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The aim of this paper is to show that the so-called visual space has a uniquely determined non-Euclidean
metric, or psychometric distance function, the numerical parameters of which depend on the individual
observer. Certain well-known phenomena of space perception, such as the horopter, the alley experiment
and size constancy, are explained on the basis of the distance function. Methods of measuring the personal
parameters of the metric are developed, and applications of the theory to the field of binocular instruments

and pictorial representation of space are suggested.

1. PURPOSE

ISUAL sensations are established under the in-

fluence of many different factors. They are the
result of an activation of our mind by physical light
stimuli and are distinguished by a remarkable degree
of certainty and definiteness which tempts us to believe
that the external world itself is revealed to us, and
not merely an image of our own making. Through vi-
sion, external objects are presented to us in a three-
dimensional continuum, endowed with certain sensed
qualities of color, brightness, form, and localization.

Yet it is well known that the final form of visual
sensations actually depends on the observer’s psycho-
logical condition which in turn is the result of his entire
personal development, his former experience, his
prejudices, even his instantaneous wishes and in-
tentions.

Recognition of this fact does not mean that all
attempts of a quantitative investigation of visual
perception must be abandoned. Visual sensations are
not merely the chance result of coincidental psycho-

* This investigation is being conducted under Project NR143-
638, Contract N6onr-27119.

1 This is the last paper Dr. Luneburg wrote before his sudden,
unexpected death in August, 1949. It was not written for publica-
tion and has been edited by the Knapp Laboratory staff working
on this project and chiefly by Paul Boeder, consultant to the
project. The paper is believed to be of great significance because
here for the first time, Luneburg removes the restriction on free-
dom of observation and introduces the probable mathematical
function involved in motion.

logical conditions but are governed by certain constant
factors which, though not determining the sensations
completely, play an integral part in their formation.
These factors must be related to the external physical
situation as well as to certain constant elements in the
personality of the observer. The denial of the existence
of such constant elements in the relationship of a living
organism to external nature would be tantamount to
denying all objectivity in visual sensations and there-
fore would be absurd.

In the following we are concerned with a special
group of constant elements in visual sensations, namely,
those which influence the sensed qualities of form and
localization in the three-dimensional continuum of
visual perception. Our aim is to show that this con-
tinuum, the so-called Visual Space, is a metric mathe-
matical space. It possesses a uniquely determined
metric, which varies in its numerical parameters from
observer to observer. But its general form is invariant;
it is the .metric of the three-dimensional hyperbolic
geometry.

2. CONSIDERATION LIMITED TO BINOCULAR
FACTORS OF VISUAL PERCEPTION

This surprising conclusion is arrived at by an induc-
tive analysis of certain experimental facts which are
obtained under simplified laboratory conditions. The
observations are made in a dark room with the ob-
server’s head, and therefore approximately also the
rotational centers of his eyes, fixed by means of a
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Fr6, 1. Cartesian coordinate system for physical space; L and R
represent centers of rotation of left and right eyes.

headrest. Let us assume that the centers of rotation, R
and L, are the points y==-1 of the v axis of a Cartesian
coordinate system whose «x, y-plane cointides with the
physical horizontal plane (Fig. 1).

Simple geometrical configurations are presented to
the observer; for instance, isolated light points, lighted
lines or surfaces. In judging such configurations, the
observer has to rely almost entirely on his primitive
ability to see; intellectual clues of interpretation are
practically excluded. We may assume that visual sensa-
tions such as these reveal more clearly the underlying
constant factors which we wish to investigate.

There is a great difference between monocular and
binocular vision under the artificial conditions just
described. With one eye our judgment of spatial form
and localization is erratic and inconsistent. Binocular
observation, on the other hand, retains a high degree
of certainty. True, in ordinary situations monocular
observation is not necessarily inferior to binocular
vision. But from experiments in the dark room we
conclude that binocular vision adds certain elements to
visual perception which monocular vision lacks. This is
also demonstrated in a stereoscope which provides a
situation of clueless vision comparable to that of the
dark room. With a stereoscope, the monocular observer
is dependent on intellectual clues of perspective and
interpretation, whereas the binocular observer obtains
a striking sensation of depth.

The following investigation is concerned with these
special binocular or stereoscopic factors of visual per-
ception. No claim is made of a general theory of space
perception, nor even of a theory of visual perception
integrating binocular as well as other psychological
factors. In spite of this limitation, the end result is not
without significance for the broader aim inasmuch as it
will make possible a precise characterization of the
variations which may be caused by the instantaneous
psychological condition of the observer.

3. FACTS REQUIRING RECOGNITION
A theory of binocular vision must account for the
following experimental facts.

LUNEBURG

(a) A single isolated light point P* is given in the dark
room. Let x, ¥, 3, bé its physical Cartesian coordinates.
The observer sees the point P* as a “sensed” point P
in his three-dimensional visual space. It has, at any
instant, a definite localization in this space, relative to
certain subjective planes of reference of the observer,
and relative to an apparent center of observation. The
fact that two eyes are involved in creating the sensation
of the point P* is not represented in the visual space.
We may say that binocular observation in the physical
space corresponds to an apparent monocular observa-
tion in the visual space. Besides an apparent center of
observation, there are three planes of reference of
which we are conscious, namely, the subjective hori-
zontal plane, the subjective median plane, and the sub-
jective frontal plane. Mathematically we represent this
in a Euclidean space by means of a Cartesian coordinate
system, £, 1, {. The origin £=7n={=0 represents the
apparent center of observation, the &, n-plane the sub-
jective horizontal plane, the £, {-plane the median plane,
and the 5, {-plane the frontal plane of the visual space.
In general, these planes are correlated approximately to
the corresponding physical planes, i.e. a point P* in the
x, y-plane is seen as a point P near the £, p-plane, a
point P* in the x, z-plane as a point near to the median
plane (Fig. 2).

Since the point P* is seen, at any instant, as a point
P in some definite localization relative to the three sub-
jective planes of reference, we might be tempted to
search for a constant and necessary one-to-one corre-
spondence between physical points and sensed points
in the visual space. However such an attempt would
fail, since it would mean that visual sensations are
uniquely determined by the physical stimuli, inde-
pendent of psychological factors. It would also be in
disagreement with actual observations. Visual localiza-
tion of an isolated, repeatedly shown, physical point
P* is found to be highly erratic. The point P seems to
be floating in space indeterminedly, now it seems near,
now far. This uncertainty of correlating visual and
physical localizations becomes obvious if a similar
experiment is made with a stereoscope. It is even pos-
sible to disturb the observer’s judgment of localization
with respect to the subjective reference planes, for
example, by placing him on a slowly rotating chair.
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Fi1c. 2. Subjective coordinate system for visual space.
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A point P seems to remain in the median plane, though
the physical x, y-plane has been rotated into a different
position.

The net result of experiments with an isolated point
is purely negative: Binocular observation of a single
point does not differ from monocular observation. Both
are equally uncertain as to correlating a sensed point
P to the physical coordinates of the stimulating
point P*,

(b) The situation is quite different when the object
consists of several isolated points Py*, Pg*, Pg*, ---
Aside from sensing these points as points P;, Py,
Ps, + -+, in a three-dimensional continuum, we have a
rather definite sensatjon of distance of the points from
one another. We also find that the sizes of these sensed
distances can be compared. Thus, denoting the sensed
distance between two points P; and P, by (P.P,), our
visual sensation of three points Pj, P, Ps contains an
immediate judgment of inequalities (P1P3)> (P2P;) or
(P1P3y)<(PsP;). The same is true for two pairs of
points Py, Py and P;, Py. There is an immediate percep-
tion of inequalities (P1Py)> (P3Py) or (P1Ps) < (P3Py).

Moreover it is found, for binocular observation,
that the inequality signs are determined by the physical
coordinates of the stimulating poinis Pi*, Py*, Py*, Pg*.
This means that the scores of repeated tests with the
same two pairs of stimulating points are highly corre-
lated, regardless of other physical qualities of the points
such as brightness and color. A corresponding correla-~
tion is not found in monocular vision where such addi-
tional qualities may easily change our judgment. We
note here that in general the sensed inequalities do not
correspond to those between the physical distances
(P1*Py*) and (P3*P4*). Moreover, there is no sensation
of absolute localization of the whole configuration,
that is, there is no certainty in judging the physical
coordinates of the points P* from the sensed coordi-
nates of the points P.

(c) The following extremely interesting observation
is due to Helmholtz! An observer, placed into the
position described previously, is given the task of
arranging a number of light points so that they appear
to lie on a horizontal straight line, symmetric to the
median plane. It is found that the points are set
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Fic. 3. Horopter curves for different fixations.

1H. V. Helmholtz, Treatise on Psychological Optics, J. P. C.
Sotzxtfhall, Editor (Optical Society of America, 1925), Vol. 3, pp.
4821,
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Fic. 4. Distance and parallel alleys.

consistently on certain physical curves which are, in
general, not straight in the physical sense. The form
of these so-called koropter curves depends on the dis-
tance xo, of the center point. At a certain distance
xp=a the horopter is practically straight. At nearer
distances, x9<a, the horopters are concave to the ob-
server, at greater distances, x>a, they are convex
(Fig. 3). The distance, a, of the straight horopter
depends on the individual observer. The Helmholtz
horopter experiment reveals a new element in visual
sensations, namely, that there is an immediate feeling for
straightness which allows us to judge whether #hree
points PRQ lie on a subjective straight line.

(d) A related experiment was made by Hillebrand;
it is the so-called Alley experiment? It is well known
that physically parallel lines like railroad tracks, or
the curbs of a straight road, seem to converge in the
distance. The same is true for two physically parallel
rows of light points observed in the dark room. In the
Hillebrand experiment the rows of light points are ar-
ranged so that they no longer converge but seem to
form a parallel “alley”. The resulting divergent physical
curves have a characteristic form comparable to that of
hyperbolas.

(e) Hillebrand’s experiment was repeated by Blumen-
feld® under improved technical conditions. The general
result was the same but an additional observation was
made. When the observer was instructed to pay pre-
dominant attention to the distance between opposite
points, and, by making them equal, to set up alleys
of apparently equidistant walls, the resulting curves
had the general form found by Hillebrand, but did not
appear parallel and straight. The “distance alleys”
differed from the “parallel alleys”and were found to le
consistently outside the parallel alleys (Fig. 4).

4. THE PSYCHOMETRIC DISTANCE FUNCTION

The preceding experiments indicate strongly that
the visual space, as revealed in dark room experiments,
can be characterized mathematically as a metric space.
This means that we may assume the existence of a dis-

2 F. Hillebrand, Denkschr. Akad. Wiss. Wien, math.-nat. Xl
72, 255 (1902).
( 3W). Blumenfeld, Zeits. f. Physiol. d. Sinnesorgane 65, 241
1913).
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Fic. 5. Equivalent configurations,

tance function, D(Py, P»), which accounts quantita-
tively for the observations just described. In other
words, we assume that to any two points Pj, Ps of
the visual space, a non-negative number can be assigned
which measures the sensed distance, (P,P.), between
these two points.

Any such distance function must satisfy the follow-
ing conditions:

(1) D(Pl, P2)=D(P2, P1)>0, if P]_, P are sensed
as different.

(2) D(Pl, P2)=0 if P1=P2.

(3) D(Py, P2)+D(Ps, P3)=D(Py, P3)
for any 3 points P,, Ps, P;.

The physical distance D*(Pi*, P,*) though it ob-
viously satisfies the condition (4.1) cannot be consid-
ered as a distance function of the corresponding sensa-
tions because it would not measure the sensed distance
correctly. In fact, we have already seen that it would
not satisfy the following further condition which must
be fulfilled by the distance function:

(1) If (P1, Py) and (Ps, P,) are any two pairs of
sensed points and (Py, Ps)> (P, Ps) then
D(Ps, P2)>D(P;, Py).
(2) If Py, P, P; are sensed on an apparently
straight line, then D(Py, Ps)+D(P; Ps)
= D(P;, P;) and vice versa.

A distance function D(P;, P») which satisfies both
conditions (4.1) and (4.2) is called a psychometric dis-
tance function, Qur problem is to determine this func-
tion for the visual space, and, if possible, to express
it in terms of the physical coordinates of the stimulating
points Py¥, Py*.

@.1)

4.2)
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5. THE INDETERMINACY OF THE
DISTANCE FUNCTION

First we ask whether such a function is uniquely
determined by the preceding conditions. For if a multi-
plicity of possible distance functions existed, any one
of them would give us merely an empirical description
of certain experimental findings. But if the function is
uniquely determined, the establishment of its explicit
form must represent an interesting psychological result
concerning the nature of visual sensations.

Obviously, D is not uniquely determined since along
with D(P;, P;) any other function D(Py, P,)
=C-D(Py, Py), C being a positive constant, satisfies
the conditions. It can be shown, however, that this
indeterminacy is the only one possible.

In order to show this mathematically, we formulate
certain basic assumptions which are concerned with the
compactness and the convexity of the visual space,

(a) The visual space is finitely compact: To any in-
finite sequence P, such that D(Py, P,) is bounded, there
exists a subsequence Pn, and a point P of the visual
space such that D(Pu,, P)—0.

(b) The visual space is internally convex: To any pair
of points Pi, Py(P,5P;) there exists a third point Q
such that .D(Pl’ Q)'I"D(Q, P2)=D(P1, Pg)

General postulates of this nature, of course, cannot
be tested by experiments since an infinity of points is
involved. Yet, they are not arbitrary assumptions but
formulations of certain observations which we make
with regard to our own visual sensations.

The uniqueness of the psychometric distance func-
tion can now be readily deduced. Suppose there are two
such functions D(P;, Ps) and D(Py, P,), both satis-
fying all requirements. Then, whenever (P1P2)> (P3Py)
then D(Pl, P2)>D(P3, P4)_ and D(P]_, P2)>D(P3, P4).
It follows that D(P1, P2)>D(Ps, Ps) whenever D(P;, Ps)
> D(P;, P,). This is possible only if D= f(D), for all
points where D and D are defined. Consider next any
two points Py, P, of the visual space and assume that
D(Py, Py)=a>0. As a consequence of compactness and
internal convexity, it can be shown that to any number
¢ of the interval 0={=a there exists a point Q such that
D(Py, Q)=t and D(Q, Ps)=a—t. On account of the
straight line condition (4.2) it follows that D(Py, Q)
+D(Q, P2)=D(Py, Py), or f()+ fla—1)=f(a) for any ¢
in 0={=¢ and for any ¢ determined by a pair of points
Py, P,. This leads to the conclusion f(#)=C? and hence
D(P,, P;)=C-D(Py, P,), where C is a constant.

Thus, the only possible indeterminacy of the psycho-
metric distance function is a multiplicative constant.
This means that the ratio D(P1, Ps)/D(P;, Ps) of two
distances is a uniquely determined function of the four
points in question. This result is in agreement with the
observation made previously that the inequality sign in
the sensation (PiPy)> (PyPi) is determined by the
physical coordinates of the points Pi*, Py*, Py*, Ps*.
We conclude that the ratio D(Py, P;)/D(P3, Ps) will be
a function of the physical coordinates of the four stimu-
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lating points which is invariant for an individual ob-
server. It establishes a constant relationship between
the objective physical space and the subjective visual
space of the observer which is unaffected by other
psychological factors. Any parameters in this relation,
which are not the physical coordinates of the four
points, must be constant factors of the personality of
the observer, characterizing his visual reaction to
external nature.

6. THE FORM OF THE DISTANCE FUNCTION

In order to find an explicit expression for the psycho-
metric function D(Pi, P;), we make use of certain
general psychological observations and of certain in-
structive experiments. These observations are con-
cerned with the thesis that there is no absolute local-
ization even in binocular vision. A given physical
configuration provides no immediate visual clues which
could determine localization and absolute phenomeno-
logical size of the sensed configuration. Localization
and size are determined by other non-visual psycho-
logical factors, in particular, by the intellectual ex-
perience of the observer.

Depending upon such -factors, the same physical
configuration may be seen in different localizations and
different phenomenological sizes. Vice versa, entirely
different physical configurations may give rise to the
same visual sensation.

This principle is readily seen to apply to monocular
vision, in fact, this is the tacit assumption in reproduc-
ing a visual sensation by painting. Its validity in
binocular vision is indicated by observations of an
isolated point. But there are more convincing demon-
strations.

Ames of the Dartmouth Eye Institute has shown that
to a given ordinary rectangular room, a set of distorted
rooms can be constructed, which, if viewed from a fixed
position, are indistinguishable from the original room
(Fig. 5). In fact, the illusion of seeing the original
room in all cases is inescapable if suitable suggestive
details, for example, window frames, are included.
Obviously, it is our experience of living in rectangular
rooms which causes us to see the rectangular form even
though the physical reality is quite different. The dis-
torted rooms, of course, cannot be constructed arbi-
trarily. Certain metric clues must be identical in all of
them.

In order to combine this principle of the lack of
absolute localization with our previous result concern-
ing the existence of a psychometric distance function
we are forced to the conclusion that D(P;, P;) must be
a distance function of a homogeneous metric space,
that is, a Riemannian space of constant curvature.
For only in these spaces form and localization are com-
pletely uncorrelated, which means that the form of a
configuration provides no clues for its localization.

The preceding considerations warrant the introduc-
tion of the hypothesis of constant curvature, but there
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is another observation which adds strong support to
the hypothesis. Observations in the dark room reveal
that we not only have an immediate sensation of
straightness but also of plane surfaces. If light points
or pliable wires are arranged in apparently plane sur-
faces, the resulting physical surfaces are curved. If any
two points of a ‘““visual plane” are connected by a visu-
ally straight line, it would not leave the visual plane.
It is well known that two arbitrarily located dimensional
submanifolds of this type exist only in the homogeneous
spaces. Thus, the very existence of an immediate sensa-
tion of “planeness” can be considered as additional
evidence in favor of the hypothesis of constant curva-
ture.

The mathematical consequence of this hypothesis is
that there exists in the visual space a subjective co-
ordinate system, such that the psychometric distance
function D(Py, Ps) is given by the formula:

N

_ [(E1—E2)*+ (m— o)™+ (21— §2)2 T

[(3)(+5)]

where pp2=£.2+ 9,242 and K and C are real valued
constants which are as yet undetermined. We interpret
£ 1, ¢ as cartesian coordinates in a Euclidean space.
Thus we obtain a Euclidean map of the visual space,
which, in general, is not isometric, since the distance
of two points is given by a distance function (6.1) which
is non Euclidean if K50.

The question whether the geometry of the visual
space is elliptic, hyperbolic or Euclidean, i.e. whether
in (6.1) K>0, K<0 or K=0 can only be answered by

(—K)

Visual
Straight Line

F16. 6. A visually straight line represented in hyperbolic space.
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experiments. All experiments carried out thus far indi-
cate that K is negative, which means that the visual
space must be a part of a hyperbolic or Lobachevski
space.

The total hyperbolic space is represented in our map
by the interior of the sphere £+%>+{2=—4/K. The
visual straight lines are given by circles which intersect
the basic sphere at right angles; all of these geodesics
are thus represented by plane curves which lie in the
planes through the origin (Fig. 6).

The visual planes are represented by spheres which
intersect the basic sphere at right angles.

Because of the symmetry of the metric (6.1) with
regard to the origin, we identify the origin ¢=9=¢=0
with the apparent center of observation in the visual
space. Furthermore we coordinate the £, 5-plane to the
subjective horizontal plane, the £, {-plane to the
median plane, and the 9, {-plane to the frontal plane.

Fic. 7. Bipolar coordinates of a physical point.

7. RELATION OF VISUAL TO PHYSICAL SPACE

Next we establish a relation of the subjective co-
ordinates £, 4, ¢ of a sensed point P to the physical
coordinates of its stimulating point P*. As stated be-
fore, no such relation can be constant or necessary
since there is no absolute localization in the visual
space. Hence, if we found one possible relation (x, y, 2)
= f(£&, n, {) between the coordinates, any other relation
(%, v, 2)=f(&, ', ") would be visually equivalent pro-
vided that (&, v/, )=g(% 9, ) represents a motion,
1.e. a congruence transformation of the visual space.

The problem of finding a coordination of the two
spaces can actually be solved only individually since
the physiological condition of the eyes is a determining
factor. In case of defective vision, the results are differ-
ent for observations with or without glasses. The visual
space and its metric, of course, are independent of these
conditions; only the correlation of visual sensations to
the physical qualities of external objects is affected.
Since such differences, therefore, can be removed to a
certain degree by corrective glasses, we are justified in
choosing among the possible coordinations one which
applies to a normal observer under usual conditions.

For an observer whose eyes are functioning equally
well, we may assume that objects in the physical x, y-
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Fic. 8. Bipolar parallax and bipolar latitude of a physical point.

plane are seen in the subjective horizontal £, n-plane,
and also, that points in the x, z-plane are placed into the
median £, {-plane. For the further description of the
required relationship we introduce, in the physical
space, a special bipolar system of angular coordinates
which is better adapted to the physiological mechanism
of binocular vision. Consider the plane through a
point P* and through the eyes R and L. Its angle 6
with the «, y-plane is called the angle of elevation. In this
plane of elevation, two lines are drawn from R and L
toward P*. These lines determine the positions of the
optical axes of the eyes if the point P* is fixated. We
characterize these lines by their angles « and 8 with
the y axis as shown in Fig. 7. The localization of the
point P* is then determined by the three angles «, 8, 6.
Instead of « and 8 we shall use the linear combinations:

(7.1)

y=r—a—4
p=%(8—a)
which are called the bipolar parallax and the bipolar
latitude of a point P* (Fig. 8). In any plane of eleva-
tion, the curves y=const. are circles through the eyes,
the so-called Vieth-Mueller circles, whereas the curves
¢=const. are hyperbolas, the Hillebrand hyperbolas,
whose asymptotes go through the point x=y=2z=0
(Fig. 9). .
If a Vieth-Mueller circle is rotated about the y axis,
a torus surface y=const. is obtained which shall be
called a Vieth-Mueller torus.

AL
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F16. 9. Curves of constant bipolar parallax and latitude.
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Fi1c. 10. Testing correlation between physical and visual spaces on
Vieth-Mueller circle by changing convergence.

For infinitely distant points of the physical space,
we have y=0. Since these points give the visual im-
pression of forming an apparently spherical dome of
finite radius around the observer,{ we represent them, in
the £, 7, {-space, as points on a sphere concentric to the
origin. This sphere will include the total visual part of

“the visual space. We choose arbitrarily a sphere of
radius 2 to represent physical infinity.

This normation makes the constant K in the expres-
sion (6.1) for D(Py, P;) a dimensionless parameter,
with individual differences in K indicating differences in
visual perception.

Since we have no visual sensations of infinite size,
we conclude that K can never be smaller than —1, so
that the basic sphere, 2/(—K)3, in case K=0, lies al-
ways outside the sphere of radius 2 which represents
physical infinity. The two spheres coincide if K=—1;
in which case astronomical objects would give an im-
mediate sensation of immense size and distance.
Though this limiting case is never reached, we conclude
that visual sensation of size and distance relations
agrees with physical reality better the nearer the value
of K is to —1. Thus, individual differences in the
parameter K may correlate with individual differences
in certain mechanical skills.

Further indication of the correlation of the £, 7,
¢-space to the physical space is obtained by the follow-
ing observation. We arrange a number of equidistant
light points on a Vieth-Mueller circle, as shown in
Fig. 10. These points are seen in the visual space as
equidistant points on a circle about the center of obser-
vation. If the distance between the points Py*, Pi* is
made equal to the interpupillary distance of the eyes,
the configuration can be “projected” toward infinity
(y=0) by simply diverging the eyes to a position of
parallel optical axes. By overconverging, the configura-
tion may be projected on smaller Vieth-Mueller circles
(Fig. 10). In this way we can conveniently verify the

Ll
{ In a more careful investigation, the fact that the sky appears
to be a flattened dome could be considered. Thus, the following
arguments are to be taken as approximations referring to visual
sensation in the neighborhood of the horizontal plane.
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¢._. conste 6 = const,
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Fic. 11. Torus of constant binocular parallax, showing curves of
constant elevation and constant binocular latitude.

original observation for a set of such circles. If the -
point configuration is rotated about the y axis, and
arrested at a number of equidistant § positions, a set
of points is obtained which lie on certain curves
¢=const. and f=const. of the Vieth-Mueller torus
v=const. Wires placed along these curves would form
a network like that shown in Fig. 11. If this is observed
from the points R and L, the resulting sensation is ap-
proximately that of meridians and circles of latitude
on a sphere around the observer. This means that the
torus surfaces y=const. appear as concentric spheres
around the center of observation, and the bipolar
angles ¢ and 0 as polar coordinates in the £, 3, {-space.
The observation may be verified for a number of such
torus configurations by simply overconverging or
diverging the eyes as before. Mathematically, these ob-
servations are expressed by the equations:

£=f(v) cos¢ cosf
7= f(7) sing
&= f(v) cos¢ sinf

which relate physical and subjective coordinates. The
function f(v) is a non-negative function of v which
increases monotonically if vy decreases from positive
values to y=0. From the preceding convention it fol-
lows that f(0)=2.3

Even for the neighborhood of the horizontal plane,
this formulation should be considered no more than a
first approximation. There is experimental evidence of
small Vieth-Mueller circles giving an elliptical rather
than a circular impression. Therefore, it is possible
that a more precise formulation may require the re-
placement of the relations (7.2) by the following:

(1.2)

§ A more careful experimentation may lead to the result that,
at greater distances, the network configuration is not seen as a
sphere but as an oval, flattened at the top. The previously men-
tioned impression of the sky, and also the so-called moon phe-
nomenon, seem to indicate this possibility. In this case, the rela-
tion {=f(vy) cos¢ sind would have to be replaced by a relation
= f1(v) cos¢ sing with fi(v) <f(v). :
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£= fi(y) cos cosf, 7= fa(7) sing, = fs(y) cose sing,
with three different functions fi(v), f2(v), fa(¥)-

8. BOUNDARIES OF VISUAL AND PHYSICAL SPACE
IN THE HORIZONTAL PLANE

Tt is interesting to note that the experiments of
Helmholtz, Hillebrand, and Blumenfeld can be fully
explained on the basis of these results, that is, without
any further information about the function f(v).
Consider the transformations (7.2) in the horizontal
plane:

£=f(v) cos¢
7= f(7) sing.

This transformation is continuous and one-to-one in
the interior of the half-plane x>0; it is, however,
quite irregular on the boundary (Fig. 12). In fact,
the boundary of this half-plane is characterized by the
following conditions for the bipolar coordinates v and ¢:

(8.1)

A: y=0, ¢=7/2, orx=0,y>1

L: y=n—12¢, or x=0, y=-1 (left eye)

B: y=m, ¢=0, or =0, —1<y<1 (8.2)
R: y=n+2¢, or =0, y=—1 (right eye)

C: v=0, ¢p=—m/2, or x=0, y<—1.

The Sections 4, B, C of the y axis are contracted into
three isolated points 4: £=0, n=2; B: &= f(x), =0,
C: £=0, = —2 whereas the two eyes are stretched out
into two curves p1=f(r—2¢), pa=f(r+2¢) which
connect the point B with 4 and C respectively. These
two curves join at B at an acute angle, as follows from
the fact that f(y) increases with decreasing v, i.e.
f'(v)<0, and hence dp:/d¢p>0, dps/dp <O0.

The half-plane x>0 is thus imaged into a scythe-
shaped domain of the £, n-plane as shown in Fig. 13.
The image of the half-space £>0 is obtained by simply
rotating this domain around the p-axis.

&
A

>X

C

F16. 12, Boundaries of the horizontal half-plane in physical space.
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s, Horopter

Fic. 13. Boundaries of the horizontal half-plane of visual space
and a frontal plane horopter, S, mapped on a &,-diagram.

9. HOROPTERS AND ALLEYS

We interpret Helmholtz’ horopter curves as those
geodesics of the £, y-plane which are symmetric to the
£ axis (Fig. 13). Their equation is:

K
Z(£2+ 7")—1=CE. (9.1)

If K<0, they are circles normal to the basic circle
2/(—K)* and normal to the £ axis. Two different groups
of circles can be distinguished. Starting from a point
% of the £ axis, they either reach directly the circle
£+9°=4 representing infinity, or they are intercepted
by the curves representing the eyes.

Their counterparts in the physical x, y-plane, there-
fore, must be curves which, starting from w,, either go

44

>
\

F16. 14. Frontal plane horopters.
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Fic. 15. Distance and parallel alleys in map of
subjective horizontal plane.

asymptotically toward infinity or approach the eyes R
and L. Thus they are curves of precisely the type ob-
served in the horopter experiment. In particular, there
must be one curve, which, in the neighborhood of the
x axis, is practically straight (Fig. 14).

This situation not only exists for the case K <0, but
also for K=0 or K>0. If K=0, the horopter curves
(9.1) are straight lines, if K>0, they are circles through
the points 7===2/(K)? of the n axis. In either case, as
before, the two different groups can be distinguished.

The distance alleys of Blumenfeld are given by the
equation:

K
Z(i:’z-k 1)+1=Cn. 9.2)

Distance Alley

¢

Fic. 16. Distance and parallel
alleys in physical horizontal plane.
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If K<O0, they are circles through the points {==2/
(—EK)? of the & axis. Since these curves lie to the left of
the radius vector OP to any of their points, it follows
that their physical counterparts must lie above the
corresponding sections of the hyperbolas ¢=const.
This means that they must have the tendency of bend-
ing away from the curves ¢=const. which is charac-
teristic for the alley curves in the Blumenfeld experi-
ment.

The parallel alleys of Hillebrand, given by the geo-
desics:

K

Z(E“’-I- 1) —1=—Cn (9.3)
are symmetric to the 5 axis. Hence, for K <0 they are
circles normal to the basic circle 2/(—K)* and normal
to the n axis. Also these curves lie above any radius
vector OP and thus have the same characteristic form
as the distance alleys.

If a parallel alley and a distance alley are started
from the same point P, the parallel alley lies inside the
distance alley, in agreement with actual observations
(Figs. 15 and 16).

If K=0, parallel alleys and distance alleys are
identical, namely, straight lines n=const. in the
£, n-plane. For K> 0, distance alleys are represented by
circles normal to the sphere p=2/(K)?, parallel alleys
by circles through the points 2/(K)? of the £ axis. In
this case, therefore, the distance alley should lie inside
the parallel alley. The Blumenfeld experiment con-
tradicts this, thus giving a direct demonstration that
the space of binocular vision is a Lobachevski space.

10. USE OF ALLEY DATA TO DETERMINE
fly) AND X

The Hillebrand-Blumenfeld alleys can be used to
determine the function f(y) and the constant K. Con-
sider a distance and a parallel curve which starts from
the same point:

£0= f(v0) cos

10=f (7o) singo. (10.1)

Parallel Alley

Hyperbola ¢ = const.

‘?x
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Distance Alley

Parallel Alley
> X

Ti1c. 17. Distance and parallel alleys with a common
point in a system of Vieth-Mueller circles,

From (9.2) and (9.3) it follows that

X 1 £ )+1
'Zfz(’YH' Z‘fz(')’o +

(distance curve)

(v) sings f(vo) singo

and

K 1 £ )—1
Zﬁ(')’)* Zf’(%

(parallel curve),

f(v) sings  f(yo) sings

or

K flv) singy J(o) | sings
e (70)(1‘(70) sinqso)' () sindo ©2)
K f(v) Esingsy  sings flvo))
Zﬁ(W) (f('yo) sinqSo) - sinq,':ol f(v).

A Vieth-Mueller circle of parallax + is intersected by
the two curves at Py* and P,* of different bipolar lati-

LUNEBURG

tudes, ¢; and ¢, (Fig. 17). We determine the ratios

Sin¢1 sindu

1=

and 52=

singy singg

by measurements. From (10.2) it follows that

f) fvo)
fo) "~ j
o S
) T e
or
1 ( 1) , S 1488,
2 f(")’o) f(’Y) SI+S2’
and hence
f(‘Yo)=1+5152+[(S12—1)(522—1)]5. 103)
1) S1+-S,

Since parallel and distance curves are in general not
far apart, we may replace S; and S by an intermediate
value sing/singo=.S. Then it follows from (10.3) that

b (7o)

_— = N

I

sing

T (10.4)
singg

i.e. the function logf(y) is obtained directly if a distance
or a parallel alley is plotted in the coordinates v and
log sing.

The experiments seem to indicate that the function
logf(vy) in first approximation can be considered as a
linear function of . Then logf(y)=—oy+C or
f(v)=2¢"", ¢ being a new parameter of the observer.

The constant (K/4)f*(v,) can be found from (10.2) by
introducing the expression (10.3) in one of the Egs.

Distance Alley P"

Parallel Alley

Fi1c. 18. Tangents to distance
and parallel alleys at the common
point.
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(10.2). The result may be written as follows:

K
T G (sintg—sintge)?
_ o
-Iff?('yo)—l—l (S2—1)}  (sin’pp— sin®po)?
This yields at the end point of the alleys
1—Ef2(70) s
4 dy b
iply|
4 d

It is readily shown that 2(d¢i/dv)="51 and 2(d¢2/dvy)
=b, determine the intersection of the tangents of the
two curves at P* with the y axis (Fig. 18). Thus,
the ratio b1/b; can be used directly to find the constant
(K/4)f*(vo). If the two alleys start at the same infinitely
distant point, we have f(yo)=2, and hence the simple

relation
1-K)2 bl
1+k/ b,

11. METHODS OF MEASURING K AND f(y)

The alley experiments provide a convincing demon-
stration of the non-Euclidean hyperbolic character of
the binocular visual space. But they are not too well
suited for the problem of measuring the parameters of
the metric. The mechanical construction has to be quite
elaborate, if undesirable clues are to be eliminated that
would invalidate the measurements. The setting up of a
pair of alleys requires time, especially with new ob-
servers. Consistency is generally lacking at the begin-
ning so that each new observer must go through a
series of preparatory experiments.

In order to remove these difficulties, other methods

\‘4/ p*

F16. 19. Points on two Vieth-Mueller circles.
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(v

Frc. 20. The subjective
correlation of Fig. 19.

R
—-§

of measurement had to be investigated. The following
method so far seems to promise the best results.

Three isolated light points Po*, Py*, Py* are given in
the horizontal plane. P¢* and P;* are movable on a
fixed Vieth-Mueller circle of parallax o, Po* on a second
fixed Vieth-Mueller circle of parallax v, (Fig. 19).

In the £, n-plane, these points are represented by the
two points Py and P; on a circle of radius po= f(v,), and
by a third point P, on a circle pi=f(y:) (Fig. 20).
Both circles are concentric to the origin. The task of
the observer is to set the point P;* in such a position
on its circle that the visual distance D(PoP,) is equal
to the visual distance D(PyPy). This is carried out for a
number of settings Po*, Pi* on the Vieth-Mueller
circle vo. From (6.1) it follows that the distances are
equal if

{2p?[1—cos(p1—¢0) ]} ¥

K
14+—po?
4
[ o>+ p12—2pop1 cos(po— ¢1) J*
_ , (11.1)
K Nt/ K N}
(1+—poz) ( 1+—P12)
4 4
Le. if
K
1+—p?
. Po 4
4 sin?}(pa— o) =—
P1
14+—pg?
4

X4 sin*} (¢1— ¢o)—[(g) %~ (i) T- (;1.2)

The quantities

K
1+—ps?
po 4

P1 K
1+—pd
4
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and
(11.3)

Po ¥ P1 2 Po P2
B=|{—)—-{—) |=—+—-2
P1 Po P1  Po
are constants of the apparatus and of the observer.
The quantities

X=4sin"3(p1—o); V=4sin%(da—¢o) (11.4)

are measured after each setting. It follows that
Y=4X-B,

so that a graphical plot of ¥ against X should yield a
straight line. The experimental points are actually
found scattered about a certain average straight line.
The scattering may be considerable for a new observer,
but it decreases rapidly with some training. It is in-
teresting to note that young children display a re-
markable degree of certainty and consistency in such
observations.

From a suitable number of observations we obtain
by the method of least squares the best straight line
representation of the observation, and from the con-
stant B the ratio

ﬁ___f(‘n)
Po f('Yo),

and from 4 the quantity K- f?(vo).

Repetition of these experiments with other pairs of
Vieth-Mueller circles yields further ratios f(viv1)/f(v:),
and thus, with f(0)=2, a numerical tabulation of f(y) is
obtained. Measurements such as these, as well as other
observations, seem to indicate that a first approxima-
tion of the ratio f(vi)/f(vo) depends only on the
difference «y;—yo. This implies that logf(y) is a linear
function of v, and hence

flv)=2¢e", (11.6)

where ¢ is an individual constant of the observer.

The numerical value of ¢ characterizes the degree of
depth perception of a person. There is no doubt that
_considerable differences exist in the quality of depth
perception; o-values ranging from 4 to 15 have been
found.

The parameter ¢ can be determined from observa-
tions on a single pair of Vieth-Mueller circles. We have
2 sinh(o/2)(y1—v0)=(B)}, and hence, in sufficient
approximation

B}

Y1 Yo

(11.7)

o=

If ¢ is known, the constant A can be utilized to
calculate K. However, if the two Vieth-Mueller circles
are not far apart, the variation of 4 with respect to
K is not sufficient to provide a good measurement of
this constant. A more effective arrangement is the
following:

RUDOLF K.

as)
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Consider four points Po*, Py*, Py*, Ps*. The first pair
is movable on a Vieth-Mueller circle v,, the second
pair on a smaller circle of parallax v;> . The task of
the observer is to place the point P3*, for a given setting
of Po*, Pl*, Pz* SO that

D(Po, P1)=D(P2, Pa).
This leads to the condition

K
14—ps?
Po
2 sing(¢s— o) =— 2 sin3(¢p1—¢o) (11.8)
p1
14+—p¢?
4
or
V=4X
where

X=2sinf(p1—¢o) and ¥Y=2sin(¢ps— ).

A graphical plot of the observed quantities ¥ against
the settings X should yield a straight line through the
origin. If the two Vieth-Mueller circles are chosen far
enough apart, the direction 4 of this straight line
varies considerably with K. Hence, if ¢ is known, we
find K from the relation*

+Ke2on

A=elrr=v0)e— |
14+ Ke 2o

(11.9)

12. THE HOMOGENEITY OF VISUAL SPACE

The essential feature of the preceding experiments is
that distance observations are made on sets of points
that are confined to two fixed Vieth-Mueller circles,
that is, to curves which are sensed as two subjective
circles around the observer. A consequence of this re-
striction is that certain simple trigonometric functions
of the observed angular differences become linear func-
tions of each other, thus providing an elegant method of
statistical evaluation. This applies even if the points
do not lie in the horizontal plane or the same plane of
elevation, provided they are confined to two different
Vieth-Mueller torus surfaces, that is, to two surfaces
sensed as two subjective spheres around the observer.
In this more general case, spherical arcs Qu, for in-
stance the arc ;2 between two points Pi*, P,* given by

€08Q1a= COSepy COSP2 COS(02— 61)+sing; sings,

replace the differences ¢r— ¢; in the horizontal plane.
Hence, with X=45sin*Qy; Y=4sin’1Q, in the

* This formula is based on the approximation f(y)=2¢~7, If
this approximation is not accepted, the quantity K may be found
from

K
_fw) 1+7/ )
T 14 200

if f(v) is known from observations of the first type.
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F16. 21, Horizontal cross-section of Ames’ experimental room.

experiment of the first type, we should still get points
X, ¥ scattered about the same straight line Y =A4X—B.

And with X=2sin3Qe; ¥Y=2siniQy;, we should
find points about ¥=AX in the second experiment.
This follows from the special form of the distance
function D(Po, Py):

ol

(po*+ p2—2pop1 cosQo1)

K \} K \?}
(1+—p02) (1+—p12)
4 4

More generally, this is true for any metric space
whose distance function D(Py, P;) has the form

D(Po, P1)=F[ M (po, p1)+N(po, p1) cosQo] (12.2)

where M (po, p1) and N(po, p1) are symmetric functions
of po and p1.

Since the linearity of the graphical representation is
one of the most consistent observations in these experi-
ments, the question may be considered whether this
fact should be interpreted as an experimental verifica-
tion of the hypothesis, of constant curvature. In other
words: Are the homogeneous spaces the only Rieman-
nian spaces where the distance function D(P, Q) can be
written in the form (12.2)?

Since the metric, defined by (12.2), is symmetric to
the origin, the associated line element ds* can be as-
sumed to have the form

dst=ri(p) @g-+drt-+d5?)
so that the distance function D(&, o, {03 & 7, §) must

(—K)?

(12.1)

(12.3)
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F1cG. 22. Rectangle of Fig. 21 mapped in the subjective plane.

be a solution of the partial differential equations

D¢ 4D+ +Dg* =n*(p)
Dy 2D 2+ Dy, r=n*(po).

The problem is therefore to determine those func-
tions #%(p) for which the differential equations admit
solutions of the special form (12.2).

The answer is that this is possible then, and only then,
if #n(p) has the form

(12.4)

(12.5)

F16. 23. Horizontal cross sections of visually congruent rooms.
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T16. 24. A domain in the physical plane and the correlated
domain in the subjective plane.

where C and K are constants. In other words, the space
must be Riemannian space of constant curvature.

Therefore, the linearity of the relation between X and
Y is indeed a direct indication of the homogeneous
character of the visual space.

13. CONGRUENT CONFIGURATIONS!

There are a number of practical applications of the
theory of binocular vision which depend on the knowl-
edge of the numerical values of the parameters K and
the function f(). We consider first the possibility of
psychometric reproduction of visual sensations. Since in
homogeneous spaces a given configuration can be
moved freely without metric distortion, we can con-

AR. K. Luneburg, Mathematical Analysis of Binocular Vision
(Princeton University Press, Princeton, 1947); Mefric Methods in
Binocular Visual Perception, Studies and Essays, Courant Anni-
versary Volume (Interscience Publishers, Inc., New York, 1948).
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Fie. 25. The domain of Fig. 24 after a congruency-transformation.

struct, to any given configuration, a metrically con-
gruent one in any localization or orientation.

The original rectangular room in the Ames experi-
ment may serve as an example. The cross section made
with the horizontal plane is shown in Fig. 21, its counter-
part in the £, g-plane in Fig. 22.

Consider the following hyperbolic motion:

e g (az+_)__51___
K/ (= ap+oti

> n
(o4
K g optrt e

4 ¢
g‘,: (a2+—>——__—’
K oyt

which transforms median and horizontal planes into

ts

(13.1)

F16. 26. The domain of Fig. 25 in the physical plane.
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Fic. 27. Illustrating difference
between psychometric representa-
tion and central projection.
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themselves. Submitting the “room” A, B, C, D to this
transformation, we find that all the points of the
boundary move either to the right or to the left, de-
pending on the parameter a. The physical counterparts
of these visually congruent rooms are no longer rec-
tangular but have the form shown in Fig. 23. They
conform with Ames’ experimental result, and can be
used as a quantitative basis for the design of such rooms.

Next, we consider the problem of psychometric
reproduction of landscapes, for example, a scenery
which lies between a certain Vieth-Mueller circle v and
physical infinity v=0. The corresponding domain in the
£, 7, {-space lies between two concentric spheres,
p=p(vy) and p=2 (Fig. 24). Submitting this domain
to a transformation (13.1) [¢>2/(—K)¥], we obtain a
domain bounded by two non-concentric spheres as
shown in Fig. 25.

The corresponding domain in the physical space is
obtained by rotating the shaded area in Fig. 26 about
the y axis. The entire original part of the space is con-
densed into this narrow shell. With the aid of (13.1) a
relief reproduction of the original scenery could be con-
structed which is visually indistinguishable from the
original. |

If the inner boundary p= p(7) is sufficiently far away,
the relief becomes so flat that it may be replaced by a
painting or projected image on the outer screen surface,
which is metrically congruent to infinity. In order to
find the coordination of a point on this screen, we can
use the Blumenfeld alleys since points on these alleys
have a constant visual distance from the « axis. If the
screen is chosen so small that it lies in the domain
where the distance alleys bend away from their asymp-
totes, the image points depart considerably from
the position of central projection (Fig. 27). This ex-
plains why the main feature of a landscape appears
often disappointingly small compared with the original
impression. Therefore in order to obtain a true psycho-
metric projection of a scenery, we should project upon
a curved screen designed in accordance with explicit
mathematical principles. Furthermore, we should use
a projection lens which possesses a strong amount of
specified pincushion distortion.

[ This illusion can be accomplished to a remarkable degree, as
for instance the so-called Habitual groups of animal life in the Los
Angeles County Museum demonstrate. As a matter of fact, it is
nearly impossible to judge the actual dimensions of the scenery.

14. PHENOMENOLOGICAL SIZE AND DISTANCE

Our last result is related to a well-known fact. The
phenomenological size of physical objects which are
moving away from us, does not decrease in proportion
to the angle of view. The size seems to remain constant
for a while until, at greater distances, it decreases
rapidly. .

Consider two points Py* and P;* in the median plane
and symmetric to the x axis (Fig. 28). We judge their
apparent distance D according to the formula:

2 1 D

sin[—(—K)%-—]
%12 c
[2p2(1—cos20)]F 2p sind

(14.1)
K
14+—¢p? 14+—p?
4 4
Since
g oy
sinf=————=3 tan—;
(x2422)% 2
and p=2¢"7, it follows that
Y
: 4 tan—
2 1 D
_ sin[—(— K)*-——] =g (14.2)
(—K)} L2 Cl e 7+Keov

If z is kept unchanged, but the position x of the two
points is altered, D/C becomes a well-defined function

Z
\
E&
&
L )
P.k

F1c. 28. Showing a line segment in the median plane.
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Fic. 29. Showing relative apparent size of line segment of Fig. 28
as a function of its position along the x axis.

of v, that is, of the distance % of the two points from
the observer. For small values of z we may write ap-
proximately

Y
4 tan—
2

—=— (14.3)
C ev-Keor

Thus D approaches zero if x—o, unless K=—1, in
which case a finite limit is reached asymptotically
(Fig. 29). We conclude that constancy of size is
maintained longer, the nearer to —1 the value of the
observer’s constant X is found to be.*

15. APPLICATIONS TO BINOCULAR OPTICAL
INSTRUMENTS

The interpretation of the visual space as a metric
space provides a theoretical basis for an investigation of
binocular optical instruments, such as range finders,
binocular field glasses, binocular microscopes, stereo-
scopic projectors, or even ordinary spectacles. Such
instruments do not change the geometric character of

*The same results are obtained qualitatively without the
assumption f(v)=2¢"7. Instead of (14.3) we have

D__ 2
¢ 1 fpm

LUNEBURG

- the visual space but merely its coordination to the

physical space. This fact may be expressed by stating
that any optical instrument represents a certain point
transformation of the visual space. Except for trivial
cases, these transformations are not isometric, and
therefore a metrically distorted view of external objects
is introduced. A surface which originally gave the im-
pression of a physically plane surface, may become ap-
parently convex or. concave. In a theoretical investiga-
tion of this situation the theory of curved surface em-
bedded into a hyperbolic space thus finds a significant
application.

16. INCORPORATION OF MOTION IN THEORY

The artificial restriction of the freedom of observation
which has been introduced at the beginning is not main-
tained in usual visual sensations. We move our head,
even our body, quite freely. This leads us to the problem
of incorporating such motions into the theory of visual
perception. Obviously, this problem is intimately re-
lated to the general problem of visual sensations of
moving objects or of a moving observer. In order to
approach this subject, a psychometric function should
be established which measures the sensation of velocity
of visual objects. Certain simple observations lead to the
conclusion that this function is most probably given by
a function of the type

+
w(v)=C logi—v, (16.1)

c—7

where ¢ is a certain constant representing the extreme
velocity of eye motions, whereas v is the image of the
physical velocity in the £, 5, {-space. This psychometric
function is real valued only if v<¢, which means that
physical velocities v>¢ are no longer recognized as
velocity sensations. This corresponds to the fact that a
moving light point produces the sensation of a streak
of light if a certain velocity is exceeded. A space-time
metric introduced to describe this situation mathe-
matically will then be closely related to the space-time
metric of special relativity.



