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TRANSLATORS’ PREFACE

subject of two main lines of inquiry : there is

an endeavour to express its principles in logical
and concise form, and there is the struggle with ana-
Iytical difficulties which stand in the way of further
progress. In the midst of such problems it is easy
to forget the way in which the theory gradually grew
under the stimulus of physical experiment, and thus
to miss much of its meaning. It is this growth which
the present collection of papers is designed chiefly
to exhibit. In the earlier papers there are some
things which the authors would no doubt now ex-
press differently ; the later papers deal with problems
which are not by any means yet fully solved. At
the end we must confess that Relativity is still very
much of a problem—and therefore worthy of our
study.

The authors of the papers are still actively at
work on the subject—all save Minkowski. His paper
on ‘“ Space and Time” is a measure of the loss which
mathematical physics suffered by his untimely death.

The translations have been made from the text,
as published in a German collection, under the title
“Des Relativitatsprinzip” (Teuhner, 4th ed., 1922).

v
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THE Theory of Relativity is at the moment the
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The second paper by Lorentz is an exception to this.
It is reprinted from the original English version in
the Proceedings of the Amsterdam Academy. Some
minor changes have been made, and the notation has
been brought more nearly into conformity with that
employed in the other papers.
Ww. P.
B.

G. J.
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MICHELSON’S INTERFERENCE EXPERIMENT
By H. A, LORENTZ

very simple calculation, the time required by a ray

of light to travel from a point A to a point B and
back to A must vary when the two points together undergo
a displacement without carrying the ether with them. The
difference is, certainly, a magnitude of second order; but it
is sufficiently great to be detected by a sensitive interference
method.

The experiment was carried out by Michelson in 1881.*
His apparatus, a kind of interferometer, had two horizontal
arms, P and Q, of equal length and at right angles one to
the other. Of the two mutually interfering rays of light the
one passed along the arm P and back, the other along the
arm Q and back. The whole instrument, including the
gource of light and the arrangement for taking observations,
could be revolved about a vertical axis; and those two
positions come especially under consideration in which the
arm P or the arm Q lay as nearly as possible in the direction
of the Earth’s motion. On the basis of Fresnel’s theory it
was anticipated that when the apparatus was revolved from
one of these principal positions into the other there would
be a displacement of the interference fringes.

But of such a displacement—for the sake of brevity we
will call it the Maxwell displacement-—conditioned by the
change in the times of propagation, no trace was discovered,
and accordingly Michelson thought himself justified in con-
cluding that while the Earth is moving, the ether does not
remain at rest. The correctness of this inference was soon
brought into question, for by an oversight Michelson had

1. 3 S Maxwell first remarked and as follows from a

* Michelson, American Journal of Science, 22, 1881, p. 120.
3




4 MICHELSON’S EXPERIMENT

taken the change in the phase difference, which was to be
expected in accordance with the theory, at twice its proper
value. If we make the necessary correction, we arrive at
displacements no greater than might be masked by errors of
observation.

Subsequently Michelson * took up the investigation anew
in collaboration with Morley, enhancing the delicacy of the
experiment by causing each pencil to be reflected to and fro
between a number of mirrors, thereby obtaining the same
advantage as if the arms of the earlier apparatus had been
considerably lengthened. The mirrors were mounted on a
massive stone disc, floating on mercury, and therefore easily
revolved. Each pencil now had to travel a total distance of
22 meters, and on Fresnel's theory the displacement to be
expected in passing from the one principal position to the
other would be 0'4 of the distance between the interference
fringes. Nevertheless the rotation produced displacements
not exceeding 0 02 of this distance, and these might well be
ascribed to errors of observation.

Now, does this result entitle us to assume that the ether
takes part in the motion of the Earth, and therefore that the
theory of aberration given by Stokes is the correct one?
The difficulties which this theory encounters in explaining
aberration seem too great for me to share this opinion, and
I would rather try to remove the contradiction between
Fresnel’s theory and Michelson’s result. An hypothesis
which I brought forward some time ago,} and which, as I
subsequently learned, has also occurred to Fitzgerald,} enables
us to do this, The next paragraph will set out this hypo-
thesis.

2. To simplify matters we will assume that we are work-
ing with apparatus as employed in the first experiments, and
that in'the one principal position the arm P lies exactly in

* Michelson and Morley, American Journal of Science, 34, 1887, p. 338;
Phil. Mag., 24, 1887, p. 449.

+ Lorentz, Zittingsverslagen der Akad. v. Wet, te Amsterdam, 1892-93,
p. 74.



H. A. LORENTZ 5

the direction of the motion of the Earth. Let v be the
velocity of this motion, i the length of either arm, and hence
2L the path traversed by the rays of light. According to the
theory,* the turning of the apparatus through 90° causes the
time in which the one pencil travels along P and back to be
longer than the time which the other pencil takes to complete
its journey by
Liv®

¢’

There would be this same difference if the translation had no
influence and the arm P were longer than the arm Q by
34Lw?/c®.  Similarly with the second principal position.

Thus we see that the phase differences expected by the
theory might also arise if, when the apparatus is revolved, first
the one arm and then the other arm were the longer. It
follows that the phase differences can be compensated by
contrary changes of the dimensions.

If we assume the arm which lies in the direction of the
Earth’s motion to be shorter than the other by #1.v?%/¢?, and,
at the same time, that the translation has the influence which
Fresnel's theory allows it, then the result of the Michelson
experiment is explained completely.

Thus one would have to imagine that the motion of a
solid body (such as a brass rod or the stone disc employed in
the later experiments) through the resting ether exerts upon
the dimensions of that body an influence which varies accord-
ing to the orientation of the body with respect to the direction
of motion. If, for example, the dimensions parallel to this
direction were changed in the proportion of 1to 1 + §, and
those perpendicular in the proportion of 1 to 1 + ¢, then we
should have the equation

€ — 8 == -%Zz . . . . (1)
in which the value of one of the quantities & and e would
remain undetermined. It might be thate = 0, § = — }v?/c?
but also € = 4v%c?, 8 = 0, or e = }v?/c?, and & = - }v¥/ct

3. Surprising as this hypothesis may appear at first sight,

* Cf. Lorentz, Arch. Néerl., 2, 1887, pp. 168-176.
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yet we shall have to admit that it is by no means far-fetched,
as soon as we assume that molecular forces are also trans-
mitted through the ether, like the electric and magnetic forces
of which we are able at the present time to make this as-
sertion definitely. If they are so transmitted, the translation
will very probably affect the action between two molecules or
atoms in a manner resembling the attraction or repulsion be-
tween charged particles. Now, since the form and dimensions
of a solid body are ultimately conditioned by the intensity of
molecular actions, there cannot fail to be a change of di-
mensions as well.

From the theoretical side, therefore, there would be no
objection to the hypothesis. As regards its experimental
proof, we must first of all note that the lengthenings and
shortenings in question are extraordinarily small. We have
v?/c* = 10-%, and thus, if € = 0, the shortening of the one
diameter of the Earth would amount to about 65 cm.
The length of a meter rod would change, when moved from
one principal position into the other, by about ;37 micron.
One could hardly hope for success in trying to perceive such
small quantities except by means of an interference method.
‘We should have to operate with two perpendicular rods, and
with two mutually interfering pencils of light, allowing the
one to travel to and fro along the first rod, and the other
along the second rod. But in this way we should come back
once more to the Michelson experiment, and revolving the
apparatus we should perceive no displacement of the fringes.
Reversing a previous remark, we might now say that the dis-
placement produced by the alterations of length is com-
pensated by the Maxwell displacement.

4. It 1s worth noticing that we are led to just the same
changes of dimensions as have been presumed above if we,
firstly, without taking molecular movement into consider-
ation, assume that in a solid body left to itself the forces, at-
tractions or repulsions, acting upon any molecule maintain
one another in equilibrium, and, secondly—though to be sure,
there is no reason for doing so—if we apply to these molecular
forces the law which in another place* we deduced for

* Viz., § 23 of the book, “ Versuch einer Theorie der elektrischen und opti-
schen Erscheinungen in bewegten Korpern.”
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electrostatic actions. For if we now understand by S, and
S, not, as formerly, two systems of charged particles, but two
systems of molecules—the second at rest and the first moving
with a velocity » in the direction of the axis of z—between the
dimensions of which the relationship subsists as previously
stated ; and if we assume that in both systems the z com-
ponents of the forces are the same, while the ¥ and 2z com-

ponents differ from one another by the factor /1 - v*/¢* then
1t is clear that the forces in 8; will be in equilibrium when-
ever they aresoin S,. If therefore S, is the state of equilibrium
of a solid body at rest, then the molecules in 8, have precisely
those positions in which they can persist under the influence
of translation. The displacement would naturally bring about
this disposition of the molecules of its own accord, and
thus effect a shortening in the direction of motion in the

proportion of 1 to /1 - v*/¢?, in accordance with the formule
given in the above-mentioned paragraph. This leads to the
values

2
8="'%E.z, e =0

in agreement with (1).

In reality the molecules of a body are not at rest, but in
every ‘‘ state of equilibrium ” there 1s a stationary movement.
What influence this circumstance may have in the phe-
nomenon which we have been considering is a question which
we do not here touch upon ; in any case the experiments of
Michelson and Morley, in consequence of unavoidable errors

of observation, afford considerable latitude for the values of
o and e
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ELECTROMAGNETIC PHENOMENA IN A SYSTEM

MOVING WITH ANY VELOCITY LESS THAN
THAT OF LIGHT

By H. A, LORENTZ
§1. 7 I N\ HE problem of determining the influence exerted

on electric and optical phenomenaby a translation,

such as all systems have in virtue of the Earth’s
annual motion, admits of a comparatively simple solution, so
long as only those terms need be taken into account, which
are proportional to the first power of the ratio between the
velocity of translation v and the velocity of light ¢. Cases in
which quantities of the second order, i.e. of the order v%/c?,
may be perceptible, present more difficulties. The first ex-
ample of this kind is Michelson’s well-known interference-
experiment, the negative result of which has led Fitzgerald
and myself to the conclusion that the dimensions of solid
bodies are slightly altered by their motion through the ether.

Some new experiments, in which a second order effect was
sought for, have recently been published. Rayleigh* and
Brace ¥ have examined the question whether the Earth’s
motion may cause a body to become doubly refracting. At
first sight this might be expected, if the just mentioned
change of dimensions is admitted. Both physicists, how-
ever, have obtained a negative result.

In the second place Trouton and Noble { have endeavoured
to detect a turning couple acting on a charged condenser,
the plates of which make a certain angle with the direction of
translation. The theory of electrons, unless it be modified
by some new hypothesis, would undoubtedly require the

* Rayleigh, Phil. Mag. (6), 4, 1902, p. 678.

+ Brace, Phil. Mag. (6), 7, 1904, p. 317.

1 Trouton and Noble, Phil. Trans. Roy. Soc. Liond., A 202, 1903, p. 165.
11



12 ELECTROMAGNETIC PHENOMENA

existence of such a couple. In order to see this, it will suffice
to consider a condenser with ether as dielectric. It may be
shown that in every electrostatic system, moving with a
velocity v,* there is a certain amount of ‘‘electromagnetic
momentum.” If we represent this, in direction and magni-
tude, by a vector G, the couple in question will be determined
by the vector product ¥

[G.v] . : : : . @

Now, if the axis of # is chosen perpendicular to the con-
denser plates, the velocity v having any direction we like;
and if U is the energy of the condenser, calculated in the
ordinary way, the components of G are given I by the follow-
ing formulee, which are exact up to the first order,

va = ‘Q‘QE‘E“I@Q, G.'l] == %gvy’ GZ = O‘

Substituting these values in (1), we get for the compon-
ents of the couple, up to terms of the second order,
202U

02 'vy'vz, - 02 'Ux'vz, O.

These expressions show that the axis of the couple lies in
the plane of the plates, perpendicular to the translation. If
a i1s the angle between the velocity and the normal to the
plates, the moment of the couple will be U(v/c)® sin 2a; it
tends to turn the condenser into such a position that the
plates are parallel to the Earth’s motion.

In the apparatus of Trouton and Noble the condenser was
fixed to the beam of a torsion-balance, sufficiently delicate to
be deflected by a couple of the above order of magnitude.
No effect could however be observed.

§ 2. The experiments of which I have spoken are not the
only reason for which a new examination of the problems
connected with the motion of the Earth is desirable. Poin-

* A vector will be denoted by a Clarendon letter, its magnitude by the cor-
responding Latin letter,

+ See my article : ‘* Weiterbildung der Maxwell’schen Theorie. Electron-
entheorie,” Mathem. Encyclopidie, V, 14, § 21, a. (This article will be quoted



son’s negative result, the introduction of a new hypothesis
has been required, and that the same necessity may occur
each time new facts will be brought to light. Surely this
course of inventing special hypotheses for each new experi-
mental result is somewhat artificial. It would be more
gatisfactory if it were possible to show by means of certain
fundamental assumptions and without neglecting terms of
one order of magnitude or another, that many electromagnetic
actions are entirely independent of the motion of the system.
Some years ago, I already sought to frame a theory of this
kind.t 1 believe it is now possible to treat the subject with
a better result. The only restriction as regards the velocity
will be that it be less than that of light.

§ 3. I shall start from the fundamental equations of the
theory of electrons. ILet D be the dielectric displacement in
the ether, H the magnetic force, p the volume-density of the
charge of an electron, v the velocity of a point of such a
particle, and F the ponderomotive force, i.e. the force,
reckoned per unit charge, which is exerted by the ether on a
volume-element of an electron. Then, if we use a fixed
system of co-ordinates,

divD = p,divH = 0,
curl H = 1 DD )
_ 12)[1 a . . 9
curl D cbt ,
F = D + E [V. H]. J

I shall now suppose that the system as a whole moves in
the direction of 2 with a constant velocity v, and I shall
denote by u any velocity which a point of an electron may
have in addition to this, so that

Ve = UV + Up, 'Uy == ’uy, Vz = Uy

¥ Poincaré, Rapports du Congrés de physique de 1900, Paris, 1, pp. 22, 23,

+ Lorentz, Zittingsverslag Akad. v. Wet,, 7, 1899, p. 507; Amsterdam
Proo., 1898-99, p. 427.

t*“ME,’ §2.
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14 ELECTROMAGNETIC PHENOMENA

If the equations (2) are at the same time referred to axes
moving with the system, they become

divD =p, divH =0,
o0H. H, 1<g

e a——— T e

dy 2 ¢

dHs, oH. l(b a)

Y —3—5—-—052-%5Dy+ Py
>H, oM. 1(3 2.
e\t Ve D: + pus,
0D,  ¥Dy, l(a a)

S " e - o\a T Ygp)He
Do _aD: 10> 2)g

dz . e\t de/ Y

D, D, 1(3 a)

dz  dy ¢\t

Fa: = D:L + %(usz - quy),

F. =D, + %’UHy + %(’UaxHy - uyHm).

§ 4. We shall further transform these formul® by a change
of variables. Putting

c?

el NN €)

ca

and understanding by ! another numerical quantity, to be
determined further on, I take as new independent variables

x =Blx, y =1y, 2 =1z . : . (4)
, 1 v
I = Bt - Bl-c';:,a?, . . . . (5)

and I define two new vectors D’ and H’ by the formule
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D', = 3De, D'y = B(Dy - ’H,), D, = ﬁ(Dz + °H,),

H, = 3H,, Hy = 5(H, + ?D), 7% = 5(m, - ’n,),

for which, on account of (3), we may also write

As to the coefficient [, it is to be considered as a function
of v, whose value is 1 for v = 0, and which, for small values
of v, differs from unity no more than by a quantity of the
second order.

The variable ¢ may be called the ¢ local time” ; indeed,
for 8 =1, I = 11t becomes identical with what I formerly
denoted by this name.

1f, finally, we put

%W=y .M

By, = 'll/’a;, B%y = u’y, B’u/z = ’M,z, . . (8)

these latter quantities being considered as the components of
a new vector u’, the equations take the following form :—

aiv D' = (1 - 242)g,div H' = 0,

curl’ H' = l(b;;, + pu ) : )

cwl’ D' = - %‘ Da?’ ’ j
Fao= 14D, + %(u'yH'z ~ o H) + E.;(u'yD'y+ WD), |
FyﬂE{Dy-i-i'(quw—utz)— YDy, . (10)
Fz”“’B{Dz’*'lc\%mHy wyH'e) - u'aD'.

| J
The meaning of the symbols div’ and curl’ in (9) is similar



16 ELECTROMAGNETIC PHENOMENA

to that of div and curl in (2); only, the differentiations with
respect to 2, y, 2z are to be replaced by the corresponding
ones with respect to z', ¥, 2.

§ 5. The equations (9) lead to the conclusion that the
vectors D’ and H' may be represented by means of a scalar
potential ¢’ and a vector potential A. These potentials
satisfy the equations *

1 2% ,

v’2¢’ - 02 bt:g = P . . . (11)

[ 1 bQA' 1 ! !’

2AT LD - -

VA - g P (12)

and in terms of them D’ and H' are given by
D = - bl-b—’i-- grad ¢ + Jgrad’ A . (13)
H = curl’ A’ : : : . (14)

Th g : otion f 02 Bk o?

e symbol 7% is an abbreviation for - + e + 57

and grad’ ¢’ denotes a vector whose components are

Xp g
@’ dy” ¥

The expression grad’ A’y has a similar meaning.

In order to obtain the solution of (11) and (12) in a
simple form, we may take z’, ¢, 2’ as the co-ordinates of a
point P’ in a space S, and ascribe to this point, for each
value of ¢/, the values of o/, u’, ¢', A’, belonging to the corre-
sponding point P (z, y, 2) of the electromagnetic system.
For a definite value ¢’ of the fourth independent variable, the
potentials ¢’ and A" at the point P of the system or at the
corresponding point P’ of the space §', are given by

¢ =pBlas . L
A = %J[",“'] ... (16)

‘M.E.,” 8§ 4 and 10. + Ibid., §§ 5 and 10.
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Here dS' is an element of the space ', 7" its distance from
P’, and the brackets serve to denote the quantity p’' and the
vector p'u’ such as they are in the element dS’, for the value
t' — r'/c of the fourth independent variable.

Instead of (15) and (16) we may also write, taking into
account (4) and (7),

¢ = 4J[P]ds. ... an

A'..—-—X[Pf']s e 1)

4mre

the integrations now extending over the electromagnetic
system itself. It should be kept in mind that in these
formulee 7’ does not denote the distance between the element
dS and the point (z, ¢, z) for which the calculation is to be
performed. If the element lies at the pomnt (z,, v, 2,), we
must take

= /B - z) + (y - y1)* + (2 - )"

It is also to be remembered that, if we wish to determine
¢ and A’ for the instant at which the local time in P is ¢, we
must take p and pu’, such as they are in the element dS at
the instant at which the local time of that element is ¢’ — 7'/c.

§ 6. Tt will suffice for our purpose to consider two special
cases. The first is that of an electrostatic system, ie. a
system having no other motion but the translation with the
velocity v. In this case u’ = 0, and therefore, by (12), A" = 0,
Also, ¢ is independent of ¢, so that the equations (11), (13),
and (14) reduce to

Vi = - p
"= -~ grad ¢ : . . (19)
H =0

I

After having determined the vector D’ by means of these
equations, we know also the ponderomotive force acting on
electrons that belong to the system. For these the formulee
(10) become, since u’ = 0,

I 12

= gDwFe=3gDs . . (20)

F. = D'z, F
: B
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The result may be put in a simple form if we compare the
moving system 3, with which we are concerned, to another
electrostatic system 3" which remains at rest, and into which
2, is changed if the dimensions parallel to the axis of z are
multiplied by B!, and the dimensions which have the direction
of y or that of z, by l—a deformation for which (8!, [,7) is an
appropriate symbol. In this new system, which we may
suppose to be placed in the above-mentioned space S', we
shall give to the density the value p’, determined by (7), so
that the charges of corresponding elements of volume and of
corresponding electrons are the same in 3 and 3. Then we
shall obtain the forces acting on the electrons of the moving
system 3, if we first determine the corresponding forces in
2/, and next multiply their components in the direction of
the axis of # by %, and their components perpendicular to

2
that axis by % This is conveniently expressed by the
formula

F(S) = (52, g g)F(E') N )

It is further to be remarked that, after having found D’ by
(19), we can easily calculate the electromagnetic momentum

in the moving system, or rather its component in the
direction of the motion. Indeed, the formula

G-1 j (D . H]dS
shows that

Go = %I(Dyﬂz - D.H,)ds.

Therefore, by (6), since H = 0

B2t

G = = j(Dy'z + D/2dS = %?j(py'z + D./2dS.  (22)

§ 7. Our second special case is that of a particle having
an electric moment, i.e. a small space S, with a total charge

jpdS = 0, but with such a distribution of density that the
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integrals jpde, jpde, IpzdS have values differing from O.

Let & u, ¢ be the co-ordinates, taken relatively to a fixed
point A of the particle, which may be called its centre, and
let the electric moment be defined as a vector P whose com-
ponents are

P, = (p£dS, P, = fpnds, P, = jpgds .. (@3)
Then :
o

e (ouads, 27 -_—j uyds, 2% = jpuzds . (24)

Of course, if &, 7, { are treated as infinitely small, u,, u,, «,
must be so likewise. We shall neglect squares and products
of these six quantities,

We shall now apply the equation (17) to the determination
of the scalar potential ¢’ for an exterior point P (z, ¥, 2), at a
finite distance from the polarized particle, and for the instant
at which the local time of this point has some definite value
. In doing so, we shall give the symbol [p], which, in (17),
relates to the instamt at which the local time in dSi1st - »'/e,
a slightly different meaning. Distinguishing by 7', the value
of r' for the centre A, we shall understand by [p] the value
of the density existing in the element dS at the point
(¢, 1, &), at the instant ¢, at which the local time of A 1is
t' - r/e

It may be seen from (5) that this instant precedes that
for which we have to take the numerator in (17) by

r
gtk . B

- 0€ B( o ?.’_.)
le Bc“' * dx +nby t 5%

units of time. In this last expression we may put for the
differential coefficients their values at the point A.
In (17) we have now to replace [p] by

(0] + B ] + B8 + o + D) 2] @)

d . .
where [b': ] relates again to the time ¢, Now, the value of ¢

for which the calculations are to be performed having been
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chosen, this time ¢, will be a function of the co-ordinates =,
y, z of the exterior point P. The value of [p] will therefore
depend on these co-ordinates in such a way that

) | BT

dx lc dxldt )
by which (25) becomes
2>[;0] 2Pl E[g]
] + Bz # l: baz bg/ bz ) |

Again, if henceforth we understand by »* what has above

been called 7'y, the factor % must be replaced by

A HOREORE-O)

so that after all, in the integral (17), the element dS is
multiplied by

Q]+%[%]_if[p]_ 2 nlp] _ 2 &lpl

r c*r' | ot X 7 dy 1’ 2 r

This is simpler than the primitive form, because neither
7', nor the time for which the quantities enclosed in brackets
are to be taken, depend on z, y, 2. Using (23) and re-

membering that f pdS = 0, we get

ﬁz[z&c] 41,{3 (o] L 2 [P, 2 LE{]},

¢ = dpcir’L dt dz 7 dy 2 7

a formula In which all the enclosed quantities are to be
taken for the instant at which the local time of the centre of
the particle 1s ¢’ — #/e.

We sshall conclude these calculations by introducing a new
vector P', whose components are

Py =Py, Py=1P, Po=1P, . . (26)

passing at the same time to 2, %', 2/, ¢’ as independent vari-
ables. The final result is

v YP] 1 {a [PX] , 2 [P, __2}_[_1__)_1}

¢ = dpcty’ ot dploz’ ¥ dy. 0w 7
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finitely small vector u’. Having regard to (8), (24), (26), and
), I find

oo 1 AP

ey D

The field produced by the polarized particle is now wholly
determined. The formula (13) leads to

1 [P] d [PT] d [P)] a[P’z]}m)

D’::—' 7 e 7 7 7 7
drc? 2t +4wgrd{m r DJ y T r

and the vector H' is given by (14). 'We may further use the
equations (20), instead of the original formule (10), if we
wish to consider the forces exerted by the polarized particle
on a similar one placed at some distance. Indeed, in the
second particle, as well as in the first, the velocities u may be
held to be infinitely small.

It 18 to be remarked that the formule for a system
without translation are implied in what precedes. For
such a system the quantities with accents become identical
to the corresponding ones without accents; also 8 = 1 and
! =1. The components of (27) are at the same time those
of the electric force which is exerted by one polarized particle
on another.

§ 8. Thus far we have used only the fundamental
equations without any new assumptions. I shall now suppose
that the electrons, which I take to be spheres of radius R in
the state of rest, have their dimensions changed by the effect
of a translation, the dimensions wn the direction of motion
becoming Bl times and those in perpendicular directions 1
times smaller.

In this deformation, which may be represented by
( Bl~l, ; , ll), each element of volume is understood to preserve
its charge.

Our assumption amounts to saying that in an electro-
static system 3, moving with a velocity v, all electrons are
flattened ellipsoids with their smaller axes in the direction of
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motion. If now, in order to apply the theorem of § 6, we
subject the system to the deformation (8, I, ), we shall
have again spherical electrons of radius R. Hence, if we
alter the relative position of the centres of the electrons in 3
by applying the deformation (BI, 1, l), and if, in the points
thus obtained, we place the centres of electrons that remain
at rest, we shall get a system, identical to the imaginary
system 2/, of which we have spoken in § 6. The forces in
this system and those in 3 will bear to each other the rela-
tion expressed by (21).

In the second place I shall suppose that the forces be-
tween uncharged particles, as well as those between such
particles and electrons, are influenced by a translation in
quite the same way as the electric forces in an electrostatic
system. In other terms, whatever be the nature of the
particles composing a ponderable body, so long as they do
not move relatively to each other, we shall have between the
forces acting in a system (2') without, and the same system
(2) with a translation, the relation specified in (21), if, as re-
gards the relative position of the particles, 3’ is got from 3
by the deformation (B, I, 1), or 3 from 3’ by the deformation

G 1 7)

We see by this that, as soon as the resulting force is zero
for a particle in 3/, the same must be true for the correspond-
ing particle in 3. Consequently, if, neglecting the effects of
molecular motion, we suppose each particle of a solid body
to be in equilibrium under the action of the attractions and
repulsions exerted by its neighbours, and if we take for
granted that thereis but one configuration of equilibrium, we
may draw the conclusion that the system 2, if the velocity v
is imparted to it, will of itself change into the system 3. In
other terms, the translation will produce the deformation

(a7 1)

The case of molecular motion will be considered in § 12.
It will easily be seen that the hypothesis which was
formerly advanced in connexion with Michelson’s experi-
ment, is implied in what has now been said. However,
the present hypothesis is more general, because the only
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limitation imposed on the motion is that its velocity be less
than that of light.

§ 9. We are now in a position to calculate the electro-
magnetic momentum of a single electron. For simplicity’s
sake I shall suppose the charge ¢ to be uniformly distributed
over the surface, so long as the electron remains at rest.
Then a distribution of the same kind will exist in the system

2’ with which we are concerned in the last integral of (22).
Hence |

y , 2 €2 %’r‘ e2
2 2 L/ = = 9 AR Rl
.{(D y + D%)dS SID as 6n)rt  67R’
R

G b E !B ll’

It must be observed that the product 8l is a function of v
and that, for reasons of symmetry, the vector G has the
direction of the translation. In general, representing by v
the velocity of this motion, we have the vector equation

G-.% gl 28
= é;&é-ﬁﬂv . . . . ( )

Now, every change in the motion of a system will entail
a corresponding change in the electromagnetic momentum

and will therefore require a certain force, which is given in
direction and magnitude by

dG
F = "‘C‘i“z . . . . (29)

Strictly speaking, the formula (28) may only be applied
in the case of a uniform rectilinear translation. On account
of this circumstance—though (29) is always true-—the theory
of rapidly varying motions of an electron becomes very com-
plicated, the more so, because the hypothesis of § 8 would
imply that the direction and amount of the deformation are
continually changing. It is, indeed, hardly probable that the
form of the electron will be determined solely by the velocity
existing at the moment considered.

Nevertheless, provided the changes in the state of motion
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be sufficiently slow, we shall get a satisfactory approximation
by using (28) at every instant. The application of (29) to
such a quasi-stationary translation, as it has been called by
Abraham,* is a very simple matter. Let, at a certain instant,
a, be the acceleration in the direction of the path, and a, the
acceleration perpendicular to it. Then the force F will con-
sist of two components, having the directions of these acce-
lerations and which are given by

e d(Blv)

32
M= R and m, = mﬁl :

if
(30)

Hence, in phenomena in which there is an acceleration
in the direction of motion, the electron behaves as if 1t
had a mass m,; in those in which the acceleration 18 normal
to the path, as if the mass were m,. These quantities m,
and ms may therefore properly be called the ‘ longitudinal ™
and ‘‘ transverse "’ electromagnetic masses of the electron. I
shall suppose that there is no other, no “‘true” or
“material ’ mass.

Since B and [ differ from unity by quantities of the order
v¥/c?, we find for very small velocities

62

67 R

This is the mass with which we are concerned, if there
are small vibratory motions of the electrons in a system
without translation. If, on the contrary, motions of this
kind are going on in a body moving with the velocity v in the
direction of the axis of 2, we shall have to reckon with the
mass m,, as given by (80), if we consider the vibrations
parallel to that axis, and with the mass m,, if we treat of
those that are parallel to OY or OZ. Therefore, in short
terms, referring by the index 3 to a moving system and by
3’ to one that remains at rest,

My = Ny =

m(2)=(d(§;”), Al Bz)m(z') .. (8D

* Abraham, Wied. Ann,, 10, 1903, p. 105.
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§ 10. We can now proceed to examine the influence of the
Earth’s motion on optical phenomena in a system of trans-
parent bodies. In discussing this problem we shall fix our
attention on the variable electric moments in the particles or
“ agtoms”’ of the system. To these moments we may apply
what has been said in § 7. For the sake of simplicity we
shall suppose that, in each particle, the charge is concentrated
in a certain number of separate electrons, and that the
“elastic”’ forces that act on one of these, and, conjointly
with the electric forces, determine its motion, have their
origin within the bounds of the same atom.

I shall show that, if we start from any given state of
motion in a system without translation, we may deduce from
it a corresponding state that can exist in the same system
after a translation has been imparted to it, the kind of corre-
spondence being as specified in what follows.

(@) Liet A';, A';, A';, etc.,, be the centres of the particles in
the system without translation (3'); neglecting molecular
motions we shall agsume these points to remain at rest. The
system of points A, A,, A;, etc., formed by the centres of the
particles in the moving system 3, is obtained from A'}, A’,,

A’;, ete., by means of a deformation (/{%Z’ %, %) According to

what has been said in § 8, the centres will of themselves take
these positions A’;, A',, A';, ete., if originally, before there
was a translation, they occupied the positions A, A,, A,
ete.

‘We may conceive any point P’ in the space of the
system 3 to be displaced by the above deformation, so that
a definite point P of 3 corresponds to it. For two corre-
sponding points P’ and P we shall define corresponding
instants, the one belonging to P’, the other to P, by stating
that the true time at the first instant is equal to the local
time, as determined by (5) for the point P, at the second
instant. By corresponding times for two corresponding
particles we shall understand times that may be said to
correspond, if we fix our attention on the centres A’ and A of
these particles.

(b) As regards the interior state of the atoms, we shall as-
sume that the configuration of a particle A in 3 at a certain
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time may be derived by means of the deformation (F:—l’ zl~, ;—)
from the configuration of the corresponding particle in %/,
such as 1t is at the corresponding instant. In so far as
this assumption relates to the form of the electrons them-
selves, 1t is implied in the first hypothesis of § 8.

Obviously, if we start from a state really existing in the
system 3, we have now completely defined a state of the
moving system 3. The question remains, however, whether
this state will likewise be a possible one.

In order to judge of this, we may remark in the first place
that the electric moments which we have supposed to exist
in the moving system and which we shall denote by P, will
be certain definite functions of the co-ordinates z, ¥, # of the
centres A of the particles, or, as we shall say, of the co-
ordinates of the particles themselves, and of the time ¢ The
equations which express the relations between P on one hand
and z,¥, 2, ¢t on the other, may be replaced by other equations
containing the vectors P’ defined by (26) and the quantities
x',y, 2, t defined by (4) and (5). Now, by the above as-
sumptions @ and b, if in a particle A of the moving system,
whose co-ordinates are z, ¥, 2, we find an electric moment P
at the time ¢, or at the local time ¢, the vector P’ given by
(26) will be the moment which exists in the other system at
the true time ¢ in a particle whose co-ordinates are z', ¥/, 7.
It appears in this way that the equations between P', &', ¥/,
Z', t" are the same for both systems, the difference being only
this, that for the system 2 without translation these symbols
indicate the moment, the co-ordinates, and the true time,
whereas their meaning is different for the moving system, P’,
z', 1y, 2', t' being here related to the moment P, the so-ordin-
ates z, ¥, z and the general time ¢ in the manner expressed
by (26), (4), and (5).

It has already been stated that the equation (27) applies
to both systems. The vector D’ will therefore be the same
in 3/ and 3, provided we always compare corresponding
places and times. However, this vector has not the same
meaning in the two cases. In 2’ it represents the electric
force, in 3 it is related to this force in the way expressed by
(20). We may therefore conclude that the ponderomotive
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forces acting, in 3, and in ¥/, on corresponding particles at
corresponding instants, bear to each other the relation deter-
mined by (21). In virtue of our assumption (b), taken in con-
nexion with the second hypothesis of § 8, the same relation
will exist between the “ elastic” forces; consequently, the
formula (21) may also be regarded as indicating the relation
between the total forces, acting on corresponding electrons,
at corresponding instants.

It is clear that the state we have supposed to exist in the
moving system will really be possible if, in 3, and =', the pro-
ducts of the mass m and the acceleration of an electron are
to each other in the same relation as the forces, i.e. if

ma(2) :—( ' B B)m a(3) . : . (32)
Now, we have for the accelerations
a® - (g g 5)a®. . . (Y

as may be deduced from (4) and (5), and combining this with
(32), we find for the masses

m(z) = (183Z9 Bl9 Bl)m(zl)-

If this is compared with (31), it appears that, whatever be
the value of I, the condition is always satisfied, as regards the
masses with which we have to reckon when we consider
vibrations perpendicular to the translation. The only con-
dition we have to impose on [ is therefore

d(Blv) - A,
But, on account of (3)
d(Bv) 3
T = B
so that we must put
a = 0, I = const.
dv

The value of the constant must be unity, because we know
already that, for v = 0,7 = 1.
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We are therefore led to suppose that the influence of a
translation on the dimensions (of the separate electrons and
of a ponderable body as a whole) is confined to those that
have the direction of the motion, these becoming (B times
smaller than they are in the state of rest. 1f this hypothesis
is added to those we have already made, we may be sure that
two states, the one in the moving system, the other in the
same system while at rest, corresponding as stated above,
may both be possible. Moreover, this correspondence is not
limited to the electric moments of the particles. In corre-
sponding points that are situated either in the ether between
the particles, or in that surrounding the ponderable bodies,
we shall find at corresponding times the same vector D' and,
as is easily shown, the same vector H. We may sum up by
saying : If, in the system without translation, there is a state
of motion in which, at a definite place, the components of P,
D, and H are certain functions of the time, then the same
system after it has been put in motion (and thereby deformed)
can be the seat of a state of motion in which, at the corre-
sponding place, the components of P, D', and H' are the same
functions of the local time.

There is one point which requires further consideration.
The values of the masses m, and m, having been deduced
from the theory of quasi-stationary motion, the question
arises, whether we are justified in reckoning with them in
the case of the rapid vibrations of light. Now it is found on
closer examination that the motion of an electron may be
treated as quasi-stationary if it changes very little during the
time a light-wave takes to travel over a distance equal to the
diameter. This condition is fulfilled in optical phenomena,
because the diameter of an electron is extremely small in com-
parison with the wave-length.

§ 11. It is easily seen that the proposed theory can
account for a large number of facts.

Let us take in the first place the caseof a system without
translation, in some parts of which we have continually
P=0,D=0,H=0. Then, in the corresponding state for
the moyving system, we shall have in corresponding parts (or,
as we may say, in the same parts of the deformed system)
P =0, D=0 H = 0. These equations implying P = 0,
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D =0, H = 0, as is seen by (26) and (6), it appears that those
parts which are dark while the system is at rest, will remain
so after it has been put in motion. It will therefore be im-
possible to detect an influence of the Earth’s motion on any
optical experiment, made with a terrestrial source of light,
in which the geometrical distribution of light and darkness is
observed. Many experiments on interference and diffraction
belong to this class.

In the second place, if, in two points of a system, rays of
light of the same state of polarization are propagated in the
sarae direction, the ratio between the amplitudes in these
points may be shown not to be altered by a translation.
The latter remark applies to those experiments in which the
intensities in adjacent parts of the field of view are compared.

The above conclusions confirm the results which I formerly
obtained by a similar train of reasoning, in which, however,
the terms of the second order were neglected. They also
contain an explanation of Michelson’s negative result, more
general than the one previously given, and of a somewhat
different form ; and they show why Rayleigh and Brace could
find no signs of double refraction produced by the motion of
the Earth.

As to the experiments of Trouton and Noble, their
negative result becomes at once clear, if we admit the hypo-
theses of § 8. It may be inferred from these and from our
last assumption (§ 10) that the only effect of the translation
must have been a contraction of the whole system of elec-
trons and other particles constituting the charged condenser
and the beam and thread of the torsion-balance. Such a
contraction does not give rise to a sensible change of
direction.

It need hardly be said that the present theory is put for-
ward with all due reserve. Though it seems to me that it
can account for all well-established facts, it leads to some
consequences that cannot as yet be put to the test of experi-
ment. One of these is that the result of Michelson’s experi-
ment must remain negative, if the interfering rays of light
are made to travel through some ponderable transparent
body.

Our assumption about the contraction of the electrons
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cannot in itself be pronounced to be either plausible or in-
admissible. What we know about the nature of electrons
is very little, and the only means of pushing our way farther
will be to test such hypotheses as I have here made. Of
course, there will be difficulties, e.g. as soon as we come to
consider the rotation of electrons. Perhaps we shall have to
suppose that in those phenomena in which, if there is no
translation, spherical electrons rotate about a diameter, the
points of the electrons in the moving system will describe
elliptic paths, corresponding, in the manner specified in § 10,
to the circular paths described in the other case.

§ 12. There remain to be said a few words about molecular
motion. We may conceive that bodies in which this has
a sensible influence or even predominates, undergo the same
deformation as the systems of particles of constant relative
position of which alone we have spoken till now. Indeed, in
two systems of molecules 3’ and =, the first without and the
second with a translation, we may imagine molecular motions
corresponding to each other in such a way that, if a particle
in 3 has a certain position at a definite instant, a particle in
3 occupies at the corresponding instant the corresponding
position. This being assumed, we may use the relation (33)
between the accelerations in all those cases in which the
velocity of molecular motion is very small as compared with v.
In these cases the molecular forces may be taken to be deter-
mined by the relative positions, independently of the velocities
of molecular motion. If, finally, we suppose these forces to
be limited to such small distances that, for particles acting
on each other, the difference of local times may be neglected,
one of the particles, together with those which lie In its
sphere of attraction or repulsion, will form a system which
undergoes the often mentioned deformation. In virtue of
the second hypothesis of § 8 we may therefore apply to the
resulting molecular force acting on a particle, the equation
(21). Consequently, the proper relation between the forces
and the accelerations will exist in the two cases, if we sup-
pose that the masses of all particles are influenced by a trans-
lation to the same degree as the electromagnetic masses of the
electrons.

§ 13. The values (30), which I have found for the longi-
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tudinal and transverse masses of an electron, expressed in
terms of its velocity, are not the same as those that had
been previously obtained by Abraham. The ground for this
difference is to be sought solely in the circumstance that, in
his theory, the electrons are treated as spheres of invariable
dimensions. Now, as regards the transverse mass, the re-
sults of Abraham have been confirmed in a most remarkable
way by Kaufmann’s measurements of the deflexion of
radium-rays in electric and magnetic fields. Therefore, if
there is not to be a most serious objection to the theory I
have now proposed, it must be possible to show that those
measurements agree with my values nearly as well as with
those of Abraham.

I shall begin by discussing two of the series of measure-
ments published by Kaufmann * in 1902. From each series
he has deduced two quantities % and &, the ‘“reduced ”

electric and magnetic deflexions, which are related as follows
to the ratio vy = v/c :—

_ .8 _
v=kl YW =gm - - - 89

Here 4 () 18 such a function, that the transverse mass is
given by
L L (35)
2_4'671-02]34“7’ ‘ ] '

whereas %, and %, are constant in each series.

It appears from the second of the formule (30) that my
theory leads likewise to an equation of the form (35); only
Abraham’s function ¥ (y) must be replaced by

40 _ 44 _ . »-u
3 - 3(1 'Y) %

Hence, my theory requires that, if we substitute this
value for ¢ (y) in (34), these equations shall still hold. Of
course, in seeking to obtain a good agreement, we shall be
justified in giving to %, and 4 other values than those of

Kaufmann, and in taking for every measurement a proper

value of the velocity v, or of the ratioy. Writing sk, 3 ks

* Kaufmann, Physik, Zeitschr., 4, 1902, p. 55.
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and ' for the new values, we may put (34) in the form

vy = Sklg : : : . (36)
and

oy =Y, " ¢
1 -7 = Ve : . (87)
Kaufmann has tested his equations by choosing for %,
such a value that, calculating v and %, by means of (34), he
obtained values for this latter number which, as well as might
be, remained constant in each series. This constancy was
the proof of a sufficient agreement.
I have followed a similar method, using, however, some
of the numbers calculated by Kaufmann. I have computed
for each measurement the value of the expression

Ky = (1 - 2)g(ydky, . . . (38

that may be got from (37) combined with the second of the
equations (34). The values of Y () and %, have been taken
from Kaufmann’s tables, and for 4 I have substituted the
value he has found for v, multiplied by s, the latter coefficient
being chosen with a view to obtaining a good constancy of
(38). The results are contained in the tables on opposite
page, corresponding to the Tables ITI and IV in Kaufmann’s
paper.

The constancy of %', is secn to come out no less satis-
factorily than that of %,, the more so as in each case the value
of s has been determined by means of only two mecasure-
ments. The coefficient has been so chosen that for these two
observations, which were in Table III the first and the last
but one, and 1n Table IV the first and the last, the values of
%’y should be proportional to those of %,.

I shall next consider two series from a later publication
by Kaufmann,* which have been calculated by Runge t by
means of the method of least squares, the coefficients #;
and %k, having been determined in such a way that the
values of %, calculated, for each observed ¢, from Kaufmann’s
equations (34), agree as closely as may be with the observed
values of .

* Kaufmann, Gott. Nachr, Math, phys, Kl., 1908, p. 90.
+ Runge, ibid., p. 326,
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ITI, s = 0-933.

Y. W) kg ¥ iy
0-851 2147 1721 0:794 2:246
0766 1'86 1-736 0715 2:258
0727 1:78 1725 0:678 2:256
0-6615 1-66 1727 0617 2:256
0°6075 1-595 1 655 0567 2:175

IV. s = 0954,
¥. Yy). k. v ks
0'963 328 8:12 0-919 1036
0°949 2-86 799 0905 9-70
0-933 2'73 746 0-890 9-28
0883 231 8:32 0-842 10°36
0860 2:195 8:09 0-820 10'15
0-830 2:06 813 0-792 10°23
0-801 1-96 813 0-764 10-28
0777 1-89 804 0-741 10-20
0-752 183 8:02 0-717 10-22
0732 1-785 797 0698 10-18

I have determined by the same condition, likewise using
the method of least squares, the constants @ and & in the

formula
7 = af’ + b,

which may be deduced from my equations (86) and (37).
Knowing @ and b, I find 4 for each measurement by means
of the relation

~ ¢
7=y

For two plates on which Kaufmann had measured the
electric and magnetic deflexions, the results are as follows
(p. 84), the deflexions being given in centimetres.

I have not found time for calculating the other tables in
Kaufmann’s paper. As they begin, like the table for Plate
15 (next page) with a rather large negative difference be-
tween the values of » which have been deduced from the
observations and calculated by Runge, we may expect a satis-
factory agreement with my formulss,
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Plate No. 15, a = 0-06489, b = 0+3039.

7
¢ Calculated - Calculated . Calculated by

Observed. by R. Diff. by L. Diff, R. L.
0-1495 0-0388 00404 - 16 0:0400 - 12 0987 0951
0199 00548 00550 - 2 0-0552 -~ 4 0-9%4 0-918
02475 0:0716 0-0710 + 6 0-0715 4+ 1 0-930 0-881
0+296 00896 0-0887 4+ 9 0-0895 + 1 0889 0-842
0 3435 0-1080 0-1081 - 1 0-1090 - 10 0-847 0803
0:391 0-1290 01297 - 7 0:1805 - 15 0-804 0-763
0437 01524 0-1527 - 3 0-1532 ~ 8 0-763 0727
04 25 0-1788 01777 + 11 0-1777 + 11 0124 0692
05265 0:2033 0-2039 - 6 02033 0 0°688 0660

Plate No. 1. a = 0-05867, b = 0-2591.
]

¢ Calculated . Calculated . Calculated by

Observed. by R. Diff. by L. Diff, R. L.
01495 0-0404 00388 + 16 0-0379 4 25 0:990 0954
0-199 00529 00527 + 2 00522 + 7 0-969 0923
0247 00678 00675 + 3 0-0674 + 4 0+939 0-888
0296 0-0834 0-0842 - 8 0-0644 - 10 0-902 0849
0-8435 01019 0-1022 - 3 01026 - 7 0-862 0811
0-891 01219 01222 - 3 0°1226 - 7 0822 0773
0-487 0°1429 01434 - 5 0°1487 - 8 0-782 0°736
04825 01660 01665 - 5 01664 - 4 0744 0°702
0:6265 01916 01906 + 10 01902 + 14 0709 0671
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ally understood at the present time—when applied

to moving bodies, leads to asymmetries which do not
appear to be inherent in the phenomena. Take, for example,
the reciprocal electrodynamic action of a magnet and a con-
ductor. The observable phenomenon here depends only on
the relative motion of the conductor and the magnet, where-
as the customary view draws a sharp distinction between the
two cases in which either the one or the other of these bodies
is in motion. For if the magnet is in motion and the con-
ductor at rest, there arises in the neighbourhood of the
magnet an electric field with a certain definite energy, pro-
ducing a current at the places where parts of the conductor
are situated. But if the magnet is stationary and the con-
ductor in motion, no electric field arises in the neighbour-
hood of the magnet. In the conductor, however, we find an
electromotive force, to which in itself there is no correspond-
ing energy, but which gives rise—assuming equality of
relative motion in the two cases discussed—to electric currents
of the same path and intensity as those produced by the
electric forces in the former case.

Examples of this sort, together with the unsuccessful at-
tempts to discover any motion of the earth relatively to the
‘““light medium,” suggest that the phenomena of electro-
dynamics as well as of mechanics possess no properties corre-
sponding to the idea of absolute rest. They suggest rather
that, as has already been shown to the first order of small
quantities, the same laws of electrodynamics and optics will

be valid for all frames of reference for which the equations of
37

IT is known that Maxwell’'s electrodynamics—as usu-
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mechanics hold good.* We will raise this conjecture (the
purport of which will hereafter be called the ¢ Principle of
Relativity ”’) to the status of a postulate, and also introduce
another postulate, which is only apparently irreconcilable
with the former, namely, that light is always propagated in
empty space with a definite velocity ¢ which is independent
of the state of motion of the emitting body. These two
postulates suffice for the attainment of a simple and consistent
theory of the electrodynamics of moving bodies based on
Maxwell’s theory for stationary bodies. The introduction of a
‘“ luminiferous ether ” will prove to be superfluous inasmuch
as the view here to be developed will not require an ‘“ab-
solutely stationary space ” provided with special properties,
nor assign a velocity-vector to a point of the empty space in
which electromagnetic processes take place.

The theory to be developed is based—Ilike all electro-
dynamics—on the kinematics of the rigid body, since the
assertions of any such theory have to do with the relation-
ships between rigid bodies (systems of co-ordinates), clocks,
and electromagnetic processes. Insufficient consideration of
this circumstance lies at the root of the difficulties which the
electrodynamics of moving bodies at present encounters.

I. KINEMATICAL PART

§ 1. Definition of Simultaneity

Let us take a system of co-ordinates in which the
equations of Newtonian mechanics hold good.t In order to
render our presentation more precise and to distinguish this
system of co-ordinates verbally from others which will be
introduced hereafter, we call it the “ stationary system.”

If a material point is at rest relatively to this system of
co-ordinates, its position can be defined relatively thereto by
the employment of rigid standards of measurement and the
methods of Euclidean geometry, and can be expressed in
Cartesian co-ordinates.

If we wish to describe the motion of a material point, we

* The preceding memoir by Lorentz was not at this time known to the
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give the values of its co-ordinates as functions of the time.
Now we must bear carefully in mind that a mathematical
description of this kind has no physical meaning unless we
are quite clear as to what we understand by ‘time.” We
have to take into account that all our judgments in which
time plays a part are always judgments of simultaneous
events., 1If, for instance, I say, “ That train arrives here at
7 o’clock,” I mean something like this: ¢ The pointing of
the small hand of my watch to 7 and the arrival of the train
are simultaneous events,” ¥

It might appear possible to overcome all the difficulties
attending the definition of ‘‘time’’ by substituting ‘ the
position of the small hand of my watch ” for ““ time.” And
in fact such a definition is satisfactory when we are concerned
with defining a time exclusively for the place where the
watch 1s located ; but it is no longer satisfactory when we
have to connect in time series of events occurring at different
places, or-—what comes to the same thing—to evaluate the
times of events occurring at places remote from the watch.

We might, of course, content ourselves with time values
determined by an observer stationed together with the watch
at the origin of the co-ordinates, and co-ordinating the corre-
sponding positions of the hands with light signals, given out
by every event to be timed, and reaching him through empty
space. But this co-ordination has the disadvantage that 1t is
not independent of the standpoint of the observer with the
watch or clock, as we know from experience. We arrive at
a much more practical determination along the following line
of thought.

If at the point A of space there is a clock, an observer at
A can determine the time values of events in the immediate
proximity of A by finding the positions of the hands which
are simultaneous with these events, If there is at the point
B of space another clock in all respects resembling the one at
A, 1t is possible for an observer at B to determine the time
values of events in the immediate neighbourhood of B. But
it is not possible without further assumption to compare, in

* We shall not here discuss the inexactitude which lurks in the concept
of simultaneity of two events at approximately the same place, which can
only be removed by an abstraction.
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respect of time, an event at A with an event at B. We have
so far defined only an ‘““A time” and a “ B time.” We
have not defined a common ‘ time ” for A and B, for the
latter cannot be defined at all unless we establish by definition
that the ‘time” required by light to travel from A to B
equals the ‘““time” it requires to travel from B to A.
Let a ray of light start at the ““ A time ” ¢, from A towards
B, let 1t at the ““ B time” tg be reflected at B in the direction
of A, and arrive again at A at the * A time " ¢g’

In accordance with definition the two clocks synchronize
if

g — ta = t'A - tg.

We assume that this definition of synchronism is free
from contradictions, and possible for any number of points ;
and that the following relations are universally valid :—

1. If the clock at B synchronizes with the clock at A, the
clock at A synchronizes with the clock at B.

2. If the clock at A synchronizes with the clock at B and
also with the clock at C, the clocks at B and C also syn-
chronize with each other.

Thus with the help of certain imaginary physical experi-
ments we have settled what 1s to be understood by synchron-
ous stationary clocks located at different places, and have
evidently obtained a definition of * simultaneous,” or ‘‘syn-
chronous,” and of “time.” The “time” of an event is
that which is given simultaneously with the event by a
stationary clock located at the place of the event, this clock
being synchronous, and indeed synchronous for all time deter-
minations, with a specified stationary clock.

In agreement with experience we further assume the
quantity

2AB

A
to be a universal constant—the velocity of light in empty
space.

It is essential to have time defined by means of stationary
clocks in the stationary system, and the time now defined
being appropriate to the stationary system we call it ‘‘ the
time of the stationary system.”
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§ 2. On the Relativity of Lengths and Times

The following reflexions are based on the principle of
relativity and on the principle of the constancy of the
velocity of light. These two principles we define as
follows :—

1. The laws by which the states of physical systems
undergo change are not affected, whether these changes of
state be referred to the one or the other of two systems of co-
ordinates in uniform translatory motion.

2. Any ray of light moves in the *‘ stationary ” system of
co-ordinates with the determined velocity ¢, whether the ray
be emitted by a stationary or by a moving body. Hence

light path
time interval

velocity =

Whgre time interval is to be taken in the sense of the definition
in § 1.

Leet there be given a stationary rigid rod; and let its
length be I as measured by a measuring-rod which is also
stationary. We now imagine the axis of the rod lying
along the axis of z of the stationary system of co-ordinates,
and that a uniform motion of parallel translation with velocity
v along the axis of z in the direction of increasing z i1s then
imparted to therod. We now inquire as to the length of the
moving rod, and imagine its length to be ascertained by the
following two operations :—

(@) The observer moves together with the given measur-
ing-rod and the rod to be measured, and measures the length
of the rod directly by superposing the measuring-rod, i
just the same way as if all three were at rest.

(b) By means of stationary clocks set up in the stationary
system and synchronizing in accordance with § 1, the ob-
server ascertains at what points of the stationary system the
two ends of the rod to be measured are located at a definite
time. The distance between these two points, measured by the
measuring-rod already employed, which in this case is at rest,
is also a length which may be designated ¢ the length of the
rod.”

In accordance with the principle of relativity the length
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to be discovered by the operation (a)—we will call it “the
length of the rod in the moving system ”—must be equal to
the length 7 of the stationary rod.

The length to be discovered by the operation (b) we will
call ““ the length of the (moving) rod in the stationary system.”
This we shall determine on the basis of our two principles,
and we shall find that it differs from 1.

Current kinematics tacitly assumes that the lengths deter-
mined by these two operations are precisely equal, or in other
words, that a moving rigid body at the epoch ¢ may in geo-
metrical respects be perfectly represented by ¢ke same body
at rest in a definite position.

We imagine further that at the two ends A and B of the
rod, clocks are placed which synchronize with the clocks of
the stationary system, that is to say that their indications
correspond at any instant to the “time of the stationary
system” at the places where they happen to be. These clocks
are therefore *“ synchronous in the stationary system.”

We imagine further that with each clock there is a mov-
ing observer, and that these observers apply to both clocks
the criterion established in § 1 for the synchronization of two
clocks. Tet a ray of light depart from A at the time * ¢4, let
it be reflected at B at the time g, and reach A again at the
time ¢',. Taking into consideration the principle of the con-
stancy of the velocity of light we find that

7TAB , TaAB
g - ta = ——-and £’y - g =
¢ — A ¢+ v

where 7,5 denotes the length of the moving rod—measured
in the stationary system. Observers moving with the moving
rod would thus find that the two clocks were not synchronous,
while observers in the stationary system would declare the
clocks to be synchronous.

So we see that we cannot attach any absolute signification
to the concept of simultaneity, but that two events which,
viewed from a system of co-ordinates, are simultaneous, can
no longer be looked upon as simultaneous events when en-

*«Time " here denotes * time of the stationary system '’ and also ¢ posi-
tion of hands of the moving clock situated at the place under discussion.”
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visaged from a system which is in motion relatively to that
system.

§ 3. Theory of the Transformation of Co-ordinates and
Times from a Stationary System to another System
in Uniform Motion of Translation Relatively to the
Former

Let us in ““gtationary” space take two systems of co-
ordinates, i.e. two systems, each of three rigid material lines,
perpendicular to one another, and issuing from a point. Let
the axes of X of the two systems coincide, and their axes of
Y and Z respectively be parallel. Let each system be provided
with a rigid measuring-rod and a number of clocks, and let
the two measuring-rods, and likewise all the clocks of the two
systems, be in all respects alike.

Now to the origin of one of the two systems (k) let a con-
stant velocity v be imparted in the direction of the increasing
x of the other stationary system (K), and let this velocity be
communicated to the axes of the co-ordinates, the relevant
measuring-rod, and the clocks. To any time of the stationary
system K there then will correspond a definite position of the
axes of the moving system, and from reasons of symmetry
we are entitled to assume that the motion of 4 may be
such that the axes of the moving system are at the time ¢
(this “¢” always denotes a time of the stationary system)
parallel to the axes of the stationary system.

We now imagine space to be measured from the stationary
gystem K by means of the stationary measuring-rod, and also
from the moving system % by means of the measuring-rod
moving with it ; and that we thus obtain the co-ordinates
z, y¥, 2, and §, 5, { respectively. Further, let the time ¢ of
the stationary system be determined for all points thereof
at which there are clocks by means of hight signals in the
manner indicated in § 1; similarly let the time r of the
moving system be determined for all points of the moving
system at which there are clocks at rest relatively to that
system by applying the method, given in § 1, of light signals
between the points at which the latter clocks are located.

To any system of values z, ¥, 2, {, which completely defines
the place and time of an event in the stationary system, there
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belongs a system of values £, 5, ¢, 7, determining that event
relatively to the system %, and our task is now to find the
system of equations connecting these quantities.

In the first place it is clear that the equations must be
linear on account of the properties of homogeneity which we
attribute to space and time,

If we place 2’ = x - ot, it is clear that a point at rest in
the system % must have a system of values z’, ¥, #, inde-
pendent of time. We first define T as a function of 2', ¥, #
and t. To do this we have to express in equations that 7 is
nothing else than the summary of the data of clocks at rest
in system %, which have been synchronized according to the
rule given in § 1.

From the origin of system % let a ray be emitted at the
time 7, along the X-axis to 2/, and at the time =, be reflected
thence to the origin of the co-ordinates, arriving there at the
time 7,; we then must have } (r, + 7,) = 7, or, by 1nserting
the arguments of the function = and applying the principle
of the constancy of the velocity of light in the stationary
system :—
15[7(0,0, 0, t)+-r(0,0,0,t+ z .2 )]——'r(a: 0,0, t+~————>

c—-v ¢+ ()

Hence, if 2’ be chosen infinitesimally small,

15_( 1 + 1 >Dr_b'r+_1 9'_7'
c-v ¢+ v/ d ¢ - vt

or
or v o7

dur’ + et — pidt

- 0.

It is to be noted that instead of the origin of the co-ordin-
ates we might have chosen any other point for the point of
origin of the ray, and the equation just obtained is therefore
valid for all values of 2/, ¥, #

An analogous consideration—applied to the axes of Y and
Z—it being borne in mind that light 1s always propagated
along these axes, when viewed from the stationary system,
with the velocity ,/(c? - v, gives us

oT
Sg—/——-O S = 0.
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Since 7 is & linear function, it follows from these equations

that
'r=a(t— 2'1) 2&:')
¢t -

where @ is a function ¢(v) at present unknown, and where
for brevity it is assumed that at the origin of &, 7 = 0, when
t =0.

With the help of this result we easily determine the
quantities &, n, ¢ by expressing in equations that light (as re-
quired by the principle of the constancy of the velocity of
light, in combination with the principle of relativity) is also
propagated with velocity ¢ when measured in the moving
system, For a ray of light emitted at the time = = 0 in the
direction of the increasing £

§=cror§=ac(t-—czf a:').

,UZ

But the ray moves relatively to the initial point of %, when
measured in the stationary system, with the velocity ¢ — v,
80 that

If we insert this value of ¢ in the equation for £ we obtain

02

!
I

In an analogous manner we find, by considering rays moving
along the two other axes, that

v,
n = CT = ac(t - -—&-——x)
when

-:/-Zm) = t, z = 0.
Thus

N =a o yand ¢ = a ¢ Z.
,\/(62 - ,02) ~/(02 — '02)

Substituting for ' its value, we obtain
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T = ¢@)B(t - va/ch),
E = d@)B(x — vt),

n = ¢(v)y,

& = ¢@)e,

1
B = AL DN

and ¢ is an as yet unknown function of v, If no assumption
whatever be made as to the initial position of the moving
system and as to the zero point of =, an additive constant is
to be placed on the right side of each of these equations.

We now have to prove that any ray of light, measured in
the moving system, is propagated with the velocity ¢, if, as
we have assumed, this is the case in the stationary system ; for
we have not as yet furnished the proof that the principle of
the constancy of the velocity of light is compatible with the
principle of relativity.

At the time ¢ = 7 = 0, when the origin of the co-ordinates
1s common to the two systems, let a spherical wave be
emitted therefrom, and be propagated with the velocity ¢ in
system K. If (z,y, #) be a point just attained by this wave,
then

where

z? + y? + 2% = R

Transforming this equation with the aid of our equations
of transformation we obtain after a simple calculation

E + 92 + =

The wave under consideration is therefore no less a
spherical wave with velocity of propagation ¢ when viewed
in the moving system. This shows that our two funda-
mental principles are compatible.*

In the equations of transformation which have been de-
veloped there enters an unknown function ¢ of », which
we will now determine.

For this purpose we introduce a third system of co-ordin-

* The equations of the Iorentz transformation may be more simply de-
duced directly from the condition that in virtue of those equations the re-
lation #? + y* + 2® = ¢%? shall have as its consequence the second relation
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ates K', which relatively to the system % is in a state of
parallel translatory motion parallel to the axis of X, such that
the origin of co-ordinates of system %k moves with velocity
— v on the axis of X, At the time ¢ = 0 let all three origins
coincide, and when ¢ = z = y = z = 0 let the time ¢’ of the
system K’ be zero. We call the co-ordinates, measured in
the system K, o', ¢', 2/, and by a twofold application of our
equations of transformation we obtain

¢ = ¢(~ 0)B( - v)(r + vElc*) = B(o)( — V)¢,
2 = ¢(- 0)B( - o)E + v1) = $(0)B( - v)a,
y = ¢(- o)y = $(0)B( - )y,
7 = ¢~ ¢ = $(0)p( - v)z.

Since the relations between 2, ¥, 2 and =z, ¥, 2 do not
contain the time ¢, the systems K and K’ are at rest with re-
spect to one another, and it is clear that the transformation
from K to K’ must be the identical transformation. Thus

¢(W)¢( - v) = 1

We now inquire into the signification of ¢(v). We give our
attention to that part of the axis of Y of system % which lies
between £ =0, =0, ¢ =0and £ =0, =, ¢ = 0. This
part of the axis of Y isarod moving perpendicularly toits axis
with velocity v relatively to system K. Its ends possess in K
the co-ordinates

Xy = 0t Y = = 0

LA
(b(?)), 1
and Z, = b, 1y = 0, 2, = 0,

The length of the rod measured in K is therefore }/¢(v) ; and
this gives us the meaning of the function ¢(v). From
reasons of symmetry it is now evident that the length of a
given rod moving perpendicularly to its axis, measured in
the stationary system, must depend only on the velocity and
not on the direction and the sense of the motion. The
length of the moving rod measured 1in the stationary system

does not change, therefore, if v and - o are interchanged.
Hence follows that I/¢(v) = I/¢( ~ v), or

$@) = ¢( - v).

It follows from this relation and the one previously found
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that ¢(v) = 1, so that the transformation equations which
have been found become

T = Bt - va/c),

£=6(x_vt)s
n =1,
£ =2,

where

B =1//( - 2*[c?).

§ 4. Physical Meaning of the Equations Obtained in Re-
spect to Moving Rigid Bodies and Moving Clocks

We envisage a rigid sphere * of radius R, at rest relatively
to the moving system %, and with its centre at the origin of
co-ordinates of k. The equation of the surface of this sphere
moving relatively to the system K with velocity v is

£+ 9+ 8 =R

The equation of this surface expressed in z, ¥, 2z at the time

t =01s
502

(W (1 = v*eh))

A rigid body which, measured in a state of rest, has the form
of a sphere, therefore has in a state of motion—viewed from
the stationary system-—the form of an ellipsoid of revolution
with the axes

+ y? + 2% = R2

R./@1 - v¥c?), R, R.

Thus, whereas the Y and Z dimensions of the sphere (and
therefore of every rigid body of no matter what form)do not
appear modified by the motion, the X dimension appears
shortened in the ratio 1:,/(1 - v¥/¢?), i1.e. the greater the
value of v, the greater the shortening. For v = ¢ all moving
objects—viewed from the ‘stationary’’ system—shrivel up
into plain figures. For velocities greater than that of light
our deliberations become meaningless; we shall, however,
find in what follows, that the velocity of light in our
theory plays the part, physically, of an infinitely great
velocity.

* That is, a body possessing spherical form when examined at rest.



A. EINSTEIN 49

It is clear that the same results hold good of bodies at rest
in the “ stationary ” system, viewed from a system in uniform
motion.

Further, we imagine one of the clocks which are qualified
to mark the time ¢ when at rest relatively to the stationary
system, and the time 7 when at rest relatively to the moving
system, to be located at the origin of the co-ordinates of k,
and so adjusted that it marks the time r. What is the rate
of this clock, when viewed from the stationary system ?

Between the quantities z, ¢, and 7, which refer to the
position of the clock, we have, evidently, z = ot and

o 1
(1 = ve?)

(t - vx/c?).

Therefore,
rm L= ) = ¢ = (L= (L - o)t

whence it follows that the time marked by the clock (viewed
in the stationary system) isslow by 1 - /(1 - v%/¢?) seconds
per.second, or—neglecting magnitudes of fourth and higher
order—Dby 4v%/c?.

From this there ensues the following peculiar consequence.
If at the points A and B of K there are stationary clocks
which, viewed in the stationary system, are synchronous; and
if the clock at A is moved with the velocity v along the line
AB to B, then on its arrival at B the two clocks no longer
synchronize, but the clock moved from A to B lags behind
the other which has remained at B by 4tv?/c? (up to magni-
tudes of fourth and higher order), ¢ being the time occupied
in the journey from A to B.

It is at once apparent that this result still holds good if
the clock moves from A to B in any polygonal line, and also
when the points A and B coincide.

If we assume that the result proved for a polygonal line
is also valid for a continuously curved line, we arrive at this
result : If one of two synchronous clocks at A is moved in a
closed curve with constant velocity until it returns to A, the
journey lasting ¢ seconds, then by the clock which has
remained at rest the travelled clock on its arrival at A
will be #v?/c*? second slow. Thence we conclude that a
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balance-clock * at the equator must go more slowly, by a
very small amount, than a precisely similar clock situated at
one of the poles under otherwise identical conditions.

§ 5. The Composition of Velocities

In the system % moving along the axis of X of the system
K with velocity v, let a point move in accordance with the
equations
€‘=’w$1’,’))= @0,,‘7,;:0,

where w¢ and w, denote constants.

Required : the motion of the point relatively to the system
K. If with the help of the equations of transformation de-
veloped in § 3 we introduce the quantities z, y, 2, ¢ into the
equations of motion of the point, we obtain

I BN
=1 vw,fc*”
(1 - vch)
¥y="1+ VWl Wabs
z = 0.

Thus the law of the parallelogram of velocities is valid ac-
cording to our theory only to a first approximation. We set

v @)+ (@)

w? = wg + Wy,
a = tan ~! wy/waz,

a is then to be looked upon as the angle between the velocities
v and w. After a simple calculation we obtain

v = M@ + ' + Zow cos @) ~ (vw sin a/c*)’]
1 + vw cos a/c? .

It is worthy of remark that v and w enter into the expression
for the resultant velocity in a symmetrical manner. If w also
has the direction of the axis of X, we get

v+ w
VY =

1 + vw/c*

* Not a pendulum-clock, which is physically a system to which the Earth
belongs. This case had to be excluded.
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It follows from this equation that from a composition of two
velocities which are less than ¢, there always results a velocity
less than ¢. For if we set v =¢ - «, w =¢ - A, cand A
being positive and less than ¢, then

%2 — €k - A

V=620-x—-7\+/c7t/0

< ¢

1t follows, further, that the velocity of light ¢ cannot be

altered by composition with a velocity less than that of light.
For this case we obtain

c+ w
V=i + wje ‘
We might also have obtained the formula for V, for the case
when v and w have the same direction, by compounding
two transformations in accordance with § 3. If in addition
to the systems K and % figuring in § 8 we introduce still
another system of co-ordinates & moving parallel to %, its
initial point moving on the axis of X with the velocity w, we
obtain equations between the quantities z, ¥, 2, ¢t and the
corresponding quantities of k', which differ from the equations
found in § 3 only in that the place of “v " is taken by the
quantity
v+ W
1+ vw/c®’

from which we see that such parallel transformations—neces-
sarily—form a group.

We have now deduced the requisite laws of the theory of
kinematics corresponding to our two principles, and we pro-
ceed to show their application to electrodynamics.

II. ELECTRODYNAMICAL PART

§ 6. Transformation of the Maxwell-Hertz Equations for
Empty Space. On the Nature of the Electromotive
Forces Occurring in a Magnetic Field During Motion

Let the Maxwell-Hertz equations for empty space hold
good for the stationary system K, so that we have
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where (X, Y, Z) denotes the vector of the electric force, and
(L, M, N) that of the magnetic force.

If we apply to these equations the transformation de-
veloped in § 3, by referring the electromagnetic processes to
the system of co-ordinates there introduced, moving with the
velocity v, we obtain the equations

Laas-2p- R - afa(e- )

where

B = 1//(1 - v[c?).

Now the principle of relativity requires that if the
Maxwell-Hertz equations for empty space hold good in
system K, they also hold good in system % ; that is to say that
the vectors of the electric and the magnetic force—(X', Y', Z')
and (I, M', N)—of the moving system %, which are defined
by their ponderomotive effects on electric or magnetic masses
respectively, satisfy the following equations :—
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13X' N M 1L Y’ _ Y/
c dT d W’ ¢ dar ¥ o’
137 L N 1aM % X
¢ dT ¥ E’ ¢ dr M ¢’
10 »M 3 133N X Y

———

cdr 0 ' ¢ dr dm

Evidently the two systems of equations found for system
k must express exactly the same thing, since both systems of
equations are equivalent to the Maxwell-Hertz equations for
system K. Since, further, the equations of the two systems
agree, with the exception of the symbols for the vectors, it
follows that the functions occurring in the systems of equa-
tions at corresponding places must agree, with the exception
of a factor y(v), which is common for all functions of the
one system of equations, and is independent of & », {and =
but depends upon ». Thus we have the relations

X' = Yy)X, L' = 4 (v)L,
Y = yB(Y - N), M = yB(M + 22),

2 = yw8(z + M), N = yw8(N - ’¥).

If we now form the reciprocal of this system of equations,
firstly by solving the equations just obtained, and secondly
by applying the equations to the inverse transformation (from
k to K), which is characterized by the velocity - o, it follows,
when we consider that the two systems of equations thus ob-
tained must be identical, that Y (v)y( — v) = 1. Further,
from reasons of symmetry * ¥r(v) = y( - v), and therefore

1’/‘('0) = 1’

and our equations assume the form

*1f, for example, X =Y=Z =L =M=0, and N==0, then from
reasons of symmetry it is clear that when v changes sign without changing
its numerical value, Y’ must also change sign without changing its numerical
value.
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X' =X, L'=1,

v - 8(Y - UN), M - B(M + ’7),

z = 8(z + M), ¥ = g(N - %)

As to the interpretation of these equations we make the
following remarks: Let a point charge of electricity have
the magnitude “one” when measured in the stationary
system K, i.e. let it when at rest in the stationary system
exert a force of one dyne upon an equal quantity of electricity
at a distance of one cm. By the principle of relativity this
electric charge is also of the magnitude “one” when
measured in the moving system. If this quantity of elec-
tricity is at rest relatively to the stationary system, then by
definition the vector (X, Y, Z) is equal to the force acting
upon it. If the quantity of electricity is at rest relatively to
the moving system (at least at the relevant instant), then the
force acting upon it, measured in the moving system, is equal
to the vector (X, Y', Z). Consequently the first three
equations above allow themselves to be clothed in words in
the two following ways :—

1. If a unit electric point charge is in motion in an
electromagnetic field, there acts upon it, in addition to the
electric force, an ‘‘ electromotive force ” which, if we neglect
the terms multiplied by the second and higher powers of v/c,
is equal to the vector-product of the velocity of the charge
and the magnetic force, divided by the velocity of light.
(Old manner of expression.)

2. If a unit electric point charge is in motion in an
electromagnetic field, the force acting upon it is equal to the
electric force which is present at the locality of the charge,
and which we ascertain by transformation of the field to
a system of co-ordinates at rest relatively to the electrical
charge. (New manner of expression.)

The analogy holds with ¢ magnetomotive forces.” We
see that electromotive force plays in the developed theory
merely the part of an auxiliary concept, which owes its intro-
duction to the circumstance that electric and magnetic forces
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do not exist independently of the state of motion of the
system of co-ordinates.

Furthermore it is clear that the asymmetry mentioned in
the introduction as arising when we consider the currents
produced by the relative motion of a magnet and a conductor,
now disappears. Moreover, questions as to the ‘“seat” of
electrodynamic electromotive forces (unipolar machines) now
have no point.

§ 7. Theory of Doppler’s Principle and of Aberration

In the system K, very far from the origin of eo-ordinates,
let there be a source of electrodynamic waves, which in a
part of space containing the origin of co-ordinates may be
represented to a sufficient degree of approximation by the
equations

X=X,sin®, L =1L,sn®,
Y=Ysin®d, M=DM,sind,
Z=2,sin®, N = N,sin P,

where

D = w{t - %(lw + my + nz)}.

Here (X,, Y,, Z,) and (L, M,, N,) are the vectors defining
the amplitude of the wave-train, and [, m, n the direction-
cosines of the wave-normals. We wish to know the consti-
tution of these waves, when they are examined by an
observer at rest in the moving system £.

Applying the equations of transformation found in § 6 for
electric and magnetic forces, and those found in § 3 for the
co-ordinates and the time, we obtain directly

X' = X, sin @/, L' = 14, sin @/,
Y = B(Y, — vNy/c) sin @, M' = B(M, + vZ,/c) sin ¥/,
Z' = B(Z, + vMy/c) sin ', N’ = B(N, - vY,/c) sin ¥,

I_ ’ __lf ’ ’ 1
® = o'{r - <UE + mn + )
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where
o = oB(1 - /),
r o I - v/c
1 - W/

’ m
™= BA - Wy

' n
=B - o)

From the equation for ' it follows that if an observer is
moving with velocity v relatively to an infinitely distant
source of light of frequency v, in such a way that the connect-
ing line ‘source—observer”’ makes the angle ¢ with the
velocity of the observer referred to a system of co-ordinates
which isat rest relatively to the source of light, the frequency
v' of the light perceived by the observer is given by the
equation

, 1 -cos¢.v/c
LTIy
This is Doppler's principle for any velocities whatever.
When ¢ = 0 the equation assumes the perspicuous form

N1 + o/c

We see that, in contrast with the customary view, when
V= ~-¢V =00,

If we call the angle between the wave-normal (direction
of the ray) in the moving system and the connecting line
‘‘ gource—observer "’ ¢', the equation for ' assumes the form

, _ cos ¢ — vfc
cos ¢ =7 cos ¢ . v/c’

This equation expresses the law of aberration in its most
general form. If ¢ = 4 , the equation becomes simply
cos ¢ = — v/c.

We still have to find the amplitude of the waves, as it
appears in the moving system. If we call the amplitude of
the electric or magnetic force A or A'respectively, accordingly
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as it is measured in the stationary system or in the moving
system, we obtain

A2 = Al —cosé. v/c)®

1 - v%/c?
which equation, if ¢ = 0, simplifies into
2 - A2
A% =A 1 + v/c

It follows from these results that to an observer approach-
ing a source of light with the velocity ¢, this source of light
must appear of infinite intensity.

§ 8. Transformation of the Energy of Light Rays. Theory
of the Pressure of Radiation Exerted on Perfect
Reflectors

Since A?/8m equals the energy of light per unit of volume,
we have to regard A'%/8w, by the principle of relativity, as the
energy of light in the moving system. Thus A?/A? would
be the ratio of the “ measured in motion ” to the “ measured
at rest” energy of a given light complex, if the volume
of a light complex were the same, whether measured in
K or in k. But this is not the case. If I, m, n are the
direction-cosines of the wave-normals of the light in the
stationary system, no energy passes through the surface
elements of a spherical surface moving with the velocity of
light :—

(z - let)? + (y — met)? + (z — nct)? = R

We may therefore say that this surface permanently encloses
the same light complex. We inquire as to the quantity of
energy enclosed by this surface, viewed in system k, that
1s, as to the energy of the light complex relatively to the
system £,

The spherical surface—viewed in the moving system—is
an ellipsoidal surface, the equation for which, at the time
r=0,1s

(BE - IBEv/c)® + (n — mBEv[c) + (& — nBEv/c) = R
If S is the volume of the sphere, and 8 that of this ellipsoid,
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then by a simple calculation

_ A1 - v
1 - cos ¢.vfc

Thus, if we call the light energy enclosed by this surface K
when it is measured in the stationary system, and E’ when
measured in the moving system, we obtain

B A?8 1 -cos¢.v/c

E AT /A -y’

and this formula, when ¢ = 0, simplifies into
E 1 -9
E Y1+

It is remarkable that the energy and the frequency of a
light complex vary with the state of motion of the observer
in accordance with the same law.

Now let the co-ordinate plane & = 0 be a perfectly reflect-
ing surface, at which the plane waves considered in § 7 are
reflected. We seek for the pressure of light exerted on the
reflecting surface, and for the direction, frequency, and in-
tensity of the light after reflexion.

Let the incidental light be defined by the quantities A,

cos ¢, v (referred to system K). Viewed from % the corre-
sponding quantities are

§I
S

, a1l —cos¢.vfc
A=ATT v
, _ cos ¢ - vfc
cos ¢ = 1 - cos ¢.v/c
, 1 - cosd.vfc

y =

v (A= vt

For the reflected light, referring the process to system %, we
obtain
A" = A’
cos ¢’ = — cos ¢

»7 ’

= J

Finally, by transforming back to the stationary system K,
we obtain for the reflected light
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A" = A"l + cos ¢” . v/c A1 ~ 2 cos ¢.vfc + v¥/c?

JA = o) 1 - v%/c? ’
008 " = cos " + vfe (1 + v*/c?) cos ¢ - 20/c
1 + cos ¢”.v/c 1 - 2cos¢.vfc+ v¥c
w sl +cosdvlec 1 -2co8d.vfc+ v?c?
VT ey T 1 - v%/c? '

The energy (measured in the stationary system) which is
incident upon unit area of the mirror in unit time is evidently
A%(c cos ¢ — v)[8m. The energy leaving the unit of surface
of the mirror in the unit of time i8 A"%(- ¢ cos ¢ + v)/8m.
The difference of these two expressions is, by the principle of
energy, the work done by the pressure of light in the unit of
time. If we set down this work as equal to the product Po,
where P is the pressure of light, we obtain

_ A? (cos ¢ — v/c)?
Pﬁg'@?r 1 - ¢
In agreement with experiment and with other theories, we
obtain to a first approximation
2

P=2. %cos‘z ¢.

All problems in the optics of moving bodies can be solved
by the method here employed. What is essential is, that the
electric and magnetic force of the light which is influenced
by a moving body, be transformed into a system of co-ordin-
ates at rest relatively to the body. By this meansall problems
in the optics of moving bodies will be reduced to a series of
problems in the optics of stationary bodies.

§ 9. Transformation of the Maxwell-Hertz Equations when
Convection-Currents are Taken into Account

We start from the equations
l{bX N M 1L Y ?Z
oz

A WP =S TS e by

I{DY } L N 1M 3Z X
+ Uy = -—

- ——

el dt

l{bZ } M L 13N X Y
AT =% " W' ¢ -

¢ 3 2y o’
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where
X N 0Y Z

Y By+bz

denotes 4 times the density of electricity, and (us, uy, %)
the velocity-vector of the charge. If we imagine the electric
charges to be invariably coupled to small rigid bodies (ions,
electrons), these equations are the electromagnetic basis of
the Liorentzian electrodynamics and optics of moving bodies.

Let these equations be valid in the system K, and trans-
form them, with the assistance of the equations of transform-
ation given in §§ 3 and 6, to the system k.. We then obtain
the equations

“?_}_(_' u} _aM 1L _ Yz
i Y ¢cor 3 "
1Y , sz’_aN’ 1M _ 2 X
c\or TUP TR TR e vr T 9 T o
1{2?..'+ L) ML 19N XY
c\oT ¢ of d’ ¢ dr M dE’
where
_ Uy — D
W T " ugvje
Uy
~ B = ugv]c?)
— uz
T B - wav]ey
and

, X' bY’ + VZ’
P=3E " ¥ 3¢
= B - uav/cP)p.

Since—as follows from the theorem of addition of velocities
(§ 5)—the vector (g, uy, u¢) s nothing else than the velocity
of the electric charge, measured in the system %, we have the
proof that, on the basis of our kinematical principles, the
- electrodynamic foundation of Liorentz’s theory of the electro-
dynamics of moving bodies is in agreement with the prin-
ciple of relativity.

In addition I may briefly remark that the following import-
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ant law may easily be deduced from the developed equations:
If an electrically charged body is in motion anywhere in
space without altering its charge when regarded from a
system of co-ordinates moving with the body, its charge also

remains—when regarded from the ** stationary’ system K—
constant.

§ 10. Dynamics of the Slowly Accelerated Electron

Let there be in motion in an electromagnetic field an
electrically charged particle (in the sequel called an * elec-
tron ), for the law of motion of which we assume as
follows :—

If the electron is at rest at a given epoch, the motion of
the electron ensues in the next instant of time according to
the equations

2

mg?? = eX
2

m(%_}?! = €Y
2

mgtf = €4

where z, y, z denote the co-ordinates of the electron, and m
the mass of the electron, as long as its motion is slow.

Now, secondly, let the velocity of the electron at a given
epoch be v. We seek the law of motion of the electron in the
immediately ensuing instants of time.

Without affecting the general character of our consider-
ations, we may and will assume that the electron, at the
moment when we give it our attention, is at the origin of
the co-ordinates, and moves with the velocity » along the
axis of X of the system K. It is then clear that at the given
moment (¢ = 0) the electron is at rest relatively to a system
of co-ordinates which is in parallel motion with velocity v
along the axis of X.

From the above assumption, in combination with the
principle of relativity, it is clear that in the immediately en-
suing time (for small values of t) the electron, viewed from
the system %, moves in accordance with the equations
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9

mg—-ﬁ = eX/,
9

mg—g = €Y,
9

m?i-?-g eZ’,

in which the symbols £, 5, &, =, X', Y', Z’ refer to the system
k. If, further, we decide that when { =z = y = z = 0O then
7= =9 = ¢ =0, the transformation equations of §§ 3 and
6 hold good, so that we have

E:: B(.?} - ’Ut),ﬂ =1, C= Zy T = B(t - ?)58/62)
X =X, Y = BY - oN/o), Z = BZ + vM/e).

With the help of these equations we transform the above
equations of motion from system % to system K, and obtain

d’z

€
& = m |
d'y € v
dae W(Y N cN i (A)
a2z € v
ae = m(z + M),

Taking the ordinary point of view we now inquire as
to the ‘ longitudinal” and the *‘ transverse” mass of the
moving electron. We write the equations (A) in the form

2
mﬂsg—g = eX = X,

m,82%zi;?{ = GB(Y ~ gN) = €Y/,

a?z
ladied
me

i

eﬂ(Z + ?C—JM) = e/,

and remark firstly that eX’, €Y', ¢eZ’ are the components of
the ponderomotive force acting upon the electron, and are so
indeed as viewed in a system moving at the moment with the
electron, with the same velocity as the electron. (This force
might be measured, for example, by a spring balance at rest
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in the last-mentioned system.) Now if we call this force
simply ‘ the force acting upon the electron,” * and maintain
the equation—mass x acceleration = force—and if we also
decide that the accelerations are to be measured in the
stationary system K, we derive from the above equations

Longitudinal mass == 7

Transverse mass = T~ o

With a different definition of force and acceleration we
should naturally obtain other values for the masses. This
shows us that in comparing different theories of the motion
of the electron we must proceed very cautiously.

Weremark that these results as to the mass are also valid
for ponderable material points, because a ponderable material
point can be made into an electron (in our sense of the word)
by the addition of an electric charge, no matter how small.

We will now determine the kinetic energy of the electron.
If an electron moves from rest at the origin of co-ordinates of
the system K along the axis of X under the action of an
electrostatic force X, it is clear that the energy withdrawn

from the electrostatic field has the value f eXdzr. Asthe elec-

tron is to be slowly accelerated, and consequently may not give
off any energy in the form of radiation, the energy withdrawn
from the electrostatic field must be put down as equal to the
energy of motion W of the electron. Bearing in mind that
during the whole process of motion which we are considering,
the first of the equations (A) applies, we therefore obtain

W = f eXdz = m f :,G%dv

Y . -

Thus, when v = ¢, W becomes infinite. Velocities

* The definition of force here given is not advantageous, as was first shown
by M. Planck. It is more to the point to define force in such a way that the
laws of momentum and energy assume the simplest form.
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greater than that of light have—as in our previous results—
no possibility of existence.

This expression for the kinetic energy must also, by
virbue of the argument stated above, apply to ponderable
masses as well.

We will now enumerate the properties of the motion of
the electron which result from the system of equations (A),
and are accessible to experiment.

1. From the second equation of the system (A) it follows
that an electric force Y and a magnetic force N have an
equally strong deflective action on an electron moving with
the velocity v, when Y = Nw/c. Thus we see that it is pos-
sible by our theory to determine the velocity of the electron
from the ratio of the magnetic power of deflexion A, to the
electric power of deflexion A., for any velocity, by apply-

ing the law
Am _ 0
Ae B c

This relationship may be tested experimentally, since the
velocity of the electron can be directly measured, e.g. by
means of rapidly oscillating electric and magnetic fields.

2. From the deduction for the kinetic energy of the
electron it follows that between the potential difference, P,
traversed and the acquired velocity » of the electron there
must be the relationship

m 1
LY S S
P - j‘{dx i {\/1 s }

3. We calculate the radius of curvature of the path of
the electron when a magnetic force N 1s present (as the only
deflective force), acting perpendicularly to the velocity of the
electron. From the second of the equations (A) we obtain

d?y  0?
dt2 "R~ N\/l""

me? v/e 1
e (1 —-v*cH "N

These three relationships are a complete expression for

or

R =
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the laws according to which, by the theory here advanced,

the electron must move.

In conclusion I wish to say that in working at the
problem here dealt with I have had the loyal assistance of my
friend and colleague M. Besso, and that I am indebted to

him for several valuable suggestions.
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DOES THE INERTIA OF A BODY DEPEND UPON
ITS ENERGY-CONTENT ?

By A. EINSTEIN

r I AHE results of the previous investigation lead to
a very interesting conclusion, which is here to be
deduced.

I based that investigation on the Maxwell-Hertz equa-
tions for empty space, together with the Maxwellian
expression for the electromagnetic energy of space, and in
addition the principle that:—

The laws by which the states of physical systems alter are
independent of the alternative, to which of two systems of co-
ordinates, in uniform motion of parallel translation relatively
to each other, these alterations of state are referred (principle
of relativity).

With these principles * as my basis I deduced inter alia
the following result (§ 8) :—

Let a system of plane waves of light, referred to the
system of co-ordinates (z, y, 2), possess the energy !, let the
direction of the ray (the wave-normal) make an angle ¢ with
the axis of z of the system. If we introduce a new system of
co-ordinates (£, 9, £) moving in uniform parallel translation
with respect to the system (z, y, #), and having its origin of
co-ordinates in motion along the axis of z with the velocity v,
then this quantity of light—measured in the system (&, 5, {)
—possesses the energy

v
1*50084)

I* = [
1 - v¥fct

*The principle of the constancy of the velocity of light is of course
contained in Maxwell’s equations.
69
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where ¢ denotes the velocity of light. We shall make use of
this result in what follows.

Let there be a stationary body in the system (z, ¥, 2),
and let its energy—referred to the system (z, y, 2)—be E,.
Let the energy of the body relative to the system (&, », §),
moving as above with the velocity v, be H,,.

Let this body send out, in a direction making an angle ¢
with the axis of z, plane waves of light, of energy 4L
measured relatively to (z, y, 2), and simultaneously an equal
quantity of light in the opposite direction. Meanwhile the
body remains at rest with respect to the system (z, y,2). The
principle of energy must apply to this process, and in fact
(by the principle of relativity) with respect to both systems
of co-ordinates. If we call the energy of the body after the
emission of light E, or H, respectively, measured relatively to
the system (z, y, 2) or (€, 7, {) respectively, then by employ-
ing the relation given above we obtain

E0=E1+%L+%L,

1-—200396 1+ycos¢
H,-H, +4L—_% __ + 4L
V1 - v¥c? J1 - v¥c?

L
1 - 0¥

By subtraction we obtain from these equations

= H, +

1
HO - Eu - (Hl - EI) = L{N/]i—;)-_z/? - 1}

The two differences of the form H - E occurring in this ex-
pression have simple physical significations. H and E are
energy values of the same body referred to two systems of
co-ordinates which are in motion relatively to each other, the
body being at rest in one of the two systems (system (z, y, 2)).
Thus it is clear that the difference H - ¥ can differ from the
kinetic energy K of the body, with respect to the other
system (&, 9, {), only by an additive constant C, which de-
pends on the choice of the arbitrary additive constants of the
energies H and E. Thus we may place
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since C does not change during the emission of light. 8o we
have

1
KO—Kl—L{Jm—l}.

The kinetic energy of the body with respect to (&, 2, ¢)
diminishes as a result of the emission of light, and the amount
of diminution is independent of the properties of the body.
Moreover, the difference K, — K, like the kinetic energy of
the electron (§ 10), depends on the velocity.

Neglecting magnitudes of fourth and higher orders we
may place

KO - Kl - Q '5:2"02.

From this equation it directly follows that :—

If a body gives off the energy L in the form of radiation,
vts mass diminishes by L[c®. The fact that the energy with-
drawn from the body becomes energy of radiation evidently
makes no difference, so that we are led to the more general
conclusion that

The mass of a body is a measure of its energy-content ; if
the energy changes by Li, the mass changes in the same sense
by Li/9 x 10%, the energy being measured in ergs, and the
mass in grammes.

It is not impossible that with bodies whose energy-con-
tent 1s variable to a high degree (e.g. with radium salts) the
theory may be successfully put to the test.

If the theory corresponds to the facts, radiation conveys
inertia between the emitting and absorbing bodies.
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SPACE AND TIME
By H. MINKOWSKI

HE views of space and time which I wish to lay be-

I fore you have sprung from the soil of experimental
physics, and therein lies their strength. They are

radical. Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind

of union of the two will preserve an independent reality.
I

First of all T should like to show how it might be possible,
setting out from the accepted mechanics of the present day,
along a purely mathematical line of thought, to arrive at
changed ideas of space and time. The equations of Newton’s
mechanics exhibit a two-fold invariance. Their form re-
mains unaltered, firstly, if we subject the underlying system
of spatial co-ordinates to any arbitrary change of position ;
secondly, if we change its state of motion, namely, by impart-
ing to it any wuniform translatory motion ; furthermore, the
zero point of time 1s given no part to play. We are ac-
customed to look upon the axioms of geometry as finished with,
when we feel ripe for the axioms of mechanics, and for that
reason the two invariances are probably rarely mentioned in
the same breath. Kach of them by itself signifies, for the
differential equations of mechanics, a certain group of trans-
formations. The existence of the first group is looked upon
as a fundamental characteristic of space. The second group
is preferably treated with disdain, so that we with un-
troubled minds may overcome the difficulty of never being
able to decide, from physical phenomena, whether space,

which 1s supposed to be stationary, may not be after all in a
75
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state of uniform translation. Thus the two groups, side by side,
lead their lives entirely apart. Their utterly heterogeneous
character may have discouraged any attempt to compound
them. But it is precisely when they are compounded that
the complete group, as a whole, gives us to think.

We will try to visualize the state of things by the graphic
method. Let z, y, # be rectangular co-ordinates for space,
and let ¢ denote time. The objects of our perception invari-
ably include places and times in combination. Nobody has
ever noticed a place except at a time, or a time except at a
place. But I still respect the dogma that both space and
time have independent significance. A point of space at a
point of time, that is, a system of values z, ¥, 2, ¢, I will call
a world-point. The multiplicity of all thinkable z, y, 2, ¢
systems of values we will christen the world. With this
most valiant piece of chalk I might project upon the blackboard
four world-axes. Since merely one chalky axis, as it 1s, con-
sists of molecules all a-thrill, and moreover is taking part in
the earth’s travels in the universe, it already affords us ample
scope for abstraction; the somewhat greater abstraction as-
sociated with the number four is for the mathematician no
infliction. Not to leave a yawning void anywhere, we will
imagine that everywhere and everywhen there is something
perceptible. To avoid saying * matter ” or “ electricity ”’ I
will use for this something the word ‘‘ substance.” We fix
our attention on the substantial point which is at the world-
point 2, y, 2, t, and imagine that we are able to recognize this
substantial point at any other time. ILet the variations dz,
dy, dz of the space co-ordinates of this substantial point
correspond to a time element dé. Then we obtain, as
an image, so to speak, of the everlasting career of the sub-
stantial point, a curve in the world, a world-line, the points
of which can be referred unequivocally to the parameter ¢
from - ® to + . The whole universe 18 seen to resolve
itself into similar world-lines, and I would fain anticipate
myself by saying that in my opinion physical laws might find
their most perfect expression as reciprocal relations between
these world-lines.

The concepts, space and time, cause the z, y, z~-manifold
t = 0 and 1ts two sides ¢ >0 and ¢ <0 to fall asunder. If,



H. MINKOWSKI 77

for simplicity, we retain the same zero point of space and
time, the first-mentioned group signifies in mechanics that
we may subject the axes of z,y, # at ¢ = 0 to any rotation we
choose about the origin, corresponding to the homogeneous
linear transformations of the expression

z* + y? + A

But the second group means that we may—also without
changing the expression of the laws of mechanics—replace
z,Y,2,tbyx - at,y — Bt,z — ot t with any constant values
of a, B, v. Hence we may give to the time axis whatever
direction we choose towards the upper half of the world,
t>0. Now what has the requirement of orthogonality in
space to do with this perfect freedom of the time axis in an
upward direction ?

To establish the connexion, let us take a positive para-
meter ¢, and consider the graphical representation of

i - 2 - y? - 22 =1,

It consists of two surfaces separated by ¢ = 0, on the analogy
of a hyperboloid of two sheets. We consider the sheet in
the region ¢>0, and now take those homogeneous linear
transformations of z, y, 2, ¢ into four new variables ', ', 2, ¢,
for which the expression for this sheet in the new variables
is of the same form. It is evident that the rotations of
space about the origin pertain to these transformations.
Thus we gain full comprehension of the rest of the
transformations simply by taking into consideration one
among them, such that ¢ and 2z remain unchanged. We draw
(Fig. 1) the section of this sheet by the plane of the axes of «
and t-—the upper branch of the hyperbola c*? - z* = 1, with
its asymptotes. From the origin O we draw any radius
vector OA’ of this branch of the hyperbola ; draw the tangent
to the hyperbola at A’ to cut the asymptote on the right at B’;
complete the parallelogram OA'B'C’; and finally, for subse-
quent use, produce B'C’ to cut the axis of z at D. Now if
we take OC’ and OA’ as axes of oblique co-ordinates 2/, ¢
with the measures OC' = 1, OA’ = 1/¢, then that branch of
the hyperbola again acquires the expression ¢*¢? - 2z = 1,
t >0, and the transition from z, ¥, z, ¢ to 2',y', #, t’ 1s one of
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the transformations in question. 'With these transformations
we now associate the arbitrary displacements of the zero
point of space and time, and thereby constitute a group of
transformations, which is also, evidently, dependent on the
parameter ¢. This group I denote by Ge.

If we now allow ¢ to increase to infinity, and 1/c therefore
to converge towards zero, we see from the figure that the

P P Q/ /Q

Fig. 1.

branch of the hyperbola bends more and more towards the
axis of z, the angle of the asymptotes becomes more and more
obtuse, and that in the limit this special transformation
changes into one in which the axis of # may have any up-
ward direction whatever, while 2’ approaches more and more
exactly to z. In view of this it is clear that group G¢ in the
limit when ¢ = w0, that 1s the group G, becomes no other
than that complete group which is appropriate to Newtonian
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mechanics. This being so, and since G. is mathematically
more intelligible than G, it looks as though the thought
might have struck some mathematician, fancy-free, that after
all, as & matter of fact, natural phenomena do not possess an
invariance with the group G, but rather with a group G, ¢
being finite and determinate, but in ordinary units of measure,
extremely great. Such a premonition would have been an
extraordinary triumph for pure mathematics. Well, mathe-
matics, though it now can display only staircase-wit, has the
satisfaction of being wise after the event, and is able, thanks
to its happy antecedents, with its senses sharpened by an un-
hampered outlook to far horizons, to grasp forthwith the
far-reaching consequences of such a metamorphosis of our
concept of nature.

I will state at once what is the value of ¢ with which we
shall finally be dealing. It is the velocity of the propagation
of light in empty space. To avoid speaking either of space or
of emptiness, we may define this magnitude in another way,
as the ratio of the electromagnetic to the electrostatic unit of
electricity.

The existence of the invariance of natural laws for the
relevant group G. would have to be taken, then, in this
way —

From the totality of natural phenomena it is possible, by
successively enhanced approximations, to derive more and
more exactly a system of reference z, ¥, 2, ¢, space and time,
by means of which these phenomena then present themselves
in agreement with definite laws. But when this is done,
this system of reference is by no means unequivocally deter-
mined by the phenomena. It is still possible to make any
change in the system of reference that s in conformity with
the transformations of the group G¢, and leave the expression
of the laws of nature unaltered.

For example, in correspondence with the figure described
above, we may also designate time ¢’, but then must of neces-
sity, in connexion therewith, define space by the manifold of
the three parameters z’, ¥, z, in which case physical laws
would be expressed in exactly the same way by means of
z,y, z, t as by means of z, y, z, . We should then have in
the world no longer space, but an infinite number of spaces,
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analogously as there are in three-dimensional space an infinite
number of planes. Three-dimensional geometry becomes a
chapter in four-dimensional physics. Now you know why I
sald at the outset that space and time are to fade away into
shadows, and only a world in itself will subsist.

11

The question now is, what are the circumstances which
force this changed conception of space and time upon us?
Does it actually never contradict experience ? And finally, is
it advantageous for describing phenomena ?

Before going into these questions, I must make an im-
portant remark. If we have in any way individualized space
and time, we have, as a world-line corresponding to a stationary
substantial point, a straight line parallel to the axis of ¢;
corresponding to a substantial point in uniform motion, a
straight line at an angle to the axis of ¢{; to a substantial
point in varying motion, a world-line in some form of a curve.
If at any world-point z, y, 2, ¢ we take the world-line passing
through that point, and find it parallel to any radius vector
OA' of the above-mentioned hyperboloidal sheet, we can
introduce OA’ as a new axis of time, and with the new con-
cepts of space and time thus given, the substance at the
world-point concerned appears as at rest. We will now intro-
duce this fundamental axiom :—

The substance at any world-point may always, with the
appropriate determination of space and time, be looked upon
as at rest.

The axiom signifies that at any world-point the expression

cdet — da® - dy* - d*

always has a positive value, or, what comes to the same thing,
that any velocity v always proves less than ¢. Accordingly ¢
would stand as the upper limit for all substantial velocities,
and that is precisely what would reveal the deeper significance
of the magnitude ¢. In this second form the first impression
made by the axiom is not altogether pleasing. But we must
bear in mind that a modified form of mechanics, in which the
square root of this quadratic differential expression appears,
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will now make its way, so that cases with a velocity greater
than that of light will henceforward play only some such
part as that of figures with imaginary co-ordinates in
geometry.

Now the impulse and true motive for assuming the group
G came from the fact that the differential equation for the
propagation of light in empty space possesses that group Ge.*
On.the other hand, the concept of rigid bodies has meaning
only in mechanics satisfying the group G,. If we have a
theory of optics with G¢, and if on the other hand there were
rigid bodies, it is easy to see that one and the same direction
of ¢ would be distinguished by the two hyperboloidal sheets
appropriate to G¢ and G_, and this would have the further
consequence, that we should be able, by employing suitable
rigid optical instruments in the laboratory, to perceive some
alteration in the phenomena when the orientation with re-
spect to the direction of the earth’s motion is changed. But
all efforts directed towards this goal, in particular the famous
interference experiment of Michelson, have had a negative
result. To explain this failure, H. A. Liorentz set up an hypo-
thesis, the success of which lies in this very invariance in
optics for the group G.. According to Liorentz any moving
body must have undergone a contraction in the direction of
1ts motion, and in fact with a velocity v, a contraction in the

ratio
1:/1 - v¥c.

This hypothesis sounds extremely fantastical, for the con-
traction is not to be looked upon as a consequence of resist-
ances in the ether, or anything of that kind, but simply as a
gift from above,—as an accompanying circumstance of the
circumstance of motion.

Iwill nowshow byour figure that the Liorentzian hypothesis
is completely equivalent to the new conception of space and
time, which, indeed, makes the hypothesis much more intelli-
gible. If for simplicity we disregard y and #, and imagine a
worldof onespatial dimension, then a parallel band, upright like
the axis of £, and another inclining to the axis of ¢ (see Fig. 1)

* An application of this fact in its essentials has already been given by
W. Voigt, Gotvinger Nachrichten, 1887, p. 41.
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represent, respectively, the career of a body at rest or in uni-
form motion, preserving in each case a constant spatial extent.
If OA’ s parallel to the second band, we can introduce ¢ as
the time, and 2’ as the space co-ordinate, and then the second
body appears at rest, the first in uniform motion. We now
assume that the first body, envisaged as at rest, has the
length /, that is, the cross section PP of the first band on the
axis of z is equal to I.OC, where OC denotes the unit of
measure on the axis of 2, and on the other hand, that the
second body, envisaged as at rest, has the same length I,
which then means that the cross section Q'Q’ of the second
band, measured parallel to the axis of 2/, is equal to 7. OC'".
We now have in these two bodies images of two equal
Liorentzian electrons, one at rest and one in uniform motion.
But if we retain the original co-ordinates z, ¢, we must give
as the extent of the second electron the cross section of its
appropriate band parallel to the axis of 2. Now since Q'Q’
= 1.0C, 1t 18 evident that QQ = 7.0D". If dz/dt for the
second band is equal to v, an easy calculation gives

OD' = OCJ/1 - o¥c,

therefore also PP:QQ = 1:,/1 - »?/¢®.. But this is the
meaning of Lorentz’s hypothesis of the contraction of
electrons in motion. If on the other hand we envisage the
second electron as at rest, and therefore adopt the system of
reference ' ¢, the length of the first must be denoted by the
cross section P'P’ of its band parallel to OC’, and we should
find the first electron in comparison with the second to be
contracted in exactly the same proportion; for in the figure

PP:QQ =0D:0C = 0D : 0C = QQ: PP.

Lorentz called the ¢’ combination of z and ¢ the local time
of the electron in uniform motion, and applied a physical
construction of this concept, for the better understanding of
the hypothesis of contraction. But the credit of first recog-
nizing clearly that the time of the one electron is just as good
as that of the other, that is to say, that ¢ and ¢ are to be
treated identically, belongs to A. Einstein.* Thus time, as a

* A. Einstein, Ann. d. Phys., 17, 1905, p. 891; Jahrb. d. Radioaktivitit
und Elektronik, 4, 1907, p. 411.
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concept unequivocally determined by phenomena, was first
deposed from its high seat. Neither Einstein nor Lorentz
made any attack on the concept of space, perhaps because in
the above-mentioned special transformation, where the plane
of ', t' coincides with the plane of z, ¢, an interpretation
1s possible by saying that the z-axis of space maintains its
position. One may expect to find a corresponding violation
of the concept of space appraised as another act of audacity
on the part of the higher mathematics. Nevertheless, this
further step 1s indispensable for the true understanding of
the group G, and when it has been taken, the word relativity-
postulate for the requirement of an invariance with the group
G, seems to me very feeble. Since the postulate comes to
mean that only the four-dimensional world in space and time
is given by phenomena, but that the projection in space and in
time may still be undertaken with a certain degree of freedom,

I prefer to call it the postulate of the absolute world (or briefly,
the world-postulate).

111

The world-postulate permits identical treatment of the
four co-ordinates z, y, #, ¢. By this means, as I shall now
show, the forms in which the laws of physics are displayed
gain in intelligibility. In particular the idea of acceleration
acquires a clear-cut character.

I will use a geometrical manner of expression, which sug-
gests itself at once if we tacitly disregard z in the triplex
z, 4y, 2. 1 take any world-point O as the zero-point of space-
time. The cone ¢*t? — 2 - y? - 22 = 0 with apex 0 (Fig. 2)
consists of two parts, one with values ¢ <0, the other with
values ¢ > 0. The former, the front cone of O, consists, let
us say, of all the world-points which ‘““ send light to O,” the
latter, the back cone of O, of all the world-points which “ re-
ceive light from O.” The territory bounded by the front cone
alone, we may call ““before ” O, that which is bounded by
the back cone alone, ‘“after’” O. The hyperboloidal sheet
already discussed

F=ctt-2-9y-22=1, t>0
lies after O. The territory between the cones is filled by the
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one-sheeted hyperboloidal figures
~F=2+9yt + 22 - =

for all constant positive values of k. We are specially
interested in the hyperbolas with O as centre, lying on the
latter figures. The single branches of these hyperbolas
may be called briefly the internal hyperbolas with centre O.
One of these branches, regarded as a world-line, would repre-
sent a motion which, for { = — @ and ¢ = + o, rises
asymptotically to the velocity of light, c.

If we now, on the analogy of vectors in space, call a
directed length in the manifold of z, y, 2, ¢ a vector, we have
to distinguish between the time-like vectors with directions
from O tothe sheet + F = 1, ¢ >0, and the space-like vectors

Fia. 2.

with directions from O to - F = 1. The time axis may run
parallel to any vector of the former kind. Any world-point
between the front and back cones of O can be arranged by
means of the system of reference so as to be simultaneous
with O, but also just as well so as to be earlier than O or
later than O. Any world-point within the front cone of O is
necessarily always before O; any world-point within the
back cone of O necessarily always after O. Corresponding to
passing to the limit, ¢ = o, there would be a complete flatten-
ing out of the wedge-shaped segment between the cones into
the plane manifold ¢ = 0. In the figures this segment is
intentionally drawn with different widths.

We divide up any vector we choose, e.g. that from O to
z, ¥, 2, t, into the four components z, y, 2, £.  If the directions
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of two vectors are, respectively, that of a radius vector OR
from O to one of the surfaces ¥ F = 1, and that of a tangent
RS at the point R of the same surface, the vectors are said
to be normal to one another. Thus the condition that the
vectors with components z, y, 2, ¢ and 2y, y,, 2,, {, may be
normal to each other is

c’tt, — xx, - yy, - 22, = O.

For the measurement of vectors in different directions the
units of measure are to be fixed by assigning to a space-like
vector from O to - F = 1 always the magnitude 1, and to a
time-like vector from O to + ¥ = 1, ¢{> 0 always the magni-
tude 1/c.

If we imagine at a world-point P (2, y, 2, £) the world-
line of a substantial point running through that point, the
magnitude corresponding to the time-like vector dz, dy, dz,
dt laid off along the line is therefore

dr = %}\/c"’dtz - dx? - dy? — dz%

The integral {dr = 7 of this amount, taken along the world-
line from any fixed starting-point P, to the variable end-
point P, we call the proper time of the substantial point at P.
On the world-line we regard z, y, 2, {—the components of the
vector OP—as functions of the proper time 7; denote their
first differential coefficients with respect to r by #, 7, 2, £
their second differential coefficients with respect to = by
Z, ¥y, Z, t; and give names to the appropriate vectors, calling
the derivative of the vector OP with respect to r the velocity
vector at P, and the derivative of this velocity vector with
respect to 7 the acceleration vector at P. Hence, since

ctft — 22 — y? - 22 = ¢?,
we have .
citt — zx - yy - 22z = 0,

i.e. the velocity vector is the time-like vector of unit magni-
tude in the direction of the world-line at P, and the accelera-
tion vector at P is normal to the velocity vector at P, and is
therefore in any case a space-like vector.

Now, as is readily seen, there is a definite hyperbola
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which has three infinitely proximate points in common with
the world-line at P, and whose asymptotes are generators of
a ‘‘ front cone ” and a ‘‘ back cone ” (Fig. 3).
Let this hyperbola be called the hyperbola
of curvature at P. If M is the centre of this
hyperbola, we here have to do with an in-
ternal hyperbola with centre M. Let p be
the magnitude of the vector MP ; then we
recognize the acceleration vector at P as the
vector in the direction MP of magnitude
¢*/p.

If Z, 4, Z, t are all zero, the hyperbola of
curvature reduces to the straight line touch-
g the world-line in P, and we must put
p= .

IV

To show that the assumption of group
G¢ for the laws of physics never leads to a
contradiction, it is unavoidable to undertake a revision of
the whole of physics on the basis of this assumption. This
revision has to some extent already been successfully carried
out for questions of thermodynamics and heat radiation,* for
electromagnetic processes, and finally, with the retention of
the concept of mass, for mechanics.t

For this last branch of physics it is of prime importance
to raise the question—When a force with the components
X, Y, Z parallel to the axes of space acts at a world-point P
(z, y, 2, t), where the velocity vector is z, 3, 2, ¢, what must
we take this force to be when the system of reference is in
any way changed ? Now there exist certain approved state-
ments as to the ponderomotive force in the electromagnetic
field in the cases where the group G, is undoubtedly admis-
sible. These statements lead up to the simple rule :—When
the system of reference is changed, the force in question
transforms into a force in the new space co-ordinates in such
a way that the appropriate vector with the components éX,

* M. Planck, * Zur Dynamik bewegter Systeme,’’ Berliner Berichte, 1907,
mn BAO . alen i Ann A Phve O9f 10NR T 1

Fic. 3.
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tY, tZ, ¢T, where
T=—1§(§X+9.-Y+5Z)
Y/ 7 t

is the rate at which work is done by the force at the world-
point divided by ¢, remains unchanged. This vector is always
normal to the velocity vector at P. A force vector of this
kind, corresponding to a force at P, is to be called a *“ motive
force vector ” at P.

1 shall now describe the world-line of a substantial point
with constant mechanical mass m, passing through P. Let
the velocity vector at P, multiplied by m, be called the
‘“momentum vector’ at P, and the acceleration vector at P,
multiplied by m, be called the “ force vector” of the motion
at P. With these definitions, the law of motion of a point
of mass with given motive force vector runs thus:—* The
Force Vector of Motion is Equal to the Motive Force Vector.
This assertion comprises four equations for the components
corresponding to the four axes, and since both vectors men-
tioned are a prior: normal to the velocity vector, the fourth
equation may be looked upon as a consequence of the other
three. In accordance with the above signification of T, the
fourth equation undoubtedly represents the law of energy.
Therefore the component of the momentum vector along the
axigs of ¢, multiplied by ¢, is to be defined as the kinetic
energy of the point mass. The expression for this is

777,022%_ = mc*[/1 - v¥[c*
i.e., after removal of the additive constant mc?, the expression
tmo? of Newtonian mechanics down to magnitudes of the
order 1/c% 1t comes out very clearly in this way, how the
energy depends on the system of reference. But as the axis
of ¢ may be laid in the direction of any time-like vector, the
law of energy, framed for all possible systems of reference,
already contains, on the other hand, the whole system of the
equations of motion. At the limiting transition which we
have discussed, to ¢ = o, this fact retains its importance for

* H. Minkowski, loc. cit., p 107. Cf. also M. Planck, Verhandlungen
der physikalischen Gesellschaft, 4, 1906, p. 136,
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the axiomatic structure of Newtonian mechanics as well, and
has already been appreciated in this sense by I. R. Schiitz.*

We can determine the ratio of the units of length and
time beforehand in such a way that the natural limit of
velocity becomes ¢ = 1. If we then introduce, further,

» -1 t=s in place of ¢ the quadratic differential ex-

pression
dr* = - dz* - dy? - dz* - ds?

thus becomes perfectly symmetrical in z, y, 2, s, and this
symmetry is communicated to any law which does not contra-
dict the world-postulate. Thus the essence of this postulate
may be clothed mathematically in a very pregnant manner in
the mystic formula

3.10° km = / - 1 secs.

! v
The advantages afforded by the world-postulate will per-
haps be most strikingly exemplified by indicating the effects
proceeding from a point charge in any kind of motion accord-
ing to the Maxwell-Liorentz theory.
Let us imagine the world-line of such
a point electron with the charge ¢, and
introduce upon it the proper time T
from any initial point. In order to find
the field caused by the electron at any
world-point P;, we construct the front
cone belonging to P, (Fig. 4). The cone
evidently meets the world-line, since the
directions of the line are everywhere
those of time-like vectors, at the single
point P. We draw the tangent to the
world-line at P, and construct through
Fic. 4. P, the normal P;Q to this tangent.
Let the length of P,Q be ». Then, by
the definition of a front cone, the length of PQ must be »/c.
Now the vector in the direction PQ of magnitude e/r repre-

* I, R. Schiitz, ¢ Das Prinzip der absoluten Erhaltung der Energie,”
Gottinger Nachr,, 1897, p. 110,
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sents by its components along the axes of z, ¥, 2, the vector
potential multiplied by ¢, and by the component along the
axis of ¢, the scalar potential of the field excited by ¢ at the
world-point P. Herein lie the elementary laws formulated
by A. Liénard and E. Wiechert.*

Then in the description of the field produced by the
electron we see that the separation of the field into electric
and magnetic force is a relative one with regard to the under-
lying time axis; the most perspicuous way of describing the
two forces together 1is on a certain analogy with the wrench
in mechanics, though the analogy is not complete.

I will now describe the ponderomotive action of a moving
point charge on another moving point charge. It us
imagine the world-line of a second point electron of the
charge’e;, passing through the world-point P,. We define P,
Q, r as before, then construct (Fig. 4) the centre M of the
hyperbola of curvature at P, and finally the normal MN from
M to a straight line imagined through P parallel to QP,. With
P as starting-point we now determine a system of reference
as follows :—The axis of ¢ in the direction PQ, the axis of z
in direction QP;, the axis of y in direction MN, whereby
finally the direction of the axis of 2 is also defined as normal
to the axes of ¢, z, y. Let the acceleration vector at P be
z, ij, %, t, the velocity vector at P, be &,, 9y, 21, ;. The motive
force vector exerted at P; by the first moving electron ¢ on
the second moving electron ¢, now takes the form

. 4
- eel(tl - El)ﬁ“,

where the components £z, &, 8, £: of the vector & satisfy

the three relations

- fe= B=L f=0,

and where, fourthly, this vector & is normal to the velocity

vector at P, and through this circumstance alone stands in
dependence on the latter velocity vector.

* A, Liénard, * Champ électrique et magnétique produit par une charge
concentrée en un point et animée d'un mouvement quelconque,” L'Eclairage
Electrique, 16, 1898, pp. 5, 53, 106; E. Wiechert, ‘ Elektrodynamische
Elementargesetze,”” Arch. Néerl. (2), 5, 1900, p. 549.
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When we compare this statement with previous formu-
lations * of the same elementary law of the ponderomotive
action of moving point charges on one another, we are com-
pelled to admit that it is only in four dimensions that the
relations here taken under consideration reveal their inner
being in full simplicity, and that on a three dimensional
space forced upon us @ priori they cast only a very com-
plicated projection.

In mechanies as reformed in accordance with the world-
postulate, the disturbing lack of harmony between Newtonian
mechanics and modern electrodynamics disappears of its own
accord. Before concluding I will just touch upon the attitude
of Newton’'s law of attraction toward this postulate. I shall
assume that when two points of mass m, m, describe their
world-lines, a motive force vector is exerted by m on m,, of
exactly the same form as that just given in the case of
electrons, except that + mm, must now take the place of
— e¢,, We now specially consider the case where the ac-
celeration vector of m is constantly zero. Let us then intro-
duce ¢ in such a way that m is to be taken as at rest, and let
only m, move under the motive force vector which proceeds
from m. If we now modify this given vector in the first
place by adding the factor {1 = /1 - v?/c?, which, to the
order of 1/c? is equal to 1, it will be seen t that for the posi-
tions z;, ¥,, 2, of m, and their variations in time, we should
arrive exactly at Kepler’s laws again, except that the proper
times 7; of m, would take the place of the times ¢. From
this simple remark it may then be seen that the proposed
law of attraction combined with the new mechanics is no less
well adapted to explain astronomical observations than the
Newtonian law of attraction combined with Newtonian
mechanics.

The fundamental equations for electromagnetic processes
in ponderable bodies also fit in completely with the world-
postulate. As I shall show elsewhere, it is not even by any
means necessary to abandon the derivation of these funda-

*KX. Schwarzwald, Gottinger Nachr,, 1903, p. 182; H. A, Lorentz,
Enzykl. d. math, Wissensch., V, Art, 14, p. 199,
+ H. Minkowski, loe. cit., p. 110.
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mental equations from ideas of the electronic theory, as
taught by Lorentz, in order to adapt them to the world-
postulate.

The validity without exception of the world-postulate, I
like to think, is the true nucleus of an electromagnetic image
of the world, which, discovered by Lorentz, and further re-
vealed by Einstein, now lies open in the full light of day. In
the development of its mathematical consequences there will
be ample suggestions for experimental verifications of the
postulate, which will suffice to conciliate even those to whom
the abandonment of old-established views is unsympathetic
or painful, by the idea of a pre-established harmony between
pure mathematics and physics.



NOTES
by
A. SOMMERFELD

The following notes are given in an appendix so as to interfere in no way
with Minkowski’s text, They are by no means essential, having no other pur-
pose than that of removing certain small formal mathematical difficulties
which might hinder the comprehension of Minkowski’s great thoughts, The
bibliographical references are confined to the literature dealing expressly with
the subject of his address. From the physical point of view there is nothing
in what Minkowski says that must now be withdrawn, with the exception of
the final remark on Newton’s law of attraction. What will be the epistemo-
logical attitude towards Minkowski's conception of the time-space problem is
another question, but, as it seems to me, a question which does not essentially
touch his physies.

(1) Page 81, line 8. ¢ On the other hand, the concept of rigid bodies has
meaning only in mechanics satisfying the group G,,.” This sentence was con-
firmed in the widest sense in a discussion on a paper by his disciple M. Born,
a year after Minkowski’s death. Born (Ann. d. Physik, 30, 1909, p. 1)
had defined a relatively rigid body as one in which every element of volume,
even in accelerated motions, undergoes the Lorentzian contraction appropriate
to its velocity. Ehrenfest (Phys. Zeitschr., 10, 1909, p. 918) showed that
such & body cannot be set in rotation; Herglotz (Ann. d. Phys., 31, 1910,
p. 398) and F. Nother (Ann. d, Phys., 81, 1910, p. 919) that it has only three
degrees of freedom of movement, The attempt was also made to define a
relatively rigid body with six or nine degrees of freedom, But Planck
(Phys. Zeitschr., 11, 1910, p. 294) expressed the view that the theory of
relativity can operate only with more or less elastic bodies, and Laue (Phys.
Zeitschr., 12, 1911, p. 48), employing Minkowski’s methods, and his Fig. 2
in the text above, proved that in the theory of relativity every solid body must
have an infinite number of degrees of freedom. Finally Herglotz (Ann. d.
Physik, 86, 1911, p. 453) developed a relativistic theory of elasticity, accord-
ing to which elastic tensions always occur if the motion of the body is not rela-
tively rigid in Born’s sense. Thus the relatively rigid body plays the same
part in this theory of elasticity as the ordinary rigid body plays in the ordinary
theory of elasticity.

(2) Page 82, line 18. ‘¢ If dw/dt for the second band is equal to v, an easy
calculasion gives OD’ = OC,\/1 — v%/c%.” In Fig. 1,leta = £A’OA, B = LB'OA’
= <C’OB’, in which the equality of the last two angles follows from the sym-
metrical position of the asymptotes with respect to the new axes of co-ordin-
ates (conjugate diameters of the hyperbola).* Since a + 8= }m,

sin 28 = cos Za.

* Sommerfeld seems to take cf as a co-ordinate in the graph in place of ¢ as

used by Minkowski.—TRANS.
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In the triangle OD'C’ the law of sines gives

0D’ _ sin 28 _ cos 2a
OC" ~ cosa cosa

or, as OC' = OA’,
' ,c08 2a , 2
OD’ = QA’—— = OA’cos a(l ~ tan?a) . N 8
cos «

If x, ¢ are the co-ordinates of the point A’ in the z, ¢ system, and therefore
z . 0A and ¢t . OC = ct. OA respectively are the corresponding distances from
the axes of co-ordinates, we have

., 0A = gin a.OA', Ct-OA=COSa.OA', :gt.—:: ta,nazg (2)
Inserting these values of « and ct in the equation of the hyperbola, we find
OA%(cos? a — sin? a) = OA2, OA’ = 04 3)

cos a A/(1 — tan? a)
therefore, on account of (1) and (2),

OD’ = OA /(1 - tan? a) = OA /(1 — v¥/c?).

This, because OA = OC, is the formula to be proved.
Further, in the right-angled triangle OCD,

00 0A

T cosa cOSa

Equation (3) may therefore be also written in this way,

. OD OD _ o
OA" = (1 — tan? a) *on < '\/(1 - 02)’

This, together with (4), gives the proportion,
OD: OA’ = OD’: OA,
which, as OA’ = OC’ and OA = OQC, is identical with
OD:0C" = OD': 0C

employed on page 82, line 29.

(3) Page 84, line 15. ‘¢ Any world-point between the front and back cones
of O can be arranged, by means of the system of reference, so as to be simultane-
ous with O, but also just as well so as to be earlier than O, or later than O.”
M. Lauve (Phys. Zeitschr., 12, 1911, p. 48) traces to this observation the
proof of Einstein’s theorem : In the theory of relativity no process of causality
can be propagated with a velocity greater than that of light (* Signal velocity
<c¢"). Assume that an event O causes another event P, and that the world-

point P lies in the region between the cones of O. In this case the effect would
have been conveyed from O to P with a velocity greater than that of light, rela-
tively to the system of reference-x, ¢ in question, in which, of course, the effect
P is agsumed to be later than the cause O, {p> 0. But now, in accordance
with the words quoted above, the system of reference may be changed, so that
P comes to be earlier than O, that is to say, & system «’, ¢’ may be chosen in
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infinitely many ways so that ¢'p becomes < 0. This is irreconcilable with the

idea of causality. P must therefore lie either ‘*after’” O or on the back
cone of O, i.e. the velocity of propagation of a signal to be sent from O, which

is to cause a second event at the world-point P, must of necessity be gc. (Of

course it is possible, even in the theory of relativity, to define processes propa-
gated with velocity greater than light, This can be done geometrically, for
example, in & very simple way. But such processes can never serve as signals,
i.e. it is impossible to introduce them arbitrarily and by them, for example, to
set & relay in motion at a distant place. There may be e.g. optical media, in
which the ¢ velocity of light” is greater than ¢. But in that case what is
understood by the velocity of light is the propagation of phases in an infinite
periodic wave-train. These can never be used for signalling. On the other
hand a wave-front is propagated, in all circumstances and with any con-
stitution of the optical medium, with the velocity ¢ ; cf. e.g. A. Sommerfeld,
‘¢ Festschrift Heinrich Weber,” Leipzig, Teubner, 1912, p. 338, or Ann.
d. Physik, 44, 1914, p. 177.

(4) Page 85, line 18. As Minkowski once remarked to me, the element of
proper time dr is not a complete differential. Thus if we connect two world-
points O and P by two different world-lines 1 and 2, then

§1dr == §odr

If 1 runs parallel to the {-axis, so that the first transition in the chosen system
of reference signifies rest, it is evident that

Sld'r =t, Szd’r < t.

On this depends the retardation of the moving clock compared with the clock
at rest. The assertion is based, as Einstein has pointed out, on the unprov-
able assumption that the clock in motion actually indicates its own proper
time, i.e. that it always gives the time corresponding to the state of velocity,
regarded as constant, at any instant. The moving clock must naturally have
been moved with acceleration (with changes of speed or direction) in order
to be compared with the stationary clock at the world-point P. The retard-
ation of the moving clock does not therefore actually indicate ¢ motion,’” but
‘““ accelerated motion.” Hence this does not contradict the principle of
relativity.

(5) Page 86,line4. The term ‘‘ hyperbola of curvature ”’ is formed exactly
on the model of the elementary concept of the circle of curvature. The analogy
become analytical identity if instead of the real co-ordinate of time ¢ the
imaginary % = ict is employed, that is, ¢ times the co-ordinate employed by
Minkowski, page 88, line 6.

By page 84 an internal hyperbola in the z, ¢-plane has the equation, with
k=op,

g % - P = p?,
therefore in the @, % plane

x? + u? = ph

Hence it may be written in parametric form, when ¢ denotes a purely imagin-
ary angle,
X = pCcOS ¢, % = psin ¢.
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So, as I suggested in the Ann. d. Phys., 33, p. 649, § 8, hyperbolic motion may
also be denoted as ¢ cyclic motion,” whereby its chief properties (convection of
the field, occurrence of & kind of centrifugal force) are characterized with
particular clearness. For the hyperbolic motion we have

1
dr=6,\/(-du2-dm“)=g}d¢]

and thus
é:@:-icsin¢,u=@=+iccos¢
dr dr
. dr c? . du %,
L = — = — COS U = ~— = — BIN ¢.
dr p P dr p 4

The magnitude of the acceleration vector in hyperbolic motion is therefore ¢*/p.
Since any given world-line is touched by the hyperbola of curvature at three
points, it has the same acceleration vector as the hyperbolic motion, and
its magnitude is ¢*/p, as indicated on page 86, line 11.

The centre M of the cyclic motion a2 + u? = p? is evidently the point
x =0, % =0, and from this centre all points of the hyperbola have the con-
stant ¢ distance,” i.e, a constant magnitude of the radius vector. Therefore p
denotes the interval marked MP in Fig. 8.

(6) Page 87, line 1. A force X, Y, Z, to be made into a * force vector,”
must be multiplied by { = déf{dr. This may be explained as follows.

According to Minkowski, page 87, line 10, the momentum vector is defined
by max, my, ms, mi, where m denotes the ‘* constant mechanical mass,’ or, as
Minkowski says more plainly elsewhere, the * rest mass.” If we retain

Newton's law of motion (time rate of change of momentum equal to force), we
have to set

d, . d, . .
a—t-(mw) = X, a-i(my) =Y, 5(mz2) = Z.

’ a‘z(
Multiplication by { makes the left-hand sides into vector components in
Minkowski’s sense. Therefore {X, {Y, {Z are also the first three components
of the ¢ force vector.” The fourth component T follows without ambiguity
from the requirement that the force vector is to be normal to the motion

vector. Minkowski's equations for the mechanics of the mass point are there-
fore, with constant rest mass,

mi = iX, my = tY, mé =12, mi=IT.

The assumption of constancy of rest mass can only be maintained, however,
when the energy-content of the body is not changed in its motion, or in the
words of Planck, when the motion ensues ** adiabatically and isochorically.”
(7) Pages 88and 89, What ischaracteristic of the constructions here given,
is their complete independence of any special system of reference. They give,
as Minkowski postulates on page 88, ¢ reciprocal relations between world-lines *’
(or world-points) as ¢ the most perfect expression of physical laws.” On page 89,
for example, the electrodynamic potential {(four-potential) is not referred to the
axes of co-ordinates @, ¥, 2, ¢ until it is to be conventionally divided into &

scalar and a vector portion, which have no independent invariant meaning
from the relativistic standpoint.
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equations, by Minkowski's methods, an invariant analytical form for the four-
potential and the ponderomotive action between two electrons, and so given
another view of these constructions of Minkowski. Instead of going into de-
tails here, I may refer to my article in Ann. d. Phys., 83, 1910, p. 649, § 7,
or to M. Laue, *‘ Das Relativititsprinzip,” Braunschweig, Vieweg, 1913, § 19.
Compare also Minkowski’s address on the principle of relativity, edited by my-
self, in Ann. d. Phys., 47, 1915, p. 927, where the four-potential is placed at
the head of electrodynamics, and this theory thus reduced to its simplest form.

(8) Page89,line6. The invariant representation of the electromagnetic field
by a ‘¢ vector of the second kind ”* (or, as I proposed to call it, & ** six-vector,” a
term which seems to be winning acceptance) is a particularly important part
of Minkowski’s view of electrodynamics. Whereas Minkowski’s ideas on the
vector of the first kind, or four-vector, were in part anticipated by Poincaré
(Rend. Circ. Mat. Palermo, 21, 1906), the introduction of the six-vector is
new, Like the six-vector, the wrench of mechanics (standing for a single force
and a couple) depends on six independent parameters. And as in the electro-
magnetic field ¢ the separation into electric and magnetic force is a relative
one,” so with the wrench, as is well known, the division into single force
and couple can be made in very many ways.

(9) Page 90, line 9. Minkowski's relativistic form of Newton’s law for the
special case of zero acceleration mentioned in the text is included in the more
general form proposed by Poincaré (loc. ¢it.). On the other hand, in taking ac-
celeration into consideration, it goes further than the latter. Minkowski’s or
Poincaré’s formulation of the law of gravitation shows that it is possible in
many ways to reconcile Newton’s law with the theory of relativity. That law
is viewed as a point law, and gravitation therefore in a certain sense as action
at a distance. The general! theory of relativity, which Einstein has been
developing from 1907 on, gets a deeper grip of the problem of gravitation,
Gravitation is not only regarded as a field action and described by space-time
differential equations—which seems from the present standpoint irrefutable—
but it is also united organically with the principle of relativity extended to any
transformations, whereas Minkowski and Poincaré had adapted it to the postu-
late of relativity in a more external manner, In the general theory of relativity
the space-time structure is determined, from or together with, gravitation. Thus
the principle of relativity, by an extension of Minkowski’s ideas, is so formu-
lated that it postulates the co-variance of physical quantities with reference to
all point transformations, so that the coefficients of the invariant linear element
enter into the laws of physics.

(10) Page 90, line 33. The *‘ fundamental equations for electromagnetic
processes in ponderable bodies” are developed by Minkowski in Gottinger
Nachrichten, 1907. It was not granted him to complete the * deduction of
this equation on the basis of the theory of electrons.” His essays in this
direction have been worked out by M. Born, and together with the ‘ Funda-
mental Equations” make up the first volume of the series of monographs edited
by Otto Blumenthal (Leipzig, 1910).
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ON THE INFLUENCE OF GRAVITATION ON THE
PROPAGATION OF LIGHT *

By A. EINSTEIN

the question whether the propagation of light is in-

fluenced by gravitation. I return to this theme, because
my previous presentation of the subject does not satisfy
me, and for a stronger reason, because I now see that one of
the most important consequences of my former treatment
is capable of being tested experimentally. For it follows
from the theory here to be brought forward, that rays of
light, passing close to the sun, are deflected by its gravita-
tional field, so that the angular distance between the sun and
a fixed star appearing near to it is apparently increased by
nearly a second of arc.

In the course of these reflexions further results are yielded
which relate to gravitation. But as the exposition of the
entire group of considerations would be rather difficult to
follow, only a few quite elementary reflexions will be given
in the following pages, from which the reader will readily be
able to inform himself as to the suppositions of the theory
and its line of thought. The relations here deduced, even if
the theoretical foundation is sound, are valid only to a first
approximation.

IN a memoir published four years ago * I tried to answer

§ 1. A Hypothesis as to the Physical Nature of the
Gravitational Field
In a homogeneous gravitational field (acceleration of
gravity ) let there be a stationary system of co-ordinates K,
orientated so that the lines of force of the gravitational field
run in the negative direction of the axis of z. 1In a space free

* A. Einstein, Jahrbuch fiir Radioakt. und Elektronik, 4, 1907,
99
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of gravitational fields let there be a second system of co-
ordinates K', moving with uniform acceleration (y) in the
positive direction of its axis of 2. To avoid unnecessary com-
plications, let us for the present disregard the theory of
relativity, and regard both systems from the customary point
of view of kinematics, and the movements occurring in them
from that of ordinary mechanics.

Relatively to K, as well as relatively to X', material points
which are not subjected to the action of other material points,
move in keeping with the equations

d*x d*y d*z
82*2&"’0,—&?2-—0, Ezgw - .

For the accelerated system XK' this follows directly from
Galileo’s principle, but for the system K, at rest in a homo-
geneous gravitational field, from the experience that all bodies
in such a field are equally and uniformly accelerated. This
experience, of the equal falling of all bodies in the gravi-
tational field, is one of the most universal which the obser-
vation of nature has yielded ; but in spite of that the law
has not found any place in the foundations of our edifice of
the physical universe.

But we arrive at a very satisfactory interpretation of this
law of experience, if we assume that the systems K and K’ are
physically exactly equivalent, that is, if we assume that we
may just as well regard the system K as being in a space free
from gravitational fields, if we then regard K as uniformly
accelerated. This assumption of exact physical equivalence
makes it impossible for us to speak of the absolute accelera-
tion of the system of reference, just as the usual theory of
relativity forbids us to talk of the absolute velocity of a
system; * and it makes the equal falling of all bodies in a
gravitational field seem a matter of course.

As long as we restrict ourselves to purely mechanical pro-
cesses in the realm where Newton’s mechanics holds sway,
we are certain of the equivalence of the systems K and K'.

* Of course we cannot replace any arbitrary gravitational field by a state of
motion of the system without & gravitational field, any more than, by a trans-
formation of relativity, we can transform all points of a medium in any kind of
motion to rest.
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But this view of ours will not have any deeper significance
unless the systems K and K' are equivalent with respect to
all physical processes, that is, unless the laws of nature with
respect to K are in entire agreement with those with respect
to K'. By assuming this to be so, we arrive at a principle
which, if 1t is really true, has great heuristic importance.
For by theoretical consideration of processes which take place
relatively to a system of reference with uniform acceleration,
we obtain information as to the career of processes in a homo-
geneous gravitational field. We shall now show, first of all,
from the standpoint of the ordlnary theory of relativity, what
degree of probability is inherent in our hypothesis.

§ 2. On the Gravitation of Energy

One result yielded by the theory of relativity is that the
inertia mass of a body increases with the energy it contains ;
if the increase of energy amounts to E, the increase in inertia
mass i1s equal to E/c?, when ¢ denotes the velocity of light.
Now is there an increase of gravitating mass corresponding
to this increase of inertia mass ? If not, then a body would
fall in the same gravitational field with varying acceleration
according to the energy it contained. That highly satisfactory
result of the theory of relativity by which the law of the con-
servation of mass is merged in the law of conservation of
energy could not be maintained, because it would compel us
to abandon the law of the conservation of mass in its old
form for inertia mass, and maintain it for gravitating mass.

But this must be regarded as very improbable. On the
other hand, the usual theory of relativity does not provide us
with any argument from which to infer that the weight of a
body depends on the energy contained in it. But we shall
show that our hypothesis of the equivalence of the systems
K and K’ gives us gravitation of energy as a necessary con-
sequence.

Liet the two material systemsS; and S,,provided withinstru-
ments of measurement, be situated on the z-axis of K at the
distance 4 from each other,* so that the gravitation potential
in B, 1s greater than that in S, by 2. Let a definite quantity

* The dimensions of S, and S, are regarded as infinitely small in compari-
son with &,
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of energy E be emitted from S, towards S;. Let the quantities
of energy in 8, and S, be measured by contrivances which—
brought to one place in the system 2z and there compared—
shall be perfectly alike. As to the process of this conveyance
of energy by radiation we can make no a prior: assertion, be-
cause we do not know the influence of the gravitational field
on the radiation and the measuring instruments in S, and S,.
But by our postulate of the equivalence of K and K’ we
are able, in place of the system K in a homogeneous gravi-
tational field, to set the gravitation-free system K', which
moves with uniform acceleration in the direction of positive
z, and with the z-axis of which the material systems S; and
8, are rigidly connected.
We judge of the process of the transference of energy by
radiation from 8, to 8, from a system K,
y4 which is to be free from acceleration. At
<I> the moment when the radiation energy E,
S, is emitted from S, toward S, let the
l » velocity of K’ relatively to K, be zero.

(

The radiation will arrive at S, when the
time A/c has elapsed (to a first approxi-
mation). But at this moment the velo-

y city of §; relatively to K, is wk/c = wv.

S, Therefore by the ordinary theory of re-

\< lativity the radiation arriving at S; does

x not possess the energy E,, but a greater

Fia. 5. energy E,, which is related to E, to a
first approximation by the equation *

E, = E2<1 + %) = Eg(l + «y-gé) LW

By our assumption exactly the same relation holds if the
same process takes place in the system K, which is not acceler-
ated, but is provided with a gravitational field. In this case
we may replace y4 by the potential ® of the gravitation vector
in 8, if the arbitrary constant of @ in S, is equated to zero.
We then have the equation

El = E2 + %q) . . . (13:)

* See above, pp. 69-71.
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This equation expresses the law of energy for the process
under observation. The energy E, arriving at S, is greater
than the energy E;, measured by the same means, which was
emitted in 8,, the excess being the potential energy of the
mass H,/c® in the gravitational field. It thus proves that for
the fulfilment of the principle of energy we have to ascribe
to the energy E, before its emission in S,, a potential energy
due to gravity, which corresponds to the gravitational mass
E/c®. Our assumption of the equivalence of K and K’ thus
removes the difficulty mentioned at the beginning of this
paragraph which is left unsolved by the ordinary theory of
relativity.

The meaning of this result is shown particularly clearly if
we congider the following cycle of operations :—

1. The energy E, as measured in S,, is emitted in the form
of radiation in S, towards S,, where, by the result just ob-
tained, the energy E(1 + «h/c?), as measured in S;, is ab-
sorbed.

2. A body W of mass M is lowered from S, to 8,, work
Myh being done in the process.

3. The energy E is transferred from S, to the body W
while W is in S,. Let the gravitational mass M be thereby
changed so that it acquires the value M'.

4. L.et W be again raised to S,, work M'yk being done
in the process.

5. Liet E be transferred from W back to S,.

The effect of this cycle 18 simply that S, has undergone
the increase of energy Eyh/c?, and that the quantity of
energy M'yh — Mwyh has been conveyed to the system in the
form of mechanical work. By the principle of energy, we
must therefore have

By = Myh ~ Mh,
or
M - M= E/c. . : . . (1b)

The increase in gravitational mass is thus equal to E/c?, and
therefore equal to the increase in inertia mass as given by the
theory of relativity.

The result emerges stili more directly from the equivalence
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of the systems K and K', according to which the gravitational
mass in respect of K is exactly equal to the inertia mass in
respect of K'; energy must therefore possess a gravitational
mass which is equal to its inertia mass. If a mass M, be
suspended on a spring balance in the system K', the balance
will indicate the apparent weight Myy on account of the
inertia of M, If the quantity of energy E be transferred
to M,, the spring balance, by the law of the inertia of
energy, will indicate (M, + E/c*)y. By reason of our funda-
mental assumption exactly the same thing must occur when
the experiment is repeated in the system K, that is, in the
gravitational field.

§ 3. Time and the Velocity of Light in the Gravitational
Field

If the radiation emitted in the uniformly accelerated
system K'in S, toward S, had the frequency », relatively to
the clock in S,, then, relatively to S;, at its arrival in 8, it no
longer has the frequency », relatively to an identical clock in
S,, but a greater frequency »,, such that to a first approxi-
mation

v1=v2(1+y£§). )

For if we again introduce the unaccelerated system of refer-
ence K,, relatively to which, at the time of the emission of
light, K' has no velocity, then S,, at the time of arrival of the
radiation at $,, has, relatively to K,, the velocity yA/c, from
which, by Doppler’s principle, the relation as given results
immediately.

In agreement with our assumption of the equivalence of
the systems K' and K, this equation also holds for the
stationary system of co-ordinates K, provided with a uniform
gravitational field, if in it the transference by radiation takes
place as described. It follows, then, that a ray of light
emitted in S, with a definite gravitational potential, and pos-
sessing at its emission the frequency »,—compared with a
clock in S,—will, at its arrival in S,, possess a different fre-
quency »,—measured by an identical clock in S,. For v/ we
substitute the gravitational potential & of S,—that of §,
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being taken as zero—and assume that the relation which we
have deduced for the homogeneous gravitational field also
holds for other {crms of field. Then

v1=y2(1+§). ... (@)

This result (which by our deduction is valid to a first ap-
proximation) permits, in the first place, of the following appli-
cation. Let v, be the vibration-number of an elementary
light-generator, measured by a delicate clock at the same
place. Let us imagine them both at a place on the surface
of the Sun (where our S, 1s located). Of the light there
emitted, a portion reaches the Earth (S,), where we measure
the frequency of the arriving light with a clock U in all re-
spects resembling the one just mentioned. Then by (2a),

v = vo(]. + —g—;),

where ® is the (negative) difference of gravitational potential
between the surface of the Sun and the Earth. Thus accord-
ing to our view the spectral lines of sunlight, as compared
with the corresponding spectral lines of terrestrial sources of
light, must be somewhat displaced toward the red, in fact by
the relative amount

Wov_ o2 _ 9 10-0
Yy c

If the conditions under which the solar bands arise were
exactly known, this shifting would be susceptible of measure-
ment. DBut as other influences (pressure, temperature) affect
the position of the centres of the spectral lines, it is difficult
to discover whether the inferred influence of the gravitational
potential really exists.*

On a superficial consideration equation (2), or (2a),
respectively, seems to assert an absurdity. If there is con-
stant transmission of light from 8, to S,, how can any other
number of periods per second arrive in S; than is emitted

*L, F. Jewell (Journ, de Phys., 6, 1897, p. 84) and particularly Ch.
Fabry and H. Boisson (Comptes rendus, 148, 1909, pp. 688-690) have actually
found such displacements of fine spectral lines toward the red end of the
spectrum, of the order of magnitude here calculated, but have ascribed them
to an effect of pressure in the absorbing layer.
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in S,? But the answer is simple. We cannot regard v, or
respectively », simply as frequencies (as the number of periods
per second) since we have not yet determined the time in
system K. What v, denotes is the number of periods with
reference to the time-unit of the clock U in 8,, while », de-
notes the number of periods per second with reference to the
identical clock in 8;,. Nothing compels us to assume that the
clocks U 1n different gravitation potentials must be regarded
as going at the same rate. On the contrary, we must certainly
define the time in K in such a way that the number of wave
crests and troughs between S, and S, is independent of the
absolute value of time; for the process under observation is
by nature a stationary one. If we did not satisfy this con-
dition, we should arrive at a definition of time by the appli-
cation of which time would merge explicitly into the laws
of nature, and this would certainly be unnatural and un-
practical. Therefore the two clocks in S; and S, do not both
give the “time ’ correctly. If we measure time in S; with
the clock U, then we must measure time in S, with a clock
which goes 1 + ®/¢? times more slowly than the clock U when
compared with U at one and the same place. For when
measured by such a clock the frequency of the ray of light
which i1s considered above is at its emission in S,

(12)

and is therefore, by (2a), equal to the frequency », of the same
ray of light on its arrival in S,.

This has a consequence which is of fundamental 1mpor-
tance for our theory. For if we measure the velocity of light
at different places in the accelerated, gravitation-free.system
K', employing clocks U of identical constitution, we obtain
the same magnitude at all these places. The same holds
good, by our fundamental assumption, for the system K as
well. But from what has just been said we must use clocks
of unlike constitution, for measuring time at places with
differing gravitation potential. For measuring time at a
place which, relatively to the origin of the co-ordinates, has
the gravitation potential ®, we must employ a clock which—
when removed to the origin of co-ordinates—goes (1 + ®/c?)
times more slowly than the clock used for measuring time at
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the origin of co-ordinates. If we call the velocity of light at
the origin of co-ordinates ¢,, then the velocity of light ¢ at a
place with the gravitation potential @ will be given by the
relation

c=co(1+§§). )

The principle of the constancy of the velocity of light holds
good according to this theory in a different form from that
which usually underlies the ordinary theory of relativity.

§ 4. Bending of Light-Rays in the Gravitational Field

From the proposition which has just been proved, that the
velocity of light in the gravitational field is a function of the
place, we may easily infer, by means of Huyghens’s principle,
that light-rays propagated across a gravitational field undergo
deflexion. For let E be a wave front of a plane light-wave at
the time #, and let P, and P, be two points in that plane at

P 2
Fia. 6.

unit distance from each other. P, and P, lie in the plane of
the paper, which is chosen so that the differential coefficient
of ®, taken in the direction of the normal to the plane,
vanishes, and therefore also that of ¢. We obtain the corre-
sponding wave front at time ¢ + d¢, or, rather, its line
of section with the plane of the paper, by describing circles
round the points P, and P, with radii ¢,d¢ and ¢,d¢ respectively,
where ¢; and ¢, denote the velocity of light at the points P,
and P, respectively, and by drawing the tangent to these
circles. The angle through which the light-ray is deflected
in the path cdf is therefore

Jc
(01 - 02>dt =B e Wdt,

if we calculate the angle positively when the ray is bent to-
ward the side of increasing n»'. The angle of deflexion per
unit of path of the light-ray is thus

- -1-92, or by 38) - 1o

cn ¢t dn’”
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Finally, we obtain for the deflexion which a light-ray experi-
ences toward the side n’ on any path (s) the expression

1{ P
= - gzjrﬁds . . . . (4:)

We might have obtained the same result by directly consider-
ing the propagation of a ray of light in the uniformly acceler-
ated system K', and transferring the result to the system K,
and thence to the case of a gravitational field of any form.

By equation (4) a ray of light passing along by a heavenly
body suffers a deflexion to the side of the diminishing gravi-
tational potential, that is, on the side directed toward the
heavenly body, of the magnitude

where k£ denotes the constant of gravitation, M the mass of
the heavenly body, A the distance of the
ray from the centre of the body. A ray
of light going past the Sun would accord-
ingly undergo deflexion to the amount of
410 - 6 = ‘83 seconds of arc. The angu-
lar distance of the star from the centre of
(S the Sun appears to be increased by this

amount. As the fixed stars in the parts
Gl oy of the sky near the Sun are visible
during total eclipses of the Sun, this
consequence of the theory may be com-
pared with experience. With the planet
Jupiter the displacement to be expected
reaches to about 13y of the amount
given. It would be a most desirable thing if astronomers
would take up the question here raised. For apart from
any theory there is the question whether it is possible with
the equipment at present available to detect an influence of
gravitational fields on the propagation of light.

M
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THE FOUNDATION OF THE GENERAL THEORY
OF RELATIVITY

By A. EINSTEIN

A. FUNDAMENTAL CONSIDERATIONS ON THE POSTULATE OF
RenATIVITY

§ 1. Observations on the Special Theory of Relativity

r I AHE special theory of relativity is based on the
following postulate, which is also satisfied by the
mechanics of Galileo and Newton.

If a system of co-ordinates K is chosen so that, in re-
lation to it, physical laws hold good in their simplest form,
the same laws also hold good 1in relation to any other system
of co-ordinates K' moving in uniform translation relatively
to K. This postulate we call the ‘‘special principle of
relativity.”” The word *‘ special ” is meant to intimate
that the principle is restricted to the case when K’ has a
motion of uniform translation relatively to K, but that the
equivalence of K’ and K does not extend to the case of non-
uniform motion of XK' relatively to K.

Thus the special theory of relativity does not depart from
classical mechanics through the postulate of relativity, but
through the postulate of the constancy of the velocity of light
in vacuo, from which, in combination with the special prin-
ciple of relativity, there follow, in the well-known way, the
relativity of simultaneity, the Lorentzian transformation, and
the related laws for the behaviour of moving bodies and
clocks.

The modification to which the special theory of relativity
has subjected the theory of space and time is indeed far-

reaching, but one important point has remained unaffected.
111
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For the laws of geometry, even according to the special theory
of relativity, are to be interpreted directly as laws relating to
the possible relative positions of solid bodies at rest; and, in
a more general way, the laws of kinematics are to be inter-
preted as laws which describe the relations of measuring
bodies and clocks. To two selected material points of a
stationary rigid body there always corresponds a distance of
quite definite length, which isindependent of the locality and
orientation of the body, and is also independent of the time.
To two selected positions of the hands of a clock at rest
relatively to the privileged system of reference there always
corresponds an interval of time of a definite length, which is
indeperdent of place and time. We shall soon see that the
general theory of relativity cannot adhere to this simple
physical interpretation of space and time.

§ 2. The Need for an Extension of the Postulate of
Relativity

In classical mechanics, and no less in the special theory
of relativity, there is an inherent epistemological defect which
was, perhaps for the first time, clearly pointed out by Ernst
Mach. We will elucidate it by the following example :—T'wo
fluid bodies of the same size and nature hover freely in space
at so great a distance from each other and from all other
masses that only those gravitational forces need be taken into
account which arise from the interaction of different parts of
the same body. Let the distance between the two bodies be
invariable, and in neither of the bodies let there be any
relative movements of the parts with respect to one another.
But let either mass, as judged by an observer at rest
relatively to the other mass, rotate with constant angular
velocity about the line joining the masses. This is a verifi-
able relative motion of the two bodies. Now let us imagine
that each of the bodies has been surveyed by means of
measuring instruments at rest relatively to itself, and let the
surface of S, prove to be a sphere, and that of S, an ellipsoid
of revolution. Thereupon we put the question—What 1s the
reason for this difference in the two bodies ? No answer can
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reason given is an observable fact of experience. The law of
causality has not the significance of a statement as to the
world of experience, except when observable facts ultimately
appear as causes and effects.

Newtonian mechanics does not give a satisfactory answer
to this question. It pronounces as follows:—The laws of
mechanics apply to the space R,, in respect to which the body
S, is at rest, but not to the space R,, in respect to which the
body S, is at rest. But the privileged space R, of Galileo,
thus introduced, is a merely factitious cause, and not a thing
that can be observed. It is therefore clear that Newton’s
mechanics does not really satisfy the requirement of causality
in the case under consideration, but only apparently does so,
since it makes the factitious cause R, responsible for the ob-
servable difference in the bodies S, and S,.

The only satisfactory answer must be that the physical
system consisting of 8, and S, reveals within itself no imagin-
able cause to which the differing behaviour of S, and 8, can
be referred. The cause must therefore lie outside this system.
We have to take it that the general laws of motion, which in
particular determine the shapes of S, and S;, must be such
that the mechanical behaviour of S, and 8, is partly con-
ditioned, in quite essential respects, by distant masses which
we have not included in the system under consideration.
These distant masses and their motions relative to S; and
S, must then be regarded as the seat of the causes (which
must be susceptible to observation) of the different behaviour
of our two bodies S, and S,. They take over the réle of the
factitious cause R;. Of all imaginable spaces R,, Ry, etc., in
any kind of motion relatively to one another, there is none
which we may look upon as privileged a priori without re-
viving the above-mentioned epistemological objection. The
laws of physics must be of such a nature that they apply to
systems of reference in any kind of motion. Along this road
we arrive at an extension of the postulate of relativity.

In addition to this weighty argument from the theory of

* Of course an answer may be satisfactory from the point of view of episte-
mology, and yet be unsound physically, if it is in conflict with other experi-
ences.
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knowledge, there is a well-known physical fact which favours
an extension of the theory of relativity. Lt K be a Galilean
system of reference, i.e. a system relatively to which (at least
in the four-dimensional region under consideration) a mass,
sufficiently distant from other masses, is moving with uniform
motion in a straight line. Iet K be a second system of
reference which 1s moving relatively to K in wuniformly
accelerated translation. Then, relatively to K’, a mass
sufficiently distant from other masses would have an acceler-
ated motion such that its acceleration and direction of
acceleration are independent of the material composition and
physical state of the mass.

Does this permit an observer at rest relatively to K' to
infer that he 1s ona “ really ”’ accelerated system of reference ?
The answer is in the negative; for the above-mentioned
relation of freely movable masses to K’ may be interpreted
equally well in the following way. The system of reference
K’ is unaccelerated, but the space-time territory in question
is under the sway of a gravitational field, which generates the
accelerated motion of the bodies relatively to K'.

This view 1s made possible for us by the teaching of
experience as to the existence of a field of force, namely, the
gravitational field, which possesses the remarkable property
of imparting the same acceleration to all bodies.* The
mechanical behaviour of bodies relatively to K’ is the same
as presents itself to experience in the case of systems which
we are wont to regard as ‘‘ stationary ” or as * privileged.”
Therefore, from the physical standpoint, the assumption
readily suggests itself that the systems K and K’ may both
with equal right be looked upon as * stationary,” that is to
say, they have an equal title as systems of reference for the
physical description of phenomena.

It will be seen from these reflexions that in pursuing the
general theory of relativity we shall be led to a theory of
gravitation, since we are able to ‘“ produce ’ a gravitational
field merely by changing the system of co-ordinates. It will
also be obvious that the principle of the constancy of the
velocity of light #n vacwo must be modified, since we easily

* Eotvos has proved experimentally that the gravitational field has this
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recognize that the path of a ray of light with respect to K’
must in general be curvilinear, if with respect to K light is
propagated in a straight line with a definite constant velocity.

§ 3. The Space-Time Continuum. Requirement of General
Co-Variance for the Equations Expressing General
Laws of Nature

In classical mechanics, as well as in the special theory of
relativity, the co-ordinates of space and time have a direct
physical meaning. To say that a point-event has the X, co-
ordinate z, means that the projection of the point-event on the
axis of X, determined by rigid rods and in accordance with the.
rules of Euclidean geometry, is obtained by measuring off a
given rod (the unit of length) z, times from the origin of co-
ordinates along the axis of X;. To say that a point-event
has the X, co-ordinate z, = ¢, means that a standard clock,
made to measure time in a definite unit period, and which is
stationary relatively to the system of co-ordinates and practic-
ally coincident in space with the point-event,* will have
measured off 2z, = ¢ periods at the occurrence of the event.

This view of space and time has always been in the minds
of physicists, even if, as a rule, they have been unconscious
of it. This 18 clear from the part which these concepts play
in physical measurements; it must also have underlain the
reader’'s reflexions on the preceding paragraph (§ 2) for
him to connect any meaning with what he there read. But
we shall now show that we must put it aside and replace it
by a more general view, in order to be able to carry through
the postulate of general relativity, if the special theory of
relativity applies to the special case of the absence of a gravi-
tational field.

In a space which is free of gravitational fields we introduce
a Galilean system of reference K (z, y, 2, ), and also a system
of co-ordinates K' (2, ¥, #, t') in uniform rotation relatively
to K. Let the origins of both systems, as well as their axes

* We assume the possibility of verifying ‘¢ simultaneity ’’ for events im-
mediately proximate in space, or—to speak more precisely—for immediate
proximity or coincidence in space-time, without giving & definition of this
fundamental concept.
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of Z, permanently coincide. We shall show that for a space-
time measurement in the system K’ the above definition of
the physical meaning of lengths and times cannot be main-
tained. For reasons of symmetry it is clear that a circle
around the origin in the X, Y plane of K may at the same
time be regarded as a circle in the X', Y plane of K. We
suppose that the circumference and diameter of this circle
have been measured with a unit measure infinitely small
compared with the radius, and that we have the quotient of
the two results. If this experiment were performed with a
measuring-rod at rest relatively to the Galilean system K, the
quotient would be w. 'With a measuring-rod at rest relatively
to K', the quotient would be greater than =. This is readily
understood if we envisage the whole process of measuring
from the ‘‘ stationary "’ system K, and take into consideration
that the measuring-rod applied to the periphery undergoes
a Liorentzian contraction, while the one applied along the
radius does not. Hence Euclidean geometry does not apply
to K. The notion of co-ordinates defined above, which pre-
supposes the validity of Euclidean geometry, therefore breaks
down in relation to the system K'. So, too, we are unable
to introduce a time corresponding to physical requirements
in K', indicated by clocks at rest relatively to K. To
convince ourselves of this impossibility, let us imagine two
clocks of identical constitution placed, one at the origin of
co-ordinates, and the other at the circumference of the
circle, and both envisaged from the ‘‘ stationary” system
K. By a familiar result of the special theory of relativity,
the clock at the circumference—judged from K-—goes more
slowly than the other, because the former is in motion and
the latter at rest. An observer at the common origin of
co-ordinates, capable of observing the clock at the circum-
ference by means of light, would therefore see it lagging be-
hind the clock beside him. As he will not make up his mind
to let the velocity of light along the path in question depend
explicitly on the time, he will interpret his observations as
showing that the clock at the circumference  really ™ goes
more slowly than the clock at the origin. So he will be
obliged to define time in such a way that the rate of a clock
depends upon where the clock may be. .
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We therefore reach this result :—In the general theory of
relativity, space and time cannot be defined in such a way
that differences of the spatial co-ordinates can be directly
measured by the unit measuring-rod, or differences in the
time co-ordinate by a standard clock.

The method hitherto employed for laying co-ordinates
into the space-time continuum in a definite manner thus breaks
down, and there seems to be no other way which would allow
us to adapt systems of co-ordinates to the four-dimensional
universe so that we might expect from their application a
particularly simple formulation of the laws of nature. So
there is nothing for it but to regard all imaginable systems
of co-ordinates, on principle, as equally suitable for the
description of nature. This comes to requiring that :—

The general laws of nature are to be expressed by equations
which hold good for all systems of co-ordinates, that s, are
co-variant with respect to any substitutions whatever (generally
co-variant).

It is clear that a physical theory which satisfies this
postulate will also be suitable for the general postulate of
relativity. For the sum of all substitutions in any case in-
cludes those which correspond to all relative motions of three-
dimensional systems of co-ordinates. That this requirement
of general co-variance, which takes away from space and
time the last remnant of physical objectivity, is a natural
one, will be seen from the following reflexion. All our
space-time verifications invariably amount to a determination
of space-time coincidences. If, for example, events consisted
merely in the motion of material points, then ultimately
nothing would be observable but the meetings of two or more
of these points. Moreover, the results of our measurings are
nothing but verifications of such meetings of the material
points of our measuring instruments with other material
points, coincidences between the hands of a clock and points
on the clock dial, and observed point-events happening at the
same place at the same time.

The introduction of a system of reference serves no other
purpose than to facilitate the description of the totality of such
coincidences. We allot to the universe four space-time vari-
ables z,, z,, 73, z, in such a way that for every point-event
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there is a corresponding system of values of the variables
z, ... z. To two coincident point-events there corre-
sponds one system of values of the variables z; . . . z,, i.e.
coincidence is characterized by the 1dentity of the co-ordinates.
If, in place of the variables z, . . . z,, we introduce functions
of them, z';, 'y, 2'y, 2, a8 a new system of co-ordinates, so
that the systems of values are made to correspond to one
another without ambiguity, the equality of all four co-ordin-
ates in the new system will also serve as an expression for
the space-time coincidence of the two point-cvents. As all
our physical experience can be ultimately reduced to such
coincidences, there is no immediate reason for preferring
certain systems of co-ordinates to others, that is to say, we
arrive at the requirement of general co-variance.

§ 4. The Relation of the Four Co-ordinates to Measure-
ment in Space and Time

It is not my purpose in this discussion to represent the
general theory of relativity as a system that is as simple and
logical as possible, and with the minimum number of axioms;
but my main object 1s to develop this theory in such a way
that the reader will feel that the path we have entered upon
is psychologically the natural one, and that the underlying
assumptions will seem to have the highest possible degree
of security. With this aim in view let it now be granted
that :—-

For infinitely small four-dimensional regions the theory
of relativity in the restricted sense is appropriate, if the co-
ordinates are suitably chosen.

For this purpose we must choose the acceleration of the
infinitely small (‘‘local ”’) system of co-ordinates so that no
gravitational field occurs; this is possible for an infinitely
small region. Let X, X, X;, be the co-ordinates of space,
and X, the appertaining co-ordinate of time measured in the
appropriate unit.* If a rigid rod is imagined to be given as
the unit measure, the co-ordinates, with a given orientation
of the system of co-ordinates, have a direct physical meaning

* The unit of time is to be chosen so that the velocity of light in vacuo as
measured in the * local’’ system. of co-ordinates is to be equal to unity.
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in the sense of the special theory of relativity. By the
special theory of relativity the expression

ds? = - dX! - dX} - gX+dX;, . . (D)

then has a value which is independent of the orientation of
the local system of co-ordinates, and is ascertainable by
measurements of space and time. The magnitude of the
linear element pertaining to points of the four-dimensional
continuum in infinite proximity, we call ds. If the ds belong-
ing to the element dX, ... dX, is positive, we follow
Minkowski in calling it time-like ; if it is negative, we call it
space-like.

To the * linear element "~ in question, or to the two infin-
itely .proximate point-events, there will also correspond
definite differentials dz, . . . dzy of the four-dimensional
co-ordinates of any chosen system of reference. If this
system, as well as the ‘“ local ”’ system, is given for the region
under consideration, the dX, will allow themselves to be
represented here by definite linear homogeneous expressions
Of the d(Ea' o

de = §ayo'd$o' . . . . (2)

Inserting these expressions in (1), we obtain

ds® = 3gerdredar, . : : . (8)
TO

where the gor will be functions of the z,., These can no
longer be dependent on the orientation and the state of
motion of the “local” system of co-ordinates, for ds? is a
quantity ascertainable by rod-clock measurement of point-
events infinitely proximate in space-time, and defined inde-
pendently of any particular choice of co-ordinates. The gor
are to be chosen here so that gsr = ¢rs; the summation is
to extend over all values of o and =, so that the sum consists
of 4 x 4 terms, of which twelve are equal in pairs.

The case of the ordinary theory of relativity arises out of
the case here considered, if it is possible, by reason of the
particular relations of the ¢4 in a finite region, to choose the
system of reference in the finite region in such a way that
the gor assume the constant values
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-1 0 0 0
0 -1 0 0
o o -1 of + - - W
0 0 0 +1

‘We shall find hereafter that the choice of such co-ordinates
1s, in general, not possible for a finite region.

From the considerations of § 2 and § 3 it follows that
the quantities g-o are to be regarded from the physical stand-
point as the quantities which describe the gravitational
field in relation to the chosen system of reference. Tor, if
we now assume the special theory of relativity to apply to a
certain four-dimensional region with the co-ordinates properly
chosen, then the ¢, have the values given in (4). A free
material point then moves, relatively to this system, with
uniform motion in a straight line. Then if we introduce new
space-time co-ordinates z,, x,, &3, ¢4, by means of any substi-
tution we choose, the go7 in this new system will no longer
be constants, but functions of space and time. At the same
time the motion of the free material point will present itself
in the new co-ordinates as a curvilinear non-uniform motion,
and the law of this motion will be independent of the nature
of the moving particle. We shall therefore interpret this
motion as a motion under the influence of a gravitational
field. We thus find the occurrence of a gravitational field
connected with a space-time variability of the g, . So, too,
in the general case, when we are no longer able by a suitable
choice of co-ordinates to apply the special theory of relativity
to a finite region, we shall hold fast to the view that the gq-
describe the gravitational field.

Thus, according to the general theory of relativity, gravi-
tation occupies an exceptional position with regard to other
forces, particularly the electromagnetic forces, since the ten
functions representing the gravitational field at the same time
define the metrical properties of the space measured.

B. MATHEMATICAL AIDS TO THE FORMULATION OF
GENERALLY COVARIANT EQUATIONS

Having seen in the foregoing that the general postulate
of relativity leads to the requirement that the equations of
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physics shall be covariant in the face of any substitution of
the co-ordinates z, . . . z, we have to consider how such
generally covariant equations can be found. We now turn
to this purely mathematical task, and we shall find that in its
solution a fundamental role is played by the invariant ds
given in equation (3), which, borrowing from Gauss’s theory
of surfaces, we have called the * linear element.”

The fundamental idea of this general theory of covariants
is the following :—Let certain things (* tensors ) be defined
with respect to any system of co-ordinates by a number of
functions of the co-ordinates, called the ‘“ components ” of
the tensor. There are then certain rules by which these
components can be calculated for a new system of co-ordin-
ates, if they are known for the original system of co-ordinates,
and if the transformation connecting the two systems is
known. The things hereafter called tensors are further
characterized by the fact that the equations of transformation
for their components are linear and homogeneous. Accord-
ingly, all the components in the new system vanish, if they
all vanish in the original "system. If, therefore, a law of
nature is expressed by equating all the components of a tensor
to zero, it 1s generally covariant. By examining the laws
of the formation of tensors, we acquire the means of formu-
lating generally covariant laws.

§ 5. Contravariant and Covariant Four-vectors

Contravariant Four-vectors.—The linear element is de-
fined by the four ““components’ dz,, for which the law of
transformation is expressed by the equation

, dx’
dde = 35%n, . . .. ()

The dxz's are expressed as linear and homogeneous functions
of the dz,. Hence we may look upon these co-ordinate differ-
entials as the components of a ‘““tensor” of the particular
kind which we call a contravariant four-vector. Any thing
which is defined relatively to the system of co-ordinates by

four quantities A", and which is transformed by the same law
Y/ .

AT = 3Zopv L (5a)

y 0Ly
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we also call a contravariant four-vector. From (5a) it
follows at once that the sums A° + B are also components
of a four-vector, if A” and B” are such. Corresponding rela-
tions hold for all ‘“tensors” subsequently to be introduced.
(Rule for the addition and subtraction of tensors.)

Covariant Four-vectors—We call four quantities A, the
components of a covariant four-vector, if for any arbitrary
choice of the contravariant four-vector B”

3A, B’ = Invariant . : . (6)

The law of transformation of a covariant four-vector follows
from this definition. For if we replace B” on the right-hand

gide of the equation
3SA B = JAB
o y

by the expression resulting from the inversion of (5a),

ATy e
Eax’o'B ’
we obtaln

SB73% A, = SB"A,,.
o y 0Z ¢ o

Since this equation is true for arbitrary values of the B, it

follows that the law of transformation 18

, dzy
A-o' = E‘SETA.V . . . . (7)

Note on a Stmplified Way of Writing the Expressions.—
A glance at the equations of this paragraph shows that there
is always a summation with respect to the indices which
occur twice under a sign of summation (e.g. the index v in
(5)), and only with respect to indices which occur twice. It
is therefore possible, without loss of clearness, to omit the sign
of summation. In its place we introduce the convention:—
If an index occurs twice in one term of an expression, it is
always to be summed unless the contrary is expressly stated.

The difference between covariant and contravariant four-
vectors lies in the law of transformation ((7) or (5) respectively).
Both forms are tensors in the sense of the general remark
above. Therein lies their importance. Following Ricei and
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Levi-Civita, we denote the contravariant character by placing
the index above, the covariant by placing it below.

§ 6. Tensors of the Second and Higher Ranks

Contravariant Tensors.—If we form all the sixteen pro-
ducts A* of the components A* and B” of two contravariant
four-vectors

AW = A*B* . . . . (8
then by (8) and (5a) A" satisfies the law of transformation
toT — bw d bCB-r v ,

AT = ©)

We call a thing which is described relatively to any system
of reference by sixteen quantities, satisfying the law of trans-
formation (9), a contravariant tensor of the second rank. Not
every such tensor allows itself to be formed in accordance
with (8) from two four-vectors, but it is easily shown that
any given sixteen A*” can be represented as the sums of the
A*B” of four appropriately selected pairs of four-vectors.
Hence we can prove nearly all the laws which apply to the
tensor of the second rank defined by (9) in the simplest
manner by demonstrating them for the special tensors of the
type (8).

Contravariant Tensors of Any Rank.—It is clear that, on
the lines of (8) and (9), contravariant tensors of the third and
higher ranks may also be defined with 4° components, and so
on. In the same way it follows from (8) and (9) that the
contravariant four-vector may be taken in this sense as a
contravariant tensor of the first rank.

Covariant Tensors.—On the other hand, if we take the
sixteen products Ay, of two covariant four-vectors A, and B,,

A‘u,y = A,u,By, . . . . (10)
the law of transformation for these is
’ ALy Oy
Now= o650 Aw . . . (1)

This law of transformation defines the covariant tensor of
the second rank. All our previous remarks on contravariant
tensors apply equally to covariant tensors.
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NotEe.—It is convenient to treat the scalar (or invariant)
both as a contravariant and a covariant tensor of zero rank.
Mized Tensors.—We may also define a tensor of the
second rank of the type
Al =AB . : . . (12)

which is covariant with respect to the index u, arrd contra-
variant with respect to the index ». Itslaw of transforma-
tion 1s

1w 0 N,y .
Al = >z, bx’dA# . . . (13)
Naturally there are mixed tensors with any number of
indices of covariant character, and any number of indices of
contravariant character. Covariant and contravariant tensors
may be looked upon as special cases of mixed tensors.
Symmetrical Tensors—A contravariant, or a covariant
tensor, of the second or higher rank is said to be symmetrical
if two components, which are obtained the one from the other
by the interchange of two indices, are equal. The tensor A",
or the tensor A, is thus symmetrical if for any combination

of the mndices g, v,
A" =AY : : . (14)

A.ﬂ,y = Ayp,- . . . . (1431)

It has to be proved that the symmetry thus defined is a
property which is independent of the system of reference.
1t follows in fact from (9), when (14) is taken into consider-
ation, that

wor _ e Wr e Dy, Mo Wy pre
A - 33’}# bxv o be bxyA. - bxy bx‘uA - A )

or respectively,

The last equation but one depends upon the interchange of
the summation indices x and », i.e. merely on a change of
notation.

Antisymmetrical Tensors.—A contravariant or a covariant
tensor of the second, third, or fourth rank is said to be anti-
symmetrical if two components, which are obtained the one
from the other by the interchange of two indices, are equal
and of opposite sign. The tensor A*, or the tensor A,,, is
therefore antisymmetrical, if always
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AR = — AT . . . (15)
or respectively,
Ay = —A, . : : . (15a)
Of the sixteen components A*", the four components A**
vanish; the rest are equal and of opposite sign in pairs, so
that there are only six components numerically different (a
six-vector). Similarly we see that the antisymmetrical tensor
of the third rank A*? has only four numerically different
components, while the antisymmetrical tensor A*°" has only
one. There are no antisymmetrical tensors of higher rank
than the fourth in a continuum of four dimensions.

§ 7. Multiplication of Tensors

Quter Multiplication of Tensors.—We obtain from the
components of a tensor of rank n and of a tensor of rank m
the components of a tensor of rank n + m by multiplying
each component of the one tensor by each component of the
other. Thus, for example, the tensors T arise out of the
tensors A and B of different kinds,

T,,wo’ = A-,u,vBO',
THor — Avacr'r’
T, = AwB”

The proof of the tensor character of T is given directly
by the representations (8), (10), (12), or by the laws of trans-
formation (9), (11), (13). The equations (8), (10), (12) are
themselves examples of outer multiplication of tensors of the
first rank.

“ Contraction” of a Mized Tensor.—From any mixed
tensor we may form a tensor whose rank is less by two, by
equating an index of covariant with one of contravariant
character, and summing with respect to this index (“ con-
traction ”’). Thus, for example, from the mixed tensor of the

fourth rank A7, we obtain the mixed tensor of the second

rank,
T ur _ ur
AV = A-,uv ( - zA-,uy ’
u

and from this, by a second contraction, the tensor of zero
rank,

A=Al = A"
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The proof that the result of contraction really possesses
the tensor character is given either by the representation of a
tensor according to the generalization of (12) in combination
with (6), or by the generalization of (13).

Inner and Mixzed Multiplication of Tensors.—These consist
In a combination of outer multiplication with contraction.

Ezamples.—From the covariant tensor of the second rank
A, and the contravariant tensor of the first rank B” we form
by outer multiplication the mixed tensor

DY, = A.B°.

On contraction with respect to the indices » and o, we obtain
the-covariant four-vector

D, = D!, = A,B".

This we call the inner product of the tensors A,, and B°.
Analogously we form from the tensors Ay, and B°’, by outer
multiplication and double contraction, the inner product
A,B*. By outer multiplication and one contraction, we
obtain from A,, and B°" the mixed tensor of the second rank

D, = AwB”.  This operation may be aptly characterized as

a mixed one, being ‘‘ outer ”’ with respect to the indices u
and T, and * inner ”’ with respect to the indices » and o.

We now prove a proposition which is often useful as evi-
dence of tensor character. From what has just been ex-
plained, A,,B* is a scalar if A,, and B’ are tensors. But
we may also make the following assertion: If A,,B" 1s
a scalar for any choice of the tensor B*, then A,, has tensor
character. For, by hypothesis, for any substitution,

!o"rB,” — A’M’Buv.
But by an inversion of (9)
0Ty Oyryigr

pwv 7R Y
B T v bw',,.B

This, inserted in the above equation, gives

) _ Wp Oy ) or _
(A aT bmlg' bwlTA-,uv B = 0.

This can only be satisfied for arbitrary values of B" if the
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bracket vanishes. The result then follows by equation (11).
This rule applies correspondingly to tensors of any rank and
character, and the proof is analogous in all cases.

The rule may also be demonstrated in this form: If B*
and C" are any vectors, and if, for all values of these, the
inner product A,,B*C”is a scalar, then A,, is a covariant
tensor. This latter proposition also holds good even if only
the more special assertion is correct, that with any choice of
the four-vector B* the inner product A,,B*B"is a scalar, if
in addition it i1s known that A, satisfies the condition of
symmetry A, = Ay, For by the method given above we
prove the tensor character of (A, + A,u), and from this the
tensor character of A, follows on account of symmetry.
This also can be easily generalized to the case of covariant
and contravariant tensors of any rank.

Finally, there follows from what has been proved, this
law, which may also be generalized for any tensors: If for
any choice of the four-vector B” the quantities A,,B” form a
tensor of the first rank, then A,, is a tensor of the second
rank. For, if C* is any four-vector, then on account of the
tensor character of A,,B", the inner product A,B'C* is a
scalar for any choice of the two four-vectors B” and C*. From
which the proposition follows.

§ 8. Some Aspects of the Fundamental Tensor ¢,

The Covariant Fundamental Tensor.—In the invariant
expression for the square of the linear element,

d82 = g'u,ydx“dxy,

the part played by the dz, is that of a contravariant vector
which may be chosen at will. Since further, gu, = ¢y, it
follows from the considerations of the preceding paragraph
that g., is a covariant tensor of the second rank. We call
it the ‘ fundamental tensor.” In what follows we deduce
some properties of this tensor which, it is true, apply to any
tensor of the second rank. But as the fundamental tensor
plays a special part in our theory, which has its physical basis
in the peculiar effects of gravitation, it so happens that the
relations to be developed are of Importance to us only in the
case of the fundamental tensor.
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The Contravariant Fundamental Tensor.—If in the deter-
minant formed by the elements g,,, we take the co-factor of
each of the gu and divide it by the determinant g = | g |,
we obtain certain quantities g#( = gv#) which, as we shall
demonstrate, form a contravariant tensor.

By a known property of determinants

Jueg’® =8, . . . . (16
where the symbol 8, denotes 1 or 0, according as u = » or
mok v .

Instead of the above expression for ds? we may thus write

9 usdy Az udx,
or, by (16)

Guogurg AT udy.

But, by the multiplication rules of the preceding paragraphs,

the quantities
dfs = Q'p.aCZIE,,‘,

form a covariant four-vector, and in fact an arbitrary vector,
since the dz, are arbitrary. By introducing this into our ex-

pression we obtain
ds? = goTdEdér.

Since this, with the arbitrary choice of the vector d&,, is a
scalar, and ger by its definition is symmetrical in the indices
o and 7, it follows from the results of the preceding paragraph
that go7 is a contravariant tensor.

It further follows from (16) that &, is also a tensor, which

we may call the mixed fundamental tensor.
The Determinant of the Fundamental Tensor.—By the
rule for the multiplication of determinants

| $a9? | = | gua| x |g*|.
On the other hand
| uag | = |8,] = 1.
It therefore follows that
lgw | x | g»]| =1 . . . (A7)

The Volume Scalar.—We seek first the law of transfor-
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mation of the determinant ¢ = | gu |. In accordance with
(11)

_ | o=y, Oz

~ T eI |

Hence, by a double application of the rule for the multipli-
cation of determinants, it follows that

: [ dzu |

_ 0L u l bxp,
4 l dx's [

b:v,,
. lg#"l = ]bfv'o’ g,

Bm

or

VI = ,'3“{-':‘; L2

On the other hand, the law of transformation of the element
of volume

dr = jdmldxgdx3dw4

is, in accordance with the theorem of Jacobi,

| %2’y
| 0z,

By multiplication of the last two equations, we obtain

Noydr = Jgdr : , . (18).

Instead of /g, we introduce in what follows the quantity

——

&/ - ¢, which 1s always real on account of the hyperbolic

character of thespace-time continuum. Theinvarianty/ - gdr
is equal to the magnitude of the four-dimensional element
of volume in the ‘“local ” system of reference, as measured
with rigid rods and clocks in the sense of the special theo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>