N71-26610

NASA CRZ18673

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Report 32-15627

Mathematical Formulation of the Double-Precision
Orbit Determination Program (DPODP)

Theodore D. Moyer

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

May 15, 1971



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Report 32-1627

Mathematical Formulation of the Double-Precision
Orbit Determination Program (DPODP)

Theodore D. Moyer

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADEMNA, CALIFORNIA

May 15, 1971



Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administration



Preface
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Abstract

This report documents the complete mathematical model for the Double-
Precision Orbit Determination Program (DPODP), a third-generation program
which has recently been completed at the Jet Propulsion Laboratory. The DPODP
processes earth-based doppler, range, and angular observables of the spacecraft
to determine values of the parameters that specify the spacecraft trajectory for
lunar and planetary missions. The program was developed from 1964 to 1968; it
was first used operationally for the Mariner VI and VII spacecraft which encoun-
tered Mars in August of 1969.

The DPODP has more accurate mathematical models, a significant increase in
numerical precision, and more flexibility than the second-generation Single-
Precision Orbit Determination Program (SPODP). Doppler and range observables
are computed to accuracies of 10-* m/s and 0.1 m, respectively, exclusive of errors
in the tropospheric, ionospheric, and space plasma corrections.
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Mathematical Formulation of the Double-Precision
Orbit Determination Program (DPODP)

{. Introduction

This technical report documents the mathematical
model for the Double-Precision Orbit Determination Pro-
gram (DPODP), a third-generation program that has re-
cently been completed at the Jet Propulsion Laboratory
(JPL). The DPODP will be used to determine values of the
parameters that specify the spacecraft trajectory for lunar
and planetary missions; it will be used for both real-time
and post-flight reduction of tracking data. The DPODP
differentially corrects a priori estimates of injection param-
eters, physical constants, maneuver parameters, and station
locations to minimize the sum of weighted squares of re-
sidual errors between observed and computed quantities.

The analysis began in 1964, and coding for the IBM
7094 computer was initiated the next year. The program
was completed and fully checked out at the end of 1968;
it was first used operationally for the Mariner VI and VII
spacecraft, which encountered Mars in August, 1969.
Conversion of the program to the Univac 1108 computer
was completed early in 1970.

The DPODP has more accurate mathematical models,
significantly more numerical precision, and more flexibility
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than the second-generation Single-Precision Orbit Deter-
mination Program (SPODP). The basic limitations on the
accuracy of computed observables are the inaccuracies in
the troposphere and ionosphere corrections. Before these
corrections are added, the computed values of the doppler
and range observables have accuracies of 10-° m/s and
0.1 m, respectively. The parameters whose values may be
estimated by the DPODP are:

(1) Injection parameters. Rectangular components of
the spacecraft position and velocity vectors at the
injection epoch.

(2) Reference parameters. Parameters that affect the
relative position and velocity of the sun, planets,
and the moon:

Ay = the number of kilometers per astro-
nomical unit (AU). This parameter
converts the precomputed heliocen-
tric ephemerides of eight planets
and the earth-moon barycenter
from astronomical units to kilom-
eters.



Ry = scaling factor for lunar ephemeris,
km/fictitious earth radius. This fac-
tor converts the precomputed geo-
centric lunar ephemeris from ficti-
tious earth radii to kilometers.

E = osculating orbital elements for the
precomputed ephemeris of a planet,
earth-moon barycenter, or the
moon. The estimated correction AE
is used to differentially correct posi-
tion and velocity obtained from the
precomputed ephemeris.

nE, pr = gravitational constants for the earth
and moon, km?/s?. These param-
eters affect the location of the earth—
moon barycenter.

(3) Gravitational constants. The constant y; is the gravi-
tational constant for body i, such as the sun, a
planet, or the moon. (Note that uz and py are also
listed under reference parameters.)

(4) Harmonic coefficients. The harmonic coeflicients
Ju, Cums Sum, along with the gravitational constant
p, describe the gravitational field of a planet or the
moon.

(5) Parameters affecting the acceleration of the space-
craft due to solar radiation pressure.

(6) Coeflicients of quadratic for small acceleration act-
ing along each spacecraft axis. These quadratics
are used to represent gas leaks and small forces
arising from operation of the attitude control system.

(7) Parameters affecting spacecraft motor burns.

(8) Parameters affecting the transformation from uni-
versal time to ephemeris time.

(9) Coefficients of quadratics which represent the de-
parture of atomic time at each tracking station from
broadcast UTC time.

(10) Station parameters. (1) Radius, (2) latitude, and
(8) longitude or (1) distance from spin axis, (2) height
above equator, and (3) longitude for each tracking
station and a landed spacecraft on a planet or the
moon. For a tracking ship: (1) spherical coordinates
at an epoch, (2 velocity, and (3) azimuth.

(11) Speed of light. An adopted constant which defines
the light-second as the basic length unit; it is not
normally included in the solution vector.

(12) Constant bias for range observables.

(13) Spacecraft transmitter frequency for one-way dop-
pler.

(14) Biases aﬁécting observed angles.

(15) Relativity parameter y. This parameter will be
added to the program. It is equal to (1 + »)/(2 + o)
where w is the coupling constant of the scalar field,
a free parameter of the Brans-Dicke theory of gravi-
tation.

Given the a priori estimate of the parameter vector g,
the program integrates the spacecraft acceleration using
the second-sum numerical integration method to give po-
sition and velocity at any desired time. Using the space-
craft ephemeris along with the precomputed ephemerides
for the other bodies within the solar system, and the pa-
rameter vector q, the program computes values for each
observed quantity (normally doppler, range, or angles)
and forms the observed minus computed (O — C) resid-
uals,

In addition to integrating the acceleration of the space-
craft to obtain the spacecraft ephemeris, the program
integrates the partial derivative of the spacecraft acceler-
ation with respect to (wrt) the parameter vector q using
the second-sum numerical integration procedure to give
the partial derivative of the spacecraft state vector X
(position and velocity components) wrt the parameter
vector q, 0X/0q. Using 9X/dq, the program computes the
partial derivative of each computed observable quantity
z wrt q, 9z/9q. Given the O — C residuals, 9z/0q, and the
weights applied to each residual along with the a priori
parameter vector and its covariance matrix, the program
computes the differential correction Aq to the parameter
vector. Starting with ¢ -+ Aq, the program computes a
new spacecraft ephemeris, residuals, and partial deriva-
tives and obtains a second differential correction Aq. This
process is repeated until convergence is obtained and the
sum of weighted squares of residual errors between ob-
served and computed quantities is minimized.

The DPODP formulation was heavily influenced by the
general theory of relativity. Section I1 gives the equations
from general relativity, which are the basis of the DPODP
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formulation, and also the principal relativistic equations
contained in the formulation. The derivations of three of
these equations are given in Appendixes A, B, and C.

The time transformations used throughout the program
and the formulation for computing the relative position,
velocity, acceleration, and jerk of any two celestial bodies
(sun, moon, or planets) are described in Sections III and
IV, respectively. The equations for the acceleration of the
spacecraft relative to the center of integration (any planet,
the sun, or the moon) are given in Section V.

The first step in the computation of all observable quan-
tities is the light time solution, which is described in
Section VI. The formulation for computing the geocentric
inertial position and velocity of a tracking station is pre-
sented in Section VII. The computation of doppler, range,
and angular observables is described in Sections VIII-X.

A forthcoming change to the formulation will be to
compute doppler observables from differenced range ob-
servables divided by the count time, with partial deriva-
tives of the doppler observables with respect to estimated
parameters obtained from differenced range partial deriv-
atives. The formulation necessary to implement this
change is given in Section XI.

Corrections to the observables due to antenna motion,
the troposphere, and the ionosphere are described in Sec-
tion XII. The variational equations for the spacecraft
trajectory and the partial derivatives of the observables
with respect to the estimated parameters are described
in Sections XIII and XIV.

In the original version of the DPODP, the parameter
estimate was obtained from the normal equations, which
are documented in Section XV. In the latest version of
the program, this formulation has been replaced by the
square root form of the normal equations, which is de-
scribed in Section XVI. The square root formulation is
theoretically equivalent to the normal equations but is
numerically superior. The superior numerical techniques
of the square root formulation were first applied to the
linear least squares problem by R. J. Hanson and C. L.
Lawson® (Ref. 1).

1Jet Propulsion Laboratory, Computation and Analysis Section.
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Bi. Relativistic Terms of DPODP Formulation

The general theory of relativity is basically a geometri-
cal theory. The geometry is embodied in the components
of the symmetrical metric tensor gp,:

8ix Bz 8z 8u
821 822 8oz B2
gs1 832z 8z Bsa
gu B2 Baz Sas

The subscripts 1, 2, 3, and 4 correspond to the space-time
coordinates x%, x2, x3, and x*, which are associated with a
particular space-time frame of reference. Usually the
frame of reference is nonrotating and centered at the
barycenter of the system of masses considered. Then x%, x2,
and a? are position coordinates and x* = ct, where c is the
speed of light and # is coordinate time, a uniform system
of time which exists throughout the frame of reference;
it is synonymous with ephemeris time. The components
of the metric tensor g,, are obtained from a solution of
Einstein’s field equations. The solution depends upon
the distribution of matter and the system of coordinates
selected.

The invariant interval ds between two points with
differences in their space and time coordinates of dx?, dx?,
dx?, and dx* is given by

ds? = gpadxpdxt (2)

where, using the Einstein convention, the repeated indices
p and g are summed over the integers 1 through 4.

In an infinitesimally small region surrounding an ob-
server, the components of the metric tensor are constant
and the expression for the interval ds can be transformed
to the special relativity form

dst = c*ds® — dX2 — dY? — dZ¢ (3)

where - is proper time recorded on the observer’s atomic
clock and X, Y, and Z are components of observed position
referred to the observer’s local frame of reference. Since
the atomic clock is fixed relative to the observer, the inter-
val ds corresponding to an observed interval of proper
time dr is

ds = cdr )



or

ds
c

dr = (5)

Hence Eq. (2) relates an observed interval of proper time
dr to the changes in the space and time coordinates of
the clock.

The space-time coordinates are used to represent the
motion of particles, bodies, and light. The coordinates
have no physical significance and are not observable.
Furthermore, the choice of coordinates is completely arbi-
trary. The solution of the field equations for g,, varies
with the coordinates selected in such a manner that the
value of an observed interval of proper time computed
from Egs. (2) and (5) is independent of the coordinates
selected to represent the motion of the atomic clock.

The field equations have been solved exactly for the
case of a massless particle moving under the influence of
a single spherically symmetric massive body located at
the origin of a nonrotating system of coordinates. The
solution of this 1-body problem was first obtained by
Schwarzschild and is given in Ref. 2, p. 85, Eq. (38.8).
A simple transformation in the radial coordinate gives
the “l-body” solution in isotropic spherical coordinates
(Ref. 2, p. 93, Eq. 43.2):

I 2
(1 2cr >

dst = S cidt?
”
(1 + 2c?r
4
— (1 + 2527) (de® + r*d6* + r* sin? 0d$?)
(6)
where

u = gravitational constant of nonrotating spheri-
cally symmetric massive body located at origin
of nonrotating frame of reference, km?3/s%. The
constant p is equal to the product of the uni-
versal gravitational constant G and the rest
mass m of the body.

¢ = speed of light

7, ¢, 8 = spherical coordinates. The spherical and rec-
tangular coordinates of a particle P are shown
in Fig. 1.

t = coordinate time

Fig. 1. Spherical and rectangular coordinates

Expanding and retaining all terms of order 1/c? gives

2

ds* = (1 ~ 2y -2-"—) cdr
c*r c're

_ <1 + —f—‘}) (d* + 1°de® + rsin® 0de?)  (T)

In isotropic rectangular coordinates,

% | 2
dsz=<1___/i+_f*_>czdt2

cr  cir?
2p
—{1+ e (dx? + dy? + dz?) (8)
where
r=[x®+y* + 22]% 9)

Fock (Ref. 3) and Yilmaz (Ref. 4) differ from Einstein and
obtain metrics that differ from Eq. (6). However, when
expanded, their metrics are identical with Eq. (8) to
order 1/c* The small departures of the components of
the metric tensor in Eq. (8) from the unity values of spe-
cial relativity in Eq. (3) represent the “curvature” of
space-time due to the mass of the central body.

The trajectory of a massless particle in the gravitational
feld of a massive body is a geodesic curve which extre-
mizes the integral of ds between two points:

8 / ds=0 (10)
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In order to obtain the equations of motion with coordinate
time ¥ as independent variable, Eq. (10) is written as

b / Ldi=0 (11)
where the Lagrangian L is given by
ds
L= T (12)

and L? is obtained from the expression for ds® by replac-
ing differentials of the space coordinates by derivatives
of the coordinates with respect to ¢ multiplied by dt. The
Lagrangian L may be obtained by expanding the square
root of L? in powers of 1/¢® Given L, the equations of
motion that extremize the integral (11) are the Euler-
Lagrange equations:

d (oL oL
E(EE)—E—O XY,z (13)

where

%= x>y, 2 (14)

S}

A simpler procedure for obtaining the equations of
motion directly from derivatives of L? is developed as
follows. The Euler~Lagrange equations (Eq. 13) are un-
changed by multiplying both terms by L:

d (oL oL
L—%<'5§)—L—5;=O x> Y,z (15)

Differentiating L (3L /2x) with respect to ¢ gives

JEROE

d (oL
+L—J;(—a—;t—> X->Y,% (18)

where

. d
L=2L (17)

The equations of motion are obtained by substituting the
last term of Eq. (18) into Eq. (15):

d (. oL L\/. oL oL
w(5) - (D)(5)-(c5) =0 =ws

(18)

JPL TECHNICAL REPORT 32-1527

The derivatives L (9L/0x) and L (3L /ox) are obtained by
direct differentiation of L?. For the usual situation where
only the 1/¢? terms of the relativistic perturbative accel-
eration are required,

Lo I (19)

where L? has been replaced by its leading term ¢? and LI
is obtained by differentiating a simplified expression for
L? containing terms to 1/¢° only. Computation of the
equations of motion from Egs. (18) and (19) is simpler
than taking the square root of L? and using Eq. (13).

From Egs. (8), (12), (18), and (19), the relativistic per-
turbative acceleration of a massless particle moving in
the gravitational field of one body is given by

¥= 02’:3 [(4{——&2):%@-&)&] (20)

where the dots indicate differentiation with respect to
coordinate time £, The position, velocity, and acceleration

vectors are given by
} -,-{ } e

A1)+

§ = magnitude of ¥

s Re

Na e Ko
N

and

An approximate solution to the field equations for the
case of a massless particle moving in the gravitational
field of n massive bodies was first obtained by J. Droste
in 1916 (Ref. 5). In that same year, W. deSitter ex-
tended the work of Droste to account for the mass of
the body whose motion is desired (Ref. 8). However, he
made a theoretical error in the calculation of one of his
terms, which was corrected by Eddington and Clark in
1938 (Ref. 7). The components of the Droste/deSitter/
Eddington and Clark metric are given by (Ref. 7, Egs. 3.1,
3.2, and 3.6)

Tij

2 .
811 = Loz = Zsz = <1 + P &> (22)

J=i

ge=0(p,q=1,2,3;p+~q) (23)



=8u = C’ T4 (24)
e
_ iz : il
824 = 42 = e 1,'“ (25)
j#i
. = AN A
834 = Zaz = P i (26)
j#i
2 M-
84s ™ 1-—- 'Ez' ;:J;
i
2 i8] 2 3 nis
+?[§ :;%]_c“}:r“
(%) 1]
X
D2
k=zj
1 agfi
P @)

j#i

where the indices j and k refer to the n bodies and k
includes body i whose motion is desired. Also,

= gravitational constant for body j

= Gm;, where G is the universal gravitational
constant and m; is the rest mass of body j.

%Y, %

%, 4,4

%, y, = rectangular components of position, velocity,
and acceleration (£ = dx/dt, etc.) relative to a
nonrotating frame of reference centered at the
barycenter of the system of n bodies. The posi-
tion, velocity, and acceleration vectors are
given by Eq. (21); they and their components
are identified by the subscript i, §, or k.

7;; = coordinate distance between bodies i and §
= [(x — x;)* + (s — y3)* + (s — 2))*]%
& = square of velocity = %% + g + 2°
The second partial derivative of r;; with respect to ¢ in
Eq. (27) is obtained holding r; fixed:
8= (x; — i)« (r; — 13) (28)

orj _ (i —

ot Tij (29)

621’” _ (l'j - Ii) °.lgj + S‘_‘;’ [(1‘, l'«,) l']
ot2 Tij Tij 1'3

(30)

Since terms of order greater than 1/¢? will not be retained
in the expression for the acceleration of body i, the accel-
eration ¥; in Eq. (30) may be evaluated from Newtonian

theory:
f=y BB tn 2 (31)
ik
kxj
The summation over k=4j includes body i. The four

space-time coordinates associated with the n-body metric
are

xl=x;
2=y
x® =z (32)
x*=ct

Hence, from Eq. (2) and Egs. (22-27), the expression for
ds? is

ds® = g, dt* + gy, (dxi + dy? + dz?)
+ 2¢gy, dx; dt + 2¢8,, dy; dt + 2085, dz; dt

(33)
Dividing by d#? gives the expression for L?:
L? = gy + g (23 + 97 + £3)
+ 2Cg14&i + 2Cg24gi + 2Cg34éi (34)

The equations of motion for body i are obtained from
Egs. (18) and (19) with x and % replaced by x; and %;.
However, in carrying out the required differentiations of
Eq. (34), the contribution to the field from the mass
of body i must be held fixed.

Specifically, the Newtonian potential at each perturb-
ing body j in the fifth term of g, (Eq. 27) must be con-
sidered to be a function of time only. The potential at
body j due to body i, uz/r with k set equal to i, must not
be differentiated with respect to x;, y;, and z;.

The last term of g, is evaluated with Eq. (30), which
contains the acceleration of body j given by Eq. (31). The
acceleration of body §, ¥;, must also be considered to be a
function of coordinate time ¢ only. The contribution from
the mass of body i must not be differentiated with respect
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to x;, ¥i, and z;. (I am indebted to two relativists at JPL, Dr. Frank B. Estabrook and Dr. Hugo Wahlquist, for pointing

out these special conditions.)

The details of the derivation of the expression for the acceleration of body i are given in Appendix A. The final expres-
sion for the acceleration of body i relative to the barycenter of the system of n bodies with rectangular components

referred to a nonrotating coordinate system is given by

I SN

e kzj

1 o
+2—05(‘1’i“1‘i)°1‘f$

1
+ =
P

[ — 1) - (4h — 38)] (h — ) +

Jei

where ; is computed from Eq. (31) and the summation
over k=% in Egs. (31) and (35) includes body i. Note that
the first term of Eq. (35) is the Newtonian acceleration of
body i. The effect of the mass of body ¢ on its own accel-
eration is contained in its contribution to the Newtonian
potential at each perturbing body j (term 3) and in its
contribution to the Newtonian acceleration of each body §
(terms 8 and 10).

A method for obtaining the motion of a system of n
heavy bodies directly from the field equations, without
recourse to additional equations such as those of a geo-
desic, was obtained for the first time by Einstein, Infeld,
and Hoffman in 1938 (Ref. 8). The method, referred to as
the EIH approximation method, was subsequently per-
fected from the mathematical viewpoint in Refs. 9 and 10.
The EIH method is illustrated in Ref. 8 by obtaining the
equations of motion for two bodies. The equations for the
motion of a system of n bodies were obtained from a later
(1960) work of Infeld and Plebanski (Ref. 11). According
to Bazanski (Ref. 12), the EIH approximation method is,

L“_‘—;" é 1Sz+—— E .Uw(sw
_L O°ri
w2
) jzi

.i 2 $.\2 4 , .
+(£—) +2<S—j> — Y% g
[ C (43

(}', 1;) * ¥
202 Tij

7 it
2c? Tij

IEX]

(35)

in principle, the only tool in the problem of the motion of
heavy bodies in the general theory of relativity.

After deriving the n-body relativistic equations of mo-
tion, Infeld and Plebanski noticed that these equations
could be put into the form of a Lagrangian L with the
equations of motion following from the Euler-Lagrange

equations:
4 (LY _
dt \o%;

where i refers to the body whose motion is desired. The
Infeld Lagrangian is given in Ref. 11, p. 112, Eq. (3.3.37)
or p. 128, Eq. (4.225). The same Lagrangian may be
found on p. 149 of Ref. 13.

oL

o 0

x> Y, 3

(36)

In the notation used for the de Sitter n-body metric
(except that the index i, as well as § and k, now refers to
the n bodies), the Lagrangian is given by

D3I 3 ST
4c Tij

i FEX !

5 ¢ 1

gt 3 E E

pithi
Tij

1 i (i + py)
4c? %5
i j#i

j#i

MW "
"~ 82 Hittibk ﬂ'ﬂc TixThi TwiTij

i j#i ki, i

JPL TECHNICAL REPORT 32-1527

(37)



where

£ = position vector with components £ ==x, £ =y, and £ = z. A repeated superscript implies a summation over
fh p y P p p
e values 1, 2, and 3.

Carrying out the partial derivatives in term five gives two terms, one of which combines with term four. Also, the last
term contains three identical subterms; two of them may be deleted and the coefficient of the remaining term multiplied
by three. With these changes, the expression for L becomes

=2 s > m B (5t + &) — i’ﬂh :
2 8¢?
2 :E:um: _ Cv.s l} :2 :mm_ 2 :2 :mm(m"'m)
402 [(l‘, r.’l] [(l'] l'-,] + 2 'rij ‘f%j
i jzi

i Jzi

1 il
2c? Z Z Z Tiif i (38)

i i#i ki1

This equation, expressed in a slightly different form, may be found in Ref. 14, p. 372.

The equations of motion (Eq. 36) involve the partial derivatives of the Lagrangian L with respect to the position
and velocity coordinates of the particular body whose motion is desired. Hence, Eq. (38) will be rewritten with the
index i referring to the particular body (body i) whose motion is desired and the indices j and k referring to the n
other bodies (perturbing bodies). For the single-summation terms of Eq. (38), the transformation consists simply of
removal of the i summation. Since all double-summation terms are unchanged by interchanging the indices ¢ and 4,
they are transformed by removing the i summation and multiplying by two. Terms of the triple summation with the
index i or k referring to the specific body { are transformed to the original triple-summation term multiplied by two
with the i summation removed. Terms with the index j referring to the specific body i are transformed to

1 i g i
2c? Ttk

j#i k#j, i

After transformation, the gravitational constant p; may be deleted from each term. Thus, with { now referring to
the specific body i whose motion is desired, and § and k referring to the other bodies, the Lagrangian L is given by

1 22 I .. 3 7 Bi s
= — et ———— 2y2 —— Y
L g & + 8o (83)% + o0 E ( + §) — 202 P i1

Jj#i

1 i (i + )
[(Ty )e¥][(r; —13) o £;] + E 2 E —_ﬁ,——]_
j#i
1 pipe 1 Witk
CZZ Z ritie 207 ZZ TiiTik (39)

jei kej,i j#t k#j,1

The expression for the acceleration of body i is obtained by applying the Euler-Lagrange equation, Eq. (36), to
Eq. (39) for L. The details are given in Appendix A. The resulting n-body equations of motion, derived from the Infeld
Lagrangian, are identical to Egs. (35) derived from the Droste/de Sitter/Eddington and Clark metric.
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The equations of motion for a massless particle moving
in the field of one massive body may be obtained by sim-
plifying the n-body equations of motion (Eq. 35). With
one perturbing body, its position, velocity, and accelera-
tion are zero. Also, with the mass of body i, whose motion
is desired, set equal to zero, the Newtonian potential at
the perturbing body § is zero. With these simplifications,
the n-body acceleration (Eq. 35) reduces exactly to the
acceleration (Eq. 20) obtained from the 1-body isotropic
metric (Eq. 8). Of course, the components of the n-body
metric tensor (Egs. 22-27) reduce to those of the 1-body
isotropic metric (Eq. 8). Some of the relativity terms of
the DPODP formulation are derived from the 1-body
metric, whereas others are obtained from the n-body
- metric. The 1-body isotropic metric was selected since it
is a special case of the n-body de Sitter metric, or equiva-
lently the n-body Infeld Lagrangian. The choice of co-
ordinates in general relativity is arbitrary, but the same
coordinates must be used in all computations.

The general theory of relativity has been generalized
by C. Brans and R. H. Dicke (Ref. 15). Supposedly, their
theory is more in accord with Mach’s principle than the
general theory of relativity. According to Mach’s prin-
ciple, the inertial forces experienced in an accelerated
laboratory are gravitational, having their origin in the
distant matter of the universe accelerated relative to the
laboratory, Brans and Dicke (Ref. 15) state that “locally
observed inertial reactions depend upon the mass distri-
bution of the universe about the point of observation and
consequently the quantitative aspects of locally observed
physical laws (as expressed in the physical “constants”)
are position dependent.”

The Eo6tvos experiment was recently repeated at Prince-
ton University by Dicke et al. and showed that all bodies
fall with the same acceleration to an accuracy of 1 part
in 10%, Brans and Dicke concluded from this result that
the only physical “constant” of their theory (Ref. 15)
whose value needs to vary with position in the universe
is the universal constant of gravitation G (see Ref. 16,
p. 7-8). In order to obtain this variation, they added a
scalar gravitational field to the tensor field of general
relativity. The gravitational constant G varies with the
strength of the scalar field. However, it can be considered
constant in the small region of the universe known as the
solar system,

In the Brans-Dicke scalar-tensor theory of gravity, the
attraction between two particles of matter is due partly
to the tensor field and partly to the scalar field. The frac-
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tion of the gravitational attraction due to the scalar field
is given by
1
4+ 20

where o is the coupling constant of the scalar field, a free
parameter of their theory. It is shown below that » = 6.
For » = 6, 1/16 of the force of gravity is derived from the
scalar field and 15/16 is due to the tensor field.

Because of the expansion of the universe, the strength
of the scalar field (if it exists) is changing, and G should
decrease by roughly 1-3 parts in 10** per year (Ref. 18,
p- 107). The variation in G is inconsistent with the strong
principle of equivalence, which is one of the postulates of
the general theory of relativity. According to this prin-
ciple, in a freely falling, nonrotating laboratory, the form
of the locally determined laws of physics and the values of
the dimensionless physical constants appearing therein
do not vary with the position of the laboratory in space
and time.

Nutku (Ref. 17) has obtained the post-Newtonian
equations of hydrodynamics for a nonviscous fluid in the
scalar-tensor theory of Brans and Dicke. From these
equations, Estabrook (Ref. 18) has obtained the n-body
metric tensor, the n-body Lagrangian, and the resulting
n-body equations of motion. These equations contain
exactly the same terms as the corresponding equations of
general relativity; however, the coefficients of these terms,
which were constant in general relativity, are functions
of the free parameter », the coupling constant of the scalar
field. The value of » must be positive, and, as the value
of » approaches infinity, the equations of the Brans-Dicke
theory revert to the corresponding equations of general
relativity.

From Ref. 15, the relativistic perihelion rotation rate §
of a planetary orbit is

) = [é i ;3;:) jl X [value from general relativity]

(40)

For Mercury, the predicted value from general relativity
is 208 yrad (43 arc-seconds)/century, which agrees with
the observed value. However, the solar oblateness re-
cently observed by Dicke (Ref. 19) would produce an
advance of Mercury’s perihelion of 16 urad (3.4 arc sec-
onds)/century, leaving only 192 prad (39.6 arc seconds)/
century to be attributed to relativity. The Brans-Dicke
theory will produce this perihelion rotation rate for a value



of » approximately equal to 6. Since the true solar oblate-
ness lies somewhere between zero and approximately the
value observed by Dicke, » = 6 (approximately).

The basic equations of the Brans-Dicke theory are
given below with coefficients expressed as functions of
the parameter y, where

1+t
TT 9% e

(41)

As o increases from zero to infinity, y increases from 1/2 to
unity (its general relativity value).

The DPODP will be modified so that the value of the
parameter y may be estimated. The constant coefficients
of all existing DPODP relativity terms, derived from the
general theory of relativity, will be changed to the func-
tions of y specified in this report. Also, the partial deriva-
tives of the observables with respect to y specified in
Section XIV will be added to the program. This will
enable the value of y to be obtained by fitting the theory
to observation. Given v, the corresponding value of o is
given by (see Eq. 41)

(42)

It will be seen that the relativity terms of the DPODP
formulation which are functions of y vary linearly with .
Also, it will be seen that the only components of the
1-body isotropic metric tensor that are functions of » are
g1 = g2» = Zss. The departure of this coefficient from
unity is proportional to the function (1 + )/(2 + ). This
is the source of the change of variable to y (Eq. 41). The
parameter y was first used at JPL by Anderson (Ref. 20).

From Estabrook (Ref. 18), the components of the n-body
metric tensor (written here as functions of y) are

9 .
811 = 822 = L3 = ”‘(1'1'_0%' E :‘q) (43)
%)

I#

8= 0(p,q=1,2,3;p£q) (44)
242 z : X

gi1a = 8u = pe ? ,U: .] (45)
i

j#i

10

2+2 Z
Zos = 8uz = Y MY (46)

ct r3;
jwi

242 z : %
834 = ez = 14 EI% (47)

ct Tij

izt

12N i}:ﬂz
8es = 1- c? Ti; + 04[ Tij

Jj#i

142y 58
ct Tij

j#i

i e
Tij Tjx
k#j

1 621'5"
- —54_ E 17 atzj (48)

iz

2
T
Jj#i

where 0%r;;/0t is given by Egs. (30) and (31). The coeffi-
cients 2y, 2 + 2y, and 1 + 2y appearing in Eqgs. (43-48)
above appear as (2 + 20)/(2 + o), (6 + 40)/(2 + o), and
(4 + 30)/(2 + o), respectively, in Ref. 18. With y equal to
unity (its general relativity value), the equations above are
identical to Eqgs. (22-27), derived from general relativity.

If the mass of body i is reduced to zero and the number
of perturbing bodies is reduced to one, the n-body metric
tensor reduces to the following diagonal 1-body metric:

2
811 = B22 = Zaz = — (1 + %) (49)
1 2 22
gu=1 c2r + cir? (50)

using the notation listed after Eq. (6). In spherical coordi-
nates, the expression for the interval is

2
ds”z(l— 2p +—2—"—>c2dt2

ctr cir?

cir

—<1+ 2Y“>(dr2+r2dez+r=smzod¢z) (51)

Setting y equal to unity gives the general relativity expres-
sion (Eq. 7).
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Estabrook (Ref. 18) also gives an expression for the n-body Lagrangian L in the Brans-Dicke theory. Changing the
coeflicients to functions of y (using Eq. 42) and also changing the form of his equation slightly gives

1 . 1 . 142 ifki e . 3+4 ki e s
=D R ) b ) ) =) ZZ e
4 i i j2i
ity . . 1 pip; 1 i (pi + py)
~ i E E . [(l'f—l'i)'l'a‘] [ —r)ox] + 5 E z 7:;;1_:1_0? E E “—17%]”“_
i FER] % i#é
1 ki
2c* ZZZ 74573k (52)

i it k#j,i

The corresponding equation from the general theory of relativity is Eq. (38); for y = 1, the two expressions are identical.

Transforming Eq. (52) so that the index i refers to the particular body i whose motion is desired and the indices j and k
refer to the n other bodies gives

. 1
L=ls%+——-—(%)+1+2y ’*’(824_32 3+4Y B ik
2 8c? Tij
j#i
G £ sl ek + 3 - 2+ )
202 - ] K I ? * ,r%]
iz
1 pire 1 ik
c? ZZ Tyt 2C° ZZ T3tk (53)
j#i k#§,4 IEI AR TR

The corresponding equation from general relativity is Eq. (39).

In Appendix A, the n-body equations of motion are derived from the n-body metric tensor (Egs. 43-48) and from the
n-body Lagrangian (Eq. 53). The result (also given in Ref. 18) is

_2 :Mi(ri_ri) 2(1+'Y _ 1 s $i\? S\ _2(1+y).
T = ——_—1‘,3;]- 31 Zr” czzrjk-l‘”y p +(1+) P o T; r,

i#i 124 o
8=y 1 e
22 [ T3 + 5 (X — 1) oY
L 3 + 4 it
g Qe xl [+ 2k — U+ 21 G — i) + 5 = (54)
ij
jzi oy

where ¥; is given by Eq. (31) and the summation over k=4 in Egs. (31) and (54) includes body i. With y = 1, Eq. (54)
is identical to Eq. (35), derived from general relativity. Simplifying Eq. (54) to the case of a massless particle moving in
the field of one massive body gives the following relativistic perturbative acceleration:

"f=0273{[2(1-!—)/)—--ys2:|r+2(l+y)(r°r)r} (55)

For y = 1, this equation is identical to Eq. (20), derived from general relativity.
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The ephemerides of the moon, sun, and planets could
be obtained by a simultaneous numerical integration
using Eq. (54). Using these precomputed n-body ephemer-
ides, the DPODP could generate the spacecraft ephemeris
using Eq. (54) to calculate the point-mass gravitational
accelerations of the spacecraft and the body which is the
center of integration.

However, a number of the relativistic perturbative
acceleration terms (the 1/¢? terms) would be insignificant.
For instance, for the heliocentric ephemeris of a planet
other than the earth, only the perturbative acceleration
of the planet due to the mass of the sun, computed from
Eq. (55), need be considered. Equation (54) is required
only when a planet or moon is nearby; that is, when one
is computing the acceleration of the earth, the moon, or
the spacecraft when it is near the earth and moon or a
planet.

The relativistic perturbative acceleration terms required
are specified in Sections IV and V, which describe the pre-
computed n-body ephemerides and the spacecraft
ephemeris. A more detailed discussion of the required
terms and their effect on the various ephemerides may
be found in Refs. 21 and 22.

A brief summary of the effect of general relativity on
the various ephemerides is as follows. For the orbit of a
planet, the mean distance @ is about 1.5 km less than the
Newtonian value. Periodic variations in position are pro-
portional to the eccentricity and range from about 0.2 km
for Venus and Neptune to about 6 km for Mercury and
Pluto. Periodic variations in velocity are proportional to
the product of the mean motion and the eccentricity.
The largest variation is 4 mm/s for Mercury; the varia-
tions for the remaining planets are less than 0.25 mm/s,
which is the value for Mars.

The primary terms of the periodic variations in position
and velocity have periods equal to the orbital period and
one-third the orbital period. The only significant secular
variation in the orbital elements is the advance of peri-
helion, which amounts to the well known value of 208
urad (43 arc seconds)/century for Mercury.

For the orbit of the moon relative to the earth, the mean
distance is about 8 m less than the Newtonian value (using
the same values for the gravitational constants of the earth
and moon). Maximum values of the periodic variations in

12

position and velocity are less than 10 m and 10~ m/s. The
differential solar relativistic acceleration produces a secu-
lar variation in the moon’s perigee of 10 urad (2 arc sec-
onds)/century.

For the Pioneer V1, Mariner IV, and Mariner V space-
craft, the periodic variations in position and velocity are
in the ranges of 3 to 5 km and 0.7 to 1.1 mm/s. The major
terms of these variations have periods equal to the orbital
period and one-third of the orbital period. For an earth
orbiter with a perigee of 7000 km and an eccentricity of
0.2, the advance of perigee is 39 urad (8 arc seconds)/year.

The ephemerides for the planets, the earth-moon bary-
center, the moon, and the spacecraft give the position
coordinates (and their derivatives with respect to coordi-
nate time) as a function of coordinate time . For a given
proper time 7 at some point on earth, the time transfor-
mation t — 7 is thus required to interpolate the ephem-
erides.

The time transformation may be derived from the ex-
pression for the interval which relates an observed interval
of proper time r to the changes in the space and time
coordinates of the atomic clock. Substituting the com-
ponents of the n-body metric tensor (Egs. 43 to 48) into
Eq. (33) for the interval and retaining terms to order
(1/¢)° gives

ds? = (1 — 2¢> c2de? — (da? + dy? + dz?) (56)

2

where x, y, and z may be interpreted as heliocentric coor-
dinates of the atomic clock, although strictly speaking
they are referred to the barycenter, and ¢ is the New-
tonian potential at the clock given by

¢ —_—Z—’;f (57)

where r; is the coordinate distance from the clock to
body j. Expressing the second term of Eq. (56) as the
square of the heliocentric velocity of the clock § multi-
plied by df* and using Eq. (5) gives

dr _[. _ 26 [(3\*]*"
_Et——[l c? c>] (58)
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Since 1/c* terms are ignored,

& e 1(sy

Equation (59) relates an interval of proper time = (ob-
tained from the observers atomic clock) to the corre-
sponding interval of coordinate time ¢, the Newtonian
potential at the clock, and the heliocentric velocity of
the clock.

Coordinate time ¢ may be considered to be a uniform
system of time that pervades the nonrotating heliocentric
frame of reference. For a fixed atomic clock at infinite
distance from the sun, ¢ =§ =0 and dr = dt. That is,
the atomic clock runs at the rate of a coordinate clock
(a clock yielding coordinate time t). This condition and
the length of the coordinate time second fixes the conver-
sion factor (n cycles/second) used to convert cycles or
ticks from the observer’s atomic clock to seconds of proper
time r. From Eq. (59), the rate of an atomic clock de-
creases as the Newtonian potential at the clock and the
heliocentric velocity of the clock increase.

For a fixed atomic clock on earth, dr < dt, and proper
time 7 falls behind coordinate time ¢. However, by the
simple expedient of choosing a different number of cycles
from the observer’s atomic clock per second of proper
time, the latter can be made to agree on the average with
coordinate time . Equation (59) may be written as

dr ¢ 18 o¢o—¢ 1&—¢
# 1T 3es e e ©
where
¢ = time average of ¢
# = time average of §
Ignoring 1/c* terms, this may be written as
dr _l_ql)——;g_l;'z———é;
F 1 c? 2 ¢
d (1 2 —)
(61)
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Note that dr is obtained as dN cycles from the observer’s
atomic clock divided by the conversion factor n cycles/s.
If the conversion factor is changed to n*, where

ron(1-2-1E)

and proper time is obtained as dN/n* and denoted by
d+*, then Eq. (61) may be written as

d+* ¢—$ 182—%
dtzl_ ¢z 2 ¢t (83)

Thus proper time * obtained from the observer’s atomic
clock using the conversion factor n* cycles/s will, on the
average, agree with coordinate time ¢. Periodic variations
in 7* from t are due to variations in ¢ and §* from their
average values.

Coordinate time ¢ is the independent variable for the
equations of motion and is commonly referred to as
ephemeris time ET. The Al atomic time scale on earth
is based upon oscillations of a cesium atomic clock. The
adopted length of the Al second is feesium = 9,192,631,770
cycles of cesium, which is the current experimentally
determined average length of the ET second.? In the
DPODP, the true average length of the ET second is
represented by feesium + Afcesium Cycles of cesium. The
quantity Afeesium 1S 2 solve-for parameter; its value is
probably no more than two or three cycles. The quantity
Feesium T Afcesium is the length of the +* second and hence

dA]- - fcesium + Afcesium _ 1 + Afcesium

dT* fces ium

fceslum

The quantity dA1/dET is the product of this equation
and Eq. (63), which is given to sufficient accuracy by

dal . ¢—¢ 18-F
dET c? 2 ¢

Afcesium

fcesium

+ (64)

where ¢ is the Newtonian potential at a particular Al
atomic clock and § is the heliocentric velocity of the
atomic clock.

2Interpolation of the lunar ephemeris with an observed longitude of

the moon gives the value of the independent variable, ET. The
value of Afcestum given above was determined by counting cycles
of a cesium atomic clock between two observations of the moon
separated by 10 years and dividing the observed number of cycles
by the “observed” ET interval,
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In Appendix B, equations are generated for the depar-
ture of ¢ and §* from their average values, and Eq. (64)
is integrated to give an expression for ET — Al. The ini-
tial conditions were evaluated by considering the method
by which the Al atomic time scale was set up. The master
Al clock was set equal to UT2? on January 1, 1958,
0* UT2. The Al clocks at other locations are synchro-
nized with the master clock by means of radio signals,
accounting for the propagation delay, or by means of a
traveling clock, or by other methods. Hence, the average
offset between Al time and ET is the same for all Al
clocks. The resulting expression for ET — Al (in units of
seconds) is

ET - Al = AT1958
— (¢ — 250,460,800) Seestum

fcesium

+ 1.658 X 10-¢sin E

+ 0.317679 X 10 usin (UT + A)

+ 5.341 X 10-*? 4 sin (UT + X — M)

+ 1.01 X 1022 gsin (UT + A — 2M)

- 1.3640 X 10-** usin (UT + A -+ 2L)

— 227 X 103 usin (UT + A + 2L + M)
+ 1.672 X 10-¢sin D

+ 138 X 103 ysin (UT +A1— D) (65)

where

AT 145 = ET — UT2 on January 1, 1958,
02 0™ 0® UT2 minus the periodic
terms of Eq. (65) evaluated at this
epoch using u and A of the master
Al clock. The master Al clock was
set equal to UT2 on this date. The
parameter AT, 455 may be estimated
by the DPODP

9,192,631,770 cycles of cesium
atomic clock per second of Al time
(definition). This adopted length of
the Al second is the current

experimentally determined average
length of the ET second

fcesium =

foesium T Afcesium = cycles of cesium atomic clock per
ephemeris second. The parameter

Af cesium May be estimated by the

3The UT2 time scale is described in Section III.
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DPODP; its current nominal value
is zero

t = seconds past January 1, 1950, 0®

252,460,800 = seconds from January 1, 1950, 0®
to January 1, 1958, Ot

M = mean anomaly of heliocentric orbit
of earth-moon barycenter

E = eccentric anomaly of heliocentric
orbit of earth-moon barycenter

L = geometric mean longitude of the
sun, referred to mean equinox and
ecliptic of date

D = ¢ — L = mean elongation of the
moon from the sun, where

€ = mean longitude of the moon,
measured in the ecliptic from the
mean equinox of date to the mean
ascending node of the lunar orbit,
and then along the orbit

u = distance of atomic clock from earth’s
spin axis, km
A == east longitude of atomic clock

UT = universal time, hours past midnight,
converted to radians. Itis
computed from

UT1
= — 66
UT 2’7" [86’400] decimal part ( )

where UT1 = seconds of UT1* time past January 1, 1950,
0°UT1. The angles M, L, and D in radians are given by

M = 6.248291 + 1.99096871 X 10" ¢ (67)
L = 4.888339 + 1.99106383 X 107 ¢ (68)
D = 2.,518410 + 2.462600818 X 10-¢¢ (69)

To a sufficient degree of accuracy, the eccentric anomaly
E is given by

E=M++ esinM (70)

where

= eccentricity of heliocentric orbit of earth-moon
barycenter = 0.01672

4The UT]1 time scale is described in Section III.
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Term 4 of Eq. (65) is the sum of two terms with coeffi-
cients of 0.318549 and —0.000870. The larger term arises
from the daily variation in the heliocentric velocity of the
atomic clock, while the smaller term accounts for the
diurnal variation in potential. The expression for ET — Al
used in the current version of the DPODP consists of the
first three terms of Eq. (65) and the following term de-
rived by J. D. Anderson (Ref. 20):

2.03 X 10~ cos ¢ sin (UT + 1)

where ¢ is the latitude of the atomic clock. Anderson’s
term is the fourth term of Eq. (65) with the coefficient
of 0.318549 mentioned above and r, set equal to 6372
km cos ¢.

Changing Anderson’s diurnal term to the fourth term
of Eq. (65) and addition of the last six terms of Eq. (65)
is required to implement the change to the current version
of the program specified in Section XI, namely, the com-
putation of doppler observables from differenced range
observables divided by the count time. The contribution
to “differenced-range” doppler from a term of ET — Al
is approximately equal to the second time derivative of
the term multiplied by the spacecraft range. All terms
affecting “differenced-range” doppler by more than
2 X 10-"m/s per astronomical unit of distance from the
tracking station to the spacecraft were retained in Eq. (65).
Terms of ET — Al which could be derived from the 1/c*
terms of dr/dt would be at least eight orders of magnitude
smaller than the terms of Eq. (65). Their contribution to
differenced-range doppler would be several orders of
magnitude less than the criterion above. Hence, there is
no requirement for 1/c* terms in the expression for
ET — Al.

In order to compute doppler, range, and angular ob-
servables, the time for light to travel from the transmitting
station on earth to the spacecraft, and from there to the
receiving station on earth, must be computed. Thus, an
equation is required which relates the position coordinates
of two points to the coordinate time ¢ for light to travel
from one of the points to the other. This equation will
be referred to as the light time equation. It will be derived
from Eq. (51), the 1-body expression for the interval in
the Brans-Dicke theory. Thus, the effects of the masses
of the planets and the moon on the propagation time are
neglected.

A massless particle moves on a geodesic curve in the

four-dimensional geometry of space-time, which is deter-
mined by the distribution of matter and the system of
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coordinates selected. This is also true for light with the
additional condition that ds = 0. Thus, light moves along
a null geodesic.

The. equations of a geodesic are the Euler-Lagrange
equations which extremize the integral of ds between two
points. When Eq. (10) is written as Egs. (11) and (12),
the Euler-Lagrange Eq. (13) or (18) gives the second-
order differential equations for the three position coordi-
nates with coordinate time ¢ as independent variable.
However, if proper time s is taken as the independent
variable, equations are obtained for the three position
coordinates and also for coordinate time ¢. The equation
for the fourth coordinate is required in the derivation of
the light time equation. Eq. (10) may be expressed as

3[Lds=0 (11)
where
=2y (79)

From Eq. (51),
(12 2L (Y () R
"Qz_(l_ﬁ_’_c‘rz)cz(ds) (1+ c*r

X [(%)2 + 7 (—Z—g—)z + r*sin® @ (-‘%)2] (73)

The Euler-Lagrange equations for g =1, 6, ¢, or t are

The equation for 6 is

. 2
rdz 2dr dG(l %)-,«(——-d‘t) sinfcosd =0
ds ds ds (75)

If coordinates are chosen so that a particle moves ini-
tially in the plane § = /2, then d/ds = 0 and Eq. (75)
gives the result that d?¢/ds* =0. Thus, in the 1-body
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problem, the motion of particles and of light is planar,
and the equations may be simplified by setting

0 =x/2 (76)

Since £ is explicitly independent of ¢ and ¢, first
integrals of Eq. (74) for ¢ =t and ¢ are given by
0.2/9 (dt/ds) = constant, and 8.2/9 (d¢/ds) = constant.

Differentiating Eq. (73) accordingly with § = x/2 and
making use of the fact that .2 = 1 gives

dt constant

'a:._: 1 &‘; N 2u? (77)
c*r ¢
and
constant

r2<1+ QZ‘M)
cr

Dividing Eq. (77) by Eq. (78) and ignoring 1/c* terms
gives

2(1+y)p

=72 [1 + = :l constant (79)

dg
Setting ds =0 and § = »/2 in Eq. (51) gives
2 27\ , 2yp .
(1 — 2y ;7—) e = (1 + ‘cT) (dr* +r°dg?)
(80)

Substituting dt from Eq. (79) into Eq. (80), setting
dr/d¢$ = 0 when r = R (the minimum value of 7 on the
light path), and ignoring 1/c* terms gives

r[r2 + (—CL,Y)B—r—- <R2+ %R)]

(81)

dp = =
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Integrating between limits of (7, ) and (R,0) and ignor-
ing 1/c* terms gives

d+ye
$=£{g —sin” [H TTe 4y n]}
r Toid 31

L+y)e
= cos™? [R e 14y P] (82)
r c®R

where the plus sign applies for increasing r and the minus
sign applies for decreasing r. When r approaches o in
Eq. (82), the angle ¢ will approach one of the two asymp-
totic values:

¢ = i[g- +(1——:;—g—)—f”—] (83)

The angle between the incoming and outgoing asymp-
totes is thus

e ®

For general relativity, y = 1 and A¢ = 4u/c*R, which
has a maximum value of 848 urad (1.75 arc seconds)
when R is set equal to the radius of the sun, 695,500 km.
Figure 2 shows the curved path of a photon passing the
sun S. Light is moving in the positive y direction and
the point of closest approach occurs at x = R, y = 0. The
polar coordinates (r, ¢) and rectangular coordinates (x, y)
of two points on the light path are shown along with the
strajght line path (of length r,,) joining these two points.
The y intercept was obtained from Eq. (82) by setting
cos ¢ equal to zero; the x intercept of the asymptotes fol-
lows from the y intercept and the angle of the asymptote.

Given that light moves in a plane along the curved
path (Eq. 82), the light time equation may be derived
by two alternative methods. The first method consists of
substituting d¢ from Eq. (79) into Eq. (80), giving a rela-
tion between dr and dt. Integration gives the light time
equation. The second method is a direct integration of
the differential of coordinate distance divided by the
coordinate speed of light v, along the light path between
two points. For planar motion, the space coordinates of
a photon change by dr and d¢ in coordinate time dt.
Hence, an expression for the square of the coordinate

velocity v, is
_ _C_if_ 2 é_(_é 2
ot = (dt> e (dt> (85)
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Fig. 2. Light path

Dividing Eq. (80) by d¢?, substituting Eq. (85), and ignor-
ing 1/c* terms gives

vczc[l - (_1_1'__7_21{] (86)

c*r

The coordinate speed of light v, decreases slightly as
the photon approaches the sun. The Newtonian light time
between two points is the straight-line coordinate distance
between them, divided by the speed of light c. However,
since v, < c, the actual light time will be longer; the
additional time is of order 1/c2.

The direct effect of the bending of light upon the light
time is the increase in the path length divided by the
nominal velocity ¢. The maximum angle between the
straight line path between two points and the curved
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geodesic path is the bending, 2 (1 + y) u/c*R. If the nom-
inal length of the light path is [, the difference in length
between the curved and straight line paths will satisfy
the inequality

Al< L zz—;-[i(—lil?ﬂ] (87)

2(1+y)p c*R
cos ——=

which is of order 1/c*. Thus, the direct effect of the bend-
ing of light on the light time is an additional term of
order 1/c®.

The indirect effect of the bending of light is to alter
the value of r used in Eq. (86) by a term of order 1/c%.
The coordinate velocity divided by ¢ along the curved
geodesic path will differ from the corresponding value
along the straight line path by a term of order 1/¢*. Thus,
the indirect effect of the bending of light upon the light
time is the same order as the direct effect, namely 1/c®.

Since all terms of order 1/c® and greater are ignored
in the light time equation, it is obtained by integrating
the differential of coordinate distance divided by v, along
the straight line path joining two points.

Both of the above-mentioned derivations of the light
time equation are given in Appendix C. In either case, the
resulting light time equation is

tj'—t1‘,=

% n (1 "‘3)')#1“ (Ti +r; + Tif)

[ 1 + r; — 1y (88)

where light travels from point i at coordinate time (ephem-
eris time) #; to point § at coordinate time #;, and
i = || 25 () — 2§ (@) |
o= |[x§ ()]
1= || x5 (&) |
r§ (£:),75 (¢;) = heliocentric position vectors of point i
at transmission time ¢; (ET) and point j
at reception time £; (ET), respectively,

with rectangular components referred
to a nonrotating frame of reference

u = gravitational constant of sun, km3/s?
This form for the relativistic perturbation of the light

time equation was derived independently and introduced
to the Jet Propulsion Laboratory by Holdridge (Ref. 23).
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However, it had been derived a year earlier by Tausner
(Ref. 24, Eq. 6-105). For two alternative forms, see
Appendix C.

As discussed in detail in Section IX, the relativistic cor-
rection to the light time becomes as large as 36 km/c
when the spacecraft approaches superior conjunction and
the minimum distance from the light path to the surface
of the sun becomes very small. This effect is seen directly
in range observables and is the only really large effect of
general relativity on earth-based tracking data.

The most accurate observables computed by the
DPODP and observed by the Deep Space Network are
round-trip range and two-way doppler data. The remain-
der of this section will surnmarize briefly the procedure
for computation of these observables from a relativistic
point of view.

The observables are defined as follows, A signal is trans-
mitted from the tracking station at coordinate time ¢,
(proper time ,), received and retransmitted by the space-
craft at coordinate time £,, and received by the tracking
station at coordinate time t; (proper time 7;). The range
observable is the elapsed round-trip proper time 3 — 7.
For purposes of this discussion, two-way doppler may
be considered to be the ratio of the received frequency fz
to the transmitted frequency fr. In actuality, it is the
average value of 1 — (fg/fr) over a period of time called
the count time.

As previously mentioned, the precomputed ephemerides
for the planets, the earth-moon barycenter, and the moon
are obtained, in principle, by a simultaneous numerical
integration using Eq. (54). Given the estimated values of
the spacecraft injection conditions and other parameters,
the spacecraft ephemeris is integrated numerically using
Eq. (54) to compute the point mass gravitational accel-
erations, These ephemerides give the position coordinates
and their derivatives with respect to coordinate time as a
function of coordinate time ¢. Given the ephemerides, the
first step in the computation of each observable quantity
is the solution of the light time problem. Equation (65) is
used to convert the reception time 5 for each observable
to coordinate time (ephemeris time) %5, and the heliocen-
tric position and velocity of the tracking station are com-
puted at this epoch.

Solution of the light time equation (Eq. 88) for the
down leg of the light path gives the spacecraft time ¢,
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and its heliocentric position and velocity at ¢,. Similarly,
solution of the light time equation for the up leg of the
light path gives the transmission time #, and the helio-
centric position and velocity of the tracking station at #.

For the range observable, Eq. (65) is used to convert
the round-trip light time from an accurate value of the
coordinate time interval (¢#; — #;) to the observed proper
time interval =3 — .. The doppler observable is

fo_dn dn_ dn
fT - d1'3 : dn - d'ra (89)

where dn cycles are transmitted in the interval of proper
time dr, and received in the interval dr;. The ratio of
received to transmitted frequency is computed from

(&)

fo _\&). dt, dt,

fT - ﬁ dtg dt3 (90)
dt),

The ratios dt,/dt, and dt,/dt, are obtained by differen-
tiation of the light time equations for the up and down
legs, respectively, of the light path. The dr/dt ratio is
evaluated at t; and #; from Eq. (59).

All observable quantities are functions of intervals of
the observer’s proper coordinates associated with his local
space-time frame of reference. The range and two-way
doppler observables are functions of intervals of proper
time = only, namely r;—r, and dr,/dr, respectively. Thus,
the computation of observables will always involve a
transformation from the space and time coordinates of
the frame of reference in which the motion of bodies
and of light is represented mathematically to the observ-
er’s proper coordinates.

Theoretically, the frame of reference and the coordi-
nates selected are arbitrary. The relativistic terms in the
equations of motion (Eq. 54), the light time equation
(Eq. 88), and the transformation from coordinate time to
proper time (Eq. 65) will vary with the frame of reference
and system of coordinates selected. In general, the nu-
merical values of the various constants, obtained by fit-
ting the theory to observations, will also vary. However,
the numerical values of the computed observables are
independent of the frame of reference and system of
coordinates selected.
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fi. Time Transformations

This section describes the systems of time used in the
DPODP and gives the formulas for transforming between
these time scales.

A, Systems of Time

The DPODP uses the five systems of time discussed
below.

1. Ephemeris time (ET), This is a uniform measure of
time which is synonymous with coordinate time ¢ of the
general theory of relativity. It is the independent variable
for the motion of bodies and of light rays in the bary-
centric space-time frame of reference. The represented
motion is strictly mathematical in the sense that the
three position coordinates and their independent variable
(coordinate time) are not observable. However, the values
of observable quantities computed using these coordi-
nates are invariant with the selection of coordinates. Thus,
the selection is arbitrary. Ephemeris time differs from
the other four time scales of the DPODP since it is an
abstract, unobservable time scale.

2. Atomic time (Al). This is derived from oscillations
of a cesium atomic clock. The value of Al was set equal
to UT2 on January 1, 1958, 0%0=0* UT2. The adopted
length of the Al second is 9,192,631,770 cycles of cesium,
which is the current experimentally determined average
length of the ET second.

3. Universal time (UT) (specifically UTO, UTI, or
UT2). This is the measure of time which is the basis for
all civil time-keeping. Universal time is defined in Ref. 25,
p. 73 (the differences between UTO, UT1, and UT2 will
be described below) as 12 h plus the Greenwich hour
angle of a point on the true equator whose right ascen-
sion measured from the mean equinox of date is:

Ry (UT) = 18538452836 -+ 8,640,184:542 T, + 0:0929T%
(91)

where

Ty = number of Julian centuries of 36,525 days of UT
elapsed since January 0, 1900, 128UT

The Greenwich hour angle of this point is 6, — Ry (UT),
where

0x = Greenwich mean sidereal time, the Greenwich
hour angle of the mean equinox of date
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Hence, UT is a function only of 0y:

8y = UT + Ry (UT) — 122 Q=<g,, UT=24>

(92)

(Note that any integer multiple of 24 h may be added to
the right-hand side, and hence the —12* term could also
be written as --12b.)

Universal time is obtained from meridian transits of
stars, observed in practice with a photographic zenith
tube (PZT). At the instant of meridian transit, the right
ascension of the observing station is equal to that of the
observed star, relative to the true equator and equinox of
date. Subtracting the east longitude of the observing sta-
tion gives the true Greenwich sidereal time 4 at the instant
of observation:

8 = true Greenwich sidereal time, the Greenwich hour
angle of the true equinox of date

Subtracting the nutation in right ascension (Ref. 25, p. 43)
gives Greenwich mean sidereal time 0. Solving Eq. (92)
gives the value of UT at the instant of observation. Each
observing station has a nominal value of longitude used
for computing UT; if this nominal value is used, the re-
sulting UT is labeled UT0. Because the pole wanders,
the latitude and longitude of a fixed point on the earth
are a function of time.’ Using the true longitude of the
observing station at the observation time, the resulting
UT is labeled UTL. There are fairly predictable seasonal
fluctuations in UT1; if the adopted seasonal correction is
added to UTI, the resulting time is labeled UT2.

The DPODP uses only UTL. It takes the value of UT1
supplied by the U.S. Naval Observatory and computes
fx from Eq. (92). Adding the nutation in right ascension
gives 4, which is used to compute the position of a track-
ing station relative to the true equator and equinox of the
date of observation.

4. Broadcast Universal time (UTC). This is Greenwich
civil time, which is an approximation of UT2; UTC is
derived from oscillations of a cesium atomic clock. It is
broadcast from several stations of the National Bureau of
Standards such as WWVL, WWV, and WWVH. The sec-
onds pulses are the length of 9,192,631,770 (1 — S) cycles
of cesium.

3See Subsection VII-B-1.
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The value of the frequency offset S is adopted annu-
ally by international agreement. Since 1964, the value
of S must be a positive or negative integral multiple of
50 X 10 (Ref. 26, p. 308). For the years 1960 to 1969,
the annual values of S were —150, —150, —130, —130,
—150, —150, —300, —300, —300, and —300 X 107,
respectively. At 0® UTC on the first day of any month,
UTC may be advanced or retarded by exactly 0.100 s
(Ref. 26, p. 307). These step adjustments to broadcast
UTC are announced in advance. The frequency offsets
and step adjustments are selected so that broadcast UTC
will deviate from UT2 by no more than a few tenths of a
second.

5. Station time (ST). This is the operational time scale
at each tracking station derived from oscillations of a
rubidium atomic clock. The ST second is ideally equal to
the UTC second. Also, the ST clocks are stepped along
with the step adjustments in UTC. Currently, ST at each
tracking station departs from UTC by less than 100 us
and is known to 10-20 ps. The value of the UTC-ST offset
is determined by using a traveling UTC clock (previously
synchronized with the National Bureau of Standards) or
by transmitting a timing signal (derived from the master
UTC clock of the DSN) from the Deep Space Communi-
cations Complex at Goldstone, Calif., to a particular track-
ing station via moon bounce (accounting for the fairly
well known propagation delay). The traveling clock pro-
vides UTC-ST to 5us or better, while the moon bounce
currently provides an accuracy of about 20 ps.

In the DPODP, time is represented as double-precision
seconds past January 1, 1950, 0, On the IBM 7094 com-
puter, double precision is 54 bits or slightly more than
16 decimal digits; from 1967 to 1984, time is represented to
0.6 X 10" s. If UTC is 600,000,000 s past January 1, 1950,
0° UTC, and ET — UTC = 40 s, then ET is 600,000,040 s
past January 1, 1950, 0* ET.

B. Transformations Between Time Scales

The complete transformation between Al time and ET
is given by Eq. (65). The terms of Eq. (65) are defined
in detail after that equation. The first term, AT 455, is the
constant part of the offset between Al time and ET. The
second term accounts for a possible difference in the aver-
age length of the ET second (9,192,631,770 + Afcesium
cycles of cesium) and the length of the Al second
(9,192,631,770 cycles of cesium). The nominal values of
AT, o5 and Afeesium are 32.15 s and 0, respectively; both
are solve-for parameters.
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The remaining terms of Eq. (85) arise from general
relativity; they represent periodic variations in proper
time on earth (namely the Al, UTC, and ST atomic time
scales) relative to uniform coordinate time # (ephemeris
time ET). These variations in proper time relative to
coordinate time are due to variations in the Newtonian
potential at the atomic clock and in the heliocentric
velocity of the atomic clock (see Eq. 64).

In the computation of the range observables used to
compute differenced-range doppler (see Section XI), the
complete expression for ET — Al (Eq. 65) is required to
accurately transform round-trip ephemeris time from the
light time solution to observed round-trip station time.
However, in the general time transformation subroutine
of the DPODP, only the annual relativity term of ET—A1
has been retained. The expression, giving ET — Al in
seconds, is

Afces ium
9,192,631,770

+ 1.658 X 10 sin E (93)

ET — Al = ATy055 — (t — 252,460,800)

where E is computed from Egs. (67) and (70).

The largest terms of ET — Al neglected in Eq. (93)
are the 2-ps daily term (the fourth term of Eq. 65) and
the 1.7-ps monthly term. Also, there are long period vari-
ations of the same approximate magnitude due to periodic
variations in the heliocentric orbital elements of the earth~
moon barycenter arising from perturbations from the other
planets. Thus, the accuracy of ET — Al computed from
Eq. (93) in the general time transformation subroutine
is about 10 s.

The remaining transformations between the various
time scales are specified by linear or quadratic functions
of time ¢. The coefficients of these polynomials are speci-
fied by time block and the argument £ is seconds past the
start of the time block. Thus

UTC — ST =a + bt + ct? (94)
Al—-UTC=d +et (95)
Al —UTL =f+ gt + ht? (96)

Equations (93-96) are used to transform in either direc-
tion, the right-hand side being evaluated with the known
time. For instance, Eq. (95) is evaluated with UTC when
transforming from a UTC epoch to the corresponding Al
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epoch. Alternatively, it is evaluated with Al time when
transforming from an Al epoch to a UTC epoch.

As previously indicated, observed values of UTC — ST
are available for each tracking statiou. Values of a, b,
and ¢ may be obtained by fitting to these data. The value
of UTC — ST is typically less than 100 us and is known
to 10-20 ps. The coeflicients a, b, and ¢ are solve-for
parameters; however, it is doubtful if the estimated values
of a, b, and ¢ would yield UTC — ST more accurately
than the observed accuracy of 10-20 us.

The U.S. Naval Observatory supplies values of
Al — UTC and Al — UT]I to the nearest 0.1 ms. Curve-
fitting techniques are used to obtain the polynomial co-
efficients d through h by time block, normally of 1 month’s
duration. Real-time reduction of tracking data is accom-
plished by using extrapolated polynomials for the current
month.

The fitted expressions for A1 — UTC are probably accu-
rate to about 2 X 10-° 5. A more accurate expression could
be obtained by fitting to the data published by the Na-
tional Bureau of Standards (to the nearest us) or, better
yet, by computing the expression directly from the known
frequency offsets and step adjustments. The published
data are obtained in this manner.

A small error is incurred in the evaluation of Egs. (93)
to (96) since each may be evaluated with either of the
two time scales which it relates. The largest error occurs
in the evaluation of Eq. (95) or (96) where e and g are
about 0.3 X 107, h is about 10-%%, and ¢ may be as large
as 3 X 10¢ s. Since ¢ varies by about 8 s, depending upon
whether it is evaluated with Al or UT, the resulting
uncertainty in A1 — UTC or Al — UT1 is about 2 to
3 X107 s

The observables are recorded in ST. In order to obtain
the computed values of the observables, the ephemerides
of the spacecraft, planets, and moon which affect the
observables must be interpolated at the ET value of the
epoch of observation, obtained from the ST epoch by
using Egs. (93-95). Since Eq. (93) could be in error
by 10 us and each of Egs. (94) and (95) could be in error
by 20 us, the ET value of the epoch of observation could
be in error by as much as 5 X 10~ s,

The error in the computed value of a range observable
due to an error of 5 X 10-* s in the ET epoch at which it is
evaluated is the spacecraft range rate multiplied by
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5 X 105 s. For a typical range rate of 30 km/s, the error
in computed range is 1.5 m, which is close to the desired
accuracy of 0.1 m. The largest conceivable range rate is
about 1000 km/s, which can occur for the spacecraft on a
hyperbola grazing the solar surface. For this extreme case,
the error in computed range is an acceptable 50 m. Thus,
an accuracy of about 10~ s in the individual time trans-
formations is acceptable for the accurate computation of
range observables.

The maximum error in the computed value of a doppler
observable due to an error of 5 X 10 s in the ET epoch
at which it is evaluated is the acceleration of the space-
craft relative to the tracking station multiplied by
5 X 10-® s. During heliocentric cruise, this acceleration
is less than 0.1 m/s?, and the error in computed doppler
is less than 5 X 10-® m/s. This compares favorably with
the desired accuracy of 10-° m/s.

However, for a grazing encounter with Venus or Jupiter,
or an approach to within 1 solar radius of the sun’s sur-
face, the accelerations are 9 m/s?, 25 m/s?, and 70 m/s?,
respectively. For a 5 X 10% s timing error, the errors in
computed doppler observables are 5 X 104 m/s, 1.3 10-
m/s, and 3.5 X 10-% m/s, respectively. These doppler re-
siduals are one to two orders of magnitude larger than
desired. With good tracking data, doppler residuals are
often obtained with a maximum value of about 10-* m/s.
Thus, during heliocentric cruise, a timing accuracy of
5X 10® s is adequate for the accurate computation of
doppler observables. But, when the spacecraft is near a
planet or the sun, this timing accuracy is only marginally
acceptable.

When the offset from UTC to ST at each tracking sta-
tion is known to significantly better than the current
accuracy of 10-20 us, one of the two previously indicated
methods for increasing the accuracy of the Al — UTC
time transformation should be implemented. The next step
in increasing the accuracy of the time transformations
would be to add the 2-ps daily term and the 1.7-us
monthly term to the expression for ET — Al used in the
general time transformation subroutine. Evaluation of the
daily term would require that each Al and UTC epoch
be associated with a particular tracking station and that
the location of the station be input to the subroutine.
However, there is no point in attempting to obtain time
transformations much more accurate than the microsec-
ond level, because of the unknown long period fluctua-
tions of order 10-¢ s in ET — Al
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The value of Al — UT1 computed from Eq. (96) at any
instant defines the location of the 0° meridian on earth
at that instant. Over a short period of time from this
epoch (a few weeks or months), the angular position of
this meridian computed from Egs. (96) and (92) will de-
part in a random manner from its actual position by an
angle equivalent to an error of 5-8 ms (1 sigma) in UTI.
In addition to this random error in UT1, there may be a
secular error of a few milliseconds per year. The geo-
centric velocity of a tracking station on the equator is
465 m/s. Hence, the random error in UT1 of 5-8 ms (1
sigma) produces fluctuations in the computed right ascen-
sions of tracking stations of 2-4 m (1 sigma).® A secular
error in UT1 of 2 ms per year would cause the estimated
station longitudes to drift by about 1 m per year.® These
errors are large in relation to the current goal of obtain-
ing station locations to an accuracy of 1 m. Currently, the
uncertainties in the estimated tracking station locations
are about 5 m (see Mottinger, Ref. 27).

For further details on the subject of timing, see Trask
and Muller (Ref. 28) and Ref. 29, Sections II-E and II-F.

IV. n-Body Ephemerides

Section IV-A describes the precomputed n-body ephem-
erides for the celestial bodies of the solar system and the
manner in which they were generated. Section IV-B de-
scribes the method by which these ephemerides are dif-
ferentially corrected within the DPODP and gives the
formulation for obtaining corrected position, velocity,
acceleration, and jerk from any ephemeris. Section C gives
the formulas for combining these quantities to obtain the
relative position, velocity, acceleration, and jerk between
any two celestial bodies of the solar system.

Acceleration and jerk are required to compute doppler
observables. Acceleration is also used in the computation
of partial derivatives of the observables with respect to
the estimated parameters.

A. Description of Precomputed n-Body Ephemerides

The DPODP uses the following precomputed posi-
tion and velocity ephemerides for the celestial bodies of
the solar system: (1) heliocentric ephemerides for eight
planets and the earth-moon barycenter and (2) the geo-
centric lunar ephemeris. The lunar ephemeris is obtained
by a numerical integration fit to a corrected version of
the Improved Brown Lunar Theory, as will be described

6The angular error multiplied by the distance of the tracking station
from the earth’s spin axis.
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in detail below. Given the precomputed ephemeris of the
moon, the planetary ephemerides are obtained by a simul-
taneous numerical integration performed by the SSDPS
(Solar System Data Processing System).

Values of a number of parameters are differentially
corrected to produce a least-squares fit to observed angu-
lar data for all of the planets and the sun, radar range
data for Mercury, Venus, and Mars, and ranging data to
a spacecraft when it is in the vicinity of a planet. The
parameters whose values may be estimated are (1) oscu-
lating orbital elements for each ephemeris, (2) osculating
orbital elements for the trajectory of the spacecraft rela-
tive to the planet it is passing, (3) masses of the planets,
(4) radii of planets which have been tracked by radar
ranging, (5) right ascension and declination limb biases
for Mercury and Venus, and (6) the astronomical unit.

The equations of motion are Newton’s equations plus
relativistic perturbative accelerations derived from the
I-body metric of the Brans-Dicke theory. When the
solve-for parameter y approaches unity, this metric re-
duces to the 1-body isotropic metric of general relativity.
Development Ephemeris 69 (DE69), which is the latest
export ephemeris produced at JPL, is the first to be based
upon isotropic relativistic coordinates. Previous ephem-
erides were based upon the Schwarzschild coordinates of
general relativity. This permanent change was made so
that the precomputed n-body ephemerides would be com-
patible with the DPODP, which is based upon isotropic
coordinates.

The ephemeris DEG9 is based upon a 60-year back-
ward integration from the epoch of August 2, 1970, O* ET
to 1910. The observations consist of over 34,000 optical
observations of the planets (except Pluto) and the sun
obtained from the 150-mm and 230-mm transit circles of
the U.S. Naval Observatory for 1910-1968, radar range
data for Mercury, Venus, and Mars for 1964-1968, and
range observables for the Mariner V spacecraft near its
encounter with Venus (data for June 21-November 12,
1967). After being fitted to these data, the ephemerides
were integrated forward from the 1970 epoch to 1976.
The ephemeris DE689 consists of the latter portion of the
60-year integration from October 28, 1961, to the 1970
epoch and the forward integration from this epoch to
January 23, 1976. The lunar ephemeris contained in DEG9
is Lunar Ephemeris 16 (LE186), described below; DE69 is
described in Ref. 30.

An easy way to describe LE186 is to consider the evolu-
tion of LE4 (Ref. 31) through LE6 (Ref. 32) to LEIS
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(Ref. 33). The Improved Lunar Ephemeris (ILE) (Ref. 34)
is the result of removing certain deficiencies in the orig-
inal Brown Lunar Theory (Refs. 35 and 36). Brown’s solu-
tion for the motion of the moon was obtained in rotating
rectangular coordinates and then transformed to spherical
coordinates. Because precise observations were not avail-
able in his time, Brown evaluated this coordinate trans-
formation with less accuracy than he used in his solution
for the moon’s motion.

These coordinate transformations have recently been
recomputed to a higher precision by Eckert, Walker, and
Eckert (Ref. 37). Eckert and Smith (Ref. 38) have ob-
tained a numerical general theory for the motion of the
moon that is independent of the Brown Lunar Theory.
From a comparison of the two theories, Eckert has recom-
mended that the ILE be augmented by the longitude
correction

0”072 sin (2F — 21)

Positions for LE4 were obtained by evaluating the ILE
with aberration terms removed to make the ephemeris
strictly geometric, addition of the transformation correc-
tions of Eckert et al. (Ref. 37) and the longitude correction
of Eckert and Smith (Ref. 38), and addition of corrections
to effectively change the constants of the theory to those
adopted by the International Astronomical Union (IAU)
in 1964 (Ref. 26, pp. 594-5), except for the value of the
second zonal harmonic J, for the earth, Numerical differ-
entiation of these positions gave the velocities for LE4.
Addition to LE4 of correction terms to account for the
modern value of J, gave LES,

Van Flandern has obtained corrections to certain con-
stants of the ILE from a reduction of meridian circle
observations of the moon and a few grazing occultations
in the period 1956-1966 (Refs. 39 and 40). The latter
observations are particularly accurate in declination. The
observations were referred to the moon’s center of mass
by the use of Watts” limb corrections (Ref. 41). These
charts indicate that the geometric center moves relative
to the center of mass with a maximum amplitude of 7.3
prad (1.5 arc seconds) (Ref. 39).

Van Flandern’s corrections to the constants of the ILE
essentially change the equinox from Brown’s equinox
(close to Newcomb’s equinox) to the FK4 equinox, which
is the basis of modern observations and the planetary
ephemerides. Correction terms were added to LE6 to
change certain of the constants in the theory to those
obtained by Van Flandern (Ref. 40). A numerically inte-
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grated lunar ephemeris was obtained by fitting to this
version of the lunar theory. Addition of corrections to
account for certain observable but currently unmodelable
terms of the lunar motion gave LEIS.

In Refs. 21 and 22, it is shown that the significant part
of the relativistic perturbative acceleration for the helio-
centric ephemeris of a planet or the earth-moon bary-
center is the direct perturbative acceleration due to the
sun, the indirect perturbative acceleration of the sun due
to the other bodies of the solar system being negligible.

In the general theory of relativity, the perturbative ac-
celeration of a body i due to the sun is given by Eq. (35)
with the Newtonian term and the j summation removed
and the index § referring to the sun. In Ref. 21, pp. 49-51,
it is shown that all terms containing the sun’s barycentric
velocity, the sun’s acceleration, or the Newtonian poten-
tial at the sun are insignificant and hence that the rela-
tivistic inertial acceleration (relative to the barycenter of
the solar system) of a body due to the sun, denoted ¥(S),
may be computed from

(5) = s [(4p — ¥)r + 4(r-D)1] 7

where

uy = gravitational constant of sun, km?/s?
¢ = speed of light

r,T = heliocentric position and velocity vectors of
body, with rectangular components referred to
the mean earth equator and equinox of 1950.0

7,§ = magnitudes of r and ¥, respectively

¢ = Newtonian potential at body (positive sign con-
vention)

In the Brans-Dicke theory, Egs. (35) and (97) are
replaced by Eq. (54) and the following equation:

F(S) = 5a([2(L+ )¢ — y@Ix + 2(L+ ) (- D)§)
(98)
where y (or o; see Eq. 41) is the free parameter of the
Brans-Dicke theory whose value is to be estimated by
fitting the theory to observation.

As y approaches unity, its general relativity value,
Eq. (98) approaches Eq. (97) of general relativity. If ¢
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in Egs. (97) and (98) were replaced by the potential due
to the sun, ug/r, these equations would be identical to
the corresponding 1-body equations, namely Egs. (20)
and (55), respectively.

For the heliocentric ephemeris of a planet, the rela-
tivistic perturbative acceleration is given by Eq. (98).
However, the only significant term of ¢ is pg/r and thus,
for this application, Eq. (98) reduces to the corresponding
1-body equation, Eq. (55). For the heliocentric ephemeris
of the earth-moon barycenter, the perturbative acceler-
ation is computed from’

Y o
F= 1_i_‘mr,g(S)+ 1_'_#1',,(8) (99)
where
Be
=t 0
b (100)
and

ug, py = gravitational constants of the earth and moon,
respectively, km?3/s?

The perturbative accelerations of the earth and moon
due to the sun are computed from Eq. (98) with the poten-
tials at these two bodies given by

M P
=L, b 1
¢p Ton + rom (101)
_ s M
P Tsm + Tem (102)

where 74; is the coordinate distance from body i to body ;.
The formulas above are used in the SSDPS to compute
the relativistic perturbative acceleration for each plan-
etary ephemeris.

From Ref. 22, Table 3, the maximum amplitude of the
periodic variations in position for a planetary ephemeris,
arising from Eq. (98), is about 6 km. It is shown in Ref. 21,
p. 51, that the ratio of terms of Eq. (54) not included in
Eq. (98) to the acceleration computed from Eq. (98) has
a maximum value of 10-3. Thus the above-mentioned posi-
tion variations are computed to an accuracy of at least

"The notation ¥:(7) is the relativistic perturbative acceleration of
body i due to body j.
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6 m. The relativistic acceleration of the earth-moon bary-
center computed from Eq. (99) should also contain the
terms

B . 1 .,
1+[.LrE(M)+ 1+‘u.rll(E)

where the mutual accelerations of the earth and moon
are computed from Eq. (54). However, it is shown in
Ref. 21, p. 53, that the periodic variations in the position
of the earth-moon barycenter due to these terms are more
than three orders of magnitude smaller than the rela-
tivistic variations due to the sun, which, from Table 3
of Ref. 22, have a magnitude of about 400 m. Thus, the
variations in position of the earth-moon barycenter due
to the mutual accelerations of the earth and moon have
an amplitude of less than 1 m. The errors in the planetary
ephemerides due to neglecting the contribution to the
Newtonian potential ¢ in Eq. (98) from the other planets
are less than 10 m for the inner planets and 100 m for the
outer planets.

The relativistic acceleration due to a planet or the moon
is significant, relative to the solar relativistic acceleration,
in only a small region swrrounding the body (small in
relation to the scale of the solar system). For simplicity,
this region is taken to be a sphere, termed the relativity
sphere, whose center is at the center of mass of the body.
The relativistic acceleration due to a planet or the moon
should be computed only within that body’s relativity
sphere. The radius of the relativity sphere for each body

of the solar system is given in Ref. 21, Table 5. Since no

planet is within the relativity sphere of another planet,
the relativistic acceleration of a planet or the earth-moon
barycenter due to another planet is negligible. It has been
estimated (Ref. 21, p. 53) that neglecting the indirect
relativistic acceleration of the sun produces periodic errors
in position of less than 1 m for the inner planets and less
than 1 km for the outer planets.

Considering all of the errors mentioned above, the
planetary ephemerides produced by the SSDPS contain
periodic errors of up to 20 m for the inner planets and up
to 1 km for the outer planets due to neglected terms in the
specified formulation for the relativistic perturbative ac-
celeration.

Fragmentary evidence indicates that LE16 may be as
accurate as 100 m. The maximum effect of general rela-
tivity on the geocentric lunar ephemeris is less than 10 m
in position and 10-° m/s in velocity (Ref. 22, p. 4). Thus, it
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is not important which relativity terms were included in
the numerical integration fitted to the lunar theory, which
produced LEIS.

However, in the future when the lunar ephemeris is
obtained by a numerical integration fitted to observations,
as is currently done for the planetary ephemerides and
the spacecraft ephemeris, the relativistic perturbative ac-
celeration of the moon relative to the earth should be
computed from

¥ =¥y (S) — ¥u(S) + ¥u (E) — ¥ (M) (103)
The first two terms are evaluated with Egs. (98), (101),
and (102). The last two terms are evaluated with Eq. (54),
with the Newtonian term and the j summation removed
and the index j referring to the body producing the accel-
eration. All velocities appearing in Eq. (54) are barycentric
but may be evaluated with heliocentric values. The accel-
eration of the perturbing body may be evaluated with
Newtonian theory, Eq. (31). The Newtonian potentials
at bodies i and j may be evaluated with Eqgs. (101) and
(102). The sum of terms 1 and 2 of Eq. (103) is about 10-*
km/s?, whereas the individual terms are one order of
magnitude larger. The magnitudes of terms 3 and 4 are
about 10% and 105 ki /s?, respectively. The total accel-
eration computed from Eq. (103) is accurate to three or
four figures.

B. Obtaining Corrected Position, Velocity, Acceleration,
and Jerk From Each Ephemeris

1. Uncorrected position and velocity. As previously
mentioned, the n-body ephemeris consists of (1) heliocen-
tric ephemerides for eight planets and the earth-moon
barycenter and (2) the geocentric lunar ephemeris. These
ephemerides are in the so-called type-50 format; they
contain modified second and fourth central differences
of position and velocity. Interpolation with the fifth-order
Everett’s formula gives rectangular components of posi-
tion and velocity referred to the mean earth equator and
equinox of 1950.0 (commonly referred to as 1950.0 coordi-
nates). Positions and velocities from the planetary ephem-
erides are expressed in astronomical units AU and
AU /day, respectively, while data from the lunar ephem-
eris are expressed in “fictitious earth radii” and “fictitious
earth radii”/day.

The conversion factors used to convert the length units
to kilometers are Ay km per AU and Ry km per fictitious
earth radius. The scaling factors Az and Ry are related to
other solve-for parameters by the so-called solar and lunar
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constraints, respectively. These constraints and the rec-
ommended values of the scaling factors are given in the
following section.

2. Solar and lunar consiraints. The solar constraint is
an exact relation between the estimated value of

Ag = the number of kilometers per astronomical unit
and the estimated value of
pg = gravitational constant of the sun, km?/s®

The relation is

kA3
By = (_85?3:26%)—2- (104)

where

k = the Gaussian gravitational constant
= 0.01720200895 AU%2/day (exactly)

The gravitational constant of the sun k2 expressed in astro-
nomical units cubed per day squared is a mathematical
constant which defines the length of 1 AU. The solar con-
straint is simply a conversion of the sun’s gravitational
constant from AU3%/day® to km?/s%

From Ref. 29, p. 35, Table 17, the values of ys and Ag
currently adopted by JPL are

s = 1.32712499 X 10" km?/s?
Ag = 149,597,893 km/AU

These values satisfy the solar constraint (Eq. 104) to the
stated accuracy of nine figures. The value of Ay is the rec-

ommended scaling factor for the planetary ephemerides
of DEG9.

One of the constants of the lunar theory is

sin 7 ¢ = the constant of sine parallax for the moon

= the ratio of a fictitious mean equatorial radius
of the earth (the length unit of the lunar
ephemeris) to the perturbed mean distance
of the moon. The constant sinw ¢ is dimen-
sionless; however, it is usually expressed in
seconds of arc by multiplying by the number
of seconds of arc in one radian.
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The value of sin= ¢ adopted by the IAU in 1964 (Ref. 26)
and used in the construction of LE4 and succeeding lunar
ephemerides is 3,422.451 arc seconds. The mean distance
to the moon in terms of fictitious earth radii is given by

1 _ 206,264.80625
sin = ¢ (arc seconds)

(105)

e = sin ¢ (dimensionless)
where
ay = perturbed mean distance of moon (the perturba-
tion is due to the sun), fictitious earth radii
The value of ay in kilometers is
REGM

where

Ry = scaling factor for the lunar ephemeris, km/ficti-
tious earth radius

The value of Rzay is obtained from a modified version
of Kepler's third law:

na3 RS = F2 (ug + ) (106)

where

ny = sidereal mean motion of moon (1900)
= 2.661699489 X 10-¢ rad/s

F, = 0.999093141975298 (as computed by E. W.
Brown in 1897)
= ratio of perturbed mean distance of moon to
2-body mean distance (sun not present and
mean motion remains constant)

um, by = gravitational constants of earth and moon,
respectively, km?3/s2.

Solving for By gives

Rg = C (ps + pa)*/? (107)
where
C =t (108)

For sinw, = 3,422.451 arc seconds, the numerical value
of C is 86.3135017.
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Equation (107) is the so-called lunar constraint. The
value of ay in Eq. (108) is computed from the value of
sinw ¢ used to generate the lunar ephemeris. Either ax
or sin =, may be considered to be a defined constant of
the lunar theory. Hence, the accuracy of C is that of ny,
namely about 10 figures. On the other hand, uy -+ py is
known to only about seven figures. Hence, for all prac-
tical purposes, the lunar constraint, Eq. (107), is an exact
relation which must be satisfied by the estimated values
of KE, B, and RE.

The lunar ephemeris LE16 is based upon values of pz
and u, adopted by the IAU in 1964, namely
ps = 398,603 km?/s?
and
= pg/pa = 81.30
which gives
s = 4,902.87 km?/s?

Substituting these values into Eq. (107) gives
R = 6,378.160 km/fictitious earth radius

which is the value of the mean equatorial radius of the
earth adopted by the IAU in 1964.

However, since 1964, more accurate values of uz and
par have been adopted by JPL (Ref. 29, p. 35, Table 16):
pe = 398,601.2 km?/s?

and
p = 81.3010
which gives
par = 4,902.78 km3/s?

The corresponding value of Rp is
R; = 6,378.1492 km /fictitious earth radius

Strictly speaking, the lunar ephemeris should be corrected
for these more modern values of uz and py as was done
in the generation of LE4 where Brown’s constants were
corrected to those adopted by the IAU in 1964. However,
the major part of this correction can be obtained by scal-
ing the lunar ephemeris with Rz = 6,378.1492 km rather
than the value of 6,378.160 km.
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3. Corrected position and velocity. Each of the precom-
puted ephemerides may be differentially corrected with
conic formulas. Position and velocity are interpolated
from the ephemeris at an epoch of osculation specified
by the user and are converted to orbital elements, spe-
cifically the Brouwer and Clemence Set III (Ref. 42,
pp. 241-242). The elliptical orbit with these elements
agrees exactly with the precomputed ephemeris at the
osculation epoch and approximately at other epochs. The
orbital elements of the precomputed ephemeris at the
osculation epoch are solve-for parameters. Partial deriva-
tives of position and velocity from the ephemeris with
respect to these orbital elements are approximated by
those from the osculating elliptical orbit. These partial
derivatives are used to determine corrections in the oscu-
lating orbital elements and, given these corrections, to
apply a linear differential correction to the ephemeris.

The actual parameters whose values are estimated are
six parameters which represent corrections AE to the oscu-
lating orbital elements E. The corrections are

Aa/a
Ae
AM, + Aw
Ap
Aq
eAw

AE = (109)

where

a = semimajor axis of osculating elliptical
orbit

e = eccentricity

M, = value of mean anomaly at osculation
epoch, %, (ET)

Ap, Aq, Aw = right-handed rotations of the orbit about
the P, Q, and W axes, respectively, where
P is directed from the focus to perifocus,
Q is /2 rad ahead of P in the orbital
plane, and W =P X Q

Let AE, equal the estimated value of AE obtained from
the first iteration of the orbit determination process (see
Section I). The second iteration will produce an addi-
tional correction AE, or a total correction AE, + AE,.
Let the contribution to AE obtained from the ith iteration
be denoted as AE,;. With this notation, the correction
AR (n) used to correct the ephemeris for the nth iteration
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consists of the accumulated correction obtained from the
previous n — 1 iterations:

(Aala)i
(Ae)i
(AMO + AtD)i,
(ap);
(aq9);
(eaw);

n>1

(110)

If the correction process is convergent, AE, will be less
than AE,; and the accumulated correction will approach
a limit.

Given 1950.0 position r (AU) and velocity & (AU/s) ob-
tained from a planetary ephemeris (at any time) in units
of AU and AU/s (the interpolated value in AU/day
divided by 86,400), corrected position and velocity for
the nth iteration, expressed in km and km/s, are com-
puted from

ra(km) = Agr (AU) + SEAE(n) 1> (111

where AE (n) is given by Eq. (110). For the lunar
ephemeris,

1, (km) = Rgr (fictitious earth radii)
or .
+ E AE(n) x>t (112)

In these equations,

o _
oE

or , or , or , or ) or , or
[ a(Aa) 0(ae) 0(AM, + Aw) 9(ap) 9(Aq) a(eAw)]
a

r—> ¥ (113)

where
" ox |
oE;

r—>7r
LI (114)

oE; oE; Xy, 2> %,
02
oE;

S'
o
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where x, y, and z are the rectangular components of r re-
ferred to the mean earth equator and equinox of 1950.0.
The formulation for computing or/dE and o/ is given
in the next section.

4. Partial derivaiives of position and velocity with re-
spect to orbital elements. In order to compute or/9E and
or/oE for any of the precomputed ephemerides, position
and velocity at the osculation epoch must be converted to
orbital elements E. Let

r, = 1950.0 position interpolated from ephemeris at
osculation epoch ¢, (ET) in AU or fictitious earth
radii and converted to km by multiplying by Ag
or RE.

T, = 1950.0 velocity interpolated from ephemeris at
osculation epoch ¢, (ET) in AU/day or fictitious
earth radii/day and converted to km/s by multi-
plying by Ay or Ry and dividing by 86,400.

For the heliocentric ephemeris of a planet, the parameter
4 is computed from ,
r (planet) = ps + pp (115)

For the heliocentric ephemeris of the earth~moon bary-
center, u is given by

p (earth—-moon barycenter) = ug + pz + uy (116)
For the geocentric lunar ephemeris,
p (moon) = g + par (117)

where

s Ma, par, pp = gravitational constants for the sun, the
earth, the moon, and a planet, km?/s?

Given 1, (km), ¥, (km/s), and p, the required orbital ele-
ments are computed as follows:

To = (1'0 ° 1'0)% (118)
The semimajor axis a is given by
1
a 2 Lk (119)
To M
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The mean motion n is computed from

‘u}é
=g (120)
and the following computations are made:
ccosE,=1— 2 (121)
T F
esinE, = (,Za);; (122)
e = [(ecos E,)? + (e sin E,)?]% (123)
cosE, = ~(~e—-995—E—)- (124)
sinE, = 39%’33—)- (125)
The unit vectors P, Q, and W are computed from
E %
p="0 Yo — <£> sin E, 1, (126)
1”0 i
_ ¥ X ¥y
T (127)
Q=WXP (128)

The partial derivatives or/0E and 27/0E are computed
from the orbital elements a, ¢, n, P, Q, and W, which are
computed once, and from the following quantities, which
are computed at each time # that the partials are evaluated:

r, ¥ = 1950.0 position and velocity interpolated from the
ephemeris at time ¢ (ephemeris time) and con-
verted to units of km and km/s as indicated pre-
viously for r, and %,.

r=(r-r)% (129)
1 =r°f (130)
7= {0 (131)
¥F= — -—::;— ¥ (132)
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From Ref. 42, p. 241, the partial derivatives of r at
ephemeris time ¢ with respect to each element of AE used
in Eq. (113), are given by

or 3 .

(Aa) =y - "Q':'(t — o) F (133)
a A

a
O Hir+Kii 134
0(ae) o X (134)

where the quantities H, and K,, which are functions of ¢,
are given by (Ref. 42, p. 237)

_r—a(l+e)
H,= “ae(l—e) (135)
rF r
K, = m[l + m:‘ (136)
or kN
9(aM, + aw)  n (137)
* __p 138
oap) T T (138)
x 139
aaq) T (139)
or 1 iy
3 eaw) ?(W Xr = 'E) (140)

Differentiating Eqs. (133-140) with respect to ephem-
eris time gives the partial derivatives of r at ephemeris
time ¢ with respect to each element of AE:®

oF i1, 3 o
; Aa =-—§-r—-é—(t—-to)r (141)
a
oF
ey = Her T Kk (142)

H2=—5é—df_—ez)-{1——%[1+£:—(l—e2)]} (143)

8The velocity partials were first derived by P. R. Peabody, formerly
of the Jet Propulsion Laboratory.
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1 r

K= rma(t ) aed
oF ¥
3(aM, + Aw)  n (145)
or .
W =PXr (1486)
5 qu) =QXr (147)
or 1

a(eAw)'—_-—e—(WXl"—‘—) (148)

5. Acceleration and jerk. Acceleration and jerk vectors
from each ephemeris are computed from corrected posi-
tion and velocity vectors using 2-body formulas. Given the
corrected position and velocity vectors, denoted here as
r and ¥, compute a corrected value of r from Eq. (129), the
acceleration vector ¥ from Eq. (132), and the jerk vector
¥ from

o Sp(r-d .
= ——#—(:;—r)-r—-%r (149)

where p is given by Eq. (115), (116), or (117).

C. Position, Velocity, Acceleration, and Jerk of One
Celestial Body Relative to Another

Section IV-B gave the formulation for computing the
corrected position, velocity, acceleration, and jerk of a
planet P or the earth-moon barycenter B relative to the
sun S or of the moon M relative to the earth E:

8 r—> 5 YT
The position, velocity, acceleration, and jerk of the moon

relative to the earth-moon barycenter and of the bary-
center relative to the earth are computed from

3 = —1—_—‘;7 8 ro>EET (150)
and

1 o sress ’
k= 1_}_”1'?, r—>L¥¥ (151)

where

UE
=-— 152

i (152)
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Listed below are sums of the above-mentioned position
vectors which give the position vectors of the earth, moon,
sun, and a planet relative to each of the following bodies:

(1) Earth = reference body
g =xf
H=r-x
A

(2) Moon = reference body

g
5
Il
[}
e
e
-
o
8
5
g
2
<

(4) Planet = reference body

g= gt
g= -t
=

g= -t

where P and P’ represent two different planets. All of the
sums above apply when r is replaced by 1, T, or T.

The solve-for parameters which affect the relative posi-
tion and velocity between two celestial bodies are the
scaling factor Ay for the heliocentric ephemerides; the
scaling factor Ry for the lunar ephemeris; corrections to
osculating orbital elements AE for any of the ephem-
erides; and the gravitational constants of the earth and
moon, pr and upy. These are known as reference param-
eters.

V. Spacecrafi Trajectory

A, General Description

The acceleration of the spacecraft relative to the center
of integration consists of:

(1) The Newtonian point mass acceleration relative to
the center of integration.

(2) The perturbative acceleration from general rela-
tivity.
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(3) The direct acceleration of the spacecraft due to the
oblateness of a near planet or the moon.

(4) The indirect acceleration of the center of integra-
tion (if it is the earth or the moon) due to the
oblateness of the earth and the moon.

(5) The acceleration due to solar radiation pressure.

(6) The acceleration due to small forces originating in
the spacecraft, such as from operation of the atti-
tude control system and from gas leaks.

(7) The acceleration due to motor burns.

Section V-B contains the formulation for computation of
each of these terms of the spacecraft acceleration.

The total acceleration is integrated numerically to give
the spacecraft ephemeris, with ephemeris time (ET) as the
independent variable. The acceleration is computed at
each integration step and is used to produce three sum
and difference (s. a. d.) arrays (one for each rectangular
component of position). Each s. a. d. array contains two
sums and ten differences of an acceleration component.
The arrays may be interpolated at any ET epoch to give
the rectangular components of position, velocity, accel-
eration, and jerk of the spacecraft relative to the current
center of integration. The rectangular components are
referred to the mean earth equator and equinox of 1950.0.
The «x axis is directed along the mean equinox of 1950.0,
the z axis is normal to the mean earth equator of 1950.0,
directed north, and the y axis completes the right-handed
system.

The center of integration is located at the center of mass
of the sun, the moon, or one of the nine planets. It may
be specified as one of these bodies, or it may be allowed
to change as the spacecraft passes through the sphere of
influence of a planet (relative to the sun) or of the moon
(relative to the earth). For this case, the center of integra-
tion will be that body within whose sphere of influence
the spacecraft lies. At a change in center of integration,
the position and velocity of the spacecraft relative to the
old center of integration are incremented by the position
and velocity, respectively, of the old center relative to
the new center (computed from the formulation of Sec-
tion IV).

The 1950.0 rectangular components of the spacecraft
position and velocity vectors at the injection epoch are
solve-for parameters and may be referenced to any body
(not necessarily the center of integration). The injection
epoch must be specified in the A1, UTC, or ST time scales
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and transformed to ET. The time transformation and the
ET value of the epoch will vary from iteration to iteration
of the orbit determination process if AT 955 OF Afcesium iS
an estimated parameter. The injection position and veloc-
ity vectors are transformed to values relative to the initial
center of integration (using the formulation of Section IV)
and are used to start the s. a. d. arrays.

A motor burn of short duration or a spring separation
may be represented as an instantaneous change in the
position and velocity vectors of the spacecraft. The esti-
mated parameters are the burn time #, and the rectangu-
lar components of the velocity increment Af. At the epoch
of the motor burn, the velocity is incremented by Af and
the position is incremented by

A——}—'
l'-—2Al'tb

B. Spacecraft Acceleration

The equations for computing each term of the total
spacecraft acceleration relative to the center of integra-
tion are given below.

1. Point-mass gravitational acceleration. The point-
mass gravitational acceleration of the spacecraft (S/C)
relative to the center of integration (C) includes all gravi-
tational accelerations except those arising from the oblate-
ness of the various bodies. The point-mass acceleration
is given by

(153)

¥ = .1'.8/0 — ¥,
where

Yy, Te = inertial gravitational acceleration of space-
craft and center of integration, respectively,
computed by treating each body of the solar
system as a point mass. These inertial accel-
erations are relative to the barycenter of the
solar system and have rectangular compo-
nents referred to the mean earth equator and
equinox of 1950.0.

Each of these accelerations is computed from Eq. (54).
The 1/¢° term is the Newtonian acceleration and the
remaining 1/c¢? terms are relativistic perturbative acceler-
ations derived from the Brans-Dicke theory (these terms
revert to those of general relativity, Eq. (35), when y - 1).
The summation over §4 i includes the sun, the nine plan-
ets, and the moon. For each of these perturbing bodies,
the user has the option of

(1) Computing the Newtonian acceleration and the
relativistic perturbative acceleration.
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(2) Computing the Newtonian acceleration only.
(3) Ignoring the acceleration due to that body.

The acceleration ¥; of each perturbing body in Eq. (54)
is computed from the Newtonian expression, Eq. (31). The
summation over k=~={ in Eqs. (31) and (54) and over l541
in Eq. (54) includes all bodies of the solar system which
are “turned on” (treated as (1) or (2) above and included
in the § summation of Eq. 54). The velocities in Eq. (54)
are heliocentric.

2. Direct acceleration of spacecraft due to oblateness.
The acceleration of the spacecraft relative to the center
of integration due to the oblateness of the bodies of the
solar system consists of the direct acceleration of the
spacecraft minus the indirect acceleration of the center
of integration. Currently, the oblateness for only the earth,
the moon, and Mars is considered. However, the capability
for accounting for the oblateness of the remaining planets
and the sun will be added in the near future. The direct
acceleration of the spacecraft due to the oblateness of a
body is computed only when the spacecraft is within the
so-called harmonic sphere for the body. The radii of the
harmonic spheres may be changed by input; the nominal
values for the earth, Mars, and the moon are 2.5 X 10° km,
1.0 X 106 km, and 2 X 10° km, respectively. The formula-
tion for computing the direct acceleration of the space-
craft due to the oblateness of a body is given in this
section. The indirect acceleration of the center of integra-
tion due to oblateness, computed only when the center of
integration is the earth or the moon, accounts for the
oblateness of each of these two bodies. The formulation is
given in Section V-B-3.

The direct acceleration of the spacecraft due to the
oblateness of a body is derived from the generalized po-
tential function (Ref. 43, pp. 173-174) for that body:

U= %[1 + 22(%”-) Py (sin ¢)

ne1 m=0
X (Cpm cos mA + S, sin m)t):l (154)
where
4 = gravitational constant of body, km?/s?
7, ¢, A = radius, latitude, and longitude (positive

east of prime meridian) of spacecraft
relative to body
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a, = mean equatorial radius of body (an
adopted constant used for U)

P (sin ¢) = associated Legendre function of the first
kind. The argument sin ¢ will be omitted
here.

Cum and S, = numerical coefficients (tesseral harmonic
coefficients). The values may be esti-
mated by the DPODP.

The associated Legendre function P™ is defined by

m

pr = cosm¢mPn (155)
where
P, = Legendre polyhomial of degree n in sin ¢
The zonal harmonic coefficient J, is defined as
Jo=—Ch (156)

Equation (154) may be written as the sum of three terms
corresponding to the potential of a point mass, zonal har-
monics J., and tesseral harmonics C,,, and S, (m=%0):

U=%+U@+U@£) (157)
where
v=-L£ I&ﬁYm (158)
U(C,S) =
%Z Z <a—1f-’-)n P (Cpm cos mA + S, sinm)
- (159)

The inertial acceleration of the spacecraft is computed
in a rectangular coordinate system (x'y’z’) with the x’ axis
directed outward along the instantaneous radius to the
spacecraft, the y” axis directed east, and the 2z’ axis directed
north. Figure 3 shows these axes relative to body-fixed
axes XYsZ, where x; is along the intersection of the prime
meridian and equator of the body, z; is directed north
along the axis of rotation of the body, and y; completes
the right-handed system. The transformation from body-
fixed coordinates ¥, = (x5, 45, 25)7 to ¥ = (x’,y’,%")" co-
ordinates is given by

' =Ry

(160)
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MERIDIAN
yl
Yp
X
EQUATORIAL
PLANE
Fig. 3. x/, ¥/, and z’ axes relative to body-fixed
Xb, Yo, aned z; axes
where
€OS ¢ COS A €Os ¢ sin A sin ¢
R= —sin A cos A 0 (161)
—sin ¢ cos A —sin¢ sinA cos ¢

The position vector of the spacecraft relative to the body
(denoted as body ) with rectangular components referred
to the mean earth equator and equinox of 1950.0 is ¥ — ¢
where

r = position vector of spacecraft relative to center of
integration with rectangular components referred
to the mean earth equator and equinox of 1950.0,
i.e., the “1950.0” position vector

r{ = 1950.0 position vector of body i relative to the
center of integration C

The transformation from these 1950.0 body-centered coor-
dinates to body-fixed coordinates r;, is denoted as

=TT (r —x9) (162)

The overall transformation from (r — x¢) to ¥ is thus

¥ =RTT(r —1)=G(r —19) (183)
The inverse transformation is
(r—19) =Gy = TR"Y (164)
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Using ¥, from Eq. (162), the sines and cosines of ¢ and X
and the angle A are computed from

sing = 22 (165)
cos g = (x3 +ryi)‘/‘ (166)
sin = —(xH’f——W (167)
cos k= 72 f’yg)% (168)

The transformation T is currently specified in the
DPODP for the earth, the moon, and Mars. These and
most of the other coordinate transformations of the
DPODP were specified by F. M. Sturms. The formulation
for T for the earth is specified in Section VII. Sturms’
formulation for T for the moon and for Mars are specified
in JPL internal publications.®** He has specified modifi-
cations to the existing transformations and specified trans-
formations for the remaining planets and for the sun in
another internal publication.* Sturms also plans to pub-
lish this formulation in a JPL Technical Report.

Let ¥ denote the inertial acceleration of the spacecraft
due to the oblateness of any body with rectangular com-
ponents along the instantaneous directions of the ¥/, v/,
and z’ axes. This acceleration can be broken down into
¥ (J) due to the zonal harmonics J, and ¥ (C, S) due to
the tesseral harmonics C,, and S,». Given these terms,
the direct acceleration of the spacecraft due to the oblate-
ness of any body, with rectangular components referred
to the mean earth equator and equinox of 1950.0, is
given by

¥=G'Y =G [¥ (J) +¥(C,S)] (169)

The components of ¥ (J) and ¥ (C, S) are given by

U (J)

¥ = % H-(C,S) (170)

9Warner, M. R., et al., Double Precision Orbit Determination Pro-
gram, Vol. 111, TRAJ Segment, EPD 426 (JPL Internal Report),
June 15, 1967.
10Witt, J., User’s Guide for TRIC, 900-168 (JPL Internal Report),
Oct. 20, 1968.
1Sturms, F. M., New Coordinate Transformations for DPTRAJ,
RFP 392-16 (JPL Internal Report), Dec. 16, 1969.
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gy = Téis_q& %fi) (- (C,S) (171)
2= —i %@ N~ (C.$) (172)

Carrying out these differentiations gives

¥ () = %Z (%) [(n K P"] (173

e —cos¢ P,

0923035
n=1 m=1
—(n+ 1) P {Cpm cos mA + S,y sin mi}
X [m sec ¢ P { —Cup sin mr + S,m coOs m}:|
cos ¢ P {C,m cos mA + S, sinmi}

(174)

where the primes indicate derivatives with respect to
sin ¢. Currently, n, has a maximum value of 15 and n,
has a maximum value of 8. These limits will undoubtedly
be increased in a future version of the program.

The Legendre polynomial P, is computed recursively
from (Ref. 44, p. 308, Eq. II)

2n—1 n—1
P, = “n sing Py — ( - )p,,_z (175)
starting with
P,=1 (176)
P, =sin¢ (177)

The derivative of P, with respect to sin ¢, denoted Py, is
given by (Ref. 44, p. 308, Eq. I)

P,=sin¢ P, +nP,, (178)
starting with

=1 (179)

The function sec¢ P™ is computed by first generating
sec P* = (2n — 1) cos ¢ (sec ¢ P1) (180)

starting with

secgp Pt =1 (181)
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and continuing until n = n,, and then generating

sec ¢ P = ( n— m)sin¢(sec¢P,’:‘_1)

n
n+m-—1 "
- (W) (sec¢ P7)

(182)

For each value of m between 1 and n,, n is varied from
m + 1 to n,. The general term P? is zero if b > a. Equa-
tion (180) may be obtained by successive differentiation
of Eq. (175) with respect to sin¢ and substitution into
Eq. (155). Equation (182) was obtained from Ref. 45,
p- 161, Eq. 12. The function P is obtained by multiply-
ing (sec ¢ P™) by cos ¢.

The function cos ¢ P, where P is the derivative of
P™ with respect to sin ¢, is computed from (Ref. 45, p. 161,
Eq.19)

cos¢ P = —nsin ¢ (sec ¢ P) + (n + m) (sec ¢ P )
(183)

3. Indirect acceleration of center of integration due to
oblateness. As previously mentioned, the indirect oblate-
ness acceleration of the spacecraft relative to the center
of integration is the negative of the acceleration of the
center of integration due to oblateness. It is computed
only when the center of integration is the earth or moon
and accounts for the oblateness of both of these bodies.

The force of attraction between the earth and moon
consists of

(1) The force of attraction between the point-mass
earth and point-mass moon.

(2) The force of attraction between the oblate part of
the earth and the point-mass moon.

(3) The force of attraction between the oblate part of
the moon and the point-mass earth.

(4) The force of attraction between the oblate part of
the earth and the oblate part of the moon.

The force (1) is accounted for in Subsection V-B-1. The
formulation of this section will account for the forces (2)
and (3), but will ignore the force (4).

Let

¥y (E) = inertial acceleration of point-mass moon due
to the oblateness of the earth
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¥y (M) = inertial acceleration of point-mass earth due
to the oblateness of the moon

These accelerations, with rectangular components referred
to the mean earth equator and equinox of 1950.0, may be
computed from the formulation of Subsection V-B-2. In
the computation of ¥y (E), the moon is treated as the
spacecraft of Subsection V-B-2, and r — r¢ in Eq. (162) is
replaced by rZ. Similarly, in the computation of ¥z (M), the
earth is treated as the spacecraft and r — x¢ is replaced by
¥,

Consider the force of attraction between the earth and
moon due to the oblateness of the earth, assuming the

moon to be a point mass. This force produces ¥y (E) and
also

¥z (E) = inertial acceleration of the earth due to the
force of attraction between the oblate part of
the earth and the point-mass moon

Since these two accelerations are derived from equal and
opposite forces,

¥4 (E) = — —’ffm (E) (184)

Similarly, consider the force of attraction between the
earth and moon due to the oblateness of the moon, con-
sidering the earth to be a point mass. This force produces
¥z (M) and also

Yy (M) = inertial acceleration of the moon due to the
force of attraction between the oblate part of
the moon and the point-mass earth

Since these two accelerations are derived from equal and
opposite forces,

¥ (M) = — 2% (M)

ar

(185)

The acceleration of the earth due to the oblateness of
the earth and moon is

Yo = Yo (M) + ¥ (E)

=¥, (M) — 225, (B) (186)
HE
Similarly,
EM = 'l"’M (E) + :TUM (M)
= ¥y (E) — L2 %5 (M) (187)
J15%s
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Note that ¥z (M) is proportional to py and ¥y (E) is pro-
portional to ugz. The contribution to the spacecraft accel-
eration relative to the center of integration is the negative
of the acceleration of the center of integration, or

F= | B - 0| (89

where
If earth = center of integration, 4yu; = +par

If moon = center of integration, =p; = —pug

Sturms’ algorithm for computation of this acceleration
accounts for J,, C,,, and S,, of the earth and moon.
Equation (188), evaluated with these harmonic coeffi-
cients, is equivalent to Sturms’ formulation. An earlier
version of his formulation, which is based upon the prin-
cipal moments of inertia A, B, and C for the earth and
moon, is given in Ref. 46.

4. Acceleration of spacecrafi due to solar radiation
pressure and small forces originating in spacecraft. This
section gives the model for representing the acceleration
of the spacecraft due to solar radiation pressure and to
small forces originating in the spacecraft, such as those
from operation of the attitude control system (particularly
if it uses uncoupled attitude control jets) and from gas

leaks. The model applies to any spacecraft which has one
axis (the roll axis) continuously oriented toward the sun
and utilizes a star or planet tracker to orient the spacecraft
about the roll axis. The various Mariner spacecraft are of

this type.

The solar radiation pressure model accounts for the
acceleration of the spacecraft due to solar radiation pres-
sure acting along three mutually perpendicular space-
craft axes, one of which is the roll axis. Normally, the
solar panels are oriented normal to the roll axis so that the
largest component of the force due to solar radiation pres-
sure is along the roll axis. However, the model can also
account for the small forces acting along the other two
spacecraft axes and arising from departures of the space-
craft shape from rotational symmetry about the roll axis.

The small force model accounts in a crude fashion for
the acceleration arising from small forces originating in
the spacecraft. The component of this acceleration along
each spacecraft axis is represented as a quadratic. This
model is currently being expanded to allow this accelera-
tion to be represented alternatively as an exponential
decay with components along each spacecraft axis.

The acceleration of the spacecraft due to solar radiation
pressure and small forces originating in the spacecraft is
represented by

¥= {[ar F+ b, (t — Tacr) + ¢ (8 — Tacr)?] [t — Tacr) — u(t — Taos)]

ClAp

mrsp?

+ Aa, -+

[G, + GL(EPS) + AG,} u* (t — Tsnp)} Use

+ {[az -+ b_@ (t - TAOl) -+ Cg (t - TAcl)Z] [u (t —_ TAgl) — U (t had TAGZ)]

C.A,
Mmrgp®

+ Aa, +

+ {[ay + by (t - TA01) + Cy (t - TA(n)z] [u (t - TAgl) —u (t — TAgg)]

+ Ag, + ger’; [G, + G, (EPS) + AG,] w* (t — TSRP)} ¥+
8P

The terms in this equation are defined as
Uge = unit vector from sun to spacecraft

X* Y* = unit vectors along spacecraft x and y
axes (X* X Y* = Ug) (defined below)

where i = r, x, or y = solve-for coeffi-
cients of acceleration polynomials,
km/s?, km/s?, km/s*

t = ephemeris time

ai, b, ¢;
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(189)

T 401, T 402 = epochs at which the acceleration
polynomials are turned on and off,
respectively. The epochs may be
specified in the UTC, ST, or Al time
scales. They must be transformed to
ET for use in Eq. (189). The transfor-
mation will be different for each itera-
tion of the orbit determination process
if the values of AT 455 OF Afogium are
estimated.
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Uu (t —_ TAgl) =] fOI' t = TACI, 0 fOl‘t < TAOl
T o1 —> Tace

Aa,, Ad,, Aa, = input acceleration (not solve-for),
km/s?. The value for each Aa; is
obtained by linear interpolation
between input points specified in any
time scale. The acceleration is started
at the epoch of the first point and
ended at the epoch of the last point.

JA;  1km* kmtkg
—c—'X 10m2 — 1.010 X 108 P

Il

C,

where
J = solar radiation constant
= 1.3525 X 10°W/m? (Ref. 47):
= 1.3525 X 10°kg/s*
Ap = 1.496 X 108 km
¢ = 2.997925 X 10°km/s

A, = nominal area of spacecraft projected
onto plane normal to sun-spacecraft
line, m?

m = instantaneous mass of spacecraft, kg
rsp = distance from sun to spacecraft, km

Tsrr = epoch at which acceleration due to
solar radiation pressure is turned on
(epoch of solar panel unfolding). The
epoch may be specified in the UTC,
ST, or Al time scales and must be
transformed to ET for use in Eq. (189).

u* (t — Tsgp) = 1for t = Tspp if spacecraft in sunlight,
0 for ¢ < Tsrp or if spacecraft in
shadow of a planet or the moon

G, = solve-for effective area for acceleration
of spacecraft in radial direction due to
solar radiation pressure, divided by
nominal area A,

120n July 20, 1970, the author of Ref. 47 stated that a more accu-

rate reduction of the data gave a value of 1.348 X 103 W/m?2.
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G, = solve-for effective area for acceleration
of spacecraft in the direction of its
positive x axis (along X* vector)
divided by A,

G, = solve-for effective area for acceleration
of spacecraft in the direction of its
positive y axis (along ¥* vector)
divided by A,

G, G5, G = solve-for derivatives of G,, G, G, with
respect to earth-spacecraft-sun angle,
EPS

EPS = earth-spacecraft-sun angle, rad

AG,, AG,, AG, = increments to G,, G,, and G, obtained
by linear interpolation of input points
specified in any time scale. The value
of AG; is computed at each integration
step contained between the epoch of
the first point and the epoch of the last
point.

The term G} (EPS) along each spacecraft axis was’
included so that the model would be compatible with the
Mariner 11 spacecraft, which contained a high-gain an-
tenna that moved continuously with respect to the space-
craft axes and always pointed toward the earth. These
terms account for the variation in G,, G,, and G, due to
this moving antenna.

The Mariner IV spacecraft contained movable attitude
control vanes situated at the end of each solar panel.
Movement of these vanes caused G,, G,, and G, to fluc-
tuate with time. The AG; terms account for these fluc-
tuations.

The unit sun-spacecraft vector Ugp is computed from

— pC
r—r$

Use =g

(190)
where

r = position vector of spacecraft relative to center of
integration with rectangular components referred
to the mean earth equator and equinox of 1950.0

r = 1950.0 position vector of sun relative to center of
integration C
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The spacecraft X* and Y* unit vectors are obtained as a
rotation of the tangential T and normal N vectors through
the angle K:

N
K

Y*

.o cosK sinK)[T
Y| | —sinK cosK||N

The angle K is an input (non-solve-for) constant. Com-
putation of the unit vectors T and N requires the unit
vector Uy

(191)

Ur = unit vector from spacecraft to reference body
which orients the spacecraft about the roll axis
(sun—spacecraft line). The reference body may be
a star, a planet, or the moon.

If the reference body is a star,

cos 8 cos a
Ur =1 cosdsinea

sin &

(192)

where the right ascension « and declination & of the star
are referred to the mean earth equator and equinox of
1950.0. If the reference body B is a planet or the moon
(normally the earth),

—r

Ve = T =x]]

(193)

where

r§ = 1950.0 position vector of reference body B rela-
tive to center of integration C

The unit normal vector N (normal to sun-spacecraft-
reference body plane) is computed from

Up, X Usp

N = 0. X Uer |

(194)
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The unit tangential vector T (tangent to sun-spacecraft—
reference body plane) is

Given T and N, the vectors X* and Y* are given by
Eqs. (191). The angle K may be selected to achieve a
specific orientation of X* and Y* relative to the space-
craft.

The EPS angle may be computed from

cosEPS = —Ugp Uz  0< EPS<180°  (196)

where
U% is computed from Eq. (193) using B = earth.

5. Acceleration due to motor burn. The acceleration of
the spacecraft due to a motor burn is represented by

¥f=aUlu(t—T,) —u(t—T)] km/s® (197)

where
a = magnitude of ¥
U = unit vector in direction of ¥

T, = effective start time of motor, the ET value
of the solve-for epoch, which may be
specified in the UTC, ST, or Al time
scales

T; = effective stop time of motor, ET
t = ephemeris time

lfort=T,

u(t—T")z{Ofort<To T,~>T;

The effective stop time T is given by

T/ =T, +T (198)
where
T = solve-for burn time of motor, ET seconds
The acceleration magnitude a is given by
. 11; ((?) c= F,+ Fif + F;2 +1F3i3 + F.t* c

s 1 Ly o 1 ® .
m, — Mt — —é-Mltz -3 M., ——4__M3t4
(199)

37



where

F (t) = magnitude of thrust at time . The
polynomial coefficients of F (t) are
solve-for parameters

t =t~ T, seconds
m () = spacecraft mass at time ¢
m, = spacecraft mass at T,

M,, M, M, M, = polynomial coefficients of propellant
mass flow rate (positive) at time :
M (t) = M, + M.F + M, + M
(not solve-for parameters)
C = 0.001 for F in newtons and m in kg.

For F inIb and m in 1bm,
C = 0.00980665

The unit vector U in the direction of thrust is given by
U, cos 8 cos &
U=|U, (=] cosdsine
U. sin §

«, 8 = right ascension and declination, respectively, of
U, referred to the mean earth equator and equi-
nox of 1950.0

(200)

where

given by

o« = g + ali + C!g-iz + 123?3 + Cl!4—i4
§ =8, + 8,8 + 8,82 + 5,8° + 8,4

(201)
(202)

where the polynomial coefficients of Egs. (201) and (202)
are solve-for parameters.

VI. Light Time Solution

This section gives the formulation and procedure for
solution of the light time problem, which is the first step
in the computation of all observable quantities.

A. introduciion

An electromagnetic signal is transmitted from a tracking
station on earth at time ¢;. This signal is received by the
spacecraft (either a free spacecraft or a landed spacecraft
on the moon or on one of the planets) and retransmitted
at time t,, arriving at the same or a different tracking sta-
tion on earth at time #;. Alternatively, the signal may be
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transmitted directly by the spacecraft at time #,. All ob-
servables are related to characteristics of this electromag-
netic radiation, i.e., the angle of the incoming ray, the ratio
of received to transmitted frequency, or the round-trip
transit time. The transmitting station, the spacecraft, and
the receiving station are referred to as direct participants,
and &, ., and 5, respectively, are their epochs of partici-
pation. The solution of the light time problem consists
of these epochs of participation and the heliocentric posi-
tion, velocity, acceleration, and jerk of each direct par-
ticipant evaluated at its epoch of participation. The
rectangular components of these vectors are referred to
the mean earth equator and equinox of 1950.0. Sections
VIII-XI give the formulations for computing doppler,
range, and angular observables, starting with the solu-
tion to the light time problem.

The solution to the light time problem is obtained by
solving the light time equation for each leg of the path
of electromagnetic radiation from the transmitting to
the receiving station. The light time equation relates the
light time between two points to the heliocentric posi-
tions of each of the two participants evaluated at their
epochs of participation. Starting with the known recep-
tion time #;, the light time equation is solved by an
iterative technique for the down leg of the light path
to give the epoch of participation for the spacecraft, £,.
Given t,, the light time equation is solved iteratively for
the up leg of the light path to give the transmission
time ¢,.

Section VI-B gives the formulation for solution of the
light time problem; the detailed procedure is given in
Section VI-C.

B. Formuiation
Let the subscripts i or § equal 1, 2, or 3 where

1 refers to the transmitting station on earth at the trans-
mission time #,

2 refers to the spacecraft (free or landed) at the reflec-
tion time £,

3 refers to the receiving station on earth at the recep-
tion time %,
The time for light to travel from point i at ephemeris time
(coordinate time) ¢; to point j at ephemeris time ¢; is
given by Eq. (88), repeated here:

tj_’tiz‘fi];‘i“ (1+7)/len(1'i+7’,-+ri,-

c c? 7y 1 — 13

> (203)
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where

riy =[xy || = |25 (&) — 25 (85)|

r = || x5 (&)

= |75 (&)l

¥¥ (;),x5 (#;) = heliocentric position vector of point i at

transmission time #; and point § at recep-
tion time t;, with rectangular compo-
nents referred to the mean earth equator
and equinox of 1950.0

¢ = speed of light, km/s
ps = gravitational constant of sun, km?/s?

y = solve-for free parameter of Brans-Dicke
theory of relativity. The parameter y is
related to o, the coupling constant of
the scalar field, through Eq. (41).

Equation (203), which is referred to as the light time
equation, relates the light time in ephemeris time for a
given leg of the light path to the heliocentric position
vectors of the two participants evaluated at their epochs
of participation. The light time equation applies to the
down leg of the light path when ¢ =2 and j = 3; when
i=1 and j = 2, it applies to the up leg.

Let

ri = r;; = position vector of point j relative to point i,
with rectangular components referred to the
mean earth equator and equinox of 1950.0.

With this notation, the heliocentric position vectors of
the transmitter, spacecraft, and receiver at their epochs
of participation are computed from the following equa-
tions. For the transmitter,

¥8(t) =¥ [t (UTL), £ (ET)] + 13[4 (ET)]  (204)

where S = sun and E = earth. Similarly, for the receiver,
¥ (k) = 12 [ts (UTL), & (ET)] +r3[&: (ET)]  (205)

For a free spacecraft S/C, with center of integration C,

1] (t2) = 15,0 [£2 (ET)] + 15[t (ET)] (206)
For a landed spacecraft on body B,
1} (t:) = 1§ [ (ET)] + r3 [ (ET)] (207)

JPL TECHNICAL REPORT 32-1527

Each of these 1950.0 vector sums applies with r replaced
by 1, ¥, and Y. The heliocentric position, velocity, accel-
eration, and jerk of the earth, as well as the center of
integration or the body upon which the spacecraft has
landed are obtained as indicated in Section IV. The
position, velocity, acceleration and jerk of the spacecraft
relative to the center of integration are obtained by inter-
polation of the spacecraft ephemeris sum and difference
arrays. The formulation for computing the 1950.0 position,
velocity, acceleration, and jerk of a tracking station rela-
tive to the earth or of a landed spacecraft relative to the
body B on which it is located is given in Section VII. The
geocentric 1950.0 position and higher derivatives for a
tracking station are primarily functions of the UT1 value
of the epoch, although the ET value is also required.

Solution of the light time equation (Eq. 203) for a given
leg of the light path gives the transmission time #; for
that leg. The time #; is used to compute r(%;) in the
evaluation of the right-hand side of the light time equa-
tion and also appears explicitly in the left-hand side. The
light time equation must be solved for ¢; by an iterative
technique. The DPODP uses the Newton-Raphson
method. Let the function f whose value is to be minimized
be the left-hand side of the light time equation minus
the right-hand side:

f=t—t—

Mg (1+7)Msln r; ;o
C ct 1'1',+’l’j"1'.;,'

(208)

When the relativity term is ignored, the partial derivative
of f with respect to ¢; is

af = 1 ;.
Bti - 1+ C T;; l"?(t—b)

(209)

Let A(%;) equal the linear differential correction to the
estimate of ¢;. Then

of
ot

At;) = —f (210)

Substituting Eqgs. (208) and (209) into Eq. (210) gives

t,-—ti——!—ij-— (1 +Y)p'sln(ri+rj+r”>
Alt) = ¢ ¢t Tt — 1y
1 ~ LI
c 1y !
(211).
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The procedure for using this iterative formula for obtain-
ing the transmission time £, for the down leg and the
transmission time ¢, for the up leg is given in the follow-
ing section.

€. Procedure
The procedure is as follows:

(1) Convert the observation time #;(ST) to ¢, (UTC),
t;(Al), £ (UTL), and ¢; (ET) using the time trans-
formations of Section III. Compute 1§ (¢;) from
Eq. (205). Compute also ¥$ (£5), ¥ (£s), TS (£s).

(2) Obtain the first estimate for ¢, (ET) as

(a) For the first observation of the spacecraft on a
pass of the spacecraft relative to the receiving
station, £, = ;.

(b) For the remaining observations of the pass,
t, = t; minus the converged light time for the
down leg of the previous observation.

(3) Given the estimate for ¢, (ET), compute 15 (£,), 5 (,),
¥ (t,), and¥S (£.) from Eq. (206) or (207) and A (£;)
from Eq. (211). The next estimate for ¢, is , + A (£).
Repeat step 3 until A (£,) <10 s. (On the IBM 7094

computer, time is represented as double-precision’

seconds past January 1, 1950, 0% to a precision of
0.6 X 10-" s from 1967 to 1984.)

(4) Obtain the first estimate for ¢, (ET) as ¢, minus the
converged light time for the down leg of the cur-
rent observable.

(5) Convert the estimate for £, (ET) to ¢, (Al), ¢, (UTC),
t, (UT1), and £, (ST). Compute =5 (£,), ¥ (¢,), 5 (t2),
and’t8 (#,) from Eq. (204) and A (¢,) from Eq. (211).
The next estimate for #, is £, + A (¢,). Repeat step 5
until A (t;) < 107 s.

Most of the intermediate quantities used in the compu-
tation of the heliocentric position, velocity, acceleration,
and jerk of each participant at its epoch of participation
are saved and used in the computation of the observable
and the partial derivatives of the observable with respect
to the estimated parameters.
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Vi, Body-Centered 1950.0 Position, Velocity,
Acceleration, and Jerk of Tracking Station
and Landed Spacecraft

A, Introduction

This section gives the formulation for computation of
the position, velocity, acceleration, and jerk of a tracking
station relative to the center of the earth or of a landed
spacecraft relative to the center of the body on which it is
located, with rectangular components referred to the
mean earth equator and equinox of 1950.0. In addition
to a fixed tracking station, a model is included for repre-
senting the motion of a tracking ship.

The first step in the computation of 1950.0 position,
velocity, acceleration, and jerk is to obtain the “body-
fixed” position r; (and also velocity, acceleration, and jerk
in the case of a tracking ship), where x; is along the inter-
section of the prime meridian (passing through the instan-
taneous axis of rotation) and the instantaneous equator,
where z; is along the instantaneous axis of rotation,
directed north, and where y; completes the right-handed
rectangular coordinate system.

Given 1, (and higher derivatives for a tracking ship),
the 1950.0 position, velocity, acceleration, and jerk are
obtained from the transformation matrix T (which relates
these two coordinate systems) and from T, T, and T. As
mentioned in Section V, these transformations are cur-
rently specified for the earth, the moon, and Mars. The
transformations for the remaining planets and for the sun
have been specified by F. M. Sturms and will be added to
the program in the near future.

The location of a fixed tracking station on earth is
specified by its spherical or cylindrical coordinates rela-
tive to the mean pole, equator, and prime meridian of
1903.0. These station coordinates are solve-for parameters.
Because the pole (axis of rotation) wanders relative to
the earth, the “body-fixed” coordinate system moves rela-
tive to the earth and the “body-fixed” position r; of a fixed
tracking station on earth is a variable quantity. It is com-
puted from the time-varying coordinates of the true pole
of date relative to the mean pole of 1903.0 supplied by the
B.LH.** The location of a landed spacecraft on a planet
or the moon is specified by constant spherical or cylin-
drical coordinates (solve-for parameters) relative to the
body-fixed coordinate system. The body-fixed position of
a tracking ship is specified by its spherical coordinates

13Bureau International de 'Heure,
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at an arbitrary epoch, and by its azimuth and velocity;
the values of these five parameters may be estimated. The
value of the geocentric radius to the ship is constant.

Section VII-B gives the formulation for computing
body-fixed position (and higher derivatives for a tracking
ship). Section VII-C gives the general formulation for
transforming these quantities to 1950.0 position, velocity,
acceleration, and jerk using the transformation matrices
T, T, T, and T. These matrices are specified for the earth
in Section VII-D.

B. Body-Fixed Reciangular Coordinates

1. Fixed tracking station or landed spacecraft. For a
tracking station on earth or a landed spacecraft on the
moon or a planet, the spherical coordinates referred to
the %2 “body-fixed” coordinate system are

r = radius from center of body, km

¢ = body-centered latitude measured from true equator
(plane normal to instantaneous axis of rotation and
containing center of mass)

A = longitude measured east from prime meridian
(passing through instantaneous axis of rotation)

The cylindrical coordinates are

u = distance from spin axis (instantaneous axis of rota-
tion}), km

= rcos¢
v = height above true equator, km
=rsin¢g

A = longitude measured east from prime meridian
(passing through instantaneous axis of rotation)

For spherical coordinates, the body-fixed rectangular
coordinates are

Xy 7 COS ¢ COS A
n=| Yy |=] rcos¢sinr (212)
Zp rsin ¢
For cylindrical coordinates,
Xp Ucos
Ys usin (213)
b v
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For a landed spacecraft on a planet or the moon, the
spherical or cylindrical coordinates are constant and are
solve-for parameters. For a tracking station on earth, the
solve-for parameters are the spherical or cylindrical
coordinates relative to the mean pole, equator, and prime
meridian of 1903.0. The spherical coordinates are denoted
by r, o, and Ao; the cylindrical coordinates are denoted by
Uy, Uo, and Aq. The transformations from these 1903.0 coor-
dinates to those referred to the “body-fixed” coordinate
system are

¢ = ¢o + AP (214)
A= + AL (215)
u=u,+ Au (216)
v = v, + Av (217)

The formulas for computing the corrections A¢, A), Au,
and Av are derived below. Given the body-fixed spherical
or cylindrical coordinates, the rectangular components of
1y are computed from Eq. (212) or (213).

Figure 4 shows the latitude ¢, and longitude A, of a
tracking station S relative to the mean pole of 1903.0 (P,),
and the instantaneous latitude ¢ and longitude A relative
to the true pole of date (P). The pole P, and associated
grid of equator and meridians is rotated through the
angle o carrying P, to P. The angular coordinates of P

90°E MERIDIAN
OF 1903.0

GREENWICH MERIDIAN Py
OF 1903.0

90°-4,
TRUE

GREENWICH
MERIDIAN

EQUATOR OF
1903.0

TRUE EQUATOR

Fig. 4. Lotitude and longiiude relative to mean pole
of 1903.0 and true pole of date
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relative to P, are x measured south along the Greenwich
meridian of 1903.0 (strictly the 1903.0 meridian of zero
longitude) and y measured south along the 90°W merid-
ian of 1903.0. Values of x and y are obtained from the
B.LH. They are represented by linear polynomials:

x=1+mt (218)

y=p+qt (219)

The coefficients I, m, p, and q are specified by time block,
usually of one month’s duration, and ¢ is in seconds past
the start of the time block. Since the angles x and y cor-
respond to a displacement along the earth’s surface of
only a few meters (to date the maximum value has been
about 10 m), an approximate expression for A¢ = ¢ — ¢
is

A = xCOS A, — Ysin A, (220)
Noting @, and « on Fig. 4, one obtains

Xo = o + tan™ ( _xy) (221)

) =a-+ tan ( _xy) (222)
Thus,

AA.:A.’—'/\():CY—QO (223)
From the spherical triangle PP, S,

sine,  sina (224)

COS ¢ " cos bo
Cross multiplying and using Egs. (223) and (214) gives
sin @, cos ¢o = sin (@, + AL) cos (¢ + Ad)

(225)

Expanding, noting that AA and A¢ are very small angles,
and ignoring the higher-order term containing A\ A¢ gives

A) = tan ap tan ¢, Ad (226)
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From Eq. (221),

tan A, + %
tan ¢y = —————————o (227)
1- —Z— tan A,

Substituting Eqs. (220) and (227) into Eq. (226) gives
AX = tan ¢, (xsin Ao + y cos Ao) (228)

The cylindrical coordinates relative to the pole of 1903.0

and the true pole of date are
Uy = 1 COS o © = rcos¢ =rcos (¢, + Ap)  (229)
Dy = rsing, v =rsin¢ =rsin(p, + A¢)  (230)
Solving for Au = u — u, and Av = v — v, gives
Au = —0,4A¢ (231)
AU = Uy Ad (232)

where A¢ is given by Eq. (220). Using cylindrical coordi-
nates, A\ is computed from

AL = % (x sin Ao + y cOs Ao) (233)
0

The “body-fixed” position r;, of a fixed tracking station
on earth varies with the motion of the pole, and hence
the body-fixed velocity ; is non-zero. However, its maxi-
mum magnitude is about 2 X 10-¢ m/s, which is less than
the desired accuracy of 10-° m/s for computed doppler
observables. Hence ¥; is taken to be zero.

For a description of the wandering of the earth’s axis
of rotation, see Ref. 48.

2. Moving tracking ship. The ship is assumed to move
on a sphere of radius r at constant azimuth A measured
east of north, and at constant speed v. The ship passes
through the point with latitude ¢, and longitude A, at time
t, (UTC). All quantities are referenced to the x5 y» 2, body-
fixed coordinate system defined in Section VII-A. The
parameters 7, ¢,, Ao, U, and A are solve-for parameters.
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The velocity along the meridian is given by

r$ =vcos A (234)
Thus the latitude may be expressed as
b =do + "“;SA [¢(UTC) — £, (UTC)]  (235)
The velocity normal to the meridian is given by
rcos-pA = vsin A (236)

Equation (23(:}) can be integrated by replacing df in
the integral of Adt by rd¢/vcos A from Eq. (234). The
result is

This expression is indeterminate for A = 90 or 270 deg. For
these cases, compute

v

COS {1)0

A.:)\.oi

[t (UTC) — £, (UTC)]

+ for A = 90deg

— for A = 270 deg (238)

Given ¢ from Eq. (235) and A from Eq. (237) or (238),
1y is given by Eq. (212), repeated here:

COS ¢ COS A
=] cos¢sinA |r

sin ¢

(239)

Differentiation with respect to time using Eqgs. (234)

tan (-} + % and (236) gives
A=Mx +tanAln
tan(%+ %3) —cos Asin$ cosA — sinAsin A
f; =| —cosAsingsinA +sinAcosA |v (240)
A =£90 deg, 270 deg (237) cos A cos ¢
Similarly, differentiation of this equation gives
— ., -
- (cos2 Acos¢ + = A) cos A + (sin Acos Atan¢) sin A
COS ¢
¥»=| —[cos?Acos¢ + sin® A sin A — (sin A cos A tan ¢) cos A v
cos ¢ r (241)
—cos®Asin ¢

Equation (241) would be simpler if the tracking ship
were moving along a great circle (at varying azimuth A).
The transformation from body-fixed position, velocity,
and acceleration to 1950.0 position, velocity, acceleration,
and jerk is given in the next section. The body-fixed jerk
(¥;) is ignored since its maximum contribution of about
10~ m/s to computed doppler is considerably smaller
than the accuracy of tracking-ship data.

€. Transformation of Body-Fixed Rectangular
Coordinates to 1950.0 Pesition, Velocity,
Acceleration, and Jerk

Let the 1950.0 position, velocity, acceleration, and jerk
of a fixed tracking station, a moving tracking ship, or a
landed spacecraft relative to the center of the body i on
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which it is located be denoted by rsy, 50, ¥s0, and Tyo.
The transformation from the body-fixed position vector
1p to the 1950.0 position vector 15, is given by

Y50 = Til'b (242)

where T; is the 3 X 3 transformation matrix for the body
i in question.

For a fixed tracking station on earth or a landed space-
craft on a planet or the moon, 1, is negligibly small and
is taken to be zero. Thus,

1.‘50 = f’m, (243)
i'=50 = i:il‘b (244)
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v 300
Y50 = Tty

(245)

For a moving tracking ship, ¥, and ¥, are nonzero and
T is ignored. Thus,

so = L'nTy (246)
f20 = Tury + Txs (247)
¥so = Tgry + 2Tty + Tty (248)
Fro = Tary + 3Tty + 3T, (249)

where Tzt has been ignored in Eq. (249).

The formulation for computing the transformation
matrices T;, T;, T@, and T; for the earth (i = E) is given
in the next section.

D. Body-Fixed to Space-Fixed Transformation
for the Earth

For the earth, the transformation T is given by the
product of three 3 X 3 matrices:

Ty = (BNA)T (250)
Substituting Eq. (250) into Eq. (242) gives
Tso = Terpy = (BNA) 1y (251)
or
15 = T% 150 = BNAT, (252)

The matrices A, N, and B are defined as

A = precession matrix, transforming from coordinates
referred to the mean earth equator and equinox
of 1950.0 to coordinates referred to the mean
earth equator and equinox of date

N = nutation matrix, transforming from coordinates
referred to the mean earth equator and equinox
of date to coordinates referred to the true earth
equator and equinox of date

B = rotation from coordinates referred to the true
earth equator and equinox of date to body-fixed
coordinates r, = (%5, Yp, 2)7, Where x; is along
the intersection of the prime meridian (passing
through the instantaneous axis of rotation) and
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the instantaneous equator, z; is along the instan-
taneous axis of rotation, directed north, and y,
completes the right-handed rectangular coordi-
nate systen.

The matrix B is given by
cosf sing O
B=| —sinf cosd O (253)
0 0 1

where

6 = apparent (true) sidereal time = Greenwich hour
angle of true equinox of date

The derivative of Ty with respect to ephemeris time TE
is given by
Ty = (BNA + BNA + BNAY” (254)
The formulation for computation of the precession ma-
trix A, the nutation matrix N, and tl.leir derivatives with
respect to ephemeris time, A and N, is given in a JPL
internal publication.* Differentiation of B with respect
to ephemeris time gives
cosd 0
—sind 0 |

. —sin §
B =] —cosf

0 0 0

(255)

where 6 is the derivative of 6 with respect to ephemeris
time.

The contribution to the “space-fixed” velocity of the
tracking station relative to the center of the earth, 5,
from the precession and nutation rates is a maximum of
about 10* m/s. Since doppler observables are computed
to an accuracy of 105 m/s, these terms are included in
Eq. (254). The computation of doppler observables also
requires the acceleration and jerk of each participant;
however, only approximate values are needed. Thus, Ty

and Ty are obtained by differentiation of Ty =~ (BNA)T
holding N and A constant:
T, ~ (BNA) (256)
Ty~ (BNA)T (257)

14Warner, M. R., et al., Double Precision Orbit Determination Pro-
gram, Vol. II1, TRAJ Segment, EPD 426 (JPL Internal Report),
June 15, 1967.
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The second and third derivatives of B with respect to
ephemeris time are obtained by successive differentiation
of Eq. (255). However, the sidereal rate ¢ in Eq. (255) is
an extremely constant quantity and is held fixed during
this differentiation. The resulting expressions are:

.. [—cosf —sinf 0 7
B=~| sinf —cosé 0 |42 (258)

0 0 0 |

I~ sinf —cosf O 7
B~| cosd sing 0 |¢° (259)

0 0 0 |

The neglected terms of Tz and T5 contribute less than
10-* m/s to the computed doppler observables.

The true sidereal time @ and true sidereal rate § are
computed from the following formulation (where dots
indicate differentiation with respect to ephemeris time).
Let

fx = mean sidereal time = Greenwich hour angle of
mean equinox of date

8¢ = nutation in longitude = longitude of mean equi-
nox relative to true equinox

8€ = nutation in obliquity
€ = true obliquity of ecliptic

€= mean obliquity of ecliptic

Then,
0= 0y + 8ycose (rad) (260)
0=y + 8y cose — &8y sine (rad/s) (261)
€= €+ 8¢ (rad) (262)
&=E€+ s¢ (rad/s) (263)
From Ref. 25, p. 98,
=t i () @00
where
A = 23027'8"26 = 84,428"26
B = —46"845
C = —070059
D = 0700181
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T = Julian centuries of 36,525 ephemeris days elapsed
since January 0, 1900, 12 ET

The quantity T is computed from

JED — 241 5020 ET

3655 00 T 56400 < 3652

(265)

T =

where
JED = Julian ephemeris date

ET = seconds of ephemeris time from January 1,
1950, 0 ET

Differentiation of Eq. (264) with respect to ET gives

B + 2CT + 3DT* 4
86,400 X 36,525 % 20626480625 (124/%)
(266)

£
€=

The nutations 8¢ and 8¢ and their derivatives 8y and 8¢
are contained on the n-body ephemeris tapes (described
in Section IV). The nutations 8¢ and 8¢ are based upon
the theory of E. W. Woolard (Ref. 49). The derivatives
8y and € are obtained by numerical differentiation.

Mean sidereal time 6 is a function of universal time.
The expression for 0y is obtained by substituting Ry (UT)
from Eq. (91) into Eq. (92). Since 6y is the hour angle of
the mean equinox of date measured from the 0° meridian
passing through the instantaneous axis of rotation, it
should be computed specifically from UT1 (see Sec-
tion III). Thus, from Eqs. (91) and (92),

0y =UTL+ ]+ KTy + LT (angular seconds, ®)
(267)
where'*

UTI = seconds of UT1 time past January 1, 1950, O
UT1

J = 6°38"45:836 = 23,925°836
K = 8,640,184:542
L = 020929

Ty = number of Julian centuries of 36,525 days of
UT1 elapsed since January 0, 1900, 12* UT1

15Note that 1 second of UT1 time is the time for the angle UT1
(see Section III) to change by 1 angular second (86,400 angu-
lar seconds = 27 radians).
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The quantity Ty is computed from where
JD (UT1) — 2415020 UT1 JD (UT1) = Julian date computed from UT1
Ty= =05 + g
i 36,525 86,400 X 36,525 Substituting Eq. (267) into Eq. (260), and removing multi-
(268)  ples of 2x so that 0 < § < 2 gives
_[/UT1+ ]+ KTy + LTE | 8ycose
0 B [( 86’400 + 27r )decima! part] 27" (rad) (269)

The quantities UT1/86,400 and KT;/86,400 currently have magnitudes of about 7,000 revolutions (1 revolution of § = 2
radians of §) and 70 revolutions, respectively. Thus, when taking the decimal part of 9 expressed as revolutions, four
decimal digits are lost. Since double precision on the IBM 7094 is about 16 decimal digits, 6 is represented to a precision
of about 12 figures or 2= X 102 rad. For a tracking station with spin axis distance u of 6 X 10¢ m, its longitudinal posi-

tion is represented to a precision of about 4 X 10-% m.

Differentiating Eq. (267) with respect to ET gives

. dUT1 K+ 2LT, 7 . .
Oy = BT (1 36505 X 86::100) 33,900 (radian/ephemeris second) (270)
From Section III,
UT1 = ET — (ET — Al) — (A1 — UT1) (271)
and
dUTl _ Afcesium
dET ~ 't 10631770 € 2t #2)
where
t = seconds past start of current time block for polynomial coefficients £, g, and h of Eq. (96).
Substituting Eq. (272) into Eq. (270) gives
. K+ 2LTy Af cesium "n' ) )
Ox = (1 + 36,525 X 86,400 40()) (1 + 0192.63.770 &~ 2ht> B300 (radian/ephemeris second) (273)

Given 8y, 6 is computed from Eq. (261).

The term g -+ 2ht in Eq. (273) has a typical magnitude
of 3X10® and affects the geocentric tracking station
velocity by about 10-% m/s, which is the accuracy of com-
puted doppler observables. Since Afcesium is probably no
more than 5, the term Afces1um/9,192,631,770 is probably
not significant. In the derivation of Eq. (272), the annual
relativity term of ET — Al (Eq. 93) was not differentiated.
The derivative of this term has a maximum magnitude
of about 3 X 10-*°, which is not significant. Equation (65)
is a more accurate expression for (ET — Al) than Eq. (93)
used in the general time transformation subroutine. The
time derivatives of the additional relativity terms of
Eq. (65) are 1.5 X 10-*° or smaller.
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Viil. Doppler Observables

This section gives the formulation for computation of
doppler observables, namely, 1-way doppler, 2-way dop-
pler, and 3-way doppler.

A, Introduciion

For 1-way doppler, an electromagnetic signal is trans-
mitted continuously from the spacecraft and received by
a tracking station on earth. For 2-way doppler, the signal
is transmitted continuously from a tracking station on
earth, received and retransmitted by the spacecraft, and
received continuously by the same tracking station. The
signal may also be received by a different tracking sta-
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tion; in this case, the resulting observable is 3-way dop-
pler. For each of these cases, the frequency of the received
signal differs from that of the transmitted signal because
of the doppler shift. The observable is the average value
of this frequency shift over a period of time called the
count time or count interval T,. It is proportional to the
average range rate along the light path from the transmit-
ter to the receiver during T, or, more accurately, to the
change in range along this light path during T'.. The count
intervals for successive observables are contiguous.

The expression for computing each of these observables
is obtained by expressing the frequency shift in a Taylor
series, with coefficients evaluated at the midpoint of the
count interval, and integrating term by term. The odd
derivatives of the frequency shift vanish and the fourth
and higher even derivatives are ignored. Thus, doppler
observables are computed from the frequency shift and
its second time derivative evaluated along the light path
whose reception time at the receiving station is the mid-
point of the count interval.

For observables computed to an accuracy of 10° m/s,
truncation of the Taylor series limits the count time to
values as low as 1-10 s when the spacecraft is very near
the earth or another planet. When the spacecraft is in
heliocentric cruise, count times as large as 1,000 s may
be used. In each of these cases, however, larger count
times may be used if the observable is computed from
the subinterval doppler formulation. For this case, the
count interval is divided into m subintervals, each of
which is short enough so that the Taylor series truncation
error is negligible. The observable is the sum of the
observables computed for each subinterval divided by m.

In a future version of the DPODP, the Taylor-series
doppler formulation will be replaced or supplemented by
the differenced-range doppler formulation described in
Section XI. The primary advantage of differenced-range
doppler is that there is no upper limit to the count time.

The formulation for computation of 1-way, 2-way, and
3-way doppler from the frequency shift and its second
time derivative is given in Section VIII-B, and the formu-
las for computing these two quantities are given in Sec-
tions VIII-C and -D. The equation for computing each
doppler observable contains a correction term A, which
accounts for the effects of the troposphere, the ionosphere,
and the motion of the tracking point on the antenna dur-
ing the count time. The computation of A is described
in Section XII.
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B. General Expressions

An intermediate output from the electronic equipment
at the receiving station on earth is a signal whose fre-
quency in cycles per second of station time (ST) is de-
noted by f. This signal contains the doppler frequency
shift’® and a bias frequency whose primary purpose is
to keep f positive when the spacecraft range rate is nega-
tive. For l-way, 2-way, and 3-way doppler, the expres-
sions for f are

£, = C; — Cofs0 (%—) (274)
f=Gihe—fue) ()] +e. @)
fi = €= Cufa(6) (12) (276)

where C, to C; are constants, defined below, and

fs/c = spacecraft auxiliary transponder oscillator fre-
quency, cycles per UTC second [9,192,631,770
(1—S8) cycles'” of imaginary cesium atomic clock
carried by spacecraft]

The quantity fso is the frequency of the signal trans-
mitted by the spacecraft for 1-way doppler. It is repre-
sented by

fs/g = fTO -+ AfTO -+ le (tg et tg) + fTZ (tz - to)z (277)

where
fr,= nominal value of fs/¢

Afry, fr,, fr, = solve-for parameters, specified by time
block

t, = UTC epoch at start of time block

t, = UTC value of spacecraft transmission
time

The remaining quantities in Egs. (274-278) are defined
as

fr/fr = ratio of received to transmitted fre-
quency (for unity frequency multiplica-
tion at spacecraft). The received fre-
quency fr is measured in cycles per sec-
ond of station time ST derived from the

16The transmitted frequency minus the received frequency.
17See Subsection III-A-4.
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atomic frequency standard at the receiv-
ing station. For 2-way or 3-way doppler,
the transmitted frequency fr is mea-
sured in cycles per second of ST
derived from the atomic frequency stan-
dard at the transmitting station. For
1-way doppler, fr is measured in cycles
per UTC second (9,192,631,770 (1 — S)
cyclest” of imaginary cesium atomic
clock at spacecraft).

fa(t1), f¢(ts) = reference oscillator frequency at trans-
mitting station, cycles per second of
ST (derived from transmitter atomic fre-
quency standard), evaluated at trans-
mission time #, and reception time t;,
respectively.*® The frequency f, is reset
periodically but remains constant be-
tween settings. The doppler formula-
tion presumes that f, (£;) is constant over
the reception interval T, for 2-way dop-
pler and that f, (¢,) is constant over the
transmission interval. If these intervals
overlap for 2-way doppler, f,(f,) must
equal f, (t;).

The doppler tracking equipment originally operated in
the L-band frequency range.!* Later, the system was
changed to operate in the S-band range.?® In the interim
period, some tracking data were obtained in the so-called
L~S configuration (modified L-band tracking stations with
an S-band transponder on the spacecraft). The DPODP
has the capability of processing doppler tracking data
from each of these frequency bands. The only change in
the doppler formulation due to changing the frequency
band is the change in the values of the coefficients C,
through Cs:

930.15 X 108 L-band
C. = 9.375 X 10° + 30K, (%) L-S band
=
240
96 <§2—1) K, (t3) + 10¢ S-band

18Note that f, (£:) applies only for 2-way doppler.
19390-1550 MHz.
201550-5200 MHz.
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31
‘3—2‘ L-band
C,=14( 30
"9-6— L—-S band
1 S-band
96
30 (§9—> L-band
C.= 240
96 (Eé—l—) S-band
10° L-band
C,=
10¢ S-band
31 96
30 <§§) (@) L-band
240
C;=¢ 30 (‘2‘-2—1“ L-S band
240
96 <’§:2—i'> S-band

where

K, (ts) = receiver reference oscillator (synthesizer) fre-
quency at reception time ¢; for L-S band
doppler. The frequency K, (t;) is different
from f,(t.).

Ky (t;) = receiver reference oscillator frequency at re-
ception time %, for S-band doppler. The re-
ceiver and transmitter reference oscillators
are physically the same and operate at the
same nominal frequency.

As with f,, both of these frequencies are reset periodi-
cally but remain constant between settings. The doppler
formulation presumes that K, (t;) and Ky (¢;) are constant
over the reception interval T,. Two-way L-S band dop-
pler is computed from the 3-way formulation. Hence,
L-S band values of C; and C, do not exist.

The second term of Egs. (274), (275), and (2786) is the
frequency of the received signal (relative to ST at the
receiving station). The first term (plus C, for 2-way dop-
pler) is the frequency of a reference signal derived from
the receiver atomic frequency standard.

JPL TECHNICAL REPORT 32-1527



For 2-way doppler, the reference frequency and re-
ceived frequency are derived from the same atomic fre-
quency standard. Hence 2-way doppler gives the most
accurate measure of the doppler frequency shift and thus
the range rate from the tracking station to the spacecraft.

For 1-way and 3-way doppler, the reference signal and
received signal are derived from different atomic fre-
quency standards. Hence, these data types are less accu-
rate than 2-way doppler. Furthermore, for 1-way doppler,
the signal transmitted from the spacecraft is currently
derived from a crystal oscillator. Because of the large
drift in frequency of this type of oscillator, 1-way doppler
is very inaccurate and is rarely used in the determination
of accurate spacecraft trajectories.

For fg/fr =1, that is, for a spacecraft range-rate of
zero, the values of f,, f., and f; are 10° Hz for L-band
and L-S band operation and 10¢ Hz for S-band opera-
tion. These biases are included so that the frequency f
will remain positive for negative spacecraft range rates

(fe/fr > 1).

For the existing S-band doppler system, the transmitted
frequency is 96 times the transmitter reference oscillator
frequency. The spacecraft transponder multiplies the
frequency of the received signal by 240/221 before re-
transmitting. The reference oscillator frequency is approx-
imately 22 MHz and hence the frequency of the signal
received at the tracking station on earth is about 2300 MHz
plus the effect of the doppler frequency shift. For 1-way
doppler, the frequency of the signal transmitted by the
spacecraft is also about 2300 MHz. For 1-way, 2-way, or
3-way doppler, the frequency of the reference signal at the
receiving station is 96 (240/221) times the receiver refer-
ence oscillator frequency plus the 1-MHz bias. For 2-way
doppler, of course, the receiver reference oscillator is the
transmitter reference oscillator.

Noting the S-band values for C,, C;, C,, and C;, one
can see that the expressions for f, and f; are identical for
S-band operation. The only differences are that two phys-
ically different atomic frequency standards are used for
3-way doppler and that the frequency shifts are based
upon different light paths.

Equations (274-276) for f may be written as

fi= Cy — Cyfsye + szs/o( - %) (278)
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fo=Cs[fq(ts) — fo(t)] +C. + CSfQ(tl)(l B %)

(279)
fo = Cy — Cef(8) + Cefy (tl)( - ’;—) (280)

Part or all of the constant part of each expression for f is
designated as fyas:

Fiias = C1 = Cofn, (281)
fzbias = C3 [f(l (t3) - fq (tl)] + C4 (282)
fabias = C1 — Cofo (t,) (283)
Hence,
= _fe
fl flhias szS/O’ ( fT)
— C; [Afr, + fr, (b2 — &) + fr, (82 — £0)?]

(284)
fo = fapias = Cofa(t1) (1 - ';—’;) (285)
f3 - f3bias = C5f‘1 (tl) (1 - %) (286)

The signal with frequency f is input to an electronic
counter whose register is incremented by 1 each time the
magnitude of the signal changes from minus to plus. A
total of N cycles are counted during the count time T..
The doppler observable F which the data editing program
passes on to the orbit determination program is:

N
F = Tc hand fbias (287)

21In addition to the integer cycle count, the time from the start of
the count interval to the first positive zero crossing is observed.
Multiplying this time by N cycles per T. seconds gives an estimate
of the fraction of one cycle not counted at the beginning of T..
One minus this quantity for the next observable is the fraction
of one cycle not counted at the end of T.. Adding these two frac-
tions of 1 cycle to the integer cycle count gives N used in
Eq. (287).
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where foias is computed from Eq. (281), (282), or (283).
Since N is the integral of f over the count time T,

1 ts,, (ST)+(1/2) T,
F= ”ff (f = fotas) dts (ST)
¢ Jt

5 (ST)=(1/2) T

(288)

where

t;(ST) = station time (ST) at receiving station, de-
rived from station atomic frequency stan-
dard

ts,, (ST) = epoch at midpoint of count interval T,

Equations (284), (285), and (286) for f — fyias are sub-
stituted into Eq. (288). For 1-way doppler, the variations
in fy0 and the second term of Eq. (284) over the count
interval are ignored. In each of these three equations, the
quantity [1 — (fs/fr)] is expanded in a Taylor series, with
the reception time #; (ST) minus the epoch ¢;, (ST) as
the argument. The coefficients of each Taylor series are
the derivatives of [1 — (fz/fr)] with respect to t,(ST),
evaluated along the light path with reception time
ts,, (ST). A term-by-term integration of each of these equa-
tions gives the desired expressions for the computation
of l-way doppler (F1), 2-way doppler (F2), and 3-way
doppler (F3).

In carrying out the integrations, the odd derivatives of
[1 — (fe/fr)] with respect to t; (ST) vanish, and the
fourth and higher even derivatives are ignored. The
resulting expressions are

F1 = Cifsyo (1 = §—)

— G, [Afr, + fr, (2 — o) + fr, (82 — 10)*]

(289)

F2= Cfole)(1- 22 (200)

F3 = Cif, (£) (1 - %) (291)
where

(-5 =0-%)+au(-%) o

The quantities [1 — (fa/fr)], [1 — (fa/f)]", and % are

evaluated along the light path whose reception time at
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the receiving station, ¢, (ST), is the midpoint ¢, (ST) of
the count interval T, (station time). The quantity
[1— (fe/fr)] " is the second derivative of [1 — (fz/fr)]
with respect to £,(ST). The first term that has been
truncated in Eq. (292) is (1/1,920) (T%) [1 — (fa/fr)]*
where iv indicates the fourth derivative with respect to
13 (ST). For 1-way doppler, fs,0 and the second term of
Eq. (289) are evaluated with the spacecraft transmission
time ¢, for the above-mentioned light path.

For 2-way or 3-way doppler, the definition of fz/fr is

fe_ _dn  dt,(ST) _ dt,(ST)
fr  dt;(ST) ~ dn  dt,(ST)

(293)

where

dn = infinitesimal number of cycles transmitted
at time #,. The dn cycles travel at constant
phase from the transmitter to the receiver
and are received at time £,. The propagation
speed is the phase velocity, which is greater
than c in the presence of charged particles.

dt, (ST) = infinitesimal period (of station time ST) for
transmission of dn cycles from transmitting
station at time ;.

dt; (ST) = infinitesimal period (of station time ST) for

reception of dn cycles at receiving station
at time ;.

Equation (293) may be written as

dST \ dUTC (dr
fR _ dUTC dT dt dtl dt2

7;‘< dsT > dUTC (dr) ds, dt;

(294)

dUTC dr dt

where

dt,, di,, dt; = ephemeris time (ET) value of transmis-
sion interval [dt, (ST)], reflection interval
at the spacecraft, and reception interval

[dis (ST)].

The ratios dt,/dt, and dt,/d¢t; will be obtained by dif-
ferentiation of the light time equations for the up and
down legs of the light path. The factors (dr/dft) at t,
and ¢; transform df, and df; from ephemeris time to
proper time 7** obtained from imaginary ideal atomic

22This time scale was defined in Section II after Eq. (58).
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clocks at the transmitting and receiving stations; they are
computed from Eq. (58) using the Newtonian potential
at each tracking station and the heliocentric velocity of
each tracking station.

The factor dUTC/d+ converts the transmission and
reception intervals from seconds of atomic time + to sec-
onds of UTC atomic time. These two atomic time scales
differ only in the length of the second (the number of
cycles defined equal to 1 s).

The factors dST/dUTC at ¢, and ¢; convert the trans-
mission and reception intervals from UTC seconds ob-
tained from ideal atomic clocks to seconds of station time
ST obtained from the actual atomic clocks at the trans-
mitting and receiving stations (the same station and clock
for 2-way doppler). The transformation from UTC to ST
at each tracking station is specified by Eq. (94), repeated
here:

UTC — ST =a + bt + ct? (295)

where a, b, and ¢ are specified by time block and £ is in
seconds past the start of the time block. Let the coeffi-
cients of Eq. (295) which apply for the receiving station
at ¢, and for the transmitting station at ¢; be denoted by
subscripts R and T respectively. Also, define F by:

dsT
(7o7c),

dST
(dUTC>3

Then, since dST/dUTC is extremely close to unity,

1+F= (296)

F = by (t3) — by (£,) + 2tsCr (ts) — 2ticr (t,)  (297)
where the transmission and reception times ¢; and ¢, are
expressed as seconds past the start of the time blocks for

a, b, and ¢ used at ¢, and ¢;, respectively. Also, define
F R,/ FE. T by

()

Fy_\at), a, dr,

FT o (dT) dtz dt3
3

(298)

dt

Then, substituting Eqs. (296) and (298) into Eq. (294)

gives
(- )-ren(o- 89 -
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(299)

The effect on 2-way doppler of the variation in F dur-
ing the count interval T is about 10-° m/s, which is com-
pletely negligible. The corresponding effect on 3-way
doppler is about 10-5 m/s, which is the desired accuracy
for computed doppler observables. However, the error
in 3-way doppler due to the unknown difference in fre-
quency of the two atomic frequency standards (Af/f =<
2 X 10-**) is a few mm/s, which probably cannot be
reduced to the 10-°-m/s level by estimating the b and ¢
coefficients of UTC — ST for the transmitting and receiv-
ing stations. Thus, the variation in F during the count
interval T, is ignored and

(1—%)”:(1 +F)<1— %) (300)

Substituting Eqs. (299) and (300) into Eq. (292) gives

(-8 o[- (-8

(301)

where

Fe\'_(y_Fs) T3() Fa)"
(-5) ~(-#)rai(-5)

Substitution of Egs. (301) and (302) into Egs. (290) and
(291) gives 2-way and 3-way doppler as a function of
[1 — (Fe/Fr)], [1 — (Fr/Fr)]"", and F.

(302)

For 1-way doppler, the definition of fz/fr is

fo __dn__ dt,(UTC) _ dt,(UTC)

fo o d(ST) ' dn dt, (5T) (303)

since fg,¢ is referenced to an imaginary UTC atomic clock
on board the spacecraft. This equation may be written as

dUTC (.‘_11
.fi _ dr dt)z .CE?_
fo 7 ST\ dUIC [dz\ dt, 009
dUTC/, dr \dt),
As in Eq. (296), define F; by
1
(0r0).
Then,
F1 ~ b}; (ts) =+ 2t303, (ta) (306)
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where ¢; is expressed as seconds past the start of the time
block for @, b, and ¢ used at t,. Also, define Fg/Fr for

1-way doppler by
(d'r
F R dt >2 dtz

dt,

Fp (dr
dt)g

Substituting Eqgs. (305) and (307) into Eq. (304) gives
Egs. (299-302) with F replaced by F, and Fy/F, defined
by Eq. (307).

(307)

Substituting Eq. (301) into Egs. (289),%% (290), and (291)
gives the final expressions for the computation of 1-way
doppler (F1), 2-way doppler (F2), and 3-way doppler (F3).
Each of these expressions contains an additive correc-
tion A, which accounts for the effects of the troposphere,
the ionosphere, and the motion of the tracking point on
the transmitting and receiving antennas during T.. The
computation of A is described in Section XII. The expres-
sions for F1, F2, and F3 are

F1 = Cufs/o {(1 ~ %)— F, [1 - (1 - %)] + A}

— Cs [Afry + fr, (B2 — o) + fr, (£ — )] (308)

F2 = Cif, (8 {(1 . gi;-) —F [1 . (1 — %)] + A}

F3 = Cdf, (t2) {(1 . %) - F[l - (1 ~ %’i)] + A}

(310)

where [1 — (Fr/F;)]* is given by Eq. (302) in terms of
[1— (Fg/F7)] and its second derivative with respect to
t:(ST), [1 — (Fg/Fr)] ", evaluated along the light path
whose reception time at the receiving station, £, (ST), is

23With F replaced by F..
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the midpoint ¢, (ST) of the count interval T.. Expres-
sions for these quantities are derived in Sections VIII-C
and -D respectively, starting from Eq. (298) for Fy/Fy for
2-way and 3-way doppler and Eq. (307) for 1-way dop-
pler. The quantities fs/0, F, and F; are computed from
Egs. (277), (297), and (306), respectively. The quantities
[1 el (FR/FT)], [1 - (FR/FT)]“, F, F1, f,g/g, tz, tl, and A
are evaluated with quantities obtained from the light time
solution for the above-mentioned light path (see Sec-
tion VI).

Equations (308), (309), and (310) are used to compute
l-way, 2-way, and 3-way doppler using either the L-band,
L-S band, or S-band values of the coefficients C,, C,, and
C;. In the I-S band configuration, the so-called 2-way
doppler observable is actually 3-way doppler (from the
electronics point of view) obtained using the same track-
ing station as the transmitter and the receiver. This data
type is computed from the 3-way formula, Eq. (310).

Another data type not previously mentioned is coherent
3-way doppler, which is essentially 2-way doppler ob-
tained from two different tracking stations. The two sta-
tions are only a few kilometers apart and the reference
frequency f,(¢;) is beamed from the transmitter to the
receiver via microwave link. Coherent 3-way doppler is
computed from the 2-way formula, Eq. (309).

The term in Eq. (308) containing F, and the term in
Eq. (309) containing F are not included in the current
DPODP formulation. The latter will be added at the
earliest convenience, and the former will be added when
fso is derived from an atomic frequency standard on
board the spacecraft instead of the currently used crystal
oscillator.

Because of truncation of the fourth and higher even
derivatives of [1 — (Fg/Fy)] in Eq. (302), the doppler
observables are limited to count times as low as 1-10 s
when the spacecraft is near a planet and no more than
roughly 1,000 s in heliocentric cruise. However, larger
count times may be used if the subinterval doppler for-
mulation is utilized. With this method, the count time T
is divided into m subintervals of length T./m. For each
subinterval, a light time solution is obtained for the light
path with reception time #; (ST) equal to the midpoint
of the subinterval, and a doppler observable F (1-way,
2-way, or 3-way doppler) is computed using T./m in
place of T, in Eq. (302).
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Let the observable computed for subinterval i be de-
noted as F;. Then, the observable for the overall count
interval T, is given by

(311)

This follows directly from Eq. (287).

Predicted values of the number of cycles N which a
station will observe in a given count interval T, are com-
puted from

N = (F + foias) T (312)

where F =F1, F2, or F3 and f,,,,5 is the corresponding bias
frequency from Eq. (281), (282), or (283). Equation (312)
follows directly from Eq. (287).

C. Doppler Frequency Shift

The expression for [1 — (Fr/Fr)] used to compute
2-way and 3-way doppler and also the expression used to
compute 1-way doppler are derived in this section. The
definitions of Fr/Fr are Eq. (298) for 2-way and 3-way
doppler and Eq. (307) for 1-way doppler, evaluated along
the light path whose reception time at the receiving sta-
tion, ¢; (ST), is the midpoint of the count interval T,. The
expressions for [1 — (Fz/F;)] are obtained as expansions
in powers of 1/c. In order to obtain the desired accuracy
of 10-% m/s for computed doppler, all terms to order 1/c*
are retained.

The terms dt,/dt, and dt,/dt; are obtained by differ-
entiation of the light time equations for the up and down
legs of the light path. The light time equation for a given
leg of the light path is Eq. (88) or (203). For the up and
down legs, it is given by

oy T (1 + Y) Mg O ol N o
hboh="Ct % I T, — T (313)
and
o, T (It y)ps Ty + 73 + 72
b — 1l = - + po In PR —— (314)
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Solution of these equations (see Section VI) gives the
following quantities:

t1, 5, ts = ephemeris time (ET) values of transmission
time at tracking station on earth, reflection
time at spacecraft (or transmission time for
1-way doppler), and reception time at track-
ing station on earth, respectively. The station
time (ST) value of ¢; is the midpoint of the
count interval T,.

T1, ¥, I's = heliocentric position vectors of transmitting
station on earth at t;, spacecraft at #., and
receiving station on earth at ¢, respectively,
with rectangular components referred to the
mean earth equator and equinox of 1950.0.

T;, T;, T; = heliocentric velocity, acceleration, and jerk
vectors of participant i at its epoch of par-
ticipation t; (i = 1,2, or 3). The dots indicate
differentiation of r; with respect to ephem-
eris time.

The quantities on the right-hand sides of Egs. (313) and
(314) are

1z = [ = 11) * (rz — 1,) 1% (315)
ras = [(ts — 1) * (1, — 1) J% (316)
= (rr)k (317)
1y = (room ) (318)
15 = (15 * 1) (319)

¢ = speed of light, km/s

ug = gravitational constant of sun, km?/s?

y = solve-for free parameter of the Brans-Dicke
theory of relativity. The parameter y is related
to o, the coupling constant of the scalar field,
through Eq. (41).
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Differentiation of Eq. (313) with respect to ¢, gives

dt, 1 for,  or,dt
T ?(a_tz ot, dt,
dndby | dry | ore | O db
LAty dtdt, " dn " o ot di
c 1+ 1+ 1y
dedi | dn o or di
(A y)us dt dt,  dt. o, ot dt
c? ’ 7y — 11
152
253 (320)
The derivative of Eq. (314) with respect to #; is obtained . o Or T
from Eq. (320) by replacing the subscripts 1 and 2 by M2 = oy ot 1, 2 (326)
2 and 3, respectively. The expression for dt,/dt, obtained
from Eq. (320} is unity plus terms of order 1/¢ and greater e Taa
arising from the 1/c (Newtonian) term of Eq. (313) plus ﬁ‘“ =, ¥ (327)
a term of order 1/¢® arising from the 1/¢? (relativity) term ? =
of Eq. (313).
LN Y (328)
Since terms of order greater than 1/c® are not retained ot T3
in dt,/dt, from Eq. (320), the factor dt,/dt, appearing in
the 1/¢? terms may be approximated by unity. The deriva- Ores | Ofyy T . :
tives appearing in Eq. (320) and combinations of them are T ot T ot 1 (329)

given by

@ T @)
_dr, 1
=L =k (322)
- drs I3
f3 3, =7, b (323)
Using the notation
=% —%;
T — f'j —¥;
the remaining terms are
0ryy T .
T, (324)
oy _ T,
o T 1 (325)
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Substituting these expressions into Eq. (320) and using
dt,/dt, = 1 in the 1/c® terms gives

__1_&.; +(1+7)”‘S
dat, C Tz c? 12 152
dt2 - 1 Tio 253
1———-1,
C Tz
(330)

where

_1.”1+7.’g"—';'12 ';'1+i2+;12 1'—)2
S T T — 1, Fitrat 253 (331)

The first term of Eq. (331) approaches 0 + 0 as the dis-
tance from the light path to the center of the sun ap-
proaches zero. However, because of the finite radius of
the sun (700,000 km), the limiting indeterminacy will not
occur. For a light ray grazing the surface of the sun and
rn =1, =50 AU, the sum 7, + r, — 1y, is about 65 km.
Since (ry + r;) and ry, are 100 AU, which is represented
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to 1075 km on the 16-decimal-digit IBM 7094 computer,
the 65-km difference is represented to 7 decimal digits.

For any case where the light path grazes the surface of
the sun and #; + r; = r1,, the contribution to the space-
craft range rate from the first term of Eq. (331) is a
maximum of about 0.5 m/s (for a spacecraft velocity of
100 km/s). Since the denomination of this term is repre-
sented to at least 7 decimal digits, the contribution of
0.5 m/s is accurate to at least 10-" m/s, which is smaller
than the desired accuracy of 10 m/s for computed dop-
pler. Thus, the numerical difficulties associated with the
first term of Eq. (331) are not significant.

Substituting Eq. (332) into the reciprocal of the denomi-
nator of Eq. (330) and expanding gives

-2y e (2)
C Ti2 [+

P\, [P}’ 12
+(c)+(0) 253
(334)

Multiplying by the numerator of Eq. (330) and retaining
terms to order 1/c® gives

Let at _ 1 Fiz  Tupo
s T2 dt, [ c?
pua =2k (32
12
1 . ., 1-2

and, for the down leg, + P (L + ) ps€re — F1Pe] 253 (335)
as = ~22 - (333)
Pas = T Multiplying dt,/dt, by dt./dt; gives
dt, dt 1, . 1 ... . o . .
Eti * E’f =1- 'c" (7'12 + 723) + Eg‘ (1'121'23 — T2z — fzspzs)

+ ;; [(1 + Y) Ps (512 + €23) + P1af0s (Pu + st) — F12Ppfe — rzapéa] (336)

From Eq. (58), the quantities (dr/dt),, (dr/dt)., and
(dr/dt); are given by

dr . 2 $\2 1% .
(@), <[ -)]" =

(337)

where

$; = Newtonian potential at participant 1 at its epoch
of participation ¢;

$; = heliocentric velocity of participant 1 at its epoch
of participation #;

The potential ¢; is given by

— B
& Z Tij

i

(338)
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where the summation over § includes the sun, all of the
planets, and the moon, and r;; is the coordinate distance
from the participant i to the center of the body j. The
velocity §; is obtained from

8 =Fox; (339)

Since terms of order greater than 1/¢® are not retained,
Eq. (337) may be approximated by

(@), -&-3:¢) eo
For 2-way or 3-way doppler,
(&)
e U R SR ) T
(#).
55



where terms of order 1/c* have been ignored. Similarly, for 1-way doppler,

().

(%),

1 .
=145 |-t 5G|

(342)

Substituting Eqgs. (341) and (336) into Eq. (298) and retaining all terms to order 1/¢® gives the desired expression for

[1— (Fg/Fy)] for 2-way or 3-way doppler:

F 1. . 17, , . . . . 1. .
(1 - 'PTIE> = - ("'12 + 1'23) + ey [1‘121012 + TozP2sz — Ti2lp3 + (411 - 4)3) + = (6‘% - 3%)]
T c c 2

+ 55 {lepfz + 153P%s — fiofas (plz + Pza)

= (s ) (= 90+ 5 630 | (L ) e+ )

(343)

This quantity is used in Eq. (302), which is substituted into Eq. (309) or (310) to compute 2-way or 3-way doppler. Simi-
larly, substituting Eq. (342) and dt,/dt, obtained from Eq. (335) into Eq. (307) gives the expression for [1 — (Fr/Fr)]

for 1-way doppler:

F 1. 17, . 1, .
<1"ﬁ)“:’;(723)+'c§[723p23+(¢2‘_¢3)+‘2-(3:23"S§)]

14, ., . 1. .
+ ?3 {1‘231033 — T3 [(?52 - 953) + E (s§ - 35)] - (1 +y) Il-sfza}

Equation (344) is used in the computation of 1-way dop-
pler from Egs. (302) and (308). Note that setting all up-leg
factors equal to zero in Eq. (343) and changing ¢, and §,
to ¢ and 3, gives Eq. (344).

For 2-way or 3-way doppler, ¢, is very nearly equal
to ¢s. The contribution to (¢; — ¢s) from the other planets
and from the moon affects the observable by less than
10-* m/s and hence can be ignored. Thus, only the poten-
tial from the sun and from the earth needs to be con-
sidered, and ¢, and ¢s are given accordingly by

Ly}

¢'1 - 1,1 + rzla (345)
Hs Fadi]

s = Py + - (346)

where 77 and ¥ are the geocentric radii of the transmit-
ting and receiving stations, respectively. The second terms
of Eqs. (345) and (346) are required for the computation
of 3-way doppler but cancel in (¢, —¢s) used for 2-way
doppler.
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(344)

For l-way doppler, ¢, and ¢, are computed from
Eq. (338) as indicated after that equation.

D. Second Derivative of Doppler Frequency Shifi

The computation of doppler observables requires an
expression for [1 — (Fg/Fy)] *, which is the second deriva-
tive of [1 — (Fg/Fyr)] with respect to the reception time
t; (ST), evaluated along the light path whose reception
time is the midpoint of the count interval T.. The expres-
sion for [1— (Fg/Fr)] " for 2-way and 3-way doppler
and also the expression for 1-way doppler are derived in
this section. They are obtained by differentiation of the
corresponding expressions for [1 — (Fg/Fr)] obtained
from Section VIII-C.

In order to limit the doppler truncation error (due to
ignoring the fourth and higher even derivatives of the
frequency shift in Eq. 302) to 10-° m/s or less, count times
as low as 1-10 s must be used when the spacecraft is
very near one of the celestial bodies of the solar system;
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alternatively, when the spacecraft is in heliocentric cruise,
count times as large as 1,000 s may be used.

For ecither of these situations, the 1/¢® terms of
[1 — (Fgr/Fyz)] * affect doppler observables by less than
10~ m/s. Hence, the expressions for [1 — (Fp/Fy)] " are
obtained by differentiating Eqs. (343) and (344), ignoring
the 1/¢® terms. For 2-way or 3-way doppler, the variations
in (¢ — ¢s)/c? and (§2 — §8)/2¢? over the count interval
affect the observable by less than 10-° m/s; hence these
terms are also ignored. For l-way doppler, the corre-
sponding terms and their variations are quite large. How-
ever, they have not been included in the expression that
is differentiated because of the inaccuracy of 1-way dop-
pler obtained by using a crystal oscillator on board the
spacecraft.

In the future, when 1-way doppler derived from an
atomic frequency standard becomes available, it will be
mandatory that [1 — (Fz/Fr)]" " include the derivatives
of (¢ — ¢s)/c® and (§3 — §%)/2¢% For 2-way or 3-way
doppler, [1 — Fr/F;]" " is obtained from

F 1, .
(1 — F—:> ~ ‘c‘(rlz + 7'23)

1 ° 3 a o« a A
+ & (f12P12 + T2sP2s — T12T2s) (347)

For 1-way doppler, the corresponding expression is

F 1. ...
(1 - Ff") ~ _C— (1”23) "I"' E; (1'23}923) (348)

The terms in Eqgs. (347) and (348) are functions of the
heliocentric position and velocity vectors of the transmit-
ter, spacecraft, and receiver at their epochs of participa-
tion. Since the time unit for the velocity, acceleration, and
jerk vectors of each participant is ephemeris time (ET),
the derivatives of [1 — (Fg/Fr)], which are obtained
naturally, are the first and second derivatives with respect
to t; (ET). Given these quantities, the second derivative
with respect to £;(ST) is

aorr ()= [mem (- 5)][
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The second term of Eq. (349) affects doppler observables
by less than 10-*® m/s and hence can be ignored. The
second derivative of [1 — (F/Fr)] with respect to ¢; (ET)
contains 1/¢ and 1/¢* terms and hence is accurate to
about 8 figures. The multiplicative factor in the first term
of Eq. (349) is unity to about this many figures; hence, it
may be ignored. Thus, [1 — (Fz/Fr)] ' is computed from

_Ey__ & ( Fa
( FT> © dt; (ST)? F,,)
d Fr

In terms of first and second derivatives of the terms of
Eq. (347) with respect to ¢; (ET), denoted as £,

Fr\ _ 1 d%w . .
(1_ FT> ¢ dg [l+ c (plz—r23):|

1 d*, 1, .
+— 22 [1‘{"(‘;(7)23—1‘12)]

c dt

'l' dzp.,m ;12 "1' d2p23 7.'23

¢z di ¢ dt}

_& dr.l'.! di’]Z

¢\ dt, dt,

d';'za di)za df12 dfzs

&, dt ‘dz) (351)

which applies for 2-way or 3-way doppler. Similarly, from
Eq. (348),

(-3

c di c ¢ dt; Tas
2 dfzg dp'23
+ ct dt, dt, (352)

which applies for 1-way doppler.

The quantities 75, 23, P12, and P,; are functions of
t; (ET), ¢, (ET), and ¢ (ET) which will be denoted as
11, t,, and t;, respectively, in the remainder of this section.

58T a0 1)

3. (BT 7. ) | a5 (5T (349)
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In order to obtain derivatives of these quantities with
respect to %, the following subpartial derivatives are
required:

dt, . Ty

dt; 1-= (353)
dt, 1. )

jji— = 1 (1'12 + 7'23) (354)

The terms above are derived from Egs. (313) and (314),
ignoring the 1/c® relativity terms.

The first and second derivatives of 7., fzs, P12, and Pas
with respect to #; are functions of the following partial
derivatives, whose sums are denoted as:

o= GG RN
= - %';: R
pemr e Bra -G 20 ow
O e s PR

where the previously defined quantities #,, and p,. have
been included for completeness. Equation (358) follows
from Egs. (332), (333), (325), and (328). Substituting
Eq. (358) into the first form of Eq. (359), changing the
order of differentiation in the second mixed partial deriva-
tive, and substituting Eq. (355) gives the second form of
Eq. (359). Similarly, the second form of Eq. (360) follows
from the second form of Eq. (359) and from Eq. (356).

Using (353) and (354), one obtains

diy _ O dty | Ohedh
dt, — ot, dt, ot dt,

& (st i) |
(361)

_ O far) | Bl
~atz(l >+8t [1
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Substituting Eqs. (356) and (359) gives

dr 1
ary, _ 7'12 + =

dt, (7127912 — Fasf1z) (362)
Similarly,
di' 3 .5 s as
Ei = a3 + (7'231)23) (363)

The following derivatives are required to order 1/¢°:

dpsz _ ..
=P (364)
s _ ..
d’ZS = Pas (365)

Differentiating Eq. (362) with respect to #s, using Eqgs.
(353) and (354), gives

d*fs _ o' Tas 071
daz ot (1 )+ ot, [1

1 . aco (13 (14
+ F (7'12 Pz + T12P12 —

1, .
‘E" (1'12 + "'23)]

7"23 .71;2 - 'fzsﬁz) (366)
Since 1/¢? terms are ignored, the 1/c terms were differ-
entiated by inspection using Egs. (353) and (354) equal
to unity. Substituting Egs. (357) and (360) gives

dazi d*iyy

g =T+ — [2 (f12Pre = T25F12) + 12 (Pr2 — Tos)]
(367)
Similarly,
dZ' Lhid 1 9 sed 38 @o
d::3 =Tyt c (225 P2s + TasPas) (368)
3
and, to order 1/c°,
P2 ...
S = Pl (369)
&Pz _ ..
dfg > = Pes (370)
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Substituting Egs. (362-365) and Egs. (367-370) into Egs. (351) and (352) gives, for 2-way and 3-way doppler,

(1 - ﬁ) - —5(712 + 728)+ pE [7i2 (P12 — 3f2s) + T2s (Pos — F12) T 3(Fra Pr2 + Faa Poa + FroPre + FasPas — Taales)]

(371)
and for 1-way doppler,
(1= F2) = 5 () + 5 Db+ 3T + s @72)
The quantities in Egs. (371) and (372) are defined in Eqgs. (355-360). They are computed from:

e =22y e (373)

i T Ty + 31'-1:1; Fiz — 3Fpthe ;: g (375)

_ 12 oo

= I ot + i-lr-1 :’-12 ~ Paafiz ;: g (377)

5 = rip°¥y + 28, F, + 1"; :’u — 2f15P12 — Prorz é :: g (378)

where

Yi; =% —I;

r—> 0§ T

Equations (373) and (376) are Eqs. (326), (329), (332), and (333). The remaining equations follow by successive differ-

entiation according to Egs. (356), (357), (359), and (360).

iX. Range Observables

This section gives the formulation for computation of
range observables.

A. Introduction

There are several different range tracking systems.
However, all of them are conceptually the same. For each
system, an electromagnetic signal is transmitted from a
tracking station on earth at time ¢,, received and retrans-
mitted by the spacecraft at time £,, and received by the
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same tracking station at time £;. The mathematical repre-
sentation of the range observable p is

P = (ta - tl)ST F, mOdulO M

where

(ts — t1)sr = round-trip time of the signal in seconds of
station time ST (derived from the atomic
frequency standard at the tracking station)
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F = conversion factor from seconds of station
time ST to the units of the range observ-
able

M = modulo number. The largest integer mul-
tiple of M which is less than (t; — t.)sr F
is removed from this quantity, leaving the
observable p, which is less than M. This
operation on a number n will be referred
to as “modding” n by M.

The conversion factor F and modulo number M for each
ranging system are given in Section IX-C.

The first step in obtaining the computed value of a
range observable is to solve the light time equations for
the down and up legs of the light path, whose reception
time £, (ST) is the observation time. This light time solu-
tion, described in Section VI, gives the quantities used
to compute a precision value of the round-trip light time
in seconds of ephemeris time. This precision value is con-
verted to seconds of station time by using the time trans-

={_1'1_2+(1+‘y),u.,g]n(1‘1+1'2+1’12>+

c c? L+ 1 — e
— (ET — Al),, + (ET — Al),,
— 8(ET — Al),, + 8(ET — Al),,
— (A1 = UTC),, + (A1 — UTC),,
— (UTC — ST), + (UTC — ST),

+ R, + Aup (ts) + Agp (£5) + Asp (£s) +

formations of Sections II and III. Corrections are added
to account for the effects of the troposphere, the iono-
sphere, and the offset of the tracking point on the antenna
from the earth-fixed “station location” on the antenna
mount. In addition, the estimated value of a range bias
is added. This sum for the round-trip station time is multi-
plied by F and modded by M, as indicated above. The
expression for computing the range observable p is given
in Section IX-B. The computation of the troposphere,
ionosphere, and antenna corrections is described in Sec-
tion XII.

Section XI contains the formulation for computation
of doppler observables from differenced range observ-
ables divided by the count time T. The required changes
to the range observable formulation of this section, which
are minor, are described in Section XI.

B. Formulation

The range observable p, obtained from any of the track-
ing systems described in Section IX-C, is computed from:

1&_{_ (1+'y)’bsln<f2+fs+rza>

03 7'2 + 1'3 - 7'23

103%¢

Equation (379) is evaluated with quantities obtained
from the light time solution for the observable, listed
after Eq. (314). The epochs of participation ¢, £., and %,
are available in the ET, Al, UTC, UTI, and ST time
scales. The quantities 115, 733, 71, 72, and 7; are computed
from Egs. (315-319). The definitions of ¢, ug, and y fol-
low Eq. (319). The time transformations (ET — Al),
(A1 — UTC), and (UTC — ST) are given by Egs. (93),
(95), and (94), respectively. The quantity § (ET — Al), to
be discussed below, represents additional relativity terms
of (ET — Al) not contained in Eq. (93), which is used
in the general time transformation subroutine of the
DPODP.

Each of the four time transformations of Eq. (379) is
evaluated with the transmission time ¢, and with the re-
ception time #;, expressed in one of the two time scales
related by the transformation. Either time scale may be

60

Aup (t) + Arp (t:) + App (tl)}

F,  moduloM (3879)

used, but the same time scale must be used at both ¢
and ¢;. The remaining terms of Eq. (379) are

R; = estimated constant range bias (specified by
time block for each station)

Aip (j) = range correction in meters due to i = A (an-
tenna offset), T (troposphere), or I (iono-
sphere) for down leg (j = t;) or for up leg
(G=1t)

The sum of the first two terms of Eq. (379) is the right-
hand side of the light time equation for the up leg of the
light path (Eq. 313). Similarly, the sum of terms 3 and 4
is the right-hand side of the light time equation for the
down leg of the light path (Eq. 314). The sum of these
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four terms is an accurate expression for the round-trip
ephemeris time. The largest error in the computation of
this quantity arises from truncation of the epochs of par-
ticipation beyond a precision®* of 107 s.

The maximum conceivable heliocentric velocity of the
spacecraft is 1,000 km/s. For this velocity, the maximum
error in the computed round-trip ephemeris time due to
truncation of the epochs of participation is 1.4 X 10-° s.
The corresponding error in range is 0.4 m round trip or
0.2 m one way. The typical errors are at least one order
of magnitude lower than these figures.

An alternative method for obtaining the round-trip
ephemeris time would be to subtract the ET values of the
epochs of participation ¢, and ¢,. However, this difference
could be in error by as much as 2 X 10-7 s. The corre-
sponding range error would be 60 m round trip or 30 m
one way, which would be unacceptable.

The time transformations of Eq. (379) convert the pre-
cision round-trip light time from an interval of ephemeris
time to an interval of station time ST. The remaining
terms of Eq. (379) account for the effects of the tropo-
sphere and the ionosphere, the offset of the tracking point
on the antenna from the earth-fixed “station location,”
and a constant range bias R, whose value may be esti-
mated.

Section XI contains the differenced-range doppler for-
mulation, ie., the formulation for computing doppler
observables from differenced range observables divided
by the count time. The required analytical change to the
range observable formulation consists of a more accurate
expression for the (ET — Al) time transformation used
to transform the round-trip light time from ephemeris
time to station time. The required expression is Eq. (65),
which is derived in Appendix B.

The (ET — Al) time transformations in Eq. (379) are
evaluated with the general time transformation subrou-
tine of the DPODP. This subroutine computes (ET — Al)
from Eq. (93), which consists of the first three terms of
Eq. (65). Currently, 8§ (ET — Al) in Eq. (379) consists
only of term 4 of Eq. (65). The following listing gives

2¢0n the 16-decimal digit IBM 7094 computer, time is represented
as seconds past January 1, 1950, Ob to a precision of 0.6 X 10-7 s
from 1967 to 1984,
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the maximum contributions to 1-way range (p/2) from
each of terms 3-10 of Eq. (65):

Contribution to 1-way range
(m/AU of 1-way range)

50

22
04
0.007
1
0.02
0.6
0.01

Term No.

O WWO -1 Uk W

=

The observables obtained from the Tau or Mu ranging
systems described in Section IX-C have a potential accu-
racy of about 1 m or slightly better. In order to obtain
the maximum benefits from these accurate data types, the
computed range observables should have an accuracy of
about 0.1 m. For the forthcoming Grand Tour missions
to the outer planets, the range to the spacecraft will be
several tens of AUs, and all of the relativity terms of
Eq. (65) will contribute more than 0.1 m to it (see the
listing above). Therefore, terms 5 through 10 of Eq. (65)
should be added to § (ET — Al). There is a small monthly
variation in (ET — A1), which is not included in Eq. (65)
since it does not significantly affect differenced-range
doppler. However, it does affect 1-way range by about
0.05 m/AU. Hence, an expression for computing this term
should be derived and added to & (ET — Al).

The second and fourth terms of Eq. (379) are the rela-
tivistic corrections to the light time for the up and down
legs of the light path. These terms become very large
when the spacecraft approaches superior conjunction and
the minimum distance from the up and down legs of the
light path to the surface of the sun becomes very small.
For this situation with the light ray grazing the sun of
radius R and with the earth and the spacecraft at the
same distance r from the center of the sun, the relativistic
correction to the light time for each leg of the light path
is given approximately by

e i)

With y =1, its general relativity value, r =1AU =
150 X 10¢ km, and R = 0.7 X 10° km, this 1-way light
time correction amounts to 36 km/c. The round-trip range
observable is affected by 72 km/c or 240 us. This is the
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only really large effect of general relativity on earth-
based tracking data. Fitting to tracking data obtained
from a spacecraft which is in the vicinity of superior con-
junction provides this so-called fourth check of general
relativity. Presuming that the observed minus computed
range residuals will be vastly smaller when the second
and fourth terms of Eq. (379) are turned on, fitting to
these tracking data should provide an estimate of the
parameter y and hence, from Eq. (42), the coupling
constant » of the scalar field of the Brans-Dicke theory
of gravitation.

C. Ranging Systems

To date, range tracking data have been obtained from
five different range tracking systems: the Air Force Eastern
Test Range (AFETR) pulse-radar ranging system, the
Mark 1 and Mark 1A lunar ranging systems, and the
Tau and Mu planetary ranging systems. The latter four
systems have operated at tracking stations of the Deep
Space Network. The lunar ranging systems are used for
lunar missions and during the early phases of planetary
missions. The planetary ranging systems are used for all
deep space applications. The Mark 1 system has been
replaced by the Mark 1A system. The Mu system is the
latest research and development planetary ranging sys-
tem. Both the Tau and Mu ranging systems have a poten-
tial accuracy of a few meters and possibly as low as 1 m
or slightly better. Table 1 gives the values of the conver-
sion factor F and the modulo number M for each of these
systems, where

¢ = speed of light, km/s

fe (t.) = reference oscillator frequency at transmitting
station, cycles per second of station time ST
(derived from transmitter atomic frequency
standard), evaluated at transmission time #,

n = number of components of ranging code used
with Mu ranging system

The frequency f,(#,) is the same quantity used in the
computation of doppler observables. The number n asso-
ciated with the Mu system varies from a typical value of
10 to the maximum system capability of 18.

The units of the Mark 1 and 1A observables are referred
to as “range units,” RU. The length of 1 RU is 10%c/(2F)
meters of range from the tracking station to the spacecraft.
For the Mark 1A system, 1 RU =~ 1.04 m. Using the nomi-
nal value of f, (¢,) = 22 X 10° Hz gives approximately the
same value for the Mark 1 system. The units of the Tau
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Table 1. Conversion factors and module numbers
for ranging systems

Ranging system Conversion factor F Modulo number M
[
AFETR ‘;; None
Mark 1 _'I_;;__;_]O fq (#) 785,762,208
Mark 1A 96 X 1,496,500 785,762,208
1.00947
Tav 10° 1.0002 X 10°
64 X 2"
6 P iA X 3
Mu 10 31, () 10

and Mu observables are round-trip nanoseconds and
microseconds, respectively.

The Mark 1 and 1A range observables are modded by
approximately 800,000 km in 1-way range to the space-
craft. The corresponding figure for the Tau system is
150,000 km. Using the maximum value of n =18 and
fo (81) = 22 X 10° Hz, the Mu range observables are
modded by about 38,000 km, one way.

The AFETR range observables computed by the
DPODP are expressed in one-way kilometers and are not
modded; they are used primarily for study purposes.

For all practical purposes, all of the range tracking sys-
tems except the Mu system provide a continuous measure
of the range observable p given by Eq. (379). The Mu
system provides one range observable each time the rang-
ing system is initialized during the pass of the spacecraft
over the tracking station. Also, it provides a direct mea-
sure of the correction to all 2-way doppler observables
obtained during the pass due to charged particles of the
ionosphere and interplanetary medium.

The output from the Mu ranging system at time ¢ is
Po (t)’ given by

po(¥) = p(t) — ltﬁdt

The ranging system is initialized at some epoch %, during
the pass of the spacecraft over the tracking station. The
first term is the range observable p obtained at time ¢. The
second term is counted doppler from the epoch £, to £, It is
the 2-way doppler observable F2 of Section VIII multi-
plied by the count time T, which extends from t, to ¢, and
with the units converted from those of F2 to those of p.
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In the absence of charged particles, counted doppler is
equivalent to differenced range:%

[ﬁdt=p<t) — p(t)

0

and the output from the Mu ranging system would be

po(t) =p(t) — [p(t) — p(t)] = p (£o)

That is, the output would be constant and equal to the
range p at the initialization epoch £,. With charged par-
ticles present,

P (t)corrected =p (t) + Acp (t)

and

[ ﬁt f;dt]mreeted = [p(#) — p (ta)] — [Acp (£) — Acp (£o)]

0

where Acp (t) is the correction to p (t) due to charged par-
ticles. The effect of charged particles on counted doppler
is the negative of the correction to the corresponding
differenced range observables. Thus, when doppler ob-
servables are computed from differenced range observ-
ables, the sign of the charged particle correction to each
range observable must be changed. From the two equa-
tions above, the output of the Mu ranging system with
charged particles present is

po(8) = p(2) + Acp (£)
— [p(®) — p(£)] + [Acp () — Acp (%)]
=p (o) + 2Acp (t) — Acp (o)

The output at t =1, is

po (to) = p (o) + Acp (to)

This quantity is equal to p computed from Eq. (379), with
the reception time #; equal to the initialization epoch
to. The charged particle correction Acp (f,) is the round-
trip ionospheric correction [Asp (t) + A (8,)] F/10%¢ of
Eq. (379). The output p, (¢) for ¢ > £, is not a true range
observable with reception time t, because the charged
particle correction 2A.p () — Acp (£,) does not equal the

25However, differences can arise from sources other than charged
particles, such as from variations in the electrical path length
through the range tracking system which differ from those of the
doppler tracking system.
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correction Ap (t,) for a range observable. Thus, the out-
put from the Mu ranging system is a range observable p
corresponding to Eq. (379) only at an initialization epoch.

The output p, (£) of the Mu ranging system evaluated
at an epoch #, minus the value at an epoch %, is

po (£2) — po (ts) = 2 [Acp (t2) — Acp ()]

This quantity is an observed value of twice the charged
particle correction to the 2-way doppler observable whose
count time T, extends from ¢, to ..

‘X. Angular Observables

This section gives the formulation for computing angu-
lar observables, which are of two types: (1) directly ob-
served angles of the incoming radiation relative to the
tracking station’s earth-fixed reference coordinate system,
and (2) optical angles—topocentric right ascension « and
declination §—obtained from reduction of photographic
plates. As opposed to directly observed angles, optical
angles do not contain effects due to stellar aberration and
atmospheric refraction (to first order).

The directly observed angle pairs are: (1) hour angle
HA and declination §—most DSN stations; (2) azimuth ¢
and elevation y—AFETR stations and some DSN stations;
(3) X, Y angles—Manned Space Flight Network (MSFN
stations); and (4) X, Y” angles—MSFN stations.

The topocentric coordinate systems and unit vectors
associated with each directly observed angle pair are
described in Section X-A. The formulation for computing
the direction of the incoming radiation and each pair of
angular observables is given in Section X-B. Corrections
to the directly observed angles due to small solve-for
rotations of the earth-fixed reference coordinate system
are given in Section X-C. Partial derivatives of the angu-
lar observables with respect to the heliocentric positions
of the spacecraft and the tracking station are given in
Section X-D. These will be used in Section XIV to form
the partial derivatives of the angular observables with
respect to the solve-for parameters.

A. Coordinate Systems and Unit Veciors

The reference coordinate system at each tracking sta-
tion is rigidly fixed to the earth, and its orientation relative
to the true pole, equator, and prime meridian varies with
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the motion of the pole (see Section VII). The maximum
excursion of the earth’s axis of rotation from its mean
position is about 10 m, and since the latitudes of all track-
ing stations are low (less than 45 deg), the maximum
change in the orientation of the reference coordinate
system from its mean orientation relative to the true
pole, equator, and prime meridian is about 1 arc second.
The maximum attainable accuracy for directly observed
angles is about 0.002-0.003 deg or 7-11 arc seconds, and
thus the 1-arc second variations due to polar motion may
be neglected. Therefore, the computation of directly ob-
served angles is based upon a fixed orientation of the
reference coordinate system relative to the true pole,
equator, and prime meridian,

1. Right ascension, hour angle, and declination. Fig-
ure 5 shows a rectangular coordinate system centered
at the tracking station on earth. The x- and y-axes are
parallel to the earth’s true equator; the x-axis is toward
the true vernal equinox, and the z-axis is parallel to the
true axis of rotation of the earth, directed north.

The unit vector L is directed from the tracking station
at the reception time ¢, to the spacecraft (a free space-
craft or a station on some celestial body other than earth)
at its transmission time f,. The angles « and § are the
right ascension and declination of the spacecraft. The

(8+)) Q

Fig. 5. Right ascensien, hour angle, and declination
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observer’s meridian contains the unit vectors P and Q and
makes an angle (¢ + \) with the vernal equinox, where

6 = true sidereal time = Greenwich hour angle of true
equinox at reception time £,

) = east longitude of tracking station, relative to true
pole

The sidereal time ¢ is computed from Eq. (269) and asso-
ciated equations, using #; (UT1) and #; (ET). The unit
vector E is normal to P and Q. The angle HA is the hour
angle of the spacecraft.

Nominal computed values of directly observed HA and
8 are based upon the geometry of Fig. 5. However, the
reference coordinate system QEP may be rotated through
the small angles ¢’ about Q, € about E, and 7" about P,
thus changing the angle HA in the QE plane and the
angle § normal to it. Corrections to the nominal com-
puted values of HA and 8 due to the solve-for rotations
¥, €, and 5’ are given in Section X-C.

The unit vectors D and A in the directions of increasing
declination and right ascension are used in computing the
partial derivatives of «, §, and HA with respect to the
estimated parameters. The vector A is normal to L and D.
The rectangular components of D and A along «x, y, and
z are

D, [ —sin 8 cosa

D=| D, |=| —sindsina (380)
| D, | L cos 8
[A,7] [[—sine

A=| A |=]| cosa (381)
LA.] L O

2. The north—east—zenith coordinate system. Figure 6
shows a rectangular coordinate system whose origin coin-
cides with the center of the earth. The x- and y-axes are
in the earth’s true equator with the x-axis directed toward
the true vernal equinox and the z-axis along the instan-
taneous axis of rotation, directed north. The unit vectors
N, E, and Z originate at the tracking station S, whose
meridian makes an angle (¢ + A) with the x-axis. The
zenith vector Z is contained in the meridian plane and
makes an angle ¢, with the true equatorial plane, where
¢, is the computed geodetic latitude. The north vector N
and east vector E are normal to Z and are directed to
the north and to the east, respectively. The angle pairs
o—y, X-Y, and X’-Y’ are referred to the rectangular NEZ
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(8+\)

Fig. 6. The north—east—zenith coordinate system

coordinate system at the tracking station. The rectangular
components of these unit vectors along %, y, and z are

TN, [ —sing,cos(d + A)

N=|N, |=| —sin¢,sin(d + 1) (382)
| N.| L COS ¢y
E,7] [ —sin(d +A)

E=|E, |= cos (6 + A) (383)
| E. | L 0
Z,7] [cos¢ycos(d + A)

Z=|2Z, |=] cos¢,sin(f + 1) (384)
| Z, | | sin ¢,

The geodetic latitude ¢, of the tracking station is com-
puted from

b9 =¢ + (¢s — ¢) (385)

where

¢ = solve-for geocentric latitude of tracking station,
referred to true pole and equator

and (¢, — ¢) is computed from

2,
(= #) = sin g cos

e%a, 2a, 1\ .
X[l-l— " —ez<r - 2>sm2¢]

(386)

where

= eccentricity of reference spheroid
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r = solve-for geocentric radius of tracking station
a. = mean equatorial radius of earth = 6,378.160 km

The eccentricity e can be computed from the flattening f,
using a nominal value of 1/298.25, as
e?=2f —f* (387)

3. Azimuth and elevation. Figure 7 shows the unit vec-
tor L in the NEZ coordinate system centered at the track-
ing station S. The angles ¢ and y are the azimuth and
elevation, respectively. The reference coordinate system
may be rotated through the small angles » about N, €
about E, and ¢ about Z. Section X-C gives corrections to

the computed values of ¢ and y as a function of the solve-
for rotations 7, €, and ¢.

The unit vectors D and A (normal to L) in the directions
of increasing y and o, respectively, are used in computing
the partial derivatives. The components of D and A along
N, E, and Z are

[ Dy [ —sinycos o

D=|D;|= —sinysine (388)
_Bz_ R COSs vy
_ZN- —'"Sinﬂ'

A=A |=]| cose (389)
LAZ N L 0

Fig. 7. Azimuth ond elevation
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Using Egs. (382-384), the rectangular components of D and X referred to the true earth equator and equinox are

"D, [siny[cososing,cos(6 + 1) + sinosin (6 + A)] + cosy cos ¢, cos (6 + A)

D= D, |=| siny[cososing¢,sin(8 + 1) — sino cos (6 + A)] + cos y cos p,sin (6 + A) (390)
_13,_ i —sin y cos o cos ¢, + cos ysin ¢,
A, [ sin osin ¢, cos (§ + 1) — cos osin (@ + A)

A= A, |= sinosin ¢,sin (§ + A) + cos ocos (§ + A) (391)
| ~z_ i —sin o cos ¢,

4. The X and Y angles for MSFN stations with 6-m (20-ft) anienna. Figure 8 shows the angles X and Y referred to the
NEZ reference coordinate system at the tracking station.

The unit vectors I}’ and A’ (normal to L) are in the directions of increasing Y and X, respectively. The components
of D' and A’ along the N, E, and Z axes are

Dyl [ cosY

D'=|Dg|=| —sinYsinX :l (392)
| D7 ] [[—sinYcosX
AT [ O

A=] Ay I=]| cosX (393)
| A2 ] [ —sinX :I

Using Eqgs. (382-384), the rectangular components of D’ and A’ referred to the true earth equator and equinox are

D;7] [ sinY [sinXsin (6 + A) — cos X cos ¢, cos (§ + A)] — cos Y sin ¢, cos (6 + \)

D' =|Dj|=| —sinY [sinX cos(f + X) + cos X cos ¢,sin (§ + A)] — cos Y sin ¢, sin (§ + A) (394)
D, | L cos Y cos ¢, — sinY cos X sin ¢,
AL —sin X cos ¢, cos (8 + 1) — cos X sin (6 + 1)

A" =] A} |=| —sinX cos ¢,sin(§ + A) + cos X cos (8 + A)] (395)
AL ] L —sin X sin ¢,

5. The X’ and Y’ angles for MSFN stations with 26-m (85-ft) antenna. Figure 9 shows the angles X” and ¥’ referred to
the NEZ reference coordinate system at the tracking station.

The unit vectors D” and A” (normal to L) are in the directions of increasing Y’ and X’, respectively. The components
of D" and A” along the N, E, and Z axes are

DY [ sinY'sinX’

D"=|Dj |= cosY’ J (396)
| D7 1 | —sinY’ cosX’
Ayl [—cosX’

ar=|a7|=| o (397)
| A7 | |—sin X':I
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The rectangular components of D” and A” referred to the true earth equator and equinox are

D

DII — D;’ —
.

-7

Ay |=

A7

A” =

B. Computation of Angular QObservables

The computation of each pair of angular observables

requires the following quantities from the light time solu-

tion (see Section VI):

13, ¥; = heliocentric position and velocity vectors of
tracking station at reception time #;, with
rectangular components referred to mean
earth equator and equinox of 1950.0

ry = heliocentric position vector of earth at re-
ception time %;, with rectangular compo-
nents referred to mean earth equator and
equinox of 1950.0

r, = heliocentric position vector of spacecraft at
transmission time £,, with rectangular com-
ponents referred to mean earth equator and
equinox of 1950.0

t; (ET),
t; (UT1) = ET and UT1 values of reception time ¢.

The true sidereal time ¢ at the reception time ¢, is com-
puted from Eq. (269) and associated equations, using
t; (UT1) and t; (ET).

1. Compuiation of unit vector L. The unit vector L
will be computed by one procedure for the directly ob-
served angles (hour angle-declination, azimuth—elevation,

Fig. 8. X and Y angles
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—sin Y’ [sin X’ sin ¢, cos (0 + X) -+ cos X’ cos ¢, cos (§ + A)] — cosY’sin (4 + A)
—sin Y’ [sin X’ sin ¢, sin (8 + X) + cos X’ cos ¢, sin (6 + A)] + cos Y’ cos (§ + A) :| (398)
sinY’ (sin X’ cos ¢, — cos X’ sin ¢,)
™ cos X’ sin ¢, cos (8 -+ A) — sin X’ cos ¢, cos (6 + X)
cos X’ sin ¢, sin (6 + 1) — sin X" cos ¢, sin (6 + A) ] (399)
—cos X’ cos ¢, — sin X" sin ¢,

X-Y, and X’-Y’) and will be computed by a second pro-
cedure for optical right ascension-declination obtained
from the reduction of photographic plates.

a. Directly observed angles. The unit vector L is
directed from the heliocentric position of the tracking
station at the reception time £; to the heliocentric position
of the spacecraft (a free spacecraft or a station on some
celestial body other than the earth) at its transmission
time t,. This vector, with rectangular components referred
to the mean earth equator and equinox of 1950.0, is de-
noted as Ls,. It is computed from

Lyo = — 22 (400)
Tag
where
Ty = Y3 — Iy (401)
Ty — (r23 °® 1'23)% (402)
z
'}
N
Xl
v (o
L m
e

DII

Fig. 9. X and Y’ angles
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The unit vector Ls, is directed from the station to the
spacecraft in the heliocentric space-time frame of refer-
ence. In the observer’s topocentric space-time frame of
reference, the direction to the spacecraft is Ls, + AL,
where AL;, can be derived from the Lorentz transforma-
tion of special relativity. The following first-order expres-
sion for AL,, is the same as that due to the stellar
aberration of light, the change in the direction of incom-
ing light due to the heliocentric motion of the tracking
station:

1., .
AL = - [fs — (¥ * Liso) Liso] (403)

where

= speed of light

The unit vector L with rectangular components referred
to the true equator and equinox of the reception time ; is
denoted as L. It is given by

Lirue = N (8:) A (t5) (Liso + ALso) (404)

where

A (t;) = precession matrix, transforming rectangular
components of a vector referred to the mean
earth equator and equinox of 1950.0 to com-
ponents referred to the mean earth equator
and equinox of #;.

N (t;) = nutation matrix, transforming rectangular com-
ponents of a vector referred to the mean earth
equator and equinox of ¢; to components re-
ferred to the true earth equator and equinox
of t,.

The A and N matrices are a function of ephemeris time
and hence are computed from ¢, (ET).

The direction Ly from Eq. (404) does not account for
the bending of the incoming ray due to atmospheric re-
fraction, which increases the elevation angle y of the
incoming ray by A,y. Referring to Fig. 7, the change in
L due to atmospheric refraction is A,yD. Thus, the unit
vector from the observer outward along the incoming ray
is given by

N (t) A (ts) (Lso + ALso) + A,yD
[N (£:) A (t5) (Lso + ALiso) + A,

(405)

true =

This vector has been normalized since the value of the
vector in the numerator is slightly greater than unity. In
order to compute D and A,y, the azimuth ¢ and elevation
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y are required. They are obtained from Egs. (423-425)
using Lirue from Eq. (404). Given ¢ and v, the rectangular
components of D referred to the true earth equator and
equinox of t; are computed from Eq. (390). The refrac-
tion correction is computed as a function of the eleva-
tion angle y from the formulation of D. Cain (Ref. 50,
pp. 21-22):

N,
Ay = 3‘56 b.b,, v < 0.17 rad (406)
_ N X 10® -~
Ay = o . s y=20.17 rad (407)

where

N; = surface refractivity at tracking station (see Sub-
sections XII-B-2-a and -b).

b, = 1.0 — (1.216 X 10° b, y1a0)

— (BL.0 — 300.0 yxaa) (bs)* (408)
7.0 X 10+ )
b,= m — 126 X 102 (409)
1
b, = T (r — ) (410)

yraa = elevation angle, rad
a. = mean equatorial radius of earth = 6378.160 km

r = geocentric radius to the spacecraft, km
= [|r: — xa]]

b. Optical right ascension and declination. Optical right
ascension and declination obtained from the reduction
of photographic plates are referred to the mean or true
earth equator and equinox of a date tz, which generally
is not equal to the observation time (the reception time
t;). The unit vector L with rectangular components re-
ferred to the mean or true equator and equinox of ¢z is
computed from

A (tg) [Lso + A (£)7 N (£5)7 A,yD]
A (t2) [Liso + A (8)" N (2s)" AnyD] I

Lopt {mean) =

(411)
or
N (tz) A (tz) [Lso -+ A ()7 N (t:)" AD]
IN (t2) A (t2) [Lso + A (£:)7 N (£:)7 ,4D]]|
(412)

where A (fz) and N (z) are the precession and nutation
matrices evaluated at the reference time tz. The vector

Lopt (true) =
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D is computed from Eq. (390) with @ evaluated at ¢, and
o and y computed from Egs. (423-425) using L equal to
Liwe =N (ts) A (t3) Liso (413)

The right ascension and declination of a star obtained
from the reduction of photographic plates are free from
the effects of stellar aberration and refraction at least to
first order. If a second-order plate reduction method is
used, the effects of refraction can be removed completely.
However, the right ascension and declination of a space-
craft obtained from the reduction of photographic plates
are affected to a small extent by refraction because the
spacecraft is much nearer than the background stars. The

expression for the correction to the computed elevation .

angle A,y due to this effect has been derived by D. Cain
(Ref. 50, p. 22). However, the sign of the correction is
wrong and should be negative. The corrected expression is

e b,
Ay = —tan (r% = bs) (414)
where
0.00211
b= (Yraa + 0.0598)242 (415)
bs = (bt — aicosy)% — acsiny (416)
bs = a, + 51.2064 (41

The right ascension and declination of a spacecraft or star
obtained from the reduction of photographic plates are
not affected by stellar aberration; hence, AL;, does not
appear in Eqs. (411-413).

2. Computation of observed angles. The directly ob-
served angles are computed from L given by Eq. (405).
Optical right ascension and declination are computed
from L given by Eq. (411) or (412). In either case, the
rectangular earth equatorial components of L are denoted

below by
L,
L=|L,
L,

a. Right ascension and declination. Referring to Fig. 5,
compute declination § from?*

(418)

sind =L, —~90deg=8=90deg (419)

26The angular observables are measured in degrees.
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and compute right ascension from

. L
sine = cosyb‘ , Odeg=a=2360deg (420)
L,
Cos @ = c0s & (421)

b. Hour angle and declination. Compute o and § from
Eqgs. (419-421). Compute HA from (see Fig. 5)

HA=(0+))—a  Odeg=HA=360deg (422)

where
0 = true sidereal time at reception time t,
A = east longitude of tracking station, relative to true
pole

¢. Azimuth and elevation. Compute the umit vectors
N, E, and Z for the reception time ¢, from Eqs. (382-384).
Compute the elevation angle y from (see Fig. 7)

Sin'y =L-Z, Odegéyég()deg (423)
and compute the azimuth ¢ from
LE
ine = =Zg=

sino povont 0deg = o¢=2360deg (424)

L-N
cos ¢ = (425)

Ccos vy

Note that o is indeterminate for y = 90 deg.

d. X and Y angles for MSEN stations with a 9-m (30-ft)
antenna. Referring to Fig. 8, compute the angle Y from

sinY =L-N, —90deg=Y =90deg (426)
and compute the angle X from

i X—'-I-'-'—O-—E— —90deg=X=90d (427)

sinX =—=, eg =X =90deg

Note that X is indeterminate for Y = +90 deg, which can
occur only when the spacecraft is on the horizon.

e. X’ and Y’ angles for MSFN stations with a 26-m an-
tenna. Referring to Fig. 9, compute the angle Y’ from

sinY =L-E, —90deg=Y"=90deg (428)
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and compute the angle X’ from

L-N

sinX = ———
cosY’’

—90deg =X'=90deg  (429)

Note that X’ is indeterminate for Y’ = 290 deg, which
can occur only when the spacecraft is on the horizon.

€. Corrections Due fo Small Rotations of Reference
Coordinate System at Tracking Station

The computed angles may not agree with the observed
angles because the mathematical representation of the
orientation of the reference coordinate system at the track-

ing station differs from the actual orientation of the coor- .

dinate system. The difference in orientation is due to two
errors: (1) errors in the mathematical model (primarily
the difference between the actual plumb bob direction
and the geodetic plumb bob direction computed from a
reference ellipsoid of revolution), and (2) errors in orien-
tation of the instrument axes (e.g., alignment of the verti-
cal axis with the plumb bob direction for the azimuth-
elevation system).

Formulas are developed for corrections to the computed
angles as linear functions of the small rotations of the
computed reference coordinate system about each of its
three mutually perpendicular axes.

This type of correction does not apply for right ascen-
sion and declination obtained from the reduction of photo-
graphic plates.

1. Hour angle-declination. Referring to Fig. 5. the
reference coordinate system is QEP and the rotations are
¢’ about the Q axis, € about the E axis, and %" about the
P axis. All rotations are in the positive direction, using the
right-hand rule.

The dot products of L with @, E, and P are

L@ = cosdcos HA (430)
LeE = —cosdsinHA (431)
L-P=sind (432)

In terms of the rotations, the variations in the unit vec-
tors are

AQ = o/E — €P (433)

AE = ¢'P — 7/Q (434)
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AP = €Q — {'E (435)

The variation in § due to the variation in P is obtained
from Eq. (432) as

(cos 8)AS =L~ AP (436)
Substituting Egs. (435), (430), and (431) gives
A8 = ¢’'sin HA + ecos HA (437)

From Eq. (430), the variation in HA is given by

(cos 8 sin HA) AHA = —L*AQ — (sin § cos HA) A8
(438)

Substituting Eqs. (433), (431), (432), and (437) and simpli-
fying gives

AHA = 5’ + tan § (esin HA — {’ cos HA) (439)
This same equation may be obtained by differentiating
Eq. (431).

The meridian plane is determined by the vector P to
the pole and by the plumb bob line. If the plumb bob is
displaced to the west through the angle 6,,, the meridian
plane is displaced to the east through the angle

’— Ow
COS g

7

If 6., is known, this equation provides an a priori estimate
of o’

2. Azimuth—elevation. Referring to Fig. 7, the reference
coordinate system is NEZ and the rotations are 5 about N,
€ about E, and ¢ about Z.

The variations in the unit vectors due to the rotations
are

AN = ¢Z — (E (440)
AE = ¢N — 4Z (441)
AZ = yE — &N (442)

The variations in elevation y and azimuth o due to the
variations in the unit vectors are obtained from Eqs. (423
425). The results are

(443)

Ay = nsine — €cose
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Ac = ¢ — tany (y cos ¢ + €sin o) (444)

3. Angles X, Y. Referring to Fig. 8, the reference coordi-
nate system and rotations are the same as for the azimuth-
elevation system. Using Eqs. (426), (427), (440), and (441),
and Fig. 8,

AY = ~¢sinX + ecos X (445)

AX= —qn+tanY (esinX + Z cos X) (446)

4. Angles X’, ¥, The azimuth—elevation reference co-
ordinate system and rotations are also used for the X’ Y’
system. Using Eqs. (428), (429), (440), and (441), and
Fig. 9,

AY = —¢sin X’ — ncos X’ (447)

AX' = —e+tanY’ (L cos X’ — psin X) (448)

D. Partial Derivatives of Angular Observables With
Respect to Helioceniric 1950.0 Position Vectors
of Spacecraft and Tracking Station

This section gives the partial derivatives of each angular
observable with respect to the rectangular components of
the heliocentric position vectors of the spacecraft and
tracking station, referred to the mean equator and equi-
nox of 1950.0. These subpartial derivatives will be used
in Section XIV to form the partial derivative of each
angular observable with respect to the total parameter
vector q.

The partial derivatives of the observed angles with
respect to r,, obtained from an examination of Figs. 5
and 7-9 are given below. In these expressions, a sub-
script 50 after a unit vector indicates that the rectangular
components of the vector are referred to the mean earth
equator and equinox of 1950.0.

B _ (% o 20\ _ AL
ar, \0X, 0> 0%2) Tesc088

_ Awso Ayso Azso
- <r23 coss’ P25 COS & ’ 725 COS 8> (449)
08 DI,
Or, T (450)
oHA Ja
P - 51;; (451)
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B _ A,

ory - 723 COS ¥ (452)
X ]—:);T— (459)
A (456)
oD (457)

For any of these angles,
9 angle _ dangle (458)

31'3 81'2

For the directly observed angles, compute D,A from
Eqgs. (380) and (381), D,A from Egs. (390) and (391),
D', A’ from Egs. (394) and (395), and D”, A” from Eqgs.
(398) and (399). These unit vectors all have rectangular
components referred to the true equator and equinox of
the reception time ¢;. Transform the rectangular compo-
nents of each of these vectors to the mean equator and
equinox of 1950.0 as

D- A,D,A, D", A",
(459)

D5o = AT (ts) NT (ts) D

For optical right ascension and declination, compute D, A
from Eqs. (380) and (381). For angles referred to the true
equator and equinox of the date tg, transform the rectan-
gular components of D and A to the mean earth equator
and equinox of 1950.0 as

Dy =AT(tz) N"(tz) D D-> A (460)
For angles referred to the mean equator and equinox of
the date tz,

Dy =AT(tz)D D-A (461)

Note that the partial derivatives are computed using
angles affected by refraction. Strictly, these angles should
not include refraction, and the refraction correction should
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also be differentiated with respect to the position of the
spacecraft. Because of the approximations made, the par-
tial derivatives of the angular observables with respect to
the positions of the spacecraft and tracking station are
accurate to roughly five significant figures for L directed
near the zenith and three significant figures for L directed
toward the horizon. These figures apply for directly ob-
served angles. For optical angles obtained from the reduc-
tion of photographic plates, the secondary refraction
correction and hence the error in the partial derivatives
approaches zero with increasing range.

XI. Differenced-Range Doppler

A. Intreduction

This section gives the formulation for the computation
of 1-way, 2-way, and 3-way doppler observables from
the difference of two range observables whose reception
times are the end and start of the count interval T.. The
computation of accurate doppler observables with this
differenced-range doppler formulation requires a com-
puter with a large word length. On the Univac 1108
computer with a double-precision word length of 60 bits
or 18 decimal digits, the formulation for the computation
of 2-way and 3-way differenced-range doppler is accurate
to about 10-°* m/s for all count times above a lower limit
which varies from about 0.1 to 1.5 s. This formulation
was made possible by the derivation (in Appendix B) of
an accurate expression (Eq. 65) for the transformation
from coordinate time (ephemeris time ET) to proper time
on earth (atomic time Al). The computation of accurate
1-way differenced-range doppler requires a similar expres-
sion for ET minus Al obtained from an atomic clock on
board the spacecraft. This expression does not exist and
the resulting 1-way formulation is accurate to only about
10~* m/s for count times ranging from about 10 s when
the spacecraft passes by a planet or the moon at very
low altitude to about 1,000 s when the spacecraft is in
heliocentric cruise.

The primary advantage of the differenced-range dop-
pler formulation is that there is no upper limit to the count
time for 2-way or 3-way doppler, whereas count times
used with the current Taylor series formulation (Sec-
tion VIII) are limited due to truncation of the fourth
and higher even derivatives of the doppler frequency shift
in the Taylor series expansion. For an accuracy of 10-3
m/s, the maximum allowable count time for the Taylor
series formulation varies from 1-10 s when the spacecraft
passes by a planet or the moon at very low altitude to
about 1,000 s when the spacecraft is in heliocentric cruise.
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The computation of doppler observables to an accuracy
of 10~ m/s with the Taylor series formulation thus re-
quires the computation of 43 observables for a 1/2-day
pass of the spacecraft over a tracking station during helio-
centric cruise. However, preliminary considerations indi-
cate that the information content of a pass of tracking
data during heliocentric cruise is not significantly reduced
if the count time is increased to about 8,840 s, which
requires the computation of only five observables. The
use of the differenced-range doppler formulation will
allow these very large count times to be used and greatly
reduce the number of observables which must be com-
puted and hence the running time of the DPODP. Fur-
thermore, the formulation is much simpler, which further
reduces the running time and also decreases the size of
the program. The differenced-range doppler formulation
will be added to the Univac 1108 version of the DPODP,
either as a replacement for or alternative option to the
existing Taylor series formulation.

Reference 51 demonstrates the 10° m/s accuracy of
2-way differenced-range doppler. However, in order to
obtain this accuracy for 2-way and also for 3-way doppler,
a number of changes to the range observable formulation
of Section IX are required. The primary analytical change
is the use of the more accurate expression (Eq. 65) for the
relativistic transformation from coordinate time (ephem-
eris time ET) to proper time (atomic time Al). Currently,
only the first four terms of this equation are used. The
increase in numerical precision from the 16 decimal digits
of the IBM 7094 to the 18 decimal digits of the Univac
1108 is required; also, the precision of representation of
time must be increased from double- to triple-precision
seconds past January 1, 1950,0% Alternatively, time could
be represented as one single-precision word (8-decimal
digits) for the Julian day number plus one double-
precision word (18-decimal digits) for seconds past the
beginning of the day. It is also recommended that the
current type-50 n-body ephemeris be replaced by the
more accurate type-66 ephemeris or the equivalent.

The expressions for the computation of 1-way, 2-way,
and 3-way doppler observables from differenced 1-way,
2-way, and 3-way range observables are derived in Sec-
tion XI-B. Section XI-C gives the numerical and analytical
modifications to the 2-way range observable formulation
of Section IX required for the computation of 2-way and
3-way differenced-range doppler. Also, the formulation
is modified for an approximate computation of the change
in l-way range during the count time, used to compute
1-way differenced-range doppler.
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B. Equivalence of Doppler Observables and
Differenced Range Observables

The doppler observables are defined by Eq. (288),
repeated here:

1 ta,, (8T)+(1/2) T,
P=pf (F = fos) s (ST)

&3, (8T)~(1/2) T,

(462)

The notation is that of Section VIII. Equations (284-286)
give the expressions for f — fyias for 1-way doppler (F1),
2-way doppler (F2), and 3-way doppler (F3), respectively.
Substituting these equations into Eq. (462) gives

F]. = _(_;f_tﬂg_l - Cz [AfTO + le (tz - to) + sz (tz - to)z]

T,
(463)
F2= CSf;(tl) I (464)
r= St (465)
where
I _ tam(ST)+(1/2)Tﬂ fR. d ST
== /;am(ST)-(l/z)Tc ( . fT) ts( ) (466)

For 2-way or 3-way doppler, fz/fr is given by Eq. (293)

and
_ tg,, (ST)+(1/2) T, dt1 (ST)
= ./;a,,.(sr)—u/zm [ 1 dt (ST) ] dt; (ST)

The count time T, is an interval of reception time; the
corresponding transmission interval is denoted by T% and
has midpoint £, ,. Thus,

(467)

ts, (ST)+(1/2)T, txm(ST)+(1/2)Tlcl
I= f dt, (ST) — / dt, (ST)
t:

9, (8T) - (1/2) T t1,, (ST)-(1/2)T¢

=T, —T, (468)

The epochs corresponding to the start and end of the
reception and transmission intervals T, and T% are de-

noted as

ts, (ST) = end of reception interval T

ts, (ST) = start of reception interval T,
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t:,(ST) = end of transmission interval T¢

t,, (ST) = start of transmission interval T¢
Also, define 2-way range p. and 3-way range p; as

ps =1, (ST) — £, (ST) 23 (469)

where

t, (ST) = transmission time of the crest of a wave at
the transmitting station (station time at trans-
mitter)

t3 (ST) = reception time of same crest at receiving sta-
tion (station time at receiver)

Then, the range p with reception time equal to the end
of T, is

Pge = t3e (ST) - tle (ST) 2 Ecd 3 (470)

and the range p with reception time equal to the start of
T.is

p28 - t38 (ST) - tls (ST) 2 -> 3 (471)

Thus,
I1=T,— T;= [t;,(ST) — t5,(ST)] — [#,,(ST) — ¢, (ST)]
23 (472)

= P2, T P2y
For 1-way doppler, fz/fr is given by Eq. (303) and
ts,, (ST)+(1/2) T,
/ [1-
ts,, (ST)-(1/2)T,
The transmission interval at the spacecraft in UTC sec-
onds (9,192,631,770 (1 —S) cycles*” of an imaginary

cesium atomic clock at the spacecraft) is denoted by T%
and has midpoint ¢, . Thus,

ts,, (STY+(1/2)T¢ b2, (UTO)+(1/2) T
12 |1

3, (ST)=(1/2) T 2, (UTC)~(1/2) T¢

dt, (UTC)

W:‘ dt; (ST) (473)

=T, — T} (474)

27See Subsection IT1-A-4,
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The epochs corresponding to the start and end of the
transmission interval T are denoted as

t., (UTC) = end of transmission interval T?

t,, (UTC) = start of transmission interval T%

Also, define 1-way range p, as

p1 =t (ST) — £, (UTC) (475)
Then,
p1, = 5, (ST) — ., (UTC) (476)
p1, =1t5,(ST) — ¢, (UTC) (477)
Thus,
I=T,— T.= [t;,(ST) — £;,(ST)]
— [t:, (UTC) — #,, (UTC)]
= P17 Py (478)

Substituting Eq. (478) into Eq. (463), and Eq. (472)
evaluated with p, and p; into Eqs. (464) and (465), respec-
tively, gives

P1g

Fl = sz.g/c Bk-;“—

— Gy [Afr, + fr, (b2 — o) + fu, (b2 — t0)?] (479)
F2 = Cify () Lot (480)
F3 = Cefy(t) et (481)

In the computation of differenced-range doppler, the
epochs at the end and start of the count interval T are
converted from ST to ET and used to start the light time
solutions for p, and p,. This conversion is accomplished
using the general time transformation subroutine of the
DPODP. This subroutine evaluates (ET — Al) from
Eq. (93), which consists of the first three terms of the
complete expression for ET — Al (Eq. 65). The con-
verted epochs t;, (ET) and ¢, (ET) are in error by
—8(ET — Al)tae and —§(ET — Al)t33, respectively, where

8 (ET — Al) = the last seven terms of Eq. (65). That is,
8 (ET — Al) consists of the terms of
(ET — Al) not included in the general
time fransformation subroutine of the
DPODP.
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The resulting error in differenced-range doppler (DRD)
expressed in 1-way meters/second is

8(ET — Al),, — 8 (ET — Al)t%}
T,

SDRDz,‘)[

1.,
— 3P [8 (ET — Al)tss + 3 (ET — Al)tse]

(482)

where p is the 1-way tracking-station-to-spacecraft range-
rate evaluated at the midpoint of the count interval and
p is the time derivative of §, assumed constant over T..

The second term of Eq. (482) has been discussed in
Section ITI. It represents the time derivative of the ob-
servable multiplied by the error in the time at which it
is evaluated. The largest terms of § (ET — Al) are the
2-ps daily term and the 1.7-us monthly term. Furthermore,
there are unknown long-period variations in (ET — Al)
of the same approximate magnitude due to periodic vari-
ations in the heliocentric orbital elements of the earth—
moon barycenter arising from perturbations from the
other planets. Hence, Eq. (93) for (ET — Al) used in the
general time transformation subroutine may be in error
by as much as 10-® s. For a spacecraft acceleration of
25 m/s* in the vicinity of Jupiter, the resulting error in
doppler observables can be as large as 2.5 X 10-* m/s.

The first term of Eq. (482) is due primarily to neglect-
ing the 2-us daily term of (ET — Al) in the general time
transformation subroutine and has a typical value of
about 10-°* m/s. It can be eliminated in favor of a much
smaller error by a simple modification of T, used in
Egs. (479-481). If the epochs ¢, (ET) and ¢ (ET), ob-
tained using Eq. (93), are transformed back to ST using
Eq. (65) and subtracted, the result is a computed count
time given by

T, {computed) = T, + § (ET — Al)tss —8(ET — Al)t3e
(483)

The computation of differenced-range doppler using
T.{computed) rather than T, in Eqs. (479-481) elimi-
nates the error given by the first term of Eq. (482). How-
ever, the computed observable is based upon a count time
of T, (computed) rather than the correct value of T.. For-
tunately, doppler observables vary slowly with T, and
the maximum error is about 10~ m/s, which is negligible.
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Thus, differenced-range doppler observables are com-
puted from

F1 = Cofso| izl _
= Cufsro T. (computed)]

— C: [Afr, + fr, (b2 — o) + fr, (82 — 10)?]
(484)
F2 = Cuf,(t) [T—(f;:n%’@] (485)
F3 = C4f,(t,) [_ﬁg%éaj] (486)

where T, (computed) is given by Eq. (483). The formula-
tion for computing the 1-way, 2-way, and 3-way range
observables at the end and start of the count interval is
given in Section XI-C. As in the Taylor series formulation,
the variation in fg,¢ over the transmission interval T% for
1-way doppler is ignored. It is computed from Eq. (277)
using t, equal to the average of ¢,, (UTC) and ¢, (UTC)
obtained from the light time solutions for p;, and p,,, re-
spectively. This value of ¢, is also used in the second term
of Eq. (484). As in Section VIII, the doppler formulation
is valid only when f,(¢,) is constant over T% and f, (),
K, (t5), and Ks(t;) are constant over T,. Also, if T} over-
laps T, fq(t;) must equal f,(#). It is recalled that the
doppler observable which the data editing program passes
on to the orbit determination program is given by
Eq. (287), which uses fyias computed from f, (t1), fq (£s),
K. (t;), and K (f;) using Eqs. (281-283).

C. Modified Range Observable Formulation

1. Numerical considerations. Each of the computed
range observables used to form differenced-range doppler
contains random errors due to truncation of time and posi-
tion beyond the double-precision word length of the com-
puter being used.

The range observables computed by the IBM 7094
version of the DPODP contain a random error of a few
millimeters due to truncation of time (seconds past 1950)
beyond 16 decimal digits.?® The corresponding error in

28Time is represented as double-precision (54 bits on the IBM 7094
computer) seconds past January 1, 1950,0°, From 1967 to 1984,
the value of the last bit is 0.6 X 107 s, The transmission time,
reflection time at the spacecraft, and reception time (in ephem-
eris time) obtained from the light time solution may be in error
by about this amount. Hence, for a spacecraft range rate of
30 km/s, the error in computed range will be about 30 km/s X 10°
mm/km X 0.6 X 10" s = 1.8 mm.
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differenced-range doppler is a maximum of 3 X 103 m
divided by the count time (Ref. 51). However, the
differenced-range doppler formulation will be added to
the Univac 1108 version of the DPODP, which has a
double-precision word length of 18 decimal digits (60
bits). The increase in the word length from 54 to 60 bits
increases the precision of representation of time from
0.6 X 107" s to 10 s in the interval 1967-1984. This should
decrease the time truncation error of differenced-range
doppler to about 5 X 10° m divided by the count time.

For the desired accuracy of 10° m/s, the minimum
allowable count time is 5 s. Since count times as low as
0.1 s are sometimes used, it is recommended that the rep-
resentation of time be changed from double-precision to
triple-precision seconds past January 1, 1950, 0" or double-
precision seconds past midnight with one single-precision
word used for the Julian day number. This will, for all
practical purposes, completely eliminate the time trun-
cation error, and allow count times as low as 0.1 s to be
used.

In order to utilize the increased precision for represen-
tation of time, the accuracy of the light time solution for
the epochs of participation of the transmitter and the
spacecraft must be increased from the current value of
10" s to 10-% 5. For the maximum conceivable spacecraft
velocity of 1,000 km/s, the maximum error in computed
range due to an error of 102 s in the epoch of participa-
tion of the spacecraft is 10-¢ m. The maximum correspond-
ing error in differenced-range doppler is 2 X 10¢m/T,,
allowing an accuracy of 10-° m/s to be obtained for all
count times above 0.2 s.

On the forthcoming Grand Tour missions to the outer
planets, the tracking-station-to-spacecraft range will ap-
proach the 50-AU radius of the solar system. For ranges
of 29-57 AU, the computed round-trip range (p; or ps) of
57-114 AU will be represented to a precision of 1.5X10-*m
on the 60-bit Univac 1108 computer. Differenced-range
doppler may be in error by 3 X 10-*m/T. (round-trip)
or 1.5 X 10-*m/T, (one way), allowing the desired accu-
racy of 10-° m/s to be obtained for all count times above
1.5 s. For ranges of 3.5-7 AU, the round-irip range of
7-14 AU is represented to 2 X 10~ m, and differenced-
range doppler may be in error by as much as 2X10-°m/T';
(one way). For the desired accuracy of 10-° m/s, count
times as low as 0.2 s may be used.

The precomputed n-body ephemeris tapes used by the
DPODP are of the so-called type-50 format. They contain
modified second and fourth central differences of position
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and velocity. Interpolation is obtained by the fifth-order
Everett’s formula. Both the velocity interpolation error,
which affects doppler observables computed from the
Taylor series formulation, and the differenced position
interpolation error divided by the count time, which af-
fects differenced-range doppler, can approach 10-% m/s.
This small error could be eliminated by converting to the
type-66 n-body ephemeris tape format, which contains the
full sum and difference array (on acceleration) used to
generate the ephemeris. The heliocentric velocity of the
spacecraft is affected by errors in interpolation of the
heliocentric ephemeris of the center of integration for
the spacecraft trajectory, while errors in interpolation of
the heliocentric ephemeris of the earth-moon barycenter
affect the heliocentric velocity of the tracking station.

2. Formulation. This section gives the modifications to
the 2-way range observable formulation of Section IX
which are necessary for the computation of 1-way range
p1, 2-way range p,, and 3-way range p; used in Eqgs. (484~
486), respectively, to compute l-way, 2-way, and 3-way
differenced-range doppler.

The range observable p;, (where i = 1, 2, or 3) is com-
puted from a light time solution with reception time
t; (ST) equal to

t4(ST) = t,, (ST) + =T,

5 (487)

t

where
ts,, (ST) = “time tag” for doppler observable
= midpoint of count interval T, station time

Similarly, the range observable p;, (where i =1, 2, or 3)
is computed from a light time solution with reception
time equal to

1

t:(ST) =t,, (ST) — 5 T, (488)

The 1-way range observables are based upon a 1-leg
light time solution, and the 2-way and 3-way range ob-
servables are based upon a 2-leg light time solution. As in-
dicated in Subsection XI-C-1, the iteration for the epochs
of participation for the spacecraft and transmitter must
be continued until the indicated correction to the epoch
is less than 10-*? s, Aside from this change, the light time
solution for each range observable is identical to that
described in Section VI.

Since the count intervals for successive doppler observ-
ables are contiguous, each light time solution and range
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observable is used twice: once as p, for the preceding
doppler observable and the second time as p, for the
succeeding doppler observable.

a. Two-way range p, and three-way range ps. The 2-way
range observables of Section IX are computed from
Eq. (379). Considering this equation and the definition
(Eq. 489) for 2-way range p, and 3-way range p; used to
compute differenced-range doppler, it is evident that p.
and p; may be computed from Eq. (379) using F = 1 and
M= .

The (ET — Al) time transformation in Eq. (379) is eval-
uated with the general time transformation subroutine of
the DPODP using Eq. (93), which consists of the first
three terms of Eq. (65). Currently, § (ET — Al) in
Eq. (379) consists of an approximation of term 4 of Eq. (65)
(see Section I1 after Eq. 70). In order to compute accu-
rate differenced-range doppler, 8 (ET — Al) must be com-
puted from the last seven terms of Eq. (65) so that
(ET—A1)+8 (ET—A1) will equal Eq. (65) for (ET—A1L).
This expression was derived in Appendix B specifically
for the purpose of computing accurate differenced-range
doppler. However, it was shown in Section IX that all of
the terms of Eq. (65) are also required in order to com-
pute the range observables to the desired accuracy of
0.1 m.

In the computation of p; from Eq. (379), evaluation of
8 (ET — Al) at t, and ¢; is accomplished using the longi-
tude and spin axis distance of the transmitting and re-
ceiving stations, respectively. Similarly, (UTC — ST) is
evaluated at ¢, and ¢; using coefficients which apply for the
transmitter and receiver, respectively. Since the constant
range bias R, cannot affect differenced-range doppler, it
is set equal to zero in the computation of p, or ps.

The range observables of Section IX represent the time
for a signal to travel from the transmitter to the receiver
at the group velocity (= ¢). On the other hand, the range
observables used to compute differenced-range doppler
represent the time for the crest of a wave to travel from
the transmitter to the receiver at the phase velocity (== ¢).
In the presence of charged particles, the departure of
each of these velocities from c is equal in magnitude but
opposite in sign. Hence the ionospheric range corrections
A (t,) and Agp (%) in Eq. (379) for true range observ-
ables will be equal in magnitude but opposite in sign to
those for range observables used to compute differenced-
range doppler. The corrections for the true range observ-
ables will be positive.
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Each periodic relativity term of (ET — Al) is evaluated
at #;, and f,, in the computation of pz, Or ps, from
Eq. (379) and also at #;, and £, in the computation of
pz, Or ps, from Eq. (379). The effect of these four values
of a periodic term of (ET — Al) on 2-way differenced-
range doppler computed from Eq. (485) is

9Mc . (2= T. 2r
& = 3 e Yaf —_—
=", Sm(P 2)5“1(? c)

8p = effect on F2, expressed as 1-way m/s
M = amplitude of periodic term of (ET — Al), s

(489)

where

¢ = speed of light, m/s
T. = count time, s
P = period of periodic term of (ET — Al), s

p = one-way range to spacecraft, m

The periodic terms of (ET — Al) have periods of 1 day,
1 month, and 1 year. Since the minimum value of P is
1 day and the maximum possible value of T, is normally
about 1/2 day, the argument of the first sine term of
Eq. (489) will rarely exceed /2. Hence, a rough approxi-
mation for this term is its small angle approximation,

which gives
. 27\ . (2 »p
dp < Mc( P)sm( P c)

For a daily term of (ET — Al) and a count time of 1/2 day,
the right-hand side of Eq. (490) is 57% greater than that
of Eq. (489). However, for a count time of about 1/10 day,
which probably will be used with differenced-range dop-
pler, the difference between Eqs. (490) and (489) is
negligible.

(490)

Equation (490) gives the contribution to 2-way
differenced-range doppler from a daily, monthly, or an-
nual term of (ET — Al). It also gives the contribution to
3-way differenced-range doppler from a monthly or an-
nual term of (ET — Al). The contribution from a daily
term is given by

s 2\ 2r p AX
8p<MC<T>Sm(P C+?>

A) = east longitude of receiving station minus that of
transmitting station

(491)

where
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For a daily term of (ET — Al), the argument of the sine
term of Eq. (490) approaches =/2 as p approaches the
40-50 AU radius of the solar system. The argument of
the sine term of Eq. (491) can also approach /2. How-
ever, the range at which this occurs depends upon the
separation in longitude AX of the receiving and transmit-
ting stations. The maximum effect of a diurnal term of
(ET — Al) on 2-way or 3-way differenced-range doppler
is thus

. O
3p<M(T)c

The maximum effect from the 2-ys daily term of ET — Al
(term 4 of Eq. 65) is 0.05 m/s.

(492)

For a monthly or annual term of (ET — Al), the argu-
ment of the sine term in Eq. (490) is very small. Hence,
this term may be replaced by its small angle approxima-
tion, and Eq. (490) becomes

. 27 \?
s (3,

For a range of 50 AU, the maximum effect of the monthly
term of Eq. (65) (term 9) on 2-way or 3-way differenced-
range doppler is about 7.5 X 10-* m/s; the annual term
(term 3) contributes about 5 X 10-*m/s. The contribu-
tion from the 2-us daily term of Eq. (65), computed from
Eq. (493), is 0.08 m/s, whereas the actual upper limit
computed from Eq. (492) is 0.05 m/s. The ratio 0.05/0.08
is (sin x)/x evaluated at x = »/2. For a range of 10 AU
or less, Eq. (493) is a fairly accurate representation of the
contribution from a daily term of (ET — Al) to 2-way
differenced-range doppler.

(493)

In Appendix B, Eq. (493) is used to determine which
terms should be retained in the final expression for
ET — Al (Eq. 65). All terms affecting 2-way differenced-
range doppler by more than 2 X 10-* m/s/AU of range to
the spacecraft are retained. Several terms of this magni-
tude are neglected, and the resulting error in differenced-
range doppler is no more than 10-¢ m/s/AU or 5 X 10~
m/s at 50 AU (using Eq. 493).

b. One-way range p,. From the definition (Eq. 475) for
1-way range p,, it may be obtained from Eq. (379) (used
to compute the range observables of Section IX) by re-
moving the terms associated with the up leg of the light
path, evaluating the time transformations with subscript
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t, at the spacecraft transmission time %,, deleting the re-
sulting term (UTC — ST);,, and by setting R, =0, F =1,
and M = «. The result is

“‘E—l— (1+‘y)p.31n<1‘2+1'3+‘r23)

pr=

c ¢ T2+ 13— 125

— (ET — Al);, + (ET — Al);,

— 8 (ET — Al),,

—(A1 — UTC);, + (AL — UTC),,

— (UTC — ST),,

" Aup (ts) + Aigg(:a) + Asp (ts) (494)

The (ET — Al) time transformation at the reception
time 5, i.e., (ET — Al);, + 8 (ET — Al);,, relates Al time
at the tracking station to ET. It is evaluated with Eq. (65),
which applies for Al time derived from any fixed atomic
clock on earth. However, an expression is not available
for evaluating (ET — Al);,, which relates Al time ob-
tained from an atomic clock on board the spacecraft
(9,192,631,770 cycles from a cesium atomic clock equals
one Al second) to ET. The differential equation relating
these two time scales is Eq. (64). With a slight change
in notation,

dAl _ 1 _ (Ps/o - q.SE
dET — c?

1 30— 5

2 c?

Afcesium

fcesium

+ (495)

where

¢s/0 = Newtonian potential at spacecraft
Sg/0 = heliocentric velocity of spacecraft

én = average value of Newtonian potential at a fixed
point on earth

§% = average value of square of heliocentric velocity
of a fixed point on earth

It would be extremely difficult to integrate Eq. (495) to
obtain an expression for ET — Al obtained from the
spacecraft atomic clock which would be valid for the tra-
jectory of any spacecraft. From Eq. (64), the average rate
of an Al clock on earth is equal to the rate of an ET
clock (if Afeesium = 0). However, from Eq. (495), the rate
of an Al clock on board a spacecraft will be significantly
different from the rate of an ET clock if the heliocentric
distance and velocity of the spacecraft are significantly
different from 1 AU and 30 km/s, respectively. Under
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these conditions, the term (ET — Al)tze of p,, will differ
significantly from the term (ET — Al)t23 of p;,. The re-
mainder of this section gives an approximate formulation
for computing the difference between these two terms
and also the range change p,, — ps, used in Eq. (484) for
1-way differenced-range doppler.

Define a modified 1-way range p¥ as

pi=pr— (ET — Al), (496)

It is computed from Eq. (494) for p, with the term
(ET — Al);, omitted. Then,

p1, — P1, = P1, p1, + (ET — Al)”ze - (ET — A].)t28
(497)
or
Pi, — P1, = Pi, T P,
+ [te, (ET) — t,, (ET)]
— [tz, (AL) — 5, (A1)] (498)

The last two terms represent the transmission interval
T, at the spacecraft in the ET and Al time scales, respec-
tively. The last term is evaluated as the product of the
next-to-last term and an approximation to the average
value of dA1/dET from Eq. (495) over T%. The light time
solutions for p%, and p}, allow the computation of the
Newtonian potential at the spacecraft ¢g/c and the square
of the heliocentric velocity of the spacecraft §3,0 at the
epochs #,, and t,,. The potential ¢g/¢ is computed from
Eq. (338) as indicated after that equation. Assuming a
linear variation in these quantities over T%,their average
values are

1
50 = 5 [($sr0)es, + (bs/0)ey, ] (499)
0= 5 [(hods, + (@), ] (500)

Substituting these quantities into Eq. (495) gives the ap-
proximation to the average value of dA1/dET over T.
Using dA1/dET as indicated above to evaluate the last
term of Eq. (498) gives

dAl
p1, — p1, = pi, — pi, T [tz (ET) — 2, (ET)] (1 - d_ET>

(501)
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Substituting Eq. (495) gives

P ™ P1, =

pt, — pf, + [t (ET) — 1o, (ET)] {1 [(¢S"’ +5 SS/”) <¢E

(502)

15)]-

Afcesium}
fcesium

Since the mean distance of an inner planet from the earth is about 1 AU and the mean distance of an outer planet
from the earth is approximately equal to the semi-major axis of its heliocentric orbit, the average value of ¢z is given

approximately by

PMa

- 1
¢E:XI;(”‘S+”‘MG+F‘V+ 15 + p -+

5.203
where

Mss ares vy hdtas as
Hsas U, o, par, Mg — gravitational constants for the sun,
Mercury, Venus, Mars, Jupiter,
Saturn, Uranus, Neptune, the
moon, and the earth, respectively,
km?/s%;
e = 1,327.1250 X 108
ae = 0.0002 X 108
v = 0.0032 X 108
ware = 0.0004 X 108
o= 1.267 X 102
pse = 0.379 X 108
po = 0.058 X 108
pxy = 0.069 X 108
py = 4,902.78
pe = 398,601.2

Az = the number of kilometers per astronomical
unit AU

= 149,597,900 km

r = geocentric radius of tracking station, km

In Eq. (503), the gravitational constant of each outer
planet is divided by the semimajor axis of its heliocentric
orbit expressed in AU, and the gravitational constant of
the moon is divided by the mean distance to the moon.
Substituting numerical values gives

=~ 887.336 + 398601

km?/s? (504)
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Msa _f_‘ﬂ 1154 11574
oss Tt 30) +

_m M
384400%km T 7 (503)

From Eq. (B-14) and associated equations of Appendix B,
the average value of §3 is given approximately by

5. bs T ps

$E ~ + u%6%
Ag

(505)

where

u = distance of tracking station from earth’s spin
axis, km
6 = mean sidereal rate (see Eq. 273)
= 0.729,212 X 10 rad/s

Substituting numerical values gives

§2~887.131 + 0532 X 102u*  km?/s? (508)
Dividing Eq. (506) by 2 and adding the result to Eq. (504)
gives

- 1
§% =~ 1330.90 + 39860

éz +

L\‘)I)—-A

+ 0.266 X 10-8u? km?/s*  (507)
This equation is accurate to 0.01 km?/s?, a value that

affects the spacecraft range rate by 3 X 10-m/s.

The range change p,, — p:, used in Eq. (484) to compute
1-way dﬂferenced—range doppler is given by Eq. (502)
using p}_and p}, computed from Eq. (494) with the term
(ET — Al)t2 omitted, ¢sc from Eq. (499), $§0 from
Eq. (500), and (§z + %5%) from Eq. (507). The times
t,,(ET) and t, (ET) are available from the light time
solutions for p} and p} , respectively.

The l-way differenced-range doppler formulation is
based upon the assumption that (¢g0 + ¥%83,) varies
linearly over the transmission interval T;. The resulting
error in the observable varies directly with the departure
from linearity (the second derivative of ¢/ + % §3,0) and
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with the square of T%. An accuracy of at least 10 m/s can
be achieved if the count time T, does not exceed approxi-
mately 10 s when the spacecraft passes by a planet or the
moon at extremely small altitudes or 1000 s in heliocentric
cruise. This is approximately the range of count times
used with the Taylor series formulation of Section VIII.
The 1-mm/s accuracy for computed l-way doppler is
acceptable, since this data type is currently derived from
a crystal oscillator on board the spacecraft rather than an
atomic frequency standard.

Xll. Antenna, Troposphere, and lonosphere
Corrections to Observables

Section XII-A defines the correction terms for the range,
doppler, and angular observables which account for the
effects of (1) the offset of the tracking point on the moving
antenna from the earth-fixed “station location™ (see Sec-
tion VII), (2) the troposphere, and (3) the ionosphere. The
evaluation of these corrections is described in Section
XII-B. Expressions are given for the antenna and the
troposphere corrections. The general procedure for ob-
taining the ionosphere corrections is summarized.?®

A, Definitions of Correction Terms

1. Range observables. The range observables (see Sec-
tion IX) are computed from Eq. (379). The quantity in
braces represents the time for the signal (ranging code)
to travel from the tracking station to the spacecraft and
return, in seconds of station time. In the presence of
charged particles, this signal travels at the group velocity
(<c). The range corrections Agp, Arp, and Ajp in meters
divided by 10%c (where ¢ is the speed of light in km/s)
represent the time delay in seconds due to the antenna
offset, the troposphere, and the ionosphere, respectively.
Each type of correction Aip has a value A;p(t;) for the
down leg of the light path and a value A;p(¢;) for the

up leg.

The antenna corrections Aup (£;) and A,p (£;) represent
the distance along the light path from the “station loca-
tion” to the actual tracking point on the antenna at the
transmission time #, and reception time ;, respectively.
Addition of these corrections changes the round-trip light
time based upon transmission and reception at the station
location to the light time based upon transmission and
reception at the actual tracking point on the antenna.

The troposphere corrections Agp(f:) and Agp(£;) ac-
count for the increase in round-trip light time due to the

29Details are available in Ref. 59.
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reduction in propagation speed below ¢ and the increase
in path length due to bending when passing through the
troposphere.

The ionosphere corrections A;p () and Ap (£5) account
for the increase in light time due to propagation through
the charged particles of the ionosphere at the group ve-
locity, which is less than c.

2. Doppler observables. Equations (308), (309), and
(310) for 1-way, 2-way, and 3-way doppler observables
contain a term A which accounts for the effects of antenna
offsets, the troposphere, and the ionosphere. The expres-
sion for A is obtained by comparing these equations to the
equivalent differenced-range doppler formulation of Sec-
tion XI, which contains correction terms for these effects.

Differenced-range doppler is computed from the dif-
ference of two range observables whose reception times
are the end and start of the count interval T.. Each of
these range observables represents the time for the crest
of a wave to travel from the transmitter to the receiver.
In the presence of charged particles, the propagation
speed for the crest of a wave is the phase velocity, which
is greater than c.

As with the true range observables of Section IX, the
range corrections A,p, Arp, and Azp in meters divided by
10%¢c represent the time delay in seconds due to the an-
tenna offset, the troposphere, and the ionosphere, respec-
tively. For 2-way and 3-way range used to compute 2-way
and 3-way differenced-range doppler, respectively, each
of these corrections has a value A;p (£;) for the down leg
of the light path and a value A;p (#,) for the up leg. For
l-way range used to compute l-way differenced-range
doppler, there are no up-leg corrections.

The antenna and troposphere corrections are the same
as those described in Subsection XII-A-1 above for the
true range observables of Section IX. The ionosphere cor-
rections have the same magnitude as those for true range
observables but with the opposite sign, because charged
particles cause the phase velocity to increase above ¢ by
the same amount that the group velocity decreases be-
low c. Hence, charged particles of the ionosphere cause
the range code for true range observables to arrive late
by [Amp () + A (2:)]1/(10%) seconds and the crest of a
wave transmitted and received by the doppler tracking
equipment to arrive early by the same amount. Thus, the
ionosphere corrections for range observables used to com-
pute differenced-range doppler are negative.
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Comparing the correction terms of the differenced-
range doppler formulation (Section XI) to the correction
term A of the Taylor series doppler formulation (Eqgs. 308
310) gives, for 2-way or 3-way doppler,

1
A= e, [Ae () + Ap (b)) — Ap(ts,) — 2 (t,)]
(508)

where

¢ = speed of light, km/s

T, = count interval, s

ts, = epoch at end of reception interval T,
t;. = epoch at start of reception interval T,
t,, = epoch at end of transmission interval T

= epoch at start of transmission interval T
and

Ap {t) = sum of range corrections in meters due to the
antenna offset, the troposphere, and the iono-
sphere for up leg with transmission time # or
for down leg with reception time #

That is,

Ap () = Bap (£) + Arp (8) + Arp (2) (509)
As mentioned above, the antenna and troposphere cor-
rections are the same as those used for a range observ-
able; the ionosphere correction has the same magnitude
but the opposite sign (negative in Egs. 508-509) as that
used for a range observable. For 1-way doppler, the light
path consists of a down leg only and

A= rerloet) —aew)] 610

Given the midpoint #;, of the reception interval T, in
any time scale, the epochs t;, and #;, in the same time

scale are given to sufficient accuracy by

1

to, = ts,, + 5 T (511)
1
t3s = tam — "'5' Tc (512)

where T, is given in seconds of station time (ST). The
light time solution for the doppler observable has a re-
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ception time s, and a transmission time #,, which is the
midpoint of the transmission interval T%. Given ¢, in any
time scale, ,, and ¢;_ in the same time scale are given
approximately by

L=t + % T, (513)
t13 ~ th, - ‘;— Tc (514)

3. Angular observables. The formulation of Section X
for computing directly observed angles contains an expres-
sion for the increase in the elevation angle A,y of the
incoming ray due to bending of the ray by the tropo-
sphere. Specifically, A,y is the elevation angle of the
incoming ray minus the elevation angle of the straight
line path from the tracking station to the spacecraft.

B. Evaluation of One-Leg Range Corrections

This section gives the formulation for computation of
corrections to the 1-way range from the tracking station
to the spacecraft due to (1) the offset of the tracking point
on the antenna from the station location, Asp; (2) the
troposphere, Arp; and (3) the ionosphere, Ap. As de-
scibed in Subsection XII-A-1, the range observable for-
mulation includes these corrections for the up and down
legs of the light path. From Subsection XII-A-2, the
doppler observable formulation includes these corrections
for the up and down legs of the light paths whose recep-
tion times are the end and start of the reception interval T'.

1. Antenna correction. The antennas at the tracking
stations of the DSN, MSFN, and AFETR have four dif-
ferent types of mounts: (1) hour angle and declination
(HA-dec); (2) azimuth and elevation (az-el); (3) X and ¥
angles (MSFN); and (4) X” and Y’ angles (MSFN). These
angles are defined in Section X, Figs. 5-9. For the 26-m
(85-ft) HA-dec, az-el, and X’-Y’ antennas, the two mu-
tually perpendicular axes do not intersect. The offset be-
tween the two axes (the perpendicular distance between
them) is denoted by b and ranges from about 1 to 7 m.
The axis which has a fixed position relative to the earth
will be denoted as the primary axis (the HA, az, or X’
axis). Due to the offset b between the two axes, rotation
of the antenna about the primary axis causes the sec-
ondary axis to move relative to the earth.

Figure 10 shows the two mutually perpendicular axes
of a HA-dec, az-el, or X’-Y’ antenna. The primary axis
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Fig. 10. Antenna correction

(HA, az, or X’) is in the plane of the paper, and the sec-
ondary axis (dec, el, or Y’) is normal to it. The offset be-
tween the two axes is b. The positions of the station
location and spacecraft are indicated. The secondary angle
(degc, €l, or Y’) is indicated by 6.

Each range tracking system is calibrated so that the
tracking point lies on the secondary (moving) axis. That
is, the calibrated range observable obtained from the
tracking station corresponds to a l-way range § mea-
sured from the secondary axis to the spacecraft. How-
ever, the computed range observable is based upon the
1-way range p (i.e.rz or r5 of Eq. 379) measured from
a specific point on the antenna which is fixed relative to
the earth. This point is called the station location. From
Section VII, its geocentric position is represented by
spherical or cylindrical coordinates, which are solve-for
parameters. For all antennas, the station location is the
intersection of the primary axis with the plane perpen-
dicular to it which contains the secondary axis.

From Eq. (379), the computed range for the up or down
leg of the light path is r;; or r,; (denoted as p in Fig. 10)
plus Aup for that leg. The sum p + Azp must equal $.
Hence, the antenna correction A4p is given by

Ap=p—p (515)
The maximum displacement of the secondary axis from
the tracking station to spacecraft line is less than 10 m. The
maximum effect of this transverse displacement upon
# — p is about 0.5 X 10 m (for a spacecraft range of
10° m) which is insignificant. Thus, the significant part
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of § — p is due to the component of b along the direction
to the spacecraft. Since b < 10 m and p> 10° m,

p=~p—Dbcosh (516)
to an accuracy of better than 10-* m and
Agp = —bcos b (517)

From Eq. (508), the doppler observable formulation
includes antenna corrections for the up and down legs
of the light paths which have reception times equal to
the end and start of the reception interval T,. The track-
ing point for doppler observables is located along the
spacecraft to secondary axis line at a constant distance 7,
from this axis. Hence, each of the four antenna correc-
tions is given by Eq. (517) plus the constant r.. However,
since the round-trip range correction at the beginning of
the count interval T, is subtracted from the correspond-
ing correction at the end of T, the effect of 7. on A and
hence on doppler observables is zero. Hence, Eq. (517)
applies also for doppler observables.

For the 26-m HA-dec antennas of the DSN,

Aup = —bcosd (518)
where 8 is the observed declination of the spacecraft and
b =6.706 m. These antennas are located at DSN Deep
Space Stations 11, 12, 41, 42, 51, 61, and 62.

For the 26-m az-el antenna at Deep Space Station 13,

AAP =—p Ccos y (519)

where v is the observed elevation of the spacecraft and
b =09144m.

For the 26-m X’-Y’ antennas of the MSFN,

Aup= —bcosY (520)
where Y’ is the observed angle Y’ to the spacecraft and
b = 1.2192 m. These antennas are located at station MAD
at Madrid, Spain; DRA at Canberra, Australia; and ODS
at Goldstone, California.

The axis offset b is zero for the 84-m (210-ft) az-el an-
tenna at Deep Space Station 14, the 9-m (30-ft) X-Y
antennas of the MSFN, and all antennas of the AFETR
(station numbers 73-77, 79-84, and 87). Hence there are
no antenna corrections for these stations.
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The antenna correction for the up leg of a light path
is based upon the antenna type of the transmitting station
and the value of the angle 8§, vy, or Y’ to the spacecraft at
the transmission time for that leg. Similarly, the antenna
correction for the down leg of a light path is based upon
the antenna type of the receiving station and the value
of 8, v, or Y’ at the reception time for that leg. For 3-way
doppler, the antenna types at the transmitter and receiver
may be different.

The maximum transverse displacement of the secon-
dary axis from the tracking station to spacecraft line is
less than 10 m, which affects directly observed angles by
less than 20 arc seconds at the minimum spacecraft range
of 100 km. Since such small ranges are rarely encoun-
tered and the maximum attainable accuracy for directly
observed angles is only 7-11 arc seconds, the computed
angular observables are not corrected for this effect.

2. Troposphere and ionosphere corrections. Discussed
below are ray path equations, troposphere corrections,
and ionosphere corrections.

a. Ray path equations. The speed of propagation of the
doppler or ranging signal through the troposphere is
given by

o= &
" n

(521)

where
¢ = speed of light in vacuum

n = index of refraction of troposphere

From Ref. 52, p. 9, or Ref. 53 or 54,
n=1+10°N (522)
where
N = refractivity
given by
N = N5t (523)
where
N, = refractivity at mean sea level

B = reciprocal of scale height of troposphere, km™

JBL TECHMICAL REPORT 32-1527

h = altitude above mean sea level, km

The speed of propagation through the ionosphere is
given by Eq. (521) using the following index of refraction:

n=1:t4—0£Ne

= (524)

where

N, = electron density
= number of electrons/m?

f = transmitted frequency for up or down leg of light
path (see Section VIII), Hz

For range observables, the range code travels at the group
velocity, which is less than ¢, and hence the positive sign
of Eq. (524) applies. For doppler observables, the doppler
signal (the crest of a wave) travels at the phase velocity,
which is greater than ¢, and hence the negative sign
applies. The electron density vs altitude profile is as-
sumed to be that of the Chapman model:

N, = Ny /) (--e) (525)
where
Npax = maximum value of N,
4 = (h — huax)/B

h = altitude above mean sea level, km
hmax = altitude of N, max
B

scale height of ionosphere, km

The doppler and ranging signals travel on a curved
path C through the troposphere and ionosphere. The time
for the signal to travel between the tracking station and
spacecraft along C is given by

T=[é=l nds (526)
oV ¢CJo

where ds is an increment of distance along C. The path C
follows from the condition that the propagation time T is
a minimum (Fermat’s principle). Since n is a function
of altitude only, the path is planar and may be described
by its geocentric radius r and geocentric angle ¢ from the
tracking station. Hence Eq. (526) can be written as

T= %—/;n(r)l:l + 12 (%f—)z]%dr

(527)
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where n is indicated as a function of . The differential
equation of the path which extremizes the integral (Eq.
527) is the Euler-Lagrange equation of the calculus of
variations applied to the integrand of Eq. (527).

The equations for the path C were developed by D. L.
Cain and A. Liu and were documented by A. Liu in
Ref. 55. Equation (14) gives the total bending of the path
and Eqs. (17) and (18) give the range correction. Use of
the index of refraction given by Egs. (522) and (523) gives
the bending and range correction Arp due to the tropo-
sphere. Use of n given by Eqgs. (524) and (525) gives the
bending and range correction A;p due to the ionosphere.

Given the observed value of the elevation angle, these
corrections are obtained by a quadrature integration from
the position of the tracking station to that of the space-
craft (assumed at infinite distance from the earth). Equa-
tions (14), (17), and (18) give computed minus observed
values of the corrections. However, observed minus com-
puted corrections are added to the computed values of
the angular, range, and doppler observables. For this pur-
pose, the sign of Eq. (14) and of each term of Eq. (17)
must be changed. Furthermore the factor 1/C; must be
added to Eq. (18). In the derivation of Eq. (14), the term
—E, was omitted in Eqgs. (11) and (12).

Given N, and B for the troposphere and Nyax, Amasx
and B for the ionosphere in the vicinity of a tracking
station, Egs. (14), (17), and (18) of Ref. 55, as modified
above, give the elevation angle correction used in the com-
putation of directly observed angles and the tropospheric
and ionospheric range corrections used in the computa-
tion of range and doppler observables.

b. Troposphere corrections. The expression that will be
given below for the tropospheric range correction Agp
was obtained by a procedure equivalent to the following:
For selected values of the observed elevation angle y, be-
tween 0 and /2 rad, the ray tracing formulation described
in Subsection XII-B-2-a above was used to compute the
elevation angle correction A,y and the range correction
Agp for a spacecraft at infinite distance from the earth.
Subtraction of A,y from y, gave the corresponding com-
puted elevation angle y based upon a straight-line light
path from the tracking station to the spacecraft. The cor-
rections were computed using a sea level refractivity N,
of 340.0 and a scale height of 7 km or inverse scale height
B of 0.142 km, The range corrections Ayp were plotted
vs the computed elevation angle v.
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The range correction was assumed to be of the form

A
Ap = (siny -+ B)¢ (528)
where A, B, and C are constants. Fitting this expression
to the tabular data above gave

1.8958 m
AP = Tny + 0.06483)14 (529)

which was originally obtained by D. L. Cain.

Let

N = surface refractivity at tracking station

which ideally could be computed from Eq. (523) using the
altitude h of the tracking station. The range correction
Arp varies directly with Ny and since Eq. (529) was ob-
tained using Ny = 340.0, the general result is

Ao 1.8958 m __Ns
7P (siny + 0.06483)+ ~ 340.0

(530)

Recommended values of Ny for the various. tracking sta-
tions are given in Ref. 56.

For elevation angles above 15 deg, where most tracking
data are taken, the maximum difference between the
model (Eq. 530) and the tabular data obtained from the
ray tracing formulation is 1-2 m, which is quite large.
Hence Eq. (528) was fitted to the tabular data for
15 <y < 90 deg, giving

Anp = 26m Ns
P siny + 0.015 3400

(531)

For y > 15 deg, the maximum difference between this
model and the tabular ray tracing data is less than % m.

The models (Egs. 530 and 531) are based upon an aver-
age value of the surface refractivity Ny at each tracking
station and a global average value of the scale height.
The daily departures of these parameters from the con-
stant values used are currently not accounted for. The
resulting errors in Azp from Eq. (530) or (531) are less
than 10% for about 90% of the time, with a maximum pos-
sible error of about 15%. The following listing shows the
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approximate range corrections for elevation angles of 90,
15, and 0 deg and the corresponding 10% errors:

Elevation Range 10%
angle, deg correction, m error, m
90 2.5 0.25
15 9.5 0.95
0 87 87

Reference 57 describes the daily variations in the param-
eters of the troposphere and the resulting variations in
the range correction Arp.

Equations (530) and (531) are based upon the assump-
tion that the spacecraft is at an infinite distance from the
ea