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Abstract The Sagnac effect is usually considered as being
a relativistic effect produced in an interferometer when
the device is rotating. General relativistic explanations are
known and already widely explained in many papers. Such
general relativistic approaches are founded on Einstein’s
equivalence principle (EEP), which states the equivalence
between the gravitational “force” and the pseudo-force expe-
rienced by an observer in a non-inertial frame of reference,
included a rotating observer. Typically, the authors consider
the so-called Langevin-Landau-Lifschitz metric and the path
of light is determined by null geodesics. This approach par-
tially hides the physical meaning of the effect. It seems indeed
that the light speed varies by c±ωr in one or the other direc-
tion around the disk. In this paper, a slightly different general
relativistic approach will be used. The different “gravitational
field” acting on the beam splitter and on the two rays of light
is analyzed. This different approach permits a better under-
standing of the physical meaning of the Sagnac effect.

1 Introduction

It can be useful to recall the context of the discovery of the
Sagnac Effect. At the beginning of previous century, physi-
cists were engaged in a very long debate concerning absolute
space and its counterpart, the aether, the hypothetical medium
of propagation of light. In the well known gedankenexperi-
ment of the rotating bucket filled with water, Newton deduced
the existence of an absolute rotation with respect to absolute
space. In one of the most important work in the history of sci-
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ence (Principia), he expatiated on time, absolute and relative
space and motion [1]. Mach criticized Newton’s reasoning
in his book published in 1893 [2]. From his perspective, one
must consider the rotation of water relative to all the matter
in the Universe. It is well known that Mach’s ideas had a con-
siderable influence on the development of Albert Einstein’s
general theory of relativity (GTR), especially during the first
years of the 20th century. Mach’s view led to a misconcep-
tion about the GTR. A more complete analysis of the debate
can be find in [3]. After the formulation of the special theory
of relativity and before its generalization to the GTR, also
the French physicist Georges Sagnac took part in the debate.
In 1899, he indeed developed a theory of the existence of a
motionless mechanical aether [4]. His aim was to explain all
optics phenomena within this theoretical framework, with
special attention to the Fresnel-Fizeau experiment for the
drag of light in a moving medium [5,6]. At the beginning of
the 20th century, he conceived a rotating interferometer to
test his ideas. Despite countless explanations, in more than
a hundred years, there are still different interpretations of
Sagnac experiment in the framework of the GTR. But this
is not a rare thing in physics. In fact, it is not the only topic
that, although it is well known in the scientific literature, still
requires insights and explanations [7,8]. In order to start, in
next Sections, the Sagnac effect in the framework of Classical
Mechanics will be briefly analyzed.

2 The Sagnac experiment within the framework of
Classical Mechanics

One considers two light rays in opposite directions around a
static circular loop of radius r . Such light rays will arrive at
the end point simultaneously. Instead, if the loop is rotating,
the ray travelling in the same direction as the rotation of the
loop must travel a distance greater than the ray travelling in
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the opposite direction. For this reason, the counter-rotating
ray will arrive earlier than the co-rotating ray. The length of
the path is L = 2πr and, if there is not angular velocity of
the loop, the duration of the path is

�t = 2πr

c
. (1)

Instead, in the presence of an angular velocity ω �= 0, one
writes

c�t1 = 2πr + rω�t1, (2)

c�t2 = 2πr − rω�t2, (3)

from which one obtains

�t1 = 2πr

c − rω
, (4)

�t2 = 2πr

c + rω
. (5)

Assuming ω2r2 � c2, the difference in the journey times is

�t = �t1 − �t2 = 4πr2ω

c2 − ω2r2 � 4πr2ω

c2 . (6)

3 The Sagnac effect within the framework of the GTR

The scientific literature on the relativistic Sagnac effect is
very wide, see [8–26] for details. In this paragraph, its stan-
dard derivation in the framework of the GTR will be con-
sidered. Let us recall the standard flat Lorentz-Minkowski
metric in cylindrical coordinates

ds2 = c2dt2 − dr2 − r2dθ2 − dz2. (7)

If one considers a system rotating at angular velocity ω, one
gets the angle transform as θ = θ ′ + ωt . Thus, dθ = dθ ′ +
ωdt . Starting from these considerations, the metric becomes
the so called Langevin–Landau–Lifschitz metric [27–29]

ds2 = (c2−ω2r2)dt2−dr2−r2dθ ′2−dz2−2r2ωdθ ′dt. (8)

Inserting the condition of null geodesics ds = 0 in Eq. (8),
one gets

(
1 − ω2r2

c2

)
c2dt2 −dr2 −r2dθ ′2 −dz2 −2r2ωdθ ′dt = 0.

(9)

Equation (8) describes a stationary metric which is a solution
of Einstein field equations in empty space. The EEP permits

to interpret it in terms of a gravitational field [27]. Besides,
knowing how tensors behave, one has

Ri jkl(t, x, y, z) = 0 ⇒ Ri jkl(t, r, θ
′, z) = 0, (10)

where Ri jkl is the Riemann curvature tensor. Following [30],
the spatial metric can be written as

dl2 =
(

−gαβ + g0αg0β

g00

)
dxαdxβ. (11)

Hence, a bit of algebra gives

dl2 =
(
dr2 + dz2 + r2dθ ′2

1 − ω2r2

c2

)
. (12)

Considering plane motion, one sets dz = 0 and, finally, one
obtains

dl = rdθ ′√
1 − ω2r2

c2

. (13)

Thus, by integrating Eq. (13), the length of the circumference
is easily written down as

l =
2π∫

0

rdθ ′√
1 − ω2r2

c2

= 2πr√
1 − ω2r2

c2

. (14)

Within the platform, the observer on the beam splitter expects
both rays to arrive in a time t = l

c . At this point, generally
one studies the spacetime metric

ds2 =
(
c2

)
dt2 − 2r2dθ ′ωdt − r2dθ ′2, (15)

and the path of the light rays is determined through the con-
dition of null geodesics ds2 = 0. This condition gives

dt = r2ωdθ ′ ± √
r4ω2dθ ′2 + c2r2dθ ′2

c2

=
r2ωdθ ′ ± r2dθ ′

√
ω2 + c2

r2

c2 , (16)

which is well approximated by

dt ≈ r2ωdθ ′ (ω ± c
r

)
c2 . (17)

Then, one gets the solutions

dt1 = r2ω + cr

c2

dt2 = r2ω − cr

c2 . (18)
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By integrating on the periphery of the disk and by observing
that dt1 > 0 for dθ ′ > 0 and dt2 > 0 for dθ ′ < 0, one gets

t1 = 2πr

c
+ 2πr2ω

c2

t2 = 2πr

c
− 2πr2ω

c2 . (19)

Then, the time difference is

t1 − t2 = 4πr2ω

c2 . (20)

4 Coordinate velocity of light

The analogy with radial motion gives simpler calculations.
In this case, the metric becomes

ds2 =
(

1 − ω2r2

c2

)
c2dt2 − dr2. (21)

Considering a photon which directed from the center O to a
point infinitely near, the condition of null geodesics ds = 0
permits to obtain that temporal coordinate required for this
as

cdt = dr√
1 − ω2r2

c2

. (22)

The photon on the rim corresponds to

ct =
r∫

0

dr√
1 − ω2r2

c2

(23)

If ωr
c � 1, one gets

t � r

c
+ ω2r3

6c3 + · · · (24)

for the coordinate time.
Therefore, if one considers the laboratory clock, the pho-

ton’s flight lasts longer than r
c . In fact, from

(
1 − ω2r2

c2

)
c2dt2 − dr2 = 0 (25)

one sees that the coordinate velocity of light decreases with
the distance from the center

dr

dt
= c

√
1 − ω2r2

c2 . (26)

Of course, this is an apparent effect due to time dilation along
the path but the local velocity of light is always c. Indeed,

dr

dτ
= dr

dt

dt

dτ
= c

√
1 − ω2r2

c2

1√
1 − ω2r2

c2

= c. (27)

5 Coriolis time delay

The Coriolis force has a general relativistic explanation. In
[32], a general relativistic analysis permits indeed to deter-
mine the force on an observer moving with a uniform velocity
in a coordinate system which rotates with a constant angular
velocity ω �= 0 as

−→
F = −m ∧ (−→ω ∧ −→r ) + 2m

(−→ω ∧ −→v )
1 − v′2

c2

, (28)

where −→v is the velocity of the observer in the rotating system,−→
v′ = −→v + (−→ω ∧ −→r )

is the total velocity of the observer
relative to the non-rotating system, and m is the total mass of
the observer in the rotating system, see [32] for details. For
non-relativistic velocities

(
v′ � c

)
Eq. (28) reduces to [32]

−→
F � −m ∧ (−→ω ∧ −→r ) − 2m

(−→ω ∧ −→v )
, (29)

where

−→
F c = −m ∧ (−→ω ∧ −→r )

(30)

is the and centrifugal force on the observer and

−→
F C = −2m ∧ (−→ω ∧ −→v )

(31)

is the Coriolis force. Now, one considers the local Lorentz
gauge of the rotating observer [33]. This is the gauge in which
the space-time is locally flat and the distance between any
two points is given simply by the difference in their coordi-
nates in the sense of Newtonian physics, [33]. In this gauge,
“gravitation” manifests itself by exerting “tidal forces” on
the masses. Equivalently we can say that there is a “gravita-
tional” potential [33]

V = −→v · (−→ω ∧ −→r )
, (32)

which generates the the Coriolis “tidal force” of Eq. (31), and
that the motion of the test mass is governed by the Newtonian
equation

−̈→r = − � V . (33)
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As we are considering a circular motion on the rotating plat-
form, we simply have V = vωr. Thus, one considers the
time dilatation in the weak field approximation by using a
well known formula which connects the Newtonian approx-
imation with the linearized GTR [30]

dτ =
√

(1 + 2V

c2 )dt �
(

1 + V

c2

)
dt =

(
1 + vωr

c2

)
dt.

(34)

The time delay between the beam splitter and the light rays
is

dτ1 =
(

1 + vωr

c2

)
dt

=
(

1 + vωr

c2

) rdθ

v
=

(
r

v
+ ωr2

c2

)
dθ

dτ2 =
(

1 − vωr

c2

)
dt

=
(

1 − vωr

c2

) rdθ

v
=

(
r

v
− ωr2

c2

)
dθ. (35)

The two Eq. (35) can be integrated as

τ1 =
2π∫

0

(
r

v
+ ωr2

c2

)
dθ = 2πr

v
+ 2πr2ω

c2

τ2 =
2π∫

0

(
r

v
− ωr2

c2

)
dθ = 2πr

v
− 2πr2ω

c2 . (36)

Thus,

τ1 − τ2 = 4πr2ω

c2 . (37)

6 Conclusions

In this paper some considerations about the Sagnac experi-
ment have been made. It has been shown that, by considering
the rotating metric and by imposing the cancellation of the
line element, one has an unexceptionable explanation only
from the mathematical point of view. In this way, it seems
that the speed of light varies by c ± ωr in one or the other
direction around the disk. Instead, as it happens for example
in Rindler or Schwarzschild metric, the apparent variation of
the speed of light is a consequence of time dilation. For this
reason, it seems that the physics of the experiment is clearer
by using the “gravitational” Coriolis time dilation.
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