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FOREWORD

We think that this is an important report because here, for the first time, extensive experi-

mental results and analytical details are presented which strongly sugport the Luneburg Theory
of the Geometry of Binocular Visual Space.

This is a terminal report on research done under contract with the Office of Naval Research
(N6onr27119; NR 143-638). The work is being terminated because of our inability to acquire
and retain adequate personnel with the highly technical skills necessary for such work. A very
high degree of mathematical anclytical ability must be in constant and harmenious rapport with
an equally high degree of laboratory experimental skills in order to carry out these investigations.
In the untimely death of Rudolph Luneburg we suffered an extremely severe loss. After a lapse
of two years we were fortunate in acquiring through Professor Richard Courant one of Dr. Lune-
burg’s associates, Dr. Albert A. Blank, who has shown brilliance in his mathematical attack.

All the new mathematical analysis herein described and most of the formulation of this report
are due to his efferts.

Our mathematical consultant, Dr. Paul Boeder, has given much time and enthusiastic en-
couragement to our working staff. Professor H.S.M. Coxeter, as o specialist in the non-euclideon
geometries, contributed important suggestions which were partly carried out in the oncillary
investigations of Dr. Charles Campbell who earned the D. Sc. degree for his part in this re-
search. Dr. Bernard Altschuler ond Dr. Anna Stein spent respectively one year and iwo years
in the mathematical analyses during the early part of the study. The largest part of the actual
experimentation was carried out by Dr. Gertrude Rand and Miss M. Catherine Rittler

LeGranp H. HaroY
Principal lnvestigator



PREFACE

This i1s a report of progress, theoretical and experimental, in the study of
binocular space perception based on the theory of R. K. Luneburg.!'2?'3 The ex-
perimental evidence definitely supports Luneburg’'s major conclusion that the dark-
rocm visual space has a determinate non-euclidean metric or psychometric distance
function which is a pursonal characteristic of the observer. In this report the
metric has becen developed in terms of coordinates closely related to, but different
from those of Luneburg. Much the same methods are used for determining the form of
the metric as were suggested by Luneburg. The thecry gives an explanation of several
well-known perceptual space phencmena such as the frontal geodesics, Rlumenfeld al-

leys, and size constancy.

We have not attempted here to present a review of all our work of the past
]

five years, but only that portion of it which still a

-

ears relevant and cogent. It

accompany the formation of any new theory. On the other hand, we are conscious that
there are many gaps in our testing program. We employed a very limited number of
observers because so few were available for experimertation extending over so long

a period. We did not investigate every open door because so many doors were open.

The sreatest setback to our research was the untimely loss of outr beloved
frierd and colleague Dr. Rudolph K. Luneburg. To Luneburg we owe the basic concepts
and formulation of the theory. His was the guiding hand for more than half of our

experimental work. To him we dedicate this paper and hoge that this work may stand

in his name.
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PART !

THE MATHEMATICAL BASIS OF THE LUNEBURG THEORY

1. INTRODUCTION *

The qualities of form and localization are the basic materials of geometry
and in formvlating a theory of binocular space perception we attempt to establish
the relations which exist between the perception of these qualities and the objec-

tive forms and localizations of the physical world.

This study seeks to demonstrate a correlation between the geometrical stimu-
lus presented to an observer and the geometrically relevant part of the observer's
response. Such visual phenomena as color and brightness, for example, are n:t con-

sidered here.

This discussion could be phrased in operational language, say in terms of
“stimulus” and “response’” or ‘“input” and “output” . The “stimulus” or “input”
consists of a physical situation to which the observer 1s exposed together with a

set of instructions; the “response’” or “output” is the consequent modification

n{ the physical situation by the observer together with his relevant statements.

The use here of terms such as the nouns: perception, appearance, impression; the
verbs: to perceive, to sense, to appear; the adjectives: perceptual, subjective,
sensed, perceived; and other terms of the same kind, may be considered operational-
ly as a reference to their undefined use in the instructions or in the statement of
the observer. For example, the statement that the observer ‘‘perceives’ the point
P, 2o be midway betwecen P, and P, on a straight line may be interpreted in either

of two operational meanings: (a) the observer says, “I have the impression that P

is midwsy between P, und P,” ; or (b) in response to the instruction, “Adjust the
position of the light P until it appears to be midway between P, and P, on a
straight line” , the observer has placed a given physical light in a particular
position.

With this understanding, we shall freely employ the words “impression” ,
“perception” , etc. in this intuitive way without further clarification.

We are concerned here only with one type of visual stimulus, important inso-

far as geometrical properties are concerned. This stimulus is characterized as a

* FOR HELPING US TO CLARIFY THE IDEAS OF THIS SECTION, ALTHOUGH ONLY WE ARE RESPONSIBLE
FOR THE FORM IN WHICH THEY ARE PRESENTED HERE, ®E OWE THANKS TO PROF, €. H, GRAHAM OF
COLUMBIA UNIVERSITY AND THE LATE DR. W. BERRY OF ONR,
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distribution of lumincus points in definite oriente'ions and localizations with
respect to the observer. In particular, for our study of binocular space percep-
tion, a stimulus is considered to be defined 1f we give the position of the ob-
server and the positions of the points which are effective 11 the stimulation c¢{
both eyes., Such a stimulus can be characterized numerically in terms of a suitable
coordinate system. The total stimulus configuration is the set of all points which
are binocularly effective., Since this terminology is unwieldy we shall often refer
simply to the stimulus configurarion or the stimulus. It is to be understood, how-
ever, that both of these terms, wherever they occur, are meant to include all ef-

fective points.

To measure his spatial perception, the observer is asked to modify an initial
stimulus configuration so as to give himself a specified desired impression. The
instruction is generally a request to set up a sensory situation which lends itself
to description by a mathematical relation of equality. For example, the observer may
be presented with three light points Ql, 02’ C% arbiirarily located in his binocular
field. He is then asked, without moving points Ol and Qs, to adjust the position of
the point Q, so as to give himself the impression of points P, P,, P, placed in that

3
H
. . * . o . . .
order on a straight line. This perception of straightness and order is described by

the equation

(P,, P,) + (P, P,) = (P, P,)

where, in general, for any pair of points P, PJ, the symbol (Pi' Pj) denotes the
sensed distance between the points P, and PJ.

By employing a sufficient variety and number of specific initial conditions up-
on constructions of diverse kinds we may hope to establish statistically a functionai**
dependence of perception upon stimulus which may be considered a constant characteris-
tic of the observer. In this way, given the mathematical description of the stimulus,
1t 1s possible to describe some constants of the observer’'s visual responses; that is,
to give a mathematical description of the impressions of localization and form with

respect to the observer’s personal mental irame of reference - the observer’s visual

space.

* WE SHALL ADHERE THROUGHOUT TO THE CONVENTION OF DESIGNATING A PHYSICAL POINT BY &, TiiE PERCEIVED
POINT BY P.

¢* THE WORD FUNCTIGN IS USED HERE IN THE MATIHEMATICIAN’ S SENSE AND IT MAY BE WELL TO REPEAT THE DEFINI-
TION FOR THE NON-MATHEMATICAL READER:

LET S AND T DENOTE TWO AGGREGATFES (OR SETS OR CLASSES) CONSISTING OF ANY ELEMENTS WHATEVER. A (SINGLE-
VALUED) FUNCTION DEFINED UPON THE SET S WITH VALUES IN THE SET T IS A MEANS OF ASSOCIATING WITH EACH
ELEMENT OF S A UNIQUE ELEMENT OF T. WE AL50 SAY THAT S IS MAPPED INT) T. A FUNCTION MAY ALSO BE CALLED
A CORRESPONDENCE (TO EVERY ELEMENT OF S THERE CORRESPONDS A UNIQUE ZLEMENT OF T).



This characterization of the relations between spatial response and stimulus
configuration wiil be given in terms of two mathematical functions: (1) a mapping
function which defines the correspondence between points nf the stimulus and points
of the visual space, and (2) a metric which characterizes the internal geometry of
the visual space. The constants of this geometry may vary from observer to observer,
but repeated and varied experiments strongly indicate that its general character is

that of the thrce-dimensional hyperbolic space of Lobachevshi and Bolyai.

A note should be added concerning both the conditions under which the experi-
ments were performed and the method of observation used in viewing the stimulus con-
figurations. All experiments were carried out in a darkroom, thus reducing monocular
clues to a minimum. The intensities of the points of light were adjusted to appear
equal to the observer but so low that there was no perceptisle surrounding 1llumina-
tron. The observer’s head was fixed in a headrest and he viewed a static configura-
tion (perception of motion is not considered). The observations were made binocularly
and a)ways by allowing the eyes to vary fixation 2t will over the entire range of

the pnysical configuration until a stable perception of the geometry of the situation

was achieved.

Work has been done by other investigators on perceptions arrived at by keeping
the eyes in constant fixation on a single point. It is 1mpossible to state a priori
what relationship, if any, exists between visual space as determined by the *“fixed
eyes’' condition and visual space as determined by using freely roving eyes. However,
1t seems reascnable to suppose that the fixed eyes condition, owing to the very limit-
ed field of distinci vision, would permit only the discovery of local properties of
visual space. It is not unlikely that a theory obtained under the fixed eyes conditioa
could be completely subsumed in Luneburg's theory as a theory of the local properties
of visual space. On the other hand it is highly probable that the use of the restric-

tion of constant fixation would prevent an understanding of the phenomena associated

with the free use of ths 2yes.*

* INTHIS CONNECTION IT MAY BE WELL TO MENTION THAT CERTAIN OBSERVATIONS CITED IN OGL.E4 AND IN PRY5'6
ARE MADE WITH THE EYES IN CONSTANT SIXATION. THESE AUTHORS APPARENTLY BELIEVE THAT THEIR RESULTS ARE IN
CONTRADICTION TO THE LUNEBURG THEORY. SUCH A CONCLUSION IS NOT WARRANTED BECAUSE OF THE DIFFERENCE IN
CONDITIONS. NEITHER AUTHOR HAS CONSIDERED THE POSSIBILITY THAT HIS RESULTS COULD BE CONNECTED TO THZ

LUNEBURG THEORY THRCUGH LOCAL PROPERTIES AND NEITHER HAS ATTEMPTED TO ACCOUNT FOR THE PHENOMRENA ASSOCIA-
TED WITH THE FREE USE OF THE EYES.



2. SPECIFICATION OF THE STIMULUS CONFIGURATION -
PHYSICAL COORDINATES

In order to give a numerical characterization of a stimulus configuration,

its points are located by referring them to a suitable coordinate system,- carte-

" 4
i

FIG. 1. CARTESIAN COORDINATE SYSTEM FOR
PHYSICAL SPACE. L AND R REPRESENT CUNTERE

0+ ROTATION OF LEFT

>N

e e
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FIG.2. BIPOLAR PARALLAX AND ELEVATION FOR
POINT N IN THE MEDYAN PLANE.

AND RIGHT EYES.

sian, polar or other. The observer’s head 1s
assumed to be fixed in normal eiect position.
The observer’s eyes are assumed to be located

atL points, the rotation centers of the eyes.*

A cartesian system is chosen with the origin
placed at the point midway between the rotation
centers. ihe y-axis runs laterally through the
rotation centers and 1s oriented positively to
the left. The unit of length 1s fixed by setting
the eyes at + 1 along the y-axis. The x-axis 13
taken positive in the frontal direction of the
median plane. The upward vertical direction 1s
assigned to the z-axis (fig. 1). In this frame-
work we can assign cartesian coordinates (x, v,z)
to any point Q in physical space, and so detec:-

alne 1ts position relative to the observer.

A coordinate system better adapted to our
purpose 15 the bipolar system. Let Q be a physi-
cal point anywhere in space and let R denote the
right eye and L the left eye (fig. 2). The angle
which the plane QLR makes with the horizontal 1s
called the ele.ation 6 of the point Q. The angle
suotended at Q by the two eyes is called the bi-
polar parallax 7y of Q. To completely specify the
position of Q we now define a third coordinate,q,
the bipolar latitude. Let X be the axis in the
plane of elevation QLR formed by intersection with
the median plane (fig.3). Consider the circle
through the three points Q, L, R and let A and B
denote the forward and rearward intersections res-
pectively of the elevated axis X with the circle.
The bipolar latitude is given by ¢ = ¢ ALQ = ¢ ARQ
= ¢ ABQ. The bipolar coordinates of Q are the

* THE COMSIDERATIONS BEHIND THIS CHOICE AS OPPOSED TO THAT OF THE NODAL POINTS ARE STATED IN PART I

SECTION 1.



abnve-defined angles:

(1) vy=4RQL (bipoiar parallax)
¢=3ABQ (bipolar latitude)
g =94x%x0x (elevation)

When the eyes are fixed upon the point @, the angle ¥ approximates the aiglc

of convergence of the visual axes and the angle ¢ approximates the average of
the inclinations of the two visual axes with respect to the median plane (See
Part II, Section 1). For this reason the ccordinate iy will often be called the

convergence. The angle ¢ will sometimes be called the bipolar azimuth.

=
]

FIG. 3. BIPOLAR PARALLAX AND LATITUDE
AS ANGLES IN THE PLANE OF ELEVATION OF
POINT Q.

The bipolar coordinates are related to the cartesian coordinates through

the transformation equations

r)\"v2 2
x = ©0s 2P + cos ¥ I

: cos 8 tan y =
sin 7y

x?+y2422-1

sin 2 2y Vx? + 22_

2y vy = tar 2¢ =

sin 7y x2+ 2%- y2+ 1

cos &b + cos ¥
z = sin 6 tan § = ——-
sin y

>



Since most of the investigations have been done in the horizontal plane, we shall

generally use only the rclations for the horizontal plane

cos Zp * cos 7y 2x
x = tan S ===
sin y x?+ y2 -1
(3)
: 2xy
PR . K . tan 2¢) = 35
sin %y x4 - y° +1

Unless units of length are definitely specified for the cartesian coordinates
X,y it 1s tc be understood that the unit of length is half the interpupillary dis-
tance of the cbserver. Similarly, unless it is definitely specified that ¢ and 7y are

measured in degrees it 1s to be understood that the angles are given in radian mcasure.

In many situations it will be useful to empioy the approximations

(3a) 2 cos? @

X

tan ¢ = Yol v o=

which are very good for sufficiently large distances from the observer.

The locus of all points in the horizontal piane which have the same value of 7y
as Q 1s the circle passing through C and the two eyes. This circle is known as the
Vieth-Muller Circle through Q and we shall often abbreviate it as WC. The locus oi
points ¢ = constant is a hyperbola with the asymptote tan ¢ =y, . In the approxima-
tion (3a) we are replacing the hyperbola ¢ = constant by its asymptote and the WC
through Q by a circle passing through Q and tangent to the y - axis at the origin.

It is easily seen that the fractional errors made in this approximation are negligible

for most purposes. In fact, the estimates

(3b) 892 g by < 2
¢ d v d?
where & ¢ and A -y are the errors and d > 4 is the distance from the origin, serve very

well to show thau the approximations are sufficiently accurate for most practical work.

A set cf coordinates, which we shall call the iseikonic coordinates, particularly
useful in analyzing binocular space perception, may easily be defined in terms of the
bipolar coordinates. Let <y _be the least value of 7y attributable t¢ any point of the
stimulus. If we draw WIC's through all the stimulus points, 7y, will be the value of 7y
on the outermost WC. Let ¢_ and 6, be values associated with suitabie directions of

rcferenice. To a point having the bipolar coordinates (7, ¢, 6) we associate iseikonic
cocrdinates,



(2) ¢ = ¢- &,

These coordinates will generally have to be specified anew for each changr of

stimulus.

3. TH= METRIC NATURE OF VISUAL SPACE

The mathematical characterization of the visual space is founded upon a set of

observations in conjunction with a limited number of mathematical assumptions of con-

siderable heuristic appeal. From these fundamentals it is possible to achieve by de-
d..calcny - mmme Jesmabheoma?la c3cnla Abhacccntcws antbsae ~Ff tha ~nmma tvve Af s mval Anasn
uuLulL vYe P‘.ULCBO uhhc..u-s = BL"Pll_ witdl avuvucia savavir v wItc scuulcun ’ A VA OWUWL oyu\.\.

In fact, he prcscnted strong evidence that the visual space is a metric space, finite-

3a. Visual Orientation

One of the curious facts of binocular perception is that the observer i1s not
ordinarily aware of any bipolarity. Sensed distances from the observer are treated as
though viewed from a point center of reference. This situation is described by placing

the origin of visual coordinates at this “egocenter” of the observer.

The observer is, however, aware of tiie orientations lateral, vertical and front-
al. In the visual spzce w2 may then take three subjective planes of orientation per-
pendicular to these axes - thc scnsed median, horizontal and ircntal planes through
the origin. The axes in the visual space are the intersections of the three principal
subjective planes. Let (£,7,0) be ccordinates chosen to represent these subjective
orientativits. The origin & = 1 = { = O represents the subjective center of observation.
The £ - axis is positive in the frontal diiection; the 7) - axis, in the direction left;
the [ - axis, in the direction vertically upwards. The subjective horizontal, median

and frontal planes are given by the respective equations, (=0, 7=0, £=0.

The positional orientation of the observer is generally such that he brings the

subjective planes into the proper orientation with respect to objective physical space.



This coordination between the visual and proprioceptive senses is not absolute,
however. It may easily be disarranged in aun airplane or sea-going vessel. We shall
see, in fact, that the assumption of the customary correspondence between objec-

tive and subjective orientations is not necessary for our theory.

3b. Perception of Distance

A configuration consisting of isolated points Q,, Q,, Qj;, ....... is sensed

as a distribution of points P, P,, P;, ...... 1n a three-dimensional contlnuum,
An observer obtains rather deiinite impressions cf the distance of the points from
one another and from the observational center. The sizes of these sensed distances
may readily be compared. Thus if (P;, P;) denotes the sensed distance between any
two points P, and P,, we find for any two pairs of points P,, P, and P,;, P, that

4
relations of inequality such as

(P,, P,) > (P, B,) or (P, Py) < (P

1 2 3 P4)
are easily perceived. The sensed relations cf equality and inequality

E
stable for a given observer. In other words, the inequality signs are determined to

a high degree of correiation by the physical coordinates of the stimulating points

Q. Q. Q. Q.

3c. Perception of Straightness

A sense of alignment 1s one of the strong characteristics of visual percep-
tion. We quickly perceive whether or not three points lie on a straight line. Fur-
thermore, physical points can be arranged so as to result in the perception of a
straight line for every orientation and position in the visual space. Given an
arbitrary pair of points, it is possible to arrange others along a curve which
will be perceived as the extended straight line joining the points. Perhaps it
would be well to emphasize that the perception of straightness may arise from phy-

sical curves® which are not physically straight but actually have marked curva-
ture. (See Scction Se)

3d. The Psychometric Distance Function
The observatinns 3b and 3c are a strong indication that the visual space is
a mathematical metric space. This means that we can assign positive numerical values

«THE WORD CURVE AS USED HERE IS TAKEN IN THE TRCHNICA!. MATHEMATICAL SENSE. A CURVE IS A ONE-DIMEN-
SIONAL CONTINUOUS MANIFOLD. THUS A STRAIGHT LIHE IS A KIND OF CURVE. IT HAS ZERO CURVATURE EVERYWHERE.



to sensed distzances so that the numbers satisfy inequalities in agreement with the

a

perceived relations of sensed distances. Such a coordination of a number D (P, P,

to the sensed distance hetween a pair of points P, P, is called a distance function

or metric 1f it satisfies the following conditions:

(a) D (P, P) = 0. A perceived point has zero distance from itself.
(b) D (P, P,) =D (Pz, Pl) >0, 1f Pl¥ P,. To each perceived pair of distinct
points there is assigned a positive value of distance independent cf the order in

which thc points are considered.

(c) D (Pl, Fz) +D (Pz, Ps) 2D (Pl, Ps) for any three points P;, P,, P,. We shall
say in particular that three points are on a straight line if and only if the equality
relationship holds.

When we say that the function D (P, Pz) corresponds to sensed distance we mean that
it must satisfvy the further conditiors:

(d) IfP,, P

,» Py and Py, P, are any two pairs of perceived points, then

e B2 pde, B
Wy 727 2 VWas Fg/

according to whether the sensed distances are correspondingly related,

2
(R P,) § P, P4).
(e) If P, P,, P, are perceived as being arranged in that order on a straight line,
then
b ®, p,) +D(P,, P} =D (P, ),

and conversely.

A function satisfying conditions (a) to (e) is czalled a psychometric distance

function or simply a metric for visual space. Our problem can be reduced to the deter-

mination of such a function in the terms of the physical coordinates of the stimula-

ting points. Quite clearly, the physical distance relations among the stimulating

points will not describe a metric for vis:al space. Although physical distance satis-

fies (2) to (c) 1t can not satisfy (d) or (e) since, for one thing, the physically

straight lines are not generally the same as the visually straight lincs. To keep

these distinctions clear, the curves in physical space which are perceived as straight

will be called visual geodesics or sirvly geodesics.

The function D (P, P,) is not completely determinate, for if D (P, Pz) sat1s-
fies conditions (a) to (e) so does the function C * D (P, P,) where C is any posi-

tive constant whatever. Yet, under certain general mathematical assumptions, this can
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Le proved to be the only indeterminacy possible. Tnese assumptions are:
(f) The visual space is finitely compact.

k21, bovnded infinite sequence of points has a limit point; 1i.e.
for every infinite sequence of points P, (v =1, 2, 3,.....)

satisfying the condition D (P, P ) <M for some point P_ and
v

positive constant M, ithere €xists a subsequence ka =1 2, 3
.....) and a point P of the visual space such that D (P, ka) = @,

() The visval space is convex.

Between every pair of points P, P, (Pl £ Pz), there is a point P,
on the straight segment joining P; to P,; i.e., there exists a point

P satisfying

D (P,, P,) + D (P,, P,) =D (P, P,).

2

The proof that, under these assumptions, the metric is completely determinate to

g g o " : . 7
within a constant factor i= given in Luneburg’.

Although the assumptions (f), (g) can not be verified by experiment since

the proof would recquire infinitely many tests, they do coincide with our customary

convictions about visual perception.

Since a distance function may be determined exactly to within a constant fac-

ter, 1t fsllows for a given stimulus, that the prcportions of distance are unique.
In other words, the ratio D (Pi' PQ) /D Py P4) of two sensed distances is a uni-
quely determined function of the four stimulating points in question and does not
depend upon the particular distance function we use. In this way the metric esta-
blishes a fixed relationship between the objective physical stimulus and the sub-
Jective perception. This relation is a function of no other variables than the
coordinates of tlie stimulus. Any parameters in this relationship which are not

physical coordinates must be constant factors of the observer, characterizing his

visual reactions to external stimuli.

3e. The Homogeneity of Visval Svpace®

The visual space has two properties which are familiar from common experience
but have not been treated experimentally. For this reason these properties are

stated here as hypotheses. The first of these properties is:
(h) The visual space is locally euclidean.

*FOR A FAIRLY COMPLETE ACCOUNT OF THE MATHEMATICAL KNOWLEDGE IN THIS SECTION, SEE BUSEM!.NN8
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In other words, the euclidean laws hold to any desired degree of approximation
in sufficienily small regions of space. The earti, considered as a spherical
surface, is a familiar example of a space having this kind of property. In sur-
veying a small area it suffices to use the euclidean laws of ordinary trigono-
retry, but for navigating over great distences only spherical trigonometry will
do. The locally euclidean property of visuai space explains why we may notice no
distortion in viewing small geometrical diagrams frontally. The property (h),
together with the properties of f{inite compactness and convexity, forms a ne-

cessary and svfficient condition that the space be riemannian.

The second preperty which we postulate is that sensorially plane surfaces
exist in ary given orientation and localization. The visual perception of plane-
ness is such that the visual geodesic connecting any two points of a sensory
plane does not anywhere depart from that plane. Any three physical stimulus
points can be imbedded in one surface, and only one, which gives the impression
of planeness. All the statements concerning the nature of the visual planes can

be summarized in one:
(i) The visual space is a desarguesian geomatry.

From the propositions (a) to (i) it can be proved that the visual space is
homogeneous. The binocular visual space is one of the riemannian spaces of con-

siani gaussian curvature.

A mathematical consequence of the homogeneity-of visual space is that the
metric must be one of three simple kinds. For the (£, 7, ) cosrdinate system
) ]

uscd by Luneburg, the psychometric distance function D = D(P,, P,) is given by
the formula:

2 . (K% D
(5) (-K)% sinh 9 C

(&= §2)2 + (n - n2)2 el SLa

F(R; Bod
i “g

K 2 K o2
_(1 +3 A1) 4 4y )

™|
e

whers (§X,nl,§1) and (§2,n2,L2) are the coordinates of P, and P, respectively

and where pi2 = §12 + 4 Liz (1 = 1,2) The constant X may be interpreted as
the generalized gaussian curvature of the space. The constant C is the arbitrary
constant factor of indeterminacy in the metric. If K is allowed to approach zero

Raas

from either side, the formula (5) becomes

5 D :
. — = F (P, ?,) K = 0)



and the relation obtained is simply the familiar euclidean metric. If K is posi-

tive, the formula (5) is usually written more conventionally as

9 I‘Kl’é n |
17 sin = =

(3b) yl/‘ L2 C J F (P

The metric (5b) is that of elliptic geometry., The two-dimensional case is familiar

to us as the geometry on the surface of a sphere.

Negative K gives us the hyperbolic geometry of Lobachevski and Bolyai. The
evidence of our experimental studies indicates repeatedly and in a variety of ways

that the geometry of visual space is, in fact, just tiizs hyperbolic gcometry.

If we interpret (£, 7, !) as cartesian coordinates we can map visual space
1n a euclidean space. Visual distances could not be represented correctly by dis-
tances on the map unless the metric were euclidean, since the three metrics are
clearly not proporticnal. In fact, we know that in making a map of the earth (el-

liptic case) on a euclidean sheet of paper we cannot avoi

(=9

distorting distances.
The map described by the (£, 7, () coordinates does, however, have -one clear ad-
vantage,-it is conformal. This means that perceived angles will be exactly repre-
sented by aiigles on the map. As a matter of convenience in formulation we prefer

to use an equivalent set of coordinates, polar coordinates (r,ﬁb,é}) in visual

space.

With Luneburg, we set

(6) & = pcos P cos T
n=p sin(?
L =pcos@ sin &

However, we replace p in the hyperbolic case by

(@ Ie) tanh _; (K < 0)

=" 14
(__K)/Z
For the euclidean and elliptic cases we set

(7a) p = (K = 0)

7 tan — K > 0)
G 2

[

(7b) p =

The radial coordinate r is to be interpreted as a quantity measuriug sensed dis-
tance from the observer. It is never to be taken as an absolute of sensation, but
only as a correct description of relative distance when taken together with other

values. Tn any case, all points perceived as having the same distance from the



observer must be assigned the same value of r.

The equation r = constant represents a sphere zbout the egocenter. The coordinate
J simply represents the perceived angle of elevation from the subjective horizon-
tal. Thus on the sphere r = constant, the curves Y = constant represent meridans
of longitude passing through poles on the left and right of the egocenter. In the
same way, the curves q» = constant represent parallels of latitude on the visual
sphere. The visual sphere r = constant can be conceived in this way as the earth
with its axis oriented horizontally. By employing the coordinate transformations

(6), (7), we obtain the hyperbolic metric in terms of the visual pclar coordinates

in the form

D
(8) cosh—c = cosh r; cosh r, - sinh r; sinh r, f (§,%,; z?i_;ﬁ"z), (X <0)

where

f @,,%,; z?' Y;) = cos (§2~ @y) - cos P cos G2 [1- cos (17-,' ‘29{)

for the euclidean and elliptic cases we have

{ , [_)_ 2 2 rlirs 7 Q. a.) =
‘ C = ry0 oyt - ryr, D99, 01,50 ¥ =0
and
D : .
(8b) cos— = cos T cos r,* sin r, sin r, f(@x,q;z;,ﬁz,m ), (K >0)

It will be seen that equations (8) and (8b) may be transformed into each other
by replacing the sensed radial distan-e r with its imaginary counterpart ir. Two-
dimensicnal hyperbolic space might in this way be interpreted as the geometry on the

surface of a sphere of ‘‘imaginary radius" .*

It is well-known that there 1s an absolute measure of length in elliptic geo-
metry. In the two-dimensional case, for example, it is possible to represent the el-
liptic geometry isometrically on the surface of z sphere. The radius »f the mapping
sphere may then be used as an absolute measure of length. If the radius of curvature
in this representation is taken as unity, then we must take C = 1 in (8b). By the
analogy cited above, it is possible to specify an absolute measure in the hyperbolic
geometry, too. Gauss remarked that he wished the physical world were not euclidean
for then there would be a priori an absolute measure of length.** We shall, by ana-
logy with the elliptic case, take C = 1 in (8). However, it shculd be remembered that

this particular metric for visual space is only one choice out of a possible one-

parameter infinity.

* THIS IS NOT TO BE CONSTRUED AS HAVING ANY SIGNIFICANCE DEEPER THAN THAT IMPLIED BY THE SUBSTITUTION
OF ir FOR . IN (8D).

**GAUSS, LETTER TO F.A.TAURINUS (1824): “ICH HABE DAHER WOHL ZUWEILEN IN SCHERZ DEN WUNSCH GEAUSSERT,

DAS DIE EUKLIDISCHE GEOMETRIE NICHT DIE WAHRE WARE, WEIL WIR DaNN EIN ABSOLUTES MAASS A PRIORI HABEN
WURDEN. *

(SEE ENGEL . AND STACKEL, P., THSORIE DER PARALLELLINIEN. LEIPZIG, 1825, FOR ENTIRE LETTER).
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3f. Plane Irigenometry of the vVisual Space*

If we let 7 = O in the formulas (8) and consider the metric relations be-
tween the sides and angles of triangles, we shall compile a set of useful relations
which may be used to measure the visual space just as we use trigonometry to measure
the physical world. Let the scale factor C in (8) be unity. Denote by a, b, c the
perceived lengths of the sides of a triangle and let A, B, C denote the perceived
sizes of the opposite vertex angles. By employing the metric (8) it is possible to

derive the analog to the law of cosines for the hyperbolic case:

(9) cosh ¢ = ¢cosh a cosh b - sinh a sinh b cos C (K <0)
The corresponding rules for the euclidean and elliptic cases are

(%) c2 = a2 + b%2 - 2ab cos C (K = 0)
and )

(8h) cos ¢ = cos acos b + sin a sin b cos C (¥ > 0),

The “Pythagorean theorem’ for hyperbolic right triangles is obtained by set-
ting C = 90 in (9):

W 10) cosh ¢ =cosha cosh b (K < 0)
and 1in the two other cases we have

(1%a) ¢ = a%2 + b? (K = 0)
(10b) cos c = cos a cos b (K > 0)

In fact, we may set down the usual! laws for the angle functions of right triangles

in all three geometries:

K<O K=0 K>¢C

(11) _tanh b b _tan b

' COSA"tmm c c tan ¢

(12) i sinh a a sin a

sin A = sinh ¢ c sin ¢

13 _ tanh a a tan a

U3 ren A =T b sin b

(14) Jﬁfi{}= cosh a 1 cos a
sin

(13) cot A cot B = cosh ¢ 1 cos ¢

For small triangles it 1s easy to see that the hyperbolic and elliptic rules both
approach the euclidean one.

* THE READER IS REFERRED TO COXETER? AND cARsLAw!®
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The law of sines in hyperbolic trigonometry is especially simple:

(16) sinh a sinh b

sin A sin B

For the other gceomeirics we have

(16a) a b
sin A sin B
(16b) sin a ) sin b
sin A sin B

sin C

sin ¢

sTnh c (K < 0)

sin C

= (K = 0)

- (K >0)
sin C

4. RELATION OF VISUAL TO PHYSICAL SPACE

/ \

1; - O -

L R

FIG. 4. BINOCULARLY INDISTINGUISHABLE
CONFIGURATIONS.

room with respect to binocular vision. At
first Lumeburg! suggested that the construc-
ticn of these rnoms could be mathematically
derived from the rectangular osriginal by em-
ploving a certain kind of transformation which
he called an iseikonic transformation (Fig. 4).
This transformation was determined by the as-
sumption that the rotatory motion of the eyes
in looking from point to pcint of a configura-
tion was the sole determining factor in the

perception of the reiative positions of the
points.* Subsequently, he discarded this notion
in favor of the idea that the fixation angles
themselves, rather than only the changes in
fixation angles, were significant 1n binocular
perceptions. The distorted wrooms could then be

accounted for by translatory displacements in

the hyperbolic visval space. In ~ach case he obtained a one-parameter family of dis-

torted r-oms which would accourt for the characteristic shape of the Ames constructions

(See Luneburg!?),

*WHETHER IT IS THE SEQUENCE NF RETINAL IMAGES, OR THE MUSCULAR ACTION OR BOTH TOGETHER WHICH INFORM US

IN TH18S WAY, IS IRRELEVANT HERE.
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The two hypotheses do give measurablc differences and it would be possible to dis-
cover by experiment which is correct. However, experimental evidence obtained in

other ways has led us to utilize the earlier point of view.

4a. The Iseilkonic Transformations

According to Luneburg’s earlier hypothesis, if the bipolar coordinates of all

points in a given stimulus were changed by constant amounts A, u, v by means of the

transformation
Y o=yt A
(17) P =@t p
' =6+ v

then, to any one observer, the new stimulating configuration would yield the same per-
ceptions as the original configuration. In particuiar the Anes rooms could be con-

structed by employing the special transformations

!

'Iy :’)/+>\
(17a) @' =@
' =6

One reason Luneburg gave for discarding this hypothesis was the fact that two
segments having the same disparities &y, A @, A O between their endpoints are not ne-
cessarily perceived as having equal lengths. Howsver, this misses the fact that in this
case the two segments are being compared with each other in the same stimulus configu-
ration. It 1s when we transform the entire stimulus into another and the entire stimulus
presented is either the original or the transformed one but not both together, that we

may say the perceptions arising from the new are the same as those arising from the old.

Aside from the evidence of the Ames constructions, we shall be able to give quan-
titative verification of the relation of the iseikonic transformations to perception.
The data are given in Part Il Section 2 in the studies or the Oblique Geodesics, the
Double Vieth-Miiler Circles and the Equipartitioned Parallel Alleys.

The modification of our ideas presented here consists entirely of introducing in-
to the theory Luneburg’s earlier conception of the role ¢f the iseikonic transforma-
tions in visual space perception. What has been changed is simply the idea of the way

physical space 1s mapped into visual space. Luneburg's conception of the internal struc-



ture of visual space is left unaltered, and in fact we use the same sort of method
in mcasuring within the visual space. Three hypotheses H;, H,, H; are added subse-
quently in connection with the change in the mapping but, in any case, these cre

collateral hypotheses, not at all essential to the main argument of the theory.

4b. The Vieth-Muller Torus-Perceived Radial Distance

It will be recalled that a Vieth-Miller Circle {(WC) 1is one of the circles
v = constant in the horizontal plane and is 2 circle passing through the eyes. The
Vieth-Miller Torus is the three-dimensional surface obtained by rotating this cir-
cle about the axis through the eyes. It looks a bit like an apple with the eyes at
the bottom of the indentations at either end (Figure 5). Luneburg observed that a
set of points arranged in the horizontal
plane so as to give the perception of a

circle of points at the same fixed dis-

(64\
/ \
Y‘ tance irom ihe observer, approximatcs
\ fairly well an arc of a Vieth-Miller cir-
cle. Subsequent experiments have shown
that this observation 1s substantially
7)_)__ true. Consistent deviations seem to exist,
Y

but there 1s insuificient statistical
evidence to warrant replacing 7y by a more

complicated coordinate.
= R

FIG.5. SEGMENT OF A VIETH-MULLER TORUS

On the basis of this evidence Luneburg expressed the hypothesis,

»
8
[

A Vieth-Miller Torus is perceived as a sphere with the

observer at its center.

In mathematical language, the hypothesis asserts that the toruses 7y = constant in

physical space are mapped as spheres in the visual space. It 1s possible that this

hypothesis may have to be modified. For example, the well-known observation that the

zenith of the night sky appears to be closer than the horizon (although such an ob-
servation may not be absolutely free from intellectual clues) indicates that the

hypothesis is worth re-examining.*

*

cf. LUNEBURGS p. 633.
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Since most of the work for tlhis study has been done in the horizontal plane

we shall leave this point as subject to investigation by further experiment.

A convenient hypothesis for what follows, although not absolutely essential

to the theory, is

H, Among all the points of a given stimulus configuration
those which have the same 7y are perceived as being equi-

distant from the observer.

It may seem superfluous to make this firther assumption of the role of the WMC.
Nonetheless, the idea that the perceptior of equal depth will not be affected by

adding other stimulus points at random distances is not an @ priorti certainty.

From the hypothesis H, we see that the perceived radial distances for a
given stimulus and its iseikonic equivalents depend only on the differences in
ameng the points of the stimulus. In particular, if 7y  is the value associated
with the greatest perceived distance in the stimulus, the value of radial distance
for any other point with coordinate y will depend only on ¥ - ¥,. For stimuii
which are not connected by iseikonic transformation we state the “hypothesis of

the limiting sphere’’,

I, The perceived ratio of radial distance for any point of
a stimulus to that of the point of perceived greatest
radial distance depends only on the difference in con-

vergence between the two points, independently of the

stimulus.

The name of the hypothesis stems from the fact that it is equivalent to the asser-
tion that the farthermost point in every stimulus is mapped onto a limiting sphere

r = win the visual space, where w 1s a personal constant independent of the stimu-
lus.

The hypothesis H; is in accord with the fact that in all observations and ex-
perience the visual space appears to ba finite. There is rothing in our perceptions

corresponding to the ideas of “infinitely far away” or “infinitely large’” . This

hypothesis 1s given some support by certain experimental observations of equipartition-

ed alleys, and by the fact that the computed values of w for diiferent kinds of ex-

periment are in approximate agreement (Part IT, Sec, 2),



4c. Perceived Direction

Two points Q and Q, will lead to the perception of two points P,, P, in the
same direction at different distances only i1f their angular coordinates t and ¢
are the same. Thus the hyperbelas in physicul space, determined by the equations
€ = constant, ¢ = constant, arc mapped into radial lines, ¥~ = constant, ¢ -
constant, of visual space. Equal changes in ¢ and & are _zarceived as equal changes
1n ¢ and % . Since, the physical and visual orientations of the principal
planes will generally be in agreement, we may, when this orientation 1s preserved,
set @ = ¢, ¥ = 6. However, it is sufficient for our purposes to state that
perceived differences 1n ¢ and ¥ in looking from point to point of a configura-

tion are equal to the physical differences in ¢ and €.

4d. The Sensory Role of the Iseikonic Coordinates

From the preceding remarks 1t is guite plain that the iseikonic coordinates

=
n
=
'
~
0

"
€
'
B
[<]

(18) =
® = 6-6

are highly suitable for the description of perceptual phenomena in the visual space.

In the first place they are invariant under iseikonic transformation as are the per-

ceived metric relationships among the points of a configuration. If 7  1s the co-

ordinate of the farthest sensed point and ¢, and £, are suitable directions of re-

ference, we may set

r = r{[)
(19) CHER
g = 8

The function r (I") is a constant characteristic of the observer. In particular, so

1s the special value
(192) w = r (0)

Under the assumptions cf the foregoing analysis we have, reduced the problem of deter-

mining ithe coordination between visual and physical space to the determination of the
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single function r = r (7). The function r (") is a personal characteristic (i.e., a
constant such as Luneburg predicated) of the observer. If our assumptions are cor-

rect, a complete description of the observer’s binocular visual space can be supplied

once the function r (M) is determined.

5. EXPERIMENTAL METHODS FOR DETERMINING r (I)
AND RELATED EXPERIMENTS

The rules of trigonometry given in Section 3f may be used to measure the visual
space. In Part II we shall discuss several relevant experiments which have been per-
formed in this laboratory, together with a detailed account of the ?echnics, appara-
tus and resulte obtained. In the present section only a general description cf vari-

ous experiments related to the theory will be presented.

Convenience has led us to restrict our work to the use of stimulus coafigura-
tions in the horizontal plane, ® = O. Although it would be desirable to complete the
evidence by performing cxperiments in all three dimensions, there is some foundation,

in theory, for the hcope that conclusions based on results obtained in the horizontal

plane may have validity also for the ihrae-dimencienal case

As a matter of consistent notation, points of the stimulus configuration will
be denoted by the letters Q. Qz, Ck, . . . . and the corresponding perceived points

by the letters Pl' P2' g o+ -

35a. Parallel and Distance Alleys

The most striking evidence that visual space is non-euclidean :ies in the dis-
tinction in visual perception between apparently parallel straight lines and curves
of apparent equidistance. This difference was first reported by Blumenteld!2. The
experiment is quite simple. Twe lights are fixed at the points Ql+ = (y,, ¢,) and
Ql- =(71,~ ¢ﬁ), equidistant from the observer and symmetric to the median. Other
lights are then introduced successively in pairs C%i at predesignated stations ap-

proaching the observer. The obscrver is asked to adjust the pair CE according to two
different sets of instructions:®*

*For this experimen®, also for those discussed in sectione 5b apd 5c, the complete instruction is
given in Part 711.



“(a) Adjust the lights Q&i, C%i, S C%i unili

the two rows of iights appear to be straight,
parallel to each other and parallel to the

median.

“(b) With only the fixed lights Chi left on, set
the pair CLi to appear symmetric to the median
and to have ihe same apparent separation as the

two fixed lights”.

‘lhe result of experiment (a) 1s called a paraliei aliey: of experiment (bJ,
a distance alley. If the geometry were euclidean, the twe instructions should
lead to the same result. We should
obtain only one pair of curves.
? These curves would be symmetric to
Ql+ Ql.-- the median, would have the appear-
1\\ /¢f ance of being straight, parallel to
each other and the median, and would
be equidistant throughout their lengths,
This 1s not, in fact, the case. For all
observers who appear to understand the
inscructions® the curves (a) and (b)
I are quite different from esch other. If
\ I the curves (b) are illuminated for the

|
(b)(a) (a)(b) observer after their pairwise construc-

tion, they appear to be neither parallel

'g‘ O—10— :
L R nor straight. For these observers the

parallel alleys fall nearer to the me-
dian than the distance alleys. (Fig. 6).

FIG. 6. BLUMENFELD ALLEYS: (a) PARALLEL ALLEY;
(b) DISTANCE ALLEY.

For iseikonic coordinates in these experiments we take " = y - 7,

and ¢ = ¢.

In the visual space, Luneburg characterizes the parallel alleys as the visual
geodesics which are sensed as being perpendicular to the subjective frontal plane
(Fig. 7). The equation for sensed straight lines satisfying this requirement is sim-
2ly obtained. Let Pli =(r,, + @, ). We have ry=w, &, = ¢ Let P = (r,¢ ) be
a variable point on the alley through Pr and let Y denote the radial distance of the

intercept of the alley with the m-axis. From the right-triaagle formula (11) we obtain

*FOR AN APPRECIATION OF THE DIFFICULTY HERE, SEE HARDY, RAND, RIT’P[.EE"S
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FIG.7. REPRESENTATION OF A PARALLEL
ALLEY IN VISUAL COORDINATES.

in the hyperbolic case

tanh Y

tanh r

cos(%-q)) = sin? =

The constant tanh Y is related to the coordinates of the fixed point by tanh Y

= sin @; tanh w, The equation of the parallel alley

in hvperbolic geomctry is
therefore

(20) tanh r sin ? =  tanh w sin q’l (K <)

For the other twoc geometries the same method gives

(20a) r sinGg = w sin G, (K = 0)

tan r sin@ = tan w sinql. (K > Q)

The distance alleys, on the other hand, may be characterized as the loci

of constant perceived cistance d from the median (Fig. 8.) For a variable point
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e

F1G. 8 REPRESENTATION OF A DISTANCE
ALLEY IN VISUAL COORDINATES.

- 0

P = (r ¢ ) on the left-hand alley, we obtain from (12) sin® = sinh d / sinh r
in the hyperbolic case. From the condition that the alley go through P = (w, {1 )

we find

(21) sinh r sin @ = sinh w sin @y (K < 0).

For the other two cases the equations for the distance alleys are

(21a) rsinG = wsing, (K = 0)
(21b) sinr  siné = sin w sin @1. ' (K > 0)
ﬁ In the euclidean case, as we know, the

parallel and distance alleys are the same

and this geometry does not account for the

Pt
experimenta! observation. Now, 1f we let
(p be the angular coordinate on the paral-
T::EBEI‘ lel alley and (4 be that on the distance
alley for a given value of r = w (Fig. 9),
we find from (20) and (21),
(K<0)
SinlGy = tanh r sin, :sinh‘r sin@,
| | ¢4 tanh w sinh w
y and (K>0)
in G = tan r sinG, ) sin r sin@,
T.L - i 'S m tan w sin w
o)

FIG.9. REPRESENTATION SHOWING ) AND Q)d
FOR A GIVEN VALUE OF r. b



Now, since r {w, the above equation for the hy;:arhalic case yields

(22) s1n q:p cosh r
sin qd " cosh w

(K <0)

This implies that Gp < & 4 and the parallel alley must be inside the distance alley. For

the elliptic case on the other hand we find

sinep cosr

> 1 (K >0)

singg cos w
Consequently, q’p > @d and the parallel alley lies outside the distance alley.

Clearly, the hyperbolic case ts the only one that can fit this experimental evidence.
We shall find that other experimental tests of the question lead to the same conclusion.
For this reason we shall no longer follow this parallel presentation of the three cases,
and we shall employ only the hyperbolic geometry. The reader will find it not difficult to

carry out the analogous reasoning for the other cases i1f he wishes to do so.

The al

-

-

= y be i

xperiments m usc

experiments may ot only as a neans of 1ndicating the hyperbolic
character of the geometry, but also to calculate the function r ( I' ). Consider the VMC
corresponding to » given value of I" {7y is already specified) and let r be the perceived

radial distzance corresponding to . The point (r, ffd) on the distance alleys satisfies
equation (21) and, hence,

sin? (f’l
siand

The coordinates (l.’, (Qg4) are related to the coordinates of the point (r, ®p) on the
parallel alley by means of the equation (22) which yields the relation

sinh?r = sinh%w

. 2
cosh?r = 1 + sinh?r = cosh?w s?nzfpp.
sin @d

By ~liminating sinh?r from the two equations and setting sinh®w = cosh%w - 1 we obtain an

equation for w:

.9 .
(23) cosh?w = iU Ggq - sin’ G R cos2(py - cos2@ g
sinz@p - sin? @, cos2 (1 - cos2@p

Having determined the value of @ from equation (23), the values of r for other values of I

may be determined from equatien (20) or (21) by taking points on the respective alleys,




5b. The Double Vieth-Muller Circles

Experiments utilizing points of light set on two Vieth-Miller circles of different
bipolar parallax were described by Luneburg3.

(1) The Three-Point Experiment. This experiment has given most uniform resuits 1n
favor of the hypotheses that the visual space is hyperbolic. Luneburg has shown alsc that
the experimental resuits lend further support to the hypothesis of constant curvature.

X Consider the two VMC’'s associated with
_4 (To, 00) two given values ¥, < 7,, of the bipolar
(ro,91) — Q0 parallax. Let Q, = (7,, ¢,) and Q, =

(74» ¢1) be two points movable on the outer
circley = 7%, and let Q, = (y;, &) be a
freely adjustable point on the circle y = vy,

Q4 \

(Fig. 10). The observer is asked to leave Q_
/—\ and Q, fixed and to adjust the point Q, so
(4 .8 } that for the corresponding perceived points

i ;
QZ 2 B Pl, P, the sensed distance from P, to P,
equals the sensed distance from P, to P,.

As convenient and appropriate iseikonic

coordinates for this eiperiment we take

Y - 2 e = y-y, ad ®= ¢-¢,

The visual coordinates (r, ¢ ) are related to

FIG, 10, PHYSICAL ARRANGEMENT IN THREE- = -~ 1
L B R these by r = r (') , @ = & Thus, with the

understanding that @ = r (0) , the visual
coordinates of the points are defined by

po = (O), 0) . Pl = (w,Ql) ; p2 = (I’, l‘f',z‘)
vhere ¢1 = & - ¢, , G2 = P -H, and r = r (¥ -7,). (See Fig. 11).

From the condition
Dip,,P) = D(,,P,) - d
and with the use of the cosine iaw, equation (9), we obtain

cosh?d = cosh?w-sinh?w cos @1 =cosh r cosh w=-sinh r sinh w cos &,

whence

. sinh r cos G2 cosh?w - cosh w cosh r
2 e——— +

sinh w sinh%w
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FIG. 11. REPRESINTATION OF THE SENSORY
SITUATION IN THE THREE-POINT DVMC

EXPERIMENT,
In the above cqustion put
sinh r cosh?w - cesh w cosh r
m = ] b £ . 2 ]
sinh w sinh“w
(24) -
Y = cos ?1 . X = cos G, .
The quantities m and b are clearly constants depending only on the vaive ' = y, -y,

xd not the particular values @ and @y . Thus, 1f we repeat the experiment for different
values of (i)l = d)l - ¢, and determine the corresponding values of G, = (752 ~ @

the plot of cos ?1 as ordinate against cos(p, as abscissa will 1in theory be a straight line,
r25) Y = mX + b.

It is an experimental fact that this graph is very nearly linear. Luneburg'* has shown
that it this result holds for each pair of Vieth-Miller Circles, then the space has constant

curvature.

The values of m and I are easily determined from the plotted graph. The value of w may

then be found by eiiminating r from the equatious for m and b. Thus

sinh?r = m2sinh%w = cosh?r - 1

2 . b2sinh‘w
cosh?r = cosh%w - 2b sinh%w + e
cosh“w
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Combining these equations and setting® cosh?w = sinh%w + 1, we get

sinh%w
1 +m2sinh% = 1 + (1 - 2b)sinh%w + b2———
coshw
whence. 5
- _ . sinh%w ) e 1
m“ = 1 -2b t+ b“ 'l“Zb'f‘b“(l-—-—z—)
cosh‘w cosh‘w
and
2 2
(s cosh?w = f),
(1 -L)2 - p?

Having determined w in this fashion, the value of r 1s easily found from the equation
(24) for m.

It is clear that the quantity on the left in (25) must be greater than 1 if w is to
be a real quantity. The fact that this is experimentally true is further evidence that the
geometry 1s hypervviis. it can be seen that the geometry is hyperbolic, euclidean, or

elliptic, according to whether m? is greater than, equal to, or less than 1-2b.

(11) The Four-Point Experiment. The three-point method i1s found to be somewhat

nearer to each other than to the intercept of the line (see Part II, Fig. 25). It follows
that the intercept b, depends rather critically on the determination of the slope m. In
14

order to surmount this difficulty, Lunebucg®* suggested a method of determining m by

the use of four points.

Let Q = (7, &) andQ, = (Y5, ®,) be two points fixed on the circle y = 7y,
and let Q; = (7, &) and Q, = (¥, &) be two other points which slide on the circle
Y =7.LltP, ,P,, P, . P, be the corresponding sensed points. The observer is asked to
equate the sensed distance Db (P, , P,) te D (P, , P,).

Setting r = r (¥, - 7,), as before, and using

by, = & -,
B, by = by

(Fig. 12) we obtain Ly the cosine law:

cosh?w - sinh%w cosAl = cosh?r - sinh®r cosA2
whence,
sinh“w (1 - cosQ,) = sinh?r (1 - cosh,)
and
. 2 . - .
3 sinh“r 1 c.os/_\.l

mn = =

sinh%w 1- cosA2 )
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sin® ‘2% we obtain, fimally

=) =| Iy &,
simh r sim ad

(z;? m = - = = >
sinh w sin 24,

Thas value of m may then be used for a better determinatiom of & in {230,

From the velues of m and b =e may then calculate the value of o from (280, Tnece we
chtain the valwe of w experimentally = need no longer use the three-point experiment, but

by repeated use of the four-point exseriment with differing values of T

Bl
fa £y .

== can calcolate r § I 0 from 1275

3c. The Eguipssrtitiomed Paraifel Alleys

Thas experiment is significant im that the calcolation of perceived disiance r 1s
alrogether indepemdent of amy of the hypotheses vomcerning the role ot ¥ in the perception
of distance. It has potential use, therefore, as a iest of the degree of walidity of these
hypothesses.

The okserver 1s asked to arramge siv lights, three on each side of the median, so as

to form a parallel alley as im Section Ja. Let the six lights be designated by the~ swibwols

-

Q= =17 .z i1 =1, 2, 3,5, Let us suppose that 3 > ¥, > ¥,. The two lights (-&t are

fixed 1n pasitron. The lights Qﬂi . are restricted to motica cn the VMC v = » . The

g mes



lights Q,* are freely movable in the horizontal plane {Fig. 13).

The observer sidjusts the lights Qli and Qf so that the ccrresponding sensed lights Pli

x

)

3

and P,* appear to be lined wp with P,* in

a parailei alley. The Lignts Q,* are then
further adjusted so that the observer perceives
the points P:‘.i as being exactly madway in dzs-
tance between P * and P,*. When this has been
done we sav the alley has been equipart:ticned,
02_ or simply partitioned, and we refer to the

points ta as the partition points.

For this experiment the appropriate

iseibgnic conrdinates are
01_ I = :""}‘: and¢=¢~

The equation of the parallel alleys, as we

1
”

1]
9
=

L4

1]
¥
3-
T

Y 7 e
- LS Vit oY =

pie

v
¥
f
»

1j¢

PIG. 13. PHYSICAL. ARRIMGERENT OF AM
EWIPARTITIONED PARALLEL SLLEY

™7

R 428) tzxh r sin§ = tamh @ singy = canh Y

where Y 1s the radial distance from the crigin

of the point P_ on the alley at § = 2 {Fig.i4).

Set X, =D (P, P}, {1 =1, 2, 3}. From the right-triangle law (13} we have

-
tan ¢; = :;_m L= 1, 2, 3)
'

Simce P, 15 perceived as being madway between F'y and Iy we have

N, = MY+ X

By employing (29) and (2%2a) together we find:

tanh 2X, = =
e et tanh®X,  tan®G. + sinh®Y

2tarhX,

Z sinhY tan$a tanhX, * taphX,  sinhY(tanG; * tang, |

= ranh{X, + X} =
1 \3 1+ t;anhil taahx.s tanG, tan G, + sinh®Y

Using this eguatisn we determane ¥ by

30

»

where

(30a)

[ 2-1s~-13 ]

sinh?Y = tanzqu;z “_R"S T - 253—}

tanG o - tanGy

2
tt.an@; tﬁ’_m§3

The salue of Y is determired, therefore, caly from the messured walues of ¢ The walues
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FIG. 14. REPRESENTATION OF THE SEXSIE:
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of r are obtained from 128} and again omly the values of ¢ are inwlved. In particular »e have
zanh 1

sin (?-3

(30b) tanh w =

(learly, the assumption r = r (Il does not enter in the design of the experiment in amy way.
Since perceived distance as measured by this experiment is independent of any hvpotheses
concerning the aature of scmscd eguidistance, particularly Hy , H, and H;, 1t may he used to
test the walidity of these assmmti-ns. To do this in adeguate detail would require in excess
of 10 experiments per ohserver.

The equipartitioned alleys also give evidence that the space is hyperbolic. This is the
consequence of the fact that the guantity om the right in (30} is found experimentally to be
positive. If it were zeio or negative we wonld take the result to mean that the gecmetry is
euclidean or eliiptic in the respective cases. It is easy to see that this condition amounts

to saving

",

O according to whether “cot &, + ooty
g 6 4 F3

o
Vi A
ViA

cot (a-



3d. Size Constancy - Relation of Perceive? ¢0 Paysical Size

The phenomencn of size constancy has received 2 great deal of attemtiom im the literature
{see C. H. Grahan'® for bibliogrzphy}. The title alludes to the fact that the sizes of physical
cbjects are not julged in proportica to the zizss of the retinal images but are gemerally seen
more neariy in their correct physical reiationships. In the periormance of most tests of size
constamcy, clues swuch as perspective, the presence of familiar objects of hmown size, and other
extraneous means of forming size judgments hove generally been present. The study of the purely
binccular basis for these judgments is amother matter. In the experiment described here, size
comparisons are made in the darkroom and care is taken to prevent extraneous informevicen from
reaching the cbserver.

The ochserver 1< asked to make the same sort of judgment as in the fsur-point experiment
Section 5b (ii). The points Q,* are fixed symzetrically to the median at {7, t¢,), and the
observer sets the points Q:i at some closer distance to give the impression of being symmetric
to the median »ith D{P," , P,”} = B IP,", P,7). Let us supgpose that the points Q,* are

located at {7v,, 3. For iseikonic coordinates we use

8= ;
The right-triangle law {13} gives the relatioa

(33 sinh ) tan G, = sish r, tan

where r, , r, are the perceived radial distances of midgoints of the respective segments
P,"P,” ad P,*P,” (Fig. 15).

'

Using the approximation tang = ——;;— we abtain the ratio of the twn physical sizes from
{31} as
o8 ¥2 ¥y sioh r,
—‘f- h g i
| ¥, sSinh £,

1f the size of the retinal image were the effective critericn, the ratic of the sizes would be

¥z _ 7
o mq .lb
Y

1 R

[

The departure from this ratio may be coosidered an indicatiom of the =ffectiveness of oar

denth perception in judging the relative sizes of objerts

e

If the © angles are suificiently small we may use the approxamatioms ry ~ &' and

r, ~~{7, = %) to obtain

(32a) Y2

Yy sinh &

£

¥ :;'*',‘,S-itﬂh r,
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FIG. 15. REPRESENTATION OF THE SENSORY
p+‘ _P2— SITUATION IN MAKING A SIZE MATCH,

It should be stressed that the size-constancy relationship will depend vpon the position
of the distant reference object.

If we employ small values of ¢ we may use (32a) to determine r (I") once we know the

value of ax If we do nct restrict ¢ in this way we should use equation (21) for the distance
alleys instead.

Scme rasults obtained in our laboratory do give evidence of size constancy, even for
darkroom observation (C. J. Campbell 16). The size constancy data alone cannot be utilized to
demonstrate the curvature of visual space. However if the size constancy experiment were
considered an equidistant alley and compared with a corresponding parallel alley, ther the

results could be used to determine the nature of the space in the manner of Section Sa.

Je. Tne Phenomenon of the Frontal Geodesics

To Helmholtz !7 we attribute the observation that the physically straights lines do not
appear straight at all distances. Curves which do give the impression of straightness are not

physically straight but are concave toward the observer at near distances and convex at



far (Fig. 16). For some intermediate distance the frontal zeodesic will be straight in ‘the

vicinity of the median. Although this phenomenon is not very useful in computing r (I') it is

X an example of the kind of ohbservation which may
A be given a quantitative description by means of

the theory.

e . o The equation of the frontal geodesics is
easily written. Let us suppose we are dealing
with the geodesic segment between the points
QO*‘ = (¥,, t@ ). As iseikonic coordinates we
————r take

F=y-7, ®=¢
The equation is then obtained from (11)

(33) tanhr (') cos® = tamh w cos @,.

/"‘“'\ It may be of some interest to determine

the distance of the straight frontal geodesic;
i.e., the physical abscissa for which the frontai
geodesic is physically straight. From the ap-
proximation (3a) we have for sufficiently small

values of 7y

~— OO
J R

L 2 cos? ¢
X = ——
Y
FIG. 16. COMPARISON OF FRONTAL GEODESICS _
SET AT DIFFERENT DJSTANCES. From (33), we have for the frontal geodesics
2¢ t,anhza) ,
COS T — 3
tanh?r 0SSt

Eliminating cos?¢ we find
. 2 tanh?w cosdDO
¥ tanh’r = -
X

If x 1s the distance of the straight geodesic, the term on the right is a constant in the
neighborhood of the wedian. Hence, differentiating with respect to I', we cbtain

tanh r dr
tanh? r + 2y—+ — =
’ ycoshz r d°

&
Setting ¥ =— for the point on the median we obtain
X

8 dr
(34) X =

sinh 21’l dar

33



where r, is the perceived distence of the point on the median and the derivative is taken at
r = r,. If we approximate r; by w we obtain

. 8 dr
(aa) * T T eimh %0 \

rTC=0

Formula (34a) will be valid if the angle ¢, is not too large.

Having determined the function r (I") within experimental error, we shall be able to
predict ioughlv the distance of the straight geodesic by (34a). Conversely, if we determine
the position of the straight geodesic, we shall be able to reinforce our statistical knowledge
of the function r (I") at the value ' = 0 by determining the derivative in (34a).

6. SUMMARY

Luneburg’s theory of binoculer visual space rests upon the mathematical assumption that
the visual space is a finitely compact and convex metric space [Section 3d (a) to (g) l. This
statement means hardly anything more than the fact that observers are capable of making visual
comparisons of length. Other assumptions (e.g. that the space is desarguesian and riemannian)
lead to the cenclusion that the gecmeiry of visual space is one of the three simple geometries
of constant gaussian curvaturs, either hyperbolic, euclidean or elliptic. Of the three al-
ternatives, our experiments consistently support the first. The laws of the hyperbolic

geometry of Boiyai and Lobachevski, therefore, most probably operate in the visual space.

If we designate coordinates r, ¢ , J in the visual space corresponding respectively to
radial distance, azimuth angle and angle of elevation we find that these guantities can be

related to the physical coordinates of the stimulus configuration by means o{f the equations

r ()

¢ = @
J = 8

wvhere [, & , ® are so-called iseikonic coordinates. To characterize an individual’s
response “o geometrical spatial stimuli we have then only to determine the one function
v (I"). This is a feasible experimental project and several technics for effecting this
determination are discussed. The descripticn of three of these technics and the data derived

from their use are given in Part II, Section 3.

7. CONCLUSION

Experimental evidence has given reason for a modification of some factors in the Luneburg
theory by postulating a different mapping of physical into visual space. This modification,

again, should not be considered as the final word in this matter, but only as an approximation



which 1s to be tested and imprdved by further experiment. Scattered throughout the discussion
are suggestions as to possible fruitfii cou-ses of future experiment and more will occur to a
reflective reader. Yet, even as it stands now, the theory is able to give a good qualitative

(and to a considerable extent, quantitative) account of many of the geometricai phenomena of

For its nrecise quantitative evaluation the theory must wait upon the detailed statisti-
cal evidence of a great many future experiments. Whatever the outcome of such an elaborate
statistical study, it is felt that this kind of abstract geometrical approach will prove
useful. The theosry is held to be important as much (if not more) for its methods as for any

specific results,

It should not be supposed that this modification in the analysis comstitutes in any way
a refutation of Luneburg's ideas. Luneburg slways recognized that his suggested parameters
were at best a working basis for experimental investigation. The same may be said for the
modi fication, and we hope it will be pnssible for investigators to carry on with the extensivc

exper.nentation necessary to completely confirm the Luncburg theory,

35
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PART 11

THE EMPIRICAL SUPPORT OF THE LUNEBURG THEORY

In the first part of this report it was shown how it iz possible to formulate a theory of
binocular visual space in systermatic fashion by logical deduction from the stated set of postu-
lates. Some of thase postulates are intuitively derived from our experience and can never be
completely tested by experiment., Others which might feasibly be tested in the laboratory could
not be explored in the time available for our program. Direct evidence was sought for certsin
hypothese such as the one concerning the perceptual role of the Vieth-Miller Circles (VMC),

v = constant, (Part I, Section 4, Hz)' In the main, however, the tests of the theory have been
based not so muzi. upon the direct attack of its basic postulates as upon an investigetion of

their consequences. The test of the theory is whether it works,

The Luneburg theory does seem to work, — not perfectly with impeccable precision but well

enough to be very significant. In one consistent account

ssamme o~ dao

v succeeds in giving a des-
cription of a number of well-known binocular. sp.atial phenomena which might, at first thought,
appear to have no relation to each cther. It also gives us a way of determining a quantitative
relation between the visnal and physicai spaces. Although the quantitative aspects of the
theoiy have not yet been placed upon a statistically firm footing, significant numerical re-
suits have been ob*ained. Further, the development of the theory is such that any consistent

experimental deviation from an expected result can be utilized directly in definite ways to
improve the theory.

In the following we shall see what light the experiments shed on the theory.

I. SENSED RADIAL DISTANCE

In Part I, Section 4b, the Vieth-Miller Circles (VMC), 7y = constant, a.e ascribed the
oroperty of being perceived as loci of equal radial distance from the observer. To test this
hypothesis, fifteen lights were set up in the horizontal plane adjustable along the ¢ - Lines,
¢ = 0° 15° £10° =+15° ...... 135° (Fig. 17). The-light on the median, ¢ = 0°, was fixed

and the observer was asked to adjust the remaining lights according to the instruction:

‘‘The median light is fixed. Adjust the position of the other lights by having
them moved toward you or awzy from you until ycu have the impression that, together

with the median light, the lights form a circle about you with yourself at the center.’’



FIG. 17, SENSED RADIAL EQUI-
DISTANCE EXPERIMENT. PHVSICAL
ARRANGEMENT OF THE LIGHTS.

Y ‘xl.\__/ﬂ/

In the limited number of experiments performed on several observers the lights do not. al-

ways seem to fall on a VMC but, more generally, on a slightly flatter curve. The result of a
sample experiment showing this type of deviation is given in Fig. 18. The effect decreases
slightly with increasing distance. Occasionally an experimental setting actually fell inside
the VMC. Since the experimental curve was close enough to the VMC in general to satisfy us
with regard to use of the zircle ¥ = constant as a first approximation, we did not pursue an
extended course of experiments on this question. Furthermore there is a possibility that the

flattening of the VMC may be attributable to experimental and theoretical factors such as
the following:

(2) 1In the experimental situation, the lights were placed on a horizontal table covered
with a sheet of coordinate paper so that their positions could be marked. Ordinarily, a great
deal of attention was paid to keeping the illumination of the surroundings sufficiently low
that the observer had no idea of the position of the lights with respect to the room. However,
ir this case with fifteen lights, although very dim, placed above a light reflecting surface,
it is conceivable that the observer was able to obtain some shadowy impression of his sur-

roundings and so would modify his setting of the liphts to tend slightly toward the circle of
equal physical distance.

37
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(b) The visual axis of the eye actually makes an angle with the optic axis at the an-
terior nodal point of approximately 5° temporaiiy. If we define Y as the angle of convergence
of the visual axes, the angle should presumably be measured with respect to the anterior nodal
points. Since the position of the nodal points with respect to the head changes as the eyes
shift fixation, this choice of ccordinate is not as convenient as that based on rotation cen-
ters of the eyes. The use of the nodal points instead of the rotation centers does give a
flatter curve than the VMC, but the effect predicted on this basis does not seem to be as
great as the empirically determined flattening. The nodal points shift in the eye with accom-
modation also. Duc to the drift of the nodal points in accommodation, the flattening should
be most marked for the nearer VMC. However, the contribution of accommodation to this effect

3s minute and, although such an effect is found, i1t is quite likely attributable to the factor

mentioned in (a).

If we were to make consistent use of the nodal points in defining the bipolar coordinates
in three dimensions, it would be necessary to use Listing's Law to give the bipolar coordinates
in terms of fixed physical coordinates. Since our experiments were conducied in the horizontal
plane only, we have not felt the use of the nodal points instead of the centers of rotation

would give sufficient advantage to justify the inconvenience.

For the purposes of the theory it is irrelevant whether or not we take the ocular mechan-
ism into account in characterizing the loci of apparent equidistance. It would be sufficient to
determine these loci experimentally and then to devise mathematically a suitable parametric

representation for the experimental curves,
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2. TESTS OF THE {ISEIKONIC TRANSFORMATIONS

In this section we shall exhibit a consi.. able amount »f evidence to show that binocular
spatial rclations are invariant under the iseikonic transformations (Part I, Section 4a). In
other words, the perceptions ot strajghtncss, relative distance, form, etc., among the poinis
of u stimulus configuration are not aiterea by changing the bipolar coordinates (y, ¢, &)
for each point of the configuration by fixed constant amounts. Since we have restricted our-
selves to work in the horizontal plane, & = O, we shall consider only special transforma-
iions vi the fomn
Y= yEA

(3%) ¢ = Pty

A transformation of this kind may be subdivided into two separate transformations, one
of the form

M = + A\
(36) A

P = ¢
and the other of the form
(37) P = Yy

¢ = dtpu

It will, therefore, be sufficient to treat each of the two special transformations sep-

arately rather than to work with the more general kind in which neither X\ nor u vanish,

2a. The Transformation @' = ¢+, ¥ =1y*

In this transformation the ¢ coordinates of the points of the stimulus configuration are
are all changed by the same constaﬁt amount. The value of ¥ for each point is left fixed. Now,
1f binocular metric relationships are not changed by altering the stimulus in this mamner,
then the perception of straightness of line should not be altered. To test the special isei-
konic transformation (37) the observer was first asked to arrange a set of lights so that they
appear to lie on a straight line between two pre-set fixed lights symmetrically disposed about
the median; i.e., to form a frontal geodesic. Then the fixed lights were re-set by changing
the ¢ angles equally while not altering the values of.y, and the observer was asked to repeat
the experiment for the new setting of the fixed lights; i.e., to form an oblique geodesic. If
the observer placed the lights for the new setting to courrespond to the old cne through equa-
tion (37), the hypvinesis of the iseikonic transformation would be verified for this special

case, This procedure was called the Predicted Oblique Geodesics Experiment.

In the laboratory, nine lights Qn were placed so as to be adjustable along the ¢~ lines,



¢, =5n° (n =0, t1, 22, +3, +4), The fixed lights at ¢ = 120° were pre-set symmetrically

to the median at x = 330 cm. The observer adjusted the remaining lights according to the

specific instruction:

‘"The two end lights are fixed. Adjust the remaining lights by having them moved

toward you or away from you until they appear to lie on: a straight line hetween the

end points.’’

The experiment was repeated several times under these conditions. With the mean of the
repeated settings taken as the basis for computation, the total stimulus configuration was
subjected to the transformation (37) with u = + 10°, The point Q_ = (¥,, ¢,) of the original
configuration was then transformed into the point Q' = (y,, ¢, + 10°). 'This transformation
replaced the original configuration with another stretching from Q',, at ¢ = +30° to Q'_, at
¢ = - 10° For lack of space we could utilize for experiment only the part of the configuration
stretching from Q',, at +20° to Q'_, at - 10° Fixing two lights at Q'_, and Q',, the experi-

ment was repeated using the same instructions and with the iights piaced at 5° intervals be-

tween - 10° and + 20°, A similar series of observations was obtained also for u = -10°,

In Fig. 19 we compare the results of these setiings for five observers with the predic-

tions onsthe basis of the iseikonic transiormation (37). The data are given in tabular form

in Table I.

In general, the agreement between prediction and experiment is good. Wherever there i1s a

marked deviation af the sarting from the prediction there is also z marked asymmetry. For ob-
servers who exhibit this asymmetry we might reasonably assume that the two eyes do not play

equal roies in binocular vision. The interesting problem of generalizing the theory for such

observers 1s left open.

‘This experiment was actually designed to test a somewhat different hypothesis. For the
present purpose it would have been desirabie not to alter the number of points in the stimulus
configuration so that the original and transformed configuraticns might be complete images of
each other under iseikonic transformation. However, it is felt that the conditicns were ade-

quate to bring out the point in question.

2b. Tne Transformation ' =y + X, @ =4

The two experiments described in this section were not designed originaliy to test the
invariance of binocular metric relationships vnder the transformation {36). They were to be
used for the determination of the functicnal connection between the visual radial coordinate r

and the convergence angle . However, because of the manner in which the experiments were
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TABIZ I

Test of the ipsikonic transformation @'=@wu ,7'

Geodusics Experiment ).

= ¥ (Predicted Oblique
Aversge peitings of x 4in centizeters for each value of d

for a {rontal geodasio and tmo oblious geodeaics whan the total stimnlua confizue
ration was subjected to the transformation gj' S@+10°% Values in italics are
those predicted on the basis of the iseikonie transformation, commited from the
setungs of the frontal geodesioc.

Geodesic

Frontal
Predicted

Frontal

Oblique
Predicted
Bperiental

Predicted
Brerimantal

»

Setting of x for ¢ values of

1° w° 5°

Observer QeRe

320.C 315.9 313.

¥t I3

E 302.2 313.8
Bls TPy )11.0"

Observer M.Ce.R.
335.1 0.5 3U3.¢

%t &1
32)e1 3349 3Lkl
2.0 I3TS Jhb.h
9‘_)8.8“408‘ LoHoFe
33040

362.5 356.8
.5

321 2 331.3

= v - ® Pl 21

3356l

Obsgerver CeJeCe

335.7 3L0.0 3h2.8

%3 B

J22.2 3L 3h2.5
32hed 337ey 3UTe3

Observer AcAeRe

OO

32,8
JL3.5

-5’

205w

10°

317.2
03.8

24

3h3.0
3009

o

%2.5
2.5

oo
- &
) L ]

'\ [+})

L
]
\

322.2
295.0

L

335C

321.2

335,¢
22,0

=20

330.0
288.8

330.0
126

w
[ ]

o

Pk

33060 33146 333.L 33he9 335.3 335.1 33k.2 332.6 330.0

B B9 B 3% B B9 B3

No. of
experiments
20°
10 330.0
s
287.6
5 287 .
an 330.0
L
310.0
L .
5 33060
7
7 ’%‘3
10 33060
S
09.6
5 .
10
k
)3

Bt 9 5 B B8 B

In this case the end light was incorrectly sete



executed, they provide good tests of the stated invariance under the special transformation

Al) the experimentel reswlts exhibited in this section were cktained by the use of special
W)

stereoscopic devices, The instrumentation will be discussed in Section 4.

For each type of experiment, however, some results were also obtained with lights viewed
without this instrumentation, - that is, with lights viewed directly, The range of conditions
that could be investigated in this way was limited by the uvailable laboratory space, but the

results were not notably different from those obtained with the stereoscopic devices,

2b {i) The Double Vieth-Miller Circles. Three-Point Experiment.

This experiment is the same as that described in Part I, Section 5b (i). .The telestereoscopic

device to be described in Section 4 was used. The observer is shown three lights Q , Q, , Q,.

ThH 0
45k

c lights Q, and Q, are placed on the VYMC % = 7, with Q, on the median. The light Q, is
restricted to move on the YMC ¥ = 7y, with 7, > 7, (see Part I, Fig. 10). The observer is

asked to make a setting according to the specific instructions:

‘*Three lights are presented to vou, Twg of

g

hom ure fivad in
third can be moved.’’ (This light and i1ts range of motion are demonstrated.) ‘‘Direct
the experimenter to adjust this light so that the distance between 1t and the middle
light appears to be the same as the distance between the pair of fixed lights. Allow
the eyes to roam freely both ways over the spatial interval between each pair of
lights. Be sure to fixate on each light in turn and to sweep the eyes across the in-
terval between each pair of lights until you are satisfied that the two distances ap-

pe&ar to you to be the same.’’

A series of these experiments was undertaken with values of 7, ranging from zero to .07
and ¥, = ¥, *+.0Ll, In each case settings were taken for the zame fixed sequence of valucs of
¢y, the azimuth angle associated with Q;. If the hypothesis of the iseikonic transformations
is correct, the values of the azimuth anglc(ﬁz of Q, associated with a given @, should exhibit
no marked trend as 7, increases but raiher should fall randomly in the neighborhood of some
central vaiue. That this is actually the case may be seen from Table II and Fig. 20 which

present the results of an extended series of observations for two observers.

The entire experimental series was performed twice and cuch antry in che teble gives the

mean value of ¢, for the two series., The value of ¢, in each series was computed as the

average of three or four experimental settings. Each entry in the table thus represents at

least six experimental observations.



!
Test of the iseikonic transformation ¥'=¥+ A ,D =0

¥, and @, , when [ = .01.

Value of @, for different values of ¥ and &,

TABIE II

(Three~Point Double
Veith-Miller Circle Experiment)} Average settings of > for different values of

@, and P, are expressed in radianse

Fig. 20 Thres-Pont DVMC Experiment.

soch valus of J, and * when ' ¢ .01,

Sininge of @ for

= % Average
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2b (ii) The Equipartitioned Paralle! Alleys.

This experiment is the same as that discussed in Part I, Section Sc. The polaroid rack to be
described in Section 4 was used. Six lights, Qin , (n =1, 2, 3) are set out in tw rows of
three on either side of the mediarn (see Part I, Fig. 13). The lights Cfa and Q-3 are fixed
symmetrically to the median at the respective points {¥;, ®3) and (y5,-¢;). The lights

Q+l and Q° are restricted to move on a line x = x,. The remaining pair Q’2 and ¢, may

be moved freely in the two dimensions of the horizontal plane. A seventh light is placed

on the median in line with Q"3 and Q ', to aid the observer in establishing his orientation.
The observer is asked to set the two rows of three lights in a parallel alley and then to
set the muddle liéht in each row exactly half way between the near and far lights. His

specific instructions are these:
‘*The three distant lights are fixed. We shall call the central one the median light.

(1) Arrange the two rows of three lights on the right and left of the

median so that they appear tc you siraight and parallel. Make sure that

(a) the two lines of lights have the same direction and that this

direction appears parallel to that in which the med; m lights lies;

(b) the two lines appear to you perpendicular to the frontal plane,

(c) the two lines appear to neither converge nor diverge in the

distance, (Avoid the effect given by railroad tracks.)

{2} In each line of lights place the light intermediate between the near

and far lights so that it appears exactly half way between the two.’’

Some observers have difficulty in making a distinction between sensory parallelism and

the impression given by physically parallel lines which most would agree is not one of sensory

parallelism {e.g., the impressiou given by railroad tracks.)

In Table III and Fig. 21 we give the resuits of an experimental series for three ob-
servers. The value of ¢, was fixed with tan ¢, = ,1000. Four values of v5 were used in equal

steps ranging from about -.02 to +.02. ‘fhe value of [} =¥, - 7, was approximately .039.

Four settings of the equipartitioned parallel alley were made by each obscrver for each
choice of 7. For each ,, tlie mean of the four settings was taken and averaged again on the
left and right. The values of tan ¢ and I for the average settings are presented in Tabie III
and Fig. 21. It is clear from the data that tan ¢ does not show variation with 7y, and depends



Tost of the iseikonic transformation ¥' = T+ , Q§| SO (Bqui

partitioned Parallel Alley Experiment)e Values of
[, and I, for different positions of ¥y , when tan

ton ¢ ,2 01604

M, 00593

. 03928

. ’rs = -001766
tan Qs 2 01188
tan Q 1 #1549

M, o0CTT7

r ' «03931

T3 = "003..8!‘8
tan 9252 01127
tan (D | 011375

(" 2 .OOth

[, «03906

TABIE IXI

Observer: GoHe

T = =e00528 T3 = «00792
#1i5L 1169
1617 «1583
00572 +00L97
«03906 »C3891

Observer MeCeRe

T5 = "’OW Ts = 000875
#1155 1192
1180 o15k5
«007LS «00761
«03920 »03895

Obgerver CeJoCe

Ty = =+00528 Ts = «00792
«1119 #1156
+1415 #1531
200678 200685
«03926 +03898

B.s

75 =o.02112

o1ii51
000585
«03892

= 002]35;

#1195
+00620
03866

«02112

«1133
1497
«00802
«03887
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only upon I". In this experiment also the assumption about the iseikonic tramnsformations 1s
confirmed for the special transformation (36) by the clear agreement among the data obtained

under differing initial conditions,

3. DETERMINATION OF r ()

Ir. Part I, Section 4, we showed how it was possible to describe an individual’s visual
metric space in terms of a single function r ( I ). It then becomes a matter of considerable
importance to obtain a good estimate of the values of this function. The first three experi-
mental technics given in Part I, Section 5, were used for this determination. Since in each of

these experiments small variations in an observer’s settings may result in considerable dif-

ferences in the values of the function, human variability becomes an important factor to
consider,

The responses required of the observer were unusual and difficult. A tendency for the
settings to drift in one direction was now and then noted, particularly when a new type of
observation was initiated, but the settings soon stabilized. Random variation from day to day
was also noted. Time did not permit us to study this factor in any detail. Cn the whole, con-
sidering what was required cf _he observer, we were surprised at the consistency of his set-
tings. In a series of observations in which the effect of a progressive modification in the
conditions was to be measured, we learned that a presentation of the individual experiments

in random order resulted in a more stable picture of the effect to be measured and minimized

any directional ctrend due to practice.

We realize that to obtain a meaningful estimate of a given individual’s typical binocu-
lar spatial response it would probably be necessary to conduct a detailed statistical study
with each experimental technic, Despite the fact that time did not permit us to make such an
extended series of observations, the function r (" ) emerges more clearly than might be ex-
pected. In general character, r is a monotcnically decreasing function with a monotonically
increasing slope. The values of the function for the two observers who have been able to
complete the whole series cf iLests appear to be determined to within one part in five. Fur-
thermore, individuval differences ave brought out. For one of these observers the values of

r (I') are consistently somewhat higher ihan for thosc of the other. A zreater r (") may be
interpreted as a greater absolute curvature of visual space. This greater curvature is not to
be interpreted as a disadvantage. According to Lunebuig!®, the greater the curvature of one’s

visual space, the more nearly will sensory matches of size approach a physical match.

3a. Paraliel and Distance Alleys (Tne Blumenfeld Alleys)

In this experiment twenty lights were placed in two rows of ten on either side of the



median, The lights were arranged pairwise at each side of the median, both lights cf a pair

being freely and independently movable along a line x = constant. The ten chosen valucs of

according to instructions which were in general similar :c those used by Blumenfeld. They

are as follows:

‘‘“This is an experimenc dealing with space perception, We know one does not
always perceive objects in spece where. they actually are in physical space, or te
ys pe A] P y b phy P

be of their actual physical size, We want to mezsure some of these di{feren

roao
1S Caivv e

‘‘In the first experiment we shall show vou some small lights which we shall
arrenge under your direction so that when you look down between them they appear
to you to form straight, parallel lines of light. We wish you to think not of where
the lights actualiy are, but merely of how you sense them. When they are all ar-
ranged, we want you to be able to say that these straight lines of lights as you

see them could never, if =xtended, meet at any distance in fron

-~ -
1) v v

"~

you or at amny
distance behind you; that is, that they form walls that appear to you as parallel

walls that appear neither to converge nor to diverge''

To familiarize the observer with the observation, a trial run utilizing only

stations 1, 3, 5 and § was made, no measurements heing taken of this trial., The

instructions continued:

‘‘In the second experiment we shall give you two pairs of lights ut a time.
The position of one pair will be fixed, We want you to direct us to move the lights
of the other pair so that the lateral distance between them appears tc you the sare
as that between the first pair. We want you to make an immediate, instantanecus
Judgment of wh-ther the distance between the lights of the second pair is greater
or smaller than or equal tc that between the first pair. Do not think in terms of
physical units of distance between the lights, for example, inches or centimeters.
Just direct us in adjusting them until you immediately sease the iwo pairs of

lights as being the same distance apart.’’

Again a trial run utilizing only stations 1 and 3, 1 and 5, and 1 and 8 was
made, again without measurements, After these preliminary observations, the experi-
ment continued with the formation of the complete parallel and distance alleys in
that sequence. The usual procedure was tc give a second trial of each alley on the

same day and to repeat the series on a secund dav,

The data given in Table IV and Fig. 22 for two observers represent the average of three

such settings, averaged again on the left and right,



TABIE IV

Blumenfeld Parallel and Distance Alleys. Average setting of y for
each value of xe Values of x and y are expressed in centimeterse

Cbsexrver GeRe Observer MeCeoRe
x Paraliel Distance Parallel Distance
y y Yy 7,
5 S% 23.75 13. 85 20.60
Z? 1g.65 23.C% 1leisC 21.50
83 11.55 23.90 15.L0 21.80
108 12490 2he25 15,75 21.2%
139 1L.55 23485 1820 21.85
180 16,65 22.99 19.75 22 .@g
232 19.35 23.75 2}_=h5 2o 50
300 23035 20420 240%0 27010
387 28.8¢ 29,95 28.8C 29.10
500 35.0C 35.00 35.C0 35.0C

For each point of the setting the values of 7y and ¢ were computed from the formulas

2
cos“¢
tand = y/x VAN - X

(cf. equation [3a]) wvhere p represents the distance between the rotation centers of the ob-

server's eyes,*® Letting (y,, @) denote the bipolar coordinates of the most distant point,

we then calculated S = sinz\';ﬁd = sin2d51 for each point of the distance aliey, T = sin2<75p =
sinzq‘)1 for each point of the paraiiel alley and plotted S and T separately against [ =7y - 4T
An example of such a plot is given in Fig. 23. A curve was then drawn between the points of
the plot, and values for S and T were taken from iLhe curve at [" = 02, .03, ... The ratio
S/T was calculated for each value of ['. The average value of the ratio weighted with respect

® THIS WAS FSTAZLISHED APPROXIMATELY BY MEASURiING THE INTERPUPZLLARY DISTANCE.
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to [’ was then determined.* The value of w was found from this average by using the formula (23)
cosh?w = S/T

From the value of w the function r {I") was then determined for each point of the setting by

using the relation (20)
tanh r = tanh w ﬂ{,
sin ¢p

for the points of the parallel alley; and the relation (21)
sin @,
sin ¢

sinh r = sinhw

for the points of the distance alley, The values of r (I") found by this method are presented

r
i

2
* WEIGHTED AVEKAGE = —

Tl '-llf_h



TABIE V

Twenty values of r (") computed from the resuits of the
Blumenfeld Parallel and 7i.stance Alley Experimente

Observer Ge Re W = 1,470 Observer e Te He w = 931
Parallel Alley Distance Alley Parallel Alley Distance Alley
r r r r r r r r
.1105 33 «C917 0329 #1103 «1594 ,1008 s155
010%(3’5 oﬁi? 007147 02818 008’*3 ~2h0 00790 9236 .
0629 0)192 00585 ol!.99 906112 0238 006]:7 .g?g
oLST 2590 o037 617 k69 o3h6  JOUBO o378
.C328 2098  «C320 o772 o0338  oL18 s0334  oli65
#0225 «833 »C222 975 e0233 o517 00231 «568
«C147 +986 »C1k8 1,18 #0152 625 .0}51‘. 662
+CO85 1,126 »008L 1..280 «CC88 ~7h1 0088 «757
« 0037 10238 «0037 1.381 00038 oehh 00038 +&80
«0000 1,470 <0000 1.h70 «C000 «931 «0000 «931

in Table V for two observers. The graphic representation of r plotted against " is displayed

in Fig. 28 where these results are compared with those of other experiments.

3b. The Double Vieth-Muller Circle Expcriments

The Double Vieth-Muller Circle experiments were performed with the lights viewed directly;

t.e., without the tcleostereoscopic device. The theoretical background for these experiments

is given in Part I, Sections 5b {i) ard 5b (i1).

Both the three-point and four-point experiments were performed for i

r tie Ifuur values of
"=, -7 =.005 .01, .02, .04. The convergence angle 7, was fixed throaghcut at .025 for

observer G.R. and .026 for M.C.H. At any sitting, a mixed order of I" and ¢ values was pre-
sented to the okserver.

3b (i) The Three-Point Experiment. The observe. was given the same instructions for the

experiment as described in Section 2b (i). For ease in computation a sligiily different technic
was used. The lights Q, = (')'1, 0) and Q, = (¥, , ¢,) were left fixed and the light Q =

(v, . ¢,) was moved on the circiec ¥ = y,, to satisfy the instruction of Section 2b (i). Set-
tings of Q were taken for five positions of Q, at ¢, = 5° 10° 15° 20° and 25° At least
three settings were taken for each position of Q, 2t a given

vcn time. The entire series of experi-
ments for the four values of " was performed twice.

53
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TABLE VI

Three-Poiat Double Vieth-Muiler Circle Experiment. _
Average values of Y = cos KZ), y fo7 given valnes of X Z cos Qﬁza.nd ' e

goser vor Gels Y, = «C25
Average values of Y for given values of X and [

Py r 005 o0l oC2 oCh
:9962 +9892 9799 - «953L «368L2
+28L8 «9778 9702 o1l «£836
#9659 360l «954b «$289 £811
S$397 09306k +5305 «2032 3680
«2063 9012 «£992 «8859 «£566

ms 09613 9002 08?95 03!186

b= 3‘3315 008340 .Oblt3 e§L05

% - «9928 «934L2 o638 «8891
Observexr MeCeRe | T, = o026

Average vaiues of Y for given values of X and [
}&\’ r' 90052 [ 10!& .C208 chllé
«0962 «9899 <9839 «9L85 «8908
«98L8 09757 #3706 o9L22 «C8L0o
9656 9653 9562 2306 00702
0397 «9h12 #9367 9133 #8668
09063 9154 2120 -£9L8 8564

m = Bl 737 6135 43663

b= »1L86 02102 3378 «5239

5= 09933 2839 2513 «8907
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The values of Y = cos ¢, were determined {cr each of the values of A = cos q‘)z {sez equa-
tion [24]) at a g ren value of [’, and then Y was plotted against X. In Table VI and Fig. 24
we show the average result of the emiire experimental series for the four values of ', These
results clearly exhibit the linear dependence of Y upon X for a given value of I’ As Luneburg

demonstrated, this linearity is evidence for the homogeneity of the geomeiry. In other words

the geometry must be one of the three types of constant curvature,

Using the representation of the iine in the slope intercept form
Y = mX +tb

we find that the three-point experiment is not sensitive with respect to the value of m =nd

hence large variations in the calculated values of b will occur from time to time (Fig. 25).

Y Since the value of Y, at X = 1
i (¢, = 0) is found to be stable, the
OBSERVER G.R. value of m 1s taken from the four-point
r =.0i experiment [see Part I, Section 5b
O =Mav IS52 (11) ) and b is determined from this
® = J Uf;e 1952 / value of m by the reiation

(38) b = Y, -m

3v (ii). The Four-Point Experi-
ment. Four lights were presented to
the observer. Two lights Q,; = (v,, ¢,)
and Q_, = (7y,, ¢_,) were placed on the
VMC ¥ = 77, symmetricaliy to the median,
The other lights Q;, = (¥,, ®¢.) and
Q., = (¥,, &_,) were restricted to
motion along a smaller VMC y = v, (see
Fig. 26). The lights Q,, on the immer
circle were left fixed and the observer
was asked to set the lights Q. on the

outer circle according to the spscific

bz—.007 1nstructions:

o] / ‘*Four lights are presented
1 " L X to you. Two of them are fixed in
25 .50 7S 1.0 "
position and the other two can be
FIG. .25 THREE~-POINT DVMC EXPERIMENT. PLOT EXHIBITING
INSENSITIVITY OF EXPERIMENT IN DETERMINING s AND b. moved,’’ (These lights and their

range of motion are demonstrated.) ‘‘Direct the experimenter to adjust these lights so



that the distance between them appears to vcu to be the same as the distance between
the pair of fixed lights. Allow the eyes to roam ireely both ways over the spetial
interval between each pair of lights. Be sure to fixate on each !ight in turn and to
sweep the cyes across the interval between each pair of lights until you are satisfied

that the two distances appear to you to be the sane,’’

Settings of Q,, = (7,, ¢,) and Q_, = Y1y $-;) were taken for five positions of Q,, and
and Q_, on the VMC 'y = 7, symmetric to the median with differences in azimuth 4, = 19 30°%,

50° (Fig. 26). At least three settings were taken at a given time for each position of Q,,.
Tie entire series of experiments
for the four values of I" was per-

formed twice.

The values of Y = sin %Al

were determised for each of the

values of X = sin %20, at a given

value of [, and then Y was plot-

ted ageinst X, From equation (27)
m=Y/X

the slope m was computed from

Lhe duta by weighting with re-
spect to X,
G 25¥,
R e
2X

The value of Y for each value
of X 1s given 1n Tabie VII for
each value of ", and the data
are also plotted in Fig. 27,

Taking the value of m from
(39) and the value of b from
(38), the valueof w for " = 0

was obtained from formula (26)

b
FIG. 26. PHYSICAL ARRANGEMENT IN FOUR-POINT DVAC w = arc cosn
EXP FR THENT. [(1-b)2 - m2]%

The values of + were then cumputed accuiding to formula (27)

r = arc sinh (m sinh w).

The values r are given ir Table VIII and plotted in Fig, 28 where they are compared with those

obtained in other experiments.
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TABIE VIIX

Four-Foint Dcuble Vievh-Muller Circle Experiment
Average vaives of T = sin /2 & for given values of X = sin 1/2 A, and [,

Observer Gele T, s 325
Average valunes of Y for given values of X and
e L
3% .005 001 002 oOh
#0872 « 0685 « 0600, «033L #0160
22580 1972 1805 01249 +0762
.h226 3050 2660 +1887 «1353
mss o7h25 065?6 0’4515 03220
Observer MeTeRe T = #0256

\ -

Average values of Y for given values of X and I”

‘\ET\\il\~ +0052 .o104 «0208 «0l16

«0872 «0809 +OTL9 «0732 «2390
»2588 «2389 01923 01755 o1176
011226 03291 «2858 L $2231 01586

m= 03141&2 0?193 06137 013100

2¢c. The Equipartitioned Parallel Alleys

This experiment is that of 2b (i1). The mean values of [, and [",, tan ¢, and tan ¢, for
the four positions of ¥; were taken from Table 117 and the values of r computed from these data,

Hence the valnes of r given here represent sixteen experimental settirngs.

)

o compute the values of r we first determine the values of S = tan qbz / tan d)l and

T = tan ¢, / tan ¢,. For each of the experimental points r is then computed from formula (28) as
2 3 p p v

r tanh Y
r, = arc t.anhl _—

sin ¢
| i



TABIE VIII

Five values of r { [ ) camputed fram the results of the
Double Vieth-Muller Circle Experiments.

Cbserver GeRe ¥, = +025 Observer M.CeRe T, = #0260
r b o D r
3%
20000 148 0000 95
#0050 1.22 «0052 o3
o010 1.13 «010L 73
¢ 200 0.84 «0208 63
03)400 0063 .om .m‘
it

Yalue of W

where we use formula (30) for ¥

2 = (S »T)
(S§+T) -238r

sinhY = tanfﬁz

The results of these computations are given in Table IX. In Fig. 28 the results of this
experimental serics arc compared with those obtained from the Blumenfeld Alleys and the
Double Vieth-Miller Circle Experiments for the two observers who completed the full series

of experiments,
3d. The Personal Characteristic, r ( 7).

If it be assumed that an individual’s metrization of space is constant over long periods
of life, then by determining the function r {([') we are able to give a useful and signifi-
cant description of his space sense. This function r {I') may be thought of as a personal
charac:cristic of the individual which describes his spatial responses icr clueless vision in

the same sense that his color matrix describes his responses to color mixtures,
With respect ta the function r (I") we have sought to answer the following questious:

(a) What are its obvious characteristics?

{b) fiow well do the values obtained from different kinds of experiments

agree with each other?
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TABIE IX

(7 ) computed from the results of
ths Equipartitioned Parallsl Alley Experiment

Observer Ge Re (bserver MeCoRe
r r = r
* *
+ 0000 13505 « 30000 1.0308
«00562 1.01£3 00731 07993

«03904  0,6LL5 i +03908 065676

Value of W

{c) Are there measurable differences between individuals?

A partial answer to these g.estions may he obtained from a perusal of Fig. 28 which sum-
marizes the results of Tables V, VIII and IX.

(a) The function r ([") is a decreasing function and convex downward.

(b) The results of the three different experimental technics employed here
do show a measurc of agreement in the values of r (I"). Whether or not
the differences lie within the range of variability of the observar for

any given experiment is a problem for further investigation and statis-
tical analycis,

{¢) 1individual differences have been found. The function r (") for cbserver

Another problem that has occupied our attention is that of determining a umiform way of
interpolating a curve between the experimentally found values of the function, so that r ([")
mey be specified in tems of a limited number of real constants. To attempt a solution of this
problem for 2li normal individuals is probabiy premature since it would require the testing of
many more observers. Within the range of variability of the two observers employed here, how-

ever, the function r (") can be represented adequatcly in tne fomm
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For observer G.R. we havc approximately w = 1.48 , a = 33

w=1.00, a=237.2,

; for observer M.C.R_,

4. INSTRUMERNTAT{ON

In describing the geometry of binocular visual space we are concerned here not. with
thresholds and acuities, hut with observaticns in the large where the eyes rove over exten-
sive regions of space, For the present purpose we are interested in the response t« gross
stimull rather than to the barely perceptible. The range of convergence and azimuth supplied
oy single light points 1 the laboratory is by no means an adequate domain for testing the
range of the binocu!ar responses to gross stimuli, Not only is it desirable to test with dis-
tant obiucts and at large angles .of azimuth, but 1t 1s instructive to extend the range of ob-

servation as far as possible, even into the region of divergence. Such requirements can only

be met by the use of speceial stercoscopic devices:

Since the use of a stereoscopic device of either of the types described here upsets the
normal relationship between accommodation and convergence it is necessary to show that accom-
modation 1s a negligible or minor factor in binocular responses of the kind measured here,

Campbell '® in his study of size constancy phenomena in clueless vision was abile to demonstrate

that the substituiion of stimuli formed by his stereoscopic device for single physical light

points resulted in no appreciable change in the observer's settings. Further, he was able to

commingle stimuli of the two kinds, again without appreciable change in the responses of the

observer, We have used Campbell’s demonst.ration as adequate justification for th: use of our
devices,*

4a. The Telestereoscope or ‘‘Giant’'s Eyes'’ Instrument.

This device is based on a mirror arrangement. A right-angled first surface mirror is
placed symmetrically with respect to the median, apex toward observer (Fig. 29). Two mirrors

are set symmetrically to the median so that thc extension of the piane of each of the mirrors

meets the extension away from the apex of the corresponding side of the right-angled mirror.

The angle of intersection is denated by o~

Let Q be a physical light viewed through the instrument. Let Q be the position of the

*ON THE OTHER HAND, WE HAVE MOT USED STIMULUS PCINTS CLOSER THAN 50cm. SO THAT THE RANGE OF ACCOMMODATION
IS NOT EXTREMELY LARGE.
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FI1G. 22. THE TELESTEREOSCOPIC OR
‘‘GIANT' S EYES’® INSTRUMENT,

binccular image of Q (1.e., the point at which the visual axes must cross to throw the separate

images of Q on the respective foveae of the two eyess. Now consider the path of a ray of light

from 6 to the fovea of the right ¢ye at Il Proceeding from R to Q we see first that the ray

which reaches R from its side of the 90° mirror mast have been 1_flected from a ray directed
through the image R’ of R in the mirror. Similarly, the ray directed through R' musi fiave been

reflected at the side mirror from a ray directed through the 1mage Rof I’ in that mirsor. By

Thus, to detemiine the position of Q from that of Q we trace the rays to the two eyes and

extend the terminal zegimeuis at the eyes to their poiri of intersection. Thus, for the right

eye, we draw QR and find its intersection I with the side wirror. We then draw IR}’ and deter-

mine the intersect:zen J with tlie right face of the 90° mirror. The point Q will then iie on the

extension of JR.



For algebraic convenience we use hipolar coordinates 7 , ¢ with recspect to the peints
L, R (the “‘Giant’s Eyes’'') to specify the position of Q, and ordinary nipolar coordinates
v, @ to give the position of Q. ‘lhese coordinates are related to each other by the equezions
Y = y-4x

P = 9.

The '‘Giant’s Eyes’’ instrument was used in the Double VMC experiments of Section 2b (1).

«&b. Tre Polaroid Rack

In this instrument two lights Q and Q; are presented separately by means of polaroids to
the 1:ft and right eyes, respectively. This is interpreted in the same way as a physical light
olaced at the point Q where the visual axes cross when the right eve fixes Qp and the left eye
fixes Q (cf. Campbel1). The rack consizts of a set ¢f bars placed on 1ines x = constanc.
Each pair of lights Q and Q which are to be fused in the above manner is placed on & block
so that the two may slide along a bar together as a unit. The separation of the two lights

of a pair is adjustable by means of a thumbscrew. Polarcids are mounted before the lights and

the eyes so that each pair of lights gives only one image to each eye (Fig. 3C).

Let the cartesian coordinates for the two lights of a pair be given by QP. = (X, Yg),
Q. = (X, ). The iine OQ passes through the poini Q* = (X, Y) half wav between Qg and Q
where

Y o= %Y, +Y).

The separaticn of Q and Q is

S = Y, -Y,

The cartesian coordinates (x, y) of Q are given b5y

X
(40) x = —B0—
p+S
pY
y T

where p 1s the interpupillary distance of the observer. From equation (40) approximate formulas
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FIG. 30. SCHEMATIC REPRESENTATION OF THE PRINCIPLE
OF THE POLAROID RACK.

for the bipolar coordinates (y , @) of Q are easily obtained

1}

tan ¢ Y/X

(p +S) cos?® @&
” ‘

‘)l =

The polaroid rack was used in the settings of the equipartitioned narallel allevs Sections
2b (11} and 3c.

No account was taken of the slight errors due to a 2.5 mm, ihickness of giass covering
the poiaroids before the eyes. Similarly, although all observers with the exception of A.A.B.
wore glasses, the deviations due to refracting elements werc iidt Laken into account, To avoid

entering into such considerations it would be desirable to employ emmetrcpic observers.



5. COACLUSIONS

The experimental work presented here is direct evidence that Luneberg's approach to bi-
1ocular vision is at once sensible und fencible, In fact this evidence strongly supports

Luneburg’s major conclusions:

(a) The binocular visual space is a determinate metric space with constant characteris-

tics for a given observer.

(b) By experiment, it is possible to determin~ the metric of an observer’s visual space

and so to completely characterize the geomctry of his binccular visual sense.

(c) The metric is that of riemannian space of constant negative curvature, the so-called

hyperbolic space.

In particular, the experiments show that in all likelihood, the metric of visual space
may be written in terms of special coordinates attached to the stimulus configuration; i.e.,
the iseikonic coordinates, [', ¥, ©. The problem of determining the metric for a given ob-

server is then reduced tc the problem of determinirg the one function r (7).

The funciion ¢ {[") is to be thought of as a sensory characteristic of the cbserver which
describes his geometric visual sense, much as an individual's ¢ lor matrix describes his sense
of hue and saturation. The determinaticn of norms for the function might therefore be useful,

especially with regard to our understanding of deviait or abnormal binocular function. As yet

it is too early to make predictions concerning the eventual usefulness (clinicaliy or otherwise)

of the theory. A great deal of work tu set up standards must first be undertaken. Yet some
practical results will undoubtedly follow from the increased understanding we aircady have. For
example, 1t may be suggested that parallel rows of guide lights be set up along all airplare
runways at & unmiform standard separation of the rows and at a uniform standard spacing of the
lights, sco ~hat a pilot landing at night can rely on facing the same situation each time he
lands a* 2ay field and on any runway, if this were carried into national or international stan-

dard patterns, it might do much to reduce hazards of visual landings - particularly at strange

airports,

Perhaps similar standards would prove useful in other applications where space judgments
must be made in a situation providing reduced clues; <.g., it might lead to a consideration and
solution of the problem of integrating the magnificaticn of all binocular viewing instruments.
if the interpupillary distance of a 6X binocular, for example, were optically magnified by the
same factor of 6, the relative changes in convergence required in using the insirument should

lead to a more realistic appra.sal, by the observer, of frontal distances involved in the

tield cf view,

67
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