CHAPTER 12

ON THE “COMPLETENESS” OF QUANTUM
MECHANICS

Tuomas E. Puipps, JR.

1. BACKGROUND

No study of the wave—particle dualism would be complete without examination of
both the necessity and sufficiency of the mathematical-descriptive formalism that
gives rise to it. Concerning sufficiency of the existing formalism, the issue of
“completeness” of quantum mechanics as a physical theory was raised most
poignantly by Einstein.® This matter is usually treated in connection with the
Einstein—Podolsky—Rosen (EPR) paradox,?-3) in the context of proposed “hidden
variable” modifications or enhancements. The customary exposition then pro-
ceeds to Bell’s theorem® and its modern developments, both theoretical and
experimental®—the impression being created that there is a sort of championship-
of-the-world fight in progress between clearly identified opponents: in one corner
the recognized title-holder, *“quantum mechanics,” in the other a sequence of all
possible (in general more generously parametrized) challengers to quantum
mechanics.

As it happens, the assumption of the existence of such well-defined battle
lines is a possibly fatal oversimplification. The conceptual fallacy in pitting
quantum mechanics against all comers is simply that “quantum mechanics” —or
any other product of theoretical physics—is not in principle a uniquely defined
conceptual entity. Here we have in mind not the many possible versions or
“interpretations” of accepted formalism, but substantive variants of that formal-
ism. No theory is defined for purposes of physical description—meaning for
purposes of acquiring observational support—except within a penumbra or con-
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gruence of its class of what is termed “covering theories.” Every experiment that
upholds quantum mechanics upholds also all covering theories of quantum
mechanics; for the definition of a covering theory is any more richly parameirized
theory that reduces identically to the ‘“covered” theory for particular fixed
values of the extra parameters.

Any generalization of quantum mechanics that is a covering theory of
quantum mechanics must by this definition inherit all the problems of quantum
mechanics. Thus, it must encounter difficulties in resolving the EPR paradox to
just the extent that ordinary quantum mechanics encounters such difficulties. No
matter how richly parametrized they may be, such theories include quantum
mechanics and thus include all of that theory’s problems of mating to however-
defined “physical reality.” If we confine attention to covering theories, then in the
battle between quantum mechanics and its opponents . . . which is which? (In the
words of Pogo, “We have met the enemy and he is us.”)

Since one seems thus to be “licked at the start” in any attempt to generalize
quantum mechanics via the covering-theory approach, why bring up the subject?
The answer is that one is licked only in respect to the answering of certain
questions, such as those raised by EPR, and it may be in some sense (knowable
only by hindsight from the vantage point of future history of science) that these
are the wrong questions. In science the questions asked are all-important and
nature provides no signposts pointing to the “right questions™ for any particular
era. The questions to which EPR leads—including metaphysical or ontological
ones tending toward a definition of “reality”’—may well be the wrong ones.

Perhaps the right ones for our time are more along the line of: Why does our
cherished mechanics of quanta fail to provide a specific dynamics of “nuclear” or
“elementary” sub-atomic-scale quanta? Why is it parametrically incapable of
describing Einsteinian “point events,” not to mention “quantum jumps?” Why
does it offer no distinction between the unique facts of history and the ensemble of
possible futures? Why should the principle of relativity of physical size (which
holds throughout the vast Newtonian range of sizes) suddenly fail at the threshold of
subatomic scales? Such questions lie clearly within the province of the physicist;
whereas EPR (at least in its original Einsteinian form) can rapidly lead into
territory whose ownership the philosopher may legitimately contest. The plainly
“physical” questions just mentioned typify those upon which a study of covering
theories of quantum mechanics casts a starkly revealing light.

There is a further, manifestly crucial, aspect of covering theories: invariant
covering theories provide a royal road to “new physics,” insofar as their extra
parameters offer fresh descriptive possibilities. As the reader may have inferred,
this chapter will be addressed mainly to covering theories of quantum mechanics—
in particular to one most attractive candidate, a “top contender” that seems
distinguished from the rest by its simplicity. Some of the implications of this
covering theory for physical description will be sketched, and a potentiality will be
demonstrated for vastly extending the mechanical descriptive purview. But it must
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be recognized at its outset that such a study can lead to no “resolution” of the
wave—particle dualism. For that dualism, in precise analogy with EPR, poses
questions that—though they inspire significant new experiments—may point less
toward new physics than toward the clarification and mental integration of old physics.

In fact it is the writer’s prejudice that too much attention to dualism distracts
from perceiving and enhancing the unity of mechanics, which deserves a promi-
nent place among the goals of physical theory. Concerning the new physics just
mentioned, all experiments are in themselves ambiguous and offer physical
insight only in conjunction with theory—so that any experiments, whether or
not so intended, may in hindsight be perceived as the precursors of new physics.
Hunmility is in order, for we still play among the pebbles bordering Newton’s ocean,
and despite much pebble-polishing and knowledge-squirreling have advanced
farther in hubris than in wisdom.

2. COVERING THEORIES: AN EXAMPLE FROM
ELECTROMAGNETISM

The subject of “completeness” of physical theory in general being intimately
bound up with the status of covering theories, it may be instructive to digress
briefly from our main subject of mechanics into the neighboring field of
electromagnetism—which affords a singularly elegant, though little-known, ex-
ample of the significance of the invariant covering theory.

In brief, Maxwell’s electromagnetism rests upon field equations that are not
invariant under any known coordinate transformation. This simple statement of
fact invites the rebuttal that Maxwell’s equations are covariant under Lorentz
transformations and that covariance is “just as good” as invariance. To this latter
contention the obvious response is, “How do you know until you’ve tried?” That
is, the majority of today’s physicists have imbibed covariant formalism from their
cradle, and have never so much as sampled the flavor of a truly invariant
electromagnetic formalism. Having been raised on ersatz, how can they render a
judgment on echt?

The question of what electromagnetic ““invariance” means cannot be sepa-
rated from that of precisely identifying the invariants of kinematics. The subject of
higher-order or “exact” description—which has been treated elsewhere©®.?—lies
outside the present purview. Fortunately, at first order in (v/c), Einsteinian and
Newtonian identifications of the kinematic invariants are in close enough accord
that we can proceed to illustrate here the invariant covering theory idea and
physical role without concern about the description of very high-speed motions.

Confining ourselves then to first-order considerations, we invoke history by
noting that Heinrich Hertz, the experimentalist who assured Maxwell’s fame by
confirming the existence of electromagnetic waves, was also a powerful theorist
who published® a form of Maxwell’s equations that was rigorously invariant under
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Galilean (inertial) coordinate transformations. To accomplish this, Hertz banished
“spacetime symmetry” by replacing Maxwell’s partial time derivatives 9/dt,
wherever they occurred in the free-space field equations, with total derivatives,

didt = d/ot + v-V

The resulting modified field equations can be shown( to be Galilean invariant;
in fact, they are readily expressed in manifestly invariant form, such that each
symbol in the field equations transforms invariantly under inertial transformations.
Thus, there is no occasion to invoke covariance—which in any case could not
obtain because of loss of spacetime symmetry (the partial space derivatives
appearing in the Hertz equations being not symmetrical with the total time
derivatives).

The formal maneuver just described introduces into the field equations a new
velocity-dimensioned parameter “v”’ not present in Maxwell’s version of electro-
magnetism. Hence, the Hertz theory is more richly parametrized than the Maxwell
theory. In fact, we see that Hertz’s is a covering theory of Maxwell’s—because,
on assigning tov = (v,, vy, v,) the fixed numerical values (0,0,0), Hertz’s equations
reduce identically to Maxwell’s (in view of d/dt — 9/dt). The fact of noninvariance
of Maxwell’s theory under any coordinate transformation, taken with the fact of
Galilean invariance of Hertz’s theory, means that Hertz’s equations constitute an
invariant covering theory of Maxwell’s noninvariant theory.

Why has the reader never heard about this? Since there is a lesson about
physics (sociology of) to be learned, it is worth a brief further historical detour to
answer this. First, Hertz used an archaic (nonvector) notation that concealed the
simplicity of his total time derivative modification. Second, he gave no proof of
“invariance” but simply asserted it. (A modern commentator, on beholding this
assertion, failed to check the mathematics but blandly remarked that Hertz must
have meant “covariance.’”” Not so; he meant what he said, but took too much for
granted about his readers’ intelligence. In fact, he could not have meant “covari-
ance” because his equations lack spacetime symmetry.)

Third, Hertz made a genuine mistake on the side of physical modeling or
interpretation (the soft underbelly or Achilles’ heel of all mathematical physics, as
Hertz himself implied in his famous putdown, “Maxwell’s theory is Maxwell’s
equations”): Hertz assumed that “v” measured an ether velocity, and further
borrowed an old assumption due to G. Stokes that ether was 100% convected by
material bodies. So he interpreted “v” as the observable velocity of such bodies
in the laboratory, and consequently termed his theory an “electrodynamics of
moving bodies. ”® His equations were thus interpreted® as predicting the produc-
tion of a magnetic field by motion of a dielectric in the laboratory. This effect was
looked for and not found.(® Hence, Hertz’s theory (viewed not as Hertz’s
equations but as these plus Hertz’s fanciful interpretation) was discredited and
discarded in favor of Maxwell-Lorentz theory.
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The latter, being spacetime symmetrical, was used by Einstein—Minkowski
as the basis for the famous hypothesis of the “metric nature of spacetime.” Once
that went into the curriculum of the global village there was no turning back from
covariance to invariance, and Hertz’s important mathematical discovery of an
invariant covering theory was lost to history . . . until recently, when several
investigators (including S. Kosowski of Poland, E D. Tombe of Northern Ireland,
and C. I. Mocanu of Romania, as well as the present author) independently
rediscovered Hertz’s invariant mathematics. Naturally, it has been necessary
to find a better physical interpretation than Hertz’s, and here opinions differ to
this day.

This is not the place to go into the subject, which has been treated else-
where,( but it may be remarked that by interpreting “v” as the velocity in the
laboratory of a particular tangible object, the field detector, it is possible to avoid
both the taint of metaphysics and the trap of false predictions into which Hertz
unhappily stumbled. There is—as must be true of all covering theories—
predictive agreement of the covering theory (Hertz’s) with all observational
evidence that supports the covered theory (Maxwell’s). The special case in which
covered and covering theories become identical is that in which field detector
velocity vanishes, v = (0,0,0), which is precisely Maxwell’s case of the field
detector at rest in the laboratory. In summary: Maxwell got the mathematical
physics “right in one laboratory,” but not in all variously moving laboratories.
That remained for Hertz, who yet tripped at the final step of converting mathemati-
cal physics into physics.

The issue of covariant versus invariant description may appear academic,
pedantic, or even metaphysical. On the contrary, it relates directly and decidably
to observable facts of experience: It is an issue of real physics. According to
Einstein—Minkowski all forces in nature must be expressible in covariant form,
whereas according to Hertz no such requirement can hold for electromagnetism.
The discovery of a single example of a noncovariant force in nature would settle
the issue in favor of Hertz’s invariant covering theory and would disprove space-
time symmetry.

As it happens, there is growing evidence for the existence of noncovariant
electromagnetic forces. The original Ampere law(D of force between current
elements, for example, obeyed Newton’s third law and thus was noncovariant.
Ampere’s law, though never known to be violated,1D was replaced in the favor of
physicists by the Lorentz force law. The two laws differ by a quantity Q that is an
exact differential. 12 Thus, their predictive differences (together with the Lorentz
violation of Newton’s third law) vanish when Q is integrated around any closed
circuit external to the test current element. Yet if the circuit containing the test
element is itself considered, the nontest portion of that circuit forms an open
loop. In quantifying action-reaction it is the action upon the test element of the
nontest portion—not of the total circuit—that must be considered. The integral of
Q around a partial circuit need not vanish and the distinction between the two laws
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should be measurable. (In this theoretical conclusion we venture to differ from
Maxwell.(13))

In fact, the experiment has been done™ and has indicated that nature votes
for Ampere—consequently for Hertz, for invariance, for Newton’s third law as
acting between current elements, and against homogeneous “‘spacetime’ and its
alleged metric nature or symmetry. Earlier evidence of GraneauD and others
showing support for Ampere’s law by exploding wire and railgun-buckling
observations at very high pulsed currents is thus confirmed by low-current
evidence valid under conditions precluding alternative explanations such as
conductor melting.

It is clear from this electromagnetic example that issues of real physics,
decidable by crucial experiment, devolve from such seemingly moot questions as
covered versus covering theory, invariance versus covariance, etc. We now re-
turn to our main topic of mechanics.

3. A SIMPLE COVERING THEORY OF QUANTUM MECHANICS

The foregoing introduction via covering theories to the “completeness” of
physical theory was concerned with what might be termed the “sufficiency” of
physical description. Let us now address ‘“‘necessity.”” In order to reason about this
topic it is essential to proceed from a priori principles of some sort. Fortunately
in the case of mechanics we do not start from a rabula rasa: A takeoff point for all
other kinds of mechanics is provided by classical mechanics, which is well
understood in all its aspects and may lay some claim to being the most broadly
successful of all physical theories.

The most highly evolved form of classical particle mechanics is (arguably)
the Hamilton-Jacobi form,

as

H= —-5?, H = H(q]’ p]’ 1)) (la)
as

i~ 3, ab)
as

F=ag 5=5@ 00 &

which we seize on here because of its marked formal resemblance to the
Schrodinger and Dirac equations. Two features of Eq. (1) are noteworthy: (1) The
huge invariance group of the “contact” (or canonical) transformations under
which these equations of motion remain unchanged. This group includes but far
exceeds both linear and nonlinear coordinate transformations. (2) The tremendous
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range of sizes of physical systems to which the equations and their concomitant
“point particle” idealization apply.

The second item suggests a physical principle capable of guiding the
development of a covering theory of ordinary quantum mechanics—namely,

Principle of Relativity of Physical Size!?): The equations of motion of point-particle
mechanics are expressible in a form that does not connote absolute largeness or
smallness of the physical system described.

The vital issue is: Over what range of sizes is the Newtonian idealization of
the mathematical point particle physically permissible? We know that for many
purposes it is quite acceptable to treat our sun’s planets as mathematical points,
and to do the same for baseballs, buckshot, and smoke particles. If Dirac(9 is to be
believed, however, all this changes dramatically at the threshold of the atomic
world; for, he asserts, quantum mechanics is the discipline that sets an absolute
size scale to the world. In other words, the grand cavalcade of size relativity comes
to a jarring halt right in the province of the chemist. That makes chemists very
important people . . . absolutely.

So, anyway, says Dirac. Now let us see what he does(%: Heedless of the
doctrine of size absolutivity, he applies the idealization of the point particle to the
smallest and lightest of the known massive particles, the electron. (Newton could
hardly have done more . . . nor less.) Specifically, he cooks up a felicitous point
operator form of the function H appearing in Eq. (la), together with a formal
operand ¥, and thus extends into the smallest physical size range—far below the
atomic—the point particle idealization embodied in the size relativity principle. In
other words, he ignores size absolutivity and applies Newtonian size relativity . . .
and this self-refutation is attended with astounding success! Since we ourselves
must humbly decline to succeed better than success, let us follow this great man in
doing as he does, not as he says—by applying without stint the size relativity
principle.

Note that the principle, as stated above, speaks to “a form” of the mechanical
equations of motion. It does not imply that any form will do . . . we have to
look for a particular form. Fortunately, our task is such an easy one that it prac-
tically performs itself. Proceeding from Eq. (1)—since we wish to share Dirac’s
success in describing electrons—we know that we shall have to supply a formal
operand ¥, at least to Eq. (1a). This means looking on the symbols of Eq. (1a) in
general as operators acting toward the right; and since classically (1b) and (1c) are
on an equal footing with (la) it is natural to think of these additional equations as
containing rightward-acting operators equally in need of operands. Being parsi-
monious, we do not part with operands easily, and so propose sharing the same
operand:

]
HY, = ——

S (2a)
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9

pY¥; = B;jS‘I’f (2b)
d

—Pj\I’f = a—QjS‘I'f (20)

Although this hypothesis has been arrived at here somewhat in the manner of
doodling, it turns out to be quite a satisfactory “form” to represent equations of
motion for all mechanics, invariant on all size scales in the sense of the size
relativity principle. Indeed, we shall now show that not only is it invariant on all
size scales of likely interest to physics, but it is a covering theory of all known
forms of mechanics. Thus, we have again to deal with an invariant covering theory.
Equation (2) is seen to possess three distinct classes of solution:

Class 1. '¥; = constant. In this case the constant can be canceled from Eq. (2)
and what remains is identically the Hamilton—Jacobi equations. Thus, Eq. (2) is a
covering theory of classical mechanics, Eq. (1). That classical motions are
included among the exact solutions of our postulated generalized equations of
motion, Eq. (2), is a fact of profound significance for measurement theory. It alters
the relationship of classical and quantum physics, since ordinary quantum me-
chanics treats classical motion states always as mere approximations to “exact”
superpositions of quantum states, never as best-available descriptors in their own
right. In dealing with Eq. (2) we have to get used to the idea that all mathematical
solutions are for physical descriptive purposes approximations. What physical
theory offers in any given problem is merely a modest choice between poor and
less poor approximation, not a choice between drab approximate and gorgeous
exact. (We describe things, and descriptions are not things. Ergo descriptions are
never exact, for only things can be exactly things.)

Class II. S = constant = #/i. In this case, Eq. (2) reduces to

HY, = _‘i‘aq’f (3a)
fi o

pj‘Iff = TB_qj\Pf (3b)
ho9

—Pj\IIf = Ta—QI‘I’f (3¢)

The value #/i of the constant is chosen to agree with experiment. Equations (3a),
(3b) are of the form of the Schrodinger—Dirac equations. Equation (3c) is a
stranger involving extra parameters Q) P) that classically are constants of the
motion and that retain the character of constants regardless of the class of solution
considered. Obviously, Class II solutions describe quantum (atomic) states of
motion. By inspection we see that Eq. (3c) has the solution
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The exponential multiplier appearing here is just a constant phase factor, in general
absorbed into the wave function normalization factor. Thus, |¥ 2 = |®|2, ® being
just the Schrodinger or Dirac wave function. Since all the physical predictions of
quantum mechanics depend on sums or integrals of mean-value products such as
Y*AY, = ®*AP, from which the constant phase factor cancels, it is clear that the
class of observational agreements of Eq. (3) coincides with that of ordinary
quantum mechanics, viz.,

%o
H® = —'l—gt'q) (53)
h o
pP = Ta_qj (5b)

This results from canceling the constant phase factors from Egs. (2a), (2b).

So, Eq. (2), which we saw above is a covering theory of classical mechanics,
is now shown to be a covering theory of ordinary quantum mechanics as well. This
puts us on familiar ground. Nevertheless, there is something new: The *“constant”
phase factor of Eq. (4) contains not universal constants but dynamical constants
(Q,P), which in general “jump” to new values when the descriptive problem
(system Hamiltonian) changes . . . thus furnishing an entirely new mechanism of
discontinuity and a way of severing that “von Neumann chain” of phase connec-
tions which in the Copenhagen view joins all physical descriptive problems into
one endless, seamless whole. In short, we acquire a post facto way of describing
happenings, point events, or what used to be called “quantum jumps” —without,
however, acquiring any new predictive capabilities. Thus, the transition from
covered to covering theory has profound implications for quantum measurement
theory. These have been examined elsewhere(7:19) and need not detain us here.

In sum: As a scheme for calculating observable quantities, quantum me-
chanics is altered not a bit by substitution of the covering theory, Eq. (2). But the
richer parametrization of the latter has a great impact on measurement theory. For
example: (1) It permits us to view history as a fact, not as the sort of statistical
(“class of facts”) ensemble appropriate to prediction. (2) Through this nontrivial
distinction between prediction and retrodiction, it gives substance at the quantum
level to “time’s arrow.” (3) It secures the logical sufficiency of mechanics without
need or call for extra axiomatics (e.g., a projection postulate).

Class III. S # constant, W, # constant. In this case the mathematical
character of the problem changes. Equation (2c) is no longer a “fifth wheel,” but
becomes a “second equation in the second unknown.” That is, in each of the other
classes of solution there is only one unknown function, S or W,. But here both
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of these functions are unknown and have to be solved for simultaneously. An
example of such simultaneous solution has been given.(-17) It appears to describe
nuclear-scale stationary bound states of electron—positrons in terms of states of
imaginary particle momentum but real mass—energy. Thus, the ability of a
covering theory to lead to “new physics” (right or wrong) is reaffirmed. Further
evolutionary developments of the theory are needed. Here we confine attention to
noting some attributes of the Class III formalism.

The most notable formal features of the Class III solutions are that (a) the
classical-analog (CA) operators become in general non-Hermitean and (b) the
Heisenberg postulate is violated. (It is for the latter reason that electron—positrons,
as noted above, can exist on the nuclear size scale.) The Heisenberg postulate is
generalized to

i) 4
(pkqj - quk)\pf = [(5‘;;) qu - g (a_ql)s]\l’f = Sajk\yf 6

This leads to a tripartite interpretation of the quantity S: On the classical (Class I)
scale S is Hamilton’s principal function; on the atomic (Class II) scale § is
Heisenberg’s constant (7/i); and on the nuclear (Class III) scale S measures the
degree of departure of the commutator of (g,p) mechanical variables from the
Heisenberg value. That is, the commutator is no longer universally constant but
becomes a space-time variable function subject to the boundary condition that
quantum mechanics be recovered far from the scene of nuclear (subatomic)
description; i.e., S(r) — #i/i as r — o,

If we split off a real function s by the definition S = (#/i)s, we see from a well-
known theorem (viz., that the product of two noncommuting Hermitean operators
is non-Hermitean) that a CA operator such as H is non-Hermitean; for from Eq.
(2a) we have

av, =22, @

which exhibits H as the product of a Hermitean operator —(#/i)d/9t and a
Hermitean (real) operator s. The real property is imposed upon s by the physical
requirement that the transformations

#H = Hs™1

8
¥ = sV, ®

render the resulting time-conjugate operator # Hermitean—for these transfor-
mations, applied to eq. (2a), reduce it to
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HY = ———¥ ©)

which identifies ¢ as the operator conjugate to time.

It would in any formalism be disastrous to have the time-conjugate operator
turn out to be non-Hermitean . . . and that misfortune is avoided by the simple but
crucial formal transformations (8). To confirm the Hermitean property of ¥, for
example in the case of a nonrelativistic one-body problem, we observe that

# = Hs™ ! = [(12mpp + VIs~!

10)
= —(#*2my)Vs-V + Vs~1 (

which is readily seen to be Hermitean if and only if s is real. (A similar
demonstration for the Dirac Hamiltonian is even more immediate.) Here the CA
momentum operator p is seen from Eq. (2b) to be the non-Hermitean product of
the Hermitean operator (%/i)V and the real function s. A transformation analo-
gous to Eq. (8) yields a Hermitean momentum,

P=mﬂ=%v a1

The transformations (8), by producing Hermitean operators, reduce the Class ITI
formalism to mathematically familiar terms. But it must not be overlooked that the
specific form of the Hamiltonian is affected by the transformation, and it is this
specific form that contains all the physics. Thus, a new theory that will not in the
least interest mathematicians may be of considerable interest to physicists.

4. ALTERNATIVE “NECESSITATIONS” OF THE COVERING THEORY,
EQUATION (2)

An alternative general principle from which Eq. (2) may equally well be
inferred is the following:

Principle of Correspondence Reversibility: The formal correspondence between
classical and atomic-scale mechanics shall proceed with equal facility in either
direction and shall in either case yield a complete mechanics.

Early in the history of quantum mechanics, Pauli(® advanced a claim that
one could start with the ordinary quantum mechanical equations of motion, Eq.
(5), and recover the equations of motion of classical mechanics as a limiting case.



204 TuaoMAs E. PHIPPS, JR.

This claim was important at the time for confirming the legitimacy of the new form
of mechanics, as it improved its connection with known successful mechanics by
making correspondence a two-way street. Unfortunately, Pauli’s claim is spurious,
as the only links he established were between Egs. (5a), (5b) on the one hand and
Eqgs. (1a), (1b) on the other. No mention was made of Eq. (1¢), without which no
Newtonian mechanics is possible. Recently it was recognized® that what one
gets by Pauli’s route is not Newtonian particle mechanics but Liouville-type
statistical mechanics. That is, the formal absence of the constant parameters
(Qj,Pj)—known classically as the “new canonical variables”—from ordinary
quantum mechanics deprives that discipline of the specificity needed to describe
point events and leaves it with only the capacity to describe (statistical) classes of
events. This is a shared disability of quantum mechanics and classical statistical
mechanics, as contrasted with classical point particle mechanics. The cause, a
parametric deficiency, is likewise shared.

If the correspondence reversibility principle is imposed as mandatory, it is
apparent that ordinary quantum mechanics is in violation and must be replaced by
some other theory. The need to enrich parametrization on the quantum side in
order to improve specificity for post facto point event description—and to prevent
any change in number of parameters during the correspondence transition in either
direction—then suggests the covering theory approach, and one quickly gets to
Eq. (2) by fairly obvious inferences. There is no need to elaborate here. Equation
(2) offers a true point particle descriptive mechanics for all physical size scales.

Finally, setting aside all “principles,” there is a direct empirical route to
something like Eq. (2) via the reader’s personal knowledge. Most physicists have
had the experience of observing in a darkened room the scintillations, e.g., of
a zinc sulfide phosphor. These are flashes of light that have the appearance of
originating at definite times from pinpoint locations. It may be supposed that these
attributes of localization would persist if the phosphor were examined under
varying magnifications up to the most powerful. We seem thus to experience (and
to retain in “historical” memory) personal detection of a specific space-time
constellation of point events. Yet since the equations of motion of ordinary
quantum mechanics, Eq. (5), lack parameters capable even of after-the-fact
description of such a particular event constellation, the Copenhagen interpretation
assures us that quantum-level “historical” retrodiction is as futile as prediction
and that such an experience, as well as the memory of it, is consequently an
illusion.

Physics was chartered to describe human experience, not to denigrate that
experience as illusion. The illusion, according to the argument of this chapter,
is that Eq. (5) forms the basis for a “complete” mechanical description of nature.
The conservative approach to formal completion involves exploiting the wealth of
possibilities for parametric enrichment—while “holding fast to the good”—
offered by invariant covering theories.
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