goal 
is often not attainable. Students often cannot check a meter against a better one to 
correct it, much less buy a new meter to replace an inadequate one. For this reason, 
some teaching laboratories establish a rule that, in the absence of more specific 
information, meters should be considered to have some definite systematic uncer­
tainty. For example, the decision might be that all stopwatches have up to 0.5% 
systematic uncertainty, all balances up to 1 %, all voltmeters and ammeters up to 
3%, and so on. 

Given rules of this kind, there are various possible ways to proceed. None can 
really be rigorously justified, and we describe just one approach here. (Problems 
4.23 to 4.28 contain more examples.) In the last example in Section 4.5, the spring 
constant k = 4n2m!T2 was found by measuring a series of values of m and the 
corresponding values of T. As we have seen, a statistical analysis of the various 
answers for k gives the random component of 8k as 

okran = <T7c = 0.06 N/m. (4.21) 

Suppose now we have been told that the balance used to measure m and the clock 
used for T have systematic uncertainties up to 1 % and 0.5%, respectively. We can 
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then find the systematic component of 5k by propagation of errors; the only question 
is whether to combine the errors in quadrature or directly. Because the errors in m 
~nd T are surely independent and some cancellation is therefore possible, using the 
quadratic sum is probably reasonable6; this choice gives 

and hence 

oksys 

(~r + (l~y•r 
✓(1 %)2 + (1 %)2 = 1.4% 

kbest X (1.4%) 

(13.16 Nim) X 0.014 = 0.18 Nim. 

(4.22) 

(4.23) 

(4.24) 

Now that we have estimates for both the random and systematic uncertainties 
in k, we must decide how to state our final conclusion for the spring constant k with 
its overall uncertainty. Because the method for combining okran and oksys is not 
completely clear, many scientists leave the two components separate and state a 
final answer in the form 

(measured value of k) kbest ± okran ± oksys (4.25) 
13.16 ± 0.06 ± 0.18 Nim 

(all of which should probably be rounded to one decimal place). Alternatively, a 
case can be made that okran and oksys should be combined in quadrature, in which 
case we could state a single, total uncertainty 

ok ✓( okra0 )2 + ( oksys)2 

✓(0.06)2 + (0.18)2 

and replace the conclusion ( 4.25) by 

0.19 Nim 

(measured value of k) kbest ± ok 

13.16 ± 0.19 Nim 

or, probably better, 13.2 ± 0.2 Nim. 

(4.26) 

The expression ( 4.26) for ok cannot really be rigorously justified. Nor is the 
significance of the answer clear; for example, we probably cannot claim 68% confi­
dence that the true answer lies in the range k ± ok. Nonetheless, the expression 
does at least provide a reasonable estimate of our total uncertainty, given that our 
apparatus has systematic uncertainties we could not eliminate. In particular, there is 
one important respect in which the answer ( 4.26) is realistic and instructive. We saw 
in Section 4.4 that the standard deviation of the mean <J"7c approaches zero as the 
number of measurements N is increased. This result suggested that, if you have the 

6Whether we should use the quadratic or ordinary sum really depends on what is meant by the statement 
that the balance has "up to 1 % systematic uncertainty." If it means the error is certainly no more than 1 % 
(and likewise for the clock), then direct addition is appropriate, and Bksys is then certainly no more than 2%. 
On the other hand, perhaps an analysis of all balances in the laboratory has shown that they follow a normal 
distribution, with 68% of them better than 1 % reliable (and likewise for the clocks). In this case, we can use 
addition in quadrature as in ( 4.22) with the usual significance of 68% confidence. 
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patience to make an enormous number of measurements, you can reduce the uncer­
tainties indefinitely without having to improve your equipment or technique. We can 
now see that this suggestion is incorrect. Increasing N can reduce the random com­
ponent 5/cran = <T7c indefinitely. But any given apparatus has some systematic uncer­
tainty, which is not reduced as we increase N. From ( 4.26) we clearly see that little 
is gained from further reduction of 5/cran, once 5/c,an is smaller than 8ksys· In particu­
lar, the total 8k can never be made less than 5/csys· This fact simply confirms what 
we already guessed, that in practice a large reduction of the uncertainty requires 
improvements in techniques or equipment to reduce both the random and systematic 
errors in each single measurement. 

As discussed in Chapter 2, a peculiar feature of the teaching laboratory is that 
you will probably be asked to measure quantities, such as the acceleration of gravity, 
for which an accurate, accepted value is already known. In this kind of experiment, 
the logic of the error analysis is a bit confusing. Probably the most honest course is 
to ignore the known accepted value until after you have done all calculations of 
your measured value, %est, and its uncertainty. Then, of course, you must ask 
whether the accepted value lies inside ( or at least close to) the range %est ± Sq. If 
it does, you can simply record this agreement in your report. If the accepted value 
lies well outside the range %est ± Sq, however, you have to examine the possible 
causes of the excessive discrepancy. For example, you might measure g, the acceler­
ation of gravity, and get the results ( all in m/s2), 

gbest = 9.97, 

with uncertainties 

8g,an = 0.02 and 8gsys 0.03, 

and hence a total uncertainty, as in ( 4.26), of 

8g = 0.04. 

Clearly, the accepted value of 

g = 9.80 m/s2 

(4.27) 

lies far outside the measured range, 9.97 ± 0.04. (More specifically, the discrepancy 
is 0.17, which is four times the uncertainty.) This result is definitely not satisfactory 
and further analysis is required. 

The first thing to check is the possibility that you made a downright mistake in 
calculating gbest or one of the uncertainties 8gran and 8gsys· If you can convince 
yourself that all your calculations were correct, the next possibility is that the ac­
cepted value is wrong. In the case of g = 9.80 m/s2 this possibility is rather unlikely, 
but it is entirely possible for plenty of other cases. For example, suppose you were 
measuring the density of air; because this is strongly dependent on the temperature 
and pressure, you could easily have looked up the wrong accepted value for this 
parameter. 

Once you have eliminated these suspects, only one possibility is left: You must 
have overlooked some systematic error so that your value of 8gsys is too small. 
Ideally, you should try to find the culprit, but this search can be hard because of the 
many possibilities: 
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(1) Perhaps one of your meters had larger systematic errors than you had al­
lowed for when you calculated ogsys· You can investigate this possibility by de­
termining how large a systematic error in your clock (or voltmeter, or whatever) 
would be needed to account for the offending discrepancy. If the needed error is not 
unreasonably large, you have one possible explanation of your difficulty. 

(2) Another possible cause of systematic error is that you used an incorrect 
value for some parameter needed in your calculations. A celebrated example of this 
was Millikan's famous measurement of the electron's charge, e. Millikan's method 
depended on the viscosity of air, for which he used a value that was 0.4% too small. 
This discrepancy caused all of his values of e to be 0.6% too small, an error that 
was not noticed for nearly 20 years. This kind of mistake sometimes arises in a 
teaching laboratory when a student uses a value that has too few significant figures. 
For example, suppose you do an experiment with protons and you expect to have 
an accuracy better than 1 %. If you take the proton's mass to be 1.7 X 10 - 27 kg 
(instead of the more exact 1.67 X 10 - 27 kg), you will have introduced a 2% sys­
tematic error, which will almost certainly frustrate your hope for 1 % results. 

(3) Much harder to analyze is the possibility of a flaw in the design of the 
experiment. For example, if you had measured g by dropping an object from a great 
height, air resistance could introduce an appreciable systematic error. [Note, how­
ever, that this error would not account for the large value of g in ( 4.27) because air 
resistance would cause an acceleration that was too small.] Similarly, if you try to 
measure the half-life of a radioactive material and your sample is contaminated with 
another material of shorter half-life, you will get an answer that is systematically 
too short. 

Obviously, tracking down the source of systematic errors is difficult and has 
defied the best efforts of many great scientists. In all probability, your instructors 
are not going to penalize you too severely if you fail to do so. Nevertheless, they 
will expect an intelligent discussion of the problem and at least an honest admission 
that there appear to have been systematic errors that you were unable to identify. 

Principal Definitions and Equations of Chapter 4 

Suppose that we make N measurements, x1, x2, ... , xN of the same quantity x, 
all using the same method. Provided all uncertainties are random and small, we 
have the following results: 

THE MEAN 

The best estimate for x, based on these measurements, is their mean: 

l N 

X = - L X;­
Ni=l 

[See (4.5)] 
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THE STANDARD DEVIATION 

The average uncertainty of the individual measurements x 1, x2, ... , xN is given 
by the standard deviation, or SD: 

(TX = ✓N ~ 1 L(X; - .x)2. [See (4.9)] 

This definition of the SD, often called the sample standard deviation, is the most 
appropriate for our purposes. The population standard deviation is obtained by re­
placing the factor (N - 1) in the denominator by N. You will usually want to calcu­
late standard deviations using the built-in function on your calculator; be sure you 
know which definition it uses. 

The detailed significance of the standard deviation <rx is that approximately 68% 
of the measurements of x (using the same method) should lie within a distance <rx 

of the true value. (This claim is justified in Section 5.4.) This result is what allows 
us to identify <rx as the uncertainty in any one measurement of x, 

and, with this choice, we can be 68% confident that any one measurement will fall 
within <rx of the correct answer. 

THE STANDARD DEVIATION OF THE MEAN 

As long as systematic uncertainties are negligible, the uncertainty in our best 
estimate for x (namely .x) is the standard deviation of the mean, or SDOM, 

[See (4.14)] 

If there are appreciable systematic errors, then <r; gives the random component of 
the uncertainty in our best estimate for x: 

If you have some way to estimate the systematic component &sys' a reasonable (but 
not rigorously justified) expression for the total uncertainty is the quadratic sum of 
&ran and &sys: 

[See (4.26)] 

Problems for Chapter 4 

For Section 4.2: The Mean and Standard Deviation 

4.1. * You measure the time for a ball to drop from a second-floor window three 
times and get the results (in tenths of a second): 

11, 13, 12. 
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(a) Find the mean and the standard deviation. For the latter, use both the "im-
proved" definition (4.9) (the sample standard deviation) and the original definition 
(4.6) (the population standard deviation). Note how, even with only three measure-
ments, the difference between the two definitions is not very big. (b) If you don't 
yet know how to calculate the mean and standard deviation using your calculator's 
built-in functions, take a few minutes to learn. Use your calculator to check your 
answers to part (a); in particular, find out which definition of the standard deviation 
your calculator uses. 

4.2. * A student measures g, the acceleration of gravity, five times, with the results 
(all in m/s2): 

9.9, 9.6, 9.5, 9.7, 9.8. 

(a) Find her mean and the standard deviation [as defined by (4.9)]. Do the calcula­
tion yourself using a layout similar to that in Table 4.2. (b) Check your value for 
the SD using the built-in function on your calculator. (If you don't yet know how 
to calculate the mean and standard deviation using your calculator's built-in func­
tions, take a few minutes to learn.) 

4.3. * Find the mean and standard deviation of the 10 measurements reported in 
(4.10). If you haven't done either of the two previous problems, be sure to do this 
calculation yourself, then check it using the built-in functions on your calculator. 

4.4. * The mean of N quantities x1, ... , xN is defined as their sum divided by N; 
that is, x = I.x;IN. The deviation of xi is the difference di = X; - x. Show clearly 
that the mean of the deviations d1, ... , dN is always zero. 

If you are not used to the I. notation, you might want to do this problem 
both without and with the notation. For example, write out the sum I.(xi - x) as 
(x1 - x) + (x2 - x) + . . . + (xN - x) and regroup the terms. 

4.5. ** (a) Computing the standard deviation <rx of N measurements x1, ... , xN 
of a single quantity x requires that you compute the sum I.(x; - x)2. Prove that this 
sum can be rewritten as 

(4.28) 

This problem is a good exercise in using the I. notation. Many calculators use the 
result to compute the standard deviation for the following reason: To use the expres­
sion on the left, a calculator must keep track of all the data (which uses a lot of 
memory) to calculate x and then the sum indicated; to use the expression on the 
right, the machine needs only to keep a running total of I.(x/) and I.(xi), which 
uses much less memory. (b) Verify the identity (4.28) for the three measurements 
of Problem 4.1. 

4.6. ** In Chapter 3, you learned that in a counting experiment, the uncertainty 
associated with a counted number is given by the "square-root rule" as the square 
root of that number. This rule can now be made more precise with the following 
statements (proved in Chapter 11): If we make several counts 
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of the number v of random events that occur in a time T, then: (1) the best estimate 
for the true average number that occur in time Tis the mean v = 2..V;/N of our 
measurements, and (2) the standard deviation of the observed numbers should be 
approximately equal to the square root of this same best estimate; that is, the uncer­
tainty in each measurement is -YY,. In particular, if we make only one count v, the 
best estimate is just v and the uncertainty is the square root -{;;; this result is just 
the square-root rule of Chapter 3 with the additional information that the "uncer­
tainty" is actually the standard deviation and gives the margins within which we can 
be approximately 68% confident the true answer lies. This problem and Problem 4.7 
explore these ideas. 

A nuclear physicist uses a Geiger counter to monitor the number of cosmic-ray 
particles arriving in his laboratory in any two-second interval. He counts this num­
ber 20 times with the following results: 

10, 13, 8, 15, 8, 13, 14, 13, 19, 8, 
13, 13, 7, 8, 6, 8, 11, 12, 8, 7. 

(a) Find the mean and standard deviation of these numbers. (b) The latter should be 
approximately equal to the square root of the former. How well is this expectation 
borne out? 

4.7. *** Read the first paragraph of Problem 4.6 and then do the following prob­
lem: A health physicist is testing a new detector and places it near a weak radioac­
tive sample. In five separate 10-second intervals, the detector counts the following 
numbers of radioactive emissions: 

16, 21, 13, 12, 15. 

(a) Find the mean and standard deviation of these five numbers. (b) Compare the 
standard deviation with its expected value, the square root of the average number. 
(c) Naturally, the two numbers in part (b) do not agree exactly, and we would like 
to have some way to assess their disagreement. This problem is, in fact, one of error 
propagation. We have measured the number v. The expected standard deviation in 
this number is just -{;;, a simple function of v. Thus, the uncertainty in the standard 
deviation can be found by error propagation. Show, in this way, that the uncertainty 
in the SD is 0.5. Do the numbers in part (b) agree within this uncertainty? 

4.8. *** Spreadsheet programs, such as Lotus 123 or Excel, provide an excellent 
way to find the standard deviation of a set of measurements ( and to record and 
process many kinds of data in general). (a) If you have access to one of these 
programs, create a spreadsheet to calculate the SD of any set of 10 measurements 
using the layout of Table 4.2. The first column should list the trial number i, and 
the second column should be where the user will enter the data X;. The mean .x will 
be calculated by a formula that gives 

(sum of data entries)/(number of data entries), 

which you can place to the side of the main table. In the third column, put a formula 
to calculate the deviation, X; - x, and in the fourth, a formula to calculate the devia­
tion squared. Finally, somewhere to the side of the main table, write a formula to 



find the SD as 

SD = 
sum of squared deviations 

N-l 
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(Most spreadsheet programs can calculate standard deviations automatically, but the 
point here is for you to create your own program to do it, not to use the built-in 
functions.) (b) Test your spreadsheet on the data of Equation (4.10). (c) (The hard 
part.) Most simple solutions to part (a) have two irritating drawbacks. First, as you 
enter each of the data, the spreadsheet will calculate answers for the mean and SD, 
but these answers will probably be incorrect ( even for the data entered so far) until 
you have entered all the data. Second, your spreadsheet will probably need some 
modification before you can use it to find the mean and SD of a different number 
of data. If you can, modify your spreadsheet so that it does not suffer these defects 
and can find the mean and SD of any number of data (up to some convenient 
maximum, say 30). (d) Test your new spreadsheet using the data of Problem 4.6, 
and convince yourself that as you enter the data the program gives the correct 
answer at each stage. 

For Section 4.3: The Standard Deviation as the Uncertainty in a Single Measurement 

4.9. * A student measures the period of a pendulum three times and gets the 
answers 1.6, 1.8, and 1.7, all in seconds. What are the mean and standard deviation? 
[Use the improved definition (4.9) of the standard deviation.] If the student decides 
to make a fourth measurement, what is the probability that this new measurement 
will fall outside the range of 1.6 to 1.8 s? (The numbers here were chosen to "come 
out right." In Chapter 5, I will explain how to do this kind of problem even when 
the numbers don't come out right.) 

4.10. * After several measurements of a quantity x, we expect to find that approxi­
mately 68% of the measurements fall within the range of x ± (Tx· (The exact num­
ber is 68.27 ... %, but the difference is usually insignificant.) If you have not 
already done so, check the mean and standard deviation of the 10 measurements in 
(4.10). How many of the measurements should we expect to fall within the range 
of x ± (Tx? How many do? 

4.11. * A student has to measure several unknown charges Q on a capacitor by 
discharging it through a ballistic galvanometer. The discharge kicks the galvanome­
ter's needle, whose resulting maximum swing tells the student the value of Q. Be­
fore making all her measurements, the student wants to know how reliably she can 
read the maximum displacement of the swinging needle. Therefore, she arranges to 
charge the capacitor to exactly the same voltage (and hence the same charge) five 
times and to measure the resulting charge. Her results (in microcoulombs) are: 

1.2, 1.4, 1.6, 1.6, 1.2. 

Based on these results, what would you suggest she take for the uncertainty SQ in 
her subsequent measurements of the charge Q, assuming she wants to be 68% con­
fident that the correct value is within ± SQ of her measurement? 
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4.12. * To calibrate a prism spectrometer, a student sends light of 10 different 
known wavelengths A through the spectrometer and measures the angle 0 by which 
each beam is deflected. Using these results, he makes a calibration curve like Figure 
3.8 showing A as a function of 0. For the first value of A, he measures 0 six times 
and obtains these results (in degrees): 

52.5, 52.3, 52.6, 52.5, 52.7, 52.4. 

For each of the nine remaining values of X., he measures the corresponding value of 
0 just once. What should he take for the uncertainty in each of these nine measure­
ments of 0? 

4.13. ** (a) Calculate the mean and standard deviation for the following 30 mea­
surements of a time t (in seconds): 

8.16, 8.14, 8.12, 8.16, 8.18, 8.10, 8.18, 8.18, 8.18, 8.24, 
8.16, 8.14, 8.17, 8.18, 8.21, 8.12, 8.12, 8.17, 8.06, 8.10, 
8.12, 8.10, 8.14, 8.09, 8.16, 8.16, 8.21, 8.14, 8.16, 8.13. 

(You should certainly use the built-in functions on your calculator ( or the spread­
sheet you created in Problem 4.8 if you did), and you can save some button pushing 
if you drop all the leading 8s and shift the decimal point two places to the right 
before doing any calculation.) (b) We know that after several measurements, we can 
expect about 68% of the observed values to be within cr1 of t (that is, inside the 
range t ± cr1). For the measurements of part (a), about how many would you expect 
to lie outside the range t ± cr1? How many do? (c) In Chapter 5, I will show that 
we can also expect about 95% of the values to be within 2cr1 oft (that is, inside the 
range t ± 2cr1). For the measurements of part (a), about how many would you ex­
pect to lie outside the range t ± 2cr1? How many do? 

4.14. ** (a) If you have not yet done it, do Problem 4.6. (b) About how many of 
the measurements of this problem should you expect to lie outside the range 
v ± er,,? How many do? (c) In Chapter 5, I will show that we can expect about 
95% of the measurements to be within 2cr,, of v (that is, inside the range v ± 2crv)· 
For the measurements of part (a), about how many would you expect to lie outside 
the range v ± 2cr,,? How many do? 

For- Section 4.4: The Standard Deviation of the Mean 

4.15. * Given the three measurements in Problem 4.1, what should you state for 
your best estimate for the time concerned and its uncertainty? (Your answer will 
illustrate how the mean can have more significant figures than the original measure­
ments.) 

4.16. * (a) Based on the five measurements of g reported in Problem 4.2, what 
should be the student's best estimate for g and its uncertainty? (b) How well does 
her result agree with the accepted value of 9.8 m/s2? 

4.17. * (a) Based on the 30 measurements in Problem 4.13, what would be your 
best estimate for the time involved and its uncertainty, assuming all uncertainties 
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are random? (b) Comment on the number of significant digits in your best estimate, 
as compared with the number of significant digits in the data. 

4.18. * After measuring the speed of sound u several times, a student concludes 
that the standard deviation <Tu of her measurements is <Tu = 10 m/s. If all uncer­
tainties were truly random, she could get any desired precision by making enough 
measurements and averaging. (a) How many measurements are needed to give 
a final uncertainty of ±3 m/s? (b) How many for a final uncertainty of only 
±0.5 m/s? 

4.19. *** (a) The data in Problem 4.6 are 20 measurements of the number of 
cosmic-ray particles counted by a Geiger counter in 2 seconds. By averaging these 
numbers, find the best estimate for the number of particles that arrive in 2 seconds 
and the uncertainty in that number (as given by the SDOM). (b) Another way to do 
this problem is as follows: If you add all the data, you will have the number counted 
in 40 seconds (with an uncertainty given by the square root of that number). If you 
now divide this result by 20, you should get the number of particles that arrive in 2 
seconds and its uncertainty. Check that your answers in (b) and (c) agree, at least 
approximately. (Assume that that the 2-second time intervals are measured with 
negligible uncertainty.) (c) Prove that these two methods should, ideally, give the 
same answers. (Your proof should be general; that is, you should work in terms of 
algebraic symbols, not the specific numbers of Problem 4.6. Remember that the SD 
of any counted number should be the square root of that number.) 

For Section 4.5: Examples 

4.20. * Complete the calculations of the spring constant k in Table 4.4. Then 
compute k and its uncertainty (the SDOM, <r·t} 

4.21. * Table 4.3 records 10 measurements each of the length l and breadth b of 
a rectangle. These values were used to calculate the area A = lb. If the measure­
ments were made in pairs (one of land one of b), it would be natural to multiply 
each pair together to give a value of A-the first l times the first b to give a first 
value of A, and so on. Calculate the resulting 10 values of A, the mean A, the SD 
crA, and the SDOM crx. Compare the answers for A and crx with the answer (4.18) 
obtained by calculating the averages T and b and then taking A to be Tb, with an 
uncertainty given by error propagation. (For a large number of measurements, the 
two methods should agree.) 

4.22. ** This problem is an example of an experiment for which the error analy­
sis can be done in either of two ways: by propagating the estimated errors in the 
original measurements or by doing a statistical analysis of the various answers. A 
student wants to measure g, the acceleration of gravity, using a simple pendulum, 
as described briefly in the introduction to this chapter. Because the period is known 
to be T = 2rc-vzig, where l is the length of the pendulum, she can find g as g = 
4rc2l/T2. She measures T for five different values of l and obtains the following 
results: 

Length, l (cm): 57.3 61.1 73.2 
Time, T (s): 1.521 1.567 1.718 

83.7 
1.835 

95.0 
1.952 
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(a) Copy the table of data and add a row in which you list her five computed values 
of g. (b) She estimates she can read the lengths J within about 0.3% (that is, two 
or three millimeters).7 Similarly, she estimates that all of the times are within 
± 0.2%. Use error propagation to find the uncertainty in her values for g. (c) Be­

cause her values of g are five measurements of the same quantity, we can analyze 
them statistically. In particular, their standard deviation should represent the uncer­
tainty in any one of her answers. What is the SD, and how does it compare with 
the uncertainty found by error propagation in part (b )? [You should not expect the 
agreement to be especially good because we don't know the exact nature of her 
original estimated uncertainties (nor, probably, does she). Nevertheless, the two 
methods should agree roughly, and a large disagreement would be a clear signal that 
something had gone wrong.] (d) What is her final answer for g with its uncertainty? 
[Use the statistical analysis of part (c), and remember that the final uncertainty is 
the SDOM. How does her answer compare with the accepted value (in her labora­
tory) of 979.6 cm/s2? 

For Section 4.6: Systematic Errors 

4.23. * A famous example of a systematic error occurred in Millikan's historic 
measurement of the electron's charge e. He worked on this experiment for several 
years and had reduced all random errors to a very low level, certainly less than 
0.1 %. Unfortunately, his answer for e depended on the viscosity of air (denoted TJ), 
and the value of T/ that he used was 0.4% too low. His value for e had the form 
e = KTJ312, where K stands for a complicated expression involving several measured 
parameters but not T/· Therefore, the systematic error in T/ caused a systematic error 
in e. Given that all other errors (random and systematic) were much less than 0.4%, 
what was his error in e? (This example is typical of many systematic errors. Until 
the errors are identified, nothing can be done about them. Once identified, the errors 
can be eliminated, in this case by using the right value of TJ.) 

4.24. ** In some experiments, systematic errors can be caused by the neglect of 
an effect that is not (in the situation concerned) negligible, for example, neglect of 
heat losses from a badly insulated calorimeter or neglect of friction for a poorly 
lubricated cart. Here is another example: A student wants to measure the accelera­
tion of gravity g by timing the fall of a wooden ball (3 or 4 inches across) dropped 
from four different windows in a tall building. He assumes that air resistance is 
negligible and that the distance fallen is given by d = ½gt2. Using a tape measure 
and an electric timer, he measures the distances and times of the four separate drops 
as follows: 

Distance, d (meters): 15.43 17.37 19.62 21.68 
Time, t (seconds): 1.804 1.915 2.043 2.149 

(a) Copy these data and add a third row in which you put the corresponding acceler­
ations, calculated as g = 2d/t2. (b) Based on these results, what is his best estimate 

7 Although the percent uncertainties in the five measurements of l are probably not exactly the same, it is 
appropriate (and time saving) in many experiments to assume they are at least approximately so. In other 
words, instead of doing five separate error propagations, you may often appropriately do just one for a repre­
sentative case and assume that all five cases are reasonably similar. 
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for g, assuming that all errors are random? Show that this answer is inconsistent 
with the accepted value of g = 9.80 m/s2. (c) Having checked his calculations, tape 
measure, and timer, he concludes (correctly) that there must be some systematic 
error causing an acceleration different from 9.80 m/s2, and he suggests that air 
resistance is probably the culprit. Give at least two arguments to support this sugges-
tion. (d) Suggest a couple of ways he could modify the experiment to reduce the 
effect of this systematic error. 

4.25. ** (a) A student measures the speed of sound as u = JX., where f is the 
frequency shown on the dial of an audio oscillator, and A is the wavelength mea­
sured by locating several maxima in a resonant air column. Because there are sev­
eral measurements of>-.., they can be analyzed statistically, and the student concludes 
that A = 11.2 ± 0.5 cm. Only one measurement has been taken off= 3,000 Hz 
(the setting on the oscillator), and the student has no way to judge its reliability. 
The instructor says that the oscillator is "certainly 1 % reliable"; therefore, the stu­
dent allows for a 1 % systematic error in f (but none in >-..). What is the student's 
answer for u with its uncertainty? Is the possible 1 % systematic error from the 
oscillator's calibration important? (b) If the student's measurement had been 
X. = 11.2 ± 0.1 cm and the oscillator calibration had been 3% reliable, what would 
the answer have been? Is the systematic error important in this case? 

4.26. ** A student wants to check the resistance of a resistor by measuring the 
voltage across it (V) and the resulting current through it (I) and then calculating the 
resistance as R = Vil. He measures four different values of V and the corresponding 
currents /, as follows: 

Voltage, V (volts): 
Current, / (amps): 

11.2 13.4 15.1 17.7 
4.67 5.46 6.28 7.22 

(a) Calculate the four corresponding values of R (which will come out in ohms). 
What is his best estimate for R, and what is the random component of its uncertainty 
(5Rran)? (b) The resistor is rated at 2.50 ohms, which does not lie within the range 
Rbest ± 5Rran• so he considers the possibility that the voltmeter and ammeter suffer 
some systematic error. The laboratory technician states that many of the meters in 
the laboratory have up to 2% systematic error. Use error propagation to find the 
possible systematic error in R, and then combine the systematic and random errors 
to give the total uncertainty. (In both calculations, combine the errors in quadrature.) 
What is his final answer and how does it compare with the given value? 

4.27. ** Some experiments require calibration of the equipment before the mea­
surements can be made. Any random errors in the calibration will usually become 
systematic errors in the experiment itself. To illustrate this effect, consider an exper­
iment on the Zeeman effect, in which a magnetic field causes a tiny shift in the 
frequency of light given out by an atom. This shift can be measured using a Fabry­
Perot interferometer, which consists of two parallel reflecting surfaces a distance d 
apart (where d is typically a couple of millimeters). To use the interferometer, one 
must know the distance d; that is, one must calibrate the instrument by measuring 
d. A convenient way to make this measurement is to send light of an accurately 
known wavelength A through the interferometer, which produces a series of interfer-
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Figure 4.3. When light of one wavelength is sent through a Fabry-Perot interferometer, it pro­
duces a pattern of alternating light and dark fringes. If the air is pumped out of the interferome­
ter, the whole pattern shifts sideways, and the number of complete fringes (light-dark-light) that 
pass the reference marks can be counted; for Problem 4.27. 

ence fringes like those depicted in Figure 4.3. If all the air is then pumped out of 
the chamber that houses the interferometer, the interference pattern slowly shifts 
sideways, and the number of fringes that move past the reference marks is 
N = 2(n - l)d!X., where n denotes the refractive index of air. Because n and X. are 
known accurately, d can be found by counting N. Because N is not necessarily an 
integer, the fractions of complete fringes that pass the reference marks must be 
estimated, and this estimation introduces the only serious source of uncertainty. 

(a) In one such experiment, a student measures N five times as follows: 

values of N = 3.0, 3.5, 3.2, 3.0, 3.2. 

What is her best estimate for N and its uncertainty? What is the resulting percent 
uncertainty ind? (b) The uncertainty you just found is purely random. Nevertheless, 
in all subsequent measurements using the interferometer, she will be using the same 
value of d she found in part (a), and any error in that value will cause a systematic 
error in her final answers. What percent value should she use for this systematic 
error ind? 

4.28. *** Systematic errors sometimes arise when the experimenter unwittingly 
measures the wrong quantity. Here is an example: A student tries to measure g using 
a pendulum made of a steel ball suspended by a light string. (See Figure 4.4.) He 

length of 
string length of 

pendulum 

Figure 4.4. A pendulum consists of a metal ball suspended by a string. The effective length of 
the pendulum is the length of the string plus the radius of the ball; for Problem 4.28. 
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records five different lengths of the pendulum / and the corresponding periods T as 
follows: 

Length, / (cm): 51.2 59.7 68.2 79.7 88.3 
Period, T (s): 1.448 1.566 1.669 1.804 1.896. 

(a) For each pair, he calculates g as g = 4n2l!T 2. He then calculates the mean of 
these five values, their SD, and their SDOM. Assuming all his errors are random, 
he takes the SDOM as his final uncertainty and quotes his answer in the standard 
form of mean ± SDOM. What is his answer for g? (b) He now compares his an­
swer with the accepted value g = 979.6 cm/s2 and is horrified to realize that his 
discrepancy is nearly 10 times larger than his uncertainty. Confirm this sad conclu­
sion. (c) Having checked all his calculations, he concludes that he must have over­
looked some systematic error. He is sure there was no problem with the measure­
ment of the period T, so he asks himself the question: How large would a systematic 
error in the length / have to be so that the margins of the total error just included 
the accepted value 979.6 cm/s2? Show that the answer is approximately 1.5%. (d) 
This result would mean that his length measurements suffered a systematic error of 
about a centimeter-a conclusion he first rejects as absurd. As he stares at the 
pendulum, however, he realizes that 1 cm is about the radius of the ball and that 
the lengths he recorded were the lengths of the string. Because the correct length of 
the pendulum is the distance from the pivot to the center of the ball (see Figure 
4.4), his measurements were indeed systematically off by the radius of the ball. He 
therefore uses callipers to find the ball's diameter, which turns out to be 2.00 cm. 
Make the necessary corrections to his data and compute his final answer for g with 
its uncertainty. 





Chapter 5 

The Normal Distribution 

This chapter continues our discussion of the statistical analysis of repeated measure­
ments. Chapter 4 introduced the important ideas of the mean, the standard deviation, 
and the standard deviation of the mean; we saw their significance and some of their 
uses. This chapter supplies the theoretical justification for these statistical ideas and 
gives proofs of several results stated without proof in earlier chapters. 

The first problem in discussing measurements repeated many times is to find a 
way to handle and display the values obtained. One convenient method is to use a 
distribution or histogram, as described in Section 5.1. Section 5.2 introduces the 
notion of the limiting distribution, the distribution of results that would be obtained 
if the number of measurements become infinitely large. In Section 5.3, I define the 
normal distribution, or Gauss distribution, which is the limiting distribution of re­
sults for any measurement subject to many small random errors. 

Once the mathematical properties of the normal distribution are understood, we 
can proceed to prove several important results quite easily. Section 5.4 provides 
proof that, as anticipated in Chapter 4, about 68% of all measurements (all of one 
quantity and all using the same technique) should lie within one standard deviation 
of the true value. Section 5.5 proves the result, used back in Chapter 1, that if we 
make N measurements x 1, x2, ... , xN of some quantity x, then our best estimate xbest 

based on these values is the mean x = 2.,x;IN. Section 5.6 justifies the use of addi­
tion in quadrature when propagating errors that are independent and random. In 
Section 5.7, I prove that the uncertainty of the mean x, when used as the best 
estimate of x, is given by the standard deviation of the mean ax = aJ\{N, as stated 
in Chapter 4. Finally, Section 5.8 discusses how to assign a numerical confidence to 
experimental results. 

The mathematics used in this chapter is more advanced than used thus far. In 
particular, you will need to understand the basic ideas of integration-the integral 
as the area under a graph, changes of variables, and (occasionally) integration by 
parts. However, once you have worked through Section 5.3 on the normal distribu­
tion (going over calculations with a pencil and paper, if necessary) you should be 
able to follow the rest of the chapter without much difficulty. 121 
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5.1 Histograms and Distributions 

It should be clear that the serious statistical analysis of an experiment requires us to 
make many measurements. Thus, we first need to devise methods for recording and 
displaying large numbers of measured values. Suppose, for instance, we were to 
make 10 measurements of some length x. For example, x might be the distance from 
a lens to an image formed by the lens. We might obtain the values (all in cm) 

26, 24, 26, 28, 23, 24, 25, 24, 26, 25. (5.1) 

Written this way, these 10 numbers convey fairly little information, and if we were 
to record many more measurements this way, the result would be a confusing jungle 
of numbers. Obviously, a better system is needed. 

As a first step, we can reorganize the numbers (5.1) in ascending order, 

23, 24, 24, 24, 25, 25, 26, 26, 26, 28. (5.2) 

Next, rather than recording the three readings 24, 24, 24, we can simply record that 
we obtained the value 24 three times; in other words, we can record the different 
values of x obtained, together with the number of times each value was found, as 
in Table 5.1. 

Table 5.1. Measured lengths x and their numbers of occurrences. 

Different values, xk 

Number of times found, nk 

23 
1 

24 
3 

25 
2 

26 
3 

27 
0 

28 
1 

Here, I have introduced the notation xk (k = 1, 2, ... ) to denote the various differ­
ent values found: x1 = 23, x 2 = 24, x3 = 25, and so on. And nk (k = 1, 2, ... ) 
denotes the number of times the corresponding value xk was found: n1 = 1, n 2 = 3, 
and so on. 

If we record measurements as in Table 5.1, we can rewrite the definition of the 
mean .x in what proves to be a more convenient way. From our old definition, we 
know that 

x 
N 

23+24+24+24+25+ ... +28 
10 

This equation is the same as 

x = 

or in general 

23 + (24 X 3) + (25 X 2) + . . . + 28 
10 

x 
N 

(5.3) 

(5.4) 
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In the original form (5.3), we sum over all the measurements made; in (5.4) we 
sum over all different values obtained, multiplying each value by the number of 
times it occurred. These two sums are obviously the same, but the form (5.4) proves 
more useful when we make many measurements. A sum like that in (5.4) is some­
times called a weighted sum; each value xk is weighted by the number of times it 
occurred, nk. For later reference, note that if we add up all the numbers nb we 
obtain the total number of measurements made, N. That is, 

(5.5) 

(For example, for Table 5.1 this equation asserts that the sum of the numbers in the 
bottom line is 10.) 

Quick Check 5.1. In his first two years at college, Joe takes 20 courses (all 
with the same number of credits) and earns 7 As, 4 Bs, 7 Cs, and 2 Fs. For the 
purpose of computing a grade point average (GPA), each letter grade is assigned 
a numerical score in the usual way, as follows: 

Letter grade: D A 
Score, sk: Sz = 1 s5 = 4 

Set up a table like Table 5.1 showing the different possible scores sk and the 
number of times nk they were obtained. Use Equation (5.4) to compute Joe's 
GPA,s. 

The ideas of the past two paragraphs can be rephrased in a way that is often 
more convenient. Instead of saying that the result x = 24 was obtained three times, 
we can say that x = 24 was obtained in 3/10 of all our measurements. In other 
words, instead of using nb the number of times the result xk occurred, we introduce 
the fraction 

(5.6) 

which is the fraction of our N measurements that gave the result xk. The fractions 
Fk are said to specify the distribution of our results because they describe how our 
measurements were distributed among the different possible values. 

In terms of the fractions F b we can rewrite the formula (5.4) for the mean x in 
the compact form 

(5.7) 

That is, the mean x is just the weighted sum of all the different values xk obtained, 
with each xk weighted by the fraction of times it occurred, Fk. 
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The result (5.5) implies that 

(5.8) 

That is, if we add up the fractions Fk for all possible results xk> we must get 1. Any 
set of numbers whose sum is 1 is said to be normalized, and the relation (5.8) is 
therefore called the normalization condition. 

The distribution of our measurements can be displayed graphically in a histo­
gram, as in Figure 5.1. This figure is just a plot of Fk against xk, in which the 
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Figure 5.1. Histogram for 10 measurements of a length x. The vertical axis shows the fraction 
of times Fk that each value xk was observed. 

different measured values xk are plotted along the horizontal axis and the fraction 
of times each xk was obtained is indicated by the height of the vertical bar drawn 
above xk. (Yve can also plot nk against xk> but for our purposes the plot of Fk against 
xk is more convenient.) Data displayed in histograms like this one can be compre­
hended quickly and easily, as many writers for newspapers and magazines are 
aware. 

A histogram like that in Figure 5.1 can be called a bar histogram because the 
distribution of results is indicated by the heights of the vertical bars above the xk. 
This kind of histogram is appropriate whenever the values xk are tidily spaced, with 
integer values. (For example, students' scores on an examination are usually integers 
and are displayed conveniently using a bar histogram.) Most measurements, how­
ever, do not provide tidy integer results because most physical quantities have a 
continuous range of possible values. For example, rather than the 10 lengths re­
ported in Equation (5.1), you are much more likely to obtain 10 values like 

26.4, 23.9, 25.1, 24.6, 22.7, 23.8, 25.1, 23.9, 25.3, 25.4. (5.9) 

A bar histogram of these 10 values would consist of 10 separate bars, all the same 
height, and would convey comparatively little information. Given measurements like 
those in (5.9), the best course is to divide the range of values into a convenient 
number of intervals or "bins," and to count how many values fall into each "bin." 
For example, we could count the number of the measurements (5.9) between x = 22 
and 23, between x = 23 and 24, and so on. The results of counting in this way are 
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shown in Table 5.2. (If a measurement happens to fall exactly on the boundary 
between two bins, you must decide where to place it. A simple and reasonable 
course is to assign half a measurement to each of the two bins.) 

Table 5.2. The 10 measurements (5.9) grouped in bins. 

Bin 
Observations 

in bin 

22 to 23 

1 

23 to 24 

3 

24 to 25 25 to 26 

1 4 

26 to 27 27 to 28 

1 0 

The results in Table 5.2 can be plotted in a form we can call a bin histogram, 
as shown in Figure 5.2. In this plot, the fraction of measurements that fall in each 
bin is indicated by the area of the rectangle drawn above the bin. Thus, the shaded 

0.4 N=lO 

26 27 28 

1-i 

'--Bin size 11k 

Figure 5.2. Bin histogram showing the fraction of the 10 measurements (5.9) of x that fall in 
the "bins" 22 to 23, 23 to 24, and so on. The area of the rectangle above each interval gives the 
fraction of measurements that fall in that interval. Thus, the area of the shaded rectangle is 0.3, 
indicating that 3/10 of all measurements lie between 23 and 24. 

rectangle above the interval from x = 23 to x = 24 has area 0.3 X 1 = 0.3, indi­
cating that 3/10 of all the measurements fell in this interval. In general, we denote 
the width of the kth bin by !l.k. (These widths are usually all the same, though they 
certainly don't have to be.) The height A of the rectangle drawn above this bin is 
chosen so that the area ik!l.k is 

ik!l.k = fraction of measurements in kth bin. 

In other words, in a bin histogram the area ik!l.k of the k th rectangle has the same 
significance as the height Fk of the k th bar in a bar histogram. 

Some care is needed in choosing the width !l.k of the bins for a histogram. If 
the bins are made much too wide, then all the readings (or almost all) will fall in 
one bin, and the histogram will be an uninteresting single rectangle. If the bins are 
made too narrow, then few of them will contain more than one reading, and the 
histogram will consist of numerous narrow rectangles almost all of the same height. 
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Clearly, the bin width must be chosen so several readings fall in each of several 
bins. Thus, when the total number of measurements N is small, we have to choose 
our bins relatively wide, but if we increase N, then we can usually choose narrower 
bins. 

Quick Check 5.2. A class of 20 students takes an exam, which is graded out 
of 50 points, and obtains the following results: 

26, 33, 38, 41, 49, 28, 36, 38, 47, 41, 

32, 37, 48, 44, 27, 32, 34, 44, 37, 30 

(These scores were taken from an alphabetical list of the students.) On a piece 
of square-ruled paper, draw a bin histogram of the scores, using bin boundaries 
at 25, 30, 35, 40, 45, and 50. Label the vertical scale so that the area of each 
rectangle is the fraction of students in the corresponding bin. 

5.2 Limiting Distributions 

In most experiments, as the number of measurements increases, the histogram be­
gins to take on a definite simple shape. This evolving shape is clearly visible in 
Figures 5.3 and 5.4, which show 100 and 1,000 measurements of the same quantity 
as in Figure 5.2. After 100 measurements, the histogram has become a single peak, 
which is approximately symmetrical. After 1,000 measurements, we have been able 
to halve the bin size, and the histogram has become quite smooth and regular. These 
three graphs illustrate an important property of most measurements. As the number 
of measurements approaches infinity, their distribution approaches some definite, 
continuous curve. When this happens, the continuous curve is called the limiting 
distribution. 1 Thus, for the measurements of Figures 5.2 through 5.4, the limiting 
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Figure 5.3. Histogram for 100 measurements of the same quantity as in Figure 5.2. 

1Some common synonyms (or approximate synonyms) for the limiting distribution are: parent distribution, 
infinite parent distribution, universe distribution, and parent population. 
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N=I,000 

Figure 5.4. Histogram for 1,000 measurements of the same quantity as in Figure 
5.3. The broken curve is the limiting distribution. 

distribution appears to be close to the symmetric bell-shaped curve superimposed 
on Figure 5.4. 

Note that the limiting distribution is a theoretical construct that can never itself 
be measured exactly. The more measurements we make, the closer our histogram 
approaches the limiting distribution. But only if we were to make an infinite number 
of measurements and use infinitesimally narrow bins would we actually obtain the 
limiting distribution itself. Nevertheless, there is good reason to believe that every 
measurement does have a limiting distribution to which our histogram approaches 
ever closer as we make more and more measurements. 

A limiting distribution, such as the smooth curve in Figure 5.4, defines a func­
tion, which we call f(x). The significance of this function is shown by Figure 5.5. 
As we make more and more measurements of the quantity x, our histogram will 
eventually be indistinguishable from the limiting curve f(x). Therefore, the fraction 
of measurements that fall in any small interval x to x + dx equals the area f(x) dx 
of the shaded strip in Figure 5.5(a): 

f(x) dx = fraction of measurements that 
fall between x and x + dx. (5.10) 

More generally, the fraction of measurements that fall between any two values a 
and b is the total area under the graph between x = a and x = b (Figure 5.5b). 

~ ------=='------1.Lf'\--\-~x 

x x+dx 

(a) (b) 

Figure 5.5. A limiting distribution f(x). (a) After very many measurements, the fraction that 
falls between x and x + dx is the area f(x)dx of the narrow strip. (b) The fraction that falls be­
tween x = a and x = b is the shaded area. 
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This area is just the definite integral of f(x). Thus, we have the important result that 

J: f(x) dx = fraction of measurements that 
fall between x = a and x = b. (5.11) 

Understanding the meaning of the two statements (5.10) and (5.11) is important. 
Both tell us the fraction of measurements expected to lie in some interval after we 
make a very large number of measurements. Another, very useful, way to say this 
is that f(x) dx is the probability that a single measurement of x will give an answer 
between x and x + dx, 

(5.12) 

Similarly, the integral J: f(x) dx tells us the probability that any one measurement 
will fall between x = a and x = b. We have arrived at the following important con­
clusion: If we knew the limiting distribution f(x) for the measurement- of a given 
quantity x with a given apparatus, then we would know the probability of obtaining 
an answer in any interval a ,;;;; x ,;;;; b. 

Because the total probability of obtaining an answer anywhere between - oo 

and + 00 must be one, the limiting distribution f(x) must satisfy 

(5.13) 

This identity is the natural analog of the normalization sum (5.8), 'i,kFk = 1, and a 
function f(x) satisfying (5.13) is said to be normalized. 

The limits ± 00 in the integral (5.13) may seem puzzling. They do not mean 
that we really expect to obtain answers ranging all the way from - oo to oo. Quite 
the contrary. In a real experiment, the measurements all fall in some fairly small 
finite interval. For example, the measurements of Figure 5.4 all lie between x = 21 
and x = 29. Even after infinitely many measurements, the fraction lying outside 
x = 21 to x = 29 would be entirely negligible. In other words, f(x) is essentially 
zero outside this range, and it makes no difference whether the integral (5.13) runs 
from - oo to + oo or 21 to 29. Because we generally don't know what these finite 
limits are, for convenience we leave them as ± oo. 

If the measurement under consideration is very precise, all the values obtained 
will be close to the actual value of x, so the histogram of results, and hence the 
limiting distribution, will be narrowly peaked like the solid curve in Figure 5.6. If 
the measurement is of low precision, then the values found will be widely spread 
and the distribution will be broad and low like the dashed curve in Figure 5.6. 

The limiting distribution f(x) for measurement of a given quantity x using a 
given apparatus describes how results would be distributed after many, many mea­
surements. Thus, if we knew f(x), we could calculate the mean value .x that would 
be found after many measurements. We saw in (5.7) that the mean of any number 
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f(x) 

high precision 

' ', low precision , .... 
~--~---~--~---'--~-- X 

Figure 5.6. Two limiting distributions, one for a high-precision measurement, the other for a 
low-precision measurement. 

of measurements is the sum of all different values xk, each weighted by the fraction 
of times it is obtained: 

(5.14) 

In the present case, we have an enormous number of measurements with distribution 
f(x). If we divide the whole range of values into small intervals xk to xk + dxk, the 
fraction of values in each interval is Fk = f(xk) dxk and in the limit that all intervals 
go to zero, (5.14) becomes 

(5.15) 

Remember that this formula gives the mean x expected after infinitely many trials. 
Similarly, we can calculate the standard deviation <rx obtained after many mea­

surements. Because we are concerned with the limit N ➔ oo, it makes no difference 
which definition of <rx we use, the original (4.6) or the "improved" (4.9) with N 

replaced by N - 1. In either case, when N ➔ oo, <r/ is the average of the squared 
deviation (x - x)2. Thus, exactly the argument leading to (5.15) gives, after many 
trials, 

(5.16) 

(see Problem 5.10). 

5.3 The Normal Distribution 

Different types of measurements have different limiting distributions. Not all lim­
iting distributions have the symmetric bell shape illustrated in Section 5.2. (For 
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f(x) 

'~A~i., 
true value 

of X 

Figure 5.7. The limiting distribution for a measurement subject to many small random errors. 
The distribution is bell-shaped and centered on the true value of the measured quantity x. 

example, the binomial and Poisson distributions discussed in Chapters 10 and 11 
are usually not symmetric.) Nevertheless, many measurements are found to have a 
symmetric bell-shaped curve for their limiting distribution. In fact, I will prove in 
Chapter 10 that if a measurement is subject to many small sources of random error 
and negligible systematic error, the measured values will be distributed in accor­
dance with a bell-shaped curve and this curve will be centered on the true value of 
x, as in Figure 5.7. In the remainder of this chapter, I will confine my attention to 
measurements with this property. 

If our measurements have appreciable systematic errors, we would not expect 
the limiting distribution to be centered on the true value. Random errors are equally 
likely to push our readings above or below the true value. If all errors are random, 
after many measurements the number of observations above the true value will be 
the same as that below it, and our distribution of results will therefore be centered 
on the true value. But a systematic error (such as that caused by a tape measure that 
is stretched or a clock that runs slow) pushes all values in one direction and so 
pushes the distribution of observed values off center from the true value. In this 
chapter, I will assume that the distribution is centered on the true value. This is 
equivalent to assuming that all systematic errors have been reduced to a negligible 
level. 

I now turn briefly to a question we have avoided discussing so far: What is the 
"true value" of a physical quantity? This question is a hard one that has no satisfac­
tory, simple answer. Because no measurement can exactly determine the true value 
of any continuous variable (a length, a time, etc.), whether the true value of such a 
quantity exists is not even clear. Nevertheless, I will make the convenient assump­
tion that every physical quantity does have a true value. 

We can think of the true value of a quantity as that value to which one ap­
proaches closer and closer as increasing numbers of measurements are made with 
increasing care. As such, the true value is an idealization similar to the mathemati­
cian's point with no size or line with no width; like the point or line, it is a useful 
idealization. I will often denote the true values of measured quantities x, y, ... , by 
their corresponding capital letters X, Y, . . . . If the measurements of x are subject to 
many small random errors but negligible systematic errors, their distribution will be 
a symmetric bell-shaped curve centered on the true value X. 



Section 5.3 The Normal Distribution 13 I 

/t¥1Mgo 

-'""=---------t-------""'----+• X 

~fill 

---~'""-----+---_,__ ___ ._, X 

0 0 

Figure 5.8. The Gauss function (5.17) is bell-shaped and centered on x = 0. The bell curve is 
wide if CT is large and narrow if CT is small. Although for now we will view CT as just a parameter 
that characterizes the bell curve's width, CT can be shown (as in Problem 5.13) to be the distance 
from the center of the curve to the point where the curvature changes sign. This distance is 
shown in the two graphs. 

The mathematical function that describes the bell-shaped curve is called the 
normal distribution, or Gauss function. 2 The prototype of this function is 

-x2/2a2 
e ' (5.17) 

where a is a fixed parameter I will call the width parameter. It is important that you 
become familiar with the properties of this function. 

When x = 0, the Gauss function (5.17) is equal to one. The function is symmet­
ric about x = 0, because it has the same value for x and - x. As x moves away from 
zero in either direction, x2/2a2 increases, quickly if a is small, more slowly if a is 
large. Therefore, as x moves away from the origin, the function (5.17) decreases 
toward zero. Thus, the general appearance of the Gauss function (5.17) is as shown 
in Figure 5.8. The graphs illustrate the name "width parameter" for a because the 
bell shape is wide if a is large and narrow if a is small. 

The Gauss function ( 5 .17) is a bell-shaped curve centered on x = 0. To obtain 
a bell-shaped curve centered on some other point x = X, we merely replace x in 
(5.17) by x - X. Thus, the function 

(5.18) 

has its maximum at x = X and falls off symmetrically on either side of x = X, as in 
Figure 5.9. 

Figure 5.9. The Gauss function (5.18) is bell-shaped and centered on x X. 

2Other common names for the Gauss function are the Gaussian function (or just "Gaussian"), the normal 
density function, and the normal error function. The last of these names is rather unfortunate because the 
name "error function" is often used for the integral of the Gauss function (as discussed in Section 5.4). 



132 Chapter 5: The Normal Distribution 

The function (5.18) is not quite in its final form to describe a limiting distribu­
tion because any distribution must be normalized; that is, it must satisfy 

(5.19) 

To arrange this normalization, we set 

f(x) = Ne-(x-X)2/2u2_ (5.20) 

(Multiplication by the factor N does not change the shape, nor does it shift the 
maximum at x = X.) We must then choose the "normalization factor" N so that f(x) 
is normalized as in (5.19). This involves some elementary manipulation of integrals, 
which I give in some detail: 

(5.21) 

In evaluating this kind of integral, changing variables to simplify the integral is 
always a good idea. Thus, we can set x - X = y (in which case dx = dy) and get 

= NJ:= e-yz;zd2 dy. (5.22) 

Next, we can set y/a- = z (in which case dy = a-dz) and get 

(5.23) 

The remaining integral is one of the standard integrals of mathematical physics. It 
can be evaluated by elementary methods, but the details are not especially illuminat­
ing, so I will simply quote the result; 3 

(5.24) 

Returning to (5.21) and (5.23), we find that 

J:= f(x) dx = Na--y2n. 

Because this integral must equal 1, we must choose the normalization factor N to 
be 

N = l 
a--y2n· 

With this choice for the normalization factor, we arrive at the final form for the 
Gauss, or normal, distribution function, which we denote by Gx,Jx): 

3 For a derivation, see, for example, H. D. Young, Statistical Treatment of Experimental Data (McGraw­
Hill, 1962), Appendix D. 
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(5.25) 

Notice that I have added subscripts X and <T to indicate the center and width of the 
distribution. The function Gx,J..x) describes the limiting distribution of results in a 
measurement of a quantity x whose true value is X, if the measurement is subject 
only to random errors. Measurements whose limiting distribution is given by the 
Gauss function (5.25) are said to be normally distributed. 

The significance of the width parameter <T will be explored shortly. We have 
already seen that a small value of <T gives a sharply peaked distribution, which 
corresponds to a precise measurement, whereas a large value of <T gives a broad 
distribution, which corresponds to a low-precision measurement. Figure 5.10 shows 
two examples of Gauss distributions with different centers X and widths <T. Note 

f 

1.5 

1.0 

0.5 

0 2 3 4 5 6 7 

Figure S. IO. Two normal, or Gauss, distributions. 

how the factor <Tin the denominator of (5.25) guarantees that a narrower distribution 
( <T smaller) is automatically higher at its center, as it must be so that the total area 
under the curve equals 1. 

Quick Check 5.3. On square-ruled paper, sketch the Gauss function Gx J..x) 
for X = 10 and <T = l. Use your calculator to find the values at x = 10, 10.5, 
11, 11.5, 12, and 12.5. You don't need to calculate the values for x < 10 because 
you know the function is symmetric about x = 10. 

We saw in Section 5.2 that knowledge of the limiting distribution for a measure­
ment lets us compute the average value x expected after numerous trials. According 
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to (5.15), this expected average for the Gauss distribution f(x) = Gx,Jx) is 

x = J:= x Gx,Jx) dx. (5.26) 

Before we evaluate this integral, we should note that the answer almost obviously 
will be X, because the symmetry of the Gauss function about X implies that the 
same number of results will fall any distance above X as will fall an equal distance 
below X. Thus, the average should be X. 

We can calculate the integral (5.26) for the Gauss distribution as follows: 

x = J:= x Gx,Jx) dx 

_l_ f = X e-(x-X)2!2u2 dx. 

(T~ -= 
(5.27) 

If we make the change of variables y = x - X, then dx = dy and x = y + X. Thus, 
the integral (5.27) becomes two terms, 

x = _l_ ( f = y e-y2;2a2 dy + X f = e-y2;2a2 dy). 
(T~ -= -= 

(5.28) 

The first integral here is exactly zero because the contribution from any point y is 
exactly canceled by that from the point - y. The second integral is the normalization 
integral encountered in (5.22) and has the value <r-{'in. This integral cancels with 
the <r-{'in in the denominator and leaves the expected answer that 

x = X, (5.29) 

after many trials. In other words, if the measurements are distributed according to 
the Gauss distribution Gx Jx), then, after numerous trials, the mean value .x is the 
true value X, on which the Gauss function is centered. 

The result (5.29) would be exactly true only if we could make infinitely many 
measurements. Its practical usefulness is that if we make a large (but finite) number 
of trials, our average will be close to X. 

Another interesting quantity to compute is the standard deviation <rx after a 
large number of trials. According to (5.16), this quantity is given by 

<r/ = J:= (x - x)2Gx,u(x) dx. (5.30) 

This integral is evaluated easily. We replace x by X, make the substitutions 
x - X = y and y/<r = z, and finally integrate by parts to obtain the result (see Prob­
lem 5.16) 

(5.31) 

after many trials. In other words, the width parameter <T of the Gauss function 
Gx,Jx) is just the standard deviation we would obtain after making many measure­
ments. This is, of course, why the letter <T is used for the width parameter and 
explains why <T is often called the standard deviation of the Gauss distribution 
GxJx). Strictly speaking, however, <Tis the standard deviation expected only after 
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infinitely many trials. If we make some finite number of measurements (10 or 20, 
say) of x, the observed standard deviation should be some approximation to CT, but 
we have no reason to think it will be exactly CT. Section 5.5 addresses what more 
can be said about the mean and standard deviation after a finite number of trials. 

5.4 The Standard Deviation as 68% Confidence Limit 

The limiting distribution f(x) for measurement of some quantity x tells us the proba­
bility of obtaining any given value of x. Specifically, the integral 

f f(x)dx 

is the probability that any one measurement gives an answer in the range a ~ x ~ b. 
If the limiting distribution is the Gauss function Gxa-Cx), this integral can be evalu­
ated. In particular, we can now calculate the probability ( discussed in Chapter 4) 
that a measurement will fall within one standard deviation CT of the true value X. 
This probability is 

Prob(within CT) = J:_+: Gx,u(x)dx (5.32) 

= -- e-(x-X)2/2d2 dx. 1 lx+a 

CT~ X-a 
(5.33) 

This integral is illustrated in Figure 5.11. It can be simplified in the now familiar 

X-u X X+u 

Figure 5.11. The shaded area between X ± u is the probability of a measurement within one 
standard deviation of X. 

way by substituting (x - X)/CT = z. With this substitution, dx = CTdz, and the limits 
of integration become z = ± 1. Therefore, 

Prob(within CT) = _ ~ f 1 
e-z2/2 dz. 

"\f27t -1 
(5.34) 

Before discussing the integral (5.34), let me remark that we could equally have 
found the probability for an answer within 2CT of X or within l.5CT of X. More 
generally, we could calculate Prob(within tCT), which means "the probability for an 
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X-ta X X+ta 

Figure 5.12. The shaded area between X ± ta is the probability of a measurement within t 
standard deviations of X. 

answer within ta of X," where t is any positive number. This probability is given 
by the area in Figure 5.12, and a calculation identical to that leading to (5.34) gives 
(as in Problem 5.22) 

Prob(within ta) = -~ ft e-z212 dz. 
\J21t -t 

(5.35) 

The integral (5.35) is a standard integral of mathematical physics, and it is often 
called the error function, denoted erf(t), or the normal error integral. It cannot be 
evaluated analytically but is easily calculated on a computer (or even many calcula­
tors). Figure 5.13 shows this integral plotted as a function oft and tabulates a few 
values. A more complete tabulation can be found in Appendix A (see also Appendix 
B, which shows a different, but closely related, integral). 

We first note from Figure 5.13 that the probability that a measurement will fall 
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0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5 3.0 3.5 4.0 

Prob(%) 0 20 38 55 68 79 87 92 95.4 98.8 99.7 99.95 99.99 

Figure 5.13. The probability Prob(within ta) that a measurement of x will fall within t stan­
dard deviations of the true value x = X. Two common names for this function are the normal er­
ror integral and the error function, erf(t). 
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within one standard deviation of the true answer is 68%, as anticipated in Chapter 
4. If we quote the standard deviation as our uncertainty in such a measurement (that 
is, write x = xbest ± Sx, and take & = a), then we can be 68% confident that we 
are within a of the correct answer. 

We can also see in Figure 5.13 that the probability Prob(within ta) rapidly 
approaches 100% as t increases. The probability that a measurement will fall inside 
2a is 95.4%; that for 3a is 99.7%. To put these results another way, the probability 
that a measurement will fall outside one standard deviation is appreciable (32% ), 
that it will lie outside 2a is much smaller ( 4.6% ), and that it will lie outside 3a is 
extremely small (0.3% ). 

Of course, nothing is sacred about the number 68%; it just happens to be the 
confidence associated with the standard deviation a. One alternative to the standard 
deviation is called the probable error, or PE, and is defined as that distance for 
which there is a 50% probability of a measurement between X ± PE. Figure 5.13 
shows that (for a measurement that is normally distributed) the probable error is 

PE = 0.67a. 

Some experimenters like to quote the PE as the uncertainty in their measurements. 
Nonetheless, the standard deviation a is the most popular choice because its proper­
ties are so simple. 

Quick Check 5.4. The measurements of a certain distance x are distributed 
normally with X = 10 and a = 2. What is the probability that a single measure­
ment will lie between x = 7 and x = 13? What is the probability that it will lie 
outside the range from x = 7 to 13? 

5.5 Justification of the Mean as Best Estimate 

The past three sections have discussed the limiting distribution f(x), the distribution 
obtained from an infinite number of measurements of a quantity x. If f(x) were 
known, we could calculate the mean x and standard deviation a obtained after infi­
nitely many measurements, and (at least for the normal distribution) we would also 
know the true value X. Unfortunately, we never do know the limiting distribution. 
In practice, we have a finite number of measured values (5, 10, or perhaps 50), 

and our problem is to arrive at best estimates of X and a based on these N measured 
values. 

If the measurements follow a normal distribution Gx,aCx) and if we knew the 
parameters X and a, we could calculate the probability of obtaining the values 
x1, ... , xN that were actually obtained. Thus, the probability of getting a reading 
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near Xi, in a small interval dx1, is 

_1_ -(x1-X)2/2u2 dx 
a--.{in e i· 

In practice, we are not interested in the size of the interval dx1 ( or the factor {'ire), 
so we abbreviate this equation to 

Prob(x1) ex: .!. e-(x1 -X)2/zu2. 
(T 

(5.36) 

I will refer to (5.36) as the probability of getting the value x1, although strictly 
speaking it is the probability of getting a value in an interval near x1 as in the 
preceding equation. 

The probability of obtaining the second reading x2 is 

(5.37) 

and we can similarly write down all the probabilities ending with 

(5.38) 

Equations (5.36) through (5.38) give the probabilities of obtaining each of the 
readings x1, ... , xN, calculated in terms of the assumed limiting distribution Gx Jx). 
The probability that we observe the whole set of N readings is just the product of 
these separate probabilities,4 

or 

P b ( ) 1 -L(x· - X)2/2u2 
ro X,u X1, ••• ' XN ex: ~ e I • (5.39) 

Understanding the significance of the various quantities in (5.39) is most important. 
The numbers x1, ... , xN are the actual results of N measurements; thus x1, ... , xN 

are known, fixed numbers. The quantity Probx,Jx1, ... , xN) is the probability for ob­
taining the N results x1, ... , xN, calculated in terms of X and a, the true value of x 
and the width parameter of its distribution. The numbers X and a are not known; we 
want to find best estimates for X and a based on the given observations x1, ... , xN. 
I have added subscripts X and a to the probability (5.39) to emphasize that it de­
pends on the (unknown) values of X and a. 

Because the actual values of X and a are unknown, we might imagine guessing 
values X' and a' and then using those guessed values to compute the probability 
Probx, u' (x1, ... , xN)- If we next guessed two new values, X" and a" and found 
that the corresponding probability ProbX",u"(x1, . .. , xN) was larger, we would natu-

4 We are using the well-known result that the probability for several independent events is the product of 
their separate probabilities. For example, the probability of throwing a "heads" with a coin is 1/2 and that 
of throwing a "six" with a die is 1/6. Therefore, the probability of throwing a "heads" and a "six" is 
(1/2) X (1/6) = 1/12. 
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rally regard the new values X" and a" as better estimates for X and a. Contin-
uing in this way, we could imagine hunting for the values of X and a that make 
Probx,u(x1, ... , xN) as large as possible, and these values would be regarded as the 
best estimates for X and a. 

This plausible procedure for finding the best estimates for X and a is called by 
statisticians the principle of maximum likelihood. It can be stated briefly as follows: 

Given the N observed measurements Xi, ... , xN, the best estimates for X and a 
are those values for which the observed x1, ... , xN are most likely. That is, the best 
estimates for X and a are those values for which Probx u(x1, ... , xN) is maximum, 
given that here 

(5.40) 

Using this principle, we can easily find the best estimate for the true value X. 
Obviously (5.40) is maximum if the sum in the exponent is minimum. Thus, the best 
estimate for X is that value of X for which 

N 

L (x;-X)2Ja2 (5.41) 
i=l 

is minimum. To locate this minimum, we differentiate with respect to X and set the 
derivative equal to zero, giving 

N 

L (x; - X) 0 
i=l 

or 

(5.42) 

That is, the best estimate for the true value X is the mean of our N measurements, 
x = 'I.xJN, a result we have been assuming without proof since Chapter 1. 

Finding the best estimate for a, the width of the limiting distribution, is a little 
harder, because the probability (5.40) is a more complicated function of a. We must 
differentiate (5.40) with respect to a and set the derivative equal to zero. (I leave 
the details to you; see Problem 5.26.) This procedure gives the value of a that 
maximizes (5.40) and that is therefore the best estimate for a, as 

(best estimate for a) = ✓~ ;~i (x; - X)2• (5.43) 

The true value Xis unknown. Thus, in practice, we have to replace X in (5.43) by 
our best estimate for X, namely the mean x. This replacement yields the estimate 

a = /1_ f (x; - x)2. 
\jN i=l 

(5.44) 
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In other words, our estimate for the width a of the limiting distribution is the 
standard deviation of the N observed values, x1, ... , xN, as originally defined in 
(4.6). 

You may have been surprised that the estimate (5.44) is the same as our original 
definition ( 4.6), using N, of the standard deviation, instead of our "improved" defi­
nition, using N - 1. In fact, in passing from the best estimate (5.43) to the expres­
sion (5.44), we have glossed over a rather elegant subtlety. The best estimate (5.43) 
involves the true value X, whereas in (5.44) we have replaced X by x (our best 
estimate for X). Now, these numbers are generally not the same, and you can easily 
see that the number (5.44) is always less than, or at most equal to, (5.43).5 Thus, in 
passing from (5.43) to (5.44), we have consistently underestimated the width a. 
Appendix E shows that this underestimation is corrected by replacing the denomina­
tor Nin (5.44) by N - 1. That is, the best estimate for the width a is precisely the 
"improved," or "sample," standard deviation of the measured values x1, x2, . .. , xN, 
with (N - 1) in its denominator, 

(5.45) 

Now is a good time to review the rather complicated story that has unfolded so 
far. First, if the measurements of x are subject only to random errors, their limiting 
distribution is the Gauss function Gx,J..x) centered on the true value X and with 
width a. The width a is the 68% confidence limit, in that there is a 68% probability 
that any measurement will fall within a distance a of the true value X. In practice, 
neither X nor a is known. Instead, we know our N measured values x1, ... , xN, 
where N is as large as our time and patience allowed us to make it. Based on these 
N measured values, our best estimate of the true value X has been shown to be the 
mean x = 'ix;IN, and our best estimate of the width a is the standard deviation 
ax of x1, ... , xN as defined in (5.45). 

Two further questions now arise. First, what is the uncertainty in x as an esti­
mate of the true value of X? This question is discussed in Section 5.7, where the 
uncertainty in x is shown to be the standard deviation of the mean, or SDOM, as 
defined in Chapter 4. Second, what is the uncertainty in ax as an estimate of the 
true width a? The formula for this "uncertainty in the uncertainty" or "standard 
deviation of the standard deviation" is derived in Appendix E; the result proved 
there is that the fractional uncertainty in ax is 

(fractional uncertainty in ax) = 1 
(5.46) 

5 If we regard (5.43) as a function of X, we have just seen that this function is minimum at X = x. Thus 
(5.44) is always less than or equal to (5.43). 
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This result makes clear the need for numerous measurements before the uncertainty 
can be known reliably. For example, with just three measurements of a quantity 
(N = 3), the result (5.46) implies that the standard deviation is 50% uncertain! 

Quick Check 5.5. To test the reliability of a ballistic galvanometer, a student 
discharges a capacitor ( charged to a fixed voltage) through the galvanometer 
three times and measures the resulting charge q in microcoulombs. From his 
three measurements, he calculates the standard deviation to be <Tq = 6 JLC. Use 
(5.46) to find the uncertainty 8<Tq in this parameter. The true value of the stan­
dard deviation could easily be as small as <Tq - 8<Tq or as large as <Tq + 8<Tq. 

What are these two values for this experiment? Note well how unreliable <Tq is 
after only three measurements. 

The results of the past two sections depend on the assumption that our measure­
ments are normally distributed.6 Although this assumption is reasonable, it is diffi­
cult to verify in practice and is sometimes not exactly true. This being the case, I 
should emphasize that, even when the distribution of measurements is not normal, 
it is almost always approximately normal, and you can safely use the ideas of this 
chapter, at least as good approximations. 

5.6 Justification of Addition in Quadrature 

Let us now return to the topic of Chapter 3, the propagation of errors. I stated there, 
without formal proof, that when errors are random and independent, they can be 
combined in quadrature according to certain standard rules, either the "simple rules" 
in (3.16) and (3.18), or the general rule in (3.47), which includes the "simple" rules 
as special cases. This use of addition in quadrature can now be justified. 

The problem of error propagation arises when we measure one or more quanti­
ties x, ... , z, all with uncertainties, and then use our measured values to calculate 
some quantity q(x, ... , z). The main question is, of course, to decide on the uncer­
tainty in our answer for q. If the quantities x, ... , z are subject only to random 
errors, they will be normally distributed with width parameters 7 <Tx, ... , <Tz, which 
we take to be the uncertainties associated with any single measurement of the cor­
responding quantities. The question to be decided now is this: Knowing the distribu­
tions of measurements of x, ... , z, what can we say about the distribution of values 
for q? In particular, what will be the width of the distribution of values of q? This 
question is answered in four steps, numbered I to IV. 

6 And that systematic errors have been reduced to a negligible level. 
7When discussing several different measured quantities x, ... , z, I use subscripts x, ... , z to distinguish 

the width parameters of their limiting distributions. Thus ux denotes the width of the Gauss distribution 
Gx.rr/x) for the measurements of x, and so on. 
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I. MEASURED QUANTITY PLUS FIXED NUMBER 

First, consider two simple, special cases. Suppose we measure a quantity x and 
proceed to calculate the quantity 

q = X + A, (5.47) 

where A is a fixed number with no uncertainty (such as A = 1 or n). Suppose also 
that the measurements of x are normally distributed about the true value X, with 

(a) 

(b) 

/':Ciliu, 

'----=----__,_ __ __:,,,__ _______ ., x (measured) 
X 

/width ax 

_/'(____ , q~x+A(c,lcufat<d) 
q=X+A 

Figure 5.14. If the measured values of x are normally distributed with center x = X and width 
ax, the calculated values of q = x + A (with A fixed and known) will be normally distributed 
with center q = X + A and the same width ax-

width <Tx, as in Figure 5.14(a). Then the probability of obtaining any value x (in a 
small interval dx) is Gx,ax(x) dx or 

(probability of obtaining value x) oc e-(x-X)2!Zax2_ 

Our problem is to deduce the probability of obtaining any value q of the quantity 
defined by (5.47). Now, from (5.47) we see that x = q - A and hence that 

(probability of obtaining value q) = (probability of obtaining x = q - A). 

The second probability is given by (5.48), and so 

(probability of obtaining value q) oc e-[(q-A)-X]2!2ax2 

(5.49) 

The result (5.49) shows that the calculated values of q are normally distributed 
and centered on the value X + A, with width <Tx, as shown in Figure 5.14(b). In 
particular, the uncertainty in q is the same (namely, <rx} as that in x, just as the rule 
(3.16) would have predicted. 
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II. MEASURED QUANTITY TIMES FIXED NUMBER 

As a second simple example, suppose that we measure x and calculate the 
quantity 

q = Bx, 

where Bis a fixed number (such as B = 2 or B = n). If the measurements of x are 
normally distributed, then, arguing exactly as before, we conclude that 8 

(probability of obtaining value q) QC (probability of obtaining x = q/B) 

QC exp[-(! - x)212a/] 

(5.50) 

In other words, the values of q = Bx will be normally distributed, with center at 
q = BX and width Bax, as shown in Figure 5.15. In particular, the uncertainty in 
q = Bx is B times that in x, just as our rule (3.18) would have predicted. 

~--L'(~-/~wid-thu.-x -• x 

X 

/width Bax 

'-------L'<___,_'--__,___-----'---_, q=Bx 
BX 

Figure 5.15. If the measured values of x are normally distributed with center x = X and width 
ax, then the calculated values of q = Bx (with B fixed and known) will be normally distributed 
with center BX and width Bax. 

Ill. SUM OF TWO MEASURED QUANTITIES 

As a first nontrivial example of error propagation, suppose we measure two 
independent quantities x and y and calculate their sum x + y. We suppose that the 
measurements of x and y are normally distributed about their true values X and Y, 
with widths ax and ay as in Figures 5.16(a) and (b), and we will try to find the 
distribution of the calculated values of x + y. We will find that the values of x + y 

8 Here I introduce the alternative notation exp(z) for the exponential function, exp(z) = e'. When the expo­
nent z becomes complicated, the "exp" notation is more convenient to type or print. 
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(a) (b) 

/ width ✓a/+ a/ 

~ •x+y 
X+Y 

(c) 

Figure 5.16. If the measurements of x and y are independent and normally distributed with cen­
ters X and Y and widths ax and ay, then the calculated values of x + y are normally distributed 
with center X + Y and width ✓ a 2 + a 2. 

X y 

are normally distributed, that their center is the true value X + Y, and that the width 
of their distribution is 

as in Figure 5.16(c). In particular, this result justifies the rule of Chapter 3 that if x 
and y are subject to independent random uncertainties only, then the uncertainty in 
x + y is the quadratic sum of the separate uncertainties in x and y. 

To simplify our algebra, we assume at first that the true values X and Y are both 
zero. In this case, the probability of getting any particular value of x is 

Prob(x) oc exp (-~) 
2<Tx 

(5.51) 

and that of y is 

2 

Prob(y) oc exp (-y 2). 
2<Ty 

(5.52) 

Our problem now is to calculate the probability of obtaining any particular value of 
x + y. We first observe that because x and y are independently measured, the proba­
bility of obtaining any given x and any given y is just the product of (5.51) and 
(5.52): 

Prob(x, y) oc exp [ -1 (:2 + ;:2)]. (5.53) 

Knowing the probability of obtaining any x and any y, we can now calculate the 
probability for any given value of x + y. The first step is to rewrite the exponent in 
(5.53) in terms of the variable of interest, x + y. This step can be done using the 



~ 
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identity (which you can easily verify) 

x2 y2 (x + y)2 (Bx - Ay)2 - + - --'-----'~ + --'----~ 
A B A + B AB(A + B) 

(5.54) 

(x + y)2 z2 
A +B + • (5.55) 

In the second line I have introduced the abbreviation z2 for the second term on the 
right of (5.54) because its value does not interest us anyway. 

If we substitute (5.55) into (5.53), replacing A with a/ and B with a/, we 
obtain 

[ (x + y)2 z2] 
Prob(x, y) oc exp - ( 2 2) - 2 . 2 ax + ay 

(5.56) 

This probability for obtaining given values of x and y can just as well be viewed as 
the probability of obtaining given values of x + y and z. Thus, we can rewrite (5.56) 
as 

(5.57) 

Finally, what we want is the probability of obtaining a given value of x + y, 
irrespective of the value of z. This probability is obtained by summing, or rather 
integrating, (5.57) over all possible values of z; that is, 

Prob(x + y) = J:= Prob(x + y, z) dz. (5.58) 

When we integrate (5.57) with respect to z, the factor exp( -z2/2) integrates to 
~, and we find 

[ -(x+y)2] 
Prob(x + y) oc exp ( 2 2) • 

2 ax + ay 
(5.59) 

This result shows that the values of x + y are normally distributed with width 
✓ a/ + a/ as anticipated. 

Our proof is complete for the case when the true values of x and y are both 
zero, X = Y = 0. If X and Y are nonzero, we can proceed as follows: We first write 

x + y = (x - X) + (y - Y) + (X + Y). (5.60) 

Here, the first two terms are centered on zero, with widths ax and ay, by the result 
from step I. Therefore, by the result just proved [Equation 5.59)], the sum of the 
first two terms is normally distributed with width a/ + a/. The third term in 
(5.60) is a fixed number; therefore, by the result of step I again, it simply shifts the 
center of the distribution to (X + Y) but leaves the width unchanged. In other words, 
the values of (x + y) as given by (5.60) are normally distributed about (X + Y) 
with width ✓ a/ + a/ This is the required result. 
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IV. THE GENERAL CASE 

Having justified the error-propagation formula for the special case of a sum 
x + y, we can justify the general formula for error propagation surprisingly simply. 
Suppose we measure two independent quantities x and y whose observed values are 
normally distributed, and we now calculate some quantity q(x, y) in terms of x and 
y. The distribution of values of q(x, y) is found easily by using the results from 
steps I through III as follows: 

First, the widths <rx and <Ty (the uncertainties in x and y) must, as always, be 
small. This requirement means that we are concerned only with values of x close to 
X and y close to Y, and we can use the approximation (3.42) to write 

q(x, y) = q(X, Y) + (!!) (x - X) + (!!) (y - Y). (5.61) 

This approximation is good because the only values of x and y that occur signifi­
cantly often are close to X and Y. The two partial derivatives are evaluated at X and 
Y and are, therefore, fixed numbers. 

The approximation (5.61) expresses the desired quantity q(x, y) as the sum of 
three terms. The first term q(X, Y) is a fixed number, so it merely shifts the distribu­
tion of answers. The second term is the fixed number aq/ax times (x - X), whose 
distribution has width <rx, so the values of the second term are centered on zero, 
with width 

Similarly, the values of the third term are centered on zero with width 

Combining the three terms in (5.61) and invoking the results already established, 
we conclude that the values of q(x, y) are normally distributed about the true value 
q(X, Y) with width 

<T = q (5.62) 

If we identify the standard deviations <rx and <Ty as the uncertainties in x and y, 
the result (5.62) is precisely the rule (3.47) for propagation of random errors, for 
the case when q is a function of just two variables, q(x, y). If q depends on several 
variables, q(x, y, ... , z), the preceding argument can be extended immediately to 
establish the general rule (3.4 7) for functions of several variables. Because the rules 
of Chapter 3 concerning propagation of random errors can be derived from (3.4 7), 
they are all now justified. 
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5.7 Standard Deviation of the Mean 

One more important result, quoted in Chapter 4, remains to be proved. This result 
concerns the standard deviation of the mean <Tx. I proved (in Section 5.5) that if we 
make N measurements x1, ... , xN of a quantity x (that is normally distributed), the 
best estimate of the true value X is the mean x of x1, ... , xN. In Chapter 4, I stated 
that the uncertainty in this estimate is the standard deviation of the mean, 

(5.63) 

Let us now prove this result. The proof is so surprisingly brief that you need to 
follow it very carefully. 

Suppose that the measurements of x are normally distributed about the true 
value X with width parameter <Tx. We now want to know the reliability of the aver­
age of the N measurements. To answer this, we naturally imagine repeating our N 
measurements many times; that is, we imagine performing a sequence of experi­
ments, in each of which we make N measurements and compute the average. We 
now want to find the distribution of these many determinations of the average of N 
measurements. 

In each experiment, we measure N quantities x1, ... , xN and then compute the 
function 

x (5.64) 

Because the calculated quantity (.x) is a simple function of the measured quantities 
x1, ... , xN, we can now find the distribution of our answers for .x by using the error­
propagation formula. The only unusual feature of the function (5.64) is that all the 
measurements Xi, ... , xN happen to be measurements of the same quantity, with the 
same true value X and the same width <Tx-

We first observe that, because each of the measured quantities x1, ... , xN is 
normally distributed, the same is true for the function .x given by (5.64). Second, 
the true value for each of x1, ... , xN is X; so the true value of .x as given by (5.64) 
is 

x+ •·· +x 
= X. 

N 

Thus, after making many determinations of the average .x of N measurements, our 
many results for .x will be normally distributed about the true value X. The only 
remaining (and most important) question is to find the width of our distribution of 
answers. According to the error-propagation formula (5.62), rewritten for N vari­
ables, this width is 

(5.65) 
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Because x1, ... , xN are all measurements of the same quantity x, their widths are 
all the same and are all equal to ax, 

a = ... x, 

We also see from (5.64) that all the partial derivatives in (5.65) are the same: 

Therefore, (5.65) reduces to 

ax = ✓(~ax)2 + ••• + (~axr 

tt=i, (5.66) 

as required. 
We have arrived at the desired result (5.66) so quickly that we probably need 

to pause and review its significance. We imagined a large number of experiments, 
in each of which we made N measurements of x and then computed the average .x 
of those N measurements. We have shown that, after repeating this experiment many 
times, our many answers for x will be normally distributed, that they will be cen­
tered on the true value X, and that the width of their distribution is ax = aJVN, as 
shown in Figure 5.17 for N = 10. This width ax is the 68% confidence limit for our 
experiment. If we find the mean of N measurements once, we can be 68% confident 
that our answer lies within a distance ax of the true value X. This result is exactly 
what should be signified by the uncertainty in the mean. It also explains clearly 
why that uncertainty is called the standard deviation of the mean. 

With this simple and elegant proof, all the results quoted in earlier chapters 
concerning random uncertainties have now been justified. 

"d h Ux 
/

Wl t u-=--
x fw 

X 

Figure 5.17. The individual measurements of x are normally distributed about X with width ux 

(dashed curve). If we use the same equipment to make many determinations of the avera~ of 10 
measurements, the results x will be normally distributed about X with width ux = uJ\JlO 
(solid curve). 
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5.8 Acceptability of a Measured Answer 

We can now return to two questions first raised but not completely answered in 
Chapter 2. First, what is meant by the now-familiar statement that we are "reason­
ably confident" that a measured quantity lies in the range xbest ± &:? Second, when 
we compare our value xbest with an expected value xexp (the latter based on some 
theory, or just someone else's measurement), how do we decide whether or not the 
agreement between our value and the expected value is acceptable? 

For the first question, the answer should by now be clear: If we measure a 
quantity x several times (as we usually would), the mean x of our measurements is 
the best estimate for x, and the standard deviation of the mean <T3c is a good measure 
of its uncertainty. We would report the conclusion that 

(value of x) = x ± <T3c, 

meaning that, based on our observations, we expect 68% of any measurements of 
x, made in the same way, to fall in the range x ± <T3c. 

We could choose to characterize our uncertainty differently. For example, we 
might choose to state our conclusion as 

(value of x) = x ± 2a-3c; 

here, we would be stating the range in which we expect 95% of all comparable 
measurements to fall. Clearly, the essential point in stating any measured value is 
to state a range (or uncertainty) and the confidence level corresponding to that 
range. The most popular choice is to give the standard deviation of the answer, with 
its familiar significance as the 68% confidence limit. 

As emphasized in Chapter 2, almost all experimental conclusions involve the 
comparison of two or more numbers. With our statistical theory, we can now give a 
quantitative significance to many such comparisons. Here, I will consider just one 
type of experiment, in which we arrive at a number and compare our result with 
some known, expected answer. Notice that this general description fits many inter­
esting experiments. For instance, in an experiment to check conservation of momen­
tum, we may measure initial and final momenta, p and p', to verify that p = p' 
(within uncertainties), but we can equally well regard this experiment as finding a 
value for (p - p') to be compared with the expected answer of zero. More gener­
ally, when we want to compare any two measurements that are supposedly the same, 
we can form their difference and compare it with the expected answer of zero. Any 
experiment that involves measuring a quantity (such as g, the acceleration of grav­
ity), for which an accurate accepted value is known, is also of this type, and the 
expected answer is the known accepted value. 

Let us suppose that a student measures some quantity x (such as the difference 
of two momenta that are supposedly equal) in the form 

(value of x) = Xbest ± <T, 

where a- denotes the standard deviation of his answer (which would be the SDOM 
if xbest was the mean of several measurements). He now wants to compare this 
answer with the expected answer xexp· 
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In Chapter 2, I argued that if the discrepancy lxbest - xexpl is less than ( or only 
slightly more than) <T, then the agreement is satisfactory, but if lxbest - xexpl is much 
greater than <r, it is not satisfactory. These criteria are correct as far as they go, but 
they give no quantitative measure of how good or bad the agreement is. They also 
do not tell us where to draw the boundary of acceptability. Would a discrepancy of 
l.5<r have been satisfactory? Or 2<r? 

We can now answer these questions if we assume that our student's measure­
ment was governed by a normal distribution (as is certainly reasonable). We start 
by making two working hypotheses about this distribution: 

(1) The distribution is centered on the expected answer xexp· 

(2) The width parameter of the distribution is equal to the student's estimate <T. 

Hypothesis (1) is, of course, what the student hopes is true. It assumes that all 
systematic errors were reduced to a negligible level (so that the distribution was 
centered on the true value) and that the true value was indeed xexp (that is, that the 
reasons for expecting xexp were correct). Hypothesis (2) is an approximation because 
<r must have been an estimate of the standard deviation, but it is a reasonable 
approximation if the number of measurements on which <r is based is large.9 Taken 
together, our two hypotheses are the same as assuming that the student's procedures 
and calculations were essentially correct. 

We must now decide whether the student's value xbest was a reasonable one to 
obtain if our hypotheses were correct. If the answer is yes, there is no reason to 
doubt the hypotheses, and all is well; if the answer is no, the hypotheses must be 
doubted, and the student must examine the possibilities of mistakes in the measure­
ments or calculations, of undetected systematic errors, and of the expected answer 
Xexp being incorrect. 

We first determine the discrepancy, lxbest - xexpl, and then 

t = lxbest - Xexpl 

' (T 
(5.67) 

the number of standard deviations by which xbest differs from xexp· (Here, <T denotes 
the standard deviation appropriate to xbest; if xbest is the mean of several measure­
ments, then <T is the standard deviation of the mean.) Next, from the table of the 
normal error integral in Appendix A, we can find the probability (given our hypothe­
ses) of obtaining an answer that differs from xexp by t or more standard deviations. 
This probability is 

Prob(outside t<r) = 1 - Prob(within t<r). (5.68) 

If this probability is large, the discrepancy lxbest - xexpl is perfectly reasonable, and 
the result xbest is acceptable; if the probability in (5.68) is "unreasonably small," the 

9 We are going to judge the reasonableness of our measurement, xbest• by comparing lxbest - Xexpl with a, 
our estimate of the width of the normal distribution concerned. If the number of measurements on which a 
was based is small, this estimate may be fairly unreliable, and the confidence levels will be correspondingly 
inaccurate ( although still a useful rough guide). With a small number of measurements, the accurate calculation 
of confidence limits requires use of the so-called "student's t distribution," which allows for the probable 
variations in our estimate a of the width. See H. L. Alder and E. B. Roessler, Introduction to Probability and 
Statistics, 6th ed. (W. H. Freeman, 1977), Chapter 10. 
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discrepancy must be judged significant (that is, unacceptable), and our unlucky stu­
dent must try to find out what has gone wrong. 

Suppose, for example, the discrepancy lxbest - xexpl is one standard deviation. 
The probability of a discrepancy this large or larger is the familiar 32%. Clearly, a 
discrepancy of one standard deviation is quite likely to occur and is, therefore, 
insignificant. At the opposite extreme, the probability Prob(outside 3cr) is just 0.3%, 
and, if our hypotheses are correct, a discrepancy of 3cr is most unlikely. Turning 
this statement around, if our student's discrepancy is 3cr, our hypotheses were most 
unlikely to be correct. 

The boundary between acceptability and unacceptability depends on the level 
below which we judge a discrepancy is unreasonably improbable. This level is a 
matter of opinion, to be decided by the experimenter. Many scientists regard 5% a 
fair boundary for "unreasonable improbability." If we accept this choice, then a 
discrepancy of 2cr would be just unacceptable, because Prob( outside 2cr) = 4.6%. 
In fact, from the table in Appendix A, we see that any discrepancy greater than 
l.96cr is unacceptable at this 5% level, and discrepancies this large are sometimes 
called "significant." Similarly, at the 1 % level, any discrepancy greater than 2.58cr 
would be unacceptable, and discrepancies this large are sometimes called "highly 
significant." 

Quick Check 5.6. A student measures the electron charge e and notes that her 
answer is 2.4 standard deviations away from the accepted value. Is this discrep­
ancy significant at the 5% level? What about the 2% level? Or 1 %? 

We still do not have a clear-cut answer that a certain measured value xbest is, or 
is not, acceptable. Our theory of the normal distribution, however, has given us a 
clear, quantitative measure of the reasonableness of any particular answer, which is 
the best we can hope for. 

Most physicists do not spend a lot of time debating precisely where the bound­
ary of acceptability lies. If the discrepancy is appreciably less than 2cr (l.8cr, say), 
then by almost any standard the result would be judged acceptable. If the discrep­
ancy is appreciably more than 2.Scr, then by any standard it is unacceptable. If the 
discrepancy falls in the gray region between about l.9cr and about 2.6cr, the experi­
ment is simply inconclusive. If the experiment is sufficiently important (as a test of 
a new theory, for example), it needs to be repeated (preferably with improved tech­
niques) until a conclusive result is obtained. 

Of course, some experiments are more complicated and require correspondingly 
more involved analyses. Most of the basic principles, however, have been illustrated 
by the simple, important case discussed here. Further examples can be found in Part 
II. 
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Principal Definitions and Equations of Chapter 5 

LIMITING DISTRIBUTIONS 

If f(x) is the limiting distribution for measurement of a continuous variable x, 
then 

and 

f(x) dx = probability that any one measurement will 
give an answer between x and x + dx, 

f f(x) dx = probability that any one measurement will 
a give an answer between x = a and x = b. 

The normalization condition is 

The mean value of x expected after many measurements is 

THE GAUSS, OR NORMAL, DISTRIBUTION 

[See (5.12)] 

[See (5.13)] 

[See (5.15)] 

If the measurements of x are subject to many small random errors but negligible 
systematic error, their limiting distribution will be the normal, or Gauss, distribu­
tion: 

[See (5.25)] 

where 

X true value of x 

center of distribution 

mean value after many measurements, 

and 

<T width parameter of distribution 

standard deviation after many measurements. 

The probability of a single measurement falling within t standard deviations of X is 

Prob(within t<r) = -~ f1 e-z212 dz. 
\j21t -t [See (5.35)] 
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This integral is often called the error function or the normal error integral. Its value 
as a function of t is tabulated in Appendix A. In particular, 

Prob(within <r) = 68.27%. 

ESTIMATING X AND u FROM N MEASURED VALUES 

After N measurements of a normally distributed quantity x, 

the best estimate for the true value X is the mean of our measurements, 

LX· 
(best estimate for X) = .x = Jj, 

[See (5.42)] 

and the best estimate for the width <r is the standard deviation of the measurements, 

(best estimate for <r) = <rx = I,(xi - .x)2 
(N - 1) • [See (5.45)] 

The uncertainties in these estimates are as follows: The uncertainty in .x as an esti­
mate of Xis 

(T 

(uncertainty in .x) = SDOM = i 
[See (5.66)] 

and the uncertainty in <rx as the estimate of the true width <r is given by 

(fractional uncertainty in <rx) = 1 
✓z(N - 1) 

ACCEPTABILITY OF A MEASURED ANSWER 

Suppose we measure a quantity x in the standard form 

(value of x) = xbest ± <T, 

[See (5.46)] 

where <r is the appropriate standard deviation. Suppose also that, based on some 
theory or on someone else's measurements, we expected the value xexp· We say that 
xbest differs from Xexp by t standard deviations, where 

t = 

Assuming x is normally distributed about xexp with width <r, we can find from 
Appendix A the probability Prob( outside t<r) of a discrepancy as large as ours or 
larger. If this probability is less than some chosen level (1 %, for example), we judge 
the agreement to be unacceptable at that level. [For example, if Prob( outside t<r) is 
less than 1 %, the agreement is unacceptable at the 1 % level.] 
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Problems for Chapter 5 

For Section 5.1: Histograms and Distributions 

5.1. * Draw a bar histogram for Joe's grades, as given in Quick Check 5.1. The 
horizontal axis should show the five possible grades ( or, better, the corresponding 
scores sk = 0, l, ... , 4) and the vertical axis, the fractions Pk. Compute his average 
grade as I.skF k· 

5.2. * A health physicist places a weak radioactive sample in a liquid scintillation 
counter and records the number of decays in 10-minute intervals, starting at t = 0. 
His results are as follows (with tin minutes): 

Interval for t: 0 to 10 

Number: 9 

10 to 20 

6 

20 to 30 

3 

30 to 40 

1 

40 to 50 

1 

and none beyond t = 50 min. Make a bin histogram of these events. Show t on the 
horizontal axis, and choose the vertical scale so that the area of each rectangle is 
the fraction of the decays that occurred in the corresponding bin. 

5.3. ** A student measures the angular momenta Li and Lt of a rotating system 
before and after adding an extra mass. To check the conservation of angular momen­
tum, he calculates L; - Lt ( expecting the answer zero). He repeats the measurement 
50 times and collects his answers into bins as in Table 5.3, which shows his results 

Table S.3. Occurrences of values of L; - Lt; for Problem 5.3. 

Bin 

After (-9, -7) (-7, -5) (-5, -3) (-3, -1) (-1, 1) (1, 3) (3, 5) (5, 7) (7, 9) 

5 trials 0 1 2 0 1 0 1 0 0 
10 trials 0 1 2 2 3 1 1 0 0 
50 trials 1 3 7 8 10 9 6 4 2 

(in some unspecified units) after 5, 10, and 50 trials. Draw a bin histogram for each 
of these three cases. (Be careful to choose your scales so that the area of each 
rectangle is the fraction of events in the corresponding bin.) 

5.4. ** A student makes 20 measurements of the time for a ball bearing to fall 
from the top to the bottom of a vertical cylinder of oil. She arranges her results in 
increasing order and counts how many times she got each different value, as follows 
(with the times in tenths of a second): 

Time, t: 

Occurrences: 

71 

2 

72 73 

0 3 

74 75 

5 4 

76 77 78 

1 3 1 

79 80 

0 1 

(a) Draw a bin histogram of these results using bins of width 1, starting at 70.5. 
(Notice that, with bins of width 1, this bin histogram gives essentially the same 
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result as a bar histogram.) (b) Redraw the histogram with a bin width of 2, again 
starting at 70.5. (c) Notice how the wider bins in part (b) give a smoother histogram. 
If the chosen bins are too wide, however, information starts to be lost. To illustrate 
this loss, redraw the histogram with a bin width of 10, again starting at 70.5. 

for Section S.2: Limiting Distributions 

5.5. * The limiting distribution for the results in some hypothetical measurement 
is given by the triangular function shown in Figure 5.18, where the value of /(0) is 

f(x) 

-a 0 a 

Figure S. I 8. A triangular distribution; for Problem 5 .5. 

called C. (a) What is the probability of a measurement outside the range between 
x = -a and x = a? (b) What is the probability of a measurement with x > 0? 
(c) Use the normalization condition (5.13) to find C in terms of a. (d) Sketch this 
function for the cases that a = l and a = 2. 

5.6. * Consider an experiment similar to the one described in Problem 5.2, in 
which the experimenter counts the number of decays from a radioactive sample in a 
short time interval f:..t from a radioactive source, starting at time t = 0. The limiting 
distribution for this kind of experiment is the exponential distribution, 

(5.69) 

where T is a positive constant. (a) Sketch this function. (The distribution is zero for 
t < 0 because the experiment begins only at t = 0.) (b) Prove that this function 
satisfies the normalization condition (5.13). (c) Find the mean time 7 at which the 
decays occur, as given by Equation (5.15). (Your answer here shows the significance 
of the parameter T: It is the mean time at which the atoms in a large sample decay.) 

5.7. * For the exponential distribution of Problem 5.6, what is the probability for 
a result t > T? What for t > 2T? (Notice that these probabilities also give the fraction 
of the original atoms that live longer than T and 2T.) 

5.8. ** The physicist of Problem 5.2 decides that the limiting distribution for his 
experiment is the exponential distribution (5.69) (from Problem 5.6) with the param­
eter T = 14.4 min. If you have not already done so, draw the histogram for the data 
of Problem 5.2, and then draw the supposed limiting distribution on the same plot. 
How well does it seem to match? (You have no quantitative way to measure the 
agreement, so you can decide only if it looks satisfactory.) 
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5.9. ** The limiting distribution for the results in some hypothetical measurement 
has the form 

f(x) = { ~ for lxl <a 
otherwise. 

(a) Use the normalization condition (5.13) to find C in terms of a. (b) Sketch this 
function. Describe in words the distribution of results governed by this distribution. 
(c) Use Equations (5.15) and (5.16) to calculate the mean and standard deviation 
that would be found after many measurements. 

5.10. ** Explain clearly why the standard deviation for a limiting distribution 
f(x) is given by (5.16). Your argument will parallel closely that leading from (5.14) 
to (5.15). 

For Section S.3: The Normal Distribution 

5.11. * Using proper squared paper and clearly labeled axes, make good plots of 
the Gauss distribution 

GxJx) = _l_ e-(x-X)2/2u2 
, <T-y2n 

for X = 2, <T = l, and for X = 3, <T = 0.3. Use your calculator to compute the val­
ues of GxJx). (If it has two memories to store <r-yZn and -2<r2, this feature will 
speed your calculations. If you remember that the function is symmetric about 
x = X, the number of calculations needed is halved.) Put both graphs on the same 
plot for comparison. 

5.12. * The width of a Gauss distribution is usually characterized by the parame­
ter <T. An alternative parameter with a simple geometric interpretation is the full 
width at half maximum, or FWHM. This parameter is the distance between the two 
points x where GxJx) is half its maximum value, as in Figure 5.19. Prove that 

FWHM = 2<r✓2 In 2 = 2.35 <r. 

Some physicists use the half width at half maximum, shown in Figure 5.19 and 
defined as half the FWHM. Obviously HWHM = l.17<r, or, very roughly, HWHM 
= <T. 

f, ---------------max 

FWHM 

Figure 5.19. The full width at half maximum (FWHM) and the half width at half maximum 
(HWHM); for Problem 5.12. 
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points of inflection 

X 

Figure 5.20. The points X ± a are the points of inflection of 
the Gauss curve; for Problem 5.13. 

5.13. * One way to define the width U" of the Gauss distribution is that the points 
X ± U" are the two points of inflection (Figure 5.20), where the curvature changes 
sign; that is, where the second derivative is zero. Prove this claim. 

5.14. ** Make careful sketches of the normal distributions Gx,u(x) for the three 
cases: 

(a) X 0, U" 1 
(b) X 0, U" 2 
(c) X 5, U" 1 

Describe in words the differences among the three curves. 

5.15. ** If you have not yet done so, plot the third histogram of Problem 5.3. 
The student of that problem decides that the distribution of his results is consistent 
with the Gauss distribution Gx,u(x) centered on X = 0 with width U" = 3.4. Draw 
this distribution on the same graph and compare it with your histogram. (Read the 
hints to Problem 5.11. Note that you have no quantitative way to assess the fit; all 
you can do is see if the Gauss function seems to fit the histogram satisfactorily.) 

5.16. ** Give in detail the steps leading from (5.30) to (5.31) to show that the 
standard deviation U"x of many measurements normally distributed with width pa­
rameter U" is U"x = U". 

For Section 5.4: The Standard Deviation as 68% Confidence Limit 

5.17. * Some statisticians speak of a "68-95 rule." What do you suppose this rule 
is? What is the "68-95-99.7 rule"? 

5.18. * We often say that the probability of a measurement in the range X ± 2U" 
is about 95%. What is this probability to four significant figures? What range 
X ± tU" actually has probability equal to 95.00%? (Give t to three significant figures. 
The needed probabilities can be found in Appendix A.) 

5.19. ** A student measures a quantity y many times and calculates his mean as 
y = 23 and his standard deviation as U"y = 1. What fraction of his readings would 
you expect to find between 

(a) 22 and 24? 
(b) 22.5 and 23.5? 
(c) 21 and 25? 

(d) 21 and 23? 
(e) 24 and 25? 
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Finally, (f) within what limits (equidistant on either side of the mean) would you 
expect to find 50% of his readings? (The necessary information for all parts of this 
question is in Figure 5.13. More detailed information on these kinds of probabilities 
is in Appendixes A and B.) 

5.20. ** An extensive survey reveals that the heights of men in a certain country 
are normally distributed, with a mean h = 69" and standard deviation <T = 2". In a 
random sample of 1,000 men, how many would you expect to have a height 

(a) between 67" and 71"? 
(b) more than 71"? 
(c) more than 75"? 
(d) between 65" and 67"? 

5.21. ** The Giraffe Club of Casterbridge is a club for young adults (18-24 
years) who are unusually tall. There are 2,000 women between the ages of 18 and 
24 in Casterbridge, and the heights of women in this age range are distributed 
normally with a mean of S'S½" and standard deviation of 2½". (a) If the Giraffe 
Club initially sets its minimum height for women at 5'10", approximately how many 
women are eligible to join? (b) A year or so later, the club decides to double its 
female membership by lowering the minimum height requirement; what would you 
recommend that the club set as its new minimum height for women (to the nearest 
half inch)? 

5.22. ** If the measurements of a quantity x are governed by the Gauss distribu­
tion GxJ..x), the probability of obtaining a value between X - t<r and X + t<r is 

iX+tu 

Prob(within t<r) = Gx,J..x) dx. 
X-tu 

Prove carefully, showing all the necessary changes of variables, that 

Prob(within t<r) = _~ft e-z212 dz. 
-\/2'1t -t 

(5.70) 

With each change of variables, check carefully what happens to your limits of inte­
gration. The integral (5.70) is often called the error function, denoted erf(t), or the 
normal error integral. 

5.23. *** We have seen that for the normal distribution, the standard deviation 
gives the 68% confidence range. This result is not necessarily true for other distribu­
tions, as the following problem illustrates: Consider the exponential distribution of 
Problem 5.6, f(t) = (1/T)e- th- (for t ~ 0; f(t) = 0 for t < 0). The parameter Tis the 
mean value of t (that is, after many measurements, l = T). (a) Use the integral 
(5.16) to prove that Tis also the standard deviation, <rt = T. (This result is a note­
worthy property of this distribution-that the mean value is equal to the standard 
deviation.) (b) By doing the necessary integral, find the probability that any one 
value would fall in the range l ± <Tr 

For Section 5.5: Justification of the Mean as Best Estimate 

5.24. * Suppose you have measured a quantity x six times, as follows: 

51, 53, 54, 55, 52, 53. 
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(a) Assuming these measurements are normally distributed, what should be your 
best estimates for the true value X and the standard deviation a-? (b) Based on these 
estimates, what is the probability that a seventh measurement would fall outside the 
range of the first six? (Given that your results are rounded to the nearest integer, 
this probability is that for a result x.;;; 50.5 or x ~ 55.5.) 

5.25. * A student measures a time t eight times with the following results (in 
tenths of a second): 

Value, tk: 75 76 77 78 79 80 

Occurrences, nk: 2 3 0 0 2 1 

(a) Assuming these measurements are normally distributed, what should be your 
best estimates for the true value and the standard deviation? (b) Based on these 
estimates, what is the probability that a ninth measurement would be 81 or more? 
(Because the measurements are rounded to the nearest integer, this probability is 
that for a value t ~ 80.5.) 

5.26. ** Suppose we have N measurements x1, ... , xN of the same quantity x, 
and we believe that their limiting distribution should be the Gauss function GxJ.x), 
with X and a- unknown. The principle of maximum likelihood asserts that the best 
estimate for the width is the value of a- for which the probability ProbxJ.x1, ... , xN) 
of the observed values x1, ... , xN is largest. Differentiate ProbxJ.x1, ... , xN) in 
(5.40) with respect to a-, and show that the maximum occurs when a- is given by 
(5.43). [As discussed after (5.43), this result means that the best estimate for the 
true width a- is the standard deviation of the N observed values x1, ... , xN. In 
practice, the true value X must be replaced with its best estimate .x, which requires 
replacement of N by N - l, as proved in Appendix E.] 

5.27. ** (a) Based on the data of Problem 5.24, find the mean, the standard 
deviation, and the uncertainty of your value for the SD [the last using Equation 
(5.46)]. (b) Recalculate the probability asked for in part (b) of Problem 5.24 assum­
ing the true value of a- is <rx - 8a-x, and, once again, assuming a- is really <rx + 8a-x. 
Comment on the difference in your two answers here. 

5.28. ** Based on several measurements of the same quantity x normally distrib­
uted about X with width a-, we can estimate X and a-. (a) Approximately how many 
measurements must we make to know a- within 30%? (b) Within 10%? (c) Within 
3%? 

Section 5.6: Justification of Addition in Quadrature 

5.29. * The measurements of a certain quantity x are distributed according to the 
Gauss function Gx,J.x) with X = 10 and a-= 2. Sketch this distribution and the 
distributions for q = x + 5 and for q' = x I 2, all on the same graph. 

5.30. * Verify the identity (5.54) used in justifying addition in quadrature when 
propagating random errors. 
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For Section S.7: Standard Deviation of the Mean 

5.31. ** Listed here are 40 measurements t1, ... , t40 of the time for a stone to 
fall from a window to the ground (all in hundredths of a second). 

63 58 74 78 70 74 75 82 68 69 
76 62 72 88 65 81 79 77 66 76 
86 72 79 77 60 70 65 69 73 77 
72 79 65 66 70 74 84 76 80 69 

(a) Compute the standard deviation (Tt for the 40 measurements. (b) Compute the 
means "i-1, ... , t 10 of the four measurements in each of the 10 columns. You can 
think of the data as resulting from 10 experiments, in each of which you found the 
mean of four timings. Given the result of part (a), what would you expect for the 
standard deviation of the 10 averages "i-1, ... , "i-10? What is it? (c) Plot histograms 
for the 40 individual measurements t1, ... , t40 and for the 10 averages "i-1, ... , t 10. 

[Use the same scales and bin sizes for both plots so they can be compared easily. 
Bin boundaries can be chosen in various ways; perhaps the simplest is to put one 
boundary at the mean of all 40 measurements (72.90) and to use bins whose width 
is the standard deviation of the 10 averages "i-1, ... , "i-10.] 

5.32. ** In Problem 4.13 are listed 30 measurements of a certain time t. (a) If 
you haven't already done so, find the standard deviation of these 30 values. (b) 
Now think of the 30 data as 10 columns, each representing an experiment consisting 
of three measurements, and compute the 10 averages, "i-1, ... , "i-10, for these 10 exper­
iments. (c) Given the result of part (a), what would you expect for the standard 
deviation of the 10 means of part (b)? What is it? (d) Draw histograms for the 30 
separate measurerr.ents and for the 10 means, "i-1, ... , "i-10. (Use the same scale for 
both. A good way to choose your bin boundaries is to put one at the mean of all 30 
measurements and to use the SD of the 10 means as the bin width.) 

5.33. ** Based on the data of Problem 5.25, what would you give for the best 
estimate for the time t and its uncertainty? What is the uncertainty in your value for 
the uncertainty in t? [The uncertainty in t is the SDOM, (T1 = (Tif-vN. You can find 
the uncertainty in the SD (Tt from (5.46), and from this result you can find the 
uncertainty in the SDOM by error propagation.] 

For Section S.8: Acceptability of a Measured Answer 

5.34. * According to a proposed theory, the quantity x should have the value x1h. 

Having measured x in the usual form xbest ± (T (where (Tis the appropriate SD), we 
would say that the discrepancy between xbest and x 1h is t standard deviations, where 
t = lxbest - x 1hl/(T. How large must t be for us to say the discrepancy is significant 
at the 5% level? At the 2% level? At the 1 % level? 

5.35. * A student measures g, the acceleration of gravity, repeatedly and carefully 
and gets a final answer of 9.5 m/s2 with a standard deviation of 0.1. If his measure­
ments were normally distributed with center at the accepted value 9.8 and with 
width 0.1, what would be the probability of his getting an answer that differs from 
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9.8 by as much as ( or more than) his? Assuming he made no actual mistakes, 
do you think his experiment may have suffered from some undetected systematic 
errors? 

5.36. ** Two students measure the same quantity x and get final answers 
xA = 13 ± 1 and xB = 15 ± 1, where the quoted uncertainties are the appropriate 
standard deviations. (a) Assuming all errors are independent and random, what is 
the discrepancy xA - xB, and what is its uncertainty? (b) Assuming all quantities 
were normally distributed as expected, what would be the probability of getting a 
discrepancy as large as they did? Do you consider their discrepancy significant (at 
the 5% level)? 

5.37. ** A nuclear physicist wants to check the conservation of energy in a cer­
tain nuclear reaction and measures the initial and final energies as E; = 75 ± 3 
MeV and Ef = 60 ± 9 MeV, where both quoted uncertainties are the standard devia­
tions of the answers. Is this discrepancy significant (at the 5% level)? Explain your 
reasoning dead y. 





Part II 

6. Rejection of Data 

7. Weighted Averages 

8. Least-Squares Fitting 

9. Covariance and Correlation 

I 0. The Binomial Distribution 

I I. The Poisson Distribution 

12. The Chi-Squared Test for a Distribution 

If you have read and understood Chapter 5, you are now ready, with surprisingly 
little difficulty, to study a number of more advanced topics. The chapters of Part II 
present seven such topics, some of which are applications of the statistical theory 
already developed, and others of which are further extensions of that theory. All are 
important, and you will probably study them sooner or later. Because you might not 
necessarily want to learn them all at once, these topics have been arranged into 
independent, short chapters that can be studied in any order, as your needs and 
interests dictate. 
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Chapter 6 

Rejection of Data 

This chapter discusses the awkward question of whether to discard a measurement 
that seems so unreasonable that it looks like a mistake. This topic is controversial; 
some scientists would argue that discarding a measurement just because it looks 
unreasonable is never justified. Nevertheless, there is a simple test you could at least 
consider applying if you find yourself confronted with this situation. The test is 
called Chauvenet's criterion and is a nice application of the statistical ideas devel­
oped in Chapters 4 and 5. 

6.1 The Problem of Rejecting Data 

Sometimes, one measurement in a series of measurements appears to disagree strik­
ingly with all the others. When this happens, the experimenter must decide whether 
the anomalous measurement resulted from some mistake and should be rejected or 
was a bona fide measurement that should be used with all the others. For example, 
imagine we make six measurements of the period of a pendulum and get the results 
( all in seconds) 

3.8, 3.5, 3.9. 3.9, 3.4, 1.8. (6.1) 

In this example, the value 1.8 is startlingly different from all the others, and we 
must decide what to do with it. 

We know from Chapter 5 that a legitimate measurement may deviate signifi­
cantly from other measurements of the same quantity. Nevertheless, a legitimate 
discrepancy as large as that of the last measurement in (6.1) is very improbable, so 
we are inclined to suspect that the time 1.8 s resulted from some undetected mistake 
or other external cause. Perhaps, for example, we simply misread the last time or 
our electric timer stopped briefly during the last measurement because of a momen­
tary power failure. 

If we have kept very careful records, we may sometimes be able to establish 
such a definite cause for the anomalous measurement. For example, our records 
might show that a different stopwatch was used for the last timing in (6.1), and a 
subsequent check might show that this watch runs slow. In this case, the anomalous 
measurement should definitely be rejected. 165 
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Unfortunately, establishing an external cause for an anomalous result is usually 
not possible. We must then decide whether or not to reject the anomaly simply by 
examining the results themselves, and here our knowledge of the Gauss distribution 
proves useful. 

The rejection of data is a controversial question on which experts disagree. It is 
also an important question. In our example, the best estimate for the period of the 
pendulum is significantly affected if we reject the suspect 1.8 s. The average of all 
six measurements is 3.4 s, whereas that of the first five is 3.7 s, an appreciable 
difference. 

Furthermore, the decision to reject data is ultimately a subjective one, and the 
scientist who makes this decision may reasonably be accused by other scientists of 
"fixing" the data. The situation is made worse by the possibility that the anomalous 
result may reflect some important effect. Indeed, many important :.cientific discover­
ies first appeared as anomalous measurements that looked like mistakes. In throwing 
out the time 1.8 s in the example (6.1), we just might be throwing out the most 
interesting part of the data. 

In fact, faced with data like those in (6.1), our only really honest course is to 
repeat the measurement many, many times. If the anomaly shows up again, we will 
presumably be able to trace its cause, either as a mistake or a real physical effect. 
If it does not recur, then by the time we have made, say, 100 measurements, there 
will be no significant difference in our final answer whether we include the anomaly 
or not. 

Nevertheless, repeating a measurement 100 times every time a result seems 
suspect is frequently impractical (especially in a teaching laboratory). We therefore 
need some criterion for rejecting a suspect result. There are various such criteria, 
some quite complicated. Chauvenet's criterion provides a simple and instructive 
application of the Gauss distribution. 

6.2 Chauvenet's Criterion 

Let us return to the six measurements of the example (6.1): 

3.8, 3.5, 3.9, 3.9, 3.4, 1.8. 

If we assume for the moment that these are six legitimate measurements of a quan­
tity x, we can calculate the mean x and standard deviation <rx, 

x = 3.4 s (6.2) 

and 

(TX = 0.8 S. (6.3) 

We can now quantify the extent to which the suspect measurement, 1.8, is anoma­
lous. It differs from the mean 3.4 by 1.6, or two standard deviations. If we assume 
the measurements were governed by a Gauss distribution with center and width 
given by (6.2) and (6.3), we can calculate the probability of obtaining measurements 
that differ by at least this much from the mean. According to the probabilities shown 
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in Appendix A, this probability is 

Prob( outside 2cr) 1 - Prob(within 2cr) 

1 - 0.95 

0.05. 

In other words, assuming that the values (6.2) and (6.3) for x and crx are legitimate, 
we would expect one in every 20 measurements to differ from the mean by at least 
as much as the suspect 1.8 s does. If we had made 20 or more measurements, we 
should actually expect to get one or two measurements as deviant as the 1.8 s, and 
we would have no reason to reject it. But we have made only six measurements, so 
the expected number of measurements as deviant as 1.8 s was actually 

( expected number as deviant as 1.8 s) 

(number of measurements) X Prob(outside 2cr) 

6 X 0.05 = 0.3. 

That is, in six measurements we would expect (on average) only one-third of a 
measurement as deviant as the suspect 1.8 s. 

This result provides us with the needed quantitative measure of the "reasonable­
ness" of our suspect measurement. If we choose to regard one-third of a measure­
ment as "ridiculously improbable," then we will conclude that the value 1.8 s was 
not a legitimate measurement and should be rejected. 

The decision of where to set the boundary of "ridiculous improbability" is up 
to the experimenter. Chauvenet's criterion, as normally given, states that if the ex­
pected number of measurements at least as deviant as the suspect measurement is 
less than one-half, then the suspect measurement should be rejected. Obviously, the 
choice of one-half is arbitrary, but it is also reasonable and can be defended. 

The application of Chauvenet's criterion to a general problem can now be de­
scribed easily. Suppose you have made N measurements 

of a single quantity x. From all N measurements, you calculate x and crx. If one of 
the measurements ( call it xsus) differs from x so much that it looks suspicious, then 
find 

(6.4) 

the number of standard deviations by which xsus differs from x. Next, from Appendix 
A you can find the probability 

Prob( outside tsuscr) 

that a legitimate measurement would differ from x by tsus or more standard devia­
tions. Finally, multiplying by N, the total number of measurements, gives 

n - ( expected number as deviant as xsus) 

N X Prob( outside tsuscr). 
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If this expected number n is less than one-half, then, according to Chauvenet's 
criterion, you can reject Xsus· 

If you do decide to reject Xsus• you would naturally recalculate .x and CTx using 
just the remaining data; in particular, your final answer for x would be this new 
mean, with an uncertainty equal to the new SDOM. 

Example: Ten Measurements of a Length 

A student makes 10 measurements of one length x and gets the results (all in mm) 

46, 48, 44, 38, 45, 47, 58, 44, 45, 43. 

Noticing that the value 58 seems anomalously large, he checks his records but can 
find no evidence that the result was caused by a mistake. He therefore applies 
Chauvenet's criterion. What does he conclude? 

Accepting provisionally all 10 measurements, he computes 

x = 45.8 and CTx = 5.1. 

The difference between the suspect value xsus = 58 and the mean x = 45.8 is 
12.2, or 2.4 standard deviations; that is, 

58 - 45.8 = 2.4. 
5.1 

Referring to the table in Appendix A, he sees that the probability that a measurement 
will differ from x by 2.4CTx or more is 

Prob( outside 2.4CT) 1 - Prob(within 2.4CT) 

1 - 0.984 

0.016. 

In 10 measurements, he would therefore expect to find only 0.16 of one measure­
ment as deviant as his suspect result. Because 0.16 is less than the number 0.5 set 
by Chauvenet's criterion, he should at least consider rejecting the result. 

If he decides to reject the suspect 58, then he must recalculate .x and CTx as 

x = 44.4 and CTx = 2.9. 

As you would expect, his mean changes a bit, and his standard deviation drops 
appreciably. 

Quick Check 6.1. A student makes 20 measurements of a certain voltage V 
and computes her mean and standard deviation as V = 51 and CTy = 2 (both in 
microvolts). The evening before the work is due, she starts to write her report 
and realizes that one of her measured values was Vsus = 56. What is the proba­
bility of her getting a measurement this deviant from V? If she decides to use 
Chauvenet's criterion, should she reject the suspect value? 
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6.3 Discussion 

You should be aware that some scientists believe that data should never be rejected 
without external evidence that the measurement in question is incorrect. A reason­
able compromise is to use Chauvenet's criterion to identify data that could be con­
sidered for rejection; having made this identification, you could do all subsequent 
calculations twice, once including the suspect data and once excluding them, to see 
how much the questionable values affect your final conclusion. 

One reason many scientists are uncomfortable with Chauvenet's criterion is that 
the choice of one-half as the boundary of rejection (in the condition that n < ½) is 
arbitrary. Perhaps even more important, unless you have made a very large number 
of measurements (N = 50, say), the value of crx is extremely uncertain as an esti­
mate for the true standard deviation of the measurements. (See Problem 6.7 for an 
example.) This means in turn that the number tsus in (6.4) is very uncertain. Because 
the probability of a measurement outside t standard deviations is very sensitive to t, 
a large error in tsus causes a very large error in this probability and casts serious 
doubt on the whole procedure. For both of these reasons, Chauvenet's criterion 
should be used only as a last resort, when you cannot check your measurements by 
repeating them. 

So far, we have assumed that only one measurement is suspect. What should 
you do if you have several? Given that the use of Chauvenet's criterion to reject 
one measurement is open to doubt, clearly its use to reject several measurements is 
even more problematic. Nevertheless, if there is absolutely no way you can repeat 
your measurements (because you have rashly dismantled your equipment before 
writing your report, for example), you may have to confront this question. 

Suppose first that you have two measurements that deviate from the mean by 
the same large amount. In this case, you could calculate the expected number of 
measurements this deviant, and if this number is less than one (that is, two times 
one-half), then both measurements could be considered candidates for rejection. If 
you have two suspect measurements, x1 and x2, with x2 more deviant than x1, you 
should first apply Chauvenet's criterion using the value x1. If the expected number 
this deviant is less than one, you could reject both values. If this expected number 
is more than one, you certainly should not reject both but instead reapply Chauve­
net's criterion using x2 and, if the expected number this deviant is less than one­
half, you could reject just x2. 

Having rejected any measurements that fail Chauvenet's criterion, you would 
naturally recalculate x and <rx using just the remaining data. The resulting value of 
<rx will be smaller than the original one, and with the new <rx, some more measure­
ments may fail Chauvenet's criterion. However, agreement seems widespread that 
Chauvenet's criterion should not be applied a second time using the recalculated 
values of .x and <rx. 
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Principal Definitions and Equations of Chapter 6 

CHAUVENET'S CRITERION 

If you make N measurements x1, ... , xN of a single quantity x, and if one of 
the measurements (xsus, say) is suspiciously different from all the others, Chauve­
net's criterion gives a simple test for deciding whether to reject this suspect value. 
First, compute the mean and standard deviation of all N measurements and then find 
the number of standard deviations by which xsus differs from x, 

lxsus - xi 
tsus = ----. 

(TX 

Next, find the probability (assuming the measurements are normally distributed 
about x with width crx) of getting a result as deviant as xsus, and, hence, the number 
of measurements expected to deviate this much, 

n = N X Prob( outside tsuscr). 

If n < ½, then according to Chauvenet's criterion, you can reject the value xsus· 

Because there are several objections to Chauvenet's criterion ( especially if N is 
not very large), it should be used only as a last resort, when the measurements of x 

cannot be checked. The objections to Chauvenet's criterion are even greater if two 
or more measurements are suspect, but the test can be extended to this situation, as 
described in Section 6.3. 

Problems for Chapter 6 

For Section 6.2: Chauvenet's Criterion 

6.1. * An enthusiastic student makes 50 measurements of the heat Q released in 
a certain reaction. Her average and standard deviation are 

Q = 4.8 and crQ = 0.4, 

both in kilocalories. (a) Assuming her measurements are governed by the normal 
distribution, find the probability that any one measurement would differ from Q by 
0.8 kcal or more. How many of her 50 measurements should she expect to differ 
from Q by 0.8 kcal or more? If one of her measurements is 4.0 kcal and she decides 
to use Chauvenet's criterion, would she reject this measurement? (b) Would she 
reject a measurement of 6.0 kcal? 

6.2. * The Franck-Hertz experiment involves measuring the differences between 
a series of equally spaced voltages that cause the maximum current through a tube 
of mercury vapor. A student measures 10 such differences and obtains these results 
(all in volts): 

0.48, 0.45, 0.49, 0.46, 0.44, 0.57, 0.45, 0.47, 0.51, 0.50. 
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(a) Calculate the mean and standard deviation of these results. (By all means, 
use the built-in functions on your calculator.) 

(b) If he decides to use Chauvenet's criterion, should he reject the reading of 
0.57 volts? Explain your reasoning clearly. 

6.3. * A student makes 14 measurements of the period of a damped oscillator and 
obtains these results (in tenths of a second): 

7, 3, 9, 3, 6, 9, 8, 7, 8, 12, 5, 9, 9, 3. 

Believing that the result 12 is suspiciously high, she decides to apply Chauvenet's 
criterion. How many results should she expect to find as far from the mean as 12 
is? Should she reject the suspect result? 

6.4. ** A physicist makes 14 measurements of the density of tracks on an emul­
sion exposed to cosmic rays and obtains the following results (in tracks/cm2): 

11, 9, 13, 15, 8, 10, 5, 11, 9, 12, 12, 13, 9, 14. 

(a) What are his mean and standard deviation? (Use the built-in functions on your 
calculator.) (b) According to Chauvenet's criterion, would he be justified in rejecting 
the measurement of 5? Explain your reasoning clearly. (c) If he does reject this 
measurement, what does he get for his new mean and standard deviation? (Hint: 
You can almost certainly recalculate the mean and standard deviation by editing the 
contents of your calculator's statistical registers rather than re-entering all the data. 
If you don't know how to do this editing, take a moment to learn.) 

6.5. ** In the course of a couple of hours, a nuclear engineer makes 12 measure­
ments of the strength of a long-lived radioactive source with the following results, 
in millicuries: 

12, 34, 22, 14, 22, 17, 24, 22, 18, 14, 18, 12. 

(Because the source has a long life, its activity should not change appreciably during 
the time all the measurements are made.) 
(a) What are his mean and standard deviation? (Use the built-in functions on your 
calculator.) (b) According to Chauvenet's criterion, would he be justified in rejecting 
the value 34 as a mistake? Explain your reasoning clearly. (c) If he does reject this 
measurement, what does he get for his new mean and standard deviation? (Read the 
hint to Problem 6.4.) 

6.6. ** Chauvenet's criterion defines a boundary outside which a measurement is 
regarded as rejectable. If we make 10 measurements and one differs from the mean 
by more than about two standard deviations (in either direction), that measurement 
is considered rejectable. For 20 measurements, the corresponding boundary is ap­
proximately 2.2 standard deviations. Make a table showing the "boundary of reject­
ability" for 5, 10, 15, 20, 50, 100, 200, and 1,000 measurements of a quantity that 
is normally distributed. 

6. 7. ** Based on N measurements of a normally distributed quantity x, the best 
estimate of the width cr is the standard deviation <rx of the N measured values. 
Unfortunately, if N is small, this estimate is fairly uncertain. Specifically, the frac­
tional uncertainty in crx as an estimate of cr is given by (5.46) as 11✓2(N - 1). If 
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N = 6, for example, our estimate for (Tis about 30% uncertain. This large uncer­
tainty in (T means you should regard Chauvenet's criterion with considerable skepti­
cism when N is small, as the following example illustrates. 

An experimenter measures a certain current six times and obtains the following 
results (in milliamps): 

28, 25, 29, 18, 29, 24. 

(a) Find the mean x and standard deviation (Tx of these measurements. (b) If he 
decided to apply Chauvenet's criterion, would the experimenter reject the value 18? 
(c) Find the uncertainty-call it i)(Tx-in (Tx· (d) The true value of (T may well be 
as small as (Tx - i>(Tx or as large as (Tx + i>(Tx· Re-apply Chauvenet's criterion, using 
each of these two values for (T. Comment on the results. 



Chapter 7 

Weighted Averages 

This chapter addresses the problem of combining two or more separate and indepen­
dent measurements of a single physical quantity. We will find that the best estimate 
of that quantity, based on the several measurements, is an appropriate weighted 
average of those measurements. 

7.1 The Problem of Combining Separate Measurements 

Often, a physical quantity is measured several times, perhaps in several separate 
laboratories, and the question arises how these measurements can be combined to 
give a single best estimate. Suppose, for example, that two students, A and B, mea­
sure a quantity x carefully and obtain these results: 

Student A: x = xA ± <TA (7.1) 

and 

Student B: x = xB ± <TB. (7.2) 

Each result will probably itself be the result of several measurements, in which case 
xA will be the mean of all A's measurements and <TA the standard deviation of that 
mean (and similarly for xB and <TB)- The question is how best to combine xA and xB 

for a single best estimate of x. 
Before examining this question, note that if the discrepancy lxA - xBI between 

the two measurements is much greater than both uncertainties <TA and <TB, we should 
suspect that something has gone wrong in at least one of the measurements. In this 
situation, we would say that the two measurements are inconsistent, and we should 
examine both measurements carefully to see whether either ( or both) was subject to 
unnoticed systematic errors. 

Let us suppose, however, that the two measurements (7.1) and (7.2) are consis­
tent; that is, the discrepancy jxA - xBI is not significantly larger than both <TA and 
<TB. We can then sensibly ask what the best estimate xbest is of the true value X, 
based on the two measurements. Your first impulse might be to use the average 
(xA + xB)/2 of the two measurements. Some reflection should suggest, however, that 
this average is unsuitable if the two uncertainties <TA and <TB are unequal. The simple 173 
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average (xA + xB)/2 gives equal importance to both measurements, whereas the more 
precise reading should somehow be given more weight. 

Throughout this chapter, I will assume all systematic errors have been identified 
and reduced to a negligible level. Thus, all remaining errors are random, and the mea­
surements of x are distributed normally around the true value X. 

7.2 The Weighted Average 

We can solve our problem easily by using the principle of maximum likelihood, 
much as we did in Section 5.5. We are assuming that both measurements are gov­
erned by the Gauss distribution and denote the unknown true value of x by X. 
Therefore, the probability of Student A's obtaining his particular value xA is 

(7.3) 

and that of B's getting his observed xB is 

(7.4) 

The subscript X indicates explicitly that these probabilities depend on the unknown 
actual value. 

The probability that A finds the value xA and B the value xB is just the product 
of the two probabilities (7.3) and (7.4). In a way that should now be familiar, this 
product will involve an exponential function whose exponent is the sum of the two 
exponents in (7.3) and (7.4). We write this as 

Probxf.h) Probxf.h) 

oc _1_ e-xz12 

(TA(TB ' 
(7.5) 

where I have introduced the convenient shorthand x2 ( chi squared) for the exponent 

X2 = (XA (T~ xy + eB (T~ xy. (7.6) 

This important quantity is the sum of the squares of the deviations from X of the 
two measurements, each divided by its corresponding uncertainty. 

The principle of maximum likelihood asserts, just as before, that our best esti­
mate for the unknown true value X is that value for which the actual observations 
xA, xB are most likely. That is, the best estimate for X is the value for which the 
probability (7.5) is maximum or, equivalently, the exponent x2 is minimum. (Be­
cause maximizing the probability entails minimizing the "sum of squares" x2, this 
method for estimating X is sometimes called the "method of least squares.") Thus, 
to find the best estimate, we simply differentiate (7.6) with respect to X and set the 
derivative equal to zero, 

0. 
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The solution of this equation for X is our best estimate and is easily seen to be 

(best estimate for X) = { x~ + xB2) / {~ + ~)- (7.7) 
(TA (TB (TA (TB 

This rather ugly result can be made tidier if we define weights 

(7.8) 

With this notation, we can rewrite (7.7) as the weighted average (denoted xwav> 

(7.9) 

If the original two measurements are equally uncertain ((TA= (TB and hence 
wA = wB), this answer reduces to the simple average (xA + xB)/2. In general, when 
wA i=- wB, the weighted average (7.9) is not the same as the ordinary average; it is 
similar to the formula for the center of gravity of two bodies, where w A and wB are 
the actual weights of the two bodies, and xA and xB their positions. In (7.9), the 
"weights" are the inverse squares of the uncertainties in the original measurements, 
as in (7.8). If A's measurement is more precise than B's, then (TA< (TB and hence 
WA> wB, so the best estimate xbest is closer to xA than to xB, just as it should be. 

Quick Check 7.1. Workers from two laboratories report the lifetime of a cer­
tain particle as 10.0 ± 0.5 and 12 ± 1, both in nanoseconds. If they decide to 
combine the two results, what will be their respective weights as given by (7 .8) 
and their weighted average as given by (7.9)? 

Our analysis of two measurements can be generalized to cover any number of 
measurements. Suppose we have N separate measurements of a quantity x, 

with their corresponding uncertainties (]"1, (]"2, ... , (TN· Arguing much as before, we 
find that the best estimate based on these measurements is the weighted average 

(7.10) 

where the sums are over all N measurements, i = l, ... , N, and the weight W; of 
each measurement is the reciprocal square of the corresponding uncertainty, 

(7.11) 

for i = l, 2, ... , N. 
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Because the weight W; = 1/a/ associated with each measurement involves the 
square of the corresponding uncertainty <r;, any measurement that is much less pre­
cise than the others contributes very much less to the final answer (7.10). For exam­
ple, if one measurement is four times less precise than the rest, its weight is 16 
times less than the other weights, and for many purposes this measurement could 
simply be ignored. 

Because the weighted average xwav, is a function of the original measured values 
x 1, x 2, ... , xN, the uncertainty in Xwav can be calculated using error propagation. As 
you can easily check (Problem 7.8), the uncertainty in xwav is 

(7.12) 

This rather ugly result is perhaps a little easier to remember if we rewrite (7.11) as 

(7.13) 

Paraphrasing Equation (7.13), we can say that the uncertainty in each measurement 
is the reciprocal square root of its weight. Returning to Equation (7.12), we can 
paraphrase it similarly to say that the uncertainty in the grand answer Xwav is the 
reciprocal square root of the sum of all the individual weights; in other words, the 
total weight of the final answer is the sum of the individual weights w;. 

Quick Check 7.2. What is the uncertainty in your final answer for Quick 
Check 7.1? 

7.3 An Example 

Here is an example involving three separate measurements of the same resistance. 

Example: Three Measurements of a Resistance 

Each of three students measures the same resistance several times, and their three 
final answers are (all in ohms): 

Student 1: R 

Student 2: R 

Student 3: R 

11 ± 1 

12 ± 1 

10 ± 3 

Given these three results, what is the best estimate for the resistance R? 
The three uncertainties cr1, cr2, cr3 are 1, 1, and 3. Therefore, the corresponding 

weights W; = Ver/ are 

Wz = 1, l 
9• 



Principal Definitions and Equations of Chapter 7 177 

The best estimate for R is the weighted average, which according to (7.10) is 

LW;R; 

LW; 

= (1 X 11) + (1 X 12) + (! X 10) = 
1 + 1 + A 

The uncertainty in this answer is given by (7.12) as 

1 1 
(Twav = ~ = ✓1 + 1 + A 

Thus, our final conclusion (properly rounded) is 

R = 11.4 ± 0.7 ohms. 

11.42 ohms. 

0.69. 

For interest, let us see what answer we would get if we were to ignore com­
pletely the third student's measurement, which is three times less accurate and hence 
nine times less important. Here, a simple calculation gives Rbest = 11.50 (compared 
with 11.42) with an uncertainty of 0.71 (compared with 0.69). Obviously, the third 
measurement does not have a big effect. 

Principal Definitions and Equations of Chapter 7 

If x1, x2, ... , xN are measurements of a single quantity x, with known uncertain-
ties CT1, CTz, ... , CTN, then the best estimate for the true value of x is the weighted 
average 

[See (7.10)] 

where the sums are over all N measurements, i = 1, ... , N, and the weights w; 

are the reciprocal squares of the corresponding uncertainties, 

The uncertainty in Xwav is 

[See (7.12)] 

where, again, the sum runs over all of the measurements i 1, 2, .. . ,N. 



178 Chapter 7: Weighted Averages 

Problems for Chapter 7 

For Section 7 .2: The Weighted Average 

7.1. * Find the best estimate and its uncertainty based on the following four mea­
surements of a certain voltage: 

1.4 ± 0.5, 1.2 ± 0.2, 1.0 ± 0.25, 1.3 ± 0.2. 

7.2. * Three groups of particle physicists measure the mass of a certain elemen­
tary particle with the results (in units of MeV/c2): 

1,967.0 ± 1.0, 1,969 ± 1.4, 1,972.1 ± 2.5. 

Find the weighted average and its uncertainty. 

7.3. * (a) Two measurements of the speed of sound u give the answers 334 ± 1 
and 336 ± 2 (both in m/s). Would you consider them consistent? If so, calculate 
the best estimate for u and its uncertainty. (b) Repeat part (a) for the results 334 ± 1 
and 336 ± 5. Is the second measurement worth including in this case? 

7.4. ** Four measurements are made of the wavelength of light emitted by a 
certain atom. The results, in nanometers, are: 

503 ± 10, 491 ± 8, 525 ± 20, 570 ± 40. 

Find the weighted average and its uncertainty. Is the last measurement worth in­
cluding? 

7.5. ** Two students measure a resistance by different methods. Each makes 10 
measurements and computes the mean and its standard deviation, and their final 
results are as follows: 

Student A: R = 72 ± 8 ohms 

Student B: R = 78 ± 5 ohms. 

(a) Including both measurements, what are the best estimate of R and its uncer­
tainty? (b) Approximately how many measurements (using his same technique) 
would student A need to make to give his result the same weight as B's? (Remember 
that each student's final uncertainty is the SDOM, which is equal to the SD/-vM.) 

7.6. ** Two physicists measure the rate of decay of a long-lived radioactive 
source. Physicist A monitors the sample for 4 hours and observes 412 decays; physi­
cist B monitors it for 6 hours and observes 576 decays. (a) Find the uncertainties in 
these two counts using the square-root rule (3.2). (Remember that the square-root 
rule gives the uncertainty in the actual counted number.) (b) What should each 
physicist report for the decay rate in decays per hour, with its uncertainty? (c) What 
is the proper weighted average of these two rates, with its uncertainty? 

7.7. ** Suppose that N separate measurements of a quantity x all have the same 
uncertainty. Show clearly that in this situation the weighted average (7.10) reduces 
to the ordinary average, or mean, x = I.xJN, and that the uncertainty (7.12) re­
duces to the familiar standard deviation of the mean. 
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7.8. ** The weighted average (7.10) of N separate measurements is a simple 
function of x 1, x 2, ... , xN. Therefore, the uncertainty in Xwav can be found by error 
propagation. Prove in this way that the uncertainty in xwav is as claimed in (7.12). 

7.9. *** (a) If you have access to a spreadsheet program such as Lotus 123 or 
Excel, create a spreadsheet to calculate the weighted average of three measurements 
xi with given uncertainties <Ti. In the first column, give the trial number i, and use 
columns 2 and 3 to enter the data X; and the uncertainties <T;- In columns 4 and 5, 
put functions to calculate the weights W; and the products wixi; at the bottoms of 
these columns, you can calculate the sums LW; and LW;X;- Finally, in some conve-
nient position, place functions to calculate xwav and its uncertainty (7.12). Test your 
spreadsheet using the data of Section 7.3. (b) Try to modify your spreadsheet so 
that it can handle any number of measurements up to some maximum (20 say). 
(The main difficulty is that you will probably need to use some logical functions to 
make sure that empty cells in column 3 don't get counted as zeros and cause trouble 
with the function that calculates w; = 1/<r;2.) Test your new spreadsheet using the 
data in Section 7.3 and in Problem 7.1. 





Chapter 8 

Least-Squares Fitting 

Our discussion of the statistical analysis of data has so far focused exclusively on 
the repeated measurement of one single quantity, not because the analysis of many 
measurements of one quantity is the most interesting problem in statistics, but be­
cause this simple problem must be well understood before more general ones can 
be discussed. Now we are ready to discuss our first, and very important, more 
general problem. 

8.1 Data That Should Fit a Straight Line 

One of the most common and interesting types of experiment involves the measure­
ment of several values of two different physical variables to investigate the mathe­
matical relationship between the two variables. For instance, an experimenter might 
drop a stone from various different heights h1, ... , hN and measure the correspond­
ing times of fall t1, ... , tN to see if the heights and times are connected by the 
expected relation h = ½gt2. 

Probably the most important experiments of this type are those for which the 
expected relation is linear. For instance, if we believe that a body is falling with 
constant acceleration g, then its velocity v should be a linear function of the time t, 

V = V 0 + gt. 

More generally, we will consider any two physical variables x and y that we suspect 
are connected by a linear relation of the form 

y =A+ Bx, (8.1) 

where A and B are constants. Unfortunately, many different notations are used for a 
linear relation; beware of confusing the form (8.1) with the equally popular 
y = ax+ b. 

If the two variables y and x are linearly related as in (8.1), then a graph of y 
against x should be a straight line that has slope Band intersects they axis at y = A. 
If we were to measure N different values x1, ... , xN and the corresponding values 
y1, ... , YN and if our measurements were subject to no uncertainties, then each of 
the points (x;, Y;) would lie exactly on the line y = A + Bx, as in Figure 8.l(a). In 181 
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y y 

(a) (b) 

Figure 8.1. (a) If the two variables y and x are linearly related as in Equation (8.1), and if 
there were no experimental uncertainties, then the measured points (x;, Y;) would all lie exactly 
on the line y = A + Bx. (b) In practice, there always are uncertainties, which can be shown by 
error bars, and the points (x;, Y;) can be expected only to lie reasonably close to the line. Here, 
only y is shown as subject to appreciable uncertainties. 

practice, there are uncertainties, and the most we can expect is that the distance of 
each point (x;, Y;) from the line will be reasonable compared with the uncertainties, 
as in Figure 8.l(b). 

When we make a series of measurements of the kind just described, we can ask 
two questions. First, if we take for granted that y and x are linearly related, then the 
interesting problem is to find the straight line y = A + Bx that best fits the measure­
ments, that is, to find the best estimates for the constants A and B based on the data 
(x1, y1), ... , (xN, YN)- This problem can be approached graphically, as discussed 
briefly in Section 2.6. It can also be treated analytically, by means of the principle 
of maximum likelihood. This analytical method of finding the best straight line to 
fit a series of experimental points is called linear regression, or the least-squares fit 
for a line, and is the main subject of this chapter. 

The second question that can be asked is whether the measured values (x1, y1), 
... , (xN, YN) do really bear out our expectation that y is linear in x. To answer this 
question, we would first find the line that best fits the data, but we must then devise 
some measure of how well this line fits the data. If we already know the uncertain­
ties in our measurements, we can draw a graph, like that in Figure 8.l(b), that 
shows the best-fit straight line and the experimental data with their error bars. We 
can then judge visually whether or not the best-fit line passes sufficiently close to 
all of the error bars. If we do not know the uncertainties reliably, we must judge 
how well the points fit a straight line by examining the distribution of the points 
themselves. We take up this question in Chapter 9. 

8.2 Calculation of the Constants A and B 

Let us now return to the question of finding the best straight line y = A + Bx to 
fit a set of measured points (x1, y1), ... , (xN, YN)- To simplify our discussion, we 
will suppose that, although our measurements of y suffer appreciable uncertainty, 
the uncertainty in our measurements of x is negligible. This assumption is often 
reasonable, because the uncertainties in one variable often are much larger than 
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those in the other, which we can therefore safely ignore. We will further assume 
that the uncertainties in y all have the same magnitude. (This assumption is also 
reasonable in many experiments, but if the uncertainties are different, then our anal-
ysis can be generalized to weight the measurements appropriately; see Problem 8.9.) 
More specifically, we assume that the measurement of each Y; is governed by the 
Gauss distribution, with the same width parameter cry for all measurements. 

If we knew the constants A and B, then, for any given value X; (which we are 
assuming has no uncertainty), we could compute the true value of the correspond­
ing y;, 

(true value for y;) = A + Bx;. (8.2) 

The measurement of Y; is governed by a normal distribution centered on this true 
value, with width parameter cry. Therefore, the probability of obtaining the observed 
value Y; is 

(8.3) 

where the subscripts A and B indicate that this probability depends on the (unknown) 
values of A and B. The probability of obtaining our complete set of measurements 
Yi, ... , YN is the product 

(8.4) 

where the exponent is given by 

(8.5) 

In the now-familiar way, we will assume that the best estimates for the unknown 
constants A and B, based on the given measurements, are those values of A and B 
for which the probability ProbA.B(Yi, ... , YN) is maximum, or for which the sum of 
squares x2 in (8.5) is a minimum. (This is why the method is known as least­
squares fitting.) To find these values, we differentiate x2 with respect to A and B 
and set the derivatives equal to zero: 

0 

and 

axz -2 N 

aB = er 2 L x;(Y; - A - Bx;) = o. 
Y 1=1 

These two equations can be rewritten as simultaneous equations for A and B: 

AN + Blx; = LY; 

and 

(8.6) 

(8.7) 

(8.8) 

(8.9) 
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Here, I have omitted the limits i = 1 to N from the summation signs I,. In the 
following discussion, I also omit the subscripts i when there is no serious danger of 
confusion; thus, L.XiYi is abbreviated to I,.xy and so on. 

The two equations (8.8) and (8.9), sometimes called normal equations, are eas­
ily solved for the least-squares estimates for the constants A and B, 

(8.10) 

and 

(8.11) 

where I have introduced the convenient abbreviation for the denominator, 

(8.12) 

The results (8.10) and (8.11) give the best estimates for the constants A and B 
of the straight line y = A + Bx, based on the N measured points (x1, Yi), ... , 
(xN, YN). The resulting line is called the least-squares fit to the data, or the line of 
regression of y on x. 

Example: Length versus Mass for a Spring Balance 

A student makes a scale to measure masses with a spring. She attaches its top end 
to a rigid support, hangs a pan from its bottom, and places a meter stick behind the 
arrangement to read the length of the spring. Before she can use the scale, she must 
calibrate it; that is, she must find the relationship between the mass in the pan and 
the length of the spring. To do this calibration, she gets five accurate 2-kg masses, 
which she adds to the pan one by one, recording the corresponding lengths l; as 
shown in the first three columns of Table 8.1. Assuming the spring obeys Hooke's 
law, she anticipates that l should be a linear function of m, 

l = A+ Em. (8.13) 

(Here, the constant A is the unloaded length of the spring, and B is g/k, where k is 
the usual spring constant.) The calibration equation (8.13) will let her find any 
unknown mass m from the corresponding length l, once she knows the constants A 
and B. To find these constants, she uses the method of least squares. What are her 
answers for A and B? Plot her calibration data and the line given by her best fit 
(8.13). If she puts an unknown mass m in the pan and observes the spring's length 
to be l = 53.2 cm, what is m? 
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Table 8.1. Masses m; (in kg) and lengths l; (in cm) for a spring balance. 
The "x" and "y" in quotes indicate which variables play the roles of x and 
y in this example. 

Trial number "x" "y" 
Load, m; Length, l; m-2 

I m;l; 

1 2 42.0 4 84 
2 4 48.4 16 194 
3 6 51.3 36 308 
4 8 56.3 64 450 
5 10 58.6 100 586 

N=5 I.m; = 30 I.t; = 256.6 Im?= 220 I.m;l; = 1,622 

As often happens in such problems, the two variables are not called x and y, 
and one must be careful to identify which is which. Comparing (8.13) with the 
standard form, y = A + Bx, we see that the length l plays the role of the dependent 
variable y, while the mass m plays the role of the independent variable x. The 
constants A and B are given by (8.10) through (8.12), with the replacements 

and 

(This correspondence is indicated by the headings "x" and "y" in Table 8.1.) To find 
A and B, we need to find the sums Im;, "'.El;, Im?, and Im;!;; therefore, the last two 
columns of Table 8.1 show the quantities m? and mJ;, and the corresponding sum 
is shown at the bottom of each column. 

Computing the constants A and B is now straightforward. According to (8.12), 
the denominator d is 

d N"'.Em2 - ("'.Em)2 
5 X 220 - 302 = 200. 

Next, from (8.10) we find the intercept (the unstretched length) 

"'.Em2 "'.El - "'.Em"'.Eml 
A = d 

220 X 256.6 - 30 X 1622 
200 

Finally, from (8.11) we find the slope 

B = N"'.Eml - "'.Em"'.El 
d 

5 X 1622 - 30 X 256.6 
200 

39.0 cm. 

2.06 cm/kg. 
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Figure 8.2. A plot of the data from Table 8.1 and the best-fit line (8.13). 

A plot of the data and the line (8.13) using these values of A and B is shown in 
Figure 8.2. If the mass m stretches the spring to 53.2 cm, then according to (8.13) 
the mass is 

m 
l - A 

B 
(53.2 - 39.0) cm 

2.06 cm/kg 
6.9 kg. 

Quick Check 8.1. Find the least-squares best-fit line y = A + Bx through the 
three points (x, y) = (-1, 0), (0, 6), and (1, 6). Using squared paper, plot the 
points and your line. [Note that because the three values of x (-1, 0, and 1) are 
symmetric about zero, lx = 0, which simplifies the calculation of A and B. In 
some experiments, the values of x can be arranged to be symmetrically spaced 
in this way, which saves some trouble.] 

Now that we know how to find the best estimates for the constants A and B, 
we naturally ask for the uncertainties in these estimates. Before we can find these 
uncertainties, however, we must discuss the uncertainty cry in the original measure­
ments of y1, Yz, ... , YN· 

8.3 Uncertainty in the Measurements of y 

In the course of measuring the values y1, ... , YN• we have presumably formed some 
idea of their uncertainty. Nonetheless, knowing how to calculate the uncertainty by 
analyzing the data themselves is important. Remember that the numbers y1, ... , YN 
are not N measurements of the same quantity. (They might, for instance, be the 
times for a stone to fall from N different heights.) Thus, we certainly do not get an 
idea of their reliability by examining the spread in their values. 

Nevertheless, we can easily estimate the uncertainty cry in the numbers y1, ... , 
YN· The measurement of each Y; is (we are assuming) normally distributed about its 
true value A + Bx;, with width parameter cry- Thus the deviations Y; - A - Bx; are 
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normally distributed, all with the same central value zero and the same width cry­
This situation immediately suggests that a good estimate for cry would be given by 
a sum of squares with the familiar form 

cry = ✓~l(Y; - A - Bx;)2• (8.14) 

In fact, this answer can be confirmed by means of the principle of maximum likeli­
hood. As usual, the best estimate for the parameter in question ( cry here) is that 
value for which the probability (8.4) of obtaining the observed values y1, ... , YN is 
maximum. As you can easily check by differentiating (8.4) with respect to cry and 
setting the derivative equal to zero, this best estimate is precisely the answer (8.14). 
(See Problem 8.12.) 

Unfortunately, as you may have suspected, the estimate (8.14) for cry is not 
quite the end of the story. The numbers A and B in (8.14) are the unknown true 
values of the constants A and B. In practice, these numbers must be replaced by our 
best estimates for A and B, namely, (8.10) and (8.11), and this replacement slightly 
reduces the value of (8.14). It can be shown that this reduction is compensated for 
if we replace the factor N in the denominator by (N - 2). Thus, our final answer 
for the uncertainty in the measurements y1, ... , YN is 

(8.15) 

with A and B given by (8.10) and (8.11). If we already h~ve an independent estimate 
of our uncertainty in y1, ... , YN, we would expect this estimate to compare with cry 
as computed from (8.15). 

I will not attempt to justify the factor of (N - 2) in (8.15) but can make some 
comments. First, as long as N is moderately large, the difference between N and 
(N - 2) is unimportant anyway. Second, that the factor (N - 2) is reasonable be­
comes clear if we consider measuring just two pairs of data (x1, y1) and (x2, y2). 
With only two points, we can always find a line that passes exactly through both 
points, and the least-squares fit will give this line. That is, with just two pairs of 
data, we cannot possibly deduce anything about the reliability of our measurements. 
Now, since both points lie exactly on the best line, the two terms of the sum in 
(8.14) and (8.15) are zero. Thus, the formula (8.14) (with N = 2 in the denominator) 
would give the absurd answer cry= 0; whereas (8.15), with N - 2 = 0 in the de­
nominator, gives cry = 0/0, indicating correctly that cry is undetermined after only 
two measurements. 

The presence of the factor (N - 2) in (8.15) is reminiscent of the (N - 1) that 
appeared in our estimate of the standard deviation of N measurements of one quan­
tity x, in Equation (5.45). There, we made N measurements x1, ... , xN of the one 
quantity x. Before we could calculate crx, we had to use our data to find the mean 
.x. In a certain sense, this computation left only (N - 1) independent measured val­
ues, so we say that, having computed .x, we have only (N - 1) degrees of freedom 
left. Here, we made N measurements, but before calculating cry we had to compute 
the two quantities A and B. Having done this, we had only (N - 2) degrees of 
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freedom left. In general, we define the number of degrees of freedom at any stage 
in a statistical calculation as the number of independent measurements minus the 
number of parameters calculated from these measurements. We can show (but will 
not do so here) that the number of degrees of freedom, not the number of measure­
ments, is what should appear in the denominator of formulas such as (8.15) and 
(5.45). This fact explains why (8.15) contains the factor (N - 2) and (5.45) the 
factor (N - 1 ). 

8.4 Uncertainty in the Constants A and B 

Having found the uncertainty CTY in the measured numbers y1, ... , YN, we can easily 
return to our estimates for the constants A and B and calculate their uncertainties. 
The point is that the estimates (8.10) and (8.11) for A and B are well-defined func­
tions of the measured numbers y1, ... , YN· Therefore, the uncertainties in A and B 
are given by simple error propagation in terms of those in y1, ... , YN· I leave it as 
an exercise for you to check (Problem 8.16) that 

(8.16) 

and 

(8.17) 

where A is given by (8.12) as usual. 
The results of this and the previous two sections were based on the assumptions 

that the measurements of y were all equally uncertain and that any uncertainties in 
x were negligible. Although these assumptions often are justified, we need to discuss 
briefly what happens when they are not. First, if the uncertainties in y are not all 
equal, we can use the method of weighted least squares, as described in Problem 
8.9. Second, if there are uncertainties in x but not in y, we can simply interchange 
the roles of x and y in our analysis. The remaining case is that in which both x and 
y have uncertainties-a case that certainly can occur. The least-squares fitting of a 
general curve when both x and y have uncertainties is rather complicated and even 
controversial. In the important special case of a straight line (which is all we have 
discussed so far), uncertainties in both x and y make surprisingly little difference, 
as we now discuss. 

Suppose, first, that our measurements of x are subject to uncertainty but those 
of y are not, and we consider a particular measured point (x, y). This point and the 
true line y = A + Bx are shown in Figure 8.3. The point (x, y) does not lie on the 
line because of the error--call it Ax-in our measurement of x. Now, we can see 
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Figure 8.3. A measured point (x, y) and the line y = A + Bx on which the point is supposed 
to lie. The error .::ix in x, with y exact, produces the same effect as an error .:iy(equiv) 
= (dy/dx).:ix in y, with x exact. (Here, dy/dx denotes the slope of the expected line.) 

easily from the picture that the error dx in x, with no error in y, produces exactly 
the same effect as if there had been no error in x but an error in y given by 

dy(equiv) = ! dx (8.18) 

(where "equiv" stands for "equivalent"). The standard deviation a-x is just the root­
mean-square value of dx that would result from repeating this measurement many 
times. Thus, according to (8.18), the problem with uncertainties a-x in x can be 
replaced with an equivalent problem with uncertainties in y, given by 

(8.19) 

The result (8.19) is true whatever the curve of y vs x, but (8.19) is especially 
simple if the curve is a straight line, because the slope dy/dx is just the constant B. 
Therefore, for a straight line 

(8.20) 

In particular, if all the uncertainties <Tx are equal, the same is true of the equivalent 
uncertainties a-y(equiv). Therefore, the problem of fitting a line to points (x;, y;) with 
equal uncertainties in x but no uncertainties in y is equivalent to the problem of 
equal uncertainties in y but none in x. This equivalence means we can safely use 
the method already described for either problem. [In practice, the points do not lie 
exactly on the line, and the two "equivalent" problems will not give exactly the 
same line. Nevertheless, the two lines should usually agree within the uncertainties 
given by (8.16) and (8.17). See Problem 8.17.] 

We can now extend this argument to the case that both x and y have uncertain­
ties. The uncertainty in x is equivalent to an uncertainty in y as given by (8.20). In 
addition, y is already subject to its own uncertainty <Ty. These two uncertainties are 
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independent and must be combined in quadrature. Thus, the original problem, with 
uncertainties in both x and y, can be replaced with an equivalent problem in which 
only y has uncertainty, given by 

(8.21) 

Provided all the uncertainties a-x are the same, and likewise all the uncertainties a-y, 
the equivalent uncertainties (8.21) are all the same, and we can safely use the formu­
las (8.10) through (8.17). 

If the uncertainties in x (or in y) are not all the same, we can still use (8.21), 
but the resulting uncertainties will not all be the same, and we will need to use the 
method of weighted least squares. If the curve to which we are fitting our points is 
not a straight line, a further complication arises because the slope dy!dx is not a 
constant and we cannot replace (8.19) with (8.20). Nevertheless, we can still use 
(8.21) (with dy/dx in place of B) to replace the original problem (with uncertainties 
in both x and y) by an equivalent problem in which only y has uncertainties as given 
by (8.21). 1 

8.5 An Example 

Here is a simple example of least-squares fitting to a straight line; it involves the 
constant-volume gas thermometer. 

Example: Measurement of Absolute Zero with a Constant-Volume Gas 
Thermometer 

If the volume of a sample of an ideal gas is kept constant, its temperature T is a 
linear function of its pressure P, 

T = A+ BP. (8.22) 

Here, the constant A is the temperature at which the pressure P would drop to zero 
(if the gas did not condense into a liquid first); it is called the absolute zero of 
temperature, and has the accepted value 

A = -273.15°C 

The constant B depends on the nature of the gas, its mass, and its volume. 2 By 
measuring a series of values for T and P, we can find the best estimates for the 
constants A and B. In particular, the value of A gives the absolute zero of tempera­
ture. 

One set of five measurements of P and T obtained by a student was as shown 
in the first three columns of Table 8.2. The student judged that his measurements of 

1 This procedure is quite complicated in practice. Before we can use (8.21) to find the uncertainty uy(equiv), 
we need to know the slope B (or, more generally, dy/dx), which is not known until we have solved the 
problem! Nevertheless, we can get a reasonable first approximation for the slope using the method of un­
weighted least squares, ignoring all of the complications discussed here. This method gives an approximate 
value for the slope B, which can then be used in (8.21) to give a reasonable approximation for uy(equiv). 

2The difference T - A is called the absolute temperature. Thus (8.22) can be rewritten to say that the 
absolute temperature is proportional to the pressure ( at constant volume). 
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Table 8.2. Pressure (in mm of mercury) and temperature 
(0C) of a gas at constant volume. 

"x" "y" 
Trial number Pressure Temperature 

P; T; A +BP; 

1 65 -20 -22.2 
2 75 17 14.9 
3 85 42 52.0 
4 95 94 89.1 
5 105 127 126.2 

P had negligible uncertainty, and those of T were all equally uncertain with an 
uncertainty of "a few degrees." Assuming his points should fit a straight line of the 
form (8.22), he calculated his best estimate for the constant A (the absolute zero) 
and its uncertainty. What should have been his conclusions? 

All we have to do here is use formulas (8.10) and (8.16), with x; replaced by P; 
and Y; by T;, to calculate all the quantities of interest. This requires us to compute 
the sums IP, LP2, IT, LPT. Many pocket calculators can evaluate all these sums 
automatically, but even without such a machine, we can easily handle these calcula­
tions if the data are properly organized. From Table 8.2, we can calculate 

IP 425, 
I,p2 37,125, 

IT 260, 

I.PT 25,810, 

~ NLP2 - (LP)2 = 5,000. 

In this kind of calculation, it is important to keep plenty of significant figures be­
cause we have to take differences of these large numbers. Armed with these sums, 
we can immediately calculate the best estimates for the constants A and B: 

A = I,p2 IT~ IP I.PT = -263.35 

and 

B = NI.PT~ 'I,PI,T = 3_71. 

This calculation already gives the student's best estimate for absolute zero, 
A= -263°C. 

Knowing the constants A and B, we can next calculate the numbers A + BP;, 
the temperatures "expected" on the basis of our best fit to the relation T = A + BP. 
These numbers are shown in the far right column of the table, and as we would 
hope, all agree reasonably well with the observed temperatures. We can now take 
the difference between the figures in the last two columns and calculate 

(TT = ✓N ~ 2 L(T; - A - BP;)2 = 6.7. 
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Figure 8.4. Graph of temperature T vs pressure P for a gas at constant volume. The error bars 
extend one standard deviati~n, aT, on each side of the five experimental points, and the line is 
the least-squares best fit. The absolute zero of temperature was found by extrapolating the line 
back to its intersection with the T axis. 

This result agrees reasonably with the student's estimate that his temperature mea­
surements were uncertain by "a few degrees." 

Finally, we can calculate the uncertainty in A using (8.16): 

(TA = CTr✓I.P21 a = 18. 

Thus, our student's final conclusion, suitably rounded, should be 

absolute zero, A = - 260 ± 20°C, 

which agrees satisfactorily with the accepted value, -273°C. 
As is often true, these results become much clearer if we graph them, as in 

Figure 8.4. The five data points, with their uncertainties of ± 7° in T, are shown 
on the upper right. The best straight line passes through four of the error bars and 
close to the fifth. 

To find a value for absolute zero, the line was extended beyond all the data 
points to its intersection with the Taxis. This process of extrapolation (extending a 
curve beyond the data points that determine it) can introduce large uncertainties, as 
is clear from the picture. A very small change in the line's slope will cause a large 
change in its intercept on the distant T axis. Thus, any uncertainty in the data is 
greatly magnified if we have to extrapolate any distance. This magnification explains 
why the uncertainty in the value of absolute zero ( ± 18°) is so much larger than 
that in the original temperature measurements ( ± 7°). 
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8.6 Least-Squares Fits to Other Curves 

So far in this chapter, we have considered the observation of two variables satisfying 
a linear relation, y = A + Bx, and we have discussed the calculation of the constants 
A and B. This important problem is a special case of a wide class of curve-fitting 
problems, many of which can be solved in a similar way. In this section, I mention 
briefly a few more of these problems. 

FITTING A POLYNOMIAL 

Often, one variable, y, is expected to be expressible as a polynomial in a second 
variable, x, 

y = A + Bx + C:x2 + • • · + Hxn. (8.23) 

For example, the height y of a falling body is expected to be quadratic in the time t, 

y = Yo + Vot - ½gt2, 

where Yo and v0 are the initial height and velocity, and g is the acceleration of 
gravity. Given a set of observations of the two variables, we can find best estimates 
for the constants A, B, . .. , Hin (8.23) by an argument that exactly parallels that of 
Section 8.2, as I now outline. 

To simplify matters, we suppose that the polynomial (8.23) is actually a qua­
dratic, 

y = A + Bx + C:x2. (8.24) 

(You can easily extend the analysis to the general case if you wish.) We suppose, 
as before, that we have a series of measurements (xi, Y;), i = l, ... , N, with the Y; 
all equally uncertain and the xi all exact. For each xi, the corresponding true value 
of Y; is given by (8.24), with A, B, and C as yet unknown. We assume that the 
measurements of the Yi are governed by normal distributions, each centered on the 
appropriate true value and all with the same width CTy- This assumption lets us 
compute the probability of obtaining our observed values Yi, ... , YN in the familiar 
form 

where now 

P b( ) -xz12 ro Y1, ... ' YN oc e ' 

X2 = f (Yi - A - B:; - Cx/)2. 
i=l (Ty 

(8.25) 

(8.26) 

[This equation corresponds to Equation (8.5) for the linear case.] The best estimates 
for A, B, and C are those values for which Prob(Yi, ... , YN) is largest, or x2 is 
smallest. Differentiating x2 with respect to A, B, and C and setting these derivatives 
equal to zero, we obtain the three equations (as you should check; see Problem 
8.21): 

AN+ BI,x + CI,x2 

AI,x + BI,x2 + CI,x3 

AI,x2 + BI,x3 + CI,x4 

(8.27) 
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For any given set of measurements (x;, y), these simultaneous equations for A, B, 
and C (known as the normal equations) can be solved to find the best estimates for 
A, B, and C. With A, B, and C calculated in this way, the equation 
y = A + Bx + Cx2 is called the least-squares polynomial fit, or the polynomial 
regression, for the given measurements. (For an example, see Problem 8.22.) 

The method of polynomial regression generalizes easily to a polynomial of any 
degree, although the resulting normal equations become cumbersome for polynomi­
als of high degree. In principle, a similar method can be applied to any function 
y = f(x) that depends on various unknown parameters A, B, .... Unfortunately, 
the resulting normal equations that determine the best estimates for A, B, ... can 
be difficult or impossible to solve. However, one large class of problems can always 
be solved, namely, those problems in which the function y = f(x) depends linearly 
on the parameters A, B, ... . These include all polynomials (obviously the polyno­
mial (8.23) is linear in its coefficients A, B, ... ) but they also include many other 
functions. For example, in some problems y is expected to be a sum of trigonometric 
functions, such as 

y = A sin x + B cos x. (8.28) 

For this function, and in fact for any function that is linear in the parameters A, 
B, . . . , the normal equations that determine the best estimates for A, B, . . . are si­
multaneous linear equations, which can always be solved (see Problems 8.23 and 
8.24). 

EXPONENTIAL FUNCTIONS 

One of the most important functions in physics is the exponential function 

y = Ae8X, (8.29) 

where A and B are constants. The intensity / of radiation, after passing a distance x 
through a shield, falls off exponentially: 

I = /0 e-µ.x, 

where / 0 is the original intensity and µ characterizes the absorption by the shield. 
The charge on a short-circuited capacitor drains away exponentially: 

Q = Qoe-At 

where Q0 is the original charge and X. = 1/(RC), where R and C are the resistance 
and capacitance. 

If the constants A and B in (8.29) are unknown, we naturally se~ estimates of 
them based on measurements of x and y. Unfortunately, direct application of our 
previous arguments leads to equations for A and B that cannot be conveniently 
solved. We can, however, transform the nonlinear relation (8.29) between y and x 
into a linear relation, to which we can apply our least-squares fit. 

To effect the desired "linearization," we simply take the natural logarithm of 
(8.29) to give 

lny = lnA + Bx. (8.30) 
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We see that, even though y is not linear in x, ln y is. This conversion of the nonlinear 
(8.29) into the linear (8.30) is useful in many contexts besides that of least-squares 
fitting. If we want to check the relation (8.29) graphically, then a direct plot of y 
against x will produce a curve that is hard to identify visually. On the other hand, a 
plot of ln y against x ( or of log y against x) should produce a straight line, which 
can be identified easily. (Such a plot is especially easy if you use "semilog" graph 
paper, on which the graduations on one axis are spaced logarithmically. Such paper 
lets you plot logy directly without even calculating it.) 

The usefulness of the linear equation (8.30) in least-squares fitting is readily 
apparent. If we believe that y and x should satisfy y = Ae8x, then the variables 
z = lny and x should satisfy (8.30), or 

z = lnA + Bx. (8.31) 

If we have a series of measurements (x;, y;), then for each Y; we can calculate z; = 
lny;. Then the pairs (x;, z;) should lie on the line (8.31). This line can be fitted by 
the method of least squares to give best estimates for the constants ln A (from which 
we can find A) and B. 

Example: A Population of Bacteria 

Many populations ( of people, bacteria, radioactive nuclei, etc.) tend to vary 
exponentially over time. If a population N is decreasing exponentially, we write 

(8.32) 

where T is called the population's mean life [ closely related to the half-life, t112; in 
fact, t112 = (ln 2) T]. A biologist suspects that a population of bacteria is decreasing 
exponentially as in (8.32) and measures the population on three successive days; he 
obtains the results shown in the first two columns of Table 8.3. Given these data, 
what is his best estimate for the mean life T? 

Table 8.3. Population of bacteria. 

Time t; (days) Population N; Z; = lnN; 

0 153,000 11.94 
1 137,000 11.83 
2 128,000 11.76 

If N varies as in (8.32), then the variable z = lnN should be linear in t: 

t 
z = lnN = lnN0 - -. 

'T 
(8.33) 

Our biologist therefore calculates the three numbers Z; = lnN; (i 0, 1, 2) shown 
in the third column of Table 8.3. Using these numbers, he makes a least-squares fit 
to the straight line (8.33) and finds as best estimates for the coefficients ln N0 and 
(-1/T), 

lnN0 = 11.93 and (-1/T) = -0.089 day- 1. 
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I The second of these coefficients implies that his best estimate for the mean life is 

L r = 11.2 days. 

The method just described is attractively simple ( especially with a calculator 
that performs linear regression automatically) and is frequently used. Nevertheless, 
the method is not quite logically sound. Our derivation of the least-squares fit to a 
straight line y = A + Bx was based on the assumption that the measured values 
y1, ... , YN were all equally uncertain. Here, we are performing our least-squares fit 
using the variable z = In y. Now, if the measured values Yi are all equally uncertain, 
then the values Z; = In Yi are not. In fact, from simple error propagation we know 
that 

(8.34) 

Thus, if CTY is the same for all measurements, then CTz varies (with CTz larger when y 
is smaller). Evidently, the variable z = In y does not satisfy the requirement of equal 
uncertainties for all measurements, if y itself does. 

The remedy for this difficulty is straightforward. The least-squares procedure 
can be modified to allow for different uncertainties in the measurements, provided 
the various uncertainties are known. (This method of weighted least squares is out­
lined in Problem 8.9). If we know that the measurements of Yi, ... , YN really are 
equally uncertain, then Equation (8.34) tells us how the uncertainties in z1, ... , zN 

vary, and we can therefore apply the method of weighted least squares to the equa­
tion z = lnA + Bx. 

In practice, we often cannot be sure that the uncertainties in y1, ... , YN really 
are constant; so we can perhaps argue that we could just as well assume the uncer­
tainties in z1, ... , zN to be constant and use the simple unweighted least squares. 
Often the variation in the uncertainties is small, and which method is used makes 
little difference, as in the preceding example. In any event, when the uncertainties 
are unknown, straightforward application of the ordinary (unweighted) least-squares 
fit is an unambiguous and simple way to get reasonable (if not best) estimates for 
the constants A and B in the equation y = Ae8x, so it is frequently used in this 
way. 

MULTIPLE REGRESSION 

Finally, we have so far discussed only observations of two variables, x and y, 
and their relationship. Many real problems, however, have more than two variables 
to be considered. For example, in studying the pressure P of a gas, we find that it 
depends on the volume V and temperature T, and we must analyze P as a function 
of V and T. The simplest example of such a problem is when one variable, z, de­
pends linearly on two others, x and y: 

z =A+ Bx+ Cy. (8.35) 
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This problem can be analyzed by a very straightforward generalization of our two­
variable method. If we have a series of measurements (xi, Yi, zi), i = l, ... , N (with 
the zi all equally uncertain, and the xi and Yi exact), then we can use the principle 
of maximum likelihood exactly as in Section 8.2 to show that the best estimates for 
the constants A, B, and C are determined by normal equations of the form 

AN+ BLx + CLy 

ALx + BLx2 + CL.xy 

ALy + BL.xy + CLy2 

LZ, 

LXZ, 

Lyz. 

(8.36) 

The equations can be solved for A, B, and C to give the best fit for the relation 
(8.35). This method is called multiple regression ("multiple" because there are more 
than two variables), but we will not discuss it further here. 

Principal Definitions and Equations of Chapter 8 

Throughout this chapter, we have considered N pairs of measurements (x1, y1), ... , 
(xN, YN) of two variables x and y. The problem addressed was finding the best values 
of the parameters of the curve that a graph of y vs x is expected to fit. We assume 
that only the measurements of y suffered appreciable uncertainties, whereas those 
for x were negligible. [For the case in which both x and y have significant uncertain­
ties, see the discussion following Equation (8.17).] Various possible curves can be 
analyzed, and there are two different assumptions about the uncertainties in y. Some 
of the more important cases are as follows: 

A STRAIGHT LINE, y =A+ Bx; EQUAL WEIGHTS 

If y is expected to lie on a straight line y = A + Bx, and if the measurements 
of y all have the same uncertainties, then the best estimates for the constants A and 
Bare: 

and 

where the denominator, d, is 

A 

B 

Lx2 LY - LX Lxy 
d 

N Lxy - LX LY 
d 

d = NLx2 - (Lx)2. [See (8.10) to (8.12)] 

Based on the observed points, the best estimate for the uncertainty in the mea­
surements of y is 

[See (8.15)] 

197 
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The uncertainties in A and B are: 

and 

[See (8.16) & (8.17)] 

STRAIGHT LINE THROUGH THE ORIGIN (y = Bx); 
EQUAL WEIGHTS 

If y is expected to lie on a straight line through the origin, y = Bx, and if the 
measurements of y all have the same uncertainties, then the best estimate for the 
constant B is: 

Ixy 
B = Ix2" [See Problem 8.5] 

Based on the measured points, the best estimate for the hncertainty in the mea­
surements of y is: 

and the uncertainty in B is: 

[See Problem 8.18] 

WEIGHTED FIT FOR A STRAIGHT LINE, y =A+ Bx 

If y is expected to lie on a straight line y = A + Bx, and if the measured values 
Y; have different, known uncertainties <T;, then we introduce the weights W; = 1/<r/, 
and the best estimates for the constants A and B are: 

and 

where 

Iwx2 Iwy - Iwx Iwxy 
A= a 

B 
LW LW.xy - LWX LWY 

a 

a = LW Iwx2 - (Iwx)2. 

The uncertainties in A and B are: 

[See Problem 8.9] 
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and 

[See Problem 8.19] 

OTHER CURVES 

If y is expected to be a polynomial in x, that is, 

y = A+ Bx+ ... + Hx', 

then an exactly analogous method of least-squares fitting can be used, although the 
equations are quite cumbersome if n is large. (For examples, see Problems 8.21 and 
8.22.) Curves of the form 

y = Af(x) + Bg(x) + ... + Hk(x), 

where f(x), ... , k(x) are known functions, can also be handled in the same way. 
(For examples, see Problems 8.23 and 8.24.) 

If y is expected to be given by the exponential function 

y = Ae8X, 

then we can "linearize" the problem by using the variable z = ln(y), which should 
satisfy the linear relation 

z = ln(y) = ln(A) + Bx. [See (8.31)] 

We can then apply the linear least-squares fit to z as a function of x. Note, however, 
that if the uncertainties in the measured values of y are all equal, the same is cer­
tainly not true of the values of z. Then, strictly speaking, the method of weighted 
least squares should be used. (See Problem 8.26 for an example.) 

Problems for Chapter 8 

For Section 8.2: Calculation of the Constants A and 8 

8.1. * Use the method of least squares to find the line y = A + Bx that best fits 
the three points (1, 6), (3, 5), and (5, 1). Using squared paper, plot the three points 
and your line. Your calculator probably has a built-in function to calculate A and B; 
if you don't know how to use it, take a moment to learn and then check your own 
answers to this problem. 

8.2. * Use the method of least squares to find the line y = A + Bx that best fits 
the four points (-3, 3), (-1, 4), (1, 8), and (3, 9). Using squared paper, plot the four 
points and your line. Your calculator probably has a built-in function to calculate A 
and B; if you don't know how to use it, take a moment to learn and then check 
your own answers to this problem. 
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8.3. * The best estimates for the constants A and B are determined by Equations 
(8.8) and (8.9). The solutions to these equations were given in Equations (8.10) 
through (8.12). Verify that these are indeed the solutions of (8.8) and (8.9). 

8.4. * Prove the following useful fact: The least-squares fit for a line through any 
set of points (x1, y1), ... , (xN, YN) always passes through the "center of gravity" 
(x, y) of the points, where the bar denotes the average of the N values concerned. 
[Hint: You know that A and B satisfy Equation (8.8).] 

8.5. ** Line Through the Origin. Suppose two variables x and y are known to 
satisfy a relation y = Bx. That is, y oc x, and a graph of y vs x is a line through the 
origin. (For example, Ohm's law, V = RI, tells us that a graph of voltage V vs 
current I should be a straight line through the origin.) Suppose further that you have 
N measurements (xi, y) and that the uncertainties in x are negligible and those in y 
are all equal. Using arguments similar to those of Section 8.2, prove that the best 
estimate for B is 

8.6. ** For measurements of just two points (x1, y1) and (x2, y2), the line that 
best fits the points is obviously the line through the points. Prove that the least­
squares line for two points does indeed pass through both points. [One way to do 
this is to use Equations (8.8) and (8.9) to show that either of the points does satisfy 
the equation y = A + Bx.] 

8. 7. ** To find the spring constant of a spring, a student loads it with various 
masses M and measures the corresponding lengths I. Her results are shown in Table 
8.4. Because the force mg = k(l - 10), where 10 is the unstretched length of the 

Table 8.4. Length versus load for a spring; for Problem 8.7. 

"x": Load m (grams) 
"y": Length l (cm) 

200 
5.1 

300 
5.5 

400 
5.9 

500 
6.8 

600 
7.4 

700 
7.5 

800 
8.6 

900 
9.4 

spring, these data should fit a straight line, l = 10 + (g!k)m. Make a least-squares fit 
to this line for the given data, and find the best estimates for the unstretched length 
10 and the spring constant k. Do the calculations yourself, and then check your 
answers using the built-in functions on your calculator. 

8.8. ** A student measures the velocity of a glider on a horizontal air track. She 
uses a multiflash photograph to find the glider's position s at five equally spaced 
times as in Table 8.5. (a) One way to find u would be to calculate u = lls/llt for 
each of the four successive two-second intervals and then average them. Show that 
this procedure gives u = (s5 - s1)/(t5 - t1), which means that the middle three 
measurements are completely ignored by this method. Prove this without putting in 
numbers; then find a numerical answer. (b) A better procedure is to make a least-
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Table 8.5. Position versus time data; for Problem 8.8. 

"x": Time, t (s) 
"y": Position, s (cm) 

-4 
13 

-2 
25 

0 
34 

2 
42 

4 
56 

squares fit to the equation s = s0 - vt using all five data points. Follow this proce­
dure to find the best estimate for v and compare your result with that from part (a). 
Do the calculations yourself and check your answers using the built-in functions on 
your calculator. (The five times have negligible uncertainty; the positions are all 
equally uncertain.) 

8.9. ** Weighted Least Squares. Suppose we measure N pairs of values (xi, yj 
of two variables x and y that are supposed to satisfy a linear relation y = A + Bx. 
Suppose the xi have negligible uncertainty and the Yi have different uncertainties <J'i. 
(That is, y1 has uncertainty 0'1, while y2 has uncertainty O'z, and so on.) As in 
Chapter 7, we can define the weight of the ith measurement as wi = l/0'/, Review 
the derivation of the least-squares fit in Section 8.2 and generalize it to cover this 
situation, where the measurements of the Yi have different weights. Show that the 
best estimates of A and B are 

(8.37) 

and 

(8.38) 

where 

(8.39) 

Obviously, this method of weighted least squares can be applied only when the 
uncertainties ai ( or at least their relative sizes) are known. 

8.10. ** Suppose y is known to be linear in x, so that y = A + Bx, and we 
have three measurements of (x, y): 

(1, 2 ± 0.5), (2, 3 ± 0.5), and (3, 2 ± 1). 

(The uncertainties in x are negligible.) Use the method of weighted least squares, 
Equations (8.37) to (8.39), to calculate the best estimates for A and B. Compare your 
results with what you would get if you ignored the variation in the uncertainties, that 
is, used the unweighted fit of Equations (8.10) to (8.12). Plot the data and both 
lines, and try to understand the differences. 
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8.11. ** (a) If you have access to a spreadsheet program such as Lotus 123 or 
Excel, create a spreadsheet that will calculate the coefficients A and B for the least­
squares fit for up to 10 points (x1, Yi), .... Use the layout of Table 8.1. (b) Test 
your spreadsheet with the data of Problems 8.1 and 8.7. 

For Section 8.3: Uncertainty in the Measurements of y 

8.12. ** Use the principle of maximum likelihood, as outlined in the discussion 
of Equation (8.14), to show that (8.14) gives the best estimate for the uncertainty 
<Ty in y in a series of measurements (x1, y1), ... , (xN, YN) that are supposed to lie 
on a straight line. [Note that in (8.14), A and B are the true values of these two 
constants. When we replace these true values by our best estimates, as given by 
(8.10) and (8.11), the expression is decreased, and the Nin the denominator must 
be replaced by N - 2 to get the best estimate, as in (8.15).] 

8.13. *** If you have a reliable estimate of the uncertainty Sy in the measure­
ments of y, then by comparing this estimate with <Ty as given by (8.15), you can 
assess whether your data confirm the expected linear relation y = A + Bx. The quan­
tity <Ty is roughly the average distance by which the points (xi, y) fail to lie on the 
best-fit line. If <Ty is about the same as the expected uncertainty Sy, the data are 
consistent with the expected linear relation; if <Ty is much larger than Sy, there is 
good reason to doubt the linear relation. The following problem illustrates these 
ideas. 

A student measures the velocity of a glider coasting along a horizontal air track 
using a multiflash photograph to find its position s at four equally spaced times, as 
shown in Table 8.6. Assuming the glider moves with constant velocity, he fits these 

Table 8.6. Positions and times of a coasting glider; for 
Problem 8.13. 

"x": Time, t (s) 
"y": Position, s (cm) 

-3 
4.0 

-1 

7.5 
1 

10.3 
3 

12.0 

data to a line s = s0 + vt. (a) Use the method of least squares to find his best 
estimates for a s0 and v and for the standard deviation <Ts in the measurements of s. 
(b) Suppose the quality of his photograph was poor and he believed his measure­
ments of s were uncertain by & = 1 cm. By comparing this value of & with <Ts, 

decide if his data are consistent with his assumption that the velocity was constant. 
Draw a graph of s vs t, with error bars showing his uncertainties & = 1 cm, to 
confirm your conclusion. (c) Suppose, instead, that he was confident his measure­
ments were good within 0.1 cm. In this case, are his measurements consistent with 
a constant velocity? After examining your graph of the data and best line, can you 
suggest an explanation? 

For Section 8.4: Uncertainty in the Constants A and B 

8.14. * Use the method of least squares to find the student's best estimate for the 
velocity v of the glider in Problem 8.8 and the uncertainty in v. (By all means, use 
the built-in functions on your calculator to find the best-fit line; unfortunately, most 
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calculators do not have built-in functions to find the uncertainty in A and B, so you 
will probably have to do this part of the calculation yourself.) 

8.15. ** Kundt's tube is a device for measuring the wavelength A of sound. The 
experimenter sets up a standing wave inside a glass tube in which he or she ha~ 
sprinkled a light powder. The vibration of the air causes the powder to move and 
eventually to collect in small piles at the displacement nodes of the standing wave, 
as shown in Figure 8.5. Because the distance between the nodes is A/2, this lets the 

A/2 
Node 

1 2 3 4 5 6 
A A • A A A 

S1 Sz S3 S4 S5 s6 s-

Figure 8.5. Kundt's tube, with small piles of powder at the nodes of a standing wave; 
for Problem 8.15. 

experimenter find A. A student finds six nodes (numbered n = l, ... , 6) as shown 
in Table 8.7. Because the nodes should be equal distances A/2 apart, their positions 
should satisfy sn = A + Bn, where B = A/2. Use the method of least squares to fit 
the data to this line and find the wavelength and its uncertainty. 

Table 8.7. Positions of nodes in Kundt's tube; for Problem 8.15. 

"x'': Node number n 
"y": Position sn (cm) 

1 
5.0 

2 
14.4 

3 
23.1 

4 
32.3 

5 
41.0 

6 
50.4 

8.16. ** Use error propagation to verify that the uncertainties in the parameters 
of a straight line y = A + Bx are given by (8.16) and (8.17). [Hint: Use the general 
error propagation formula (3.47) and remember that, by assumption, only the Y; are 
subject to uncertainty. When you differentiate a sum like I,y with respect to Y;, 
writing the sum out as y1 + ... + YN may help. Any quantity, such as the denomi­
nator A, that involves only the X; has no uncertainty.] 

8.17. ** The least-squares fit to a set of points (x1, Yi), ... , (xN, YN) treats the 
variables x and y unsymmetrically. Specifically, the best fit for a line y = A + Bx is 
found on the assumption that the numbers Yi, . .. , YN are all equally uncertain, 
whereas x1, ... , xN have negligible uncertainty. If the situation were reversed, the 
roles of x and y would have to be exchanged and x and y fitted to a line 
x = A' + B'y. The resulting two lines, y =A+ Bx and x =A'+ B'y, would be the 
same if the N points lay exactly on a line, but in general the two lines will be 
slightly different. The following problem illustrates this small difference. 

(a) Find the best fit to the line y = A + Bx for the data of Problem 8.1 and the 
uncertainties in A and B. (b) Now reverse the roles of x and y and fit the same data 
to the line x = A' + B'y. If you solve this equation for y in terms of x, you can find 
values for A and B based on the values of A' and B'. Comment on the difference 
between the two approaches. 
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8.18. ** Uncertainties for a Line Through the Origin. Consider the situation 
described in Problem 8.5, in which it is known that y = Bx [that is, the points 
(x, y) lie on a straight line known to pass through the origin]. The best value for the 
slope B is given in Problem 8.5. Arguing as in Section 8.3, we can show that the 
uncertainty cry in the measurements of y is given by 

Following the argument sketched in Problem 8.16, prove that the uncertainty in the 
constant B is given by 

8.19. *** Uncertainties in Weighted Least-Squares Fits. Consider the method 
of weighted least squares outlined in Problem 8.9. Use error propagation to prove 
that the uncertainties in the constants A and B are given by 

and 

For Section 8.5: An Example 

8.20. * A student measures the pressure P of a gas at five different temperatures 
T, keeping the volume constant. His results are shown in Table 8.8. His data should 

Table 8.8. Temperature (in °C) versus Pressure (in mm 
of mercury); for Problem 8.20. 

"x": Pressure P 
"y": Temperature T 

79 
8 

82 
17 

85 
30 

88 
37 

90 
52 

fit a straight line of the form T = A + BP, where A is the absolute zero of tempera­
ture (whose accepted value is -273°C). Find the best fit to the student's data and 
hence his best estimate for absolute zero and its uncertainty. 
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For Section 8.6: Least-Squares Fits to Other Curves 

8.21. ** Consider the problem of fitting a set of measurements (xi, y), with 
i = 1, ... , N, to the polynomial y = A + Bx + Cx2. Use the principle of maxi­
mum likelihood to show that the best estimates for A, B, and C based on the data 
are given by Equations (8.27). Follow the arguments outlined between Equations 
(8.24) and (8.27). 

8.22. ** One way to measure the acceleration of a freely falling body is to mea­
sure its heights Yi at a succession of equally spaced times ti (with a multiflash 
photograph, for example) and to find the best fit to the expected polynomial 

(8.40) 

Use the equations (8.27) to find the best estimates for the three coefficients in (8.40) 
and hence the best estimate for g, based on the five measurements in Table. 8.9. 

Table 8.9. Height (in cm) versus time (in tenths of a 
second) for a falling body; for Problem 8.22. 

"x": Time t 
"y": Height y 

-2 
131 

-1 
113 

0 
89 

1 
51 

2 
7 

(Note that we can name the times however we like. A more natural choice might 
seem to be t = 0, 1, ... , 4. When you solve the problem, however, you will see 
that defining the times to be symmetrically spaced about t = 0 causes approxi­
mately half of the sums involved to be zero and greatly simplifies the algebra. 
This trick can be used whenever the values of the independent variable are equally 
spaced. 

8.23. ** Suppose y is expected to have the form y = Af(x) + Bg(x), where A 
and B are unknown coefficients and f and g are fixed, known functions (such as 
f = x and g = x2, or f = cos x and g = sin x). Use the principle of maximum likeli­
hood to show that the best estimates for A and B, based on data (xi, Yi), i = 1, ... , 
N, must satisfy 

AI,[f(xi)]2 + BI,f(xi)g(x) 

AI,f(x)g(x) + BI,[g(x)]2 

I,yJ(xi), 

I,yig(xJ 
(8.41) 

8.24. ** A weight oscillating on a vertical spring should have height given by 

y = A cos wt + B sin wt. 

A student measures w to be 10 rad/s with negligible uncertainty. Using a multiflash 
photograph, she then finds y for five equally spaced times, as shown in Table 8.10. 

Table 8.1 0. Positions (in cm) and times (in tenths of a 
second) for an oscillating mass; for Problem 8.24. 

"x": Time t 
"y": Position y 

-4 
3 

-2 
-16 

0 
6 

2 
9 

4 
-8 
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Use Equations (8.41) to find best estimates for A and B. Plot the data and your best 
fit. (If you plot the data first, you will have the opportunity to consider how hard it 
would be to choose a best fit without the least-squares method.) If the student judges 
that her measured values of y were uncertain by "a couple of centimeters," would 
you say the data are an acceptable fit to the expected curve? 

8.25. ** The rate at which a sample of radioactive material emits radiation de­
creases exponentially as the material is depleted. To study this exponential decay, a 
student places a counter near a sample and records the number of decays in 15 
seconds. He repeats this five times at 10-minute intervals and obtains the results 
shown in Table 8.11. (Notice that, because it takes nearly 10 minutes to prepare the 
equipment, his first measurement is made at t = 10 min.) 

Table 8.1 I. Number v(t) of emissions in a 15-second interval 
versus total time elapsed t (in minutes); for Problem 8.25. 

"x": Elapsed time t 
"y": Number v(t) 

10 
409 

20 
304 

30 
260 

40 
192 

50 
170 

If the sample does decay exponentially, the number v(t) should satisfy 

v(t) = v0 e- 11", (8.42) 

where T is the (unknown) mean life of the material in question and v0 is another 
unknown constant. To find the mean life T, the student takes the natural log of 
Equation (8.42) to give the linear relation 

z = ln(v) = ln(v0) - t/T (8.43) 

and makes a least-squares fit to this line. What is his answer for the mean life T? 
How many decays would he have counted in 15 seconds at t = O? 

8.26. *** The student of Problem 8.25 decides to investigate the exponential 
character of radioactive decay further and repeats his experiment, monitoring the 
decays for a longer total time. He decides to count the decays in 15-second periods 
as before but makes six measurements at 3O-minute intervals, as shown in Table 
8.12. 

Table 8.12. Number v(t) of emissions in a 15-second interval versus 
total time elapsed t (in minutes); for Problem 8.26. 

"x'': Time t 
"y": Number v(t) 

10 
188 

40 
102 

70 
60 

100 
18 

130 
16 

160 
5 

According to the square-root rule of Section 3.2, the uncertainty in each of the 
counts v is ~. which obviously varies widely during this experiment. Therefore, 
he decides to make a weighted least-squares fit to the straight line (8.43). (a) To this 
end, he must first calculate the logs, zi = ln(v), and their uncertainties. Use error 
propagation to show that the uncertainty in zi is 1/"Y½, which means that the weight 
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of z; is just v;. (b) Now make the weighted least-squares fit to the line (8.43). What 
is his answer for the material's mean life T and its uncertainty? [The best values for 
the coefficients A and B are given in Equations (8.37) and (8.38) of Problem 8.9, 
and their uncertainties are given in Problem 8.19. Make a table showing t, v, 
z = ln(v), and the various sums in (8.37) to (8.39).] (c) Draw a graph of z = ln(v) 
vs t, showing the best-fit straight line and the data with error bars. Is your graph 
consistent with the expectation that the decay rate should decrease exponentially? 
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Chapter 9 

Covariance and Correlation 

This chapter introduces the important concept of covariance. Because this concept 
arises naturally in the propagation of errors, Section 9.1 starts with a quick review 
of error propagation. This review sets the stage for Section 9.2, which defines covar­
iance and discusses its role in the propagation of errors. Then, Section 9.3 uses the 
covariance to define the coefficient of linear correlation for a set of measured points 
(x1, Yi), ... , (xN, YN)- This coefficient, denoted r, provides a measure of how well 
the points fit a straight line of the form y = A + Bx; its use is described in Sections 
9.4 and 9.5. 

9.1 Review of Error Propagation 

This and the next section provide a final look at the important question of error 
propagation. We first discussed error propagation in Chapter 3, where we reached 
several conclusions. We imagined measuring two quantities x and y to calculate 
some function q(x, y), such as q = x + y or q = x2 sin y. [In fact, we discussed a 
function q(x, ... , z) of an arbitrary number of variables x, ... , z; for simplicity, we 
will now consider just two variables.] A simple argument suggested that the uncer­
tainty in our answer for q is just 

(9.1) 

We first derived this approximation for the simple special cases of sums, differences, 
products, and quotients. For instance, if q is the sum q = x + y, then (9.1) reduces to 
the familiar Sq= & + oy. The general result (9.1) was derived in Equation (3.43). 

We next recognized that (9.1) is often probably an overstatement of Sq, because 
there may be partial cancellation of the errors in x and y. We stated, without proof, 
that when the errors in x and y are independent and random, a better value for the 209 
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uncertainty in the calculated value of q(x, y) is the quadratic sum 

(9.2) 

We also stated, without proof, that whether or not the errors are independent and 
random, the simpler formula (9.1) always gives an upper bound on 5q; that is, the 
uncertainty 5q is never any worse than is given by (9.1). 

Chapter 5 gave a proper definition and proof of (9.2). First, we saw that a good 
measure of the uncertainty & in a measurement is given by the standard deviation 
CTx; in particular, we saw that if the measurements of x are normally distributed, we 
can be 68% confident that the measured value lies within CTx of the true value. 
Second, we saw that if the measurements of x and y are governed by independent 
normal distributions, with standard deviations CTx and CTy, the values of q(x, y) are 
also normally distributed, with standard deviation 

(T = q (!! (TxY + G! (Ty r 
This result provides the justification for the claim (9.2). 

(9.3) 

In Section 9.2, I will derive a precise formula for the uncertainty in q that 
applies whether or not the errors in x and y are independent and normally distrib­
uted. In particular, I will prove that (9.1) always provides an upper bound on the 
uncertainty in q. 

Before I derive these results, let us first review the definition of the standard 
deviation. The standard deviation CTx of N measurements x1, ... , xN was originally 
defined by the equation 

l N 
CT 2 = _" (x- _ .x)2 

X NL.J ' • 
i=l 

(9.4) 

If the measurements of x are normally distributed, then in the limit that N is large; 
the definition (9.4) is equivalent to defining CTx as the width parameter that appears 
in the Gauss function 

_1_ e-(x-X)2/2ax2 

(TX~ 

that governs the measurements of x. Because we will now consider the possibility 
that the errors in x may not be normally distributed, this second definition is no 
longer available to us. We can, and will, still define CTx by (9.4), however. Whether 
or not the distribution of errors is normal, this definition of CTx gives a reasonable 
measure of the random uncertainties in our measurement of x. (As in Chapter 5, I 
will suppose all systematic errors have been identified and reduced to a negligible 
level, so that all remaining errors are.random.) 

The usual ambiguity remains as to whether to use the definition (9.4) of CTx or 
the "improved" definition with the factor N in the denominator replaced by (N - 1 ). 
Fortunately, the discussion that follows applies to either definition, as long as we 
are consistent in our use of one or the other. For convenience, I will use the defini­
tion (9.4), with Nin the denominator throughout this chapter. 
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9.2 Covariance in Error Propagation 

Suppose that to find a value for the function q(x, y), we measure the two quantities 
x and y several times, obtaining N pairs of data, (x1, y1), ... , (xN, YN)- From the N 
measurements x1, ... , xN, we can compute the mean x and standard deviation <Tx in 
the usual way; similarly, from y1, ... , YN, we can compute y and <Ty. Next, using 
the N pairs of measurements, we can compute N values of the quantity of interest 

(i = 1, ... , N). 
Given q1, ... , qN, we can now calculate their mean q, which we assume gives our 
best estimate for q, and their standard deviation <Tq, which is our measure of the 
random uncertainty in the values q;, 

I will assume, as usual, that all our uncertainties are small and hence that all 
the numbers x1, ... , xN are close to x and that all the Yi, ... , YN are close to y. We 
can then make the approximation 

q; q(x;, y;) 

= q(x y) + aq (x- - .x) + aq (y- - y). 
' ax I ay I 

(9.5) 

In this expression, the partial derivatives aq/ax and aqJay are taken at the point 
x = x, y = y, and are therefore the same for all i = 1, ... , N. With this approxima­
tion, the mean becomes 

1 N 

"li = NI qi 
i=l 

- ~ q(x, y) + .!1. (x- - .x) + .!1. (y- - y) . 1N[ a a ] 
N;";:'1 ax ' ay ' 

This equation gives q as the sum of three terms. The first term is just q(x, y), and 
the other two are exactly zero. [For example, it follows from the definition of x that 
I,(x; - .x) = 0.] Thus, we have the remarkably simple result 

q = q(x, y); (9.6) 

that is, to find the mean q we have only to calculate the function q(x, y) at the point 
x = x andy = y. 

The standard deviation in the N values q1, ... , qN is given by 

1 
<T/ = N I,(q; - q)2. 

Substituting (9.5) and (9.6), we find that 

( aq)2 1 ~ 2 (aq)2 1 ~ 2 
ax N L.(x; - x) + ay N L.(y; - y) 

aqaqIL __ + 2--- (x- - x)(y- - y). 
axayN I I 

(9.7) 
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The sums in the first two terms are those that appear in the definition of the standard 
deviations a-x and <Ty The final sum is one we have not encountered before. It is 
called the covariance1 of x and y and is denoted 

(9.8) 

With this definition, Equation (9.7) for the standard deviation a-q becomes 

(9.9) 

This equation gives the standard deviation a-q, whether or not the measurements of 
x and y are independent or normally distributed. 

If the measurements of x and y are independent, we can easily see that, after 
many measurements, the covariance <Txy should approach zero: Whatever the value 
of Y;, the quantity X; - xis just as likely to be negative as it is to be positive. Thus, 
after many measurements, the positive and negative terms in (9.8) should nearly 
balance; in the limit of infinitely many measurements, the factor 1/N in (9.8) guaran­
tees that <Txy is zero. (After a finite number of measurements, <Txy will not be exactly 
zero, but it should be small if the errors in x and y really are independent and 
random.) With <Txy zero, Equation (9.9) for <Tq reduces to 

a- z = (aq)z a- z + (aq)z (T, z, 
q axx ay y 

(9.10) 

the familiar result for independent and random uncertainties. 
If the measurements of x and y are not independent, the covariance <Txy need 

not be zero. For instance, it is easy to imagine a situation in which an overestimate 
of x will always be accompanied by an overestimate of y, and vice versa. The 
numbers (x; - x) and (y; - y) will then always have the same sign (both positive 
or both negative), and their product will always be positive. Because all terms in 
the sum (9.8) are positive, <Txy will be positive (and nonzero), even in the limit that 
we make infinitely many measurements. Conversely, you can imagine situations in 
which an overestimate of x is always accompanied by an underestimate of y, and 
vice versa; in this case (x; - .x) and (y; - y) will always have opposite signs, and 
<Txy will be negative. This case is illustrated in the example below. 

When the covariance <Txy is not zero (even in the limit of infinitely many mea­
surements), we say that the errors in x and y are correlated. In this case, the uncer­
tainty a-q in q(x, y) as given by (9.9) is not the same as we would get from the 
formula (9.10) for independent, random errors. 

1The name covariance for axy (for two variables x, y) parallels the name variance for a/ (for one variable 
x). To emphasize this parallel, the covariance (9.8) is sometimes denoted axy2, not an especially apt notation, 
because the covariance can be negative. A convenient feature of the definition (9 .8) is that a xy has the dimen­
sions of ;cy, just as ux has the dimensions of x. 
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Example: Two Angles with a Negative Covariance 

Each of five students measures the same two angles a and /3 and obtains the results 
shown in the first three columns of Table 9.1. 

Table 9.1. Five measurements of two angles a and f3 
(in degrees). 

Student Ci /3 (a - a) (/3 - (3) (a - a)(/3 - (3) 

A 35 50 2 -2 -4 
B 31 55 -2 3 -6 
C 33 51 0 -1 0 
D 32 53 -1 1 -1 
E 34 51 1 -1 -1 

Find the average and standard deviation for each of the two angles, and then find 
the covariance <To:/3 as defined by (9.8). The students now calculate the sum 
q = a + {3. Find their best estimate for q as given by (9.6) and the standard 
deviation <Tq as given by (9.9). Compare the standard deviation with what you would 
get if you assumed (incorrectly) that the errors in a and f3 were independent and 
that <Tq was given by (9.10). 

The averages are immediately seen to be a = 33 and 73 = 52. With these 
values, we can find the deviations (a - a) and (/3 - 73), as shown in Table 9.1, and 
from these deviations we easily find 

<r} = 2.0 and <r/ = 3.2. 

[Here I have used the definition (9.4), with the Nin the denominator.] 
You can see from Table 9.1 that high values of a seem to be correlated with 

low values of f3 and vice versa, because ( a - a) and (/3 - 73) always have opposite 
signs. (For an experiment in which this kind of correlation arises, see Problem 9.6.) 
This correlation means that the products ( a - a)(/3 - 73) shown in the last column 
of the table are all negative (or zero). Thus, the covariance <To:/3 as defined by (9.8) 
is negative, 

1 - 1 
<ro:/3 = N I.(a - a)(/3 - /3) = 5 x (-12) = -2.4. 

The best estimate for the sum q = a + f3 is given by (9.6) as 

%est = q = a + 73 = 33 + 52 = 85. 

To find the standard deviation using (9.9), we need the two partial derivatives, which 
are easily seen to be aq/aa = aq/a/3 = 1. Therefore, according to (9.9), 

(Tq ✓<T} + <r/ + 2<To:f3 

✓2.0 + 3.2 - 2 X 2.4 0.6. 
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If we overlooked the correlation between the measurements of a and f3 and treated 
them as independent, then according to (9.10) we would get the incorrect answer 

<Tq ✓a-,/ + a-/ 

✓2.0 + 3.2 = 2.3. 

We see from this example that a correlation of the right sign can cause a dramatic 
difference in a propagated error. In this case we can see why there is this difference: 
The errors in each of the angles a and f3 are a degree or so, suggesting that 
q = a + f3 would be uncertain by a couple of degrees. But, as we have noted, the 
positive errors in a are accompanied by negative errors in /3, and vice versa. Thus, 
when we add a and {3, the errors tend to cancel, leaving an uncertainty of only a 
fraction of a degree. 

Quick Check 9.1. Each of three students measures the two sides, x and y, of a 
rectangle and obtains the results shown in Table 9.2. Find the means x and y, 

• Table 9.2. Three measurements 
of x and y (in mm); for Quick 
Check 9.1. 

Student 

A 
B 

C 

X 

25 
27 
29 

y 

33 
34 
38 

and then make a table like Table 9.1 to find the covariance <Txy· If the students 
calculate the sum q = x + y, find the standard deviation a-q using the correct 
formula (9.9), and compare it with the value you would get if you ignored the 
covariance and used (9.10). (Notice that in this example, high values of x seem 
to correlate with high values of y and vice versa. Specifically, student C appears 
consistently to overestimate and student A to underestimate. Remember also 
that with just three measurements, the results of any statistical calculation are 
only a rough guide to the uncertainties concerned.) 

Using the formula (9.9), we can derive an upper limit on <Tq that is always 
valid. It is a simple algebraic exercise (Problem 9.7) to prove that the covariance 
a-xy satisfies the so-called Schwarz inequality 

la-xyl .;;; a-xa-y. (9.11) 

If we substitute (9.11) into the expression (9.9) for the uncertainty <Tq, we find that 

a- z .;;; (aq)2 a- z + (aq)2 (T z + 2 I aq aq I (T (T 
q ax X ay y axay X y 
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that is, 

(9.12) 

With this result, we have finally established the precise significance of our origi­
nal, simple expression 

8q = I !! I sx + I !! I sy (9.13) 

for the uncertainty 8q. If we adopt the standard deviation c,q as our measure of the 
uncertainty in q, then (9.12) shows that the old expression (9.13) is really the upper 
limit on the uncertainty. Whether or not the errors in x and y are independent and 
normally distributed, the uncertainty in q will never exceed the right side of (9.13). 
If the measurements of x and y are correlated in just such a way that lc,X)'I = c,xc,y, 

its largest possible value according to (9.11), then the uncertainty in q can actually 
be as large as given by (9.13), but it can never be any larger. 

In an introductory physics laboratory, students usually do not make measure­
ments for which the covariance c,XJ' can be estimated reliably. Thus, you will proba­
bly not have occasion to use the result (9.9) explicitly. If, however, you suspect that 
two variables x and y may be correlated, you should probably consider using the 
bound (9.12) instead of the quadratic sum (9.10). Our next topic is an application 
of covariance that you will almost certainly be able to use. 

9.3 Coefficient of Linear Correlation 

The notion of covariance c,xy introduced in Section 9.2 enables us to answer the 
question raised in Chapter 8 of how well a set of measurements (x1, y1), ... , 
(xN, YN) of two variables supports the hypothesis that x and y are linearly related. 

Let us suppose we have measured N pairs of values (x1, y1), ... , (xN, YN) of 
two variables that we suspect should satisfy a linear relation of the form 

y =A+ Bx. 

Note that x1, ... , xN are no longer measurements of one single number, as they 
were in the past two sections; rather, they are measurements of N different values 
of some variable (for example, N different heights from which we have dropped a 
stone). The same applies to y1, ... , YN· 

Using the method of least squares, we can find the values of A and B for the 
line that best fits the points (xi, y1), ... , (xN, YN)- If we already have a reliable 
estimate of the uncertainties in the measurements, we can see whether the measured 
points do lie reasonably close to the line ( compared with the known uncertainties). 
If they do, the measurements support our suspicion that x and y are linearly related. 
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Figure 9.1. A "scatter plot" showing students' scores on exams and homework. Each of the 10 
points (x;, Y;) shows a student's homework score, X;, and exam score, Y;• 

Unfortunately, in many experiments, getting a reliable estimate of the uncertain­
ties in advance is hard, and we must use the data themselves to decide whether the 
two variables appear to be linearly related. In particular, there is a type of experi­
ment for which knowing the size of uncertainties in advance is impossible. This 
type of experiment, which is more common in the social than the physical sciences, 
is best explained by an example. 

Suppose a professor, anxious to convince his students that doing homework will 
help them do well in exams, keeps records of their scores on homework and exams 
and plots the scores on a "scatter plot" as in Figure 9.1. In this figure, homework 
scores are plotted horizontally and exam scores vertically. Each point (x;, y;) shows 
one student's homework score, X;, and exam score, Y;• The professor hopes to show 
that high exam scores tend to be correlated with high homework scores, and vice 
versa (and his scatter plot certainly suggests this is approximately so). This kind of 
experiment has no uncertainties in the points; each student's two scores are known 
exactly. The uncertainty lies rather in the extent to which the scores are correlated; 
and this has to be decided from the data. 

The two variables x and y (in either a typical physics experiment or one like 
that just described) may, of course, be related by a more complicated relation than 
the simple linear one, y = A + Bx. For example, plenty of physical laws lead to 
quadratic relations of the form y = A + Bx + Cx2. Nevertheless, I restrict my dis­
cussion here to the simpler problem of deciding whether a given set of points sup­
ports the hypothesis of a linear relation y = A + Bx. 

The extent to which a set of points (x1, y1), ... , (xN, YN) supports a linear 
relation between x and y is measured by the linear correlation coefficient, or just 
correlation coefficient, 

(9.14) 
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where the covariance CTxy and standard deviations CTx and <Ty are defined exactly as 
before, in Equations (9.8) and (9.4).2 Substituting these definitions into (9.14), we 
can rewrite the correlation coefficient as 

(9.15) 

As I will show directly, the number r is an indicator of how well the points (xi, y) 
fit a straight line. It is a number between -1 and 1. If r is close to ± 1, the points 
lie close to some straight line; if r is close to 0, the points are uncorrelated and have 
little or no tendency to lie on a straight line. 

To prove these assertions, we first observe that the Schwarz inequality (9.11), 
ICTxyl :e;:; <Tx<Ty, implies immediately that lrl :e;:; 1 or 

-1 :e;:; r :;;; 1 

as claimed. Next, let us suppose that the points (xi, Yi) all lie exactly on the line 
y = A + Bx. In this case Yi = A + Bxi for all i, and hence y = A + Bx. Subtracting 
these two equations, we see that 

Yi - y = B(x; - x) 

for each i. Inserting this result into (9.15), we find that 

r = 
B 

= ±1. 
IBI 

(9.16) 

That is, if the points (x1, y1), ... , (xN, YN) lie perfectly on a line, then r = ± 1, and 
its sign is determined by the slope of the line (r = 1 for B positive, and r = - 1 for 
B negative).3 Even when the variables x and y really are linearly related, we do not 
expect our experimental points to lie exactly on a line. Thus, we do not expect r to 
be exactly ± 1. On the other hand, we do expect a value of r that is close to ± 1, 
if we believe that x and y are linearly related. 

Suppose, on the other hand, there is no relationship between the variables x and 
y. Whatever the value of Yi, each xi would then be just as likely to be above x as 
below x. Thus, the terms in the sum 

in the numerator of r in (9.15) are just as likely to be positive as negative. Mean­
while, the terms in the denominator of r are all positive. Thus, in the limit that N, 
the number of measurements, approaches infinity, the correlation coefficient r will 

2 Notice, however, that their significance is slightly different. For example, in Section 9.2 x1, ... , xN were 
measurements of one number, and if these measurements were precise, a should be small. In the present case 
x1, ... , xN are measurements of different values of a variable, and even if the measurements are precise, there 
is no reason to think ax will be small. Note also that some authors use the number r 2, called the coefficient of 
determination. 

3 If the line is exactly horizontal, then B = 0, and (9.16) gives r = 0/0; that is, r is undefined. Fortunately, 
this special case is not important in practice, because it corresponds to y being a constant, independent of x. 
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be zero. With a finite number of data points, we do not expect r to be exactly zero, 
but we do expect it to be small (if the two variables really are unrelated). 

If two variables x and y are such that, in the limit of infinitely many measure­
ments, their covariance a-xy is zero (and hence r = 0), we say that the variables are 
uncorrelated. If, after a finite number of measurements, the correlation coefficient 
r = a-xyl<Tx<Ty is small, the hypothesis that x and y are uncorrelated is supported. 

As an example, consider the exam and homework scores shown in Figure 9.1. 
These scores are given in Table 9.3. A simple calculation (Problem 9.12) shows that 

Table 9.3. Students' scores. 

Student i 1 2 
Homeworkx; 90 60 
Examy; 90 71 

3 
45 
65 

4 
100 
100 

5 
15 
45 

6 
23 
60 

7 
52 
75 

8 
30 
85 

9 
71 

100 

10 
88 
80 

the correlation coefficient for these 10 pairs of scores is r = 0.8. The professor 
concludes that this value is "reasonably close" to 1 and so can announce to next 
year's class that, because homework and exam scores show good correlation, it is 
important to do the homework. 

If our professor had found a correlation coefficient r close to zero, he would 
have been in the embarrassing position of having shown that homework scores have 
no bearing on exam scores. If r had turned out to be close to -1, then he would 
have made the even more embarrassing discovery that homework and exam scores 
show a negative correlation; that is, that students who do a good job on homework 
tend to do poorly on the exam. 

Quick Check 9.2. Find the correlation coefficient for the data of Quick Check 
9.1. Note that these measurements show a positive correlation; that is, high 
values of x correlate with high values of y, and vice versa. 

9.4 Quantitative Significance of r 

The example of the homework and exam scores clearly shows that we do not yet 
have a complete answer to our original question about how well data points support 
a linear relation between x and y. Our professor found a correlation coefficient 
r = 0.8, and judged this value "reasonably close" to 1. But how can we decide 
objectively what is "reasonably close" to 1? Would r = 0.6 have been reasonably 
close? Or r = 0.4? These questions are answered by the following argument. 

Suppose the two variables x and y are in reality uncorrelated; that is, in the 
limit of infinitely many measurements, the correlation coefficient r would be zero. 
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After a finite number of measurements, r is very unlikely to be exactly zero. One 
can, in fact, calculate the probability that r will exceed any specific value. We will 
denote by 

the probability that N measurements of two uncorrelated variables x and y will give 
a coefficient r larger 4 than any particular r0 • For instance, we could calculate the 
probability 

that, after N measurements of the uncorrelated variables x and y, the correlation 
coefficient would be at least as large as our professor's 0.8. The calculation of these 
probabilities is quite complicated and will not be given here. The results for a few 
representative values of the parameters are shown in Table 9.4, however, and a more 
complete tabulation is given in Appendix C. 

Table 9.4. The probability ProbN(lrl ;;e r0) that N measurements of two uncorrelated 
variables x and y would produce a correlation coefficient with 
lrl ;;e r 0 . Values given are percentage probabilities, and blanks indicate values 
less than 0.05%. 

ro 

N 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

3 100 94 87 81 74 67 59 51 41 29 0 
6 100 85 70 56 43 31 21 12 6 1 0 

10 100 78 58 40 25 14 7 2 0.5 0 
20 100 67 40 20 8 2 0.5 0.1 0 
50 100 49 16 3 0.4 0 

Although we have not shown how the probabilities in Table 9.4 are calculated, 
we can understand their general behavior and put them to use. The first column 
shows the number of data points N. (In our example, the professor recorded 10 
students' scores, so N = 10.) The numbers in each succeeding column show the 
percentage probability that N measurements of two uncorrelated variables would 
yield a coefficient r at least as big as the number at the top of the column. For 
example, we see that the probability that 10 uncorrelated data points would give 
lrl ;;e 0.8 is only 0.5%, not a large probability. Our professor can therefore say it is 
very unlikely that uncorrelated scores would have produced a coefficient with lrl 
greater than or equal to the 0.8 that he obtained. In other words, it is very likely 
that the scores on homework and examinations really are correlated. 

Several features of Table 9.4 deserve comment. All entries in the first column 
are 100%, because lrl is always greater than or equal to zero; thus, the probability 

4 Because a correlation is indicated if r is close to + 1 or to -1, we consider the probability of getting the 
absolute value lrl :;a, r0 • 
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of finding JrJ ;;,: 0 is always 100%. Similarly, the entries in the last column are all 
zero, because the probability of finding JrJ ;;,: 1 is zero.5 The numbers in the interme­
diate columns vary with the number of data points N. This variation also is easily 
understood. If we make just three measurements, the chance of their having a corre­
lation coefficient with JrJ ;;,: 0.5, say, is obviously quite good (67%, in fact); but if 
we make 20 measurements and the two variables really are uncorrelated, the chance 
of finding Jrl ;;,: 0.5 is obviously very small (2% ). 

Armed with the probabilities in Table 9.4 (or in the more complete table in 
Appendix C), we now have the most complete possible answer to the question of 
how well N pairs of values (x;, y;) support a linear relation between x and y. From 
the measured points, we can first calculate the observed correlation coefficient r 0 

(the subscript o stands for "observed"). Next, using one of these tables, we can 
find the probability ProbN(lrl ;;,, Jr0 1) that N uncorrelated points would have given a 
coefficient at least as large as the observed coefficient r 0 . If this probability is "suf­
ficiently small," we conclude that it is very improbable that x and y are uncorrelated 
and hence very probable that they really are correlated. 

We still have to choose the value of the probability we regard as "sufficiently 
small." One fairly common choice is to regard an observed correlation r0 as "sig­
nificant" if the probability of obtaining a coefficient r with JrJ ;;,: Jr 0 J from uncorre­
lated variables is less than 5%. A correlation is sometimes called "highly significant" 
if the corresponding probability is less than 1 %. Whatever choice we make, we do 
not get a definite answer that the data are, or are not, correlated; instead, we have a 
quantitative measure of how improbable it is that they are uncorrelated. 

Quick Check 9.3. The professor of Section 9.3 teaches the same course the 
following year and this time has 20 students. Once again, he records homework 
and exam scores and this time finds a correlation coefficient r = 0.6. Would 
you describe this correlation as significant? Highly significant? 

9.5 Examples 

Suppose we measure three pairs of values (x;, y;) and find that they have a correla­
tion coefficient of 0.7 (or -0.7). Does this value support the hypothesis that x and 
y are linearly related? 

Referring to Table 9.4, we see that even if the variables x and y were completely 
uncorrelated, the probability is 51 % for getting JrJ ;;,: 0.7 when N = 3. In other 
words, it is entirely possible that x and y are uncorrelated, so we have no worthwhile 
evidence of correlation. In fact, with only three measurements, getting convincing 
evidence of a correlation would be very difficult. Even an observed coefficient as 
large as 0.9 is quite insufficient, because the probability is 29% for getting JrJ ;;,: 0.9 
from three measurements of uncorrelated variables. 

5 Although it is impossible that lrl > 1, it is, in principle, possible that lrl = 1. However, r is a continuous 
variable, and the probability of getting 1r1 exactly equal to 1 is zero. Thus ProbN(lrl ;;. l) = 0. 
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If we found a correlation of 0.7 from six measurements, the situation would be 
a little better but still not good enough. With N = 6, the probability of getting 
Jrl ;;,, 0.7 from uncorrelated variables is 12%. This probability is not small enough 
to rule out the possibility that x and y are uncorrelated. 

On the other hand, if we found r = 0.7 after 20 measurements, we would have 
strong evidence for a correlation, because when N = 20, the probability of getting 
JrJ ;;,, 0.7 from two uncorrelated variables is only 0.1 %. By any standards this is 
very improbable, and we could confidently argue that a correlation is indicated. In 
particular, the correlation could be called "highly significant," because the probabil­
ity concerned is less than 1 %. 

Principal Definitions and Equations of Chapter 9 

COVARIANCE 

Given N pairs of measurements (x1, y1), ... , (xN, YN) of two quantities x and y, 
we define their covariance to be 

[See (9.8)] 

If we now use the measured values to calculate a function q(x, y), the standard 
deviation of q is given by 

[See (9.9)] 

If the errors in x and y are independent, then <Txy = 0, and this equation reduces to 
the usual formula for error propagation. Whether or not the errors are independent, 
the Schwarz inequality (9.11) implies the upper bound 

(Tq ~ I :: I (TX + I :i I <Ty. [See (9.12)] 

CORRELATION COEFFICIENT 

Given N measurements (x1, y1), ... , (xN, YN) of two variables x and y, we define 
the correlation coefficient r as 

[See (9.15)] 

An equivalent form, which is sometimes more convenient, is 

r = 
Ix;Y; - Nxy 

[See Problem 9.10] 
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Values of r near 1 or -1 indicate strong linear correlation; values near 0 indicate 
little or no correlation. The probability ProbN(Jrl > r0) that N measurements of two 
uncorrelated variables would give a value of r larger than any observed value r0 is 
tabulated in Appendix C. The smaller this probability, the better the evidence that 
the variables x and y really are correlated. If the probability is less than 5%, we say 
the correlation is significant; if it is less than 1 %, we say the correlation is highly 
significant. 

Problems for Chapter 9 

For Section 9.2: Covariance in Error Propagation 

9.1. * Calculate the covariance for the following four measurements of two quan­
tities x and y. 

x: 20 23 23 22 

y: 30 32 35 31 

9.2. * Each of five students measures the two times (t and T) for a stone to fall 
from the third and sixth floors of a tall building. Their results are shown in Table 
9.5. Calculate the two averages i and f', and find the covariance a-tT using the layout 
of Table 9.1. 

Table 9.5. Five measurements of 
two times, t and T (in tenths of a 
second); for Problem 9.2. 

Student t T 

A 14 20 
B 12 18 
C 13 18 
D 15 22 
E 16 22 

[As you examine the data, note that students B and C get lower-than-average 
answers for both times, whereas D's and E's answers are both higher than average. 
Although this difference could be just a chance fluctuation, it suggests B and C may 
have a systematic tendency to underestimate their times and D and E to overesti­
mate. (For instance, B and C could tend to anticipate the landing, whereas D and E 
could tend to anticipate the launch.) Under these conditions, we would expect to get 
a correlation of the type observed.] 

9.3 ** (a) For the data of Problem 9.1, calculate the variances a-} and a-/ and 
the covariance <rxy. (b) If you now decide to calculate the sum q = x + y, what will 
be its standard deviation according to (9.9)? (c) What would you have found for the 
standard deviation if you had ignored the covariance and used Equation (9.10)? 
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(d) In a simple situation like this, an easier way to find the standard deviation of q 
is just to calculate four values of q [one for each pair (x, y)] and then find a-q from 
these four values. Show that this procedure gives the same answer as you got in 
part (b). 

9.4. ** (a) For the data of Problem 9.2, calculate the variances a-/ and a-/ and 
the covariance <Fir· (b) If the students decide to calculate the difference T - t, what 
will be its standard deviation according to (9.9)? (c) What would they have found 
for the standard deviation if they had ignored the covariance and used Equation 
(9.10)? (d) In a simple situation like this, an easier way to find the standard devia­
tion of T - tis just to calculate five values of T - t [one for each pair (t, T)] and 
then find the standard deviation of these five values. Show that this procedure gives 
the same answer as you got in part (b ). 

9.5. ** Imagine a series of N measurements of two fixed lengths x and y that 
were made to find the value of some function q(x, y). Suppose each pair is measured 
with a different tape; that is, the pair (x1, y1) is measured with one tape, (x2, Yz) is 
measured with a second tape, and so on. (a) Assuming the main source of errors is 
that some of the tapes have shrunk and some stretched (uniformly, in either case), 
show that the covariance a-xy is bound to be positive. (b) Show further, under the 
same conditions, that a-xy = a-xa-y; that is, a-xy is as large as permitted by the Schwarz 
inequality (9.11). 

[Hint: Assume that the ith tape has shrunk by a factor Ai, that is, present 
length = ( design length)/Ai, so that a length that is really X will be measured as 
X; = A;X. The moral of this problem is that there are situations in which the covari­
ance is certainly not negligible.] 

9.6. ** Here is an example of an experiment in which we would expect a nega­
tive correlation between two measured quantities (high values of one correlated with 
low values of the other). Figure 9.2 represents a photograph taken in a bubble 
chamber, where charged subatomic particles leave clearly visible tracks. A positive 
particle called the K + has entered the chamber at the bottom of the picture. At 
point A, it has collided with an invisible neutron (n) and has undergone the reaction 

K+ + n ➔ K0 + p. 

The proton's track (p) is clearly visible, going off to the right, but the path of the 
K0 (shown dotted) is really invisible because the K0 is uncharged. At point B, the 
K0 decays into two charged pions, 

K0 ➔ n+ + n-, 

whose tracks are again clearly visible. To investigate the conservation of momentum 
in the second process, the experimenter needs to measure the angles a and /3 be­
tween the paths of the two pions and the invisible path of the K0 , and this measure­
ment requires drawing in the dotted line that joins A and B. The main source of 
error in finding a and f3 is in deciding on the direction of this line, because A and 
B are often close together (less than a cm), and the tracks that define A and B are 
rather wide. For the purpose of this problem, let us suppose that this is the only 
source of error. 
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1T 

Figure 9.2. Tracks of charged particles in a bubble chamber. The dotted line shows the 
direction of an invisible K0 , which was formed at A and decayed at B; for Problem 9.6. 

Suppose several students are given copies of Figure 9.2, and each draws in his 
best estimate for the line AB and then measures the two angles a and {3. The 
students then combine their results to find the means a and {3, the standard devia­
tions (T0 and (T13, and the covariance (Taf3· Assuming that the only source of error is in 
deciding the direction of the line AB, explain why an overestimate of a is inevitably 
accompanied by an underestimate of {3. Prove that (Ta = (T 13 and that the covariance 
(Taf3 is negative and equal to the largest value allowed by the Schwartz inequality, 
(T a.{3 = -(T a(T (3· 

(Hint: Suppose that the ith student draws his line AB to the right of the true 
direction by an amount di. Then his value for a will be ai = atrue + d;, Write the 
corresponding expression for his value {3; and compute the various quantities of 
interest in terms of the d; and K.) 

9.7. ** Prove that the covariance (Txy defined in (9.8) satisfies the Schwarz in­
equality (9.11), 

l(Txyl ::::; (Tx(Ty· 

[Hint: Let t be an arbitrary number and consider the function 

1 
A(t) = NL [(x; - x) + t(y; - y)]2 ;;,, o. 

(9.17) 

(9.18) 

Because A(t) ;;,, 0 whatever the value of t, even its minimum Amin ;;: 0. Find the 
minimum Amin, and set Amin ;;: 0.] 

For Section 9.3: Coefficient of Linear Correlation 

9.8. * Calculate the correlation coefficient r for the following five pairs of mea­
surements: 

x-12345 

y 8 8 5 6 3 
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Do the calculations yourself, but if your calculator has a built-in function to compute 
r, make sure you know how it works, and use it to check your value. 

9.9. * Calculate the correlation coefficient r for the following six pairs of mea­
surements: 

x-123567 

y 5 6 6 8 8 9 

Do the calculations yourself, but if your calculator has a built-in function to compute 
r, make sure you know how it works, and use it to check your value. 

9.10. ** (a) Prove the identity 

I.(x; - x)(Y; - y) = LX;Y; - Nxy. 

(b) Hence, prove the correlation coefficient r defined in (9.15) can be written as 

r = I.x;Y; - Nxy 
(9.19) 

Many calculators use this result to find r because it avoids the need to store all the 
data before calculating the means and deviations. 

For Section 9.4: Quantitative Significance of r 

9.11. * In the photoelectric effect, the kinetic energy K of electrons ejected from 
a metal by light is supposed to be a linear function of the light's frequency f, 

K = hf- 0, (9.20) 

where h and 0 are constants. To check this linearity, a student measures K for N 
different values off and calculates the correlation coefficient r for her results. (a) If 
she makes five measurements (N = 5) and finds r = 0.7, does she have significant 
support for the linear relation (9.20)? (b) What if N = 20 and r = 0.5? 

9.12. * (a) Check that the correlation coefficient r for the 10 pairs of test scores 
in Table 9.3 is approximately 0.8. (By all means, use the built-in function on your 
calculator, if it has one.) (b) Using the table of probabilities in Appendix C, find the 
probability that 10 uncorrelated scores would have given lrl ~ 0.8. Is the correla­
tion of the test scores significant? Highly significant? 

9.13. * A psychologist, investigating the relation between the intelligence of fa­
thers and sons, measures the Intelligence Quotients of 10 fathers and sons and ob­
tains the following results: 

Father: 

Son: 

74 83 85 96 98 100 106 107 120 124 

76 103 99 109 111 107 91 101 120 119 

Do these data support a correlation between the intelligence of fathers and sons? 

9.14. * Eight aspiring football players are timed in the 100-meter dash and the 
1,500-meter run. Their times (in seconds) are as follows: 

Dash: 12 11 13 14 12 15 12 16 

Run: 280 290 220 260 270 240 250 230 
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Calculate the correlation coefficient r. What kind of correlation does your result 
suggest? Is there, in fact, significant evidence for a correlation? 

9.15. ** Draw a scatter plot for the six data pairs of Problem 9.9 and the least­
squares line that best fits these points. Find their correlation coefficient r. Based on 
the probabilities listed in Appendix C, would you say these data show a significant 
linear correlation? Highly significant? 

9.16. ** (a) Draw a scatter plot for the five data pairs of Problem 9.8 and the 
least-squares line that best fits these points. Find their correlation coefficient r. 

Based on the probabilities listed in Appendix C, would you say these data show a 
significant linear correlation? Highly significant? (b) Repeat for the following data: 

x-12345 

y 4 6 3 0 2 



Chapter 10 

The Binomial Distribution 

The Gauss, or normal, distribution is the only example of a distribution we have 
studied so far. We will now discuss two other important examples, the binomial 
distribution (in this chapter) and the Poisson distribution (in Chapter 11). 

I 0.1 Distributions 

Chapter 5 introduced the idea of a distribution, the function that describes the pro­
portion of times a repeated measurement yields each of its various possible answers. 
For example, we could make N measurements of the period T of a pendulum and 
find the distribution of our various measured values of T, or we could measure 
the heights h of N Americans and find the distribution of the various measured 
heights h. 

I next introduced the notion of the limiting distribution, the distribution that 
would be obtained in the limit that the number of measurements N becomes very 
large. The limiting distribution can be viewed as telling us the probability that one 
measurement will yield any of the possible values: the probability that one measure­
ment of the period will yield any particular value T; the probability that one Ameri­
can (chosen at random) will have any particular height h. For this reason, the lim­
iting distribution is also sometimes called the probability distribution. 

Of the many possible limiting distributions, the only one we have discussed is 
the Gauss, or normal, distribution, which describes the distribution of answers for 
any measurement subject to many sources of error that are all random and small. 
As such, the Gauss distribution is the most important of all limiting distributions 
for the physical scientist and amply deserves the prominence given it here. Never­
theless, several other distributions have great theoretical or practical importance, and 
this and the next chapter present two examples. 

This chapter describes the binomial distribution, which is not of great practical 
importance to the experimental physicist. Its simplicity, however, makes it an excel­
lent introduction to many properties of distributions, and it is theoretically important, 
because we can derive the all-important Gauss distribution from it. 227 



228 Chapter I 0: The Binomial Distribution 

I 0.2 Probabilities in Dice Throwing 

The binomial distribution can best be described by an example. Suppose we under­
take as our "experiment" to throw three dice and record the number of aces show­
ing. The possible results of the experiment are the answers 0, 1, 2, or 3 aces. If we 
repeat the experiment an enormous number of times, we will find the limiting distri­
bution, which will tell us the probability that in any one throw ( of all three dice) 
we get v aces, where v = 0, 1, 2, or 3. 

This experiment is sufficiently simple that we can easily calculate the probabil­
ity of the four possible outcomes. We observe first that, assuming the dice are true, 
the probability of getting an ace when throwing one die is A. Let us now throw all 
three dice and ask first for the probability of getting three aces (v = 3). Because 
each separate die has probability A of showing an ace, and because the three dice 
roll independently, the probability for three aces is 

Prob(3 aces in 3 throws) = (i)3 = 0.5%. 

Calculating the probability for two aces ( v = 2) is a little harder because we 
can throw two aces in several ways. The first and second dice could show aces and 
the third not (A, A, not A), or the first and third could show aces and the second not 
(A, not A, A), and so on. Here, we argue in two steps. First, we consider the proba­
bility of throwing two aces in any definite order, such as (A,A, notA). The probabil­
ity that the first die will show an ace is A, and likewise for the second. On the other 
hand, the probability that the last die will not show an ace is t Thus, the probability 
for two aces in this particular order is 

Prob(A, A, not A) = (i)2 X (i)-
The probability for two aces in any other definite order is the same. Finally, there 
are three different orders in which we could get our two aces: (A, A, not A), or (A, 
not A, A), or (not A, A, A). Thus, the total probability for getting two aces (in any 
order) is 

Prob(2 aces in 3 throws) = 3 X (i)2 X (i) = 6.9%. (10.1) 

Similar calculations give the probabilities for one ace in three throws (34.7%) 
and for no aces in three throws (57.9% ). Our numerical conclusions can be summa­
rized by drawing the probability distribution for the number of aces obtained when 
throwing three dice, as in Figure 10.1. This distribution is an example of the bino­
mial distribution, the general form of which we now describe. 

I 0.3 Definition of the Binomial Distribution 

To describe the general binomial distribution, I need to introduce some terminology. 
First, imagine making n independent trials, such as throwing n dice, tossing n coins, 
or testing n firecrackers. Each trial can have various outcomes: A die can show any 
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Figure I 0.1. Probability of getting v aces when throwing three dice. This function is the bino­
mial distribution Bn,p(v), with n = 3 and p = 1/6. 

face from 1 to 6, a coin can show heads or tails, a firecracker can explode or fizzle. 
We refer to the outcome in which we happen to be interested as a success. Thus 
"success" could be throwing an ace on a die, or a head on a coin, or having a 
firecracker explode. We denote by p the probability of success in any one trial, and 
by q = 1 - p that of "failure" (that is, of getting any outcome other than the one 
of interest). Thus, p = b for getting an ace on a die, p = ½ for heads on a coin, and 
p might be 95% for a given brand of firecracker to explode properly. 

Armed with these definitions, we can now ask for the probability of getting 11 
successes in n trials. A calculation I will sketch in a moment shows that this proba­
bility is given by the so-called binomial distribution: 

Prob( 11 successes in n trials) Bn,p(11) 

n(n - 1) • • • (n - 11 + 1) "q" _ ,, 
1 X 2 X · · · X 11 p • (l0.2) 

Here the letter B stands for "binomial"; the subscripts n and p on Bn,p(11) indicate 
that the distribution depends on n, the number of trials made, and p, the probability 
of success in one trial. 

The distribution (10.2) is called the binomial distribution because of its close 
connection with the well-known binomial expansion. Specifically, the fraction in 
(10.2) is the binomial coefficient, often denoted 

n(n - 1) • • • (n - 11 + 1) 
1X2X···X11 

n! 
11!(n - 11)!' 

where we have introduced the useful factorial notation, 

n! = 1 X 2 X • • • X n. 

(10.3) 

(10.4) 



230 Chapter I 0: The Binomial Distribution 

[By convention, 0! = 1, and so GD = l.] The binomial coefficient appears in the 
binomial expansion 

(10.5) 

which holds for any two numbers p and q and any positive integer n (see Problems 
10.5 and 10.6). 

With the notation (10.3), we can rewrite the binomial distribution in the more 
compact form 

(10.6) 

where, as usual, p denotes the probability of success in one trial and q = l - p. 
The derivation of the result (10.6) is similar to that of the example of the dice 

in (10.1), 

Prob(2 aces in 3 throws) = 3 X (i)2 X (~)­ (10.7) 

In fact, if we set v = 2, n = 3, p = !, and q = i in (10.6), we obtain precisely (10. 7), 
as you should check. Furthermore, the significance of each factor in (10.6) is the 
same as that of the corresponding factor in (10.7). The factor pv is the probability 
of getting all successes in any definite v trials, and qn - v is the probability of failure 
in the remaining n - v trials. The binomial coefficient (~) is easily shown to be the 
number of different orders in which there can be v successes in n trials. This estab­
lishes that the binomial distribution (10.6) is indeed the probability claimed. 

Example: Tossing Four Coins 

Suppose we toss four coins (n = 4) and count the number of heads obtained, v. 
What is the probability of obtaining the various possible values v = 0, l, 2, 3, 4? 

Because the probability of getting a head on one toss is p = ½, the required 
probability is simply the binomial distribution Bn,p( v), with n = 4 and p = q = ½, 

Prob(v heads in 4 tosses) = (:)Gr 
These probabilities are easily evaluated. For example, 

Prob(0 heads in 4 tosses) = 1 X Gr = 0.0625. 
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Figure I 0.2. The binomial distribution Bn_p(v) with n = 4, p = ½. 
This gives the probability of getting v heads when throwing four coins. 

All five probabilities are shown in Figure 10.2. 
We see that the most probable number of heads is v = 2, as we would expect. 

Here, the probabilities are symmetric about this most probable value. That is, the 
probability for three heads is the same as that for one, and the probability for four 
heads is the same as that for none. As we will see, this symmetry occurs only when 
P -! 

- 2· 

Quick Check I 0.1. If you draw one card at random from a full deck of 52 
playing cards, the probability of drawing any particular suit is ¼. If you draw 
three times, replacing your card after each draw, what is the probability of 
drawing three hearts? Of drawing exactly two hearts? Of drawing two or more 
hearts? 

I 0.4 Properties of the Binomial Distribution 

The binomial distribution Bn_/v) gives the probability of having v "successes" in n 
trials, when p is the probability of success in a single trial. If we repeat our whole 
experiment, consisting of n trials, many times, then it is natural to ask what our 
average number of successes v would be. To find this average, we just sum over all 
possible values of v, each multiplied by its probability. That is, 

n 

v = L vBn_/v) (10.8) 
v=O 

and is easily evaluated (Problem 10.14) as 

v = np. (10.9) 

231 



232 Chapter I 0: The Binomial Distribution 

That is, if we repeat our series of n trials many times, the average number of 
successes will be just the probability of success in one trial (p) times n, as you 
would expect. We can similarly calculate the standard deviation <r v in our number 
of successes (Problem 10.15). The result is 

(10.10) 

Whenp =½(as in a coin-tossing experiment), the average number of successes 
is just n/2. Furthermore, it is easy to prove for p = ½ that 

(10.11) 

(see Problem 10.13). That is, the binomial distribution with p ½ is symmetric 
about the average value n/2, as we noticed in Figure 10.2. 

In general, when p =I= ½, the binomial distribution Bn,p( v) is not symmetric. For 
example, Figure 10.1 is clearly not symmetric; the most probable number of suc­
cesses is v = 0, and the probability diminishes steadily for v = 1, 2, and 3. Also, 
the average number of successes (v = 0.5) here is not the same as the most probable 
number of successes ( v = 0). 

It is interesting to compare the binomial distribution Bn,p( v) with the more fa­
miliar Gauss distribution Gx,Jx). Perhaps the biggest difference is that the experi­
ment described by the binomial distribution has outcomes given by the discrete 1 

values v = 0, 1, 2, ... , n, whereas those of the Gauss distribution are given by the 
continuous values of the measured quantity x. The Gauss distribution is a symmetric 
peak centered on the average value x = X, which means that the average value X is 
also the most probable value [that for which GxJ..x) is maximum]. As we have seen, 
the binomial distribution is symmetric only when p = ½, and in general the average 
value does not coincide with the most probable value. 

GAUSSIAN APPROXIMATION TO THE 
BINOMIAL DISTRIBUTION 

For all their differences, the binomial and Gauss distributions have an important 
connection. If we consider the binomial distribution Bn,p(v) for any fixed value of 
p, then when n is large Bn,p( v) is closely approximated by the Gauss distribution 
Gx,aC v) with the same mean and same standard deviation; that is, 

(n large) (10.12) 

with 

X = np and <r = ✓np(l - p). (10.13) 

We refer to (10.12) as the Gaussian approximation to the binomial distribution. 

1 The word discrete (not to be confused with discreet) means "detached from one another" and is the 
opposite of continuous. 
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Figure I 0.3. The binomial distributions for p = l/4 and n = 3, 12, and 48. The continuous 
curve superimposed on each picture is the Gauss function with the same mean and same stan­
dard deviation. 

I will not prove the result here,2 but its truth is clearly illustrated in Figure 10.3, 
which shows the binomial distribution for p = ¼ and for three successively larger 
values of n (n = 3, 12, 48). Superimposed on each binomial distribution is the 
Gaussian distribution with the same mean and standard deviation. With just three 
trials (n = 3), the binomial distribution is quite different from the corresponding 
Gaussian. In particular, the binomial distribution is distinctly asymmetric, whereas 
the Gaussian is, of course, perfectly symmetric about its mean. By the time n = 12, 
the asymmetry of the binomial distribution is much less pronounced, and the two 
distributions are quite close to one another. When n = 48, the difference between 
the binomial and the corresponding Gauss distribution is so slight that the two are 
almost indistinguishable on the scale of Figure 10.3(c). 

2 For proofs, see S. L. Meyer, Data Analysis for Scientists and Engineers (John Wiley, 1975), p. 226, or 
H. D. Young, Statistical Treatment of Experimental Data (McGraw-Hill, 1962), Appendix C. 
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That the binomial distribution can be approximated by the Gauss function when 
n is large is very useful in practice. Calculation of the binomial function with n 
greater than 20 or so is extremely tedious, whereas calculation of the Gauss function 
is always simple whatever the values of X and <r. To illustrate this, suppose we 
wanted to know the probability of getting 23 heads in 36 tosses of a coin. This 
probability is given by the binomial distribution B36,112( v) because the probability of 
a head in one toss is p = t Thus 

Prob(23 heads in 36 tosses) B36, 112(23) 

36! (1)36 

23!13! 2 ' 

which a fairly tedious calculation 3 shows to be 

Prob(23 heads) = 3.36%. 

(10.14) 

(10.15) 

On the other hand, because the mean of the distribution is np = 18 and the standard 
deviation is <r = ✓np(l - p) = 3, we can approximate (10.14) by the Gauss func­
tion G18 i23), and a simple calculation gives 

Prob(23 heads) = G18,i23) = 3.32%. 

For almost all purposes, this approximation is excellent. 
The usefulness of the Gaussian approximation is even more obvious if we want 

the probability of several outcomes. For example, the probability of getting 23 or 
more heads in 36 tosses is 

Prob(23 or more heads) = Prob(23 heads) + Prob(24 heads) + · · · 
+ Prob (36 heads), 

a tedious sum to calculate directly. If we approximate the binomial distribution by 
the Gaussian, however, then the probability is easily found. Because the calculation 
of Gaussian probabilities treats v as a continuous variable, the probability for 
v = 23, 24, . . . is best calculated as ProbaaussC v ~ 22.5), the probability for any 
v ~ 22.5. Now, v = 22.5 is 1.5 standard deviations above the mean value, 18. (Re­
member, <r = 3, so 4.5 = 1.5u.) The probability of a result more than 1.5u above 
the mean equals the area under the Gauss function shown in Figure 10.4. It is easily 
calculated with the help of the table in Appendix B, and we find 

l.5u 

Figure I 0.4. The probability of a result more than 1.5u above the mean 
is the shaded area under the Gauss curve. 

3 Some hand calculators are preprogrammed to compute n! automatically, and with such a calculator compu­
tation of (10.15) is easy. In most such calculators, however, n! overflows when n ;a, 70, so for n ;a, 70 this 
preprogrammed function is no help. 
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Prob(23 or more heads) = ProbaaussCv ;;,x + l.Su) = 6.7%. 

This value compares well with the exact result (to two significant figures) 6.6%. 

I 0.5 The Gauss Distribution for Random Errors 

In Chapter 5, I claimed that a measurement subject to many small random errors 
will be distributed normally. We are now in a position to prove this claim, using a 
simple model for the kind of measurement concerned. 

Let us suppose we measure a quantity x whose true value is X. We assume our 
measurements are subject to negligible systematic error but there are n independent 
sources of random error ( effects of parallax, reaction times, and so on). To simplify 
our discussion, suppose further that all these sources produce random errors of the 
same fixed size e. That is, each source of error pushes our result upward or down­
ward by e, and these two possibilities occur with equal probability, p = ½. For exam-

n=l n=2 n=32 t 
;E 
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Figure I 0.5. Distribution of measurements subject to n random errors of magnitude e, for 
n = l, 2, and 32. The continuous curves superimposed on (b) and (c) are Gaussians with the 
same center and width. (The vertical scales differ in the three graphs.) 

pie, if the true value is X and there is just one source of error, our possible answers 
are x = X - e and x = X + e, both equally likely. If there are two sources of error, 
a measurement could yield x = X - 2e (if both errors happened to be negative), or 
x = X (if one was negative and one positive), or x = X + 2e (if both happened to 
be positive). These possibilities are shown in Figures 10.S(a) and (b). 

In general, if there are n sources of error, our answer could range from 
x = X - ne to x = X + ne. In a given measurement, if v sources happen to give 
positive errors and (n - v) negative errors, our answer will be 

x - X + ve - (n - v)e 

X + (2v - n)e. 

The probability of this result occurring is just the binomial probability 

Prob(v positive errors) = Bn,v2(v). 

(10.16) 

(10.17) 

Thus, the possible results of our measurement are symmetrically distributed around 
the true value X, and the probabilities are given by the binomial function (10.17). 
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This distribution is illustrated in Figure 10.5 for n = 1, 2, and 32. 
I now claim that if the number of sources of error, n, is large and the size of 

the individual errors, e, is small, then our measurements are normally distributed. 
To be more recise, we note that the standard deviation of the binomial distribution 
is <T., = np(l - p) = '\Jn/4. Therefore, accord~ to (10.16), the standard deviation 
of our measurements of x is <Tx = 2e<r., = e'\jn. Accordingly, we let n ➔ 00 and 
e ➔ 0 in such a way that <Tx = e~ remains fixed. Two things happen as a result. 
First, as discussed in the previous section, the binomial distribution approaches the 
Gauss distribution with center X and width <Tx· This approach is clearly visible 
in Figures 10.5(b) and (c), on which the appropriate Gauss functions have been 
superimposed. Second, as e ➔ 0, the possible results of our measurement move 
closer together (as is also clear in Figure 10.5), so that the discrete distribution 
approaches a continuous distribution that is precisely the expected Gauss distribu­
tion. 

I 0.6 Applications; Testing of Hypotheses 

Once we know how the results of an experiment should be distributed, we can ask 
whether the actual results of the experiment were distributed as expected. This kind 
of test of a distribution is an important technique in the physical sciences and per­
haps even more so in the biological and social sciences. One important, general test, 
the chi-squared test, is the subject of Chapter 12. Here, I give two examples of a 
simpler test that can be applied to certain problems involving the binomial distribu­
tion. 

TESTING A NEW SKI WAX 

Suppose a manufacturer of ski waxes claims to have developed a new wax that 
greatly reduces the friction between skis and snow. To test this claim, we might take 
10 pairs of skis and treat one ski from each pair with the wax. We could then hold 
races between the treated and untreated members of each pair by letting them slide 
down a suitable snow-covered incline. 

If the treated skis won all 10 races, we would obviously have strong evidence 
that the wax works. Unfortunately, we seldom get such a clear-cut result, and even 
when we do, we would like some quantitative measure of the strength of the evi­
dence. Thus, we have to address two questions. First, how can we quantify the 
evidence that the wax works ( or doesn't work)? Second, where would we draw the 
line? If the treated skis won nine of the races, would this result be conclusive? What 
if they won eight races? Or seven? 

Precisely these same questions arise in a host of similar statistical tests. If we 
wanted to test the efficacy of a fertilizer, we would organize "races" between treated 
and untreated plants. To predict which candidate is going to win an election, we 
would choose a random sample of voters and hold "races" between the candidates 
among the members of our sample. 

To answer our questions, we need to decide more precisely what we should 
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expect from our tests. In the accepted terminology, we must formulate a statistical 
hypothesis. In the example of the ski wax, the simplest hypothesis is the null hypoth-
esis, that the new wax actually makes no difference. Subject to this hypothesis, we 
can calculate the probability of the various possible results of our test and then 
judge the significance of our particular result. 

Suppose we take as our hypothesis that the ski wax makes no difference. In any 
one race, the treated and untreated skis would then be equally likely to win; that is, 
the probability for a treated ski to win is p = ½. The probability that the treated skis 
will win v of the 10 races is then the binomial probability: 

Prob( v wins in 10 races) B10,1;2(v) 

10! (1)10 
v!(lO - v)! 2 • 

(10.18) 

According to (10.18), the probability that the treated skis would win all 10 races is 

Prob(lO wins in 10 races) = (½)10 = 0.1 %. (10.19) 

That is, if our null hypothesis is correct, the treated skis would be very unlikely to 
win all 10 races. Conversely, if the treated skis did win all 10 races, the null hypoth­
esis is very unlikely to be correct. In fact, the probability (10.19) is so small, we 
could say the evidence in favor of the wax is "highly significant," as we will discuss 
shortly. 

Suppose instead that the treated skis had won eight of the 10 races. Here, we 
would calculate the probability of eight or more wins: 

Prob(8 or more wins in 10 races) 

= Prob(8 wins) + Prob(9 wins)+ Prob(lO wins) = 5.5%. (10.20) 

For the treated skis to win eight or more races is still quite unlikely but not nearly 
as unlikely as their winning all 10. 

To decide what conclusion to draw from the eight wins, we must recognize that 
there are really just two alternatives. Either 

or 

(a) our null hypothesis is correct (the wax makes no difference), but by chance, 
an unlikely event has occurred (the treated skis have won eight races) 

(b) our null hypothesis is false, and the wax does help. 

In statistical testing, by tradition we pick some definite probability (5%, for exam­
ple) to define the boundary below which an event is considered unacceptably im­
probable. If the probability of the actual outcome ( eight or more wins, in our case) 
is below this boundary, we choose alternative (b), reject the hypothesis, and say the 
result of our experiment was significant. 

By common practice, we call a result significant if its probability is less than 
5% and call it highly significant if its probability is less than 1 %. Because the 
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probability (10.20) is 5.5%, we see that eight wins for the waxed skis are just not 
enough to give significant evidence that the wax works. On the other hand, we saw 
that the probability of 10 wins is 0.1 %. Because this value is less than 1 %, we can 
say that 10 wins would constitute highly significant evidence that the wax helps.4 

GENERAL PROCEDURE 

The methods of the example just described can be applied to any set of n similar 
but independent tests (or "races"), each of which has the same two possible out­
comes, "success" or "failure." First, a hypothesis is formulated, here simply an 
assumed value for the probability p of success in any one test. This assumed value 
of p determines the expected mean number of successes, v = np, in n trials.5 If the 
actual number of successes, v, in our n trials is close to np, there is no evidence 
against the hypothesis. (If the waxed skis win five out of 10 races, there is no 
evidence the wax makes any difference.) If v is appreciably larger than np, we 
calculate the probability (given our hypothesis) of getting v or more successes. If 
this probability is less than our chosen significance level (for example, 5% or 1 % ), 
we argue that our observed number is unacceptably improbable (if our hypothesis 
is correct) and hence that our hypothesis should be rejected. In the same way, if our 
number of successes v is appreciably less than np, we can argue similarly, except 
that we would calculate the probability of getting v or less successes. 6 

As you should have expected, this procedure does not provide a simple answer 
that our hypothesis is certainly true or certainly false. But it does give a quantitative 
measure of the reasonableness of our results in light of the hypothesis, so we can 
choose an objective, if arbitrary, criterion for rejection of the hypothesis. When 
experimenters state conclusions based on this kind of reasoning, they must state 
clearly the criterion used and the calculated probability so that readers can judge 
the reasonableness of the conclusion for themselves. 

AN OPINION POLL 

As a second example, consider an election between two candidates, A and B. 
Suppose candidate A claims that extensive research has established that he is favored 
by 60% of the electorate, and suppose candidate B asks us to check this claim (in 
the hope, of course, of showing that the number favoring A is significantly less than 
60%). 

Here, our statistical hypothesis would be that 60% of voters favor A, so the 
probability that a randomly selected voter will favor A would be p = 0.6. Recogniz­
ing that we cannot poll every single voter, we carefully select a random sample of 

4 Note the great simplicity of the test just described. We could have measured various additional parameters, 
such as the time taken by each ski, the maximum speed of each ski, and so on. Instead, we simply recorded 
which ski won each race. Tests that do not use such additional parameters are called nonparametric tests. 
They have the great advantages of simplicity and wide applicability. 

5 As usual, ii = np is the mean number of successes expected if we were to repeat our whole set of n trials 
many times. 

6 As we discuss below, in some experiments the relevant probability is the "two-tailed" probability of getting 
a value of v that deviates in either direction from np by as much as, or more than, the value actually obtained. 
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600 and ask their preferences. If 60% really favor A, the expected number in our 
sample who favor A is np = 600 X 0.6 = 360. If in fact 330 state a preference for 
A, can we claim to have cast significant doubt on the hypothesis that 60% 
favor A? 

To answer this question, we note that (according to the hypothesis) the probabil­
ity that v voters will favor A is the binomial probability 

Prob(v voters favor A) = Bn,iv) (10.21) 

with n = 600 and p = 0.6. Because n is so large, it is an excellent approximation to 
replace the binomial function by the appropriate Gauss function, with center at 
np = 360 and standard deviation <rv = ✓np(l - p) = 12. 

Prob(v voters favor A) = G360,12(v). (10.22) 

The mean number expected to favor A is 360. Thus, the number who actually 
favored A in our sample (namely 330) is 30 less than expected. Because the standard 
deviation is 12, our result is 2.5 standard deviations below the supposed mean. The 
probability of a result this low or lower (according to the table in Appendix B) is 
0.6%.7 Thus, our result is highly significant, and at the 1 % level we can confidently 
reject the hypothesis that A is favored by 60%. 

This example illustrates two general features of this kind of test. First, having 
found that 330 voters favored A (that is, 30 less than expected), we calculated the 
probability that the number favoring A would be 330 or less. At first thought, you 
might have considered the probability that the number favoring A is precisely 
v = 330. This probability is extremely small (0.15%, in fact) and even the most 
probable result (v = 360) has a low probability (3.3%). To get a proper measure of 
how unexpected the result v = 330 is, we have to include v = 330 and any result 
that is even further below the mean. 

Our result v = 330 was 30 less than the expected result, 360. The probability 
of a result 30 or more below the mean is sometimes called a "one-tailed probabil­
ity," because it is the area under one tail of the distribution curve, as in Figure 
10.6(a). In some tests, the relevant probability is the "two-tailed probability" of 
getting a result that differs from the expected mean by 30 or more in either direc-

-~-------L-~--~~~~~-
30 30 30 

(a) (b) 

Figure I 0.6. (a) The "one-tailed" probability for getting a result 30 or more below the mean. 
(b) The "two-tailed" probability for getting a result that differs from the mean by 30 or more in 
either direction. (Not to scale.) 

7 Strictly speaking, we should have computed the probability for v ,a; 330.5 because the Gauss distribution 
treats v as a continuous variable. This number is 2.46u below the mean, so the correct probability is actually 
0. 7%, but this small a difference does not affect our conclusion. 
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tion, that is, the probability of getting v,,,,;; 330 or v;;. 390, as in Figure 10.6(b). 
Whether you use the one-tailed or two-tailed probability in a statistical test depends 
on what you consider the interesting alternative to the original hypothesis. Here, we 
were concerned to show that candidate A was favored by less than the claimed 60%, 
so the one-tailed probability was appropriate. If we were concerned to show that the 
number favoring A was different from 60% (in either direction), the two-tailed prob­
ability would be appropriate. In practice, the choice of which probability to use is 
usually fairly clear. In any case, the experimenter always needs to state clearly the 
probability and significance level chosen and the calculated value of the probability. 
With this information readers can judge the significance of the results for them­
selves. 

Quick Check I 0.2. If I toss a coin 12 times and get 11 heads, do I have 
significant evidence that the coin is loaded in favor of heads? (Hint: Assuming 
the coin is true, the probability of getting heads in a single throw is p = ½. 
Making this assumption, find the probability that I would have obtained 11 or 
more heads in 12 tosses. 

Principal Definitions and Equations of Chapter I 0 

THE BINOMIAL DISTRIBUTION 

We consider an experiment with various possible outcomes and designate the 
particular outcome (or outcomes) in which we are interested as a "success." If the 
probability of success in any one trial is p, then the probability of v successes in n 
trials is given by the binomial distribution: 

Prob( v successes in n trials) Bn,p(v) 

C)pv(l - Pl-v, 
[See (10.6)] 

where (:) denotes the binomial coefficient, 

(n) n! 
v - v! (n - v)! • 

If we repeat the whole set of n trials many times, the expected mean number of 
successes is 

ji np [See (10.9)] 

and the standard deviation of v is 



<J"v = ✓np(l - p). 

THE GAUSSIAN APPROXIMATION TO THE 
BINOMIAL DISTRIBUTION 
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[See (10.10)] 

When n is large, the binomial distribution Bn,p( v) is well approximated by the 
Gauss function with the same mean and standard deviation; that is, 

Bn,p(v) = Gx,Jv), 

where X = np and a-= ✓np(l - p). 

Problems for Chapter I 0 

For Section I 0.2: Probabilities in Dice Throwing 

[See (10.12)] 

10.1. * Consider the experiment of Section 10.2 in which three dice are thrown. 
Derive the probabilities for throwing no aces and one ace. Verify all four of the 
probabilities shown in Figure 10.1. 

10.2. * Compute the probabilities Prob(v aces in two throws) for v = 0, l, and 2 
in a throw of two dice. Plot them in a histogram. 

10.3. ** Compute the probabilities Prob(v aces in four throws) for v = 0, 
1, ... , 4 in a throw of four dice. Plot them in a histogram. You will need to think 
carefully about the number of different ways in which you can get two aces in a 
throw of four dice. 

For Section I 0.3: Definition of the Binomial Distribution 

10.4. * (a) Compute 5!, 6!, and 25!/23! (Please think for a moment before you 
do the last one.) (b) Explain why we traditionally define O! = 1. [Hint: According to 
the usual definition, for n = l, 2, ... , the factorial function satisfies n! = (n + 1)!/ 
(n + 1).] (c) Prove that the binomial coefficient defined by Equation (10.3) is equal 
to 

(:) = v!(n n~ v)! • 

10.5. * Compute the binomial coefficients(!) for v = 0, l, 2, and 3. Hence, write 
the binomial expansion (10.5) of (p + q)3 . 

10.6. * Compute the binomial coefficients (!) for v = 0, l, 2, 3, and 4. Hence, 
write the binomial expansion (10.5) of (p + q)4. 

10.7. * Compute and plot a histogram of the binomial distribution function Bn,p(v) 
for n = 4, p = l/2, and all possible v. 

10.8. * Compute and plot a histogram of the binomial distribution function Bn,p(v) 
for n = 4, p = l/5, and all possible v. 
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10.9. * I draw six times from a deck of 52 playing cards, replacing each card 
before making the next draw. Find the probabilities, Prob(v hearts), that I would 
draw exactly v hearts in six draws, for v = 0, 1, ... , 6. 

10.10. * A hospital admits four patients suffering from a disease for which the 
mortality rate is 80%. Find the probabilities of the following outcomes: (a) None of 
the patients survives. (b) Exactly one survives. (c) Two or more survive. 

10.11. ** In the game of Yahtzee, a player throws five dice simultaneously. (a) 
Find the probabilities of throwing v aces, for v = 0, 1, ... , 5. (b) What is the 
probability of throwing three or more aces? (c) What is the probability of throwing 
five of a kind? 

10.12. ** Prove that the binomial coefficient (~) is the number of different orders 
in which v successes could be obtained in n trials. 

For Section I 0.4: Properties of the Binomial Distribution 

10.13. * Prove that for p = 1/2, the binomial distribution is symmetric about 
v = n/2; that is, 

Bn,112(v) = Bn,vz(n - v). 

10.14. ** Prove that the mean number of successes, 

n 

ii = L vBn,/v), 
v=O 

for the binomial distribution is just np. [There are many ways to do this, of which 
one of the best is this: Write the binomial expansion (10.5) for (p + qt. Because 
this expansion is true for any p and q, you can differentiate it with respect to p. If 
you now set p + q = 1 and multiply the result by p, you will have the desired 
result.] 

10.15. ** (a) The standard deviation for any limiting distribution f(v) is defined 
by 

a-,,2 = (v - v)2 . 

Prove that this definition is the same as v2 - (v)2. (b) Use this result to prove that, 
for the binomial distribution, 

a-,,2 = np(l - p). 

(Use the same trick as in Problem 10.14, but differentiate twice.) 

10.16. ** The Gaussian approximation (10.12) to the binomial distribution is ex­
cellent for n large and surprisingly good for n small (especially if p is close to ½). 
To illustrate this claim, calculate B4,112(v) (for v = 0, 1, ... , 4) both exactly and 
using the Gaussian approximation. Compare your results. 

10.17. ** Use the Gaussian approximation (10.12) to find the probability of get­
ting 15 heads if you throw a coin 25 times. Calculate the same probability exactly 
and compare answers. 
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10.18. ** Use the Gaussian approximation to find the probability of getting 18 
or more heads in 25 tosses of a coin. (In using the Gauss probabilities, you should 
find the probability for v ~ 17.5.) Compare your approximation with the exact an-
swer, which is 2.16%. 

For Section I 0.6: Applications; Testing of Hypotheses 

10.19. * In the test of a ski wax described in Section 10.6, suppose the waxed 
skis had won 9 of the 10 races. Assuming the wax makes no difference, calculate 
the probability of 9 or more wins. Do 9 wins give significant (5% level) evidence 
that the wax is effective? Is the evidence highly significant (1 % level)? 

10.20. ** To test a new fertilizer, a gardener selects 14 pairs of similar plants 
and treats one plant from each pair with the fertilizer. After two months, 12 of the 
treated plants are healthier than their untreated partners (and the remaining 2 are 
less healthy). If, in fact, the fertilizer made no difference, what would be the proba­
bility that pure chance led to 12 or more successes? Do the 12 successes give 
significant (5% level) evidence that the fertilizer helps? Is the evidence highly sig­
nificant (1 % level)? 

10.21. ** Of a certain kind of seed, 25% normally germinates. To test a new 
germination stimulant, 100 of these seeds are planted and treated with the stimulant. 
If 32 of them germinate, can you conclude (at the 5% level of significance) that the 
stimulant helps? 

10.22. ** In a certain school, 420 of the 600 students pass a standardized mathe­
matics test, for which the national passing rate is 60%. If the students at the school 
had no special aptitude for the test, how many would you expect to pass, and what 
is the probability that 420 or more would pass? Can the school claim that its stu­
dents are significantly well prepared for the test? 





Chapter 11 

The Poisson Distribution 

This chapter presents a third example of a limiting distribution, the Poisson distribu­
tion, which describes the results of experiments in which we count events that occur 
at random but at a definite average rate. Examples of this kind of counting experi­
ment crop up in almost every area of science; for instance, a sociologist might count 
the number of babies born in a hospital in a three-day period. An important example 
in physics is the counting of the decays of a radioactive sample; for instance, a 
nuclear physicist might decide to count the number of alpha particles given off by 
a sample of radon gas in a ten-second interval. 

This kind of counting experiment was discussed in Section 3.2, where I stated 
but did not prove the "square-root rule": If you count the occurrences of an event 
of this type in a chosen time interval T and obtain 11 counts, then the best estimate 
for the true average number in time T is, of course, 11, and the uncertainty in this 
estimate is ~-

In Sections 11.1 and 11.2, I introduce the Poisson distribution and explore some 
of its properties. In particular, I prove in Section 11.2 that the standard deviation of 
the Poisson distribution is the square root of the expected number of events. This 
result justifies the square-root rule of Section 3.2. Sections 11.3 and 11.4 describe 
some applications of the Poisson distribution. 

I I. I Definition of the Poisson Distribution 

As an example of the Poisson distribution, suppose we are given a sample of radio­
active material and use a suitable detector to find the number 11 of decay particles 
ejected in a two-minute interval. If the counter is reliable, our value of 11 will have 
no uncertainty. Nevertheless, if we repeat the experiment, we will almost certainly 
get a different value for 11. This variation in the number 11 does not reflect uncertain­
ties in our counting; rather, it reflects the intrinsically random character of the radio­
active decay process. 

Each radioactive nucleus has a definite probability for decaying in any two­
minute interval. If we knew this probability and the number of nuclei in our sample, 
we could calculate the expected average number of decays in two minutes. Never­
theless, each nucleus decays at a random time, and in any given two-minute interval, 
the number of decays may be different from the expected average number. 245 
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Obviously the question we should ask is this: If we repeat our experiment many 
times (replenishing our sample if it becomes significantly depleted), what distribu­
tion should we expect for the number of decays v observed in two-minute intervals? 
If you have studied Chapter 10, you will recognize that the required distribution is 
the binomial distribution. If there are n nuclei and the probability that any one 
nucleus decays is p, then the probability of v decays is just the probability of v 
"successes" in n "trials," or Bn,p(v). In the kind of experiment we are now dis­
cussing, however, there is an important simplification. The number of "trials" (that 
is, nuclei) is enormous (n ~ 1020, perhaps), and the probability of "success" (decay) 
for any one nucleus is tiny (often as small asp~ 10-20). Under these conditions (n 
large and p small), the binomial distribution can be shown to be indistinguishable 
from a simpler function called the Poisson distribution. Specifically, it can be shown 
that 

Prob(v counts in any definite interval) = P ,.,,(v), 

where the Poisson distribution, P ,.,,( v), is given by 

(11.1) 

(11.2) 

In this definition, µ, is a positive parameter (µ, > 0) that, as I will show directly, is 
just the expected mean number of counts in the time interval concerned, and v! 
denotes the factorial function (with O! = 1). 

SIGNIFICANCE OFµ, AS THE EXPECTED MEAN COUNT 

I will not derive the Poisson distribution (11.2) here but simply assert that it is 
the appropriate distribution for the kind of counting experiment in which we are 
interested.1 To establish the significance of the parameter µ, in (11.2), we have only 
to calculate the average number of counts, v, expected if we repeat our counting 
experiment many times. This average is found by summing over all possible values 
of v, each multiplied by its probability: 

= V 
" _,, µ, L.J ve ... ,. 
v=O V. 

(11.3) 

The first term of this sum can be dropped (because it is zero), and v/v! can be 
replaced by 1/(v - 1)!. If we remove a common factor of µ,e-,.,,, we get 

v = 
00 V - 1 

-µ," ~µ, __ 
µ,e :=1 (v - 1)!. (11.4) 

1 For derivations, see, for example, H. D. Young, Statistical Treatment of Experimental Data (McGraw-Hill, 
1962), Section 8, or S. L. Meyer, Data Analysis for Scientists and Engineers (John Wiley, 1975), p. 207. 
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The infinite sum that remains is 

µ,2 µ,3 
1 + µ., + - + - + · • · = e,.,,, 

2! 3! 
(11.5) 

which is just the exponential function e,.,, (as indicated). Thus, the exponential e-µ, 

in (11.4) is exactly canceled by the sum, and we are left with the simple conclusion 
that 

(11.6) 

That is, the parameter µ., that characterizes the Poisson distribution P ,.,,( v) is just the 
average number of counts expected if we repeat the counting experiment many times. 

Sometimes, we may know in advance the average rate R at which the events 
we are counting should occur. In this case, the expected average number of events 
in a time T is just 

µ, = rate X time = RT. 

Conversely, if the rate R is unknown, then by counting the number of events in a 
time T, we can get an estimate for µ., and hence for the rate R as Rbest = µ,best/ T. 

Example: Counting Radioactive Decays 

Careful measurements have established that a sample of radioactive thorium emits 
alpha particles at a rate of 1.5 per minute. If I count the number of alpha particles 
emitted in two minutes, what is the expected average result? What is the probability 
that I would actually get this number? What is the probability for observing v parti­
cles for v = 0, l, 2, 3, 4, and for v;;,, 5? 

The expected average count is just the average rate of emissions (R = 1.5 per 
minute) multiplied by the time during which I make my observations (T = 2 min­
utes): 

(expected average number) = µ., = 3. 

This result does not mean, of course, that I should expect to observe exactly three 
particles in any single trial. On the contrary, the probabilities for observing any 
number ( v) of particles are given by the Poisson distribution 

3" 
Prob(v particles) = Piv) = e-3 ,· 

v. 

In particular, the probability that I would observe exactly three particles is 

33 
Prob(3 particles) = Pi3) = e-3 3! = 0.22 = 22%. 

Notice that although the expected average result is v = 3, we should expect to get 
this number only about once in every five trials. 
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20% 
µ,=3 

'2 10% 
~ 

0 
0 1 2 3 4 5 6 7 8 9 

v-

Figure 11.1. The Poisson distribution Piv) gives the probabilities of observing v 
events in a counting experiment for which the expected average count is 3. 

The probabilities for any number 11 can be calculated in the same way and are 
(as you might want to check): 

Number 11: 0 1 2 3 4 

Probability: 5% 15% 22% 22% 17% 

These probabilities (up to 11 = 9) are plotted in Figure 11.1. The simplest way to 
find the probability for getting 5 or more counts is to add the probabilities for 
11 = 0, ... , 4 and then subtract the sum from 100% to give 2 

Prob(11 ;;, 5) 100% - (5 + 15 + 22 + 22 + 17)% 
19%. 

Quick Check 11.1. On average, each of the 18 hens in my henhouse lays 1 
egg per day. If I check the hens once an hour and remove any eggs that have 
been laid, what is the average number, µ,, of eggs that I find on my hourly 
visits? Use the Poisson distribution P/11) to calculate the probabilities that I 
would find 11 eggs for 11 = 0, 1, 2, 3, and 11 = 4 or more. What is the most 
probable number? What is the probability that I would find exactly µ, eggs? 
Verify the probabilities shown in Figure 11.2. 

50% 

0 

µ,=0.75 

0 1 2 3 4 5 

v-

Figure 11.2. The Poisson distribution P0_75(v) 
gives the probabilities of observing v events in 
a counting experiment for which the expected 
average count is 0.75. 

2The correct answer is actually 18.48%, as you can check by keeping a couple of extra decimal places in 
all the probabilities. 
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I 1.2 Properties of the Poisson Distribution 

THE STANDARD DEVIATION 

The Poisson distribution P / v) gives the probability of getting the result v in an 
experiment in which we count events that occur at random but at a definite average 
rate. We have seen that the parameter µ, is precisely the expected average count v. 
The natural next question is to ask for the standard deviation of the counts v when 
we repeat the experiment many times. The standard deviation of any distribution 
(after a large number of trials) is just the root-mean-square deviation from the mean. 
That is, 

or, using the result of Problems 10.15(a) or 4.5(a), 

<r,} = v2 - (v)2. (11.7) 

For the Poisson distribution, we have already found that v = µ, and a similar calcu­
lation (Problem 11.9) gives v2 = µ,2 + µ,. Therefore, Equation (11.7) implies that 
<r,} =µ,or 

(11.8) 

That is, the Poisson distribution with mean count µ, has standard deviation -{;;,. 
The result (11.8) justifies the square-root rule of Section 3.2. If we carry out a 

counting experiment once and get the answer v, we can easily see (using the princi­
ple of maximum likelihood, as in Problem 11.11) that the best estimate for the 
expected mean count is f.Lbest = v. From (11.8), it immediately follows that the best 
estimate for the standard deviation is just -{;,. In other words, if we make one 
measurement of the number of events in a time interval T and get the answer v, our 
answer for the expected mean count in time T is 

(11.9) 

This answer is precisely the square-root rule quoted without proof in Equation (3.2). 

Example: More Radioactive Decays 

A student monitors the thorium sample of the previous example for 30 minutes and 
observes 49 alpha particles. What is her answer for the number of particles emitted 
in 30 minutes? What is her answer for the rate of emission, R, in particles per 
minute? 

According to (11.9), her answer for the number of particles emitted in 30 min­
utes is 

(number emitted in 30 minutes) = 49 ± -/49 = 49 ± 7. 
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To find the rate in particles per minute, she must divide by 30 minutes. Assuming 
this 30 minutes has no uncertainty, we find 

R 49 ± 7 1 6 0 2 • 1 / • = 30 = . ± . part1c es mm. (11.10) 

Notice that the square-root rule gives the uncertainty in the actual counted number 
(av = ~ = 7, in this case). A common mistake is to calculate the rate of decay 
R = v/T and then to take the uncertainty in R to be "1R. A glance at (11. 10) should 
convince you that this procedure is simply not correct. The square-root rule applies 
only to the actual counted number v, and the uncertainty in R = v/T must be found 
from that in v using error propagation as in (11. 10). 

Quick Check I 1.2. The farmer of Quick Check 11.1 observes that in a certain 
ten-hour period his hens lay 9 eggs. Based on this one observation, what would 
you quote for the number of eggs expected in ten hours? What would you give 
for the rate R of egg production, in eggs per hour? (Give the uncertainties in 
both your answers.) 

GAUSSIAN APPROXIMATION TO THE 
POISSON DISTRIBUTION 

In Chapter 10, we compared the Gauss distribution with the binomial distribu­
tion. We saw that in most ways, the two distributions are very different; neverthe­
less, under the right conditions, the Gauss distribution gives an excellent, extremely 
useful, approximation to the binomial distribution. As we will now see, almost ex­
actly the same can be said about the Gauss and Poisson distributions. 

The Gauss distribution Gx,<T(x) gives the probabilities of the various values of a 
continuous variable x; by contrast, the Poisson distribution P µ,( v), like the binomial 
Bn,/v), gives the probabilities for a discrete variable v = 0, 1, 2, 3, .... Another 
important difference is that the Gauss distribution Gx,<T(x) is specified by two param­
eters, the mean X and the standard deviation a, whereas the Poisson distribution 
P ,,.,(v) is specified by a single parameter, the mean µ,, because the width of the 
Poisson distribution is automatically determined by the mean (namely, av = {i;,). 
Finally, the Gauss distribution is always bell shaped and symmetric about its mean 
value, whereas the Poisson distribution has neither of these properties in general. 
This last point is especially clear in Figure 11.2, which shows the Poisson distribu­
tion for µ, = 0.75; this curve is certainly not bell shaped, nor is it even approxi­
mately symmetric about its mean, 0.75. 

Figure 11.1 showed the Poisson distribution for µ, = 3. Although this curve is 
obviously not exactly bell shaped, it is undeniably more nearly so than the curve 
forµ,= 0.75 in Figure 11.2. Figure 11.3 shows the Poisson distribution forµ,= 9; 
this curve is quite nearly bell shaped and close to symmetric about its mean (µ, = 9). 
In fact, it can be proved that as µ, ➔ oo, the Poisson distribution becomes progres-
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Figure 11.3. The Poisson distribution forµ,= 9. The dashed curve is the Gauss distribution 
with the same mean and standard deviation (X = 9 and a = 3). As µ, ➔ oo, the two distribu­
tions become indistinguishable; even when µ, = 9, they are very close. 

sively more bell shaped and approaches the Gauss distribution with the same mean 
and standard deviation.3 That is, 

(when µ is large) (11.11) 

where 

X=µ and 

In Figure 11.3, the dashed curve is the Gauss function with X = 9 and a = 3. You 
can see clearly how, even when µ is only 9, the Poisson distribution is remarkably 
close to the appropriate Gauss function; the slight discrepancy reflects the remaining 
asymmetry in the Poisson function. 

The approximation (11.11) is called the Gaussian approximation to the Poisson 
distribution. It is analogous to the corresponding approximation for the binomial 
distribution (discussed in Section 10.4) and is useful under the same conditions, 
namely, when the parameters involved are large. 

Example: Gaussian Approximation to a Poisson Distribution 

To illustrate the Gaussian approximation to the Poisson distribution, consider the 
Poisson distribution with µ = 64. The probability of 72 counts, for example, is 

-64 (64)72 
Prob(72 counts) = P 6i72) = e ~, 

which a tedious calculation gives as 

Prob(72 counts) 2.9%. 

(11.12) 

3 For proof, see S. L. Meyer, Data Analysis for Scientists and Engineers (John Wiley, 1975), p. 227. 
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According to (11.11), however, the probability (11.12) is well approximated by the 
Gauss function 

Prob(72 counts) = G648(72), 

which is easily evaluated to give 

Prob(72 counts) = 3.0%. 

If we wanted to calculate directly the probability of 72 or more counts in the 
same experiment, an extremely tedious calculation would give 

Prob(v~ 72) p 6i72) + p 6i73) + ... 
17.3%. 

If we use the approximation (11.11), then we have only to calculate the Gaussian 
probability for getting v ~ 71.5 (because the Gauss distribution treats v as a contin­
uous variable). Because 71.5 is 7.5, or 0.94cr, above the mean, the required probabil­
ity can be found quickly from the table in Appendix B as 

Prob(v ~ 72) = Proba(v ~ 71.5) Proba(v ~ X + 0.94cr) 

17.4%, 

by almost any standard an excellent approximation. 

I 1.3 Applications 

As I have emphasized, the Poisson distribution describes the distribution of results 
in a counting experiment in which events are counted that occur at random but at a 
definite average rate. In an introductory physics laboratory, the two most common 
examples are counting the disintegrations of radioactive nuclei and counting the 
arrival of cosmic ray particles. 

Another very important example is an experiment to study an expected limiting 
distribution, such as the Gauss or binomial distributions, or the Poisson distribution 
itself. A limiting distribution tells us how many events of a particular type are 
expected when an experiment is repeated several times. (For example, the Gaussian 
Gx,a(x) tells us how many measurements of x are expected to fall in any interval 
from x = a to x = b.) In practice, the observed number is seldom exactly the ex­
pected number. Instead, it fluctuates in accordance with the Poisson distribution. In 
particular, if the expected number of events of some type is n, the observed number 
can be expected to differ from n by a number of order ..[,",. We will make use of 
this point in Chapter 12. 

In many situations, it is reasonable to expect numbers to be distributed approxi­
mately according to the Poisson distribution. The number of eggs laid in an hour on 
a poultry farm and the number of births in a day at a hospital would both be 
expected to follow the Poisson distribution at least approximately (though they 
would probably show some seasonal variations as well). To test this assumption, 



Section I 1.3 Applications 253 

you would need to record the number concerned many times over. After plotting the 
resulting distribution, you could compare it with the Poisson distribution to see how 
close the fit is. For a more quantitative test, you would use the chi-squared test 
described in Chapter 12. 

Example: Cosmic Ray Counting 

As another example of the Poisson distribution, let us consider an experiment with 
cosmic rays. These "rays" originate as charged particles, such as protons and alpha 
particles, that enter the Earth's atmosphere from space. Many of these primary parti­
cles collide with atoms in the atmosphere and create further, secondary particles, 
such as mesons and positrons. Some of the particles (both primary and secondary) 
travel all the way to ground level and can be detected (with a Geiger counter, for 
example) in the laboratory. In the following problem, I exploit the fact that the 
number of cosmic rays hitting any given area in a given time should follow the 
Poisson distribution. 

Student A asserts that he has measured the number of cosmic rays hitting a 
Geiger counter in one minute. He claims to have made the measurement repeatedly 
and carefully and to have found that, on average, 9 particles hit the counter per 
minute, with "negligible" uncertainty. To check this claim, Student B counts how 
many particles arrive in one minute and gets the answer 12. Does this answer cast 
serious doubt on Ns claim that the expected rate is 9? To make a more careful 
check, Student C counts the number of particles that arrive in ten minutes. From 
Ns claim, she expects to get 90 but actually gets 120. Does this value cast signifi­
cant doubt on Ns claim? 

Let us consider B's result first. If A is right, the expected mean count is 9. 
Because the distribution of counts should be the Poisson distribution, the standard 
deviation is -,J9 = 3. Student B's result of 12 is, therefore, only one standard devia­
tion away from the mean of 9. This amount is certainly not far enough away to 
contradict Ns claim. More specifically, knowing that the probability of any answer 
v is supposed to be Pl v), we can calculate the total probability for getting an 
answer that differs from 9 by 3 or more. This probability turns out to be 40% (see 
Problem 11.7). Obviously B's result is not at all surprising, and A has no reason to 
worry. 

Student C's result is quite a different matter. If A is right, C should expect to 
get 90 counts in ten minutes. Since the distribution should be Poisson, the standard 
deviation should be -/9o = 9.5. Thus, C's result of 120 is more than three standard 
deviations away from Ns prediction of 90. With these large numbers, the Poisson 
distribution is indistinguishable from the Gauss function, and we can immediately 
find from the table in Appendix A that the probability of a count more than three 
standard deviations from the mean is 0.3%. That is, if A is right, it is extremely 
improbable that C would have observed 120 counts. Turning this statement around, 
we can say something almost certainly has gone wrong. Perhaps A was just not as 
careful as he claimed. Perhaps the counter was malfunctioning for A or C, introduc­
ing systematic errors into one of the results. Or perhaps A made his measurements 
at a time when the flux of cosmic rays was truly less than normal. 
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I 1.4 Subtracting a Background 

To conclude this chapter, I discuss a problem that complicates many counting exper­
iments. Often, the events we want to study are accompanied by other "background" 
events that cannot be distinguished from the events of interest. For example, in 
studying the disintegrations of a radioactive source, we usually cannot prevent the 
detector from registering particles from other radioactive materials in the vicinity or 
from cosmic rays. This means that the number we count includes the events of 
interest plus these background events, and we must somehow subtract out the un­
wanted background events. In principle at least, the remedy is straightforward: Hav­
ing found the total counting rate ( due to source and background), we must remove 
the source and find the rate of events due to the background alone; the rate of events 
from the source is then just the difference of these two measured rates. 

In practice, it is surprisingly easy to make a mistake in this procedure, espe­
cially in the error analysis. It is usually convenient to measure the total and back­
ground counts using different time intervals. Suppose we count a total of 11101 events 
(source plus background) in a time T 101, and then li,gct background events in a time 
Tbgd· Obviously, we do not simply subtract li,gct from 11101 because they refer to 
different time intervals. Instead, we must first calculate the rates 

and R - li,gd 
bgd - 1', 

bgd 

and then calculate the rate from the source as the difference 

(11.13) 

(11.14) 

In estimating the uncertainties in the quantities involved, you must remember that 
the square-root rule gives the uncertainties in the counted numbers 11101 and li,gct; the 
uncertainties in the corresponding rates must be found by error propagation, as in 
the following example. 

Example: Radioactive Decays with a Background 

A student decides to monitor the activity of a radioactive source by placing it in a 
liquid scintillation detector. In the course of 10 minutes, the detector registers 2,540 
total counts. To allow for the possibility of unwanted background counts, she re­
moves the source and notes that in 3 minutes, the detector registers a further 95 
counts. To find the activity of the source, she calculates the two rates of counting, 
R101 and Rbgd (in counts per minute) and their difference Rsce = R101 - Rbgd• What 
are her answers with their uncertainties? (Assume the two times have negligible 
uncertainty.) 

According to the square-root rule, the two counted numbers with their uncer­
tainties are 

11101 = 2,540 ± ✓2,540 = 2,540 ± 50 

and 

li,gd 95 ± 195 95 ± 10. 
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Dividing these numbers by their corresponding times, we find the rates 

2,540 ± 50 54 5 / . = 2 ± counts mm 
10 

and 

R _ Vi,gd _ 95 ± 10 
bgd - T, - 3 

bgd 
32 ± 3 counts/min. 

Finally, the rate due to the source alone is 

Rsce = R 101 - Rbgd = (254 ± 5) - (32 ± 3) = 222 ± 6 counts/min. 

Notice that, in the last step, the errors are combined in quadrature, because they are 
certainly independent and random. 

Principal Definitions and Equations of Chapter I I 

THE POISSON DISTRIBUTION 

The Poisson distribution describes experiments in which you count events that 
occur at random but at a definite average rate. If you count for a chosen time 
interval T, the probability of observing v events is given by the Poisson function 

Prob(v counts in time T) = P,,.,(v) = e-µ, µ~' 
v. [See (11.2)] 

where the parameter µ is the expected average number of events in time T; that is, 

'ii µ (after many trials) 

RT, 

where R is the mean rate at which the events occur. 
The standard deviation of the observed number v is 

THE GAUSSIAN APPROXIMATION TO THE 
POISSON DISTRIBUTION 

[See (11.6)] 

[See (11.8)] 

When µ is large, the Poisson distribution P,,,( v) is well approximated by the 
Gauss function with the same mean and standard deviation; that is, 

where X = µ and u = -{,;,. [See (11.11)] 
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SUBTRACTING A BACKGROUND 

The events produced by a source subject to an unavoidable background can be 
counted in a three-step procedure: 

(1) Count the total number v101 (source plus background) in a time T101, and 
calculate the total rate R101 = v10/T101• 

(2) Remove the source, and measure the number of background events in a 
time Tbgd; then calculate the background rate Rbgd = vbgd!Tbgd· 

(3) Calculate the rate of the events from the source as the difference Rsce = 
Rtot - Rbgd• 

Finally, the uncertainties in the numbers v101 and vbgd are given by the square­
root rule, and, from these values, the uncertainties in the three rates can be found 
using error propagation. 

Problems for Chapter I I 

For Section I 1.1 : Definition of the Poisson Distribution 

11.1. * Compute the Poisson distribution P,,,( v) for IL = 0.5 and v = 0, l, ... , 6. 
Plot a bar histogram of P0_s(v) against v. 

11.2. * (a) Compute the Poisson distribution P,,,(v) for IL= l and v = 0, l, ... , 
6, and plot your results as a bar histogram. (b) Repeat part (a) but for IL = 2. 

11.3. ** A radioactive sample contains 5.0 X 1019 atoms, each of which has a 
probability p = 3.0 X 10-20 of decaying in any given five-second interval. (a) What 
is the expected average number, IL, of decays from the sample in five seconds? (b) 
Compute the probability P,,,(v) of observing v decays in any five-second interval, 
for v = 0, l, 2, 3. (c) What is the probability of observing 4 or more decays in any 
five-second interval? 

11.4. ** In the course of four weeks, a farmer finds that between 10:00 and 10:30 
A.M., his hens lay an average of 2.5 eggs. Assuming the number of eggs laid follows 
a Poisson distribution with IL= 2.5, on approximately how many days do you sup­
pose he found no eggs laid between 10:00 and 10:30 A.M.? On how many days do 
you suppose there were 2 or less? 3 or more? 

11.5. ** A certain radioactive sample is expected to undergo three decays per 
minute. A student observes the number v of decays in 100 separate one-minute 
intervals, with the results shown in Table 11.1. (a) Make a histogram of these re-

Table I 1.1. Occurrences of numbers of decays in one-minute intervals; for 
Problem 11.5. 

No. of decays v 
Times observed 

0 
5 

1 
19 

2 
23 

3 
21 

4 
14 

5 
12 

6 
3 

7 
2 

8 
1 

9 
0 
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sults, plotting f,, (the fraction of times the result v was found) against v. (b) On the 
same plot, show the expected distribution Pi v). Do the data seem to fit the expected 
distribution? (For a quantitative measure of the fit, you could use the chi-squared 
test, discussed in Chapter 12.) 

11.6. *** (a) The Poisson distribution, like all distributions, must satisfy a "nor­
malization condition," 

L Pµ(v) = 1. (11.15) 
v=O 

This condition asserts that the total probability of observing all possible values of v 
must be one. Prove it. [Remember the infinite series (11.5) for el'.] (b) Differentiate 
(11.15) with respect to IL, and then multiply the result by IL to give an alternative 
proof that, after infinitely many trials, v = IL as in Equation (11.6). 

For Section I 1.2: Properties of the Poisson Distribution 

11.7. * (a) What is the standard deviation u,, (after a large number of trials) of 
the observed counts v in a counting experiment in which the expected average count 
is IL = 9? (b) Compute the probabilities Pg(v) of obtaining v counts for v = 7, 
8, ... , 11. (c) Hence, find the probability of getting a count v that differs from the 
expected mean by one or more standard deviations. (d) Would a count of 12 cause 
you to doubt that the expected mean really is 9? 

11.8. * A nuclear physicist monitors the disintegrations of a radioactive sample 
with a Geiger counter. She counts the disintegrations in 15 separate five-second 
intervals and gets the following numbers: 

7, 11, 10, 7, 5, 7, 6, 12, 12, 7, 18, 12, 13, 12, 6. 

(a) Her best estimate /4,est for the true mean count IL is the average of her 15 counts. 
(For a proof of this claim, see Problem 11.15.) What is her value for /4,est? (b) The 
standard deviation u,, of her 15 counts should be close to -{,;,. What is her standard 
deviation and how does it compare with ~? 

11.9. ** (a) Prove that the average value of v2 for the Poisson distribution P µ( v) 
is v2 = IL2 + IL· [The easiest way to do this is probably to differentiate the identity 
(11.15) twice with respect to IL·] (b) Hence, prove that the standard deviation of v 
is u,, = -{µ,. [Use the identity (11.7).) 

11.10. ** The average rate of disintegrations from a certain radioactive sample 
is known to be roughly 20 per minute. If you wanted to measure this rate within 
4%, for approximately how long would you plan to count? 

11.11. ** Consider a counting experiment governed by the Poisson distribution 
P µ( v), where the mean count IL is unknown, and suppose that I make a single count 
and get the value v. Write down the probability Prob( v) for getting this value v. 

According to the principle of maximum likelihood, the best estimate for the un­
known IL is that value of IL for which Prob(v) is largest. Prove that the best estimate 
/4,est is precisely the observed count v as you would expect. (In this calculation, the 
unknown IL is the variable and v is the fixed value I obtained in my one experiment.) 
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11.12. ** The expected mean count in a certain counting experiment is µ = 16. 
(a) Use the Gaussian approximation (11.11) to estimate the probability of getting a 
count of 10 in any one trial. Compare your answer with the exact value P 1il0). (b) 
Use the Gaussian approximation to estimate the probability of getting a count of 10 
or less. (Remember to compute the Gaussian probability for v,;;; 10.5 to allow for 
the fact that the Gauss distribution treats v as a continuous variable.) Calculate the 
exact answer and compare. 

Note how, even with µ as small as 16, the Gaussian approximation gives quite 
good answers and-at least in part (b)-is significantly less trouble to compute than 
an exact calculation using the Poisson distribution. 

11.13. ** The expected mean count in a certain counting experiment is µ = 400. 
Use the Gaussian approximation to find the probability of getting a count anywhere 
in the range 380 ,;;; v,;;; 420. Compare your answer with the exact answer, which is 
69.47%. Discuss the feasibility of finding this exact probability using your calcu­
lator. 

11.14. *** In the experiment of Problem 11.5, the expected mean count was 
known in advance to be µ = 3. Therefore, the mean of the data should be close to 
3 and the standard deviation should be close to --./3. Find the mean and standard 
deviation of the data and compare them with their expected values. 

11.15. *** Consider a counting experiment governed by the Poisson distribution 
P ,,,( v), where the mean count µ is unknown, and suppose that you make N separate 
trials and get the values 

Write the probability Prob(v1, ... , vN) for getting this particular set of values. Ac­
cording to the principle of maximum likelihood, the best estimate for the unknown 
µ is that value of µ for which Prob(v1, ... , vN) is largest. Prove that the best 
estimate 1-Lbest is the average of the observed numbers 

1 N 

1-Lbest = N L V; 
i=l 

as you would expect. (In this calculation, the unknown µ is the variable, and 
v1, . .. , vN are fixed at the values you obtained in your N trials.) 

For Section I 1.3: Applications 

11.16. * Using a Geiger counter, a student records 25 cosmic-ray particles in 15 
seconds. (a) What is her best estimate for the true mean number of particles in 15 
seconds, with its uncertainty? (b) What should she report for the rate (in particles 
per minute) with its uncertainty? 

11.17. * A student counts 400 disintegrations from a radioactive sample in 40 
seconds. (a) What is his best estimate for the true mean number of disintegrations 
in 40 seconds, with its uncertainty? (b) What should he report for the rate of disinte­
grations (per second) with its uncertainty? 
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11.18. ** Sean and Maria monitor the same radioactive sample. Sean counts for 
one minute and gets 121 counts. Maria counts for six minutes and gets 576 counts. 
Each then calculates the rate in counts per minute. Do their results agree satisfac-
torily? 

For Section I 1.4: Subtracting a Background 

11.19. ** A heating duct at a nuclear plant is suspected of being contaminated 
with radioactive dust. To check this suspicion, a health physicist places a detector 
inside the duct and records 7,075 particles of radiation in 120 minutes. To check for 
background radiation, he moves his detector some distance from the duct and shields 
it from any radiation coming from the duct; in this new position, he records 3,015 
particles in 60 minutes. What is his final answer for the radiation rate (in particles 
per minute) due to the contents of the duct alone? Does he have significant evidence 
for radioactive material in the duct? 

11.20. ** To measure the activity of a rock thought to be radioactive, a physicist 
puts the rock beside a detector and counts 225 particles in 10 minutes. To check for 
background, she removes the rock and then records 90 particles in 6 minutes. She 
converts both these answers into rates, in particles per hour, and takes their differ­
ence to give the activity of the rock alone. What is her final answer, in particles per 
hour, and what is its uncertainty? Does she have significant evidence that the rock 
is radioactive? 

11.21. *** A physicist needs an accurate measurement of the activity of a radio­
active source. To plan the best use of his time, he first makes quick approximate 
measurements of the total counting rate (source plus background) and the back­
ground rate. These approximations give him rough values for the true rates, r101 and 
rbgct· (Notice that I have used lower-case r for the true rates; this will let you use 
upper-case R for the values he measures in the main experiment.) To get more 
accurate values, he plans to count the total number v101 (source plus background) in 
a long time T 101 and the background number Jli,gct in a long time Tbgd· From these 
measurements, he will calculate the rates R 101 and Rbgct and finally the rate Rsce due 
to the source alone. 

The detector he is using is available only for a time T, so that the two times T101 

and Tbgct are constrained not to exceed 

(11.16) 

Therefore, he must choose the two times T 101 and Tbgct to minimize the uncertainty 
in his final answer for Rsce· 

(a) Show that his final uncertainty will be minimum if he chooses the two times 
such that 

Ttot _ r,:: 
Tbgd - -v~· (11.17) 

[Hint: Write the expected numbers v101 and Jli,gct in terms of the true rates, r 101 and 
rbgct, and the corresponding times. From these calculate all the uncertainties in-
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valved. To minimize the uncertainty in Rsce, eliminate Tbgd using (11.16), and then 
differentiate with respect to T101 and set the derivative equal to zero.] Because his 
preliminary measurements of r 101 and rbgd tell him the approximate value of the ratio 
on the right side, (11.17) tells him how to apportion the available time between T101 

and Tbgd· 

(b) If the available time tis two hours and his preliminary measurements have 
shown that r 101 /rbgd = 9, how should he choose T 101 and Tbgd? 



Chapter 12 

The Chi-Squared Test 
for a Distribution 

By now, you should be reasonably familiar with the notion of limiting distributions. 
These are the functions that describe the expected distribution of results if an experi­
ment is repeated many times. There are many different limiting distributions, corres­
ponding to the many different kinds of experiments possible. Perhaps the three most 
important limiting distributions in physical science are the three we have already 
discussed: the Gauss ( or normal) function, the binomial distribution, and the Poisson 
distribution. 

This final chapter focuses on how to decide whether the results of an actual 
experiment are governed by the expected limiting distribution. Specifically, let us 
suppose that we perform some experiment for which we believe we know the ex­
pected distribution of results. Suppose further that we repeat the experiment several 
times and record our observations. The question we now address is this: How can 
we decide whether our observed distribution is consistent with the expected theoreti­
cal distribution? We will see that this question can be answered using a simple 
procedure called the chi-squared, or x2, test. (The Greek letter x is spelled "chi" 
and pronounced "kie.") 

12.1 Introduction to Chi Squared 

Let us begin with a concrete example. Suppose we make 40 measurements x1, ... , 
x40 of the range x of a projectile fired from a certain gun and get the results shown 
in Table 12.1. Suppose also we have reason to believe these measurements are 
governed by a Gauss distribution Gx,Jx), as is certainly very natural. In this type 

Table 12.1. Measured values of x (in cm). 

731 772 771 681 722 688 653 757 733 742 
739 780 709 676 760 748 672 687 766 645 
678 748 689 810 805 778 764 753 709 675 
698 770 754 830 725 710 738 638 787 712 

261 
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of experiment, we usually do not know in advance either the center X or the width 
CT of the expected distribution. Our first step, therefore, is to use our 40 measure­
ments to compute best estimates for these quantities: 

and 

2,X­
(best estimate for X) = x = 40

1 730.1 cm 

(best estimate for CT) = I,(x; - .x)2 = 46 8 
39 • cm. 

(12.1) 

(12.2) 

Now we can ask whether the actual distribution of our results x1, ... , x40 is 
consistent with our hypothesis that our measurements were governed by the Gauss 
distribution Gx,Jx) with X and CT as estimated. To answer this question, we must 
compute how we would expect our 40 results to be distributed if the hypothesis is 
true and compare this expected distribution with our actual observed distribution. 
The first difficulty is that x is a continuous variable, so we cannot speak of the 
expected number of measurements equal to any one value of x. Rather, we must 
discuss the expected number in some interval a < x < b. That is, we must divide 
the range of possible values into bins. With 40 measurements, we might choose bin 
boundaries at X - CT, X, and X + CT, giving four bins as in Table 12.2. 

Table 12.2. A possible choice of bins for the data of Table 12.1. The final 
column shows the number of observations that fell into each bin. 

Bin number Observations 
k Values of x in bin Ok 

1 X < X- <Y (or x < 683.3) 8 
2 X- <Y < X <X (or 683.3 < X < 730.1) 10 
3 X<x<X+u (or 730.1 < X < 776.9) 16 
4 X+ <Y < X (or 776.9 < x) 6 

We will discuss later the criteria for choosing bins. In particular, they must be 
chosen so that all bins contain several measured values X;- In general, I will denote 
the number of bins by n; for this example with four bins, n = 4. 

Having divided the range of possible measured values into bins, we can now 
formulate our question more precisely. First, we can count the number of measure­
ments that fall into each bin k.1 We denote this number by Ok (where O stands for 
"observed number"). For the data of our example, the observed numbers 0 1, 0 2, 

0 3, 0 4 are shown in the last column of Table 12.2. Next, assuming our measure­
ments are distributed normally (with X and CT as estimated), we can calculate the 
expected number Ek of measurements in each bin k. We must then decide how well 
the observed numbers Ok compare with the expected numbers Ek. 

1 If a measurement falls exactly on the boundary between two bins, we can assign half a measurement to 
each bin. 
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X-u X X+u 

Figure 12.1. The probabilities Probk that a measurement falls into each of the bins, k = 1, 2, 
3, 4, of Table 12.2 are the four areas shown under the Gauss function. 

The calculation of the expected numbers Ek is quite straightforward. The proba­
bility that any one measurement falls in an interval a < x < b is just the area under 
the Gauss function between x = a and x = b. In this example, the probabilities 
Prob1, Prob2, Prob3, Prob4 for a measurement to fall into each of our four bins are 
the four areas indicated in Figure 12.1. The two equal areas Prob2 and Prob3 to­
gether represent the well-known 68%, so the probability for falling into one of the 
two central bins is 34%; that is, Prob2 = Prob3 = 0.34. The outside two areas com­
prise the remaining 32%; thus Prob1 = Prob4 = 0.16. To find the expected numbers 
Ek> we simply multiply these probabilities by the total number of measurements, 
N = 40. Therefore, our expected numbers are as shown in the third column of Table 
12.3. That the numbers Ek are not integers serves to remind us that the "expected 
number" is not what we actually expect in any one experiment; it is rather the 
expected average number after we repeat our whole series of measurements many 
times. 

Our problem now is to decide how well the expected numbers Ek do represent 
the corresponding observed numbers Ok (in the last column of Table 12.3). We 

Table 12.3. The expected numbers Ek and the observed numbers Ok 

for the 40 measurements of Table 12.1, with bins chosen as in Table 
12.2. 

Bin number Probability Expected number Observed number 
k Probk Ek = NProbk Ok 

1 16% 6.4 8 
2 34% 13.6 10 
3 34% 13.6 16 
4 16% 6.4 6 

would obviously not expect perfect agreement between Ek and Ok after any finite 
number of measurements. On the other hand, if our hypothesis that our measure­
ments are normally distributed is correct, we would expect that, in some sense, the 
deviations 

(12.3) 

would be small. Conversely, if the deviations Ok - Ek prove to be large, we would 
suspect our hypothesis is incorrect. 
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To make precise the statements that the deviation Ok - Ek is "small" or "large," 
we must decide how large we would expect Ok - Ek to be if the measurements 
really are normally distributed. Fortunately, this decision is easily made. If we imag­
ine repeating our whole series of 40 measurements many times, then the number Ok 
of measurements in any one bin k can be regarded as the result of a counting 
experiment of the type described in Chapter 11. Our many different answers for Ok 
should have an average value of Ek and would be expected to fluctuate around Ek 
with a standard deviation of order ~- Thus, the two numbers to be compared are 
the deviation Ok - Ek and the expected size of its fluctuations ~-

These considerations lead us to consider the ratio 

(12.4) 

For some bins k, this ratio will be positive, and for some negative; for a few k, it 
may be appreciably larger than one, but for most it should be of order one, or 
smaller. To test our hypothesis (that the measurements are normally distributed), it 
is natural to square the number (12.4) for each k and then sum over all bins 
k = 1, ... , n (here n = 4). This procedure defines a number called chi squared, 

x2 = :i (Ok - Ek)2_ 
k=l Ek 

(12.5) 

This number x

2 is clearly a reasonable indicator of the agreement between the 
observed and expected distributions. If x

2 = 0, the agreement is perfect; that is, 
I 

Ok = Ek for all bins k, a situation most unlikely to occur. In general, the individual 
terms in the sum (12.5) are expected to be of order one, and there are n terms in 
the sum. Thus, if 

(x2 of order n or less), the observed and expected distributions agree about as well 
as could be expected. In other words, if x2 :,s n, we have no reason to doubt that 
our measurements were distributed as expected. On the other hand, if 

x2 >> n 

(x2 significantly greater than the number of bins), the observed and expected num­
bers differ significantly, and we have good reason to suspect that our measurements 
were not governed by the expected distribution. 

In our example, the numbers observed and expected in the four bins and their 
differences are shown in Table 12.4, and a simple calculation using them gives 

x2 = ± (Ok - Ek)2 

k=l Ek 

(1.6)2 
+ ( - 3.6)2 

+ (2.4)2 
+ ( -0.4)2 

6.4 13.6 13.6 6.4 

1.80. (12.6) 
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Table 12.4. The data of Table 12.1, shown here with the differences 
Ok - Ek. 

Bin number Observed number Expected number Difference 
k Ok Ek = NProbk Ok - Ek 

1 8 6.4 1.6 
2 10 13.6 -3.6 
3 16 13.6 2.4 
4 6 6.4 -0.4 

Because the value of 1.80 for x2 is less than the number of terms in the sum 
(namely, 4), we have no reason to doubt our hypothesis that our measurements were 
distributed normally. 

Quick Check 12. I . Each of the 100 students in a class measures the time for 
a ball to fall from a third-story window. They calculate their mean i and stan­
dard deviation <rt and then group their measurements into four bins, chosen as 
in the example just discussed. Their results are as follows: 

less than (i - crt): 19 

between (i - <rt) and i: 30 

between i and (i + <rt): 37 

more than (i + <rt): 14. 

Assuming their measurements are normally distributed, what are the expected 
numbers of measurements in each of the four bins? What is x2, and is there 
reason to doubt that the measurements are distributed normally? 

12.2 General Definition of Chi Squared 

The discussion so far has focused on one particular example, 40 measurements of a 
continuous variable x, which denoted the range of a projectile fired from a certain 
gun. We defined the number x2 and saw that it is at least a rough measure of 
the agreement between our observed distribution of measurements and the Gauss 
distribution we expected our measurements to follow. We can now define and use 
x2 in the same way for many different experiments. 

Let us consider any experiment in which we measure a number x and for which 
we have reason to expect a certain distribution of results. We imagine repeating the 
measurement many times (N) and, having divided the range of possible results x 
into n bins, k = 1, ... , n, we count the number Ok of observations that actually fall 
into each bin k. Assuming the measurements really are governed by the expected 
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distribution, we next calculate the expected number Ek of measurements in the kth 
bin. Finally, we calculate x2 exactly as in (12.5), 

(12.7) 

The approximate significance of x2 is always the same as in our previous example. 
That is, if x2 ,,s n, the agreement between our observed and expected distributions 
is acceptable; if x2 >> n, there is significant disagreement. 

The procedure for choosing the bins in terms of which x2 is computed depends 
somewhat on the nature of the particular experiment. Specifically, it depends on 
whether the measured quantity x is continuous or discrete. I will discuss these two 
situations in turn. 

MEASUREMENTS OF A CONTINUOUS VARIABLE 

The example discussed in Section 12.1 involved a continuous variable x, and 
little more needs to be said. The only limiting distribution we have discussed for a 
continuous variable is the Gauss distribution, but there are, of course, many different 
distributions that can occur. For example, in many atomic and nuclear experiments, 
the expected distribution of the measured variable x (actually an energy) is the 
Lorentzian distribution 

f(x) ex: 
(x _ X)2 + y2' 

1 

where X and y are certain constants. Another example of a continuous distribution, 
mentioned in Problem 5.6, is the exponential distribution ! e - th, which gives the 

T 

probability that a radioactive atom (whose expected mean life is r) will live for a 
time t. 

Whatever the expected distribution f(x), the total area under the graph of f(x) 
against x is one, and the probability of a measurement between x = a and x = b is 
just the area between a and b, 

Prob(a < x < b) = f f(x) dx. 

Thus, if the kth bin runs from x = ak to x = ak + 1, the expected number of measure­
ments in the kth bin (after N measurements in all) is 

Ek = N X Prob(ak < x < ak+ 1) 

= Nfak+i f(x) dx. 
ak 

(12.8) 

When we discuss the quantitative use of the chi-squared test in Section 12.4, 
we will see that the expected numbers Ek should not be too small. Although there 
is no definite lower limit, Ek should probably be approximately five or more, 

(12.9) 
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We must therefore choose bins in such a way that Ek as given by (12.8) satisfies 
this condition. We will also see that the number of bins must not be too small. For 
instance, in the example of Section 12.1, where the expected distribution was a 
Gauss distribution whose center X and width <T were not known in advance, the chi-
squared test cannot work ( as we will see) with less than four bins; that is, in this 
example we needed to have 

n ~ 4. (12.10) 

Combining (12.9) and (12.10), we see that we cannot usefully apply the chi-squared 
test to this kind of experiment if our total number of observations is less than about 
20. 

MEASUREMENT OF A DISCRETE VARIABLE 

Suppose we measure a discrete variable, such as the now-familiar number of 
aces when we throw several dice. In practice, the most common discrete variable is 
an integer (such as the number of aces), and we will denote the discrete variable by 
v instead of x (which we use for a continuous variable). If we throw five dice, the 
possible values of v are v = 0, l, ... , 5, and we do not actually need to group the 
possible results into bins. We can simply count how many times we got each of the 
six possible results. In other words, we can choose six bins, each of which contains 
just one result. 

Nonetheless, it is often desirable to group several different results into one bin. 
For instance, if we threw our five dice 200 times, then ( according to the probabilities 
found in Problem 10.11) the expected distribution of results is as shown in the first 
two columns of Table 12.5. We see that here the expected numbers of throws giving 
four and five aces are 0.6 and 0.03, respectively, both much less than the five or so 
occurrences required in each bin if we want to use the chi-squared test. This diffi­
culty is easily remedied by grouping the results v = 3, 4, and 5 into a single bin. 
This grouping leaves us with four bins, k = l, 2, 3, 4, which are shown with their 
corresponding expected numbers Eb in the last two columns of Table 12.5. 

Table 12.5. Expected occurrence of v aces ( v = 0, 
1, ... , 5) after throwing five dice 200 times. 

Expected Bin Expected 
Result occurrences number k number Ek 

No aces 80.4 1 80.4 
One 80.4 2 80.4 
Two 32.2 3 32.2 
Three 

6.4} Four 0.6 4 7.0 
Five 0.03 

Having chosen bins as just described, we could count the observed occurrences 
Ok in each bin. We could then compute x2 and see whether the observed and ex­
pected distributions seem to agree. In this experiment, we know that the expected 
distribution is certainly the binomial distribution B5,11iv) provided the dice are true 



268 Chapter 12: The Chi-Squared Test for a Distribution 

(so that p really is!). Thus, our test of the distribution is, in this case, a test of 
whether the dice are true or loaded. 

In any experiment involving a discrete variable, the bins can be chosen to con­
tain just one result each, provided the expected number of occurrences for each bin 
is at least the needed five or so. Otherwise, several different results should be 
grouped together into a single larger bin that does include enough expected occur­
rences. 

OTHER FORMS OF CHI SQUARED 

The notation x2 has been used earlier in the book, in Equations (7.6) and (8.5); 
it could also have been used for the sum of squares in (5.41). In all these cases, x2 

is a sum of squares with the general form 

2 = ~ (observed value - expected value)2 

X f standard deviation • 
(12.11) 

In all cases, x2 is an indicator of the agreement between the observed and expected 
values of some variable. If the agreement is good, x2 will be of order n; if it is 
poor, x2 will be much greater than n. 

Unfortunately, we can use x2 to test this agreement only if we know the ex­
pected values and the standard deviation, and can therefore calculate (12.11). Per­
haps the most common situation in which these values are known accurately enough 
is the kind of test discussed in this chapter, namely, a test of a distribution, in which 
Ek is given by the distribution, and the standard deviation is ~- Nevertheless, the 
chi-squared test is of very wide application. Consider, for example, the problem 
discussed in Chapter 8, the measurement of two variables x and y, where y is ex­
pected to be some definite function of x, 

Y = f(x) 

(such as y = A + Bx). Suppose we have N measured pairs (x;, y;), where the xi have 
negligible uncertainty and the Yi have known uncertainties <Ti. Here, the expected 
value of Yi is f(x;), and we could test how well y fits the function f(x) by calculating 

All our previous remarks about the expected value of x2 would apply to this num­
ber, and the quantitative tests described in the following sections could be used. 
This important application will not be pursued here, because only rarely in the 
introductory physics laboratory would the uncertainties <T; be known reliably enough 
(but see Problem 12.14). 

12.3 Degrees of Freedom and Reduced Chi Squared 

I have argued that we can test agreement between an observed and an expected 
distribution by computing x2 and comparing it with the number of bins used in 
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collecting the data. A slightly better procedure, however, is to compare x2, not with 
the number of bins n, but instead with the number of degrees of freedom, denoted 
d. The notion of degrees of freedom was mentioned briefly in Section 8.3, and we 
must now discuss it in more detail. 

In general, the number of degrees of freedom d in a statistical calculation is 
defined as the number of observed data minus the number of parameters computed 
from the data and used in the calculation. For the problems considered in this chap­
ter, the observed data are the numbers of observations Ok in the n bins, k = l, ... , 
n. Thus, the number of observed data is just n, the number of bins. Therefore, in 
the problems considered here, 

d = n - c, 

where n is the number of bins and c is the number of parameters that had to be 
calculated from the data to compute the expected numbers Ek. The number c is 
often called the number of constraints, as I will explain shortly. 

The number of constraints c varies according to the problem under consider­
ation. Consider first the dice-throwing experiment of Section 12.2. If we throw five 
dice and are testing the hypothesis that the dice are true, the expected distribution 
of numbers of aces is the binomial distribution B5,11iv), where v = 0, ... , 5 is the 
number of aces in any one throw. Both parameters in this function-the number of 
dice, five, and the probability of an ace, ¼-are known in advance and do not have 
to be calculated from the data. When we calculate the expected number of occur­
rences of any particular v, we must multiply the binomial probability by the total 
number of throws N (in our example, N = 200). This parameter does depend on the 
data. Specifically, N is just the sum of the numbers Ok, 

(12.12) 

Thus, in calculating the expected results of our dice experiment, we have to calcu­
late just one parameter (N) from the data. The number of constraints is, therefore, 

C = 1, 

and the number of degrees of freedom is 

d = n - l. 

In Table 12.5, the results of the dice experiment were grouped into four bins (that 
is, n = 4), so that experiment had 3 degrees of freedom. 

The equation (12.12) illustrates well the curious terminology of constraints and 
degrees of freedom. Once the number N has been determined, we can regard (12.12) 
as an equation that "constrains" the values of 0 1, ... , On. More specifically, we can 
say that, because of the constraint (12.12), only n - l of the numbers 0 1, ... , On 
are independent. For instance, the first n - l numbers 0 1, ... , On_ 1 could take 
any value (within certain ranges), but the last number On would be completely 
determined by Equation (12.12). In this sense, only n - l of the data are free to 
take on independent values, so we say there are only n - l independent degrees of 
freedom. 

In the first example in this chapter, the range x of a projectile was measured 40 
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times (N = 40). The results were collected into four bins (n = 4) and compared 
with what we would expect for a Gauss distribution Gx u(x). Here, there were three 
constraints and hence only one degree of freedom, 

d=n-c=4-3=l. 

The first constraint is the same as (12.12): The total number of observations N is 
the sum of the observations Ok in all the bins. But here there were two more con­
straints, because (as is usual in this kind of experiment) we did not know in advance 
the parameters X and <T of the expected Gauss distribution Gx u(x). Thus, before we 
could calculate the expected numbers Ek, we had to estimate X and <Tusing the data. 
Therefore, there were three constraints in all, so in this example 

d = n - 3. (12.13) 

Incidentally, this result explains why we had to use at least four bins in this experi­
ment. We will see that the number of degrees of freedom must always be one or 
more, so, from (12.13), we clearly had to choose n;;, 4. 

The examples considered here will always have at least one constraint (namely, 
the constraint N = I,Ok, involving the total number of measurements), and there 
may be one or two more. Thus, the number of degrees of freedom, d, will range 
from n - l ton - 3 (in our examples). When n is large, the difference between n 
and dis fairly unimportant, but when n is small (as it often is, unfortunately), there 
is obviously a significant difference. 

Armed with the notion of degrees of freedom, we can now begin to make our 
chi-squared test more precise. It can be shown (though I will not do so) that the 
expected value of x2 is precisely d, the number of degrees of freedom, 

( expected average value of x2) = d. (12.14) 

This important equation does not mean that we really expect to find x2 = d after 
any one series of measurements. It means instead that if we could repeat our whole 
series of measurements infinitely many times and compute x2 each time, the average 
of these values of x2 would be d. Nonetheless, even after just one set of measure­
ments, a comparison of x2 with d is an indicator of the agreement. In particular, if 
our expected distribution was the correct distribution, x2 would be very unlikely to 
be a lot larger than d. Turning this statement around, if we find x2 >> d, we can 
assert that our expected distribution was most unlikely to be correct. 

We have not proved the result (12.14), but we can see that some aspects of the 
result are reasonable. For example, because d = n - c, we can rewrite (12.14) as 

( expected average value of x2) = n - c. (12.15) 

That is, for any given n, the expected value of x2 will be smaller when c is larger 
(that is, if we calculate more parameters from the data). This result is just what we 
should expect. In the example of Section 12.1, we used the data to calculate the 
center X and width <T of the expected distribution Gx,Jx). Naturally, because X and 
<T were chosen to fit the data, we would expect to find a somewhat better agreement 
between the observed and expected distributions; that is, these two extra constraints 
would be expected to reduce the value of x2. This reduction is just what (12.15) 
implies. 
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The result (12.14) suggests a slightly more convenient way to think about our 
chi-squared test. We introduce a reduced chi squared ( or chi squared per degree of 
freedom), which we denote by x 2 and define as 

(12.16) 

Because the expected value of x2 is d, we see that the 

(12.17) 

Thus, whatever the number of degrees of freedom, our test can be stated as follows: 
If we obtain a value of x 2 of order one or less, then we have no reason to doubt 
our expected distribution; if we obtain a value of x 2 much larger than one, our 
expected distribution is unlikely to be correct. 

Quick Check 12.2. For the experiment of Quick Check 12.1, what is the num­
ber of degrees of freedom, and what is the value of the reduced chi squared, 
-2? X· 

12.4 Probabilities for Chi Squared 

Our test for agreement between observed data and their expected distribution is still 
fairly crude. We now need a quantitative measure of agreement. In particular, we 
need some guidance on where to draw the boundary between agreement and dis­
agreement. For example, in the experiment of Section 12.1, we made 40 measure­
ments of a certain range x whose distribution should, we believed, be Gaussian. We 
collected our data into four bins, and found that x2 = 1.80. With three constraints, 
there was only one degree of freedom (d = 1), so the reduced chi squared, x2 = 
x2/d, is also 1.80, 

xz = 1.80. 

The question is now: Is a value of x 2 = 1.80 sufficiently larger than one to rule out 
our expected Gauss distribution or not? 

To answer this question, we begin by supposing that our measurements were 
governed by the expected distribution (a Gaussian, in this example). With this as­
sumption, we can calculate the probability of obtaining a value of x 2 as large as, 
or larger than, our value of 1.80. Here, this probability turns out to be 

Prob(x 2 ;;:, 1.80) = 18%, 

as we will soon see. That is, if our results were governed by the expected distribu­
tion, there would be an 18% probability of obtaining a value of x 2 greater than or 



2 72 Chapter 12: The Chi-Squared Test for a Distribution 

equal to our actual value 1.80. In other words, in this experiment a value of x 2 as 
large as 1.80 is not at all unreasonable, so we would have no reason (based on this 
evidence) to reject our expected distribution. 

Our general procedure should now be reasonably clear. After completing any 
series of measurements, we calculate the reduced chi squared, which we now denote 
by x/ (where the subscript o stands for "observed," because x/ is the value actu­
ally observed). Next, assuming our measurements do follow the expected distribu­
tion, we compute the probability 

(12.18) 

of finding a value of i 2 greater than or equal to the observed value x/. If this 
probability is high, our value x O 

2 is perfectly acceptable, and we have no reason to 
reject our expected distribution. If this probability is unreasonably low, a value of 
x 2 as large as our observed x O 

2 is very unlikely (if our measurements were distrib­
uted as expected), and our expected distribution is correspondingly unlikely to be 
correct. 

As always with statistical tests, we have to decide on the boundary between 
what is reasonably probable and what is not. Two common choices are those already 
mentioned in connection with correlations. With the boundary at 5%, we would say 
that our observed value x O 

2 indicates a significant disagreement if 

Prob(x 2 ;;, x 0
2) < 5%, 

and we would reject our expected distribution at the 5% significance level. If we 
set the boundary at 1 %, then we could say that the disagreement is highly significant 
if Prob(x 2 ;;, x/) < 1 % and reject the expected distribution at the 1 % signifi­
cance level. 

Whatever level you choose as your boundary for rejection, the level chosen 
should be stated. Perhaps even more important, you should state the probability 
Prob(x 2 ;;, x/), so that your readers can judge its reasonableness for themselves. 

The calculation of the probabilities Prob(x 2 ;;, x/) is too complicated to de­
scribe in this book. The results can be tabulated easily, however, as in Table 12.6 or 
in the more complete table in Appendix D. The probability of getting any particular 
values of x 2 depends on the number of degrees of freedom. Thus, we will write the 
probability of interest as ProbAx;;, x 0

2) to emphasize its dependence on d. 
The usual calculation of the probabilities Proba(X 2 ;;, x 0

2) treats the observed 
numbers Ok as continuous variables distributed around their expected values Ek 

according to a Gauss distribution. In the problems considered here, Ok is a discrete 
variable distributed according to the Poisson distribution.2 Provided all numbers 
involved are reasonably large, the discrete character of the Ok is unimportant, and 
the Poisson distribution is well approximated by the Gauss function. Under these 
conditions, the tabulated probabilities Proba(x 2 ;;, x/) can be used safely. For this 
reason, we have said the bins must be chosen so that the expected count Ek in each 
bin is reasonably large ( at least five or so). For the same reason, the number of bins 
should not be too small. 

21 have argued that finding the number Ok amounts to a counting experiment and hence that Ok should 
follow a Poisson distribution. If the bin k is too large, then this argument is not strictly correct, because the 
probability of a measurement in the bin is not much less than one (which is one of the conditions for the 
Poisson distribution, as mentioned in Section 11.1), so we must have a reasonable number of bins. 
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Table 12.6. The percentage probability ProbAx 2 ;;,; x/) of obtaining a value of 
x 2 greater than or equal to any particular value x/, assuming the measurements 
concerned are governed by the expected distribution. Blanks indicate probabilities 
less than 0.05%. For a more complete table, see Appendix D. 

- 2 
Xo 

d 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2 3 4 5 6 

1 100 62 48 39 32 26 22 19 16 8 5 3 1 
2 100 78 61 47 37 29 22 17 14 5 2 0.7 0.2 
3 100 86 68 52 39 29 21 15 11 3 0.7 0.2 

5 100 94 78 59 42 28 19 12 8 1 0.1 
10 100 99 89 68 44 25 13 6 3 0.1 
15 100 100 94 73 45 23 10 4 1 

With these warnings, we now give the calculated probabilities Proba(x 2 ;;,; x0
2) 

for a few representative values of d and x O 
2 in Table 12.6. The numbers in the left 

column give six choices of d, the number of degrees of freedom (d = 1, 2, 3, 5, 10, 
15). Those in the other column heads give possible values of the observed x02. Each 
cell in the table shows the percentage probability Probd(X 2 ;;,; x/) as a function of 
d and x/. For example, with 10 degrees of freedom (d = 10), we see that the 
probability of obtaining x 2 ;;,; 2 is 3%, 

Prob10(x 2 ;:: 2) = 3%. 

Thus, if we obtained a reduced chi squared of 2 in an experiment with 10 degrees 
of freedom, we could conclude that our observations differed significantly from the 
expected distribution and reject the expected distribution at the 5% significance level 
(though not at the 1 % level). 

The probabilities in the second column of Table 12.6 are all 100%, because x 2 

is always certain to be greater than or equal to 0. As x O 
2 increases, the probability 

of getting x 2 ;;,; x O 
2 diminishes, but it does so at a rate that depends on d. Thus, 

for 2 degrees of freedom (d = 2), Probd(X 2 ;;,; 1) is 37%, whereas for d = 15, 
Probd(x 2 ;;,; 1) is 45%. Note that Probix 2 ;;,; 1) is always appreciable (at least 
32%, in fact), so a value for x02 of 1 or less is perfectly reasonable and never 
requires rejection of the expected distribution. 

The minimum value of x02 that does require questioning the expected distribu­
tion depends on d. For 1 degree of freedom, we see that x/ can be as large as 4 
before the disagreement becomes significant (5% level). With 2 degrees of freedom, 
the corresponding boundary is x/ = 3; for d = 5, it is closer to 2 (x0

2 = 2.2, in 
fact), and so on. 

Armed with the probabilities in Table 12.6 (and Appendix D), we can now 
assign a quantitative significance to the value of x O 

2 obtained in any particular 
experiment. Section 12.5 gives some examples. 

Quick Check 12.3. Each student in a large class times a glider on an air track 
as it coasts the length of the track. They calculate their mean time and standard 
deviation and then divide their data into six bins. Assuming their measurements 
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ought to be normally distributed, they calculate the numbers of measurements 
expected in each bin and the reduced chi squared, for which they get 4.0. If 
their measurements really were normally distributed, what would have been the 
probability of getting a value of x2 this large? Is there reason to think the 
measurements were not normally distributed? 

12.5 Examples 

We have already analyzed rather completely the example of Section 12.1. In this 
section, we consider three more examples to illustrate the application of the chi­
squared test. 

Example: Another Example of the Gauss Distribution 

The example of Section 12.1 involved a measurement for which the results were 
expected to be distributed normally. The normal, or Gauss, distribution is so com­
mon that we consider briefly another example. Suppose an anthropologist is inter­
ested in the heights of the natives on a certain island. He suspects that the heights 
of the adult males should be normally distributed and measures the heights of a 
sample of 200 men. Using these measurements, he calculates the mean and standard 
deviation and uses these numbers as best estimates for the center X and width pa­
rameter CT of the expected normal distribution GxJx). He now chooses eight bins, 
as shown in the first two columns of Table 12.7, and groups his observations, with 
the results shown in the third column. 

Table 12.7. Measurements of the heights of 200 adult males. 

Bin Heights Observed Expected 
number k in bin number Ok number Ek 

1 less than X - 1.5a 14 13.4 
2 between X - 1.5a and X - a 29 18.3 
3 between X - a and X - 0.5a 30 30.0 
4 between X - 0.5a and X 27 38.3 
5 between X and X + 0.5a 28 38.3 
6 between X + 0.5a and X + a 31 30.0 
7 between X + a and X + 1.5a 28 18.3 
8 more than X + 1.5a 13 13.4 

Our anthropologist now wants to check whether these results are consistent with 
the expected normal distribution Gxu(x). To this end, he first calculates the probabil­
ity Probk that any one man has height in any particular bin k ( assuming a normal 
distribution). This probability is the integral of Gx,Jx) between the bin boundaries 
and is easily found from the table of integrals in Appendix B. The expected number 
Ek in each bin is then Probk times the total number of men sampled (200). These 
numbers are shown in the final column of Table 12.7. 
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To calculate the expected numbers Ek, the anthropologist had to use three pa­
rameters calculated from his data (the total number in the sample and his estimates 
for X and CT). Thus, although there are eight bins, he had three constraints; so the 
number of degrees of freedom is d = 8 - 3 = 5. A simple calculation using the data 
of Table 12. 7 gives for his reduced chi squared 

-2 = ! ~ (Ok - Ek)2 = 3 5 X dL, E •• 
i=l k 

Because this value is appreciably larger than one, we immediately suspect that the 
islanders' heights do not follow the normal distribution. More specifically, we see 
from Table 12.6 that, if the islanders' heights were distributed as expected, then the 
probability Probs(x 2 ;;. 3.5) of obtaining x2 ;;,, 3.5 is approximately 0.5%. By 
any standards, this value is very improbable, and we conclude that the islanders' 
heights are very unlikely to be normally distributed. In particular, at the 1 % ( or 
highly significant) level, we can reject the hypothesis of a normal distribution of 
heights. 

Example: More Dice 

In Section 12.2, we discussed an experiment in which five dice were thrown many 
times and the number of aces in each throw recorded. Suppose we make 200 throws 
and divide the results into bins as discussed before. Assuming the dice are true, we 
can calculate the expected numbers Ek as before. These numbers are shown in the 
third column of Table 12.8. 

Table 12.8. Distribution of numbers of aces in 200 throws 
of 5 dice. 

Bin Results Expected Observed 
number k in bin number Ek number Ok 

1 no aces 80.4 60 
2 one ace 80.4 88 
3 two aces 32.2 39 
4 3, 4, or 5 aces 7.0 13 

In an actual test, five dice were thrown 200 times and the numbers in the last 
column of Table 12.8 were observed. To test the agreement between the observed 
and expected distributions, we simply note that there are three degrees of freedom 
(four bins minus one constraint) and calculate 

x2 = ! ± (ok - Ek)2 = 4.16. 
3 k=l Ek 

Referring back to Table 12.6, we see that with three degrees of freedom, the proba­
bility of obtaining x2 ;;, 4.16 is approximately 0.7%, if the dice are true. We con­
clude that the dice are almost certainly not true. Comparison of the numbers Ek and 
Ok in Table 12.8 suggests that at least one die is loaded in favor of the ace. 
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Example: An Example of the Poisson Distribution 

As a final example of the use of the chi-squared test, let us consider an experiment 
in which the expected distribution is the Poisson distribution. Suppose we arrange a 
Geiger counter to count the arrival of cosmic-ray particles in a certain region. Sup­
pose further that we count the number of particles arriving in 100 separate one­
minute intervals, and our results are as shown in the first two columns of Table 
12.9. 

Table 12.9. Numbers of cosmic-ray particles observed in 100 separate one-
minute intervals. 

Counts v Bin Observations Expected 
in one minute Occurrences number k Ok in bin k number Ek 

None 7 1 7 7.5 
One 17 2 17 19.4 
Two 29 3 29 25.2 
Three 20 4 20 21.7 
Four 16 5 16 14.1 
Five n Six 

6 11 12.1 
Seven 
Eight or more 

Total 100 

Inspection of the numbers in column two immediately suggests that we group 
all counts v ;;, 5 into a single bin. This choice of six bins (k = 1, ... , 6) is shown 
in the third column and the corresponding numbers Ok in column four. 

The hypothesis we want to test is that the number v is governed by a Poisson 
distribution P,.,,(v). Because the expected mean count µ is unknown, we must first 
calculate the average of our 100 counts. This value is easily found to be v = 2.59, 
which gives us our best estimate forµ. Using this value µ = 2.59, we can calculate 
the probability P,,,(v) of any particular count v and hence the expected numbers Ek 
as shown in the final column. 

In calculating the numbers Ek, we used two parameters based on the data, the 
total number of observations (100), and our estimate of µ (µ = 2.59). (Note that 
because the Poisson distribution is completely determined by µ, we did not have to 
estimate the standard deviation a-. Indeed, because a- = -{µ, our estimate for µ 
automatically gives us an estimate for a-.) There are, therefore, two constraints, 
which reduces our six bins to four degrees of freedom, d = 4. 

A simple calculation using the numbers in the last two columns of Table 12.9 
now gives for the reduced chi squared 

-2 1 ~ (Ok - Ek)2 X = - L... ~-~ = 0.35. 
d k=l Ek 

Because this value is less than one, we can conclude immediately that the agreement 
between our observations and the expected Poisson distribution is satisfactory. More 
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specifically, we see from the table in Appendix D that a value of x 2 as large as 0.35 
is very probable; in fact 

Probix 2 ;;, 0.35) = 85%. 

Thus, our experiment gives us absolutely no reason to doubt the expected Poisson 
distribution. 

The value of x 2 = 0.35 found in this experiment is actually appreciably less 
than one, indicating that our observations fit the Poisson distribution very well. This 
small value does not, however, give stronger evidence that our measurements are 
governed by the expected distribution than would a value x 2 = l. If the results 
really are governed by the expected distribution, and if we were to repeat our series 
of measurements many times, we would expect many different values of x 2, fluctu­
ating about the average value one. Thus, if the measurements are governed by the 
expected distribution, a value of x 2 = 0.35 is just the result of a large chance fluc­
tuation away from the expected mean value. In no way does it give extra weight to 
our conclusion that our measurements do seem to follow the expected distribution. 

If you have followed these three examples, you should have no difficulty 
applying the chi-squared test to any problems likely to be found in an elementary 
physics laboratory. Several further examples are included in the problems below. 
You should certainly test your understanding by trying some of them. 

Principal Definitions and Equations of Chapter 12 

DEFINITION OF CHI SQUARED 

If we make n measurements for which we know, or can calculate, the expected 
values and the standard deviations, then we define x2 as 

2 = ~ (observed value - e~p~cted value)2. 
X f standard deviation [See 12.11)] 

In the experiments considered in this chapter, the n measurements were the numbers, 
0 1, ... , Om of times that the value of some quantity x was observed in each of n 
bins. In this case, the expected number Ek is determined by the assumed distribu­
tion of x, and the standard deviation is just ~; therefore, 

[See (12.7)] 

If the assumed distribution of x is correct, then x2 should be of order n. If 
x2 >> n, the assumed distribution is probably incorrect. 
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DEGREES OF FREEDOM AND REDUCED CHI SQUARED 

If we were to repeat the whole experiment many times, the mean value of x2 

should be equal to d, the number of degrees of freedom, defined as 

d = n - c, 

where c is the number of constraints, the number of parameters that had to be 
calculated from the data to compute x2. 

The reduced x2 is defined as 

[See (12.16)] 

If the assumed distribution is correct, x 2 should be of order 1; if x 2 >> 1, the data 
do not fit the assumed distribution satisfactorily. 

PROBABILITIES FOR CHI SQUARED 

Suppose you obtain the value x O 
2 for the reduced chi squared in an experiment. 

If x O 
2 is appreciably greater than one, you have reason to doubt the distribution on 

which your expected values Ek were based. From the table in Appendix D, you can 
find the probability, 

Probd(X 2 ;;, x/), 

of getting a value x 2 as large as x O 
2, assuming the expected distribution is correct. 

If this probability is small, you have reason to reject the expected distribution; if it 
is less than 5%, you would reject the assumed distribution at the 5%, or significant, 
level; if the probability is less than 1 %, you would reject the distribution at the 1 %, 
or highly significant, level. 

Problems for Chapter 12 

For Section 12.1: Introduction to Chi Squared 

12.1. * Each member of a class of 50 students is given a piece of the same metal 
(or what is said to be the same metal) and told to find its density p. From the 50 
results, the mean p and standard deviation <TP are calculated, and the class decides 
to test whether the results are normally distributed. To this end, the measurements 
are grouped into four bins with boundaries _at p - <Tp, p, and p + <Tp, and the 
results are shown in Table 12.10. 

Table 12.10. Observed densities of 50 pieces of metal 
arranged in four bins; for Problem 12.1. 

Bin number k Range of bin Observed number Ok 

1 less than p - O'P 12 
2 between p - O'P and p 13 
3 between p and p + O'P 11 
4 more than p + O'P 14 
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Assuming the measurements were normally distributed, with center p and width 
CTP' calculate the expected number of measurements Ek in each bin. Hence, calculate 
x2. Do the measurements seem to be normally distributed? 

12.2. ** Problem 4.13 reported 30 measurements of a time t, with mean i = 8.15 
sec and standard deviation CTt = 0.04 sec. Group the values of t into four bins with 
boundaries at i - CTt, i, and i + CTi, and count the observed number Ok in each bin 
k = 1, 2, 3, 4. Assuming the measurements were normally distributed with center at 
i and width CTi, find the expected number Ek in each bin. Calculate x2 . Is there any 
reason to doubt the measurements are normally distributed? 

For Section 12.2: General Definition of Chi Squared 

12.3. * A gambler decides to test a die by throwing it 240 times. Each throw has 
six possible outcomes, k = 1, 2, . . . , 6, where k is the face showing, and the 
distribution of his throws is as shown in Table 12.11. If you treat each possible 

Table 12.1 I. Number of occurrences of each face showing on 
a die thrown 240 times; for Problem 12.3. 

Face showing k: 
Occurrences Ok: 

1 
20 

2 
46 

3 
35 

4 
45 

5 
42 

6 
52 

result k as a separate bin, what is the expected number Ek in each bin, assuming 
that the die is true? Compute x2. Does the die seem likely to be loaded? 

12.4. ** I throw three dice together a total of 400 times, record the number of 
sixes in each throw, and obtain the results shown in Table 12.12. Assuming the dice 

Table 12.12. Number of occurrences for each result 
for three dice thrown together 400 times; for Problem 
12.4. 

Result 

No sixes 
One six 
1\vo or three sixes 

Bin number k 

1 
2 
3 

Occurrences Ok 

217 
148 
35 

are true, use the binomial distribution to find the expected number Ek for each of 
the three bins and then calculate x2. Do I have reason to suspect the dice are 
loaded? 

12.5. ** As a radioactive specimen decays, its activity decreases exponentially as 
the number of radioactive atoms diminishes. Some radioactive species have mean 
lives in the millions, and even billions, of years, and for such species the exponential 
decay of activity is not readily apparent. On the other hand, many species have 
mean lives of minutes or hours, and for such species the exponential decay is easily 
observed. The following problem illustrates this latter case. 
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A student wants to verify the exponential decay law for a material with a known 
mean life of T. Starting at time t = 0, she counts the decays from a sample in 
successive intervals of length T; that is, she establishes bins with O < t < T, and 
T < t < 2T, and so on, and she counts the number of decays in each bin. (a) Ac­
cording to the exponential decay law, the number of radioactive atoms that remain 
after time tis N(t) = N0 e- th, where N0 is the number of atoms at t = 0. Deduce 
that the number of decays expected in the kth time bin [(k - 1) T < t < kT] is 

(12.19) 

(b) For convenience, the student chooses her time interval T equal to the known 
value of T, and she gets the results shown in Table 12.13. What are the expected 

Table 12.13. Observed number of decays in successive 
time intervals of a radioactive sample. Note that all 
decays that occurred after t = 4T have been included in 
a single bin; for Problem 12.5. 

Bin number k Time interval Observed decays Ok 

1 0 < t < T 528 
2 T < t < 2T 180 
3 2T < < 3T 71 
4 3T < < 4T 20 
5 4T < t 16 

numbers Ek, according to (12.19), and what is her value for x2? Are her results 
consistent with the exponential decay law? (Note that the initial number N0 is easily 
found from the data, because it must be equal to the total number of decays after 
t = 0.) 

For Section 12.3: Degrees of Freedom and Reduced Chi Squared 

12.6. * (a) For the experiment of Problem 12.1, find the number of constraints c 
and the number of degrees of freedom d. (b) Suppose now that the accepted value 
Pace of the density was known and that the students decided to test the hypothesis 
that the results were governed by a normal distribution centered on Pace· For this 
test, how many constraints would there be, and how many degrees of freedom? 

12.7. * For each of Problems 12.2 to 12.4, find the number of constraints c and 
the number of degrees of freedom d. 

For Sections 12.4 and 12.5: Probabilities for Chi Squared and Examples 

12.8. * If we observe the distribution of results in some experiment and know the 
expected distribution, we can calculate the observed x / and find the probability 
Probjx2 ;a, x/). If this probability is less than 5%, we can then reject the expected 
distribution at the 5% level. For example, with two degrees of freedom (d = 2), 
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any value of x/ greater than 3.0 would justify rejection of the expected distribution 
at the 5% level; that is, for d = 2, x/ = 3.0 is the critical value above which we 
can reject the distribution at the 5% level. Use the probabilities in Appendix D to 
make a table of the corresponding critical values (5% level) of x/, ford= 1, 2, 3, 
4, 5, 10, 15, 20, 30. 

12.9. * As in Problem 12.8, make a table of the critical values of x / for rejection 
of the expected distribution, but this time at the 1 % level, for d = 1, 2, 3, 4, 5, 10, 
1.-i, 20, 30. 

12.10. ** For the data of Problem 12.1, compute x2. If the measurements were 
normally distributed, what was the probability of getting a value of x2 this large or 
larger? At the 5% significance level, can you reject the hypothesis that the measure­
ments were normally distributed? At the 1 % level? (See Appendix D for the needed 
probabilities.) 

12.11. ** In Problem 12.3, find the value of x2. Can we conclude that the die 
was loaded at the 5% significance level? At the 1 % level? (See Appendix D for the 
necessary probabilities.) 

12.12. ** In Problem 12.4, find the value of x2. If the dice really are true, what 
is the probability of getting a value of x2 this large or larger? Explain whether the 
evidence suggests the dice are loaded. (See Appendix D for the necessary probabili­
ties.) 

12.13. ** Calculate x2 for the data of Problem 11.5, assuming the observations 
should follow the Poisson distribution with mean count µ = 3. (Group all values 
v;;,, 6 into a single bin.) How many degrees of freedom are there? (Don't forget 
that µ was given in advance and didn't have to be calculated from the data.) What 
is x2? Are the data consistent with the expected Poisson distribution? 

12.14. ** The chi-squared test can be used to test how well a set of measure­
ments (x;, Y;) of two variables fits an expected relation y = f(x), provided the uncer­
tainties are known reliably. Suppose y and x are expected to satisfy a linear relation 

y = f(x) = A + Bx. (12.20) 

(For instance, y might be the length of a metal rod and x its temperature.) Suppose 
that A and B are predicted theoretically to be A = 50 and B = 6, and that five 
measurements have produced the values shown in Table 12.14. The uncertainty in 

Table 12.14. Five measurements of two variables 
expected to fit the relation y = A + Bx; for Problem 
12.14. 

x (no uncertainty): 
y (all ±4): 

1 
60 

2 

56 
3 

71 
4 

66 

5 

86 

the measurements of x is negligible; all the measurements of y have the same stan­
dard deviation, which is known to be <r = 4. 
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(a) Make a table of the observed and expected values of Y;, and calculate x2 as 

Xz = itl ei -:(X;)r. 

(b) Because no parameters were calculated from the data, there are no con­
straints and hence five degrees of freedom. Calculate x2, and use Appendix D to 
find the probability of obtaining a value of x2 this large, assuming y does satisfy 
(12.20). At the 5% level, would you reject the expected relation (12.20)? (Note that 
if the constants A and B were not known in advance, you would have to calculate 
them from the data by the method of least squares. You would then proceed as 
before, except that there would now be two constraints and only three degrees of 
freedom.) 

12.15. *** Two dice are thrown together 360 times, and the total score is re­
corded for each throw. The possible totals are 2, 3, . . . , 12, and their numbers of 
occurrences are as shown in Table 12.15. (a) Calculate the probabilities for each 

Table 12.15. Observed occurrences of total scores for two dice thrown together 360 
times; for Problem 12.15. 

Total score: 
Occurrences: 

2 
6 

3 
14 

4 
23 

5 
35 

6 
57 

7 
50 

8 
44 

9 
49 

10 

39 
11 
27 

12 
16 

total and hence the expected number of occurrences (assuming the dice are true). 
(b) Calculate x2, d, and x2 = x2/d. (c) Assuming the dice are true, what is the 
probability of getting a value of x2 this large or larger? (d) At the 5% level of 
significance, can you reject the hypothesis that the dice are true? At the 1 % level? 

12.16. *** A certain long-lived radioactive sample is alleged to produce an aver­
age of 2 decays per minute. To check this claim, a student counts the numbers of 
decays in 40 separate one-minute intervals and obtains the results shown in Table 
12.16. (The mean life is so long that any depletion of the sample is negligible over 

Table 12.16. Observed number of decays in one-minute intervals of a 
radioactive sample; for Problem 12.16. 

Number of decays v: 
Times observed: 

0 
11 

1 
12 

2 

11 
3 
4 

4 
2 

5 or more 
0 

the course of all these measurements.) (a) If the Poisson distribution that governs 
the decays really does have J.L = 2, what numbers Ek should the student expect to 
have found? (Group all observations with v;;,, 3 into a single bin.) Calculate x2, d, 
and x2 = x2/d. (Don't forget that J.L was not calculated from the data.) At the 5% 
significance level, would you reject the hypothesis that the sample follows the Pois­
son distribution with J.L = 2? (b) The student notices that the actual mean of his 
results is ii = 1.35, and he therefore decides to test whether the data fit a Poisson 
distribution with J.L = 1.35. In this case, what are d and x2? Are the data consistent 
with this new hypothesis? 
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12.17. *** Chapter 10 described a test for fit to the binomial distribution. We 
considered n trials, each with two possible outcomes: "success" (with probability p) 
and "failure" (with probability 1 - p). We then tested whether the observed number 
of successes, v, was compatible with some assumed value of p. Provided the num-
bers involved are reasonably large, we can also treat this same problem with the 
chi-squared test, with just two bins-k = 1 for successes and k = 2 for failures -
and one degree of freedom. In the following problem, you will use both methods 
and compare results. When the numbers are large, you will find the agreement is 
excellent; when they are small, it is less so but still good enough that chi squared 
is a useful indicator. 

(a) A soup manufacturer believes he can introduce a different dumpling into 
his chicken dumpling soup without noticeably affecting the flavor. To test this hy­
pothesis, he makes 16 cans labeled "Style X" that contain the old dumpling and 16 
cans labeled "Style Y" that contain the new dumpling. He sends one of each type 
to 16 tasters and asks them which they prefer. If his hypothesis is correct, we should 
expect eight tasters to prefer X and eight to prefer Y. In the actual test, the number 
who favored X was v = 11. Calculate x 2 and the probability of getting a value this 
large or larger. Does the test indicate a significant difference between the two kinds 
of dumpling? Now, calculate the corresponding probability exactly, using the bino­
mial distribution, and compare your results. (Note that the chi-squared test includes 
deviations away from the expected numbers in both directions. Therefore, for this 
comparison you should calculate the two-tailed probability for values of v that devi­
ate from 8 by 3 or more in either direction; that is, v = 11, 12, . . . , 16 and v = 5, 
4, ... ' 1.) 

(b) Repeat part (a) for the next test, in which the manufacturer makes 400 cans 
of each style and the number of tasters who prefer X is 225. (In calculating the 
binomial probabilities, use the Gaussian approximation.) 

(c) In part (a), the numbers were small enough that the chi-squared test was 
fairly crude. (It gave a probability of 13%, compared with the correct value of 21 %.) 
With one degree of freedom, you can improve on the chi-squared test by using an 
adjusted chi-squared, defined as 

(adjusted x2) = ± (!Ok - Ekl -oz_ 
k=l Ek 

Calculate the adjusted x 2 for the data of part (a) and show that the use of this value, 
instead of the ordinary x 2, in the table of Appendix D gives a more accurate value 
of the probability.3 

3 We have not justified the use of the adjusted chi squared here, but this example does illustrate its superior­
ity. For more details, see H. L. Alder and E. B. Roessler, Introduction to Probability and Statistics, 6th ed. 
(W. H. Freeman, 1977), p. 263. 
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Appendix A 

Normal Error Integral, I 

If the measurement of a continuous variable x is subject to many small errors, all 
of them random, the expected distribution of results is given by the normal, or 
Gauss, distribution, 

G f ) = _l_ -(x-X)2(2u2 
x,a-\x _ r::;::_ e , 

(T"\J21C 

where X is the true value of x, and <T is the standard deviation. 
The integral of the normal distribution function, f! Gx,Jx)dx, is called the nor­

mal error integral, and is the probability that a measurement falls between x = a 
andx = b, 

Prob(a,;;;; x,;;;; b) = f Gx,J..x) dx. 

Table A shows this integral for a= X - t<r and b = X + t<r. This gives the probabil­
ity of a measurement within t standard deviations on either side of X, 

Prob(within t<r) Prob(X - t<r,;;;; x .;;; X + t<r) 

= {x+tu GxJ..x) dx = _l_ fi e-z212 dz. 
Jx-tu ' -v2rt -t 

This function is sometimes denoted erf(t), but this notation is also used for a slightly 
different function. 

The probability of a measurement outside the same interval can be found by 
subtraction; 

Prob( outside t<r) = 100% - Prob(within t<r). 

For further discussions, see Section 5.4 and Appendix B. 
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Table A. The percentage probability, 

Prob(within ta) = J1~::ox,Jx)dx, 
as a function of t. X-ta X X+ta 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.00 0.80 1.60 2.39 3.19 3.99 4.78 5.58 6.38 7.17 
0.1 7.97 8.76 9.55 10.34 11.13 11.92 12.71 13.50 14.28 15.07 
0.2 15.85 16.63 17.41 18.19 18.97 19.74 20.51 21.28 22.05 22.82 
0.3 23.58 24.34 25.10 25.86 26.61 27.37 28.12 28.86 29.61 30.35 
0.4 31.08 31.82 32.55 33.28 34.01 34.73 35.45 36.16 36.88 37.59 

0.5 38.29 38.99 39.69 40.39 41.08 41.77 42.45 43.13 43.81 44.48 
0.6 45.15 45.81 46.47 47.13 47.78 48.43 49.07 49.71 50.35 50.98 
0.7 51.61 52.23 52.85 53.46 54.07 54.67 55.27 55.87 56.46 57.05 
0.8 57.63 58.21 58.78 59.35 59.91 60.47 61.02 61.57 62.11 62.65 
0.9 63.19 63.72 64.24 64.76 65.28 65.79 66.29 66.80 67.29 67.78 

1.0 68.27 68.75 69.23 69.70 70.17 70.63 71.09 71.54 71.99 72.43 
1.1 72.87 73.30 73.73 74.15 74.57 74.99 75.40 75.80 76.20 76.60 
1.2 76.99 77.37 77.75 78.13 78.50 78.87 79.23 79.59 79.95 80.29 
1.3 80.64 80.98 81.32 81.65 81.98 82.30 82.62 82.93 83.24 83.55 
1.4 83.85 84.15 84.44 84.73 85.01 85.29 85.57 85.84 86.11 86.38 

1.5 86.64 86.90 87.15 87.40 87.64 87.89 88.12 88.36 88.59 88.82 
1.6 89.04 89.26 89.48 89.69 89.90 90.11 90.31 90.51 90.70 90.90 
1.7 91.09 91.27 91.46 91.64 91.81 91.99 92.16 92.33 92.49 92.65 
1.8 92.81 92.97 93.12 93.28 93.42 93.57 93.71 93.85 93.99 94.12 
1.9 94.26 94.39 94.51 94.64 94.76 94.88 95.00 95.12 95.23 95.34 

2.0 95.45 95.56 95.66 95.76 95.86 95.96 96.06 96.15 96.25 96.34 
2.1 96.43 96.51 96.60 96.68 96.76 96.84 96.92 97.00 97.07 97.15 
2.2 97.22 97.29 97.36 97.43 97.49 97.56 97.62 97.68 97.74 97.80 
2.3 97.86 97.91 97.97 98.02 98.07 98.12 98.17 98.22 98.27 98.32 
2.4 98.36 98.40 98.45 98.49 98.53 98.57 98.61 98.65 98.69 98.72 

2.5 98.76 98.79 98.83 98.86 98.89 98.92 98.95 98.98 99.01 99.04 
2.6 99.07 99.09 99.12 99.15 99.17 99.20 99.22 99.24 99.26 99.29 

2.7 99.31 99.33 99.35 99.37 99.39 99.40 99.42 99.44 99.46 99.47 
2.8 99.49 99.50 99.52 99.53 99.55 99.56 99.58 99.59 99.60 99.61 

2.9 99.63 99.64 99.65 99.66 99.67 99.68 99.69 99.70 99.71 99.72 

3.0 99.73 
3.5 99.95 
4.0 99.994 
4.5 99.9993 
5.0 99.99994 
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Appendix B 

Normal Error Integral, II 

In certain calculations, a convenient form of the normal error integral is 

lX+ta-

Q(t) x Gx,Jx) dx 

= 1 lt -zZ/2 d -{in O e z. X X+ta 

(This integral is, of course, just half the integral tabulated in Appendix A.) The 
probability Prob(a ,;;; x,;;; b) of a measurement in any interval a ,;;; x,;;; b can be 
found from Q(t) by a single subtraction or addition. For example, 

Prob(X + <r,;;; x ,;;; X + 2<r) = Q(2) - Q(l). 

X X+a X+2a 

Similarly, 

Prob(X - 2<r,;;; x,;;; X + <r) = Q(2) + Q(l). 

X-2a X X+a 

The probability of a measurement greater than any X + t<r is just 0.5 - Q(t). 
For example, 

Prob(x;;;,, X + <r) = 50% - Q(l). 

X X+a 
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Table B. The percentage probability, 
JX+to- c,-( ) Q(t) = X Gx, X dx, 

as a function of t. X X+tO" 

t 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.00 0.40 0.80 1.20 1.60 1.99 2.39 2.79 3.19 3.59 
0.1 3.98 4.38 4.78 5.17 5.57 5.96 6.36 6.75 7.14 7.53 
0.2 7.93 8.32 8.71 9.10 9.48 9.87 10.26 10.64 11.03 11.41 
0.3 11.79 12.17 12.55 12.93 13.31 13.68 14.06 14.43 14.80 15.17 
0.4 15.54 15.91 16.28 16.64 17.00 17.36 17.72 18.08 18.44 18.79 

0.5 19.15 19.50 19.85 20.19 20.54 20.88 21.23 21.57 21.90 22.24 
0.6 22.57 22.91 23.24 23.57 23.89 24.22 24.54 24.86 25.17 25.49 
0.7 25.80 26.11 26.42 26.73 27.04 27.34 27.64 27.94 28.23 28.52 
0.8 28.81 29.10 29.39 29.67 29.95 30.23 30.51 30.78 31.06 31.33 
0.9 31.59 31.86 32.12 32.38 32.64 32.89 33.15 33.40 33.65 33.89 

1.0 34.13 34.38 34.61 34.85 35.08 35.31 35.54 35.77 35.99 36.21 
1.1 36.43 36.65 36.86 37.08 37.29 37.49 37.70 37.90 38.10 38.30 
1.2 38.49 38.69 38.88 39.07 39.25 39.44 39.62 39.80 39.97 40.15 
1.3 40.32 40.49 40.66 40.82 40.99 41.15 41.31 41.47 41.62 41.77 
1.4 41.92 42.07 42.22 42.36 42.51 42.65 42.79 42.92 43.06 43.19 

1.5 43.32 43.45 43.57 43.70 43.82 43.94 44.06 44.18 44.29 44.41 
1.6 44.52 44.63 44.74 44.84 44.95 45.05 45.15 45.25 45.35 45.45 
1.7 45.54 45.64 45.73 45.82 45.91 45.99 46.08 46.16 46.25 46.33 
1.8 46.41 46.49 46.56 46.64 46.71 46.78 46.86 46.93 46.99 47.06 
1.9 47.13 47.19 47.26 47.32 47.38 47.44 47.50 47.56 47.61 47.67 

2.0 47.72 47.78 47.83 47.88 47.93 47.98 48.03 48.08 48.12 48.17 
2.1 48.21 48.26 48.30 48.34 48.38 48.42 48.46 48.50 48.54 48.57 
2.2 48.61 48.64 48.68 48.71 48.75 48.78 48.81 48.84 48.87 48.90 
2.3 48.93 48.96 49.98 49.01 49.04 49.06 49.09 49.11 49.13 49.16 
2.4 49.18 49.20 49.22 49.25 49.27 49.29 49.31 49.32 49.34 49.36 

2.5 49.38 49.40 49.41 49.43 49.45 49.46 49.48 49.49 49.51 49.52 
2.6 49.53 49.55 49.56 49.57 49.59 49.60 49.61 49.62 49.63 49.64 
2.7 49.65 49.66 49.67 49.68 49.69 49.70 49.71 49.72 49.73 49.74 
2.8 49.74 49.75 49.76 49.77 49.77 49.78 49.79 49.79 49.80 49.81 
2.9 49.81 49.82 49.82 49.83 49.84 49.84 49.85 49.85 49.86 49.86 

3.0 49.87 
3.5 49.98 
4.0 49.997 
4.5 49.9997 
5.0 49.99997 
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Appendix C 

Probabilities for Correlation Coefficients 

The extent to which N points (x1, y1), ... , (xN, YN) fit a straight line is indicated by 
the linear correlation coefficient 

l(xi - x)(Yi - y) 
r = 

✓l(xi - x)2 L(Yi - y)2 ' 

which always lies in the interval -1 :es; r :es; 1. Values of r close to ± 1 indicate a 
good linear correlation; values close to 0 indicate little or no correlation. 

A more quantitative measure of the fit can be found by using Table C. For any 
given observed value r 0 , Prob~lrl ;;,, Ir 0 1) is the probability that N measurements of 
two uncorrelated variables would give a coefficient r as large as r 0 • Thus, if we 
obtain a coefficient r O for which Prob~lrl ;;,, Ir 0 1) is small, it is correspondingly 
unlikely that our variables are uncorrelated; that is, a correlation is indicated. In 
particular, if Prob~lrl ;;,, lr0 I) :es; 5%, the correlation is called significant; if it is less 
than 1 %, the correlation is called highly significant. 

For example, the probability that 20 measurements (N = 20) of two uncorre­
lated variables would yield lrl ;;,, 0.5 is given in the table as 2.5%. Thus, if 20 mea­
surements gave r = 0.5, we would have significant evidence of a linear correlation 
between the two variables. For further discussion, see Sections 9.3 to 9.5. 

The values in Table C were calculated from the integral 

Prob~lrl ;;,, lr0 1) = 2f[(N - l)/2] {1 (1 - ,Z)<N- 4)/Z dr. 
-{;f[(N - 2)/2] Jlrol 

See, for example, E. M. Pugh and G. H. Winslow, The Analysis of Physical Mea­
surements (Addison-Wesley, 1966), Section 12-8. 
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Table C. The percentage probability Prob~lrl;;, r0 ) that N measurements of two 
uncorrelated variables give a correlation coefficient with lrl ;;, r0 , as a function of N 
and r0 • (Blanks indicate probabilities less than 0.05%.) 

ro 

N 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

3 100 94 87 81 74 67 59 51 41 29 0 
4 100 90 80 70 60 50 40 30 20 10 0 
5 100 87 75 62 50 39 28 19 10 3.7 0 

6 100 85 70 56 43 31 21 12 5.6 1.4 0 
7 100 83 67 51 37 25 15 8.0 3.1 0.6 0 
8 100 81 63 47 33 21 12 5.3 1.7 0.2 0 
9 100 80 61 43 29 17 8.8 3.6 1.0 0.1 0 

10 100 78 58 40 25 14 6.7 2.4 0.5 0 

11 100 77 56 37 22 12 5.1 1.6 0.3 0 
12 100 76 53 34 20 9.8 3.9 1.1 0.2 0 
13 100 75 51 32 18 8.2 3.0 0.8 0.1 0 
14 100 73 49 30 16 6.9 2.3 0.5 0.1 0 
15 100 72 47 28 14 5.8 1.8 0.4 0 

16 100 71 46 26 12 4.9 1.4 0.3 0 
17 100 70 44 24 11 4.1 1.1 0.2 0 
18 100 69 43 23 10 3.5 0.8 0.1 0 
19 100 68 41 21 9.0 2.9 0.7 0.1 0 
20 100 67 40 20 8.1 2.5 0.5 0.1 0 

25 100 63 34 15 4.8 1.1 0.2 0 
30 100 60 29 11 2.9 0.5 0 
35 100 57 25 8.0 1.7 0.2 0 
40 100 54 22 6.0 1.1 0.1 0 
45 100 51 19 4.5 0.6 0 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

50 100 73 49 30 16 8.0 3.4 1.3 0.4 0.1 
60 100 70 45 25 13 5.4 2.0 0.6 0.2 
70 100 68 41 22 9.7 3.7 1.2 0.3 0.1 

80 100 66 38 18 7.5 2.5 0.7 0.1 
90 100 64 35 16 5.9 1.7 0.4 0.1 

100 100 62 32 14 4.6 1.2 0.2 



Appendix D 

Probabilities for Chi Squared 

If a series of measurements is grouped into bins k = l, ... , n, we denote by Ok 

the number of measurements observed in the bin k. The number expected ( on the 
basis of some assumed or expected distribution) in the bin k is denoted by Ek. The 
extent to which the observations fit the assumed distribution is indicated by the 
reduced chi squared, x 2, defined as 

where d is the number of degrees of freedom, d = n - c, and c is the number of 
constraints (see Section 12.3). The expected average value of x 2 is 1. If x 2 » 1, 
the observed results do not fit the assumed distribution; if x 2 "°S 1, the agreement 
is satisfactory. 

This test is made quantitative with the probabilities shown in Table D. Let x O 
2 

denote the value of x 2 actually obtained in an experiment with d degrees of free­
dom. The number Probix 2 ;;. x/) is the probability of obtaining a value of X 2 

as large as the observed x /, if the measurements really did follow the assumed 
distribution. Thus, if Prob ix 2 ;;. x /) is large, the observed and expected distribu­
tions are consistent; if it is small, they probably disagree. In particular, if Prob ix 2 

;;. x O 
2) is less than 5%, we say the disagreement is significant and reject the 

assumed distribution at the 5% level. If it is less than 1 %, the disagreement is called 
highly significant, and we reject the assumed distribution at the 1 % level. 

For example, suppose we obtain a reduced chi squared of 2.6 (that is, 
x / = 2.6) in an experiment with six degrees of freedom (d = 6). According to 
Table D, the probability of getting x 2 ;;. 2.6 is 1.6%, if the measurements were 
governed by the assumed distribution. Thus, at the 5% level (but not quite at the 
1 % level), we would reject the assumed distribution. For further discussion, see 

292 Chapter 12. 
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Table D. The percentage probability Probd(X 2 ~ x 0 2) of obtaining a value of 
x 2 ~ x O 

2 in an experiment with d degrees of freedom, as a function of d and x O 
2. 

(Blanks indicate probabilities less than 0.05%.) 

- 2 Xo 

d 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 8.0 10.0 

1 100 48 32 22 16 11 8.3 6.1 4.6 3.4 2.5 1.9 1.4 0.5 0.2 
2 100 61 37 22 14 8.2 5.0 3.0 1.8 1.1 0.7 0.4 0.2 
3 100 68 39 21 11 5.8 2.9 1.5 0.7 0.4 0.2 0.1 
4 100 74 41 20 9.2 4.0 1.7 0.7 0.3 0.1 0.1 
5 100 78 42 19 7.5 2.9 1.0 0.4 0.1 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

1 100 65 53 44 37 32 27 24 21 18 16 14 12 11 9.4 8.3 
2 100 82 67 55 45 37 30 25 20 17 14 11 9.1 7.4 6.1 5.0 
3 100 90 75 61 49 39 31 24 19 14 11 8.6 6.6 5.0 3.8 2.9 
4 100 94 81 66 52 41 31 23 17 13 9.2 6.6 4.8 3.4 2.4 1.7 
5 100 96 85 70 55 42 31 22 16 11 7.5 5.1 3.5 2.3 1.6 1.0 

6 100 98 88 73 57 42 30 21 14 9.5 6.2 4.0 2.5 1.6 1.0 0.6 
7 100 99 90 76 59 43 30 20 13 8.2 5.1 3.1 1.9 1.1 0.7 0.4 
8 100 99 92 78 60 43 29 19 12 7.2 4.2 2.4 1.4 0.8 0.4 0.2 
9 100 99 94 80 62 44 29 18 11 6.3 3.5 1.9 1.0 0.5 0.3 0.1 

10 100 100 95 82 63 44 29 17 10 5.5 2.9 1.5 0.8 0.4 0.2 0.1 

11 100 100 96 83 64 44 28 16 9.1 4.8 2.4 1.2 0.6 0.3 0.1 0.1 
12 100 100 96 84 65 45 28 16 8.4 4.2 2.0 0.9 0.4 0.2 0.1 
13 100 100 97 86 66 45 27 15 7.7 3.7 1.7 0.7 0.3 0.1 0.1 
14 100 100 98 87 67 45 27 14 7.1 3.3 1.4 0.6 0.2 0.1 
15 100 100 98 88 68 45 26 14 6.5 2.9 1.2 0.5 0.2 0.1 

16 100 100 98 89 69 45 26 13 6.0 2.5 1.0 0.4 0.1 
17 100 100 99 90 70 45 25 12 5.5 2.2 0.8 0.3 0.1 
18 100 100 99 90 70 46 25 12 5.1 2.0 0.7 0.2 0.1 
19 100 100 99 91 71 46 25 11 4.7 1.7 0.6 0.2 0.1 
20 100 100 99 92 72 46 24 11 4.3 1.5 0.5 0.1 

22 100 100 99 93 73 46 23 10 3.7 1.2 0.4 0.1 
24 100 100 100 94 74 46 23 9.2 3.2 0.9 0.3 0.1 
26 100 100 100 95 75 46 22 8.5 2.7 0.7 0.2 
28 100 100 100 95 76 46 21 7.8 2.3 0.6 0.1 
30 100 100 100 96 77 47 21 7.2 2.0 0.5 0.1 

The values in Table D were calculated from the integral 

2 Joo Prob (x- 2 ~ x- 2) = ---- xd-le-x2/2dx. 
d O zd12f(d/2) Xo 

See, for example, E. M. Pugh and G. H. Winslow, The Analysis of Physical Mea­
surements (Addison-Wesley, 1966), Section 12-5. 
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Appendix E 

Two Proofs Concerning Sample Standard Deviations 

In Chapter 5, I quoted without proof two important results concerning measurements 
of a quantity x normally distributed with width a-: (1) The best estimate of <T based 
on N measurements of x is the sample standard deviation, <rx, of the N measure­
ments, as defined by (5.45) with the factor of (N - 1) in the denominator. (2) The 
fractional uncertainity in <rx as an estimate of a- is 11✓2(N - 1), as in (5.46). The 
proofs of these two results are surprisingly awkward and were omitted from Chapter 
5. For those who like to see proofs, I give them here. 

Consider an experiment that consists of N measurements (all using the same 
method) of a quantity x, with the results 

The sample standard deviation of these N measurements is defined by 

<T 2 
I.(xi - x)2 

X N-l 
ss 

= N- l' 

where I have introduced the notation SS for the Sum of Squares, 

SS Sum of Squares 

L~(x; - :x)z 

(El) 

(E2) 

In writing the last line of (E2), I have used the identity (4.28) from Problem 4.5. 
Equation (El) actually defines <rx squared, which is called the sample variance of 
the N measurements. To avoid numerous square root signs, I will work mostly with 
the variance rather than the standard deviation itself. 

Our proofs will be simplified by noting that neither the true width a- nor the 
sample standard deviation <rx is changed if we subtract any fixed constant from our 
measured quantity x. In particular, we can subtract from x its true value X, which 

294 gives a quantity normally distributed about a true value of zero. In other words, we 
can (and will) assume that the true value of our measured quantity xis X = 0. 
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To discuss our best estimate for <r and its uncertainty, we must imagine re­
peating our whole experiment an enormous ("infinite") number of times a = l, 2, 
3, .... In this way we generate an immense array of measurements, which we can 
display as in Table El. 

Table EI. Results of a large number of experiments, a = 1, 2, 3, ... , each of 
which consists of N measurements of a quantity x. The ith measurement in the ath 
experiment is denoted by xai and is shown in the ith column of the ath row. 

Experiment 1st 2nd ith Nth 
number measurement measurement measurement measurement 

1 X11 X1z Xi; XlN 

2 Xz1 Xzz Xz; xZN 

a X,,i X,.z Xai xaN 

For each of the infinitely many experiments, we can calculate the mean and 
variance. For example, for the ath experiment ( or ath "sampling"), we find the 
sample mean xa by adding all the numbers in the row of the ath experiment and 
dividing by N. To find the corresponding sample variance, we compute the sum of 
squares 

N 

ss°' = L cxai - :x°')2 
i=l 

and divide by (N - 1 ). Here again, the sum runs over all entries in the appropriate 
row of data. 

We use the usual symbol of a bar, as in xa, to indicate an average over all 
measurements in one sample (that is, in one row of our data). We also need to 
consider the average of all numbers in a given column of our data (that is, an 
average over all a = l, 2, 3, ... ), and we denote this kind of average by two 
brackets ( .. ). For example, we denote by (xa), or just (x)j, the average of all the 
measurements in the ith column. Because this value is the average of infinitely many 
measurements of x, it equals the true value X, which we have arranged to be zero. 
Thus, 

(x)i = X = 0. 

Similarly, if we average the squares of all the values in any column, we will get the 
true variance 

(xz)i = <rz. (E3) 

[Remember that X = 0, so that (x2)i is the same as ((x - X)2);, which is just cr2.] 
Armed with these ideas, we are ready for our two proofs. 
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Best Estimate for the Width u 

We want to show that, based on N measurements of x, the best estimate for the true 
width <T is the sample standard deviation of the N measurements. We do this by 
proving the following proposition: If we calculate the sum of squares SSa for each 
sample a and then average the sums over all a = l, 2, 3, ... , the result is (N - 1) 
times the true variance <T2: 

(SS) = (N - l)u2. (E4) 

Dividing (E4) by (N - 1), we see the true variance is <T2 = (SS)l(N - 1). Here, 
(SS) is the average of the sums of squares from infinitely many sets of N measure­
ments. This, in turn, means that the best estimate for <T2 based on a single set of N 
measurements is just SSl(N - 1), where SS is the sum of squares for that single set 
of measurements. This is just the variance given in Equation (El). Thus, if we can 
prove (E4), we will have established the desired result. 

To prove Equation (E4), we start with the sum of squares SSa for the ath 
sample. Using (E2), we can write this sum as 

(ES) 

This equation differs from (E2) only in that I have added the subscripts a and have 
written out the square in the last term of (E2) as a product of two sums. The double 
sum in (ES) consists of two parts: First, there are N terms with i = j, which can be 
combined with the single sum in (ES). This leaves N(N - 1) terms with i =f- j. Thus, 
we can rewrite (ES) as 

(E6) 

The expression (E6) is the sum of squares for a single sample a. To find (SS), we 
have only to average (E6) over all values of a. Because the average of any sum 
equals the sum of the corresponding averages, (E6) implies that 

(E7) 

The N terms in the first sum are all the same, and each is equal to u2 [ as in (E3)]. 
Therefore, the first sum is just N<T2. With i =f- j, the terms of the double sum in (E7) 
are all zero, (xaixa) = 0. (Remember that x is normally distributed about X = 0. 
Thus, for each possible value of xa;, positive and negative values of xaj are equally 
likely and cancel each other out.) Thus, the whole second sum is zero, and we are 
left with 

(SS) = (N - l)u2, 

which is precisely the result (E4) we needed to prove. 
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2 Uncertainty in the Estimate for the Width u 

We have shown that, based on N measurements of x, the best estimate for the true 
variance a.2 is the sample variance of the N measurements, as defined in (El), 
SS/(N - 1). Therefore, the fractional uncertainty in a-2 is the same as that in the 
sum of squares SS: 

(fractional uncertainty in estimate for a2) = (fractional uncertainty in SS). (E8) 

Because a- is the square root of a2, the fractional uncertainty in a- is just half of 
this: 

(fractional uncertainty in estimate for a-) 

= ! (fractional uncertainty in SS). (E9) 

To find the uncertainty in SS, we use the result (11.7) that the uncertainty in 
any quantity q is ✓(q2) - (q)2, where, as usual, the brackets ( .. ) denote the average 
of the quantity concerned after an infinite number of measurements. Therefore, the 
uncertainty in the sum of squares SS is 

(uncertainty in SS) = ✓(SS2) - (SS)2. (ElO) 

We already know [Equation (E4)] that the second average in this square root is 
(SS) = (N - l)a-2, so all that remains is to find the first term (SS2). 

For any one set of N measurements, the sum of squares SS is given by (E6). 
Squaring this expression, we find that (I omit all subscripts a to reduce the clutter) 

ssz = (N ~ 1r~(x;)22(xj)2 
l } 

(Ell) 

To find the average value of (Ell), we need to evaluate each of the three aver­
ages (A), (B), and (C). The double sum in A contains N terms with i = j, each of 
which averages to (x4), and N(N -1) terms with i =f- j, each of which averages to 
(x2)2. Because x is distributed normally about X = 0, (x2) = a-2 (as we already 
knew), and a straightforward integration shows that (x4) = 3a-4. Thus, the double 
sum in A averages to 3Na-4 + N(N - l)a-4 = N(N + 2)a-4, and 

(A) = (N - 1)2(N + 2) a-4 
N • 

Every term in the sum of B can easily be seen to contain an odd power of xk ( either 
xk or x/). Because x is normally distributed about 0, the average of any odd power 
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is zero, so 

(B) = 0. 

The quadruple sum in the term C contains N(N - 1) terms in which j = m and 
k = n, each of which averages to (x?-)2 = 0'4 . There is the same number of terms in 
which j = n and k = m, each of which also averages to 0'4. All the remaining terms 
contain an odd power of x and average to zero. Thus, the quadruple sum in C 
averages to 2N(N - 1) 0'4, and 

(C) = 2(N - 1) 4 

N (T. 

Adding together the last three equations and inserting the result into (Ell), we 
conclude that 

(SS2) = (N - 1)2(N + 2) + 2(N - 1) 0'4 = (N2 _ l)0'4 
N • 

Inserting this result into (ElO) [and replacing (SS) by (N - l)u2], we find that 

(uncertainty in SS) = ✓(N2 
- 1) - (N - 1)2 u2 = ✓z(N - 1) 0'2

. 

If we divide through by (SS) = (N - 1)0'2

, this result implies that the fractional 
uncertainty in SS is ✓2/(N - 1). Finally, we know [from (E9)] that the fractional 
uncertainty in our value of O' is half of that in SS. So, 

(fractional uncertainty in estimate for O') 
1 

✓z(N - 1)' 

which is the required result. 
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ANSWERS 
to 

Quick Checks 
and 

Odd-Numbered Problems 

Chapter 2 

QUICK CHECKS 

QC2.1. (a) 110 ± 2 mm. (b) between 3.02 and 3.08 amps. 

QC2.2. (a) 8.12 ± 0.03 m/s. (b) 31,234 ± 2 m or (3.1234 ± 0.0002) X 104 m. 
(c) (5.68 ± 0.03) X 10-7 kg. 

QC2.3. 43 ± 5 grams. 

QC2.4. (a) 0.04 = 4%. (b) 0.1 = 10%. (c) 4.58 ± 0.09 J. 

QC2.S. Percent uncertainties are 1 % and 3%; area = 30 cm2 ± 4% = 30 
± 1 cm2. 

PROBLEMS 

2.1. 210 ± 5 cm; 36.0 ± 0.5 mm; 5.3 ± 0.1 V; 2.4 ± 0.1 s. 

2.3. (a) 5.03 ± 0.04 m. (b) There is a strong case for retaining an extra digit and 
quoting 1.5 ± 1 s. (c) (-3.2 ± 0.3) X 10-19 C. (d) (5.6 ± 0.7) X 10-7 m. 
(e) (3.27 ± 0.04) X 103 grams • crn/s. 

2.5. Discrepancy = 2 mm, which is not significant. 

t 140 

I ""' 

I ! 
135 £ 

OJ) 
c:: 
CL) 

,-l 

130 

Figure A 2.5. 

2.7. (a) Probably the only reasonable conclusion at this stage is 1.9 ± 0.1 gram/ 
cm3. (b) The discrepancy is 0.05 gram/cm3; because this value is less than the 
uncertainty, it is not significant. 

2.9. Length, l = 93.5 ± 0.1 cm. 301 
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2.11. The column headed L - L' should read: 0.3 ± 0.9, - 0.6 ± 1.5, - 2.2 
± 2 (which could be rounded to - 2 ± 2), 1 ± 4, 1 ± 4, - 4 ± 4. The dif­
ference L - L' should theoretically be zero. In all cases but one, the measured 
value of L - L' is smaller than its uncertainty. In the one exceptional case 
( - 2.2 ± 2), it is only slightly larger. Therefore, the observed values are con­
sistent with the expected value zero. 

2.13. (Best estimate for M + m) = Mbest + mbest· The largest probable value for 
M + mis (Mbest + mbest) + (8M + 8m), and the smallest probable value is 
the same expression except for a minus sign. Therefore, the answer for 
M + m is (Mbest + mbest) ± ( 8M + 8m ). 

2.15. The straight line shown in Figure A2.15 passes through the origin and 
through, or close to, all error bars. Therefore, the data are consistent with P 
being proportional to T. 

t 1.0 

0 100 200 

Temperature (K) -­

Figure A 2.15. 
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2.17. The graph of P against I in Figure A2.17 looks as if it would fit a parabola, 
but it is hard to be sure. The plot of P against I2 clearly fits a straight line 
through the origin and is, therefore, consistent with P being proportional to / 2. 

1,500 
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I 
t 1,000 ,,...., 
"' 
~ I 
~ 
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500 
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Figure A 2.17. 



Answers to Chapter 2 303 

2.19. (a) In Figure A2.19(a), which includes the origin, it is impossible to say 
whether T varies with A. Figure A2.19(b) has a much enlarged vertical scale 
and clearly shows that T does vary with A. Obviously, the best choice of scale 

2 - - 2.1 -- -t - t ,..._ ,..._ 
<.) <.) 
CL) CL) 

"' "' '-' '-' 
E-,; 

1 
E-,; 

2.0 "O "O 
0 0 
·5 ·c: 

CL) 

~ ~ 

1.9 
0 20 40 60 0 20 40 60 

Amplitude A (degrees)-- Amplitude A (degrees) --

(a) (b) 

Figure A 2.19. 

for the purpose at hand must be considered carefully. (b) If either picture were 
redrawn with error bars of 0.3s (up and down), there would be no evidence for 
variation of T with A. 

2.21. (a) 40%. (b) 4%. (c) 0.6%. (d) 6%. 

2.23. For the meter stick, 81 = 0.5 mm and 81/ l = 2.5%, which is not precise 
enough, for the microscope, 81 = 0.05 mm and 81/ l = 0.25%, which is pre­
cise enough. 

2.25. (a) The answers for vf - V; are 4.0 ± 0.3 cm/s and 0.6 ± 0.4 cm/s. (b) 
The percent uncertainties are 8% and 70%. 

2.27. (a) 6.1 ± 0.1, which has two significant figures. (b) 1.12 ± 0.02. This value 
has three figures with at least some significance. (c) 9.1 ± 0.2, which has two 
significant figures. 

2.29. (a) q = 2,700 N·s, with an uncertainty of 10% or 270 (or approximately 
300) N • s. (b) q = 12 ft· lb, with an uncertainty of 10% or 1 ft· lb. 

2.31. (a) %est = 10 X 20 = 200; (highest probable value of q) = 11 X 21 
= 231; (lowest probable value of q) = 9 X 19 = 171. The rule (2.28) gives 
q = 200 ± 30, which agrees well. (b) (Highest probable value of q) = 18 
X 35 = 630; (lowest probable value of q) = 2 X 5 = 10. The rule (2.28) 
gives q = 200 ± 300 (that is, qmax = 500 and qmin = -100). The reason 
this result is so badly incorrect is that the rule (2.28) applies only when all 
fractional uncertainties are small compared with 1. This condition (which is 
usually met in practice) is not met here. 
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Chapter 3 

QUICK CHECKS 

QC3.1. (a) 33 ± 6. (b) 910 ± 30. (c) The percent uncertainty is 18% in part (a) 
but only 3% in part (b ). His patience in counting for a longer time has been 
rewarded by a smaller fractional uncertainty. 

QC3.2. Percent uncertainties in x, y, and z are 2.5%, 2%, and 2.5%. Hence, 
q = 10.0 ± 7% = 10.0 ± 0.7. 

QC3.3. 15.7 ± 0.3 cm. 

QC3.4. The percent uncertainty in l is 1 %; V = 8.0 cm3 ± 3% = 8.0 ± 0.2 
cm3. 

QC3.5. V = 195 ml; 8V = 7 ml if the uncertainties are independent and random, 
and oV = 10 ml otherwise. 

QC3.6. q = 230 ± 3; r = 500 ± 6.5% = 500 ± 30. 

QC3.7. q = 20 ± 2. 

QC3.8. q = 10.0 ± 0.3. 

QC3.9. q = 20 ± 6. 

PROBLEMS 

3.1. (a) 28 ± 5. (b) 310 ± 20. (c) The fractional uncertainty is 18% for A, 6% 
for B. B's absolute uncertainty is larger, but her patience has been rewarded 
with a smaller fractional uncertainty. 

3.3. The observation is that the number of cases in four years is 20 ± V20 = 20 
± 4.5. This value is consistent with the expected number 16, and there is no 
significant evidence that the rate is abnormally high. 

3.5. ( and 3.19) 

Problem 3.5 Problem 3.19 
Straight sum Quadratic sum 

(a) 3 ± 7 3 ± 5 
(b) 40 ± 18 40 ± 13 
(c) 0.5 ± 0.1 0.50 ± 0.Q7 
(d) 300 ± 21 300 ± 12 

3.7. (a) 35 ± 4 cm = 35 cm ± 10%. (b) 11 ± 4 cm = 11 ± 40%. (c) 36 ± 9 
cm = 36 cm ± 25%. (d) 110 ± 40 grams·cm/s = 110 grams·cm/s ± 30%. 

3.9. c = 18.8 ± 0.3 cm; r = 3.00 ± 0.05 cm. 

3.11. (a) 0.48 ± 0.02 s (or 4%). (b) 0.470 ± 0.005 s (or 1%). (c) No. In the first 
place, the pendulum will eventually stop, unless it is driven. Even if it is 
driven, other effects will eventually become important and thwart our quest for 
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greater accuracy. For example, if we time for several hours, the reliability of 
the stopwatch may become a limiting factor, and the period T may vary be-
cause of changing temperature, humidity, and other variables. 

3.13. Volume = 34 ± 4 m3. 

3.15. (a) Student A: 32 ± 6. (b) Student B: 790 ± 30. (c) A's rate is 16 ± 3 
counts/min, and B's is 13.1 ± 0.5 counts/min. These two measurements are 
compatible, but B has been rewarded with a smaller uncertainty. 

3.17. Those cases in which the second uncertainty could be ignored are indicated 
with an asterisk. 

Uncertainty 

Case Answer Quadratic sum Straight sum 

a 9.3 0.7* 0.7* 

b 7.9 0.7* 0.8 
C 9.7 0.7* 0.9 
d 7.5 0.8 1 

3.19. See answer to Problem 3.5. 

3.21. (a) v = 0.847 ± 0.003 m/s. (b) p = 0.602 ± 0.003 kg·m/s. 

3.23. L = 0.74 ± 0.03 kg·m2/s. 

3.25. The rule (3.18) holds only if the uncertainties in the various factors are inde­
pendent. When we write x 2 as x X x, it is certainly not true that the two fac­
tors (x and x) are independent, and the rule (3.18) does not hold. 

3.27. Refractive index, n = 1.52 ± 0.03. 

3.29. (a) 5h!h = 0.1 %. Because h is proportional to a fractional power of i\, the 
percent uncertainty in h is smaller than that in i\. (b) The measure value of 
6.644 X 10-34 J • s has an uncertainty of 0.1 %, or 0.007 X 10-34 J • s. The dis­
crepancy is 0.018 X 10-34 and is more than twice the uncertainty. Therefore, 
the result is somewhat unsatisfactory. 

3.31. (a) sin(0) = 0.82 ± 0.02. [Don't forget that 50 must be expressed in radians 
when using 5sin(0) = /cos(0)/50.] (b) /best = e"h0st , 5/ = Aest&, ea = 20 
± 2. (c) Aest = ln(abest), 5f = 5a/abest, ln(a) = 1.10 ± 0.03. 

3.33. (a) q = -1.38 and 5q = 0.0791 = 0.08. (b) 5q = 0.0787 = 0.08. The two 
methods agree to two significant figures. 

3.35. (a) 30 ± 1. (b) 120 ± 30. (c) 2.0 ± 0.2. 

3.37. (a) 0.08 ± 0.01 m/s2. (b) This measurement does not agree at all well with 
the predicted value 0.13 ± 0.01 m/s2. 

3.39. (a) E = 0.247 ± 0.004 J. (b) E = 0.251 ± 0.003 J. (c) The margins of er­
ror for the two measurements overlap, and they are, therefore, consistent with 
conservation of energy. 
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3.41. 

i (deg) n 8n/n 8n 

10 1.42 17% 0.2 

20 1.52 9% 0.14 

30 1.46 6% 0.09 

50 1.58 3% 0.05 

70 1.53 2% 0.03 

All but one of the measurements straddle the given value, 1.50. The only ex­
ception is for i = 50 deg (n = 1.58 ± 0.05), and even here the given value, 
1.50, is only slightly outside the margins of error. Therefore, the measurements 
are consistent with the given value. 

As the angle i increases, the fractional uncertainty in n decreases; this de­
crease occurs mainly because the absolute uncertainties are constant, so the 
fractional uncertainties decrease as the angles increase. 

3.43. (a) 1 and 1. (b) y and x. (c) 2xy3 and 3.x2y2. 

3.45. (a) If q = xy, the two partial derivatives are y and x. The rule (3.47) gives 

8q = ✓y2&2 + x2sy2. 

Dividing the equation by /q/ produces exactly the rule (3.18) for the fractional 
uncertainty in xy. In a similar way, (3.48) gives 

8q :,;;; /y/ 8x + /x/ 5y, 

and, when divided by /q/, gives the rule (3.19) for the fractional uncertainty in 
xy. (b) If q = x'y"', then, after division by /q/, the rules (3.47) and (3.48) be­
come 

These equations agree exactly with the answers from our old rules. (c) If q de­
pends only on x, then both (3.47) and (3.48) reduce to the old rule (3.23) for a 
function of one variable. 

3.47. Uncertainty, & = (M ~ m)2 ✓m2(5M)2 + M2(5m)2; a = 3.3 ± 0.1 m/s2• 

✓q4(5p)2 + p4(5q)2 
3.49. Either method gives the uncertainty as 5/ = (p + q)2 

Chapter 4 

QUICK CHECKS 

QC4.1. Mean = 23 s; SD = 1.8 s. 

QC4.2. 16.0 ± 0.7. 



PROBLEMS 

4.1. Mean = 12; (sample SD) = 1; (population SD) = 0.8. 

4.3. Mean = 85.7; SD (sample) = 2.2. 

4.5. (a) 

I(x/ - 2xx; + x2) 

Ix? - 2.xix; + Nx 2 

Ix/ - 2.xN.x + Nx 2 
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- 1 Ix/ - Nx 2 = Ix/ - N(Ix;)2. 

(b) With the data of Problem 4.1, either side of (4.28) gives 2. 

4.7. (a) Mean = 15.4; SD = 3.5. (b) Expected SD = ~ = 3.9, compared 
with observed SD = 3.5. (c) By the rule (3.26) for the uncertainty in a power, 
the fractional uncertainty in ~ is 

8~ 18v 

~ 2 V 

Therefore, 8~ = ½. This result means the expected value of the SD is 
3.9 ± 0.5, which is consistent with the observed 3.5. 

4.9. Mean = 1.7 s; SD = 0.1 s; probability = 32%. 

4.11. Uncertainty in any single measurement = SD = 0.2 µ,C. 

4.13. (a) Mean = 8.149 sec; SD = 0.039 sec. (b) Outside one SD, we expect to 
find 32% of the measurements, or 9.6, and we got 8. (c) Outside two SD, we 
expect to find 5% of the measurements, or 1.5, and we got 2. 

4.15. The best estimate is the mean = 12.0, and uncertainty in this estimate is the 
SDOM = 0.6. 

4.17 (a) (Final answer for time) = mean ± SDOM = 8.149 ± 0.007 s. (b) The 
data have three significant figures, whereas the final answer has four; this re­
sult is what we should expect with a large number of measurements because 
the SDOM is then much smaller than the SD. 

4.19. (a) (Mean of 20 counts) = 10.70; (uncertain~ this answer) = SDOM 
= 0.76. (b) (Total count in 40 s) = 214 ± --.,/214 = 214 ± 14.6; dividing 
by 20, we get (mean count in 2 s) = 10.70 ± 0.73. (c) Suppose we make N 
counts, v1, ... , vN, of the particles in time T. Then, using either argument 
gives approximately 

(best estimate for count in time T) = i I v; ± 1 ~. 
4.21. (Mean of A1, ... , AN) = 1,221.2; SD = 0.88; SDOM = 0.29. Thus, the 

final answer this way is 1,221.2 ± 0.3 mm3, compared with 1,221.2 ± 0.4 
mm3 the other way. 

4.23. By the rule (3.26) for the uncertainty in a power, 

& = i2 871 = 0.6%. 
e "f/ 
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4.25. (a) 336 ± 15 m/s; the 1 % systematic uncertainty inf is negligible beside the 
4.5% uncertainty in A. (b) 336 ± 11 m/s; here, the systematic uncertainty 
dominates. 

4.27. (a) N = 3.18 ± 0.09 (or 3%); fractional uncertainty ind is 3%. (b) 3%. 

Chapter 5 

QUICK CHECKS 

QCS.1. 

s = 2.7. 

Grade: 

QCS.2. See Figure AQC5.2. 

QCS.3. See Figure AQCS.3. 
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QC5.4. Prob(between 7 and 13) = 87%; Prob(outside 7 to 13) = 13%. 

QC5.5. (Answer for a-q) = 6 ± 3 µ,C; a-q - oa-q = 3 µ,C; a-q + oa-q = 9 µ,C. 

QC5.6. Prob(outside 2.4a-) = 1.64%; therefore, a discrepancy of 2.4a- is signifi-
cant at the 5% and 2% levels but not at the 1 % level. 

PROBLEMS 

5.1. See Figure A5.l. s = 2.7. 

0.4 

0.2 

0 

Figure A 5.1. 

5.3. (and 5.15.) See Figure A5.3. The broken curve in part (c) is the Gauss func­
tion for Problem 5.15. 
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0.2 

N=50 

-9 -7 -5 -3 -1 1 3 5 7 9 
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(c) 

Figure A 5.3. 

(b) 
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S.S. (a) Prob(outside -a to a) = 0. (b) Prob(x > 0) = 1/2. (c) C = 1/a. 
(d) See Figure AS.5. 

f(x) 

-2 -1 0 2 

Figure A 5.5. 

5.7. Prob(t > T) = 1/e = 37%; Prob(t > 2T) = l/e2 = 14%. 

5.9. (a) C = l/(2a). (b) See Figure AS.9. All values between -a and a are 
equally likely; no measurements fall outside this range. (c) Mean = 0; 
SD = a/--,{3. 

f(x) 

---+------''-------I---- X 

5.11. See Figure AS.11. 

f 

-1 0 

-a 0 a 

Figure A 5.9. 

2 3 4 

Figure A 5.11. 

5 



5.13. Ignoring uninteresting constants, 

This vanishes when x = X ± <r. 

5.15. See answer to Problem 5.3. 
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5.17. The 68-95 rule states that, for normally distributed measurements, 68% is 
the probability of a result within l<r of X, and 95% is that of a result within 
2<r of X. The 68-95-99.7 rule is the same but includes 99.7% as the probabil­
ity of a result within 3<r of X. 

5.19. (a) 68%. (b) 38%. (c) 95%. (d) 48%. (e) 14%. (f) Between y = 22.3 and 
23.7. 

5.21. (a) 72. (b) 5'9". 

5.23. (a) After two integrations by parts, the integral (5.16) reduces to T 2; there­
fore <rt = T. (b) The required probability is given by the integral of the distri­
bution function over the range t ± <rt, that is, from t = 0 to 2T. This integral 
is 1 - e- 2 = 0.86 = 86%. 

5.25. (a) Best estimate = 77, SD = 2. (b) 4%. 

5.27. (a) Mean = 53, <r = 1.41 ± 0.45; that is, <r could well be anywhere from 
0.96 to 1.86. (b) If <r = 1.41, the probability asked for is 7%; if <r = 0.96, 
the same probability is only 0.9%; if <r = l.86, the probability is 18%. Proba­
bilities of this kind are very sensitive to the value of <r; after a small number 
of measurements (like 6), our estimate for <r is very uncertain, and calculated 
probabilities of this kind are, therefore, very unreliable. 

5.29. See Figure AS.29. 

0.4 

0.2 

0 

Figure A 5.29. 

5.31. (a) SD = 7.04. (b) t1 = 74.25; t2 = 67.75, etc. If t denotes the average of 
any group of four measurements, we should expect <r'i = <rif"-V4 = 3.52; in 
fact, the SD of the 10 means is 3.56. (c) See Figure AS.31. 
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Figure A 5.31. 

5.33. (Best estimate) = 77.0; uncertainty = 0.7; (uncertainty in uncertainty) 
= 0.2; that is, t = 77.0 ± (0.7 ± 0.2). 

5.35. The student's answer is 3CT away from the expected answer; the probability 
for a result this deviant is 0.3%. His discrepancy is highly significant, and 
there is very likely some undetected systematic error. 

5.37. The observed energy change, Er - Ei, is -15 MeV, with a standard devia­
tion of 9.5 MeV. If the measurement was normally distributed around 0, with 
CT = 9.5, then the observed value differs from the true value by 15/9.5, or 1.6, 
standard deviations. Because Prob(outside l.6CT) = 11 %, the observed value is 
perfectly reasonable, and there is no reason to doubt conservation of energy. 

Chapter 6 

QUICK CHECKS 

QC6.1. Prob = 1.24%; the number expected to be this deviant is 1.24% X 20 
= 0.25, and according to Chauvenet's criterion, she should reject the suspect 
value. 

PROBLEMS 

6.1. (a) Prob = 4.5%; (expected number) = 2.3; no, she should not reject it. 
(b) Yes. 

6.3. (Expected number) = 0.9; no, she should not reject it. 

6.5. (a) Mean = 19.1; SD = 6.3. (b) Reject. (c) New mean = 17.7; SD = 4.3. 

6.7. (a) Mean = 25.5; SD = 4.23. (b) Yes, reject; (expected number = 0.46). 
(c) OCTx = 1.34. (d) If CT = CTx - OCTx, the expected number is 0.05, and he 
would definitely reject the measurement. If CT = CTx + OCTx, the expected num­
ber is 1.06, and he would definitely not reject the measurement. The range of 
possible values of CT spans from "definitely reject" to "definitely don't reject." 
In other words with this few measurements (6), Chauvenet's criterion is ambig­
uous and should be avoided, if possible. 
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QUICK CHECKS 

QC7.l. Weights = 4 and 1; weighted average 

QC7.2. Uncertainty = 0.4 ns. 

PROBLEMS 

7.--.... Voltage = 1.2 ± 0.1. 
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10.4 ns. 

7.3. (a) Yes, the two measurements are consistent; their weighted average is 334.4 
± 0.9 m/s. (b) These results are also consistent (more so, in fact); their 
weighted average is 334.08 ± 0.98, which should be rounded to 334 ± 1. 
The second measurement is not worth including. 

7.5. (a) Rwav = 76 ± 4 ohms. (b) Approximately 26 measurements. 

7.7. If cr1 = ... = CTN = er, say, then w1 = ... = wN = llcr2 = w, say. With 
all thew's equal, Equation (7.10) for xwav reduces to I,wxJr,w = wI,xJNw; 
the factors of w cancel to give the ordinary average. According to (7.12), CTwav 

= llffw = ll-vNw; because w = llcr2, this result reduces to CTwav = crl-viJ, 
which is the ordinary SDOM. 

7.9. (a) The details of your spreadsheet will depend on what program you use, but 
its general appearance should be something like this: 

I Trial X; 

1 11 1 1.00 11.00 

2 12 1 1.00 12.00 

3 10 3 0.11 1.11 

2.11 24.11 

11.42 0.69 

The cells in the fourth column contain a formula to calculate W; as lier/. Simi­
larly, the fifth column has a formula to give W;X;, The cell for Xwav (11.42 here) 
has a formula to calculate Xwav as shown, and the cell for CTwav has a formula 
to calculate CTwav· 

(b) Making a similar spreadsheet with 20 rows is easy. If you put in just three 
data, however, the blank cells for CT; will be treated as zeros when the program 
tries to evaluate w; as lier/, and the program will return an error message. To 
avoid this difficulty, the formula for w; needs a conditional command that re­
turns lier/ if the cell for CT; contains an entry but returns a blank if the cell for 
CT; is blank. 
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Chapter 8 

QUICK CHECKS 

QC8.1. The best fit is y = 4 + 3x, as shown in Figure AQC8.l. 

y 

-1 0 

Figure AQC 8.1 

PROBLEMS 

8.1. The best fit is y = 7.75 - l.25x, as shown by the solid line in Figure A8.l. 
(The dashed line is for Problem 8.17.) 

y 

4 

Problem 8.1 
2 

'------'-------'----'-------'-----'----- X 

0 2 3 4 5 

Figure A 8.1. 

8.3. If you multiply (8.8) by I,x/ and (8.9) by I,xi and then subtract, you will get 
the given solution for A. Similarly, (8.8) times I,xi minus (8.9) times N gives 
the solution for B. 

8.5. The argument parallels closely that leading from (8.2) to (8.12) in Section 8.2; 
the only important change is that A = 0 throughout. Thus, Prob(y1, ... , YN) 
rx exp(-x2!2) as in (8.4), and x2 is given by (8.5), except that A = 0. Differ­
entiation with respect to B gives (8. 7) ( again with A = 0), and the solution is 
B = (LXiYi)/(I,x/). 

8.7. /0 = 3.69 cm; k = 162 Nim. 

8.9. As in Problem 8.5, the argument closely parallels that leading from (8.2) to 
(8.12). As in Equation (8.4), Prob(y1, ... , YN) rx exp( - x2!2), but because the 
measurements have different uncertainties, x2 = Iwlyi - A - Bxi)2. 
(Remember that wi = Va/.) The argument then continues as before. 
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8.11. The details depend on the program and layout you choose, but the general ap­
pearance of the worksheet for the data of Problem 8.1 will be as follows: (To 
save space, my spreadsheet accommodates only six data.) 

I Trial I X; I Y; 

1 1 6 1 6 

2 3 5 9 15 

3 5 1 25 5 

4 0 0 

5 0 0 

6 0 0 

I. 9 12 35 26 

A = A= B= 
N NI,x2 - (I,x)2 (I,x2I,y - I,xI,xy)! A (NI,xy - LXLY)I A 

3 24 7.75 -1.25 

Notice that the blank entries in the X; and Y; columns get treated as zeros; thus 
(unless you take precautions to prevent this effect), the formulas in columns 4 
and 5 return zeros in rows that have no data. Fortunately, these zeros do not af­
fect the answers. The cell for N (3 in this example) contains an instruction to 
count the number of entries in the X; column. The cells for ll, A, and B contain 
formulas to calculate the appropriate numbers. 

8.13. (a) s0 = 8.45 cm; v = 1.34 cm/s; <Ts = 0.64 cm. (b) If & = 1 cm, then & 
and <Ts are roughly the same, and the data are consistent with a straight line, as 
shown in Figure A8.13. (c) If & = 0.1 cm (approximately the size of the dots 
on the graph), then the data are not consistent with a straight line. ( <Ts is ap­
proximately 6 times bigger than &.) From the graph, the glider appears to be 
slowing down. (Friction?) 

s (cm) 

___.....___..___-'---_,__.,____.__....___.. t (sec) 
-3 -1 0 1 3 

Figure A 8.13. 
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8.15. A = - 3.90; B = 9.03; A = 18.1 ± 0.1 cm. 

8.17. (a) As in Problem 8.1, A= 7.8 ± 1.5; B = -1.25 ± 0.4. (b) If we fit to x 
=A'+ B'y, then we get A'= 5.86 and B' = -0.714; rewriting this equation 
as y = A + Bx, we get A = 8.2 and B = -1.4. These results are consistent with 
the answers in part (a), as we would expect, based on the discussion of Sec­
tion 8.4. See Figure A8. 1. 

8.19. The constant A depends on all of the X; and Y;, but only the Y; have uncertain­
ties (denoted <r;). Therefore, by the error propagation formula (3.47), 

The required derivative is 

aA (Lwjx/)w; - (Lwjxj)w;X; 

ayi a 

If you substitute the second equation into the first and have the courage to 
wade through some algebra, this process should give the advertised answer for 
<TA- [Remember the definition (8.39) of a and that W; = 1/<r/,] A similar argu­
ment gives <Tn, 

8.21. The probability of obtaining the observed values is given by (8.25), with x2 

given by (8.26). The maximum probability corresponds to the minimum value 
of x2. The derivatives of x2 with respect to A, B, and Care (-2/<r2)L(Y; -A 
- Bx; - Cx/), (-2/<r2)L(Y; -A - Bx; - Cx/')x;, and (-2/<r2)L(Y; -A - Bx; 
- Cx/')x/. Setting these three derivatives equal to zero gives the three equa-
tions (8.27). 

8.23. The argument closely parallels that of Section 8.2. The probability of getting 
the observed values y1, ... , YN is proportional to exp( - x 2/2), where 

X2 = L[Y; - Af(x;) - Bg(x;)]2!<r2. 

The probability is largest when x2 is minimum. To find this minimum, we dif­
ferentiate x2 with respect to A and B and set the derivatives equal to zero. 
This process gives the required (8.41 ). 

8.25. T = 45.1 min; v0 = 494. 

Chapter 9 

QUICK CHECKS 

QC9.1. <rq = 3.7, including covariance; but <rq = 2.7, ignoring covariance. 

QC9.2. r = 0.94. 

QC9.3. Because Prob20(/r/ ~ 0.6) = 0.5%, the correlation is both significant and 
highly significant. 
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PROBLEMS 

9.1. (Txy = 1.75. 

9.3. (a) £T} = 1.5; CT/ = 3.5; CTxy = 1.75. (b) 2.92. (c) 2.24. (d) 2.92. 

9.5. (a) If tape i has shrunk (compared to the average), both answers xi and Yi will 
be greater than average; if the tape has stretched, both will be less than aver­
age. Either way, the product (xi - x)(Y; - y) will be positive. Because every 
term in the sum that defines CTxy is positive, the same is true of £Txy itself. (b) 
Because xi = A;X for every measurement i, it follows that x = X:X and then 
that £Tx = CT;._]{. In the same way, £TY = CT"-Y and, finally, CTxy = £T/XY 

= (Tx(Ty, 

9.7. This calculation is simplest if you note that the function A(t) is the same as 
(T} + 2t£Txy + i2£T/ 

9.9. r = 0.9820 either way. 

9.11. (a) Probs(/r/ ;;;,, 0.7) = 19%, so the evidence for a linear relation is not sig­
nificant. (b) Prob20(/r/ ;;;,, 0.5) = 2%, so the evidence for a linear relation is 
significant at the 5% level. 

9.13. Because r = 0.73 and Prob10(/r/ ;;;,, 0.73) = 1.5%, the correlation is signifi­
cant at the 5% level. 

9.15. See Figure A9.15. Because r = 0.98 and Probilrl ;;;,, 0.98) = 0.3%, the cor­
relation is both significant and highly significant. 

Chapter 10 

QUICK CHECKS 
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y 

0 1 2 3 4 5 6 7 8 

Figure A 9.15. 

QClO.l. Prob(3 hearts) = 1.56%; Prob(2 hearts) = 14.06%; Prob(2 or 3 
hearts) = 15.62%. 

QCl0.2. Prob(ll or 12 heads) = 0.32%, and there is significant (even highly sig­
nificant) evidence that the coin is loaded toward heads. 
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PROBLEMS 

10.1. Prob(0 aces) = 57.87%; Prob(l ace) = 34.72%. 

10.3. Prob(v aces in 4 throws) = 48.23, 38.58, 11.57, 1.54, and 0.08% for v = 0, 
1, ... , 4. See Figure Al0.3. 

50% 

t ,..._ 
"' Q.) 

~ 
;, 
~ e 
Q., 

0.08%"\.. 

0 
0 1 2 3 4 

v-

Figure A I 0.3. 

10.5. The binomial coefficients (t) are 1, 3, 3, 1 for v = 0, l, 2, 3. 

(p + q)3 = ± (3)pvq(3 - v) = q3 + 3pq2 + 3p2q + p3. 
v=O V 

10.7. B4,112(v) = 6.25, 25, 37.5, 25, 6.25% for v = 0, l, ... , 4. See Figure 10.2. 

10.9. Prob(v hearts in 6 draws) = 17.8, 35.6, 29.7, 13.2, 3.3, 0.4, 0.02% for 
v = 0, l, ... , 6. 

10.11. (a) 40, 40, 16, 3.2, 0.3, 0.01 %. (b) 3.5%. (c) 0.08%. 

10.13. 

10.15. (a) 

(n - v)![n n~ (n - v)]! Gr 
= v!(n n~ v)! Gr = Bn,112(v). 

a} (v - v)2 

= 2.f(v)(v - v)2 = 2.f(v)(v2 - 2vv + v 2) 

= Lf(v)v2 - 2v2.f(v)v + v 22.f(v) 

= v2 - 2vv + v 2 = v2 - v 2. 

(b) We already know that v = np. To find v 2, we observe that for any values 
ofp and q, 
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If you differentiate this equation twice with respect to p, multiply through by 
p2, and set p + q = 1, you will find that 

n(n - l)p2 = Iv(v - 1)(:)pvq"-v 

= Iv2Bn,p(v) - lvBn,p(v) = v 2 - v. 
Because v = np, this result tells us that v2 = n(n - l)p2 + np. Substitution 
into the result of part (a) gives a} as np(l - p). 

10.17. 9.68% (Gaussian approximation); 9.74% (exact). 

10.19. Because Prob(9 or 10 wins) = 1.07%, the evidence is significant but just 
not highly significant. 

10.21. Prob(v germinations) = B 100,11iv) = G25,4_3iv). Therefore, 

Prob(32 or more germinations) = ProbGaussCv;;, 31.5) 
= ProbGauss (more than l.5cr above mean) = 6.7%. 

The test is just not significant. 

Chapter 11 

QUICK CHECKS 

QCll.1. Average number in 1 hour isµ, = 0.75. Prob(v eggs in 1 hour) = 47.2, 
35.4, 13.3, 3.3% for v = 0, ... , 3. Prob(4 or more eggs) = 0.7%. The most 
probable number is 0; the probability of getting exactly 0. 75 eggs is 0. 

QCll.2. The mean number expected in 10 hours is 9 ± 3. The rate R = 0.9 
± 0.3 eggs/hour. 

PROBLEMS 

11.1. P0_5(v) = 60.65, 30.33, 7.58, 1.26, 0.16, 0.02, 0.001 for v = 0, 1, ... , 6, as 
shown in Figure All.l. 

50% 
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0 1 2 3 4 5 6 

v-

Figure A I I.I. 
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11.3. (a) µ, = 1.5. (b) P15(v) = 22.3, 33.5, 25.1, 12.6%, for v = 0, 1, 2, 3. (c) 
Prob(4 or more decays) = 6.6%. 

11.5. The vertical bars in Figure All.5 show the observed distribution. The ex­
pected Poisson distribution, P JC v), has been connected by a continuous curve 
to guide the eye. The fit seems very good. 

f., 

0.2 

0.1 

0 
0 

/ 
expected Poisson 
distribution P:i(v) 

5 

Figure A I 1.5. 

10 

11.7. (a) 3. (b) Pi7) = 11.7%, etc. (c) Prob(v,;;; 6 or v;;;,, 12) = 40.3%. (d) A 
result as deviant as 12 is not surprising and gives no reason to question that 
µ, = 9. 

11.9. (a) If you differentiate (11.15) twice with respect to µ, and multiply the result 
by µ,2, you get the following: 

0 = µ,2 - 2µ,I.vP,,,(v) + I.(v2 - v)P,,,(v) 

= µ,2 - 2µ,v + (v2 - v) = v2 - µ,2 - µ,, 

from which the desired result follows. (b) Substituting into (11.7), you should 
get 

a} = (µ,2 + µ,) _ µ,2 = µ,, 

as claimed. 

11.11. Prob(v) = e-µ,µ,v/v!. This value is maximum when its derivative with re­
spect toµ, is 0. The derivative is (v - µ,)e-µ,µ,(v-l)fv!, which vanishes when 
µ, = v, as claimed. 

11.13. Because the SD is 20, P 4-00( v) = G 400 20( v). The simplest argument approxi­
mates Prob(380 ,;;; v ,;;; 420) by the corresponding Gaussian probability; this is 
just the probability for a result within one SD of the mean and is well known 
to be 68.27%. This value compares quite well with the exact 69.47%. We do 
even better if we calculate the Gaussian probability for 379.5 ,;;; v ,;;; 420.5 (to 
take account that the Gauss distribution treats v as a continuous variable); this 
value is easily found with the help of Appendix A to be close to 69.46%, in re­
markable agreement. The exact distribution is e- 400400v/v!; most calculators 
overflow when calculating any one of these three factors with v in the range 
from 380 to 420. 
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11.15. The probability of getting the observed values is 

To find the value of µ, for which this probability is a maximum, differentiate it 
with respect to µ, and note that the derivative is zero at µ, = 2..v;IN. 

11.17. (a) 400 ± 20. (b) 10.0 ± 0.5 events/second. 

11.19. 8.75 ± 1.1 particles/min. This value is strong evidence that the duct is con­
taminated. 

11.21. (a~ The nu~ber h~ will count ~n time ~ot i~oximately v101 = r 101 T101, 

and its uncertamty will be 8v101 - ¼ - --../r101 T101• He next calculates R101 as 
v101/T101, so its uncertainty is 8R101 = 8v101 /T101 = ✓r101 /T101 • In exactly the 
same way, he finds Rbgd, and its uncertainty is 8Rbgd = ✓rb ctlTb ct" Finally, he 
calculates the source's rate as Rsce = R 101 - Rbgct, with an Jncerfainty given 
by 

( >10 )2 _ (>10 )2 (>10 )2 _ 7tot 7bgd 
unsee - Ufitot + Ufibgd - T + T, • 

tot bgd 

To make the uncertainty as small as possible, he substitutes Tbgd = T - T 101 

and then differentiates the equation with respect to T101. The resulting deriva­
tive is - r 101/T10/ + rbdg/Tbg/, and this derivative is 0 when T 101/Tbgd 

✓r101 /rbgd, as claimed. (b) T 101 = 1.5 h; Tbgd = 0.5 h. 

Chapter 12 

QUICK CHECKS 

QC12.1. Expected numbers = 16, 34, 34, 16; x2 = 1.6. There is no reason to 
doubt the measurements are normally distributed. 

QC12.2. d = 1; x2 = 1.6. 

QC12.3. 0.7%. The evidence is highly significant that the measurements were not 
normally distributed. 

PROBLEMS 

12.1. Expected numbers = 7.9, 17.1, 17.1, 7.9; x2 = 10.0. Because x2 » n, 
the measurements were unlikely to be normally distributed. 

12.3. Expected number = 40 in each bin; x2 = 15.85. Because x2 » n, the die 
is probably loaded. 

12.5. (a) The number of decays in the kth bin is the number that decay between 
times (k -1)T and kT; this should be 

Ek N([k - 1]1) - N(k1) 
= Noe-(k-l)T/r _ Noe-kT/T = No( eTlr _ 1)e-kT!r_ 
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(b) Expected numbers = 515.2, 189.5, 69.7, 25.6, 15.0; x2 = 1.8. Her re­
sults are consistent with the exponential decay law. 

12.7. For Problem 12.2, c = 3, d = 1; for Problem 12.3, c = 1, d = 5; for Prob­
lem 12.4, c = 1, d = 2. 

12.9. 
d: 1 2 3 4 5 10 15 20 30 

x c,/: 6.6 4.6 3.8 3.3 3.o 2.3 2.0 1.9 1.7 

12.11. _x 2 = 3.17. The probability of getting a value of x2 this large is 0.7%, so we 
can conclude that the die is loaded at both the 5% and 1 % levels. 

12.13. x2 = 2.74; d = 6; _x 2 = 0.46. The data are consistent with the expected 
Poisson distribution. 

12.15. (a) The probabilities for totals of 2, 3, ... , 12 are ~' ~' ... , ~' ... , ~­
(b) x2 = 19.8; d = 10; x2 = 1.98. (c) The probability of getting a value of 
x2 this large or larger is 3.1 %. (d) At the 5% level, we can conclude that the dice 
are loaded; at the 1 % level, we cannot. 

12.17. (a) x 2 = 2.25; Prob(x2 ;;,, 2.25) = 13%, and the difference is not signifi­
cant. The exact calculation gives Prob(v;;,, 11) + Prob(v ~ 5) = 21 %. The 
two methods agree only very approximately. (b) x 2 = 6.25; Prob(x2 ;;,, 6.25) 
= 1.2%, and the difference is significant at the 5% level. The "exact" cal­
culation (using the Gaussian approximation) gives Prob(v ;;,, 224.5) 
+ Prob(v ~ 175.5) = 1.4%. The two methods agree quite well. (c) The 
adjusted x 2 is 1.56, and Prob(x2 ;;,, 1.56) = 21.2%, in excellent agreement 
with the exact answer 21.0%. 



Index 

For definitions of important symbols and summaries of principal formulas, 
see the insides of the front and back covers. 

Absolute uncertainty, 29 
Absolute zero of temperature, 190 
Absorption coefficient and photon energy, 

84 
Acceleration of cart on slope, 71-73, 89 
Accepted value, 18 

compared with measured value, 18-20 
Addition in quadrature, 58 

can give smaller answer, 62 
for independent random errors, 57-62 
justification of, 141-146 

Adjusted chi squared, 283 
see also Chi squared 

Archimedes' problem, 5-6 
Area of a rectangle, 104--105, 115 
Average, see Mean and Weighted average 
Average deviation, 99 

Background events, subtraction of, 254--
255 

Bar histogram, 124 
Bell-shaped curve, 129-130 

see also Normal distribution 
Bending of light by sun, 7 
Best estimate, xbest, 14 
Bin, 124 

choice of, 125-126, 262, 266--268, 272 
Bin histogram, 125 
Binomial coefficient, 229 
Binomial distribution, 228-235 

compared with Gaussian, 232-235 
definition, 230 
mean for, 231, 242 
standard deviation of, 232 
symmetry when p = ½, 232 

Binomial expansion, 230 

Binomial series, 52, 80 
Bn,/v), binomial distribution, 230 

see also Binomial distribution 
Bubble chamber, 223 

Cart on slope, 71-73, 89 
Chauvenet's criterion, 166-169 

to reject several data, 169 
Chi squared, x2, 266, 268 

adjusted, 283 
as indicator of agreement, 264 
per degree of freedom, 271 
probabilities for, 271-273 
reduced, ,e, 271 
table of probabilities for, 292-293 

Chi-squared test, 261-278 
for dice experiment, 267-268, 275 
for Gauss distribution, 261-265, 274--

275 
for Poisson distribution, 276--277 

Coefficient of correlation, see Correlation 
coefficient 

Coefficient of determination, 217 
see also Correlation coefficient 

Coefficient of expansion, 59 
Comparison, 

of measured and accepted values, 18-
20, 149-151 

of two measured numbers, 20-23, 149-
151 

Compensating errors, 74 
Confidence level for uncertainty, 149 

see also Significance level 
Consistent measurements, 173 
Constraints, 269-270 
Correlation, 

negative, 218 323 
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Correlation, ( continued) 
of I.Q., 225 
significant, 220 

Correlation coefficient, 216-217 
probabilities for, 219-220 
table of probabilities for, 290--291 

Cosmic rays, 253 
Counting experiments, 

uncertainty in, 48--49, 249 
see also Poisson distribution 

Covariance, 212 
and correlation coefficient, 216--217 
in error propagation, 211-215 

Critical angle, 63 

Decay, radioactive, 245 
Definition, problems of, 4, 46 
Degrees of freedom, 188, 269-271 
&, uncertainty in x, 14 

see also Uncertainty and Error 
Density of gold, 5 
Determination, coefficient of, 217 

see also Correlation coefficient 
Deviation, 98 

average, 99 
mean of is zero, 111 
see also Standard deviation 

Dice experiments, 228 
and chi-squared test, 267-268, 275 

Difference of measured numbers, 22-24, 
41--42, 49-50, 60 

Digital displays, 47 
Discrepancy, 16--18 

significant and insignificant, 17-18, 
150--151 

Discrete distributions, 232 
Distribution, 123 

binomial, see Binomial distribution 
discrete, 232 
exponential, 155, 158 
Gauss, see Normal distribution 
limiting, see Limiting distribution 
Lorentzian, 266 
normal, see Normal distribution 
parent, 126 
Poisson, see Poisson distribution 
universe, 126 
see also Limiting distribution 

Dividing measured numbers, 51-53, 
61 

Door, measurement of, 3--4 

Erf(t), see Normal error integral 
Error, 3, 14 

compensating, 74 
in target practice, 95-96 
probable, 137 
random, 94--97 
systematic, 11, 94--97, 106-109 
true, 18 
see also Uncertainty 

Error bar, 5, 25-27 
Error function, see Normal error integral 
Error of the mean, 102 

see also Standard deviation of mean 
Error propagation, 45-91, 209-215 

covariance in, 211-215 
for function of one variable, 63-65 
for function of several variables, 74--77 
for independent errors, 57-62 
for powers, 55-56, 66 
for products and quotients, 51-54, 61 
for sums and differences, 49-50, 60 
general formula, 73-77 
proof of general formula, 146 
step-by-step, 66-68 
upper bound for, 214--215 
with graphs, 63, 84 

Exponential distribution, 155, 158 
Extrapolation, 192 

Factorial function, n!, 229 
Fractional uncertainty, 28--31 

and significant figures, 30-31 
in products, 31-34 
see also Uncertainty 

Full width at half maximum, 156 
Function of one variable, uncertainty in, 

65 
Function of several variables, uncertainty 

in, 75 
0FWHM, 156 

g, measurement with pendulum, 68-69, 
88 

Gauss distribution, see Normal 
distribution 

Gauss function, 133 
see also Normal distribution 

Gaussian approximation, 
to binomial distribution, 232-235 
to Poisson distribution, 250-251 

General relativity, test of, 7 



Gold, density of, 5 
Graphs, 24--28 

and error propagation, 63, 84 
error bars on, 25-27, 39 
slope of, 25, 40 
straight-line, 24--27, 181-182 
see also Least-squares fit to a line and 

Least-squares fit to curves 
GxJx), Gauss function, 133 

see also Normal distribution 

Half width at half maximum, 156 
Highly significant test (1%), 237,272 
Histogram, 124 

bar, 124 
bin, 125 

HWHM, 156 
Hypotheses, 237, 238 

null, 237 
Hypothesis testing, 236-240 

Inconsistent measurements, 173 
Independent errors, propagation of, 57-62 
Interpolation, 9 

Least squares, 174 
see also Least-squares fit to a line and 

Least-squares fit to curves 
Least-squares fit to a line, 182-192 

estimates for A and B, 184 
line through origin, 200, 204 
uncertainty in A and B, 188 
uncertainty ay, 186-188 
weighted, 201, 204 
when both x and y are uncertain, 188-

190 
Least-squares fit to curves, 193-196 

exponential, 194--196 
polynomial, 193-194 

Light, bending by sun, 7 
Limiting distribution, 126-129, 227 

as probability, 128 
mean of, 129 
normalization of, 128 
standard deviation of, 129 
see also Distribution 

Line of regression, 184 
Line'.lr correlation, see Correlation 

coefficient 
Linear graphs, 24--27, 181-182 

slope of, 25, 40 
see also Least-squares fit to a line 

Linear regression, 182 
see also Least-squares fit to a line 

Linearization, 194 
Lorenzian distribution, 266 

Margin of error, 14 
see also Uncertainty 
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Maximum likelihood, see Principle of 
maximum likelihood 

Mean, 
as best estimate, 97-98, 137-139 
of binomial distribution, 231, 242 
of limiting distribution, 129 
of normal distribution, 134 
of Poisson distribution, 247 
standard deviation of, see Standard 

deviation of mean 
Method of least squares, 174 

see also Least-squares fit to a line and 
Least-Squares fit to curves 

Millikan's measurement of e, 109, 116 
Multiple regression, 196-197 
Multiplying measured numbers, 31-34, 

53, 61 

Negative correlation, 218 
Nonparametric tests, 238 
Normal density function, 131 
Normal distribution, 129-135 

as limit of binomial, 232-236 
as limit of Poisson distribution, 250-

251 
chi-squared test for, 261-265, 274--275 
compared with binomial, 232-235 
compared with Poisson, 250 
definition, 133 
mean of, 134 
normalization of, 132 
points of inflection of, 157 
proof of for random errors, 235-236 
standard deviation of, 134 
width parameter of, 131 

Normal equations, 184, 194, 197 
Normal error function, 131 
Normal error integral, 136-137 

tables of, 286-289 
Normalization condition, 124, 128 

for normal distribution, 132 
for Poisson distribution, 257 

Normally distributed measurements, 133 
Null hypothesis, 237 
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One-tailed probability, 239 
Opinion poll, 238-239 

Parallax, 97 
Parent population, 126 

see also Limiting distribution 
Partial differentiation, 74, 90 
Partial uncertainty, 76 
Pendulum, 68-69, 88 
Percent uncertainty, 29 

see also Fractional uncertainty 
Photoelectric effect, 225 
P ,.,,(v), Poisson distribution, 246 

see also Poisson distribution 
Points of inflection of Gauss function, 

157 
Poisson distribution, 245-260 

approximate symmetry for µ, large, 250 
as limit of binomial, 246 
chi-squared test for, 276--277 
compared with Gaussian, 250-251 
definition, 246 
for cosmic rays, 253 
mean of, 247 
normalization of, 257 
standard deviation of, 249 

Polynomial regression, 194 
Population standard deviation, 100 
Precision, 28 

see also Fractional uncertainty 
Principle of maximum likelihood, 139 

applied to Poisson distribution, 257, 
258 

in least-squares fits, 182, 202 
in weighted averaging, 174 

Probability, one- and two-tailed, 239 
Probability distribution, 227 

see also Limiting distribution 
Probable error, 137 
Problems of definition, 4, 46 
Product of measured numbers, 31-34, 42-

43, 53, 61 
Propagation of errors, see Error 

propagation 

Quadratic sum, 58 
see also Addition in quadrature 

Quotient of measured numbers, 51-53, 61 

r, correlation coefficient, 216--217 
see also Correlation coefficient 

Radioactive decay, 245 
Random component of error, 106 
Random errors, 94--97 

can become systematic, 117 
Reduced chi squared, ,R2, 271 

see also Chi squared 
Refractive index, 

from critical angle, 63 
using Snell's law, 69-70, 89 

Regression, 
line of, 184 
linear, 182 
multiple, 196--197 
polynomial, 194 
see also Least-squares fit to a line and 

Least-squares fit to curves 
Rejection of data, 165-169 
Relative uncertainty, 28 

see also Fractional uncertainty 
Relativity, test of, 7 
Residual, 98 

see also Deviation 
RMS deviation, 99 

Sample standard deviation, 100 
as best estimate for width u, 296 

Scatter plot, 216 
Schwarz inequality, 214, 224 
SD, see Standard deviation 
SDOM, see also Standard deviation of 

mean 
Sigma notation, L, 98 
u, width of Gauss distribution, 131 

see also Normal distribution 
ux, standard deviation, 99-101 

see also Standard deviation 
ux, standard deviation of mean, 102 

see also Standard deviation of mean 
uxy, covariance of x and y, 212 

see also Covariance 
Significance level, 238, 272 
Significant correlation, 220 
Significant discrepancy, 151 
Significant figures, 14--16, 30 

and fractional uncertainty, 30-31 
in products, 42-43 
need to keep extra, 16 

Significant test (5%), 237, 272 
Simple pendulum, 68-69, 88 
Ski wax, tests of, 236--238 
Snell's law, 69-70, 89 



Spreadsheets, 112, 179, 202 
Spring constant, k, 101-103, 105-106, 

200 
Square root, uncertainty in, 66 
Square-root rule, 48, 249 
Standard deviation, 98-101 

as 68% confidence limit, 135-137 
as uncertainty in one measurement, 

101-102 
definition, 99-100 
"improved" definition, 100 
of binomial distribution, 232 
of Gauss function, 134 
of limiting distribution, 129 
of measurements as estimate of width 

of distribution, 139-140 
of Poisson distribution, 249 
of the standard deviation, 140, 297-298 
population, 100 
sample, 100, 294--298 

Standard deviation of mean, 102-103 
justification of, 147-148 

Standard error, 102 
see also Standard deviation of mean 

Statistical hypothesis, 237, 238 
Step-by-step propagation of errors, 66--68 
Straight-line graphs, 24--27, 181-182 

slope of, 25, 40 
see also Least-squares fit to a line 

Student's t distribution, 150 
Subtracting background events, 254--255 
Sum in quadrature, 58 

see also Addition in quadrature 
Sum of measured numbers, 38, 49-50, 60 
Systematic component of error, 106 
Systematic error, 11, 94--97, 106--109 

Target practice and error, 95-96 
Testing, 

of hypotheses, 236--240 
of ski wax, 236--238 

True error, 18 
True value, 130 
Two-tailed probability, 239 

Uncertainty, 14 
absolute, 29 
fractional, 28-31 
in counting experiments, 48--49, 249 
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in differences, 22-24, 41--42, 49-50, 60 
in direct measurements, 46--49 
in functional of one variable, 65 
in function of several variables, 75 
in least-squares parameters A and B, 

188 
in mean, see Standard deviation of 

mean 
in measured quantity times exact 

number, 54--55 
in powers, 55-56, 66 
in products, 31-34, 53, 61 
in quotients, 53, 61 
in reading scales, 8-9 
in repeatable measurements, 10-11 
in square root, 66 
in sums, 38, 49-50, 60 
in the standard deviation, 140, 297-298 
in the uncertainty, 140, 297-298 
in weighted average, 176 
independent, 57-62 
meaning of, 14, 149 
partial, 76 
percent, 29 
propagation of, see Error propagation 
relative, 28 
units of, 16, 29 
when not stated, 9 
see also Error 

Uncorrelated variables, 218 
Universe distribution, 126 

see also Limiting distribution 
Upper bound for propagated error, 214--

215 

Variance, 100 
see also Standard deviation 

Weighted average, 174--177 
definition, 175 
uncertainty in, 176 

Weighted least-squares fit to a line, 201 
uncertainties for, 204 

Weighted sum, 123 
Width parameter u of normal distribution, 

131 

xbesv best estimate for x, 14 
Xwav, weighted average, 175 



Principal Formulas in Part I 

Notation (Chapter 2) 

(Measured value of x) Xbest ± 8x, (p. 13) 

where 

xbest best estimate for x, 

8x uncertainty or error in the measurement. 

F . l . 8x ractiona uncertamty = -1 - 1. 
Xbest 

(p. 28) 

Propagation of Uncertainties (Chapter 3) 

If various quantities x, ... , w are measured with small uncertainties &, ... , 8w, 
and the measured values are used to calculate some quantity q, then the uncertainties 
in x, .... w cause an uncertainty in q as follows: 
If q is the sum and difference, q = x + · · · + z - (u + · · · + w), then 

✓(8x)2 + · · · + (8z)2 + (8u)2 + · · · + (8w)2 

for independent random errors; 

:,;;; 8.x+···+8z+8u+···+8w 
always. 

XX··· X Z 
If q is the product and quotient, q = -----, then 

u X ••• X w 

8q 
/qi 

for independent random errors; 

8x 8z 8u 8w 
:,;;; lxl + ••• + ~ + fuT + ••• + l;f 

always. 

If q = Bx, where B is known exactly, then 

8q = IBI&. 

If q is a function of one variable, q(x), then 

If q is a power, q = x', then 
8x lnl-­
lxl 

(p. 60) 

(p. 61) 

(p. 54) 

(p. 65) 

(p. 66) 



If q is any function of several variables x, ... , z, then 

8q = G!8xr + ••• + G! 8zr (p. 75) 

(for independent random errors). 

Statistical Definitions (Chapter 4) 

If x1, ... , xN denote N separate measurements of one quantity x, then we define: 

1 N 
x = N L X; = mean; 

i=l 

<Tx = ✓ N ~ 1 L(X; - x)2 = standard deviation, or SD 

<T-; = i = standard deviation of mean, or SDOM. 

The Normal Distribution (Chapter 5) 

(p. 98) 

(p. 100) 

(p. 102) 

For any limiting distribution f(x) for measurement of a continuous variable x: 

f(x) dx 

f f(x)dx 

probability that any one measurement will 
give an answer between x and x + dx; 

probability that any one measurement will 
give an answer between x = a and x = b; 

J:= f(x) dx = 1 is the normalization condition. 

The Gauss or normal distribution is 

where 

X center of distribution = true value of x 

mean after many measurements, 

a- width of distribution 

standard deviation after many measurements. 

The probability of a measurement within t standard deviations of X is 

(p. 128) 

(p. 128) 

(p. 128) 

(p. 133) 

Prob(within ta-) = - 1- f 1 e-z212 dz = normal error integral; (p. 136) 
~ -t 

in particular 

Prob(within la-) 68%. 



Principal Formulas in Part II 

Weighted Averages (Chapter 7) 

If x1, ... , xN are measurements of the same quantity x, with known uncertainties 
a 1, ... , aN, then the best estimate for xis the weighted average 

where the weight W; = II a/. 

LW;X; 

LW;' 

Least-Squares Fit to a Straight Line (Chapter 8) 

(p. 175) 

If (x1,y1), ..• , (xN, YN) are measured pairs of data, then the best straight line 
y = A + Bx to fit these N points has 

A [(lx/)(Ly;) - (Lx;)(LX;Y;)]/d, 

B = [N(LX;Y;) - (LX;)(LY;)]/d, 

where 

Covariance and Correlation (Chapter 9) 

The coefficient of linear correlation is 

(p. 184) 

(p. 212) 

(p. 217) 

Values of r near 1 or - 1 indicate strong linear correlation; values near O indicate 
little or no correlation. (For a table of probabilities for ,; see Appendix C.) 

Binomial Distribution (Chapter I 0) 

If the probability of "success" in one trial is p, then the probability of v successes 
in n trials is given by the binomial distribution 

Prob(v successes inn trials) = Bn,p(v) = n! p"(I - pt-". 
v!(n - v)! 

(p. 230) 



After many sets of n trials, the mean number of successes is 

v = np, 

and the standard deviation is 

✓np(l - p). 

Poisson Distribution (Chapter I I) 

(p. 232) 

In counting radioactive decays (and other similar random events), the probability of 
v counts (in some definite time interval) is given by the Poisson distribution 

Prob(v counts) = Pµ,(v) = e-µ, µ~. 
V. 

where µ is the expected average count in the time interval concerned. 

v = µ 

The standard deviation is 

Chi Squared (Chapter 12) 

(after many experiments). 

(p. 246) 

(p. 247) 

(p. 249) 

The results of any repeated measurement can be grouped in bins, k = 1, ... , n. 
Let Ok denote the number of results observed in bin k. Similarly, Ek denotes the 
number expected in bin k, based on some assumed distribution (Gauss. binomial, 
Poisson. etc.). We define chi squared as 

n 

xz L (Ok - Ek)21Ek, (p. 266) 
k=I 

and the reduced chi squared as 

(p. 271) 

where d is the number of degrees of freedom. 
If x 2 >> 1, the agreement between Ok and Ek is unacceptable, and we reject the 

assumed distribution. If x 2 :eE; 1, the agreement is satisfactory, and the observed and 
expected distributions are compatible. (For a table of probabilities for _x2, see Ap­
pendix D.) 




