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Editor’s Note to the Present Revision

ROFESSOR FLORIAN caJoRI died August 15, 1930. In May of the follow-

ing year I was invited by the University of California Press to edit this
A work. After much delay, due in part to unavoidable circumstances
and in part to the time consumed in the extraordinary care taken in reading,
checking, and rercading the proofs, this edition of Newton’s Principra is
now ready to be run off the press.

The manuscript as presented to the Press contained no Preface. Much of
the material that would be included in the usual Preface is contained in
the first few notes of the Appendix, pages 627 f. Professor Cajori probably
intended to prepare a Preface while the book was in the process of manu-
facture. There being none, the customary acknowledgment of thanks to
various persons who assisted him in one way or another is lacking. Lest I
unknowingly omit some to whom thanks are due, I refrain from attempt-
ing any such acknowledgment on behalf of the author.

As the title page states, this is a revision of Motte’s translation of the
Principia. From many conversations with Professor Cajori, I know that he
had long cherished the idea of revising Newton’s immortal work by ren-
dering certain parts into modern phraseology (e.g., to change the reading
of “reciprocally in the subduplicate ratio of” to “inversely as the square root
of ”) and to append historical and critical notes which would provide in-
struction to some readers and interest to all. This is his last work ; one most
fitting to crown a life devoted to investigation and to writing the history of
the sciences in his chosen field.

R. T. CrawFoRD
Berkeley, California,

March 31, 1934.



PHIL.OSOPHI A

NATURALIS

PRINCIPIA
MATHEMATICA.

Autore FS. NEWTON, Trin. Coll. Cantab. Soc. Mathefeos
Profeffore Lucafiano, & Societatis Regalis Sodali.

IMPRIMATUR:

S PEPYS, RegSc PRZAESES.
Fulii 5. 1686,

LONDINI

Juflu Societatis Regie ac Typis Fofephi Streater. Proftat apud
plures Bibliopolas, Ao MDCLXXXVIL

TITLE PAGE OF THE FiRST EDITION OF THE PRINCIPIA
(See Appendix, Note 2, page 627)




The Ode Dedicated to Newton by Edmund Halley

THIS ODE PREFIXED TO THE PRINCIPIA OF NEWTON
IS HERE TRANSLATED BY LEON J. RICHARDSON
PROFESSOR OF LATIN
IN THE UNIVERSITY OF CALIFORNIA
FROM THE VERSION AS GIVEN IN THE FiRST EDITION

TO THE ILLUSTRIOUS MAN

ISAAC NEWTON

AND THIS HIS WORK
DONE IN FIELDS OF THE MATHEMATICS AND PHYSICS
A SIGNAL DISTINCTION OF OUR TIME AND RACE

Lo, for your gaze, the pattern of the skies!

What balance of the mass, what reckonings
Divine! Here ponder too the Laws which God,
Framing the universe, set not aside

But made the fixed foundations of his work.

The inmost places of the heavens, now gained,

Break into view, nor longer hidden is

The force that turns the farthest orb. The sun

Exalted on his throne bids all things tend

Toward him by inclination and descent,

Nor suffers that the courses of the stars

Be straight, as through the boundless void they move,

[ xim]



X1v ODE TO NEWTON

But with himself as centre speeds them on
In motionless ellipses. Now we know

The sharply veering ways of comets, once
A source of dread, nor longer do we quail
Beneath appearances of bearded stars.

At last we learn wherefore the silver moon
Once seemed to travel with unequal steps,

As if she scorned to suit her pace to numbers—
Till now made clear to no astronomer;

Why, though the Seasons go and then return,
The Hours move ever forward on their way;
Explained too are the forces of the deep,
Houw roaming Cynthia bestirs the tides,
Whereby the surf, deserting now the kelp
Along the shore, exposes shoals of sand
Suspected by the salors, now in turn

Driving its billows high upon the beach.

Matters that vexed the minds of ancient seers,
And for our learned doctors ofien led

Toloud and vain contention, now are seen

In reason’s light, the clouds of ignorance
Dispelled at last by science. Those on whom
Delusion cast its gloomy pall of doubt,
Upborne now on the wings that genus lends,
May penetrate the mansions of the gods

And scale the heights of heaven. O mortal men,
Arisel And, casting off your earthly cares,
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Learn ye the potency of heaven-born mind,
Its thought and life far from the herd withdrawn!

The man who through the tables of the laws
Once banished theft and murder, who suppressed
Adultery and crimes of broken faith,

And put the roving peoples into cities

Girt round with walls, was founder of the state,
While he who blessed the race with Ceres” gifi,
Who pressed from grapes an anodyne to care,
Or showed how on the tissue made from reeds
Growing beside the Nile one may inscribe
Symbols of sound and so present the voice

For sight to grasp, did lighten human lot,
Offsetting thus the miseries of life

With some felicity. But now, behold,

Admitted to the banquets of the gods,

We contemplate the polities of heaven;

And spelling out the secrets of the earth,

Discern the changeless order of the world

And all the acons of its history.

Then ye who now on heavenly nectar fare,
Come celebrate with me in song the name
Of Newton, to the Muses dear; for he
Unlocked the hidden treasuries of Truth:
So richly through his mind had Phoebus cast
The radiance of his own divinity.

Nearer the gods no mortal may approach.



Newton’s Preface to the First Edition

INCE THE ANCIENTS (as we are told by Pappus) esteemed the science of mechan-
Sics of greatest importance in the investigation of natural things, and the
moderns, rejecting substantial forms and occult qualities, have endeavored to
subject the phenomena of nature to the laws of mathematics, I have in this treatise
cultivated mathematics as far as it relates to philosophy. The ancients considered
mechanics in a twofold respect; as rational, which proceeds accurately by demon-
stration, and practical. To practical mechanics all the manual arts belong, from
which mechanics took its name. But as artificers do not work with perfect accu-
racy, it comes to pass that mechanics is so distinguished from geometry that what
is perfectly accurate is called geometrical; what is less so, is called mechanical.
However, the errors are not in the art, but in the artificers. He that works with
less accuracy is an imperfect mechanic; and if any could work with perfect accu-
racy, he would be the most perfect mechanic of all, for the description of right
lines and circles, upon which geometry is founded, belongs to mechanics. Geom-
etry does not teach us to draw these lines, but requires them to be drawn, for it
requires that the learner should first be taught to describe these accurately before
he enters upon geometry, then it shows how by these operations problems may
be solved. To describe right lines and circles are problems, but not geometrical
problems, The solution of these problems is required from mechanics, and by
geometry the use of them, when so solved, is shown; and it is the glory of geom-
etry that from those few principles, brought from without, it is able to produce
so many things. Therefore geometry is founded in mechanical practice, and is
nothing but that part of universal mechanics which accurately proposes and
demonstrates the art of measuring. But since the manual arts are chiefly employed
in the moving of bodies, it happens that geometry is commonly referred to their
magnitude, and mechanics to their motion. In this sense rational mechanics will
be the science of motions resulting from any forces whatsoever, and of the forces
required to produce any motions, accurately proposed and demonstrated. This
part of mechanics, as far as it extended to the five powers which relate to manual
arts, was cultivated by the ancients, who considered gravity (it not being a man-
ual power) no otherwise than in moving weights by those powers. But I con-
sider philosophy rather than arts and write not concerning manual but natural
powers, and consider chiefly those things which relate to gravity, levity, elastic
force, the resistance of fluids, and the like forces, whether attractive or impulsive;
and therefore I offer this work as the mathematical principles of philosophy,
for the whole burden of philosophy seems to consist in this—from the phenomena
of motions to investigate the forces of nature, and then from these forces to dem-

[ xvir]



XViii NEWTON’S PREFACE TO THE FIRST EDITION

onstrate the other phenomena; and to this end the general propositions in the
first and second Books are directed. In the third Book I give an example of this
in the explication of the System of the World; for by the propositions mathe-
matically demonstrated in the former Books, in the third I derive from the
celestial phenomena the forces of gravity with which bodies tend to the sun and
the several planets. Then from these forces, by other propositions which are also
mathematical, I deduce the motions of the planets, the comets, the moon, and
the sea. I wish we could derive the rest of the phenomena of Nature by the same
kind of reasoning from mechanical principles, for I am induced by many reasons
to suspect that they may all depend upon certain forces by which the particles of
bodies, by some causes hitherto unknown, are either mutually impelled towards
one another, and cohere in regular figures, or are repelled and recede from one
another. These forces being unknown, philosophers have hitherto attempted the
search of Nature in vain; but I hope the principles here laid down will afford some
light either to this or some truer method of philosophy.

In the publication of this work the most acute and universally learned Mr.
Edmund Halley not only assisted me in correcting the errors of the press and
preparing the geometrical figures, but it was through his solicitations that it came
to be published; for when he had obtained of me my demonstrations of the fig-
ure of the celestial orbits, he continually pressed me to communicate the same
to the Royal Society, who afterwards, by their kind encouragement and entreaties,
engaged me to think of publishing them. But after I had begun to consider the
inequalities of the lunar motions, and had entered upon some other things relat-
ing to the laws and measures of gravity and other forces; and the figures that
would be described by bodies attracted according to given laws; and the motion
of several bodies moving among themselves; the motion of bodies in resisting
mediums; the forces, densities, and motions, of mediums; the orbits of the com-
ets, and such like, I deferred that publication till I had made a search into those
matters, and could put forth the whole together. What relates to the lunar
motions (being imperfect), I have put all together in the corollaries of Prop. Lxvi,
to avoid being obliged to propose and distinctly demonstrate the several things
there contained in a method more prolix than the subject deserved and interrupt
the series of the other propositions. Some things, found out after the rest, I chose
to insert in places less suitable, rather than change the number of the propositions
and the citations. I heartily beg that what I have here done may be read with
forbearance; and that my labors in a subject so difficult may be examined, not
so much with the view to censure, as to remedy their defects.

Is. NewToN

Cambridge, Trinity College, May 8, 1686."

[* Appendix, Note 3.]



Newton’s Preface to the Second Edition

N THIs SECOND EDITION of the Principia there are many emendations and some
Iadditions.1 In the second section of the first Book, the determination of forces,
by which bodies may be made to revolve in given orbits, is illustrated and en-
larged. In the seventh section of the second Book the theory of the resistances of
fluids was more accurately investigated, and confirmed by new experiments. In
the third Book the lunar theory and the precession of the equinoxes were more
fully deduced from their principles; and the theory of the comets was confirmed
by more examples of the calculation of their orbits, done also with greater
accuracy.

Is. NEwTON
London, March 28, 1713.

{1 Appendix, Note 4.]



Cotes’s Preface to the Second Edition’

E HEREBY PRESENT to the benevolent reader the long-awaited new edition

06 of Newton's Philosophy, now greatly amended and increased. The prin-
cipal contents of this celebrated work may be gathered from the adjoining Table.
What has been added or modified is indicated in the author’s Preface. There
remains for us to add something relating to the method of this philosophy.

Those who have treated of natural philosophy may be reduced to about three
classes. Of these some have attributed to the several species of things, specific and
occult qualities, according to which the phenomena of particular bodies are sup-
posed to proceed in some unknown manner. The sum of the doctrine of the
Schools derived from Aristotle and the Peripatetics is founded on this principle.
They affirm that the several effects of bodies arise from the particular natures of
those bodies. But whence it is that bodies derive those natures they don't tell us;
and therefore they tell us nothing. And being entirely employed in giving names
to things, and not in searching into things themselves, they have invented, we
may say, a philosophical way of speaking, but they have not made known to us
true philosophy.

Others have endeavored to apply their labors to greater advantage by rejecting
that useless medley of words. They assume that all matter is homogeneous, and
that the variety of forms which is seen in bodies arises from some very plain
and simple relations of the component particles. And by going on from simple
things to those which are more compounded they certainly proceed right, if they
attribute to those primary relations no other relations than those which Nature
has given. But when they take a liberty of imagining at pleasure unknown figures
and magnitudes, and uncertain situations and motions of the parts, and moreover
of supposing occult fluids, freely pervading the pores of bodies, endued with an
all-performing subtilty, and agitated with occult motions, they run out into
dreams and chimeras, and neglect the true constitution of things, which certainly
is not to be derived from fallacious conjectures, when we can scarce reach it by
the most certain observations. Those who assume hypotheses as first principles of
their speculations, although they afterwards proceed with the greatest accuracy
from those principles, may indeed form an ingenious romance, but a romance it
will still be.

There is left then the third class, which possess experimental philosophy. These
indeed derive the causes of all things from the most simple principles possible;
but then they assume nothing as a principle, that is not proved by phenomena.
They frame no hypotheses, nor receive them into philosophy otherwise than as
questions whose truth may be disputed. They proceed therefore in a twofold

{1 Appendix, Note 5.]

[xx]



COTES'S PREFACE TO THE SECOND EDITION XXi1

method, synthetical and analytical. From some select phenomena they deduce
by analysis the forces of Nature and the more simple laws of forces; and from
thence by synthesis show the constitution of the rest. This is that incomparably
best way of philosophizing, which our renowned author most justly embraced
in preference to the rest, and thought alone worthy to be cultivated and adorned
by his excellent labors. Of this he has given us a most illustrious example, by the
explication of the System of the World, most happily deduced from the Theory
of Gravity. That the attribute of gravity was found in all bodies,* others sus-
pected, or imagined before him, but he was the only and the first philosopher
that could demonstrate it from appearances, and make it a solid foundation to
the most noble speculations.

I know indeed that some persons, and those of great name, too much prepos-
sessed with certain prejudices, are unwilling to assent to this new principle, and
are ready to prefer uncertain notions to certain. It is not my intention to detract
from the reputation of these eminent men; I shall only lay before the reader such
considerations as will enable him to pass an equitable judgment in this dispute.

Therefore, that we may begin our reasoning from what is most simple and
nearest to us, let us consider a little what is the nature of gravity in earthly bodies,
that we may proceed the more safely when we come to consider it in the heavenly
bodies that lie at the remotest distance from us. It is now agreed by all philoso-
phers that all circumterrestrial bodies gravitate towards the earth. That no bodies
having no weight are to be found, is now confirmed by manifold experience. That
which is relative levity is not true levity, but apparent only, and arises from the
preponderating gravity of the contiguous bodies.

Moreover, as all bodies gravitate towards the earth, so does the earth gravitate
again towards all bodies. That the action of gravity is mutual and equal on both
sides, is thus proved. Let the mass of the earth be divided into any two parts
whatever, either equal or unequal; now if the weights of the parts towards each
other were not mutually equal, the lesser weight would give way to the greater,
and the two parts would move on together indefinitely in a right line towards that
point to which the greater weight tends, which is altogether contrary to experi-
ence. Therefore we must say that the weights with which the parts tend to each
other are equal; that is, that the action of gravity is mutual and equal in contrary
directions.

The weights of bodies at equal distances from the centre of the earth are as
the quantities of matter in the bodies. This is inferred from the equal acceleration
of all bodies that fall from a state of rest by their weights; for the forces by which
unequal bodies are equally accelerated must be proportional to the quantities
of the matter to be moved. Now, that all falling bodies are equally accelerated,
appears from this, that when the resistance of the air is taken away, as it is under

[ Appendix, Note 6.]



XX1 COTES'S PREFACE TO THE SECOND EDITION

an exhausted receiver of Mr. Boyle, they describe equal spaces in equal times;
but this is yet more accurately proved by the experiments with pendulums.

The attractive forces of bodies at equal distances are as the quantities of matter
in the bodies. For since bodies gravitate towards the earth, and the earth again
towards bodies with equal moments, the weight of the earth towards each body,
or the force with which the body attracts the earth, will be equal to the weight of
the same body towards the earth. But this weight was shown to be as the quantity
of matter in the body; and therefore the force with which each body attracts the
earth, or the absolute force of the body, will be as the same quantity of matter.

Therefore the attractive force of the entire bodies arises from and is composed
of the attractive forces of the parts, because, as was just shown, if the bulk of the
matter be augmented or diminished, its power is proportionately augmented or
diminished. We must therefore conclude that the action of the earth is composed
of the united actions of its parts, and therefore that all terrestrial bodies must at-
tract one another mutually, with absolute forces that are as the matter attracting.
This is the nature of gravity upon earth; let us now see what it is in the heavens.

That every body continues in its state either of rest or of moving uniformly
in a right line, unless so far as it is compelled to change that state by external force,
is a law of Nature universally received by all philosophers. But it follows from this
that bodies which move in curved lines, and are therefore continually bent from
the right lines that are tangents to their orbits, are retained in their curvilinear
paths by some force continually acting. Since, then, the planets move in curvi-
linear orbits, there must be some force operating, by the incessant actions of which
they are continually made to deflect from the tangents.

Now it is evident from mathematical reasoning, and rigorously demonstrated,
that all bodies that move in any curved line described in a plane, and which, by
a radius drawn to any point, whether at rest or moved in any manner, describe
areas about that point proportional to the times, are urged by forces directed to-
wards that point. This must therefore be granted. Since, then, all astronomers
agree that the primary planets describe about the sun, and the secondary about
the primary, areas proportional to the times, it follows that the forces by which
they are continually turned aside from the rectilinear tangents, and made to
revolve in curvilinear orbits, are directed towards the bodies that are placed in
the centres of the orbits. This force may therefore not improperly be called centri-
petal in respect of the revolving body, and in respect of the central body attractive,
from whatever cause it may be imagined to arise.

Moreover, it must be granted, as being mathematically demonstrated, that, if
several bodies revolve with an equable motion in concentric circles, and the
squares of the periodic times are as the cubes of the distances from the common
centre, the centripetal forces will be inversely as the squares of the distances. Or,
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if bodies revolve in orbits that are very nearly circular and the apsides of the
orbits are at rest, the centripetal forces of the revolving bodies will be inversely
as the squares of the distances. That both these facts hold for all the planets, all
astronomers agree, Therefore the centripetal forces of all the planets are inversely
as the squares of the distances from the centres of their orbits. If any should
object, that the apsides of the planets, and especially of the moon, are not per-
fectly at rest, but are carried progressively with a slow kind of motion, one may
give this answer, that, though we should grant that this very slow motion arises
from a slight deviation of the centripetal force from the law of the square of the
distance, yet we are able to compute mathematically the quantity of that aberra-
tion, and find it perfectly insensible. For even the ratio of the lunar centripetal
force itself, which is the most irregular of them all, will vary inversely as a power
a little greater than the square of the distance, but will be well-nigh sixty times
nearer to the square than to the cube of the distance. But we may give a truer
answer, by saying that this progression of the apsides arises not from a deviation
from the law of inverse squares of the distance, but from a quite different cause,
as is most admirably shown in this work. It is certain then that the centripetal
forces with which the primary planets tend to the sun, and the secondary planets
to their primary, are accurately as the inverse squares of the distances.

From what has been hitherto said, it is plain that the planets are retained in
their orbits by some force continually acting upon them; it is plain that this force
is always directed towards the centres of their orbits; it is plain that its intensity
is increased in its approach and is decreased in its recession from the centre, and
that it is increased in the same ratio in which the square of the distance is dimin-
ished, and decreased in the same ratio in which the square of the distance is
augmented. Let us now see whether, by making a comparison between the cen-
tripetal forces of the planets and the force of gravity, we may not by chance find
them to be of the same kind. Now, they will be of the same kind if we find on
both sides the same laws and the same attributes. Let us then first consider the
centripetal force of the moon, which is nearest to us.

The rectilinear spaces which bodies let fall from rest describe in a given time
at the very beginning of the motion, when the bodies are urged by any forces
whatsoever, are proportional to the forces. This appears from mathematical rea-
soning. Therefore the centripetal force of the moon revolving in its orbit is to the
force of gravity at the surface of the earth, as the space which in a very small
interval of time the moon, deprived of all its circular force and descending by its
centripetal force towards the earth, would describe, is to the space which a heavy
body would describe, when falling by the force of its gravity near to the earth,
in the same small interval of time. The first of these spaces is equal to the versed
sine of the arc described by the moon in the same time, because that versed sine
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measures the translation of the moon from the tangent, produced by the cen-
tripetal force, and therefore may be computed, if the periodic time of the moon
and its distance from the centre of the earth are given. The last space is found by
experiments with pendulums, as Mr. Huygens has shown. Therefore by making
a calculation we shall find that the first space is to the latter, or the centripetal
force of the moon revolving in its orbit will be to the force of gravity at the sur-
face of the earth, as the square of the semidiameter of the earth to the square
of the semidiameter of the orbit. But by what was shown before, the very same
ratio holds between the centripetal force of the moon revolving in its orbit, and
the centripetal force of the moon near the surface of the earth. Therefore the
centripeta] force near the surface of the earth is equal to the force of gravity.
Therefore these are not two different forces, but one and the same; for if they
were different, these forces united would cause bodies to descend to the earth
with twice the velocity they would fall with by the force of gravity alone. There-
fore it is plain that the centripetal force, by which the moon is continually either
impelled or attracted out of the tangent and retained in its orbit, is the very force
of terrestrial gravity reaching up to the moon. And it is very reasonable to believe
that this force should extend itself to vast distances, since upon the tops of the
highest mountains we find no sensible diminution of it. Therefore the moon
gravitates towards the earth; but on the other hand, the earth by a mutual action
equally gravitates towards the moon, which is also abundantly confirmed in this
philosophy, where the tides in the sea and the precession of the equinoxes are
treated of, which arise from the action both of the moon and of the sun upon the
earth. Hence lastly, we discover by what law the force of gravity decreases at
great distances from the earth. For since gravity is noways different from the
moon’s centripetal force, and this is inversely proportional to the square of the
distance, it follows that it is in that very ratio that the force of gravity decreases.

Let us now go on to the other planets. Because the revolutions of the primary
planets about the sun and of the secondary about Jupiter and Saturn are phenom-
ena of the same kind with the revolution of the moon about the earth, and be-
cause it has been moreover demonstrated that the centripetal forces of the primary
planets are directed towards the centre of the sun and those of the secondary
towards the centres of Jupiter and Saturn, in the same manner as the centripetal
force of the moon is directed towards the centre of the earth, and since, besides,
all these forces are inversely as the squares of the distances from the centres, in
the same manner as the centripetal force of the moon is as the square of the dis-
tance from the earth, we must of course conclude that the nature of all is the
same. Therefore as the moon gravitates towards the earth and the earth again
towards the moon, so also all the secondary planets will gravitate towards their
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primary, and the primary planets again towards their secondary, and so all the
primary towards the sun, and the sun again towards the primary.

Therefore the sun gravitates towards all the planets, and all the planets towards
the sun. For the secondary planets, while they accompany the primary, revolve
the meanwhile with the primary about the sun. Therefore, by the same argument,
the planets of both kinds gravitate towards the sun and the sun towards them.
That the secondary planets gravitate towards the sun is moreover abundantly
clear from the inequalities of the moon, a most accurate theory of which, laid open
with a most admirable sagacity, we find explained in the third Book of this work.

That the attractive force of the sun is propagated on all sides to prodigious
distances and is diffused to every part of the wide space that surrounds it, is most
evidently shown by the motion of the comets, which, coming from places im-
mensely distant from the sun, approach very near to it, and sometimes so near
that in their perihelia they almost touch its body. The theory of these bodies was
altogether unknown to astronomers iill in our own times our excellent author
most happily discovered it and demonstrated the truth of it by most certain obser-
vations. So that it is now apparent that the comets move in conic sections having
their foci in the sun’s centre, and by radii drawn to the sun describe areas propor-
tional to the times. But from these phenomena it is manifest and mathematically
demonstrated, that those forces by which the comets are retained in their orbits are
directed towards the sun and are inversely proportional to the squares of the dis-
tances from its centre. Therefore the comets gravitate towards the sun, and there-
fore the attractive force of the sun not only acts on the bodies of the planets, placed
at given distances and very nearly in the same plane, but reaches also the comets
in the most different parts of the heavens, and at the most different distances. This
therefore is the nature of gravitating bodies, to exert their force at all distances to
all other gravitating bodies. But from thence it follows that all the planets and
comets attract one another mutually, and gravitate towards one another, which is
also confirmed by the perturbation of Jupiter and Saturn, observed by astrono-
mers, and arising from the mutual actions of these two planets upon each other,
as also from that very slow motion of the apsides, above taken notice of, which
arises from a like cause.

We have now proceeded so far, that it must be acknowledged that the sun,
and the earth, and all the heavenly bodies attending the sun, attract one another
mutually. Therefore all the least particles of matter in every one must have their
several attractive forces proportional to their quantities of matter, as was shown
above of the terrestrial bodies. At different distances these forces will be also
inversely as the squares of their distances; for it is mathematically demonstrated,
that globes attracting according to this law are composed of particles attracting
according to the same law.
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The foregoing conclusions are grounded on this axiom which is received by
all philosophers, namely, that effects of the same kind, whose known properties
are the same, take their rise from the same causes and have the same unknown
properties also. For if gravity be the cause of the descent of a stone in Europe,
who doubts that it is also the cause of the same descent in America? If there is a
mutual gravitation between a stone and the earth in Europe, who will deny the
same to be mutual 1n America? 1t 1n Europe the attractive force of a stone and
the earth is composed of the attractive forces of the parts, who will deny the like
composition in America? If in Europe the attraction of the earth be propagated
to all kinds of bodies and to all distances, why may we not say that it is propa-
gated in like manner in America? All philosophy is founded on this rule; for if
that be taken away, we can affirm nothing as a general truth. The constitution of
particular things is known by observations and experiments; and when that is
done, no general conclusion of the nature of things can thence be drawn, except
by this rule.

Since, then, all bodies, whether upon earth or in the heavens, are heavy, so far
as we can make any experiments or observations concerning them, we must cer-
tainly allow that gravity is found in all bodies universally. And in like manner
as we ought not to suppose that any bodies can be otherwise than extended, mov-
able, or impenetrable, so we ought not to conceive that any bodies can be other-
wise than heavy. The extension, mobility, and impenetrability of bodies become
known to us only by experiments; and in the very same manner their gravity
becomes known to us. All bodies upon which we can make any observations, are
extended, movable, and impenetrable; and thence we conclude all bodies, and
those concerning which we have no observations, are extended and movable and
impenetrable. So all bodies on which we can make observations, we find to be
heavy; and thence we conclude all bodies, and those we have no observations of,
to be heavy also. If anyone should say that the bodies of the fixed stars are not
heavy because their gravity is not yet observed, they may say for the same reason
that they are neither extended nor movable nor impenetrable, because these prop-
erties of the fixed stars are not yet observed. In short, either gravity must have a
place among the primary qualities of all bodies, or extension, mobility, and im-
penetrability must not. And ifthe nature of things is not rightly explained by the
gravity of bodies, it will not be rightly explained by their extension, mobility, and
impenetrability.

Some I know disapprove this conclusion, and mutter something about occult
qualities. They continually are cavilling with us, that gravity is an occult property,
and occult causes are to be quite banished from philosophy. But to this the answer
is easy: that those are indeed occult causes whose existence is occult, and imagined
but not proved; but not those whose real existence is clearly demonstrated by
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observations. Therefore gravity can by no means be called an occult cause of the
celestial motions, because it is plain from the phenomena that such 2 power does
really exist. Those rather have recourse to occult causes, who set imaginary vor-
tices of a matter entirely fictitious and imperceptible by our senses, to direct those
motions.

But shall gravity be therefore called an occult cause, and thrown out of philos-
ophy, because the cause of gravity is occult and not yet discovered? Those who
affirm this, should be careful not to fall into an absurdity that may overturn the
foundations of all philosophy. For causes usually proceed in a continued chain
from those that are more compounded to those that are more simple; when we
are arrived at the most simple cause we can go no farther. Therefore no mechan-
ical account or explanation of the most simple cause is to be expected or given;
for if it could be given, the cause were not the most simple. These most simple
causes will you then call occult, and reject them? Then you must reject those that
immediately depend upon them, and those which depend upon these last, till
philosophy is quite cleared and disencumbered of all causes.

Some there are who say that gravity is preternatural, and call it a perpetual
miracle. Therefore they would have it rejected, because preternatural causes have
no place in physics. It is hardly worth while to spend time in answering this ridic-
ulous objection which overturns all philosophy. For either they will deny grav-
ity to be in bodies, which cannot be said, or else, they will therefore call it preter-
natural because it is not produced by the other properties of bodies, and there-
fore not by mechanical causes. But certainly there are primary properties of
bodies; and these, because they are primary, have no dependence on the others.
Let them consider whether all these are not in like manner preternatural, and
in like manner to be rejected; and then what kind of philosophy we are like
to have.

Some there are who dislike this celestial physics because it contradicts the opin-
ions of Descartes, and seems hardly to be reconciled with them. Let these enjoy
their own opinion, but let them act fairly, and not deny the same liberty to us
which they demand for themselves. Since the Newtonian Philosophy appears
true to us, let us have the liberty to embrace and retain it, and to follow causes
proved by phenomena, rather than causes only imagined and not yet proved. The
business of true philosophy is to derive the natures of things from causes truly
existent, and to inquire after those laws on which the Great Creator actually
chose to found this most beautiful Frame of the World, not those by which he
might have done the same, had he so pleased. It is reasonable enough to suppose
that from several causes, somewhat differing from one another, the same effect
may arise; but the true cause will be that from which it truly and actually does
arise; the others have no place in true philosophy. The same motion of the hour-
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hand in a clock may be occasioned either by a weight hung, or a spring shut up
within. But if a certain clock should be really moved with a weight, we should
laugh at a man that would suppose it moved by a spring, and from that principle,
suddenly taken up without further examination, should go about to explain the
motion of the index; for certainly the way be ought to have taken would have
been actually to look into the inward parts of the machine, that he might find
the true principle of the proposed motion. The like judgment ought to be made
of those philosophers who will have the heavens to be filled with a most subtile
matter which is continually carried round in vortices. For if they could explain
the phenomena ever so accurately by their hypotheses, we could not yet say that
they have discovered true philosophy and the true causes of the celestial motions,
unless they could either demonstrate that those causes do actually exist, or at
least that no others do exist. Therefore if it be made clear that the attraction of
all bodies is a property actually existing in rerum natura, and if it be also shown
how the motions of the celestial bodies may be solved by that property, it would be
very impertinent for anyone to object that these motions ought to be accounted
for by vortices; even though we should allow such an explication of those motions
to be possible. But we allow no such thing; for the phenomena can by no means
be accounted for by vortices, as our author has abundantly proved from the clear-
est reasons. So that men must be strangely fond of chimeras, who can spend their
time so idly as in patching up a ridiculous figment and setting it off with new
comments of their own.

If the bodies of the planets and comets are carried round the sun in vortices,
the bodies so carried, and the parts of the vortices next surrounding them, must
be carried with the same velocity and the same direction, and have the same den-
sity, and the same inertia, answering to the bulk of the matter. But it is certain,
the planets and comets, when in the very same parts of the heavens, are carried
with various velocities and various directions. Therefore it necessarily follows
that those parts of the celestial fluid, which are at the same distances from the
sun, must revolve at the same time with different velocities in different directions;
for one kind of velocity and direction is required for the motion of the planets,
and another for that of the comets. But since this cannot be accounted for, we
must cither say that all celestial bodies are not carried about by vortices, or else
that their motions are derived, not from one and the same vortex, but from sev-
eral distinct ones, which fill and pervade the spaces round about the sun.

But if several vortices are contained in the same space, and are supposed to
penetrate one another, and to revolve with different motions, then because these
motions must agree with those of the bodies carried about by them, which are
perfectly regular, and performed in conic sections which are sometimes very
eccentric, and sometimes nearly circles, one may very reasonably ask how it comes
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to pass that these vortices remain entire, and have suffered no manner of per-
turbation in so many ages from the actions of the conflicting matter. Certainly
if these fictitious motions are more compounded and harder to be accounted for
than the true motions of the planets and comets, it seems to no purpose to admit
them into philosophy, since every cause ought to be more simple than its effect.
Allowing men to indulge their own fancies, suppose any man should affirm that
the planets and comets are surrounded with atmospheres like our earth, which
hypothesis seems more reasonable than that of vortices; let him then affirm that
these atmospheres by their own nature move about the sun and describe conic
sections, which motion is much more easily conceived than that of the vortices
penetrating one another; lastly, that the planets and comets are carried about the
sun by these atmospheres of theirs: and then applaud his own sagacity in discov-
ering the causes of the celestial motions. He that rejects this fable must also reject
the other; for two drops of water are not more like than this hypothesis of atmos-
pheres, and that of vortices.

Galileo has shown that when a stone projected moves in a parabola, its de-
flection into that curve from its rectilinear path is occasioned by the gravity of
the stone towards the earth, that is, by an occult quality. But now somebody,
more cunning than he, may come to explain the cause after this manner. He will
suppose 2 certain subtile matter, not discernible by our sight, our touch, or any
other of our senses, which fills the spaces which are near and contiguous to the
surface of the earth, and that this matter is carried with different directions, and
various, and often contrary, motions, describing parabolic curves. Then see how
easily he may account for the deflection of the stone above spoken of. The stone,
says he, floats in this subtile fluid, and following its motion, can’t choose but
describe the same figure. But the fluid moves in parabolic curves, and therefore
the stone must move in a parabola, of course. Would not the acuteness of this
philosopher be thought very extraordinary, who could deduce the appearances
of Nature from mechanical causes, matter and motion, so clearly that the meanest
man may understand it? Or indeed should not we smile to see this new Galileo
taking so much mathematical pains to introduce occult qualities into philosophy,
from whence they have been so happily excluded? But I am ashamed to dwell
so long upon trifles.

The sum of the matter is this: the number of the comets is certainly very great;
their motions are perfectly regular and observe the same laws with those of the
planets. The orbits in which they move are conic sections, and those very eccen-
tric. They move every way towards all parts of the heavens, and pass through the
planetary regions with all possible freedom, and their motion is often contrary
to the order of the signs. These phenomena are most evidently confirmed by
astronomical observations, and cannot be accounted for by vortices. Nay, indeed,
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they are utterly irreconcilable with the vortices of the planets. There can be no
room for the motions of the comets, unless the celestial spaces be entirely cleared
of that fictitious matter.

For if the planets are carried about the sun in vortices, the parts of the vortices
which immediately surround every planet must be of the same density with the
planet, as was shown above, Therefore all the matter contiguous to the perimeter
of the earth’s orbit’ must be of the same density as the earth. But this great orb
and the orb of Saturn must have either an equal or a greater density. For to
make the constitution of the vortex permanent, the parts of less density must lie
near the centre, and those of greater density must go farther from it. For since the
periodic times of the planets vary as the 345th powers of their distances from the
sun, the periods of the parts of the vortices must also preserve the same ratio.
Thence it will follow that the centrifugal forces of the parts of the vortex must
be inversely as the squares of their distances. Those parts therefore which are
more remote from the centre endeavor to recede from it with less force; whence,
if their density be deficient, they must yield to the greater force with which the
parts that lie nearer the centre endeavor to ascend. Therefore the denser parts
will ascend, and those of less density will descend, and there will be a mutual
change of places, till all the fluid matter in the whole vortex be so adjusted and
disposed, that béing reduced to an equilibrium its parts become quiescent. If two
fluids of different density be contained in the same vessel, it will certainly come
to pass that the fluid of greater density will sink the lower; and by a like reason-
ing it follows that the denser parts of the vortex by their greater centrifugal force
will ascend to the higher places. Therefore all that far greater part of the vortex
which lies without the earth’s orb, will have a density, and by consequence an
inertia, answering to the bulk of the matter, which cannot be less than the density
and inertia of the earth. But from hence will arise a mighty resistance to the pass-
age of the comets, such as must be very sensible, not to say enough to put a stop
to and absorb their motions entirely. But it appears from the perfectly regular
motion of the comets, that they suffer no resistance that is in the least sensible,
and therefore that they do not meet with matter of any kind that has any resist-
ing force or, by consequence, any density or inertia. For the resistance of mediums
arises either from the inertia of the matter of the fluid, or from its want of lubric-
ity. That which arises from the want of lubricity is very small, and is scarcely
observable in the fluids commonly known, unless they be very tenacious like oil
and honey. The resistance we find in air, water, quicksilver, and the like fluids
that are not tenacious, is almost all of the first kind, and cannot be diminished
by a greater degree of subtilty, if the density and inertia, to which this resistance
is proportional, remains, as is most evidently demonstrated by our author in his
noble theory of resistances in the second Book.

[1 Appendix, Note 7.]
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Bodies in going on through a fluid communicate their motion to the ambient
fluid by little and little, and by that communication lose their own motion, and
by losing it are retarded. Therefore the retardation is proportional to the motion
communicated, and the communicated motion, when the velocity of the moving
body 1s given, is as the density of the fluid; and therefore the retardation or resist-
ance will be as the same density of the fluid; nor can it be taken away, unless the
fluid, coming about to the hinder parts of the body, restore the motion lost. Now
this cannot be done unless the impression of the fluid on the hinder parts of the
body be equal to the impression of the fore parts of the body on the fluid; that is,
unless the relative velocity with which the fluid pushes the body behind is equal
to the velocity with which the body pushes the fluid; that is, unless the absolute
velocity of the recurring fluid be twice as great as the absolute velocity with which
the fluid is driven forwards by the body, which is impossible. Therefore the resist-
ance of fluids arising from their inertia can by no means be taken away. So that
we must conclude that the celestial fluid has no inertia, because it has no resisting
force; that it has no force to communicate motion with, because it has no inertia;
that it has no force to produce any change in one or more bodies, because it has
no force wherewith to communicate motion; that it has no manner of efficacy,
because it has no faculty wherewith to produce any change of any kind. There-
fore certainly this hypothesis may be justly called ridiculous and unworthy a
philosopher, since it is altogether without foundation and does not in the least
serve to explain the nature of things.' Those who would have the heavens filled
with a fluid matter, but suppose it void of any inertia, do indeed in words deny
a vacuum, but allow it in fact. For since a fluid matter of that kind can noways
be distinguished from empty space, the dispute is now about the names and not
the natures of things. If any are so fond of matter that they will by no means
admit of a space void of body, let us consider where they must come at last,

For either they will say that this constitution of a world everywhere full was
made so by the will of God to this end, that the operations of Nature might be
assisted everywhere by a subtile ether pervading and filling all things; which
cannot be said, however, since we have shown from the phenomena of the comets,
that this ether is of no efficacy at all; or they will say, that it became so by the
same will of God for some unknown end, which ought not be said, because for
the same reason a different constitution may be as well supposed; or lastly, they
will not say that it was caused by the will of God, but by some necessity of its
nature. Therefore they will at last sink into the mire of that infamous herd who
dream that all things are governed by fate and not by providence, and that matter
exists by the necessity of its nature always and everywhere, being infinite and
eternal. But supposing these things, it must be also everywhere uniform; for
variety of forms is entirely inconsistent with necessity. It must be also unmoved;

[* Appendix, Note 8.]
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for if it be necessarily moved in any determinate direction, with any determinate
velocity, it will by a like necessity be moved in a different direction with a differ-
ent velocity; but it can never move in different directions with different velocities;
therefore it must be unmoved. Without all doubt this world, so diversified with
that variety of forms and motions we find in it, could arise from nothing but the
perfectly free will of God directing and presiding over all.

From this fountain it is that those laws, which we call the laws of Nature, have
flowed, in which there appear many traces indeed of the most wise contrivance,
but not the least shadow of necessity. These therefore we must not seek from
uncertain conjectures, but learn them from observations and experiments. He
who is presumptuous enough to think that he can find the true principles of
physics and the laws of natural things by the force alone of his own mind, and
the internal light of his reason, must either suppose that the world exists by neces-
sity, and by the same necessity follows the laws proposed; or if the order of Nature
was established by the will of God, that himself, a miserable reptile, can tell what
was fittest to be done. All sound and true philosophy is founded on the appear-
ances of things; and if these phenomena inevitably draw us, against our wills, to
such principles as most clearly manifest to us the most excellent counsel and
supreme dominion of the All-wise and Almighty Being, they are not therefore to
be laid aside because some men may perhaps dislike them. These men may call
them miracles or occult qualities, but names maliciously given ought not to be a
disadvantage to the things themselves, unless these men will say at last that all
philosophy ought to be founded in atheism. Philosophy must not be corrupted in
compliance with these men, for the order of things will not be changed.

Fair and equal judges will therefore give sentence in favor of this most excel-
lent method of philosophy, which is founded on experiments and observations.
And it can hardly be said or imagined, what light, what splendor, hath accrued
to that method from this admirable work of our illustrious author, whose happy
and sublime genius, resolving the most difficult problems, and reaching to dis-
coveries of which the mind of man was thought incapable before, is deservedly
admired by all those who are somewhat more than superficially versed in these
matters. The gates are now set open, and by the passage he has revealed we may
freely enter into the knowledge of the hidden secrets and wonders of natural
things. He has so clearly laid open and set before our eyes the most beautiful
frame of the System of the World, that if King Alphonso were now alive, he
would not complain for want of the graces either of simplicity or of harmony
in it. Therefore we may now more nearly behold the beauties of Nature, and en-
tertain ourselves with the delightful contemplation; and, which is the best and
most valuable fruit of philosophy, be thence incited the more profoundly to rev-
erence and adore the great Maker and Lord of all. He must be blind who from
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the most wise and excellent contrivances of things cannot see the infinite Wisdom
and Goodness of their Almighty Creator, and he must be mad and senseless who
refuses to acknowledge them.

Newton’s distinguished work will be the safest protection against the attacks
of atheists, and nowhere more surely than from this quiver can one draw forth
missiles against the band of godless men. This was felt long ago and first surpris-
ingly demonstrated in learned English and Latin discourses by Richard Bentley,
who, excelling in learning and distinguished as a patron of the highest arts, is a
great ornament of his century and of our academy, the most worthy and upright
Master of our Trinity College. To him in many ways I must express my indebted-
ness. And you too, benevolent reader, will not withhold the esteem due him. For
many years an intimate friend of the celebrated author (since he aimed not only
that the author should be esteemed by those who come after, but also that these
uncommon writings should enjoy distinction among the literati of the world),
he cared both for the reputation of his friend and for the advancement of the
sciences. Since copies of the previous edition were very scarce and held at high
prices, he persuaded by frequent entreaties and almost by chidings, the splendid
man, distinguished alike for modesty and for erudition, to grant him permission
for the appearance of this new edition, perfected throughout and enriched by
new parts, at his expense and under his supervision. He assigned to me, as he had
a right, the not unwelcome task of looking after the corrections as best I could.

Rocer Cotes

Fellow of Trimty College,

Plumian Professor of Astronomy
and Experimental Philosophy.

Cambridge, May 12, 1713.



Newton’s Preface to the Third Edition

N THIS THIRD EDITION, prepared with much care by Henry Pemberton, M.D,, a

man of the greatest skill in these matters, some things in the second Book on
the resistance of mediums are somewhat more comprehensively handled than be-
fore, and new experiments on the resistance of heavy bodies falling in air are
added. In the third Book, the argument to prove that the moon is retained in its
orbit by the force of gravity is more fully stated; and there are added new obser-
vations made by Mr. Pound, concerning the ratio of the diameters of Jupiter to
one another. Some observations are also added on the comet which appeared in
the year 1680, made in Germany in the month of November by Mr. Kirk; which
have lately come to my hands. By the help of these it becomes apparent how
nearly parabolic orbits represent the motions of comets. The orbit of that comet
is determined somewhat more accurately than before, by the computation of
Dr. Halley, in an ellipse. And it is shown that, in this elliptic orbit, the comet took
its course through the nine signs of the heavens, with as much accuracy as the
planets move in the elliptic orbits given in astronomy. The orbit of the comet
which appeared in the year 1723 is also added, computed by Mr. Bradley, Professor
of Astronomy at Oxford.!

Is. NewToN
London, Jan. 12, 1725-6.

[! Appendix, Note g.]



MATHEMATICAL PRINCIPLES

Defz'nz'z‘z'onj

DEFINITION I

The quantity of matter is the measure of the same, arising from its density
and bulk conjointly.’

THUS AIr of a double density, in a double space, is quadruple in quan-

tity; in a triple space, sextuple in quantity. The same thing 1s to be

understood of snow, and fine dust or powders, that are condensed
by compression or liquefaction, and of all bodies that are by any causes
whatever differently condensed. I have no regard in this place to a medium,
if any such there is, that freely pervades the interstices between the parts
of bodies. It is this quantity that I mean hereafter everywhere under the
name of body or mass. And the same is known by the weight of each body,
for it is proportional to the weight, as I have found by experiments on pen-
dulums, very accurately made, which shall be shown hereafter.

DEFINITION II°

The quantity of motion is the measure of the same, arising from the
velocity and quantity of matter conjointly.

The motion of the whole is the sum of the motions of all the parts; and
therefore in a body double in quantity, with equal velocity, the motion is
double; with twice the velocity, it is quadruple.

[1 Appendix, Note 10.] [2 Appendix, Note 11.] [3 Appendix, Note 12.]
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DEFINITION II1

The vis insita, or tnnate force of matter, is a power of resisting, by which
every body, as much as in 1t lies, continues in its present state, whether 1t
be of rest, or of moving uniformly forwards in a right line.

This force is always proportional to the body whose force it is and differs
nothing from the inactivity of the mass, but in our manner of conceiving
it. A body, from the inert nature of matter, is not without difhiculty put out
of its state of rest or motion. Upon which account, this vzs :nsita may, by
a most significant name, be called inertia (v1s inertie) or force of inactivity.
But a body only exerts this force when another force, impressed upon it,
endeavors to change its condition; and the exercise of this force may be con-
sidered as both resistance and impulse; it is resistance so far as the body,
for maintaining its present state, opposes the force impressed; 1t is impulse
so far as the body, by not easily giving way to the impressed force of another,
endeavors to change the state of that other. Resistance 1s usually ascribed to
bodies at rest, and impulse to those in motion; but motion and rest, as com-
monly conceived, are only relatively distinguished; nor are those bodies
always truly at rest, which commonly are taken to be so.

DEFINITION IV

An impressed force is an action exerted upon a body, in order to change 1ts
state, either of rest, or of uniform motion in aright line.

This force consists in the action only, and remains no longer in the body
when the action is over. For a body maintains every new state it acquires,
by its inertia only. But impressed forces are of different origins, as from
percussion, from pressure, from centripetal force.

DEFINITION V

A centripetal force is that by which bodies are drawn or impelled, or any
way tend, towards a point as to a centre.

Of this sort is gravity, by which bodies tend to the centre of the earth;
magnetism, by which iron tends to the loadstone; and that force, whatever
it is, by which the planets are continually drawn aside from the rectlinear
motions, which otherwise they would pursue, and made to revolve in curvi-
linear orbits. A stone, whirled about in a sling, endeavors to recede from the
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hand that turns it; and by that endeavor, distends the sling, and that with
so much the greater force, as it is revolved with the greater velocity, and as
soon as it is let go, flies away. That force which opposes itself to this en-
deavor, and by which the sling continually draws back the stone towards
the hand, and retains it in its orbit, because it is directed to the hand as the
centre of the orbit, I call the centripetal force. And the same thing s to be
understood of all bodies, revolved in any orbits. They all endeavor to recede
from the centres of their orbits; and were it not for the opposition of a con-
trary force which restrains them to, and detains them in their orbits, which
I therefore call centripetal, would fly off in right lines, with an uniform
motion. A projectile, if it was not for the force of gravity, would not deviate
towards the earth, but would go off from it in a right line, and that with an
uniform motion, if the resistance of the air was taken away. It is by its grav-
ity that it is drawn aside continually from its rectilinear course, and made to
deviate towards the earth, more or less, according to the force of its gravity,
and the velocity of its motion. The less its gravity is, or the quantity of its
matter, or the greater the velocity with which 1t is projected, the less will it
deviate from a rectilinear course, and the farther 1t will go. If a leaden ball,
projected from the top of a mountain by the force of gunpowder, with a
given velocity,and in adirection parallel to the horizon, is carried in a curved
line to the distance of two miles before it falls to the ground; the same, if
the resistance of the air were taken away, with a double or decuple velocity,
would fly twice or ten times as far. And by increasing the velocity, we may at
pleasure increase the distance to which it might be projected, and diminish
the curvature of the line which it might describe, till at last it should fall at
the distance of 10, 30, or go degrees, or even might go quite round the whole
earth before it falls; or lastly, so that it might never fall to the earth, but go
forwards into the celestial spaces, and proceed in its motion 7 nfinitum.
And after the same manner that a projectile, by the force of gravity, may
be made to fevolve in an orbit, and go round the whole earth, the moon
also, either by the force of gravity, if it is endued with gravity, or by any
other force, that impels it towards the earth, may be continually drawn
aside towards the earth, out of the rectilinear way which by its innate force
it would pursue; and would be made to revolve in the orbit which it now
describes; nor could the moon without some such force be retained in its
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orbit. If this force was too small, it would not sufficiently turn the moon
out of a rectilinear course; if it was too great, it would turn it too much,
and draw down the moon from its orbit towards the earth. It is necessary
that the force be of a just quantity, and it belongs to the mathematicians to
find the force that may serve exactly to retain a body in a given orbit with
a given velocity; and vice versa, to determine the curvilinear way into which
a body projected from a given place, with a given velocity, may be made to
deviate from its natural rectilinear way, by means of a given force.

The quantity of any centripetal force may be considered as of three
kinds: absolute, accelerative, and motive.

DEFINITION VI

The absolute quantity of a centripetal force is the measure of the same,
proportional to the efficacy of the cause that propagates it from the centre,
through the spaces round about.

Thus the magnetic force is greater in one loadstone and less in another,
according to their sizes and strength of intensity.

DEFINITION VII

The accelerative quantity of a centripetal force is the measure of the same,
proportional to the velocity which it generates in a given time.

Thus the force of the same loadstone is greater at a less distance, and less
at a greater: also the force of gravity is greater in valleys, less on tops of
exceeding high mountains; and yet less (as shall hereafter be shown), at
greater distances from the body of the earth; but at equal distances, it is the
same everywhere; because (taking away, or allowing for, the resistance of
the air), it equally accelerates all falling bodies, whether heavy or light,

great or small.
DEFINITION VIII

The motive quantity of a centripetal force is the measure of the same, pro-
portional to the motion which it generates in a given time.

Thus the weight is greater in a greater body, less in a less body; and, in
the same body, it is greater near to the earth, and less at remoter distances.
This sort of quantity is the centripetency, or propension of the whole body
towards the centre, or, as I may say, its weight; and it is always known by
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the quantity of an equal and contrary force just sufficient to hinder the
descent of the body.

These quantities of forces, we may, for the sake of brevity, call by the
names of motive, accelerative, and absolute forces; and, for the sake of dis-
tinction, consider them with respect to the bodies that tend to the centre,
f those bodies, and to the centre of force towards which they
tend; that is to say, I refer the motive force to the body as an endeavor and
propensity of the whole towards a centre, arising from the propensities of
the several parts taken together; the accelerative force to the place of the
body, as a certain power diffused from the centre to all places around to
move the bodies that are in them; and the absolute force to the centre, as
endued with some cause, without which those motive forces would not be
propagated through the spaces round about; whether that cause be some
central body (such as is the magnet in the centre of the magnetic force, or
the earth in the centre of the gravitating force), or anything else that does
not yet appear. For I here design only to give a mathematical notion of
those forces, without considering their physical causes and seats.

Wherefore the accelerative force will stand in the same relation to the
motive, as celerity does to motion. For the quantity of motion arises from
the celerity multiplied by the quantity of matter; and the motive force
arises from the accelerative force multiplied by the same quantity of matter.
For the sum of the actions of the accelerative force, upon the several par-
ticles of the body, 1s the motive force of the whole. Hence it 1s, that near the
surface of the earth, where the accelerative gravity, or force productive of
gravity, in all bodies is the same, the motive gravity o. the weight is as the
body; but if we should ascend to higher regions, where the accelerative
gravity is less, the weight would be equally diminished, and would always
be as the product of the body, by the accelerative gravity. So in those re-
gions, where the accelerative gravity is diminished into one-half, the weight
of a body two or three times less, will be four or six times less.

I likewise call attractions and impulses, in the same sense, accelerative,
and motive; and use the words attraction, impulse, or propensity of any
sort towards a centre, promiscuously, and indifferently, one for another;
considering those forces not physically, but mathematically: wherefore the
reader is not to imagine that by those words I anywhere take upon me to
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define the kind, or the manner of any action, the causes or the physical
reason thereof, or that I attribute forces, in a true and physical sense, to
certain centres (which are only mathematical points); when at any time I
happen to speak of centres as attracting, or as endued with attractive powers.

SCHOLIUM'

Hitherto I have laid down the definitions of such words as are less
known, and explained the sense in which I would have them to be under-
stood in the following discourse. I do not define time, space, place, and
motion, as being well known to all. Only I must observe, that the common
people conceive those quantities under no other notions but from the rela-
tion they bear to sensible objects. And thence arise certain prejudices, for
the removing of which it will be convenient to distinguish them into abso-
lute and relative, true and apparent, mathematical and common.

I. Absolute, true, and mathematical time, of itself, and from its own
nature, flows equably without relation to anything external, and by another
name is called duration: relative, apparent, and common time, is some sen-
sible and external (whether accurate or unequable) measure of duration by
the means of motion, which is commonly used instead of true time; such
as an hour, a day, a month, a year.

I1. Absolute space, in its own nature, without relation to anything exter-
nal, remains always similar and immovable. Relative space is some movable
dimension or measure of the absolute spaces; which our senses determine
by its position to bodies; and which is commonly taken for immovable
space; such is the dimension of a subterraneous, an aerial, or celestial space,
determined by its position in respect of the earth. Absolute and relative
space are the same in figure and magnitude; but they do not remain always
numerically the same. For if the earth, for instance, moves, a space of our
air, which relatively and in respect of the earth remains always the same,
will at one time be one part of the absolute space into which the air passes;
at another time it will be another part of the same, and so, absolutely under-
stood, it will be continually changed.

I1. Place is a part of space which a body takes up, and is according to the
space, either absolute or relative. I say, a part of space; not the situation, nor
the external surface of the body. For the places of equal solids are always

[ Appendix, Note 13.]
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equal; but their surfaces, by reason of their dissimilar figures, are often
unequal. Positions properly have no quantity, nor are they so much the
places themselves, as the properties of places. The motion of the whole is
the same with the sum of the motions of the parts; that is, the translation
of the whole, out of its place is the same thing with the sum of the transla-

tions of the parts out of their PldLCb and therefore the p lace of the whole
is the same as the sum of the places of the parts, and for that reason, it is

internal, and in the whole body.

IV. Absolute motion is the translation of a body from one absolute place
into another; and relative motion, the translation from one relative place
into another. Thus in a ship under sail, the relative place of a body is that
part of the ship which the body possesses; or that part of the cavity which
the body fills, and which therefore moves together with the ship: and rela-
tive rest is the continuance of the body in the same part of the ship, or of its
cavity. But real, absolute rest, is the continuance of the body in the same
part of that immovable space, in which the ship itself; its cavity, and all that
it contains, is moved. Wherefore, if the earth is really at rest, the body,
which relatively rests in the ship, will really and absolutely move with the
same velocity which the ship has on the earth. But if the earth also moves,
the true and absolute motion of the body will arise, partly from the true
motion of the earth, in immovable space, partly from the relative motion
of the ship on the earth; and if the body moves also relatively in the ship,
its true motion will arise, partly from the true motion of the earth, in im-
movable space, and partly from the relative motions as well of the ship on
the earth, as of the body in the ship; and from these relative motions will
arise the relative motion of the body on the earth. As if that part of the
earth, where the ship is, was truly moved towards the east, with a velocity
of 10010 parts; while the ship itself, with a fresh gale, and full sails, is carried
towards the west, with a velocity expressed by 10 of those parts; but a sailor
walks in the ship towards the east, with 1 part of the said velocity; then
the sailor will be moved truly in immovable space towards the east, with a
velocity of 10001 parts,and relatively on the earth towards the west, with a
velocity of g of those parts.

Absolute time, in astronomy, is distinguished from relative, by the equa-
tion or correction of the apparent time. For the natural days are truly un-
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equal, though they are commonly considered as equal, and used for a meas-
ure of time; astronomers correct this inequality that they may measure the
celestial motions by a more accurate time. It may be, that there is no such
thing as an equable motion, whereby time may be accurately measured.
All motions may be accclerated and retarded, but the flowing of absolute
time is not liable to any change. The duration or perseverance of the exist-
ence of thmgs remains the same, whether the motions are swift or slow, or
none at all: and therefore this duration ought to be distinguished from what
are only sensible measures thereof ; and from which we deduce it, by means
of the astronomical equation. The necessity of this equation, for determin-
ing the times of a phenomenon, is evinced as well from the experiments
of the pendulum clock, as by eclipses of the satellites of Jupiter.

As the order of the parts of time is immutable, so also is the order of the
parts of space. Suppose those parts to be moved out of their places, and
they will be moved (if the expression may be allowed) out of themselves.
For times and spaces are, as it were, the places as well of themselves as of
all other things. All things are placed in time as to order of succession; and
in space as to order of situation. It is from their essence or nature that they
are places; and that the primary places of things should be movable, is
absurd. These are therefore the absolute places; and translations out of
those places, are the only absolute motions.

But because the parts of space cannot be seen, or distinguished from one
another by our senses, therefore in their stead we use sensible measures of
them. For from the positions and distances of things from any body con-
sidered as immovable, we define all places; and then with respect to such
places, we estimate all motions, considering bodies as transferred from some
of those places into others. And so, instead of absolute places and motions,
we use relative ones; and that without any inconvenience in common
affairs; but in philosophical disquisitions, we ought to abstract from our
senses, and consider things themselves, distinct from what are only sensible
measures of them. For it may be that there is no body really at rest, to which
the places and motions of others may be referred.

But we may distinguish rest and motion, absolute and relative, one from
the other by their properties, causes, and effects. It is a property of rest, that
bodies really at rest do rest in respect to one another. And therefore as it 1s
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possible, that in the remote regions of the fixed stars, or perhaps far beyond
them, there may be some body absolutely at rest; but impossible to know,
from the position of bodies to one another in our regions, whether any of
these do keep the same position to that remote body, it follows that absolute
rest cannot be determined from the position of bodies in our regions.
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It is a property o
their wholes, do partake of the motions of those wholes. For all the parts
of revolving bodies endeavor to recede from the axis of motion; and the
impetus of bodies moving forwards arises from the joint impetus of all the
parts. Therefore, if surrounding bodies are moved, those that are relatively
at rest within them will partake of their motion. Upon which account, the
true and absolute motion of a body cannot be determined by the translation
of 1t from those which only seem to rest; for the external bodies ought not
only to appear at rest, but to be really at rest. For otherwise, all included
bodies, besides their translation from near the surrounding ones, partake
likewise of their true motions; and though that translation were not made,
they would not be really at rest, but only seem to be so. For the surrounding
bodies stand in the like relation to the surrounded as the exterior part of a
whole does to the interior, or as the shell does to the kernel; but if the shell
moves, the kernel will also move, as being part of the whole, without any
removal from near the shell.

A property, near akin to the preceding, is this, that if a place is moved,
whatever is placed therein moves along with it; and therefore a body, which
is moved from a place in motion, partakes also of the motion of its place.
Upon which account, all motions, from places in motion, are no other than
parts of entire and absolute motions; and every entire motion is composed
of the motion of the body out of its first place, and the motion of this place
out of its place; and so on, until we come to some immovable place, as in
the before-mentioned example of the sailor. Wherefore, entire and abso-
lute motions can be no otherwise determined than by immovable places;
and for that reason I did before refer those absolute motions to immovable
places, but relative ones to movable places. Now no other places are im-
movable but those that, from infinity to infinity, do all retain the same given
position one to another ; and upon this account must ever remain unmoved;
and do thereby constitute immovable space.
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The causes by which true and relative motions are distinguished, one
from the other, are the forces impressed upon bodies to generate motion.
True motion is neither generated nor altered, but by some force impressed
upon the body moved; but relative motion may be generated or altered
without any force impressed upon the body. For it is sufficient only to

impress some force on other bodies with which the former i
by their giving way, that relation may be changed, in which the relative
rest or motion of this other body did consist. Again, true motion suffers
always some change from any force impressed upon the moving body;
. but relative motion does not necessarily undergo any change by such forces.
For if the same forces are likewise impressed on those other bodies, with
which the comparison is made, that the relative position may be preserved,
then that condition will be preserved in which the relative motion consists.
And therefore any relative motion may be changed when the true motion
remains unaltered, and the relative may be preserved when the true suffers
some change. Thus, true motion by no means consists in such relations.
The effects which distinguish absclute from relative motion are, the
forces of receding from the axis of circular motion. For there are no such
forces in a circular motion purely relative, but in a true and absolute circular
motion, they are greater or less, according to the quantity of the motion.
If a vessel, hung by a long cord, is so often turned about that the cord is
strongly twisted, then filled with water, and held at rest together with the
water ; thereupon, by the sudden action of another force, it is whirled about
the contrary way, and while the cord is untwisting itself, the vessel con-
tinues for some time in this motion; the surface of the water will at first be
plain, as before the vessel began to move; but after that, the vessel, by grad-
ually communicating its motion to the water, will make it begin sensibly
to revolve, and recede by little and little from the middle, and ascend to the
sides of the vessel, forming itself into a concave figure (as I have experi-
enced), and the swifter the motion becomes, the higher will the water rise,
till at last, performing its revolutions in the same times with the vessel, it
becomes relatively at rest in it. This ascent of the water shows its endeavor
to recede from the axis of its motion; and the true and absolute circular
motion of the water, which is here directly contrary to the relative, becomes
known, and may be measured by this endeavor. At first, when the relative

s compared, that
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motion of the water in the vessel was greatest, it produced no endeavor to
recede from the axis; the water showed no tendency to the circumference,
nor any ascent towards the sides of the vessel, but remained of a plain sur-
face, and therefore its true circular motion had not yet begun. But after-
wards, when the relative motion of the water had decreased, the ascent
thereof towards the s 1

the axis; and this endeavor showed the real circular motion of the water
continually increasing, till it had acquired its greatest quantity, when the
water rested relatively in the vessel. And therefore this endeavor does not
depend upon any translation of the water in respect of the ambient bodies,
nor can true circular motion be defined by such translation. There is only
one real circular motion of any one revolving body, corresponding to only
one power of endeavoring to recede from its axis of motion, as its proper
and adequate effect; but relative motions, in one and the same body, are
innumerable, according to the various relations it bears to external bodies,
and, like other relations, are altogether destitute of any real effect, any other-
wise than they may perhaps partake of that one only true motion. And
therefore in their system who suppose that our heavens, revolving below
the sphere of the fixed stars, carry the planets along with them; the several
parts of those heavens, and the planets, which are indeed relatively at rest
in their heavens, do yet really move. For they change their position one to
another (which never happens to bodies truly at rest), and being carried
together with their heavens, partake of their motions, and as parts of re-
volving wholes, endeavor to recede from the axis of their motions.
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Wherefore relative quantities are not the quantities themselves, whose
names they bear, but those sensible measures of them (either accurate or
inaccurate ), which are commonly used instead of the measured quantities
themselves. And if the meaning of words is to be determined by their use,
then by the names time, space, place, and motion, their [sensible| measures
are properly to be understood; and the expression will be unusual, and
purely mathematical, if the measured quantities themselves are meant. On
this account, those violate the accuracy of language, which ought to be kept
precise, who interpret these words for the measured quantities. Nor do those
less defile the purity of mathematical and philosophical truths, who con-
found real quantities with their relations and sensible measures.
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It is indeed a matter of great difficulty to discover, and effectually to dis-
tinguish, the true motions of particular bodies from the apparent; because
the parts of that immovable space, in which those motions are performed,
do by no means come under the observation of our senses. Yet the thing is
not altogether desperate for we have some arguments to guide us, partly
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partly from the forces, which are the causes and effects of the true motions.
For instance, if two globes, kept at a given distance one from the other by
means of a cord that connects them, were revolved about their common
centre of gravity, we might, from the tension of the cord, discover the
endeavor of the globes to recede from the axis of their motion, and from
thence we might compute the quantity of their circular motions. And then
if any equal forces should be impressed at once on the alternate faces of the
globes to augment or diminish their circular motions, from the increase or
decrease of the tension of the cord, we might infer the increment or decre-
ment of their motions; and thence would be found on what faces those
forces ought to be impressed, that the motions of the globes might be most
augmented ; that is, we might discover their hindmost faces, or those which,
in the circular motion, do follow. But the faces which follow being known,
and consequently the opposite ones that precede, we should likewise know
the determination of their motions. And thus we might find both the quan-
tity and the determination of this circular motion, even in an immense
vacuum, where there was nothing external or sensible with which the
globes could be compared. But now, if in that space some remote bodies
were placed that kept always a given position one to another, as the fixed
stars do in our regions, we could not indeed determine from the relative
translation of the globes among those bodies, whether the motion did
belong to the globes or to the bodies. But if we observed the cord, and found
that 1ts tension was that very tension which the motions of the globes re-
quired, we might conclude the motion to be in the globes, and the bodies
to be at rest; and then, lastly, from the translation of the globes among the
bodies, we should find the determination of their motions. But how we are
to obtain the true motions from their causes, effects, and apparent differ-
ences, and the converse, shall be explained more at large in the following
treatise. For to this end 1t was that I composed it.



- AXIOMS, or
LAWS OF MOTION'

LAW 1

Every body continues in its state of rest, or of uniform motion in a right
line, unless it is compelled to change that state by forces impressed upon 1t.

ROJECTILES continue in their motions, so far as they are not retarded
by the resistance of the air, or impelled downwards by the force of
gravity. A top, whose parts by their cohesion are continually drawn

aside from rectilinear motions, does not cease its rotation, otherwise than
as it is retarded by the air. The greater bodies of the planets and comets,
meeting with less resistance in freer spaces, preserve their motions both
progressive and circular for a much longer time.

by

LAW II® 4

The change of motion is proportional to the motive force impressed,; and
1s made in the direction of the right line in which that force is impressed.

If any force generates a motion, a double force will generate double the
motion, a triple force triple the motion, whether that force be impressed
altogether and at once, or gradually and successively. And this motion
(being always directed the same way with the generating force), if the
body moved before, is added to or subtracted from the former motion,
according as they directly conspire with or are directly contrary to each
other; or obliquely joined, when they are oblique, so as to produce a new
motion compounded from the determination of both.

LAW 111

To every action there is always opposed an equal reaction: or, the mutual
actions of two bodies upon each other arc always equal, and directed to
contrary parts.

Whatever draws or presses another is as much drawn or pressed by that
other. If you press a stone with your finger, the finger is also pressed by the

[* Appendix, Note 14.]  [2 Appendix, Note 15.]

[13]
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stone. If a horse draws a stone tied to a rope, the horse (if I may so say) will
be equally drawn back towards the stone; for the distended rope, by the
same endeavor to relax or unbend itself, will draw the horse as much
towards the stone as it does the stone towards the horse, and will obstruct
the progress of the one as much as it advances that of the other. If a body
impinge upon another, and by its force change the motion of the other, that
body also (because of the equality of the mutual pressure) will undergo an
equal change, in its own motion, towards the contrary part. The changes
made by these actions are equal, not in the velocities but in the motions of
bodies; that is to say, if the bodies are not hindered by any other impedi-
ments. For, because the motions are equally changed, the changes of the
velocities made towards contrary parts are inversely proportional to the
bodies. This law takes place also in attractions, as will be proved in the next
Scholium.

COROLLARY I

A body, acted on by two forces simultancously, will describe the diagonal
of a parallelogram in the same time as it would describe the sides by those
forces separately.

If a body in a given time, by the force M impressed apart in the place A,
should with an uniform motion be carried from A to B, and by the force N
impressed apart in the same place, should be carried from A to C, let the

parallelogram ABCD be completed, and,
A B by both forces acting together, it will in the
same time be carried in the diagonal from
A to D. For since the force N acts in the
direction ofthe line AC, parallel to BD,
this force (by the second Law) will not at
all alter the velocity generated by the other
force M, by which the body is carried towards the line BD. The body there-
fore will arrive at the line BD in the same time, whether the force N be
impressed or not; and therefore at the end of that time it will be found
somewhere in the line BD. By the same argument, at the end of the same
time it will be found somewhere in the line CD. Therefore it will be found
in the point D, where both lines meet. But it will move in a right line from

AtoD,by Law L.

C D
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COROLLARY II

And hence is explained the composition of any one direct force AD, out of
any two oblique forces AC and CD; and, on the contrary, the resolution of
any one direct force AD into two oblique forces AC and CD: which compo-
sition and resolution are abundantly confirmed from mechanics.

As if the unequal radii OM and ON drawn from the centre O of any
wheel, should sustain the weights A and P by the cords MA and NP; and
the forces of those weights to move the wheel were required. Through the
centre O draw the right line KOL, meeting the cords perpendicularly in
K and L; and from the centre O, with OL the greater of the distances
OK and OL, describe a circle, meeting the cord MA in D; and drawing
OD, make AC parallel and DC perpendicular thereto. Now, it being in-
different whether the points K, L, H
D, of the cords be fixed to the plane
of the wheel or not, the weights
will have the same effect whether
they are suspended from the points
Kand L, or from D and L. Let the
whole force of the weight A be rep-
resented by the line AD, and let it
be resolved into the forces AC and
CD, of which the force AC, draw-
ing the radius OD directly from
the centre, will have no effect to
move the wheel; but the other
force DC, drawing the radius DO perpendicularly, will have the same
effect as if it drew perpendicularly the radius OL equal to OD; that is,
it will have the same effect as the weight P, if

P:A=DC:DA,
but because the triangles ADC and DOK are similar,
DC:DA=0OK :0D=0K : OL.

™

Ve

Therefore,
P : A =radius OK : radius OL.
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As these radii lie in the same right line they will be equipollent, and so re-
main in equilibrium; which is the well-known property of the balance, the
lever, and the wheel. If either weight is greater than in this ratio, its force to
move the wheel will be so much greater.

If the weight p=P, is partly suspended by the cord Np, partly sustained
by the oblique plane pG; draw pH, NH, the former perpendicular to the
horizon, the latter to the plane pG; and if the force of the weight p tending
downwards is represented by the line pH, it may be resolved into the forces
pN, HN. If there was any plane pQ, perpendicular to the cord pN, cutting
the other plane pG in a line parallel to the horizon, and the weight p was
supported only by those planes pQ, pG, it would press those planes perpen-
dicularly with the forces pN, HN; to wit, the plane pQ with the force pN,
and the plane pG with the force HN. And therefore if the plane pQ was
taken away, so that the weight might stretch the cord, because the cord,
now sustaining the weight, supplied the place of the plane that was re-
moved, it would be strained by the same force pIN which pressed upon the
plane before. Therefore, the

tension of pN : tension of PN =line pN :line pH.
Therefore, if
p:A=0K :OL=line pH : line pN,

then the weights p and A will have the same effect towards moving the
wheel, and will therefore sustain each other; as anyone may find by experi-
ment.

But the weight p pressing upon those two oblique planes, may be con-
sidered as a wedge between the two internal surfaces of a body split by it;
and hence the forces of the wedge and the mallet may be determined:
because the force with which the weight p presses the plane pQ is to the
force with which the same, whether by its own gravity, or by the blow
of a mallet, is impelled in the direction of the line pH towards both the
planes, as

PN : pH;
and to the force with which it presses the other plane pG, as
N : NH.
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And thus the force of the screw may be deduced from a like resolution of
forces; it being no other than a wedge impelled with the force of a lever.
Therefore the use of this Corollary spreads far and wide, and- by that dif-
fusive extent the truth thereof is further confirmed. For on what has been
said depends the whole doctrine of mechanics variously demonstrated by
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which are compounded of wheels, pullies, levers, cords, and weights,
ascending directly or obliquely, and other mechanical powers; as also the
force of the tendons to move the bones of animals.

COROLLARY III

The quantity of motion, which is obtained by taking the sum of the motions
directed towards the same parts, and the difference of those that are directed
to contrary parts, suffers no change from the action of bodies among them-
selves.

For action and its opposite reaction are equal, by Law 1, and therefore,
by Law 11, they produce in the motions equal changes towards opposite
parts. Therefore if the motions are directed towards the same parts, what-
ever is added to the motion of the preceding body will be subtracted from
the motion of that which follows; so that the sum will be the same as
before. If the bodies meet, with contrary motions, there will be an equal
deduction from the motions of both; and therefore the difference of the
motions directed towards opposite parts will remain the same.

Thus, if a spherical body A is 3 times greater than the spherical body B,
and has a velocity =2, and B follows in the same direction with a velocity
=10, then the

motion of A : motion of B=6: 10.

Suppose, then, their motions to be of 6 parts and of 10 parts, and the sum
will be 16 parts. Therefore, upon the meeting of the bodies, if A acquire 3,
4, or 5 parts of motion, B will lose as many; and therefore after reflection
A will proceed with g, 10, or 11 parts, and B with 7, 6, or 5 parts; the sum
remaining always of 16 parts as before. If the body A acquire g, 10, 11, Or
12 parts of motion, and therefore after meeting proceed with 15, 16, 17, or
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18 parts, the body B, losing so many parts as A has got, will either proceed
with 1 part, having lost g, or stop and remain at rest, as having lost its whole
progressive motion of 10 parts; or it will go back with 1 part, having not
only lost its whole motion, but (if I may so say) one part more; or it will
go back with 2 parts, because a progressive motion of 12 parts is taken off.
And so the sums of the conspiring motions,

15+1 or 16+o0,

and the differences of the contrary motions,
17—1 and 18-z,

will always be equal to 16 parts, as they were before the meeting and re-
flection of the bodies. But the motions being known with which the bodies
proceed after reflection, the velocity of either will be also known, by taking
the velocity after to the velocity before reflection, as the motion after is to
the motion before. As in the last case, where the

motion of A before reflection (6) : motion of A after (18)
= velocity of A before (2) : velocity of A after (x);

that is,
6:18=2:x,x=06.

But if the bodies are either not spherical, or, moving in different right
lines, impinge obliquely one upon the other, and their motions after reflec-
tion are required, in those cases we are first to determine the position of the
plane that touches the bodies in the point of impact, then the motion of
each body (by Cor. 11) is to be resolved into two, one perpendicular to that
plane, and the other parallel to it. This done, because the bodies act upon
each other in the direction of a line perpendicular to this plane, the parallel
motions are to be retained the same after reflection as before; and to the
perpendicular motions we are to assign equal changes towards the contrary
parts; in such manner that the sum of the conspiring and the difference of
the contrary motions may remain the same as before. From such kind of
reflections sometimes arise also the circular motions of bodies about their
own centres. But these are cases which I do not consider in what follows;
and it would be too tedious to demonstrate every particular case that relates
to this subject.
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COROLLARY IV

The common centre of gravity of two or more bodies does not alter its state
of motion or rest by the actions of the bodies among themselves; and there-
fore the common centre of gravity of all bodies acting upon each other
(excluding external actions and impediments) is either at rest, or moves
uniformly in aright line.

For if two points proceed with an uniform motion in right lines, and
their distance be divided in a given ratio, the dividing point will be either
at rest, or proceed uniformly in a right line. This is demonstrated hereafter
in Lem. xxut and Corollary, when the points are moved in the same plane;
and by a like way of arguing, it may be demonstrated when the points are
not moved in the same plane. Therefore if any number of bodies move uni-
formly in right lines, the common centre of gravity of any two of them is
either at rest, or proceeds uniformly in a right line; because the line which
connects the centres of those two bodies so moving is divided at that com-
mon centre 1n a given ratio. In like manner the common centre of those
two and that of a third body will be either at rest or moving uniformly in
a right line; because at that centre the distance between the common centre
of the two bodies, and the centre of this last, is divided in a given ratio. In
like manner the common centre of these three, and of a fourth body, is
either at rest, or moves uniformly in a right line; because the distance be-
tween the common centre of the three bodies, and the centre of the fourth,
is there also divided in a given ratio, and so on in infinitum. Therefore, in
a system of bodies where there is neither any mutual action among them-
selves, nor any foreign force impressed upon them from without, and which
consequently move uniformly in right lines, the common centre of gravity
of them all is either at rest or moves uniformly forwards in a right line.

Moreover, in a system of two bodies acting upon each other, since the dis-
tances between their centres and the common centre of gravity of both are
reciprocally as the bodies, the relative motions of those bodies, whether of
approaching to or of receding from that centre, will be equal among them-
selves. Therefore since the changes which happen to motions are equal and
directed to contrary parts, the common centre of those bodies, by their
mutual action between themselves, is neither accelerated nor retarded, nor
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suffers any change as to its state of motion or rest. But in a system of several
bodies, because the common centre of gravity of any two acting upon each
othersuffers no change in its state by that action ; and much less thecommon
centre of gravity of the others with which that action does not intervene;
but the distance between those two centres is divided by the common cen-
tre of gravity of all the bodies into parts inversely proportional to the total
sums of those bodies whose centres they are; and therefore while those two
centres retain their state of motion or rest, the common centre of all does
also retain its state: it is manifest that the common centre of all never suffers
any change in the state of its motion or rest from the actions of any two
bodies between themselves. But in such a system all the actions of the bodies
among themselves either happen between two bodies, or are composed of
actions interchanged between some two bodies; and therefore they do never
produce any alteration in the common centre of all as to its state of motion
or rest. Wherefore since that centre, when the bodies do not act one upon
another, either is at rest or moves uniformly forwards in some right line, it
will, notwithstanding the mutual actions of the bodies among themselves,
always continue in its state, either of rest, or of proceeding uniformly in a
right line, unless it is forced out of this state by the action of some power
impressed from without upon the whole system. And therefore the same
law takes place in a system consisting of many bodies as in one single body,
with regard to their persevering in their state of motion or of rest. For the
progressive motion, whether of one single body, or of a whole system of
bodies, is always to be estimated from the motion of the centre of gravity.

COROLLARY V

The motions of bodies included in a given space are the same among them-
selves, whether that space is at rest, or moves uniformly forwards in a right
line without any circular motion.

For the differences of the motions tending towards the same parts, and
the sums of those that tend towards contrary parts, are, at first (by supposi-
tion), in both cases the same; and it is from those sums and differences that
the collisions and impulses do arise with which the bodies impinge one
upon another. Wherefore (by Law 1), the effects of those collisions will be
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equal in both cases; and therefore the mutual motions of the bodies among
themselves in the one case will remain equal to the motions of the bodies
among themselves in the other. A clear proof of this we have from the
experiment of a ship; where all motions happen after the same manner,
whether the ship is at rest, or is carried uniformly forwards in a right line.

COROLLARY VI

If bodies, moved in any manner among themselves, are urged in the direc-
tion of parallel lines by equal accelerative forces, they will all continue to
move among themselves, after the same manner as if they had not been
urged by those forces.

For these forces acting equally (with respect to the quantities of the
bodies to be moved), and in the direction of parallel lines, will (by Law 1)
move all the bodies equally (as to velocity), and therefore will never pro-
duce any change in the positions or motions of the bodies among themselves.

SCHOLIUM!'

Hitherto I have laid down such principles as have been received by mathe-
maticians, and are confirmed by abundance of experiments. By the first
two Laws and the first two Corollaries, Galileo discovered that the descent
of bodies varied as the square of the time (in duplicata ratione temporis)
and that the motion of projectiles was in the curve of a parabola; experience
agreeing with both, unless so far as these motions are a little retarded by the
resistance of the air. When a body is falling, the uniform force of its gravity
acting equally, impresses, in equal intervals of time, equal forces upon that
body, and therefore generates equal velocities; and in the whole time im-
presses a whole force, and generates a whole velocity proportional to the
time. And the spaces described in proportional times are as the product of
the velocities and the times; that is, as the squares of the times. And when
a body is thrown upwards, its uniform gravity impresses forces and reduces
velocities proportional to the times; and the times of ascending to the great-
est heights are as the velocities to be taken away, and those heights are as the
product of the velocities and the times, or as the squares of the velocities.
And if a body be projected in any direction, the motion arising from its
projection is compounded with the motion arising from its gravity. Thus,

[1 Appendix, Note 16.]
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if the body A by its motion of projection alone could describe in a given
time the right line AB, and with its motion of falling alone could describe
in the same time the altitude AC; complete the parallelogram ABCD, and
the body by that compounded motion will at the end of the time be found
in the place D; and the curved line AED, which
B that body describes, will be a parabola, to which the
/ right line AB will be a tangent at A; and whose
I ordinate BD will be as the square of the line AB.
On the same Laws and Corollaries depend those
things which have been demonstrated concerning
4 the times of the vibration of pendulums, and are
D confirmed by the daily experiments of pendulum
clocks. By the same, together with Law 1, Sir
Christopher Wren, Dr. Wallis, and Mr. Huygens,
the greatest geometers of our times, did severally determine the rules of
the impact and reflection of hard bodies, and about the same time com-
municated their discoveries to the Royal Society, exactly agreeing among
themselves as to those rules. Dr. Wallis, indeed, was somewhat earlier in
the publication; then followed Sir Christopher Wren, and, lastly, Mr. Huy-
gens. But Sir Christopher Wren confirmed the truth of the thing before
the Royal Society by the experiments on pendulums, which M. Mariozze
soon after thought fit to explain in a treatise entirely upon that subject.!
But to bring this experiment to an accurate agreement with the theory, we
are to have due regard as well to the resistance of the air as to the elastic
force of the concurring bodies.
Let the spherical bodies A, Bbe E_G cC D E_H
suspended by the parallel and
equal strings AC, BD, from the R
centres C, D. About these cen- 3y
tres, with those lengths as radii,
describe the semicircles EAF,
GBH, bisected respectively by
the radii CA, DB. Bring the
body A to any point R of the arc EAF, and (withdrawing the body B) let
it go from thence, and after one oscillation suppose it to return to the point

C

[1 Appendix, Note 17.]
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V: then RV will be the retardation arising from the resistance of the air.
Of this RV let ST be a fourth part, situated in the middle, namely, so that

RS=TV,
and
RS:S8T=3:2,
then will ST represent very nearly the retardation du uring th 1e descent from

S to A. Restore the body B to its place: and, supposing the body A to be let
fall from the point S, the velocity thereof in the place of reflection A, with-
out sensible error, will be the same as if it had descended 7 vacuo from the
point T. Upon which account this velocity may be represented by the chord
of the arc TA. For it is a proposition well known to geometers, that the
velocity of a pendulous body in the lowest point is as the chord of the arc
which it has described in its descent. After reflection, suppose the body A
comes to the place s, and the body B to the place k. Withdraw the body B,
and find the place », from which if the body A, being let go, should after
one oscillation return to the place 7, sz may be a fourth part of v, so placed
in the middle thereof as to leave 7s equal to 2z, and let the chord of the arc
tA represent the velocity which the body A had in the place A immediately
after reflection. For # will be the true and correct place to which the body A
should have ascended, if the resistance of the air had been taken off. In the
same way we are to correct the place £ to which the body B ascends, by find-
ing the place / to which it should have ascended i vacuo. And thus every-
thing may be subjected to experiment, in the same manner as if we were
really placed 17 vacuo. These things being done, we are to take the product
(if I may so say) of the body A, by the chord of the arc TA (which repre-
sents its velocity), that we may have its motion in the place A immediately
before reflection; and then by the chord of the arc #A, that we may have its
motion in the place A immediately after reflection. And so we are to take
the product of the body B by the chord of the arc B/, that we may have the
motion of the same immediately after reflection. And in like manner, when
two bodies are let go together from different places, we are to find the
motion of each, as well before as after reflection; and then we may compare
the motions between themselves, and collect the effects of the reflection.
Thus trying the thing with pendulums of 10 feet, in unequal as well as
equal bodies, and making the bodies to concur after a descent through large
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spaces, as of 8, 12, or 16 feet, I found always, without an error of 3 inches,
that when the bodies concurred together directly, equal changes towards
the contrary parts were produced in their motions, and, of consequence,
that the action and reaction were always equal. As if the body A impinged
upon the body B at rest with g parts of motion, and losing %, proceeded
after reflection with 2, the body B was carried backwards with those % parts.
It the bodies concurred with contrary motions, A with 12 parts of motion,
and B with 6, then if A receded with 2, B receded with 8; namely, with a
deduction of 14 parts of motion on each side. For from the motion of A
subtracting 12 parts, nothing will remain; but subtracting 2 parts more, a
motion will be generated of 2 parts towards the contrary way; and so, from
the motion of the body B of 6 parts, subtracting 14 parts, a motion is gene-
rated of 8 parts towards the contrary way. But if the bodies were made both
to move towards the same way, A, the swifter, with 14 parts of motion, B,
the slower, with 5, and after reflection A went on with 5, B likewise went on
with 14 parts; g parts being transferred from A to B. And so in other cases.
By the meeting and collision of bodies, the quantity of motion, obtained
from the sum of the motions directed towards the same way, or from the
difference of those that were directed towards contrary ways, was never
changed. For the error of an inch or two in measures may be easily ascribed
to the difficulty of executing everything with accuracy. It was not easy to
let go the two pendulums so exactly together that the bodies should impinge
one upon the other in the lowermost place AB; nor to mark the places s,
and %, to which the bodies ascended after impact. Nay, and some errors,
too, might have happened from the unequal density of the parts of the
pendulous bodies themselves, and from the irregularity of the texture pro-
ceeding from other causes.

But to prevent an objection that may perhaps be alleged against the rule,
for the proof of which this experiment was made, as if this rule did sup-
pose that the bodies were either absolutely hard, or at least perfectly elastic
{whereas no such bodies are to be found in Nature), I must add, that the
experiments we have been describing, by no means depending upon that
quality of hardness, do succeed as well in soft as in hard bodies. For if the
rule is to be tried in bodies not perfectly hard, we are only to diminish the
reflection in such a certain proportion as the quantity of the elastic force
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requires. By the theory of Wren and Huygens, bodies absolutely hard re-
turn one from another with the same velocity with which they meet. But
this may be affirmed with more certainty of bodies perfectly elastic. In
bodies imperfectly elastic the velocity of the return is to be diminished
together with the elastic force; because that force (except when the parts
of bodies are bruised by their impact, or suffer some such extension as hap-
pens under the strokes of a hammer) is (as far as I can perceive) certain
and determined, and makes the bodies to return one from the other with
a relative velocity, which is in a given ratio to that relative velocity with
which they met. This I tried in balls of wool, made up tightly, and strongly
compressed. For, first, by letting go the pendulous bodies, and measuring
their reflection, I determined the quantity of their elastic force; and then,
according to this force, estimated the reflections that ought to happen in
other cases of impact. And with this computation other experiments made
afterwards did accordingly agree; the balls always receding one from the
other with a relative velocity, which was to the relative velocity with which
they met as about 5 to 9. Balls of steel returned with almost the same
velocity; those of cork with a velocity something less; but in balls of glass
the proportion was as about 15 to 16. And thus the third Law, so far as it
regards percussions and reflections, is proved by a theory exactly agreeing
with experience.

In attractions, [ briefly demonstrate the thing after this manner. Suppose
an obstacle is interposed to hinder the meeting of any two bodies A, B,
attracting one the other: then if either body, as A, is more attracted towards
the other body B, than that other body B is towards the first body A, the
obstacle will be more strongly urged by the pressure of the body A than by
the pressure of the body B, and therefore will not remain in equilibrium:
but the stronger pressure will prevail, and will make the system of the two
bodies, together with the obstacle, to move directly towards the parts on
which B lies; and in free spaces, to go forwards in infinitum with a motion
continually accelerated; which is absurd and contrary to the first Law. For,
by the first Law, the system ought to continue in its state of rest, or of
moving uniformly forwards in a right line; and therefore the bodies must
equally press the obstacle, and be equally attracted one by the other. [ made
the experiment on the loadstone and iron. If these, placed apart in proper
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vessels, are made to float by one another in standing water, neither of them
will propel the other; but, by being equally attracted, they will sustain each
other’s pressure, and rest at last in an equilibrium.

So the gravitation between the earth and its parts is mutual. Let the earth
FI be cut by any plane EG into two parts EGF and EGI, and their weights
one towards the other will be mutually equal. For if by another plane HK,
parallel to the former EG, the greater part EGI is cut into two parts EGKH

and HKI, whereof HKI is equal to the part

E/\H EFG, first cut off, it is evident that the middle
part EGKH will have no propension by its
proper weight towards either side, but will
hang as it were, and rest in an equilibrium
between both. But the one extreme part HKI
will with its whole weight bear upon and

\_/i( press the middle part towards the other ex-

treme part EGF; and therefore the force with
which EGI, the sum of the parts HKI and EGKH, tends towards the third
part EGF, is equal to the weight of the part HKI, that is, to the weight of
the third part EGF. And therefore the weights of the two parts EGI and
EGF, one towards the other, are equal, as I was to prove. And indeed if those
weights were not equal, the whole earth floating in the nonresisting ether
would give way to the greater weight, and, retiring from it, would be carried
oft in infinitum.

And as those bodies are equipollent in the impact and reflection, whose
velocities are inversely as their innate forces, so in the use of mechanic instru-
ments those agents are equipollent, and mutually sustain each the contrary
pressure of the other, whose velocities, estimated according to the deter-
mination of the forces, are inversely as the forces.

So those weights are of equal force to move the arms of a balance, which
during the play of the balance are inversely as their velocities upwards and
downwards; that is, if the ascent or descent is direct, those weights are of
equal force, which are inversely as the distances of the points at which they
are suspended from the axis of the balance; but if they are turned aside by
the interposition of oblique planes, or other obstacles, and made to ascend
or descend obliquely, those bodies will be equipollent, which are inversely
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as the heights of their ascent and descent taken according to the perpen-
dicular; and that on account of the determination of gravity downwards.

And in like manner in the pulley, or in a combination of pulleys, the
force of a hand drawing the rope directly, which is to the weight, whether
ascending directly or obliquely, as the velocity of the perpendicular ascent
of the weight to the velocity of the hand that draws the rope, will sustain
the weight.

In clocks and such like instruments, made up from a combination of
wheels, the contrary forces that promote and impede the motion of the
wheels, if they are inversely as the velocities of the parts of the wheel on
which they are impressed, will mutually sustain each other.

The force of the screw to press a body is to the force of the hand that
turns the handles by which it is moved as the circular velocity of the handle
in that part where it is impelled by the hand is to the progressive velocity
of the screw towards the pressed body.

The forces by which the wedge presses or drives the two parts of the
wood it cleaves are to the force of the mallet upon the wedge as the progress
of the wedge in the direction of the force impressed upon it by the mallet
is to the velocity with which the parts of the wood yield to the wedge, in
the direction of lines perpendicular to the sides of the wedge. And the like
account is to be given of all machines.

The power and use of machines consist only in this, that by diminishing
the velocity we may augment the force, and the contrary; from whence, in
all sorts of proper machines, we have the solution of this problem: To move
a given weight with a given power, or with a given force to overcome any
other given resistance. For if machines are so contrived that the velocities
of the agent and resistant are inversely as their forces, the agent will just
sustain the resistant, but with a greater disparity of velocity will overcome
it. So that if the disparity of velocities is so great as to overcome all that
resistance which commonly arises either from the friction of contiguous
bodies as they slide by one another, or from the cohesion of continuous
bodies that are to be separated, or from the weights of bodies to be raised,
the excess of the force remaining, after all those resistances are overcome,
will produce an acceleration of motion proportional thereto, as well in the
parts of the machine as in the resisting body. But to treat of mechanics is
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not my present business. I was aiming only to show by those examples the
great extent and certainty of the third Law of Motion. For if we estimate
the action of the agent from the product of its force and velocity, and like-
wise the reaction of the impediment from the product of the velocities of its
several parts, and the forces of resistance arising from the friction, cohesion,
weight, and acceleration of those parts, the action and reaction in the use
of all sorts of machines will be found always equal to one another. And
so far as the action is propagated by the intervening instruments, and at
last impressed upon the resisting body, the ultimate action will be always
contrary to the reaction.



Book One
THE MOTION OF BODIES

SECTIONI

The method of first and last ratios of quantities, by the help of which we
demonstrate the propositions that follow.

LEMMA I

Quantities, and the ratios of quantities, which in any finite time converge
continudally to equality, and before the end of that time approach nearer
to each other than by any given difference, become ultimately equal.

If you deny it, suppose them to be ultimately unequal, and let D be their
ultimate difference. Therefore they cannot approach nearer to equality
than by that given difference D; which is contrary to the supposition.

LEMMA II
If in any figure AacE, terminated by the right
a ] £ lines Aa, AE, and the curve acE, there be in-
K~ 1} scribed any number of parallelograms Ab,
L n Bc, Cd, &c., comprehended under equal bases

AB, BC, CD, &c., and the sides, Bb, Cc, Dd,
: o &6 parallel to one side Aa of the figure; and
. M3 ° the parallelograms aKbl, bLem, cMdn, .,
5 are completed: then if the breadth of those
parallelograms be supposed to be diminished,
: and their number to be augmented in infini-
A BYF¥ C D E tum,/say, that the ultimate ratios which the

[29]
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inscribed figure AKbLcMAD, the circumseribed figure AalbmendoE, and
curvilinear figure AabcdE, will have to one another, are ratios of equality.

For the difference of the inscribed and circumscribed figures is the sum
of the parallelograms K/, Lm, Mn, Do, that is (from the equality of all
their bases), the rectangle under one of their bases K& and the sum of their
altitudes Ag, that is, the rectangle ABla. But this rectangle, because its
breadth AB is supposed diminished in infinitum, becomes less than any
given space. And therefore (by Lem. 1) the figures inscribed and circum-
scribed become ultimately equal one to the other; and much more will the
intermediate curvilinear figure be ultimately equal to either. Q.E.D.

LEMMA I11

The same ultimate ratios are also ratios of equality, when the breadths AB,
BC, DC, &c., of the parallelograms are unequal, and are all diminished in
infinitum.

For suppose AF equal to the greatest breadth, and complete the parallelo-
gram FAaf. This parallelogram will be greater than the difference of the

inscribed and circumscribed figures; but, be-

a ]H--;f cause its breadth AF is diminished in -
K : m

BIS finitum, it will become less than any given
L} n rectangle. Q.E.D.

: Cor. 1. Hence the ultimate sum of those
Y o evanescent parallelograms will in all parts co-
incide with the curvilinear figure.

Cor. 11. Much more will the rectilinear fig-
ure comprehended under the chords of the
evanescent arcs ab, bc, cd, &c., ultimately co-
incide with the curvilinear figure.

ﬁ prvesrasaneimern e b vinann

A b C D E

Cor. m1. And also the circumscribed rectilinear figure comprehended
under the tangents of the same arcs.

Cor. 1v. And therefore these ultimate figures (as to their perimeters acE)
are not rectilinear, but curvilinear limits of rectilinear figures.
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LEMMAIV

If in two figures AacE, PprT, there are inscribed (as before) two series of
parallelograms, an equal number in each series, and, their breadths being
diminished in infinitum, :f the ultimate ratios of the parallelograms in one
figure to those in the other, each to each respectively, are the same: 1 say,
that those two figures, AacE, Ppr'T, are to each other in that same ratio.

q
F

A E P T

For as the parallelograms in the one are severally to the parallelograms
in the other, so (by composition) is the sum of all in the one to the sum of
all in the other; and so is the one figure to the other; because (by Lem. 1i1)
the former figure to the former sum, and the latter figure to the latter sum,
are both in the ratio of equality. Q.E.D.

Cor. Hence if two quantities of any kind are divided in any manner into
an equal number of parts, and those parts, when their number is aug-
mented, and their magnitude diminished /7 infinitum, have a given ratio
to each other, the first to the first, the second to the second, and so on in
order, all of them taken together will be to each other in that same given
ratio. For if, in the figures of this Lemma, the parallelograms are taken to
each other in the ratio of the parts, the sum of the parts will always be as
the sum of the parallelograms; and therefore supposing the number of the
parallelograms and parts to be augmented, and their magnitudes dimin-
ished n infinitum, those sums will be in the ultimate ratio of the parallelo-
gram in the one figure to the correspondent parallelogram in the other;
that is (by the supposition), in the ultimate ratio of any part of the one
quantity to the correspondent part of the other.
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LEMMAYV

All homologous sides of similar figures, whether curvilinear or rectilinear,
are proportional; and the areas are as the squares of the homologous sides.

LEMMA VI
g If any arc ACB, given in posi-
tion, is subtended by its chord
AB, and in any point A, n the
middle of the continued curva-
ture, is touched by a right line
AD, produced both ways, then
if the points A and B approach
one another and meet, I say,
the angle BAD, contained be-
r tween the chord and the tan-
gent, will be diminished in infinitum, and ultimately will vanish.

For if that angle does not vanish, the arc ACB will contain with the tan-
gent AD an angle equal to a rectilinear angle; and therefore the curvature
at the point A will not be continued, which is against the supposition.

LEMMA VII

The same things being supposed, I say that the ultimate ratio of the arc,
chord, and tangent, any one to any other, is the ratio of equality.

For while the point B approaches towards the point A, consider always
AB and AD as produced to the remote points & and d; and parallel to the
secant BD draw &d; and let the arc Ach be always similar to the arc ACB.
Then, supposing the points A and B to coincide, the angle ZA% will vanish,
by the preceding Lemma; and therefore the right lines Ab, Ad (which are
always finite), and the intermediate arc Acd, will coincide, and become
equal among themselves. Wherefore, the right lines AB, AD, and the in-
termediate arc ACB (which are always proportional to the former), will
vanish, and ultimately acquire the ratio of equality. Q.E.D.

Cor. 1. Whence if through B we draw BF parallel to the tangent, always
cutting any right line AF passing through A in F, this line BF will be
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ultimately in the ratio of equality

with the evanescent arc ACB; be- C
cause, completing the parallelogram /;. AN/

AFBD, it is always in a ratio of [ \G BN\
equality with AD.
Cor. 1. And if through B and A more right lines are drawn, as BE, BD,

AF, AG, cutting the tangent AD and its parallel BF; the ultimate ratio of
all the abscissas AD, AE, BF, BG, and of the chord and arc AB, any one to
any other, will be the ratio of equality.

Cor. nr. And therefore in all our reasoning about ultimate ratios, we may
freely use any one of those lines for any other.

LEMMA VIII

If the right lines AR, BR, with the arc ACB, the chord AB, and the tangent
AD, constitute three triangles RAB, RACB, RAD, and the points A and B
approach and meet: I say, that the ultimate form of these evanescent tri-
angles is that of similitude, and their ultimate ratio that of equality.

For while the point B approaches towards the point A, consider always
AB, AD, AR, as produced to the remote points &, 4, and r, and rbd as drawn
¢ parallel to RD, and let the arc

Acb be always similar to the

arc ACB. Then supposing the

points A and B to coincide, the

angle #Ad will vanish; and

therefore the three triangles

rAb, rAch, rAd (which are

always finite), will coincide,
_ and on that account become
r both similar and equal. And
therefore the triangles RAB, RACB, RAD, which are always similar and
proportional to these, will ultimately become both similar and equal
among themselves. Q.E.D.

Cor. And hence in all reasonings about ultimate ratios, we may use any
one of those triangles for any other.
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LEMMA IX

If aright line AE, and a curved line ABC, both given by position, cut each
other in a given angle, A; and to that right line, in another given angle,
BD, CE are ordinately applied, meeting the curve in B, C; and the points
B and C together approach towards and meet in the point A: I say, that the
areas of the triangles ABD, ACE, will ultimately be to each other as the
squares of homologous sides.

For while the points B, C, approach towards the point A, suppose always
AD to be produced to the remote points 4 and e, so as Ad, Ae may be pro-
portional to AD, AE; and the ordinates 5, ec, to be drawn parallel to the

ordinates DB and EC, and meeting
€ ¢ € AB and AC produced in 4 and e.
Let the curve Adc be similar to the
curve ABC, and draw the right
line Ag so as to touch both curves
in A, and cut the ordinates DB, EC,
db, ec, in F, G, f, g. Then, suppos-
ing the length Ae to remain the
same, let the points B and C meet
in the point A; and the angle cAg
vanishing, the curvilinear areas
Abd, Ace will coincide with the
rectilinear areas Afd, Age; and
therefore (by Lem. v) will be one to the other in the duplicate ratio of the
sides Ad, Ae. But the areas ABD, ACE are always proportional to these
areas; and so the sides AD, AE are to these sides. And therefore the areas
ABD, ACE are ultimately to each other as the squares of the sides AD, AE.
Q.E.D.

LEMMA X

The spaces which a body describes by any finite force urging it, whether
that force is determined and immutable, or is continually augmented or
continually diminished, are in the very beginning of the motion to each
other as the squares of the times.

Let the times be represented by the lines AD, AE, and the velocities gen-
erated in those times by the ordinates DB, EC. The spaces described with
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these velocities will be as the areas ABD, ACE, described by those ordinates,
that is, at the very beginning of the motion (by Lem. 1x), in the duplicate

ratio of the times AD, AE. Q.E.D.

Cor. 1. And hence one may easily infer, that the errors of bodies describ-
ing similar parts of similar figures in proportional times, the errors being
generated by any equal forces similarly applied to the bodies, and measured
by the distances of the bodies from those places of the similar figures, at
which, without the action of those forces, the bodies would have arrived in
those proportional times—are nearly as the squares of the times in which
they are generated.

Cor. 1. But the errors that are generated by proportional forces, similarly
applied to the bodies at similar parts of the similar figures, are as the product
of the forces and the squares of the times.

Cor. m1. The same thing is to be understood of any spaces whatsoever
described by bodies urged with different forces; all which, in the very be-
ginning of the motion, are as the product of the forces and the squares of
the times.

Cor. iv. And therefore the forces are directly as the spaces described in
the very beginning of the motion, and inversely as the squares of the times.

Cor. v. And the squares of the times are directly as the spaces described,
and inversely as the forces.

SCHOLIUM

If in comparing with each other indeterminate quantities of different
sorts, any one is said to be directly or inversely as any other, the meaning is,
that the former is augmented or diminished in the same ratio as the latter,
or as its reciprocal. And if any one 1s said to be as any other two or more,
directly or inversely, the meaning is, that the first is augmented or dimin-
ished in the ratio compounded of the ratios in which the others, or the
reciprocals of the others, are augmented or diminished. Thus, if A is said
to be as B directly, and C directly, and D inversely, the meaning is, that A

is augmented or diminished in the same ratio as B-C -5, that is to say,

BC . :
that A and 5 are to each other in a given ratio.
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LEMMA XI*

The evanescent subtense of the angle of contact, in all curves which at the
point of contact have a finite curvature, is ultimately as the square of the
subtense of the conterminous arc.

Case 1. Let AB be that arc, AD its tangent, BD the subtense of the angle
of contact perpendicular on the tangent, AB the subtense of the arc. Draw
BG perpendicular to the subtense AB, and AG perpendicular to the tangent
AD, meeting in G; then let the points D, B, and
G approach to the points 4, , and g, and suppose
] to be the ultimate intersection of ‘the lines BG,
AG, when the points D, B have come to A. It is
evident that the distance GJ may be less than any
assignable distance. But (from the nature of the
circles passing through the points A, B, G, and

A d p

through A, 4, g),
AB’=AG -BD, and
Ab* =Ag-bd.

But because GJ may be assumed of less length
than any assignable, the ratio of AG to Ag may
be such as to differ from unity by less than any
assignable difference; and therefore the ratio of AB* to Ab* may be such
as to differ from the ratio of BD to 44 by less than any assignable difference.
Therefore, by Lem. 1, ultimately,

AB’: AF*=BD: bd. Q.E.D.

Cask 2. Now let BD be inclined to AD in any given angle, and the ulti-
mate ratio of BD to 44 will always be the same as before, and therefore the
same with the ratio of AB*to A%%. Q.E.D.

Cask 3. And if we suppose the angle D not to be given, but that the right
line BD converges to a given point, or is determined by any other condition
whatever ; nevertheless the angles D, 4, being determined by the same law,
will always draw nearer to equality, and approach nearer to each other than
by any assigned difference, and therefore, by Lem. 1, will at last be equal;
and therefore the lines BD, &4 are in the same ratio to each other as before.

Q.ED.

[1 Appendix, Note 17.]
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Cor. 1. Therefore since the tangents AD, Ad, the arcs AB, Ab, and their
sines, BC, ¢, become ultimately equal to the chords AB, A, their squares
will ultimately become as the subtenses BD, 4d.

Cor. 11. Their squares are also ultimately as the versed sines of the arcs,
bisecting the chords, and converging to a given point. For those versed sines
are as the subtenses BD, &d.

Cor. 1. And therefore the versed sine is as the square of the time in
which a body will describe the arc with a given velocity.

Cor. 1v. The ultimate proportion,

AADB: A Adb=AD': Ad*=DB% : dp%, A
is derived from c
AADB: A Adb=AD-DB:Ad-db C
and from the ultimate proportion
AD’: Ad°=DB : db.
So also is obtained ultimately
A ABC : A Abe=BC? : e,

Cor. v. And because DB, db are ultimately par-
allel and as the squares of the lines AD, Ad, the
ultimate curvilinear areas ADB, Adb will be (by Ji
the nature of the parabola) two-thirds of the recti- €
Iinear triangles ADB, Adb, and the segments AB, G
Ab will be one-third of the same triangles. And thence those areas and those
segments will be as the squares of the tangents AD, Ad, and also of the
chords and arcs AB, AB.

d b

SCHOLIUM

But we have all along supposed the angle of contact to be neither in-
finitely greater nor infinitely less than the angles of contact made by circles
and their tangents; that is, that the curvature at the point A is neither
infinitely small nor infinitely great, and that the interval AJ is of a finite
magnitude. For DB may be taken as AD?: in. which case no circle can be
drawn through the point A, between the tangent AD and the curve AB,
and therefore the angle of contact will be infinitely less than those of circles.
And by a like reasoning, if DB be made successfully as AD*, AD’, AD",
AD', &c., we shall have a series of angles of contact, proceeding iz infin:-
tum, wherein every succeeding term is infinitely less than the preceding.
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And if DB be made successively as AD?, AD%, AD%, AD%, AD%  AD%, &c.,
we shall have another infinite series of angles of contact, the first of which
is of the same sort with those of circles, the second infinitely greater, and
every succeeding one infinitely greater than the preceding. But between
any two of these angles another series of intermediate angles of contact
may be interposed, proceeding both ways iz infinitum, wherein every suc-
ceeding angle shall be infinitely greater or infinitely less than the preceding.
As if between the terms AD? and AD?® there were interposed the series
AD% AD"™ AD% AD%, AD* AD% AD', AD'*, AD", &c. And again,
between any two angles of this series, a new series of intermediate angles
may be interposed, differing from one another by infinite intervals. Nor is
Nature confined to any bounds.

Those things which have been demonstrated of curved lines, and the
surfaces which they comprehend, may be easily applied to the curved sur-
faces and contents of solids. These Lemmas are premised to avoid the tedi-
ousness of deducing involved demonstrations ad absurdum, according to
the method of the ancient geometers. For demonstrations are shorter by the
method of indivisibles; but because the hypothesis of indivisibles seems
somewhat harsh, and therefore that method is reckoned less geometrical,
I chose rather to reduce the demonstrations of the following Propositions
to the first and last sums and ratios of nascent and evanescent quantities,
that is, to the limits of those sums and ratios, and so to premise, as short as
I could, the demonstrations of those limits. For hereby the same thing is
performed as by the method of indivisibles; and now those principles being
demonstrated, we may use them with greater safety. Therefore if hereafter
I should happen to consider quantities as made up of particles, or should
use little curved lines for right ones, I would not be understood to mean
indivisibles, but evanescent divisible quantities; not the sums and ratios of
determinate parts, but always the limits of sums and ratios; and that the
force of such demonstrations always depends on the method laid down in
the foregoing Lemmas.

Perhaps it may be objected, that there is no ultimate proportion of eva-
nescent quantities; because the proportion, before the quantities have van-
ished, is not the ultimate, and when they are vanished, is none. But by the
same argument it may be alleged that a body arriving at a certain place, and
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there stopping, has no ultimate velocity; because the velocity, before the
body comes to the place, is not its ultimate velocity; when it has arrived,
there is none. But the answer is easy; for by the ultimate velocity is meant
that with which the body is moved, neither before it arrives at its last place
and the motion ceases, nor after, but at the very instant it arrives; that is,
that velocity with which the body arrives at its last place, and with which
the motion ceases. And in like manner, by the ultimate ratio of evanescent
quantities is to be understood the ratio of the quantities not before they
vanish, nor afterwards, but with which they vanish. In like manner the first
ratio of nascent quantities is that with which they begin to be. And the first
or last sum is that with which they begin and cease to be (or to be aug-
mented or diminished). There is a limit which the velocity at the end of the
motion may attain, but not exceed. This is the ultimate velocity. And there
is the like limit in all quantities and proportions that begin and cease to be.
And since sach limits are certain and definite, to determine the same is a
problem strictly geometrical. But whatever is geometrical we may use in
determining and demonstrating any other thing that is also geometrical.

It may also be objected, that if the ultimate ratios of evanescent quantities
are given, their ultimate magnitudes will be also given: and so all quantities
will consist of indivisibles, which is contrary to what Euclid has demon-
strated concerning incommensurables, in the tenth Book of his Elements.
But this objection is founded on a false supposition. For those ultimate ratios
with which quantities vanish are not truly the ratios of ultimate quantities,
but limits towards which the ratios of quantities decreasing without limit
do always converge; and to which they approach nearer than by any given
difference, but never go beyond, nor in effect attain to, till the quantities
are diminished in infinitum. This thing will appear more evident in quan-
tities infinitely great. If two quantities, whose difference is given, be aug-
mented in infinitum, the ultimate ratio of these quantities will be given,
namely, the ratio of equality; but it does not from thence follow, that the
ultimate or greatest quantities themselves, whose ratio that is, will be given.
Therefore if in what follows, for the sake of being more easily understood,
I should happen to mention quantities as least, or evanescent, or ultimate,
you are not to suppose that quantities of any determinate magnitude are
meant, but such as are conceived to be always diminished without end.
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SECTION II
The determination of centripetal forces.

PROPOSITION I. THEOREM I

The areas which revolving bodies describe by radii drawn to an immovable
centre of force do lie in the same immouvable planes, and are proportional
to the times in which they are described.

For suppose the time to be divided into equal parts, and in the first part
of that time let the body by its innate force describe the right line AB. In
the second part of that time, the same would (by Law 1), if not hindered,

S A

proceed directly to ¢, along the line Be equal to AB; so that by the radii AS,
BS, ¢S, drawn to the centre, the equal areas ASB, BSe¢, would be described.
But when the body is arrived at B, suppose that a centripetal force acts at
once with a great impulse, and, turning aside the body from the right line
Be, compels it afterwards to continue its motion along the right line BC,
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Draw ¢C parallel to BS, meeting BC in C; and at the end of the second part
of the time, the body (by Cor. 1 of the Laws) will be found in C, in the
same plane with the triangle ASB. Join SC, and, because SB and Cc are
parallel, the triangle SBC will be equal to the triangle SBc, and therefore
also to the triangle SAB. By the like argument, if the centripetal force acts
successively in C, D, E, &c., and makes the body, in each single particle of
time, to describe the right lines CD, DE, EF, &c., they will all lie in the same
plane; and the triangle SCD will be equal to the triangle SBC, and SDE to
SCD, and SEF to SDE. And therefore, in equal times, equal areas are de-
scribed in one immovable plane: and, by composition, any sums SADS,
SAFS, of those areas, are to each other as the times in which they are de-
scribed. Now let the number of those triangles be augmented, and their
breadth diminished iz infinitum; and (by Cor. 1v, Lem. m) their ultimate
perimeter ADF will be a curved line: and therefore the centripetal force,
by which the body is continually drawn back from the tangent of this curve,
will act continually; and any described areas SADS, SAFS, which are
always proportional to the times of description, will, in this case also, be
proportional to those times. Q.E.D,

Cor. 1. The velocity of a body attracted towards an immovable centre,
in spaces void of resistance, is inversely as the perpendicular let fall from
that centre on the right line that touches the orbit. For the velocities in those
places A, B, C, D, E, are as the bases AB, BC, CD, DE, EF, of equal tri-
angles; and these bases are inversely as the perpendiculars let fall upon them.

Cor. . If the chords AB, BC of two arcs, successively described in equal
times by the same body, in spaces void of resistance, are completed into a
parallelogram ABCYV, and the diagonal BV of this parallelogram, in the
position which it ultimately acquires when those arcs are diminished 77
infinitum, 1s produced both ways, it will pass through the centre of force.

Cor. 1. If the chords AB, BC, and DE, EF, of arcs described in equal
times, in spaces void of resistance, are completed into the parallelograms
ABCV, DEFZ, the forces in B and E are one to the other in the ultimate
ratio of the diagonals BV, EZ, when those arcs are diminished iz infinitum.
For the motions BC and EF of the body (by Cor. 1 of the Laws) are com-
pounded of the motions Be, BV, and Ef, EZ; but BV and EZ, which are
equal to Cc and Ff, in the demonstration of this Proposition, were generated
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by the impulses of the centripetal force in B and E, and are therefore pro-
portional to those impulses.

Cor. wv. The forces by which bodies, in spaces void of resistance, are
drawn back from rectilinear motions, and turned into curvilinear orbits, are
to each other as the versed sines of arcs described in equal times; which
versed sines tend to the centre of force, and bisect the chords when those
arcs are diminished to infinity. For such versed sines are the halves of the
diagonals mentioned in Cor. .

Cor. v. And therefore those forces are to the force of gravity as the said
versed sines to the versed sines perpendicular to the horizon of those para-
bolic arcs which projectiles describe in the same time.

Cor. vi. And the same things do all hold good (by Cor. v of the Laws)
when the planes in which the bodies are moved, together with the centres
of force which are placed in those planes, are not at rest, but move uniformly
forwards in right lines.

PROPOSITION II. THEOREM I1

Every body that moves in any curved line described in a plane, and by a
radius drawn to a point either immovable, or moving forwards with an
uniform rectilinear motion, describes about that point areas proportional to
the times, is urged by a centripetal force directed to that point.

Cask 1. For every body that moves in a curved line is (by Law 1) turned
aside from its rectilinear course by the action of some force that impels it.
And that force by which the body is turned off from its rectilinear course,
and 1s made to describe, in equal times, the equal least triangles SAB, SBC,
SCD, &c., about the immovable point § (by Prop. xr, Book 1, Elem. of
Euclid, and Law 1), acts in the place B, according to the direction of a line
parallel to ¢C, that is, in the direction of the line BS; and in the place C,
according to the direction of a line parallel to 4D, that is, in the direction
of the line CS, &c.; and therefore acts always in the direction of lines tend-
ing to the immovable point S. Q.E.D.

Cask 2. And (by Cor. v of the Laws) it is indifferent whether the sur-
face in which a body describes a curvilinear figure be at rest, or moves
together with the body, the figure described, and its point S, uniformly
forwards in a right line.



BOOK I: THE MOTION OF BODIES 43

Cor. 1. In nonresisting spaces or mediums, if the areas are not propor-
tional to the times, the forces are not directed to the point in which the
radii meet, but deviate therefrom towards the part to which the motion is
directed, if the description of the areas is accelerated, and away from that

part, if retarded.
A

B 0

Cor. 11. And even in resisting mediums, if the description of the areas is
accelerated, the directions of the forces deviate from the point in which the
radii meet, towards the part to which the motion tends.

SCHOLIUM

A body may be urged by a centripetal force compounded of several
forces; in which case the meaning of the Proposition is, that the force which
results out of all tends to the point S. But if any force acts continually in
the direction of lines perpendicular to the described surface, this force will
make the body to deviate from the plane of its motion; but will neither
augment nor diminish the area of the described surface, and is therefore
to be neglected in the composition of forces.
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PROPOSITION IIL. THEOREM II1

Every body, that by a radius drawn to the centre of another body, howso-
ever moved, describes areas about that centre proportional to the times, is
urged by a force compounded of the centripetal force tending to that other
body, and of all the accelerative force by which that other body is impelled.

Let L represent the one, and T the other body; and (by Cor. v1 of the
Laws) if both bodies are urged in the direction of parallel lines, by a new
force equal and contrary to that by which the second body T is urged, the
first body L will go on to describe about the other body T the same areas as
before: but the force by which that other body T was urged will be now
destroyed by an equal and contrary force; and therefore (by Law 1) that
other body T, now left to itself, will either rest, or move uniformly forwards
in a right line: and the first body L, impelled by the difference of the forces,
that is, by the force remaining, will go on to describe about the other body
T areas proportional to the times. And therefore (by Theor. 1) the differ-
ence of the forces is directed to the other body T as its centre. Q.E.D.

Cor. 1. Hence if the one body L, by a radius drawn to the other body T,
describes areas proportional to the times; and from the whole force, by
which the first body L is urged (whether that force is simple, or, according
to Cor. 1 of the Laws, compounded out of several forces), we subtract (by
the same Cor.) that whole accelerative force by which the other body is
urged; the whole remaining force by which the first body is urged will tend
to the other body T, as its centre.

Cor. 1. And, if these areas are proportional to the times nearly, the re-
maining force will tend to the other body T nearly.

Cor. . And vice versa, if the remaining force tends nearly to the other
body T, those areas will be nearly proportional to the times.

Cor. v. If the body L, by a radius drawn to the other body T, describes
areas, which, compared with the times, are very unequal; and that other
body T be either at rest, or moves uniformly forwards in a right line: the
action of the centripetal force tending to that other body T is either none
at all, or it is mixed and compounded with very powerful actions of other
forces: and the whole force compounded of them all, if they are many, is
directed to another (immovable or movable) centre. The same thing
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obtains, when the other body is moved by any motion whatsoever; provided
that centripetal force is taken, which remains after subtracting that whole
force acting upon that other body T.

SCHOLIUM

Since the equable description of areas indicates that there is a centre to
which tends that force by which the body is most affected, and by which it
is drawn back from its rectilinear motion, and retained in its orbit, why
may we not be allowed, in the following discourse, to use the equable
description of areas as an indication of a centre, about which all circular
motion is performed in free spaces?

PROPOSITION IV. THEOREM IV!

The centripetal forces of bodies, which by equable motions describe differ-
ent circles, tend to the centres of the same circles; and are to each other as
the squares of the arcs described in equal times divided respectively by the
radii of the circles.

These forces tend to the centres of the circles (by Prop. 1, and Cor. ,
Prop. 1), and are to one another as the versed sines of the least arcs described
in equal times (by Cor. 1v, Prop. 1) ; that is, as the squares of the same arcs
divided by the diameters of the circles (by Lem. vir); and therefore since
those arcs are as arcs described in any equal times, and the diameters are
as the radii, the forces will be as the squares of any arcs described in the
same time divided by the radii of the circles. Q.E.D.

Cor. 1. Therefore, since those arcs are as the velocities of the bodies, the
centripetal forces are as the squares of the velocities divided by the radii.

Cor. 1. And since the periodic times are as the radii divided by the veloc-
ities, the centripetal forces are as the radii divided by the square of the
periodic times.

Cor. m. Whence if the periodic times are equal, and the velocities there-
fore as the radii, the centripetal forces will be also as the radii; and con-
versely.

Cor. w. If the periodic times and the velocities are both as the square
roots of the radii, the centripetal forces will be equal among themselves;
and conversely.

[? Appendix, Note 15.]
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Cor. v. If the periodic times are as the radii, and therefore the velocities
equal, the centripetal forces will be inversely as the radii; and conversely.

Cor. vi. If the periodic times are as the %:th powers of the radii, and
therefore the velocities inversely as the square roots of the radii, the cen-
tripetal forces will be inversely as the squares of the radii; and conversely.

Cor. vi. And universally, if the periodic time is as any power K* of
the radius R, and therefore the velocity inversely as the power R"™ of the
radius, the centripetal force will be inversely as the power R*~* of the
radius; and conversely.

Cor. vii. The same things hold concerning the times, the velocities, and
the forces by which bodies describe the similar parts of any similar figures
that have their centres in a similar position with those figures; as appears
by applying the demonstration of the preceding cases to those. And the
application is easy, by only substituting the equable description of areas in
the place of equable motion, and using the distances of the bodies from the
centres instead of the radii.

Cor. 1x. From the same demonstration it likewise follows, that the arc
which a body, uniformly revolving in a circle with a given centripetal
force, describes in any time, is a mean proportional between the diameter
of the circle, and the space which the same body falling by the same given
force would describe in the same given time.

SCHOLIUM

The case of the sixth Corollary obtains in the celestial bodies (as Sir
Christopher Wren, Dr. Hooke, and Dr. Halley have severally observed);
and therefore in what follows, I intend to treat more at large of those things
which relate to centripetal force decreasing as the squares of the distances
from the centres.

Moreover, by means of the preceding Proposition and its Corollaries, we
may discover the proportion of a centripetal force to any other known
force, such as that of gravity. For if a body by means of its gravity revolves
in a circle concentric to the earth, this gravity is the centripetal force of that
body. But from the descent of heavy bodies, the time of one entire revo-
lution, as well as the arc described in any tiven time, is given (by Cor. 1x of
this Prop.). And by such propositions, Mr. Huygens, in his excellent book
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De horologio oscillatorio, has compared the force of gravity with the cen-
trifugal forces of revolving bodies.

The preceding Proposition may be likewise demonstrated after this man-
ner. In any circle suppose a polygon to be inscribed of any number of sides.
And if a body, moved with a given velocity along the sides of the polygon,
is reflected from the circle at the several angular points, the force, with
which at every reflection it strikes the circle, will be as its velocity: and there-
fore the sum of the forces, in a given time, will be as the product of that
velocity and the number of reflections; that is (if the species of the polygon
be given), as the length described in that given time, and increased or
diminished in the ratio of the same length to the radius of the circle; that
is, as the square of that length divided by the radius; and therefore the poly-
gon, by having its sides diminished in infinitum, coincides with the circle,
as the square of the arc described in a given time divided by the radius.
This is the centrifugal force, with which the body impels the circle; and to
which the contrary force, wherewith the circle continually repels the body
towards the centre, is equal.

PROPOSITION V. PROBLEM I

There being given, in any places, the velocity with which a bady describes
a given figure, by means of forces directed to some common centre: to find
that centre.

Let the three right lines PT, R
TQV, VR touch the figure de-
scribed in as many points, P, Q,
R, and meet in T and V. On the
tangents erect the perpendiculars
PA, QB, RC, inversely propor-
tional to the velocities of the body
in the points P, Q, R, from which
the perpendiculars were raised;
that is, so that PA may be to QB
as the velocity in Q to the velocity in P, and QB to RC as the velocity in R
to the velocity in Q. Through the ends A, B, C of the perpendiculars draw

P T
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AD, DBE, EC, at right angles, meeting in D and E: and the right lines TD,
VE produced, will meet in S, the centre required.

For the perpendiculars let fall from the centre S on the tangents PT, QT,
are inversely as the velocities of the bodies in the points P and Q (by Cor. 1,
Prop. 1), and therefore, by construction, directly as the perpendiculars AP,
BQ; that is, as the perpendiculars let fall from the point D on the tangents.
Whence it is easy to infer that the points S, D, T are in one right line. And
by the like argument the points S, E, V are also in one right line; and there-
fore the centre S is in the point where the right lines TD, VE meet. Q.E.D.

PROPOSITION VI. THEOREM V

In a space void of resistance, tif a body revolves in any orbit about an im-
movable centre, and in the least time describes any arc just then nascent;
and the versed sine of that arc is supposed to be drawn bisecting the chord,
and produced passing through the centre of force: the centripetal force in
the middle of the arc will be directly as the versed sine and inversely as the
square of the time.

For the versed sine in a given time is as the force (by Cor. 1v, Prop. 1);
and augmenting the time in any ratio, because the arc will be augmented
in the same ratio, the versed sine will be augmented in the square of that
ratio (by Cor. mand 1, Lem. x1), and therefore is as the force and the square
of the time. Divide both sides by the square of the time, and the force will
be directly as the versed sine, and inversely as the square of the time. Q.E.D.

And the same thing may also be easily demonstrated by Cor. v, Lem. x.

Cor. 1. If a body P revolving about
the centre S describes a curved line
APQ, which a right line ZPR touches
in any point P; and from any other
point Q of the curve, QR is drawn
parallel to the distance SP, meecting
the tangent in R; and QT is drawn
= A perpendicular to the distance SP; the

SP?-QT* . .
“OR if the solid be

centripetal force will be inversely as the solid
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taken of that magnitude which it ultimately acquires when the points P
and Q coincide. For QR is equal to the versed sine of double the arc QP,
whose middle is P: and double the triangle SQP, or SP - QT is proportional
to the time in which that double arc is described; and therefore may be
used to rcprcsent the time.

Cor. 11. By a like reasoning, the centripetal force is inversely as t
SY*-QP?

QR
tangent of the orbit. For the rectangles SY - QP and SP - QT are equal.

Cor. 1. If the orbit is either a circle, or touches or cuts a circle concen-
trically, that is, contains with a circle the least angle of contact or section,
having the same curvature and the same radius of curvature at the point
P; and if PV be a chord of this circle, drawn from the body through the
centre of force; the centripetal force will be inversely as the solid SY* - PV.
For PV is 811; .

Cor. 1v. The same things being supposed, the centripetal force is as the
square of the velocity directly, and that chord inversely. For the velocity is
reciprocally as the perpendicular SY, by Cor. 1, Prop. 1.

Cor. v. Hence if any curvilinear figure APQ is given, and therein a point
S is also given, to which a centripetal force is continually directed, that law
of centripetal force may be found, by which the body P will be continually
drawn back from a rectilinear course, and, being detained in the perimeter
of that figure, will describe the same by a continual revolution. That is, we

; if SY is a perpendicular from the centre of force on PR, the

are to find, by computation, either the solid QI?T or the solid SY* - PV,

inversely proportional to this force. Examples of this we shall give in the
following Problems.

PROPOSITION VI PROBLEM 11
If a body revolves in the circumference of a circle, it is proposed to find the
law of centripetal force directed to any given point.
Let VQPA be the circumference of the circle; S the given point to which

as to a centre the force tends; P the body moving in the circumference; Q
the next place into which it is to move; and PRZ the tangent of the circle
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at the preceding place. Through the point S draw the chord PV, and the
diameter VA of the circle; join AP, and draw QT perpendicular to SP,
which produced, may meet the tangent PR in Z; and lastly, through the
point Q, draw LR parallel to
SP, meeting the circle in L,
and the tangent PZ in R.
And, because of the similar
triangles ZQR, ZTP, VPA,
we shall have
RP? : QT*=AV*®:PV>.
Since RP?=RL-QR,
. RL-QR-PV*
QT*= AV .
Multiply those equals byfsl)i
QR’
and the points P and Q co-
inciding, for RL write PV;
then we shall have
Sp?.PV*_SP*-QT°
AV: QR
And therefore (by Cor. 1 and v, Prop. v1) the centripetal force is inversely as
Sp*-PV?
AV?
and PV®. Q.E.L

; that is (because AV* is given), inversely as the product of SP*

The same otherwise.

On the tangent PR produced let fall the perpendicular SY; and (because
of the similar triangles SYP, VPA) we shall have AV to PV as SP to SY,

SP-PV Sp*-PV* .
N SY, and N SY?-PV. And therefore (by
Sp*-pVv?®

Cor. 1 and v, Prop. v1) the centripetal force is inversely as AV

is (because AV is given), inversely as SP* - PV, Q.E.L.

Cor. 1. Hence if the given point S, to which the centripetal force always
tends, is placed in the circumference of the circle, as at V, the centripetal
force will be inversely as the fifth power of the altitude SP.

and therefore

: that
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Cor. 1. The force by which the body P in the circle APTV revolves about
the centre of force S is to the force by which the same body P may revolve
in the same circle, and in the same peri-
odic time, about anyother centre of force
R, as RP*- SP to the cube of the right
line SG, which from the first centre of
force S 1s drawn parallel to the distance
PR of the body from the second centre
of force R, meeting the tangent PG of
the orbit in G. For by the construction
of this Proposition, the former force is

to the latter as RP?- PT® to SP?- PV?; that is, as SP-RP* to

(because of the similar triangles PSG, TPV) to SG*.

Cor. 1. The force by which the body P in any orbit revolves about the
centre of force S, is to the force by which the same body may revolve in the
same orbit, and the same periodic time, about any other centre of force R,
as the solid SP - RP?, contained under the distance of the body from the first
centre of force S, and the square of its distance from the second centre of
force R, to the cube of the right line SG, drawn from the first centre of the
force S, parallel to the distance RP of the body from the second centre of
force R, meeting the tangent PG of the orbit in G. For the force in this orbit
at any point P is the same as in a circle of the same curvature.

SP*-PV*
PT*

or

PROPOSITION VIII. PROBLEM III

P If a body moaves in the semicir-
cumference PQA; it is praposed to
Z4 N find the law of the centripetal force

tending to a point S, so remote, that
all the lines PS, RS drawn thereto,
ALN] M c may be taken for parallels.

From C, the centre of the semi-
circle, let the semidiameter CA be
St § drawn, cutting the parallels at right
angles in M and N, and join CP. Because of the similar triangles CPM,
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PZT, and RZQ, we shall have CP? : PM’=PR?: QT>. From the nature of
the circle, PR*=QR (RN +QN)=QR - 2PM, when the points P and Q

coincide. Therefore CP? : PM*=QR -2PM : QT?; and QI" _2PM d

QR ~ ¢’
T2 - 2 3. 2
2 QR_SP =2 Pl\éPz SE. And therefore (by Cor. 1and v, Prop. v1) the cen-

2 PM?® - SP?
CP?

inversely as PM®. Q. E. L.

tripetal force is inversely as ; that 1s (neglecting the given ratio

2SP?
Tp )

And the same thing is likewise easily inferred from the preceding Propo-
sition.

SCHOLIUM

And by a like reasoning, a body will be moved in an ellipse, or even in
an hyperbola, or parabola, by a centripetal force which is inversely as the
cube of the ordinate directed to an infinitely remote centre of force.

PROPOSITION IX. PROBLEM 1V

If a body revolvesin a spiral PQS, cutting all the radii SP, SQ, &c., in a given
angle; 1t 15 proposed to find the law of the centripetal force tending to the
centre of that spiral.

v 3 T P
Suppose the indefinitely small angle PSQ to be given; because, then, all
the angles are given, the figure SPRQT will be given in kind. Therefore

2

the ratio QT is also given, and T is as QT, that is (because the figure

QR QR
is given in kind), as SP. But if the angle PSQ is any way changed, the
right line QR, subtending the angle of contact QPR (by Lem. x1) will
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2

be changed in the ratio of PR? or QT* Therefore the ratio QT remains

QR
QTQI'{SP is as SP°, and therefore (by

Cor. 1 and v, Prop. vi) the centripetal force is inversely as the cube of the
dietaneca €D O E_I.

Wilotdliivi, L 4 NS

the same as before, that is, as SP. And

The same otherwise.

The perpendicular SY let fall upon the tangent, and the chord PV of
the circle concentrically cutting the spiral, are in given ratios to the height
SP; and therefore SP? is as SY? - PV, that is (by Cor. ur and v, Prop. vi)
inversely as the centripetal force.

LEMMA XII
All parallelograms circumscribed about any conjugate diameers of a given
ellipse or hyperbola are equal among themselves.
This 1s demonstrated by the writers on the conic sections.

PROPOSITION X. PROBLEM V

If a body revolves in an ellipse; it 1s proposed to find the law of the cen-
tripetal force tending to the centre of the ellipse.

B R
D )

<V X

Suppose CA, CB to be semiaxes of the ellipse; GP, DK, conjugate diam-
eters; PF, QT, perpendiculars to those diameters; Qu, an ordinate to the
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diameter GP; and if the parallelogram QzPR be completed, then (by the
properties of the conic sections) Pz -G : Qo =PC* : CD? and, because of
the similar triangles Q#T, PCF, Qz* : QT*=PC* : PF*; and by eliminat-
ing Q2°, G : %T =PC*: Ch"- P I:F . Since QR =Py, and (by Lem. xmr)

v PC
BC - CA=CD-PF, and, when the points P and Q coincide, 2 PC=¢G, we
shall have, multiplying the extremes and means together,

QT*-PC* 2BC*-CA’

QR PC
Therefore (by Cor. v, Prop. vi), the centripetal force is inversely as
2 BCP-CCA ; that is (because 2 BC* - CA® is given), inversely as %; that 1s,

directly as the distance PC. Q.E.L

The same othersise.

In the right line PG on the other side of the point T, take the point # so
that T# may be equal to Twz; then take #V, such that #V : ¥G=DC* : PC".
Since, by the conic sections, Qz°: Py - G = DC?: PC?, we have Qv*=Py-«V.
Add P« - Py to both sides, and the square of the chord of the arc PQ will be
equal to the rectangle PV - Py; and therefore a circle which touches the
conic section in P, and passes through the point Q, will pass also through
the point V. Now let the points P and Q meet, and the ratio of #V to #G,
which is the same with the ratio of DC? to PC?, will become the ratio of
2 DC*

PC And
therefore the force by which the body P revolves in the ellipse will be in-
ZPD((:: - PF? (by Cor. u1, Prop. v1); that is (because 2DC* - PF* 1s
given), directly as PC. Q.E.L

Cor. 1. And therefore the force is as the distance of the body from the
centre of the ellipse; and, vice versa, if the force is as the distance, the body
will move in an ellipse whose centre coincides with the centre of force, or
perhaps in a circle into which the ellipse may degenerate.

Cor. u. And the periodic times of the revolutions made in all ellipses
whatsoever about the same centre will be equal. For those times in similar

PV 10 PG, or PV to 2PC; and therefore PV will be equal to

versely as
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ellipses will be equal (by Cor. mr and vim, Prop. v); but in ellipses that
have their greater axis common, they are to each other as the whole areas
of the ellipses directly, and the parts of the areas described in the same time
inversely; that is, as the lesser axes directly, and the velocities of the bodies
in their principal vertices inversely; that is, as those lesser axes directly, and
the ordinates to the same point of the common axes inversely; and there-
fore (because of the equality of the direct and inverse ratios) in the ratio
of equality, 1 : 1.

SCHOLIUM

If the ellipse, by having its centre removed to an infinite distance, degen-
erates into a parabola, the body will move in this parabola; and the force,
now tending to a centre infinitely remote, will become constant. This is
Galileo’s theorem. And if the parabolic section of the cone (by changing
the inclination of the cutting plane to the cone) degenerates into an hyper-
bola, the body will move in the perimeter of this hyperbola, having its cen-
tripetal force changed into a centrifugal force. And in like manner as in the
circle, or in the ellipse, if the forces are directed to the centre of the figure
placed in the abscissa, those forces by increasing or diminishing the ordi-
nates in any given ratio, or even by changing the angle of the inclination
of the ordinates to the abscissa, are always augmented or diminished in the
ratio of the distances from the centre; provided the periodic times remain
equal; so also in all figures whatsoever, if the ordinates are augmented or
diminished in any given ratio, or their inclination is any way changed, the
periodic time remaining the same, the forces directed to any centre placed
in the abscissa are in the several ordinates augmented or diminished in the
ratio of the distances from the centre.
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SECTION III

The motion of bodies in eccentric conic sections.

PROPOSITION XI. PROBLEM VI

If a body revolves in an ellipse; it is required to find the law of the
centripetal force tending to the focus of the ellipse.

Let S be the focus of the ellipse. Draw SP cutting the diameter DK of the
ellipse in E, and the ordinate Qv in x; and complete the parallelogram
QxPR. It is evident that EP is equal to the greater semiaxis AC: for draw-
ing HI from the other focus H of the ellipse parallel to EC, because CS, CH
are equal, ES, EI will be also equal; so that EP is the half-sum of PS, PI,

B R

that is (because of the parallels HI, PR, and the equal angles IPR, HPZ),
of PS, PH, which taken together are equal to the whole axis 2AC. Draw
QT perpendicular to SP, and putting L for the principal latus rectum of
2BC?
AC
L-QR:L:Pr=QR:Pr=PE:PC=AC:PC,
also, I.- Py : G- Pv=L : Gy, and, Gv-Pr : Qv*=PC* : CD%
By Cor. 11, Lem. vi1, when the points P and Q coincide, Q#*=Qx’, and

the ellipse (or for ), we shall have
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Qx" or Qv : QT*=EP* : PF*=CA®: PF*, and (by Lem. xu)=CD’: CB.
Multiplying together corresponding terms of the four proportions, and
simplifying, we shall have
L-QR:QT*=AC-L-PC*-CD*:PC-Gr-CD* - CB*=2PC: Gy,
since AC- L=2BC" But the points Q and P coinciding, 2PC and Gv are

nnnnn 1 o l\n-.n ore tha ¢ 7T .NMD o1 OYT?2 nl en o
Cqguidi. zluu NCriore tne \iuauuu\,a L yYnana \Ji , propor tional to incsc,

2.4

will be also equal. Let those equals be multiplied by S and L - SP? will

QR’
-S-%—I(%—I-‘—— . And therefore (by Cor. 1and v, Prop. vi) the

centripetal force is inversely as L - SP?, that is, inversely as the square of the
distance SP. Q.E.L

become equal to

The same otherwise.

Since the force tending to the centre of the ellipse, by which the body P
may revolve in that ellipse, is (by Cor. 1, Prop. x) as the distance CP of the
body from the centre C of the ellipse, let CE be drawn parallel to the tan-
gent PR of the ellipse; and the force by which the same body P may revolve
about any other point S of the ellipse, if CE and PS intersect in E, will be as
PE’

P2
and therefore PE be given as SP® reciprocally. Q.E.L

With the same brevity with which we reduced the fifth Problem to the
parabola, and hyperbola, we might do the like here; but because of the
dignity of the Problem and its use in what follows, I shall confirm the other
cases by particular demonstrations.

(by Cor. 11, Prop. vi); that is, if the point S is the focus of the ellipse,

PROPOSITION XII. PROBLEM VII

Suppose a body to move in an hyperbola; it is required to find the law of
the centripetal force tending to the focus of that figure.

Let CA, CB be the semiaxes of the hyperbola; PG, KD other conjugate
diameters; PF a perpendicular to the diameter KD; and Qv an ordinate to
the diameter GP. Draw SP cutting the diameter DK in E, and the ordinate
Qv in «x, and complete the parallelogram QRPx. It is evident that EP is

equal to the semitransverse axis AC; for drawing HI, from the other focus
H of the hyperbola, parallel to EC, because CS, CH are equal, ES, EI will
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be also equal; so that EP is the half difference of PS, PI; that is (because of
the parallels IH, PR, and the equal angles IPR, HPZ), of PS, PH, the dif-
ference of which is equal to the whole axis 2AC. Draw QT perpendicular
_‘.‘.I

“n,
[ TP TT=PrP—

K

to SP; and putting L for the principal latus rectum of the hyperbola (that

zjfg ), we shall have

L-QR:L-Pz=QR:Pv=Px:Pr=PE:PC=AC:PC,
also, L-Pv:Go-Po=L:Gy, and Gv-Pr:Qs*=PC* : CD’. By Cor. ,
Lem. vii, when P and Q coincide, Qx* = Q#°, and,
Qx* or Qv° : QT?*=EP? : PF*=CA” : PF?, by Lem. xu, =CD? : CB’.

1s, for
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Multiplying together corresponding terms of the four proportions, and
simplifying,

L-QR:QT*=AC:-L:-PC*-CD*:PC-Go¢  CD*  CB’=2PC : Gy,
since AC- L .=2BC". But the points P and Q coinciding, 2PC and G are
equal. And therefore the quantities L - QR and QT proportional to them,

CcD?
)y

QR’
. And therefore (by Cor. 1 and v, Prop. v1) the

and we shall have

will also be equal. Let those equals be drawn into
SP*-QT*®

QR
centripetal force is inversely as L+ SP? that 1s, inversely as the square of
the distance SP. Q.E.L

L - SP? equal to

The same otherwise.

Find out the force tending from the centre C of the hyperbola. This will
be proportional to the distance CP. But from thence (by Cor. 111, Prop. vir)

8

SIE;’ that is, because PE 1s given

the force tending to the focus S will be as

reciprocally as SP*. Q.E.L

And the same way may it be demonstrated, that the body having its
centripetal changed into a centrifugal force, will move in the conjugate
hyperbola.

LEMMA XIII

The latus rectum of a parabola belonging to any vertex is four times the
distance of that vertex from the focus of the figure.

This is demonstrated by the writers on the conic sections.

LEMMA XIV

The perpendicular, let fall from the focus of a parabola on its tangent, is
a mean proportional between the distances of the focus from the point of
contact, and from the principal vertex of the figure.

For, let AP be the parabola, S its focus, A its principal vertex, P the point
of contact, PO an ordinate to the principal diameter, PM the tangent meet-
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ing the principal diameter in M, and SN the perpendicular from the focus
on the tangent: jomt AN, and because of the equal lines MS and SP, MN
and NP, MA and AQ, the right
lines AN, OP will be parallel;
and thence the triangle SAN
will be right-angled at A, and
: similar to the equal triangles
SNM, SNP; therefore PS is to
{ : SN as SN 1s to SA. Q.E.D.
M A S 0 Cor. 1. PS® is to SN* as PS is
to SA.
Cor. 1. And because SA is given, SN will vary as PS.
Cor. n1. And the intersection of any tangent PM, with the right line SN,

drawn from the focus perpendicular on the tangent, falls in the right line
AN that touches the parabola in the principal vertex.

PROPOSITION XIII. PROBLEM VIII

If a body mouves in the perimeter of a parabola; it is required to find the
law of the centripetal force tending to the focus of that figure.

Retaining the construction of the preceding Lemma, let P be the body
in the perimeter of the parabola; and from the place Q, into which it is next

M A S
to succeed, draw QR parallel and QT perpendicular to SP, as also Qz par-
allel to the tangent, and meeting the diameter PG in », and the distance
SP in z. Now, because of the similar triangles Pxz, SPM, and of the equal
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sides SP, SM of the one, the sides Px or QR and Pz of the other will be also
equal. But (by the conic sections) the square of the ordinate Qz is equal to
the rectangle under the latus rectum and the segment Pz of the diameter;
thatis (by Lem. xur), to the rectangle 4PS - Pz, or 4PS - QR; and the points
P and Q coinciding, (by Cor. 11, Lem. vi1), Qx= Qz. And therefore Qx? in
this case, becomes equal to the rectangle 4PS-QR. But (because of the
similar triangles QxT, SPN),
Qx® : QT?*=PS§* : SN*=PS : SA (by Cor. 1, Lem. x1v),
=4PS- QR :4SA - QR.

Therefore (by Prop. 1x, Book v, Elem. of Euclid), QT*=4SA - QR. Mul-
tiply these equals by §Q£R’ and P QI QI({) T
and therefore (by Cor. 1 and v, Prop. v1), the centripetal force is inversely
as SP?- 4SA; that is, because 4SA is given, inversely as the square of the
distance SP. Q.E L

Cor. 1. From the three last Propositions it follows, that if any body P goes
from the place P with any velocity in the direction of any right line PR,
and at the same time is urged by the action of a centripetal force that is
inversely proportional to the square of the distance of the places from the
centre, the body will move in one of the conic sections, having its focus in
the centre of force; and conversely. For the focus, the point of contact, and
the position of the tangent, being given, a conic section may be described,
which at that point shall have a given curvature. But the curvature is given
from the centripetal force and velocity of the body being given; and two
orbits, touching one the other, cannot be described by the same centripetal
force and the same velocity.

Cor. 1. If the velocity with which the body goes from its place P is such,
that in any infinitely small moment of time the small line PR may be there-
by described; and the centripetal force such as in the same time to move the
same body through the space QR ; the body will move in one of the conic

2

will become equal to SP*-4SA:

sections, whose principal latus rectum is the quantity in its ultimate

QR

state, when the small lines PR, QR are diminished i» infinitum. In these
Corollaries I consider the circle as an ellipse; and I except the case where
the body descends to the centre in a right line.
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PROPOSITION XIV. THEOREM VI

If several bodies revolve about one common centre, and the centripetal force
15 tnversely as the square of the distance of places from the centre: I say,
that the principal latera recta of their orbits are as the squares of the areas,
which the bodies by radii drawn to the centre describe in the same time.

For (by Cor. 1, Prop. xi) the latus

2

QR
\\P in its ultimate state when the points P
and Q coincide. But the small line QR
in a given time is as the generating cen-
tripetal force; that is (by supposition),

2

QR
QT?- SP?; that is, the latus rectum L is as
the square of the area QT - SP. Q.E.D.

Cor. Hence the whole area of the ellipse, and the rectangle under the
axes, which is proportional to it, is as the product of the square root of
the latus rectum, and the periodic time. For the whole area is as the area
QT - SP, described in a given time, multiplied by the periodic time.

rectum L is equal to the quantity

1 as

inversely as SP?. And therefore

PROPOSITION XV. THEOREM VII

The same things being supposed, I say, that the periodic times in ellipses
are as the %th power (in ratione sesquiplicata) of their greater axes.

For the lesser axis is a mean proportional between the greater axis and
the latus rectum; and, therefore, the product of the axes is equal to the
product of the square root of the latus rectum and the %:th power of the
greater axis. But the product of the axes (by Cor., Prop. x1v) varies as the
product of the square root of the latus rectum, and the periodic time.
Divide both sides by the square root of the latus rectum and it follows that
the %th power of the greater axis varies as the periodic time. Q.E.D.

Cor. Therefore the periodic times in ellipses are the same as in circles
whose diameters are equal to the greater axes of the ellipses.
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PROPOSITION XVL. THEOREM VIII

The same things being supposed, and right lines being drawn to the bodies
that shall touch the orbits, and perpendiculars being let fall on those tan-
gents from the common focus: I say, that the velocities of the bodies vary
inversely as the perpendiculars and directly as the square roots of the prin-
cipal latera recta.

From the focus S draw SY perpendicular to the tangent PR, and the
velocity of the body P varies inversely as the square root of the quantity
SY*

L
itely small arc PQ described in a gtven
moment of time, that is (by Lem. vir),
as the tangent PR; that is (because of
the proportion, PR : QT =SP : S§Y), as
SP-QT

SY
rectly as SP- QT'; but SP- QT is as the
area described in the given time, that is
(by Prop. xwv), as the square root of
the latus rectum. Q.E.D.

. For that velocity is as the infin-

; or inversely as SY, and di-

Cor. 1. The principal latera recta vary as the squares of the perpendicu-
lars and the squares of the velocities.

Cor. 1. The velocities of bodies, in their greatest and least distances from
the common focus, are inversely as the distances and directly as the square
root of the principal latera recta. For those perpendiculars are now the
distances.

Cor. 1. And therefore the velocity in a conic section, at its greatest or
Jeast distance from the focus, s to the velocity in a circle, at the same distance
from the centre, as the square root of the principal latus rectum is to the
double of that distance.

Cor. 1v. The velocities of the bodies revolving in ellipses, at their mean
distances’ from the common focus, are the same as those of bodies revolving
in circles, at the same distances; that is (by Cor. v, Prop. 1v), inversely as the

[ Appendix, Note 18.]
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square root of the distances. For the perpendiculars are now the lesser semi-
axes, and these are as mean proportionals between the distances and the
latera recta. Let the inverse of this ratio [of the minor semiaxes]| be multi-
plied by the square root of the direct ratio of the latera recta, and we shall
have the square root of the inverse ratio of the distances.

Cor. v. In the same figure, or even in different figures, whose principal
latera recta are equal, the velocity of a body 1s inversely as the perpendicular
let fall from the focus on the tangent.

Cor. v1. In a parabola, the velocity is inversely as the square root of the
ratio of the distance of the body from the focus of the figure; it 1s more
variable in the ellipse, and less in the hyperbola, than according to this ratio.
For (by Cor. 1, Lem. x1v) the perpendicular let fall from the focus on the
tangent of a parabola is as the square root of the ratio of the distance. In the
hyperbola the perpendicular is less variable; in the ellipse, more.

Cor. vir. In a parabola, the velocity of a body at any distance from the
focus is to the velocity of a body revolving in a circle, at the same distance
from the centre, as the square root of the ratio of the number 2 to 1; in the
ellipse it is less, and in the hyperbola greater, than according to this ratio.
For (by Cor. 11 of this Prop.) the velocity at the vertex of a parabola is in
this ratio, and (by Cor. v1 of this Prop. and Prop. 1v) the same proportion
holds in all distances. And hence, also, in a parabola, the velocity is every-
where equal to the velocity of a body revolving in a circle at half the dis-
tance; in the ellipse it is less, and in the hyperbola greater.

Cor. viir. The velocity of a body revolving in any conic section is to the
velocity of a body revolving in a circle, at the distance of half the principal
latus rectum of the section, as that distance to the perpendicular let fall from
the focus on the tangent of the section. This appears from Cor. v.

Cor. 1x. Wherefore, since (by Cor. vi, Prop. 1v) the velocity of a body
revolving in this circle s to the velocity of another body revolving in any
other circle, inversely as the square root of the ratio of the distances; there-
fore, likewise, the velocity of a body revolving in a conic section will be to
the velocity of a body revolving in a circle at the same distance as a mean
proportional between that common distance, and half the principal latus
rectum of the section, to the perpendicular let fall from the common focus
upon the tangent of the section.
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PROPOSITION XVIL. PROBLEM IX

Supposing the centripetal force to be inversely proportional to the squares
of the distances of places from the centre, and that the absolute value of
that force is known; it is required to determine the line which a body will
describe that is let go from a given place with a given velocity in the direc-
tion of a given right line.

Let the centripetal force tending to the point S be such as will make the
body p revolve in any given orbit pg, and suppose the velocity of this body
in the place p is known. Then from the place P suppose the body P to be let
go with a given velocity in the direction of the line PR; but by virtue of a
centripetal force to be immediately turned aside from that right line into
the conic section PQ. This, the right line PR will therefore touch in P.
Suppose likewise that the right line pr touches the orbit pg in p; and if from

S you suppose perpendiculars let fall on those tangents, the principal latus
rectum of the conic section (by Cor. 1, Prop. xvi) will be to the principal
latus rectum of that orbit in a ratio compounded of the squared ratio of
the perpendiculars, and the squared ratio of the velocities; and is therefore
given. Let this latus rectum be L; the focus S of the conic section is also
given. Let the angle RPH be the supplement of the angle RPS, and the line
PH, in which the other focus H is placed, is given by position. Let fall SK
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perpendicular on PH, and erect the conjugate semiaxis BC; this done, we
shall have
SP—2PH - PK + PH® = SH* = 4CH* = 4(BH* — BC*) =
(SP + PH)?—L(SP+PH) =SP* + 2PS - PH + PH* — L(SP + PH).
Add on both sides
2PK - PH-SP*-PH"+ L(SP+ PH),
and we shall have
L(SP+PH)=2PS-PH+2PK - PH, or
(SP+PH) : PH=2(SP+KP) : L.
Hence PH 1is given both in length and position. That s, if the velocity of
the body in P 1s such that the latus rectum L is less than 2SP + 2 KP, PH will
lie on the same side of the tangent PR with the line SP; and therefore the
figure will be an ellipse, which from the given foci S, H, and the principal
axis SP+ PH, is given also. But if the velocity of the body 1s so great, that
the latus rectum L becomes equal to 2SP +2KP, the length PH will be
infinite; and therefore, the figure will be a parabola, which has its axis SH
parallel to the line PK, and 1s thence given. But if the body goes from its
place P with a yet greater velocity, the length PH is to be taken on the other
side the tangent; and so the tangent passing between the foci, the figure
will be an hyperbola having its principal axis equal to the difference of the
lines SP and PH, and thence is given. For if the body, in these cases, revolves
in a conic section so found, it is demonstrated in Prop. x1, x11, and x111, that
the centripetal force will be inversely as the square of the distance of the
body from the centre of force S; and therefore we have rightly determined
the line PQ, which a body let go from a given place P with a given velocity,
and in the direction of the right line PR given by position, would describe
with such a force. Q.E.F.

Cor. 1. Hence in every conic section, from the principal vertex D, the
latus rectum L, and the focus S given, the other focus H is given, by taking
DH to DS as the latus rectum to the difference between the latus rectum
and 4DS. For the proportion

SP+PH:PH=2SP+2KP: L
becomes, in the case of this Corollary,
DS+DH:DH=4DS:L,
and DS : DH=4DS-L: L.
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Cor. 1. Whence if the velocity of a body in the principal vertex D is
given, the orbit may be readily found; namely, by taking its latus rectum
to twice the distance DS, in the squared ratio of this given velocity to the
velocity of a body revolving in a circle at the distance DS (by Cor. m1, Prop.
xv1), and then taking DH to DS as the latus rectum to the difference be-
tween the latus rectum and 4 DS,

Cor. 1. Hence also if a body move in any conic section, and is forced out
of its orbit by any impulse, you may discover the orbit in which it will after-
wards pursue its course. For by compounding the proper motion of the
body with that motion, which the impulse alone would generate, you will
have the motion with which the body will go off from a given place of im-
pulse in the direction of a right line given in position.

Cor. 1v. And if that body is continually disturbed by the action of some
foreign force, we may nearly know its course, by collecting the changes
which that force introduces in some points, and estimating the continual
changes 1t will undergo in the intermediate places, from the analogy that
appears in the progress of the series.

SCHOLIUM

If a body P, by means of a cen-
tripetal force tending to any given
point R, move in the perimeter of
any given conic section whose cen-
tre is C; and the law of the cen-
tripetal force is required: draw
CG parallel to the radius RP, and
mecting the tangent PG of the
orbit in G; and the force required

(by Cor. 1 and Schol., Prop. %, and Cor. 111, Prop. vir) will be as %%
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SECTIONIV

The finding of elliptic, parabolic, and hyperbolic orbits, from the
focus given.

LEMMA XV

If from the two foci S, H, of any ellipse or hyperbola, we draw to any third
point V the right lines SV, HV, whereof one FV is equal to the principal
axis of the figure, that is, to the axisin which the foci are situated, the other,
SV, is bisected in T by the perpendicular TR let fall upon it; that perpen-
dicular TR will somewhere touch the conic section: and, vice versa, if it
does touch it, HV anll be equal to the principal axis of the figure.

\/ For, let the perpendicular TR cut the right
line HV, produced, if need be, in R; and
join SR. Because TS, TV are equal, there-
fore the right lines SR, VR, as well as the
3 H angles TRS, TRV, will be also equal.
Whence the point R will be in the conic section, and the perpendicular TR
will touch the same; and the contrary. Q.E.D.

T
R

PROPOSITION XVIILL. PROBLEM X

From a focus and the principal axes given, to describe elliptic and hyper-
bolic curves which shall pass through given points, and touch right lines

given by position.
f

Let S be the common focus of the

figures; AB the length of the princi- P » °
pal axis of any conic; P a point through :
which the conic should pass; and TR a I-I
right line which it should touch. About
the centre P, with the radius AB - SP, GF

if the orbit is an ellipse, or AB + SP, if

the orbit 1s an hyperbola, describe the circle HG. On the tangent TR let fall
the perpendicular ST, and produce the same to V, so that TV may be equal
to ST'; and about V as a centre with the interval AB describe the circle FH.
In this manner, whether two points P, p, are given, or two tangents TR, 7,
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or a point P and a tangent TR, we are to describe two circles. Let H be their
common intersection, and from the foci S, H, with the given axis describe
the conic: I say, the thing is done. For (because PH + SP in the ellipse, and
PH —SP in the hyperbola, 1s equal to the axis) the described conic will pass
through the point P, and (by the preceding Lemma) will touch the right
line TR. And by the same argument it will either pass through the two

potnts P, p, or touch the two right lines TR, #7. Q.EF.

PROPOSITION XIX. PROBLEM XI

About a given focus, to describe a parabola which shall pass through given
points and touch right lines given by position.

Let S be the focus, P a point, and TR a tangent of the curve to be de-
scribed. About P as a centre, with the radius PS, describe the circle FG.
From the focus let fall ST perpendicular on the tangent, and produce the
same to V, so as TV may be equal to ST. After

the same manner another circle fg is to be de- /

scribed, if another point p is given; or another

point # 1s to be found, if another tangent #r is £P
gtven; then draw the right line IF, which shall \G d
touch the two circles FG, fg, if two points P, p v K

are gtven; or pass through the two points V, v, ./
if two tangents TR, #r, are given; or touch the cir-  y|_/ .z
cle FG, and pass through the point V, if the point /K s
P and the tangent TR are given. On FI let fall the
perpendicular SI, and bisect the same in K ; and with the axis SK and prin-
cipal vertex K describe a parabola: I say, the thing is done. For this parabola
(because SK 1s equal to IK, and SP to FP) will pass through the point P;
and (by Cor. 11, Lem. x1v) because ST is equal to TV, and STR a right
angle, it will touch the right line TR. Q.EF.

PROPOSITION XX. PROBLEM XII

About a given focus, to describe any given conic which shall pass through
given points and touch right lines given by position.

Case 1. About the focus S it is required to describe a conic ABC, passing

through two points B, C. Because the conic is given in kind, the ratio of the
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principal axis to the distance of the foct will be given. In that ratio take
KB to BS, and LC to CS. About the centres B, C, with the intervals BK, CL,
describe two circles; and on the right line KL, that touches the same in K
and L, let fall the perpendicular SG; which cut in A and 4, so that GA may

be to AS, and Ga to 4§, as KB to

L. BS; and with the axis A, and ver-
K tices A, 4, describe a conic: I say, the
‘ thing is done. For let H be the
other focus of the described figure,
G and secing that GA : AS=Ga : S,

we shall have
Ga-GA :4S—-AS=GA : AS, or Aa:SH=GA : AS, and therefore GA
and AS are in the ratio which the principal axis of the figure to be described
has to the distance of its foci; and therefore the described figure 1s of the
same kind with the figure which was to be described. And since KB to BS,
and L.C to CS, are in the same ratio, this figure will pass through the points
B, C, as is manifest from the conic sections,

Cask 2. About the focus $ 1t is required to describe a conic which shall
somewhere touch two right lines TR, #. From the focus on those tangents
let fall the perpendiculars ST, Sz, which produce to V, v, so that TV, tv may
be equal to TS, #S. Bisect Vo in O, _
and erect the indefinite perpen- Y .. k.

- . »
H .
: .

dicular OH, and cut the right line
VS infinitely produced in K and £,
so that VK be to KS, and V% to &S,
as the principal axis ofthe conic to
be described is to the distance of its
foci. On the diameter K& describe
acircle cutting OH in H; and with
the foci S, H, and principal axis
equal to VH, describe a conic: I say, the thing is done. For bisecting K£ in
X, and joining HX, HS, HV, Hy, because VK 1s to KS as V% to £S; and by
composition, as VK + V& to KS+£S; and by subtraction, as V- VK to
kS—KS, that is, as 2VX to 2KX, and 2KX to 25X, and therefore as VX to
HX and HX to SX, the triangles VXH, HXS will be similar ; therefore VH
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will be to SH as VX to XH; and therefore as VK to KS. Wherefore VH, the
princtpal axis of the described conic, has the same ratto to SH, the distance
of the foci, as the principal axis of the contc which was to be described has
to the distance of its foci; and is therefore of the same kind. And seeing
VH, +H are equal to the principal axis, and VS, ¢S are pcrpendicularly
Lisected by the richt lines TR ¢ it is evident (hv Tem. xv that those

oh+
[FARS L AL ) Uy I'..l.l\. llslll 111],\..\) A Ay .lr!’ J.l- J.D L.Vlu\-lj.L \Uy AAllle MY } Llld.l'.. LIJ.UD\.. llslll

lines touch the described conic. Q.E.F.

Cask 3. About the focus S it is required to describe a conic which shall
touch a right line TR in a given point R. On the right line TR let fall the
perpendicular ST, which produce to V, so that TV may be equal to ST'; join
VR, and cut the right line VS indefinitely produced in K and £, so that VK
may be to SK, and V% to Sk, as the principal axis of the ellipse to be de-
scribed to the distance of its foci;
and on the diameter K% describ- _
ing a circle, cut the right line VR B,
produced in H; then with the e
foci S, H, and principal axis R/
equal to VH, describe a conic: R
I say, the thing is done. For V T _KS. ..,..-k'
VH :SH=VK : SK, and there-
fore as the principal axis of the
conic which was to be described to the distance of its foci (as appears from
what we have demonstrated in Case 2); and therefore the described conic
is of the same kind with that which was to be described; but that the right
line TR, by which the angle VRS is bisected, touches the conic in the point
R, is certain from the propertics of the conic sections. Q.E.F.

Cask 4. About the focus S it is required to describe a conic APB that
shall touch a right line TR, and pass through any given point P without
the tangent, and shall be similar to the figure apb, described with the prin-
cipal axis b, and foci s, 4. On the tangent TR let fall the perpendicular ST,
which produce to V, so that TV may be equal to ST'; and making the angles
hsq, shq,equal to the angles VSP, SVP, about ¢ as a centre, and with a radius
which shall be to ab as SP to VS, describe a circle cutting the figure apé in
p. Join sp, and draw SH such that it may be to sA as SP is to sp, and may
make the angle PSH equal to the angle ps4, and the angle VSH equal to the
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angle psq. Then with the foci S, H, and principal axis AB, equal to the dis-
tance VH, describe a conic section: I say, the thing is done; for if s# is drawn
so that it shall be to sp as s£ 1s to sq, and shall make the angle #sp equal to
the angle /4sg, and the angle #s4 equal to the angle psg, the triangles sv4,
spq, will be S1m1lar, and therefore vh will be to pq as sh is to sq; that is

l.,- o Qo CD ~b o+
Jq),ao VS is to oI, or as ao to pq.

because of the similar triangles VSH,

vsh, VH 1s to SH as ¢/ to sh; that is, the axis of the conic section now de-
scribed 1s to the distance of its foci as the axis b to the distance of the foci
sh; and therefore the figure now described is similar to the figure ap4. But,
because the triangle PSH is similar to the triangle psh, this figure passes
through the point P; and because VH is equal to its axis, and VS is per-
pendicularly bisected by the right line TR, the said figure touches the right
line TR. Q.EF.

LEMMA XVI

From three given points to draw to a fourth point that is not given three
right lines whose differences either shall be given or are zero.

Case 1. Let the given points be A, B, C,and Z the fourth point which we are
to find ; because of the given difference of the lines AZ, BZ, the locus of the
point Z will be an hyperbola whose foci are A and B, and whose principal
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axis is the given difference. Let that axis be MN. Taking PM to MA as MN
to AB, erect PR perpendicular to AB, and let fall ZR perpendicular to PR;
then from the nature of the hyperbola, ZR : AZ=MN : AB. And by the
like argument, the locus of the point
Z will be another hyperbola, whose
foci are A, C, and whose principal
axis is the difference between AZ and
CZ; and QS a perpendicular on AC
may be drawn, to which (QS) if from
any point Z of this hyperbola a per-
pendicular ZS is let fall, (this ZS)
shall be to AZ as the difference be-
tween AZ and CZ is to AC. Where-
fore the ratios of ZR and ZS to AZ are
given, and consequently the ratio of B
ZR to ZS one to the other; and there-
fore if the right lines RP, SQ, meet in T, and TZ and TA are drawn, the
figure TRZS will be given in kind, and the right line TZ, in which the point
Z is somewhere placed, will be given in position. There will be given also
the right line TA, and the angle ATZ; and because the ratios of AZ and
TZ to ZS are given, their ratio to each other is given also; and thence will
be given likewise the triangle ATZ, whose vertex is the point Z. Q.E.L

Cask 2. If two of the three lines, for example AZ and BZ, are equal, draw
the right line TZ so as to bisect the right line AB; then find the triangle
ATYZ as above. Q.E.L

Cask 3. If all the three are equal, the point Z will be placed in the centre
of a circle that passes through the points A, B, C. Q.E.L.

This problematic Lemma is likewise solved in the Book of Tactions of
Apollonius restored by Vieta.

PROPOSITION XXI. PROBLEM XIII

About a given focus, to describe a conic that shall pass through given points
and touch right lines given by position.

Let the focus S, the point P, and the tangent TR be given, and suppose
that the other focus H is to be found. On the tangent let fall the perpen-
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dicular ST, which produce to Y, so that TY may be equal to ST, and YH
will be equal to the principal axis. Join SP, HP, and SP will be the difference
between HP and the principal axis. After this manner, if more tangents
TR are given, or more points P, we shall
always determine as many lines YH, or

.
o .

PH, drawn from the said points Y or
P, to the focus H, which either shall
be equal to the axes, or differ from the
. axes by given lengths SP; and therefore
S g Which shall either be equal among them-

selves, or shall have given differences;

from whence (by the preceding Lemma), that other focus H is given. But
having the foci and the length of the axis (which is either YH, or, if the
conic be an ellipse, PH + SP; or PH —SP, if it be an hyperbola), the conic

is given. Q.E.L

SCHOLIUM

When the conic is an hyperbola, I do not include its conjugate hyperbola
under the name of this conic. For a body going on with a continued motion
can never pass out of one hyperbola into its conjugate hyperbola.

Fl

The case when three points are given is more readily solved thus. Let B,
C, D be the given points. Join BC, CD, and produce them to E, F, so as EB
may be to EC as SB to SC; and FC to FD as SC to SD. On EF drawn and
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produced let fall the perpendiculars SG, BH, and in GS produced indefi-
nitely take GA to AS, and Ga to 4S, as HB is to BS: then A will be the
vertex, and Az the principal axis of the conic; which, according as GA is
greater than, equal to, or less than AS, will be either an ellipse, a parabola,
or an hyperbola; the point  in the first case falling on the same side of the
line GF as the point A; in the second, going off to an infinite distance;
in the third, falling on the other side of the line GF. For if on GF the per-
pendiculars CI, DK are let fall, IC will be to HB as EC to EB; that is, as SC
to SB; and by permutation, IC to SC as HB to SB, or as GA to SA. And,
by the like argument, we may prove that KD is to SD in the same ratio.
Wherefore the points B, C, D lie in a conic section described about the
focus S, in such manner that all the right lines drawn from the focus S to the
several points of the section, and the perpendiculars let fall from the same
points on the right line GF, are in that given ratio.

That excellent geometer M. de la Hire has solved this Problem much
after the same way, in his Conics, Prop. xxv, Book v
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SECTION V

Houw the orbits are to be found when neither focus is given.

LEMMA XVII

If from any point P of a given conic section, to the four produced sides AB,
CD, AC, DB of any trapezium' ABDC inscribed in that section, as many
right lines PQ, PR, PS, PT are drawn in given angles, each line to each
side; the rectangle PQ - PR of those on the opposite sides AB, CD, will be
to the rectangle PS - PT of those on the other two opposite sides AC, BD,
in a given ratio.

Cask 1. Let us suppose, first, that the lines drawn to one pair of opposite
sides are parallel to either of the other sides; as PQ and PR to the side AC,
and PS and PT to the side AB. And further, that one pair of the opposite
sides, as AC and BD, are parallel
between themselves; then the right
line which bisects those parallel sides
will be one of the diameters of the
conic section, and will likewise bi-
sect RQ. Let O be the point in which
RQ is bisected, and PO will be an
ordinate to that diameter. Produce
: PO to K, so that OK may be equal
0_ B  to PO, and OK will be an ordinate
K on the other side of that diameter.

Since, therefore, the points A, B, P,
and K are placed in the conic section, and PK cuts AB in a given angle, the
rectangle PQ- QK (by Prop. xvn, xix, xx1, and xxmm, Book 11, Conics of
Apollonius) will be to the rectangle AQ- QB in a given ratio. But QK
and PR are equal, as being the differences of the equal lines OK, OP,
and OQ, OR; whence the rectangles PQ - QK and PQ - PR are equal; and
therefore the rectangle PQ - PR is to the rectangle AQ - QB, that s, to the
rectangle PS-PT, in a given ratio. Q.E.D.

C

A

{1 Appendix, Note 19.]
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Cask 2. Let us next suppose that the opposite sides AC and BD of the
trapezium are not parallel. Draw Bd parallel to AC, and meeting as well
the right line ST in ¢, as the conic section in 4. Join Cd cutting PQ in r, and
draw DM parallel to PQ, cutting
Cd in M, and AB in N. Then (be-
cause of the similar triangles BT, gl
DBN) Bz or PQ: Tz=DN: NB.
And so Rr: AQ or PS=DM : AN.
Wherefore,by multiplying theante-
cedents by the antecedents, and the
consequents by the consequents,
as the rectangle PQ- Rr is to the : :-
rectangle PS- Tz, so will the rec- A Q N B
tangle DN - DM be to the rectangle
NA - NB; and (by Case 1) so is the rectangle PQ - Pr to the rectangle PS - Pz,
and, by division, so is the rectangle PQ - PR to the rectangle PS-PT. Q.E.D.

Case 3. Let us suppose, lastly, the
four lines PQ, PR, PS, PT not to be
parallel to the sides AC, AB, but any
way inclined to them. In their place
draw Pg, Py, parallel to AC; and Ps,
Pz parallel to AB; and because the
angles of the triangles PQg, PRy, PSs,
PT? are given, the ratios of PQ to Pg,
PR to Py, PS to Ps, PT to Pz will be

i also given; and therefore the com-
A Q 7 B pounded ratios PQ - PR toPg - Pr,and
PS - PT to Ps- Pz are given. But from
what we have demonstrated before, the ratio of Pg - Pr to Ps- Pt is given;
and therefore also the ratio of PQ - PR to PS - PT. Q.E.D.

LEMMA XVIII

The same things supposed, if the rectangle PQ - PR of the lines drawn to
the two opposite sides of the trapezium is to the rectangle PS - PT of those
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drawn to the other two sides in a given ratio, the point P, from whence
those lines are drawn, will be placed in a conic section described about the
trapezium.

Conceive a conic section to be described passing through the points A, B,
C, D, and any one of the infinite number of points P, as for example p: 1
say, the point P will be always placed in this section. If you deny the thing,
join AP cutting this conic sec-
tion somewhere else, if possible,
than in P, as in 4. Therefore if
P [T from those points p and 5, in the
T given angles to the sides of the
wll0d trapezium, we draw the right
lines pg, pr, ps, pt,and bk, bn, bf,
bd, we shall have, as 6% - bn to
bf - bd, so (by Lem. xvir) pg - pr
to ps- pt; and so (by supposi-
tion) PQ-PR to PS-PT. And

because of the similar trapezia
AT Ea g YAAS PQAS, as bk to bf, s0 PQ
to PS. Wherefore by dividing
the terms of the preceding proportion by the correspondent terms of this,
we shall have 67 to 44 as PR to PT. And therefore the equiangular trapezia
Dnbd, DRPT, are similar, and consequently their diagonals D4, DP do
coincide. Wherefore & falls in the intersection of the right lines AP, DP,
and consequently coincides with the point P. And therefore the point P,
wherever it is taken, falls within the assigned conic section. Q.E.D.

Cor. Hence if three right lines PQ, PR, PS are drawn from a common
point P, to as many other right lines given in position, AB, CD, AC, each
to each, in as many angles respectively given, and the rectangle PQ - PR
under any two of the lines drawn be to the square of the third PS in a given
ratio; the point P, from which the right lines are drawn, will be placed in a
conic section that touches the lines AB, CD in A and C; and the contrary.
For the position of the three right lines AB, CD, AC remaining the same,
let the line BD approach to and coincide with the line AC; then let the line
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PT come likewise to coincide with the line PS; and the rectangle PS-PT
will become PS*, and the right lines AB, CD, which before did cut the curve
in the points A and B, C and D, can no longer cut, but only touch, the curve
in those coinciding points.

M TT T TTTY

c £
oLINnNMuUuLiIum

In this Lemma, the name of conic section is to be understood in a large
sense, comprehending as well the rectilinear section through the vertex of
the cone, as the circular one parallel to the base. For if the point p happens
to be in a right line, by which
the points A and D, or C and B
are joined, the conic section will mr
be changed into two right lines, P o
one of which is that right line
upon which the point p falls,and ¥~ 1"
the other is a right line that joins
the other two of the four points.
If the two opposite angles of the
trapezium taken together are
equal to two right angles, and if
the four lines PQ, PR, PS, PT 3 -
are drawn to the sides thereof at A 9 12 Q B
right angles, or any other equal
angles, and the rectangle PQ-PR under two of the lines drawn PQ and
PR, is equal to the rectangle PS - PT under the other two PS and PT, the
conic section will become a circle. And the same thing will happen if the
four lines are drawn in any angles, and the rectangle PQ - PR, under one
pair of the lines drawn, is to the rectangle PS - PT under the other pair as
the rectangle under the sines of the angles S, T, in which the two last lines
PS, PT are drawn, to the rectangle under the sines of the angles Q, R, in
which the first two PQ, PR are drawn. In all other cases the locus of the
point P will be one of the three figures which pass commonly by the name
of the conic sections. But in place of the trapezium ABCD, we may sub-
stitute a quadrilateral figure whose two opposite sides cross one another
like diagonals. And one or two of the four points A, B, C, D may be sup-
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posed to be removed to an infinite distance, by which means the sides of
the figure which converge to those points, will become parallel; and in this
case the conic section will pass through the other points, and will go the
same way as the parallels in infinitum.

LEMMA XIX
To find a point P from which if four right lines PQ, PR, PS, PT are drawn
to as many other right lines AB, CD, AC, BD, given by position, cach to

each, at given angles, the rectangle PQ PR, under any two of the lines
drawn, shall be to the rectangle PS - PT, under the other two, in a given ratio.

Suppose the lines AB, CD, to which the two right lines PQ, PR, con-
taining one of the rectangles, are drawn to meet two other lines, given by
position, in the points A, B, C, D. From one of those, as A, draw any right
line AH, in which you would
find the point P. Let this cut
the opposite lines BD, CD, in
H and I; and, because all the
angles of the figure are given,
the ratio of PQ to PA, and
PA to PS, and therefore of
PQ to PS, will be also given.
This ratio taken as a divisor
of the given ratio of PQ -PR
to PS - PT, gives the ratio of
PR to PT; and multiplying
the given ratios of PI to PR, and PT to PH, the ratio of PI to PH, and there-
fore the point P, will be given. Q.E.L

Cor. 1. Hence also a tangent may be drawn to any point D of the locus
of all the points P. For the chord PD, where the points P and D meet, that
is, where AH is drawn through the point D, becomes a tangent. In which
case the ultimate ratio of the evanescent lines IP and PH will be found as
above. Therefore draw CF parallel to AD, meeting BD in F, and cut it in
E in the same ultimate ratio, then DE will be the tangent; because CF and
the evanescent IH are parallel, and similarly cut in E and P.
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Cor. 1. Hence also the locus of all the points P may be determined.
Through any of the points A, B, C, D, as A, draw AE touching the locus,
and through any other point B, parallel to the tangent, draw BF meeting
the locus in F; and find the point F by this Lemma. Bisect BF in G, and,
drawing the indefinite line AG,
this will be the position of the dia-
meter to which BG and FG are
ordinates. Let this AG meet the
locus in H, and AH will be its
diameter or latus transversum, to
which the latus rectum will be as
BG* to AG - GH. If AG nowhere
meets the locus, the line AH be-
ing infinite, the locus will be a

parabola; and its latus rectum cor-
responding to the diameter AG
will be i% . But if it does meet it E

anywhere, the locus will be an hyperbola, when the points A and H are
placed on the same side of the point G; and an ellipse, if the point G falls be-
tween the points A and H; unless, perhaps, the angle AGB is a right angle,
and at the same time BG® equal to the rectangle GA - GH, in which case the
locus will be a circle.

And so we have given in this Corollary a solution of that famous Prob-
lem of the ancients concerning four lines, begun by Euclid, and carried on
by Apollonius; and this not an analytical calculus but a geometrical com-
position, such as the ancients required.

LEMMA XX

If the two opposite angular points A and P of any parallelogram ASPQ
touch any conic section in the points A and P; and the sides AQ, AS of one
of those angles, indefinitely produced, meet the same conic section in B and
C; and from the points of meeting B and C to any fifth point D of the conic
section, two right lines BD, CD are drawn meeting the two other sides PS,
PQ of the parallelogram, indefinitely produced in T and R; the parts PR
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and PT, cut off from the sides, will always be one to the other in a given
ratio. And conversely, if those parts cut off are one to the other in a given
ratio, the locus of the point D will be a conic section passing through the
four points A, B, C, P.

Cask 1. Join BP, CP, and from the point D draw the two right lines DG,
DE, of which the first DG shall be parailel to AB, and meet PB, PQ, CA, in
H, I, G; and the other DE shall be parallel to AC, and meet PC, PS, AB, in
F,K,E; and (by Lem. xvir)
the rectangle DE - DF will
be to the rectangle DG - DH
in a given ratio. But PQ is to
DE (or IQ) as PB to HB,
and consequently as PT to
DH; and by permutation
PQ is to PT as DE to DH.
Likewise PR is to DF as RC
to DC, and therefore as (IG
or) PS to DG; and by per-
mutation PR is to PS as DF
\ to DG; and, by compound-

Q E—_il ing those ratios, the rectan-

gle PQ-PR will be to the

rectangle PS - PT as the rectangle DE - DF is to the rectangle DG - DH, and

consequently in a given ratio. But PQ and PS are given, and therefore the
ratio of PR to PT is given. Q.E.D.

Cask 2. But if PR and PT are supposed to be in a given ratio one to the
other, then by going back again, by a like reasoning, it will follow that the
rectangle DE - DF is to the rectangle DG - DH in a given ratio; and so the
point D (by Lem. xviir) will lie in a conic section passing through the points
A, B, C, P, as its locus. Q.E.D.

Cor. 1. Hence if we draw BC cutting PQ in » and in PT take Pz to Pr in
the same ratio which PT has to PR; then Bz will touch the conic section in
the point B. For suppose the point D to coalesce with the point B, so that
the chord BD vanishing, BT shall become a tangent; and CD and BT will
coincide with CB and Bz.

"y,
1 Nl
s .,
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Cor. 11. And, vice versa, if Bt is a tangent, and the lines BD, CD meet
in any point D of a conic section, PR will be to PT as Pr to Pz. And, on the
contrary, if PR is to PT as Pr to P¢, then BD and CD will meet in some point
D of a conic section.

Cor. 111. One conic section cannot cut another conic section 1n more than

r"ui’ pOlf‘ta FO;, Lf— it 1S pGSSibl\,, l\,t tWOo Conic a\.\_tluua t}aaa thluush th\, ﬁ\'\..

points A, B, C, P, O; and let the right line BD cut them in the points D, 4,
and the right line Cd cut the right line PQ in g. Therefore PR is to PT
as Pg to PT: whence PR and Pg are equal one to the other, against the
supposition.

LEMMA XXI

If two movable and indefinite right lines BM, CM drawn through given
points B, C, as poles, do by their point of meeting M describe a third right
line MN grven by position; and other two indefinite right lines BD, CD are
drawn, making with the former two at those given points B, C, given angles,
MBD, MCD: I say, that those two right lines BD, CD will by their point of
meeting D describe a conic section passing through the points B, C. And
conversely, if the right lines BD, CD do by their point of meeting D de-
scribe a conic section passing through the given points B,C, A, and the angle
DBM is dlways equal to the given angle ABC, as well as the angle DCM
always equal to the given angle ACB, the point M will lie in a right line
giwen by position, as its locus.
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For in the right line MN let a point N be given, and when the movable
point M falls on the immovable point N, let the movable point D fall on an
immovable point P, Join CN, BN, CP, BP, and from the point P draw the
right lines PT, PR meeting BD, CD in T and R, and making the angle BPT
equal to the given angle BNM, and the angle CPR equal to the given angle

CNM. Wherefore since \b'y' SUPPGSiLiGu} the a ausu;a u{BD, NBP are cqual,

as also the angles MCD, NCP, take away the angles NBD and NCD that are
common, and there will remain the angles NBM and PBT, NCM and PCR
equal; and therefore the triangles NBM, PBT are similar, as also the tri-
angles NCM, PCR. Wherefore PT is to NM as PB to NB; and PR to NM
as PC to NC. But the points B, C, N, P are immovable: wherefore PT and
PR have a given ratio to NM, and consequently a given ratio between them-
selves; and therefore, (by Lem. xx) the point D wherein the movable right
lines BT and CR continually concur, will be placed in a conic section pass-

ing through the points B, C, P. Q.E.D.

And conversely, if the movable point D lies 1n a conic section passing
through the given points B, C, A; and the angle DBM is always equal to
the given angle ABC, and the angle DCM always equal to the given angle
ACB, and when the point D falls successively on any two immovable points
7, P, of the conic section, the movable point M falls successively on two
immovable points 7, N. Through these points 7, N, draw the right line 2N
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this line 2N will be the continual locus of that movable point M. For, if
possible, let the point M be placed in any curved line. Therefore the point D
will be placed in a conic section passing through the five points B, C, A, p,
P, when the point M is continually placed in a curved line. But from what
was demonstrated before, the point D will be also placed in a conic section
passing through the same five points B, C, A, p, P, when the point M is
continually placed in a right line. Wherefore the two conic sections will
both pass through the same five points, against Cor. 111, Lem. xx. It is there-
fore absurd to suppose that the point M is placed in a curved line. Q.E.D.

PROPOSITION XXII. PROBLEM XIV
To describe a conic that shall pass through five given points.

Let the five given points be A, B, C, P, D. From any one of them, as A,
to any other two as B, C, which may be called the poles, draw the right lines
AB, AC, and parallel to those the lines TPS, PRQ through the fourth point
P. Then from the two
poles B,C,draw through ¢
the fifth point D two
indefinite lines BDT,
CRD, meeting with the
last drawn lines TPS,
PRQ (the former with
the former, and the lat-
ter with the latter) in T
and R. And then draw
the right line # parallel
to TR, cutting off from
the right lines PT, PR, A
any segments Pz, Pr, pro-
portional to PT, PR; and if through their extremities , 7, and the poles B,
C, the right lines Bz, Cr are drawn, meeting in 4, that point & will be placed
in the conic required. For (by Lem. xx) that point 4 is placed in a conic
section passing through the four points A, B, C, P; and the lines Rz, T# van-
ishing, the point d comes to coincide with the point D. Wherefore the conic
section passes through the five points A, B, C, P, D. Q.E.D.

S
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The same otherwise.

Of the given points join any three, as A, B, C; and about two of them B,
C, as poles, making the angles ABC, ACB of a given magnitude to revolve,
apply the legs BA, CA, first to the point D, then to the point P, and mark
the points M, N, in which the other legs BL, CL intersect each other in both
cases. Draw the indefinite right line MN, and let those movable angles
revolve about their poles B, C, in such manner that the intersection, which

is now supposed to be m, of the legs BL, CL, or BM, CM, may always fall
in that indefinite right line MN; and the intersection, which is now sup-
posed to be d, of the legs BA, CA, or BD, CD, will describe the conic re-
quired, PADdB. For (by Lem. xx1) the point 4 will be placed in a conic
section passing through the points B, C; and when the point 7 comes to
coincide with the points L, M, N, the point 4 will (by construction) come
to coincide with the points A, D, P. Wherefore a conic section will be de-
scribed that shall pass through the five points A, B, C, P, D. Q.E.F.

Cor. 1. Hence a right line may be readily drawn which shall be a tangent
to the conic in any given point B. Let the point 4 come to coincide with the
point B, and the right line B4 will become the tangent required.
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Cor. 11. Hence also may be found the centres, diameters, and latera recta
of the conics, as in Cor. 11, Lem. x1x.

SCHOLIUM

The former of these constructions will become something more simple
by joining B, P, and in that line, produced, if need be, taking By to BP as
PR is to PT; and through p draw the indefi-
nite right line pe parallel to SPT, and in that
line pe taking always pe equal to Pr; and draw
the right lines Be, Cr to meet in 4. For since Pr
to Pz, PR to PT, pB to PB, pe to Pz, are all in
the same ratio, pe and Pr will be always equal.
After this manner the points of the conic are
most readily found, unless you would rather describe the curve mechan-
ically, as in the second construction.

PROPOSITION XXIII. PROBLEM XV
To describe a conic that shall pass through four given potnts, and touch a
given right line.
Cask 1. Suppose that HB is the given tangent, B the point of contact, and
C, D, P, the three other given points. Join BC, and draw PS parallel to BH,
and PQ parallel to BC; complete the parallelogram BSPQ. Draw BD cut-

A Qg B

ting SP in T, and CD cutting PQ in R. Lastly, draw any line #r parallel to
TR, cutting off from PQ, PS, the segments Pr, Pz proportional to PR, PT
respectively, and draw Cr, Bz; their point of intersection 4 will (by Lem.
xx) always fall on the conic to be described.
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The same otherwise.

Let the angle CBH of a given magnitude revolve about the pole B, as also
the rectilinear radius DC, both ways produced, about the pole C. Mark the
points M, N, on which the leg BC of the angle cuts that radius when BH,

H
P,

the other leg thereof, meets the same
radius in the points P and D. Then
drawing the indefinite line MN, let that
radius CP or CD and the leg BC of the
angle continually meet in this line; and
the point of meeting of the other leg BH
with the radius will delineate the conic
required.

For if in the constructions of the pre-
ceding Problem the point A comes to a
coincidence with the point B, the lines
CA and CB will coincide, and the line
AB, in its last situation, will become the
tangent BH; and therefore the construc-
tions there set down will become the
same with the constructions here de-

scribed. Wherefore the intersection of the leg BH with the radius will de-
scribe a conic section passing through the points C, D, P, and touching the

line BH in the point B. Q.E.F.

Case 2. Suppose the four
points B, C, D, P, given, being
situated without the tangent
HLI. Join each two by the lines
BD, CP meeting in G, and cut-
ting the tangent in H and L
Cut the tangent in A in such
manner that HA may be to IA
as the product of the mean pro-
portional between CG and GP,
and the mean proportional be-
tween BH and HD 1s to the




BOOK I: THE MOTION OF BODIES 89

product of the mean proportional between GD and GB, and the mean pro-
portional between PI and IC, and A will be the point of contact. For if HX,
a parallel to the right line PI, cuts the conic in any points X and Y, the point
A (by the properties of the conic sections) will come to be so placed, that
HA* will become to AI® in a ratio that is compounded out of the ratio
of the rectangle HX - HY to the rectangle BH - HD, or of the rectangle
CG - GP to the rectangle DG - GB; and the ratio of the rectangle BH - HD
to the rectangle PI - IC. But after the point of contact A is found, the conic
will be described as in the first Case. Q.E.F. But the point A may be taken
either between or without the points H and I, upon which account a two-
fold conic may be described.

PROPOSITION XXIV. PROBLEM XVI

To describe a conic that shall pass through three given points, and touch
two given right lines.

Suppose HI, KL to be the given tangents and B, C, D the given points.
Through any two of those points, as B, D, draw the indefinite right line BD
meeting the tangents in the points H, K. Then likewise through any other
two of these points, as C, D,
draw the indefinite right line
CD meeting the tangents in
the points I, L. Cut the lines
drawn in R and S, so that HR . :
may be to KR as the mean pro- Ry AN,
portional between BH and HD
1s to the mean proportional be-
tween BK and KD, and IS to
LS as the mean proportional
between CI and ID is to the
mean proportional between CL
and LD. But you may cut, at pleasure, either within or between the points
K and H, I and L, or without them. Then draw RS cutting the tangents
in A and P, and A and P will be the points of contact. For if A and P are
supposed to be the points of contact, situated anywhere else in the tangents,
and through any of the points H, I, K, L, as L, situated in either tangent HI,

Y\-'"' H



Qo NEWTON’S MATHEMATICAL PRINCIPLES

aright line IY is drawn parallel to the other tangent KL, and meeting the
curve in X and Y, and in that right line there be taken IZ equal to a mean
proportional between IX and 1Y, the rectangle XI-IY or IZ* will (by the
properties of the conic sections) be to LP? as the rectangle CI - ID is to the
rectangle CL - LD that is (by the construction), as Sl is to SL?, and there-
fore IZ : LP=SI: SL. Wherefore the points S, P, Z are in one right line.
Moreover, since the tangents meet in G, the rectangle XI - IY or IZ* will (by
the properties of the conic sections) be to IA® as GP? is to GA? and conse-
quently IZ : IA=GP : GA. Wherefore the points P, Z, A lie in one right
line, and therefore the points S, P, and A are in one right line. And the
same argument will prove that the points R, P, and A are in one right line.
Wherefore the points of contact A and P lie in the right line RS. But after
these points are found, the conic may be described, as in the first Case of the
preceding Problem. Q.E.F.

In this Proposition, and Case 2 of the foregoing, the constructions are the
same, whether the right line XY cuts the conic in X and Y, or not; neither
do they depend upon that section. But the constructions being demon-
strated where that right line does cut the conic, the constructions where it
does not are also known ; and therefore, for brevity’s sake, I omit any further
demonstration of them.

LEMMA XXITI
To transform figures into other figures of the same kind.

Suppose that any figure
HGI is to be transformed.
Draw, at pleasure, two par- 0
allel lines AO, BL, cutting
any given third line AB in h P4
A and B, and from any
point G of the figure, draw
out any right line GD, par-
allel to OA, till it meets the
right line AB. Then from
any given point O in the
line OA, draw to the point

[1 Appendix, Note 20.]
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D the right line OD, meeting BL. in d; and from the point of intersection
raise the right line dg containing any given angle with the right line BL,
and having such ratio to Od as DG has to OD; and g will be the point in
the new figure Agi, corresponding to the point G. And in like manner the
several points of the first figure will give as many correspondent points of
the new figure. If we therefore conceive the point G to be carried along by
a continual motion through all the points of the first figure, the point g will
be likewise carried along by a continual motion through all the points of
the new figure, and describe the same. For distinction’s sake, let us call DG
the first ordinate, dg the new ordinate, AD the first abscissa, a4 the new
abscissa, O the pole, OD the abscinding radius, OA the first ordinate radius,
and Og (by which the parallelogram OABgz is completed) the new ordinate
radius.

I say, then, that if the point G is placed in a given right line, the point g
will be also placed in a given right line. If the point G is placed in a conic
section, the point g will be likewise placed in a conic section. And here I
understand the circle as one of the conic sections. But further, if the point
G is placed in a line of the third analytical order, the point g will also be
placed in a line of the third order, and so on in curved lines of higher orders.
The two lines in which the points G, g are placed, will be always of the
same analytical order. For as ad : OA=0d : OD=4dg : DG=AB : AD;and
OA-AB AB, and DG equal to OA dg' Now if the

ad ad
point G is placed in a right line, and therefore, in any equation by which
the relation between the abscissa AD and the ordinate GD is expressed,
those indetermined lines AD and DG rise no higher than to one dimension,

A-AB. OA - dg
— 7 in place of AD, and —

DG, a new equation will be produced, in which the new abscissa ad and
new ordinate dg rise only to one dimension; and which therefore must de-
note a right line. But if AD and DG (or either of them) had risen to two
dimensions in the first equation, a4 and dg would likewise have risen to two
dimensions in the second equation. And so on in three or more dimensions.
The indetermined lines, @, dg in the second equation, and AD, DG in the

therefore AD is equal to

by writing this equation in place of
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first, will always rise to the same number of dimensions; and therefore the
lines in which the points G, g are placed are of the same analytical order.

I say, further, that if any right line touches the curved line in the first
figure, the same right line transferred the same way with the curve into the
new figure will touch that curved line in the new figure, and conversely. For
if any two points of the curve in the first igure are supposed to approach
one the other till they come to coincide, the same points transferred will
approach one the other till they come to coincide in the new figure; and
therefore the right lines with which those points are joined will become
together tangents of the curves in both figures. I might have given demon-
strations of these assertions in @ more geometrical form; but I study to be

brief.

Wherefore if one rectilinear figure is to be transformed into another, we
need only transfer the intersections of the right lines of which the first
figure consists, and through the transferred intersections to draw right lines
in the new figure. But if a curvilinear figure is to be transformed, we must
transfer the points, the tangents, and other right lines, by means of which
the curved line is defined. This Lemma is of use in the solution of the more
difficult Problems; for thereby we may transform the proposed figures, if
they are intricate, into others that are more simple. Thus any right lines
converging to a point are transformed into parallels, by taking for the first
ordinate radius any right line that passes through the point of intersection
of the converging lines, and that because their point of intersection is by
this means made to go off in infinitum; and parallel lines are such as tend
to a point infinitely remote. And after the problem is solved in the new
figure, if by the inverse operations we transform the new into the first
figure, we shall have the solution required.

This Lemma is also of use in the solution of solid problems. For as often
as two conic sections occur, by the intersection of which a problem may be
solved, any one of them may be transformed, if it is an hyperbola or a parab-
ola, into an ellipse, and then this ellipse may be easily changed into a circle.
So also a right line and a conic section, in the construction of plane prob-
lems, may be transformed into a right line and a circle.
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PROPOSITION XXV. PROBLEM XVII

To describe a conic that shall pass through two given points, and touch
three given right lines.

Through the intersection of any two of the tangents one with the other,
and the intersection of the third tangent with the right line which passes
through the two given points, draw an indefinite right line; and, taking
this line for the first ordinate radius, transform the figure by the preceding
Lemma into a new figure. In this figure those two tangents will become
parallel to each other, and the third tangent will be parallel to the right line
that passes through the two given points. Suppose 47, &/ to be those two
parallel tangents, 1% the third tangent,
and A4l a right line parallel thereto, £\ a’ \R
passing through those points 4, 5,
through which the conic section ought
to pass in this new figure; and com-
pleting the parallelogram Azk/, let the
right lines A7, ik, kI besocutinc, d, e, ¢ e
that Ac may be to the square root of
the rectangle @b, ic to id, and ke to
kd, as the sum of the right lines Ai
and £/ is to the sum of the: threc? lim':s, A IJ v;
the first whereof is the right line /%,
and the other two are the square roots of the rectangles 246 and 46, and ¢,
d, e will be the points of contact. For by the properties of the conic sections,

he® tah-hb=ic® :id*=ke® 1 kd*=el® : al - 1b.

Therefore,

he:\/(ah hb)=ic:id=ke: kd=el :\/(al-1b)

=hc+ict+ke+el :\/(ah- hb)+id +kd+~\/al"1b

=hi+ ki :\/(ah- hb) +ik+~\/(al"1b).
Wherefore from that given ratio we have the points of contact ¢, 4, ¢, in the
new figure. By the inverted operations of the last Lemma, let those points
be transferred into the first figure, and the conic will be there described by
Prob. xiv. Q.E.F. But according as the points @, &, fall between the points
A, 1, or without them, the points ¢, d, e must be taken either between the
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points 4, i, k, /, or without them. If one of the points g, & falls between the
points 4, 7, and the other without the points 4, /, the Problem is impossible.

PROPOSITION XXVI PROBLEM XVIII

To describe a conic that shall pass through a given point, and touch four
given right lines.

From the common intersections of any two of the tangents to the com-
mon intersection of the other two, draw an indefinite right line; and taking
this line for the first ordinate radius, transform the figure (by Lem. xxr)

. into a new fgure, and the two

d IR pairs of tangents, each of which

before concurred in the first ordi-

L nate radius, will now become par-

P allel. Let A7 and %/, ik and Al, be

those pairs of parallels completing

the parallelogram A7kl. And let p

. be the point in this new figure cor-

.‘2/ responding to the given point in

the first figure. Through O the

73] 17 centre of the figure draw pq: and

Og being equal to Op, g will be

the other point through which the conic section must pass in this new fig-

ure. Let this point be transferred, by the inverse operation of Lem. xxm, into

the first figure, and there we shall have the two points through which the

conic is to be described. But through those points that conic may be de-
scribed by Prop. xvir.

LEMMA XXIII
If two given right lines, as AC, BD, terminating in given points A, B, are
in a given ratio one to the other, and the right line CD, by which the inde-
termined points C, D are joined is cut in K in a given ratio: I say, that the
point K will be placed in a given right line.

For let the right lines AC, BD meet in E, and in BE take BG to AE as
BD isto AC, and let FD be always equal to the given line EG; and, by con-
struction, EC will be to GD, that is, to EF, as AC to BD, and therefore in
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a given ratio; and therefore the triangle EFC will be given in kind. Let CF
be cut in L so as CL may be to CF in the ratio of CK to CD; and because
that is a given ratio, the triangle EFL will be given in kind, and therefore
the point L will be placed in
the given right line EL. Join
LK, and the triangles CLK,
CFD will be similar; and be-
cause FD is a given line, and
LK is to FD in a given ratio,
LK will be also given. To this
let EH be taken equal, and
ELKH will be always a par-
allelogram. And therefore the g%
point K is always placed in
the given side HK of that parallelogram. Q.E.D.

Cor. Because the figure EFLC is given in kind, the three right lines EF,
EL, and EC, that is, GD, HK, and EC, will have given ratios to each other.

G B F

LEMMA XXIV

If three right lines, two whereof are parallel, and given in position, touch
any conic section: I say, that the semidiameter of the section which is par-
allel to those two is a mean proportional between the segments of those two
that are intercepted between the points of contact and the third tangent.

Let AF, GB be the two
parallels touching the conic
section ADB in A and B;
EF the third right line
touching the conic section
in I, and meeting the two
former tangents in F and
G, and let CD be the semi-
diameter of the figure par-
allel to those tangents: I
say, that AF, CD, BG are
continually proportional.
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For if the conjugate diameters AB, DM meet the tangent FG in E and H,
and cut one the other in C, and the parallelogram IKCL be completed;
from the nature of the conic sections,

EC:CA=CA:CL;
thence, EC-CA:CA-CL=EC:CA

or EA:AL=EC:CA;
thence, EA :EA+AL=EC:EC+CA
or EA :EL=EC:EB.

Therefore, because of the similitude of the triangles EAF, ELI, ECH, EBG,
AF :LI=CH : BG.

Likewise, from the nature of the conic sections,
LlorCK:CD=CD:CH.

Taking the products of corresponding terms in the last two proportions

and simplifying,
AF :CD=CD: BG. Q.E.D.

Cogr. 1. Hence if two tangents FG, PQ meet two parallel tangents AF,
BG in F and G, P and Q, and cut one the other in O; then by the Lemma
applied to EG and PQ,

AF : CD=CD: BG,
BQ:CD=CD:AP.
Therefore, AF:AP=BQ:BG

and AP—-AF :AP=BG-BQ:BG
or PF: AP=GQ: BG,
and AP :BG=PF:GQ=FO:GO=AF:BQ.

Cor. 1. Whence also the two right lines PG, FQ drawn through the
points P and G, F and Q, will meet in the right line ACB passing through
the centre of the figure and the points of contact A, B.

LEMMA XXV

If four sides of a parallelogram indefinitely produced touch any conic sec-
tion, and are cut by a fifth tangent: I say, that, taking those segments of any
two conterminous sides that terminate in opposite angles of the parallelo-
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gram, cither segment is to the side from which it is cut off as that part of
the other conterminous side which is intercepted between the point of con-
tact and the third side is to the other segment.

Let the four sides ML, IK, KL, MI of the parallelogram MLIK touch
the conic section in A, B, C, D; and let the fifth tangent FQ cut those sides
in F, Q, H, and E; and taking the segments ME, KQ of the sides MI, KI,
or the segments KH, MF of the sides KL, ML: I say, that

ME : MI=BK : KQ,
and KH :KL=AM: MF.
For, by Cor. 1 of the preceding Lemma,
ME : EI=AM or BK : BQ,
and by addition,
ME : MI=BK : KQ. Q.E.D.

Also, KH: HL=BK or AM: AF,
and by subtraction,

KH:KL=AM:MF. Q.E.D.

Cor. 1. Hence if a parallelogram IKLM described about a given conic
section is given, the rectangle KQ - ME, as also the rectangle KH - MF equal
thereto, will be given. For, by reason of the similar triangles KQH, MFE,
those rectangles are equal.

Cor. 11. And if a sixth tangent eq is drawn meeting the tangents KI, MI
in ¢ and e, the rectangle KQ- ME will be equal to the rectangle Kgq - Me,
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and KQ:Me=Kg:ME,
and by subtraction
KQ :Me=Qgq : Ee.

Cor. m. Hence, also, if Eg, €Q are joined and bisected, and a right line
is drawn through the points of bisection, this right line will pass through
the centre of the conic section. For since Qg : Ee=KQ : Mg, the same right
line will pass through the middle of all the lines Eg, eQ, MK (by Lem.
xx11), and the middle point of the right line MK is the centre of the section.

PROPOSITION XXVIIL PROBLEM XIX
To describe a conic that may touch five right lines given in position.

Supposing ABG, BCF, GCD, FDE, EA to be the tangents given in posi-
tion. Bisect in M and N, AF, BE, the diagonals of the quadrilateral figure
ABFE contained under any four of them; and (by Cor. 1, Lem. xxv) the

right line MN drawn through the points of bisection will pass through the
centre of the conic. Again, bisect in P and Q the diagonals (if I may so call
them) BD, GF of the quadrilateral igure BGDF contained under any
other four tangents, and the right line PQ drawn through the points of
bisection will pass through the centre of the conic; and therefore the centre
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will be given in the intersection of the bisecting lines. Suppose it to be O.
Parallel to any tangent BC draw KL at such distance that the centre O may
be placed in the middle between the parallels; this KL will touch the conic
to be described. Let this cut any other two tangents GCD, FDE, in L and
K. Through the points C and K, F and L, where the tangents not parallcl
CL, FK, meet the parallel tangents CF, KL, draw CK, FL meecting in R;
and the right line OR, drawn and produced, will cut the parallel tangents
CF, KL, in the points of contact. This appears from Cor. 11, Lem. xxiv. And
by the same method the other points of contact may be found, and then the

conic may be described by Prob. xiv. Q.E.F.

SCHOLIUM

Under the preceding Propositions are comprehended those Problems
wherein either the centres or asymptotes of the conics are given. For when
points and tangents and the centre are given, as many other points and as
many other tangents are given at an equal distance on the other side of the
centre. And an asymptote is to be considered as a tangent, and its infinitely
remote extremity (if we may say so) is a point of contact. Conceive the
point of contact of any tangent removed iz infinitum, and the tangent
will degenerate into an asymptote, and the constructions of the preceding
Problems will be changed into the constructions of those Problems wherein
the asymptote is given.

After the conic is described, we
may find its axes and foci in this
manner. In the construction and
figure of Lem. xxi1, let those legs
BP, CP, of the movable angles
PBN, PCN, by the intersection of
which the conic was described, be
made parallel one to the other; and
retaining that position, let them
revolve about their poles B, C, in
that figure. In the meanwhile let
the other legs CN, BN, of those
angles, by their intersection K or M
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%, describe the circle BKGC. Let O be the centre of this circle; and from
this centre upon the ruler MN, wherein those legs CN, BN did concur
while the conic was described, let fall the perpendicular OH meeting the
circle in K and L. And when those other legs CK, BK meet in the point K
that 1s nearest to the rulcr, the first legs CP, BP will be parallel to the greater
dm:s, and pCI]_JCIlUI(.-Uldl on the lesser; ’ and the contrar Iy will happen if those
legs meet in the remotest point L. Whence if the centre of the conic is given,

the axes will be given ; and those being given, the foci will be readily found.

But the squares of the axes are one to the other as KH to LH, and thence
it is easy to describe a conic given in kind through four given points. For
if two of the given points are made the poles C, B, the third will give the
movable angles PCK, PBK;
but those being given, the cir-
cle BGKC may be described.
Then, because the conic is
given in kind, the ratio of OH
to OK, and therefore OH itself,
will be given. About the centre
O, with the interval OH, de-
scribe another circle, and the
right line that touches this cir-
cle, and passes through the in-
tersection of the legs CK, BK,
when the first legs CP, BP
meet in the fourth given point, will be the ruler MN, by means of which
the conic may be described. Whence also on the other hand a trapezium
given in kind (excepting a few cases that are impossible) may be inscribed
in a given conic section.

N

There are also other Lemmas, by the help of which conics given in kind
may be described through given points, and touching given lines. Of such
a sort is this, that if a right line is drawn through any point given in posi-
tion, that may cut a given conic section in two points, and the distance of
the intersections is bisected, the point of bisection will touch another conic
section of the same kind with the former, and having its axes parallel to
the axes of the former. But I hasten to things of greater use.
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LEMMA XXVI

To place the three angles of a triangle, given both in kind and in magni-
tude, in respect to as many right lines given in position, provided they are
not all parallel among themselves, in such manner that the several angles
may touch the several lines.

Three indefinite right lines AB, AC, BC are given in position, and it is
required so to place the triangle DEF that its angle D may touch the line
AB, its angle E the line AC, and its angle F the line BC. Upon DE, DF, and
EF describe three segments
of circles DRE, DGF, EMF,
capable of angles equal to
the angles BAC, ABC, ACB
respectively. But those seg-
ments are to be described to-
wards such sides of the lines
DE, DF, EF, that the letters
DRED may turn round
about in the same order with
the letters BACB; the letters
DGFD in the same order with the letters ABCA ; and the letters EMFE in
the same order with the letters ACBA ; then, completing those segments
into entire circles, let the two former circles cut each other in G, and sup-
pose P and Q to be their centres. Then joining GP, PQ, take

Ga: AB=GP :PQ;
and about the centre G, with the interval Ga, describe a circle that may cut
the first circle DGE in 4. Join aD cutting the second circle DFG in 5, as
well as 4E cutting the third circle EMF in ¢. Complete the igure ABCdef
similar and equal to the figure #bcDEF: I say, the thing is done.

For drawing Fc meeting 2D in #, and joining 4G, 4G, QG, QD, PD, by
construction the angle EgD is equal to the angle CAB, and the angle acF
equal to the angle ACB; and therefore the triangle anc equiangular to the
triangle ABC. Wherefore the angle anc or F#D is equal to the angle ABC,
and consequently to the angle FAD; and therefore the point # falls on the
point 4. Moreover the angle GPQ, which is half the angle GPD at the cen-
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tre, is equal to the angle GaD at the circumference; and the angle GQP,
which is half the angle GQD at the centre, is equal to the supplement of
the angle G4D at the circumference, and therefore equal to the angle Géa.
Upon which account the triangles GPQ, Gab are similar, and
Ga:ab=GP:PQ
and, by construction,
GP:PQ=Ga: AB.
Wherefore @b and AB are equal; and consequently the triangles abc, ABC,
which we have now proved to be similar, are also equal. And therefore since

the angles D, E, F of the triangle DEF do respectively touch the sides a5,
ac, be of the triangle abc, the igure ABCdef may be completed similar and
equal to the figure @bcDEF, and by completing it the Problem will be
solved. Q.E.F.

Cor. Hence a right line may be drawn whose parts given in length may
be intercepted between three right lines given in position. Suppose the tri-
angle DEF, by the approach of its point D to the side EF, and by having
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the sides DE, DF placed into the same straight line, to be itself changed
into a right line whose given part DE is to be placed between the right lines
AB, AC given in position; and its given part DF is to be placed between
the right lines AB, BC given in position; then, by applying the preceding
construction to this case, the Problem will be solved.

PROPOSITION XXVIILL. PROBLEM XX

To describe a conic given both in kind and in magnitude, given parts of
which shall be placed between three right lines given in position.

Suppose a conic is to be described that may be similar and equal to the
curved line DEF, and may be cut by three right lines AB, AC, BC, given in
position, into parts DE and EF, similar and equal to the given parts of this

curved line.
E

Draw the right lines DE, EF, DF; and place the angles D, E, F, of this
triangle DEF, so as to touch those right lines given in position (by Lem.
xxv1). Then about the triangle describe the conic, similar and equal to the

curve DEF. Q.EF.
LEMMA XXVII

To describe atrapezium given in kind, the angles whereof may respectively
touch four right lines given in position, that are neither all parallel among
themselves, nor converge to one common poiit.

Let the four right lines ABC, AD, BD, CE be given in position; the first
cutting the second in A, the third in B, and the fourth in C; and suppose a
trapezium fgki is to be described that may be similar to the trapezium
FGHI, and whose angle f, equal to the given angle F, may touch the right
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line ABC; and the other angles g, 4, 7, equal to the other given angles G,
H, I, may touch the other lines AD, BD, CE respectively. Join FH, and

%

E

[z 4\

upon FG, FH, FI describe as many segments of
circles FSG, FTH, FVI, the first of which FSG
may be capable of an angle equal to the angle
BAD; the second FTH capable of an angle
equal to the angle CBD; and the third FVI of
an angle equal to the angle ACE. But the seg-
ments are to be described towards those sides of
the lines FG, FH, FI, that the circular order of
the letters FSGF may be the same as of the let-
ters BADB, and that the letters FTHF may turn
about in the same order as the letters CBDC, and

L the letters FVIF in the same order as the letters

ACEA. Complete the segments into entire cir-
cles, and let P be the centre of the first circle
FSG, Q the centre of the second FTH. Join and

produce both ways the line PQ, and in it take QR so that QR : PQ=BC: AB.
But QR is to be taken towards that side of the point Q, that the order of

the letters P, Q, R may be the
same as of the letters A, B, C;
and about the centre R with
the radius RF describe a fourth
circle FN¢ cutting the third
circle FVI in ¢. Join Fe cutting
the first circle in ¢, and the sec-
ond in 4. Draw aG, #H, cI, and
let the figure ABCfghi be
made similar to the figure
abcFGHI; and the trapezium
fghi will be that which was re-
quired to be described.

For let the two first circles
FSG, FTH cut one the other
in K; join PK, QK, RK, ¢K,
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bK, ¢K, and produce QP to L. The angles FaK, FAK, FcK at the circum-
ferences are the halves of the angles FPK, FQK, FRK at the centres, and
therefore equal to LPK, LQK, LRK, the halves of those angles. Therefore
the iigure PQRK is equiangular and similar to the figure abcK, and conse-
quently ab is to be as PQ to QR, that is, as AB to BC. But by construction
the angles fAg, fBA, fCi are equal to the angles FaG, FAH, Fcl. And there-
fore the figure ABCfgh: may be completed similar to the figure abcFGHI.
This done, a trapezium fghi will be constructed similar to the trapezium
FGHI, and by its angles £ g, 4, 7 will touch the right lines ABC, AD, BD,
CE.Q.EF.

Cor. Hence a right line may be drawn whose parts intercepted in a given
order, between four right lines given by position, shall have a given propor-
tion among themselves. Let the angles FGH, GHI be so far increased that
the right lines FG, GH, HI may lie in the same line; and by constructing
the Problem in this case, a right line fghi will be drawn, whose parts fg,
g4, hi, intercepted between the four right lines given in position, AB and
AD, AD and BD, BD and CE, will be to each other as the lines FG, GH,
HI, and will observe the same order among themselves. But the same thing

may be more readily done in this manner.
TX
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Produce AB toK and BD to L, so 2s BK may be to AB as HI to GH; and
DL to BD as GI to FG; and join KL meeting the right line CE in 7. Pro-
duce /L to M, so as LM may be to ;L as GH to HI; then draw MQ parallel
to LB, and meeting the right line AD in g, and join g7 cutting AB, BD in
f, h: I say, the thing is done.

For let Mg cut the right line AB in Q, and AD the right line KL in §,
and draw AP parallel to BD and meeting /L in P, and gM to L (gi to 4i,
M: to L7, GI to HI, AK to BK) and AP to BL will be in the same ratio. Cut
DL in R, so as DL to RL may be in that same ratio; and because gS to gM,
AS to AP, and DS to DL are proportional; therefore, as gS to L, so will
AS be to BL, and DS to RL; and mixtly, BL-RL to L% —BL, as AS—DS
to gS—AS. That is, BR is to B4 as AD is to Ag, and therefore as BD to gQ.
And alternately BR is to BD as B% to gQ, or as f4 to fg. But by construction
the line BL was cut in D and R in the same ratio as the line FI in G and H;
and therefore BR is to BD as FH to FG. Therefore {4 is to fg as FH to FG.
Since, therefore, g7 to 4 likewise is as M7 to Lz, that is, as GI to HI, it is
manifest that the lines FI, f7 are similarly cut in G and H, g and 4. Q.E.F.

In the construction of this Corollary, after the line LK is drawn cutting
CE in 7, we may produce /E to V, so as EV may be to Ei as FH to HI,
and then draw Vf parallel to BD. It will come to the same, if about the
centre 7 with an interval IH, we describe a circle cutting BD in X, and pro-
duce 12X to Y so as 7Y may be equal to IF, and then draw Y{ parallel to BD.

Sir Christopher Wren and Dr. Wallis have long ago given other solutions
of this Problem.

\
PROPOSITION XXIX. PROBLEM XXI

To describe a conic given in kind, that may be cut by four right lines given
in position, into parts given in order, kind, and proportion.

Suppose a conic is to be described that may be similar to the curved line
FGHI, and whose parts, similar and proportional to the parts FG, GH, HI
of the other, may be intercepted between the right lines AB and AD, AD
and BD, BD and CE given in position, viz., the first between the first pair
of those lines, the second between the second, and the third between the
third. Draw the right lines FG, GH, HI, FI; and (by Lem. xxvi) describe
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a trapezium fgh: that may be similar to the trapezium FGHI, and whose
angles £, g, &, 7 may touch the right lines given in position AB, AD, BD,
CE, severally according to their order. And then about this trapezium
describe a conic, that conic will be similar to the curved line FGHI.

D)

SCHOLIUM

This problem may be likewise constructed in the following manner.
Joining FG, GH, HI, FI, produce GF to V, and join FH, IG, and make
the angles CAK, DAL equal to the angles FGH, VFH. Let AK, AL meet
the right line BD in K and L, and thence draw KM, LN, of which let KM
make the angle AKM equal to the angle GHI, and be itself to AK as HI
is to GH; and let LN make the angle ALN equal to the angle FHI, and be

“E

itself to AL as HI to FH. But AK, KM, AL, LN are to be drawn towards
those sides of the lines AD, AK, AL, that the letters CAKMC, ALKA,
DALND may be carried round in the same order as the letters FGHIF;
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and draw MN meeting the right line CE in 7. Make the angle /EP equal to
the angle IGF, and let PE be to E7 as FG to GI; and through P draw PQf
that may with the right line ADE contain an angle PQE equal to the angle
FIG, and may meet the right line AB in £ and join fi. But PE and PQ are

to be drawn towards those sides of the lines CE, PE that the circular order

~f ¢ . Aty mav -
of the letters PE/P and T EQP 1ay be the same as of the letters FGHIF;

and if upon the line fi, in the same order of letters, and similar to the
trapezium FGHI, a trapezium fghi is constructed, and a conic given in
kind is circumscribed about it, the Problem will be solved.

So far concerning the finding of the orbits. It remains that we determine
the motions of bodies in the orbits so found.
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SECTION VI

Houw the motions are to be found in given orbits.

PROPOSITION XXX. PROBLEM XXII

To find at any assigned time the place of a body moving in a given
parabola.

Let S be the focus, and A the principal vertex of the parabola; and sup-
pose 4AS - M equal to the parabolic area to be cut off APS, which either
was described by the radius SP, since the body’s departure from the vertex,
or is to be described thereby before its
arrival there. Now the quantity of that
area to be cut off is known from the time
which is proportional to it. Bisect AS in G,  ®}-"""
and erect the perpendicular GH equal to
3M, and a circle described about the centre
H, with the radius HS, will cut the parab- /

ola in the place P required. For letting fall
PO perpendicular on the axis, and draw-
ing PH, there will be AG® + GH? (=HP*= A &% 5
(AO—AG)* + (PO—GH)?) = AO* + PO?

-2A0-AG-2GH - PO+ AG*+ GH®. Whence 2GH - PO (=AO*+PO*—
2A0- AG)=A0*+3% PO’ For AO? write AO- ZSS; then dividing all
the terms by 3P0, and multiplying them by 2AS, we shall have % GH - AS
(=% A0-PO+72AS-PO= é(-)—;?’ﬁ ‘PO = 4AOE3SO ‘PO=to the
area, APO—SPO)=to the area APS. But GH was 3M, and therefore
% GH - AS is 4AS - M. Therefore the area cut off APS is equal to the area
that was to be cut off 4AS - M. Q.E.D.

Cor. 1. Hence GH is to AS as the time in which the body described the
arc AP to the time in which the body described the arc between the vertex
A and the perpendicular erected from the focus S upon the axis.
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Cor. 1. And supposing a circle ASP continually to pass through the mov-
ing body P, the velocity of the point H is to the velocity which the body
had in the vertex A as 3 to 8; and therefore in the same ratio is the line GH
to the right line which the body, in the time of its moving from A to P,
would describe with that velocity which it had in the vertex A.

Cor. nii. Hence, also, on the other hand, the time may be found in which
the body has described any assigned arc AP. Join AP, and on its middle
point erect a perpendicular meeting the right line GH in H.

LEMMA XXVIIT®

There is no oval figure whose area, cut off by right lines at pleasure, can be
universally found by means of equations of any number of finite terms and
dimensions.

Suppose that within the oval any point is given, about which as a pole a
right line is continually revolving with an uniform motion, while in that
right line 2 movable point going out from the pole moves always forwards
with a velocity proportional to the square of that right line within the oval.
By this motion that point will describe a spiral with infinite circumgyra-
tions. Now if a portion of the area of the oval cut off by that right line
could be found by a finite equation, the distance of the point from the
pole, which is proportional to this area, might be found by the same equa-
tion, and therefore all the points of the spiral might be found by a finite
equation also; and therefore the intersection of a right line given in position
with the spiral might also be found by a finite equation. But every right line
infinitely produced cuts a spiral in an infinite number of points; and the
equation by which any one intersection of two lines is found at the same
time exhibits all their intersections by as many roots, and therefore rises to
as many dimensions as there are intersections. Because two circles cut one
another in two points, one of those intersections is not to be found but by
an equation of two dimensions, by which the other intersection may be
also found. Because there may be four intersections of two conic sections,
any one of them is not to be found universally, but by an equation of four
dimensions, by which they may be all found together. For if those inter-
sections are severally sought, because the law and condition of all is the
same, the calculus will be the same in every case, and therefore the conclu-

[* Appendix, Note 21.]
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sion always the same, which must therefore comprehend all those inter-
sections at once within itself, and exhibit them all indifferently. Hence it
is that the intersections of the conic sections with the curves of the third
order, because they may amount to six, come out together by equations
of six dimensions; and the intersections of two curves of the third order,
because they may amount to nine, come out together by equations of nine
dimensions. If this did not necessarily happen, we might reduce all solid
to plane Problems, and those higher than solid to solid Problems. But here
I speak of curves irreducible in power. For if the equation by which the
curve is defined may be reduced to a lower power, the curve will not be
one single curve, but composed of two, or more, whose intersections may
be severally found by different calculi. After the same manner the two
intersections of right lines with the conic sections come out always by
equations of two dimensions; the three intersections of right lines with the
irreducible curves of the third order, by equations of three dimensions; the
four intersections of right lines with the irreducible curves of the fourth
order, by equations of four dimensions; and so on iz infinitum. Where-
fore the innumerable intersections of a right line with a spiral, since this is
but one simple curve, and not reducible to more curves, require equations
infinite in number of dimensions and roots, by which they may be all
exhibited together. For the law and calculus of all is the same. For if a per-
pendicular is et fall from the pole upon that intersecting right line, and that
perpendicular together with the intersecting line revolves about the pole,
the intersections of the spiral will mutually pass the one into the other; and
that which was first or nearest, after one revolution, will be the second;
after two, the third; and so on: nor will the equation in the meantime be
changed but as the magnitudes of those quantities are changed, by which
the position of the intersecting line is determined. Therefore since those
quantities after every revolution return to their first magnitudes, the equa-
tion will return to its first form; and consequently one and the same equa-
tion will exhibit all the intersections, and will therefore have an infinite
number of roots, by which they may be all exhibited. Therefore the inter-
section of a right line with a spiral cannot be universally found by any finite
equation; and hence there is no oval figure whose area, cut off by right lines
at pleasure, can be universally exhibited by any such equation.
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By the same argument, if the interval of the pole and point by which the
spiral is described is taken proportional to that part of the perimeter of the
oval which is cut off, it may be proved that the length of the perimeter can-
not be universally exhibited by any finite equation. But here I speak of
ovals that are not touched by conjugate figures running out iz infinitum.

Cor. Hence the area of an ellipse, described by a radius drawn from the
focus to the moving body, is not to be found from the time given by a finite
equation; and therefore cannot be determined by the description of curves
geometrically rational. Those curves I call geometrically rational, all the
points whereof may be determined by lengths that are definable by equa-
tions; that is, by the complicated ratios of lengths. Other curves (such as
spirals, quadratrixes, and cycloids) I call geometrically irrational. For the
lengths which are or are not as number to number (according to Book x,
Elem. of Euclid) are arithmetically rational or irrational. And therefore I
cut off an area of an ellipse proportional to the time in which it is described
by a curve geometrically irrational, in the following manner:

PROPOSITION XXXI. PROBLEM XXIII
To find the place of a body moving in a given ellipse at any
assigned time.

Suppose A to be the principal vertex, S the focus, and O the centre of the
ellipse APB; and let P be the place of the body to be found. Produce OA to
G so that OG : OA = 0A : OS. Erect the perpendicular GH; and about the
centre O, with the radius OG, describe the circle GEF; and on the ruler
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GH, as a base, suppose the wheel GEF to move forwards, revolving about
its axis, and in the meantime by its point A describing the cycloid ALIL
This done, take GK to the perimeter GEFG of the wheel, in the ratio of
the time in which the body proceeding from A described the arc AP, to the
time of a whole revolution in the ellipse. Erect the perpendicular KL meet-
ing the cycloid in L; then LP drawn parallel to KG will meet the ellipse
in P, the required place of the body.

For about the centre O with the radius OA describe the semicircle AQB,
and let LP, produced, if need be, meet the arc AQ in Q, and join SQ, OQ.
Let OQ meet the arc EFG in F, and upon OQ let fall the perpendicular SR,
The area APS varies as the area AQS, that is, as the difference between the
sector OQA and the triangle OQS, or as the difference of the rectangles
% 0OQ-AQ, and 2 OQ - SR, that 1s, because %2 OQ is given, as the differ-
ence between the arc AQ and the right line SR; and therefore (because of
the equality of the given ratios SR to the sine of the arc AQ, OS to OA,
OA to OG, AQ to GF; and by division, AQ--SR to GF —sine of the arc
AQ) as GK, the difference between the arc GF and the sine of the arc AQ.
Q.E.D.

SCHOLIUM

But since the description of this curve is difficult, a solution by approxima-
tionwill be preferable.’ First,then, let there be found a certain angle B which
may be to an angle of 57.29578 degrees, which an arc equal to the radius

Q1
P\

A S K7~ 0 H B
subtends, as SH, the distance of the foci, to AB, the diameter of the ellipse.
Secondly, a certain length L, which may be to the radius in the same ratio
inversely. And these being found, the Problem may be solved by the follow-

[1 Appendix, Note 22.]
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ing analysis. By any construction (or even by conjecture), suppose we know
P the place of the body near its true place p. Then letting fall on the axis
of the ellipse the ordinate PR from the proportion of the diameters of the
ellipse, the ordinate RQ of the circumscribed circle AQB will be given;
which ordinate is the sine of the angle AOQ, supposing AO to be the
radius, and also cuts the ellipse in P. It will be sufficient if that angle is
found by a rude calculus in numbers near the truth. Suppose we also know
the angle proportional to the time, that is, which is to four right angles as
the time in which the body described the arc Ap to the time of one revo-
lution in the ellipse. Let this angle be N. Then take an angle D, which may
be to the angle B as the sine of the angle AOQ to the radius; and an angle
E which may be to the angle N~ AOQ +D as the length L to the same
length L diminished by the cosine of the angle AOQ, when that angle 1s
less than a right angle, or increased thereby when greater. In the next place,
take an angle F that may be to the angle B as the sine of the angle AOQ +E
to the radius, and an angle G, that may be to the angle N—AOQ—-E +F
as the length L to the same length L diminished by the cosine of the angle
AOQ+E, when that angle is less than a right angle, or increased thereby
when greater. For the third time take an angle H, that may be to the angle
B as the sine of the angle AOQ +E + G to the radius; and an angle I to the
angle N— AOQ—E —G +H, as the length L is to the same length L dimin-
ished by the cosine of the angle AOQ + E + G, when that angle is less than
a right angle, or increased thereby when greater. And so we may proceed
in infinitum. Lastly, take the angle AOg equal to the angle AOQ+E + G+
I+, &c., and from its cosine Or and the ordinate pr, which is to its sine gr as
the lesser axis of the ellipse to the greater, we shall have p the correct place
of the body. When the angle N—-AOQ+D happens to be negative, the
sign + of the angle E must be everywhere changed into —, and the sign —
into +. And the same thing is to be understood of the signs of the angles
G and I, when the angles N-AOQ-E+F, and N-AOQ-E-G+H
come out negative. But the infinite series AOQ+E + G + I+, &c., converges
so very fast, that it will be scarcely ever needful to proceed beyond the sec-
ond term E. And the calculus is founded upon this Theorem, that the area
APS varies as the difference between the arc AQ and the right line let fall
from the focus S perpendicularly upon the radius OQ.
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And by a calculus not unlike, the Problem is solved in the hyperbola.
Let its centre be O, its vertex A, its focus S, and asymptote OK ; and suppose
the amount of the area to be cut off is known, as being proportional to the
time. Let that be A, and by
conjecture suppose we know /
the position of a right line §< Q
SP, that cuts off an area APS
near the truth. Join OP, and P
from A and P to the asymp-
tote draw Al, PK, parallel to 1
the other asymptote; and by
the table of logarithms the
area AIKP will be given, and
equal thereto the area OPA,
which, subtracted from the § T A S
triangle OPS, will leave the
area cut off APS. And by applying 2APS —2A, or 2A—2APS, the double
difference of the area A that was to be cut off, and the area APS that is cut
off, to the line SN that is let fall from the focus S, perpendicular upon the
tangent TP, we shall have the length of the chord PQ. Which chord PQ
is to be inscribed between A and P, if the area APS that is cut off be greater
than the area A that was to be cut off, but towards the contrary side of the
point P, if otherwise: and the point Q will be the place of the body more
accurately. And by repeating the com-

¥ putation the place may be found con-
tinually to greater and greater accu-
N racy.
P And by such computations we have
A S 0 H B 4 general analytical resolution of the

Problem. But the particular calculus
that follows is better fitted for astro-
nomical purposes. Supposing AOQ,
OB, OD to be the semiaxes of the
ellipse, and L its latus rectum, and D the difference between the lesser semi-
axis OD, and %L the half of the latus rectum: let an angle Y be found,
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whose sine may be to the radius as the rectangle under that difference D,
and AO +OD the half sum of the axes, to the square of the greater axis
AB. Find also an angle Z, whose sine may be to the radius as the double
rectangle under the distance of the foci SH and that difference D, to triple
the square of half the greater semiaxis AO. Those angles being once found,

(né piace Gf the bﬁd'y' ma':y' be th't.'lS dctefmiﬂed. T } h T propor

tional to the time in which the arc BP was described, or equal to what is
called the mean motion; and take an angle V, the first equation of the mean
motion, to the angle Y, the greatest first equation, as the sine of double the
angle T is to the radius; and take an angle X, the second equation, to the
angle Z, the second greatest equation, as the cube of the sine of the angle
T 1s to the cube of the radius. Then take the angle BHP, the mean equated
motion either equal to T+ X +V, the sum of the angles T, V, X, if the
angle T is less than a right angle, or equal to T+ X —V, the difference of
the same, if that angle T 1s greater than one and less than two right angles;
and if HP meets the ellipse in P, draw SP, and it will cut off the area BSP,
nearly proportional to the time.

This practice seems to be expeditious enough, because the angles V and X,
taken in fractions of seconds, if you please, being very small, it will be suf-
ficient to find two or three of their first figures. But it is likewise sufficiently
accurate to answer to the theory of the planets’ motions. For even in the
orbit of Mars, where the greatest equation of the centre amounts to ten
degrees, the error will scarcely exceed one second. But when the angle of
the mean motion equated BHP is found, the angle of the true motion BSP,
and the distance SP, are readily had by the known methods.

And so far concerning the motion of bodies in curved lines. But it may
also come to pass that a moving body shall ascend or descend in a right line;
and I shall now go on to explain what belongs to such kind of motions.
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SECTION VII

The rectilinear ascent and descent of bodies.

PROPOSITION XXXII.L. PROBLEM XXIV

117

Supposing that the centriperal force is inversely proportional to the square

of the distance of the places from the centre; it is required to define the

spaces which a body, falling directly, describes in given times.

Case 1. If the body does not fall perpendicu- A]

larly, it will (by Cor. 1, Prop. x1m1) describe some
conic section whose focus is placed in the centre
of force. Suppose that conic section to be ARPB
and its focus S. And, first, if the figure be an ellipse,
upon the greater axis thereof AB describe the
semicircle ADB, and let the right line DPC pass
through the falling body, making right angles with
the axis; and drawing DS, PS, the area ASD will
be proportional to the area ASP, and therefore also
to the time. The axis AB still remaining the same,
let the breadth of the ellipse be continually dimin-
ished, and the area ASD will always remain pro-

AB.Q.E.L

\
B

portional to the time. Suppose that breadth

7 to be diminished 7z infinitum; and the orbit
c L3 APB in that case coinciding with the axis AB,

and the focus S with the extreme point of the
s 7 axis B, the body will descend in the right line
B AC, and the area ABD will become propor-

tional to the time. Therefore the space AC will be given which the
body describes in a given time by its perpendicular fall from the place
A, if the area ABD is taken proportional to the time, and from the
point D the right line DC is let fall perpendicularly on the right line

Cask 2. If the figure RPB is an hyperbola, on the same principal
diameter AB describe the rectangular hyperbola BED; and because
there exist between the several areas and the heights CP and CD
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relations, CSP : CSD = CBfP : CBED = SP/B : SDEB = CP : CD, and since
the area SPfB varies as the time in which the body P will move through the
arc PfB, the area SDEB will also vary as that time. Let the latus rectum of
the hyperbola RPB be diminished iz infinitum, the transverse axis remain-
ing the same; and the arc PB will come to coincide with the right line CB,
and the focus S with the vertex B, and the right line SD with the right line
BD. And therefore the area BDEB will vary
as the time in which the body C, by its perpen-
dicular descent, describes the line CB. Q.E.L
Case 3. And by the like argument, if the
figure RPB is a parabola, and to the same
principal vertex B another parabola BED is
described, that may always remain given
while the former parabola in whose peri-
B meter the body P moves, by having its latus
rectum diminished and reduced to nothing,
comes to coincide with the line CB, the parabolic segment BDEB will vary
as the time in which that body P or C will descend to the centre S or B.
QEL

PROPOSITION XXXIII. THEOREM IX

The things above found being supposed, I say, that the velocity of a falling
body in any place Cis to the velocity of a body, describing a circle about the
centre B at the distance BC, as the square root of the ratio of AC, the dis-
tance of the body from the remoter vertex A of the circle or rectangular
hyperbola, to Yo AB, the principal semidiameter of the figure.

Let AB, the common diameter of both figures RPB, DEB, be bisected in
O; and draw the right line PT that may touch the figure RPB in P, and
likewise cut that common diameter AB (produced, if need be) in T; and
let SY be perpendicular to this line, and BQ perpendicular to this diameter,
and suppose the latus rectum of the figure RPB to be L. From Cor. 1x,
Prop. xv1, it is manifest that the velocity of a body, moving in the line RPB
about the centre S, in any place P, is to the velocity of a body describing a
circle about the same centre, at the distance SP, as the square root of the
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ratio of the rectangle 2L - SP to SY®. For by the properties of the conic

: : . 2CP*- AO.
sections AC ' CB is to CP* as 2AO to L, and therefore “ACCB is equal

to L. Therefore those velocities are to each other as the square root of the

2. AQ) -
ratio of cp A é\ %BSP to SY*. Moreover, by the properties of the conic sec-

T R
C P/ D/

B Q_ Al
tions, CO:BO=BO:TO,
_ thence, CO+BO:BO=BO+TO:TO,
and CO:BO=CB:BT.
From this, BO-~CO:BO=BT-CB:BT
and AC:AO=TC:BT=CP:BQ;
: BQ-AC
and,since CP= 0
. CP*-AO-SP BQ*- AC-SP
one obtains equal to .

AC-CB AO-BC
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Now suppose CP, the breadth of the figure RPB, to be diminished iz infin-
1tum, so that the point P may come to coincide with the point C, and the
point S with the point B, and the line SP with the line BC, and the line SY
with the line BQ; and the velocity of the body now descending perpen-
dicularly in the line CB will be to the velocity of a body describing a circle
about the centre B, at the distance BC, as the square root of the ratio of
BQ*-AC-SP

AO-BC
and BQ? to SY?), as the square root of the ratio of AC to AO, or %2AB.
Q.E.D.

Cor. 1. When the points B and S come to coincide, T'C will become to
TS as AC to AQ.

Cor. 11. A body revolving in any circle at a given distance from the centre,
by its motion converted upwards, will ascend to double its distance from
the centre.

to SY?, that is (neglecting the ratios of equality of SP to BC,

PROPOSITION XXXIV. THEOREM X

If the figure BED is a parabola, I say, that the velocity of a falling body in
any place Cis equal to the velocity by which a body may uniformly describe
a circle about the centre B at half the interval BC.

R For (by Cor. vi, Prop. xv1) the
velocity of a body describing a par-
abola RPB about the centre S, in
any place P, is equal to the velocity
of a body uniformly describing
a circle about the same centre S
at half the interval SP. Let the
i breadth CP of the parabola be di-

minished 77z infinitum, so that the
5 parabolic arc PfB may come to co-
B incide with the right line CB, the
centre S with the vertex B, and the

interval SP with the interval BC, and the Proposition will be manifest.
Q.E.D.
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PROPOSITION XXXV. THEOREM XI

The same things supposed, I say, that the area of the figure DES, described
by the indefinite radins SD, is equal to the area which a body with a radius
equal to half the latus rectum of the figure DES describes in the same time,
by uniformly revolving about the centre S.

For suppose a body C in the smallest moment of time describes in falling
the infinitely little line Cc, while another body K, uniformly revolving
about the centre S in the circle OK%, describes the arc K4. Erect the per-
pendiculars CD, ¢d, meeting the figure DES in D, 4. Join SD, Sd, SK, Sk,
and draw Dd meeting the axis AS in T, and thereon let fall the perpen-
dicular SY.

R K
iR Al

Case 1. If the figure DES is a circle, or a rectangular hyperbola, bisect
its transverse diameter AS in O, and SO will be half the latus rectum. And
because TC:TD=Cc:Dd
and TD : TS=CD: Sy,
there follows TC : TS=CD - Cc : SY - Dd.

But (by Cor. 1, Prop. xxxiir)
TC: TS=AC: AO,
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namely, if in the coalescence of the points D, 4 the ultimate ratios of the
lines are taken. Therefore,
AC:AO or SK=CD-Cc:SY - Dd.

Further, the velocity of the descending body in C is to the velocity of a body

describing a circle about the centre S, at the interval SC, as the square root

of the ratio of ACto AO or SK (by Prop. xxxmt); and this velocity is to the

velocity of a body describing the circle OK#% as the square root of the ratio

of SK to SC (by Cor. vi, Prop. 1v) ; and, consequently, the first velocity is to

the last, that 1s, the little line Ce to the arc K%, as the square root of the ratio

of AC to SC, that is, in the ratio of AC to CD. Therefore,

CD-Ce=AC- K%,

hence, AC:SK=AC -K%:SY D4,

and SK-K%2=S8Y D4,

and 1%2SK-Kk=1SY-Dd,

that is, the area KS% is equal to the area SDd. Therefore in every moment

of time two equal particles, KS% and SDd, of areas are generated, which,

if their magnitude is diminished, and their number increased in infinitum,

obtain the ratio of equality, and consequently (by Cor., Lem. 1v) the whole
areas together generated are al-

C /D/ ways equal. Q.E.D.

¢ d Cask 2. But if the figure DES

' is a parabola, we shall find, as

above,

CD-Cc:SY -Dd=TC:TS,
that is,=2 : 1; therefore,
% CD-Cc=%SY Dd.

But the velocity of the falling

body in C is equal to the velocity

with which a circle may be uni-

formly described at the interval

%2 SC (by Prop. xxxwv). And

this velocity to the velocity with

which a circle may be described

with the radius SK, that is, the little line Ce to the arc K%, is (by Cor. vi,

Prop. 1v) as the square root of the ratio of SK to %2 SC; that is, in the ratio

T
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of SK to % CD. Therefore % SK - K% is equal to %4 CD - Cc, and therefore
equal to %2 SY - Dd; that 1s, the area KS% is equal to the area SDd, as above.

Q.E.D.

PROPOSITION XXXVI PROBLEM XXV

. J.
104U

from a given place A.

Upon the diameter AS, the distance of the body from
the centre at the beginning, describe the semicircle
ADS, as likewise the semicircle OKH equal thereto,
about the centre S. From any place C of the body erect
the ordinate CD. Join SD, and make the sector OSK
equal to the area ASD. It is evident (by Prop. xxxv) that
the body in falling will describe the space AC in the
same time in which another body, uniformly revolving
about the centre S, may describe the arc OK. Q.E.F.

t s the Fanec nf the decaent ok o body .
termine ine fimes of tne aesceni of @ ooay jaiiing

-
.
»
------
ar

H

PROPOSITION XXXVIIL PROBLEM XXVI

To define the times of the ascent or descent of a body projected upwards

or downwards from a given place.

...........

Suppose the body to go off from the given place G, in the direction of
the line GS, with any velocity. Take GA to 72 AS as the square of the ratio
of this velocity to the uniform velocity in a circle, with which the body may

/ I
ST,
e
A
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revolve about the centre S at the given interval SG. If that ratio is the same
as of the number 2 to 1, the point A is infinitely remote; in which case a
parabola is to be described with any latus rectum to the vertex S, and axis
SG; as appears by Prop. xxxiv. But if that ratio is less or greater than the
ratio of 2 to 1, in the former case a circle, in the latter a rectangular hyper-
bola. is to be described on the diameter SA - s by Prop. Xxx1

The
bola, is to be described on the diameter SA ; as appears by Prop. xxxm. Then
about the centre S, with a radius equal to half the latus rectum, describe
the circle HZK ; and at the place G of the ascending or descending body,
and at any other place C, erect the perpendiculars GI, CD, meeting the
conic section or circle in [ and D. Then joining SI, SD, let the sectors HSK,
HS% be made equal to the segments SEIS, SEDS, and (by Prop. xxxv) the
body G will describe the space GC in the same time in which the body K
may describe the arc Kk. Q.E.F.

PROPOSITION XXXVIII. THEOREM XII

Supposing that the centripetal force is proportional to the altitude or dis-
tance of places from the centre, I say, that the times and velocities of falling
bodies, and the spaces which they describe, are respectively proportional to
the arcs, and the sines and versed sines of the ares.

Suppose the body to fall from any place A in

A the right line AS; and about the centre of force
S, with the radius AS, describe the quadrant of
c D a circle AE; and let CD be the sine of any arc

AD; and the body A will in the time AD in fall-
ing describe the space AC, and in the place C
will acquire the velocity CD.
S 't Thisis demonstrated the same way from Prop.
X,as Prop.xxx1 was demonstrated from Prop.x1.
Cor. 1. Hence the times are equal in which one body falling from the
place A arrives at the centre S, and another body revolving describes the
quadrantal arc ADE.
Cor. 11. Therefore all the times are equal in which bodies falling from
whatsoever places arrive at the centre. For all the periodic times of revoly-
ing bodies are equal (by Cor. u1, Prop. v).
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PROPOSITION XXXIX. PROBLEM XXVII

Supposing a centripetal force of any kind, and granting the quadratures
of curvilinear figures; it is required to find the velocity of a body, ascending
or descending in a right line, in the several places through which it passes,
as also the time in which it will arrive at any place; and conversely.

Suppose the body E to fall from any place A in the right line ADEC; and
from its place E imagine a perpendicular EG always erected proportional
to the centripetal force in that place tending to the centre C; and let BFG
be a curved line, the locus of the
point G. And in the beginning of
the motion suppose EG to coincide
with the perpendicular AB; and
the velocity of the body in any
place E will be as a right line whose
square is equal to the curvilinear
area ABGE. Q.E.L

In EG take EM inversely pro-
portional to a right line whose

P /Q’
F
\ R
H\G
square 1s equal to the area ABGE,

|
M
/ and let VLM be a curved line
4 m wherein the point M is always
\ placed, and to which the right line
AB produced is an asymptote; and
the time in which the body in fall-
ing describes the line AE, will be
as the curvilinear area ABTVME. Q.E.L
For in the right line AE let there be taken the very small line DE
of a given length, and let DLF be the place of the line EMG, when
¢|  the body wasin D; and if the centripetal force be such, that a right
line, whose square is equal to the area ABGE, is as the velocity of
the descending body, the area itself will be as the square of that velocity;

that is, if for the velocities in D and E we write V and V +1, the area ABFD
will be as VV, and the area ABGE as VV +2VI+1II; and by subtraction,

the area DFGE as 2VI+1l, and therefore DFGE 2VI+1IT

A B

\

2=

T
v
5

DE will be as OF

; that
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is, if we take the first ratios of those quantities when just nascent, the

length DF is as the quantity %‘g, and therefore also as half that quantity

I-Vv
DE"
DE, is directly as that line and inversely as the velocity V; and the force
will be directly as the increment I of the velocity and inversely as the time;
and therefore if we take the first ratios when those quantities are just

. But the time in which the body in falling describes the very small line

nascent, as ~——, that is, as the length DF. Therefore a force proportional

v
DE’
to DF or EG will cause the body to descend with a velocity that is as the
right line whose square is equal to the area ABGE. Q.E.D.

Moreover, since the time in which a very small line DE of a given length
may be described is inversely as the velocity and therefore also inversely as
a right line whose square is equal to the area ABFD; and since the line DL,
and by consequence the nascent area DLME, will be inversely as the same
right line, the time will be as the area DLME, and the sum of all the times
will be as the sum of all the areas; that is (by Cor., Lem. 1v), the whole time
in which the line AE is described will be as the whole area ATVME. Q.E.D.

Cor. 1. Let P be the place from whence a body ought to fall, so as that,
when urged by any known uniform centripetal force (such as gravity is
commonly supposed to be), it may acquire in the place D a velocity equal
to the velocity which another body, falling by any force whatever, hath
acquired in that place D, In the perpendicular DF let there be taken DR,
which may be to DF as that uniform force to the other force in the place D.
Complete the rectangle PDRQ, and cut off the area ABFD equal to that
rectangle. Then A will be the place from whence the other body fell. For
completing the rectangle DRSE, since the area ABFD is to the area DFGE
as VV to 2V, and therefore as %2 V to 1, that is, as half the whole velocity
to the increment of the velocity of the body falling by the variable force;
and in like manner the area PQRD to the area DRSE as half the whole
velocity to the increment of the velocity of the body falling by the uniform
force; and since those increments (by reason of the equality of the nascent
times) are as the generating forces, that is, as the ordinates DF, DR, and
consequently as the nascent areas DFGE, DRSE ; therefore, the whole areas
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ABFD, PQRD will be to each other as the halves of the whole velocities;
and therefore, because the velocities are equal, they become equal also.

Cor. . Whence if any body be

A B T  projected either upwards or down-
\ /""—'_‘-r wards with a given velocity from
P \ " g any place D, and there be given the

law of centripetal force acting on
it, its velocity will be found in any
other place, as e, by erecting the
ordinate eg, and taking that veloc-
ity to the velocity in the place D as
a right line whose square is equal
to the rectangle PQRD, either
increased by the curvilinear area
4 iz ¢ DFge, if the place ¢ is below the
\ place D, or diminished by the same
area DFge, if it be higher, is to the
right line whose square is equal to

the rectangle PQRD alone,

Cor. 11 The time is also known by erecting the ordinate em
inversely proportional to the square root of PQRD +or—DFge,
and taking the time in which the body has described the line De
¢|  tothe time in which another body has fallen with an uniform force

from P, and in falling arrived at D in the proportion of the curvi-
linear area DLme to the rectangle 2PD - DL. For the time in which a body
falling with an uniform force hath described the line PD, is to the time in
which the same body hath described the line PE as the square root of the
ratio of PD to PE; that is (the very small line DE being just nascent), in
the ratio of PD to PD +%DE or 2PD to 2PD + DE, and, by subtraction, to
the time in which the body hath described the small line DE, as 2PD to DE,
and therefore as the rectangle 2PD - DL to the area DLME; and the time
in which both the bodies described the very small line DE is to the time in
which the body with the variable motion described the line De as the area
DLME to the area DLe; and therefore the first mentioned of these times
is to the last as the rectangle 2PD - DL to the area DLme.

v

szl =)
zl"‘-
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SECTION VIII

The determination of orbits in which bodies will revolve, being acted upon

by any sort of centripetal force.

PROPOSITION XL. THEOREM XIII

If a body, acted upon by any centripetal force,is moved in any manner, and

another body ascends or descends in a right line, and their velocities be

equal 1n any one case of equal altitudes, their velocities will be also equal
at all equal altitudes.

Let a body descend from A through D and E, to the centre C; and let
another body move from V in the curved line VIK%. From the centre C,
with any distances, describe the concentric circles DI, EK, meeting the right

A

\'4

C

line ACin Dand E, and the curve VIK in [ and K. Draw IC
meeting KE in N, and on IK let fall the perpendicular NT;
and let the interval DE or IN between the circumferences
of the circles be very small; and imagine the bodies in D
and I to have equal velocities. Then because the distances
CD and CI are equal, the centripetal forces in D and I will
be also equal. Let those forces be expressed by the equal
short lines DE and IN; and let the force IN (by Cor. 11 of
the Laws of Motion) be resolved into two others, NT and
IT. Then the force NT acting in the direction of the line
NT perpendicular to the path ITK of the body will not
at all affect or change the velocity of the body in that path,
but only draw it aside from a rectilinear course, and make
it deflect continually from the tangent of the orbit, and pro-
ceed in the curvilinear path ITK k. That whole force, there-
fore, will be spent in producing this effect; but the other
force IT, acting in the direction of the course of the body,

will be all employed in accelerating it, and in the least given time will pro-
duce an acceleration proportional to itself. Therefore the accelerations of
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the bodies in D and I, produced in equal times, are as the lines DE, I'T (if
we take the first ratios of the nascent lines DE, IN, IK, IT, NT); and in
unequal times as the product of those lines ana the times. But the times in
which DE and IK are described, are, by reason of the equal velocities (in
D and 1), as the spaces described DE and IK, and therefore the accelerations
in the course of the bodies through the lines DE and IK are as DE and
IT, and DE and IK conjointly; that is, as the square of DE to the rectangle
IT - IK. But the rectangle I'T-IK is equal to the square of IN, that is, equal
to the square of DE; and therefore the accelerations generated in the pass-
age of the bodies from D and I to E and K are equal. Therefore the veloci-
ties of the bodies in E and K are also equal: and by the same reasoning they
will always be found equal in any subsequent equal distances. Q.E.D.

By the same reasoning, bodies of equal velocities and equal distances
from the centre will be equally retarded in their ascent to equal distances.
Q.E.D.

Cor. 1. Therefore if a body either oscillates by hanging to a string, or
by any polished and perfectly smooth impediment is forced to move in a
curved line; and another body ascends or descends in a right line, and their
velocities be equal at any one equal altitude, their velocities will be also
equal at all other equal altitudes. For by the string of the pendulous body,
or by the impediment of a vessel perfectly smooth, the same thing will be
effected as by the transverse force NT. The body is neither accelerated nor
retarded by it, but only is obliged to leave its rectilinear course.

Cor. 1. Suppose the quantity P to be the greatest distance from the centre
to which a body can ascend, whether it be oscillating, or revolving in a
curve, and so the same projected upwards from any point of a curve with
the velocity it has in that point. Let the quantity A be the distance of the
body from the centre in any other point of the orbit; and let the centripetal
force be always as the power A*™%, of the quantity A, the index of which
power #—1 is any number » diminished by unity. Then the velocity in
every altitude A will be as \/(P"—A™), and therefore will be given. For
by Prop. xxxix, the velocity of a body ascending and descending in a right
line is in that very ratio.
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PROPOSITION XLIL. PROBLEM XXVIII

Supposing a centripetal force of any kind, and granting the quadratures of
curvilinear figures, it is required to find as well the curves in which bodies
will move, as the times of their motions in the curves found.

Let any centripetal force tend to the centre C, and let it be required
to find the curve VIKZ. Let there be given the circle VR, described from
the centre C with any radius CV; and from the same centre describe any
other circles ID, KE, cutting the curve in I and K, and the right line CV

-

in D and E. Then draw the right line CNIX cutting the circles KE, VR
in N and X, and the right line CKY meeting the circle VR in Y. Let the
points [ and K be indefinitely near; and let the body go on from V through
I and K to £; and let the point A be the place from which another body is
to fall, so as in the place D to acquire a velocity equal to the velocity of the
first body in I. And things remaining as in Prop. xxxix, the short line IK,
described in the least given time, will be as the velocity, and therefore as
the right line whose square is equal to the area ABFD, and the triangle ICK
proportional to the time will be given, and therefore KN will be inversely
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as the altitude [C; that is (if there be given any quantity Q, and the altitude

IC be called A), as%.
of Q to be such that in some one case
\VABFD :Z=IK : KN,
and then in all cases
\/ABFD :Z=IK :KN,
and ABFD :ZZ=TK*®: KN,

and by subtraction,
ABFD -Z77Z : ZZ =IN? : KN?,

This quantity — call Z, and suppose the magnitude

A

and therefore

\/(ABFD-ZZ) : Z or -Q=IN : KN,

A
. _ Q-IN
and A KN_\/(ABFD——ZZ)'
Since YX-XC:A-KN=CX?: AA,

it follows that
Q- IN:CX®
AAN/(ABFD-ZZY
Therefore in the perpendicular DF let there be taken continually D4, De
equal to < Q- CX
2\/(ABFD - ZZ)’ 2AA\/(ABFD-ZZ)
curved lines ab, ac, the foci of the points & and ¢, be described; and from
the point V let the perpendicular Va be erected to the line AC, cutting oft
the curvilinear areas VDéda, VDca, and let the ordinates Ez, Ex, be erected
also. Then because the rectangle D4 - IN or D4zE is equal to half the rec-
tangle A - KN, or to the triangle ICK; and the rectangle D¢ IN or DexE
is equal to half the rectangle YX - XC, or to the triangle XCY; that is, be-
cause the nascent particles DbzE, ICK of the areas VDébg, VIC are always
equal; and the nascent particles DexE, XCY of the areas VDcg, VCX are
always equal: therefore the generated area VDéz will be equal to the gene-
rated area VIC, and therefore proportional to the time; and the generated
area VDca is equal to the generated sector VCX. If, therefore, any time be
given during which the body has been moving from V, there will be also
given the area proportional to it VDéa; and thence will be given the alti-

YX - XC=

respectively, and let the
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tude of the body CD or CI; and the area VDeg, and the sector VCX equal
thereto, together with its angle VCI. But the angle VCI, and the altitude
CI being given, there is also given the place I, in which the body will be
found at the end of that time. Q.E.L

Cor. 1. Hence the greatest and least altitudes of the bodies, that is, the
apsides of the curves, may be found very readily. For the apsides are those
points in which a right line IC drawn through the centre falls perpendicu-
larly upon the curves VIK; which comes to pass when the right lines IK
and NK become equal; that is, when the area ABFD is equal to ZZ.

Cor. 11. So also the angle KIN; in which the curve at any place cuts the
line IC, may be readily found by the given altitude IC of the body; namely,
by making the sine of that angle to the radius as KN to IK, that is, as Z to
the square root of the area ABFD.

Cor. ni1. If to the centre C, and the principal vertex V, there be described
a conic section VRS; and from any point thereof, as R, there be drawn the
tangent RT meeting the axis CV indefinitely produced in the point T and

then joining CR there be drawn

s the right line CP, equal to the ab-
scissa CT, making an angle VCP
proportional to the sector VCR;

T and if a centripetal force inverse-
ly proportional to the cubes of
the distances of the places from
the centre, tends to the centre C;
and from the place V there sets
out a body with a just velocity in
S € the direction of a line perpen-
dicular to the right line CV; that

body will proceed in a curve

VPQ, which the point P will

always touch; and therefore if the conic section VRS be an hyperbola, the
body will descend to the centre; but if it be an ellipse, it will ascend con-
tinually, and go farther and farther off in infinitum. And, on the contrary,
if a body endued with any velocity goes off from the place V, and according
as it begins either to descend obliquely to the centre, or to ascend obliquely

Q Q
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from it, the figure VRS be either an hyperbola or an ellipse, the curve may
be found by increasing or diminishing the angle VCP in a given ratio. And
the centripetal force becoming centrifugal, the body will ascend obliquely
in the curve VPQ, which is found by taking the angle VCP proportional
to the elliptic sector VRC, and the length CP equal to the length CT, as
before. All these things follow from the foregoing Proposition, by the quad-
rature of a certain curve, the invention of which, as being easy enough, for
brevity’s sake I omit.

PROPOSITION XLII. PROBLEM XXIX

The law of centripetal force being given, it is required to find the motion
of a body setting out from a given place, with a given velocity, in the direc-
tion of a given right line.

Suppose the same things as in the three preceding Propositions; and let
the body go off from the place I in the direction of the little line IK, with

Ar———\B
> <

C

the same velocity as another body, by falling with an uniform centripetal
force from the place P, may acquire in D; and let this uniform force be to
the force with which the body is at first urged in I, as DR to DF. Let the
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tude of the body CD or CI; and the area VDcg, and the sector VCX equal
thereto, together with its angle VCI. But the angle VCI, and the altitude
CI being given, there is also given the place I, in which the body will be
found at the end of that time. Q.E.L

Cor. 1. Hence the greatest and least altitudes of the bodies, that is, the
apsides of the curves, may be found very readily. For the apsides are those
points in which a right line IC drawn through the centre falls perpendicu-
larly upon the curves VIK; which comes to pass when the right lines IK
and NX become equal; that is, when the area ABFD is equal to ZZ.

Cor. 1. So also the angle KIN, in which the curve at any place cuts the
line IC, may be readily found by the given altitude IC of the body; namely,
by making the sine of that angle to the radius as KN to IK| that is, as Z to
the square root of the area ABFD.

Cor. . If to the centre C, and the principal vertex V, there be described
a conic section VRS; and from any point thereof, as R, there be drawn the
tangent RT meeting the axis CV indefinitely produced in the point T'; and

then joining CR there be drawn

5 the right line CP, equal to the ab-
scissa CT, making an angle VCP
proportional to the sector VCR;

T and if a centripetal force inverse-
ly proportional to the cubes of
the distances of the places from
the centre, tends to the centre C;
and from the place V there sets
out a body with a just velocity in
S € the direction of a line perpen-
dicular to the right line CV; that

body will proceed in a curve

VPQ, which the point P will

always touch; and therefore if the conic section VRS be an hyperbola, the
body will descend to the centre; but if it be an ellipse, it will ascend con-
tinually, and go farther and farther off in infinitum. And, on the contrary,
if a hody endued with any velocity goes off from the place V, and according
as it begins either to descend obliquely to the centre, or to ascend obliquely

Q Q
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from it, the figure VRS be either an hyperbola or an ellipse, the curve may
be found by increasing or diminishing the angle VCP in a given ratio. And
the centripetal force becoming centrifugal, the body will ascend obliquely
in the curve VPQ, which is found by taking the angle VCP proportional
to the elliptic sector VRC, and the length CP equal to the length CT, as
before. All these things follow from the foregoing Proposition, by the quad-
rature of a certain curve, the invention of which, as being easy enough, for
brevity’s sake I omit.

PROPOSITION XLII. PROBLEM XXIX

The law of centripetal force being given, it is required to find the motion
of a body setting out from a given place, with a given velocity, in the direc-
tion of a given right line.

Suppose the same things as in the three preceding Propositions; and let
the body go off from the place I in the direction of the little line IK, with

b ¢ L=

C

the same velocity as another body, by falling with an uniform centripetal
torce from the place P, may acquire in D; and let this uniform force be to
the force with which the body is at first urged in I, as DR to DF. Let the
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body go on towards £; and about the centre C, with the radius Ck, describe
the circle ke, meeting the right line PD in e, and let there be erected the
lines eg, ev, ew, ordinately applied to the curves BFg, abv, acw. From the
given rectangle PDRQ and the given law of centripetal force, by which the
first body is acted on, the curved line BFg is also given, by the construction
of Prop. xxvir, and its Cor. 1. Then from the given angle CIK is given the
proportion of the nascent lines IK, KN; and thence, by the construction
of Prob. xxvi, there is given the quantity Q, with the curved lines aby,
acw; and therefore, at the end of any time Dbve, there is given both the
altitude of the body Ce or C%, and the area Dcwe, with the sector equal to
it XCy, the angle IC%, and the place %, in which the body will then be
found. Q.E.L.

We suppose in these Propositions the centripetal force to vary in its recess
from the centre according to some law, which anyone may imagine at
pleasure, but at equal distances from the centre to be everywhere the same.

I have hitherto considered the motions of bodies in immovable orbits, It
remains now to add something concerning their motions in orbits which
revolve round the centres of force.
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SECTION IX

The motion of bodies in movable orbits; and the motion of the apsides.

TN AT AT TTTMAALYY WY FOY T™T™T s, DO T T2 0 wr Lr r
FRUPFUOISLIILIIVUIN ALILIIL FRARUDLIEMNM AAA

1t is required to make a body move in a curve that revolves about the centre
of force in the same manner as another body in the same curve at rest.

In the fixed orbit VPK, let the body P revolve, proceeding from V to-
wards K. From the centre C let there be continually drawn Cp, equal to
CP, making the angle VCp proportional to the angle VCP; and the area
which the line Cp describes will be to
the area VCP, which the line CP de-
scribes at the same time, as the velocity
of the describing line Cp to the velocity .
of the describing line CP; that is, as the
angle VCp to the angle VCP, therefore
in a given ratio, and therefore propor-
tional to the time. Since, then, the area
described by the line Cp in a fixed plane
is proportional to the time, it is manifest
that a body, being acted upon by a suit-
able centripetal force, may revolve with
the point p in the curved line which the same point p, by the method just
now explained, may be made to describe in a fixed plane. Make the angle
VCu equal to the angle PCp, and the line Cu equal to CV, and the figure
#Cp equal to the figure VCP, and the body being always in the point p,
will move in the perimeter of the revolving figure #Cp, and will describe
its (revolving) arc #p in the same time that the other body P describes the
similar and equal arc VP in the fixed figure VPK. Find, then, by Cor. v,
Prop. vi, the centripetal force by which the body may be made to revolve

in the curved line which the point p describes in a fixed plane, and the
Problem will be solved. Q.E.F.

v
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PROPOSITION XLIV. THEOREM XIV

The difference of the forces, by which two bodies may be made to move
equally, one in a fixed, the other in the same orbit revolving, varies inversely
as the cube of their common altitudes.

Let the parts of the fixed orbit VP, PK be similar and equal to the parts
of the revolving orbit #p, pk; and let the distance of the points P and K

be supposed of the utmost smallness. Let fall a perpendicular £r from the
point % to the right line pC, and produce it to m, so that mr may be to &r

as the angle VCp to the angle VCP. Because the altitudes of the bodies PC
and pC, KC and £C, are always equal, it is manifest that the increments
or decrements of the lines PC and pC are always equal; and therefore if
each of the several motions of the bodies in the places P and p be resolved
into two (by Cor. 1 of the Laws of Motion), one of which is directed to-
wards the centre, or according to the lines PC, pC, and the other, transverse
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to the former, hath a direction perpendicular to the lines PC and pC; the
motions towards the centre will be equal, and the transverse motion of the
body p will be to the transverse motion of the body P as the angular motion
of the line pC to the angular motion of the line PC; that is, as the angle
VCp to the angle VCP. Therefore, at the same time that the body P, by
both its motions, comes to the point K, the body g, having an equal motion
towards the centre, will be equally moved frolm p towards C; and there-
fore that time being expired, it will be found somewhere in the line m#kr,
which, passing through the point %, is perpendicular to the line pC; and
by its transverse motion will acquire a distance from the line pC, that will be
to the distance which the other body P acquires from the line PC as the
transverse motion of the body p to the transverse motion of the other body
P. Therefore since &r is equal to the distance which the body P acquires
from the line PC, and mr is to &r as the angle VCp to the angle VCP, that
is, as the transverse motion of the body p to the transverse motion of the
body P, it is manifest that the body p, at the expiration of that time, will be
found in the place m. These things will be so, if the bodies p and P are
equally moved in the directions of the lines pC and PC, and are therefore
urged with equal forces in those directions. But if we take an angle pCn
that is to the angle pC#k as the angle VCp to the angle VCP, and #C be
equal to £C, in that case the body p at the expiration of the time will really
be in #; and is therefore urged with a greater force than the body P, if
the angle nCp is greater than the angle £Cp, that is, f the orbit #p% moves
either progressively, or in a retrograde direction, with a velocity greater
than the double of that with which the line CP is carried forwards; and
with a less force if the retrograde motion of the orbit is stower. And the
difference of the forces will be as the interval m# of the places through
which the body would be carried by the action of that difference in that
given space of time. About the centre C with the interval Cz or Ck suppose
a circle described cutting the lines mr, mn produced in s and #, and the rec-
tangle mn . mz will be equal to the rectangle mk - ms, and therefore ma

mk - ms
mi

will be equal to . But since the triangles pCk, pCa, in a given time,

are of a given magnitude, kr and mr, and their difference m%, and their
sum ms, are inversely as the altitude pC, and therefore the rectangle mk . ms
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is inversely as the square of the altitude pC. Moreover, m# is directly as
Yamt, that is, as the altitude pC. These are the first ratios of the nascent

mk - ms
mie

lines; and hence , that is, the nascent short line m#, and the dif-

ference of the forces proportional thereto, are inversely as the cube of the
altitude pC. Q.E.D.

Cor. 1. Hence the difference of the forces in the places P and p, or K and
k, 1s to the force with which a body may revolve with a circular motion
from R to K, in the same time that the body P in a fixed orbit describes the
arc PK, as the nascent line m» to the versed sine of the nascent arc RK,
mémms to :kC’ or as mk - ms to the square of rk; that is, if we
take given quantities F and G in the same ratio to each other as the angle
VCP bears to the angle VCp, as GG —FF to FF. And, therefore, if from
the centre C, with any distance CP or Cp, there be described a circular sector
equal to the whole area VPC, which the body revolving in a fixed orbit hath
by a radius drawn to the centre described in any certain time, the difference
of the forces, with which the body P revolves in a fixed orbit, and the body
£ in a movable orbit, will be to the centripetal force, with which another
body by a radius drawn to the centre can uniformly describe that sector in
the same time as the area VPC is described, as GG —FF to FF. For that
sector and the area pCk are to each other as the times in which they are
described.

Cor. 1. If the orbit VPK be an ellipse, having its focus C, and its highest
apse V, and we suppose the ellipse #pk similar and equal to it, so that pC
may be always equal to PC, and the angle VCp be to the angle VCP in the
given ratio of G to F; and for the altitude PC or pC we put A, and 2R for
the latus rectum of the ellipse, the force with which a body may be made to

FF RGG-RFF

revolve in a movable ellipse will be as AT A
Let the force with which a body may revolve in a fixed ellipse be expressed
FF
E'V‘z‘q
a body may revolve in a circle at the distance CV, with the same velocity as
a body revolving in an ellipse has in V| is to the force with which a body

that is, as

, and conversely.

by the quantityg, and the force in Vwill be But the force with which
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revolving in an ellipse is acted upon in the apse V, as half the latus rectum
of the ellipse to the semidiameter CV of the circle, and therefore is as

RFF . : . RGG-RFF
oV and the force which is to this as GG —FF to FF, is as L

and this force (by Cor. 1 of this Prop.) is the difference of the forces in V,
with which the body P revolves in the fixed ellipse VPK, and the body p

in the movable ellipse #pk. Then since by this Proposition that diHcrcnce at

any other altitude A is to itself at the altitude CV a8 50z the same

C'V?n,
difference in every altitude A will be as RGG- RFF. Therefore to the force

A3
% , by which the body may revolve in a fixed ellipse VPK, add the excess

RGG-RFF . FF RGG-RFF
Al , and the sum will be the whole force A + n

by which a body may revolve in the same time in the movable ellipse #p#.
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Cor. 1. In the same manner it will be found, that, if the fixed orbit VPK
be an ellipse having its centre in the centre of the forces C, and there be
supposed a movable ellipse #pk, similar, equal, and concentric to it; and
2R be the principal latus rectum of that ellipse, and 2T the latus trans-
versum, or greater axis; and the angle VCp he continually to the angle
VCP as G to F; the forces with which bodies may revolve in the fixed and
FFA FFA  RGG-RFF

T and 75 + %

movable ellipse, in equal times, will be as

respectively.

Cor. 1v. And universally, if the greatest altitude CV of the body be called
T, and the radius of the curvature which the orbit VPK has in V, that is,
the radius of a circle equally curved, be called R, and the centripetal force
with which a body may revolve in any fixed curve VPK at the place V be
called o

TT >

CP be called A, and G be taken to F in the given ratio of the angle VCp to

the angle VCP; the centripetal force with which the same body will per-

form the same motions in the same time, in the same curve #pk revolving
VRGG-VRFF
A® |

Cor. v. Therefore the motion of a body in a fixed orbit being given, its
angular motion round the centre of the forces may be increased or dimin-
ished in a given ratio; and thence new fixed orbits may be found in which
bodies may revolve with new centripetal forces.

Cor. vi, Therefore if there be erected the
L V' line VP of an indeterminate length, per-
pendicular to the line CV given by posit
tion, and CP be drawn, and Cp equal to it,
making the angle VCp having a given ratio
to the angle VCP, the force with which a
Yy body may revolve in the curved line Vp§,
which the point p is continually describing,
will be inversely as the cube of the altitude
Cp. For the body P, by its inertia alone, no
other force impelling it, will proceed uniformly in the right line VP. Add,

and in other places P be indefinitely styled X; and the altitude

with a circular motion, will be as the sum of the forces X +

b C
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then, a force tending to the centre C inversely as the cube of the altitude
CP or Cp, and (by what was just demonstrated) the body will deflect from
the rectilinear motion into the curved line Vp4. But this curve Vp# is the
same with the curve VPQ found in Cor. m, Prop. xu1, in which, I said,
bodies attracted with such forces would ascend obliquely.

PROPOSITION XLV. PROBLEM XXXI

To find the motion of the apsides in orbits approaching very near to
circles.!

This problem is solved arithmetically by reducing the orbit, which a body
revolving in 2 movable ellipse (as in Cor. 11 and w1 of the above Prop.) de-
scribes in a fixed plane, to the figure of the orbit whose apsides are required;
and then seeking the apsides of the orbit which that body describes in a
fixed plane. But orbits acquire the same figure, if the centripetal forces with
which they are described, compared between themselves, are made propor-
tional at equal altitudes. Let the point V be the highest apse, and write T
for the greatest altitude CV, A for any other altitude CP or Cp, and X for
the difference of the altitudes CV —CP; and the force with which a body
moves in an ellipse revolving about its focus C (as in Cor. u), and which

in Cor. 1 was as FF + RGG- RFF, that 1s, as FFA + RgsG —RFF , by sub-

AA A’
stituting T~ X for A, will become as RGG_RFFKSTFF—FFX. In like
manner any other centripetal force is to be reduced to a fraction whose
denominator is A’ and the numerators are to be made analogous by collat-

ing together the homologous terms. This will be made plainer by Examples.

ExaM. 1. Let us suppose the centripetal force to be uniform, and there-
A’ . :
fore as A Of Writing T —X for A in the numerator, as
T'—3TTX+3TXX-X?
A’ )
Then collating together the correspondent terms of the numerators, that
is, those that consist of given quantities with those of given quantities, and

[t Appendix, Note 23.]
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those of quantities not given with those of quantities not given, it will
become
RGG~RFF +TFF : T°=—FFX : 3TTX +3TXX - X’
=—FF:3TT+3TX-XX.
Now since the orbit 1s supposed extremely near to a circle, let it coincide
with a circle; and because in that case R and T become equal, and X is
infinitely diminished, the last ratios will be
GG : T"=-FF:—3TT
andagain, GG:FF=TT:3TT=r1:3;
and therefore GistoF, that is, the angle VCp to the angle VCP, as 1 to /3.
Therefore since the body, in a fixed ellipse, in descending from the upper
to the lower apse, describes an angle, if I may so speak, of 180°, the other
body in a movable ellipse, and therefore in the fixed plane we are treating

of, will in its descent from the upper to the lower apse, describe an angle

VCpof 1\8;3. And this comes to pass by reason of the likeness of this orbit

which a body acted upon by an uniform centripetal force describes, and
of that orbit which a body performing its circuits in a revolving ellipse
will describe in a fixed plane. By this collation of the terms, these orbits are
made similar; not universally, indeed, but then only when they approach
very near to a circular figure. A body, therefore, revolving with an uniform
centripetal force in an orbit nearly circular, will always describe an angle of

180° o s :
T/g’ or 103" 55" 23" at the centre; moving from the upper apse to the lower

apse when it has once described that angle, and thence returning to the
upper apse when it has described that angle again; and so on iz infinitum.

Exam. 2. Suppose the centripetal force to be as any power of the altitude

n

A, as, for example, A""%, or s where #—3 and 7 signify any indices of

powers whatever, whether integers or fractions, rational or surd, afirmative
or negative. That numerator A™ or (T —X)" being reduced to an indeter-
minate series by my method of converging series, will become

Tr e nXT 4 272 XXT2 e
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And comparing these terms with the terms of the other numerator

RGG - RFF + TFF - FFX,
it becomes RGG—RFF +TFF : T"=~FF : —#T"" + ””2‘ 2

And taking the last ratios where the orbits approach to circles, it becomes

XT"%, &c.

RGG : T"=—FF :—nT""?,
or, GG:T" *=FF : nT"?,
and again, GG :FF=T"*':2T" '=1:n;
and therefore G is to F, that is, the angle VCp to the angle VCP, as 1 to \ /.
Therefore since the angle VCP, described in the descent of the body from
the upper apse to the lower apse in an ellipse, is of 180°, the angle VCp,
described in the descent of the body from the upper apse to the lower apse

in an orbit nearly circular which a body describes with a centripetal force

proportional to the power A" %, will be equal to an angle of %, and this
angle being repeated, the body will return from the lower to the upper

apse, and so on in infinitum. As if the centripetal force be as the distance
4

of the body from the centre, that is, as A, or %, n will be equal to 4, and
\/7 equal to 2; and therefore the angle between the upper and the lower
apse will be equal to —1—822—, or go°. Therefore the body having performed a

fourth part of one revolution, will arrive at the lower apse, and having per-
formed another fourth part, will arrive at the upper apse, and so on 2 infin-
izum. This appears also from Prop. x. For a body acted on by this cen-
tripetal force will revolve in a fixed ellipse, whose centre is the centre of

force. If the centripetal force is inversely as the distance, that is, directly as

}Ii or %, n will be equal to 2; and therefore the angle between the upper

and the lower apse will be %%, or 127° 16" 45" ; and hence a body revolving

with such a force will, by a continual repetition of this angle, move alter-
nately from the upper to the lower and from the lower to the upper apse
forever. So, also, if the centripetal force be inversely as the fourth root of
the eleventh power of the altitude, that is, inversely as A™, and therefore
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directly as - or as A" n will be equal to 4 and@iwi]l be equal to
AW A®’ ’ \/n

360°; and therefore the body parting from the upper apse, and from thence

continually descending, will arrive at the lower apse when it has completed

one entire revolution; and thence ascending continually, when it has com-

pleted another entire revolution, it will arrive again at the upper apse; and

so alternately forever.

Exam. 3. Taking 7 and » for any indices of the powers of the altitude,
and & and ¢ for any given numbers, suppose the centripetal force to be as
(bA™ +cA™)+ A’ that is, as [6(T-X)"+c(T-X)"]+ A% or (by the
method of converging series above mentioned) as

M= sz PR

[6T"+ T —mbXT™ ' —pcXT" ' + . >

—~cXXT" % &c.] + A%
and comparing the terms of the numerators, there will arise,

RGG —RFF +TFF : §T" +cT" =—FF : —=mbT™ ' —nT ' +
PXT™ %+ 22 (XT"?, &

mm—m
2
And taking the last ratios that arise when the orbits come to a circular form,
there will come forth
GG : 6T " +cT" '=FF : mbT™ ' + ncT*
and again, GG :FF=5T"""+T" ' : mdT* '+ ncT"

This proportion, by expressing the greatest altitude CV or T arithmetically
mb+nc. Whence G be-

b+c

comes to F, that is, the angle VCp to the angle VCP, as 1 to \/ m:::c
And therefore, since the angle VCP between the upper and the lower
apse, in a fixed ellipse, is of 180°, the angle VCp between the same apsides
in an orbit which a body describes with a centripetal force, that is, as

by unity, becomes, GG :FF=b+c:mb+nc=1:

DA™ +cA" o b+c
i o will be equal to an angle of 180° \/ T And by the same
DA™ —cA"

—————, the angle between the

reasoning, if the centripetal force be as A
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apsides will be found equal to 180° \/ mbb o . After the same manner the

Problem is solved in more difficult cases. The quantity to which the cen-
tripetal force is proportional must always be resolved into a converging
series whose denominator is A®. Then the given part of the numerator
arising from that operation is to be supposed in the same ratio to that part
of it which is not given, as the given part of this numerator RGG — RFF +
TFF —FFX is to that part of the same numerator which is not given. And
taking away the superfluous quantities, and writing unity for T, the pro-
portion of G to F is obtained.

Cor. 1. Hence if the centripetal force be as any power of the altitude, that
power may be found from the motion of the apsides; and conversely. That
is, if the whole angular motion, with which the body returns to the same
apse, be to the angular motion of one revolution, or 360°, as any number
as m to another as », and the altitude be called A ; the force will be as the
power Amn~° of the altitude A; the index of which power is —?g—’—z—-— 3. This
appears by the second Example. Hence it 1s plain that the force in its recess
from the centre cannot decrease in a greater than a cubed ratio of the alti-
tude. A body revolving with such a force, and parting from the apse, if it
once begins to descend, can never arrive at the lower apse or least altitude,
but will descend to the centre, describing the curved line treated of in
Cor. m1, Prop. xu1. But if it should, at its parting from the lower apse, begin
to ascend ever so little, it will ascend 7 infinitum, and never come to the
upper apse; but will describe the curved line spoken of in the same Cor.,
and Cor. vi, Prop. xL1v. So that where the force in its recess from the centre
decreases in a greater than a cubed ratio of the altitude, the body at its part-
ing from the apse, will either descend to the centre, or ascend in infinitum,
according as it descends or ascends at the beginning of its motion. But if
the force in its recess from the centre either decreases in a less than a cubed
ratio of the altitude, or increases in any ratio of the altitude whatsoever, the
body will never descend to the centre, but will at some time arrive at the
lower apse; and, on the contrary, if the body alternately ascending and
descending from one apse to another never comes to the centre, then either
the force increases in the recess from the centre, or it decreases in a less than
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a cubed ratio of the altitude; and the sooner the body returns from one apse
to another, the farther is the ratio of the forces from the cubed ratio. As if
the body should return to and from the upper apse by an alternate descent
and ascent in 8 revolutions, or in 4, or 2, or 1%2; that is, if m should be to »

—3, be Y64—3, or Y16—3, or

nn
as 8, or 4, or 2, or 172 to 1, and therefore
i

14— 3, or % — 3; then the force will be as A%% or A¥e~2 or A%° or A¥?;
that is, it will be inversely as A*~*%4, or A®~*% or A* % or A®*~*, If the body
after each revolution returns to the same apse, and the apse remains un-

, oy
moved, then m will be to 7 as 1 to 1, and therefore Amn~* will be equal to

A?

) OF 5 A’ and therefore the decrease of the forces will be in a squared

ratio of the altitude; as was demonstrated above. If the body in three
fourth parts, or two thirds, or one third, or one fourth part of an entire
revolution, return to the same apse; m willbe tor as 34 or 23 or Yaor Y4 to 1,

and therefore Amm~? is equal to A"™® or A%® or A°% or A*"®; and
therefore the force is either inversely as A™ or A%, or directly as A® or A™®.
Lastly if the body in its progress from the upper apse to the same upper
apse again, goes over one entire revolution and three degrees more, and
therefore that apse in each revolution of the body moves forward three

degrees, then 7 will be to 7 as 363° to 360°, or as 121 to 120, and therefore

nn 20528
Awn = will be equal to A™ 14641, and therefore the centripetal force will be

29523
inversely as A 14641, or inversely as A’ 73 very nearly. Therefore the cen-

tripetal force decreases in a ratio something greater than the squared ratio;
but approaching 59% times nearer to the squared than the cubed.

Cor. 1. Hence also if a body, urged by a centripetal force which is in-
versely as the square of the altitude, revolves in an ellipse whose focus is in
the centre of the forces; and a new and foreign force should be added to
or subtracted from this centripetal force, the motion of the apsides arising
from that foreign force may (by the third Example) be known; and con-

versely: If the force with which the body revolves in the ellipse be as — A A

A-cA*

and the foreign force as cA, and therefore the remaining force as s
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then (by the third Example) & will be equal to 1, 7 equal to 1, and 7 equal
to 4; and therefore the angle of revolution between the apsides is equal

to 180°\/ Iizi: Suppose that foreign force to be 357.45 times less than the

other force with which the body revolves in the ellipse; that is, ¢ to be
~% will be 180° \/2%842
1—4¢

or 180°7623, that is, 180° 45" 44”. Therefore the body, parting from the
upper apse, will arrive at the lower apse with an angular motion of 180°
45" 44", and this angular motion being repeated, will return to the upper
apse; and therefore the upper apse in each revolution will go forward
1° 31” 28”. The apse of the moon is about twice as swilt.

So much for the motion of bodies in orbits whose planes pass through
the centre of force. It now remains to determine those motions in eccentric
planes. For those authors who treat of the motion of heavy bodies used
to consider the ascent and descent of such bodies, not only in a perpendicu-
lar direction, but at all degrees of obliquity upon any given planes; and
for the same reason we are to consider in this place the motions of bodies
tending to centres by means of any forces whatsoever, when those bodies
move in eccentric planes. These planes are supposed to be perfectly smooth
and polished, so as not to retard the motion of the bodies in the least. More-
over, in these demonstrations, instead of the planes upon which those bodies
roll or slide, and which are therefore tangent planes to the bodies, I shall use
planes parallel to them, in which the centres of the bodies move, and by that
motion describe orbits. And by the same method I afterwards determine the
motions of bodies performed in curved surfaces.

100

ss71s, A or T being equal to 1; and then 180° \/
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SECTION X

The motion of bodies in given surfaces; and the oscillating pendulous
motion of bodies.

PROPOSITION XLVL PROBLEM XXXII

Any kind of centripetal force being supposed, and the centre of force, and
any plane whatsoever in which the body revolves, being given, and the
quadratures of curvilinear figures being allowed; it is required to deter-
mine the motion of a body going off from a given place with a given
velocity, in the direction of a given right line in that plane.

Let S be the centre of force, SC the least distance of that centre from the
given plane, P a body issuing from the place P in the direction of the right
line PZ, Q the same body revolving in its curve, and PQR the curve itself
which is required to be
found, described in that
given plane. Join CQ,
QS, and if in QS we
take SV proportional to
the centripetal force
with which the body is
attracted towards the
centre S, and draw VT
parallel to CQ, and
meeting SC in T; then
A4 T will the force SV be re-

solved into two (by Cor.

n of the Laws of Mo-
S tion), the force ST, and
the force TV; of which ST attracting the body in the direction of a line
perpendicular to that plane, does not at all change its motion in that
plane. But the action of the other force TV, coinciding with the position
of the plane itself, attracts the body directly towards the given point C in
that plane; and therefore causes the body to move in the plane in the same
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manner as if the force ST were taken away, and the body were to revolve
in free space about the centre C by means of the force TV alone. But there
being given the centripetal force TV with which the body Q revolves in
free space about the given centre C, there is given (by Prop. xLm) the curv:
PQR which the body describes; the place Q, in which the body will be
found at any given time; and, lastly, the velocity of the body in that place

Q. And conversely. Q.E.L

PROPOSITION XLVIIL. THEOREM XV

Supposing the centripetal force to be proportional to the distance of the
body from the centre; all bodies revolving in any planes whatsoever will
describe ellipses, and complete their revolutions in equal times; and those
which move in right lines, ranmng backwards and forwards alternately,
will complete their several periods of going and returning in the same times.

For letting all things stand as in the foregoing Proposition, the force SV,
with which the body Q revolving in any plane PQR is attracted towards the
centre S, 1s as the distance SQ; and therefore because SV and SQ, TV and
CQ are proportional, the force TV with which the body is attracted towards
the given point C in the plane of the orbit, is as the distance CQ. Therefore
the forces with which bodies found in the plane PQR are attracted towards
the point C, are in proportion to the distances equal to the forces with
which the same bodies are attracted every way towards the centre S; and
therefore the bodies will move in the same times, and in the same figures,
in any plane PQR about the point C, as they would do in free spaces about
the centre S; and therefore (by Cor. 11, Prop. x, and Cor. 11, Prop. xxxvi)
they will in equal times either describe ellipses in that plane about the cen-
tre C, or move to and fro in right lines passing through the centre C in that
plane; completing the same periods of time in all cases. Q.E.D.

SCHOLIUM

The ascent and descent of bodies in curved surfaces has a near relation
to these motions we have been speaking of. Imagine curved lines to be de-
scribed on any plane, and to revolve about any given axes passing through
the centre of force, and by that revolution to describe curved surfaces; and
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that the bodies move in such sort that their centres may be always found in
those surfaces. If those bodies oscillate to and fro with an oblique ascent
and descent, their motions will be performed in planes passing through the
axis, and therefore in the curved lines, by whose revolution those curved
surfaces were generated. In those cases, therefore, it will be sufficient to
consider the motion in those curved lines.

PROPOSITION XLVIIL. THEOREM XVI

If a wheel stands upon the outside of a globe at right angles thereto, and
revolving about its own axis goes forwards in a great circle, the length of
the curvilinear path which any point, given in the perimeter of the wheel,
hath described since the time that it touched the globe (which curvilinear
path we may call the cycloid or epicycloid ), will be to double the versed sine
of half the arc which since that time hath touched the globe in passing over
i¢, as the sum of the diameters of the globe and the wheel to the semidiam-
eter of the globe.

PROPOSITION XLIX. THEOREM XVII

If a wheel stands upon the inside of a concave globe at right angles thereto,
and revolving about its own axis goes forwards in one of the great circles of
the globe, the length of the curvilinear path which any point, given in the
perimeter of the wheel, hath described since it touched the globe, will be
to the double of the versed sine of half the arc which in all that time hath
touched the globe in passing over it, as the difference of the diameters of
the globe and the wheel to the semidiameter of the globe.

Let ABL be the globe, C its centre, BPV the wheel resting on it, E the
centre of the wheel, B the point of contact, and P the given point in the
perimeter of the wheel. Imagine this wheel to proceed in the great circle
ABL from A through B towards L, and in its progress to revolve in such a
manner that the arcs AB, PB may be always equal one to the other, and the
given point P in the perimeter of the wheel may describe in the meantime
the curvilinear path AP. Let AP be the whole curvilinear path described
since the wheel touched the globe in A, and the length of this path AP will
be to twice the versed sine of the arc ¥2PB as 2CE to CB. For let the right
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line CE (produced if need be) meet the wheel in V, and join CP, BP, EP,
VP; produce CP, and let fall thereon the perpendicular VF. Let PH, VH,
meeting in H, touch the circle in P and V, and let PH cut VF in G, and to
VP let fall the perpendiculars GI, HK. From the centre C with any radius

let there be described the circle nom, cutting the right line CP in 2, the per-
imeter of the wheel BP in 0, and the curvilinear path AP in m; and from the

centre V with the radius Vo let there be described a circle cutting VP pro-
duced in 4.
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Because the wheel in its progress always revolves about the point of con-
tact B, it is manifest that the right line BP is perpendicular to that curved
line AP which the point P of the whee! describes, and therefore that the
right line VP will touch this curve in the point P. Let the radius of the circle
nom be gradually increased or diminished so that at last it becomes equal to
the distance CP; and by reason of the similitude of the evanescent figure
Pnomgq, and the figure PEFGVI, the ultimate ratio of the evanescent short
lines Pm, Pn, Po, Pg, that is, the ratio of the momentary increments of the
curve AP, the right line CP, the circular arc BP, and the right line VP, will
be the same as of the lines PV, PF, PG, PI, respectively. But since VF is per-
pendicular to CF, and VH to CV, and therefore the angles HVG, VCF
equal; and the angle VHG (because the angles of the quadrilateral HVEP
are right in V and P) is equal to the angle CEP, the triangles VHG, CEP
will be similar; and thence it will come to pass that

EP: CE=HG: HV or HP=KI: PK,
and by addition or subtraction,

CB:CE=PI:PK,
and CB:2CE=Pl:PV=Pgq :Pm.
Therefore the decrement of the line VP, that is, the increment of the line -
BV — VP to the increment of the curved line AP is in a given ratio of CB to
2CE, and therefore (by Cor., Lem. 1v) the lengths BV — VP and AP, gen-
erated by those increments, are in the same ratio. But if BV be radius, VP
is the cosine of the angle BVP or “2BEP, and therefore BV—VP is the versed
sine of the same angle, and therefore in this wheel, whose radius is 7BV,
BV -- VP will be double the versed sine of the arc %2BP. Therefore AP is
to double the versed sine of the arc ¥2BP as 2CE to CB. Q.E.D.

The line AP in the former of these Propositions we shall name the cycloid
without the globe, the other in the latter Proposition the cycloid within the
globe, for distinction’s sake.

Cor. 1. Hence if there be described the entire cycloid ASL, and the same
be bisected in S, the length of the part PS will be to the length PV (which
is the double of the sine of the angle VBP, when EB is radius) as 2CE to
CB, and therefore in a given ratio.

Cor. 11. And the length of the semidiameter of the cycloid AS will be
equal to a right line which is to the diameter of the wheel BV as 2CE to CB.
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PROPOSITION L. PROBLEM XXXIII

To cause a pendulous body to oscillate in a given cycloid.
Let there be given within the globe QVS described with the centre C, the
cycloid QRS, bisected in R, and meeting the surface of the globe with its
extreme points Q and S on either hand. Let there be drawn CR bisecting

C
the arc QS in O, and let it be produced to A in such sort that CA may be to
CO as CO to CR. About the centre C, with the radius CA, let there be de-
scribed an exterior globe DAF; and within this globe, by a wheel whose
diameter is AO, let there be described two semicycloids AQ, AS, touching
the interior globe in Q and S, and meeting the exterior globe in A. From
that point A, with a thread APT in length equal to the line AR, let the body
T be suspended and oscillated in such manner between the two semicycloids
AQ, AS, that, as often as the pendulum parts from the perpendicular AR,
the upper part of the thread AP may be applied to that semicycloid APS
towards which the motion tends, and fold itself round that curved line, as
if it were some solid obstacle, the remaining part of the same thread PT
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which has not yet touched the semicycloid continuing straight. Then will
the weight T oscillate in the given cycloid QRS. Q.EF.

For let the thread PT meet the cycloid QRS in T, and the circle QOS in
V, and let CV be drawn; and to the rectilinear part of the thread PT from
the extreme points P and T let there be erected the perpendiculars BP, TW,
meeting the right line CV in B and W. It is evident, from the construction
and generation of the similar figures AS, SR, that those perpendiculars
PB, TW, cut off from CV the lengths VB, VW, equal the diameters of the
wheels OA, OR. Therefore TP is to VP (which is double the sine of the
angle VBP when 72BV is radius) as BW to BV, or AO+OR to AO, that
is (since CA and CO, CO and CR, and by division AO and OR are propor-
tional), as CA + CO to CA, or, if BV be bisected in E, as 2CE to CB. There-
fore (by Cor. 1, Prop. xvix), the length of the rectilinear part of the thread
PT is always equal to the arc of the cycloid PS, and the whole thread APT
1s always equal to half the cycloid APS, that is (by Cor. 11, Prop. xLix), to
the length AR. And conversely, if the string is always equal to the length
AR, the point T will always move in the given cycloid QRS. Q.E.D.

Cor. The string AR is equal to the semicycloid AS, and therefore has
the same ratio to AC, the semidiameter of the exterior globe, as the like
semicycloid SR has to CO, the semidiameter of the interior globe.

PROPOSITION LI. THEOREM XVIII

If acentripetal force tending on all sides to the centre C of a globe, be in all
places as the distance of the place from the centre; and, by this force alone
acting upon it, the body T oscillate (in the manner above described ) in the
perimeter of the cycloid QRS: I say, that all the oscillations, howsoever
unequal in themselves, will be performed in equal times.

For upon the tangent TW indefinitely produced let fall the perpendicular
CX, and join CT. Because the centripetal force with which the body T is
impelled towards C 1s as the distance CT, let this (by Cor. 1 of the Laws)
be resolved into the parts CX, TX, of which CX impelling the body directly
from P stretches the thread PT, and by the resistance the thread makes to
it is totally employed, producing no other effect; but the other part TX, im-
pelling the body transversely or towards X, directly accelerates the motion
in the cycloid. Then it is plain that the acceleration of the body, propor-
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tional to this accelerating force, will be every moment as the length TX,
that is (because CV, WV,

and TX, TW proportional to A
them are given), as the length p
TW, that is (by Cor. 1, Prop.

of the cycloid TR. If there-
fore two pendulums APT,
Apt, be unequally drawn
aside from the perpendicular
AR, and let fall together,
their accelerations will be al-
ways as the arcs to be de-
scribed TR, #R. But the parts
described at the beginning of
the motion are as the accele-
rations, that is, as the whole
spaces that are to be described
at the beginning, and there-
fore the parts which remain Ve
to be described, and the subse-

quent accelerations proportional to those parts, are also as the whole, and so
on. Therefore the accelerations, and consequently the velocities generated,
and the parts described with those velocities, and the parts to be described,
are always as the whole; and therefore the parts to be described preserving a
given ratio to each other will vanish together, that is, the two bodies oscillat-
ing will arrive together at the perpendicular AR. And since on the other
hand the ascent of the pendulums from the lowest place R through the same
cycloidal arcs with a retrograde motion, is retarded in the several places they
pass through by the same forces by which their descent was accelerated, it
i1s plain that the velocities of their ascent and descent through the same arcs
are equal, and consequently performed in equal times; and, therefore, since
the two parts of the cycloid RS and RQ lying on either side of the perpen-
dicular are similar and equal, the two pendulums will perform as well the
whole as the half of their oscillations in the same times. Q.E.D.

=
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Cor. The force with which the body T is accelerated or retarded in any
place T of the cycloid, is to the whole weight of the same body in the high-
est place S or Q as the arc of the cycloid TR is to the arc SR or QR.

PROPOSITION LIL PROBLEM XXXIV

Tr dafisna sha
L0 acjine tnc velocities aj Pcudm?fim.f in the several F!ﬁé‘;‘,’f, and the times

in which both the entire oscillations and their several parts are performed.

About any centre G, with the radius GH equal to the arc of the cycloid
RS, describe a semicircle HKM bisected by the semidiameter GK. And
if a centripetal force proportional to the distance of the places from the

centre tend to the centre G, and it be in the per-
I{{II imeter HIK equal to the centripetal force in the
perimeter of the globe QOS tending towards its
centre, and at the same time that the pendulum T

1P 1 is let fall from the highest place S, a body, as L, is
\ let fall from H to G; then because the forces which
G K act upon the bodies are equal at the beginning, and

always proportional to the spaces to be described
TR, LG, and therefore if TR and LG are equal,
are also equal in the places T and L, it is plain that
those bodies describe at the beginning equal spaces
M ST, HL, and therefore are still acted upon equally,

and continue to describe equal spaces. Therefore by
Prop. xxxvi, the time in which the body describes the arc ST is to the time
of one oscillation, as the arc HI the time in which the body H arrives at L,
to the semiperiphery HKM, the time in which the body H will come to M.
And the velocity of the pendulous body in the place T is to its velocity in
the lowest place R, that is, the velocity of the body H in the place L to its
velocity in the place G, or the momentary increment of the line HL to the
momentary increment of the line HG (the arcs HI, HK increasing with an
uniform velocity) as the ordinate LI to the radius GK, or as \/(SR*—TR?)

to SR. Hence, since in unequal oscillations there are described in equal times
arcs proportional to the entire arcs of the oscillations, there are obtained,

from the times given, both the velocities and the arcs described in all the
oscillations universally. Which was first required.
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Let now any pendulous bodies oscillate in different cycloids described
within different globes, whose absolute forces are also different; and if
the absolute force of any globe QOS
be called V, the accelerative force with A
which the pendulum is acted on in the /\
circumference of this globe, when it be-
gins to move directly towards its centre,
will be as the distance of the pendulous
body from that centre and the absolute

force of the globe conjointly, that is, as. °

CO- V. Therefore the short line HY, “§ Q
which is as this accelerated force CO - V,

will be described in a given time; and if T R

there be erected the perpendicular YZ
meeting the circumference in Z, the nas-
cent arc HZ will denote that given time.
But that nascent arc HZ varies as the cl
square root of the rectangle GH-HY,

and therefore as \/(GH - CO - V). Whence the time of an entire oscillation
in the cycloid QRS (it being as the semiperiphery HKM, which denotes
that entire oscillation, directly; and as the arc HZ, which in like manner de-
notes a given time, inversely) will be as GH directly and \/(GH-CO- V)

SR
co- v " (by Cor.,

Prop.1),as \/ KM(EBV Therefore the oscillations in all globes and cycloids,

inversely; that is, because GH and SR are equal, as \/——

performed with any absolute forces whatever, vary directly as the square
root of the length of the string, and inversely as the square root of the dis-
tance between the point of suspension and the centre of the globe, and also
inversely as the square root of the absolute force of the globe. Q.E.I

Cor. 1. Hence also the times of oscillating, falling, and revolving bodies
may be compared among themselves. For if the diameter of the wheel with
which the cycloid is described within the globe is supposed equal to the
semidiameter of the globe, the cycloid will become a right line passing
through the centre of the globe, and the oscillation will be changed into a
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descent and subsequent ascent in that right line. Hence there is given both
the time of the descent from any place to the centre, and the time equal to
it in which the body revolving uniformly about the centre of the globe at
any distance describes an arc of a quadrant. For this time (by Case 2) is to

the time of half the oscillation in any cycloid QRS as 1 to \/ }}E
Fa W

Cor. 11. Hence also follow what Sir Christopher Wren and Mr. Huygens
have discovered concerning the common cycloid. For if the diameter of the
globe be infinitely increased, its spherical surface will be changed into a
plane, and the centripetal force will act uniformly in the direction of lines
perpendicular to that plane, and our cycloid will become the same with the
common cycloid. But in that case the length of the arc of the cycloid be-
tween that plane and the describing point will become equal to four times
the versed sine of half the arc of the wheel between the same plane and
the describing point, as was discovered by Sir Christopher Wren. And a
pendulum between two such cycloids will oscillate in a similar and equal
cycloid in equal times, as Mr. Huygens demonstrated. The descent of heavy
bodies also in the time of one oscillation will be the same as Mr. Huygens
exhibited.

The Propositions here demonstrated are adapted to the true constitution
of the earth, so far as wheels moving in any of its great circles will describe,
by the motions of nails fixed in their perimeters, cycloids without the globe;
and pendulums, in mines and deep caverns of the earth, must oscillate in
cycloids within the globe, that those oscillations may be performed in equal
times. For gravity (as will be shown in the third Book) decreases in its
progress from the surface of the earth; upwards as the square root of the
distances from the centre of the earth; downwards as these distances.

PROPOSITION LIILL PROBLEM XXXV

Granting the quadratures of curvilinear figures, it is required to find the
forces with which bodies moving in given curved lines may always perform
their oscillations in equal times.

Let the body T oscillate in any curved line STRQ, whose axis is AR pass-

ing through the centre of force C. Draw TX touching that curve in any
place of the body T, and in that tangent TX take TY equal to the arc TR.
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The length of that arc is known from the common methods used for the
quadratures of figures. From the point Y draw the right line YZ perpen-

dicular to the tangent. Draw CT A
meeting YZ in Z, and the centrip-
etal force will be proportional to

T MNMEAET
[y oy ™

the right line TZ. Q

For if the force with which the
body is attracted from T towards C
be expressed by the right line TZ
taken proportional to it, that force
will be resolved into two forces S 7

TY, YZ, of which YZ, drawing the
body in the direction of the length
of the thread PT, does not at all T R

change its motion; whereas the ~—_

other force TY directly accelerates X

or retards its motion in the curve

STRQ. Therefore since that force z

is as the space to be described TR,

the accelerations or retardations of

the body in describing two propor-

tional parts (a greater and a less) c

of two oscillations, will be always as those parts, and therefore will cause

those parts to be described together. But bodies which continually describe
in the same time parts proportional to the

A whole, will describe the whole in the same

time. Q.E.D.
Cor. 1. Hence if the body T, hanging by a
5 Q  rectilinear thread AT from the centre A, de-
- y scribe the circular arc STRQ, and in the
K meantime be acted on by any force tending

downwards with parallel directions, which
is to the uniform force of gravity as the arc
TR to its sine TN, the times of the several
-z oscillations will be equal. For because TZ,
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AR are parallel, the triangles ATN, ZTY are similar; and therefore TZ will
be to AT as TY to TN that is, if the uniform force of gravity be expressed
by the given length AT, the force TZ, by which the oscillations become
isochronous, will be to the force of gravity AT, as the arc TR equal to TY
is to TN the sine of that arc.

Cor. 11. And therefore in clocks, if forces are impressed by

upon the pendulum which continues the motion, and so compounded with
the force of gravity that the whole force tending downwards will be always
as a line which is obtained by dividing the product of the arc TR and the
radius AR, by the sine TN, then all the oscillations will become isochronous.

PROPOSITION LIV. PROBLEM XXXVI

Granting the quadratures of curvilinear figures, 1t is required to find the
times in which bodies by means of any centripetal force will descend or
ascend in any curved lines in a plane passing through the centre of force.

Let the body descend from any place S, and move in any curve STZR
given in a plane passing through the centre of force C. Join CS, and let it
be divided into innumerable equal parts, and let Dd be one of those parts.

From the centre C, with the radii

CD, Cd, let the circles DT, d# be

Q 3 described, meeting the curved line
P ST:R in T and 2. And because the
law of centripetal force is given, and
also the altitude CS from which the
e A body at first fell, there will be given
P the velocity of the body in any other

altitude CT (by Prop. xxxix). But
the time in which the body describes
the short line T% is as the length of
that short line, that is, directly as the
secant of the angle #T'C and inverse-
ly as the velocity. Let the ordinate
DN, proportional to this time, be

: made perpendicular to the right line
cf CS at the point D, and because Dd

3z
g
|
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is given, the rectangle Dd - DN, that is, the area DN#2d, will be proportional
to the same time. Therefore if PNz be a curved line which the point N
continually touches, and its asymptote be the right line SQ standing upon
the line CS at right angles, the area SQPND will be proportional to the time
in which the body in its descent hath described the line ST'; and therefore

that area being found, the time is also given. Q.E.L

PROPOSITION LV. THEOREM XIX

If a body move in any curved surface, whose axis passes through the centre
of force, and from the body a perpendicular be let fall upon the axis; and
aline parallel and equal thereto be drawn from any given point of the axis:
I say, that this parallel line will describe an area proportional to the time.

Let BKL be a curved sur-
face, T a body revolving in
it, STR a curve which the
body describes in the same,
S the beginning of the
curve, OMK the axis of
the curved surface, TN a
right line let fall perpen-
dicularly from the body to
the axis; OP a line parallel
and equal thereto drawn
from the given point O in
the axis; AP the path de-
scribed by the point P in
the plane AOP in which
the revolving line OP is
found; A the beginning of
that path answering to the
point S; TC a right line drawn from the body to the centre; TG a part
thereof proportional to the centripetal force with which the body tends
towards the centre C; TM a right line perpendicular to the curved surface;
TI a part thereof proportional to the force of pressure with which the body

C
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urges the surface, and therefore with which it is again repelled by the sur-
face towards M; PTF a right line parallel to the axis and passing through
the body, and GF, IH right lines let fall perpendicularly from the points
G and I upon that parallel PHTEF. I say, now, that the area AOP, described
by the radius OP from the beginning of the motion, is proportional to the
time. For the force TG (by Cor. 1 of the Laws of Motion) is resolved into
the forces TF, FG; and the force T1 into the forces TH, HI; but the forces
TF, TH, acting in the direction of the line PF perpendicular to the plane
AOP, introduce no change in the motion of the body but in a direction per-
pendicular to that plane. Therefore its motion, so far as it hath the same
direction with the position of the plane, that is, the motion of the point P, by
which the projection AP of the curve is described in that plane, is the same
as if the forces TF, TH were taken away, and the body were acted on by
the forces FG, HI alone; that is, the same as if the body were to describe in
the plane AOP the curve AP by means of a centripetal force tending to -
the centre O, and equal to the sum of the forces FG and HI. But with such
a force as that (by Prop. 1) the area AOP will be described proportional to
the time. Q.E.D.

Cor. By the same reasoning, if a body, acted on by forces tending to two
or more centres in the same given right line CO, should describe in a free
space any curved line ST, the area AOP would be always proportional to
the time.

PROPOSITION LVIL. PROBLEM XXXVII

Granting the quadratures of curvilinear figures, and supposing that there
are given both the law of centripetal force tending to a given centre, and
the curved surface whose axis passes through that centre; it is required to
find the curve which a body will describe in that surface, when going off
from a given place with a given velocity, and in a given direction in that
surface.

The last construction remaining, let the body T go from the given place
S, in the direction of a line given by position, and turn into the curve sought
STR, whose orthographic projection in the plane BDO is AP. And from the
given velocity of the body in the altitude SC, its velocity in any other alti-
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tude TC will be also given. With that velocity, in a given moment of time,
let the body describe the segment T# of its curve and let Pp be the projection
of that segment described

in the plane AOP. Join Op,
and a little circle being de-

scribed upon the curved
surface about the centre T
with the radius Tz, let the
projection of that little cir-
cle in the plane AOP be
the ellipse Q. And be-
cause the magnitude of
that little circle Tz, and
TN or PO its distance from
the axis CO is also given,
the ellipse pQ will be given
both in kind and magni-
tude, as also its position to
the right line PO. And
since the area POp is pro-
portional to the time, and
therefore given because the time is given, the angle POp will be given. And
thence will be given p the common intersection of the ellipse and the right
line Op, together with the angle OPp, in which the projection APp of the
curve cuts the line OP. But from thence (by comparing Prop. xL1, with its
Cor. 11) the manner of determining the curve APp easily appears. Then
from the several points P of that projection erecting to the plane AOP, the
perpendiculars PT meeting the curved surface in T, there will be given the
several points T of the curve. Q.E.L

C
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SECTION XI
The motions of bodies tending to each other with centripetal forces.

I have hitherto been treating of the attractions of bodies towards an im-
movable centre; though very probably there is no such thing existent in
nature. For attractions are made towards bodies, and the actions of the
bodies attracted and attracting are always reciprocal and equal, by Law 111
so that if there are two bodies, neither the attracted nor the attracting body
is truly at rest, but both (by Cor. v of the Laws of Motion), being as it were
mutually attracted, revolve about a common centre of gravity. And if there
be more bodies, which either are attracted by one body, which is attracted
by them again, or which all attract each other mutually, these bodies will
be so moved among themselves, that their common centre of gravity will
either be at rest, or move uniformly forwards in a right line. I shall there-
fore at present go on to treat of the motion of bodies attracting each other;
considering the centripetal forces as attractions; though perhaps in a physi-
cal strictness they may more truly be called impulses. But these Propositions
are to be considered as purely mathematical; and therefore, laying aside all
physical considerations, I make use of a familiar way of speaking, to make
myself the more easily understood by a mathematical reader.

PROPOSITION LVIL. THEOREM XX

Two bodies attracting each other mutually describe similar figures about
their common centre of gravity, and about each other mutually.

For the distances of the bodies from their common centre of gravity are
inversely as the bodies; and therefore in a given ratio to each other; and
thence, by composition of ratios, in a given ratio to the whole distance
between the bodies. Now these distances are carried round their common
extremity with an uniform angular motion, because lying in the same right
line they never change their inclination to each other. But right lines that
are in a given ratio to each other, and are carried round their extremities
with an uniform angular motion, describe upon planes, which either rest
together with them, or are moved with any motion not angular, figures
entirely similar round those extremities. Therefore the figures described by
the revolution of these distances are similar. Q.E.D.
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PROPOSITION LVIII. THEOREM XXI

If two bodies attract each other with forces of any kind, and revolve about
the common centre of gravity: I say, that, by the same forces, there may be
described round ether body unmoved a figure similar and equal to the
figures which the bodies so moving describe round each other.

Let the bodies S and P revolve about their common centre of gravity C,
proceeding from S to T, and from P to Q. From the given point s let there
be continually drawn sp, sg, equal and parallel to SP, TQ; and the curve
pqv, which the point p describes in its revolution round the fixed point s,

will be similar and equal to the curves which the bodies S and P describe
about cach other; and therefore, by Theor. xx, similar to the curves ST and
PQV which the same bodies describe about their common centre of gravity
C; and that because the proportions of the lines SC, CP, and SP or sp, to
each other, are given.

Case 1. The common centre of gravity C (by Cor. v of the Laws of Mo-
tion) is either at rest, or moves uniformly in a right line. Let us first suppose
it at rest, and in s and p let there be placed two bodies, one immovable in s,
the other movable in p, similar and equal to the bodies S and P. Then let
the right lines PR and pr touch the curves PQ and pg in P and p, and pro-
duc CQ and sg to R and r. And because the figures CPRQ, sprg are similar,
RQ will be to 4 as CP to sp, and therefore in a given ratio. Hence if the
force with which the body P is attracted towards the body S, and by conse-
quence towards the intermediate centre C, were to the force with which the
body p is attracted towards the centre s, in the same given ratio, these forces
would in equal times attract the bodies from the tangents PR, gr to the arcs
PQ, pg, through the intervals proportional to them RQ, rg; and therefore
this last force (tending to 5) would make the body p revolve in the curve
pgqv, which would become similar to the curve PQV, in which the first force



166 NEWTON'S MATHEMATICAL PRINCIPLES

obliges the body P to revolve; and their revolutions would be completed in
the same times. But because those forces are not to each other in the ratio
of CP to sp, but (by reason of the similarity and equality of the bodies S
and 5, P and p, and the equality of the distances SP, sp) mutually equal, the
bodies in equal times will be equally drawn from the tangents; and there-
fore that the body p may be attracted through the greater interval 7g, there
is required a greater time, which will vary as the square root of the inter-
vals; because, by Lem. x, the spaces described at the beginning of the
motion are as the square of the times. Suppose, then, the velocity of the
body # to be to the velocity of the body P as the square root of the ratio of
the distance sp to the distance CP, so that the arcs pg, PQ, which are in a
simple proportion to each other, may be described in times that are as the
square root of the distances; and the bodies P, p, always attracted by equal
forces, will describe round the fixed centres C and s similar figures PQV,
pqv, the latter of which pgv is similar and equal to the figure which the
body P describes round the movable body S. Q.E.D.

Cask 2. Suppose now that the common centre of gravity, together with
the space in which the bodies are moved among themselves, proceeds uni-
formly in a right line; and (by Cor. v1 of the Laws of Motion) all the
motions in this space will be performed in the same manner as before; and
therefore the bodies will describe about each other the same figures as
before, which will be therefore similar and equal to the figure pgv. Q. E.D.

Cor. 1. Hence two bodies attracting each other with forces proportional
to their distance, describe (by Prop. x), both round their common centre of
gravity, and round each other, concentric ellipses; and, conversely, if such
figures are described, the forces are proportional to the distances.

Cor. 1. And two bodies, whose forces are inversely proportional to the
square of their distance, describe (by Prop. xi, x11, x111), both round their
common centre of gravity, and round each other, conic sections having
their focus in the centre about which the figures are described. And, con-
versely, if such figures are described, the centripetal forces are inversely
proportional to the square of the distance.

Cor. 1. Any two bodies revolving round their common centre of gravity
describe areas proportional to the times, by radii drawn both to that centre
and to each other.
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PROPOSITION LIX. THEOREM XXII

T he periodic time of two bodies S and P revolving round their common
centre of gravity C, is to the periodic time of one of the bodies P revolving
round the other S remaining fixed, and describing a figure similar and
equal to those which the bodies describe about each other, as \/S is to
V(S+P).

For, by the demonstration of the last Proposition, the times in which any
similar arcs PQ and pgq are described are as \/CP is to \/SP, or \/sp, that
is, as \/S is to \/(S+P). And by composition of ratios, the sums of the
times in which all the similar arcs PQ and pg are described, that is, the

whole times in which the whole similar figures are described, are in the
same ratio, \/S to \/(S+P). Q.ED.

PROPOSITION LX. THEOREM XXIII

If two bodies S and P, attracting each other with forces inversely propor-
tional to the square of their distance, revolve about their common centre of
gravaty: 1 say, that the principal axis of the ellipse which either of the
bodies, as P, describes by this motion about the other S, will be to the prin-
cipal axis of the ellipse, which the same body P may describe in the same
periodic time about the other body S fixed, as the sum of the two bodies
S+P to the first of two mean proportionals’ between that sum and the
other body S.

For if the ellipses described were equal to each other, their periodic times
by the last Theorem would be as the square root of the ratio of the body S
to the sum of the bodies S + P. Let the periodic time in the latter ellipse be
diminished in that ratio, and the periodic times will become equal; but, by
Prop. xv, the principal axis of the ellipse will be diminished in a ratio which
1s the %th power of the former ratio; that is, in a ratio to which the ratio
of S to S+P is the cube, and therefore that axis will be to the principal axis
of the other ellipse as the first of two mean proportionals between S + P and
S to S+P. And inversely the principal axis of the ellipse described about
the movable body will be to the principal axis of that described round the
immovable as S+ P to the first of two mean proportionals between S+ P
and S. Q.E.D.

[1 Appendix, Note 24.]
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PROPOSITION LXI. THEOREM XXIV
If two bodies attracting each other with any Rind of forces, and not other-
wise agitated or obstructed, are moved in any manner whatsoever, those
motions will be the same as if they did not at all attract each other, but were
both attracted with the same forces by a third body placed in thetr common
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respect of the distance of the bodies from the common centre, as in respect
of the distance between the two bodies.

For those forces with which the bodies attract each other, by tending to
the bodies, tend also to the common centre of gravity lying directly between
them; and therefore are the same as if they proceeded from an intermediate
body. Q.E.D.

And because there is given the ratio of the distance of either body from
that common centre to the distance between the two bodies, there 1s given,
of course, the ratio of any power of one distance to the same power of the
other distance; and also the ratio of any quantity derived in any manner
from one of the distances compounded in any manner with given quanti-
ties, to another quantity derived in like manner from the other distance,
and as many given quantities having that given ratio of the distances to the
first. Therefore if the force with which one body is attracted by another be
directly or inversely as the distance of the bodies from each other, or as any
power of that distance; or, lastly, as any quantity derived after any manner
from that distance compounded with given quantities; then will the same
force with which the same body is attracted to the common centre of grav-
ity be in like manner directly or inversely as the distance of the attracted
body from the common centre, or as any power of that distance; or, lastly,
as a quantity derived in like sort from that distance compounded with anal-
ogous given quantities. That is, the law of attracting force will be the same
with respect to both distances. Q.E.D.

PROPOSITION LXII.L PROBLEM XXXVIII
To determine the motions of two bodies which attract each other with
forces inversely proportional to the squares of the distance between them,
and are let fall from given places.
The bodies, by the last Theorem, will be moved in the same manner
as if they were attracted by a third placed in the common centre of their
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gravity; and by the hypothesis that centre will be fixed at the beginning
of their motion, and therefore (by Cor. 1v of the Laws of Motion) will be
always fixed. The motions of the bodies are therefore to be determined (by
Prob. xxv) in the same manner as if they were impelled by forces tending
to that centre; and then we shall have the motions of the bodies attracting
each other. Q.E.I

PROPOSITION LXIII. PROBLEM XXXIX

To determine the motions of two bodies attracting each other with forces
inversely proportional to the squares of theiwr distance, and going off from
given places in given directions with given velocities.

The motions of the bodies at the beginning being given, there is given
also the uniform motion of the common centre of gravity, and the motion
of the space which moves along with this centre uniformly in a right line,
and also the very first, or beginning motions of the bodies in respect of this
space. Then (by Cor. v of the Laws, and the last Theorem) the subsequent
motions will be performed in the same manner in that space, as if that space
together with the common centre of gravity were at rest, and as if the
bodies did not attract each other, but were attracted by a third body placed
in that centre. The motion therefore in this movable space of each body
going off from a given place, in a given direction, with a given velocity, and
acted upon by a centripetal force tending to that centre, is to be determined
by Prob. 1x and xxv1, and at the same time will be obtained the motion of
the other round the same centre. With this motion compound the uniform
progressive motion of the entire system of the space and the bodies revolv-
ing in it, and there will be obtained the absolute motion of the bodies in
immovable space. Q.E.L

PROPOSITION LXIV. PROBLEM XL

Supposing forces with which bodies attract each other to increase in a
simple ratio of their distances from the centres; it is required to find the
motions of several bodies among themselves.

Suppose the first two bodies T and L to have their common centre of
gravity in D. These, by Cor. 1, Theor. xxi1, will describe ellipses having their
centres in D, the magnitudes of which ellipses are known by Prob. v.
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Let now a third body S attract the two former T and L with the accelera-
tive forces ST, SL, and let it be attracted again by them. The force ST (by
Cor. 11 of the Laws of Motion) is resolved into the forces SD, DT; and the
force SL into the {orces SD and DL. Now the forces DT, DL, which are as
their sum TL, and therefore
as the accelerative forces with

which the bodies T and L at-

: D tract each other, added to the

forces of the bodies T and L,

the first to the first, and the

last to the last, compose forces

Ko SVDUTORIURIRRRp: 8 ¥ proportional to the distances
'V

DT and DL as before, but
only greater than those for-
mer forces; and therefore (by Cor. 1, Prop. x, and Cor. 1 and vi1, Prop. 1v)
they will cause those bodies to describe ellipses as before, but with a swifter
motion. The remaining accelerative forces SD and DL, by the motive forces
SD - T and SD - L, which are as the bodies attracting those bodies equally
and in the direction of the lines TT, LK parallel to DS, do not at all change
their situations with respect to one another, but cause them equally to ap-
proach to the line IK ; which must be imagined drawn through the middie
of the body S, and perpendicular to the line DS. But that approach to the
line IK will be hindered by causing the system of the bodies T and L on one
side, and the body S on the other, with proper velocities, to revolve round
the common centre of gravity C. With such a motion the body S, because
the sum of the motive forces SD-T and SD - L is proportional to the dis-
tance CS, tends to the centre C, and will describe an ellipse round that
centre; and the point D, because the lines CS and CD are proportional,
will describe a like ellipse over against it. But the bodies T and L, attracted
by the motive forces SD - T and SD - L, the first by the first, and the last by
the last, equally and in the direction of the parallel lines TT and LK, as was
said before, will (by Cor. v and v of the Laws of Motion) continue to
describe their ellipses round the movable centre D, as before. Q.E.L

Let there be added a fourth body V, and, by the like reasoning, it will be
demonstrated that this body and the point C will describe ellipses about the
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common centre of gravity B; the motions of the bodies T, L, and S round
the centres D and C remaining the same as before, but accelerated. And by
the same method one may add yet more bodies at pleasure. Q.E.I

This would be the case, though the bodies T and L should attract each
other with accelerative forces greater or less than those with which they
attract the other bodies in proportion to their distance. Let all the accelera-
tive attractions be to each other as the distances multiplied into the attract-
ing bodies; and from what has gone before it will easily be concluded that
all the bodies will describe different ellipses with equal periodic times about

their common centre of gravity B, in an immovable plane. Q.E.L

PROPOSITION LXV., THEOREM XXV

Bodies, whose forces decrease as the square of their distances from their
centres, may move among themselves in ellipses; and by radii drawn to the
foci may describe areas very nearly proportional to the times.

In the last Proposition we demonstrated that case in which the motions
will be performed exactly in ellipses. The more distant the law of the forces
is from the law in that case, the more will the bodies disturb each other’s
motions; neither is it possible that bodies attracting each other according to
the law supposed in this Proposition should move exactly in ellipses, unless
by keeping a certain proportion of distances from each other. However, in
the following cases the orbits will not much differ from ellipses.

Case 1. Imagine several lesser bodies to revolve about some very great
one at different distances from it, and suppose absolute forces tending to
every one of the bodies proportional to each. And because (by Cor. 1v of
the Laws) the common centre of gravity of them all is either at rest, or
moves uniformly forwards in a right line, suppose the lesser bodies so small
that the great body may be never at a sensible distance from that centre;
and then the great body will, without any sensible error, be either at rest, or
move uniformly forwards in a right line; and the lesser will revolve about
that great one in ellipses, and by radii drawn thereto will describe areas pro-
portional to the times; if we except the errors that may be introduced by
the receding of the great body from the common centre of gravity, or by
the actions of the lesser bodies upon each other. But the lesser bodies may
be so far diminished, as that this recess and the actions of the bodies on
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cach other may become less than any assignable; and therefore so as that
the orbits may become ellipses, and the areas answer to the times, without
any error that is not less than any assignable. Q.E.O.

Case 2. Let us imagine a system of lesser bodies revolving about a very
great one in the manner just described, or any other system of two bodies
revolving about each other, to be moving uniformly forwards in a right line,
and in the meantime to be impelled sideways by the force of another vastly
greater body situate at a great distance. And because the equal accelerative
forces with which the bodies are impelled in parallel directions do not
change the situation of the bodies with respect to each other, but only oblige
the whole system to change its place while the parts still retain their mo-
tions among themselves, it is manifest that no change in those motions of
the attracted bodies can arise from their attractions towards the greater,
unless by the inequality of the accelerative attractions, or by the inclinations
of the lines towards each other, in whose directions the attractions are
made. Suppose, therefore, all the accelerative attractions made towards the
great body to be among themselves inversely as the squares of the distances;
and then, by increasing the distance of the great body till the differences
of the right lines drawn from that to the others in respect of their length,
and the inclinations of those lines to each other, be less than any given, the
motions of the parts of the system will continue without errors that are not
less than any given. And because, by the small distance of those parts from
each other, the whole system is attracted as if it were but one body, it will
therefore be moved by this attraction as if it were one body; that is, its centre
of gravity will describe about the great body one of the conic sections (that
is, a parabola or hyperbola when the attraction is but languid and an ellipse
when it is more vigorous) ; and by radii drawn thereto, it will describe areas
proportional to the times, without any errors but those which arise from the
distances of the parts, and these are by the supposition exceedingly small,
and may be diminished at pleasure. Q.E.O.

By a like reasoning one may proceed to more complicated cases iz in-
finitum.

Cor 1. In the second Case, the nearer the very great body approaches to
the system of two or more revolving bodies, the greater will the perturba-
tion be of the motions of the parts of the system among themselves; because
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the inclinations of the lines drawn from that great body to those parts
become greater; and the inequality of the proportion is also greater.

Cor. 11. But the perturbation will be greatest of all, if we suppose the
accelerative attractions of the parts of the system towards the greatest body
of all are not to each other inversely as the squares of the distances from
that great body; especially if the inequality of this proportion be greater
than the inequality of the proportion of the distances from the great body.
For if the accelerative force, acting in parallel directions and equally, causes
no perturbation in the motions of the parts of the system, it must of course,
when it acts unequally, cause a perturbation somewhere, which will be
greater or less as the inequality is greater or less. The excess of the greater
impulses acting upon some bodies, and not acting upon others, must neces-
sarily change their situation among themselves. And this perturbation,
added to the perturbation arising from the inequality and inclination of
the lines, makes the whole perturbation greater.

Cor. m. Hence if the parts of this system move in ellipses or circles
without any remarkable perturbation, it is manifest that, if they are at all
impelled by accelerative forces tending to any other bodies, the impulse is
very weak, or else is impressed very near equally and in parallel directions
upon all of them.

PROPOSITION LXVIL. THEOREM XXVI

If three bodies, whose forces decrease as the square of the distances, attract
each other; and the accelerative attractions of any two towards the third
be between themselves inversely as the squares of the distances; and the
two least revolve about the greatest: 1 say, that the interior of the two revoly-
ing bodies will, by radii drawn to the innermost and greatest, describe round
that body areas more proportional to the times, and a figure more approach-
ing to that of an ellipse having its focus in the point of intersection of the
radii, if that great body be agitated by those attractions, than it would do
if that great body were not attracted at all by the lesser, but remained at
rest; or than it would do if that great body were very much more or very
much less attracted, or very much more or very much less agitated, by the
attractions.
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This appears plainly enough from the demonstration of the second Cor-
ollary of the foregoing Proposition; but it may be made out after this man-
ner by a way of reasoning more distinct and more universally convincing.

Caske 1. Let the lesser bodies P and S revolve in the same plane about the
greatest body T, the body P describing the interior orbit PAB, and S the

.
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exterior orbit ESE. Let SK be the mean distance of the bodies P and §; and
let the accelerative attraction of the body P towards S, at that mean dis-
tance, be expressed by that line SK. Make SL to SK as the square of SK
to the square of SP, and SL will be the accelerative attraction of the body -
P towards S at any distance SP. Join PT, and draw LM parallel to it meet-

E
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ing ST in M; and the attraction SL will be resolved (by Cor. 1 of the Laws
of Motion) into the attractions SM, LM. And so the body P will be urged
with a threefold accelerative force. One of these forces tends towards T, and
arises from the mutual attraction of the bodies T and P. By this force alone
the body P would describe round the body T, by the radius PT, areas pro-
portional to the times, and an ellipse whose focus is in the centre of the body
T; and this it would do whether the body T remained unmoved, or whether
it were agitated by that attraction. This appears from Prop. x1, and Cor. 11
and w1 of Theor. xx1. The other force is that of the attraction LM, which,
because it tends from P to T, will be superadded to and coincide with the
former force; and cause the areas to be still proportional to the times, by Cor.
r1, Theor. xx1. But because it is not inversely proportional to the square of
the distance PT, it will compose, when added to the former, a force varying
from that proportion; this variation will be the greater by as much as the
proportion of this force to the former 1s greater, other things remaining the
same. Therefore, since by Prop. x1, and by Cor. 11, Theor. xx1, the force with
which the ellipse is described about the focus T ought to be directed to that
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focus, and to be inversely proportional to the square of the distance PT, that
compounded force varying from that proportion will make the orbit PAB
vary from the figure of an ellipse that has its focus in the point T; and so
much the more by as much as the variation from that proportion is greater;
and in consequence by as much as the proportion of the second force LM
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third force SM, attracting the body P in a direction parallel to ST, composes
with the other forces a new force which is no longer directed from P to T;
and this varies so much more from this direction by as much as the pro-
portion of the third force to the other forces is greater, other things remain-
ing the same; and therefore causes the body P to describe, by the radius TP,
areas no longer proportional to the times; and therefore makes the variation
from that proportionality so much greater by as much as the proportion of
this force to the others is greater. But this third force will increase the varia-
tion of the orbit PAB from the elliptical figure before mentioned upon two
accounts: first, because that force is not directed from P to T'; and, secondly,
because it 1s not inversely proportional to the square of the distance PT.
These things being premised, it is manifest that the areas are then most
nearly proportional to the times, when that third force is the least possible,
the rest preserving their former quantity; and that the orbit PAB does then
approach nearest to the elliptical figure above mentioned, when both the
second and third, but especially the third force, is the least possible; the first
force remaining in its former quantity.

Let the accelerative attraction of the body T towards S be expressed by
the line SN; then if the accelerative attractions SM and SN were equal,
these, attracting the bodies T and P equally and in parallel directions, would
not at all change their situation with respect to each other. The motions of
the bodies between themselves would be the same in that case as if those
attractions did not act at all; by Cor. vi of the Laws of Motion. And, by a
like reasoning, if the attraction SN is less than the attraction SM, it will
take away out of the attraction SM the part SN, so that there will remain
only the part (of the attraction) MN to disturb the proportionality of the
arcas and times, and the elliptical figure of the orbit. And in like manner
if the attraction SN be greater than the attraction SM, the perturbation of
the orbit and proportion will be produced by the difference MN alone.
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After this manner the attraction SN reduces always the attraction SM to
the attraction MN, the first and second attractions remaining perfectly
unchanged; and therefore the areas and times come then nearest to pro-
portionality, and the orbit PAB to the above-mentioned elliptical figure,
when the attraction MN is either none, or the least that is possible; that 1s,
when the accelerative attractions of the bodies P and T approach as near as
possible to equality ; that is, when the attraction SN is neither none at all, nor
less than the least of all the attractions SM, but s, as it were, a mean between
the greatest and least of all those attractions SM, that 1s, not much greater
nor much less than the attraction SK. Q.E.D.

Cask 2. Let now the lesser bodies P, S revolve about a greater T in dif-
ferent planes; and the force LM, acting in the direction of the line PT
sttuated in the plane of the orbit PAB, will have the same effect as before;
neither will it draw the body P from the plane of its orbit. But the other
force NM, acting in the direction of a line parallel to ST (and therefore,
when the body S is without the line of the nodes, inclined to the plane of
the orbit PAB), besides the perturbation of the motion just now spoken of
as to longitude, introduces another perturbation also as to latitude, attract-
ing the body P out of the plane of its orbit. And this perturbation, in any
given situation of the bodies P and T to each other, will be as the generating
force MN; and therefore becomes least when the force MN is least, that is
(as was just now shown), where the attraction SN is not much greater nor
much less than the attraction SK. Q.E.D.

Cor. 1. Hence it may be easily inferred, that if several less bodies P, S, R,
&c., revolve about a very great body T, the motion of the innermost revolv-
ing body P will be least disturbed by the attractions of the others, when the
great body is as well attracted and agitated by the rest (according to the
ratio of the accelerative forces) as the rest are by each other.

Cor. 1. In a system of three bodies T, P, S, if the accelerative attractions
of any two of them towards a third be to each other inversely as the squares
of the distances, the body P, by the radius PT, will describe 1ts area about
the body T swifter near the conjunction A and the opposition B than it will
near the quadratures C and D. For every force with which the body P is
acted on and the body T is not, and which does not act in the direction of
the line PT, ‘does either accelerate or retard the description of the area,



BOOK I: THE MOTION OF BODIES 177

according as 1ts direction is the same as, or contrary to that of the motion of
the body. Such is the force NM. This force in the passage of the body P
from C to A tends in the direction in which the body is moving, and there-
fore accelerates it; then as far as D, it tends in the opposite direction, and
retards the motion; then in the direction of the body, as far as B; and lastly
in a contr ary dir CLLIUU., as it moves from B to C.

Cor. 1. And from the same reasoning it appears that the body P, other
things remaining the same, moves more swiftly in the conjunction and
opposition than in the quadratures.

Cor.1v. The orbit of the body P, other things remaining the same, is more
curved at the quadratures than at the conjunction and opposition. For the
swifter bodies move, the less they deflect from a rectilinear path. And be-
sides, the force KL, or NM, at the conjunction and opposition, is contrary to
the force with which the body T attracts the body P, and therefore dimin-
ishes that force; but the body P will deflect the less from a rectilinear path
the less it is impelled towards the body T.

f
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Cor. v. Hence the body P, other things remaining the same, goes farther
from the body T at the quadratures than at the conjunction and opposition.
This is said, however, when no account is taken of the variable eccentricity.
For if the orbit of the body P be eccentric, its eccentricity (as will be shown
presently by Cor. 1x) will be greatest when the apsides are in the syzygies;
and thence it may sometimes come to pass that the body P, in its near ap-
proach to the farther apse, may go farther from the body T at the syzygies
than at the quadratures.

Cor. v1. Because the centripetal force of the central body T, by which the
body P is retained in its orbit, is increased at the quadratures by the addition
caused by the force LM, and diminished at the syzygies by the subtraction
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of the force KL, and, because the force KL is greater than LM, it is more
diminished than increased; and, moreover, since that centripetal force (by
Cor. 11, Prop. 1v) varies directly as the radius TP, and inversely as the square
of the pertodical time, it 1s plain that the resulting ratio is diminished by
the action of the force KL ; and therefore that the periodical time, suppos-
ing the radius of the orbit PT to remain the same, will be increased, and
that as the square root of that ratio in which the centripetal force is dimin-
ished; and, therefore, supposing this radius increased or diminished, the
periodical time will be increased more or diminished less than in the %:th
power of this radius, by Cor. vi, Prop. 1v. If that force of the central body
should gradually decay, the body P being less and less attracted would go
farther and farther from the centre T; and, on the contrary, if it were in-
creased, it would draw nearer to 1t. Therefore if the action of the distant
body S, by which that force is diminished, were to increase and decrease by
turns, the radius TP would be also increased and diminished by turns; and
the pertodical time would be increased and diminished in a ratio com-
pounded of the %:th power of the ratio of the radius, and of the square
root of that ratio in which the centripetal force of the central body T was
diminished or increased, by the increase or decrease of the action of the
distant body S.

Cor vin It also follows, from what was before laid down, that the axis of
the ellipse described by the body P, or the line of the apsides, does as to its
angular motion go forwards and backwards by turns, but more forwards
than backwards, and by the excess of its direct motion is on the whole

carried forwards. For the force with which the body P 1s urged to the body
T at the quadratures, where the force MN vanishes, is compounded of the
force LM and the centripetal force with which the body T attracts the body
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P. The first force LM, if the distance PT be increased, is increased in nearly
the same proportion with that distance, and the other force decreases as the
square of the ratio of the distance; and therefore the sum of these two
forces decreases in less than the square of the ratio of the distance PT;
and therefore, by Cor. 1, Prop. xLv, will make the line of the apsides, or,
which 1s the same thing, the upper apse, to go backwards. But at the con-
junction and opposition the force with which the body P is urged towards
the body T is the difference of the force KL, and of the force with which the
body T attracts the body P; and that difference, because the force KL is very
nearly increased in the ratio of the distance PT, decreases in more than the
square of the ratio of the distance PT'; and therefore, by Cor. 1, Prop. xvv,
causes the line of the apsides to go forwards. In the places between the
syzygies and the quadratures, the motion of the line of the apsides depends
upon both of these causes conjointly, so that it either goes forwards or back-
wards in proportion to the excess of one of these causes above the other.
Therefore since the force KL in the syzygies is almost twice as great as the
force LM 1n the quadratures, the excess will be on the side of the force KL,
and by consequence the line of the apsides will be carried forwards. The
truth of this and the foregoing Corollary will be more easily understood
by conceiving the system of the two bodies T and P to be surrounded on
every side by several bodies S, S, S, &c., disposed about the orbit ESE. For
by the actions of these bodies the action of the body T will be diminished on
every side, and decrease in more than the square of the ratio of the distance.

Cor. viir. But since the direct or retrograde motion of the apsides depends
upon the decrease of the centripetal force, that is, upon its being in a greater
or less ratio than the square of the ratio of the distance TP, in the passage
of the body from the lower apse to the upper; and upon a like increase in
its return to the lower apse again; and therefore becomes greatest where
the proportion of the force at the upper apse to the force at the lower apse
recedes farthest from the inverse square of the ratio of the distances; 1t 1s
plain that, when the apsides are in the syzygies, they will, by reason of the
subtracted force KL or NM —LM, go forwards more swiftly; and in the
quadratures by the additional force LM go backwards more slowly. Because
the velocity of the progression or the slowness of the retrogression is con-
tinued for a long time, this inequality becomes exceedingly great.
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Cor. 1x. If a body is obliged, by a force inversely proportional to the
square of its distance from any centre, to revolve in an ellipse round that
centre; and afterwards in its descent from the upper apse to the lower apse,
that force by a continual accession of new force is increased in more than
the square of the ratio of the diminished distance; it is manifest that the
body, being impelled always towards the centre by the continual accession
of this new force, will incline more towards that centre than if it were
urged by that force alone which decreases as the square of the diminished
distance, and therefore will describe an orbit interior to that elliptical orbit,
and at the lower apse approaching nearer to the centre than before. There-
fore the orbit by the accession of this new force will become more eccen-
tric. If now, while the body is returning from the lower to the upper apse,
it should decrease by the same degrees by which it increased before, the body
would return to its first distance; and therefore if the force decreases in a
yet greater ratio, the body, being now less attracted than before, will ascend
to a still greater distance, and so, the eccentricity of the orbit will be in-
creased still more. Therefore if the ratio of the increase and decrease of
the centripetal force be augmented with each revolution, the eccentricity
will be augmented also; and, on the contrary, if that ratio decrease, it will

be diminished.

Now, therefore, in the system of the bodies T, P, S, when the apsides of
the orbit PAB are in the quadratures, the ratio of that increase and decrease
is least of all, and becomes greatest when the apsides are in the syzygies.
If the apsides are placed in the quadratures, the ratio near the apsides is less,
and near the syzygies greater, than the square of the ratio of the distances;
and from that greater ratio arises a direct motion of the line of the apsides,
as was just now said. But if we consider the ratio of the whole increase or
decrease in the progress between the apsides, this is less than the square of
the ratio of the distances. The force in the lower is to that in the upper
apse in less than the square of the ratio of the distance of the upper apse
from the focus of the ellipse to the distance of the lower apse from the same
focus; and conversely, when the apsides are placed in the syzygies, the
force in the lower apse is to the force in the upper apse 1n a greater than the
square of the ratio of the distances. For the forces LM in the quadratures
added to the forces ofthe body T, compose forces in a less ratio; and the
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forces KL in the syzygies subtracted from the forces of the body T, leave
the forces in a greater ratio. Therefore the ratio of the whole increase and
decrease in the passage between the apsides is least at the quadratures and
greatest at the syzygies; and therefore in the passage of the apsides from
the quadratures to the syzygies it is continually augmented, and increases
the cccentricity of the ellipse; and in the passage from the syzygies to the
quadratures it is continually decreasing, and diminishes the eccentricity.
Cor. x. That we may give an account of the errors of latitude, let us sup-
pose the plane of the orbit EST to remain immovable; and from the cause
of the errors above explained, it is manifest that, of the two forces NM,
ML, which are the only and entire cause of them, the force ML acting
always in the plane of the orbit PAB never disturbs the motions as to lati-
tude; and that the force NM, when the nodes are in the syzygies, acting also
in the same plane of the orbit, does not at that time affect those motions.
But when the nodes are in the quadratures, it disturbs them very much,

E

and, attracting the body P continually out of the plane of its orbit, it dimin-
ishes the inclination of the plane in the passage of the body from the quad-
ratures to the syzygies, and again increases the same in the passage from
the syzygies to the quadratures. Hence it comes to pass that when the body
is in the syzygies, the inclination is then least of all, and returns to the first
magnitude nearly, when the body arrives at the next node. But if the nodes
are situated at the octants after the quadratures, that is, between C and A,
D and B, it will appear, from what was just now shown, that in the passage
of the body P from either node to the ninetieth degree from thence, the
inclination of the plane is continually diminished; then, in the passage
through the next 45 degrees to the next quadrature, the inclination is in-
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creased; and afterwards, again, in its passage through another 45 degrees
to the next node, it is diminished. Therefore the inclination is more dimin-
ished than increased, and is therefore always less in the subsequent node
than in the preceding one. And, by a like reasoning, the inclination is more

increased than d1m1n15hed when the nodes are in the other octants between
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A and D, B and C. The inclination, therefore, is the greatest of all when the
nodes are in the syzygies. In their passage from the syzygies to the quadra-
tures the inclination is diminished at each appulse of the body to the nodes;
and becomes least of all when the nodes are in the quadratures, and the
body in the syzygies; then it increases by the same degrees by which it de-
creased before; and, when the nodes come to the next syzygies, returns to
its former magnitude.

Cor. x1. Because when the nodes are in the quadratures the body P is con-
tinually attracted from the plane of its orbit; and because this attraction is
made towards S in its passage from the node C through the conjunction A
to the node D; and in the opposite direction in its passage from the node D
through the opposition B to the node Cj it is manifest that, in its motion
from the node C, the body recedes continually from the former plane CD
of its orbit till it comes to the next node; and therefore at that node, being
now at its greatest distance from the first plane CD, it will pass through the
plane of the orbit EST not in D, the other node of that plane, but in a point
that lies nearer to the body S, which therefore becomes a new place of the
node behind its former place. And, by a like reasoning, the nodes will
continue to recede in their passage from this node to the next. The nodes,
therefore, when situated in the quadratures, recede continually; and at
the syzygies, where no perturbation can be produced in the motion as to
latitude, are quiescent; in the intermediate places they partake of both con-
ditions, and recede more slowly; and, therefore, being always either retro-
grade or stationary, they will be carried backwards, or made to recede 1n
each revolution.

Cor. x11. All the errors described in these Corollaries are a little greater
at the conjunction of the bodies P, S than at their opposition; because the
generating forces NM and ML are greater.

Cor. xm. And since the causes and proportions of the errors and varia-
tions mentioned in these Corollaries do not depend upon the magnitude of
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the body S, it follows that all things before demonstrated will happen, if

the magnitude of the body S be imagined so great that the system of the

two bodies P and T may revolve about it. And from this increase of the

body S, and the consequent increase of its centripetal force, from which

the errors of the body P arise, it will follow that all these errors, at equal
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revolves about the system of the bodies P and T.

Cor. x1v. But since the forces NM, ML, when the body S is exceedingly
distant, are very nearly as the force SK and the ratio PT to ST conjointly;
that is, if both the distance PT and the absolute force of the body S be
given, inversely as ST°; and since those forces NM, ML are the causes of
all the errors and effects treated of in the foregoing Corollaries; it is mani-
fest that all those effects, if the system of bodies T and P continue as be-
fore, and only the distance ST and the absolute force of the body S be
changed, will be very nearly in a ratio compounded of the direct ratio of
the absolute force of the body S, and the cubed inverse ratio of the distance
ST. Hence if the system of bodies T and P revolve about a distant body S,
those forces NM, ML, and their effects, will be (by Cor. it and v, Prop. 1v)
inversely as the square of the periodical time. And thence, also, if the mag-
nitude of the body S be proportional to its absolute force, those forces NM,
ML, and their effects, will be directly as the cube of the apparent diameter
of the distant body S viewed from T and conversely. For these ratios are
the same as the compounded ratio above mentioned.

Cor. xv. If the orbits ESE and PAB, retaining their figure, proportions,
and inclination to each other, should alter their magnitude, and if the
forces of the bodies S and T should either remain unaltered or be changed
in any given ratio, then these forces (that is, the force of the body T, which
obliges the body P to deflect from a rectilinear course into the orbit PAB,
and the force of the body S, which causes the body P to deviate from that
orbit) will act always in the same manner, and in the same proportion. Con-
sequently it follows, that all the effects will be similar and proportional, and
the times of those effects will be proportional also; that is, that all the linear
errors will be as the diameters of the orbits, the angular errors the same as
before; and the times of similar linear errors, or equal angular errors, are
as the periodical times of the orbits.
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Cor. xvi. Therefore if the figures of the orbits and their inclination to
each other be given, and the magnitudes, forces, and distances of the bodies
be changed in any manner, we may, from the errors and times of those
errors in one case, obtain very nearly the errors and times of the errors in

any other case. But this may be done more expcd1t1ously by the following
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radius TP; and thcu periodical effects (by Cor. 11, Lem. x) are as the forces
and the square of the periodical time of the body P jointly. Thesc are the
linear errors of the body P; and hence the angular errors as they appear
from the centre T (that is, the motion of the apsides and of the nodes, and
all the apparent errors of longitude and latitude) are in each revolution of
the body P as the square of the time of the revolution, very nearly. Let
these ratios be compounded with the ratios in Cor. xiv, and in any system
of bodies T, P, S, where P revolves about T very near to it, and T revolves
about S at a great distance, the angular errors of the body P, observed from
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the centre T, will be in each revolution of the body P directly as the square
of the periodical time of the body P, and inversely as the square of the peri-
odical time of the body T. And therefore the mean motion of the line of
the apsides will be in a given ratio to the mean motion of the nodes; and .
both those motions will be directly as the periodical time of the body P, and
inversely as the square of the periodical time of the body T. The increase
or diminution of the eccentricity and inclination of the orbit PAB makes
no sensible variation in the motions of the apsides and nodes, unless that
increase or diminution be very great indeed.

Cor. xvi1. Since the line LM becomes sometimes greater and sometimes
less than the radius PT, let the mean quantity of the force LM be expressed
by that radius PT; and then that mean force will be to the mean force SK
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or SN (which may be also expressed by ST) as the length PT to the length
ST. But the mean force SN or ST, by which the body T is retained in the
orbit it describes about S, is to the force with which the body P is retained
in its orbit about T in a ratio compounded of the ratio of the radius ST to
the radius PT, and the squared ratio of the periodical time of the body P
about T to the periodical time of the body T about S. And, consequently,
the mean force LM is to the force by which the body P is retained in its orbit
about T (or by which the same body P might revolve at the distance PT
in the same periodical time about any immovable point T) in the same
squared ratio of the periodical times. The periodical times therefore being
given, together with the distance PT, the mean force .M is also given; and
that force being given, there is given also the force MN, very nearly, by the
analogy of the lines PT and MN.

Cor. xvin. By the same laws by which the body P revolves about the body
T, let us suppose many fluid bodies to move round T at equal distances from
it; and to be so numerous, that they may all become contiguous to each
other, so as to form a fluid annulus, or ring, of a round figure, and concen-
tric to the body T; and the several parts of this ring, performing their
motions by the same law as the body P, will draw nearer to the body T, and
move swifter in the conjunction and opposition of themselves and the body
S, than in the quadratures. And the nodes of this ring or its intersections
with the plane of the orbit of the body S or T, will rest at the syzygies; but
out of the syzygies they will be carried backwards, or in a retrograde direc-
tion, with the greatest swiftness in the quadratures, and more slowly in
other places. The inclination of this ring also will vary, and its axis will
oscillate in each revolution, and when the revolution is completed will re-
turn to its former situation, except only that it will be carried round a little
by the precession of the nodes.

Cor. x1x. Suppose now the spherical body T, consisting of some matter
not fluid, to be enlarged, and to extend itself on every side as far as that ring,
and that a channel were cut all round its ciccumference containing water;
and that this sphere revolves uniformly about its own axis in the same peri-
odical time. This water being accelerated and retarded by turns (as in the
last Corollary), will be swifter at the syzygies, and slower at the quadra-
tures, than the surface of the globe, and so will ebb and flow in its channel
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after the manner of the sea. If the attraction of the body S were taken away,
the water would acquire no motion of flux and reflux by revolving round
the quiescent centre of the globe. The case is the same of a globe moving
uniformly forwards in a right line, and in the meantime revolving about
its centre (by Cor v of the Laws of Motion), and of a globe uniformly
attracted from its rectilinear course (bv Cor. vi of the same Laws). But let

attracted from its rectilinear course (by Cor. vi of the same Laws). But let
the body S come to act upon it, and by its varying attraction the water will
receive this new motion; for there will be a stronger attraction upon that
part of the water that is nearest to the body, and a weaker upon that part
which is more remote. And the force LM will attract the water downwards
at the quadratures, and depress it as far as the syzygies; and the force KL
will attract it upwards in the syzygies, and withhold its descent, and make
it rise as far as the quadratures; except only so far as the motion of flux and
reflux may be directed by the channel, and be a little retarded by friction.
Cor. xx. If, now, the ring becomes hard, and the globe is diminished, the
motion of flux and reflux will cease; but the oscillating motion of the incli-
nation and the precession of the nodes will remain. Let the globe have the
same axis with the ring, and perform its revolutions in the same times, and
at its surface touch the ring within, and adhere to it; then the globe partak-
ing of the motion of the ring, this whole body will oscillate, and the nodes
will go backwards, for the globe, as we shall show presently, is perfectly
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indifferent to the receiving of all impressions. The greatest angle of the
inclination of the ring alone is when the nodes are in the syzygies. Thence
in the progress of the nodes to the quadratures, it endeavors to diminish its
inclination, and by that endeavor impresses a motion upon the whole globe.
The globe retains this motion impressed, till the ring by a contrary endeavor
destroys that motion, and impresses a new motion in a contrary direction.
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And by this means the greatest motion of the decreasing inclination hap-
pens when the nodes are in the quadratures, and the least angle of inclina-
tion in the octants after the quadratures; and, again, the greatest motion
of the reclination happens when the nodes are in the syzygies; and the
greatest angle of inclination in the octants f'ollowing And the case is the
olobe witho ring. if it be a little high 2 little den
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in the equatorial than in the polar regions; for the excess of that matter
in the regions near the equator supplies the place of the ring. And although
we should suppose the centripetal force of this globe to be increased in any
manner, so that all its parts tend downwards, as the parts of our earth gravi-
tate to the centre, yet the phenomena of this and the preceding Corollary
would scarce be altered; except that the places of the greatest and least
height of the water will be different; for the water is now no longer sus-
tained and kept in its orbit by its centrifugal force, but by the channel in
which it flows. And, besides, the force LM attracts the water downwards
most in the quadratures, and the force KL or NM — LM attracts it upwards
most in the syzygies. And these forces conjoined cease to attract the water
downwards, and begin to attract it upwards in the octants before the syzy-
gies; and cease to attract the water upwards, and begin to attract the water
downwards in the octants after the syzygies. And thence the greatest height
of the water may happen about the octants after the syzygies; and the least
height about the octants after the quadratures; excepting only so far as the
motion of ascent or descent impressed by these forces may by the inertia of
the water continue a little longer, or be stopped a little sooner by impedi-
ments in its channel.

Cor. xx1. For the same reason that redundant matter in the equatorial
regions of a globe causes the nodes to go backwards, and therefore by the
increase of that matter that retrograde motion is increased, by the diminu-
tion is diminished, and by the removal quite ceases; it follows, that, if more
than that redundant matter be taken away, that is, if the globe be either
more depressed, or of a rarer consistence near the equator than near the
poles, there will arise a direct motion of the nodes.

Cor. xx11. And thence from the motion of the nodes is known the consti-
tution of the globe. That is, if the globe retains unalterably the same poles,
and the motion (of the nodes) is retrograde, there is a redundance of the
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matter near the equator; but if that motion is direct, a deficiency. Suppose
a uniform and exactly spherical globe to be first at rest in a free space; then
by some impulse made obliquely upon its surface to be driven from its
place, and to receive a motion partly circular and partly straight forward.
Since this globe is perfectly indifferent to all the axes that pass through its
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than to any other, it is mamfest that by its own force it will never change its
axis, or the inclination of its axis. Let now this globe be impelled obliquely -
by a new impulse in the same part of its surface as before; and since the
effect of an impulse is not at all changed by its coming sooner or later, it is
manifest that these two impulses, successively impressed, will produce the
same motion, as if they had been impressed at the same time; that is, the
same motion, as if the globe had been impelled by a simple force com-
pounded of them both (by Cor. 11 of the Laws), that is, a simple motion
about an axis of a given inclination. And the case is the same if the sec-
ond impulse were made upon any other place of the equator of the first
motion; and also if the first impulse were made upon any place in the
equator of the motion which would be generated by the second impulse
alone; and therefore, also, when both impulses are made in any places
whatsoever; for these impulses will generate the same circular motion as
if they were impressed together, and at once, in the place of the intersec-
tions of the equators of those motions, which would be generated by each
of them separately. Therefore, a homogeneous and perfect globe will not
retain several motions distinct, but will unite all those that are impressed on
it, and reduce them into one; revolving, as far as in it lies, always with a
simple and uniform motion about one single given axis, with an inclination
always invariable. And the inclination of the axis, or the velocity of the
rotation, will not be changed by centripetal force. For if the globe be sup-
posed to be divided into two hemispheres, by any plane whatsoever passing
through its own centre, and the centre to which the force is directed, that
force will always urge each hemisphere equally; and therefore will not
incline the globe to any side with respect to its motion round its own axis.
But let there be added anywhere between the pole and the equator a heap
of new matter like a mountain, and this, by its continual endeavor to recede
from the centre of its motion, will disturb the motion of the globe, and
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cause its poles to wander about its surface describing circles about them-
selves and the points opposite to them. Neither can this enormous deviation
of the poles be corrected otherwise than by placing that mountain either
in one of the poles, in which case, by Cor. xx1, the nodes of the equator
will go forwards; or in the equatorial regions, in which case, by Cor. xx,
the nodes will go backwards; or, lastly, by adding on the other side of the
axis a new quantity of matter, by which the mountain may be balanced in
its motion; and then the nodes will either go forwards or backwards, as the
mountain and this newly added matter happen to be nearer to the pole or

to the equator.

PROPOSITION LXVIIL. THEOREM XXVII
The same laws of attraction being supposed, I say, that the exterior body S
does, by radii drawn to the point O, the common centre of gravity of the
interior bodies P and T, describe round that centre areas more proportional
to the times, and an orbit more approaching to the form of an ellipse having
125 focus in that centre, than it can describe round the innermost and greatest
body T by radsi drawn to that body.

For the attractions of the body S towards T and P compose its absolute
attraction, which is more directed towards O, the common centre of gravity
of the bodies T and P, than it is to the
greatest body T'; and which approaches
nearer to the inverse proportion of
the square of the distance SO, than of
the square of the distance ST; as will
easily appear by a little consideration.

PROPOSITION LXVIII. THEOREM XXVIII
The same laws of attraction supposed, 1 say, that the exterior body S will,
by radii drawn to O, the common centre of gravity of the interior bodies
P and T, describe round that centre areas more proportional to the times,
and an orbit more approaching to the form of an ellipse having its focus
inthat centre,if the innermost and greatest body be agitated by these attrac-
tions as well as the rest, than it would do if that body either were at rest and
not attracted ar all, or were much more or much less attracted, or were
much more or much less agitated.
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This may be demonstrated after the same manner as Prop. Lxvi, but by a
more prolix reasoning, which I therefore pass over. It will be sufficient to
consider it after this manner. From the demonstration of the last Proposi-
tion it is plain, that the centre, towards which the body S is urged by the
two forces conjointly, is very near to the common centre of gravity of those
two other bodies. If this centre were to coincide with that common centre,
and moreover the common centre of gravity of all the three bodies were
at rest, the body S on one side, and the common centre of gravity of the
other two bodies on the other side, would describe true ellipses about that
quiescent common centre. This appears from Cor. 11, Prop. Lvii, compared
with what was demonstrated in Prop.
Lx1v, and Lxv. Now this accurate ellip-
tical motion will be disturbed a little by
the distance of the centre of the two
bodies from the centre towards which
the third body S is attracted. Let there
be added, moreover, a motion to the
common centre of the three, and the perturbation will be increased yet
more. Therefore the perturbation is least when the common centre of the
three bodies is at rest; that is, when the innermost and greatest body T is
attracted according to the same law as the rest are; and is always greatest
when the common centre of the three, by the diminution of the motion of
the body T, begins to be moved, and is more and more agitated.

Cor. And hence if several smaller bodies revolve about the great one, it
may easily be inferred that the orbits described will approach nearer to
ellipses; and the descriptions of areas will be more nearly uniform, if all
the bodies attract and agitate each other with accelerative forces that are
directly as their absolute forces, and inversely as the squares of the distances,
and if the focus of each orbit be placed in the common centre of gravity of
all the interior bodies (that is, if the focus of the first and innermost orbit
be placed in the centre of gravity of the greatest and innermost body; the
focus of the second orbit in the common centre of gravity of the two inner-
most bodies; the focus of the third orbit in the common centre of gravity
of the three innermost; and so on), than if the innermost body were at rest,
and was made the common focus of all the orbits.
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PROPOSITION LXIX. THEOREM XXIX

In a system of several bodies A, B, C, D, &c., if any one of those bodies, as
A, attract all the rest, B, C, D, &c., with accelerative forces that are inversely
as the squares of the distances from the attracting body; and another body,
as B, attracts also the rest, A, C, D, &c., with forces that are inversely as the
squares of the distances from the attracting body; the absolute forces of the
attracting bodies A and B will be to each other as those very bodies A and
B 2o which those forces belong.

For the accelerative attractions of all the bodies B, C, D, towards A, are
by the supposition equal to each other at equal distances; and in like man-
ner the accelerative attractions of all the bodies towards B are also equal to
each other at equal distances. But the absolute attractive force of the body
A 1s to the absolute attractive force of the body B as the accelerative attrac-
tion of all the bodies towards A is to the accelerative attraction of all the
bodies towards B at equal distances; and so is also the accelerative attrac-
tion of the body B towards A to the accelerative attraction of the body A
towards B. But the accelerative attraction of the body B towards A is to
the accelerative attraction of the body A towards B as the mass of the body
A is to the mass of the body B; because the motive forces which (by the
second, seventh and eighth Definitions) are as the accelerative forces and
the bodies attracted conjointly are here equal to one another by the third
Law. Therefore the absolute attractive force of the body A is to the absolute
attractive force of the body B as the mass of the body A is to the mass of the
body B. Q.E.D.

Cor. 1. Therefore if each of the bodies of the system A, B, C, D, &c., does
singly attract all the rest with accelerative forces that are inversely as the
squares of the distances from the attracting body, the absolute forces of all
those bodies will be to each other as the bodies themselves.

Cor. 11. By a like reasoning, if each of the bodies of the system A, B, C, D,
&c., does singly attract all the rest with accelerative forces, which are either
inversely or directly in the ratio of any power whatever of the distances
from the attracting body; or which are defined by the distances from each
of the attracting bodies according to any common law; it is plain that the
absolute forces of those bodies are as the bodies themselves.
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Cor. 1. In a system of bodies whose forces decrease as the square of the
distances, if the lesser revolve about one very great one in ellipses, having
their common focus in the centre of that great body, and of a figure exceed-
ingly accurate; and moreover by radii drawn to that great body describe
areas proportional to the times exactly; the absolute forces of those bodies
to each other will be either accurately or very nearly in the ratio of the
bodies. And so conversely. This appears from Cor. of Prop. xLvi, com-
pared with the first Corollary of this Proposition.

SCHOLIUM

These Propositions naturally lead us to the analogy there is between
centripetal forces and the central bodies to which those forces are usually
directed; for it is reasonable to suppose that forces which are directed to
bodies should depend upon the nature and quantity of those bodies, as we
see they do in magnetical experiments. And when such cases occur, we are
to compute the attractions of the bodies by assigning to each of their par-
ticles its proper force, and then finding the sum of them all. I here use the
word attraction in general for any endeavor whatever, made by bodies to
approach to each other, whether that endeavor arise from the action of the
bodies themselves, as tending to each other or agitating each other by spirits
emitted ; or whether it arises from the action of the ether or of the air, or of
any medium whatever, whether corporeal or incorporeal, in any manner
impelling bodies placed therein towards each other. In the same general
sense 1 use the word impulse, not defining in this treatise the species or
physical qualities of forces, but investigating the quantities and mathema-
tical proportions of them; as I observed before in the Definitions. In mathe-
matics we are to investigate the quantities of forces with their proportions
consequent upon any conditions supposed; then, when we enter upon
physics, we compare those proportions with the phenomena of Nature, that
we may know what conditions of those forces answer to the several kinds
of attractive bodies. And this preparation being made, we argue more safely
concerning the physical species, causes, and proportions of the forces. Let
us see, then, with what forces spherical bodies consisting of particles endued
with attractive powers in the manner above spoken of must act upon one
another; and what kind of motions will follow from them.
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SECTION XI1I
The attractive forces of spherical bodies.

PROPOSITION LXX. THEOREM XXX

If to every point of a spherical surface there tend equal centripetal forces
decreasing as the square of the distances from those points, I say, that a
corpuscle placed within that surface will not be attracted by those forces
any way.

Let HIKL be that spherical surface, and P a corpuscle placed within.
Through P let there be drawn to this surface two lines HK, IL, intercept-
ing very small arcs HI, KL ; and because (by Cor. 111, Lem. vir) the triangles
HPI, LPK are alike, those arcs will be pro-
portional to the distances HP, LP; and any
particles at HI and KL of the spherical
surface, terminated by right lines passing
through P, will be as the square of those
distances. Therefore the forces of these par-
ticles exerted upon the body P are equal be-
tween themselves. For the forces are directly
as the particles, and inversely as the square
of the distances. And these two ratios com-
pose the ratio of equality, 1 : 1. The attractions therefore, being equal, but
exerted in opposite directions, destroy each other. And by a like reasoning
all the attractions through the whole spherical surface are destroyed by con-
trary attractions. Therefore the body P will not be any way impelled by
those attractions. Q.E.D.

PROPOSITION LXXI. THEOREM XXXI

The same things supposed as above, I say, that a corpuscle placed without
the spherical surface is attracted towards the centre of the sphere with a
force inversely proportional to the square of its distance from that centre.

Let AHKB, a4kb be two equal spherical surfaces described about the
centres S, 5; their diameters AB, @b, and let P and p be two corpuscles situate
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without the spheres in those diameters produced. Let there be drawn from
the corpuscles the lines PHK, PIL, pA%, pil, cutting off from the great circles
AHB, ahb, the equal arcs HK, 4%, IL, i; and to those lines let fall the per-
pendiculars SD, sd, SE, se, IR, ir; of which let SD, sd, cut PL, p/, in F and {.

Let fall also to the diameters the perpendiculars IQ, 4. Let now the angles
DPE, dpe vanish ; and because DS and ds, ES and es are equal, the lines PE,
PF, and pe, pf, and the short lines DF, df may be taken for equal; because
their last ratio, when the angles DPE, dpe vanish together, is the ratio of
equality. These things being thus determined, it follows that
PI:PF=RI:DF
and pf : pi=df ot DF : ri.
Multiplying corresponding terms,
PI- pf:PF - pi=RI:ri=arc IH : arciA (by Cor. 1, Lem. vir).
Again, PI:PS=I1Q:SE
and ps: pi=se or SE :14.
Hence, PI:ps:PS: pi=1Q ::14.
Multiplying together corresponding terms of this and the similarly derived
preceding proportion,
PI*- pf - ps:pi*PF-PS=HI-1Q :i% - ig,
that is, as the circular surface which is described by the arc IH, as the semi-
circle AKB revolves about the diameter AB, is to the circular surface de-
scribed by the arc 74 as the semicircle ak& revolves about the diameter 4.
And the forces with which these surfaces attract the corpuscles P and p in
the direction of lines tending to those surfaces are directly, by the hypothesis,
as the surfaces themselves, and inversely as the squares of the distances of
the surfaces from those corpuscles; that is, as pf - ps to PF - PS. And these
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forces again are to the oblique parts of them which (by the resolution of
forces as in Cor, 11 of the Laws) tend to the centres in the directions of
the lines PS, ps, as PI to PQ, and i to pq; that is (because of the like tri-
angles PIQ and PSF, pig and psf), as PS to PF and ps to pf Thence, the
attraction of the corpuscle P towards S is to the attraction of the corpuscle
PE-pf-ps . pf PF-PS : . .

—pg  sto ry , that is, as ps* to PS*. And, by
a like reasoning, the forces with which the surfaces described by the revolu-
tion of the arcs KL, £/ attract those corpuscles, will be as ps® to PS®. And in
the same ratio will be the forces of all the circular surfaces into which each
of the spherical surfaces may be divided by taking sd always equal to SD,
and se equal to SE. And therefore, by composition, the forces of the entire
spherical surfaces exerted upon those corpuscles will be in the same ratio.

Q.ED.

p towards s as

PROPOSITION LXXII. THEOREM XXXII

If to the several points of asphere there tend equal centripetal forces decreas-
ing as the square of the distances from those points; and there be given both
the density of the sphere and the ratio of the diameter of the sphere to the
distance of the corpuscle from its centre: I say, that the force with which
the corpuscle is attracted is proportional to the semidiameter of the sphere.

For conceive two corpuscles to be severally attracted by two spheres, one
by one, the other by the other, and their distances from the centres of the
spheres to be proportional to the diameters of the spheres respectively; and
the spheres to be resolved into like particles, disposed in a like situation to
the corpuscles. Then the attractions of one corpuscle towards the several
particles of one sphere will be to the attractions of the other towards as
many analogous particles of the other sphere in a ratio compounded of the
ratio of the particles directly, and the square of the distances inversely. But
the particles are as the spheres, that is, as the cubes of the diameters, and the
distances are as the diameters; and the first ratio directly with the last ratio
taken twice inversely, becomes the ratio of diameter to diameter. Q.E.D.

Cor. 1. Hence if corpuscles revolve in circles about spheres composed of
matter equally attracting, and the distances from the centres of the spheres
be proportional to their diameters, the periodic times will be equal.
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Cor. 11. And, vice versa, if the periodic times are equal, the distances will
be proportional to the diameters. These two Corollaries appear from Cor.
11, Prop. 1v.

Cor. 11 If to the several points of any two solids whatever, of like figure
and equal density, there tend equal centripetal forces decreasing as the
square of the distances from those points, the forces, with which corpuscles
placed in a like situation to those two solids will be attracted by them, will
be to each other as the diameters of the solids.

PROPOSITION LXXIII. THEOREM XXXIII

If to the several points of a given sphere there tend equal centripetal forces
decreasing as the square of the distances from the points, I say, that a cor-
puscle placed within the sphere is attracted by a force proportional to its
distance from the centre.

In the sphere ACBD, described about the
centre S, let there be placed the corpuscle
P; and about the same centre S, with the
interval SP, conceive described an interior
sphere PEQF. It is plain (by Prop. rxx)
that the concentric spherical surfaces of
which the difference AEBF of the spheres
is composed, have no effect at all upon the
body P, their attractions being destroyed
by contrary attractions. There remains,
therefore, only the attraction of the interior

sphere PEQF. And (by Prop. Lxxu) this is as the distance PS. Q.E.D.

C

SCHOLIUM

By the surfaces of which I here imagine the solids composed, I do not
mean surfaces purely mathematical, but orbs so extremely thin, that their
thickness is as nothing; that is, the evanescent orbs of which the sphere will
at last consist, when the number of the orbs is increased, and their thick-
ness diminished without end. In like manner, by the points of which lines,
surfaces, and solids are said to be composed, are to be understood equal
particles, whose magnitude is perfectly inconsiderable.
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PROPOSITION LXXIV. THEOREM XXXIV

The same things supposed, I say, that a corpuscle situated without the sphere
is attracted with a force inversely proportional to the square of its distance
from the centre.

For suppose the sphere to be divided into innumerable concentric spher-
ical surfaces, and the attractions of the corpuscle arising from the several
surfaces will be inversely proportional to the square of the distance of the
corpuscle from the centre of the sphere (by Prop. Lxx1). And, by compo-
sition, the sum of those attractions, that is, the attraction of the corpuscle
towards the entire sphere, will be in the same ratio. Q.E.D.

Cor. 1. Hence the attractions of homogeneous spheres at equal distances
from the centres will be as the spheres themselves. For (by Prop. Lxxu) if
the distances be proportional to the diameters of the spheres, the forces will
be as the diameters. Let the greater distance be diminished in that ratio;
and the distances now being equal, the attraction will be increased as the
square of that ratio; and therefore will be to the other attraction as the cube
of that ratio; that is, in the ratio of the spheres.

Cor. 11. At any distances whatever the attractions are as the spheres
applied to the squares of the distances.

Cor. 1. If a corpuscle placed without an homogeneous sphere is attracted
by a force inversely proportional to the square of its distance from the cen-
tre, and the sphere consists of attractive particles, the force of every particle
will decrease as the square of the distance from each particle.

PROPOSITION LXXV. THEOREM XXXV

If to the several points of a given sphere there tend equal centripetal forces
decreasing as the square of the distances from the point, I say, that another
stmilar sphere will be attracted by it with a force inversely proportional to
the square of the distance of the centres’

For the attraction of every particle is inversely as the square of its dis-
tance from the centre of the attracting sphere (by Prop. rLxxiv), and is
therefore the same as if that whole attracting force issued from one single
corpuscle placed in the centre of this sphere. But this attraction is as great as

[* Appendix, Note 25.]
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on the other hand the attraction of the same corpuscle would be, if that
were itself attracted by the several particles of the attracted sphere with the
same force with which they are attracted by it. But that attraction of the
corpuscle would be (by Prop. Lxxiv) inversely proportional to the square
of its distance from the centre of the sphere; therefore the attraction of the
sphere, equal thereto, is also in the same ratio. Q.E.D.

Cor. 1. The attractions of spheres towards other homogeneous spheres
are as the attracting spheres applied to the squares of the distances of their
centres from the centres of those which they attract.

Cor. 11. The case is the same when the attracted sphere does also attract.
For the several points of the one attract the several points of the other with
the same force with which they themselves are attracted by the others again;
and therefore since in all attractions (by Law 1rr) the attracted and attract-
ing point are both equally acted on, the force will be doubled by their
mutual attractions, the proportions remaining.

Cor. 111. Those several truths demonstrated above concerning the motion
of bodies about the focus of the conic sections will take place when an
attracting sphere is placed in the focus, and the bodies move without the
sphere.

Cor. 1v. Those things which were demonstrated before of the motion of
bodies about the centre of the conic sections take place when the motions
are performed within the sphere.

PROPOSITION LXXVI. THEOREM XXXVI

If spheres be however dissimilar (as to density of matter and attractive
force) in the same ratio onwards from the centre to the circumference; but
cverywhere similar, at every given distance from the centre, on all sides
round about; and the attractive force of every point decreases as the square
of the distance of the body attracted: | say, that the whole force with which
one of these spheres attracts the other will be inversely proportional to the
square of the distance of the centres.

Imagine several concentric similar spheres AB, CD, EF, &c., the inner-
most of which added to the outermost may compose a matter more dense
towards the centre, or subtracted from them may leave the same more lax
and rare. Then, by Prop. Lxxv, these spheres will attract other similar con-
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centric spheres GH, IK, LM, &c., each the other, with forces inversely pro-
portional to the square of the distance SP. And, by addition or subtraction,
the sum of all those forces, or the excess of any of them above the others;
that is, the entire force with which the whole sphere AB (composed of any
concentric spheres or of A

their differences) will
attract the whole sphere
GH (composed of any
concentric spheres or
their differences) in the
same ratio. Let the num-
ber of the concentric
spheres be increased in
mmfinitum, so that the
density of the matter together with the attractive force may, in the progress
from the circumference to the centre, increase or decrease according to any
given law; and by the addition of matter not attractive, let the deficient
density be supplied, that so the spheres may acquire any form desired; and
the force with which one of these attracts the other will be still, by the former
reasoning, in the same inverse ratio of the square of the distance. Q.E.D.

Cor. 1. Hence if many spheres of this kind, similar in all respects, attract
each other, the accelerative attractions of each to each, at any equal dis-
tances of the centres, will be as the attracting spheres.

Cor. 11. And at any unequal distances, as the attracting spheres divided
by the squares of the distances between the centres.

Cor. 1. The motive attractions, or the weights of the spheres towards
one another, will be at equal distances of the centres conjointly as the at-
tracting and attracted spheres; that is, as the products arising from multi-
plying the spheres into each other.

Cor. 1v. And at unequal distances directly as those products and inversely
as the squares of the distances between the centres.

Cor. v. These proportions hold true also when the attraction arises from
the attractive power of both spheres exerted upon each other. For the at-
traction is only doubled by the conjunction of the forces, the proportions
remaining as before.

B
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Cor. vr. If spheres of this kind revolve about others at rest, each about
each, and the distances between the centres of the quiescent and revolving
bodies are proportional to the diameters of the quiescent bodies, the peri-
odic times will be equal.

Cor. vi1. And, again, if the periodic times are equal, the distances will be

proportional to the diameters.

Cor. viir. All those truths above demonstrated, relating to the motions of
bodies about the foci of conic sections, will take place when an attracting
sphere, of any form and condition like that above described, is placed in
the focus.

Cor. 1x. And also when the revolving bodies are also attracting spheres
of any condition like that above described.

PROPOSITION LXXVII. THEOREM XXXVII

If to the several points of spheres there tend centripetal forces proportional
to the distances of the points from the attracted bodies, I say, that the com-
pounded force with which two spheres attract each other is as the distance
between the centres of the spheres.

Cask 1. Let AEBF be a sphere; Sitscentre; P a corpuscle attracted ; PASB
the axis of the sphere passing through the centre of the corpuscle; EF, ef
two planes cutting the sphere, and perpendicular to the axis, and equidis-
tant, one on one side, the other
on the other, from the centre of
the sphere; G and g the inter-
sections of the planes and the
axis; and H any point in the
plane EF. The centripetal force
of the point H upon the cor-
puscle P, exerted in the direction

S~ —F of the line PH, is as the distance

PH; and (by Cor. 1 of the

Laws) the same exerted in the direction of the line PG, or towards the cen-
tre S, is as the length PG. Therefore the force of all the points in the plane
EF (that is, of that whole plane) by which the corpuscle P is attracted
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towards the centre S is as the distance PG multiplied by the number of
those points, that is, as the solid contained under that plane EF and the
distance PG. And in like manner the force of the plane ef, by which the
corpuscle P is attracted towards the centre S, is as that plane multiplied by
its distance Pg, or as the equal plane EF multiplied by that distance Pg; and
the sum of the forces of both planes as the plane EF multiplied by the sum
of the distances PG +Pg, that 1s, as that plane multiplied by twice the
distance PS of the centre and the corpuscle; that is, as twice the plane EF
multiplied by the distance PS, or as the sum of the equal planes EF -+ ef
multiplied by the same distance. And, by a like reasoning, the forces of all
the planes in the whole sphere, equidistant on each side from the centre of
the sphere, are as the sum of those planes multiplied by the distance PS,
that is, as the whole sphere and the distance PS conjointly. Q.E.D.

Cask 2. Let now the corpuscle P attract the sphere AEBF. And, by the
same reasoning, it will appear that the force with which the sphere is
attracted is as the distance PS. Q.E.D.

Cask 3. Imagine another sphere composed of innumerable corpuscles P;
and because the force with which every corpuscle is attracted is as the dis-
tance of the corpuscle from the centre of the first sphere, and as the same
sphere conjointly, and is therefore the same as if it all proceeded from a
single corpuscle situated in the centre of the sphere, the entire force with
which all the corpuscles in the second
sphere are attracted, that is, with which
that whole sphere is attracted, will be the 6/—\5:
same as if that sphere were attracted by a
force issuing from a single corpuscle in the
centre of the first sphere; and is therefore B 3
proportional to the distance between the
centres of the spheres. Q.E.D.

CasE 4. Let the spheres attract each other, j\_/F
and the force will be doubled, but the pro-
portion will remain. Q.E.D.

Cask 5. Let the corpuscle p be placed within the sphere AEBF; and be-
cause the force of the plane ef upon the corpuscle is as the solid contained
under that plane and the distance pg; and the contrary force of the plane
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EF as the solid contained under that plane and the distance pG; the force
compounded of both will be as the difference of the solids, that is, as the
sum of the equal planes multiplied by half the difference of the distances;
that is, as that sum multiplied by pS, the distance of the corpuscle from the
centre of the sphere. And, by a like reasoning, the attraction of all the
planes EF, ef, throughout the whole sphere, that is, the attraction of the
whole sphere, is conjointly as the sum of all the planes, or as the whole
sphere, and as pS, the distance of the corpuscle from the centre of the
sphere. Q.E.D.

Cask 6. And if there be composed a new sphere out of innumerable cor-
puscles such as p, situated within the first sphere AEBF, it may be proved,
as before, that the attraction, whether single of one sphere towards the
other, or mutual of both towards each other, will be as the distance pS of
the centres. Q.E.D.

PROPOSITION LXXVIII. THEOREM XXXVIII

If spheres in the progress from the centre to the circumference be however
dissimilar and unequable, but similar on every side round about at all given
distances from the centre; and the attractive force of every point be as the
distance of the attracted body: I say, that the entire force with which two
spheres of this kind attract each other mutually is proportional to the dis-
tance between the centres of the spheres.

This is demonstrated from the foregoing Proposition, in the same man-
ner as Prop. Lxxvi was demonstrated from Prop. Lxxv.

Cor. Those things that were above demonstrated in Prop. x and Lxiv, of
the motion of bodies round the centres of conic sections, take place when
all the attractions are made by the force of spherical bodies of the condi-
tion above described, and the attracted bodies are spheres of the same kind.

SCHOLIUM

I have now explained the two principal cases of attractions; to wit, when
the centripetal forces decrease as the square of the ratio of the distances, or
increase in a simple ratio of the distances, causing the bodies in both cases
to revolve in conic sections, and composing spherical bodies whose centripe-
tal forces observe the same law of increase or decrease in the recess from the



BOOK I: THE MOTION OF BODIES 203

centre as the forces of the particles themselves do; which is very remark-
able. It would be tedious to run over the other cases, whose conclusions are
less elegant and important, so particularly as I have done these. I choose
rather to comprehend and determine them all by one general method as
follows.

LEMMA XXIX

If about the centre S there be described any circle as AEB, and about the
centre P there be also described two circles EF, ef | cutting the first in E and
¢, and the line PS in F and {5 and there be let fall to PS the perpendiculars
ED, ed: I say, that if the distance of the arcs EF, ef be supposed to be in-
finitely diminished, the last ratio of the evanescent line Dd to the evanescent
line Ff is the same as that of the line PE to the line PS.

E e

For if the line Pe cut the arc EF in ¢; and the right line Ee, which coin-
cides with the evanescent arc Ee, be produced, and meet the right line PS
in T'; and there be let fall from S to PE the perpendicular SG; then, because
of the like triangles DTE, dTe, DES,

Dd :Ee=DT : TE=DE: ES;
and because the triangles, Eeq, ESG (by Lem. viit, and Cor. 111, Lem. vir)
are similar,
Ee:eqor Ff=ES :SG.
Multiplying together corresponding terms of the two proportions,
Dd:Ff=DE:SG=PE:PS
(because of the similar triangles PDE, PGS). Q.E.D.
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PROPOSITION LXXIX. THEOREM XXXIX

Suppose a surface as EFfe to have its breadth infinitely diminished, and to
be just vanishing, and that the same surface by its revolution round the axis
PS describes a spherical concavoconvex solid, to the several equal particles
of which there tend equal centripetal forces: I say, that the force with which
that solid attracts a corpuscle situated in P is in a ratio compounded of the
ratio of the solid DE? - Ff and the ratio of the force with which the given
particle in the place ¥t would attract the same corpuscle.

For if we consider, first, the force of the spherical surface FE which is
generated by the revolution of the arc FE, and is cut anywhere, as in 7,
by the line de, the annular part of the surface generated by the revolu-
tion of the arc *E will be as the
short line Dd, the radius of the
sphere PE remaining the same;
as Archimedes has demonstrated
in his Book of the Sphere and
Cylinder. And the force of this
surface exerted in the direction
of the lines PE or Pr situated all
round in the conical surface, will
be as this annular surface itself;
that is, as the short line Dd, or,
which is the same, as the rectangle under the given radius PE of the sphere
and the short line Dd; but that force, exerted in the direction of the line
PS tending to the centre S, will be less in the ratio PD to PE, and therefore
will be as PD - Dd. Suppose now the line DF to be divided into innumerable
little equal particles, each of which call Dd, and then the surface FE will
be divided into so many equal annuli, whose forces will be as the sum of all
the rectangles PD - Dd, that is, as %2 PF* — % PD?, and therefore as DE®. Let
now the surface FE be multiplied by the altitude Ff; and the force of the
solid EFfe exerted upon the corpuscle P will be as DE* - Ff; that is, if the
force be given which any given particle as Ff exerts upon the corpuscle P
at the distance PF. But if that force be not given, the force of the solid
EFfe will be conjointly as the solid DE? - Ff and that force not given. Q.E.D.

Ee

H
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PROPOSITION LXXX. THEOREM XL

If to the several equal parts of a sphere ABE described about the centre S
there tend equal centripetal forces; and from the several points D in the
axts of the sphere AB in which a corpuscle, as P, is placed, there be erected
the perpendiculars DE meeting the sphere in E, and if in those perpen-

2

diculars the lengths DN be taken as the quantity

PE and as the force

which a particle of the sphere situated in the axis exerts at the distance PE
upon the corpuscle P conjointly: I say, that the whole force with which the
corpuscle P 1s attracted towards the sphere is as the area ANB, compre-
hended under the axis of the sphere AB, and the curved line ANB, the
locus of the point N.

For supposing the construction in the last Lemmma and Theorem to stand,
conceive the axis of the sphere AB to be divided into innumerable equal
particles Dd, and the whole sphere to be divided into so many spherical

E e

concavoconvex laminz EFfe; and erect the perpendicular dn. By the last
Theorem, the force with which the laminz EFfe attract the corpuscle P
is as DE? - Ff and the force of one particle exerted at the distance PE or PF,
conjointly. But (by the last Lemma) Dd is to Ff as PE to PS, and therefore

. 2,
PiPPi; and DE? - Ff is equal to Dd - DE;)EPS

fore the force of the lamina EFfe is as Dd - DE};];:PS and the force of a par-

Ff is equal to ; and there-
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ticle exerted at the distance PF conjointly; that is, by the supposition, as
DN - Dd, or as the evanescent area DN#nd. Therefore the forces of all the
laminz exerted upon the corpuscle P are as all the areas DN#d, that is, the
whole force of the sphere will be as the whole area ANB. Q.E.D.
Cor. 1. Hence if the centripetal force tending to the several particles re-
NE2. Pg

1751 4 FER Y,

PE
whole force with which the corpuscle is attracted by the sphere is as the
area ANB.

Cor. 1. If the centripetal force of the particles be inversely as the distance
DEPS the force with

PE2 ?
which the corpuscle P is attracted by the whole sphere will be as the area
ANB.

Cor. ur If the centripetal force of the particles be inversely as the
cube of the distance of the corpuscle attracted by it, and DN be made as
DE*-PS

PE*
sphere will be as the area ANB.

Cor. 1v. And universally if the centripetal force tending to the several par-
ticles of the sphere be supposed to be inversely as the quantity V; and DN
DE?-PS

PE-V’
whole sphere will be as the area ANB.

main always the same at all distances, and DN be made as , the

of the corpuscle attracted by it, and DN be made as

, the force with which the corpuscle is attracted by the whole

be made as the force with which a corpuscle is attracted by the

PROPOSITION LXXXI. PROBLEM XLI
The things remaining as above, it is required to measure the area ANB.

From the point P let there be drawn the right line PH touching the
sphere in H; and to the axis PAB, letting fall the perpendicular HI, bisect
PI in L; and (by Prop. xu, Book 1, Elem. of Euclid) PE® is equal to
PS8*+ SE*+2PS - SD. But because the triangles SPH, SHI are alike, SE® or
SH? is equal to the rectangle PS - IS. Therefore PE? is equal to the rectangle
contained under PS and PS+ SI +28D; that is, under PS and 2LS +28D;
that is, under PS and 2LLD. Moreover DE’ is equal to SE*—SD? or

SE*—LS*+2LS-LD-LD?
that 1s, 2LS-LD-LD*-LA-LB.
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For LS* - SE? or L§*—~SA? (by Prop. vi, Book 11, Elem. of Euclid) is equal
to the rectangle LA - LB. Therefore if instead of DE* we write
2I.S-LD-LD*~LA-LB,

I o= N

TN
N

DE®*-P
PE-V’
length of the ordinate DN, will now resolve itself into three parts
2SLD-PS LD*-PS ALB-PS
PE'V ~ PE-'V  PE-V’
where if instead of V we write the inverse ratio of the centripetal force, and
instead of PE the mean proportional between PS and 21LD, those three parts
will become ordinates to so many curved lines, whose areas are discovered
by the common methods. Q.E.D.
Exam. 1. If the centripetal force tending to the several particles of the
sphere be inversely as the distance; instead of V write PE the distance, then

2PS LD for PE?; and DN will become as SL -% LD - LA-LB

LA-LB 2LD

D and 2SL the given part of
the ordinate drawn into the length AB will describe the rectangular area
2SL - AB; and the indefinite part LD, drawn perpendicularly into the same
length with a continued motion, in such sort as in its motion one way or

another it may either by increasing or decreasing remain always equal to

the length LD, will describe the area Li—;;é:’ that is, the area SL.- AB;

the quantity wh1ch (by Cor. v of the foregoing Prop.) is as the

. Suppose

DN equal to its double 2SL~LD -
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which taken from the former area 2SL - AB, leaves the area SL - AB. But
LA-LB
LD
motion perpendicularly into the same length, will describe the area of an
hyperbola, which subtracted from the area SL - AB will leave ANB the area
sought. Whence arises this construction of the Problem. At the points L,
A, B, erect the perpendiculars L, Ag, B; making Ag equal to LB, and Bb
11 & equal to LA. Making L/ and LB asymptotes,
describe through the points @, 4 the hyper-
bolic curve ab. And the chord ba being drawn,
will inclose the area aba equal to the area
sought ANB.
?  Exam. 2. If the centripetal force tending to

the several particles of the sphere be inversely
L—A B a5 the cube of the distance, or (which is the

3

2AS°

the third part , drawn after the same manner with a continued

same thing) as that cube applied to any given plane; write for V, and
2PS LD for PE?; and DN will become as
SL-AS* AS* LA-LB-AS$
PS-LD ~2PS  2PS-LD* ’
“that is (because PS, AS, SI are continually proportional), as
LSI |, LA-LB-SI
D~ Y2 SI — SIDE

If we draw then these three parts into the length AB, the first

SL - SI
LD

generate the area of an hyperbola; the second %8I the area %2 AB - SI; the
third LAz'II:g; oL the area LA;i L LAig 3 that is, 4AB - SL
From the first subtract the sum of the sec-

ond and third, and there will remain ANB I} €
the area sought. Whence arises this construc-
tion of the Problem. At the points L, A, S, B,
erect the perpendiculars L, Ag, Ss, Bb, of
which suppose Ss equal to SI; and through S
the point s, to the asymptotes L/, LB, de-

scribe the hyperbola as6 meeting the perpen-

will

~
>
L
7]
v
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diculars Az, B4 in 2 and &; and the rectangle 2SA - SI subtracted from the
hyperbolic areca AasbB, will leave ANB the area sought.

ExaMm. 3. If the centripetal force tending to the several particles of the
spheres decrease as the fourth power of the distance from the particles;

write P.ES for V, then \/(2PS+LD) for PE, and DN will become as
2
SI?-SL I SI? I SI*LA-LB 1

V2SI VLD /2SI /ID ~ 2n/28I \/LD*

These three parts drawn into the length AB, produce so many areas, viz.,

>

SZD///////7B

2SI*-SL . o I ) SI?
~/=ST ! (\/LA LB/’ /281
SI?-LA-LB .

/2SI into ( VLA \/LBa)' And these after due reduction come

2S8I*-SL ., , 2SP
forth 7 SI? and SI” + 311

4SI°
3LI
8

P is attracted towards the centre of the sphere is as Pr that 1s, inversely
as PS*-PL. Q.E.IL

By the same method one may determine the attraction of a corpuscle sit-
uated within the sphere, but more expeditiously by the following Theorem.

into \/(LB-\/LA);and

. And these by subtracting the last from

the first, become . Therefore the entire force with which the corpuscle
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PROPOSITION LXXXII. THEOREM XLI

In a sphere described about the centre S with the radius SA, if there be
taken Sl, SA, SP continually proportional: I say, that the attraction of a
corpuscle within the sphere in any place 1 1s to its attraction without the
sphere in the place P in a ratio compounded of the square root of the ratio
of IS, PS, the distances fram the centre, and the square root of the ratio of
the centripetal forces tending to the centre in those places P and 1.

As, if the centripetal forces of the particles of the sphere be inversely as
the distances of the corpuscle attracted by them, the force with which the
corpuscle situated in I is attracted by the entire sphere will be to the force
with which it is attracted in P in a ratio compounded of the square root of
the ratio of the distance SI to the distance SP, and the square root of the ratio

E

of the centripetal force in the place I arising from any particle in the centre
to the centripetal force in the place P arising from the same particle in the
centre; that is, inversely as the square root of the ratio of the distances SI, SP
to each other. These two square roots of ratios compose the ratio of equality,
and therefore the attractions in I and P produced by the whole sphere are
equal. By the like calculation, if the forces of the particles of the sphere are
inversely as the square of the ratio of the distances, it will be found that the
attraction in [ is to the attraction in P as the distance SP to the semidiameter
SA of the sphere. If those forces are inversely as the cube of the ratio of the
distances, the attractions in I and P will be to each other as SP* to SA*; if
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as the fourth power of the ratio, as SP° to SA®. Therefore since the attraction
in P was found in this last case to be inversely as PS” - PI, the attraction in I
will be inversely as SA?®- PI, that is, because SA® is given, inversely as PL
And the progression is the same in infinitum. The demonstration of this
Theorem is as follows:

The
11 thusa Lemalﬂ “g as apiove ¢ons

place P, the ordinate DN was found to be as PE 7

drawn, that ordinate for any other place of the corpuscle, as I, will become
DE?®-IS
IE-V
ing from any point of the sphere, as E, to be to each other at the distances
IE and PE as PE* to IE" (where the number # denotes the index of the
DE? - PS
PE-PE" "

whose ratio to each other is as PS-IE-IE” to IS - PE - PE". Because

(other things being equal) as . Suppose the centripetal forces flow-

powers of PE and IE), and those ordinates will become as
DE*- IS

IE-IE*’

SI, SE, SP are in continued proportion, the triangles SPE, SEI are alike;
and thence IE is to PE as IS to SE or SA. For the ratio of IE to PE write the
ratio of IS to SA; and the ratio of the ordinates becomes that of PS - IE" to
SA - PE". But the ratio of PS to SA is the square root of that of the distances
PS, SI; and the ratio of [E" to PE" (because IE is to PE as IS to SA) is the
square root of that of the forces at the distances PS, IS. Therefore the ordi-
nates, and consequently the areas which the ordinates describe, and the
attractions proportional to them, are in a ratio compounded of the square
root of those ratios. Q.E.D.

PROPOSITION LXXXIII. PROBLEM XLII

To find the force with which a corpuscle placed in the centre of a sphere is
attracted towards any segment of that sphere whatsoever.

Let P be a body in the centre of that sphere, and RBSD a segment thereof
contained under the plane RDS and the spherical surface RBS. Let DB be
cut in F by a spherical surface EFG described from the centre P, and let the
segment be divided into the parts BREFGS, FEDG. Let us suppose that
segment to be not a purely mathematical but a physical surface, having
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some, but a perfectly inconsiderable thick-
ness. Let that thickness be called O, and (by
what Archimedes hath demonstrated) that
surface will be as PF - DF - O. Let us suppose,
besides, the attractive forces of the particles
of the sphere to be inversely as that power
of the distances, of which # 1s index; and
the force with which the surface EFG at-
tracts the body P will be (by Prop. Lxx1x) as
D_____.,};‘)E;no, that 1s, as 2?;_10 - Dgf;ﬂO. Let
the perpendicular FN multiplied by O be
proportional to this quantity; and the curvi-
linear area BDI, which the ordinate FN,
drawn through the length DB with a con-

tinued motion will describe, will be as the

whole force with which the whole segment RBSD attracts the body P.

Q.E.L

PROPOSITION LXXXIV. PROBLEM XLIII

To find the force with which a corpuscle, placed without the centre of a
sphere in the axis of any segment, is attracted by that segment.

Let the body P placed in the E
axis ADB of the segment EBK
be attracted by that segment,
About the centre P, with the
radius PE, let the spherical sur-

face EFK be described; and let g‘r Al D[ |F B

it divide the segment into two
parts EBKFE and EFKDE.
Find the force of the first of
those parts by Prop. Lxxxi, and
the force of the latter part by

K

Prop. Lxxxim, and the sum of the forces will be the force of the whole seg-

ment EBKDE. Q.E.L
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SCHOLIUM

The attractions of spherical bodies being now explained, it comes next
in order to treat of the laws of attraction in other bodies consisting in like
manner of attractive particles; but to treat of them particularly is not neces-
sary to my design. It will be sufficient to add some general Propositions
relating to the forces of such bodies, and the motions thence arising, be-
cause the knowledge of these will be of some little use in philosophical
inquiries.
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SECTION XIII
The attractive forces of bodies which are not spherical.

PROPOSITION LXXXV. THEOREM XLII
If a body be attracted by another, and its attraction be vastly stronger when

it 15 contiguous to the attracting body than when they are separated from
each other by a very small interval; the forces of the particles of the at-
tracting body decrease, in the recess of the body attracted, in more than the
squared ratio of the distance of the particles.

For if the forces decrease as the square of the distances from the particles,
the attraction towards a spherical body being (by Prop. Lxx1v) inversely
as the square of the distance of the attracted body from the centre of the
sphere, will not be sensibly increased by the contact, and it will be still less
increased by it, if the attraction, in the recess of the body attracted, decreases
in a still less proportion. The Proposition, therefore, is evident concerning
attractive spheres. And the case is the same of concave spherical orbs attract-
ing external bodies. And much more does it appear in orbs that attract
bodies placed within them, because there the attractions diffused through
the cavities of those orbs are (by Prop. Lxx) destroyed by contrary attrac-
tions, and therefore have no effect even in the place of contact. Now if
from these spheres and spherical orbs we take away any parts remote from
the place of contact, and add new parts anywhere at pleasure, we may
change the figures of the attractive bodies at pleasure; but the parts added
or taken away, being remote from the place of contact, will cause no re-
markable excess of the attraction arising from the contact of the two bodies.
Therefore the Proposition holds good in bodies of all igures. Q.E.D.

PROPOSITION LXXXVI. THEOREM XLIII

If the forces of the particles of which an attractive body is composed de-
crease, in the recession of the attractive body, as the third or more than the
third power of the distance from the particles, the attraction will be vastly
stronger in the point of contact than when the attracting and attracted
bodies are separated from each other, though by ever so small an interval.

For that the attraction is infinitely increased when the attracted corpuscle
comes to touch an attracting sphere of this kind, appears, by the solution
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of Problem xui, exhibited in the second and third Examples. The same
will also appear (by comparing those Examples and Theor. xL1 together)
of attractions of bodies made towards concavoconvex orbs, whether the
attracted bodies be placed without the orbs, or in the cavities within them.
And by adding to or taking from those spheres and orbs any attractive mat-
anywhere without the place of contact, so that the attractive bodies

may recejve any assigned figure, the Proposition will hold good of all bodies
universally. Q.E.D.

PROPOSITION LXXXVII. THEOREM XLIV

If two bodies similar to each other, and consisting of matter equally attrac-
tive, attract separately two corpuscles proportional to those bodies, and in a
like situation to them, the accelerative attractions of the corpuscles towards
the entire bodies will be as the accelerative attractions of the corpuscles
towards particles of the bodies proportional to the wholes, and similarly
situated in them.

For if the bodies are divided into particles proportional to the wholes,
and alike situated in them, it will be, as the attraction towards any particle
of one of the bodies to the attraction towards the correspondent particle
in the other body, so are the attractions towards the several particles of the
first body, to the attractions towards the several correspondent particles of
the other body; and, by composition, so is the attraction towards the first
whole body to the attraction towards the second whole body. Q.E.D.

Cor. 1. Therefore if, as the distances of the corpuscles attracted increase,
the attractive forces of the particles decrease in the ratio of any power of
the distances, the accelerative attractions towards the whole bodies will be
directly as the bodies, and inversely as those powers of the distances. As if
the forces of the particles decrease as the square of the distances from the
corpuscles attracted, and the bodies are as A® and B?, and therefore both the
cubic sides of the bodies, and the distance of the attracted corpuscles from
the bodies, are as A and B; the accelerative attractions towards the bodies

will be as — and —;, that is, as A and B the cubic sides of those bodies. If

A*"T B
the forces of the particles decrease as the cube of the distances from the
attracted corpuscles, the accelerative attractions towards the whole bodies
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3 8

will be as %gand -gg, that is, equal. If the forces decrease as the fourth

power, the attractions towards the bodies will be as Pand B
inversely as the cubic sides A and B. And so in other cases.

that is,

Cor. 1. Hence, on the other hand, from the forces with which like bodies
attract corpuscles similarly situated, may be obtained the ratio of the de-
crease of the attractive forces of the particles as the attracted corpuscle
recedes from them ; if only that decrease is directly or inversely in any ratio

of the distances.

PROPOSITION LXXXVIII. THEOREM XLV

If the attractive forces of the equal particles of any body be as the distance
of the places from the particles, the force of the whole body will tend to its
centre of gravity; and will be the same with the force of a globe, consisting
of similar and equal matter, and having its centre in the centre of gravity.

Let the particles A, B of the body RSTV attract any corpuscle Z with
forces which, supposing the particles to be equal between themselves, are
as the distances AZ, BZ; but, if they are supposed unequal, are as those
particles and their distances AZ,
BZ conjointly, or (if I may so
speak) as those particles multi-
plied by their distances AZ, BZ
respectively. And let those forces
be expressed by the contents
under A-AZ, and B-BZ. Join
AB, and let it be cut in G, so that
AG may be to BG as the particle
B to the particle A; and G will
be the common centre of gravity of the particles A and B. The force A - AZ
will (by Cor. 11 of the Laws) be resolved into the forces A - GZ and A - AG;
and the force B-BZ into the forces B-GZ and B-BG. Now the forces
A -AG and B - BG, because A is proportional to B, and BG to AG, are equal,
and therefore having contrary directions destroy one another. There remain
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then the forces A-GZ and B-GZ. These tend from Z towards the centre
G, and compose the force (A +B) GZ; that is, the same force as if the
attractive particles A and B were placed in their common centre of gravity
G, composing there a little globe.

By the same reasoning, if there be added a third particle C, and the force
of it be compounded with the force (A +B) - GZ tending to the centre G,
the force thence arising will tend to the common centre of gravity of that
globe in G and of the particle C; that is, to the common centre of gravity
of the three particles A, B, C; and will be the same as if that globe and the
particle C were placed in that common centre composing a greater globe
there; and so we may go on in infinitum. Therefore the whole force of all
the particles of any body whatever RSTV is the same as if that body, with-
out removing its centre of gravity, were to put on the form of a globe.
Q.E.D.

Cor. Hence the motion of the attracted body Z will be the same as if the
attracting body RSTV were spherical; and therefore if that attracting body
be either at rest, or proceed uniformly in a right line, the body attracted will
move in an ellipse having its centre in the centre of gravity of the attracting

body.

PROPOSITION LXXXIX. THEOREM XLVI

If there be several bodies consisting of equal particles whose forces are as
the distances of the places from each, the force compounded of all the forces
by which any corpuscle is attracted will tend to the common centre of grav-
ity of the attracting bodies; and will be the same as if those attracting
bodies, preserving their common centre of gravity, should unite there, and
be formed into a globe.

This is demonstrated after the same manner as the foregoing Proposition.

Cor. Therefore the motion of the attracted body will be the same as if
the attracting bodies, preserving their common centre of gravity, should
unite there, and be formed into a globe. And, therefore, if the common
centre of gravity of the attracting bodies be either at rest, or proceed uni-
formly in a right line, the attracted body will move in an ellipse having its
centre in the common centre of gravity of the attracting bodies.
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PROPOSITION XC. PROBLEM XLIV

If to the several points of any circle there tend equal centripetal forces, in-
creasing or decreasing in any ratio of the distances; it is required to find
the force with which a corpuscle is attracted, that is, situated anywhere in a
right line which stands at right angles to the plane of the circle at its centre.

Suppose a circle to be described about the centre A with any radius AD
in a plane to which the right line AP is perpendicular; and let it be required
to find the force with which a corpuscle P is attracted towards the same.
From any point E of the circle, to the attracted corpuscle P, let there be
drawn the right line PE. In the right line PA take PF equal to PE, and

make a perpendicular FK, erected at F,

iy to be as the force with which the point

E attracts the corpuscle P. And let the

cE curved line IKL be the locus of the
¢ point K. Let that curve meet the plane

of the circle in L. In PA take PH equal
to PD, and erect the perpendicular HI
meeting that curve in I; and the attrac-
F___H tion of the corpuscle P towards the cir-

p A . cle will be as the area AHIL multiplied
LT by the altitude AP. QE.L
b RE For let there be taken in AE a very

small line Ee. Join Pe, and 1n PE, PA

take PC, Pf, both equal to Pe. And because the force, with which any point

E of the ring described about the centre A with the radius AE in the afore-

said plane attracts to itself the body P, is supposed to be as FK; and, there-

fore, the force with which that point attracts the body P towards A is as

AP -FK
PE

towards A is as the ring and

; and the force with which the whole ring attracts the body P

P
rectangle under the radius AE and the breadth Ee, and this rectangle (be-

cause PE and AE, Ee and CE are proportional) is equal to the rectangle
PE - CE or PE - Ff; the force with which that ring attracts the body P to-

conjointly; and that ring also is as the
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wards A will be as PE - Ff and APP]; K

under Ff -FK - AP, or as the area FK%f multiplied by AP. And therefore

the sum of the forces with which all the rings, in the circle described about
the centre A with the radius AD, attract the body P towards A, is as the

et T e ATITIZY o 1 1011 AD AT TN
WIIUIC dICd ﬂl_.l_ll\.l_z IIlLlJ.[lpJ.lCG Dy nr. Q.D.U.

conjointly; that is, as the content

Cor. 1. Hence if the forces of the points decrease as the square of the

and therefore the area AHIKL as

: . I
distances, that is, if FK be as PE®’
I I : : .
PA ~ P the attraction of the corpuscle P towards the circle will be as
H
PH’ PH’
Cor. 11. And universally if the forces of the points at the distances D be

I— ; that 15, as —

inversely as any power D" of the distances; that is, if FK be as =, and

Dﬂ
therefore the area AHIKL as P A” : PI—;“'I; the attraction of the corpuscle
PA
PA“'Z - PH™Y
Cor. 1. And if the diameter of the circle be increased i# infinitum, and
the number 7 be greater than unity; the attraction of the corpuscle P to-
wards the whole infinite plane will be inversely as PA™ %, because the other

P towards the circle will be as

vanishes.

term

PA
PH"*

PROPOSITION XCI. PROBLEM XLV

To find the attraction of acorpuscle situated in the axis of a round solid, to
whose several points there tend equal centripetal forces decreasing in any
ratio of the distances whatsocver.

Let the corpuscle P, situated in the axis AB of the solid DECG, be
attracted towards that solid. Let the solid be cut by any circle as RFS, per-
pendicular to the axis; and in its semidiameter FS, in any plane PALKB
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passing through the axis, let there
be taken (by Prop. xc) the length
FK proportional to the force with
which the corpuscle P is attracted
B towards that circle. Let the locus

R

H‘l"
>
-

Jp of the point K be the curved line
LKI, meeting the planes of the out-
ermost circles AL and Bl in L and
I; and the attraction of the cor-
puscle P towards the solid will be
as the area LABIL Q.E.L

Cor. 1. Hence if the solid be a cylinder described by the parallelogram
ADEB revolved about the axis AB, and the centripetal forces tending to
the several points be inversely as the squares of the distances from the
points; the attraction of the cor-
puscle P towards this cylinder will D .5 —E
be as AB—PE +PD. For the ordi- S I
nate FK (by Cor. 1, Prop. x¢) will

.
.....
. we
......
ks
an
_____

be as 1—-—55:. The part 1 of this $*— A r B

quantity, multiplied by the length _______
AB, describes the area 1- AB; and TR

the other part —g%, multiplied by

the length PB, describes the area
1- (PE—AD) (as may be easily shown from the quadrature of the curve
LXI); and, in like manner, the same part multiplied by the length PA
describes the area 1+ (PD - AD), and multiplied by AB, the difference of
PB and PA, describes 1 - (PE—PD), the difference of the areas. From the
first content 1 - AB take away the last content 1 - (PE~PD), and there will
remain the area LABI equal to 1- (AB—~PE+PD). Therefore the force,
being proportional to this area, 1s as AB—PE + PD.

Cor. 1. Hence also is known the force by which a spheroid AGBC at-
tracts any body P situate externally in its axis AB. Let NKRM be a conic
section whose ordinate ER perpendicular to PE may be always equal to the
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length of the line PD, continually drawn to the point D in which that ordi-
nate cuts the spheroid. From the vertices A, B of the spheroid, let there be
erected to its axis AB the perpendiculars AK, BM, respectively equal to
AP, BP, and therefore meeting the conic section in K and M; and join KM

H ]

P
cutting off from it the segment KMRXK. Let S be the centre of the spheroid,
and SC its greatest semidiameter; and the force with which the spheroid
attracts the body P will be to the force with which a sphere described with
AS - CS*-PS-KMRK

PS*+ CS* - AS?

And by a calculation founded on the same principles may be found

the diameter AB attracts the same body as is to
AS?
3PS™
the forces of the segments of the spheroid.

Cor. 1. If the corpuscle be placed within the spheroid and in its axis, the
attraction will be as its distance from the centre. This may be easily inferred
from the following reasoning, whether the particle be in the axis or in any
other given diameter. Let AGOF be an
attracting spheroid, S its centre, and P
the body attracted. Through the body
P let there be drawn the semidiameter
SPA, and two right lines DE, FG
meeting the spheroid in D and E, F
and G; and let PCM, HLN be the sur-

faces of two interior spheroids similar
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and concentric to the exterior, the first of which passes through the body P,
and cuts the right lines DE, FG in B and C; the latter cuts the same
right lines in H and I, K and L. Let the spheroids have all one common
axis, and the parts of the right lines intercepted on both sides DP and BE,
FP and CG, DH and IE, FK and LG, will be mutually equal; because the
right lines DE, PB, and HI are bisected in the same point, as are also the
right lines FG, PC, and KL. Conceive now DPF, EPG to represent opposite
cones described with the infinitely small vertical angles DPF, EPG, and the
lines DH, EI to be infinitely small also. Then the particles of the cones
DHKEF, GLIE, cut off by the spheroidal surfaces, by reason of the equal-
ity of the lines DH and EI, will be to one another as the squares of the dis-
tances from the body P, and will therefore attract that corpuscle equally.
And by a like reasoning if the spaces DPF, EGCB be divided into particles
by the surfaces of innumerable similar spheroids concentric to the former
and having one common axis, all these particles will equally attract on both
sides the body P towards contrary parts. Therefore the forces of the cone
DPF, and of the conic segment EGCB, are equal, and by their opposed
actions destroy each other. And the case is the same of the forces of all
the matter that lies without the interior spheroid PCBM. Therefore the
body P is attracted by the interior spheroid PCBM alone, and therefore
(by Cor. u1, Prop. txxm) its attraction is to the force with which the body
A is attracted by the whole spheroid AGOD as the distance PS is to the
distance AS. Q.E.D.

PROPOSITION XCII. PROBLEM XLVI

An attracting body being given, it is required to find the ratio of the
decrease of the centripetal forces tending to its several points.

The body given must be formed into a sphere, a cylinder, or some regular
figure, whose law of attraction answering to any ratio of decrease may be
found by Prop. Lxxx, Lxxx1, and xc1. Then, by experiments, the force of
the attractions must be found at several distances, and the law of attraction
towards the whole, made known by that means, will give the ratio of the
decrease of the forces of the several parts; which was to be found.
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PROPOSITION XCIII. THEOREM XLVII

If a solid be plane on one side, and infinitely extended on all other sides,
and consist of equal particles equally attractive, whose forces decrease, in
receding from the solid, in the ratio of any power greater than the square of
the distances; and a corpuscle placed towards either part of the plane is at-
tracted by the force of the whole solid: I say, that the attractive force of the
whole solid, in receding from its plane surface will decrease in the ratio of
a power whose side is the distance of the corpuscle from the plane, and its
index less by 3 than the index of the power of the distances.

Cask 1. Let LG/ be the plane by which the solid is terminated. Let the
solid lie on that side of the plane that is towards I, and let it be resolved into
innumerable planes mHM, #IN, 0K O, &c., parallel to GL. And first let the
attracted body C be placed without the solid. Let there be drawn CGHI
perpendicular to those innumerable planes, and let the attractive forces of
the points of the solid decrease in the ratio of a power of the distances
whose index is the number 7 not less than 3. Therefore (by Cor. 1, Prop.
xc) the force with which any plane mHM attracts the point C is inversely
as CH""*. In the plane mHM take the length HM inversely proportional
to CH"?, and that force
will be as HM. In like man-

: L
ner in the several planes
IGL, nIN, oKO, &, take e -
the lengths GL, IN, KO, [ S 5 R
&c., inversely proportional
to CG"*?%, CI*"2, CK™?%, &c., & G H I K

and the forces of those
planes will be as the lengths
so taken, and therefore the
sum of the forces as the sum
of the lengths, that is, the Y m n 0

force of the whole solid as

the area GLOK produced infinitely towards OK. But that area (by the
known methods of quadratures) is inversely as CG""*, and therefore the
force of the whole solid is inversely as CG" . Q.E.D.
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Cask 2. Let the corpuscle C be now placed on that side of the plane /GL
that is within the solid, and take the distance CK equal to the distance CG.
And the part of the solid LGI0oKO
L N ol terminated by the parallel planes /GL,
oK O, will attract the corpusclc G, sit-

I‘\ﬂ Al “n l‘\ -t B et et -t 140 ¢4
udu.-u in tne uuuuu.., neitiier one way

nor another, the contrary actions of the
opposite points destroying one another
by reason of their equality. Therefore
the corpuscle C is attracted by the force
2 0 only of the solid situated beyond the

plane OK. But this force (by Case 1)
is inversely as CK""% that is (because CG, CK are equal), inversely as
CG™*:% QE.D.

Cor. 1. Hence if the solid LGIN be terminated on each side by two in-
finite parallel planes LG, IN,; its attractive force is known, subtracting from
the attractive force of the whole infinite solid LGKO the attractive force
of the more distant part NIKO infinitely produced towards KO.

Cor. 11. If the more distant part of this solid be rejected, because its attrac-
tion compared with the attraction of the nearer part is inconsiderable, the
attraction of that nearer part will, as the distance increases, decrease nearly
in the ratio of the power CG*"*,

Cor. ur. And hence if any finite body, plane on one side, attract a cor-
puscle situated over against the middle of that plane, and the distance be-
tween the corpuscle and the plane compared with the dimensions of the
attracting body be extremely small; and the attracting body consist of
homogeneous particles, whose attractive forces decrease in the ratio of any
power of the distances greater than the fourth; the attractive force of the
whole body will decrease very nearly in the ratio of a power whose side is
that very small distance, and the index less by 3 than the index of the former
power. This assertion does not hold good, however, of a body consisting of
particles whose attractive forces decrease in the ratio of the third power of
the distances; because, in that case, the attraction of the remoter part of the
infinite body in the second Corollary is always infinitely greater than the
attraction of the nearer part.

o
ot

[ ]
o)
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SCHOLIUM

If a body is attracted perpendicularly towards a given plane, and from
the law of attraction given, the motion of the bady be required; the Prob-
lem will be solved by secking (by Prop. xxxi1x) the motion of the body
descending in a right line towards that plane, and (by Cor. 11 of the Laws)
compounding that motion with an uniform motion performed in the direc-
tion of lines parallel to that plane. And, on the contrary, if there be required
the law of the attraction tending towards the plane in perpendicular di-
rections, by which the body may be caused to move in any given curved
line, the Problem will be solved by working after the manner of the third
Problem.

But the operations may be contracted by resolving the ordinates into con-
verging series. As if to a base A the length B be ordinately applied in any

given angle, and that length be as any power of the base A ; and there be
sought the force with which a body, either attracted towards the base or
driven from it in the direction of that ordinate, may be caused to move in
the curved line which that ordinate always describes with its superior ex-
tremity; I suppose the base to be increased by a very small part O, and I

m
resolve the ordinate (A +O)" into an infinite series
moom W mm—mn m =26
Ar+—OA » + ——— O0OA » &,
n 2nn
and I suppose the force proportional to the term of this series in which O

mm—mn OOAi'?E. Therefore

is of two dimensions, that is, to the term Py

mm-—mn ,m-2n

the force sought is as A ", or, which is the same thing, as

nn
mm—mn m-2n

—~ B = . Asif the ordinate describe a parabola, 7 being = 2, and
n =1, the force will be as the given quantity 2B®, and therefore is given.
Therefore with a given force the body will move in a parabola, as Galileo
hath demonstrated. If the ordinate describe an hyperbola, m being =o0~1,
and z =1, the force will be as 2A* or 2B®; and therefore a force which is as
the cube of the ordinate will cause the body to move in an hyperbola. But
leaving Propositions of this kind, I shall go on to some others relating to
motion which I have not yet touched upon.
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SECTION XIV

The motion of very small bodies when agitated by centripetal forces
tending to the several parts of any very great body.

PROPOSITION XCIV. THEOREM XLVIII

If two similar mediums be separated from each other by a space terminated
on both sides by parallel planes, and a body in its passage through that space
be attracted or impelled perpendicularly towards either of those mediums,
and not agitated or hindered by any other force; and the attraction be every-
where the same at equal distances from either plane, taken towards the
same side of the plane: I say, that the sine of incidence upon either plane
will be to the sine of emergence from the other plane in a given ratio.

Case 1. Let Az and B4 be two parallel planes, and let the body light upon
the first plane Az in the direction of the line GH, and in its whole passage
through the intermediate space let it be attracted or impelled towards the
medium of incidence, and by that action let it be made to describe a curved

line HI, and let it emerge in

N the direction of the line IK.
Let there be erected IM per-

A H pendicular to Bé the plane of
emergence, and meeting the
P\ line of incidence GH pro-
AN longed in M, and the plane
N of incidence Az in R; and let
LOT the line of emergence KI be
4 produced and meet HM in L.
\ About the centre L, with the

Q, R radius LI, let a circle be de-

o scribed cutting both HM in P

and Q, and MI produced in

N; and, first, if the attraction or impulse be supposed uniform, the curve
HI (by what Galileo hath demonstrated) will be a parabola, whose property
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is that of a rectangle under its given latus rectum, and the line IM equal to
the square of HM; and moreover the line HM will be bisected in L. Hence
if to MI there be let fall the perpendicular LO, then MO, OR will be equal;
and adding the equal lines ON, OI, the wholes MN, IR will be equal also.
Therefore since IR is given, MN is also given, and the rectangle MI- MN
is to the rectangle under the latus rectum and IM, that is, to HM? in a given
ratio. But the rectangle MI-MN is equal to the rectangle MP - MQ, that
is, to the difference of the squares ML?, and PL? or LI*; and HM® hath a
given ratio to its fourth part ML?; therefore the ratio of ML*—LI* to ML?
is given, and by conversion the ratio of LI” to ML? and its square root, the
ratio of LI to ML. But in every triangle, as LMI, the sines of the angles
are proportional to the opposite sides. Therefore the ratio of the sine of

the angle of incidence LMR to the sine of the angle of emergence LIR is
given. Q.E.D.

Cask 2. Let now the body pass successively through several spaces ter-
minated with parallel planes AabB, BocC, &c., and let it be acted on by a
force which is uniform in each of them separately, but different in the dif-
ferent spaces; and by what was just

demonstrated, the sine of the angle \

of incidence on the first plane A A <
is to the sine of emergence from the R \ b
second plane B% in a given ratio; ¢ ™~ ¢
and this sine of incidence upon the D AN d
second plane B4 will be to the sine \

of emergence from the third plane

Cc in a given ratio; and this sine to the sine of emergence from the fourth
plane D4 in a given ratio; and so on iz infinitum; and, by multiplication of
equals, the sine of incidence on the first plane is to the sine of emergence
from the last plane in a given ratio. Let now the intervals of the planes be
diminished, and their number be infinitely increased, so that the action of
attraction or impulse, exerted according to any assigned law, may become
continual, and the ratio of the sine of incidence on the first plane to the

sine of emergence from the last plane being all along given, will be given
then also. Q.E.D.
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PROPOSITION XCV. THEOREM XLIX

The same things being supposed, I say, that the velocity of the body before
its incidence is to its velocity afier emergence as the sine of emergence to
the sine of incidence.

Make AH and I equal, and erect the perpendiculars AG, /K meeting
the lines of incidence and emergence GH, IK in G and K. In GH take
TH equal to IK| and to the plane A« let fall a perpendicular Tz. And (by

Cor. 11 of the Laws of Motion) let

the motion of the body be resolved

into two, one perpendicular to the
planes Ag, B, Cc, &c., and another
o Pbarallel to them. The force of at-
4 traction or impulse, acting in di-
¢ rections perpendicular to those

\ _ planes, does not at all alter the
< motion in parallel directions; and

therefore the body proceeding

with this motion will in equal

times go through those equal parallel intervals that lie between the line
AG and the point H, and between the point I and the line JK; that is,
they will describe the lines GH, IK in equal times. Therefore the velocity
before incidence is to the velocity after emergence as GH to IK or TH,

that is, as AH or Id to #H, that is (supposing TH or IK radius), as the sine
of emergence to the sine of incidence.' Q.E.D.

PROPOSITION XCVI. THEOREM L

The same things being supposed, and that the motion before incidence is
swifier than afierwards: 1 say, that if the line of incidence be inclined con-
tinudlly, the body will be at last reflected, and the angle of reflection will
be equal to the angle of incidence.,

For conceive the body passing between the parallel planes Ag, Bb, Cc,
&c., to describe parabolic arcs as above; and let those arcs be HP, PQ, QR,
&c. And let the obliquity of the line of incidence GH to the first plane Aa

[ Appendix, Note 26.]
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be such that the sine of incidence may be to the radius of the circle whose
sine it is, in the same ratio which the same sine of incidence hath to the sine
of emergence from the plane Dd into the space Dd¢E; and because the sine
of emergence is now be-

come equal to the radius, G\ /j’
the angle of emergence ) L

. . H
will be a right one, and 4 <3 v a
therefore the line of emer- £ AN _//q/_' c
gence will coincide with g R ‘é

the plane Dd. Let the body

come to this plane in the point R; and because the line of emergence coin-
cides with that plane, it is manifest that the body can proceed no farther
towards the plane Ee. But neither can it proceed in the line of emergence
Rd; because it is perpetually attracted or impelled towards the medium of
incidence. It will return, therefore, between the planes Ce, Dd, describing
an arc of a parabola QRg, whose principal vertex (by what Galileo hath
demonstrated) is in R, cutting the plane Ce in the same angle at ¢, that it
did before at Q; then going on in the parabolic arcs gp, p4, &c., similar and
equal to the former arcs QP, PH, &c., it will cut the rest of the planes in
the same angles at p, 4, &c., as it did before in P, H, &c., and will emerge at
last with the same obliquity at 2 with which it first impinged on that plane
at H. Conceive now the intervals of the planes Ag, Bb, Cc, Dd, Ee, &c., to
be infinitely diminished, and the number infinitely increased, so that the
action of attraction or impulse, exerted according to any assigned law, may
become continual; and, the angle of emergence remaining all along equal
to the angle of incidence, will be equal to the same also at last. Q.E.D.

SCHOLIUM

These attractions bear a great resemblance to the reflections and refrac-
tions of light made in a given ratio of the secants, as was discovered by
Snell; and consequently in a given ratio of the sines, as was exhibited by
Descartes. For it is now certain from the phenomena of Jupiter’s satel-
lites, confirmed by the observations of different astronomers, that light is
propagated in succession, and requires about seven or eight minutes to
travel from the sun to the earth. Moreover, the rays of light that are in our
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air (as lately was discovered by Grimaldi, by the admission of light into
a dark room through a small hole, which I have also tried) in their passage
near the angles of bodies, whether transparent or opaque (such as the cir-
cular and rectangular edges of gold, silver, and brass coins, or of knives,
or broken pieces of stone or glass),

.
are ]’\nhf nr 1nnpri‘-pr]1 l’ﬂ‘l‘lhr‘ f‘\ncn
dit WCLiL UL LMLl LLU LUuiitl uivou

A\ /B

bodies as if they were attracted to
4 them; and those rays which in
" their passage come nearest to the
- € bodies are the most inflected, as if
o they were most attracted; which
ey thing I myself have also carefully
observed. And those which pass at
greater distances are less inflected; and those at still greater distances are
a little inflected the contrary way, and form three fringes of colors. In the
figure s represents the edge of a knife, or any kind of wedge AsB; and
gowog, frunf, emtme, disld are rays inflected towards the knife in the
arcs owo, nvn, mtm, Isl; which inflection is greater or less according to
their distance from the knife. Now since this inflection of the rays is per-
formed in the air without the knife, it follows that the rays which fall upon
the knife are first inflected in the air before they touch the knife. And the
case is the same of the rays falling upon
glass. The refraction, therefore, is made
not in the point of incidence, but grad-
ually, by a continual inflection of the LT
rays; which is done partly in the air '414
. Latllt 2.1
before they touch the glass, partly (if I 2
mistake not) within the glass, after they
have entered it; as is represented in the
rays ckzc, biyb, ahxa, falling uponr, g, . .
p, and inflected between % and 2,7 and ¢ 5 a:
y, A and x. Therefore because of the an-
alogy there is between the propagation of the rays of light and the motion
of bodies, I thought it not amiss to add the following Propositions for opti-
cal uses; not at all considering the nature of the rays of light, or inquiring

RN

& é a
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[t Appendix, Note 27.]
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whether they are bodies or not; but only determining the curves of bodies
which are extremely like the curves of the rays.

PROPOSITION XCVII. PROBLEM XLVII

Supposing the sine of incidence upon any surface to be in a given ratio to
the sine of emergence; and that the inflection of the paths of those bodies
near that surface is performed in a very short space, which may be con-
sidered as a point; it is required to determine such a surface as may cause
all the corpuscles issuing from any one given place to converge to another
given place.

Let A be the place from whence the corpuscles diverge; B the place to
which they should converge; CDE the curved line which by its revolution
round the axis AB describes the surface sought; D, E any two points of
that curve; and EF, EG
perpendiculars let fall on
the paths of the bodies
AD, DB. Let the point D
approach to and coalesce
with the point E; and the
ultimate ratio of the line DF by which AD is increased, to the line DG by
which DB is diminished, will be the same as that of the sine of incidence to
the sine of emergence, Therefore the ratio of the increment of the lineAD to
the decrement of the line DB is given; and therefore if in the axis AB there
be taken anywhere the point C through which the curve CDE must pass,
and CM the increment of AC be taken in that given ratio to CN the decre-
ment of BC, and from the centres A, B, with the radiit AM, BN, there be
described two circles cutting each other in D; that point D will touch the
curve sought CDE, and, by touching it anywhere at pleasure, will deter-
mine that curve. Q.E.L

A CNM B

Cor. 1. By causing the point A or B to go off sometimes iz infinitum, and
sometimes to move towards other parts of the point C, will be obtained all
those figures which Descartes has exhibited in his Oprics and Geomerry
relating to refractions. The invention of which Descartes having thought
fit to conceal, is here laid open in this Proposition.
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Cor. 11. If a body lighting on any surface CD in the direction of a right
line AD, drawn according to any law, should emerge in the direction of
another right line DK ; and from the point C there be drawn curved lines
CP, CQ, always perpendlcular to AD, DK ; the increments of the lines PD,

: “/ QD, and therefore the lines

Q !C__ fhpmep]upc P OD (‘I'PhPfﬁfpr‘

Al ER LN A ,.,.I, Y“ 6 Ll N%k BA B

by those increments, will be
as the sines of incidence and
emergence to each other, and
A ¢ conversely.

PROPOSITION XCVIII. PROBLEM XLVIII

The same things supposed; if round the axis AB any attractive surface be
described, as CD, regular or irregular, through which the bodies issuing
from the given place A must pass; it is required to find a second attractive
surface EF, which may make those bodies converge to a given place B.

Let a line joining AB cut the first surface in C and the second in E, the
point D being taken in any manner at pleasure. And supposing the sine of
incidence on the first surface to the sine of emergence from the same, and
the sine of emergence from the second surface to the sine of incidence on
the same, to be as any given quantity M to another given quantity N; then

produce AB to G, so that BG may be to CE as M—N to N; and AD to H,
so that AH may be equal to AG; and DF to K, so that DK may be to DH
as N to M. Join KB, and about the centre D with the radius DH describe a
circle meeting KB produced in L, and draw BF parallel to DL; and the
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point F will touch the line EF, which, being turned round the axis AB, will
describe the surface sought. Q.E.F.

For conceive the lines CP, CQ to be everywhere perpendicular to AD,
DF, and the lines ER, ES to FB, FD respectively, and therefore QS to be
always equal to CE; and (by Cor. n, Prop. xcvir) PD will be to QD as
M to N, and therefore as DL to DK, or FB to FK; and by subtraction, as
DL—FB or PH-PD-FB to FD or FQ-QD; and by addition as PH-FB
to FQ, that is (because PH and CG, QS and CE, are equal), as CE + BG -
FR to CE —FS. But (because BG is to CE as M~ N to N) it comes to pass
also that CE + BG is to CE as M to N; and therefore, by subtraction, FR is to
FS as M to N; and therefore (by Cor. 11, Prop. xcvir) the surface EF com-
pels a body, falling upon it in the direction DF, to go on in the line FR to
the place B. Q.E.D.

SCHOLIUM

In the same manner one may go on to three or more surfaces. But of all
figures the spherical is the most proper for optical uses. If the object glasses
of telescopes were made of two glasses of a spherical figure, containing
water between them, it is not unlikely that the errors of the refractions
made in the extreme parts of the surfaces of the glasses may be accurately
enough corrected by the refractions of the water. Such object glasses are
to be preferred before elliptic and hyperbolic glasses, not only because they
may be formed with more ease and accuracy, but because the pencils of rays
situated without the axis of the glass would be more accurately refracted by
them. But the different refrangibility of different rays is the real obstacle
that hinders optics from being made perfect by spherical or any other fig-
ures. Unless the errors thence arising can be corrected, all the labor spent in
correcting the others is quite thrown away.



Book Two
THE MOTION OF BODIES

(IN RESISTING MEDIUMS)

SECTION I

The motion of bodies that are resisted in the ratio of the velocity.

PROPOSITION I. THEOREM I

If a body is resisted in the ratio of its velocity, the motion lost by resistance
is as the space gone over in its motion.

For since the motion lost in each equal interval of time is as the velocity,
that 1s, as the small increment of space gone over, then, by composition, the
motion lost in the whole time will be as the whole space gone over. Q.E.D.

Cor. Therefore if the body, destitute of all gravity, move by its innate
force only in free spaces, and there be given both its whole motion at the
beginning, and also the motion remaining after some part of the way is
gone over, there will be given also the whole space which the body can de-
scribe in an infinite time. For that space will be to the space now described
as the whole motion at the beginning is to the part lost of that motion.

LEMMA I

Quantities proportional to their differences are continually proportional.

Let A:A-B=B:B-C=C:C-D=&c.;
then, by subtraction,
A:B=B:C=C:D=&c. Q.E.D.

[235]



236 NEWTON'S MATHEMATICAL PRINCIPLES

PROPOSITIONIIL. THEOREM II

If a body is resisted in the ratio of its velocity, and moves, by its inertia only,
through an homogeneous medium, and the times be taken equal, the veloci-
ties in the beginning of each of the times are in a geometrical progression,
and the spaces described in each of the times are as the velocities.

Cask 1. Let the time be divided into equal intervals; and if at the very
beginning of each interval we suppose the resistance to act with one single
impulse which is as the velocity, the decrement of the velocity in each of
the intervals of time will be as the same velocity. Therefore the velocities
are proportional to their differences, and therefore (by Lem. 1, Book 1)
continually proportional. Therefore if out of an equal number of intervals
there be compounded any equal portions of time, the velocities at the begin-
ning of those times will be as terms in a continued progression, which are
taken by jumps, omitting everywhere an equal number of intermediate
terms. But the ratios of these terms are compounded of the equal ratios of
the intermediate terms equally repeated, and therefore are equal. There-
fore the velocities, being proportional to those terms, are in geometrical
progression. Let those equal intervals of time be diminished, and their
number increased in infinitum, so that the impulse of resistance may be-
come continual; and the velocities at the beginnings of equal times, always
continually proportional, will be also in this case continually proportional.
QED.}

Case 2. And, by division, the differences of the velocities, that is, the parts
of the velocities lost in each of the times, are as the wholes; but the spaces
described in each of the times are as the lost parts
of the velocities (by Prop. 1, Book 1), and there-
G fore are also as the wholes. Q.E.D.

Cor. Hence if to the rectangular asymptotes
B AC, CH, the hyperbola BG is described, and AB,
DG be drawn perpendicular to the asymptote
A D ¢ AC, and both the velocity of the body, and the
resistance of the medium, at the very beginning of the motion, be expressed
by any given line AC, and, after some time is elapsed, by the indefinite line
DC; the time may be expressed by the area ABGD, and the space described

[t Appendix, Note 28.]

H
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in that time by the line AD. For if that area, by the motion of the point D,
be uniformly increased in the same manner as the time, the right line DC
will decrease in a geometrical ratio in the same manner as the velocity; and
the parts of the right line AC, described in equal times, will decrease in the
same ratio.

PROPOSITION III. PROBLEM I

Todefine the motion of a body which,in an homogeneous medium, ascends
or descends in a right line, and is resisted 1n the ratio of its velocity, and
acted upon by an uniform force of gravity.

The body ascending, let the gravity be represented by any given rectangle
BACH; and the resistance of the medium, at the beginning of the ascent,
by the rectangle BADE, taken on the contrary side of the right line AB.
Through the point B, with
the rectangular asymptotes b /
AC, CH, describe an hyper-
bola, cutting the perpendicu-
lars DE, de in G, g; and the
body ascending will in the
time DGgd describe the space E e B H
EGge; in the time DGBA, F £
the space of the whole ascent &
EGB; in the time ABKI, the g,
space of descent BFK ; and in
the time IK4: the space of descent KFf%; and the velocities of the bodies
(proportional to the resistance of the medium) in these periods of time
will be ABED, ABed, o, ABFI, ABf7 respectively; and the greatest velocity
which the body can acquire by descending will be BACH.

For let the rectangle BACH be resolved into innumerable rectangles A%,
Kl, Lm, Mz, &c., which shall be as the increments of the velocities pro-
duced in so many equal times; then will o, A%, Al, Am, An, &c., be as the
whole velocities, and therefore (by supposition) as the resistances of the
medium in the beginning of each of the equal times. Make AC to AK, or
ABHC to ABXK, as the force of gravity to the resistance in the beginning
of the second time; then from the force of gravity subtract the resistances,

Z A I ¢ ¢
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and ABHC, KZHC, LIHC, MmHC, &c., will be as the absolute forces with
which the body is acted upon in the beginning of each of the times, and
therefore (by Law 1) as the increments of the velocities, that is, as the rec-
tangles A%, K/, Lm, Mn, &c., and

/ therefore (by Lem. 1, Book 11) in

a geometrical progression. There-

/ fore, if the right lines K%, L/, Mm,

+ N#, &c., are produced so as to meet

- 4’/ the hyperbola in g, r, s, ¢, &c., the

B /f g Aareas ABgK, KgrL, LrsM, MaN,
R\ 7 &c., will be equal, and therefore
analogous to the equal times and

A KLM —C equal gravitating forces. But the

area ABgK (by Cor. m1, Lem. vi1
and viri, Book 1) is to the area Bkg as Kg to Y2kg, or AC to Y2AK, that
is, as the force of gravity to the resistance in the middle of the first time.
And by the like reasoning, the areas gKL#, rLMs, sMN?, &c., are to the
areas gklr, rlms, smnt, &c., as the gravitating forces to the resistances in the
middle of the second, third, fourth time, and so on. Therefore since the
equal areas BAK g, gKLr, LMy, sMNz, &c., are analogous to the gravitating
forces, the areas Bkg, qklr, rims, smnt, &c., will be analogous to the resist-
ances in the middle of each of the times, that is (by supposition), to the
velocities, and so to the spaces described. Take the sums of the analogous
quantities, and the areas Bkg, Blr, Bms, Baz, &c., will be analogous to the
whole spaces described; and also the areas ABgK, ABrL, ABsM, AB:N,
&c., to the times. Therefore the body, in descending, will in any time ABrL
describe the space Blr, and in the time LzzN the space r/nz. Q.E.D. And the
like demonstration holds in ascending motion.

Cor. 1. Therefore the greatest velocity that the body can acquire by falling
is to the velocity acquired in any given time as the given force of gravity
which continually acts upon it to the resisting force which opposes it at the
end of that time.

Cor. 11. But the time being augmented in an arithmetical progression,
the sum of that greatest velocity and the velocity in the ascent, and also
their difference in the descent, decreases in a geometrical progression.
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Cor. m1. Also the differences of the spaces, which are described in equal
differences of the times, decrease in the same geometrical progression.

Cor. 1v. The space described by the body is the difference of two spaces,
whereof one is as the time taken from the beginning of the descent, and
the other as the velocity; which [spaces] also at the beginning of the de-

it e arsiral msn eyt aen aaliran
scerit arc CLiu.d.} amoing tnemscives,

PROPOSITION IV. PROBLEM I1

Supposing the force of gravity in any homogeneous medium to be uniform,
and to tend perpendicularly to the plane of the horizon: to define the
motion of a projectile therein, which suffers resistance proportional to its

velocity.

Let the projectile go from any place D in the direction of z

any right line DP, and let its velocity at the beginning of
the motion be represented by the length DP. From the
point P let fall the perpendicular PC on the horizontal line
DC, and cut DC in A, so that DA may be to AC as the
vertical component of the resistance of the medium arising
from the motion upwards at the beginning,
to the force of gravity; or (which comes to
the same) so that the rectangle under DA and
DP may be to that under AC and CP as the
whole resistance at the beginning of the mo- P
tion, to the force of gravity, With the asymp-
totes DC, CP describe any

hyperbola GTBS cutting the

perpendiculars DG, AB in G

and B; complete the parallel- N
ogram DGKC, and let its side

GK cut AB in Q. Take a line /

N in the same ratio to QB as

DCisin to CP; anl((i) frotg any £ Z/ ]
point R of the right line DC @ ]
erect RT perpendicular to it, %
meeting the hyperbola in T, D




240 NEWTON'S MATHEMATICAL PRINCIPLES
and the right lines EH, GK, DP in I, ¢, and V; in that perpendicular take

: : E
Vr equal to {%;-r, or, which is the same thing, take Rr equal to 'lI\T'I ;
the projectile in the time DRTG will arrive at the point r, describing the
curved line DraF, the locus of the point r; thence it will come to its greatest

and

height a in the perpendicular AB; and afterwards ever approach to the
asymptote PC. And its velocity in any point  will be as the tangent 7L to
the curve. Q.E.L

For N:QB=DC:CP=DR:RY,
DRI;IQB, and Rr ( that is, RV —Vr, or

= QE—IGT) is equal to DR ABI;I- RDGT. Now let the time be rep-

and therefore RV is equal to

resented by the area RDGT, and (by Laws, Cor. i) distinguish the mo-
tion of the body into two others, one of ascent, the other lateral. And
since the resistance is as the motion, let that also be distinguished into two
parts proportional and contrary to the parts of the motion: and therefore
the length described by the lateral motion will be (by Prop. 1, Book 11)
as the line DR, and the height (by Prop. m1, Book 11) as the area DR AB~
RDGT, that is, as the line Rr. But in the very beginning of the motion
the area RDGT is equal to the rectangle DR - AQ, and therefore that line

Rr (or DR - AB;IDR : AQ) will then be to DR as AB-AQ or QB to N,

that is, as CP to DC; and therefore as the motion upwards to the motion
lengthwise at the beginning. Since, therefore, Rr is always as the height,
and DR always as the length, and Rr is to DR at the beginning as the
height to the length, it follows, that Rr is always to DR as the height to
the length; and therefore that the body will move in the line DraF, which
is the locus of the point r. Q.E.D.

DR-AB RDGT
N N

R-AB

be produced to X so that RX may be equal to P—ﬂN—-, that is, if the par-

allelogram ACPY be completed, and DY cutting CP in Z be drawn, and

Cor. 1. Therefore Rr is equal to ; and therefore if RT
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RDGT
N

RT be produced till it meets DY in X; Xr will be equal to
therefore proportional to the time.

Cor. . Whence if innumerable lines CR, or, which is the same, innu-
merable lines ZX, be taken in a geometrical progression, there will be as
many lines Xr in an arithmetical progression. And hence the curve DraF
is easily delineated by the table of logarithms.

Cor. 1. If a parabola be constructed to the vertex D, and the diameter
DG produced downwards, and its latus rectum is to 2DP as the whole
resistance at the beginning of the motion to the gravitating force, the
velocity with which the body ought to go from the place D, in the direction
of the right line DP, so as in an uniform resising medium to describe
the curve DraF, will be the P
same as that with which it
ought to go from the same
place D in the direction of
the same right line DP, so
as to describe a parabola in S
a nonresisting medium. For
the latus rectum of this parab- "

ola, at the very beginning of
2

, and

B
Vr;andVrls o T Q

the motion, is
:GT  DR-T¢?

i b ....-..-...-....... ..---....c.....- .--.........u...--....,.,.. .ot
N ° 2N . But a right Dl¥ i \f‘ c

r
line which, if drawn, would touch the hyperbola GTS in G, is parallel to

DK, and therefore T? is CII{). DR, and N is QI(;:'PDC. And therefore Vr 1s
DR*- CK - CP

.DC*-OB that is (because DR and DC, DV and DP are

DV CK - CP' and the lat t DV’ s out
2DP*-OB atus rectum 37— comes o

that is (because QB and CK, DA and AC are proportional),

K

equal to

proportionals), to

2DP*- QB
CK-CP’

M, and therefore is to 2DP as DP- DA to CP- AC; that is, as the
AC-CP

resistance to the gravity. Q.E.D.
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Cor. v. Hence if a body be projected from any place D with a given
velocity, in the direction of a right line DP given by position, and the resist-
ance of the medium, at the beginning of the motion, be given, the curve
DraF, which that body will describe, may be found. For the velocity being
given, the latus rectum of the parabola is given, as is well known. And
taking 2DP to that latus rectum, as the force of gravity to the resisting
force, DP is also given. Then cutting DC in A, so that
CP - AC may be to DP - DA in the same ratio of the gravity
to the resistance, the point A will be given. And hence the

curve DraF is also given.

Cor. v. And conversely, if the curve DraF be given, there
will be given both the velocity of the body and the resist-
ance of the medium in each of the places 7.

For the ratio of CP- AC to DP- DA being
given, there is given both the resistance of the
medium at the beginning of the motion, and
the latus rectum of the parabola; and thence
the velocity at the beginning of the motion 1s
given also. Then from the length of the tan- X

gent #L there is given both
the velocity proportional to
it, and the resistance propor-
tional to the velocity in any
place .

Cor. v1. But since the length
2DP is to the latus rectum of
the parabola as the gravity to
the resistance in D, and, from
the velocity augmented, the
resistance is augmented in the

same ratio, but the latus rectum of the parabola is augmented as the square
of that ratio, it is plain that the length 2DP is augmented in that simple
ratio only; and is therefore always proportional to the velocity; nor will it
be augmented or diminished by the change of the angle CDP, unless the

velocity be also changed.

VNN

R A
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Cor vir. Hence appears the method of determining the curve DraF
nearly from the phenomena, and thence finding the resistance and velocity
with which the body is projected. Let two similar and equal bodies be pro-
jected with the same velocity,

from the place D, in different /P

angles CDP, CDp; and let the

places F, f, thrc they fall / B
upon the horizontal plane

DC, be known. Then taking
any length for DP or Dp sup-
pose the resistance in D to be
to the gravity in any ratio
whatsoever, and let that ratio
be represented by any length
SM. Then, by computation,

from that assumed length
DP, find the lengths DF, Df;

and from the ratio —- K found

DF’ D CANE A C
by calculation, subtract the
same ratio as found by experi- | MX M
ment; and let the difference S MM \L
be represented by the perpen-

dicular MN. Repeat the same

a second and a third time, by assuming always a new ratio SM of the
resistance to the gravity, and collecting a new difference MN. Draw the
positive differences on one side of the right line SM, and the negative on
the other side; and through the points N, N, N, draw a regular curve
NNN, cutting the right line SMMM in X, and SX will be the true ratio
of the resistance to the gravity, which was to be found. From this ratio
the length DF is to be found by calculation; and a length, which is to the
assumed length DP as the length DF known by experiment to the length
DF just now found, will be the true length DP. This being known, you
will have both the curved line DraF which the body describes, and also
the velocity and resistance of the body in each place.
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SCHOLIUM

However, that the resistance of bodies is in the ratio of the velocity, is
more a mathematical hypothesis than a physical one. In mediums void
of all tenacity, the resistances made to bodies are as the square of the
veloctities. For by the action of a swifter body, a greater motion in propor-
tion to a greater velocity is communicated to the same quantity of the
medium in a less time; and in an equal time, by reason of a greater quan-
tity of the disturbed medium, a motion is communicated as the square of
the ratio greater; and the resistance (by Law 11 and 1) is as the motion
communicated. Let us, therefore, see what motions arise from this law of
resistance.
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SECTION II

The motion of bodies that are resisted as the square of their velocities.

PROPOSITION V. THEOREM I11

If a body is resisted as the square of its velocity, and moves by its innate
force only through an homogeneous medium; and the times be taken in a
geometrical progression, proceeding from less to greater terms: I say, that
the velocities ar the beginning of each of the times are in the same geo-
metrical progression inversely, and that the spaces are equal, which are
described in each of the times.

For since the resistance of the medium is proportional to the square of
the velocity, and the decrement of the velocity is proportional to the resist-
ance: if the time be divided into innumerable equal intervals, the squares
of the velocities at the beginning of each of the times will be proportional
to the differences of the same velocities, Let those intervals of time be AK,
KL, LM, &c., taken in the right line
CD; and erect the perpendiculars AB,
Kk, LI, Mm, &c., meeting the hyper-
bola BkImG, described with the cen-
tre C, and the rectangular asymptotes
CD, CH, in B, %, [, m, &c.; then AB
will be to K% as CK to CA, and, by
division, AB—Kk toK% as AK to CA,
and alternately, AB—K% to AK as
K% to CA; and therefore as AB-K#%
to AB:CA. Therefore since AK and
AB-CA are given, AB—K% will be as AB-K£; and, lastly, when AB and
K% coincide, as AB®. And, by the like reasoning, Kk—L/, Li—~Mm, &c.,
will be as K£°, L%, &c. Therefore the squares of the lines AB, K%, LI, Mm,
&c., are as their differences; and, therefore, since the squares of the velocities
were shown above to be as their differences, the progression of both will be
alike. This being demonstrated it follows also that the areas described by
these lines are in a like progression with the spaces described by these veloci-

H
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ties. Therefore if the velocity at the beginning of the first time AK be repre-
resented by the line AB, and the velocity at the beginning of the second
time KL by the line K%, and the length described in the first time by the
area AK%B, all the following velocities will be represented by the following
lines L/, M, &c., and the lengths described by the areas K/, Lm, &c. And,
by composition, if the whole time be represented by AM, the sum of its parts,
the whole length described will be represented by AMmB, the sum of its
parts. Now conceive the time AM to be divided into the parts AK, KL, LM,
&c., so that CA, CK, CL, CM, &c., may be in a geometrical progression ; and
those parts will be in the same progression, and the velocities AB, K%, L,
Mm, &c., will be 1n the same progression inversely, and the spaces described
Ak, KI,Lm, &c., will be equal. Q.E.D.

Cor. 1. Hence 1t appears, that if the time be represented by any part AD
of the asymptote, and the velocity in the beginning of the time by the
ordinate AB, the velocity at the end of the time will be represented by the
ordinate DG; and the whole space described by the adjacent hyperbolic
area ABGD; and the space which any body can describe in the same time
AD, with the first velocity AB, in a nonresisting medium, by the rectangle
AB-AD.

Cor. 1. Hence the space described in a resisting medium is given, by
taking it to the space described with the uniform velocity AB in a non-
resisting medium, as the hyperbolic area ABGD to the rectangle AB- AD.

Cor. 1. The resistance of the medium is also given, by making it equal,
in the very beginning of the motion, to an uniform centripetal force, which
could generate, in a body falling through a nonresisting medium, the veloc-
ity AB in the time AC. For if BT be drawn touching the hyperbola in B,
and meeting the asymptote in T, the right line AT will be equal to AC, and
will express the time in which the first resistance, uniformly continued,
may take away the whole velocity AB.

Cor. v. And thence is also given the proportion of this resistance to the
force of gravity, or any other given centripetal force.

Cor. v. And, conversely, if there is given the proportion of the resistance
to any given centripetal force, the time AC is also given, in which a cen-
tripetal force equal to the resistance may generate any velocity as AB; and
thence is given the point B, through which the hyperbola, having CH,
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CD for its asymptotes, is to be described; as also the space ABGD, which
a body, by beginning its motion with that velocity AB, can describe in any
time AD, in an homogeneous resisting medium.

PROPOSITON VI. THEOREM IV

) & w173 srasrnl sk al Bndso o] that nue
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as the square of the velocities, and moving on by their innate force only,
will, in times which are inversely as the velocities at the beginning, describe
equal spaces, and lose parts of their velocities proportional to the wholes.

To the rectangular asymptotes CD, CH describe any hyperbola BéEe,
cutting the perpendiculars AB, 26, DE, de in B, 4, E, ¢; let the initial veloci-
ties be represented by the perpendicu-
lars AB,DE, and the times by the lines H
Aa, Dd. Therefore as Aa is to Dd, so
(by the hypothesis) is DE to AB, and
so (from the nature of the hyperbola)

-
Qﬂ

is CA to CD; and, by composition, so

is Ca to Cd. Therefore the areas ABba, E
DEed, that is, the spaces described, =
are equal among themselves, and the

first velocities AB, DE are propor- ¢ A< D o

tional to the last ab, de; and there-

fore, by subtraction, proportional to the parts of the velocities lost, AB — a5,
DE —de. QE.D.

PROPOSITION VII. THEOREM V

If spherical bodies are resisted as the squares of their velocities, in times
which are directly as the first motions, and inversely as the first resistances,
they will lose parts of their motions proportional to the wholes, and will
describe spaces proportional to the product of those times and the first
velocities.'

For the parts of the motions lost are as the product of the resistances and
times. Therefore, that those parts may be proportional to the wholes, the
product of the resistance and time ought to be as the motion. Therefore the

[1 Appendix, Note 2g.]
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time will be as the motion directly and the resistance inversely. Therefore
the intervals of the times being taken in that ratio, the bodies will always
lose parts of their motions proportional to the wholes, and therefore will
retain velocities always proportional to their first velocities. And because
of the given ratio of the velocities, they will always describe spaces which
are as the product of the first velocities and the times. Q.E.D.

Cor. 1. Therefore if bodies equally swift are resisted as the square of their
diameters, homogeneous globes moving with any velocities whatsoever, by
describing spaces proportional to their diameters, will lose parts of their
motions proportional to the wholes. For the motion of each globe will be
as the product of its velocity and mass, that is, as the product of the velocity
and the cube of its diameter; the resistance (by supposition) will be as the
product of the square of the diameter and the square of the velocity; and
the time (by this Proposition) is in the former ratio directly, and in the lat-
ter inversely, that is, as the diameter directly and the velocity inversely; and
therefore the space, which is proportional to the time and velocity, is as the
diameter.

Cor. 1. If bodies equally swift are resisted as the %2th power of their
diameters, homogeneous globes, moving with any velocities whatsoever, by
describing spaces that are as the %2th power of the diameters, will lose parts
of their motions proportional to the wholes.

Cor. m1. And universally, if equally swift bodies are resisted in the ratio
of any power of the diameters, the spaces, in which homogeneous globes,
moving with any velocity whatsoever, will lose parts of their motions pro-
portional to the wholes, will be as the cubes of the diameters applied to
that power. Let those diameters be D and E; and if the resistances, where
the velocities are supposed equal, are as D" and E*; the spaces in which
the globes, moving with any velocities whatsoever, will lose parts of their
motions proportional to the wholes, will be as D*~" and E*~". And there-
fore homogeneous globes, in describing spaces proportional to D*~" and
E*~" will retain their velocities in the same ratio to one another as at the
beginning.

Cor. 1v. Now if the globes are not homogeneous, the space described by
the denser globe must be augmented in the ratio of the density. For the
motion, with an equal velocity, is greater in the ratio of the density, and the
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time (by this Proposition) is augmented in the ratio of motion directly, and
the space described in the ratio of the time.

Cor. v. And if the globes move in different mediums, the space, in a
medium which, other things being equal, resists the most, must be dimin-
ished in the ratio of the greater resistance. For the time (by this Proposition)
will be diminished in the ratio of the augmented resistance, and the space
in the ratio of the time.

LEMMA II

The moment of any genitum s equal to the moments of each of the gene-
rating sides multiplied by the indices of the powers of those sides, and by
their coefficients continually.

I call any quantity a genitum which is not made by addition or sub-
traction of divers parts, but is generated or produced in arithmetic by the
multiplication, division, or extraction of the root of any terms whatsoever;
in geometry by the finding of contents and sides, or of the extremes and
means of proportionals. Quantities of this kind are products, quotients,
roots, rectangles, squares, cubes, square and cubic sides, and the like. These
quantities I here consider as variable and indetermined, and increasing or
decreasing, as it were, by a continual motion or flux; and I understand their
momentary increments or decrements by the name of moments; so that
the increments may be esteemed as added or afirmative moments; and the
decrements as subtracted or negative ones. But take care not to look upon
finite particles as such." Finite particles are not moments, but the very quan-
tities generated by the moments. We are to conceive them as the just nascent
principles of finite magnitudes. Nor do we in this Lemma regard the mag-
nitude of the moments, but their first proportion, as nascent. It will be the
same thing, if, instead of moments, we use either the velocities of the incre-
ments and decrements (which may also be called the motions, mutations,
and fluxions of quantities), or any finite quantities proportional to those
velocities. The coefficient of any generating side is the quantity which arises
by applying the genitum to that side.

Wherefore the sense of the Lemma is, that if the moments of any quan-
tities A, B, C, &c., increasing or decreasing by a continual flux, or the veloci-
ties of the mutations which are proportional to them, be called ¢, 4, ¢, &c.,

[* Appendix, Note 30.]
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the moment or mutation of the generated rectangle AB will be 4B+ A ;
the moment of the generated content ABC will be 4BC + #AC +cAB; and
the moments of the generated powers A%, A®, A%, A% A% A% A% A
A% A% will be 224, 3aA°, 4aA®, YoaA ™%, %a A", Yaa A%, Y5aA7 %, ~aA?,
—2aA"%, —%aA™" respectively; and, in general, that the moment of any

n n-m

power A" will be p” aA . Also, that the moment of the generated quan-

tity A*B will be 22AB + 5A%; the moment of the generated quantity A°B*‘C’
will be 3¢A’B*C* + 46AB*C* + 2cA’B*C; and the moment of the generated

quantity —%; or A’B™* will be 3¢A’B~* —25A’B*; and so on. The Lemma is

thus demonstrated.

Cask 1. Any rectangle, as AB, augmented by a continual flux, when, as
yet, there wanted of the sides A and B half their moments %22 and %4, was
A —Yq into B—%5, or AB—Y2a B— 74 A + Yiab; but as soon as the sides
A and B are augmented by the other half-moments, the rectangle becomes
A +%gq into B+ %5, or AB +Y%a B+ %5 A + Yaab. From this rectangle sub-
tract the former rectangle, and there will remain the excess 2B + A. There-
fore with the whole increments 2 and & of the sides, the increment B + 5A
of the rectangle is generated. Q.E.D.

Cask 2. Suppose AB always equal to G, and then the moment of the
content ABC or GC (by Case 1) will be gC-+¢G, that 1s (putting AB and
aB+ bA for G and g), aBC+5AC+cAB. And the reasoning is the same
for contents under ever so many sides. Q.E.D.

Cask 3. Suppose the sides A, B, and C, to be always equal among them-
selves; and the moment aB + A, of A’ that is, of the rectangle AB, will
be 22A; and the moment aBC + #AC+cAB of A®, that is, of the content

ABC, will be 32A*% And by the same reasoning the moment of any power
A1 naA" ' Q.E.D.

. I, . X
Cask 4. Therefore since - nto A is 1, the moment of A

together with -AI- multiplied by @, will be the moment of 1, that is, nothing.

multiplied by A,

—% And generally since =

A2 * An

multiplied by A" together with i—,—; into

I 1
Therefore the moment of > O of A7, is

1

into A" is 1, the moment of G

[* Appendix, Note 31.]
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naA" " will be nothing. And, therefore, the moment of —— or A" will

na A’
be — Km QED
Cask 5. And since A” into A” is A, the moment of A” multiplied by
2A will be a (by Case 3) ; and, therefore, the moment of A* will be 2

2A%
or Y2aA™ *. And generally, putting An equal to B, then A™ will be equal to
B®, and therefore maA™ " equal to #6B""7, and maA™" equal to #nbB7,

m m  rom, .
or 7bA”n; and therefore — aA ™ isequal to 4, that is, equal to the moment
n

of An.QED.

Cask 6. Therefore the moment of any generated quantity A™B” is the
moment of A™ multiplied by B", together with the moment of B" multi-
plied by A™, that is, maA™"' B*+nbB"~' A™; and that whether the indices
m and # of the powers be whole numbers or fractions, affirmative or nega-
tive. And the reasoning is the same for higher powers. Q.E.D.

Cor. 1. Hence in quantities continually proportional,’ if one term is given,
the moments of the rest of the terms will be as the same terms multiplied
by the number of intervals between them and the given term. Let A, B,
C, D, E, F be continually proportional; then if the term C is given, the
moments of the rest of the terms will be among themselves as —2A, — B,
D, 2E, 3F.

Cor. . And if in four proportionals the two means are given, the mo-
ments of the extremes will be as those extremes. The same is to be under-
stood of the sides of any given rectangle.

Cor. m. And if the sum or difference of two squares is given, the mo-
ments of the sides will be inversely as the sides.

SCHOLIUM?

In a letter of mine to Mr. J. Collins, dated December 10, 1672, having
described a method of tangents, which I suspected to be the same with
Sluse’s method, which at that time was not made public, I added these
words: T his is one particular, or rather a Corollary, of a general method,
which extends itself, without any troublesome calculation, not only to the
drawing of tangents to any curved lines, whether geometrical or mechan-

[1 Appendix, Note 32.] [ Appendix, Note 33.]
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tcal or in any manner respecting right lines or other curves, but also to the
resolving other abstruser kinds of problems about the crookedness, areas,
lengths, centres of gravity of curves, &c.; nor is it (as Hudden’s method
de maximis et minimis) limited to equations which are free from surd
quantities. T his method 1 have interwoven with that other of working in
equations, by reducing them to infinite series. So far that letter. And these
last words relate to a treatise I composed on that subject in the year 1671.
The foundation of that general method is contained in the preceding
Lemma.

PROPOSITION VIII. THEOREM V1

If a body in an uniform medium, being uniformly acted upon by the force
of gravity, ascends or descends in a right line; and the whole space de-
scribed be divided into equal parts, and in the beginning of each of the parts
(by adding or subtracting the resisting force of the medium to or from the
force of gravity, when the body ascends or descends) you derive the abso-
lute forces: I say, that those absolute forces are in a geometrical progression.

Let the force of gravity be represented by the given line AC; the force
of resistance by the indefinite line AK ; the absolute force in the descent of
the body by the difference KC; the velocity of the body by a line AP, which
shall be a mean proportional
between AK and AC, and
therefore as the square root
of the resistance; the incre-
ment of the resistance made
in a given interval of time by
the short line KL, and the
. contemporaneous increment
C ]Q i) L KT A ¢ k > of the velocity by the short

line PQ; and with the centre
C, and rectangular asymptotes CA, CH, describe any hyperbola BNS meet-
ing the erected perpendiculars AB, KN, LO in B, N, and O. Because AK
is as AP?, the moment KL of the one will be as the moment 2AP - PQ of
the other, that 15, as AP - KC; for the increment PQ of the velocity is (by
Law 1) proportional to the generating force KC. Let the ratio of KL be
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multiplied by the ratio KN, and the rectangle KL - KN will become as
AP-KC- KN; that 1s (because the rectangle KC-KN is given), as AP.
But the ultimate ratio of the hyperbolic area KNOL to the rectangle
KL - KN becomes, when the points K and L coincide, the ratio of equality.
Therefore that hyperbolic evanescent area is as AP. Therefore the whole
proportional to the velocity AP; and therefore is itself proportional to the
space described with that velocity. Let that area be now divided into equal
parts, as ABMI, IMNK, KNOL, &c., and the absolute forces AC, IC, KC,
LC, &c., will be in a geometrical progression. Q.E.D. And by a like reason-
ing, in the ascent of the body, taking, on the contrary side of the point A,
the equal areas ABmi, imnk, knol, &c., it will appear that the absolute forces
AC,:C, kC,IC, &c., are continually proportional. Therefore if all the spaces
in the ascent and descent are taken equal, all the absolute forces /C, £C, iC,
AC, IC, KC, LC, &c., will be continually proportional. Q.E.D.

Cor. 1. Hence if the space described be represented by the hyperbolic area
ABNK, the force of gravity, the velocity of the body, and the resistance of
the medium, may be represented by the lines AC, AP, and AK respectively;
and conversely.

Cor. 1. And the greatest velocity which the body can ever acquire in an
infinite descent will be represented by the line AC.

Cor. m1. Therefore if the resistance of the medium answering to any
given velocity be known, the greatest velocity will be found, by taking it
to that given velocity, as the square root of the ratio which the force of
gravity bears to that known resistance of the medium.

PROPOSITION IX. THEOREM VII

Supposing what is above demonstrated, 1 say, that if the tangents of the
angles of the sector of a circle, and of an hyperbola, be taken proportional
to the velocities, the radius being of a fit magnitude, all the time of the
ascent to the highest place will be as the sector of the circle, and all the time
of descending from the highest place as the sector of the hyperbola.

To the right line AC, which expresses the force of gravity, let AD be
drawn perpendicular and equal. From the centre D, with the semidiameter
AD describe as well the quadrant AzE of a circle, as the rectangular hyper-
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bola AVZ, whose axis is AK, principal vertex A, and asymptote DC. Let
Dy, DP be drawn; and the circular sector AzD will be as all the time of the
ascent to the highest place; and the hyperbolic sector ATD as all the time
of descent from the highest place; if so be that the tangents Ap, AP of
those sectors be as the velocities.

Cask 1. Draw Dog cutting off the moments or least intervals Dy and
qDp, described in the same time, of the sector AD¢ and of the triangle

. A £

ADp. Since those intervals (because of the common anglc D) are as the
qDp - tD”
pD

¢tD is given), asin But pD? is AD?+ Ap®, that is, AD*+AD- A%, or

AD -Ck' and gDp is 2AD - pg. Therefore tDv, the interval of the sector,

square of the sides, the interval zD» will be as , that is (because

18 as a( that is, directly as the least decrement pg of the velocity, and in-
versely as the force Ck which diminishes the velocity; and therefore as the
interval of time answering to the decrement of the velocity. And, by com-
position, the sum of all the intervals 2Dy in the sector ADz will be as the

sum of the intervals of time answering to each of the lost intervals pgq of
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the decreasing velocity Ap, till that velocity, being diminished into nothing,
vanishes; that is, the whole sector AD¢ is as the whole time of ascent to the
highest place. Q.E.D.

Cask 2. Draw DQV cutting off the least intervals TDV and PDQ of the

sector DAV, and of the triangle DAQ; and these intervals will be to each
r\l‘l‘lpr g n'r h'\ TTD2 f]'\'lt 18 (1(TY and AD are r\nf‘n]]p]\ ng ﬁY~ l-n DAz

VLLILl ag 474 ] Li A LA QLI L kA t} \.-J.}, AJ AS LA

or TX® to AP?; and, by subtract1on, as DX’ —TX® to DA”— AP°. But, from
the nature of the hyperbola, DX*—TX* is AD?; and, by the supposition,
AP? is AD-AK. Therefore the intervals are to each other as AD® to
AD?—AD - AK; that is, as AD to AD—AK or AC to CK; and therefore
the interval TDV of the sector is ?Rgﬁég, and therefore (because AC
CE’ that is, directly as the increment of the velocity,
and inversely as the force generating the increment; and therefore as the
interval of the time answering to the increment. And, by composition, the

and AD are given) as P

A_.-D E

sum of the intervals of time, in which all the intervals PQ of the velocity
AP are generated, will be as the sum of the intervals of the sector ATD;
that is, the whole time will be as the whole sector. Q.E.D.



256 NEWTON’S MATHEMATICAL PRINCIPLES

Cor. 1. Hence if AB be equal to a fourth part of AC, the space which a
body will describe by falling in any time will be to the space which the body
could describe, by moving uniformly on in the same time with its greatest
velocity AC, as the area ABNK, which expresses the space described in
falling to the area ATD, which expresses the time. For since

AC:AP=AP:AK,
and by Cor. 1, Lem. 1, of this Book,

LK :PQ=2AK : AP=2AP: AC,
therefore LK :%2PQ=AP:%AC or AB,
andsince KN :ACor AD=AD:CK,
multiplying together corresponding terms,

LKNO : DPQ=AP : CK.
As shown above,

DPQ :DTV=CK : AC.
Hence, LKNO:DTV=AP:AC;
that is, as the velocity of the falling body to the greatest velocity which the
body by falling can acquire. Since, therefore, the moments LKNO and
DTV of the areas ABNK and ATD are as the velocities, all the parts of
those areas generated in the same time will be as the spaces described in
the same time; and therefore the whole areas ABNK and ADT, generated
from the beginning, will be as the whole spaces described from the begin-
ning of the descent. Q.E.D.

Cor. 1. The same is true also of the space described in the ascent. That is
to say, that all that space is to the space described in the same time, with the
uniform velocity AC, as the area AB## is to the sector AD:z.

Cor. 111. The velocity of the body, falling in the time ATD, is to the veloc-
ity which it would acquire in the same time in a nonresisting space, as the
triangle APD to the hyperbolic sector ATD. For the velocity in a nonresist-
ing medium would be as the time ATD, and in a resisting medium is as AP,
that is, as the triangle APD. And those velocities, at the beginning of the
descent, are equal among themselves, as well as those areas ATD, APD.

Cor. 1v. By the same argument, the velocity in the ascent is to the velocity
with which the body in the same time, in a nonresisting space, would lose
all its motion of ascent, as the triangle ApD to the circular sector AzD; or
as the right line Ap to the arc Az.
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Cor. v. Therefore the time in which a body, by falling in a resisting
medium, would acquire the velocity AP, is to the time in which it would
acquire its greatest velocity AC, by falling in a nonresisting space, as the
sector ADT to the triangle ADC; and the time in which it would lose its
velocity Ap, by ascending in a resisting medium, is to the time in which it
would lose the same velocity by ascending in a nonresisting space, as the
arc Az to its tangent Ap.

Cor. vi. Hence from the given time there is given the space described in
the ascent or descent. For the greatest velocity of a body descending in
infinitum is given (by Cor. i1 and 11, Theor. vi, of this Book); and thence
the time is given in which a body would acquire that velocity by falling in
nonresisting space. Taking the sector ADT or ADt to the triangle ADC in
the ratio of the given time to the time just found, there will be given both
the velocity AP or Ap, and the area ABNK or ABzk, which is to the sector
ADT, or ADy, as the space sought to that which would, in the given time,
be uniformly described with that greatest velocity found just before.

Cor. vii. And by going backwards, from the given space of ascent or de-
scent ABnk or ABNK, there will be given the time ADz or ADT.

PROPOSITION X. PROBLEM III"

Suppose the uniform force of gravity to tend directly to the plane of the
horizon, and the resistance to be as the product of the density of the me-
dium and the square of the velocity: it is proposed to find the density of
the medium in each place, which shall make the body move in any given
curved line, the velocity of the body, and the resistance of the medium in

cach place. Let PQ be a plane perpen-
- dicular to the plane of the
L scheme itself ; PFHQ a curved

F ﬁﬁ line meeting that plane in the
I\ points Pand Q; G,H, LK four
K places of the body going on in
this curve from F to Q; and
GB, HC, ID, KE four parallel

ordinates let fall from these
P A B CD E a points to the horizon, and

[t Appendix, Note 34.]
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standing on the horizontal line PQ at the points B, C, D, E; and let the dis-
tances BC, CD, DE of the ordinates be equal among themselves. From the
points G and H let the right lines GL, HN be drawn touching the curve
in G and H, and meeting the ordinates CH, DI, produced upwards, in L
and N; and complete the parallelogram HCDM. And the times in which
the body describes the arcs GH, HI, will be as the square root of the alti-
tudes LH, NI, which the bodies would describe in those times, by falling
from the tangents; and the velocities will be directly as the lengths described
GH, HI, and inversely as the times. Let the times be represented by T and #,

and the velocities by GTH and I_?; and the decrement of the velocity pro-
duced in the time # will be represented by GTI,I_—I - —I?- This decrement arises

from the resistance which retards the body, and from the gravity which

accelerates it. Gravity, in a falling body, which in its fall describes the space

NI, produces a velocity with which it would be able to describe twice that

space in the same time, as Galileo hath demonstrated; that is, the velocity
N : : :

-2—}—1: but if the body describes the arc HI, it augments that arc only by

the length HI-HN or MI- NI

HI
—2—1;4% Let this velocity be added to the before-mentioned decrement,

and we shall have the decrement of the velocity arising from the resistance

I that ; GH_HI+2MI-NI
alone, that 1s, T S HI

: : : : . 2NI :
action of gravity generates, in a falling body, the velocity -%—;—- , the resist-

ance will be to the gravity as

GH HI 2MI'NI 2NI t-GH 2MI- NI
T~ 7t to S oras /% —HI+————~—I_II to2NIL
Now, for the abscissas CB, CD, CE, put —o, o, 20. For the ordinate CH
put P; and for MI put any series Qo+ Ro’+So®+, &c. And all the terms
of the series after the first, that is, Ro®+So® +, &c., will be NI; and the
ordinates DI, EK, and BG will be P—~Qo—Ro’—S0’—, &c., P—~2Qo -
4R0* - 880" —, &c.,and P + Qo — Ro® + So” —, &c., respectively. And by squar-
ing the differences of the ordinates BG—CH and CH-DI, and to the

; and therefore generates only the velocity

. Therefore since, in the same time, the




BOOK II: THE MOTION OF BODIES 259

squares thence produced adding the squares of BC and CD themselves, you
will have oo+ QQoo—2QR0®+, &c., and 00+ QQoo +2QRo*+, &c., the

squares of the arcs GH, HI; whose roots o\/(1+QQ) — _V_(%I}%’_@ and
QR

00 .
are the arcs GH and HI. Morcover, if from
(1+QQ)

0\/(1+QQ)+\/

the ordinate CH there be subtracted half the sum of the ordinates BG and
DI, and from the ordinate DI

there be subtracted half the T

sum of the ordinates CH and F| e M
EK, there will remain Roo and IK
Roo +3S0° the versed sines of K

the arcs Gl and HK. And these
are proportional to the short
lines LH and NI, and there-
fore are as the squares of the
infinitely small times T and #:

A B (D EQ

3

and thence the ratio % varies as the square root of R +P% S0 or R :{2 S0; and

d XTG H —-HI+ 2—1\4-}]—{51& by substituting the values of z ,GH, HI, M1, and
3500

NI just found, becomes V (1+QQ). And since 2NI is 2Roo, the

2R

resistance will be now to the gravity as 3 S;o\/ (1+QQ) to 2Roo, that is, as
35/ (1 +QQ) to 4RR.

And the velocity will be such, that a body going off therewith from any
place H, in the direction of the tangent HN, would describe, in a vacuum, a
HN*  1+QQ

NI TR

And the resistance is as the product of the density of the medium and
the square of the velocity; and therefore the density of the medium is
directly as the resistance, and inversely as the square of the velocity; that is,

directly as 38V/(1+QQ) and inversely as T +I(3Q; that 1s, as R\/(IS+ QQ)’

QEI 4%

parabola, whose diameter is HC, and its latus rectum
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Cor. 1. If the tangent HN be produced both ways, so as to meet any ordi-
nate AF in T, 71:% will be equal to \/(1+ QQ), and therefore in what has
gone before may be put for \ /(1 -+ QQ). By this means the resistance will be

to the gravity as 35S - HT to 4RR - AC; the velocity will be as —;,..E-T%,,—, and
g y as 3 | ) AC\/R

S-AC
R-HT

Cor. . And hence, if the curved line PFHQ be defined by the relation
between the base or abscissa AC and the ordinate CH, as is usual, and the
value of the ordinate be resolved into a converging series, the Problem will
be expeditiously solved by the first terms of the series; as in the following
Examples.

Exam. 1. Let the line PFHQ be a semicircle described upon the diameter
PQ; to find the density of the medium that shall make a projectile move
in that line.

Bisect the diameter PQ in A; and call AQ, »; AC, 2; CH, ¢; and CD, o;
then DI? or AQ®—~AD?=nn-aa—2a0—o00, or ee—2a0—00; and the root
being extracted by our method, will give

Dl=¢-%0_ 20500 00 20 .
e 20 228 28 2¢
Here put ## for ee +aa, and DI will become = ee — ©. ””20 ~ cmng —, &c.
e 2 2¢

In such a series I distinguish the successive terms after this manner: I call
that the first term in which the infinitely small quantity o is not found; the
second, in which that quantity is of one dimension only; the third, in which
it arises to two dimensions; the fourth, in which it is of three; and so ad
infinizum. And the first term, which here is ¢, will always denote the length
of the ordinate CH, erected at the starting point of the indefinite quantity

the density of the medium will be as

: . ao . .
0. The second term, which here is —, will denote the difference between
¢

CH and DN;; that is, the short line MN which is cut off by completing the
parallelogram HCDM; and therefore always determines the position of

the tangent HN; as, in this case, by taking MN : HM = %2 :o=a:e. The
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. 1100
third term, which here 1s—. o will represent the short line IN, which lies

between the tangent and the curve; and therefore determines the angle of
contact IHN, or the curvature which the curved line has in H. If that short
line IN is of a finite magnitude, it will be expressed by the third term,
together with those that follow

in infinitum. But if that short T%

line be diminished in infin:- F| o M
tum, the terms following be- H IL{
come infinitely less than the R

third term, and therefore may
be neglected. The fourth term
determines the variation of the
curvature; the fifth, the varia-
tion of the variation ; and so on.
From this, by the way, appears the use, not to be disdained, which may be
made of these series in the solution of problems that depend upon tangents,
and the curvature of curves.

Now compare the series

ao nnoo anno’
e 2T T 4.,
e 2 2e

A B CDE Q

with the series
P—Qo—~Roo—-So’—&ec.,

and for P,Q,R and S, put e,— ’;2723 and am:,and for\/(1+QQ) putJ(r +§§>

n . a
or —; and the density of the medium will come out as o that is (because
e

n 1s given), as E or ‘==, that is, as that length of the tangent HT, which is

C
CH’
terminated at the semidiameter AF standing perpendicularly on PQ: and
the resistance will be to the gravity as 34 to 2», that is, as 3AC to the diameter
PQ of the circle; and the velocity will be as \/CH. Therefore if the body
goes from the place F, with a due velocity, in the direction of a line parallel
to PQ, and the density of the medium in each of the places H is as the
length of the tangent HT, and the resistance also in any place H is to the
force of gravity as 3AC to PQ, that body will describe the quadrant FHQ

of acircle. Q.E.L
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But if the same body should go from the place P, in the direction of a line
perpendicular to PQ, and should begin to move in an arc of the semicircle
PFQ, we must take AC or 2 on the contrary side of the centre A; and there-
fore its sign must be changed, and we must put — 2 for + 4. Then the density

: a :
of the medium would come out as— —. But Nature does not admit of a nega-
[

tive density, that is, a density which accelerates the motion of bodies; and
therefore it cannot naturally come to pass that a body by ascending from P
should describe the quadrant PF of a circle. To produce such an effect, a
body ought to be accelerated by an impelling medium, and not impeded
by a resisting one.

Exawm. 2. Let the line PFQ be a parabola, having its axis AF perpendicular
to the horizon PQ; to find the density of the medium, which will make a
projectile move in that line.

From the nature of the parabola, the rectangle —PD - DQ is equal to the
rectangle under the ordinate DI and some given right line; that is, if that
right line be called ; PC, 2; PQ, ¢; CH, ¢; and CD, 0; the rectangle

(a+0)(c—a—0)=ac—aa—2a0+co—o00="5-DI;
ac—aa c—24 00

F therefore DI= + C0——.

~H b b b

I c—2a . ..
A Now the second term 5 o of this series is

to be put for Qo, and the third term 0—;— for

Roo. But since there are no more terms, the
P A  CD  Q  cocfficient S of the fourth term will vanish;

and therefore the quantity R/ (IS to which the density of the me-

+QQ)’
dium is proportional, will be nothing. Therefore, where the medium 1s of
no density, the projectile will move in a parabola; as Galileo hath hereto-
fore demonstrated. Q.E.L.

Exam. 3. Let the line AGK be an hyperbola, having its asymptote NX
perpendicular to the horizontal plane AK; to find the density of the me-
dium that will make a projectile move in that line.

Let MX be the other asymptote, meeting the ordinate DG produced in
V; and from the nature of the hyperbola, the rectangle of XV into VG will
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be given. There 1s also given the ratio of DN to VX, and therefore the rec-
tangle of DN into VG is given. Let that be 65, and, completing the paral-
lelogram DNXZ, let BN be called 2; BD, 0; NX| ¢; and let the given ratio

of VZ to ZX or DN be —. Then DN will be equal to 2~0, VG equal to

bb m
VZ equal to —- (a~— 0) and GD or NX—-VZ-VG equal to
a—0’ 7
m m bb
c——a+—o-
n n  a—o

bb
Let the term —— be resolved into the converging series

“TO b b Bb bb
—+-—~0+— 00+—; 0, &c.
a aa [74 (Z

and GD will become equal to
m bbb m bbb bbb , bb

c——a——+—0——0—~—0—— 0°,&cC.
” a n as 4 a

m  bb
The second term 00 of this series is to be used for Qo; the third
aa

%202, with its sign changed for Ro®; and the fourth —@; 0°, with its sign
m bbb bb

changed also for So°, and their coefficients P ,and {;é are to be put
for Q, R, and Sin thc former aa’ &

rule. Which being done, the D
density of the medium will \
come out as A >4

bb

a

bb ( mm 2mbb b"‘)
—3 I+ - +

naa *

or

4( mm 2mbb b“)’
aa+——ag— 4+ —

nn n aa

that 1s, if in VZ you take VY

equal to VG, as 5(? For

m: , 2mbb b
" — +—

v7) aa M A BD
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are the squares of XZ and ZY. But the ratio of the resistance to gravity is
found to be that of 3XY to 2YG; and the velocity is that with which the
body would describe a parabola, whose vertex is G, diameter DG, latus
2
VG’
of the places G are inversely as the distances XY, and that the resistance in
any place G 1s to the gravity as 3XY to 2YG; and a body let go from the
place A, with a due velocity, will describe that hyperbola AGK. Q.E.L

ExaM. 4. Suppose, indefinitely, the line AGK to be an hyperbola de-
scribed with the centre X, and the asymptotes MX, NX, so that, having
constructed the rectangle XZDN, whose side ZD cuts the hyperbola in G
and its asymptote in V, VG may be inversely as any power DN* of the line

ZX or DN, whose index is the
Y number 7. to find the density
of the medium in which a
Z X projected body will describe
this curve.

For BN, BD,NX put A, O,
v C, respectively, and let VZ be
to XZ or DN as 4 to e, and

bb
VG be equal to N
DN will be equal to A-0O,

rectum Suppose, therefore, that the densities of the medium in each

then

bb
. VG= (A _ C)u)
R VZ= ;(A-— 0)
M A BD K N and GD or NX-VZ-VG
equal to
d d bb
C — _6- A+ —c: O- (m .
bb . X . )
Let the term m be resolved into an infinite series
bb nbb nn+n . n+3nn+2n .
'A—n-l-ATf'O-i-zA,Hz bb O’ + G bf’O,&C.,
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and GD will be equal to

d bb d nbb +nn+n ., tnit3nntan ;
C—-;A A" ”O G O—W bbO* 6A"+3 bZJO,&c.
The second term ‘—i O- A?"zn_&_'_bl O of this series is to be used for Qo, the third
nn+n ., . ‘ n'+3nnt2n

56O’ for Roo, the fourth

GA"" b60O for So’. And thence the

2Aﬂ+ 2
S , in any place G, will be

density of the medium
™ R\/(1+QQ)

n+2

., dd ,, 2dnbb nn&*)’
3J(A * eeA T eA” A+A2”

and therefore if in VZ you take VY equal to » - VG, that density is recipro-

cally as XY. For A” and ad A2 2(22\[:[9 A+ ?j:,f are the squares of XZ and
and ZY. But the resistance in the same place G is to the force of gravity as
3S- -)-{AX to 4RR, that s, as XY to 2R T 2" VG. And the velocity there is
the same wherewith the projected body would move in a parabola, whose
+ QQ 2XY?

R Y lmin) ve o8

i . I
vertex is G, diameter GD, and latus rectum

SCHOLIUM
In the same manner that the

density of the medium comes T L
uttobcass AC in Cor. 1 Fl @ )lg
0 R -HT’ ’

I
if the resistance is put as any }
power V" of the velocity V,
the density of the medium
will come out to be as
S .(AC)"“. P A BCDE Q

Ri_ﬁfﬂ ﬁi«

And therefore, if a curve can be found, such that the ratio of

to
Rz

(%%) , or of R§-n to (1+QQ)"* may be given; the body, in an uni-
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form medium, whose resistance is as the power V* of the velocity V, will
move in this curve. But let us return to more simple curves.

Since there can be no motion in a parabola except in a nonresisting
‘medium, but i1n the hyperbolas here described it is produced by a continual
resistance; it 1s evident that the line which a projectile describes in an uni-

formly resisting medium ap- y
proaches nearer to these hy-
perbolas than to a parabola.
That line is certainly of the
hyperbolic kind, but about
the vertex it i1s more distant
from the asymptotes, and in
the parts remote from the
vertex draws nearer to them
than these hyperbolas here de-
scribed. The difference, how-
ever, is not so great between
the one and the other but that
these latter may be commodi-
ously enough used in practice
instead of the former. And
perhaps these may prove more useful than an hyperbola that is more accu-
rate, and at the same time more complex. They may be made use of, then,
in this manner.

Complete the parallelogram XYGT, and the right line GT will touch the
hyperbola in G, and therefore the density of the medium in G 1s inversely

Z X

F A BD K N

: GT*® . ,
as the tangent GT, and the velocity there as 4 oV and the resistance is to

2nnt2n

n+2

Therefore if a body projected from the place A, in the direction of the
right line AH, describes the hyperbola AGK, and AH produced meets the
asymptote NX in H, and Al drawn paralle]l to it meets the other asymptote
MX in I; the density of the medium in A will be inversely as AH and the
AH?
Al

the force of gravity as GT to

velocity of the body as , and the resistance there to the force of
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gravity as AH to 2__n:j22n - AL, Hence the following Rules are deduced.

Rutk 1. If the density of the medium at A, and the velocity with which
the body is projected, remain the same, and the angle NAH be changed;
the lengths AH, Al, HX will remain. Therefore if those lengths, in any one
case, are found, the uyp rbola may afterwards be C&Sli'y determined from
any given angle NAH.

Rute 2. If the angle NAH, and
the density of the medium at A,
remain the same, and the velocity
with which the body is projected
be changed, the length AH will
continue the same; and Al will be
changed inversely as the square of

the velocity.

Rutk 3. If the angle NAH, the velocity of the body at A, and the acceler-
ative gravity remain the same, and the proportion of the resistance at A
to the motive gravity be augmented in any ratio; the proportion of AH

to Al will be augmented 1n the same ratio, the latus rectum of the above-
2

Al
tional to it; and therefore AH will be diminished in the same ratio, and Al
will be diminished as the square of that ratio. But the proportion of the
resistance to the weight is augmented, when either the specific gravity is
made less, the magnitude remaining equal, or when the density of the
medium is made greater, or when, by diminishing the magnitude, the
resistance becomes diminished in a less ratio than the weight.

mentioned parabola remaining the same, and also the length propor-
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RULE 4. Because the density of the medium is greater near the vertex of
the hyperbola than it is in the place A, that a mean density may be preserved,
the ratio of the least of the tangents GT to the tangent AH ought to be
found, and the density in A augmented in a ratio a little greater than that
of half the sum of those tangents to the least of the tangents GT.

Rutke 5. If the lengths AH, Al are given, and the figure AGK is to be
described, produce HN to X, so that HX may be to Al as »+1 to 1; and
with the centre X, and the asymptotes MX, NX, describe an hyperbola
through the point A, such that Al may be to any of the lines VG as XV*

to XI".

+F AE -.-.--'.....".E ..k K N

C

RuLk 6. By how much the greater the number 7 is, so much the more
accurate are these hyperbolas in the ascent of the body from A, and less accu-
rate in its descent to K ; and conversely. The conic hyperbola keeps a mean
ratio between these, and 1s more simple than the rest. Therefore if the
hyperbola be of this kind, and you are to find the point K, where the pro-
jected body falls upon any right line AN passing through the point A, let
AN produced meet the asymptotes MX, NX in M and N, and take NK
equal to AM.

Rutk 7. And hence appears an expeditious method of determining this
hyperbola from the phenomena. Let two similar and equal bodies be
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projected with the same velocity, in different angles HAK, AA%, and let
them fall upon the plane of the horizon in K and %; and note the propor-
tion of AK to A%. Let it be as 4 to e. Then erecting a perpendicular Al of
any length, assume any length AH or A%, and thence graphically, or by
scale and compass, collect the lengths AK, A% (by Rule 6). If the ratio of

AY +~ AL I"\ﬂ 1'1'\‘:- ' elas Vel ‘-tv;fl-'\ Fl\nf’ r\r/] | o ] f’l\n ‘nﬁml'\ r\r ALY cirnc qﬂ:r\-‘\fltr
FRWA SR LY) J..l.l" e LIk Oodlllv VY ILLL Llldi UL W WU, Ll .l\.nll.sul Ll {x1 1k ¥¥YaAad 11511(.1’
assumed. If not, take on the indefinite right line SM, the length SM equal
to the assumed AH; and erect a perpendicular MN equal to the difference

% - g of the ratios multiplied by any given right line. By the like method,
from several assumed lengths AH, you may find several points N; and
draw through them all a regular
curve NNXN, cutting the right
line SMMM 1n X. Lastly, assume
AH equal to the abscissa §X, and
thence find again the length AK;
and the lengths, which are to the
assumed length Al and this last
AH, as the length AK known by
experiment, to the length
AK last found, will be the
true lengths Al and AH, o :
which were to be found. . I Sy 308

we
.
et
.....
.......
.
....
....
at
vy

But these being given, there will be given also the resisting force of the
medium in the place A, it being to the force of gravity as AH to %Al Let
the density of the medium be increased by Rule 4, and if the resisting force
just found be increased in the same ratio, it will become still more accurate.

RuLe 8. The lengths AH, HX being found; let there be now required the
position of the line AH, according to which a projectile thrown with that
given velocity shall fall upon any point K. At the points A and K, erect the
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lines AC, KF perpendicular to the horizon; whereof let AC be drawn
downwards, and be equal to Al or %2HX. With the asymptotes AK, KF,
describe an hyperbola, whose conjugate shall pass through the point C; and
from the centre A, with the interval AH, describe a circle cutting that
hyperbola in the point H; then the projectile thrown in the direction of the
right line AH will fall upon the point K. Q.E.L For the point H, because of
the given length AH, must be somewhere in the circumference of the de-
scribed circle. Draw CH meeting AK and KF in E and F; and because CH,
MX are parallel, and AC, Al equal, AE will be equal to AM, and therefore
also equal to KN. But CE is to AE as FH to KN, and therefore CE and FH
are equal. Therefore the point H falls upon the hyperbolic curve described
with the asymptotes AK, KF whose conjugate passes through the point C;
and is therefore found in the common intersection of this hyperbolic curve
and the circumference of the described circle. Q.E.D. It is to be observed
that this operation is the same, whether the right line AKN be parallel to
the horizon, or inclined thereto in any angle; and that from two intersec-
tions H, 4, there arise two angles NAH, NA/; and that in mechanical prac-
tice it is sufficient once to describe a circle, then to apply a ruler CH, of an
indeterminate length, so to the point C, that its part FH, intercepted be-
tween the circle and the right line FK, may be equal to its part CE placed
between the point C and the right line AK.

What has been said of hyperbolas may be
easily applied to parabolas. For if a parabola
be represented by XAGK, touched by a right .
line XV in the vertex X, and the ordinates '
IA, VG be as any powers XI", XV", of the
abscissas XI,XV; draw XT, GT,AH, where-
of let XT be parallel to VG, and let GT, AH y
touch the parabola in G and A:and abody W A
projected from any place A, in the direction
of the right line AH, with a due velocity,
will describe this parabola, if the density of X
the medium in each of the places G be in-
versely as the tangent GT. In that case the velocity in G will be the same as
would cause a body, moving in a nonresisting space, to describe a conic
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parabola, having G for its vertex, VG produced downwards for its diameter,

and (n iGn’)I‘ VG for its latus rectum. And the resisting force in G will be

to the force of gravity as GT to

2nn—2n

VG. Therefore if NAK represent

an horizontal line, and both the density of the medium at A, and the ve-

locity with which the body is projected, remaining the same, the angle
NAH be anyhow altered, the lengths AH, A, HX will remain; and thence
will be given the vertex X of the parabola, and the position of the right line
X1; and by taking VG to IA as XV" to XI", there will be given all the points
G of the parabola, through which the projectile will pass.
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SECTIONIII

The motion of bodies that are resisted partly in the ratio of the velocities,
and partly as the square of the same ratio.

PROPOSITION XI. THEOREM VIII

If a body be resisted partly in the ratio and partly as the square of the ratio
of 1ts velocity, and moves in a similar medium by its innate force only; and
the times be taken in arithmetical progression: then quantities nversely
proportiondl to the velocities, increased by a certain given quantity, will be
in geometrical progression.

With the centre C, and the rectangular asymptotes CADd and CH, de-
scribe an hyperbola BEe, and let AB, DE, de be parallel to the asymptote
CH. In the asymptote CD let A, G be given points; and if the time be repre-

sented by the hyperbolic area ABED uni-

H . : :
\B formly increasing, I say, that the velocity
may be expressed by the length DF, whose
\ reciprocal GD, together with the given
E\g___ line CG, compose the length CD increas-

: ing in a geometrical progression.

For let the small area DEed be the least

given increment of the time, and Dd will
F- be inversely as DE, and therefore directly

C (:;A Dq:;

as CD. Therefore the decrement of 615’ which (by Lem. 1, Book 1) is
CG

Dd . CD CG+GD 1
GD® will be also as o & T oD D T GO
the time ABED uniformly increasing by the addition of the given intervals

,that is, as . Therefore,

EDde, it follows that 61]5 decreases in the same ratio with the velocity. For

the decrement of the velocity is as the resistance, that is (by the supposi-
tion), as the sum of two quantities, whereof one is as the velocity, and the

, I,
other as the square of the velocity; and the decrement of Gp 1838 the sum

.. I CG N S
of the quantities GD and D" whereof the first is D itself, and the last
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CG. . .
D’ is as —— GD2 : therefore 65 is as the velocity, the decrements of both being

analogous. And if the quantity GD inversely proportional to ==, be aug-

GD ’
mented by the given quantity CG; the sum CD, the time ABED uniformly
increasing, will increase in a geometrical progression. Q.E.D.

Cor. 1. Therefore, if, having the points A and G given, the time be repre-
sented by the hyperbolic area ABED, the velocity may be represented by

GD —+ the reciprocal of GD.

Cor. 1. And by taking GA to GD as the reciprocal of the velocity at the
beginning to the reciprocal of the velocity at the end of any time ABED,
the point G will be found. And that point being found, the velocity may be
found from any other time given.

PROPOSITION XII. THEOREM IX

The same things being supposed, I say, that if the spaces described are taken
in arithmetical progression, the velocities augmented by a certain given
quantity will be in geometrical progression.

In the asymptote CD let there
be given the point R, and, erect- H
ing the perpendicular RS meeting B
the hyperbola in S, let the space
described be represented by the
hyperbolic area RSEDj; and the
velocity will be as the length GD,
which, together with the given
line CG, composes a length CD
decreasing in a geometrical progression, while the space RSED increases in
an arithmetical progression.

For, because the increment EDde of the space is given, the short line Dd,
which is the decrement of GD, will be reciprocally as ED, and therefore
directly as CD; that is, as the sum of the same GD and the given length CG.
But the decrement of the velocity, in a time inversely proportional thereto, in
which the given interval of space Dd¢E is described, is as the resistance and
the time conjointly, that is, directly as the sum of two quantities, whereof one

c ¢ A Dd R
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is as the velocity, the other as the square of the velocity, and inversely as the
velocity ; and therefore directly as the sum of two quantities, one of which
is given, the other is as the velocity. Therefore the decrement both of the
velocity and of the line GD is as a given quantity and a decreasing quantity
conjointly; and, because the decrements are analogous, the decreasing quan-

Cor. 1. If the velocity be represented by the length GD, the space described
will be as the hyperbolic area DESR.

Cor. 1. And if the point R be assumed anywhere, the point G will be
found, by taking GR to GD as the velocity at the beginning to the velocity
after any space RSED is described. The point G being given, the space is
given from the given velocity; and conversely.

Cor. . Whence since (by Prop. x1) the velocity is given from the given
time, and (by this Proposition) the space is given from the given velocity,
the space will be given from the given time; and conversely.

PROPOSITION XIII. THEOREM X

Supposing that a body attracted downwards by an uniform gravity ascends
or descends in a right line; and that the same is resisted partly in the ratio
of its velocity, and partly as the square of the ratio thereof: I say, that, if
right lines parallel to the diameters of a circle and an hyperbola be drawn
through the ends of the conjugate diameters, and the velocities be as some
segments of those parallels drawn from a giwven point, the times will be as
the sectors of the areas cut off by right lines drawn from the centre to the
ends of the segments; and conversely.

Cask 1. Suppose first that the body is ascend-
ing, and from the centre D, with any semidiam-
eter DB, describe a quadrant BETF of a circle,
and through the end B of the semidiameter DB
draw the indefinite line BAP, parallel to the
semidiameter DF. In that line let there be given
| the point A, and take the segment AP propor-
b F  tjonal to the velocity. And since one part of the
resistance is as the velocity, and another part as the square of the velocity,
let the whole resistance be as AP?+2BA - AP. Join DA, DP, cutting the

A Q
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circle in E and T, and let the gravity be represented by DA? so that the
gravity shall be to the resistance in P as DA® to AP?+2BA - AP; and the
time of the whole ascent will be as the sector EDT of the circle.

For draw DVQ, cutting off the moment PQ of the velocity AP, and the
moment DTV of the sector DET answering to a given moment of time;
and that decrement PQ of the velocity will be as the sum of the forces of
gravity DA® and of resistance AP*+2BA - AP; that is (by Prop. x11, Book
1, Elem. of Euclid), as DP®. Then the area DPQ, proportional to PQ, is as
DP?, and the area DTV, which is to the area DPQ as DT® to DP?, is as the
given quantity D'T?. Therefore the area EDT decreases uniformly according
to the rate of the future time, by subtraction of given intervals DTV, and
is therefore proportional to the time of the whole ascent. Q.E.D.

Cask 2. If the velocity in the ascent of the body be represented by the
length AP as before, and the resistance be made as AP?+2BA - AP; and
if the force of gravity be less
than can be expressed by DA?;
take BD of such a length, that
AB*—BD? may be proportional
to the gravity, and let DF be per-
pendicular and equal to DB,
and through the vertex F de-
scribe the hyperbola FTVE, :
whose conjugate semidiameters D F G
are DB and DF, and which cuts DA in E, and DP, DQ in T and V; and the
time of the whole ascent will be as the hyperbolic sector TDE.

For the decrement PQ of the velocity, produced in a given interval of
time, is as the sum of the resistance AP*+2BA - AP and of the gravity
AB?—-BD’, that is, as BP?—BD®. But the area DTV is to the area DPQ
as DT* to DP?; and, therefore, if GT be drawn perpendicular to DF, as
GT? or GD*—DF?* to BD?, and as GD? to BP?, and, by subtraction, as DF*
to BP?— BD?”. Therefore since the area DPQ is as PQ, that is, as BP*>~BD?
the area DTV will be as the given quantity DF?, Therefore the area EDT
decreases uniformly in each of the equal intervals of time, by the subtrac-
tion of so many given intervals DTV, and therefore is proportional to the
time. Q.E.D.
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Cask 3. Let AP be the velocity in the descent of the body, and AP*+2BA -
AP the force of resistance, and BD*— AB® the force of gravity, the angle
DBA being a right one. And if with the centre D, and the principal vertex
B, there be described a rectangular hyperbola BETV cutting DA, DP, and

DQ produced in E, T, and V; the sector DET

=7 1. ..L_. R TR PP o
of this uypcruum will be as the whole time of

descent.

For the :ncrement PQ of the velocity, and the
area DPQ proportional to it, is as the excess of
the gravity above the resistance, that is, as

BD?*~AB’—2BA-AP-AP°

or BD*— BP? And the area DTV is to the area
DPQ as DT® to DP?; and therefore as GT? or
GD? - BD? to BP?; and as GD? to BD? and, by
subtraction, as BD? to BD? — BP? Therefore since
the area DPQ is as BD* — BP?, the area DTV will be as the given quantity
BD? Therefore the area EDT increases uniformly in the several equal in-
tervals of time by the addition of as many given intervals DTV, and there-
fore is proportional to the time of the descent. Q.E.D.

Cor. If with the centre D and the semidiameter DA there be drawn
through the vertex A an arc Az similar to the arc ET, and similarly subtend-
ing the angle ADT, the velocity AP will be to the velocity which the body
in the time EDT, in a nonresisting space, can lose in its ascent, or acquire in
its descent, as the area of the triangle DAP to the area of the sector DA¢#;
and therefore is given from the time given. For the velocity in a nonresisting
medium is proportional to the time, and therefore to this sector; in a resist-
ing medium, it is as the triangle; and in both mediums, where it is least, it
approaches to the ratio of equality, as the sector and triangle do.

D

SCHOLIUM

One may demonstrate also that case in the ascent of the body, where the
force of gravity is less than can be expressed by DA® or AB*+ BD? and
greater than can be expressed by AB*— DB?, and must be expressed by AB>.
But I hasten to other things.
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PROPOSITION XIV. THEOREM XI

The same things being supposed, I say, that the space described 1n the ascent
or descent is as the difference of the area by which the time is expressed, and
of some other area which is augmented or diminished in an arithmetical
progression; if the forces compounded of the resistance and the gravity be
taken in a geometrical progression.

Take AC (in these three figures) proportional to the gravity, and AK to
the resistance; but take them on the same side of the point A, if the body
is descending, otherwise on the contrary. Erect A, which make to DB as

o
E
H
3 oO_N
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DB’ to 4 BA - CA; and to the rectangular asymptotes CK, CH, describe the
hyperbola #N; and, erecting KN perpendicular to CK, the area ASNK will
be augmented or diminished in an arithmetical progression, while the
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forces CK are taken in a geometrical progression. I say, therefore, that the
distance of the body from its greatest altitude is as the excess of the area
AbNK above the area DET.
For since AK is as the resistance, that is, as AP*-2BA - AP; assume any
AP*+2BA - AP
ry

; then (by Lem. it
2PQ-AP+2BA-PQ

given quantity Z, and put AK equal to

of this Book) the moment KL of AK will be equal to
PQ-BP Z
or 2————2 , and the moment KLON of the area ASNK will be equal to
2PQ-BP-LO  PQ-BP-BD?
Z ' 3Z CK-AB"

Cask 1. Now if the body ascends, and the gravity be as AB* + BD?, BET
being a circle, the line AC, which is proportional to the gravity, will be
ABPD. and DP*or AP*+ 2BA - AP + AB* + BD* will be AK -Z+ AC-Z
or CK -Z; and therefore the area DTV will be to the area DPQ as DT” or
DB’to CK - Z.

Cask 2. If the body ascends, and the gravity be as AB*— BD?, the line AC
will be AB;EB—[_)—, and DT® will be to DP? as DF? or DB’ to BP*—BD?
or AP’ +2BA - AP + AB*-BD?’, that is,to AK-Z+AC-Z or CK-Z. And
therefore the area DTV will be to the area DPQ as DB® to CK - Z.

Cask 3. And by the same reasoning, if the body descends, and therefore
BD*— AB®

Z >

the gravity is as BD*— AB?, and the line AC becomes equal to

the area DTV will be to the area DPQ as DB? to CK .- Z: as above.

Since, therefore, these areas are always in this ratio, if for the area DTV, by
which the moment of the time, always equal to itself, is expressed, there be
put any determinate rectangle, as BD - m, the area DPQ, that is, 2 BD - PQ,
will be to BD ' m as CK - Z to BD®. And thence PQ - BD?® becomes equal to
2BD-m-CK"Z, and the moment KLON of the area A6NK, found be-
fore, becomes BP-BD - m . From the area DET subtract its moment DTV

AB AP-BD-
or BD - m, and there will remain AT ™ Therefore the difference of
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the moments, that is, the moment of the difference of the areas, is equal to

AR AR ) as the
velocity AP; that is, as the moment of the space which the body describes
in its ascent o descent. And therefore the d1ffcrence of the areas, and that

.ﬂf\' fats flﬂf‘l“ﬂ"l(?l N ]‘\tl‘ mtrarvirftiann ﬂur\"l I o
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; and therefore (because of the given quantity
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together or vanishing together, are proportional. Q.E.D.
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Cor. If the length, which arises by applying the area DET to the line BD,
be called M; and another length V be taken in that ratio to the length M,
which the line DA has to the line DE; the space which a body, in a resist-
ing medium, describes in its whole ascent or descent, will be to the space

which a body, in a nonresisting medium, falling from rest, can describe in
2

the same time, as the difference of the aforesaid areas to g and there-
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fore is given from the time given. For the space in a nonresisting medium
is as the square of the time, or as V*; and, because BD and AB are given, as
BD-V? : . DA?-BD-M?

AR This area is equal to the area DEE- AR and the moment of
M is m; and therefore the moment of this area is DA DE‘E) . AZ ]1.:/[ ™ But
this moment is to the moment of the difference of the aforesaid areas DET

: AP-BD-m DA*BD-M | DA®
and A4NK, viz., to AR DE to %BD - AP, or as DE
into DET to DAP; and, therefore, when the areas DET and DAP are least,

2

in the ratio of equality, Therefore the area and the difference of the

A

areas DET and AANK, when all these areas are least, have equal moments;
and are therefore equal. Therefore since the velocities, and therefore also
the spaces in both mediums described together, in the beginning of the de-

scent, or the end of the ascent, approach to equality, and therefore are then
2

v , and the difference of the areas DET and

A

ADNK; and moreover since the space, in a nonresisting medium, is con-
2

one to another as the area

AB
the difference of the areas DET and A&NK; it necessarily follows, that the
spaces, in both mediums, described in any equal times, are one to another

?\i;v , and the difference of the areas DET and ASNK.

tinually as , and the space, in a resisting medium, is continually as

as that area
Q.ED.

SCHOLIUM

The resistance of spherical bodies in fluids arises partly from the tenacity,
partly from the attrition, and partly from the density of the medium. And
that part of the resistance which arises from the density of the fluid is, as
I said, as the square of the velocity; the other part, which arises from the
tenacity of the fluid, is uniform, or as the moment of the time; and, there-
fore, we might now proceed to the motion of bodies, which are resisted
partly by an uniform force, or in the ratio of the moments of the time, and
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partly as the square of the velocity. But it is sufficient to have cleared the
way to this speculation in Prop. vir and 1x foregoing, and their Corollaries.
For in those Propositions, instead of the uniform resistance made to an
ascending body arising from its gravity, one may substitute the uniform
resistance which arises from the tenacity of the medium, when the body

ves b v lts Nnertina '310“'“ ')ﬂ{'l urknn ]mn I*\nrlv oemnnrlc N oa ro ]'\1- ]|n orlA
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this unlform resistance to the force of gravity, and subtract it when the
body descends in a right line. One might also go on to the motion of bodies
which are resisted in part uniformly, in part in the ratio of the velocity, and
in part as the square of the same velocity. And I have opened a way to this
in Prop. xtr and x1v foregoing, in which the uniform resistance arising from
the tenacity of the medium may be substituted for the force of gravity, or
be compounded with it as before. But [ hasten to other things.
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SECTION IV

The circular motion of bodies in resisting mediums.

LEMMA III
Let PQR be a spiral cutting all the radii SP, SQ, SR, &c., in equal angles.
Draw the right line PT touching the spiral in any point P, and cutting the
radius SQ in'T'; draw PO, QO perpendicular to the spiral, and meeting in
O, and join SO: I say, that if the points P and Q approach and coincide, the
angle PSO will become aright angle, and the ultimate ratio of the rectangle
TQ - 2PS 20 PQ® will be the ratio of equalsty.

For, from the right angles OPQ, OQR, subtract the equal angles SPQ,
SQR, and there will remain the equal angles OPS, OQS. Therefore a circle
which passes through the points OSP will pass also through the point Q.
Let the points P and Q coincide,
and this circle will touch the
spiral in the place of coincidence
PQ, and will therefore cut the
right line OP perpendicularly.
Therefore OP will become a
diameter of this circle, and the
angle OSP, being in a semicircle,
becomes a right one. Q.E.D.

Draw QD, SE perpendicular
to OP, and the ultimate ratios of

the lines will be as follows:

TQ:PD=TS or PS:PE=2P0O :2PS;

and PD:PQ=PQ :2PO0O;

multiplying together corresponding terms of equal ratios,
TQ :PQ=PQ:2PS.

Whence PQ® becomes equal to TQ - 2PS. Q.E.D.

PROPOSITION XV. THEOREM XII
If the density of amedium in each place thereof be inversely as the distance
of the places from an immovable centre, and the centripetal force be as the
square of the density: I say, that a body may revolve in a spiral which cuts
all the radii drawn from that centre in a given angle.
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Suppose everything to be as in the foregoing Lemma, and produce SQ
to V so that SV may be equal to SP. In any time let a body, in a resisting
medium, describe the least arc PQ, and in double the time the least arc PR;
and the decrements of those arcs arising from the resistance, or their differ-
ences from the arcs which would be described in a nonresisting medium in
the same times, will be to each other as the squares of the times in which
they are generated; therefore the decrement of the arc PQ is the fourth part
of the decrement of the arc PR. Whence also if the area QS# be taken equal
to the area PSQ, the decrement
of the arc PQ will be equal to
half the short line R7; and there-
fore the force of resistance and
the centripetal force are to each
other as the short line %2Rr and
TQ which they generate in the
same time. Because the centripe-
tal force with which the body is
urged in P is inversely as SP?
and (by Lem. x, Book 1) the
short line TQ, which is generated by that force, is in a ratio compounded
of the ratio of this force and the squared ratio of the time in which the arc
PQ is described (for in this case I neglect the resistance, as being infinitely
less than the centripetal force), it follows that TQ - SP?, that is (by the last
Lemma), ¥2PQ?: SP, will be as the square of the time, and therefore the
time is as PQ -\/SP; and the velocity of the body, with which the arc PQ

. . . . PQ I .
15 described in that time, as m or \/SP’ that is, inversely as the

square root of SP. And, by a like reasoning, the velocity with which the arc
QR is described, is inverselyas the square root of SQ. Now those arcs PQ and
QR are as the describing velocities to each other; that is, as the square root
of the ratio of SQ to SP, or as SQ to \/(SP - SQ); and, because of the equal
angles SPQ, SQr, and the equal areas PSQ, QSr, the arc PQ is to the arc
Qr as SQ to SP. Take the differences of the proportional consequents, and
the arc PQ will be to the arc R as SQ to SP—\/(SP-SQ), or %VQ. For,
the points P and Q coinciding, the ultimate ratio of SP—~/(SP-SQ) to
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Y%V Q is the ratio of equality. Since the decrement of the arc PQ arising
from the resistance, or its double Ry, is as the resistance and the square of

the time conjointly, the resistance will be as P Q2R rSP' But PQ was to Rr as
%VQ 1208

SQ to ¥2VQ, and thence

becomes asDn SP. SO or as =5 cps-

y
Pﬂ2 .SP
Y (WP N

For, the points P and Q coinciding, SP and SQ commde also, and the angle
PVQ becomes a right one; and, because of the similar triangles PVQ, PSO,

PQ becomes to ¥2VQ as OP to %40S. Therefore ————;

OS :
OP . SP° is as the resistance,

that is, in the ratio of the density of the medium in P and the squared ratio
of the velocity conjointly. Subtract the squared ratio of the velocity, namely,

the ratio
OS
OP - SP

OP, the density of the medium in P will be as §15 Therefore in a medium

whose density is inversely as SP the distance from the centre, a body will
revolve in this spiral. Q.E.D.

Cor. 1. The velocity in any place P, is always the same wherewith a body
in a nonresisting medium with the same centripetal force would revolve in
a circle, at the same distance SP from the centre.

Cor. 1. The density of the medium, if the distance SP be given, is as
OS
opP’
fitted to any density of the medium.

Cor. 1. The force of the resistance in any place P is to the centripetal
force in the same place as %208 to OP. For those forces are to each other as

2
YaRr and TQ, or as %VSQ PQ and %;)I? , that is, as 2V Q and PQ, or %208
and OP. The spiral therefore being given, there is given the proportion of
the resistance to the centripetal force; and, conversely, from that proportion
given the spiral is given.

Cor. 1v. Therefore the body cannot revolve in this spiral, except where the
force of resistance is less than half the centripetal force. Let the resistance

&, and there will remain the density of the medium in P, as
. Let the spiral be given, and, because of the given ratio of OS to

And thence a spiral may be

OS
, but if that distance is not given, as OP-SP’
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be made equal to half the centripetal force, and the spiral will coincide with
the right line PS, and in that right line the body will descend to the centre
with a velocity that is to the velocity with which it was proved before in
the case of the parabola (Theor. x, Book 1) that the descent would be made

in a nonresisting medium, as the square root of the ratio of unity to the
I'lm‘\ﬂ!‘ - A r\fl !‘1‘\:- i ao Gf‘ | 8 y : :
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ties, and therefore given.

Cor. v. And because at equal distances from the centre the velocity is the
same in the spiral PQR as it is in the right line SP, and the length of the
spiral is to the length of the right
line PS in a given ratio, namely,
in the ratio of OP to OS; the
time of the descent in the spiral
will be to the time of the descent
in the right line SP in the same
given ratio, and therefore given.

Cor. v1. If from the centre S,
with any two given radii, two
circles are described; and these
circles remaining, the angle
which the spiral makes with the radius PS be changed in any manner; the
number of revolutions which the body can complete in the space between
the circumferences of those circles, going round in the spiral from one cir-

cumference to another, will be as g%’ or as the tangent of the angle which

the spiral makes with the radius PS; and the time of the same revolutions

. OP . ,
will be as —, that is, as the secant of the same angle, or inversely as the

0§’
density of the medium.

Cor. vir. If a body, in a medium whose density is inversely as the distances
of places from the centre, revolves in any curve AEB about that centre, and
cuts the first radius AS in the same angle in B as it did before in A, and that
with a velocity that shall be to its first velocity in A inversely as the square
root of the distances from the centre (that is, as AS to a mean proportional
between AS and BS), that body will continue to describe innumerable simi-
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lar revolutions BFC, CGD, &c., and by its intersections will divide the radius
AS into parts AS, BS, CS, DS, &c., that are continually proportional. But
the times of the revolutions will be directly as the perimeters of the orbits
AEB, BFC, CGD, &c., and inversely as the velocities at the beginnings A, B,
C of those orbits; that is, as AS*, BS*%, CS%, And the whole time in which

PRPIE NR—_ | B I

th: buuy Wl}.l d.lllVC at {nc CCIIlrec, wili UC to l.llc LllIlC ()I U.].C Hrb[ I'CVUIULIUII
as the sum of all the continued proportionals AS%, BS%, CS*, going on ad
infinitum, is to the first term AS%; that is, as the first term AS¥ is to the

difference of the two first AS%—BS¥%, or as 24AS is to AB, very nearly.
Whence the whole time may be easily found.

Cor. virt. From hence also may be deduced, near enough, the motions of
bodies in mediums whose density is either uniform, or observes any other
assigned law. From the centre S, with radii SA, SB, SC, &c., continually
proportional, describe as many circles; and suppose the time of the revolu-
tions between the perimeters of any two of those circles, in the medium
whereof we treated, to be to the time of the revolutions between the same
in the medium proposed as the mean density of the proposed medium
between those circles is to the mean density of the medium whereof we
treated, between the same circles, nearly; and that the secant of the angle
in which the spiral above determined, in the medium whereof we treated,
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cuts the radius AS, is in the same ratio to the secant of the angle in which
the new spiral, in the proposed medium, cuts the same radius; and also that
the number of all the revolutions between the same two circles is nearly as
the tangents of those angles. If this be done everywhere between every two

meance Aans mav 1!?1fhn1lf A
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bodies ought to revolve in any regular medium.

Cor. 1x. And although these motions becoming eccentric should be per-
formed in spirals approaching to an oval figure, yet, assuming the several
revolutions of those spirals to be at the same distances from each other, and
to approach to the centre by the same degrees as the spiral above described,
we may also understand how the motions of bodies may be performed in
spirals of that kind.

PROPOSITION XVI. THEOREM XIII

If the density of the medium in each of the places be inversely as the dis-
tance of the places from the immovable centre, and the centripetal force
be inversely as any power of the same distance: 1 say, that the body may
revolve in a spiral intersecting all the radii drawn from that centre in a given
angle.

This i1s demonstrated in the
same manner as the foregoing
Proposition. For if the centripe-
tal force in P be inversely as any P
power SP"** of the distance SP
whose index 1s #z+1; it will be
concluded, as above, that the
time in which the body describes
any arc PQ, will be as PQ - PS*";

: : R~ (1—Y2n) - VQ
and the resistance in P as pO*- 5P & * PO 3P 507 and therefore as
(1—74n) - OS : (1—1en) - OS. . Co {
OP.Sp™*t that 1s (because OP is a given quantity), inversely

as SP"*'. And therefore, since the velocity is inversely as SP*, the density
in P will be reciprocally as SP.



288 NEWTON'S MATHEMATICAL PRINCIPLES

Cogr. 1. The resistance is to the centripetal force as (1~ 7#) - OS to OP.

Cor. 1. If the centripetal force be inversely as SP®, 1 — %22 will be=o0; and
therefore the resistance and density of the medium will be nothing, as in
Prop. 1%, Book 1.

Cor. 11. If the centripetal force be inversely as any power of the radius
SP, whose index is greater than the number 3, the positive resistance will
be changed into a negative.

SCHOLIUM

This Proposition and the former, which relate to mediums of unequal
density, are to be understood as applying only to the motion of bodies that
are so small, that the greater density of the medium on one side of the body
above that on the other is not to be considered. I suppose also the resist-
ance, other things being equal, to be proportional to its density. Hence, in
mediums whose force of resistance is not as the density, the density must be
so much augmented or diminished, that either the excess of the resistance
may be taken away, or the defect supplied.

PROPOSITION XVII. PROBLEM IV

To find the centripetal force and the resisting force of the medium, by which
a body, the law of the velocity being given, shall revolve in a given spiral.

Let that spiral be PQR. From
the velocity, with which the
body goes over the very small arc
PQ, the time will be given; and
from the altitude TQ, which is
as the centripetal force, and the
square of the time, that force
will be given. Then from the
difference RSr of the areas PSQ
and QSR described in equal in-
tervals of time, the retardation
of the body will be given; and
from the retardation will be
found the resisting force and
density of the medium.
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PROPOSITION XVIII. PROBLEM V

T he law of centripetal force being given, to find the density of the medium
in each of the places thereof, by which a body may describe a given spiral.

From the centripetal force the velocity in ch place must be found; then
from the retardation of the velocity th he medium is found, as
in the foregoing Proposition.

But I have explained the method of managing these Problems in the
tenth Proposition and second Lemma of this Book; and will no longer
detain the reader in these complicated investigations. I shall now add some
things relating to the forces of progressive bodies, and to the density and
resistance of those mediums in which the motions hitherto discussed, and

those akin to them, are performed.
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SECTION V
The density and compression of fluids; hydrostatics.

THE DEFINITION OF A FLUID
A fluid 15 any body whose parts yield to any force impressed on it, and, by
yielding, are easily moved among themselves.

PROPOSITION XIX. THEOREM X1V

All the parts of an homogeneous and unmoved fluid included in any un-
moved vessel, and compressed on every side (setting aside the consideration
of condensation, gravity, and all centripetal forces), will be equally pressed
on every side, and remain in their places without any motion arising from
that pressure.

Cask 1. Let a fluid be included in the spherical vessel ABC, and uniformly
compressed on every side: I say, that no part of it will be moved by that
pressure. For if any part, as D, be moved, all such parts at the same distance
from the centre on every side must necessarily be moved at the same time
by a like motion; because the pressure of them
all is similar and equal; and all other motion is
excluded that does not arise from that pressure.
But if these parts come all of them nearer to
the centre, the fluid must be condensed towards
the centre, contrary to the supposition. If they
recede from it, the fluid must be condensed to-
wards the circumference; which is also con-
trary to the supposition. Neither can they move
in any one direction retaining their distance
from the centre, because, for the same reason, they may move in a contrary
direction; but the same part cannot be moved contrary ways at the same
time. Therefore no part of the fluid will be moved from its place. Q.E.D,

Cask 2. I say now, that all the spherical parts of this fluid are equally
pressed on every side. For let EF be a spherical part of the fluid; if this
be not pressed equally on every side, augment the lesser pressure till it be
pressed equally on every side; and its parts (by Case 1) will remain in their
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places. But before the increase of the pressure, they would remain in their
places (by Case 1); and by the addition of a new pressure they will be
moved, by the definition of a fluid, from those places. Now these two con-
clusions contradict each other. Therefore it was false to say that the sphere
EF was not pressed equally on every side. Q.E.D.

Cask 3. | say besides, that different spherical parts have equal pressures.
For the contiguous spherical parts press each other mutually and equally
in the point of contact (by Law mui). But (by Case 2) they are pressed on
every side with the same force. Therefore any two spherical parts not con-
tiguous, since an intermediate spherical part can touch both, will be pressed
with the same force. Q.E.D.

Cask 4. I say now, that all the parts of the fluid are everywhere pressed
equally. For any two parts may be touched by spherical parts in any points
whatever; and there they will equally press those spherical parts (by Case
3), and are in reaction equally pressed by them (by Law ur). Q.E.D.

Cast 5. Since, therefore, any part GHI of the fluid is inclosed by the rest
of the fluid as in a vessel, and is equally pressed on every side; and also its
parts equally press one another, and are at rest among themselves; it is
manifest that all the parts of any fluid as GHI, which is pressed equally on
every side, do press each other mutually and equally, and are at rest among
themselves. Q.E.D.

Cask 6. Therefore if that fluid be included in a vessel of a yielding sub-
stance, or that is not rigid, and be not equally pressed on every side, the same
will give way to a stronger pressure, by the definition of fluidity.

Cask 5. And therefore, in an inflexible or rigid vessel, a fluid will not sus-
tain a stronger pressure on one side than on the other, but will give way to
it, and that in a moment of time; because the rigid side of the vessel does not
follow the yielding liquor. But the fluid, by thus yielding, will press against
the opposite side, and so the pressure will tend on every side to equality.
And because the fluid, as soon as it endeavors to recede from the part that
is most pressed, is withstood by the resistance of the vessel on the opposite
side, the pressure will on every side be reduced to equality, in a moment of
time, without any local motion; and from thence the parts of the fluid (by

Case 5) will press each other mutually and equally, and be at rest among
themselves. Q.E.D.
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Cor. Hence netther will a motion of the parts of the flutdd among them-
selves be changed by a pressure communicated to the external surface,
except so far as either the figure of the surface may be somewhere altered,
or that all the parts of the fluid, by pressing one another more intensely or
remissly, may slide with more or less difficulty among themselves.

PROPOSITION XX. THEOREM XV

If all the parts of a spherical fluid, homogeneous at equal distances from
the centre, lying on a spherical concentric bottom, gravitate towards the
centre of the whole, the bottom will sustain the weight of a cylinder, whose
base is equal to the surface of the bottom, and whose altitude is the same
with that of the incumbent fluid.

Let DHM be the surface of the bottom, and AEI the upper surface of the
fluid. Let the fluid be divided into concentric orbs of equal thickness, by
the innumerable spherical surfaces BFK, CGL; and conceive the force of
gravity to act only in the upper surface of every orb, and the actions to be
equal on the equal parts of the surfaces.
Therefore the upper surface AE is
pressed by the single force of its own
gravity, by which all the parts of the
upper orb, and the second surface BFK,
will (by Prop. xix), according to its
measure, be equally pressed. The second
surface BFK is pressed likewise by the
force of 1ts own gravity, which, added to
the former force, makes the pressure
double. The third surface CGL is, ac-
cording to its measure, acted on by this
pressure and the force of its own gravity
besides, which makes its pressure triple. And in like manner the fourth
surface receives a quadruple pressure, the fifth surface a quintuple, and so
on. Therefore the pressure acting on every surface is not as the solid quan-
tity of the incumbent fluid, but as the number of the orbs reaching to the
upper surface of the fluid; and is equal to the gravity of the lowest orb
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multiplied by the number of orbs; that is, to the gravity of a solid whose
ultimate ratio to the cylinder above mentioned (when the number of the
orbs 1s increased and their thickness diminished, ad infinitum, so that the
action of gravity from the lowest surface to the uppermost may become
continued) is the ratio of equality. Therefore the lowest surface sustains
the weight of the cylinder above determined. Q.E.D. And by a like reason-
ing the Proposition will be evident, where the gravity of the fluid decreases
in any assigned ratio of the distance from the centre, and also where the
fluid 1s more rare above and denser below. Q.E.D.

Cor. 1. Therefore the bottom is not pressed by the whole weight of the
incumbent fluid, but only sustains that part of it which is described in the
Proposition; the rest of the weight being sustained archwise by the spherical
figure of the fluid.

Cor. 1. The quantity of the pressure is the same always at equal distances
from the centre, whether the surface pressed be parallel to the horizon, or
perpendicular, or oblique; or whether the fluid, continued upwards from
the compressed surface, rises perpendicularly in a rectilinear direction, or
creeps obliquely through crooked cavities and canals, whether those pass-
ages be regular or irregular, wide or narrow. That the pressure is not altered
by any of these circumstances, may be inferred by applying the demonstra-
tion of this Theorem to the several cases of fluids.

Cor. 111. From the same demonstration it may also be concluded (by Prop.
xIx), that the parts of a heavy fluid acquire no motion among themselves
by the pressure of the incumbent weight, except that motion which arises
from condensation.

Cor. tv. And therefore if another body of the same specific gravity, in-
capable of condensation, be immersed in this fluid, it will acquire no motion
by the pressure of the incumbent weight: it will netther descend nor ascend,
nor change its figure. If it be spherical, it will remain so, notwithstanding
the pressure; if it be square, it will remain square; and that, whether it
be soft or fluid; whether it swims freely in the fluid, or lies at the bottom.
For any internal part of a fluid is in the same state with the submersed body;
and the case of all submersed bodies that have the same magnitude, figure,
and specific gravity, is alike. If a submersed body, retaining its weight,
should dissolve and put on the form of a fluid, this body, if before it should
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have ascended, descended, or from any pressure assumed a new figure,
would now likewise ascend, descend, or put on a new figure; and that, be-
cause its gravity and the other causes of its motion remain. But (by Case 5,
Prop. x1x) it would now be at rest, and retain its figure. Therefore also in
the former case.

Cor. v. Therefore a body that is specifically heavier than a fluid con-
tiguous to it will sink; and that which is spectfically lighter will ascend,
and attain so much motion and change of figure as that excess or defect of
gravity is able to produce. For that excess or defect is the same thing as an
impulse, by which a body, otherwise in equilibrium with the parts of the
fluid, is acted on ; and may be compared with the excess or defect of a weight
in one of the scales of a balance.

Cor. vi. Therefore bodies placed in fluids have a twofold gravity: the one
true and absolute, the other apparent, common, and comparative. Absolute
gravity is the whole force with which the body tends downwards; relative
and common gravity is the excess of gravity with which the body tends
downwards more than the ambient fluid. By the first kind of gravity the
parts of all fluids and bodies gravitate in their proper places; and therefore
their weights taken together compose the weight of the whole. For the
whole taken together is heavy, as may be experienced in vessels full of
liquor; and the weight of the whole is equal to the weights of all the parts,
and is therefore composed of them. By the other kind of gravity bodies do
not gravitate in their places; that is, compared with one another, they do not
preponderate, but, hindering one another’s endeavor to descend, remain in
their proper places as if they were not heavy. Those things which are in the
air, and do not preponderate, are commonly looked on as not heavy. Those
which do preponderate are commonly reckoned heavy, inasmuch as they
are not sustained by the weight of the air. The common weights are no-
thing else but the excess of the true weights above the weight of the air.
Hence also, commonly, those things are called light which are less heavy,
and, by yielding to the preponderating air, mount upwards. But these
are only comparatively light, and not truly so, because they descend 1n a
vacuum. Thus, in water, bodies which, by their greater or less gravity,
descend or ascend, are comparatively and apparently heavy or light; and
their comparative and apparent gravity or levity is the excess or defect by
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which their true gravity either exceeds the gravity of the water or is ex-
ceeded by it. But those things which neither by preponderating descend,
nor, by yielding to the preponderating fluid, ascend, although by their true
weight they do increase the weight of the whole, yet comparatively, and as
commonly understood, they do not gravitate in the water. For these cases
are alike demonstrated.

Cor. vi1. These things which have been demonstrated concerning gravity
take place in any other centripetal forces.

Cor. virt. Therefore if the medium in which any body moves be acted on
etther by its own gravity, or by any other centripetal force, and the body be
urged more powerfully by the same force; the difference of the forces is that
very motive force, which, in the foregoing Proposition, I have considered as
a centripetal force. But if the body be more lightly urged by that force, the
difference of the forces becomes a centrifugal force, and is to be considered
as such.

Cor. 1x. But since fluids by pressing the included bodies do not change
their external figures, it appears also (by Cor., Prop. x1x) that they will not
change the situation of their internal parts in relation to one another; and
therefore if animals were immersed therein, and if all sensation did arise
from the motion of their parts, the fluid would neither hurt the immersed
bodies, nor excite any sensation, unless so far as those bodies might be con-
densed by the compression. And the case is the same of any system of bodies
encompassed with a compressing fluid. All the parts of the system will be
agitated with the same motions as if they were placed in a vacuum, and
would only retain their comparative gravity; unless so far as the fluid may
somewhat resist their motions, or be requisite to unite them by compression.

PROPOSITION XXI. THEOREM XVI

Let the density of any fluid be proportional to the compression, and its parts
be attracted downwards by a centripetal force inversely proportional to the
distances from the centre: I say, that, if those distances be taken continually
proportional, the densities of the fluid at the same distances will be also
continually proportional.

Let ATV denote the spherical bottom of the fluid, S the centre, SA, SB,
SC, SD, SE, SF, &c., distances continually proportional. Erect the perpen-
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diculars AH, B, CK, DL, EM, FN, &c., which shall be as the densities of
the medium in the places A, B, C, D, E, F; and the specific gravities in those
IZIS-I, gé, ((::I;, &c., or, which is all one, as il};l, ]? (I:, gg, &.
Suppose, first, these gravities to be uniformly continued from A to B, from
B to C, from C to D, &c., the decrements in the points B, C, D, &c., being
taken by steps. And these gravities multiplied by the altitudes AB, BC, CD,
&c., will give the pressures AH, BI, CK, &c., by which the bottom ATV is
acted on (by Theor. xv). Therefore the particle A sustains all the pressures
AH, BI, CK, DL, &c., proceeding in infinitum; and
the particle B sustains the pressures of all but the first

places will be as

G—0
. AH; and the particle C all but the two first AH, BI;
::—115-1 and so on: and therefore the density AH of the first

o L particle A is to the density Bl of the second particle B
K asthe sumof all AH+BI+CK+ DL, i infinitum, to
H the sum of all BI+ CK + DL, &c. And BI the density
of the second particle B is to CK the density of the
third C, as the sum of all BI+ CK+DL, &c., to the
S sum of all CK+DL, &c. Therefore these sums are
proportional to their differences AH, BI, CK, &c., and
therefore continually proportional (by Lem. 1 of this
Book); and therefore the differences AH, BI, CK, &c.,
proportional to the sums, are also continually proportional. Therefore since
the densities in the places A, B, C, &c., are as AH, BI, CK, &c., they will also
be continually proportional. Proceed intermissively, and, at the distances
SA, SC, SE, continually proportional, the densities AH, CK, EM will be
continually proportional. And by the same reasoning, at any distances SA,
SD, SG, continually proportional, the denstties AH, DL, GO will be con-
tinually proportional. Let now the points A, B, C, D, E, &c., coincide, so
that the progression of the specific gravities from the bottom A to the top
of the fluid may be made continual; and at any distances SA, SD, SG, con-
tinually proportional, the densities AH, DL, GO, being all along contin-
ually proportional, will still remain continually proportional. Q.E.D.

T

Cor. Hence if the density of the fluid in two places, as A and E, be given,
its density in any other place Q may be obtained. With the centre S, and the
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rectangular asymptotes SQ, SX, describe an hyperbola cutting the perpen-
diculars AH, EM, QT in 4, ¢, and ¢, as also the perpendiculars HX, MY,
TZ, let fall upon the asymptote SX, in 4, m, and ¢. Make the area Ym#Z to
the given area Ym#AX as the given area EeqQ to the given area EeqA ; and
the line Zz produced will cut off the line \

QT proportional to the density. For if

\
the lines SA, SE, SQ are continually R \T

proportional, the areas EegQ, EeaA will
be equal, and thence the areas Ym:Z,

XAmY, proportional to them, will be E Ne ™1

also equal; and the lines SX, SY, SZ, that \ .

is, AH, EM, QT continually propor- \

tional, as they ought to be. And if the A _\__I_I___
lines SA, SE, SQ obtain any other order b
in the series of continued proportionals,

the lines AH, EM, QT, because of the > z Y x

proportional hyperbolic areas, will obtain the same order in another series
of quantities continually proportional.

PROPOSITION XXII. THEOREM XVII

Let the density of any fluid be proportional to the compression, and its
parts be attracted downwards by a gravitation inversely proportional to the
squares of the distances from the centre: I say, that if the distances be taken
in harmonic progression, the densities of the fluid at those distances will
be in a geometrical progression.

Let S denote the centre, and SA, SB, SC, SD, SE the distances in geo-
metrical progression. Erect the perpendiculars AH, BI, CK, &c., which shall
be as the densities of the fluid in the places A, B, C, D, E, &c., and the specific
AH BI CK
SAZ? SB2’ SC2’
gravities to be uniformly continued, the first from A to B, the second from
B to C, the third from C to D, &c. And these multiplied by the altitudes AB,
BC, CD, DE, &c., or, which is the same thing, by the distances SA, SB,
AH BI CK
SA’ SB’ SC’

gravities thereof in those places will be as &c. Suppose these

SC, &c., proportional to those altitudes, will give &c., repre-
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senting the pressures. Therefore since the densities are as the sums of those
pressures, the differences AH — BI, BI— CK, &c., of the densities will be as

AH BI CK
the differences of those sums —— SA’ SR’ SO &c. With the centre S, and the

asymptotes SA, Sx, describe any hyperbola, cutting the perpendiculars AH,

RICK & a2 b ~ & -nnrl riw:- pprppnr‘lrn]qrc T—Tf Tﬂ Kﬂj IPI" Fﬂ" upon
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the asymptote Sx, in 4, 7, k; and the differences of the densities, tu, #w, &c.,
AH BI

will be as SA’ B’ &c. And the rectangles tu - th, uw - ui, &c., or tp, ug,

AH-th Bl-ui

SA ’ SB’

hyperbola, SA is to AH or Sz as 24 to Aa, and therefore

&c., that is, as Aa, B, &c. For, by the nature of the
AH -th .
SA
is equal to B, &c. But Ag, B4, Cc, &¢

&c., as

is equal to

Aa. And, by a like reasoning, BISB

are continually proportional, and therefore proportional to their differences
Aa—Bb, Bb—Cc, &c., therefore the rectangles £p, uq, &c., are proportional to
those differences; as also the sums of the rectangles 2p + uq or tp + ug + wr
to the sums of the differences Aa— Ce or Az —Dd. Suppose several of these
terms, and the sum of all the differences, as Aa—Ff, will be proportional
to the sum of all the rectangles, as zzAn. Increase the number of terms, and
diminish the distances of the points A, B, C, &c., in infinitum, and those
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rectangles will become equal to the hyperbolic area 2241, and therefore the
difference Az—Ff is proportional to this area. Take now any distances, as
SA, SD, SF, in harmonic progression, and the differences Aa—Dd, Dd —~Ff
will be equal; and therefore the areas thlx, xlnz, proportional to those dif-
ferences, will be equal among themselves, and the densities Sz, Sx, Sz, that
is, AH, DL, FN, continually proportional. Q.E.D.

Cor. Hence if any two densities of the fluid, as AH and BI, be given, the
area thiu, answering to their difference ##, will be given; and thence the
density FN will be found at any height SF, by taking the area zAnz to that

given area thiu as the difference Az —Ff to the difference Az—Bb.

SCHOLIUM

By a like reasoning it may be proved, that if the gravity of the particles
of a fluid diminishes as the cube of the distances from the centre, and the

reciprocals of the squares of the distances SA, SB, SC, &c., (namcly,%%,

SA® SA® : : : . .

§]§?’S_C2) be taken in an arithmetical progression, the densities AH, BI,
CK, &c., will be in a geometrical progression. And if the gravity be dimin-
ished as the fourth power of the distances, and the reciprocals of the cubes
SA* SA* SA*
SA3? SB33 SC3'.'
sion, the densities AH, BI, CK, &c., will be in geometrical progression. And
so in infinitum. Again; if the gravity of the particles of the fluid be the
same at all distances, and the distances be in arithmetical progression, the
densities will be in a geometrical progression, as Dr. Halley hath found. If
the gravity be as the distance, and the squares of the distances be in arith-
metical progression, the densities will be in geometrical progression. And
so in infinitum. These things will be so, when the density of the fluid con-
densed by compression 1s as the force of compression; or, which is the same
thing, when the space possessed by the fluid is inversely as this force. Other
laws of condensation may be supposed, as that the cube of the compress-
ing force may be as the fourth power of the density, or the cube of the
ratio of the force the same with the fourth power of the ratio of the density:
in which case, if the gravity be inversely as the square of the distance from

of the distances (as &c.) be taken in arithmetical progres-
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the centre, the density will be inversely as the cube of the distance. Suppose
that the cube of the compressing force be as the fifth power of the density;
and if the gravity be inversely as the square of the distance, the density will
be inversely as the %:th power of the distance. Suppose the compressing
force to be as the square of the density, and the gravity inversely as the
square of the distance, then the density will be inversely as the distance. To
run over all the cases that might be offered would be tedious. But as to our
own air, this is certain from experiment, that its density is either accurately,
or very nearly at least, as the compressing force; and therefore the density
of the air in the atmosphere of the earth is as the weight of the whole
incumbent air, that is, as the height of the mercury in the barometer.

PROPOSITION XXIII. THEOREM XVIII

If a fluid be composed of particles fleeing from each other, and the density
be as the compression, the centrifugal forces of the particles will be inversely
proportional to the distances of their centres. And, conversely, particles
fleeing from each other, with forces that are inversely proportional to the
distances of their centres, compose an elastic fluid, whose density is as the
compression.

Let the fluid be supposed to be included in a cubic space ACE, and then
to be reduced by compression into a lesser cubic space ace; and the distances
of the particles retaining a like situation with respect to each other in both
the spaces, will be as the sides AB, 45 of the cubes; and the densities of the
mediums will be inversely as the

A B E containing spaces AB® ab°. In

e Efi ~tH  the plane side of the greater

4 12, cube ABCD take the square DP
i B equal to the plane side b of the
2 lesser cube; and, by t!le suppo-
¢ D : 7 sition, the pressure with which

the square DP urges the inclosed
fluid will be to the pressure with which that square 44 urges the inclosed
fluid as the densities of the mediums are to each other, that is, as 25® to AB®.
But the pressure with which the square DB urges the included fluid is to
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the pressure with which the square DP urges the same fluid as the square
DB to the square DP, that is, as AB? to ab”. Therefore, multiplying together
corresponding terms of the proportions, the pressure with which the square
DB urges the fluid is to the pressure with which the square db urges the
fluid as ab to AB. Let the planes FGH, fgk be drawn through the in-

nnnnn PV P AR T md divida XTCY TV T NaTee T
terior of the two Cunds, and amviac the fluid into two parts. 1 hese parts wi ill

press each other with the same forces with which they are themselves
pressed by the planes AC, ac, that is, in the proportion of 24 to AB: and
therefore the centrifugal forces by which these pressures are sustained are
in the same ratio. The number of the particles being equal, and the situation
alike, in both cubes, the forces which all the particles exert, according to the
planes FGH, fgh, upon all, are as the forces which each exerts on each.
Therefore the forces which each exerts on each, according to the plane
FGH in the greater cube, are to the forces which each exerts on each, accord-
ing to the plane fg# in the lesser cube, as ab to AB, that is, inversely as the
distances of the particles from each other. Q.E.D.

And, conversely, if the forces of the single particles are inversely as the
distances, that s, inversely as the sides of the cubes AB, #4; the sums of the
forces will be in the same ratio, and the pressures of the sides DB, db as the
sums of the forces; and the pressure of the square DP to the pressure of the
side DB as a4® to AB’. And, multiplying together corresponding terms of
the proportions, one obtains the pressure of the square DP to the pressure
of the side db as ab® to AB?; that is, the force of compression in the one 1s
to the force of compression in the other as the density in the former to the

density in the latter. Q.E.D.

SCHOLIUM

By a like reasoning, if the centrifugal forces of the particles are inversely
as the square of the distances between the centres, the cubes of the com-
pressing forces will be as the fourth power of the densities. If the centri-
fugal forces be inversely as the third or fourth power of the distances,
the cubes of the compressing forces will be as the fifth or sixth power of
the densities. And universally, if D be put for the distance, and E for the
density of the compressed fluid, and the centrifugal forces be inversely as
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any power D" of the distance, whose index is the number #, the compress-
ing forces will be as the cube roots of the power E***, whose index is the
number 7z +2; and conversely. All these things are to be understood of par-
ticles whose centrifugal forces terminate in those particles that are next
them, or are diffused not much farther. We have an example of this in
magnetic bodies. Their attractive force is terminated nearly in bodies of
their own kind that are next them. The force of the magnet is reduced by
the interposition of an iron plate, and is almost terminated at it: for bodies
farther off are not attracted by the magnet so much as by the iron plate. If
in this manner particles repel others of their own kind that lie next them,
but do not exert their force on the more remote, particles of this kind will
compose such fluids as are treated of in this Proposition. If the force of any
particle diffuse itself every way in infinitum, there will be required a greater
force to produce an equal condensation of a greater quantity of the fluid.
But whether elastic fluids do really consist of particles so repelling each
other, is a physical question. We have here demonstrated mathematically
the property of fluids consisting of particles of this kind, that hence philos-
ophers may take occasion to discuss that question.
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SECTION VI

The motion and resistance of pendulous bodies.

PROPOSITION XXIV. THEOREM XIX
The quantities of matter in pendulous bodies, whose centres of oscillation
are equally distant from the centre of suspension, are in aratio compounded
of the ratio of the weights and the squared ratio of the times of the oscilla-
tions in a vacuum.

For the velocity which a given force can generate in a given matter in a
given time is directly as the force and the time, and inversely as the matter.
The greater the force or the time is, or the less the matter, the greater the
velocity generated. This is manifest from the second Law of Motion, Now
if pendulums are of the same length, the motive forces in places equally
distant from the perpendicular are as the weights: and therefore if two
bodies by oscillating describe equal arcs, and those arcs are divided into
equal parts; since the times in which the bodies describe each of the corre-
spondent parts of the arcs are as the times of the whole oscillations, the
velocities in the correspondent parts of the oscillations will be to each other
directly as the motive forces and the whole times of the oscillations, and
inversely as the quantities of matter: and therefore the quantities of matter
are directly as the forces and the times of the oscillations, and inversely as
the velocities. But the velocities are inversely as the times, and therefore the
times are directly and the velocities inversely as the squares of the times; and
therefore the quantities of matter are as the motive forces and the squares
of the times, that is, as the weights and the squares of the times. Q.E.D.

Cor. 1. Therefore if the times are equal, the quantities of matter in each
of the bodies are as the weights.

Cor. 11. If the weights are equal, the quantities of matter will be as the
squares of the times.

Cor. 1. If the quantities of matter are equal, the weights will be inversely
as the squares of the times.

Cor. v. Since the squares of the times, other things being equal, are as the
lengths of the pendulums, therefore if both the times and the quantities of
matter are equal, the weights will be as the lengths of the pendulums.
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Cor. v. And, in general, the quantity of matter in the pendulous body is
directly as the weight and the square of the time, and inversely as the length
of the pendulum.

Cor. vi. But in a nonresisting medium, the quantity of matter in the
pendulous body is directly as the comparative weight and the square of the
time, and inversely as the length of the pendulum. For the comparative
weight is the motive force of the body in any heavy medium, as was shown
above; and therefore does the same thing in such a nonresisting medium

as the absolute weight does in a vacuum.

Cor. vir. And hence appears a method both of comparing bodies one
with another, as to the quantity of matter in each; and of comparing the
weights of the same body in different places, to know the variation of its
gravity. And by experiments made with the greatest accuracy, I have always
found the quantity of matter in bodies to be proportional to their weight.

PROPOSITION XXV. THEOREM XX

Pendulous bodies that are, in any medium, resisted in the ratio of the mo-
ments of time, and pendulous bodies that move in a nonresisting medium
of the same specific gravity, perform their oscillations in a cycloid in the
same time, and describe proportional parts of arcs together.

Let ABbe an arc of a cycloid, which a body D, by vibrating in a nonresist-
ing medium, shall describe in any time. Bisect that arc in C, so that C may
be the lowest point thereof; and the accelerative force with which the body
is urged in any place D, or 4, or E, will be as the length of the arc CD, or
Cd, or CE. Let that force be expressed by that same arc; and since the resist-
ance is as the moment of the time, and therefore given, let it be expressed
by the given part CO of the cycloidal arc, and take the arc Od in the same
ratio to the arc CD that the arc OB has to the arc CB: and the force with
which the body in 4 is urged in a resisting medium, being the excess of the
force Cd above the resistance CO, will be expressed by the arc Od, and will
therefore be to the force with which the body D is urged in a nonresisting
medium 1in the place D, as the arc Od to the arc CD; and therefore also in
the place B, as the arc OB to the arc CB. Therefore if two bodies D, 4 go
from the place B, and are urged by these forces; since the forces at the begin-
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ning are as the arcs CB and OB, the first velocities and arcs first described
will be in the same ratio. Let those arcs be BD and B4, and the remaining
arcs CD, Od will be in the same ratio. Therefore the forces, being propor-
tional to those arcs CD, Od, will remain in the same ratio as at the begin-

ning, and therefore the bodies will continue descnbmg togethcr arcs in the
nd the ini CD
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same ratio. Tu\,u..xuu. Lh\.. fu FCECS an
Od, will be always as the whole arcs CB, OB, and therefore those remaining
arcs will be described together. Therefore the two bodies D and 4 will

nnﬂ'
L LIL

arrive together at the places C and O; that which moves in the nonresisting
medium, at the place C, and the other, in the resisting medium, at the place
O. Now since the velocities in C and O are as the arcs CB, OB, the arcs
which the bodies describe when they go farther will be in the same ratio.
Let those arcs be CE and Oe. The force with which the body D in a non-
resisting medium is retarded in E is as CE, and the force with which the
body 4 in the resisting medium is retarded in e, is as the sum of the force Ce
and the resistance CO, that is, as Oe; and therefore the forces with which
the bodies are retarded are as the arcs CB, OB, proportional to the arcs CE,
Oe; and therefore the velocities, retarded in that given ratio, remain in the
same given ratio. Therefore the velocities and the arcs described with those
velocities are always to each other in that given ratio of the arcs CB and
OB; and therefore if the entire arcs AB, @B are taken in the same ratio, the
bodies D and 4 will describe those arcs together, and in the places A and 4
will lose all their motion together. Therefore the whole oscillations are
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isochronal, or are performed in equal times; and any parts of the arcs, as
BD, B4, or BE, Be, that are described together, are proportional to the whole
arcs BA, Ba. Q.E.D.

Cor. Therefore the swiftest motion in a resisting medium does not fall
upon the lowest point C, but is found in that point O, in which the whole
arc described Ba is bisected. And the body, proceeding from thence to g, is
retarded at the same rate with which it was accelerated before in its descent
from B to O.

PROPOSITION XXVI. THEOREM XXI

Pendulous bodies, that are resisted in the ratio of the velocity, have their
oscillations in a cycloid 1sochronal.

For if two bodies, equally distant from their centres of suspension, de-
scribe, in oscillating, unequal arcs, and the velocities in the correspondent
parts of the arcs be to each other as the whole arcs; the resistances, propor-
tional to the velocities, will be also to each other as the same arcs. Therefore
if these resistances be subtracted from or added to the motive forces arising
from gravity which are as the same arcs, the differences or sums will be to
each other in the same ratio of the arcs; and since the increments and decre-
ments of the velocities are as these differences or sums, the velocities will be
always as the whole arcs; therefore if the velocities are in any one case as
the whole arcs, they will remain always in the same ratio. But at the begin-
ning of the motion, when the bodies begin to descend and describe those
arcs, the forces, which at that time are proportional to the arcs, will generate
velocities proportional to the arcs. Therefore the velocities will be always as
the whole arcs to be described, and therefore those arcs will be described in
the same time. Q.E.D.

PROPOSITION XXVII. THEOREM XXII

If pendulous bodies are resisted as the square of their velocities, the differ-
ences between the times of the oscillations in a resisting medium, and the
times of the oscillations in a nonresisting medium of the same spectific gray-
ity, will be proportional to the arcs described in oscillating, nearly.

For let equal pendulums in a resisting medium describe the unequal arcs
A, B; and the resistance of the body in the arc A will be to the resistance of
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the body in the correspondent part of the arc B as the square of the veloci-
ties, that is, as AA to BB, nearly. If the resistance in the arc B were to the
resistance in the arc A as AB to AA, the times in the arcs A and B would
be equal (by the last Proposition ). Therefore the resistance AA in the arc A,

A

or AB in the arc B, causes the excess of the time in the arc A above the time
in a nonresisting medium; and the resistance BB causes the excess of the
time in the arc B above the time in a nonresisting medium. But those

excesses are as the eficient forces AB and BB nearly, that 1s, as the arcs A
and B. Q.E.D.

Cor. 1. Hence from the times of the oscillations in unequal arcs in a resist-
ing medium, may be known the times of the oscillations in a nonresisting
medium of the same specific gravity. For the difference of the times will be
to the excess of the time in the shorter arc above the time in a nonresisting
medium as the difference of the arcs is to the shorter arc.

Cor. 1. The shorter oscillations are more isochronal, and very short ones
are performed nearly in the same times as in a nonresisting medium. But
the times of those which are performed in greater arcs are a little greater,
because the resistance in the descent of the body, by which the time is pro-
longed, is greater, in proportion to the length described in the descent than
the resistance in the subsequent ascent, by which the time is contracted. But
the time of the oscillations, both short and long, seems to be prolonged in
some measure by the motion of the medium. For retarded bodies are re-
sisted somewhat less in proportion to the velocity, and accelerated bodies
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somewhat more than those that proceed uniformly forwards; because the
medium, by the motion it has received from the bodies, going forwards the
same way with them, is more agitated in the former case, and less in the
latter; and so conspires more or less with the bodies moved. Therefore it
resists the pendulums in their descent more, and in their ascent less, than
in proportion to the velocity; and these two causes concurring prolong the
time.

PROPOSITION XXVIII. THEOREM XXIII

If a pendulous body, oscillating in a cycloid, be resisted in the ratio of the
moments of the time, its resistance will be to the force of gravity, as the
excess of the arc described in the whole descent above the arc described in
the subsequent ascent is to twice the length of the pendulum.

Let BC represent the arc described in the descent, Cz the arc described in
the ascent, and Az the difference of the arcs: and things remaining as they
were constructed and demonstrated in Prop. xxv, the force with which the
oscillating body is urged in any place D will be to the force of resistance as

the arc CD to the arc CO, which is half of that difference Aa. Therefore
the force with which the oscillating body is urged at the beginning or the
highest point of the cycloid, that is, the force of gravity, will be to the resist-
ance as the arc of the cycloid, between that highest point and the lowest
point C, is to the arc CO; that is (doubling those arcs), as the whole cycloidal
arc, or twice the length of the pendulum, is to the arc Aa. Q.E.D.
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PROPOSITION XXIX. PROBLEM VI

Supposing that a body oscillating in a cycloid is resisted as the square of the
velocity, to find the resistance in each place.

Let Ba be an arc described in one entire oscillation, C the lowest point
of the cycloid, and CZ half the whole cycloidal arc, equal to the length of
the pendulum; and let it be required to find the resistance of the body in
any place D. Cut the indefinite right line OQ in the points O, S, P, Q, so that
(erecting the perpendiculars OK, ST, PI, QE, and with the centre O, and
the asymptotes OK, OQ, describing the hyperbola TIGE cutting the per-
pendiculars ST, PI, QE in T, I, and E, and through the point I drawing
KF, parallel to the asymptote OQ, meeting the asymptote OK in K, and

the perpendiculars ST and QE in L and F) the hyperbolic area PIEQ may
be to the hyperbolic area PITS as the arc BC, described in the descent of the
body, is to the arc Ca described in the ascent; and that the area IEF may be
to the area ILT as OQ to OS. Then with the perpendicular MN cut off the
hyperbolic area PINM, and let that area be to the hyperbolic area PIEQ as
the arc CZ to the arc BC described in the descent. And if the perpendicular
RG cuts off the hyperbolic area PIGR, which shall be to the area PIEQ as
any arc CD is to the arc BC described in the whole descent, the resistance

in any place D will be to the force of gravity as the area g—% IEF - IGH
is to the area PINM.
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For since the forces arising from gravity with which the body is urged in
the places Z, B, D, a are as the arcs CZ, CB, CD, Cg, and those arcs are as the
areas PINM, PIEQ, PIGR, PITS; let those areas represent both the arcs and
the forces respectively. Let D4 be a very small space described by the body

in its descent; and let it be expressed by the very small area RGgr, comprc—
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and RGgr may be the contemporaneous decrements of the areas IGH,

PIGR. And the increment GHA g—R— IEF, or Rr-HG - Rr IEF, of the

OR 0Q 0Q

area 00 IEF — IGH will be to the decrement RGgr, or Rr - RG, of the area
IEF . OR

PIGR, as HG - 00 is to RG; and therefore as OR - HG—6~QH IEF is to

OR -GR or OP-Pl that is (because of the equal quantities OR -HG,
OR - HR-OR - GR,ORHK - OPIK, PIHR and PIGR + IGH), as PIGR +

IGH - 9“ IEF is to OPIK. Therefore if the area OR IEF — IGH be called

0Q 0Q
Y, and RGgr the decrement of the area PIGR be given, the increment of
the area Y will be as PIGR - Y.

Then if V represent the force arising from the gravity, proportional to the
arc CD to be described, by which the body is acted upon in D, and R be
put for the resistance, V—R will be the whole force with which the body is
urged in D. Therefore the increment of the velocity is as V—R and the
interval of time in which it is generated conjointly. But the velocity itself
is directly as the contemporaneous increment of the space described and
inversely as the same interval of time. Therefore, since the resistance is, by
the supposition, as the square of the velocity, the increment of the resistance
will (by Lem. 11) be as the velocity and the increment of the velocity con-
jointly, that is, as the moment of the space and V—R conjointly; and, there-
fore, if the moment of the space be given, as V—R; that is, if for the force
V we put its expression PIGR, and the resistance R be expressed by any
other area Z, as PIGR - Z.

Therefore the area PIGR uniformly decreasing by the subtraction of
given moments, the area Y increases in proportion of PIGR —Y, and the
area Z in proportion of PIGR —Z. And therefore if the areas Y and Z begin
together, and at the beginning are equal, these, by the addition of equal
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moments, will continue to be equal; and in like manner decreasing by equal
moments, will vanish together. And, conversely, if they together begin and
vanish, they will have equal moments and be always equal. For, if the resist-
ance Z be augmented, then the velocity together with the arc Cg, described
in the ascent of the body, will be diminished; and, the point in which all
the motion together with the resistance ceases, coming nearer to the point
C, then the resistance vanishes sooner than the area Y. And the contrary
will happen when the resistance is diminished.

Now the area Z begins and ends where the resistance is nothing, that is,
at the beginning of the motion where the arc CD is equal to the arc CB,
and the right line RG falls upon the right line QE; and at the end of the
motion where the arc CD is cqual to the arc Ca, and RG falls upon the right

line ST. And the area Y or 66 IEF— IGH begins and ends also where the

resistance is nothing, and therefore where —— IEF and IGH are equal; that

0Q

is (by the construction), where the right line RG falls successively upon the

O S P "R Q M
right lines QE and ST. Therefore those areas begin and vanish together,

IEF ~IGH 15 equal to

and are therefore always equal. Hence, the area =— o0
the area Z, by which the resistance is expressed, and therefore is to the area
PINM, by which the gravity is expressed, as the resistance is to the gravity.
Q.ED.

Cor. 1. Therefore the resistance in the lowest place C is to the force of

gravity as the area 86 IEF is to the area PINM.
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Cor. 1. But it becomes greatest where the area PIHR is to the area IEF
as OR is to OQ. For in that case its moment (that is, PIGR - Y) becomes
nothing.

Cor. 1. Hence also may be known the velocity in each place, as varying
as the square root of the resistance, and at the beginning of the motion
being equal to the velocity of the body oscillating in the same cycloid with-
out any resistance.

However, by reason of the difficulty of the calculation by which the re-
sistance and the velocity are found by this Proposition, we have thought fit
to subjoin the Proposition following.

PROPOSITION XXX. THEOREM XXIV

If a right line aB be equal to the arc of a cycloid which an oscillating body
describes, and at each of its points D the perpendiculars DK be erected,
which shall be to the length of the pendulum as the resistance of the body
in the corresponding points of the arc is to the force of gravity: I say, that
the difference between the arc described in the whole descent and the arc
described in the whole subsequent ascent multiplied by half the sum of
the same arcs will be equal to the area BKa which all those perpendiculars
take up.

Let the arc of the cycloid, described in one entire oscillation, be expressed
by the right line 4B, equal to it, and the arc which would have been de-
scribed in a vacuum by
the length AB. Bisect AB
in C, and the point C will
represent the lowest point
of the cycloid, and CD
will be as the force arising
from gravity, with which
~_| thebodyinDisurgedin

B the direction of the tan-

gent of the cycloid, and
will have the same ratio to the length of the pendulum as the force in D
has to the force of gravity. Let that force, therefore, be expressed by that
length CD, and the force of gravity by the length of the pendulum; and

AN 2
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if in DE you take DK in the same ratio to the length of the pendulum as
the resistance is to the gravity, DK will be the exponent of the resistance.
From the centre C with the interval CA or CB describe a semicircle BEeA.
Let the body describe, in the least time, the space Dd; and, erecting the per-
pendiculars DE, de, meeting the circumference in E and e, they will be as
the velocities which the body descending in a vacuum from the point B
would acquire in the places D and 4. This appears by Prop. L1, Book 1. Let,
therefore, these velocities be expressed by those perpendiculars DE, de; and
let DF be the velocity which it acquires in D by falling from B in the resist-
ing medium. And if from the centre C with the interval CF we describe
the circle FfM meeting the right lines de and AB in f and M, then M will
be the place to which it would thenceforward, without further resistance,
ascend, and df the velocity it would acquire in 4. Hence, also, if Fg repre-
sent the moment of the velocity which the body D, in describing the least
space Dd, loses by the resistance of the medium; and CN be taken equal
to Cg, then will N be the place to which the body, if it met no further
resistance, would thenceforward ascend, and MN will be the decrement of
the ascent arising from the loss of that velocity. Draw Fm perpendicular to
df, and the decrement Fg of the velocity DF generated by the resistance
DK will be to the increment fz of the same velocity, generated by the force
CD, as the generating force DK to the generating force CD. But because
of the similar triangles Fmf, FAg, FDC, fm is to Fm or Dd as CD to DF;
and, by multiplication of corresponding terms, Fg to Dd as DK to DF.
Also F# is to Fg as DF to CF; and, again by multiplication of correspond-
ing terms, F4 or MN to D4 as DK to CF or CM; and therefore the sum
of all the MN - CM will be equal to the sum of all the Dd-DK. At the
movable point M suppose always a rectangular ordinate erected equal
to the indeterminate CM, which by a continual motion is multiplied by
the whole length Aga; and the trapezium described by that motion, or its
equal, the rectangle Aa - }24B, will be equal to the sum of all the MN - CM,
and therefore to the sum of all the Dd - DK, that is, to the area BKVTa.
Q.E.D.

Cor. Hence from the law of resistance, and the difference Aa of the
arcs Ca, CB, may be derived the proportion of the resistance to the gravity,
nearly.
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For if the resistance DK be uniform, the figure BKTa will be a rectangle
under Bs and DK; and hence the rectangle under %2Ba and Az will be
equal to the rectangle under Ba and DK, and DK will be equal to }2Aa.
Therefore since DK represents the resistance, and the length of the pendu-
lum represents the gravity, the resistance will be to the gravity as Y2Aa is to
the length of the pendulumj altogether as in Prop. xxviit is demonstrated.

If the resistance be as the velocity, the figure BKTa will be nearly an
ellipse. For if a body, in a nonresisting medium, by one entire oscillation,
should describe the length BA, the velocity in any place D would be as the
ordinate DE of the circle described on the diameter AB. Therefore since Ba
in the resisting medium, and BA in the nonresisting one, are described
nearly in the same times; and therefore the velocities in each of the points
of Ba are to the velocities in the corresponding points of the length BA
nearly as Ba is to BA, the velocity in the point D in the resisting medium
will be as the ordinate of the circle or ellipse described upon the diameter
Ba; and therefore the figure BKVTa will be nearly an ellipse. Since the re-
sistance is supposed proportional to the velocity, let OV represent the re-
sistance in the middle point O; and an ellipse BRVSa described with the
centre O, and the semiaxes OB, OV, will be nearly equal to the figure
BKVTyg, and to its equal the rectangle Ag:BO. Therefore Az-BO is to
OV - BO as the area of this ellipse to OV - BO; that is, Aa is to OV as the
area of the semicircle is to the square of the radius, or as 11 to 7 nearly; and,
therefore, 711 Aa is to the length of the pendulum as the resistance of the
oscillating body in O is to its gravity.

Now if the resistance DK varies as the square of the velocity, the figure
BKVTa will be almost a parabola having V for its vertex and OV for its
axis, and therefore will be nearly equal to the rectangle under %:Ba and
OV. Therefore the rectangle under %2Ba and Aa is equal to the rectangle
%Ba- OV, and therefore OV is equal to %Aa; and therefore the resistance
in O made to the oscillating body is to its gravity as % Aa is to the length of
the pendulum.

And I take these conclusions to be accurate enough for practical uses.
For since an ellipse or parabola BRVSa4 falls in with the figure BKVT4a
in the middle point V, that figure, if greater towards the part BRV or VSg,
is less towards the contrary part, and is therefore nearly equal to it.
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PROPOSITION XXXI. THEOREM XXV

If the resistance made to an oscillating body in each of the proportional
parts of the arcs described be augmented or diminished in a given ratio, the

difference between the arc described in the descent and the arc described in
the subsequent ascent will be angmented or diminished in the same ratio.

For that difference arises from the retardation of the pendulum by the
resistance of the medium, and therefore is as the whole retardation and the
retarding resistance proportional thereto. In the foregoing Proposition the
rectangle under the right
line 4B and the differ-
ence Aa of the arcs CB,
Ca, was equal to the area
BKTa. And that area, if
the length 4B remains, is
augmented or diminished
in the ratio of the ordi-
nates DK ; that is, in the A3 & C 0 D R
ratio of the resistance,
and is therefore as the length 4B and the resistance conjointly. And there-
fore the rectangle under Aa and 724B is as aB and the resistance conjointly,
and therefore Aa is as the resistance. Q.E.D.

Cor. 1. Hence if the resistance be as the velocity, the difference of the arcs
in the same medium will be as the whole arc described; and conversely.

Cor. 11. If the resistance varies as the square of the velocity, that difference
will vary as the square of the whole arc; and conversely.

Cor. 1. And generally, if the resistance varies as the third or any other
power of the velocity, the difference will vary as the same power of the
whole arc; and conversely.

Cor. 1v. If the resistance varies partly as the first power of the velocity
and partly as the square of the same, the difference will vary partly as the
first power and partly as the square of the whole arc; and conversely. So that
the law and ratio of the resistance will be the same for the velocity as the
law and ratio of that difference for the length of the arc.
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Cor. v. And therefore if a pendulum describe successively unequal arcs,
and we can find the ratio of the increment or decrement of this difference
for the length of the arc described, there will be had also the ratio of the

increment or decrement of the resistance for a greater or less velocity.

GENERAL SCHOLIUM

From these Propositions we may find the resistance of mediums by pen-
dulums oscillating therein. I found the resistance of the air by the following
experiments. I suspended a wooden globe or ball weighing 577%2 ounces
troy, its diameter 6% London inches, by a fine thread on a firm hook, so that
the distance between the hook and the centre of oscillation of the globe was
1072 feet. I marked on the thread a point 10 feet and 1 inch distant from the
centre of suspension; and even with that point I placed a ruler divided into
inches, by the help of which I observed the lengths of the arcs described by
the pendulum. Then [ numbered the oscillations in which the globe would
lose 7 part of its motion. If the pendulum was drawn aside from the per-
pendicular to the distance of 2 inches, and then let go, so that in its whole
descent it described an arc of 2 inches, and in the first whole oscillation,
compounded of the descent and subsequent ascent, an arc of almost 4
inches, the pendulum in 164 oscillations lost %8 part of its motion, so as in
its last ascent to describe an arc of 134 inches. If in the first descent it de-
scribed an arc of 4 inches, it lost ¥8 part of its motion in 121 oscillations, so
as in its last ascent to describe an arc of 3% inches. If in the first descent it
described an arc of 8, 16, 32, or 64 inches, it lost /& part of its motion in 69,
3572, 18%, 9% oscillations, respectively. Therefore the difference between
the arcs described in the first descent and the last ascent was in the 1st, 2d,
3d, 4th, sth, 6th cases, %4, %%, 1, 2, 4, 8 inches, respectively. Divide those dif-
ferences by the number of oscillations in each case, and in one mean oscil-
lation, in which an arc of 334, 7%, 15, 30, 60, 120 inches was described, the
difference of the arcs described in the descent and subsequent ascent will
be Y636, Yoa2, Yo, Y1, Y47, 2729 parts of an inch, respectively. But these dif-
ferences in the greater oscillations are as the square of the arcs described,
nearly, but in lesser oscillations somewhat greater than in that ratio; and
therefore (by Cor. 11, Prop. xxx1 of this Book) the resistance of the globe,
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when it moves very swiftly, varies as the square of the velocity, nearly; and
when it moves slowly, in a somewhat greater ratio.

Now let V represent the greatest velocity in any oscillation, and let A, B,
and C be given quantities, and let us suppose the difference of the arcs to be
AV +BV*%1 CV? Since the greatest vclocitics are in the cycloid as % the

nrce deceri ad s 11, ad in the circ ~lo e 14 the charde af thac
arcs described in u.)uuduug, and in the circle as /2 ¢ Cnords oi tiios

s¢ arcs;
and therefore in equal arcs are greater in the cycloid than in the circle in the
ratio of % the arcs to their chords; but the times in the circle are greater
than in the cycloid, in a ratio inversely as the velocity; it is plain that the
differences of the arcs (which are as the resistance and the square of the
time conjointly) are nearly the same in both curves: for in the cycloid those
differences must be on the one hand augmented, with the resistance, in
about the squared ratio of the arc to the chord, because of the velocity aug-
mented in the simple ratio of the same; and on the other hand diminished,
with the square of the time, in the same squared ratio. Therefore to reduce
these observations to the cycloid, we must take the same differences of the
arcs as were observed in the circle, and suppose the greatest velocities anal-
ogous to the half, or the whole arcs, that is, to the numbers %, 1, 2, 4, 8, 16.
Therefore in the 2d, 4th, and 6th cases put 1, 4, and 16 for V; and the differ-
ence of the arcs in the 2d case will become 75 =A + B+ C; in the 4th case,
5555 = 4A +8B + 16C; in the 6th case, 53 = 16A + 64B + 256C. These equations
reduced give A =0.0000916, B =0.0010847, and C=0.0029558. Therefore the
difference of the arcs is as 0.0000916V +0.0010847V " +0.0029558V*; and
therefore since (by Cor., Prop. xxx, applied to this case) the resistance of the
globe in the middle of the arc described in oscillating, where the velocity
is V, is to its weight as 711AV + 70BV*+ 34CV? is to the length of the pen-
dulum, if for A, B, and C you put the numbers found, the resistance of the
globe will be to its weight as 0.0000583V + 0.0007593V* + 0.0022169V? is to
the length of the pendulum between the centre of suspension and the ruler,
that is, to 121 inches. Therefore since V in the second case represents 1, in
the 4th case 4, and in the 6th case 16, the resistance will be to the weight of
the globe, in the 2d case, as 0.0030345 is to 121; in the 4th, as 0.041748 is to
121; in the 6th, as 0.61705 is to 121.

The arc, which the point marked in the thread described in the 6th case,
Wwas 120 — o35, or 119%s inches. And therefore since the radius was 121 inches,
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and the length of the pendulum between the point of suspension and the
centre of the globe was 126 inches, the arc which the centre of the globe
described was 12471 inches. Because the greatest velocity of the oscillating
body, by reason of the resistance of the air, does not fall on the lowest point
of the arc described, but near the middle place of the whole arc, thxs vcloc1ty

rly th\. Same as 1{ th\.. Slub\. in 1t-) whulu d\.a\., ntin

& 11 1l LD.I.DL.I. 15
medium should describe 62%2 inches, the half of that arc, and that in a
cycloid, to which we have above reduced the motion of the pendulum; and
therefore that velocity will be equal to that which the globe would acquire
by falling perpendicularly from a height equal to the versed sine of that
arc. But that versed sine in the cycloid is to that arc 62%: as the same arc to
twice the length of the pendulum 252, and therefore equal to 15.278 inches.
Therefore the velocity of the pendulum is the same which a body would
acquire by falling, and in its fall describing a space of 15.248 inches. There-
fore with such a velocity the globe meets with a resistance which is to its
weight as 0.61705 is to 121, or (if we take that part only of the resistance
which is in the squared ratio of the velocity) as 0.56752 to 121.

I found, by an hydrostatical experiment, that the weight of this wooden
globe was to the weight of a globe of water of the same magnitude as 55 to
97; and therefore since 121 is to 213.4 in the same ratio, the resistance made
to this globe of water, moving forwards with the above-mentioned velocity,
will be to its weight as 0.56752 to 213.4, that is, as 1 to 376%0. Since the
weight of a globe of water, in the time in which the globe with a velocity
uniformly continued describes a length of 30.556 inches, will generate all
that velocity in the falling globe, it is manifest that the force of resistance
uniformly continued in the same time will take away a velocity, which will
be less than the other in the ratio of 1 to 376%0, that is, the 3;¢- part of the
whole velocity. And therefore in the time that the globe, with the same
velocity uniformly continued, would describe the length of its semidiam-

eter, or 3%¢ inches, it would lose the 3555 part of its motion.

I also counted the oscillations in which the pendulum lost % part of its
motion. In the following table the upper numbers denote the length of
the arc described in the first descent, expressed in inches and parts of an
inch; the middle numbers denote the length of the arc described in the last
ascent; and in the lowest place are the numbers of the oscillations. I give
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an account of this experiment, as being more accurate than that in which
only % part of the motion was lost. I leave the calculation to such as are
disposed to make it.

Eirst descent . . . . 2 4 8 16 32 64
Lastascent . . . . . 12 3 6 12 24 48
No.of oscillations . . 374 272 162%  83%  41% 227

[ afterwards suspended a leaden globe of 2 inches in diameter, weighing
26% ounces troy by the same thread, so that between the centre of the globe
and the point of suspension there was an interval of 10%% feet, and I counted
the oscillations in which a given part of the motion was lost. The first of the
following tables exhibits the number of oscillations in which % part of the
whole motion was lost; the second the number of oscillations in which
there was lost %4 part of the same.

First descent . . 1 2 4 8 16 32 64
Last ascent . . . % oo 3%y 14 28 56
No. of oscillations 226 228 193 140 Qo2 53 30
Firstdescent . . 1 2 4 8 16 32 64
Last ascent . . . %4 14 3 6 12 24 48
No. of oscillations 510 518 420 318 204 121 70

Selecting in the first table the 3d, 5th, and 7th observations, and express-
ing the greatest velocities in these observations particularly by the num-
bers 1, 4, 16, respectively, and generally by the quantity V as above, there
will come out in the 3d observation 125 = A + B+ C, in the sth observation
5oz =4A + 8B+ 16C, in the #th observation 55 = 16A +64B+ 256C. These
equations reduced give A =0.001414, B=0.000297, C=0.000879. And thence
the resistance of the globe moving with the velocity V will be to its weight
26% ounces in the same ratio as 0.0009V +0.000208V* + 0.000659V* to 121
inches, the length of the pendulum. And if we regard that part only of the
resistance which is as the square of the velocity, it will be to the weight of
the globe as 0.000659V” to 121 inches. But this part of the resistance in the
first experiment was to the weight of the wooden globe of 5772 ounces as
0.002217V? to 121; hence the resistance of the wooden globe is to the resist-
ance of the leaden one (their velocities being equal) as 5772 into 0.002217
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to 26% into 0.000659, that is, as 7% to 1. The diameters of the two globes
were 67 and 2 inches, and the squares of these are to each other as 47% and
4, or 11'%6 and 1, nearly. Therefore the resistances of these equally swift
globes were in less than a squared ratio of the diameters. But we have not
yet considered the resistance of the thread, which was certainly very con-
here found. I could not determine this accurately, but [ found it greater than
3 part of the whole resistance of the lesser pendulum; hence I gathered
that the resistances of the globes, when the resistance of the thread is sub-
tracted, are nearly in the squared ratio of their diameters. For the ratio of
7% —Y5t0 1— V3, 0r 10% to 1 is not very different from the squared ratio of
the diameters 11!'%6 to 1.

Since the resistance of the thread is of less moment in greater globes, I
tried the experiment also with a globe whose diameter was 18% inches. The
length of the pendulum between the point of suspension and the centre of
oscillation was 122% inches, and between the point of suspension and the
knot in the thread 109’ inches. The arc described by the knot at the first
descent of the pendulum was 32 inches. The arc described by the same knot
in the last ascent after five oscillations was 28 inches. The sum of the arcs,
or the whole arc described in one mean oscillation, was 6o inches; the dif-
ference of the arcs, 4 inches. The Yo part of this, or the difference between
the descent and ascent in one mean oscillation, is %5 of an inch. Then as the
radius 1097% is to the radius 1227, so is the whole arc of 60 inches described
by the knot in one mean oscillation to the whole arc of 678 inches described
by the centre of the globe in one mean oscillation; and so is the difference
% to a new difference 0.4475. If the length of the arc described were to
remain, and the length of the pendulum should be augmented in the ratio
of 126 to 1227, the time of the oscillation would be augmented, and the
velocity of the pendulum would be diminished as the square root of that
ratio; so that the difference 0.4475 of the arcs described in the descent and
subsequent ascent would remain. Then if the arc described be augmented
in the ratio of 124%1 to 678, that difference 0.4475 would be augmented as
the square of that ratio, and so would become 1.5295. These things would
be so upon the supposition that the resistance of the pendulum were as the
square of the velocity. Therefore if the pendulum describe the whole arc
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of 124751 inches, and its length between the point of suspension and the
centre of oscillation be 126 inches, the difference of the arcs described in the
descent and subsequent ascent would be 1.5295 inches. And this difference
multiplied by the weight of the pendulous globe, which was 208 ounces,
produces 318.136. Again, in the pendulum above mentioned, made of a
wooden globe, when its centre of oscillation, being 126 inches from the
point of suspension, described the whole arc of 124%1 inches, the difference
of the arcs described in the descent and ascent was {37 into g;. This multi-
plied by the weight of the globe, which was 57%:2 ounces, produces 49.396.
But I multiply these differences by the weights of the globes, in order to
find their resistances. For the differences arise from the resistances, and are
as the resistances directly and the weights inversely. Therefore the resist-
ances are as the numbers 318.136 and 49.396. But that part of the resistance
of the lesser globe, which is as the square of the velocity, was to the whole
resistance as 0.50752 to 0.61675, that is, as 45.453 to 49.396, whereas that part
of the resistance of the greater globe is almost equal to its whole resistance,
and so those parts are nearly as 318.136 and 45.453, that is, as 7 and 1. But
the diameters of the globes are 18% and 6% and their squares 351%6 and
47" %4 are as 7.438 and 1, that is, nearly as the resistances of the globes 7
and 1. The difference of these ratios is barely greater than may arise from
the resistance of the thread. Therefore those parts of the resistances which
are, when the globes are equal, as the squares of the velocities, are also,
when the velocities are equal, as the squares of the diameters of the globes.

But the greatest of the globes I used in these experiments was not per-
fectly spherical, and therefore in this calculation I have, for brevity’s sake,
neglected some little niceties; being not very solicitous for an accurate cal-
culus in an experiment that was not very accurate. So that I could wish that
these experiments were tried again with other globes, of a larger size, more
in number, and more accurately formed; since the demonstration of a
vacuum depends thereon. If the globes be taken in a geometrical propor-
tion, whose diameters, let us suppose, are 4, 8, 16, 32 inches; one may infer
from the progression observed in the experiments what would happen if
the globes were still larger.

In order to compare the resistances of different fluids with each other, I
made the following trials. I procured a wooden vessel 4 feet long, 1 foot
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broad, and 1 foot high. This vessel, being uncovered, I filled with spring
water, and, having immersed pendulums therein, I made them oscillate in
the water. And I found that a leaden globe weighing 166% ounces, and in
diameter 3% inches, moved therein as it is set down in the following table;
the length of the pendulum from the point of suspension to a certain point

marked in the thread being 126 inches, and to the centre of oscillation
13495 inches.
The arc described in)

the first descent,
by a point marked
in the thread was
inches

The arc described in)
the last ascent wasy 48 . 24 . 12 . 6 . 3 .1% .3% . 3% . %
inches

, ¥

The difference of the
arcs, proportional 1 1 1 1

. L 6 . 8§ . L2 o1 LYy Yy Y

to the motion lost, 4 %

was inches
The number of the
oscillationsin water

The number of tke} 8514 .

32 .16 .8 .4 .2 .1 .¥W .Y

A d
(=Y
e

2%0.1% . 3 . 7 .11%4. 2% . 134

287 . 535

oscillations in arr

In the experiments of the 4th column there were equal motions lost in
535 oscillations made in the air, and 1% in water. The oscillations in the
air were indeed a little swifter than those in the water. But if the oscillations
in the water were accelerated in such a ratio that the motions of the pendu-
lums might be equally swift in both mediums, there would be still the same
number of 1% oscillations in the water, and by these the same quantity of
motion would be lost as before; because the resistance is increased, and the
square of the time diminished in the same squared ratio. The pendulums,
therefore, being of equal velocities, there were equal motions lost in 535
oscillations in the air, and 1% in the water; and therefore the resistance of
the pendulum in the water is to its resistance in the air as 535 to 1%. This
is the proportion of the whole resistances in the case of the 4th column.

Now let AV +CV? represent the difference of the arcs described in the
descent and subsequent ascent by the globe moving in air with the greatest
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velocity V; and since the greatest velocity is in the case of the 4th column
to the greatest velocity in the case of the 1st column as 1 is to 8; and that
difference of the arcs in the case of the 4th column to the difference in the
case of the Ist column as 5z to g3z, or as 85% to 4280; put in these cases 1
and 8 for the velocities, and 85% and 4280 for the differences of the arcs,
and A+C will be=85%, and 8A +64C=4280 or A +8C=535; and then,
by reducing these equations, there will come out 7C=449% and C=64%1
and A =21%; and therefore the resistance, which 1s as %41AV +34CV?, will
become as 13%11V +48%6V?. Therefore in the case of the 4th column, where
the velocity was 1, the whole resistance is to its part proportional to the
square of the velocity as 13%1 + 48%e¢ or 611917 to 48%s; and therefore the
resistance of the pendulum in water is to that part of the resistance n
air, which is proportional to the square of the velocity, and which in swift
motions is the only part that deserves consideration, as 61'%7 to 48%s and
535 to 1% conjointly, that is, as 571 to 1. If the whole thread of the pendu-
lum oscillating in the water had been immersed, its resistance would have
been still greater; so that the resistance of the pendulum oscillating in the
water, that is, that part which is proportional to the square of the velocity,
and which only needs to be considered in swift bodies, is to the resistance of
the same whole pendulum, oscillating in air with the same velocity, as
about 850 to 1, that is, as the density of water is to the density of air, nearly.

In this calculation we ought also to have taken in that part of the resist-
ance of the pendulum in the water which was as the square of the velocity;
but I found (which will perhaps seem strange) that the resistance in the
water was augmented in more than a squared ratio of the velocity. In
searching after the cause, I thought upon this, that the vessel was too narrow
for the magnitude of the pendulous globe, and by its narrowness obstructed
the motion of the water as it yielded to the oscillating globe. For when I
immersed a pendulous globe, whose diameter was one inch only, the resist-
ance was augmented nearly as the square of the velocity. I tried this by
making a pendulum of two globes, of which the lesser and lower oscillated
in the water, and the greater and higher was fastened to the thread just
above the water, and, by oscillating in the air, assisted the motion of the
pendulum, and continued it longer. The experiments made by this contriv-
ance resulted as shown in the following table (p. 324).
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Arc described in first descent 16 . 8 . 4 . 2 . 1 . % . W
Arc described inlast ascent . 12 . 6 . 3 1% . % . 3% . e

Difference of arcs, propor-| 1 1 1 1
/ i L2 .01 Y%L, s Y
tional to motion lost......... ! 4 7 +

Number of oscillations ....... 3%.6%2 .12Yi2.21% .34 . 53 .62%

In comparing the resistances of the mediums with each other, I also
caused iron pendulums to oscillate in quicksilver. The length of the iron
wire was about 3 feet, and the diameter of the pendulous globe about 15 of
an inch. To the wire, just above the quicksilver, there was fixed another
leaden globe of a bigness sufficient to continue the motion of the pendulum
for some time. Then a vessel, that would hold about 3 pounds of quick-
silver, was filled by turns with quicksilver and common water, so that, by
making the pendulum oscillate successively in these two different fluids, I
might find the proportion of their resistances; and the resistance of the
quicksilver proved to be to the resistance of water as about 13 or 14 to 1,
that is, as the density of quicksilver to the density of water. When I made
use of a pendulous globe something bigger, as of one whose diameter was
about Y2 or %4 of an inch, the resistance of the quicksilver proved to be to
the resistance of the water as about 12 or 10 to 1. But the former experiment
is more to be relied on, because in the latter the vessel was too narrow in
proportion to the magnitude of the immersed globe; for the vessel ought
to have been enlarged together with the globe. I intended to repeat these
experiments with larger vessels, and in melted metals, and other liquors
both cold and hot; but I had not leisure to try all; and besides, from what is
already described, it appears sufficiently that the resistance of bodies mov-
ing swiftly is nearly proportional to the densities of the fluids in which they
move. I do not say accurately; for more tenacious fluids, of equal density,
will undoubtedly resist more than those that are more liquid; as cold oil
more than warm, warm oil more than rain water, and water more than
spirit of wine. But in liquors, which are sensibly fluid enough, as in air, in
salt and fresh water, in spirit of wine, of turpentine, and salts, in oil cleared
of its feces by distillation and warmed, in oil of vitriol, and in mercury, and
melted metals, and any other such like, that are fluid enough to retain for
some time the motion impressed upon them by the agitation of the vessel,
and which being poured out are easily resolved into drops, I doubt not that
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the rule already laid down may be accurate enough, especially if the experi-
ments be made with larger pendulous bodies and more swiftly moved.

Lastly, since it is the opinion of some that there is a certain ethereal
medium extremely rare and subtile, which freely pervades the pores of all
bodies; and from such a medium, so pervading the pores of bodies, some
resistance must needs arise; in order to try whether the resistance, which we
experience in bodies in motion, be made upon their outward surfaces only,
or whether their internal parts meet with any considerable resistance upon
their surfaces, I thought of the following experiment. I suspended a round
deal box by a thread 11 feet long, on a steel hook, by means of a ring of the
same metal, so as to make a pendulum of the aforesaid length. The hook
had a sharp hollow edge on its upper part, so that the upper arc of the ring
pressing on the edge might move the more freely; and the thread was fast-
ened to the lower arc of the ring. The pendulum being thus prepared, I
drew it aside from the perpendicular to the distance of about 6 feet, and that
in a plane perpendicular to the edge of the hook, lest the ring, while the
pendulum oscillated, should slide to and fro on the edge of the hook ; for the
point of suspension, in which the ring touches the hook, ought to remain
immovable. I therefore accurately noted the place to which the pendulum
was brought, and letting it go, I marked three other places, to which it
returned at the end of the 1st, 2d, and 3d oscillation. This I often repeated,
that I might find those places as accurately as possible. Then I filled the
box with lead and other heavy metals that were near at hand. But, first, I
weighed the box when empty, and that part of the thread that went round
it, and half the remaining part, extended between the hook and the sus-
pended box; for the thread so extended always acts upon the pendulum,
when drawn aside from the perpendicular, with half its weight. To this
weight I added the weight of the air contained in the box. And this whole
weight was about %75 of the weight of the box when filled with the metals.
Then because the box when full of the metals, by extending the thread
with its weight, increased the length of the pendulum, I shortened the
thread so as to make the length of the pendulum, when oscillating, the
same as before. Then drawing aside the pendulum to the place first marked,
and letting it go, I reckoned about %7 oscillations before the box returned
to the second mark, and as many afterwards before it came to the third
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mark, and as many after that before it came to the fourth mark. From
this I conclude that the whole resistance of the box, when full, had not a
greater proportion to the resistance of the box, when empty, than 78 to 77.
For if their resistances were equal, the box, when full, by reason of its in-
ertia, which was %8 times greater than the inertia of the same when empty,

mlcrhf to have continued its oscillating motion so much the longer. and
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thereforc to have returned to those marks at the end of 78 oscillations. But
it returned to them at the end of %7 oscillations.

Let, therefore, A represent the resistance of the box upon its external sur-
face, and B the resistance of the empty box on its internal surface, and if the
resistances to the internal parts of bodies equally swift be as the matter, or
the number of particles that are resisted, then 78B will be the resistance
made to the internal parts of the box, when full; and therefore the whole
resistance A + B of the empty box will be to the whole resistance A +78B
of the full box as 77 to 78, and, by subtraction, A + B to 77B as 77 to 1; and
thence A + B to B as 7777 to 1, and, by subtraction, again, A to B as 5928
to 1. Therefore the resistance of the empty box in its internal parts will be
above 5000 times less than the resistance on its external surface. This reason-
ing depends upon the supposition that the greater resistance of the full box
arises not from any other latent cause, but only from the action of some
subtile fluid upon the included metal.

This experiment is related by memory, the paper being lost in which I
had described it; so that I have been obliged to omit some fractional parts,
which are slipped out of my memory; and I have no leisure to try it again.
The first time I made it, the hook being weak, the full box was retarded
sooner. The cause I found to be, that the hook was not strong enough to
bear the weight of the box; so that, as it oscillated to and fro, the hook was
bent sometimes this and sometimes that way. I therefore procured a hook
of sufficient strength, so that the point of suspension might remain un-
moved, and then all things happened as is above described.
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SECTION VII
The motion of fluids, and the resistance made to projected bodies.

PROPOSITION XXXII. THEOREM XXVI

Suppose two similar systems of bodies consisting of an equal number of
particles, and let the correspondent particles be similar and proportional,
each in one system to each in the other, and have a like situation among
themselves, and the same given ratio of density to each other; and let them
begin to move among themselves in proportional times, and with like
motions (that is, those in one system among one another, and those in the
other among one another ). And if the particles that are in the same system
do not touch one another, except in the moments of reflection; nor attract,
nor repel each other, except with accelerative forces that are inversely as the
diameters of the correspondent particles, and directly as the squares of the
velocities: 1 say, that the particles of those systems will continue to move
among themselves with like motions and in proportional times.

Like bodies in like situations are said to be moved among themselves with
like motions and in proportional times, when their situations at the end of
those times are always found alike in respect of each other; as suppose we
compare the particles in one system with the correspondent particles in the
other. Hence the times will be proportional, in which similar and propor-
tional parts of similar figures will be described by correspondent particles.
Therefore if we suppose two systems of this kind, the correspondent par-
ticles, by reason of the similitude of the motions at their beginning, will
continue to be moved with like motions, so long as they move without meet-
ing one another; for if they are acted on by no forces, they will go on uni-
formly in right lines, by the first Law. But if they agitate one another with
some certair forces, and those forces are inversely as the diameters of the
correspondent particles and directly as the squares of the velocities, then,
because the particles are in like situations, and their forces are proportional,
the whole forces with which correspondent particles are agitated, and
which are compounded of each of the agitating forces (by Cor. 11 of the
Laws), will have like directions, and have the same effect as if they re-
spected centres placed alike among the particles; and those whole forces
will be to each other as the several forces which compose them, that is, in-
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versely as the diameters of the correspondent particles and directly as the
squares of the velocities: and therefore will cause correspondent particles to
continue to describe like figures. These things will be so (by Cor. 1 and v,
Prop. v, Book 1), if those centres are at rest; but if they are moved, yet, by
reason of the similitude of the translations, their situations among the par-
ticles of the system will remain Sii""uhai’ so that the Lua“g“s introduced into
the figures described by the particles will still be similar. So that the motions
of correspondent and similar particles will continue similar till their first
meeting with each other; and thence will arise similar collisions, and sim-
ilar reflections; which will again beget similar motions of the particles
among themselves (by what was just now shown), till they mutually fall
upon one another again, and so on ad infinitum. Q.E.D.

Cor. 1. Hence if any two bodies, which are similar and in like situations
to the correspondent particles of the systems, begin to move amongst them
in like manner and in proportional times, and their magnitudes and densi-
ties be to each other as the magnitudes and densities of the corresponding
particles, these bodies will continue to be moved in like manner and in pro-
portional times; for the case of the greater parts of both systems and of the
particles is the very same.

Cor. 1. And if all the similar and similarly situated parts of both systems
be at rest among themselves; and two of them, which are greater than the
rest, and mutually correspondent in both systems, begin to move in lines
alike posited, with any similar motion whatsoever, they will excite similar
motions in the rest of the parts of the systems, and will continue to move
among those parts in like manner and in proportional times; and will there-
fore describe spaces proportional to their diameters.

PROPOSITION XXXIII. THEOREM XXVII

The same things being supposed, I say, that the greater parts of the systems
are resisted in a ratio compounded of the squared ratio of their velocities,
and the squared ratio of their diameters, and the simple ratio of the density
of the parts of the systems.

For the resistance arises partly from the centripetal or centrifugal forces
with which the particles of the system act on each other, partly from the col-
lisions and reflections of the particles and the greater parts. The resistances
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of the first kind are to each other as the whole motive forces from which
they arise, that is, as the whole accelerative forces and the quantities of
matter in corresponding parts; that is (by the supposition), directly as the
squares of the velocities and inversely as the distances of the corresponding
particles, and directly as the quantities of matter in the correspondent parts:
and therefore since the distances of the particles in one system are to the
correspondent distances of the particles in the other, as the diameter of
one particle or part in the former system to the diameter of the correspond-
ent particle or part in the other, and since the quantities of matter are as the
densities of the parts and the cubes of the diameters, the resistances are to
each other as the squares of the velocities and the squares of the diameters
and the densities of the parts of the systems. Q.E.D. The resistances of the
latter sort are as the number of correspondent reflections and the forces of
those reflections conjointly; but the number of the reflections are to each
other directly as the velocities of the corresponding parts and inversely as
the spaces between their reflections. And the forces of the reflections are as
the velocities and the magnitudes and the densities of the corresponding
parts conjointly; that is, as the velocities and the cubes of the diameters and
the densities of the parts. And, joining all these ratios, the resistances of the
corresponding parts are to each other as the squares of the velocities and the
squares of the diameters and the densities of the parts conjointly. Q.E.D.

Cor. 1. Therefore if those systems are two elastic fluids, like our air, and
their parts are at rest among themselves; and two similar bodies propor-
tional in magnitude and density to the parts of the fluids, and similarly sit-
uated among those parts, be in any manner projected in the direction of
lines similarly posited; and the accelerative forces with which the particles
of the fluids act upon each other are inversely as the diameters of the bodies
projected and directly as the squares of their velocities; those bodies will
excite similar motions in the fluids in proportional times, and will describe
similar spaces and proportional to their diameters,

Cor. 1. Therefore in the same fluid a projected body that moves swiftly
meets with a resistance that is as the square of its velocity, nearly. For if the
forces with which distant particles act upon one another should be aug-
mented as the square of the velocity, the projected body would be resisted
in the same squared ratio accurately; and therefore in a medium, whose
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parts when at a distance do not act with any force on one another, the resist-
ance 1s as the square of the velocity, accurately. Let there be, therefore, three
mediums A, B, C, consisting of similar and equal parts regularly disposed
at equal distances. Let the parts of the mediums A and B recede from each

other with forces that are among themselves as T and V; and let the parts
n’rf he h'\nr]-l‘nm 'S ]"\ antiraly d

of the medium C be entirely
bodies D, E, F, G move in these mediums, thc two ﬁrst D and E in the two
first A and B, and the other two F and G in the third C; and if the velocity
of the body D be to the velocity of the body E, and the velocity of the body
F to the velocity of the body G, as the square root of the ratio of the force T
to the force V; then the resistance of the body D to the resistance of the
body E, and the resistance of the body F to the resistance of the body G, will
be as the square of the velocities; and therefore the resistance of the body D
will be to the resistance of the body F as the resistance of the body E to the
resistance of the body G. Let the bodies D and F be equally swift, as also the
bodies E and G; and, augmenting the velocities of the bodies D and F in
any ratio, and diminishing the forces of the particles of the medium B as
the square of the same ratio, the medium B will approach to the form and
condition of the medium C at pleasure; and therefore the resistances of the
equal and equally swift bodies E and G in these mediums will continually
approach to equality, so that their difference will at last become less than
any given. Therefore since the resistances of the bodies D and F are to each
other as the resistances of the bodies E and G, those will also in like manner
approach to the ratio of equality. Therefore the bodies D and F, when they
move with very great swiftness, meet with resistances very nearly equal;
and therefore since the resistance of the body F is in a squared ratio of the
velocity, the resistance of the body D will be nearly in the same ratio.

Cor. 1. Hence the resistance of 2 body moving very swiftly in an elastic
fluid is almost the same as if the parts of the fluid were destitute of their
centrifugal forces, and did not fly from each other; provided only that the
elasticity of the fluid arise from the centrifugal forces of the particles, and
the velocity be so great as not to allow the particles time enough to act.

Cor. 1v. Since the resistances of similar and equally swift bodies, in a
medium whose distant parts do not fly from each other, are as the squares
of the diameters, therefore the resistances made to bodies moving with very
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great and equal velocities in an elastic fluid will be as the squares of the
diameters, nearly.

Cor. v. And since similar, equal, and equally swift bodies, moving
through mediums of the same density, whose particles do not fly from
each other, will strike against an equal quantity of matter in equal times,
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or fewer and greater, and therefore impress on that matter an equal quan-
tity of motion, and in return (by the third Law of Motion) suffer an equal
reaction from the same, that is, are equally resisted; it is manifest, also, that
in elastic fluids of the same density, when the bodies move with extreme
swiftness, their resistances are nearly equal, whether the fluids consist of
gross parts, or of parts ever so subtile. For the resistance of projectiles mov-
ing with exceedingly great celerities 1s not much diminished by the subtilty
of the medium.

Cor. v1. Al these things are so in fluids whose elastic force takes its rise
from the centrifugal forces of the particles. But if that force arise from some
other cause, as from the expansion of the particles after the manner of wool,
or the boughs of trees, or any other cause, by which the particles are hin-
dered from moving freely among themselves, the resistance, by reason of
the lesser Auidity of the medium, will be greater than in the Corollaries
above.
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PROPOSITION XXXIV. THEOREM XXVIII

If in a rare medium, consisting of equal particles freely disposed at equal
distances from each other, a globe and a cylinder described on equal diam-
eters move with equal velocities in the direction of the axis of the cylinder,
the resistance of the globe will be but half as great as that of the cylinder.

For since the action of the medium upon the body is the same (by Cor. v
of the Laws) whether the body move in a quiescent medium, or whether
the particles of the medium impinge with the same velocity upon the
quiescent body, let us consider the body as if it were quiescent, and see with
what force it would be impelled by the moving medium. Let, therefore,
ABKI represent a spherical body described from the centre C with the semi-
diameter CA, and let the particles of the medium impinge with a given
velocity upon that spherical body in the directions of right lines parallel to



332 NEWTON’S MATHEMATICAL PRINCIPLES

AC;and let FB be one of those right lines. In FB take LB equal to the semi-
diameter CB, and draw BD touching the sphere in B. Upon KC and BD
let fall the perpendiculars BE, LD; and the force with which a particle of
the medium, impinging on the globe obliquely in the direction FB, would
strike the globe in B, will be to the force with which the same particle, meet-
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o K - strike it perpendicularly in 4, as
LD isto LB, or BE to BC. Again;
E b L ¥ the efficacy of this force to move

// \ the globe, according to the direc-
I <D tion of its incidence FB or AC,

is to the efficacy of the same to
move the globe, according to the
direction of its determination,
that is, in the direction of the
right line BC in which it impels
the globe directly, as BE to BC. And, joining these ratios, the efficacy of a
particle, falling upon the globe obliquely in the direction of the right line
FB, to move the globe in the direction of its incidence, is to the efficacy of
the same particle falling in the same line perpendicularly on the cylinder, to
move it in the same direction, as BE® to BC®. Therefore if in 5E, which is per-
pendicular to the circular base of the cylinder NAQO, and equal to the radius

Q 0

AC, we take 4H equal to %; then 6H will be to E as the effect of the

particle upon the globe to the effect of the particle upon the cylinder. And
therefore the solid which is formed by all the right lines 8H will be to the
solid formed by all the right lines E as the effect of all the particles upon
the globe to the effect of all the particles upon the cylinder. But the former
of these solids is a paraboloid whose vertex is C, its axis CA, and latus rectum
CA, and the latter solid is a cylinder circumscribing the paraboloid; and it
is known that a paraboloid is half its circumscribed cylinder. Therefore the
whole force of the medium upon the globe is half the entire force of the
same upon the cylinder. And therefore if the particles of the medium are
at rest, and the cylinder and globe move with equal velocities, the resistance

of the globe will be half the resistance of the cylinder. Q.E.D.
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SCHOLIUM!

By the same method other figures may be compared together as to their
resistance; and those may be found which are most apt to continue their
motions in resisting mediums. As if upon the circular base CEBH from the
centre O, with the radius OC, and the alti- c

tude OD, one would construct a frustum
CBGEF of a cone, which should meet with

less resistance than any other frustum con- ¥
structed with the same base and altitude, £l o s
and going forwards towards D in the direc- H Q ’

tion of its axis: bisect the altitude OD in Q,
and produce OQ to §, so that QS may be
equal to QC, and S will be the vertex of the
cone whose frustum is sought. B

Incidentally, since the angle CSB is always acute, it follows from the
above that, if the solid ADBE be generated by the convolution of an ellipti-
cal or oval figure ADBE about its axis AB, and the generating figure be
touched by three right lines FG, GH, HI, in the points F, B, and 1, so that

GH shall be perpendicu-

lar to the axis in the point

of contact B, and FG, HI

may be inclined to GH in

... the angles FGB, BHI of

RO135 degrees: the solid aris-

ing from the convolution

1 of the figure ADFGHIE

about the same axis AB

E will be less resisted than

the former solid, provided that both move forwards in the direction of their

axis AB, and that the extremity B of each go foremost. This Proposition I
conceive may be of use in the building of ships.

If the figure DNFG be such a curve, that if, from any point thereof, as N,

the perpendicular NM be let fall on the axis AB, and from the given point
G there be drawn the right line GR parallel to a right line touching the

[* Appendix, Note 35.]
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figure in N, and cutting the axis produced in R, MN becomes to GR as
GR® to 4BR - GB?, the solid described by the revolution of this figure about
its axis AB, moving in the before-mentioned rare medium from A towards
B, will be less resisted than any other circular solid whatsoever, described of
the same length and breadth.

PROPOSITION XXXV. PROBLEM VII

If a rare medium consist of very small quiescent particles of equal magni-
tudes, and freely disposed at equal distances from one another: to find the
resistance of a globe moving uniformly forwards in this medium.

Cask 1. Let a cylinder described with the same diameter and altitude be
conceived to go forwards with the same velocity in the direction of its axis
through the same medium; and let us suppose that the particles of the
medium, on which the globe or cylinder falls, fly back with as great a force
of reflection as possible. Then since the resistance of the globe (by the last
Proposition) is but half the resistance of the cylinder, and since the globe
is to the cylinder as 2 to 3, and since the cylinder by falling perpendicularly
on the particles, and reflecting them with the utmost force, communicates
to them a velocity double to its own: it follows that the cylinder in moving
forwards uniformly half the length of its axis, will communicate a motion
to the particles which is to the whole motion of the cylinder as the density
of the medium to the density of the cylinder; and that the globe, in the
time it describes one length of its diameter in moving uniformly forwards,
will communicate the same motion to the particles; and, in the time that
it describes two-thirds of its diameter, will communicate a motion to the
particles which is to the whole motion of the globe as the density of the
medium to the density of the globe. And therefore the globe meets with a
resistance, which is to the force by which its whole motion may be either
taken away or generated in the time in which it describes two-thirds of its
diameter moving uniformly forwards, as the density of the medium is to
the density of the globe.

Cask 2. Let us suppose that the particles of the medium incident on the
globe or cylinder are not reflected; and then the cylinder falling perpen-
dicularly on the particles will communicate its own simple velocity to them,
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and therefore meets a resistance but half so great as in the former case, and
the globe also meets with a resistance but half so great.

Cask 3. Let us suppose the particles of the medium to fly back from the
globe with a force which is neither the greatest, nor yet none at all, but with
a certain mean force; then the resistance of the globe will be in the same
mean ratio between the resistance in the first case and the resistance in the
second. Q.E.L

Cor. 1. Hence if the globe and the particles are infinitely hard, and desti-
tute of all elastic force, and therefore of all force of reflection, the resistance
of the globe will be to the force by which its whole motion may be destroyed
or generated, in the time that the globe describes four third parts of its diam-
eter, as the density of the medium is to the density of the globe.

Cor. 1. The resistance of the globe, other things being equal, varies as the
square of the velocity.

Cor. 1. The resistance of the globe, other things being equal, varies as the
square of the diameter.

Cor. 1v. The resistance of the globe, other things being equal, varies as the
density of the medium.

Cor. v. The resisiance of the globe varies jointly as the square of the
velocity, as the square of the diameter, and as the density of the medium.

Cor. vi. The motion of the globe and its resistance may be thus repre-
sented. Let AB be the time in which the globe may, by its resistance uni-
formly continued, lose its whole motion. Erect AD, BC perpendicular to
AB. Let BC be that whole motion, and
through the point C, the asymptotes being
AD, AB, describe the hyperbola CF. Pro-
duce AB to any point E. Erect the perpen-
dicular EF meeting the hyperbola in F.
Complete the parallelogram CBEG, and
draw AF meeting BC in H. Then if the A B
globe in any time BE, with its first motion BC uniformly continued, de-
scribes in a nonresisting medium the space CBEG represented by the area
of the parallelogram, the same in a resisting medium will describe the space
CBEF, represented by the area of the hyperbola; and its motion at the end
of that time will be represented by EF, the ordinate of the hyperbola, there

D
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being lost of its motion the part FG. And its resistance at the end of the
same time will be represented by the length BH, there being lost of its resist-
ance the part CH. All these things appear by Cor. 1 and 111, Prop. v, Book 1.

Cor. vi1. Hence if the globe in the time T by the resistance R uniformly
continued lose its whole motion M, the same globe in the time # in a resist-

ing medium. wherein the resistance R decreases as the square of the vel
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ity, will lose out of its motion M the part —— thc part .—— remaining;

T+ T+¢

and will describe a space which is to the space dcscrlbed in the same time %,

: , : : T+2 :
with the uniform motion M, as the logarithm of the number T multi-

plied by the number 2.302585092994 is to the number =, because the hyper-

T,
bolic area BCFE is to the rectangle BCGE in that proportion.

SCHOLIUM

I have exhibited in this Proposition the resistance and retardation of
spherical projectiles in mediums that are not continued, and shown that
this resistance is to the force by which the whole motion of the globe may
be destroyed or produced in the time in which the globe can describe two-
thirds of its diameter, with a velocity uniformly continued, as the density
of the medium is to the density of the globe, provided the globe and the
particles of the medium be perfectly elastic, and are endued with the utmost
force of reflection; and that this force, where the globe and particles of the
medium are infinitely hard and void of any reflecting force, is diminished
one-half, But in continued mediums, as water, hot oil, and quicksilver, the
globe as it passes through them does not immediately strike agatnst all the
particles of the fluid that generate the resistance made to it, but presses only
the particles that lie next to it, which press the particles beyond, which press
other particles, and so on; and in these mediums the resistance is diminished
one other half. A globe in these extremely fluid mediums meets with a re-
sistance that is to the force by which its whole motion may be destroyed or
generated in the time wherein it can describe, with that motion uniformly
continued, eight third parts of its diameter, as the density of the medium
is to the density of the globe. This I shall endeavor to show in what
follows.
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PROPOSITION XXXVI. PROBLEM VIII
To find the motion of water running out of a cylindrical vessel through a
hole made at the bottom."

Let ACDB be a cylindrical vessel, AB the mouth of it, CD the bottom
paralle] to the horizon, EF a circular hole in the middle of the bottom, G
the centre of the hole, and GH the axis of the cylinder perpendicular to the
horizon. And suppose a cylinder of ice APQB to be of the same breadth
with the cavity of the vessel, and to have the
same axis, and to descend continually with P R
an uniform motion, and that its parts, as ' ;
soon as they touch the surface AB, dissolve
into water, and flow down by their weight
into the vessel, and in their fall compose 4 i
the cataract or column of water ABNFEM,
passing through the hole EF, and filling up
the same exactly. Let the uniform velocity
of the descending ice and of the contiguous
water in the circle AB be that which the
water would acquire by falling through the
space IH; and let IH and HG lie in the same ¢ ¢ F
right line; and through the point I let there
be drawn the right line KL parallel to the horizon, and meeting the ice on
both the sides thereof in K and L. Then the velocity of the water running
out at the hole EF will be the same that it would acquire by falling from I
through the space IG. Therefore, by Galileo’s Theorems, IG will be to IH
as the square of the velocity of the water that runs out at the hole to the
velocity of the water in the circle AB, that is, as the square of the ratio of
the circle AB to the circle EF; those circles being inversely as the velocities
of the water which in the same time and in equal quantities passes through
each of them, and completely fills them both. We are now considering
the velocity with which the water tends to the plane of the horizon. But
the motion parallel to the same, by which the parts of the falling water
approach to each other, is not here taken notice of ; since it is neither pro-
duced by gravity, nor at all changes the motion perpendicular to the hori-
zon which the gravity produces. We suppose, indeed, that the parts of the

D
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water cohere a little, that by their cohesion they may in falling approach
to each other with motions parallel to the horizon in order to form one
single cataract, and to prevent their being divided into several; but the
motion parallel to the horizon arising from this cohesion does not come
under our present consideration.

Cask 1. Conceive now the whole cavity in the vessel, which surrounds the
falling water ABNFEM, to be full of ice, so that the water may pass through
the ice as through a funnel. Then if the water pass very near to the ice only,
without touching it; or, which is the same thing, if by reason of the perfect
smoothness of the surface of the ice, the water, though touching it, glides
over it with the utmost freedom, and without the least resistance; the water
will run through the hole EF with the same velocity as before, and the
whole weight of the column of water ABNFEM will be taken up as before
in forcing out the water, and the bottom of the vessel will sustain the weight
of the ice surrounding that column.

Let now the ice in the vessel dissolve into water; but the efflux of the
water will remain, as to its velocity, the same as before. It will not be less, be-
cause the ice now dissolved will endeavor to descend; it will not be greater,
because the ice, now become water, cannot descend without hindering the
descent of other water equal to its own descent. The same force ought
always to generate the same velocity in the efluent water.

But the hole at the bottom of the vessel, by reason of the oblique motions
of the particles of the effluent water, must be a little greater than before. For
now the particles of the water do not all of them pass through the hole
perpendicularly, but, flowing down on all parts from the sides of the vessel,
and converging towards the hole, pass through it with oblique motions;
and in tending downwards they meet in a stream whose diameter is a little
smaller below the hole than at the hole itself; its diameter being to the
diameter of the hole as 5 to 6, or as 5%2 to 6%, very nearly, if [ measured
those diameters rightly. I procured a thin flat plate, having a hole pierced
in the middle, the diameter of the circular hole being five eighth parts of
an inch. And that the stream of running water might not be accelerated
in falling, and by that acceleration become narrower, I fixed this plate not
to the bottom, but to the side of the vessel, so as to make the water go out
in the direction of a line parallel to the horizon. Then, when the vessel was
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full of water, I opened the hole to let it run out; and the diameter of the
stream, measured with great accuracy at the distance of about half an inch
from the hole, was %o of an inch. Therefore the diameter of this circular
hole was to the diameter of the stream very nearly as 25 to 21. So that the
water in passing through the hole converges on all sides, and, after it has
run out of the vessel, becomes smaller by converging in that manner, and
by becoming smaller is accelerated till it comes to the distance of half an
inch from the hole, and at that distance flows in a smaller stream and with
greater celerity than in the hole itself, and this in the ratio of 25-25 to
21 - 21, or 17 to 12, very nearly; that is, in about the ratio of \/2 to 1. Now
it is certain from experiments, that the quantity of water running out in a
given time through a circular hole made in the bottom of a vessel is equal
to the quantity, which, flowing freely with the aforesaid velocity, would
run out in the same time through another circular hole, whose diameter is
to the diameter of the former as 21 to 25. And therefore this running water
in passing through the hole itself has a velocity downwards nearly equal
to that which a heavy body would acquire in falling through half the height
of the stagnant water in the vessel. But then, after it has run out, it is still
accelerated by converging, till it arrives at a distance from the hole that is
nearly equal to its diameter, and acquires a velocity greater than the other
in about the ratio of \/2 to 1; this velocity a heavy body would nearly
acquire by falling freely through the whole height of the stagnant water in
the vessel.

Therefore in what follows let the diam- X X b
eter of the stream be represented by that A |
lesser hole which we shall call EF. And
imagine another plane VW above the hole
EF, and parallel to the plane thereof, to be
placed at a distance equal to the diameter
of the same hole, and to be pierced through
with a greater hole ST, of such a magni-
tude that a stream which will exactly fill €
the lower hole EF may pass through it; the
diameter of this hole will therefore be to the diameter of the lower hole
nearly as 25 to 21. By this means the water will run perpendicularly out at

D
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the lower hole; and the quantity of the water running out will be, accord-
ing to the magnitude of this last hole, very nearly the same as that which
the solution of the Problem requires. The space included between the two
planes and the falling stream may be considered as the bottom of the vessel.
But to make the solution more simple and mathematical, it is better to take
the lower plane alone for the bottom of the vessel, and to suppose that the
water which flowed through the ice as through a funnel, and ran out of the
vessel through the hole EF made in the lower plane, preserves its motion
continually, and that the ice continues at rest. Therefore in what follows let
ST be the diameter of a circular hole described from the centre Z, and let
the stream run out of the vessel through that hole, when the water in the
vessel is all fluid. And let EF be the diameter of the hole, which the stream,
in falling through, exactly fills up, whether the water runs out of the vessel
by that upper hole ST, or Hows through the middle of the ice in the vessel,
as through a funnel. And let the diameter of the upper hole ST be to the
diameter of the lower EF as about 25 to 21, and let the perpendicular dis-
tance between the planes of the holes be equal to the diameter of the lesser
hole EF. Then the velocity of the water downwards, in running out of the
vessel through the hole ST, will be in that hole the same that a body may
acquire by falling freely from half the height IZ; and the velocity of both
the falling streams will be in the hole EF, the same which a body would
acquire by falling freely from the whole height IG.

Cask 2. If the hole EF be not in the middle of the bottom of the vessel,
but in some other part thereof, the water will still run out with the same
velocity as before, if the magnitude of the hole be the same. For though a
heavy body takes a longer time in descending to the same depth, by an
oblique line, than by a perpendicular line, yet in both cases it acquires in
its descent the same velocity; as Galileo hath demonstrated.

Case 3. The velocity of the water is the same when it runs out through
a hole in the side of the vessel. For if the hole be small, so that the interval
between the surfaces AB and KL may vanish as to sense, and the stream of
water horizontally issuing out may form a parabolic igure; from the latus
rectum of this parabola one may see, that the velocity of the effluent water
is that which a body may acquire by falling the height IG or HG of the
stagnant water in the vessel. For, by making an experiment, I found that if
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the height of the stagnant water above the hole were 20 inches, and the
height of the hole above a plane parallel to the horizon were also 20 inches,
a stream of water springing out from thence would fall upon the plane, at the
distance of very nearly 37 inches, from a perpendicular let fall upon that
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stream being 8o inches.

Cask 4. If the effluent water tend upwards, it will still issue forth with the
same velocity. For the small stream of water springing upwards, ascends
with a perpendicular motion to GH or GI, the height of the stagnant water
in the vessel; except so far as its ascent is hindered a little by the resistance
of the air; and therefore it springs out with the same velocity that it would
acquire in falling from that height. Every particle of the stagnant water is
equally pressed on all sides (by Prop. xix, Book 11), and, yielding to the
pressure, tends always with an equal force, whether it descends through the
hole in the bottom of the vessel, or gushes out in an horizontal direction
through a hole in the side, or passes into a canal, and springs up from thence
through a little hole made in the upper part of the canal. And it may not only
be inferred from reasoning, but is manifest also from the well-known experi-
ments just mentioned, that the velocity with which the water runs out is
the very same that is assigned in this Proposition.

Cask 5. The velocity of the efluent water is the same, whether the figure
of the hole be circular, or square, or triangular, or of any other figure what-
ever equal to the circular; for the velocity of the effluent water does not de-
pend upon the figure of the hole, but arises from such depth of the hole as it
may have below the plane KL. " . N

Cast 6. If the lower part of the vessel g
ABDC be immersed into stagnant water,
and the height of the stagnant water above
the bottom of the vessel be GR, the velocity
with which the water that is in the vessel
will run out at the hole EF into the stag-
nant water will be the same which the
water would acquire by falling from the
height IR; for the weight of all the water

¢
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in the vessel that is below the surface of the stagnant water will be sustained
in equilibrium by the weight of the stagnant water, and therefore does not
at all accelerate the motion of the descending water in the vessel. This case
will also become evident from experiments, measuring the times in which
the water will run out.

Cor. 1. Hence if CA, the depth of the water, be produced to K, so that
AK may be to CK as the square of the ratio of the area of a hole made in
any part of the bottom to the area of the circle AB, the velocity of the
efluent water will be equal to the velocity which the water would acquire
by falling freely from the height KC.

Cor. 11. And the force with which the whole motion of the effluent water
may be generated is equal to the weight of a cylindric column of water,
whose base is the hole EF, and its altitude 2GI or 2CK. For the effluent
water, in the time it becomes equal to this column, may acquire, by falling
by its own weight from the height GI, a velocity equal to that with which
it runs out.

Cor. 1. The weight of all the water in the vessel ABDC is to that part
of the weight which is employed in forcing out the water as the sum of the
circles AB and EF is to twice the circle EF. For let IO be a mean propor-
tional between IH and IG, and the water running out at the hole EF will,
in the time that a drop falling from 1 would describe the altitude IG, be-
come equal to a cylinder whose base is the circle EF and its altitude 2IG, that
is, to a cylinder whose base is the circle AB, and whose altitude is 210. For
the circle EF is to the circle AB as the square root of the ratio of the altitude
[H to the altitude IG; that is, in the simple ratio of the mean proportional
IO to the altitude IG. Moreover, in the time that a drop falling from I can
describe the altitude IH, the water that runs out will have become equal to
a cylinder whose base is the circle AB, and its altitude 2IH; and in the time
that a drop falling from 1 through H to G describes HG, the difference of
the altitudes, the efluent water, that is, the water contained within the solid
ABNFEM, will be equal to the difference of the cylinders, that is, to a
cylinder whose base is AB, and its altitude 2HO. And therefore all the water
contained in the vessel ABDC is to the whole falling water contained in
the said solid ABNFEM as HG is to 2zHO, that is, as HO + OG to 2HO, or
IH + 10 to 2IH. But the weight of all the water in the solid ABNFEM is
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employed in forcing out the water; and therefore the weight of all the
water in the vessel is to that part of the weight that is employed in forcing
out the water as IH + IO is to 2IH, and therefore as the sum of the circles
EF and AB is to twice the circle EF.

Cor. 1v. And hence the weight of all the water in the vessel ABDC i1s to

* .

the other part of the weight which is sustained by the bottom of the vessel
as the sum of the circles AB and EF is to the difference of the same circles.

Cor. v. And that part of the weight which the bottom of the vessel sus-
tains is to the other part of the weight employed in forcing out the water as
the difference of the circles AB and EF is to twice the lesser circle EF, or
as the area of the bottom to twice the hole.

Cor. v1. That part of the weight which presses upon the bottom is to the
whole weight of the water perpendicularly incumbent thereon as the circle
AB is to the sum of the circles AB and EF, or as the circle AB 1s to the
excess of twice the circle AB above the area of the bottom. For that part of
the weight which presses upon the bottom is to the weight of the whole
water in the vessel as the difference of the circles AB and EF is to the sum
of the same circles (by Cor. 1v); and the weight of the whole water in
the vessel is to the weight of the whole water perpendicularly incumbent
on the bottom as the circle AB is to the difference of the circles AB and EF.
Therefore, multiplying together corresponding terms of the two propor-
tions, that part of the weight which presses upon the bottom is to the weight
of the whole water perpendicularly incumbent thereon as the circle AB to
the sum of the circles AB and EF, or the excess of twice the circle AB above
the bottom.

Cor. vir. If in the middle of the hole EF there be placed the little circle
PQ described about the centre G, and parallel to the horizon, the weight of
water which that little circle sustains is greater than the weight of a third
part of a cylinder of water whose base is that little circle and its height
GH. For let ABNFEM be the cataract or column of falling water whose
axis is GH, as above, and let all the water, whose fluidity is not requisite
for the ready and quick descent of the water, be supposed to be congealed,
as well round about the cataract, as above the little circle. And let PHQ
be the column of water congealed above the little circle, whose vertex is
H, and its altitude GH. And suppose this cataract to fall with its whole
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weight downwards, and not in the least to lie against or to press PHQ,
but to glide freely by it without any friction, unless, perhaps, just at the
very vertex of the ice, where the cataract at the beginning of its fall may
tend to a concave figure. And as the congealed water AMEC, BNFD, lying

round the cataract, is convex in its in-
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AE.._ H B falling cataract, so this column PHQ
will be convex towards the cataract also,

and will therefore be greater than a cone

D whose base is that little circle PQ and

M N its altitude GH; that is, greater than a

R third part of a cylinder described with
the same base and altitude. Now that
little circle sustains the weight of this

column, that is, a weight greater than
¢ E paa F D the weight of the cone, or a third part
of the cylinder.

Cor. viir. The weight of water which the circle PQ, when very small, sus-
tains, seems to be less than the weight of two-thirds of a cylinder of water
whose base is that little circle, and its altitude HG. For, things standing as
above supposed, imagine the half of a spheroid described whose base is that
little circle, and its semiaxis or altitude HG. This figure will be equal to two-
thirds of that cylinder, and will comprehend within it the column of con-
gealed water PHQ, the weight of which is sustained by that little circle.
For though the motion of the water tends directly downwards, the external
surfaces of that column must yet meet the base PQ in an angle somewhat
acute, because the water in its fall is continually accelerated, and by reason
of that acceleration becomes narrower. Therefore, since that angle is less
than a right one, this column in the lower parts thereof will lie within the
hemispheroid. In the upper parts also it will be acute or pointed; because
to make it otherwise, the horizontal motion of the water must be at the
vertex infinitely more swift than its motion towards the horizon. And the
less this circle PQ is, the more acute will the vertex of this column be; and
the circle being diminished i infinitum, the angle PHQ will be diminished
in infinitum, and therefore the column will lie within the hemispheroid.
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Therefore that column is less than that hemispheroid, or than two third
parts of the cylinder whose base is that little circle, and its altitude GH.
Now the little circle sustains a force of water equal to the weight of this
column, the weight of the ambient water being employed in causing its
efflux out at the hole.

is very small, is very nearly equal to the weight of a cylinder of water whose
base is that little circle, and its altitude ¥2GH; for this weight is an arith-
metical mean between the weights of the cone and the hemispheroid above
mentioned. But if that little circle be not very small, but on the contrary
increased till it be equal to the hole EF, it will sustain the weight of all the
water lying perpendicularly above it, that is, the weight of a cylinder of
water whose base is that little circle, and its altitude GH.

Cor. x. And (as far as I can judge) the weight which this little circle
sustains is always to the weight of a cylinder of water whose base is that
little circle, and its altitude Y2GH, as EF? is to EF*—1.PQ?, or as the circle
EF is to the excess of this circle above half the little circle PQ, very nearly.

LEMMA IV

If a cylinder moves uniformly forwards in the direction of its length, the
resistance made thereto is not at all changed by augmenting or diminish-
ing that length; and is therefore the same with the resistance of a circle,
described with the same diameter, and moving forwards with the same
velocity in the direction of aright line perpendicular to its plane.

For the sides are not at all opposed to the motion ; and a cylinder becomes
a circle when its length is diminished 7 infinitum.

PROPOSITION XXXVII. THEOREM XXIX

If acylinder moves uniformly forwards in a compressed, infinite, and non-
elastic fluid, in the direction of its length, the resistance arising from the
magnitude of its transverse section is to the force by which its whole motion
may be destroyed or generated, in the time that it moves four times its
length, as the density of the medium is to the density of the cylinder, nearly.

For let the vessel ABDC touch the surface of stagnant water with its
bottom CD, and let the water run out of this vessel into the stagnant water
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through the cylindric canal EFTS perpendicular to the horizon; and let
the little circle PQ be placed parallel to the horizon anywhere in the mid-
dle of the canal; and produce CA to K, so that AK may be to CK as the
square of the ratio, which the excess of the orifice of the canal EF above

the little circle PQ bears to the circle AB.

KI e Then it is manifest (by Case 5, Case 6, and
ATTTTHTTTTTIB Cor. 1, Prop. xxxvi) that the velocity of the
water passing through the annular space
between the little circle and the sides of the
vessel will be the very same as that which

--------- the water would acquire by falling, and in
its fall describing the altitude KC or IG.

P9 And (by Cor. x, Prop. xxxvi) if the
breadth of the vessel be infinite, so that the
ST short line HI may vanish, and the altitudes
IG, HG become equal; the force of the
water that flows down and presses upon
the circle will be to the weight of a cylinder whose base 1s that little circle,
and the altitude %4IG, as EF? is to EF*—"PQ? very nearly. For the force
of the water flowing downwards uniformly through the whole canal will
be the same upon the little circle PQ in whatsoever part of the canal it be
placed.

Let now the orifices of the canal EF, ST be closed, and let the little circle
ascend in the fluid compressed on every stde, and by its ascent let it oblige
the water that lies above it to descend through the annular space between the
little circle and the sides of the canal. Then will the velocity of the ascending
little circle be to the velocity of the descending water as the difference of
the circles EF and PQ s to the circle PQ; and the velocity of the ascending
little circle will be to the sum of the velocities, that is, to the relative velocity
of the descending water with which it passes by the little circle in its ascent,
as the difference of the circles EF and PQ is to the circle EF, or as EF*— PQ?
to EF®. Let that relative velocity be equal to the velocity with which it was
shown above that the water would pass through the annular space, if the
circle were to remain unmoved, that is, to the velocity which the water
would acquire by falling, and in its fall describing the altitude IG; and the
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force of the water upon the ascending circle will be the same as before (by
Cor. v of the Laws of Motion); that is, the resistance of the ascending little
circle will be to the weight of a cylinder of water whose base is that little
circle, and its altitude %£IG, as EF? is to EF* — 12PQ?, nearly. But the veloc-
ity of the little circle will be to the velocity which the water acquires by
falling, and in its fall describing the altitude IG, as EF*—PQ*is to EF®.

Let the breadth of the canal be increased in infinitum; and the ratios
between EF*—PQ? and EF? and between EF® and EF?—-%PQ’, will be-
come at last ratios of equality. And therefore the velocity of the little cir-
cle will now be the same as that which the water would acquire in falling,
and in its fall describing the altitude IG; and the resistance will become
equal to the weight of a cylinder whose base is that little circle, and its alti-
tude half the altitude IG, from which the cylinder must fall to acquire the
velocity of the ascending circle; and with this velocity the cylinder in the
time of its fall will describe four times its length. But the resistance of the
cylinder moving forwards with this velocity in the direction of its length is
the same with the resistance of the little circle (by Lem. 1v), and is there-
fore nearly equal to the force by which its motion may be generated while
it describes four times its length.

If the length of the cylinder be augmented or diminished, its motion,
and the time in which it describes four times its length, will be augmented
or diminished in the same ratio, and therefore the force by which the
motion, so increased or diminished, may be destroyed or generated, will
continue the same; because the time is increased or diminished in the same
proportion; and therefore that force remains still equal to the resistance of
the cylinder, because (by Lem. 1v) that resistance will also remain the same.

If the density of the cylinder be augmented or diminished, its motion,
and the force by which its motion may be generated or destroyed in the
same time, will be augmented or diminished in the same ratio. Therefore
the resistance of any cylinder whatsoever will be to the force by which its
whole motion may be generated or destroyed, in the time during which it
moves four times its length, as the density of the medium is to the density
of the cylinder, nearly. Q.E.D.

A fluid must be compressed to become continued; it must be continued
and nonelastic, that all the pressure arising from its compression may be
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propagated in an instant; and so, acting equally upon all parts of the body
moved, may produce no change of the resistance. The pressure arising from
the motion of the body is spent in generating a motion in the parts of the
fluid, and this creates the resistance. But the pressure arising from the com-
pression of the fluid, be it ever so forcible, if it be propagated in an instant,
generates no motion in the parts of a continued fluid, produces no change
at all of motion therein; and therefore neither augments nor lessens the
resistance. This is certain, that the action of the fluid arising from the com-
pression cannot be stronger on the hinder parts of the body moved than on
its fore parts, and therefore cannot lessen the resistance described in this
Proposition. And if its propagation be infinitely swifter than the motion of
the body pressed, it will not be stronger on the fore parts than on the hinder
parts. But that action will be infinitely swifter, and propagated in an instant,
if the fluid be continued and nonelastic.

Cor. 1. The resistances, made to cylinders going uniformly forwards in
the direction of their lengths through continued infinite mediums, are in
a ratio compounded of the square of the ratio of the velocities and the
square of the ratio of the diameters, and the ratio of the density of the
mediums.

Cor. 11. If the breadth of the canal be not infinitely increased, but the
cylinder go forwards in the direction of its length through an included
quiescent medium, its axis all the while coinciding with the axis of the
canal, its resistance will be to the force by which its whole motion, in the
time in which it describes four times its K. I I
length, may be generated or destroyed, in Al Hi B
a ratio compounded of the ratio of EF? to :
EF?—-%PQ?’ and the square of the ratio of
EF? to EF?—~PQ? and the ratio of the den- :
sity of the medium to the density of the c G D
eylinder. .

Cor. m. The same thing supposed, and P Q
that a length L is to four times the length
of the cylinder in a ratioc compounded g
of the ratio EF*~1PQ° to EF?, and the
square of the ratio of EF*—PQ* to EF*:
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the resistance of the cylinder will be to the force by which its whole motion,
in the time during which it describes the length L, may be destroyed or gen-
erated, as the density of the medium is to the density of the cylinder.

SCHOLIUM
In this Proposition we have investigated that resistance alone which arises

.
eI TR e

from the magnitude of the transverse section of the cylinder, neglecting
that part of the same which may arise from the obliquity of the motions.
For as, in Case 1 of Prop. xxxvi, the obliquity of the motions with which
the parts of the water in the vessel converged on every side to the hole EF
hindered the efflux of the water through the hole, so, in this Proposition,
the obliquity of the motions, with which the parts of the water, pressed by
the antecedent extremity of the cylinder, yield to the pressure, and diverge
on all sides, retards their passage through the places that lie round that ante-
cedent extremity, towards the hinder parts of the cylinder, and causes the
fluid to be moved to a greater distance; which increases the resistance, and
that in the same ratio almost in which it diminished the eflux of the water
out of the vessel, that is, in the squared ratio of 25 to 21, nearly. And as, in
Case 1 of that Proposition, we made the parts of the water pass through
the hole EF perpendicularly and in the greatest plenty, by supposing all the
water in the vessel lying round the cataract to be frozen, and that part of the
water whose motion was oblique and useless to remain without motion, so
in this Proposition, that the obliquity of the motions may be taken away,
and the parts of the water may give the freest passage to the cylinder, by
yielding to it with the most direct and quick motion possible, so that only
so much resistance may remain as arises from the magnitude of the trans-
verse section, and as is incapable of diminution, unless by diminishing
the diameter of the cylinder; we must conceive those parts of the fluid
whose motions are oblique and useless, and produce resistance, to be at rest
among themselves at both extremities of the cylinder, and there to cohere,
and be joined to the cylinder.
Let ABCD be a rectangle, and
let AE and BE be two parabolic
arcs, described with the axis AB, .
and with a latus rectum that is F.._ '__‘,:f'-"E

.....

to the space HG, which must be S 5
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described by the cylinder in falling, in order to acquire the velocity with
which it moves, as HG to ¥%2AB. Let CF and DF be two other parabolic arcs
described with the axis CD, and a latus rectum four times the former; and
by the revolution of the figure about the axis EF let there be generated
a solid, whose middle part ABDC is the cylinder we are here speaking of,
and whose extreme parts ABE and CDF contain the parts of the fluid at
rest among themselves, and concreted into two hard bodies, adhering to
the cylinder at each end like a head and tail. Then if this solild EACFDB
move in the direction of the length of its axis FE towards the parts beyond
E, the resistance will be nearly the same as that which we have here deter-
mined in this Proposition; that is, it will have the same ratio to the force
with which the whole motion of the cylinder may be destroyed or gene-.
rated, in the time that it is describing the length 4AC with that motion
uniformly continued, as the density of the fluid has to the density of the
cylinder, nearly. And (by Cor. vir, Prop. xxxv1) the resistance must be to
this force in the ratio of 2 to 3, at the least.

LEMMAYV

If a cylinder, a sphere, and a spheroid, of equal breadths be placed suc-
cessively in the middle of a cylindric canal, so that their axes may coincide
with the axis of the canal, these bodies will equally hinder the passage of
the water through the canal.

For the spaces lying between the sides of the canal, and the cylinder,
sphere, and spheroid, through which the water passes, are equal; and the
water will pass equally through equal spaces.

This is true, upon the supposition that all the water above the cylinder,
sphere, or spheroid, whose fluidity 1s not necessary to make the passage
of the water the quickest possible, is congealed, as was explained above in
Cor. vi1, Prop. xxxvL

LEMMA VI

The same supposition remaining, the fore-mentioned bodies are equally
acted on by the water flowing through the canal.
This appears by Lem. v and the third Law. For the water and the bodies
act upon each other mutually and equally.
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LEMMA VII

If the water be at rest in the canal, and these bodies move with equal velocity
and in opposite directions through the candl, their resistances will be equal
among themselves.

This appears from the last Lemma, for the relative motions remain the
same among themselves.

SCHOLIUM

The case is the same for all convex and round bodies, whose axes coincide
with the axis of the canal. Some difference may arise from a greater or less
friction; but in these Lemmas we suppose the bodies to be perfectly smooth,
and the medium to be void of all tenacity and friction; and that those parts
of the fluid which by their oblique and superflucus motions may disturb,
hinder, and retard the flux of the water through the canal, are at rest among
themselves; being fixed like water by frost, and adhering to the fore and
hinder parts of the bodies in the manner explained in the Scholium of the
last Proposition; for in what follows we consider the very least resistance
that round bodies described with the greatest given transverse sections can
posstbly meet with.

Bodies swimming upon fluids, when they move straight forwards, cause
the fluid to ascend at their fore parts and subside at their hinder parts,
especially if they are of an obtuse figure; and hence they meet with a little
more resistance than if they were acute at the head and tail. And bodies
moving in elastic fluids, if they are obtuse behind and before, condense the
fluid a little more at their fore parts, and relax the same at their hinder
parts; and therefore meet also with a little more resistance than if they were
acute at the head and tail. But in these Lemmas and Propositions we are not
treating of elastic but nonelastic fluids; not of bodies floating on the sur-
face of the fluid, but deeply immersed therein. And when the resistance of
bodies in nonelastic fluids is once known, we may then augment this resist-
ance a little in elastic fluids, as our air; and in the surfaces of stagnating
fluids, as lakes and seas.
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PROPOSITION XXXVIII. THEOREM XXX

If a globe move uniformly forwards in a compressed, infinite, and non-
elastic fluid, 1ts resistance is to the force by which its whole motion may be
destroyed or generated, in the time that it describes eight third parts of
its diameter, as the density of the fluid is to the density of the globe, very
nearly.

For the globe is to its circumscribed cylinder as 2 to 3; and therefore the
force which can destroy all the motion of the cylinder, while the same cylin-
der is describing the length of four of its diameters, will destroy all the
motion of the globe, while the globe is describing two-thirds of this length,
that is, eight third parts of its own diameter. Now the resistance of the cylin-
der is to this force very nearly as the density of the fluid is to the density of
the cylinder or globe (by Prop. xxxvir), and the resistance of the globe is
equal to the resistance of the cylinder (by Lem. v, vi, vi1). Q.E.D.

Cor. 1. The resistances of globes in infinite compressed mediums are in
a ratio compounded of the squared ratio of the velocity, and the squared
ratio of the diameter, and the ratio of the density of the mediums.

Cor. 11. The greatest velocity, with which a globe can descend by its com-
parative weight through a resisting fluid, is the same as that which it may
acquire by falling with the same weight, and without any resistance, and
in its fall describing a space that is to four third parts of its diameter as the
density of the globe is to the density of the fluid. For the globe in the time
of its fall, moving with the velocity acquired in falling, will describe a space
that will be to eight third parts of its diameter as the density of the globe
is to the density of the fluid; and the force of its weight which generates this
motion will be to the force that can generate the same motion, in the time
that the globe describes eight third parts of its diameter, with the same
velocity as the density of the fluid is to the density of the globe; and there-
fore (by this Proposition) the force of weight will be equal to the force of
resistance, and therefore cannot accelerate the globe.

Cor. mr1. If there be given both the density of the globe and its velocity
at the beginning of the motion, and the density of the compressed quiescent
fluid in which the globe moves, there is given at any time both the velocity
of the globe and its resistance, and the space described by it (by Cor. vi,
Prop. xxxv).
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Cor. 1v. A globe moving in a compressed quiescent fluid of the same den-
sity with itself will lose half its motion before it can describe the length of
two of its diameters (by the same Cor. vir).

PROPOSITION XXXIX. THEOREM XXXI

If a globe move uniformly forwards through a fluid inclosed and com-
pressed in a cylindric canal, its resistance is to the force by which 1ts whole
motion may be generated or destroyed, in the time in whick it describes
eight third parts of its diameter, in a ratio compounded of the ratio of the
orifice of the canal to the excess of that orifice above half the greatest circle
of the globe; and the squared ratio of the ortfice of the canal to the excess
of that orifice above the greatest circle of the globe; and the ratio of the

density of the fluid to the density of the globe, nearly.

This appears by Cor. 11, Prop. xxxvi1, and the demonstration proceeds in
the same manner as in the foregoing Proposition.

SCHOLIUM

In the last two Propositions we suppose (as was done before in Lem. v)
that all the water which precedes the globe, and whose fluidity increases the
resistance of the same, is congealed. Now if that water becomes fluid, it will
somewhat increase the resistance. But in these Propositions that increase is
so small, that it may be neglected, because the convex surface of the globe
produces the very same effect almost as the congelation of the water.

PROPOSITION XL. PROBLEM IX

To find by experiment the resistance of a globe moving through a perfectly
flusd compressed medium.

Let A be the weight of the globe in a vacuum, B its weight in the resisting
medium, D the diameter of the globe, F a space which is to %D as the
density of the globe is to the density of the medium, that is, as A isto A—B,
G the time in which the globe falling with the weight B without resistance
describes the space F, and H the velocity which the body acquires by that
fall. Then H will be the greatest velocity with which the globe can possibly
descend with the weight B in the resisting medium, by Cor. 11, Prop. xxxvin;
and the resistance which the globe meets with, when descending with that
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velocity, will be equal to its weight B; and the resistance it meets with in
any other velocity will be to the weight B as the square of the ratio of that
velocity to the greatest velocity H, by Cor. 1, Prop. xxxvi.

This is the resistance that arises from the inactivity of the matter of the
fluid. That resistance which arises from the elasticity, tenacity, and friction
of its parts, may be thus investigated.

Let the globe be let fall so that it may descend in the fluid by the weight
B; and let P be the time of falling, and let that time be expressed in seconds,
if the time G be given in seconds. Find the absolute number N agreeing to

the logarithm 0.4342944819 Eg’ and let L be the logarithm of the number

NN+ I; and the velocity acquired in falling will be E; i H, and the height
described will be L 1.3862943611F + 4.605170186LF. If the fluid be of

G

a sufficient depth, we may neglect the term 4.605170186LF; and E%E—
1.3862943611F will be the altitude described, nearly. These things appear
by Prop. 1x, Book 11, and its Corollaries, and are true upon this supposition,
that the globe meets with no other resistance but that which arises from the
inactivity of matter. Now if it really meet with any resistance of another
kind, the descent will be slower, and from the amount of that retardation
will be known the amount of this new resistance.

That the velocity and descent of a body falling in a fluid might more
easily be known, I have composed the following table (p. 355), the first col-
umn of which denotes the times of descent; the second shows the velocities
acquired in falling, the greatest velocity being 100000000; the third exhibits
the spaces described by falling in those times, 2F being the space which the
body describes in the time G with the greatest velocity; and the fourth gives

the spaces described with the greatest velocity in the same times. The

numbers in the fourth column are —2(-}13, and by subtracting the number
1.3862944 — 4.6051702L, are found the numbers in the third column; and
these numbers must be multiplied by the space F to obtain the spaces de-
scribed in falling. A fifth column is added to all these, containing the spaces
described in the same times by a body falling in a vacuum with the force of

B its comparative weight.
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Velocities of The spaces The spaces The spaces
The Times the body falling in described in falling described with the described by falling
P the fluid in the fluid greatest motion in 2 vacuum
0.001G 999992¢/5, 1 0.000001F 0.002F 0.000001F
0.01G 999967 0.0001F 0.02F 0.0001F
0.1G 9966799 0.0099834F 0.2F 0.01F
0.2G 19737532 0.0397361F 0.4F 0.04F
0.3G 29131261 0.0886815F 0.6F 0.09F
0.4G 37994896 0.1559070K 0.8F 0.16F
0.5G 46211716 0.2402290F 1.0F 0.25F
0.6G 53704957 0.3402706F 1.2F 0.36F
0.7G 60436778 0.4545405F 1.4F 0.49F
0.8G 66403677 0.5815071F 1.6F 0.64F
0.9G 71629787 0.7196609K 1.8F 0.81F
1G 76159416 0.8675617F 2F 1K
2G 96402758 2.6500055F 4F 4F
3G 99505475 4.6186570F 6K 9F
4G 99932930 6.6143765FK 8K loF
5G 99990920 8.6137964F 10F 25K
6G 99998771 10.6137179F 12k 36K
7G 99999834 12.6137073F 14k 49F
8G 99999980 14.6137059F 16F 64K
9G 99999997 16.6137057F 18K 81K
10G 999999993/, 18.6137056F 20K 100F
SCHOLIUM

In order to investigate the resistances of fluids from experiments, I pro-
cured a square wooden vessel, whose length and breadth on the inside was
9 inches English measure, and its depth g% feet; this I filled with rain
water; and having provided globes made up of wax, and lead included
therein, I noted the times of the descents of these globes, the height through
which they descended being 112 inches. A solid cubic foot of English meas-
ure contains 76 pounds troy weight of rain water; and a solid inch contains
196 ounces troy weight, or 2534 grains; and a globe of water of one inch
in diameter contains 132.645 grains in air, or 132.8 grains in a vacuum; and
any other globe will be as the excess of its weight in a vacuum above its
weight in water,
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Exper. 1. A globe whose weight was 156Y% grains in air, and 7 grains in
water, described the whole height of 112 inches in 4 seconds. And, upon
repeating the experiment, the globe spent again the very same time of 4
seconds in falling.

The weight of this globe in a vacuum is 156*%s grains; and the excess of
this weight above the weight of the globe in water is 79'%s grains. Hence
the diameter of the globe appears to be 0.84224 parts of an inch. Then it
will be, as that excess to the weight of the globe in a vacuum, so is the den-
sity of the water to the density of the globe; and so is % parts of the diam-
eter of the globe (viz., 2.24597 inches) to the space 2F, which will be there-
fore 4.4256 inches. Now a globe falling in a vacuum with its whole weight
of 156%s grains in one second of time will describe 193%4 inches; and fall-
ing in water in the same time with the weight of %7 grains without resist-
ance, will describe g5.219 inches; and in the time G, which is to one second
of time as the square root of the ratio of the space F, or of 2.2128 inches to
95.219 inches, will describe 2.2128 inches, and will acquire the greatest
velocity H with which it is capable of descending in water. Therefore the
time G is 0.15244 sec. And in this time G, with that greatest velocity H, the
globe will describe the space 2F, which is 4.4256 inches; and therefore
in 4 seconds will describe a space of 116.1245 inches. Subtract the space
1.3862944 " F, or 3.0676 inches, and there will remain a space of 113.0569
inches, which the globe falling through water in a very wide vessel will
describe in 4 seconds. But this space, by reason of the narrowness of the
wooden vessel before mentioned, ought to be diminished in a ratio com-
pounded of the square root of the ratio of the orifice of the vessel to the
excess of this orifice above half a great circle of the globe, and of the simple
ratio of the same orifice to its excess above a great circle of the globe, that
is, in a ratio of 1 to 0.9914. This done, we have a space of 112.08 inches,
which a globe falling through the water in this wooden vessel in 4 seconds
of time ought ncarly to describe by this theory; but it described 112 inches
by the experiment.

Exper. 2. Three equal globes, whose weights were severally 765 grains in
air, and 5%¢ grains in water, were let fall successively; and every one fell
through the water in 15 seconds of time, describing in its fall a height of
112 inches.
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By computation, the weight of each globe in a vacuum is 76%2 grains;
the excess of this weight above the weight in water is 71'%s grains; the
diameter of the globe 0.81296 of an inch; % parts of this diameter 2.16789
inches; the space 2F is 2.3217 inches; the space which a globe of 5716 grains
in weight would describe in one second without resistance, 12.808 inches,
and e I.lIIlC U Q. 301050 SEcC. .l. IICIC[UI'C I.IIC glUUC, Wll[l the gf(:&tcu VC].ULII.Y
it is capable of receiving from a weight of 5%6 grains in its descent through
water, will describe in the time 0.301056 seconds the space 2.3217 inches;
and in 15 seconds the space 115.678 inches. Subtract the space 1.3862944F, or
1.609 inches, and there remains the space 114.069 inches; which therefore
the falling globe ought to describe in the same time, if the vessel were very
wide. But because our vessel was narrow, the space ought to be diminished
by about 0.895 of an inch. And so the space will remain 113.174 inches,
which a globe falling in this vessel ought nearly to describe in 15 seconds.
But by the experiment it described 112 inches. The difference is not sensible.

Expzr. 3. Three equal globes, whose weights were severally 121 grains
in air, and 1 grain in water, were successively let fall; and they fell through
the water in the times 46 seconds, 47 seconds, and 50 seconds, describing a
height of 112 inches.

By the theory, these globes ought to have fallen in about 40 sec. Now
whether their falling more slowly were occasioned from the consideration
that in slow motions the resistance arising from the force of inactivity does
really bear a less proportion to the resistance arising from other causes; or
whether it is to be attributed to little bubbles that might chance to stick to
the globes, or to the rarefaction of the wax by the warmth of the weather,
or of the hand that let them fall; or, lastly, whether it proceeded from some
insensible errors in weighing the globes in the water, I am not certain.
Therefore the weight of the globe in water should be of several grains, that
the experiment may be certain, and to be depended on.

ExpERr. 4. I began the foregoing Experiments to investigate the resistances
of fluids, before I was acquainted with the theory laid down in the Propo-
sitions immediately preceding. Afterwards, in order to examine the theory
after it was discovered, I procured a wooden vessel, whose breadth on the
inside was 8% inches, and its depth 15'4 feet. Then I made four globes
of wax, with lead included, each of which weighed 139% grains in air, and
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=%& grains in water. These I let fall, measuring the times of their falling in
the water with a pendulum oscillating to half-seconds. The globes were
cold, and had remained so some time, both when they were weighed and
when they were let fall; because warmth rarefies the wax, and by rarefying
it diminishes the weight of the globe in the water; and wax, when rarefied,
is not instantly reduced by cold to its former density. Before they were let
fall, they were totally immersed under water, lest, by the weight of any part
of them that might chance to be above the water, their descent should be
accelerated in its beginning. Then, when after their immersion they were
perfectly at rest, they were let go with the greatest care, that they might not
receive any impulse from the hand that let them down. And they fell succes-
sively in the times of 47%, 48'%, 50, and 51 oscillations, describing a height
of 15 feet and 2 inches. But the weather was now a little colder than when
the globes were weighed, and therefore I repeated the experiment another
day; and then the globes fell in the times of 49, 49%%, 50, and 53; and at a
third trial in the times of 49%%, 50, 51, and 53 oscillations. And by making
the experiment several times over, I found that the globes fell mostly in the
times of 49%2 and 50 oscillations. When they fell slower, I suspect them to
have been retarded by striking against the sides of the vessel.

Now, computing from the theory, the weight of the globe 1n a vacuum
is 139% grains; the excess of this weight above the weight of the globe in
water 1321%o0 grains; the diameter of the globe 0.99868 of an inch; % parts
of the diameter 2.66315 inches; the space 2F 2.8066 inches; the space which
a globe weighing %% grains falling without resistance describes in a second
of time 9.88164 inches; and the time G 0.376843 sec. Therefore the globe
with the greatest velocity with which it is capable of descending through
the water by the force of a weight of 58 grains, will in the time 0.376843
sec. describe a space of 2.8066 inches, and in one second of time a space
of %7.44766 inches, and in the time 25 sec., or in 50 oscillations, the space
186.1915 inches. Subtract the space 1.386294F, or 1.9454 inches, and there
will remain the space 184.2461 inches which the globe will describe in that
time in a very wide vessel. Because our vessel was narrow, let this space be
diminished in a ratio compounded of the square root of the ratio of the
orifice of the vessel to the excess of this orifice above half a great circle of
the globe, and of the simple ratio of the same orifice to its excess above a
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great circle of the globe; and we shall have the space of 181.86 inches, which
the globe ought by the theory to describe in this vessel in the time of 50
oscillations, nearly. But it described the space of 182 inches, by experiment,
in 49%% or 50 oscillations.

Exper. 5. Four globes weighing 154%s grains in air, and 21% grains in
water, being let fall several times, fell in the times of 28%%, 29, 29%2, and 30,
and sometimes of 31, 32, and 33 oscillations, describing a height of 15 feet
and 2 inches.

They ought by the theory to have fallen in the time of 29 oscillatiors,
nearly.

Exeer. 6. Five globes, weighing 212% grains in air, and 79% in water,
being several times let fall, fell in the times of 15, 15%%2, 16, 17, and 18 oscil-
lations, describing a height of 15 feet and 2 inches.

By the theory they ought to have fallen in the time of 15 oscillations,
nearly.

ExpEr. 7. Four globes, weighing 293% grains in air, and 35% grains in
water, being let fall several times, fell in the times of 29%2, 30, 30%%, 31, 32,
and 33 oscillations, describing a height of 15 feet and 1Y% inches.

By the theory they ought to have fallen in the time of 28 oscillations,
nearly.

In searching for the cause that occasioned these globes of the same weight
and magnitude to fall, some swifter and some slower, I hit upon this: that
the globes, when they were first let go and began to fall, oscillated about
their centres; that side which chanced to be the heavier descending first,
and producing an oscillating motion. Now by oscillating thus, the globe
communicates a greater motion to the water than if it descended without
any oscillations; and by this communication loses part of its own motion
with which it should descend; and therefore as this oscillation is greater or
less, it will be more or less retarded. Besides, the globe always recedes from
that side of itself which is descending in the oscillation, and by so receding
comes nearer to the sides of the vessel, so as even to strike against them
sometimes. And the heavier the globes are, the stronger this oscillation is;
and the greater they are, the more is the water agitated by it. Therefore to
diminish this oscillation of the globes, I made new ones of lead and wax,
sticking the lead in one side of the globe very near its surface; and I let fall
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the globe in such a manner, that, as near as possible, the heavier side might
be lowest at the beginning of the descent. By this means the oscillations
became much less than before, and the times in which the globes fell were
not so unequal: as in the following Experiments.

Expzr. 8. Four globes weighing 139 grains in air, and 6% in water, were
let fall several times, and fell mostly in the time of 51 oscillations, never in
more than 52, or in fewer than 50, describing a height of 182 inches.

By the theory they ought to fall in about the time of 52 oscillations.

Exper. 9. Four globes weighing 273% grains in air, and 140% in water,
being several times let fall, fell in never fewer than 12, and never more than
13 oscillations, describing a height of 182 inches.

These globes by the theory ought to have fallen in the time of 11% oscil-
lations, nearly.

Exezr. 10. Four globes, weighing 384 grains in air, and 119%% in water,
being let fall several times, fell in the times of 17%4, 18, 18%%, and 19 oscilla-
tions, describing a height of 181% inches. And when they fell in the time
of 19 oscillations, I sometimes heard them hit against the sides of the vessel
before they reached the bottom.

By the theory they ought to have fallen in the time of 15% oscillations,
nearly.

Exper. 11. Three equal globes, weighing 48 grains in air, and 3*%2 in
water, being several times let fall, fell in the times of 43%%, 44, 44%%, 45, and
46 oscillations, and mostly in 44 and 45, describing a height of 182%% inches,
nearly.

By the theory they ought to have fallen in the time of 467 oscillations,
nearly.

Exper. 12. Three equal globes, weighing 141 grains in air, and 4% in
water, being let fall several times, fell in the times of 61, 62, 63, 64, and 65
oscillations, describing a space of 182 inches.

And by the theory they ought to have fallen in 64%2 oscillations, nearly.

From these Experiments it is manifest, that when the globes fell slowly,
as in the second, fourth, fifth, eighth, eleventh, and twelfth Experiments,
the times of falling are rightly exhibited by the theory; but when the globes
fell more swiftly, as in the sixth, ninth, and tenth Experiments, the resist-
ance was somewhat greater than the square of the velocity. For the globes
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in falling oscillate a little; and this oscillation, in those globes that are light
and fall slowly, soon ceases by the weakness of the motion; but in greater
and heavier globes, the motion being strong, it continues longer, and is not
to be checked by the ambient water till after several oscillations. Besides, the
more swiftly the globes move, the less are they pressed by the fluid at their
leave an empty space behind them, unless the compression of the fluid be
increased at the same time. For the compression of the fluid ought to be
increased (by Prop. xxxmr and xxxuir) as the square of the velocity, in order
to maintain the resistance in the same squared ratio. But because this is not
done, the globes that move swiftly are not so much pressed at their hinder
parts as the others; and by the defect of this pressure it comes to pass that
their resistance is a little greater than the square of their velocity.

So that the theory agrees with the experiments on bodies falling in water.
It remains that we examine the observations of bodies falling in air.

Exper. 13. From the top of St. Paul’s Church in London, in June, 1710,
there were let fall together two glass globes, one full of quicksilver, the
other of air; and in their fall they described a height of 220 English feet.
A wooden table was suspended upon iron hinges on one side, and the other
side of the table was supported by a wooden pin. The two globes lying upon
this table were let fall together by pulling out the pin by means of an iron
wire reaching thence down to the ground; so that, the pin being removed,
the table, which had then no support but the iron hinges, fell downwards,
and turning round upon the hinges, gave leave to the globes to drop off
from it. At the same instant, with the same pull of the iron wire that took
out the pin, a pendulum oscillating to seconds was let go, and began to oscil-
late. The diameters and weights of the globes, and their times of falling,
are exhibited in the accompanying table (p. 362).

But the times observed must be corrected; for the globes of mercury (by
Galileo’s theory), in 4 seconds of time, will describe 257 English feet, and
220 feet in only 3 sec. 42 thirds.” So that the wooden table, when the pin was
taken out, did not turn upon its hinges so quickly as it ought to have done;
and the slowness of that revolution hindered the descent of the globes at
the beginning. For the globes lay about the middle of the table, and indeed
were rather nearer to the axis upon which it turned than to the pin. And

[1 Appendix, Note 37.]
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hence the times of falling were prolonged about 18 thirds;* and therefore
ought to be corrected by subtracting that excess, especially in the larger
globes, which, by reason of the largeness of their diameters, lay longer
upon the revolving table than the others. This being done, the times in
which the six larger globes fell will come forth 8 sec. 12 thirds, 7 sec. 42
thirds, 7 sec. 42 thirds, 7 sec. 57 thirds, 8 sec. 12 thirds, and 7 sec. 42 thirds.

The globes filled with mercury ‘The globes full of air
Weights Diameters Times in Weights Diameters Times in
falling falling
Zrains inches seconds grains inches seconds
908 0.8 4 510 5.1 81/,
983 0.8 4— 642 5.2 8
866 0.8 4 599 5.1 8
747 0.75 4+ 515 5.0 8/,
808 0.75 4 483 5.0 81/,
784 0.75 44 641 5.2 8

Therefore the fifth in order among the globes that were full of air being
5 inches in diameter, and 483 grains in weight, fell in 8 sec. 12 thirds, de-
scribing a space of 220 feet. The weight of a bulk of water equal to this
globe is 16600 grains; and the weight of an equal bulk of air is ‘555" grains,
or 19%10 grains; and therefore the weight of the globe in a vacuum is 502%0
grains; and this weight is to the weight of a bulk of air equal to the globe
as 502%10 is to 19%0; and so is 2F to % of the diameter of the globe, that is,
to 13% inches. Hence 2F becomes 28 feet 11 inches. A globe, falling in a
vacuum with its whole weight of 502%0 grains, will in one second of time
describe 193% inches as above; and with the weight 483 grains will describe
185.905 inches; and with that weight 483 grains in a vacuum will describe
the space F, or 14 feet 5% inches, in the time of 57 thirds and 58 fourths, and
acquire the greatest velocity it is capable of descending with in the air. With
this velocity the globe in 8 sec. 12 thirds of time will describe 245 feet and
5Y5 inches. Subtract 1.3863 - F, or 20 feet and %2 an inch, and there remain
225 feet 5 inches. This space, therefore, the falling globe ought by the theory
to describe in 8 sec. 12 thirds. But by the experiment it described a space of
220 feet. The difference is inappreciable.

[t Appendix, Note 37.]
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By like calculations applied to the other globes full of air, I composed the
following table.

The times The spaces
‘The weights of The of falling from which they would The excesses
the globes diameters a height of describe{;y the

220 feet theory
grains inches seconds  ihirds feet FHCRES feet inches
510 5.1 8 12 226 It 6 11
642 5.2 7 42 230 9 10 9
599 5.1 7 42 227 10 7 0
515 5 7 57 224 5 4 5
483 5 8 12 225 5 5 5
641 5.2 7 42 230 7 10 7

Exper. 14. In the year 1719, in the month of July, Dr. Desaguliers made
some experiments of this kind again, by forming hogs’ bladders into spher-
ical orbs; which was done by means of a concave wooden sphere, which the
bladders, being wetted well first, were put into. After that, being blown full
of air, they were obliged to fill up the spherical cavity that contained them;
and then, when dry, were taken out. These were let fall from the lantern
on the top of the cupola of the same church, namely, from a height of 272
feet; and at the same moment of time there was let fall a leaden globe,
whose weight was about 2 pounds troy weight. And in the meantime some
persons standing in the upper part of the church where the globes were
let fall observed the whole times of falling; and others standing on the
ground observed the differences of the times between the fall of the leaden
weight and the fall of the bladder. The times were measured by pendulums
oscillating to half-seconds. And one of those that stood upon the ground
had a machine vibrating four times in one second; and another had another
machine accurately made with a pendulum vibrating four times in a second
also. One of those also who stood at the top of the church had a like
machine; and these instruments were so contrived, that their motions could
be stopped or renewed at pleasure. Now the leaden globe fell in about 4%
seconds of time; and from the addition of this time to the difference of
time above spoken of, was obtained the whole time in which the bladder
was falling. The times which the five bladders spent in falling, after the
leaden globe had reached the ground, were, the first time, 14% sec., 12%
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sec., 14%8 sec., 17% sec., and 1678 sec.; and the second time, 142 sec., 14%
sec., 14 sec., 19 sec., and 1634 sec. Add to these 4% sec., the time in which
the leaden globe was falling, and the whole times in which the five bladders
fell were, the first time, 19 sec., 1’7 sec., 1878 sec., 22 sec., and 218 sec.; and
the second time, 18%4 sec., 18%% sec.