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EQUATIONS GOVERNING CONVECTION IN 
EARTH’S CORE AND THE GEODYNAMO 

STANISLAV I. BRAGINSKY and PAUL H. ROBERTS 

Institute of Geophysics and Planetary Physics, University of California, 
Los Angeles, California 90024 

(Received 27 April 1994; infinal form 15 November 1994) 

Convection in Earth‘s fluid core is regarded as a small deviation from a well-mixed adiabatic state of 
uniform chemical composition. The core is modeled as a binary alloy of iron and some lighter 
constituent, whose precise chemical composition is unknown but which is here assumed to be FeAd, where 
Ad = Si, 0 or S. The turbulent transport of heat and light constituent is considered, and a simple ansatz is 
proposed in which this is modeled by anisotropic diffusion. On this basis, a closed system of equations and 
boundary conditions is derived that governs core convection and the geodynamo. The dual (ther- 
mal + compositional) nature of core convection is reconsidered. It is concluded that compositional convec- 
tion may not dominate thermalconvection, as had previously been argued by Braginsky (Soviet Phys. Dokl., 
v. 149, p. 8, 1963; Geomag, and Aeron., v. 4, p. 698, 1964), but that the two mechanisms are most probably 
comparable in importance. The key parameters leading to this conclusion are isolated and estimated. Their 
uncertainties, which in some cases are large, are highlighted. The energetics and efficiency of the geodynamo 
are reconsidered and re-estimated. Arguments are advanced that indicate that the mass fraction of the light 
constituent in the solid inner core may not be small compared with that in the outer core, e.g. about 60%. This 
tends to favor silicon or sulfur over oxygen as the principal light alloying constituent. 

KEY WORDS: Geomagnetism, core dynamics, compositional convection, thermal convection, 
geodynamo, dynamo energetics, dynamo efficiency, turbulence. 

1. INTRODUCTION 

It is sometimes said that the equations governing the geodynamo are “well-known” 
and that only their solution is difficult. This statement is, however, misleading and 
unhelpful. It is admittedly true that the geodynamo is governed by the classical 
equations of fluid mechanics, electrodynamics, thermodynamics and physical chemis- 
try, all of which were well known in the nineteenth century. But they govern physical 
processes that, in the context of the geodynamo, have significant roles on scales that 
differ by very many orders of magnitude. Moreover, the classical equations explicitly 
include only molecular transport processes, and these are so small in Earth’s core that 
diffusive mixing is accomplished not by molecular motion but by fluid motion on 
a variety of greatly different length scales. The net result is that the classical equations in 
their original form are suited for neither analytic nor numerical studies of the 
geodynamo. They must be transformed in such a way that physical processes operating 
on widely different scales are explicitly separated. To this end, the small parameters 
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2 S. I .  BRAGINSKY AND P. H. ROBERTS 

relevant to Earth’s core must be isolated, and their smallness used to generate a 
set of reduced equations that, at one and the same time, are not only geophysically 
sound but also simple enough to be analytically and/or numerically tractable. 
Our aim in this paper is to develop such a formalism for the study of the geo- 
dynamo. 

Our theory recognizes at the outset that the core is an iron rich alloy. As Earth cools, 
iron in the fluid outer core (“FOC”) settles onto the surface of the solid inner core 
(“SIC”), and the gravitational field, pressure, density . . . of Earth change. The concomi- 
tant release of gravitational energy is a potent source for the geodynamo, one that we 
explicitly include; see Appendix B. A second crucially significant source is thermal, and 
arises from the gradual reduction of thermal energy in a cooling Earth. We must 
therefore describe core convection and the geodynamo against a background of 
a “reference state”, that changes slowly with time, t due to changes in composition and 
temperature. We find it convenient to introduce a ‘slow time’ variable, t,, that changes 
on the geological time scale, to and a ‘fast time’ variable, t,, that changes on the 
convectional time scale, 5,. 

The reduced equations, which are developed in Sections 2-5, lead us to two 
simplified models of the geodynamo: an inhomogeneous model (Section 6) and a ho- 
mogeneous model (Section 8). The former may also be described as a generalized 
“anelastic model” and the latter as a generalized “Boussinesq model”, generalized in 
each case by some additional and novel features. Many papers (e.g. Backus, 1975; 
Hewitt ef al., 1975; Gubbins, 1977; Gubbins et al., 1979) discuss the energy and entropy 
balances in the core. They derive these from the primitive equations, without approxi- 
mating them by forms suitable for studies of core dynamics. Our re-discussion of these 
balances (Section 7) explicitly separates the effects of the slow evolution of Earth from 
those associated with convection. 

Most discussions of the geodynamo start from systems of equations (almost invari- 
ably Boussinesq approximated) that govern core convection and magnetic field 
generation. The quantities arising in these theories (such as density, pressure, etc.) are in 
reality very small deviations from the same attributes of the background state on which 
the magnetoconvection takes place. The separation of the primitive fields into back- 
ground and convective parts is rarely discussed, but is in fact not a trivial matter, 
because it demands an understanding of how small additions to a large background 
behave. And this inevitably introduces the complications of core turbulence. An 
attempt to derive the equations governing core convection driven by both composi- 
tional and thermal buoyancy was previously made by Braginsky (1964b). His pro- 
cedure was much the same as that adopted here; he too separated the small convective 
deviations from the background, and recognized that the convective motions have 
a fluctuating turbulent part that significantly enhances the transport of extensive 
properties of the mean convective state, such as entropy and composition. His 
treatment was, however, too incomplete to answer satisfactorily several significant 
questions, which are addressed in the present paper; see particularly Section 4 and 
Appendix C. 

The Boussinesq approximation is rather obvious in laboratory contexts, where the 
adiabatic gradient, V To, is associated with only minute variations across the system, i.e. 
T,>>LIVT,(, where T, is the departure from the reference state created by convect- 
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GEODYNAMO CONVECTION 3 

ion and L is a typical length scale of the system. The validity of the Boussinesq 
approach is far less obvious for Earth's core where the variations in reference 
state variables with depth greatly exceed those associated with convection 
( p ,  - E,LI Vp,l and E, - see below). In this respect, the core resembles the 
convect-ion zones of stars, to study which astrophysicists have developed mixing length 
theory, in which departures from the adiabatic, such as T, = T - T,, are more signifi- 
cant in the determining the convective state than T itself (see Jeffreys, 1930; Cox 
& Giuli, 1968). 

We are interested in this paper in making more precise the sense in which the 
convection is a small deviation from the background state and in discussing in greater 
detail the assumed transport processes in the core. Small parameters that arise, some of 
which were referred to above, are: 

E,. This measures the inhomogeneity of the basic state. It is defined in (3.8) 
and -0.1; 

E,. This assesses the importance of centrifugal forces in determining the structure of 
the background state; see (3.9). Its value -2 x 

E,. This measures the relative importance of the forces that control the convection 
(e.g. the Coriolis force) to the forces determining the background state (e.g. 
gravity); E, - lo-'. See (3.10); 

E:. This is the ratio of convective time scale, T,, to the time scale T~ over which 
the background state evolves (the geological time scale); E,' - lo-*. See 
(3.1 1); 

cR. This is the Rossby number that measures the relative importance of inertial and 
Coriolis forces on the main scale of core convection; eR - 10- 5 ;  

$. This is the (magnetic) Ekman number, which differs from the usual Ekman 
number (the ratio of viscous to Coriolis forces) in that the magnetic 
diffusivity, q, appears in place of the kinematic viscosity, v, in its definition 
(8.19); q - 10-9. 

Even though E, >> E,, it is with core convection (which is associated with E,) that we shall 
be principally concerned in this paper, and not with the asymmetry of the reference 
state, which is measured by E, and which, as we shall argue in Section 3, is not of 
prime importance. To keep our model as simple as possible, we set E, = 0, i.e. we 
ignore the deviations in the structures of the mantle and core from spherical sym- 
metry, even though it is known that asymmetries do exist. Taking them properly into 
account is a nontrivial matter that is best left for future development of the present 
theory. 

The core is assumed in this paper to be a binary alloy, consisting mainly of iron and 
a single light admixture, which we need not specify. This limitation, to one light 
constituent, almost certainly oversimplifies a complicated core chemistry, but it suffices 
since it models a process that is vital to core dynamics, namely gravitational stirring by 
compositional convection. In the absence of detailed knowledge about the core 
constituents, the complications introduced by the addition of further chemical elements 
could not be justified even though (see Appendix D) it could easily be accomplished at 
the expense of introducing further unknown parameters. Our information about the 
physical properties of the core is far from complete, but not all of those properties 
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4 S. 1. BRAGINSKY AND P. H.  ROBERTS 

are equally significant for the construction of a geodynamo model. By developing 
as simple a model of core dynamics as possible, we are able to assess which para- 
meters are crucial for the construction of a geodynamo model and which are 
less critical. In Appendix E we have tried to estimate as many of the relevant 
physico-chemical parameters as we could, though we recognize that our values are 
rather uncertain. All significant geodynamo parameters will be determined in the future 
only by optimizing the fit of geodynamo models to the observational data. We wish 
to emphasize that our primary goals in this paper are those of developing a general 
theory and of establishing, in the simplest and most direct way, the main relations 
between the relevant physical quantities. The accurate estimation of the key parameters 
of the theory is of secondary importance to us; it is in any case not achievable at the 
present time. 

The dynamics of the FOC are controlled by the SIC and the mantle. It will be 
sufficient for our purposes to suppose that 

1. Over the geological time scale, zo, the mantle flows like a fluid to maintain 
hydrostatic balance so that, in the limit cn<< 1 (which we adopt throughout the 
paper), the core-mantle boundary (“CMB”) is spherical, r = R , ;  

2. The mantle is rigid on the convectional time scale, z,, so that R ,  = R,(t,); 
3. Neither the iron nor the impurity comprising the core fluid can penetrate the 

mantle, so implying that the radial component, Vorl, of the fluid velocity, V,, 
associated with the slow evolution of Earth coincides at the CMB with the 
velocity, R , ,  of the CMB and also that the radial flux, Igl, of light admixture 
vanishes on the CMB. 

It is possible that assumptions (1)-(3) may be lifted in the future, but to do this 
meaningfully more geophysical information will be required. An improvement to (1) 
would result from the inclusion of the topography of the CMB when considering 
core-mantle interaction; insight into mantle rheology on time scales of order lo4 yr, 
might lead to the abandonment of (2); information about chemical interactions on, and 
material exchange across, the CMB would lead to a reconsideration of (3). Modeling 
the SIC is the main topic of Section 5. 

At the present time, the solution to the geodynamo problem is hampered both 
by a paucity of information about the numerical values of crucial physical parameters 
(such as the amount of energy available) and perhaps more seriously by a lack 
of understanding of the principal physical ingredients of the geodynamo mechanism. 
One might say that the present state of geodynamo theory can be represented by 
the symbol-, which we use to signify uncertainty by an “order of magnitude”, 
i.e. by a factor of order 10. The immediate goal of geodynamo theory is to find 
better values for the key parameters and to improve the understanding of both the 
main components of the geodynamo mechanism and the structure of the physical 
fields. When this goal has been reached, one may reasonably hope to be able to replace 
the symbol - by the symbol z, by which we mean that our answers would then 
be accurate to about 10%. This, in fact, is precisely the magnitude of E,. In the 
intervening period before the goal is attained, one may wonder why one should 
study geodynamo models at an accuracy better than E, ,  and this is the reason 
why so many studies of magnetoconvection in the core make use of the Boussinesq 
approximation, in which E,  = 0. It is also the reason why (Section 8) we develop 
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GEODYNAMO CONVECTION 5 

a generalized Boussinesq model that is especially appropriate for the study of 
core convection. We also call this the “homogeneous model”, since the reference 
state is independent of position. The many complications of the inhomogeneous 
(or anelastic) model developed in Sections 4-6 are thereby avoided, at the expense of 
errors that are no larger than the existing uncertainties in the key parameters describing 
the core. 

Finally, a few words about notation, Earth’s core is a complicated chemical- 
fluid-magnetic system involving widely disparate length and time scales. Its mathemat- 
ical description, and the reduction of that description to tractable form, raise formi- 
dable notational problems. In an effort to minimize these problems, we have developed 
a consistent and (we hope) transparent, notation. We believe that a concise and 
self-explanatory system of notation is significant not only because it helps to avoid 
misunderstandings but also because it provides a convenient language with which to 
discuss and clarify the subject. Our notational scheme is set out in full in Appendix A, 
and it is recommended that any reader who wishes to follow our arguments in detail 
should consult this Appendix at the outset. We point out here only that the suffix 
a always signifies that the quantity concerned is evaluated in the adiabatic reference 
state, while (or occasionally ‘) refers to convective deviations from the reference state; 
the superscript t refers to the fluctuations that arise from core turbulence. The suffix 1 is 
attached to quantities evaluated on the CMB; those evaluated on the inner core 
boundary (“ICB”), carry the suffix 2. In the case of ambiguity, as in the case of the 
density, p ,  which is discontinuous on the ICB, the suffix 2 refers to values on the upper 
(fluid) side of the ICB and the suffix N to values on the lower (solid) side. 

2. BASIC THEORY 

2.1 Governing Equations 

The core of Earth is modeled as a binary alloy consisting primarily of iron, but with 
a light admixture whose composition need not be specified here. This simplification of 
what is probably a complicated chemical mixture of many elements suffices to 
characterize its behavior. The governing equations for the motion of the core and the 
evolution of the magnetic field are, in the frame of reference rotating with the mantle, 
and in a notation that is set out in Appendix A, 
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6 S. 1. BRAGINSKY AND P. H .  ROBERTS 

Equation (2.1) contains the effective gravitational field, g,, which includes 
with the true gravitational field, g = - VU, the centrifugal acceleration, -R x (R x r):  

(2.8a, b, c) 

The angular velocity S2 of the frame is attached to the mantle, which does not rotate 
completely uniformly. Strictly the Poincare force, - p a  x r, should therefore also be 
added to the right-hand side of (2.1). The gravitational field, g, is mainly due to Earth 
itself, a fact expressed by (2.5) and the condition that U 4 0  for r -+ co. A discussion of 
the gravitational field and its energy is provided in Appendix B. 

Equations (2.1)-(2.6) constitute 10 scalar equations' for 11 scalar unknowns, namely 
p, p ,  S ,  t, U and the components of V and B. They must be supplemented by boundary 
conditions and by constitutive laws for the viscous and magnetic forces, F' and FB, and 
the fluxes of light component and entropy, I, and Is. These constitutive laws introduce 
a further field, the temperature 7'. It is therefore necessary to consider the ther- 
modynamics of the fluid. This is specified by two thermodynamic variables, for example 
p and S, and by the mass fraction, 5 ,  of the light constituent. All other thermodynamic 
quantities can in principle be derived from these three variables; unfortunately, they are 
in practice, not well determined. We shall regard the internal energy per unit mass, 
~ ' ( p ,  S, t), as a given function of p, S and 5. From this, p ,  T and the chemical potential 
p are determined through the relation 

g, = -VU,, U ,  = U + Un, UR = -:(n x r)2. 

P 
P 

de' = T d p  + TdS + pd5, 

which implies that 

P = P2( g)s& T = ( g)p,<, cc = ($) (2.10a, b,c) 
P S  

It is sometimes convenient however to use p ,  S and 5 or p ,  T, and 5 in place of p, S and 
5 as independent variables, in which case the enthalpy, ~ ~ ( p ,  S ,  0, or  the Gibbs free 
energy (also called the thermodynamic potential), ~ ' ( p ,  T, t), take over the role of 
&'(P, s, 51, where 

The relation (2.9) between differentials is then replaced by 

1 1 
P P 

dEH = - dp + TdS + pdg, dEG = - d p  - SdT + pd l .  (2.142.12) 

'Equation (2.7) is not counted since (2.6) implies iliV.B = 0. Thus (2.7) holds for all t if it holds for any t. It 
therefore has the status of an initial condition. 
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GEODYNAMO CONVECTION 7 

Further thermodynamic relations are set out in Appendix D; see also Landau and 
Lifshitz (1980). 

We now summarize the remaining constitutive relations. For F' we have 

P ~ ;  = v j ~ ; i  or pF' = V.  E'. (2.13) 

The double overarrow is here used to signify that the symbol beneath it is a second 
rank tensor (here the viscous stress tensor) which can be contracted with another vector 
or tensor from either side. We assume that the fluid is a linear viscous (Newtonian) fluid, 
for which 

Since the kinematic shear viscosity, v, and the coefficient of second (bulk) viscosity, vb, 
are necessarily non-negative, the same is true of the rate of viscous regeneration of heat, 
which is 

Q' =nJieji= 7r;iVjVi=2pv(e..+~V.VG..)(e..-~V.V6ij)+pv,(V.V)2. 11 11 13 (2.14) 

According to (2.1 1) and (2.14), we have 

pV.F' = V.(  ?*V) - Q", (2.15) 

a fact we shall need below. 

electric current density, J: 
The magnetic force on the fluid depends on both the magnetic field, B, and the 

p F B =  J x B, J = V  x B/,u,. (2.16,2.17) 

Equation (2.6) is a consequence of (2.17), of Faraday's law and of Ohm's law for a dense, 
isotropic, moving conductor: 

8,B = - V x E, J = o,(E + V x B). (2.18,2.19) 

Here E is the electric field, o,, = l/p,,q 2 0 is the electrical conductivity and 9 2 0 is the 
magnetic diffusivity. The Joule dissipation of heat is 

Q J  = J2/o, = (q/po)(V x B)'. (2.20) 

According to (2.16), (2.19) and (2.20), we have 

~ V . F ~  = E. J - Q J ,  (2.21) 

a fact we shall need below. 
The entropy source os and the heat flux I4 are related to the fluxes Is and I r  of entropy 

and light constituent. The form of this relationship follows from energy conservation, 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
3:

08
 0

9 
Ju

ly
 2

01
4 



8 S. 1. BRAGINSKY AND P. H. ROBERTS 

which takes the mathematical form 

(2.22) afutotal + v.1total - 
- Q R ,  

where 

utota' = /I(&' + E K  + UQ) + uB + us, (2.23a) 

rtota1 = p(&H + F K  + UQ)V - 5P.v + IB + 19 + 14. (2.23b) 

Here uB and us are magnetic and gravitational energies per unit volume, with 
corresponding fluxes LB and Ig; also, E~ = V 2  is the kinetic energy density relative to the 
rotatingframe, cH = E' + p / p  is the enthalpy per unit mass, and Q" 2 0 is the volumetric 
rate of radiogenic heating which (because of convective mixing) will later be assumed to 
be proportional to p. 

Consider the time derivatives of the successive terms of(2.23a). According to (2.9) and 
(2.2)-(2.4), we have 

4(P&') + V*(P&'V) = (P /P)d ,P  + P T G  + P P d L  
(2.24) 

= -pV.V + Tos - TV*IS - ~ v . 1 ~ .  

We write this as 

d,(p&') + V.[peHV + TIS + PI<] = ToS + V-Vp + IS.VT+ 15.Vp. (2.25) 

According to (2.1), (2.2), (2.15) and (2.21), we have 

6',(pcK) + V.(p&' - ?'.V) = -V.Vp - pV-VU, + E-J - Q" - Q J .  (2.26) 

Since UR is independent oft ,  (2.2) gives 

d,(pUQ) + V*(pUW) = p v - v u n .  (2.27) 

If we multiply (2.18) scalarly by p i  'B, and apply (2.19), we obtain 

d,uB + V*IB = -E*J, (2.28) 

where 

B2 E x B  
uB=- ,  p=-. 

2PO P O  

The gravitational energy balance is formulated in Appendix B as 

(2.29a, b) 

drug + V T  = - p v . g  = p ~ - v ~ ,  (2.30) 

where 

(2.31a, b) 
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GEODYNAMO CONVECTION 9 

By (2.8b) and (2.25)-(2.31), we now have 

dp'o'a' + V.[P(€" + fK + U*)V - Z'.V + IB + I@ + TIS + pI'] 

= TaS - Q '  - Q J  + Is .VT + Ic*Vp. 

Comparing this with (2.22) and (2.23), we see that 

I4 = TIS + p15, 

~8 = Q' + Q~ + Q" - P-vT- F v ~ .  

(2.32) 

(2.33) 

(2.34) 

According to (2.34), we may rewrite (2.25) as 

Jt(p&') + V.[peHV + TIS + p I r ]  = Q' + Q J  + Q" + V-Vp. (2.25a) 

We may recall that we assumed in Section 1 that Ir*dA = 0 on the CMB and it therefore 
follows from (2.33) that the net flux of entropy from the core is related to 9b, the net 
heat flux from it, by 

(2.35) 

(In anticipation of developments below, we have supposed here that the temperature, 
T,, of the CMB is predominantly the basic state temperature which is, with high 
precision, almost uniform over the CMB.) 

Equations (2.33) and (2.34) are basic and transcend in importance any constitutive 
relation for Is and It. It is nevertheless essential that those relations be such that gs 2 0, 
with equality only if the system is source-free (QR = 0), current-free ( Q J  = 0), in solid 
body rotation (Q' = 0) and in thermal equilibrium (VT = Vp = 0). The first three terms 
on the right-hand side of (2.34) are non-negative; only the last two terms are problem- 
atical. The answer, for the case of molecular transport of S and (, is summarized in 
Appendix D. We present here only the conclusions: 

kh=$ ,  (2.36,2.36a) 

1 
T 

Is = -(IT + $It), IT = - KTVT, K T  = ~ c , , K ~ ,  (2.37,2.38,2.38a) 

1' = IT + (p + p')15, p' = pS,kS, + h5. (2.39,2.39a) 

Three independent transport coefficients appear here: the diffusivity of light material, 
K <  2 0; the thermal conductivity, K T  2 0 (or equivalently the thermal diffusivity, K ~ ) ,  

and the Soret coefficient, kS,. The remaining coefficients, kf ,  and ht = p' - &k$, are 
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10 S. 1. BRAGINSKY AND P. H. ROBERTS 

thermodynamic properties of the fluid. It follows from (2.34) and (2.36)-(2.38) that 

fJs = fJT + (7r + fJv +of + f J R .  (2.40) 

The individual sources of entropy comprising 0' are 

(2.40a, b) 

(2.40c, d, e) 

which are non-negative since K~ 20, 18 2 0, &. 2 0, Q'2 0, Qf 2 0  and Q R  2 0 .  It 
follows that 0' 2 0. 

In subsequent Sections, we shall frequently require integral forms of (2.2)-(2.4) and 
(2.25). The FOC occupies a volume, VIZ, that changes with time. With the help of the 
relation(va1id for CMB and ICB moving with velocities U, and U, and for an arbitrary 
field Q) 

where A ,  and A2 are the outer and inner boundaries of V12, we deduce from (2.2)-(2.4) 
and (2.25a) that 

(2.42) 

(2.43) 

d ,  [ y , 2  pSdV = I?.,, aSdV - fA,  IS.dA + $A, [I' + pS(V - U2)]*dA, 

d,  jv12 pe'dV = jy., (Q' + QJ + QR + V.Vp)dV - (1' + pUl).dA 

(2.44) 

1. 
[I' + pU2 + p P ( V  - U,)]*dA, (2.45) 

where V, is the volume occupied by the SIC. We postpone discussion of the SIC until 
Section 5. Equations (2.42) and (2.43) contain the statements that the total mass of each 
constituent of the alloy in the entire core (FOC + SIC) is conserved. 

+ I, 

2.2 Continuity Conditions 

Corresponding to the balance laws set out in Subsection 2.1, there are continuity 
demands on the ICB. These can be obtained by using a pill box argument in the usual 
way. The conditions are simplified by the absence of surface currents and masses. It 
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GEODYNAMO CONVECTION 

follows that the magnetic field must be continuous everywhere: 

[B] = 0, on the ICB and CMB, 

11 

(2.46) 

and that the same is true of U ,  and g,: 

[V,] = 0, and [VUJ = 0, on the ICB and CMB; (2.47a, b) 

see Appendix B. (Here [ Q ]  denotes the jump in a quantity Q across the boundary 
concerned.) We also have 

[ T ]  = 0, on the ICB and CMB. (2.48) 

Let n denote the unit outward normal for both the ICB and the CMB. Consider first 
the CMB. According to our model of the mantle (Section l), 

V = U,, n.I< = 0, on the CMB. (2.49a, b) 

Energy balance requires that 

[ . - I q ]  = 0, on the CMB. (2.50) 

In the mantle, B obeys2 

8,B = - V x (qMV x B). (2.51) 

The electrical conductivity of the mantle, l /pOqhf ,  is concentrated near the CMB but 
even there it is much smaller than the core conductivity, i.e. q M  >> q. The magnetic field 
in the mantle must obey (2.46) and must join continuously to a source-free potential 
field in the "vacuum" surrounding Earth. Similarly the U obeying (2.47) must match 
smoothly to a source-free potential outside Earth. 

Consider next the ICB. Corresponding to (2.2), (2.1), (2.3) and (2.22) there are 
continuity conditions corresponding to conservation of mass, momentum, light consti- 
tuent and energy. These are3 

i[pn-(V - U,)] = 0, on the ICB, (2.52) 

on the ICB, (2.53) 
on the ICB, (2.54) 
on the ICB. (2.55) 

[ p  - n. ?'-n + pn.(V - U,)n.V]I = 0, 

[n.{15 + p5(V - U,)}] = 0, 
[n.(Iq - ?"V - pU2 + p(cH + cK)(V - U2)>] = 0, 

'The relative motions in the mantle are too small to have any inductive effect, and are omitted in (2.51). 
Our frame of reference is attached to the mantle so that its velocity of rotation as a whole is zero by definition. 

'Because of the simplified model we adopt for the inner core (see Section 5), we do not need to impose 
continuity of the tangential stress, either on the ICB or on the CMB. We have therefore excluded this from 
(2.53). 
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12 S. 1. BRAGINSKY AND P. H. ROBERTS 

We shall make use of the smallness of the inertial and viscous forces in our application, 
as compared with the pressure gradient, to replace (2.53) and (2.55) by 

[p] = 0, on the ICB, (2.56) 
(2.57) [n.(Iq - ~ E ~ ( V  - U 2 ) f ]  = 0, on the ICB. 

By (2.33), we may write the last of these as 

[ ( E G  - m n ~  - u2)a + [P+ + P w  - wn 
+ [[Tn.{Is + pS(V - U,)}] = 0, on the ICB. (2.58) 

The ICB is a surface in phase equilibrium, at which therefore4 

[p i  = 0, - pLcJ = 0. on the ICB. (2.59,2.60) 

Applying (2.48), (2.52), (2.54), (2.59) and (2.60) to (2.58), we obtain 

on the ICB. [n-{Is + pS(V - U2)}] = 0, (2.61) 

This shows that entropy is conserved at the ICB; there is no surface source of entropy 
corresponding to a breakdown in the continuum approximation there. (Velocities are 
so small that inertia is negligible, and there is no shock at the surface of discontinuity.) 
Conditions (2.57) and (2.61) are now seen to be equivalent, and we need use only the 
more convenient, which is usually (2.61). 

The ICB is a no-slip surface, so that 

[n x (V - U,)] = 0, on the ICB. (2.62) 

3. THE REFERENCE STATE 

It is extremely convenient to describe magnetoconvection in the core as a departure of 
core conditions from a basic reference state. The most convenient reference state is 
a hydrostatic, well-mixed, non-magnetic state. It is therefore governed by (2.1) with 
V and B set zero, by (2.5), and by statements that the state is isentropic and chemically 
homogeneous: 

pa- ‘Vp, = - vu, = g,, 

V*(PaVa) = - b a ,  

vt, = 0, 
vs, = 0, 

V2 U ,  = 4nkNp, - 2R2. 

4See for example Loper and Roberts( 1978). Alternatively, we may recall (see Appendix D) that p = pL - p H  
and cG = pLtL + p H t H ,  where tL = [, t,, = 1 - [ and the suffices L and H refer to the light and heavy 
constituents of the alloy. Thermodynamic equilibrium requires that [ p L ]  = [ g H ]  = 0, and these imply (2.59) 
and (2.60). We shall later use the fact that E‘ - pt = p,,; see footnote 5 below. 
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GEODYNAMO CONVECTION 13 

The suffix a is used to distinguish variables in this adiabatic state. Since the gravi- 
tational field appearing in (3.1) and (3.5) is created by pa and not the full p, we have 
replaced the effective field, g,, and effective potential, U,, of Section 2 by g, and U ,  
rather than by the more cumbersome g,, and U,,. 

A few comments should be made about (3.1)-(3.5) as applied to the FOC. First, 
although the state was described as hydrostatic, it is important to incorporate the fact 
that it is slowly evolving on the geological time scale: the inner core grows secularly and 
the concentration of light constituent in the core fluid increases as it does so. It is 
particularly necessary to recognize that fact in equation (3.2) of mass conservation. This 
accounts for the presence of the term involving 0, on the right-hand side of (3.2) and 
the term involving V, on its left-hand side. Both these terms would be absent in a truly 
hydrostatic state, and in the geophysical context they are minute, but necessary in 
order to incorporate evolution on the geological time scale. Their effect on convec- 
tive and magnetohydrodynamic processes is negligible. Because V, and d,V, are so 
small, they can be (and have been) discarded in (3.1), resulting in the hydrostatic 
equation shown. 

Second, since 5 ,  and S ,  are, by (3.3) and (3.4), functions o f t  alone, it follows that 
spatial variations in 

arise only because of variations in pa, the gradient of which is determined by (3.1). In this 
way we find that in the basic state 

(3.7a, b, c) 

We have here introduced the entropy coefficient of volume expansion, as, which plays 
a larger role in our work than the more familiar isothermal coefficient of volume 
expansion, a,  to which it is related by 

as = - p -  ‘(ap/dS),,, = aTfc,; (3.7d) 

see (D18). A more familiar form of (3.7b) is 

T,-‘VT, = yg,/u:, y = aug/cp, (3.7e,f) 

where y is the Gruneisen parameter. The gradients (3.7) are generally called “adiabatic 
gradients”. 

Because of centrifugal forces, the surfaces of constant U ,  are not spherical, but it is 
clear that pa, pa and T,, are constant on surfaces of constant U,, and that they can all be 
labeled uniquely by that value of U,. This is also true of all other thermodynamic 
parameters, such as 01, y ,  us, cp,. They too are, through U,, functions of position; for 
notational simplicity, we have not added the suffix a to these variables in (3.7) and shall 
not do so below. Since S, and 5, are constants, the density is, according to (3.3), (3.4) and 
(3.6a), a function of pressure alone: pa = p(p,). When equations (3.1) and (3.5) are solved, 
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14 S. I. BRAGINSKY AND P. H. ROBERTS 

subject to suitable boundary conditions for U ,  and with the density a given fnction of 
the pressure, solutions are obtained in which the surfaces of constant U ,  coincide with 
those of constant p ,  and pa .  This is required for self-consistency. The problem of 
determining such solutions is known as the problem of determining the equilibrium 
figure of Earth, and (3.1) and (3.5) define the part of this problem that pertains to the 
core. In reality the figure of Earth deviates slightly from the hydrostatic equilibrium 
figure. It may be noted that, if (3.1) is supplemented by the equation of heat conduction 
rather than (3.4), it is no longer true that p a  = p(p , )  and, for a general distribution ofheat 
sources, there is no solution in which the surfaces of constant p and p coincide. The 
hydrostatic problem then has no solution, as can be seen immediately by taking the curl 
of (3.1). This means that an imbalance of forces exists which results in some circulations 
if the gravitating body is fluid. In a fluid-like inner core this would result in meridional 
motions but, since the effective viscosity of the inner core is so high, these would not be 
significant in the leading approximation (3.1). In an elastic inner core, the imbalance of 
forces would create deviations in the surfaces of constant p and p ,  but these would again 
be so small that they would easily be balanced by elastic stresses. In either case, we may 
safely neglect the imbalance of forces in the SIC and use (3.1)-(3.5) there, as in the FOC. 
See also Section 5. 

Equations (3.3) and (3.4) express the fact that we are interested only in convection 
that is so intense that all extensive properties of the basic state are well-mixed by the 
convection that is superimposed on it. Of course, this will not be true in the boundary 
layers at the ICB and the CMB, where the fluid moves with the adjacent solid, and 
vertical mixing by convection is small or absent. In the bulk of the core however, where 
the approximation is a good one, the thermodynamic variables in the convective state 
differ from their values in the basic state by so little that the difference can be treated as 
a perturbation; see Section 4. In fact, the more vigorous the convection, the better the 
perturbation treatment works5. The choice of an adiabatic hydrostatic reference state is 
usually made, though in disguised form, when modeling laboratory systems. The 
variation in pressure across these is so slight that the assumption of constant entropy 
differs little from the assumption of constant temperature, To. The difference, ATa, in 
the adiabatic temperature across the system is small compared with the typical 
temperature differences, T,, associated with the convection, in sharp contrast to Earth’s 
core where T, .., 10-6AT,. 

We noted above that the adiabatic well-mixed reference state is close to being 
realized throughout the entire voiume of the fluid core apart from thin nonadiabatic 
boundary layers of thickness 6,, (say). If nothing special occurs near the ICB and CMB, 
these layers will be very thin, as the following argument shows. Suppose that the 

’The system is very far from being in the steady state that might exist were convection weak (or absent) and 
the core close to (or precisely in) “sedimentation equilibrium”, where T, and tG - ( p  + U ,  = pH + ci, are 
constant. The composition and entropy are not uniform in such a state, and it  cannot be regarded as 
a perturbation of a well-mixed adiabatic state. Such a quiescent ‘steady state’ is unrealistic for the core. Even 
if the core were isolated, such a state would arise only after a time of order zSed = L2/d - lO”yr, which is 
much greater than the age of Earth. (Here K< is the molecular diffusivity.) In the well-mixed state considered 
in this paper, (2.1 l), (3.3) and (3.4) show that Vtf =‘pa- ‘Vp,,. It therefore follows from (3.1) that tf + Ud is 
constant. 
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GEODYNAMO CONVECTION 15 

temperature gradient deviates significantly from its adiabatic value, V,T,, over the 
length 6",. Then a temperature perturbation 6T - S,,,V,T, will arise that results in 
a fractional density perturbation of 6C - u6,,,V,Ta. Equating this to C, - (a value 
we later show is characteristic of the FOC), we obtain 6,, - C,/crV,T, - 1 m, where we 
have assumed that V,T, N 1 OK km-' = lop3 "Km-' and a-  lo-' OK-'. In fact, 
however, special physical processes may become significant near the ICB (e.g. Loper 
& Roberts, 1981, 1983) and near the CMB (Braginsky, 1993) which invalidate these 
estimates of 6,, and 6C, which are found to be much too small. These special boundary 
layers will not be considered in the present paper. 

Let us now consider the different types of inhomogeneities that arise in the core. The 
greatest inhomogeneity in the reference state is connected with the variation across the 
core of variables such as pa and T,; see (3.7). This variation can be measured by a small 
parameter, E,, where 

Taking the characteristic length over which the density changes to be L - lo6 m, the 
gravitational acceleration at the CMB to be g1 = 10.68rnsK2, and the velocity of 
longitudinal sound waves to be us - 104m s- ', we obtain E, - 0.1. 

The appropriate dimensionless parameter with which to assess the importance of 
centrifugal forces on the structure of the reference state is 

€, = 4RZL/g,. (3.9) 

Using the values given above, we find that E, % 2 x lop3.  Because of centrifugal forces, 
the surfaces of constant U, are not quite spherical. They resemble more oblate 
spheroids with an ellipticity of order E,, which is approximately 1/299.8 at the 
surface of Earth, and varies across the fluid core from e l  = 1/393.0 on the CMB 
to e ,  = 1/414.9 on the ICB; see Mathews et al. (1991), a paper from which we also took 
the abbreviations FOC and SIC. This ellipticity is very significant for core motions that 
are driven by the precession and nutation of the Earth's rotation axis. It is, however, 
insignificant for the slow convection that drives the geodynamo. We shall therefore 
neglect it here and assume that all thermodynamic variables are functions of r alone in the 
reference state. 

A further significant dimensionless parameter is 

E, = 2RV/g, (3.10) 

where Vis a typical convective flow speed. This measures the relative importance of 
Coriolis forces associated with the convection and gravitational forces acting on the 
basic state. It is a more significant quantity in more dynamics than V2/gL, which is the 
ratio of inertial forces on the convection to the basic gravitational force; inertial forces 
play a negligible role in core convection. Traditional estimates of V are of order 
3 x 10-4ms-1, based on the velocity of westward drift; integrations of model-Z 
(Braginsky, 1978) lead to values 10 times greater. If we take V =  10-3ms- '  as 
a compromise, we obtain E, - lo-'. The smallness of E, is extremely significant from 
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16 S. I. BRAGINSKY AND P. H. ROBERTS 

a dynamical point of view: E, provides an estimate of the error made in supposing that 
the reference state is in hydrostatic equilibrium (3.1) and in adopting (3.3) and (3.4). Its 
smallness justifies the omission of Coriolis, magnetic and buoyancy forces in modeling 
the reference state. 

The parameter E, may be related to a further small parameter which compares 
the time scale z, over which the basic state evolves and the time scale 5, of core 
convection: 

E; = '5, f z,. (3.11) 

Depending on the physical process considered, these times span wide ranges. The 
time scale z, is sometimes called the "geological time scale", although this may 
be somewhat inappropriate since it suggests that za, is of the order of 4.5 109yr, 
this being the age of the Earth. In reality, the temperature of the core has diminished 
only to a small degree during its history, and zu, defined as T,/Tu, greatly exceeds 
4.5 x 109yr. We expect in fact that that z, - 10"yr - 10" yr. The time scale 5, 

is even more uncertain. At one extreme, convection associated with turbulence 
operates on time scales of a few years; at the other extreme, large-scale MAC 
waves typically vary on periods of lo3 yr, which also characteristic of convective 
overturning; the time scale of the general circulation of the core is - 104yr. 
If as a compromise we take 7, - 4 x 10"yr and 5, - 400yr, we obtain E; - lo-*, 
but this value is extremely uncertain. In what follows, we shall usually not distinguish 
between E: and E,, writing either as E,. 

Finally we list in Table 1 some properties of the core that are well determined. They 
are mostly taken from the PREM model of Dziewonski & Anderson (1981). For 
a discussion of these and other core parameters, see Appendix E. 

One quantity in Table 1 deserves special comment, namely A p ,  the density jump at 
the inner core boundary. This plays a very significant role in our theory. According to 

Table 1 Well-determined Parameters 

R, = 6.371 x lo6 m 
R ,  = 3.480 x lo6 rn 
R,= 1.2215 x 106m 
p o  = 10.9 x lo3 k g m - 3  
p1 = 9.9035 x lo3 k g m - 3  
p z  = 12.166 x 10' k g m - 3  
p R =  1 2 . 7 6 4 ~  103kgm-3 
p(O)= 13.088 x 10'kg11-~ 
A p  = pN - pz = 0.6 x lo3 kgm- '  
g1 = 10.681ns-~ 
g z = 4 . 4 0 m s - 2  
p1 = 135.75GPa 
pz = 328.85 G P a  
p(0) = 363.85 G P a  
usl =8.065 x lO3rns-'  
usz = 10.356 x lo3 m s - l  

average radius of Earth, 
radius of the fluid outer core (FOC), 
radius of the solid inner core (SIC), 
mean density of the FOC, 
density of the FOC at  the CMB, 
density of the F O C  at the ICB, 
density of the SIC at the ICB, 
density a t  the geocenter. 
density jump at the ICB (relatively poorly known), 
acceleration due to gravity at the CMB, 
acceleration due to gravity a t  the ICB, 
pressure at the CMB, 
pressure at the ICB, 
pressure at  the geocenter, 
longitudinal seismic velocity in the FOC at  the CMB, 
longitudinal seismic velocity in the FOC at  the ICB. 
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GEODYNAMO CONVECTION 17 

Don Anderson (private communication), the error in the value shown can be no more 
than 20%, i.e. 0.5 x lo3 kgm-3 < A p  < 0.7 x lo3 kgm- ’. See also Jephcoat & Olson 
(1987) and Shearer & Masters (1991). 

4. THE NATURE O F  CORE CONVECTION 

4.1 The Anelastic Approximation 

We stressed in Section 3 that our basic reference state depended on the presence 
of convection sufficiently vigorous to homogenize the entropy and chemical 
composition of the fluid core; see (3.3) and (3.4). In this section we study this 
convection explicitly. 

We noted in Section 1 the existence of two distinct time scales: the slow evolutionary 
time scale, z,, of the reference state, and the much shorter time scale, z,, associated with 
convection. It is often convenient to employ a two time scale procedure in which t, 
denotes slow time and t ,  fast time. The reference state depends on t ,  alone; the 
superimposed convection depends on both t, and t,, and a, = 8; + a;. Wherever it 
cannot lead to confusion, we replace 3; by an overdot, and omit the superfix c on 3; 
and d;. 

We decompose all quantities into basic and convectional parts, writing 

(4.0) 
P = P .  + P C ,  

p = p a  + p , ,  
T =  Ta + Tc, 
U = U ,  + U , ,  

5 = 4, + t c ,  
g, = g, + g,, 

s = s, + s,, 
V = V, + V,, etc., 

where the subscript c on a quantity shows that it is associated with the convection. On 
substituting (4.0) into (2.1)-(2.5) and making use of (3.1)-(34, we obtain 

Here and in what follows, we for brevity omit the suffix a on thermodynamic 
functions evaluated in the reference state, while retaining them on pa,  S,  and 5,. 
For example, us appears below in place of us,. The superfix has been omitted from 
df and a;. 

In deriving (4.1)-(4.4), all terms of order E, times the corresponding terms in the 
reference state have been retained; those of order E,‘ have been discarded. The fact that 
p J p ,  = O(E,) << 1, SJS ,  = O(E,) << 1, = O(E,) << 1, allowed us to replace p in many 
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18 S. I. BRAGINSKY AND P. H. ROBERTS 

terms of (2.1)-(2.7) by pa,  a simplification also made frequently below. Consider 
for example (4.1). The quadratic term p,g, has been discarded. In the term 
pd,V = ( p ,  + p,)(dy + d; ) (V ,  + V,), we recognize that dp/df and V,/V, are both O(E,), and 
that therefore the dominant part of pd,V is p,dfV,. The same process of linearization 
allows us to replace (2.16) by 

p , , ~ ~  = J x B. (4.8) 

We shall also replace (2.1 1)-(2.13) by the single equation 

pF” = p,vV2V, (4.9) 

an approximation we discuss further below. 
The constitutive relations (2.36)-(2.40) for It, Is and oS may be simplified similarly. 

For example, P K < ,  k ; / T  and k t / p  in (2.36) may be evaluated in the reference state, and 
may therefore be written as  pa^<, k$/Ta and k:/p, where (see above) the suffix a on K C ,  
k$ and k i  is implied but suppressed. It would however be incorrect to replace V t ,  V T  
and V p  in (2.36) by V t ,  = 0, V T ,  and Vp,.  Although It,\ << It,/ and I TcI << I TaI, an 
important component of the convective motions is on small length scales associated 
with turbulence, and it is not necessarily true that lV<,l<< lVt , l  and / V T , /  -K / V T , J .  
Similar remarks apply to all of equations (2.36)-(2.40). 

The smallness of p,,  S,, t,, pc, etc. allows “thermodynamic linearization”, by 
which we mean that we may, with an error only of order E,, inter-relate the devia- 
tions, p,, T,, p,, etc., created by the convection in p ,  T, p, etc., by applying relations 
such as (D5)-(D7) or (D13)-(D15), treating p,, S,, c,, pa etc. as the infinitesimals 
dp ,  dS,  d t ,  d p ,  etc. [An example is given in (4.16) below, which follows from 
(D13).] The resulting simplifications are very significant, but in Section 8 we 
shall reduce the complications still further by introducing what we shall call 
“the homogeneous model” or “the modified Boussinesq model”. In the homo- 
geneous model, we approximate all thermodynamic coefficients, such as a, us 
etc. by constants, while in the present inhomogeneous model they are functions 
of r .  

Equation (4.2) goes beyond thermodynamic linearization; it incorporates what is 
generally called “the anelastic approximation”. It is justified by noting that 

(4.10) 

The replacement of p V  = (pa  + p,)V in (2.2) by p,V in (4.2) follows as before from the 
smallness of p,. The absence of the time derivative of the density in (4.2) excludes elastic 
waues from the solution of system (4.1)-(4.9) and explains why the approximation is 
termed “anelastic”. The slow motions, characterized by (4. lo), are included, while 
uninteresting high frequency oscillations associated with sound (seismic) waves are 
filtered out. If, instead of (4.2), V - V  = 0, (4.9) would, for constant pv ,  be an exact 
consequence of (2.1 1)-(2.13); since V p ,  # 0, (4.9) is not precisely correct. It should be 
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GEODYNAMO CONVECTION 19 

borne in mind however that we are concerned with small viscosity flows in which F’ is 
significant only in thin boundary or shear layers across which p a  and v vary little. The 
expression (4.9) therefore holds with high accuracy wherever F” is non-negligible. 

4.2 A Signijicant S impl i jka t ion 

We devote this subsection to a remarkable simplification of (4.1). We introduce 

p = “  P 
P a  

c = - ass, - art,, (4.11,4.12) 

(4.13,4.14) 

the last two of which are a new “effective” pressure and density; we call P “the reduced 
pressure”. The quantity C plays such a central role in the theory that, in our opinion, it 
merits a name. We propose to call it the  codens i ty .  It determines the buoyancy force due 
to the deviation of the density from the well-mixed basic state of constant Sa and tu. 
Note that C is independent of pc. 

The first three terms on the right-hand side of(4.1) may, with the help of (4.13), (4.14) 
and (3.7a), be written as 

uc> ga + pcga = - v p ,  + pega.  (4.15) 
= -vPe+us 

The expression for p, that follows from (D13), namely 

1 
= 2 p ,  - assc - aq,, 

Pa Paus 

may be written in terms of C and the effective variables (4.13) and (4.14) as 

This leads to further simplifications in (4.15). We have, by (3.7a) and (4.11), 

(4.16) 

(4.17a, b) 

so that by (4.17b) 

- VPe + Peg, = - PaVP + Pacga. (4. 

It follows from (4.15) and (4.18) that (4.1) may be written in the very simple form 

d,V = - V P  + C g a  - 2&2 x V + F’ + FB. (4. 9)  
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20 S. I. BRAGINSKY AND P. H. ROBERTS 

The resemblance of (4.19) to the Boussinesq momentum equation is so striking that it is 
worth re-iterating here that (4.19) is a consequence of the assumption of an adiabatic, 
well-mixed reference state. Its precision is of order E, - lo-*. It should be stressed that 
the density inhomogeneity is taken into account in (4.19) through (3.7a). The elastic 
part, p,/ug, of the density perturbation has not been neglected but has been absorbed 
into P. Equation (4.19) shows clearly that the buoyancy force associated with devi- 
ations of order E, from a well-mixed adiabatic state is created only by the codensity 
through variations in entropy and composition; the buoyancy force associated with 
pressure variations, though it may be equally large, does not contribute because it is 
conservative and can be absorbed into the effective pressure to create the potential 
term, - VP, in (4.19). It does not contribute to the generally non-potential term, Cg,. 
This is the basic reason why the codensity plays such a central role in the theory and 
why it deserves a special name. 

Through the reductions made here, the unpleasant necessity of computing U ,  
during the process of solution is evaded; gc = -VU, has been eliminated from 
(4.1), though it has not been neglected. After the solution has been completed, U ,  
can, if desired, be evaluated by solving (4.5). Though (4.19) resembles the 
momentum equation for Boussinesq theory, the anelastic continuity equation (4.2) 
is unchanged and is very different from the corresponding equation (V-V=O) of 
Boussinesq theory. Thus, our simplification is not tantamount to a reduction to 
Boussinesq theory. 

4.3 Core Turbulence: General Considerations 

We now discuss a very significant component of the convective motions: turbulence. It 
is hard to doubt that the core is mixed far more effectively than molecular diffusion 
coefficients such as 18- 10-8v would suggest and that this is due to turbulence. 
Because of the notorious difficulties of turbulence theory, and because it would in any 
case be impractical to add such difficulties to the already formidable geophysical 
complexities, only a simple "engineering" approach to core turbulence has so far been 
contemplated. In this approach, one writes 

V =  ( V ) ' +  V+, t, = {t,)'+ t:, etc., (4.20) 

where (V')', ((+)I, etc. are zero. The averages are over an ensemble of realizations of 
the turbulence. More practically, they are taken over the short length and/or time scales 
of the turbulent components. One seeks to determine the evolution of the average fields 
(V)', (B)', (t)', ( S ) ' ,  . . . , and to replace (4.1)-(4.9) and (2.36)-(2.40) by equations 
governing those averages. The effects of turbulence are supposed to be local so that, as 
for molecular transport processes, all turbulent transport fluxes at a point are propor- 
tional to gradients at that point. For example, in the simplest ansatz, the flux I<' of mean 
composition and the flux 1'' of mean entropy due to turbulence are proportional to the 
local gradients of ( g , ) t  and ( S,)': 

It' = - p,#'.V( t,)', IS' = - paZ'.V( S,)'. (4.21,4.22) 
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GEODYNAMO CONVECTION 21 

The fluxes are thus not parallel to the gradients but are linearly related to them by the 
tensor Hf and, more importantly, the significant turbulent transport coefficients 
contained in H' greatly exceed the two molecular scalars. 

Not surprisingly, It' and Is' are large compared with the molecular contributions 1'" 
and Ism to If and IS obtained by averaging (2.36)-(2.40).6 Since the turbulence 
transports 5 and S in the same way, the same tensor, E', arises in both (4.21) and (4.22). 
Double diffusion processes in the core therefore differ greatly from double diffusion 
processes in the laboratory of the type investigated by Cardin & Olson (1992). The 
transport of ( 4 , ) '  and ( S , ) '  in the core differ not because these quantities diffuse 
differently (that happens only in laboratory conditions) but because their sources are of 
a different nature. The light component is injected from the ICB but thermal convection 
is principally determined by the ability of the core to transmit heat to the mantle; the 
latent heat emitted during freezing at the ICB may be secondary, though it is not very 
small. 

It is hard to avoid parametrizing turbulence in this way. Anyone who prefers 
instead to employ the primitive variables, V, B, t,, S,, . . . , and the corresponding 
forms (2.36)-(2.40) for I(, Is and (Y' is free to do so, but he must then use values 
of rcT and rcC of at most 10- 5q and l O - * q  respectively, and therefore must contend with 
enormous Rayleigh numbers and other dimensionless parameters. The resulting flows 
would be turbulent and would require him to strive for impossibly high numerical 
resolutions. Sooner or later he would be forced to accept an engineering approxi- 
mation, probably of the type we seek to develop here. The turbulent transport 
coefficients that then arise are of order t V t  - 1 m2s-', which is many orders of 
magnitude greater than 18 and is even much larger than rcT. (In making this estimate, we 
have taken t - 104m and have assumed the moderate value 10-4ms-1 for the rms 
turbulent velocity, V.)  

Even within the engineering approximation, several different scenarios have 
been proposed. Braginsky (1964b) and Braginsky & Meytlis (1990) supposed that 
motions in the core exist on essentially only two, widely disparate, scales, the 
macroscale L and associated time scale z,, and the microscale t and related time scale 
zt. According to their theory, local turbulence consists of an ensemble of plate-like 
cells having thicknesses, t,, in the s-direction much less than their other two ( z  
and 4) dimensions, both of which are of the order of the microscale t. They argue 
that, because of the smallness of t,, the turbulent microscale magnetic Reynolds 
number is very small, so that microscale induction does not seriously modify Ohm's 
law for the macroscale. The mean field, (B)', is therefore governed by (4.6) with the 
mean velocity (V)' replacing V but with the same molecular value of 4. They derive 
expressions for E' that are of order q, but they do not derive an approximate form for 
the Reynolds tensor, Z'. 

The Braginsky-Meytlis picture is not the only possibility. There is a second 
scenario that is theoretically extremely complicated: large-scale turbulence 
arising from the instability of MAC waves of planetary scale. Such a turbulence 

6The adiabatic gradient (3.7b) makes, however, a contribution to 1; which should not be neglected; see 
belw. 
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22 S. 1. BRAGINSKY A N D  P. H. ROBERTS 

would be of the classical type, involving “cascade” from macroscale to micro- 
scale, i.e. the microscale envisaged by Braginsky & Meytlis (1 990) would overlap 
with a macroscale, and their estimates of iz‘ would be invalid; perhaps even 
the forms (4.21) and (4.22) themselves would be inadmissible. Possibly a 
turbulent Ohm’s law (including a turbulent a-effect) would also be required, 
as in mean field electrodynamics. One way of investigating whether this second 
scenario is plausible or not would be first to solve the large-scale convection 
problem on the assumption that the turbulence is of Braginsky-Meytlis type, 
i.e. I<‘ and Is‘ from (4.21) and (4.22) would be used rather than the corresponding 
molecular expressions given by (2.36)-(2.40). Second, the instability of that 
state would be sought. If it were unstable, transition to cascading turbulence 
would be anticipated, i.e. the second scenario would be plausible. It seems likely, 
however, that the enhanced diffusion associated with R‘ would help to stabilize 
large-scale motions. If this were the case, the second scenario would not be plausible. 
Stevenson (1979) developed a heuristic theory of core turbulence, based on the 
assumption that all three characteristic dimensions of the cells are of the same order, L, 
as that of the core. His results may be relevant to the second scenario but should be 
treated with caution because of the possible influence of smaller scales of turbulence on 
the larger scales. 

A third scenario has been proposed by Moffatt (1989) and Moffatt and Loper 
(1994). They imagine that the light material emerging from the ICB during 
freezing rises in discrete blobs of dimensions P between 10’m and 104m and 
perhaps most typically 103m. They suppose that these blobs preserve their identity 
as they ascend from ICB to CMB. [To the contrary, the simulations of St. Pierre 
(1995) suggest that the blobs will be enormously distorted after rising only a few 
hundred km from the ICB.] Moffatt (1989) and Moffatt and Loper (1994) argue 
that, as they rise, the blobs induce helicity sufficient to self-excite a magnetic field. 
A full statistical theory of blob motion has not yet been developed. One may imagine 
that at one extreme, where the blobs interact strongly with one another, such a theory 
would have strong points of similarity with that of Braginsky & Meytlis (1990). At the 
other extreme, in which the blobs interact weakly, it may be possible to develop 
a theory based on a rarefied “gas” of blobs. Further investigations will be required 
before the role of blobs in core MHD can be properly assessed, but one may again 
anticipate that, from a statistical mechanics of blobs, a transport theory will emerge 
that fits into the general framework we have developed below, albeit with a different 
form for 2‘. 

Which of the three scenarios is geophysically the most realistic is unknown. The 
Braginsky-Meytlis scenario is, at the present time, the most highly developed and (we 
believe) the most plausible. It does, however, rest on uncertain ground. In the absence of 
magnetic field, Coriolis forces impart a columnar structure to convective motions; see 
for example the theoretical studies of Roberts (1968), Busse (1970, 1994), and Glat- 
zmaier & Olson (1993), and the experimental investigations of Busse and Carrigan 
(1974,1976) and Boubnov & Golitsyn (1986). It is plausible that Lorentz forces will 
stretch these structures in the direction of the magnetic field (i.e. primarily longi- 
tudinally, the +direction) and that the convective cells of core turbulence will 
therefore be plate-like. The uncertainties were highlighted by Braginsky (1964b), who 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
3:

08
 0

9 
Ju

ly
 2

01
4 



GEODYNAMO CONVECTION 23 

concluded that additional analysis was necessary before answers could be given 
to crucial questions such as: 'How long are the cells in the z-direction (i.e. parallel to 
a)? 'What is the mechnism that limits their length L'(<<L) in the z-direction? 
The lengthening of the plate-like cells depends on the diffusivities operating on 
the instabilities that produce those cells. In Earth's core, the most significant composi- 
tional diffusivity is nevertheless small. It is difficult to believe that cells of a thickness, 
t,, of only about 1 km extend across the FOC from one hemisphere of the CMB to 
the other. But what is the mechanism that "breaks-up'' these cells? At the present 
time this question has no satisfactory answer. Braginsky & Meytlis (1990) suggested 
a heuristic approach which predicts that the plate-like cells have comparable di- 
mensions in the z- and $-directions, and about 20 times smaller in the s-direction (i.e. in 
the direction away from the rotation axis). A complete theory of turbulence in the 
presence of Coriolis, Lorentz and buoyancy forces is for the present no more than 
a dream. 

4.4 Core Turbulence: Averaged Equations 

Let us now proceed more formally to derive the average forms of (4.1)-(4.7). Most 
discussion centers on (4.3) and (4.4), which by (4.2) may be written as 

Let us focus first on (4.23). Its average is 

where I r m  = ( I r ) '  is the molecular flux due to the average gradients, and 

It' = p a (  ty')' (4.26) 

is the turbulent flux of light component. From the average of (4.2), we see that (4.25) 
may be written as 

where Ifotal = It'" + I@ is the total irreversible flux of admixture due to molecular 
diffusion and turbulent mixing, and d, = 8: + (V)'-V is the derivative following 
the mean convective motion. This has exactly the same form as (4.3) but with 5, 
replaced by (c,) ', and I r  replaced by I:otal, The term I<" = I F  + If" consists of two 
parts, the first being the result of substituting Vt, ( = O ) ,  VT, and Vp, into 
(2.36); the second arises similarly from the averaged gradients V(<,)', V( Tc)* and 
V(pc)' and is extremely small. Even the first term, Is", is minute because of the 
smallness of the molecular diffusion coefficient: - 10- 'q.  From now on, we shall 
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24 S. I. BRAGINSKY AND P. H. ROBERTS 

recognize that I<' is the dominating part of It5,tal and shall write 

I:otal = Itrn + I" N It'. (4.28) 

This approximation was suggested by Braginsky (1964b). The final form of (4.27) is now 

pad,( 4,)' + V*15' = -pa[ , .  (4.29) 

The consequences of (4.4) follow similar but more complicated lines, because of the 
necessity of obtaining an expression for ( 8)'. As in (4.26) and (4.28), a total irreversible 
entropy flux, ISotal = Is" + Is', replaces the molecular flux, and 

IS' = pa ( s :v + )', (4.30) 

but the molecular diffusion term Ism = 19" + 1s" cannot here be omitted. The thermal 
diffusivity, tcT - lO- 'q ,  greatly exceeds the compositional diffusivity, K< N lO-*q,  and 
we must retain Is" in (4.30) to allow for the molecular diffusion of heat down the 
adiabat. On neglecting 15" and using (2.37) and (2.38), we find that the molecular flux is 
approximately 

(4.3 1 )  

The total entropy flux is approximately 

lSota, = T ~ -  l ~ T  + I ~ ' ,  = - K ~ V T , ,  (4.32,4.32a) 

where, for brevity, IT  has replaced 1:'". The total heat flux, IQotal, may now be obtained 
from (2.33) by making use of (4.28) and (4.32) 

Ifotal = TaISotal + paI:ota, = IT + TaIS' + paI? (4.32b) 

We may write the average of (4.4) as 

pad, ( S,)' + V .Is' = - pasa + V * [( K T/T,)V T,] + ( oS)', (4.33) 

but an expression for (aS)' is still lacking. Before deriving it, we raise and dismiss an 
apparent inconsistency that arises when we compare (4.26) and (4.30) with (4.21) and 
(4.22). The former expressions for I<' and Is' vanish on the walls where Vt = 0, but 
there is no reason why the latter should; indeed, for the success of our later 
considerations, there is every reason why they should not! The paradox evaporates 
when we recognize the existence of boundary layers on the ICB and CMB. At the 
edges of these layers, turbulence is strong; the fluxes are nonzero and are given by 
(4.2 1) and (4.22). Within a boundary layer, the turbulent fluxes diminish to zero with 
the vigor of the turbulent motions as the wall is approached, but this is 
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G EODY NAMO CONVECTION 25 

simultaneously compensated by an increase in the molecular fluxes, the gradients in 
( 5 ) '  and ( T)' growing to make that possible. We are not concerned here with the 
detailed structures of the boundary layers, but we have to appeal to their existence in 
order to justify the application of(4.21) and (4.22) even "at the walls", by which we mean 
"at the edges of the boundary layers attached to the walls". 

Returning now to the evaluation of ( as)', we adopt the Reynolds analogy, in which 
transport through the random motion of the turbulent eddies is likened to that of the 
random molecular motions, although with much larger diffusion coefficients. In (2.34) 
we see included, within the rate of entropy production as, contributions made by the 
molecular fluxes, I5 and Is. In analogy, we use the same expression for ( as)', the rate of 
increase of entropy created by both molecular and turbulent diffusion, i.e. we replace I5 
and Is in (2.34) by Ifatal = I<' and I~a,al = 1;"' + I". I t  should be particularly noticed that, 
according to the Reynolds analogy, the gradient operators scalarly multiplying these 
diffusivefiuxes now act not on 5, = ( 5,)' + 5; and S, = ( S ,  )' + S: but on (5,)' and ( S , ) ' .  
Thus VTand Vp in (2.34) are nor V(Ta + T,) and V(pa + p,) as in the molecular case but 
are V( Ta + ( T,)') and V(pa + ( p,)'). And ( T, )' and ( p,)' vary on the same length scale 
as Ta and pa, namely the macroscale L. Thus, while it was incorrect, because of the small 
length scale, Ti, over which T: and p: vary, to ignore VT, and Vpc in comparison with 
VT, and Vpa (see above), we may make use of the smallness of I (  q)'l/lTal and 
I ( pc)'l  / I  pa I to replace V T and Vp in (2.34) by VT, and Vpa, with an error only of order 
E,. We may therefore write 

where by (4.32) 

(4.35) 

cf. (2.40a). By (3.7b, c) and (4.34), we have 

(2)' = ( + ( G J ) '  + rJR + aT + a', (4.36) 

where 

According to (4.21) and (4.22), we may rewrite (4.37) as 

a' = P"ga-R'-( Crsvs, + a'vg,)'. 
Ta  

(4.37) 

(4.38) 

To avoid violating the positivity of entropy production, we must set R' zero at all 
points at which a', as calculated from (4.38), is negative. We demonstrate in 
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26 S. I. BRAGINSKY AND P. H. ROBERTS 

Appendix C that, to a satisfactory degree of approximation, the regions where d > 0 
are those that are gravitationally unstable and, as a result, are sources of turbulence. 
Regions in which (4.38) gives 0' < 0 are locally stable; turbulence is then absent and the 
turbulent fluxes I r f  and Is' are zero, as is 0'. 

Most of the remaining terms in (4.1)-(4.7) are linear and easily averaged. Indeed, (4.2) 
and (4.5)-(4.7) are unchanged on averaging. Two further issues concerning turbulent 
transport arise in connection with the equation of motion (4.19). All but two terms of 
(4.19) are linear and easily averaged. Using (4.2), we may write the inertial term with an 
error of order E ,  as pdtV = paa:V + V-(p,VV). When we average we obtain 

where 

;;Vf = - pa( VtVt)' (4.41) 

is the Reynolds stress tensor. Again using the Reynolds analogy, we may expect that 

lt: = paV$,Vk( V,)', (4.42) 

where 5"' is the (fourth order) turbulent viscosity tensor, anisotropic because of the 
effects of Coriolis and Lorentz forces on the turbulence. It has 36 independent 
components, since without loss of generality V$ = v& = v$. It is also necessary that 
the associated entropy production, ( eij)lnT = pav$Vi( Vj)'Vk( V,)', is nonnegative. 

The other nonlinear term arising in (4.19) is the Lorentz force. This is similar to the 
inertial force and may be treated in a similar way: 

p, (F')' = (J  )' x (B)' + ( Jt x B')'. (4.43) 

Because the magnetic pressure can be absorbed into p,, (4.43) is effectively equivalent to 

- (B~B+)'.  
1 

where FBI - - 
PO PO 

pa( FB)' = -V.[( B)'( B)'] + V.iSBf, 

(4.44,4.45) 

According to the local turbulence theory of Braginsky & Meytlis (1990), the magnetic 
Reynolds number of the microscale motions is very small, and a linear relationship 
therefore subsists between Bt and Vt: 

Bt = m. IJ .V? J '  (4.46) 

According to their estimates Bt - Vt; see Appendix C. It follows from (4.46) that (4.45) 
can be written as 

(4.47) 
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GEODYNAMO CONVECTION 

where 

27 

(4.47a) 

has the same symmetries as v&. 

transferred to the viscous stress. We therefore write 
The similarity of (4.42) and (4.47) suggests that the last term of (4.43) should be 

paFB = (J)' x ( B)', p,F" = V - K ' ,  (4.48,4.49) 

where 

Since Bt - Vt, the two contributions to Z' are of the same order of magnitude. We shall 
assume that positivity of the entropy production, eijn; 2 0, is maintained even after the 
addition of EB' to Ev'; i.e. we shall suppose that pa~:jkIVi( Vj)'Vk( V,)' 2 0. 

The total viscous force is F: = F'" + F'', where pF"" = pavV2(Vt)' is the mean force 
produced by the molecular viscosity v and the mean velocity gradients; see (4.9). 
Turbulent mixing is greatly reduced near solid boundaries, and it is therefore unclear 
whether v t k l  is significantly greater than the molecular viscosity in the bounary layers 
on the CMB and ICB. Elsewhere even the smallest of the turbulent viscosities, vfjkl, is of 
order v\ - t ,Vt  - (d',/d')q - q/25 - 0.1m2s-', according to the estimates of Braginsky 
and Meytlis (1990). This is of order lo5 times greater than the molecular viscosity, if 
estimated as v = 10-6m2s-'. Thus, in the main body of the core, F'" is negligible and 
F: = F"'. Despite their much greater size, the effect of the turbulent viscous stresses is 
scarcely more significant than that of the molecular viscous stresses. This can be seen 
from the minute size of the turbulent Ekman number, cn' - cf/25 - 4 x lo-", where 
Ef: - lo-' according to Section 1. The significant viscous stresses within the shear layer 
surrounding the tangent cylinder, s = R,, are turbulent ones: 7csg = 7ces - pav:VsVg. In 
Sections 6-8, we shall absorb the molecular viscosity into the turbulent viscosity, make 
use of 

and suppose (see above) that 

Q' = pavijkIVi( Vj)'Vk( V,)' 2 0. (4.50) 

It should be noted that, even though lBtl << I(B)'I, it is not true that lJtl - IBtl/pot is 
much less than 1 (J)'I - 1 ( B)'(/poL. Thus, even though I Bt I << I (B)'I, the contribution, 
QJ= P ~ ~ ( ( J ~ ) ~ ) ' ,  made by Jt to the total ohmic dissipation, poq( J2)r = QJ + Q'is not 
negligible, where QJ = poq( ( J)')2 is the macroscale ohmic dissipation. In fact, we show 
in Appendix C that, on Braginsky-Meytlis theory, Qj= Too' accounts for all the 
entropy production by the turbulence. 
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28 S. 1. BRAGINSKY AND P. H. ROBERTS 

5. THE INNER CORE 

5.1 

Earth’s core consists of two parts, the fluid outer core (FOC) and the solid inner core 
(SIC). We shall sometimes call the SIC “Earth’s nucleus”. The SIC occupies approxi- 
mately 35% of the radius, 5% of the mass, and 4% of the volume of the core. It plays, 
however, a crucial part in convection by providing a source of light fluid at the ICB 
during the freezing of the FOC and the growth ofthe SIC. It is essential that this process 
is properly accounted for in modeling the geodynamo. It is the objective of this Section 
to consider the role of the SIC and to obtain the boundary conditions on the ICB 
necessary for the analysis of convection in the FOC. 

As far as seismic waves and bodily tides are concerned, and indeed for all 
phenomena on time scales of seconds to days, the SIC responds as a solid elastic 
body. Over geological times however, it behaves as a fluid. This can be seen from 
the fact that its oblateness due to centrifugal forces associated with Earth’s rotation 
is close to that of a body in hydrostatic equilibrium. (Indeed, this statement is true 
for the entire Earth.) The geodynamo mechanism involves characteristic times 
ranging from about one year to -104yr and maybe more. The rheological 
properties of the SIC over these time intervals is poorly known. It is even uncertain 
whether it consists of a single phase. For instance, Fearn et al. (1981) argued that 
a significant fraction of the SIC consists of a matrix of iron dendritic crystals filled 
with liquid, i.e. that the SIC is in a mixed phase state. Fortunately, a detailed 
knowledge of the rheology of the SIC is not required for the goals of the present 
paper to be attained. The bulk of the SIC plays a somewhat passive role in our 
considerations. 

Although the SIC is a body that has a complicated viscoelastic rheology, it behaves, 
for our purposes, much as a rigid solid on the short (convectional) time scale and 
behaves as a highly viscous fluid on the long (geological) time scale. It moves with 
velocity V = V, + V, where V, is the slow velocity with which the basic state of the SIC 
adjusts to changing conditions on the geological time scale and V, is a solid body 
rotation with angular velocity CkN (say): 

General Properties and Long Time Behavior 

V,=CEN x r. 

Because of stresses exerted by the FOC across the ICB, this angular velocity may even 
change on the short (geodynamo) time scale. 

Concerning CiN, we recall that throughout Section 4 we have relied on the smallness 
of E, to neglect the oblateness of the reference state, and in particular the flattening of 
the ICB. Since however, >> E,, the oblateness of the ICB is sufficient to strongly inhibit 
the rotation of the SIC about any axis perpendicular to S2 = R1,. Rotation of the SIC 
about the z-axis is however possible, i.e. f i N  = QNlz. And ON is determined by the state of 
convection in the FOC and the nature of the interaction between the core fluid and the 
SIC. For motions on the characteristic time scale - (103-104)yr, the inertia of the SIC 
may be neglected, so that the SIC is in equilibrium under the action of the sum, S2, of 
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GEODYNAMO CONVECTION 

the z-components of all couples exerted by the core fluid on the SIC: 

9, = O .  

These couples consist of the couple created by magnetic forces, 

29 

(5.2) 

(5.3) 

the viscous couple and the topographic couple. We combine the latter two together as 

To compute 2; from (5.3), we must solve (4.6) and (4.7), which by (5.1) require that 

8,B + R,d,B = - V x (qNV x B), ( 5 . 5 )  

where qN is the magnetic diffusivity of the Nucleus. Solutions to (5.5) must be 
continuous at the ICB. 

To compute 9; from (5.4), we require the coefficient of friction K,, but this is hard to 
estimate, especially because little is known about the topography of the ICB. If K,, is 
sufficiently large, (5.2) will require that 9; = 0. If K,, is sufficiently small, (5.2) will 
demand that 9; = 0. This may result in a significant change in the behavior of B in the 
core. For example, Braginsky (1964a) found, in a kinematic geodynamo model where 
the condition 2;=0 was imposed, that the magnetic field was much changed; in 
particular, B, was small in the SIC. The Joule dissipation was also markedly increased. 
A similar effect was recently reported for the dynamo model of Hollerbach & Jones 
(1993). It was demonstrated in that paper that the axisymmetriczonal field was expelled 
from the interior of the “tangent cylinder”, i.e. the whole region s < R, that includes not 
only the SIC (Y < R,) but also the adjacent parts of the FOC to the North and South of 
it. In contrast, the influence of the SIC was found to be small for the model-Z dynamo of 
Braginsky (1989). It appears that the importance of the SIC and the tangent cylinder in 
the MHD of the core is still uncertain. 

In addition to the solid body rotation (5.1), there must, as Earth evolves and 
the force balance slowly changes, be some slow relative motion, V,, of adjustment 
within the inner core. The magnitude of the radial velocity due to thermal 
expansion, V,, can be estimated as V, -$c1T2R, - R2c1AT/3t, where AT is the 
change in T, during the time, t ,  - R2/3d,, over which the inner core grows. Thus 
V , / d ,  - EAT. Substituting c1 - 10-50K and AT N 100”K, we obtain Va/R2 - 
In short, mass is added at the top of the SIC by freezing (and is perhaps sometimes 
removed by hot descending streams in the FOC) causing the ICB to advance (and 
maybe occasionally retreat) with velocities a thousand times larger than the internal 
relative motions of adjustment within the SIC. The velocity, - d / L ,  with which the 
light material diffuses in the SIC is of the same order as V,; taking id - lo-* m2 s-’ and 
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30 S. I. BRAGINSKY AND P. H. ROBERTS 

a characteristic length L, - R,/3, we obtain d / L ,  - R2z,rC5/R2 - lOd3R2, where 
z2 - 4 x lo9 yr - lo” s. Thus, the ICB moves on the z, and z, timescales and is not 
precisely spherical. We denote its position by r = RN(t, 0,4) and the mass of the nucleus 
by AN(t). We write 

where R,  and A, vary only on the evolutionary (geological) time scale; we consider the 
derivatives of R,, and A,, with respect to t ,  to be negligibly small. According to the 
PREM model of Dziewonski & Anderson (1981), R, = 1221.5 km = 0.351 R ,  at the 
present time; Rz,(t, 0 , 4 )  and A Z c ( t )  are created by the convection and are of order E,. 

Differentiating (5.6), we obtain 

where d,  is not the material derivative but stands for a: + a;. Although R,, is of order E,, 

it varies on the z, time scale, so that d,R,, may be or order R,, and is therefore not 
necessarily small. To extract R,, from R,, and to do likewise for other variables in 
Section 6, it is convenient to introduce an average over the t ,  time scale. We shall denote 
the convective average of a quantity, Q(t,, t,) by Q. Clearly its time dependence is limited 
to t ,  alone (dfQ = 0). Also 

afQ = 0. (5.9) 

It may be seen from (5.8) and (5.9) that 

d,R, = R,. (5.10) 

The inertial forces associated with V, are completely negligible; the equation (3.1) of 
hydrostatic equilibrium applies also in the SIC. Deviations from hydrostatic equilib- 
rium must, of course, exist in the SIC, but it does not matter to us whether they are 
equilibrated by elastic stresses or by the stresses associated with small shears in a large 
viscosity medium, or by some combination of these. For simplicity, we may adopt (2.1) 
for the SIC with the understanding that the viscosity of the SIC is so large that the 
convective velocities are negligible. This makes it possible for us to use the same 
governing equations (2.1)-(2.7) for all time scales and for the entire core. 

Since the advection of material within the SIC is so insignificant, and the diffusion of 
the light constituent is so slight, both may be safely ignored: 

v, =o, 1: =o. (5.11, 5.12) 

It might be imagined that the part of the radial flux, Z$,, that changes on the convective 
timescale might cause a layer of horizontally varying 5, to be deposited on the ICB. 
During the time z, - lo4 yr, the thickness, 6,, of such a layer would be of order 
6, - R,z,/z, - 3 m. Even though the diffusivity xC is so small, such structures would be 
smoothed out very quickly, in a time of no more than 6;/d - 30yr. The possibility of 
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GEODYNAMO CONVECTION 31 

such layered structures can therefore be ignored. The composition inside the SIC is 
practically unchanging. It is, at any depth, the same as it was when the ICB passed 
through that level earlier in Earth's history, and when new material, with the composi- 
tion appropriate to core conditions at that time, was deposited onto the ICB. During 
gradual freezing of the SIC, the concentration of admixture in the FOC gradually 
increases, which implies that ta in the SIC increases outwards. This stable stratification 
of the SIC makes the possibility of (slow creeping) overturning in the SIC seem quite 
implausible (Stacey, 1994). We shall suppose for simplicity that la is spherically 
symmetric in the SIC; this symmetry could be at  least partially brought about by 
horizontal motions in a boundary layer near the top of the SIC. In this context we may 
recall the suggestion that the SIC is anisotropic (Morelli et al., 1986), and may also be 
inhomogeneous. The magnitude of such deviations from spherical symmetry inferred 
from the observations appears, however, to be small; see also Dziewonski and 
Woodhouse (1987). 

It follows from (5.11) and (5.12) that7 

VNE V r ( R 2 - ) = 0 ,  I $ = I $ ( R , - ) = O .  (5.1 1 a, 5.12a) 

We may now appeal to (2.52) and (2.54). As in (5.Q we write 

Vr(RN + ) = V2 + V,, ,  I,5'(RN + ) = I ,  + 12,. (5.13a, b) 

Since U 2 ,  = d,RN,  we have 

where Ap = pN - p, is the discontinuity in pa at the ICB, and 

is the mass fraction of light constituent that is rejected from the solid and is added to 
the FOC when core fluid freezes onto the ICB. We call rFs the rejectionfactor; the 
suffices FS stand for Fluid and Solid. It is determined by the form of the phase diagram 
of the alloy; see Appendix E. 

The velocities (5.14a,b) are of order lo6 times smaller than the characteristic 
poloidal convectional velocity, V,, in the FOC, and when we apply (5.14a,b) as 
boundary conditions on the ICB, we make negligible error if we replace both of 

'By our notational convention, the subscript N distinguishes values of variables at the top of the SIC in 
the basic state (adiabatic reference state), while ,, and not the more cumbersome ,,,, denotes the values 
of the same variables at the bottom of the FOC. An exception is made in the case of R ,  and R,; see (5.8) 
above. Since neither the ICB nor the CMB are precisely spherical, conditions (5.1 la) and (5.12a) are slightly 
inaccurate, but similar simplifications are frequently made in this paper. The concomitant errors are 
negligible to the order to which we are working, as are the errors we make when, as we shall, we set = I,, the 
unit vector in the radial direction. 
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32 S. I. BRAGINSKY A N D  P. H. ROBERTS 

them simply by 

V,=O, on r = R,. (5.16) 

In contrast, the typical magnitude of It in the FOC is of the same order as (5.14d) 
and it would be incorrrect to replace (5.14d) by I:, = 0. 

5.2 

Any definition of a basic state for the SIC is to some extent arbitrary. Unlike the 
FOC, nothing changes in the SIC on a fast time scale (apart from changes imposed 
on it by the FOC) and there is therefore no unique way of extracting a reference state 
for the SIC. As there is no vigorous mixing in the SIC, its temperature is determined 
by heat conduction, and we have no strict foundation for assuming (3.4). We may 
nevertheless use (3.4) to define a reference state and, because the temperature varies 
little within the SIC, this should differ only slightly from the actual temperature of 
the SIC. We believe that assumption (3.4) is adequate and more practical than 
alternatives. Moreover, the negative slope of the adiabat (V,Ta < 0) necessarily 
agrees a little better with the negative slope of the actual temperature distribution 
than a constant reference temperature would. It is certainly true however that 
S deviates from uniformity in the SIC far more strongly than it does in the FOC. It is 
possible, as we shall now describe, to take into account the heat sources and heat flux in 
the SIC and to derive corrections, T, = T - T, and S, z S - S,, to the reference 
temperature and entropy. (In this Subsection, the subscript c will be used to denote the 
deviation from adiabaticity created by conduction. The small amendments p c  and 
g, to the density and gravitational field will be ignored.) If the SIC is a mixed phase 
region, then some small scale convection is also possible within the solid matrix. 
These might convect heat, and so markedly increase the effective thermal 
conductivity of the SIC, at the same time reducing the temperature gradient within it. 
Large scale circulations within the SIC are, however, strongly impeded by having to 
take place through a porous matrix. In any case, the diffusivity of heat greatly 
exceeds that of composition, and we cannot ignore heat conduction in the SIC. 

We have argued above that the density and composition of the SIC can only change 
on the geological time scale. We therefore have 

Hear conduction in the SIC 

5, = 0, (5.17) 

and only two thermodynamic parameters are therefore required to describe the 
thermal state of the SIC. By (D5) and (D13) we have 

(5.18) 

No significant relative movement can take place on the convective time scale of lo4 yr 
or less, i.e. (5.1 1) holds. Equation (4.4) therefore gives 

paTad,S, = - V . I T  - paTaSa + Q" + QJ, (5.19) 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
3:

08
 0

9 
Ju

ly
 2

01
4 



GEODYNAMO CONVECTION 33 

where only thermal conduction transports heat: 

TV T, + T,). (5.20) I ~ = - K  ( 

Equation (5.19) can be transformed into an alternative, and more convenient, form by 
using (D6): 

(5.21) 

To determine the pressure variation, p, ,  we should specify the SIC model more 
precisely. Fortunately, this complicated task can be side-stepped because the last term 
in (5.21) is much smaller than the others and can be neglected. In order of magnitude, 
pc/R2 - gp, and pJpa - uT,, so that the ratio of the two terms on the right-hand side of 
(5.21) is 

(5.22) 

We may therefore write 

S ,  = (c,/T,)T,, and similarly s, = (cp/T,)f,. (5.21a,b). 

Neglecting also the variation in cp/T, across the SIC, we obtain from (5.19) and 
(5.2 1 a, b) 

p,c,d,T, = - V . I T  - p , c P f ,  + Q" + QJ.  (5.23) 

The basic (adiabatic) temperature contrast is of order AT, - 100"K, which is an 
order of magnitude smaller than that across the FOC. Because there is no turbulent 
transport of heat in the SIC, the deviation. T,, of the basic temperature from that of the 
basic state is much greater in the SIC than in the FOC. Let us for example estimate the 
contribution made to T, by Joule heating, using p,cpT, - QJ7KN,  where tKN = L ; / K ~  
is the thermal timeconstant ofthe nucleus. We take K ;  - m2 s-. '  to be the thermal 
diffusivity of the nucleus and L, = R,/n as its characteristic length scale, so obtaining 
z K N  - 5 x 108yr, a very long time. The estimate QJ - qNB2/poLi  leads to 
T, - ( ~ N / ~ ~ ) B 2 / p o p o ~ p  which, for B = 50G, gives T, - 1°K. Comparing this with 
a typical value, T, - OK for the FOC, we see that the FOC provides an almost 
isothermal environment for the SIC. 

Other contributions to T, in the nucleus are Q" and ?,; see (5.23). These are an 
order of magnitude greater than QJ, and are spherically symmetric and stationary 
(on the t ,  timescale). The T, due to QJ could depend on t ,  but only very weakly. 
If Joule heating has a component, Q i ,  varying with frequency 0 ,  then a time 
varying temperature component is generated of order T,, - Q:/p,c,o - 
(Qi /Q' )Tc /~ tKN.  If Q i - Q J ,  then the ratio of the varying component, T,,, of T, 
to the stationary one is very small: Tc,/Tc -(cotKN)-'  - 3 x low5. This means 
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34 S. I .  BRAGINSKY AND P. H. ROBERTS 

that T, in the nucleus can be considered to be stationary on the t ,  time scale, and (5.23) 
may therefore be replaced by 

pacpTa = - V*I* + Q” + QJ, where IT = - p,c#V(T, + T,). (5.24,5.25) 

Solutions to (5.24) must satisfy a boundary condition on r = R,. Since it is convenient 
to match the basic adiabatic temperatures on the ICB, continuity of T implies 
continuity of T,. But T, is very small in the FOC (T, - lop3 OK), so that the temperature 
differences over the ICE are about 4 orders of magnitude smaller than elsewhere in the 
SIC. In effect, the FOC provides a uniform temperature “heat bath” in which the SIC 
lies. And (5.24) must therefore be solved subject to the spherically-symmetric boundary 
condition 

T, = 0. (5.26) 

Such a solution provides the thermal flux IT in the SIC. Because Q’ is relatively 
small, IT is nearly spherically symmetric and depends only on t , ,  this despite the fact 
that the state on the fluid side of the ICB is neither spherically symmetric nor 
independent oft,. We have 

(5.27) 

which is nearly independent of 9, Cp and t,. 

6. THE CONVECTIVE STATE: INHOMOGENEOUS MODEL 
(ANELASTIC THEORY) 

In this section we use the theory developed in Section 4 to formulate a model of core 
convection. 

We start by summarizing the basic equations derived in Section 4. The angle 
brackets ( and)‘ of Section 4 will be omitted wherever feasible, as will the 
superscript c from d f  and a:, but it should be understood that we are now dealing 
with turbulently averaged quantities. We write (4.19), (4.2), (4.29), (4.33) and 
(4.5)-(4.7) as 
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GEODYNAMO CONVECTION 35 

where 

c = - M S S c  - M y c ,  (6.la) 

is the codensity. By (4.48) and (4.49), we have 

where Vijk l  is the total viscosity, given by (4.50a). The effective sources appearing in (6.3) 
and (6.4) are seen from (4.29), (4.33) and (4.37) to be 

~2 = - P a t , ,  0; = - pas, + a: + o;, (6.10,6.11) 

where 

= + oT, = T~- l ~ D ,  (6.12,6.13) 

and 

o R =  Ta-'QR, aT = - T,-'V.IT, I T =  -KTVTa, (6.12a, b,c) 

Q ~ =  Q" + Q~ + Q', (6.13a) 

Q' = - (Is'.V Ta + Irt.Vpa) = - ga*(cPIs' + ~81"). (6.14a, b) 

For brevity, we here and below replace the ITm of Section 4 by IT. Corresponding to 
(6.8) and (6.9), 

Q" = P a V i j k l ( V i v j ) ( V k T / I )  2 0, QJ = pof'/J2 2 0. (6.15a, b) 

Also, by (4.21) and (4.22), we have 

15' = - paPt*v{c, IS' = - p,P'*VS,. (6.16a, b) 

It may be noted that oT is not the rate of entropy production by conduction down the 
adiabatic gradient, which is oT = - Ta-'IT-V Ta = KT(T; ' VTa)2 2 0; see (4.35). It is, in 
fact, a combination of that term and the divergence of the entropy flux down the 
adiabatic gradient, i.e. V V I : ~  = V.(T,-'IT); see (4.32). It therefore need not be positive 
and, in the geophysical context is, in fact, negative. In (6.12) we recognize two 
well-known effects acting on the reference state: radioactive heating, QR, which tends to 
promote convection and - V*IT which, by diminishing the effectiveness of QR, tends to 
suppress convection. In (6.13) we see sources that arise from convection alone; they 
cannot therefore be a primary cause of convection. 

An equation governing the evolution of the codensity, C, can be obtained by 
multiplying (6.3) and (6.4) by - a5 and - respectively, and by adding corresponding 
sides: 

p,d,C + v-IC = 02 + a:, (6.17) 
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I= = - &5' - $IS' 0; = - QTOT e - s Ge? s 

0: = - (5,paV + I").Va' - (ScpaV + IS').VaS. 

The source OF arises because of inhomogeneities in uC and/or as. 
Equations (6.1)-(6.16), together with boundary conditions on the ICB and CMB, 

define the inhomogeneous model. On solid boundaries, V must obey the no-slip 
conditions: 

(6.18a, b) 

(6.18~) 

V(R,) = 0, V(R,) = V,, V, = fiN x r, (6.19a, b,c) 

where SL,  is the angular velocity of solid-body rotation of the Nucleus (SIC). The 
magnetic and gravitational fields are continuous; see (2.46) and (2.47). 

Conditions (2.49b), (2.33) and (2.50) give 

(6.20a, b) 

where 1: = ZT(R,) is the heat flux down the adiabat at  the CMB, and I& = Z:(R,) is the 
heat flux from the core to the mantle. These are determined by conditions in the mantle, 
namely by the temperature distribution and the state of convection there. They change 
on the slow geological time scale, and are regarded here as being prescribed quantities. 
In a broader statement of the problem, the core and mantle should be considered 
together in determining the thermal history of Earth. The flux of heat from the core, I&, 
is primarily determined by convection in the mantle, and in its turn that determines the 
intensity of all dynamical processes in the core. These two subsystems, the core and the 
mantle, are separated by the D" layer, where a rather large decrease in temperature 
(about 1000 OK) occurs. This decrease is possible because the thermal conductivity of 
the mantle is about ten times smaller than that of the core. Each subsystem adjusts to 
the other, and each evolves in its own (but mutually coupled) way. Even the characteris- 
tic time, Z" - L ~ / K ~ ,  of the D"-layer is much longer than the magnetic diffusion time, 
zP, of the core. If we take L, - 105m as the characteristic scale of the layer and 
tcM - m2 s- as the thermal diffusivity of the mantle, we obtain Z" - 3 x lo8 yr - 
3 x 1042,. Nevertheless, z'' is much less than the diffusive time scale L , / K ~  of the mantle 
as a whole. 

The conditions on the composition and temperature (entropy) at  r = R, are more 
complicated than (6.20). Let us consider first composition. To solve (6.3) we need an 
expression for &; see (6.10). This can be obtained by conservation of light component in 
the FOC. Integrating (6.3) over the FOC, we obtain 

t c p a d ~  + tcpaV.dA + i6,,, 1 ' t .d~  = - I?.,? tapadv- (6.21) 

We average this integral balance over the convective time scale. The first term on the 
left-hand side disappears identically by (5.9), and the second term vanishes because 
V, is zero on the CMB and ICB by (6.19). Because of (6.20a), the third term is 

a t L ,  1.* 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
3:

08
 0

9 
Ju

ly
 2

01
4 



GEODY NA M O  CONVECTION 3 1  

integrated only over A,, and to perform this integration we apply the boundary 
conditions (5.14c,d) on 

Ip(R2 +) = 1: + lzc, (6.22) 

namely 

' 5  = PNt2NR2, ' $c=  PN52NatR2c' (6.22a, b) 

is zero and that I ,  is independent of 0 and 4, Noting that the convectional average of 
we see from (6.21) that 

(6.23a, b) 

where A12 = jy ,,padVis the mass of the FOC and A ,  = 4nR; is the area of the ICB. It 
follows from (6.10) and (6.22) that 

. 4 
-A1 2 A 1 2  

I : ,  or t 4 = - 5 2 N P N R 2 ,  
* A2 

5 4  =- 

CT: = 05, (6.24) 

where 

(6.24a, b) 

(6.25) 

is a non-dimensional function that describes the form of the density distribution in the 
FOC. It was here convenient to introduce a mean density, po; later we shall need a mean 
temperature, To, also. These are defined by 

Po = (Pa>' ,  To = (To>", (6.25a, b) 

where the volumetric average (Q)' of a quantity Q is given by 

(Q)'=-J 1 QdV.  

"y-12 Y - , 2  

(6.26) 

Condition (6.23) can be obtained more easily if we recall that the total mass of light 
constituent, 

(6.27a) 

and the total mass, 

(6.27b) 
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38 S. I .  BRAGINSKY AND P. H. ROBERTS 

of the core are constant. Operating with 8: therefore gives dpA5f [aA12 + 
tak12 +  in, = o or, since <kI2 = - k,, 

and, substituting 

we obtain (6.2313). It may be noted that, although Z?(R, +) varies on the t, time scale, 
of does not, because o: = - pata ;  see (6.10). The slowly varying surface flux corre- 
sponding to of is If; see (5.14~). In essence, the volumetric source 02 of 5, arises from 
a surface source of c, on the ICB, and this is the reason we have introduced the suffix 
2 on of in (6.24) and (6.24a). The light fluid, released when the heavy constituent of core 
fluid freezes onto the ICB, rises and distributes itself homogeneously throughout the 
volume Y,,, so producing an effective sink within it represented by of = CJ$ < 0. The 
thermal parallel is a fluid core, heated from below, and cooled homogeneously within, 
both factors being favorable for convective instability. We could also easily allow for 
sources at the top of the layer. For example, a flux of iron into the core from the mantle 
would introduce a contribution, a!, to cr:, but we do not consider such effects in this 
paper. 

Consider next entropy. Condition (2.61) of entropy conservation may be written 
as 

where (2.52) has been used and VN has been neglected. Using (4.32) and 
U, = R ,  + d,RZo we separate 

Z 3 R 2  +) = I ;  + I;,, 
into 

(6.29) 

In (6.29a) and (6.29b), hN is the heat released at the ICB due to the freezing of the ICB. In 
view of the presence of the light element, this differs from the latent heat of melting, h,, 
as it is usually defined: 

see Appendix D. We could also use the continuity condition (2.57) for the total heat flux 
(4.32b)instead of (2.61). The results of doing so are identical because of (6.30a, b) and the 
equation (2.54) expressing conservation of admixture. 

The arguments leading to (6.24) and (6.24a) show that the effective source, a:, 
of 5, arises from the need to conserve light material, which requires a nonzero 
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GEODYNAMO CONVECTION 39 

flux, 15, at the ICB. A similar, but more complex, connection can, and must now, 
be established between the volumetric and surficial sources of S,. The derivation of 
(6.23b) and (6.24) is a good preparation for the corresponding derivation of s, and 0:. 

Integrate (6.4) over V12 and average over t,. As before, the first term on the 
left-hand side vanishes by (5.9). We therefore obtain 

1 p o i a  = - - (ZSA, - ZSA,) + (0,” + z)“, 
v12 

where 

(6.31) 

(6.31a) 

(6.3 lb) 

cf. (6.29a). The convective average of the flux (6.29b) is zero, and it therefore does not 
appear in (6.31). The expressions (6.29b) and (6.31a, b) provide boundary conditions for 
equation (6.4). 

We now substitute expression (6.31) into (6.1 l), thereby eliminating s,. Some insight 
is gained by dividing the resulting “effective” entropy source, 0; into three parts: 

(6.32) 0; = 0; + 0; + 0SZ, 

where by (6.1 l), (6.29b) and (6.31a, b) 

(6.32a) 

(6.3 2 b) 

@ S  1 2  - - s + 0; - p (  0,” + Z)”. (6.32~) 

The second forms in (6.32a, b) were obtained from (6.31a, b). 
The three volumetric sources appearing in (6.32) arise respectively from the CMB, 

the ICB and the bulk of the FOC. It may be particularly noted that, according to 
(6.32a), only the excess of I$ over the adiabatic heat flux, IT ,  enters 0;. If the flux of heat 
down the adiabat is too great, that Z$ < IT. Then 0; < 0, and the situation resembles 
that arising in thermal convection when a layer is heated from above and cooled from 
within. Compositional buoyancy arising from the light fluid source 05 will, if large 
enough, drive convection even if 0; is negative, although the magnitude of C will be 
reduced (Loper, 1978). The heat flux from the ICB is associated with a negative 0; and 
a positive I s ;  see (6.31b). It promotes convection. The terms 07 and 0; do not vary on 
the t, time scale. 

Consider next os, given by (6.32~). The two contributions, g R  and oT_, to 0: given by 
(6.12a, b) act in opposite directions, oR to assist convection and a? to oppose it, but 
a net effect can arise only through the radial inhomogeneity of their sum. To see this, 
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40 S. 1. BRAGINSKY AND P. H. ROBERTS 

note that, if either a,” or a,” were proportional to pa, it would make no contribution to 
aT2. For this reason, we expect that oR will play a small part: convective mixing makes 
QR/pa uniform and, if the core were uniform in temperature, aR would be proportional 
to pa. Similarly, bearing in mind that 9, is approximately proportional to r,  we see that, 
in a uniform core ( p  = l), T,aT would, like Q R ,  be constant by (3.7b) and (6.12b,c). 
Again, a: would not contribute to a;,. Only through the inhomogeneity of T ,  can aR 
and a? contribute terms to as2, but even then these terms are only of order E,. 

The term R ,  appears in (5.14c), (6.23b), (6.31b) and (6.32b); it should now be 
evaluated. The ICB is a surface in phase equilibrium, and must therefore be at the 
melting temperature, corresponding to the liquidus ‘curve’ (really a surface in 
p<T - space), Tm(p, 0, for the pressure p = p a  + p ,  and composition 5 = ta + 5, on the 
fluid side of the ICB: 

The corresponding composition for the SIC is given by the solidus ‘curve’. Substituting 
R,  = R ,  + R2, into (6.33) and writing T = T, + ?;., p = p ,  + p ,  and 5 = ta + &, we 
obtain in the zeroth approximation 

We consider (6.34) to be the definition of R,. Differentiating (6.34) with respect to f a ,  we 
find that 

(6.35) 

where V,T, = (V,Ta), and V,p, = (VrpJ2. Differentiating Ta = T(p,,  S, ,  ta)  with respect 
to t,, we obtain 

Using this to eliminate T2 from (6.35) and recognizing that V,p, = - p 2 g 2 ,  we see that 

R2IR2 = r 2 p P 2  - r2sSn - r 2 5 t u 2  (6.37) 

where, by (D14), (D18) and (3.7e). 

(6.37d) 

Here y2 is the Griineisen parameter (3.7f) evaluated at r = R,; the dimensionless 
parameter Am, is proportional to the difference between the melting point gradient and 
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GEODYNAMO CONVECTION 41 

the adiabatic gradient at r = R,. We note that d T a / a p ,  = cls/p2, according to (D18). 
Working to the next approximation, we obtain from (6.33) a form for R,, similar 
to (6.37): 

4R2cIR2 = r2pPc - r2ssc - r 2 &  (6.38) 

The hydrostatic pressure, p , ,  changes because of mass redistribution. That due to 
processes outside the core was considered by Gubbins (1983), who found it too small to 
affect significantly either convection in the bulk of the FOC or freezing of the SIC. As 
mentioned in Section 1, we exclude from consideration all such processes, except the 
one responsible for the heat flux 1; is emanating from the core. The change in p ,  due to 
the redistribution of mass within the core is small, being proportional to the density 
drop, Ap, at the ICB; in fact, pZ N g2R2Ap8 The term r Z p p 2  in (6.37) is therefore of order 
Ap/po -6  x 
we may neglect r Z p p 2 .  According to (6.22), to  is proportional to R2, and (6.37) can be 
written in the simple form 

timessmallerthan theleft-handsideof(6.37).SinceAp/po-6 x 

(6.39) 

Here A2 is a new dimensionless parameter defined by 

where by (6.37~) we have 

If pc  in (6.38) is similarly negligible, we also have 

4 R 2 ,  d,Sc(R,) = - c A 2R,' 

(6.41) 

(6.42) 

An argument that leads to the estimate A, z 0.05 is presented in Appendix E. It should 
be stressed that this value is very uncertain. 

Equation (6.42) shows that too strong a heating of the core results in a negative d,R2, 
and hence in reductions in the fluxes 15' and I:, according to (5.14~) and (6.29a) or 
(6.31b); similarly, too weak a heating leads to growth of these fluxes. This favors the 
establishment of some 'average' level in the intensity of convection. Especially the term 
~7: - (z)" in (6.40~) produces such a stabilizing effect: if convection is too intense, 
dissipation rises and enhances S,, resulting in a diminishment in the sources of 
convection. This stabilizing effect was noted by Braginsky (1964b). 

8See Appendix B. It should perhaps be noted that p 2  is the Eulerian derivative of pa  at r = R ,  and not the 
rate of change of p 2  following the motion of the ICB, which is of order g z R 2 p 2 ,  i.e. is much larger. 
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42 S. I .  BRAGINSKY AND P. H. ROBERTS 

Through (6.39) we can write cs in a third form which is particularly convenient if Q" 
is known. While it is true that cooling of the core by the heat Zk lost to the mantle is the 
primary cause of both thermal and gravitational stirring of the core, the value of ZG is 
not directly observable and is poorly known. It can be obtained only indirectly through 
investigations of the thermal evolution of the coupled core-mantle system. The age, t,, 
of the inner core is comparatively better known: on the one hand, t ,  cannot be very 
small because the birth and growth of the inner core would then be evident from 
paleomagnetic data; on the other hand, the creation of the inner core could easily be 
missed if it occurred in the remote geological past, for which paleomagnetic informa- 
tion is comparatively scant. We shall estimate t ,  to be 4 x lo9 yr, but we recognize that 
this may be too large by a factor of order 2. If we assume that the age of the core is t ,  and 
that it has been growing at an approximately uniform rate ever since, we obtain 
.k2 - A?,/t, and an estimate of R ,  which, though rough, is probably more reliable 
than any estimate of I&. Moreover, it may in principle be made more precise by detailed 
investigation of the evolution of Earth. It seems therefore reasonable to use R ,  as the 
main parameter determining the amplitude of the power source fueling the geodynamo, 
in the case of dominating compositional convection, when the thermal source can be 
neglected. In this way, if we still wish to derive S,, we obtain from (6.1 1) and (6.39) a new 
expression for cs, namely 

G: = pacpA2R, JR ,  -I- ez -+ c,". (6.43) 

To use this, we need c:, which requires knowledge of the magnitude of Q". 
The expression for the boundary condition on l ~ ' = I s ' ( R , )  in terms of R, is 

a complicated matter. This is because Z4, can be linked to S, only through the entropy 
balance (6.1 1) and (6.31). This gives 

(6.44) 

The flux Is is given by (6.29a) in terms of R2 and, provided we know Q", we can evaluate 
the final term in (6.44) by averaging (6.43). 

In summary, the intensity of convection is determined by (in addition to the 
physical properties of the core) just two parameters: R ,  and ZL -IT, the former 
of which can be roughly estimated. The radioactive heating, Q", can be expressed 
in terms of the other two parameters, and (supposing that R , 2 0 )  
Q R Y - ,  5 All$ .  According to (6.32c), Q" is relatively ineffective as a source of 
entropy but it does influence the size of IG - IT .  

7. DYNAMO ENERGETICS AND EFFICIENCY 

7.1 

There are significant points of difference between the geodynamo system and a com- 
mon heat engine. To understand the former better, let us start from a heat engine 
operating steadily in the well-known Carnot cycle. In this classical device, the heat 

Energetics of a Heat Engine 
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GEODYNAMO CONVECTION 43 

input 2 + , is provided at a higher temperature, T,  , than the temperature, T _  , at which 
heat (2 -, say) is extracted. Averaged over the working cycle, the rate at which the 
machine does useful work is 

d = 2 +  - 2 - .  (7.1) 

In the absence of any losses due to imperfections in the engine, the entropy input and 
output are equal in the steady state: 

The efficiency of a perfect engine is therefore 

where 

T 
I -  qc= 1 -- 
T+ 

(7.3b) 

is the “Carnot Efficiency”. 
Applying similar ideas to Earth’s core, considered as a system that is stationary on 

average, Backus (1975) and Hewitt et al. (1975) noted significant differences. First, it is 
no longer clear what should be classed as the “useful work” done by the engine. They 
defined it, as we shall, to be the rate, 9J, of production of large-scale magnetic energy by 
large-scale fluid motions. This energy is ohmically degraded into heat. The engine 
must make good not only this energy loss but also the energy, uselessly dissipated at the 
rate 2F (say), by internal friction. It follows that 

d = gD,  (7.4a) 

where 

p = 9J + 2 F  (7.4b) 

is the total dissipation. Second, both the Joule and frictional heat reappear within the 
fluid; they must be regarded as part of the energy source driving the engine. The energy 
balance is therefore 

2 ! + + 2 ? D = 2 -  +d ,  (7.5) 

or, by (7.4a), 

2+ = 2 - ,  (7.5a) 

The entropy balance is expressed by 
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44 S. I. BRAGINSKY AND P. H.  ROBERTS 

where T, is the effective temperature at which 2, is produced. This is related to the 
effective temperatures, TJ and TF, at which 2?J and 2?F are dissipated by 

2, 2?J 2?F - _ -  - +--. 
TD TJ TF 

According to (7.5a), we may rewrite (7.6) as 

(7.6a) 

(7.6b) 

It may be seen from (7.4a) and (7.6) that heat is needed not to maintain the energy 
balance [note particularly that (7.5a) does not contain 2?J or SF at all] but to preserve 
the entropy balance. 

Regarding the magnetic energy production to be the only work that the engine does 
usefully, we may write the dynamo efficiency in the form 

(7.7a) 

where the “frictional factor”, qF gives the fraction of the energy dissipation that is 
“useful dissipation”: 

while the factor 

(7.7b) 

(7.7c) 

represents an “ideal efficiency” which cannot be exceeded, even if there is no source 
of internal friction. Since T- 5 To I T,, it follows from (7.7~) that 

(7.8a, b) where qe = - T+ - 1; ilC 5 ‘I1 5 q S ,  T- 

see Backus (1975). 
This example demonstrates clearly that the necessity of preserving the entropy 

balance limits the efficiency of the device in producing magnetic power. It suggests 
that, in analogy with the oft encountered phrase ‘the available energy’, it is useful 
to call a quantity such as “the available dissipation”, of which only the fraction qF 
goes into useful work, SJ ,  while the remainder, 2IF, represents work wasted by the 
engine. The crucial importance of “the entropy balance in relating magnetic field to the 
energy sources” was stressed by Gubbins et al. (1979). 
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GEODYNAMO CONVECTION 45 

7.2 Energetics of the Inhomogeneous Model 

Let us now turn to the core. This differs from the example just considered in an essential 
way: it is an evolving system that receives its energy from that evolution, namely 
through its cooling and the resulting gravitational settling. We shall completely confine 
this non-stationarity to the reference state, and shall consider the superimposed 
convection as cyclic, i.e. one that, when averaged over a time z, equal to the period of the 
convection cycle, varies only on the z, time scale. To provide a suitable definition of 
geodynamo efficiency, we must consider the balances of energy and entropy. The total 
kinetic and magnetic energies associated with the macroscale are 

& B = -  [ B'dV. (7.9,7.10) 
2Po Y ,  

The viscous and Joule dissipations areg 

p;'q(V x B)'dV, (7.11,7.12) 
Y1 

and the rate of working of the fluid on the large scale magnetic field is 

(7.13) 

By multiplying (6.1) scalarly by p,V, applying (6.2) and integrating over Y12, we obtain 
the macroscale kinetic energy balance 

which a, replaces 8; and dc is the rate of working of the buoyancy force (the 
Archimedean power): 

(7.15) 

By multiplying (6.6) scalarly by &'B an integrating over all space, we obtain the 
macroscale magnetic energy balance: 

a,&B = d~ - 2 ~ .  (7.16) 

'Strictly, (7.12) is correct only if the mantle is an insulator. In the more realistic case of an electrically 
conducting mantle, an additional term, 9JM, arises. This is the Joule dissipation associated with electric 
currents that either leak from core to mantle or that are induced in the mantle by time varying fields in the 
core. For brevity, we shall not writedown an explicit expression for 2JM, but shall consider that it is implicitly 
included in the viscous term, 2', a procedure that is possible since 9' and 9'M never appear separately in the 
energy balance, but only as a sum 1' + 2'M. 
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46 S. I. BRAGINSKY AND P. H. ROBERTS 

Averaging this over the convection cycle, we obtain 

2 B  = 2J 

It follows from (7.14) and (7.16) that 

(7.16a) 

a,(&" + € B )  = d C  - L?J - L?v, (7.17) 

and after averaging over the convective cycle we obtain 

This is the analogue of (7.4a, b), in which the quantities shown are in fact also averages 
over the working cycle. A result similar to (7.17a) holds for the microscale. Recalling 
results from Appendix C ,  we see that 

- -. 
9' zi 2J, (7.18) 

where 

are respectively the rate of working of the buoyancy force on the microscale motions 
and the Joule dissipation of the microscale currents. 

An energy balance for the core similar to (7.5) and (7.5a) can be obtained by applying 
(6.3), (6.4) and (7.17a). We multiply (6.3) and (6.4) by pa and Ta respectively, sum the 
two resulting expressions, and simplify using 

paPaV.Vtc + TaPaV.'Sc = V . C p a ( ~ a S c  + TaSc)VI + PaCV*ga, 

which follows from (6.la), (6.2) and (3.7b,c); the last term here is the volumetric rate of 
working of the buoyancy force. In this way we obtain, using (6.10)-(6.14), 

P a b a a i S c  + 'adisc) + V.C(Pa5c + TaSJpaV + par'' + Tars' + IT] 

= - pa(pa,8, + TaSa) + Q" + Q" + QJ - paCV.ga. (7.19) 

Integrate this over Y,,, take the convective average, and use (6.19a,b,c), (6.20a,b), 
(6.22a), (6.31a,b) and (7.17a) to obtain 

(pata + TaSa)padV = - ILA,  + (1: + If;)Az - 2; + 2T2, 

where [see (5.14~) and (6.30a)l Zi is the flux of latent heat from the SIC, 

(7.20) 
I 1 3  

(7.21) 
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GEODYNAMO CONVECTION 

We obtain an expression for the heat balance for the SIC from (5.19): 

Adding (7.20) and (7.22), we obtain the heat balance for the entire core: 

n 

(pata + T,S,)p,dV = 2R + 2L - j L ,  J Y l  

where 2L = I$Az is due to the latent heat of SIC crystallization and 

41 

(7,20a, b,c) 

(7.22) 

(7.23) 

(7.23a, b, c) 

Equation (7.23) can be obtained directly by integrating (7.19) over the entire core; the 
term 2L then arises as an internal heat source. From now onwards in this Section and 
throughout Section 8, we shall consider exclusively convectively averaged balances, 
and without risk of ambiguity we may (and shall) omit the overbar on 2J, HD,  etc. 

Like the earlier simple example (7.5a), the balance law (7.23) does not involve the 
Joule dissipation, but there is a crucial difference between (7.5a) and (7.23): the heat 
engines most commonly considered are on average in a steady state but, because 
Earth’s core is evolving, (7.23)-unlike (7.5a)-involves time derivatives, namely S, and 
(,, The geodynamo is fed not merely by the heat source QR but also by the changing 
state of the core. The left-hand side of (7.23) is in fact a potent source of energy for the 
geodynamo. 

The heat balance (7.23) can be transformed into a more familiar statement 
expressing internal energy balance. The time derivative of the internal energy of the 
basic state is 

Substituting the expression for ifi implied by (2.9), and introducing the enthalpy 
= + p/p, we may write this as 
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48 S. I .  BRAGINSKY AND P. H. ROBERTS 

where we have applied the divergence theorem; V denotes the radial component of V. 
Conservation of mass at the ICB requires that p,(R, - V,) = p2(d2 - V 2 )  and, since 
V, = d, ,  we may combine (7.24b) and (7.24~) to give 

&: = jvl ( p a t O  + T,S,)p,dV + d: + d; - SL. (7.25) 

We have here ignored V ,  in comparison with R 2  (see Section 5 )  and have recognized 
that h,p,A,R, = 2'. We have also defined 

dga = { V,.Vp,dV = p,V;g,dV, 222; = - fAl p,V;dA. (7.25a.b) 

The two expressions for dz are equal in virtue of the equation (3.1) of hydrostatic 
equilibrium. Equations (3.1) and (7.25a) show that d: is the work done by the 
gravitational field through the geologically averaged motion of the core. 

Y I  lVl 
Using (7.25) we may now write (7.23) in the form 

&: = ..I: + d7 + SR- L2&. (7.26) 

This may be compared term by term with Eqn. (5) of Gubbins et al. (1979). A significant 
difference is that we have separated the slow evolutionary effects of the evolving 
background from short time scale processes, whereas only one time scale is explicitly 
included in their analysis. The changes occurring on the convective time scale were 
filtered out by them from those occurring on the geological time scale in their 
subsequent discussion. It may be noted that the first two terms in (7.26) may be 
combined into one term describing the rate of working of the pressure on the fluid: 

(7.2%) 

To derive the entropy balance analogous to (7.6), we integrate (6.4) over V1 and take 
the convective average of the result, so obtaining 

SR 
SapadV =- + -2 + - + - --, 

TR TD T2 
(7.27) 
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GEODYNAMO CONVECTION 49 

where 

(7.29a, b) 

(7.30a, b) 

In the derivation of(7.27) we have substituted a? = aT - V*(Ta-'IT) and have used the 
boundary conditions (6.3 la, b) along with (7.23b,c) and the expression 

aT = IT.VTa-' = KT(VTa/Ta)2, (7.31a) 

which follows from (6.12b, c). Because VT, is not necessarily negligibly small in the SIC, 
the slightly different expression 

(iT = K ~ ( v T ) ~ / T , I ,  (7.3 1 b) 

where T = Ta + T,, should be used in preference to (7.31a) in the SIC. In deriving (7.28) 
we have used h,  = h, - p 2 5 2 N  where < 2 N  = ta - tN; see (6.30a). 

The heat balance (7.23) can be given a different form in which the heat flux to the 
mantle, 24,, is expressed as a sum of sources arising from gravitational differentiation, 
dc, the decreasing entropy of the core, P, the radiogenic heating, bR, and the growth of 
the nucleus, 2,: 

24, = dt + P+ 2 R  + p. (7.32) 

Here 

(7.33) 

(7.34) 

To derive (7.32) from (7.23), we have used (6.28a) and (7.28). 
By multiplying the entropy balance equation (7.27) by T I  and subtracting the result 

from (7.32), we may eliminate the unknown 24, and obtain an expression for bD. This 
quantity, representing the 'available dissipation' is proportional to the sum of the 
compositional and thermal terms: 

( T , / T ~ ) ~ ~  = dc + LP, (7.35) 
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9' - - (T, - Tl)S,p,dV. 
1 -  J * %  

(7.36) 

(7.37) 

All terms except 2?R on the right-hand side of (7.32) and (7.36) may be estimated by 
writing k2 = M2/t2 and by assuming a reasonable value for t , .  Comparison of (7.34) 
and (7.37) shows that 2?;/2' - ATa/T,. The effect of core cooling is therefore more 
significant in the heat balance (7.32) than in the dissipation (7.35). 

Expression (7.36) may be rewritten as 

(7.38) 

where the following temperature differences have been introduced: 

ATol = To - T I ,  ATz1 = T2 - T I ,  (7.39a' b) 

(7.39c, d) 

where ZT is given by (7.31) and 2: = AIZT. 
By (6.31a), the total rate, 21D, of energy dissipation associated with core 

convection is the sum of contributions 2" from viscosity, 3J from magnetic field 
generation, and 9 from turbulence, the last of which is mainly due to magnetic 
friction. It is also the total rate of working of the buoyancy forces, averaged over 
the convection cycle. This is the sum oi the averaged contributions, dc and P, 
from macroscale and microscale, respectively: 

It does not contain the term TCT, corresponding to the entropy sources (7.31) appear- 
ing in (7.27), a term independent of the convection; only the Q J  part of QD is used to 
power the geodynamo while 2" and 2' represent energy wasted in useless 'friction'. 

We may define dynamo efficiency to be 

(7.41) 

which relates the total 'effective' energy supply (7.32) to the useful work dB (=  2'), 
as given by (7.16a). It should be stressed that qD is defined using the most significant 
quantity, QL, the total heat flux from core to mantle. It may be compared with 3- in 
the example of Subsection 7.1, which is there (but not here) equal to 2 + .  We may 
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GEODYNAMO CONVECTION 51 

rewrite (7.41) as 

where the frictional factor is 

(7.43) 

This represents the attenuation in efficiency arising from friction, both macroscopic 
(because of viscosity) and microscopic (because of turbulence). By (7.32) and (7.39, 
the ‘ideal geophysical efficiency’, analogous to the ideal efficiency of Subsection 7.1, 
is 

2?D TD d t + i 2 H  
‘Ic=-=-. 2& TI d5+i2s+2R+2N‘  

(7.44) 

This expresses the way that the efficiency depends on which of the energy sources 
dominates. It is difficult to evaluate gc accurately at present. If compositional 
convection dominates thermal convection then g c  will be close to unity (Braginsky, 
1964b) but in the reverse case g, - AT,/T,. More generally ATJT, 5 g c  5 1. 
Even if the molecular diffusivity is negligible and compositional convection 
dominates, the total efficiency, qD, cannot be close to unity, because the turbulent 
losses, 2, are not small. Perhaps qF -4 is a reasonable guestimate. 

The relative importance of the compositional and thermal contributions to d D  
is assessed in Section 8, and it is concluded that d5 - g H .  We infer that, in all 
probability, both driving mechanisms are significant in Earth’s core but that this 
cannot be established with certainty until the values of key parameters are known 
with greater precision. 

In all our calculations of the sources of convection, such as (6.22) and (6.31b), 
we considered R, to be a prescribed quantity. Speaking more physically, it would 
be natural to take the heat flux, 2&, as the prescribed quantity, determined by the 
way that the mantle extracts heat from the core. This flux is, however, poorly 
known at present. It is related to R, by the condition (7.32) of heat balance, in 
which the terms d5, 2’ and 2?N are proportional to R,, according to (7.28), 
(7.33), (7.34) and (6.39). We shall write their sum as 

d5 +2‘ + .L2N = 2?2.(3R,t,0/R,), (7.45) 

where 2. is a convenient constant with which to measure power and, in anticipation 
of Section 8, we have arbitrarily introduced a nominal magnitude, t,,, for the age of 
the SIC. After this has been selected (e.g. t,, = 4 x lo9 yr), 2* becomes unique; it is 
a very convenient parameter with which to assess the importance of the terms on the 
left of (7.45). We may rewrite (7.32) as 

. dR i q  -2R R, R = > = 2 M  .- 
2 -  d t ,  2 .  3t,,’ 

(7.46) 
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52 S. I .  BRAGINSKY AND P. H. ROBERTS 

a differential equation determining R,(t,) from 2; - d R .  We do not attempt to 
solve this; we simply assume that $”2 is constant and therefore replace R, by R2/3t , ,  
so that 

t& = (2; - P ) / d * .  (7.47) 

The considerable uncertainty in t ,  is matched by a like uncertainty in L2& - L2R.  The 
quantities d,, 9; and L2R are related by (7.46), so that the thermal input into the 
core is determined by only two independent parameters. Numerical values in this 
relation are considered in Section 8. While L2& - 3!R decides the thermal balance and 
the rate of cooling of the core, as (7.47) illustrates, it is 2; - 9; that determines how 
strongly the thermal sources drive core convection. 

In conclusion, we reiterate that all forms of core convection are essentially due 
to thermal effects, both 

( I )  directly, through the thermal codensity, assc, and 
(2) indirectly, through the general cooling of the core and the concomitant 

growth of the nucleus by freezing, thus producing the computational 
codensity a5tC. 

8. THE CONVECTIVE STATE: HOMOGENEOUS MODEL 
(MODIFIED BOUSSINESQ THEORY) 

8.1 

In Section6 we constructed a rather general model of core convection and the 
geodynamo. Because the values of key parameters in Earth’s core are so uncertain, 
this “inhomogeneous model” is perhaps too sophisticated for use in numerical 
geodynamo calculations. In this section, a simpler, and perhaps even simplistic, 
model is developed that is hopefully of some practical utility. It may also be the 
simplest possible model that retains all the main features of the geodynamo 
mechanism. 

and cc - lop8. The smallest of these determines how far convection causes the 
configuration of the core to differ from the basic reference state; the smallness of 
E, was exploited in Sections4 and 5. The parameters E, and E ,  measure 
inhomogeneities of the reference state. The asphericity of that state created by 
centrifugal forces is of order E,. Asphericity has a very small effect on the 
convective motions on the time scale of hundreds of years and longer, and we will 
continue to neglect it. The parameter E,  measures the radial gradients in quantities 
such as p ,  and p, arising from the gravitational compression of the core. It is not 
very small (6, - O.l), but in this section we exploit its supposed smallness in order 
to simplify the model introduced in Section 6. In other words, we develop a 
“homogeneous model” of core convection. More precisely, since small variations 
in density are essential in order to retain the buoyancy forces driving the 
geodynamo, we construct a Boussinesq model of core convection. 

Basis of the Homogeneous Model 

Three small parameters were introduced in Section 3: E ,  - 10- ’, E ,  - 2 x 
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GEODYNAMO CONVECTION 53 

In non-dimensional units, the governing system of equations of our model is 

<(d,V - F") = - VP- Cr -1, x V +FB, (8.1) 

F" = (v/q0)V2V, FB = J x B = B-VB - $VB2, (8.la, b) 

c = - x - Y ,  (8.1~) 

v-v = 0, (8.2) 

d,X + V.1' = ox, where I' = - b-VX, (8.3,8.3a) 

d,Y + V.1' = o', where I' = - b . V Y ,  (8.4,8.4a) 

v2uc = 3pc, 

d,B = B-VV + V2B, 

V.B = 0. (8.7) 

As for any Boussinesq model, the essence of (8.1)-(8.7) is that all basic variables for 
which it is meaningful to do so are assumed to be constant. We have replaced pa by 
po = Al2/^Yl2 (i.e. we have taken p = 1) and have replaced T, by To everywhere except 
in places where the inhomogeneity of T, enters the theory directly, as in the expression 
for IT and in expression (8.27a) below for 0,'. The coefficients, a5 and as, are defined on 
the reference state and are no longer functions of r; they are constants. We used Ap as 
a surrogate for a< in the following way. The density discontinuity is the sum of Asp, the 
change in the density of pure iron on solidification, and Acp the change in density due to 
the discontinuity in composition at the ICB; see (D48). We suppose (see Appendix E) 
that Asp is negligible. Then (D48c) gives 

a5 = APIPN52N. (8.8) 

A representative average value, a: and as was chosen by integrating relation (3.7b) 
approximately using (8.42) below. This led to a value of as intermediate between as 
and a;: 

(8.9) 

We accept the assumed constancy of the coefficients as providing a useful but 
somewhat crude approximation. It now follows that we can write 

aed,(, = - d,Cr, where C5 = - d~&, (8.10,8.10a) 

a$,SC = - d,CS, where Cs = - a:Sc. (8.1 1,8.11 a) 

Neither of these simplifications is precisely correct, the second being more in error 
than the first since as varies by about 30% across the core whereas a5 changes 
perhaps by only a few percent. The variables X and Y are defined by 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
3:

08
 0

9 
Ju

ly
 2

01
4 



54 S. I .  BRAGINSKY A N D  P. H. ROBERTS 

To make the system (8.1)-(8.7) non-dimensional, we have introduced a characteristic 
magnetic field and corresponding Alfven velocity by 

V ,  = (2sZq0)1'2, B, = (popo)'  'V*.  (8.14a, b) 

We have then taken L, = R,  as unit of length, f, =Rf/vo  as unit of time and 
V ,  = LJt ,  = qO/R, as unit of velocity, B, = B ,  as unit of field, J, = B,/poR1 as unit 
of electric current density, and poC, as unit of density perturbation ( p , ) ,  where 
C, = 222V,/~/, = V,2/g,Rl is the unit of codensity; g, = 10.68msf2. Taking qo = 2 
m2sf3  and po = 10.9 x 103kgm-3, we find that V ,  = 1.71 x lO-'ms-', B ,  = 2 0 G ,  
tI=6.055x lo'* s=1 .92x  105yr, V1=5.74x 10 -7ms- '  and C,=O.785x lo-". 
Note that V,  >> V,. Energy densities per unit mass are measured in units of V i ;  this 
is also the unit of P and U,. Power density is measured in units of Q, where 

(8.14~) 

This unit also appears in a combination that is often used in the non- 
dimensionalization: 

IT is measured in units of Q,R,. 
The fluxes are made dimensionless in a similar way: 

(8.14d) 

(8.15,8.16) 

(8.17,8.18) 

Comparing (8.1)-(8.7) with (6.1)-(6.7), we see that the dimensionless fluxes and sources 
labeled with superscripts X and Y correspond simply and directly with the correspond- 
ing variables labeled with superscripts < and S. This correspondence between Sections 
6 and 8 will arise many times below. 

The "Ekman number" used in (8.1) is based on magnetic diffusivity rather than 
viscosity: 

Ef: = qo/2QRf. (8.19) 

It is very small (Ef: % and the more usual (viscous) Ekman number, v0/222R:, is 
even smaller. The Ekman layers at r = R and r = R, can be described using the simple 
isotropic expression (4.9) for the viscous force, with appropriate molecular viscosities, 
v ,  and v,. A turbulent viscosity should be used to describe internal shear layers inside 
the main volume of the core (see Appendix C). In the bulk of the core, F" is insignificant. 
The dimensionless turbulent diffusivity tensor, 

li = 2'/qo, (8.14e) 
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GEODYNAMO CONVECTION 55 

is poorly known at present. It is hoped that future studies of the theory of local 
turbulence will eventually rectify this. At the present time it is necessary to make 
assumptions that, though unsubstantiated, are plausible. Numerical dynamo 
integrations with different choices of 6 will hopefully, when compared with the 
observed geophysical data, provide information about both fi and local turbulence 
in the core. 

We shall find that consequences of the theory rely particularly heavily on five poorly 
known parameters: the rate of evolution of the core, expressed through the time scale 
t ,  = V , / V  ,, the heat released at the ICB during freezing of the formation of the SIC, 
h,, the heat flux, d&, from the core into the mantle and the parameters cd(,, and A,; see 
(8.8) and (6.40). To expose the effects of the uncertainties more clearly, we introduce four 
“nominal values” 

t,, = 4  x 109yr, h,, = lo6 J kg-I, A p ,  = 0.6 x lo3 kgm-3, A,, = 0.05. 

(8.20a, b, c, d) 

The value of A p ,  given in (8.20~) is the seismically inferred value of Dziewonski & 
Anderson (1 98 1). If Asp and A,p were comparable, we would have to assume smaller 
Ap. For h,, in (8.20b) we have taken the value of h, given in Appendix E; it seems that 
this estimate may be uncertain by a factor of 2 either way. Our value (8.20a) of t zo  is 
comparable with the age of Earth. We cannot, however, rule out the possibility that the 
SIC is significantly younger than this, and the ratio t ,/rzo through which we express our 
uncertainty might well be 0.5 rather than our preferred value of 1. The parameter A, is 
the worst determined of all. The value shown in (8.20d) is defended in Appendix E. 
Taken with the estimate (8.20a) of t,,, it implies a geophysically acceptable estimate of 
the core cooling rate; see (8.41a) below. 

Whenever t,, h,, Ap and A2 arise in the theory, we give them the values I,,, 
h,,, Ap, and A2, shown in (8.20a, b,c,d), but we also include ratios t,/t,,, h,/h,,, 
AplAp, and A,/A2,, so that the cause of uncertainty can be readily identified. We refer 
to a unit value for any ratio as its “preferred value” (by which we mean, of course, 
only “preferred by us here”). 

The heat flux from the core, 2&, is replaced in this section by the Nusselt 
number, Nu=A?&/d;, where 2; is the heat flux along the adiabat at the CMB, 
which can be estimated easily using numerical values listed in Appendix E where 
it was found that K T  - 40 W m - ‘  OK-’ and VrTa - - 0.89 “K km-I, so that IT = 
- KTVrTa - 0.0356 W rn-‘ and ST = 4nR;IT = 5.42 x 10l2 W. Nevertheless, Nu,  
though very significant for the present theory, is largely unknown. Its uncertainty 
is not related to the uncertainty of t,, which depends on 4&-dR. Even if the 
estimate t ,  = 4 x lo9 yr is accepted, the uncertainty in the radioactive power supply, 
2R, translates this into a corresponding uncertainty in Nu. It should be emphasized 
that in the core, unlike the laboratory, a small value of N u  - 1 does not mean that 
convection is weak. This is because conduction of heat is driven by a temperature 
contrast across the core of order T2 - TI = 1300”K, while convection of heat, 
through vigorous turbulent motions, is driven by temperature differences of order 
only T, - OK. In the laboratory but not in the core, \ N u  - 1 I << 1 means that 
convection is weak. 
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56 S. 1. BRAGINSKY AND P. H .  ROBERTS 

Equations (8.1)-(8.7), supplemented by appropriate boundary conditions, define the 
"homogeneous model" of the geodynamo. It may be noted that the factor 3 in 
(8.5), which arises from taking g1 = 4nk,poR,/3 and g = -glr/Rl for this model, 
is slightly inaccurate-it should be multiplied by 1 - (R2/R1)3(~z%'Z/pOY"Z - 1). 
This factor differs from unity by only approximately which we ignore. It 
may be recalled from Section 4 that we need the functions p, and U ,  only if we 
wish to evaluate the pressure perturbation p , = p , ( P -  U,). It should be noted 
that the magnetic Reynolds number does not appear in (8.6); it has been absorbed 
into the magnitude of V, which may be large in amplitude when the unit of 
velocity is chosen as we have done. We continue to ignore any changes in the 
mass distribution of the mantle, and assume that R,, = 0. We retain, however, the 
crucial change in radius of the ICB: R, # 0. 

The non-dimensional expressions for the sources ox and 0' can be obtained from the 
the 0: and 0; derived in Section 6. In the homogeneous model, CT' = 0: is a constant 
given by (6.24b), (8.8) and (8.16) as: 

where 

(8.21) 

(8.2 1 a) 

Here V2/V12 = r:/(1 - r i )  = 0.0452, r2  = R,/R, = 0.351. We have also taken A,R2 = 
9, z Y2/t, with t,, = 4 x lo9 yr. We have (see above) cast (8.21) into a form where the 
dependence of 0; on poorly known parameters like Ap and t2 is explicitly shown, while 
its dependence on better known parameters is implicitly contained in .fob. Other 
expressions, such as CT'; and a;, are treated similarly below. 

By (6.24a) and (8.15), the volume source of light fluid, CT;, is associated with a flux at 
the ICB of 

A transparent relation similar to (6.24a) follows from (8.21) and (8.22): 

(8.23a, b) 

where A ,  = 3Y,/r2 (the dimensionless form of A ,  = 3V2/R2). The large constants 
appearing in (8.21) and (8.22) betoken a plentiful source of light fluid that drives core 
convection powerfully. They also strongly suggest that the convection is rather far 
beyond threshold, a fact that was noted by Braginsky (1991). 

We may use (6.32) and (6.32a, b, c) to obtain the non-dimensional entropy 
source as 

0' = 0'; + 0; + 0;,, (8.24) 
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GEODYNAMO CONVECTION 57 

the suffices being in 1-1 correspondence with those appearing in (6.32). According to 
(6.32a), the first term on the right-hand side of (8.24) depends on the difference 
between 14, and I T ,  the former of which is unknown, while (see above) I T  =0.0356 
Wm-2.  According to (6.32b), the second term on the right-hand side of (8.24) 
involves the difference between 1; and 1; which we neglect, and a term proportional 
to R2  that can be conveniently expressed in terms of 0; and hence evaluated with the 
help of the estimate h, z h,, - lo6 J kg- [see (8.20b)l. In this way, using also (8.18), 
we obtain 

(8.25,8.26) 

(8.25a) 

In making these estimates, the values given in Appendix E were adopted. 
The parameters ct, 01; and CT; are the dimensionless numbers that characterize 

the nature of the convection; they play roles similar to that of the Rayleigh 
number” in classical thermal convection theory . Note that 0; is not small in 
comparison with 0;; on the contrary, a ~ , - 3 a t 0 .  The magnitude of the ‘source’ 
CT; depends on the factor Nu - 1, which is poorly known. We are not even certain 
of its sign; .yo might be negative, i.e. a ‘sink’! On the one hand, 0; and 1; are 
proportional to A p / t ,  and may be significantly changed if these poorly known 
values are re-estimated; on the other hand, 0: will be markedly altered if the 
poorly known ratio 14,lIT = N u  is changed. 

The term 01, originates from rsf ,  in (6.32c), that is composed of two very 
different parts 0: and 0;. The former is proportional to the inhomogeneous part 
of the basic quantity (QR - V .  IT)/T,, while the latter depends on convective 
quantities. Using also (8.18), we have, in non-dimensional terms, 

l o  The Rayleigh number as usually defined can be written in the form Ra = o ~ T , T , ,  where T,, = L2/v and 
T. = L ’ / K ~  are the viscous and thermal diffusion time scales and wf = @T/L is the square of the 
buoyancy frequency. Since magnetic diffusion is more significant to us than viscous or thermal diffusion, 
we may replace T~ and T~ and T,, = L2/q and Ra and Ra, = wft i .  We have taken L = R ,  above. Our non- 
dimensional parameters u:, u:.. . . are proportional to the contributions they make to o:, but they are less 
than the corresponding Rayleigh numbers by the factor 2Rr,- lo9. Let us, for example, take 
C - &u$T,/~,,; see (6.3). Then w i  - g C / R ,  - a:a~gr, /p ,R,  and hence Ra, - cfCu~gT~/p,R,. According 
to (8.16). we have us = o x p O C , / z c ~ ,  and C, = 2QV1/g,. i t  follows that Ra, - uXgC,r i /R ,  - 2Quxr,. 
Our non-dimensional numbers C T ~ ,  cry,. . . are therefore similar to the so-called ‘modified Rayleigh 
number’, Ramod = w,25,/2Q. After reducing them by about two orders of magnitude (numerical factors of 
order lo2 arise if we take L-R , /n -  106m instead of L= R , ) ,  they provide measures of how far core 
convection is operating beyond critical. 
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58 S. 1. BRAGINSKY AND P. H. ROBERTS 

where' 

(8.27b) 

Here p = p a / p o  and 1 /7=  T,/T,; (3.7b) was used to obtain (8.27b). The radioactive 
source, QR, is proportional to pa. 

If we adopt the Boussinesq approximation, all thermodynamic quantities are nearly 
uniform (E ,  << 1) so that I 1 - 71 << 1, and the terms in round brackets in (8.27a) are small 
compared with unity, so that 0,' may be neglected in comparison with 0:. This greatly 
simplifies the theory. Some contributions to the dissipation QD are relatively concen- 
trated, and their averages may then to a good approximation be omitted in (8.27b). In 
the resulting simplified model, the sources cr: and 0; of thermal codensity, Y ,  are 
constants. The source, o;, of compositional codensity X ,  always promotes convection, 
as does 05. The term 0: may assist convection or oppose it, depending on whether 
N u  > 1 or N u  < 1. The role of 

Boundary conditions for the system (8.1)-(8.7) may be derived from the correspond- 
ing conditions obtained in Section 6. Those applying to V, B and C; follow from (2.46), 
(2.47) and (6.19a, b, c); those required of the fluxes at r = 1 follow from (6.20a, b) and are 

is stabilizing, as was discussed in Section 6. 

I,X(l) = 0, I,Y(l) = a ~ , ( ~ . ' , 2 / A l R , ) ( N u  - 1). (8.28,8.29) 

More complicated conditions arise at r = r2 .  Corresponding to (6.22), the composi- 
The boundary condition(8.23a, b) tionalflux on the ICB can be written as 1; = 1; + 

on 1; may be written as 

here 0': < 0; see (8.21). Similarly, by (6.32b), the averaged flux of entropy corresponding 
to the source 0: is 

Expressions for 0; and 0; are given by (8.21) and (8.26). 
Assuming that ic' - yl, we estimate the diffusional operator to be V . 5 - V  - 

(ic'/yl)Vz - 10-30 (a few multiples of n2), and recalling that the non-dimensional 
sources of X and Y are of order lo4, we may expect from (8.3) and (8.4) that 

" In (8.27a) we have restored 6, tand y, despite having stated earlier that we would set these to unity in this 
section. This is because differences in P/?from its average enter this formula, and not itself. 
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GEODYNAMO CONVECTION 59 

X - Y- 300-1000. Taking Cr = 0.785 x lo-", we estimate the codensity from (8.12) 
and (8.13) as C - 3 x lo-' - lop8. The same value is obtained by comparing the 
buoyancy and Coriolis forces: C - 2RV/g, N 3 x - lo-* for I/ - 3 x 

ms-'. This provides some qualitative support for the heuristic theory of 
Braginsky & Meytlis (1990), on which the assumption, K' - q, is based. 

Let us now consider the oscillating fluxes of codensity. By (6.22b) and (6.29b), these 
may be written as 

- 

Using (6.42) and (8.13), we see that 

where Y2 = Y(r2 , t )  and 

3t2 c 4 t 2  A20 

t r  c p 4 A 2  t 2 0  A2 
y 2 ,  ==-.I - 1.9 x 10- -.-. 

(8.32,8.33) 

(8.34) 

(8.34a) 

Here we have taken Azo = 0.05 and cpas = a2T, = 5.3 x see Appendix E. Let us 
write a,Y2 = ( c ~ ~ t ~ ) ? ~ ,  where Y2 is the amplitude of the Y, oscillation and 
coo = 2n/(8 x lo3 yr) is the fundamental frequency of the geomagnetic field; then 
cootr s J .5  x 10' and r2,dtY2 - y2. According to (8.34), a,R2,/R2 is of order unity 
when Y, - 30, and such a value is quite probable since, according to our estimate, 
Y-3 x lo2. 

8.2 Energetics of the Homogeneous Model 

The principal integral relations expressing the energetics of the geodynamo were 
obtained in Section 7 but the calculation of specific numerical coefficients was 
postponed until the present Section. To avoid unnecessary compiications, we derive 
here the energy balance for the homogeneous model. We also calculate the coefficient 
A, which determines the rate, R2,  at which the inner core grows, and which is used to 
estimate the sum, dt + 22' + 2?N, of three significant terms of the energy balance; see 
(7.45). 

To estimate dr,  we note that, for the homogeneous model, 

pa - p2 = uqu, - U,), T, - T,  = - aqua - U1), (8.35,8.36) 

can be obtained by integrating (3.7b, c). Also, expressing k2 in terms of R, and using 
(6.28a) and (8.8), we obtain from (7.33) 

dr  = Ap((U,)' - U 2 ) V 2 / t 2  = 0.250ApglR, V2/t2. (8.37) 

We here used the fact that, apart from an irrelevant additive constant, U ,  = 
g1r2/2R, so that we may replace (U , ) ' -  U ,  by 0.2509, R,. Substituting our 
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60 S. I .  BRAGINSKY AND P. H. ROBERTS 

preferred values (8.20), we find that 

AP t 2 0  

APO t2 
d' = 0.34--1012 W. (8.37a) 

It may be seen that, although clr, la and C N  are poorly known, we are fortunately able, 
with the help of the simplified model of Appendix B, to express xi'< directly in terms of 
the much better determined quantity Ap. 

Using the relation (6.39) for S,, replacing Ta by To, and ignoring the difference 
between 3, in the SIC and in the FOC, we may derive 

2 2 ' ~  A2c,ToAl/3t2 (8.38) 

from (7.34). In similar fashion, we find from (7.28) that 

22' = k 2 h N  = h N p ~ v 2 / t 2 .  (8.39) 

Substituting our preferred values (8.20) into (8.38) and (8.39), we find 

p= 1 . 0 ~ . f 2 0 1 0 ~ ~  W, 9N = 0 . 7 7 h , - k 1 0 1 2  W. (8.38a,8.39a) 
A20 t2 hNO t2 

Collecting together (8.37a), (8.38a) and (8.39a), and substituting into (7.49, we obtain 

(8.40) 

The origin of each term in (8.40) should be obvious from the corresponding poorly 
known ratio attached to it. With the preferred unit values of the ratios, we have 

9* = 2.1 x 10l2 w. (8.40a) 

It may be clearly seen that, according to the 22. given in (8.40), thermal effects dominate 
in determining the rate of growth of the inner core. We will find below, however, that 
the compositional part of 2?D is, in order of magnitude, as potent as the thermal part in 
powering the geodynamo. 

The rate of cooling of the core can easily be estimated from (6.39) and the 
approximation Ta z (Ta/cP)ga, which neglects a term proportional to Ea. This gives 

T,  z - TaA2/3t2, (8.41) 

and for the preferred values of the parameters this gives 

F a = = - - - - -  80°K - 20°K 
t 2  109 yr' 

(8.4 1 a) 
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GEODYNAMO CONVECTION 61 

It is interesting to see that the characteristic time of cooling of the core is not t ,  but is of 
order T a / z  - 3t,/A, N 60 t , .  

Now we turn to the energy balance. Equations (7.35) and (7.32), which express the 
buoyant power balance and the heat balance, can be rewritten in simplified forms 
appropriate to the homogeneous model. At the expense of a slight loss of precision, the 
expression (7.44) for the geophysically perfect efficiency can be cast into a simple and 
transparent form. To do this, we roughly estimate the different averaged temperatures 
in (7.38), by assuming that the temperature, T,, follows a simple parabolic law which is 
a consequence of the approximations us = u; and g, = - glr :  

T, = T,  + Td(l - r2),  Td = ia;glRl, (8.42,8.42a) 

where Td = (T, - Tl) / ( l  - T I )  = 1483°K and r2 = R2/Rl  = 0.351. 
Using (8.42), we find that To = 4558°K and 

AT,=(T, -  T,)"=ATol  =558"K. (8.43) 

This value of ATa differs by less than 1% from that implied by Table E2. The ratio 
ATol/To z 0.122 nearly coincides with iAT21/T2 z 0.123. Supposing, in the spirit of 
the Boussinesq approximation, that AT2l = T2 - TI << Tl is infinitesimally small 
(although in reality AT,,/T, =0.325), the average of every AT appearing in (7.38), 
no matter how weighted (provided that the weighting factor is close to unity) is unique 
and equal to AT,. Calculations made using (8.42) and (8.42a) give approximately the 
same results. Equation (7.38) then takes the form (with all terms having a precision of 
5% or better) 

= ( A T J T ~ ) ( ~ ~  + 9s - 2; + (8.44) 

and, by substituting 2'+ 9R from (7.32), we obtain 

2H = (AT,/To)(2& - 2; + 2N - at"). (8.44a) 

Substituting To = T, + ATa here, we find from (7.35) that 

1 9 -- d5+-(2L-9;+9N) A 7'' . '- " [  TO Tl (8.45) 

This provides the simple expression for the geophysically perfect efficiency referred 
to above: 

(8.46) 

where [see (7.32)] 

(8.47) 
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62 S. I .  BRAGINSKY A N D  P. H. ROBERTS 

This may also be written as 

9& = L?R + 2.t2,/t2. (8.47a) 

The relative importance of compositional and thermal driving is clearly exhibited in 
(8.46); it depends crucially on the difference 24, - 9; = =%?:(Nu - l), and on the ratio 
of d5 and 2; - L?;, the latter being reduced by the factor AT,/T, z 0.14. One of these 
magnitudes can be easily estimated: ST = 5.42 x lo’, W; see Appendix E. It follows 
that 

(AT,/T,)(94, - 2;) = 0.76 x lo’, ( N u  - 1) W. (8.46a) 

’ Similarly, taking h,  = h,, and t ,  = t,,, we obtain from (8.39a) 

(AT,/T1)2’ = 0.1 1 x lo’, W. (8.46b) 

The term 9, in (8.46) is small compared with 2;. Let us temporarily ignore it. 
Comparing (8.46a) and (8.37a), we observe that, despite the small factor ATJT,, the 
thermal terms (8.46a) in (8.45) is about twice the compositional term (8.37a). The role of 
the factor N u  is crucial. If [ N u  - 11 2 i, the thermal driving dominates compositional 
driving and either assists ( N u  > 1) or impedes (Nu < 1)  dynamo action. 

It is appropriate here to make the following point. Our Boussinesq approximation 
does not correspond to the limit E, +O, with heat sources and sinks, like QT, Q& and so 
on, held fixed-this is the appropriate for the usual ‘laboratory case’. Rather, we 
consider situations in which E,QT, E,Q& and so on are held constant as E ,  +O-this is 
a Boussinesq approximation tailored to the case of Earth’s core. 

We have just obtained the Boussinesq form for !lD by approximating the correspond- 
ing expression from Section 6. It is possible also to extract it directly from the equations 
governing the homogeneous model in the following way. 

We multiply (8.3) by U ,  - U,(r) and (8.4) by U ,  - U,(r), average the results over 
a cycle of the convection, average them over V12, and add them together. The 
non-dimensional gravitational field in the core is approximated by g, = - r, so that the 
gravitational potential is, apart from an irrelevant constant, U ,  = i r 2 .  Hence 

U ,  - U ,  = +(r;  - r2) ,  U ,  - U ,  =+(I  - r’). (8.48a, b) 

Recalling (6.26) and integrating by parts, we obtain on the left-hand side 

where we have used (7.15), (7.18a), (7.35), (8.31), and 

(8.49) 

SZ!;~= -Iy,,(X+ Y)V*rdV, S2fnd= - ( I x + I y ) * r d V .  (8.49a,b) 
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GEODYNAMO CONVECTION 63 

Here the subscripts nd stands for "non-dimensional". To obtain dimensional values, 
it is necessary to multiply by QrY1, = 0.884 x 108W; see (8.14~). 

On the right-hand sides of (8.3) and (8.4) we have constant terms a:, G'; + a; and the 
variable term r ~ ' ; ~  = 0: + a,'. The latter consists of two parts, both of which are of order 
ATIT,, and we neglect them here. This is a somewhat crude simplification, but 
significant magnitudes are not dangerously distorted, and the calculations are greatly 
simplified; the result is 

2fd = 2; + 2; + 2;. 
Here 

(8.50) 

AP t20 

QiVY-12 t 2  APO t2 
- 2 ( r  - r 2 }  la2 1 - 0.250---*2 -0.38 x lo4----.--, (8.50a) 2x-1 2 2 v x - g1R14J 9," 

(8.5 Ob) 

ATa ST 
2'; = + ( I  -r">"G; = -.- ( N u  - 1) % 0.86 x 104(Nu - 1). (8.50~) 

Ti QI'Y12 

To obtain these results, the following relations were used [see (8.42) and (8.42a)l: 

(8.5 1 a) 

(8.51~) :(l - r 2 v s  ) LxoglRl =AT,,, = ATa, 

together with the approximate but very accurate relation AT,,/T2 = ATa/Tl. 
If we multiply (8.50) by Q1Y12, it coincides term by term with (8.45), where TD = To is 

assumed. Expression (8.50a), when multiplied by QrV12 coincides exactly with (8.37). 
After multiplying by QIV12 the expressions (8.50b) and (8.50~) coincide with 9, and 
2?T(Nu - 1) respectively, when multiplied by ATa/T,. 

The term 2; is associated with the latent heat released on the ICB through the 
crystallization of the SIC; the existence of this source of thermal forcing was first 
pointed out by Verhoogen (1961). The term 2: is associated with the gravitational 
energy release due to the flux of light admixture from the ICB during the same crystalliza- 
tion process; the existence of this source of compositional forcing was first pointed out 
by Braginsky (1963). The term 2; is associated with the cooling of the core through heat 
conduction to the mantle from the superadiabatic temperature gradient alone. 

Equation (8.50) clearly demonstrates the relative significance of the compositional 
and thermal sources of convection in Earth's core. Values of the key parameters are 
given in (8.50a)-(8.50~), but these are poorly known. If Ap = Apo, t ,  = f,, and h, = h,,, 
the contributions made by compositional and thermal convection to 2' are approxi- 
mately equal if Nu = 1.3. 
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64 S. I. BRAGINSKY AND P. H. ROBERTS 

The homogeneous (Boussinesq) model governed by (8.1)-(8.7) can be simplified 
even further by excluding (8.4). Though the source of compositional codensity is a 
consequence of thermal processes that results in the freezing of the inner core, the 
source terms of the model are expressed explicitly through d , R ,  =.R, + btRz,, the 
growth rate of the SIC. It is possible therefore, by prescribing R,  and ignoring 
6, RZc ,  to separate completely the compositional effect, X ,  from the thermal effect, Y. 
Then, setting Y = O  in (8 .1~)  and omitting (8.4), we obtain the simiplest possible 
self-sustained dynamical model of core convection and the geodynamo, which we may 
call “the compositional geodynamo”. This model, which has only one source of 
buoyancy, namely the compositional codensity, C = - X ,  was considered by 
Braginsky (1991). 

Geodynamo theory is very complicated mathematically, and the compositional 
model, though possibly over-simplified, recommends itself through its comparative 
simplicity. It is physically sound, but is it at least qualitatively correct? The answer 
depends on the numerical values of the parameters relevant to Earth’s core, and 
on the sensitivity of the features of the geodynamo to details of the convective 
sources. It is difficult at the present time to be dogmatic. There is no doubt, 
however, that, if t ,  is smaller than our nominal value, the model is qualitatively 
correct. For example, if t ,  = 2 x lo9 yr or less, and A p  > Ape, compositional driving 
makes a greater contribution to A?D than thermal driving; the simplest compositional 
model would then become qualitatively realistic. If the values we have taken are 
considered more plausible, however, the compositional and thermal codensities are 
comparable, and their interplay can generate interesting effects that are absent from the 
compositional model. 

This interplay requires special study, and it depends of course on unknown 
details of the geodynamo process and of the mechanism of heat transfer through 
the D” layer and mantle. The conducting and convecting D” layer is some kind of 
complicated thermal valve. Here, in the low viscosity region of the mantle on the 
side of the D” layer adjacent to the core, mantle plumes originate, according to 
Stacey and Loper (1983) and Loper and Stacey (1983), who stressed the crucial 
role of plumes in cooling the core. A stably stratified layer may also exist at the 
top of the core that plays a significant role in the exchange of heat between 
mantle and core (Braginsky, 1993). A complete understanding of the thermal 
coupling of core and mantle is still lacking. The following speculations may, 
however, be of some interest. The coefficient appearing in (8.25) is a few times 
greater than the coefficients appearing in (8.21) and (8.26). The rather large 
prominence of the thermal terms is the basic reason why both the intensity of 
convection and the field generation mechanism depend sensitively on N u  - 1. This 
dependence is particularly strong when N u  < 1. The compositional source of convec- 
tion is then partially spent in overcoming the negative (stabilizing) influence 
of the thermal sources, as was pointed out by Loper (1978). When N u  - 1 - -+, 
as happens when 2? T - $9 & the effective ‘heating from the top’ is so great that it 
may even stifle core convection and magnetic field generation completely. This 
indicates that core convection depends sensitively on heat transport through the 
mantle. One may therefore suspect that the factor N u -  1 establishes itself at 
rather a small value, though the mechanism through which this adjustment is 
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GEODYNAMO CONVECTION 65 

effected is unknown. A sensitivity of core processes to N u -  1 might explain the 
observed variation in both the geomagnetic field intensity and the frequency of 
reversals over the geologically long period, zG - 2 x 10’ yr. 

A little support for these speculations is provided by the fact that the thermal 
time constant, t” - L“’/K, of the D layer is of the same order as zG. Here L” 
is a characteristic dimension of the layer and K ,  - m2 s-’ is the thermal 
diffusivity of the mantle. It follows that t” - zG for L” z 80 km, which is comparable 
with the thickness of the D” layer. To establish the plausibility or implausibility of the 
ideas advanced here, it would be necessary to treat the core and mantle as a coupled 
system-the mechanism does not operate when, as in this paper, 2; is specified and 
the core alone is considered. 

If the value of N u  were known, we would be able to estimate the radioactive heat 
production in the core by using (7.47), which can be written as 

(8.52) 

With N u =  1 and our previous estimates of A?* =2.1 x 10” W, we obtain 
2?’=3.3 x 1012 W for t,=t,,, 2R= 1.2 x loi2 W for t , = $ r 2 , ,  and ~ 2 ~ = 0  for 
t ,  = 0.4t2,. It t ,  = 2 x lo9 yr instead of 4 x lo9 yr, then T R  = 0 is attained if N u  z 0.8. 
Then [ N u  - 1 I z 0.2, which is rather small. Lacking precise values for the crucial 
parameters, we may only suggest that 2’ is not significantly greater than about 
3 x lO”W, but may also be much smaller (including zero). 

CONCLUSIONS 

A proper foundation has been laid in this paper for studying core convection and the 
geodynamo; a complete set of workable equations has been consistently derived from 
first principles. We have formulated the MHD theory for the motion of a binary alloy of 
iron and some light admixture, in which the momentum balance is simplified by an 
anelastic approximation. The dual (thermal + compositional) character of core con- 
vection has been properly recognized. Although compositional and thermal driving 
depend significantly on the thermal interaction of core and mantle and on the thermal 
history of Earth, neither of which are yet known with any precision, we can (and have) 
introduced the dimensionless parameters that appropriately measure the relative 
importance of the key physical mechanisms. We have argued that the geomagnetic field 
is a bye-product of large-scale magnetoconvection in the core, but the important role of 
small-scale motions has also been recognized through the introduction of a local 
turbulence model. We have seen that the existence of turbulent mixing is essential for 
the existence of the basic state of uniform entropy and composition. 

Amongst the novelties and achievements of the paper, we wish to draw particular 
attention to the following: 

1. A significant simplification of the anelastic equations has been established in 
Subsection 4.2, where the momentum equation was transformed without 
approximation into Boussinesq form. We there introduced a new quantity, 
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66 S. I. BRAGINSKY AND P. H. ROBERTS 

which we have christened ‘the codensity’, and which determines the non- 
conservative buoyancy force resulting from small perturbations of the well- 
mixed adiabatic state associated with the convection. This allows the 
irrelevant complications, created both by the pressure variations, and by the 
changes in gravity associated with the convective motions, to be filtered out, 
leaving behind only the crucial compositional and thermal buoyancy forces. 
This simplifies the re-assessment of the relative importance of these forces; 

2. Emphasis has been placed on the probable dominance of core turbulence in 
the transport of mean large-scale fields such as entropy and chemical 
composition. This emphasis is not new, but goes beyond the early ideas 
adumbrated by Braginsky (1964b). The formalism developed here does not 
require one particular description of core turbulence rather than another; it 
does however suppose that the turbulence can be adequately described by a 
local theory, i.e. that, to a first approximation, the fluxes of mean fields 
(such as entropy and composition) can, at every point, be expressed as a 
linear combination of the gradients in those fields at that point. The 
coefficients in these relationships are the turbulent transport coefficients, 
which are expected to be very much larger than the corresponding molecular 
coefficients. The theory that is developed here has some points of similarity 
with the mixing-length theory used by astrophysicists in studying the 
convection zones of stars. See, for example, Ch. 14 of Cox and Giuli (1968); 

3. We have stressed that, because the microscale magnetic Reynolds number is. 
very probably small, turbulence in the core is likely to be quite different from 
‘classical’ turbulence, in which inertial forces are all important. We have argued, 
however, that Coriolis and Lorentz forces are so potent that the turbulent cells in 
the core have a plate-like strucutre, so that the associated turbulent transport of 
macroscopic quantities by the turbulence is strongly anisotropic. We have made 
use of the turbulence model of Braginsky and Meytlis (1990) to estimate that 
transport. We have also emphasized that in the core, unlike the laboratory, the 
(tensor) turbulent diffusivities of entropy and composition are identical to one 
another; 

4. We have provided an expression for the entropy production rate, d, due to 
the turbulence. We have shown that this is simply - g * I c ,  where I c =  
- a V - a S I S  is the flux of codensity. Translated into simple terms, the 
source oi turbulent energy is not inertial cascade from the macroscale, but is 
the gravitational instability associated with mean gradients of composition 
and entropy. According to all estimates, the largest of the molecular 
diffusivities in the core is the magnetic diffusivity. Assuming that this is the 
principal diffusivity that affects core turbulence, it is shown that the entropy 
production by the turbulence arises entirely from the Joule dissipation of the 
microscale electric currents, Q’, i.e. Q’ = Q’. The rate of mean field entropy 
production due to turbulent processes must be positive definite (or, more 
precisely, it must be non-negative); in local turbulence theory it must be 
non-negative, at every point in space. Consequently, as is shown here, the 
notion, that a simple enhancement of the transport coefficients is all that is 
required to incorporate the effects of turbulent diffusion, is incorrect. Such 
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an idea would lead to locally increasing entropy everywhere, including regions 
that are locally stable. At a point of local stability, turbulent diffusion will be 
absent, according to any local theory of turbulence, and only molecular transport 
can take place. This creates a positive but very small entropy production. It 
should be stressed that, unlike the corresponding astrophysical application 
mentioned above, the boundaries separating unstable regions of the core from 
stable regions is not known, and may not even be spherical. 

5. The relative importance of thermal buoyancy (from the cooling of the core 
and the release of latent heat at  the inner core boundary) and compositional 
buoyancy (from the release of the light constituent of the alloy at the inner 
core boundary) in driving core convection has been estimated, using modern 
geophysical data. Braginsky (1963, 1964b) argued that compositional convec- 
tion dominates thermal convection in Earth’s core. His arguments were 
subsequently examined by a number of authors (e.g. Gubbins, 1977; Loper 
1978; Gubbins et al., 1979; Loper & Roberts, 1983) who confirmed that 
compositional driving was an effective mechanism for stirring the core. In 
Section 8 we have found that, most plausibly, the contributions made by 
compositional and thermal sources to the codensity are comparable and that 
some interplay between these two mechanisms must be expected. This opinion 
depends on the spatial distribution and magnitude of the two sources and on 
the sizes of various parameters that are poorly known today, and it is there- 
fore impossible to be dogmatic about this matter. The flux of heat from core 
to mantle is crucially important for both convection mechanisms, and the 
connection between convection processes in mantle and core significantly 
influences the geodynamo. Nevertheless, we argue that compositional buoyancy 
is especially significant since it admits the possibility that heat is pumped 
downwards, against the adiabat (see point 7); 

6. In Sections 7 and 8, we have given new expressions for the efficiency, qD, of the 
geodynamo, considered as a heat engine. These differ from earlier derivations in 
that the effect on the efficiency of the slow evolution of the core is explicitly 
separated from contributions made on the convective time scale. We expressed qD 
as a product, qD = qFqG, where qF is the frictional factor (7.43) and is the ratio of 
the Joule dissipation of the geodynamo to the total dissipation of the core, arising 
from Joule dissipation and all forms of friction, and qG is the geophysically ideal 
efficiency (7.44), which replaces the Carnot efficiency of a traditional heat engine, 
and which represents the maximum attainable efficiency of the geodynamo. We 
have also presented new arguments that relate the magnitude of the geomagnetic 
field to the available power. (Unfortunately, it is again hard to apply these 
arguments with confidence to the core because of the-uncertainty with which some 
key parameter are known). 

7. Many parameters important for the description of core convection are poorly 
known. Even the heat flux from the core, which is central to the character and 
vigor of core convection, is so badly determined that it is even uncertain whether it 
exceeds, or is less than, the heat conducted down the adiabat. The rate at which 
the inner core grows through freezing, i.e. R,, is also not reliably known but (we 
argue) it can be more accurately estimated than the heat flux. We have therefore, 
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68 S. I. BRAGINSKY AND P. H. ROBERTS 

where possible, cast the theory into a form in which badly determined parameters 
are removed in favor of quantities dependent on R,. Where this was not possible, 
we expressed a poorly determined quantity as the product of a nominal value for 
that quantity (which we used to evaluate our formulae) and the ratio of the 
quantity to that nominal value. For example, where the age, t ,  of the solid inner 
core appears, we took t,, = 4 x lo9 yr as the nominal value, used it to evaluate 
expressions in which t ,  appears, but retained the ratio t,/t,, in those expressions. 
In this way not only were the consequences of the uncertainties oft, made evident, 
but also anyone who prefers to take some value of t ,  other than 4 x 109yr can 
easily see the implications of his choice. This illustrates what we have striven to do 
in .this paper: we have tried to describe clearly what is a very complex physical 
situation; 

8. The mass fraction, cN,  of light constituent, Ad, in the inner core has been 
estimated using a simple model of a binary alloy. We have defined a 
rejection coefficient, rFs = (5, - cN)/c , ,  and have derived a simple expression 
for that coefficient that relates it to the well determined density jump, Ap, at 
the inner core boundary. Adopting the PREM value of 0.6 x lo3 kg m-3  for 
Ap, we find that rFS z 0.4. Thus, most of the light material is retained by 
core fluid when it solidifies. Once the phase diagrams of the relevant alloys 
under high pressure become better known, it should be possible to use this 
value of rFS as a means of determining which alloying element is most 
abundant in the core. For the present, we prefer models that take Ad = S or 
Si rather than Ad = 0. 

Let us suppose that the density discontinuity, Ap,  at the inner core boundary 
is 0.6 x lo3 kg m-3  and that the age of the inner core is 4 x lo9 yr. Let us further 
suppose that the heat flux, 2&2&, from the core is that conducted down the adibat, 
2:. (In reality, it is not known which is the larger.) Then according to (8.50)- 
(8.50 c), 

2~ =0.5 x lo4 2, z 4.4 x ioll  w 

Here 2, = Q, V12 z 0.88 x 108W, where QI is the basic unit of dissipation per unit 
volume in the core, defined in (8.14~).  The dissipation rate, 2 D  = d c  + 2', given in 
(9.1) includes both Joule and viscous losses (including friction between core and 
mantle) from both the large-scale (dc)  and turbulent (2')  fields and motions. The 
macroscale parts 2" + SJ, are provided by the Archimedean power, dc, driving the 
dynamo, and can be estimated from integrations of kinematic or intermediate 
dynamo models: 

where ya is a dimensionless constant that is model dependent, Bay is the rms toroidal 
field, averaged over the volume of the core, t ,  = R : / q  z 1.92 x lo5 yr is the elec- 
tromagnetic time constant of the core, and r]  is its magnetic diffusivity, which we assume 
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is q z 2m2 s-’. With these values (9.2) may be written as 

It is here supposed that B,, is measured in Gauss so that the constant multiplying B:, in 
(9.2) has units of WG-’. Suppose that B,, = 100 G and d c  x 0.7 21D z 3 x lo1’ W, so 
that 0.3 remains to supply the turbulent dissipation, 2 ? f .  Then we find from (9.2a) 
that y A  = 130, which happens to be close to the value given by the Kumar-Roberts 
dynamo model; see the final column of Table 6 of Kumar and Roberts (1975). Model-Z 
dynamos require y, of order twice as large; ya tends to be rather smaller than 130 for 
Taylor-type models. It is much smaller for the free decay of either the poloidal dipole 
( y A  = n2) or the toroidal quadrupole ( y A  z 20), both of which are often used in similar 
calculations. Despite the uncertainty in the way that ?,varies from one model to 
another, we may say with some confidence that a geodynamo in which B,, - 100 G can 
be maintained in Earth‘s core. This is a typical magnitude for the toroidal field in the 
so-called “strong field dynamo”; although the field is not extremely strong, it is much 
greater than the poloidal field, which is the only magnetic field seen at Earth’s surface. 

Theories of the geodynamo should rest on equations that are both geophysically 
realistic and sufficiently tractable for theoretical progress to be possible. The conflict 
between these two desiderata has led us to develop models at different degrees of 
complexity. These are roughly of three types: in the order of increasing simplicity but 
decreasing realism, they are 

(I) The inhomogeneous model (Section 6); 
(11) The homogeneous model (Section 8); 

(111) The compositional model (Section 8). 

Model I seems to provide a rather satisfactory basis for the study of core magnetocon- 
vection, a framework on which further improvements can be constructed. Model I1 is 
much simpler than model I but it employs the rough Boussinesq approximation 
(E, + 0). It is just this model that has been used here to provide numerical estimates with 
a minimum of complications. It is worth remarking that it is possible to define models 
that are intermediate between models I and I1 and that these models are almost as easy 
to employ in massive numerical computations as model 11. For example, one could 
incorporate the inhomogeneities of pa and T,, as given for example by the PREM 
model, but continue to suppose that at and as are constants. Then instead of (8.2), i.e. 
V.V = 0, one would use the anelastic approximation (6.2), i.e. V. ( p o V )  = 0. The effect of 
the small spherically-symmetric deviation from incompressibility on field generation 
could then be investigated, and the consequences of the limit set by the Carnot factor, 
AVT, could also be studied directly. This could be done with little added computa- 
tional effort. 

Model I11 is obtained by omitting thermal forcing that, though poorly known, 
may be as large as compositional forcing; it therefore also rules out all effects that 
arise through the interplay between these two mechanisms. It is however much 
simpler than models I and I1 because it uses only one equation governing the 
codensity together with a simple boundary condition. It evades most of the uncertain- 
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ties in the physical chemistry of the core. Moreover, the number of parameters that 
must be assigned is at a minimum:d,R,, K‘ and the strength of core-mantle friction. 
(The interaction between solid inner core and fluid outer core across the inner core 
boundary can be approximately incorporated without the addition of another par- 
ameter-see Braginsky, 1989.) This simplest model could, as suggested by Braginsky 
(1991), be the best weapon to wield at this time in the formidable battle of finding 
a self-consistent geodynamo. 

It is possible, within the framework of model 111, to investigate in a self-consistent 
way all the main elements of the geodynamo mechanism, namely: 

(A) magnetic field generation resulting in the mutual excitation of the mean (0- 
averaged) poloidal and toroidal field components; 

(B) generation of MAC waves, that account for the existence of the asymmetric fields 
and velocities which allow the dynamo to evade the restrictions of Cowling’s 
theorem; 

(C) the advection and turbulent diffusion of the mean codensity; 
(D) the local turbulence mechanism which creates the diffusional transport of mean 

All these four processes are nonlinear and interact with one another, thus turning the 
geodynamo into an auto-oscillating system. Such a system holds promise of exciting 
developments in the future. Perhaps a little hopefully, one may imagine that 
geodynamo theory will throw light on the composition of the core, and in particular on 
which alloying element is its principal light constituent. This would be achieved by 
solving the geodynamo equations for many choices of the key, but poorly determined, 
parameters we have isolated above, and by deciding which model fits best the 
geomagnetic observations and all other relevant geophysical data. These ‘best values’ 
for the poorly determined parameters would provide information, unavailable from 
any other source at present, about the composition of the core. 

quantities. 
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GEODYNAMO CONVECTION 

APPENDIX A: NOTATION 

7 3  

Four abbreviations occur frequently in the text: 

CMB = core mantle boundary, 

ICB = inner core boundary, 

FOC = fluid outer core, 

SIC = solid inner core. 

We use the word ‘Nucleus’ as an alternative to SIC,  the suffix N then being attached to 
quantities evaluated in the SIC or on its surface. In an effort to make our notation self 
explanatory, we have adopted a few simple rules: To track the numerous physical 
variables that arise in our work, we have distinguished each by a combination of a letter 
and a suffix that have unique meanings. For example, p is used everywhere for density 
while a always refers to the adiabatic reference state. The significance of pa is therefore 
immediately obvious. The following should also be noted: 

1. All small parameters are denoted by E, with an appropriate subscript; 
2. Energies per unit mass (with the exception of the gravitational potentials Cr)  are 

3. All energies per unit volume by u, with an appropriate superscript; 
4. All rates of dissipation of volumetric energies are denoted by Q, with ah 

appropriate superscript; all rates of volumetric entropy production are denoted 
by 0, with an appropriate superscript; 

5. When an extensive quantity is integrated over a volume, such as the volume of 
the core, it is denoted by a calligraphic letter. For example, the integral of a mass 
density p is denoted by JN, the integral of a volumetric energy density u is 
denoted by 6, and the integral of the rate of dissipation of such an energy density, 
Q, is denoted by 9; in Section 7, s4 is the rate at which “useful work” is done and 
Y denotes couple; 

6. Material fluxes are denoted by I, with an appropriate superscript; electric 
current density is denoted by J; 

7. Some subscripts and superscripts permanently have specific meanings; these are 
often omitted when vectors or tensors are written in component form. In particular: 
(a) The suffices , and refer respectively to the CMB and ICB, the volumes they 

contain being denoted by V 1  (the entire core) and V z  (the SIC); between 
them lies V12 (the FOC). Where a quantity carries the suffix 1, it is to be 
evaluated on the CMB; 2 means it is evaluated on the fluid side of the 
ICB-if the quantity is discontinuous there, means that it is evaluated on 
the solid of the ICB; 

(b) The subscript a refers to the basic adiabatic state. Note however that 
properties of the fluid such as a, c,, q, . . . do not usually carry suffices even 
when they are evaluated for the basic state. The subscript a is also omitted 
when it occurs in conjunction kith the suffices and that refer to CMB and 
ICB. We therefore write R ,  and R, in place of R,, and R2,,, TI and T, instead 
of T,, and T2,, 1; instead of I;,, and so forth; 

denoted by E,  with an appropriate superscript; 
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74 S. 1. BRAGINSKY AND P. H. ROBERTS 

(c) For the FOC, the increment in a variable, through the action of convection, 
over its value in the basic state carries the subscript c. The fields V and B arise 
only in the convective state and do not carry the subscript c. For the SIC, the 
suffix c on a variable signifies that it is the deviation from its value in the basic 
state which is mainly due to the thermal conduction; 

(d) The superscript t is used to distinguish transport coefficients associated with 
turbulent processes from the corresponding molecular coefficients. The 
turbulent contributions to other fields are denoted by daggers, e.g. Vt, Bt, 
Ct,. . . are the fluctuating parts of V, B, C,. . . . [For brevity, Vt, Bt, and Ct are 
replaced by v, b J ( p o p o )  and c in Appendix C; 

(e) Other superscripts and subscripts that appear are 

0 
B 
e 
J 
K 
M 
N 
nd 
P 
S 
T 
V 
V 

5 

which stands for average over the FOC 
which stands for magnetic field 
which stands for effective 
which stands for Joule 
which stands for kinetic 
which stands for mantle 
which stands for nucleus (SIC) 
which stands for non-dimensional 
which stands for pressure 
which stands for entropy 
which stands for temperature 
which stands for volume or for velocity, depending on context 
which stands for viscosity 
which stands for composition 

8. Time derivatives of basic quantities are denoted by an overdot, e.g. we write pa in 
place of d p , l d t ;  

9. There are types of average: ( Q ) ' ,  Q, (Q)'. These are introduced in Subsections 
4.2 and 5.1 and in (6.26) and are respectively averages over the turbulent 
ensemble, over large-scale convection and over Volume. In (6.25a, b) we intro- 
duce p o  and To in place of ( p a ) "  and ( T,)"; 

10. Double square brackets are used to denote the discontinuity of any field at 
a surface, the location of which is specified. For example, "[t,] at r = R,"denotes 
5 ,  - tN, where t2 = t a ( R 2  +) and tN = t a ( R 2  -) are the concentrations of 
admixture at r = R, in the FOC and SIC, respectively. We denote this particular 
jump also by (2N. 

Table A1 Key to Notation 

Quantity Name Units Definition 

1, Unit vector in direction of increasing coordinate q None 
a1 Eulerian time derivative s -  
dl Lagrangian time derivative S - l  

d Various energies J 

aiat 
a, + v.v 

a (D8) Thermal coefficient of volume expansion 
as Entropy coefficient of volume expansion kgJ -1"K=sZm-2  "K (3.7d) 

"K - I 
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GEODYNAMO CONVECTION 

Table AI (Continued) 

75 

Quantity Name Units Definition 

Isothermal compositional expansion coefficient 
Adiabatic compositional expansion coefficient 
Gruneisen parameter 
Kronecker delta 
Various small parameters 
Various energies per unit mass 
Magnetic diffusivity (2 0) 
Various efficiencies ( X  = B, C, D, E ,  F ,  G, I) 
Colatitude 
Molecular thermal diffusivity ( 20) 
Molecular compositional diffusivity (20) 
Turbulent diffusivity tensor 
Permeability of free space (437 10- ') 
Chemical potential 
Isothermal compositional derivative of chemical 
potential 
Adiabatic compositional derivative of chemical 
potential 
Kinematic shear viscosity ( 2 0) 
Kinematic second (bulk) viscosity ( 2  0) 
Viscosity tensor 
Mass fraction of light component of alloy 
Stress tensor 
Density 
Electrical conductivity (20) 
Entropy production per unit volume 
Various time scales 
East longitude 
Angular speed of reference frame 
Angular velocity of reference frame 
Area of CMB, area of ICB 
Area A ,  + A ,  of boundaries of FOC 
Rate of working 
Magnetic field 
Specific heat at constant pressure ( 2  0) 
Specific heat at constant volume 
Codensity (Fractional density change at constant 
pressure) 
Rate of strain tensor 
Dimensionless turbulent diffusivity tensor 
Electric field 
Body force per unit mass 
Gravitational field (-VU) 
Effective gravitational field ( -  VV,) 
Heat of reaction 
Latent heat 
Generalized latent heat 
Various fluxes 
Electric current density 
Newtonian constant of gravitation (6.673 lo-") 
Pressure coefficient 

None 
None 
None 
None 
None 

m's-' 
None 
None 
m2s-' 
m's-' 
m's-' 
H m - '  
m2s1' 

m2s1' 

m's-' 
mZs-l  
mzs-' 
m's-' 
None 
Nm-' 
kgrK3 
Sm-' 

m,s-,=Jkg-l 

Wm - 3 OK- 1 

S 

None 
S - '  

S - '  

m2 
m2 
W 
T 
J kg- ' "K 
J kg-' OK-' 

None 
s- 
None 
Vm-' 
ms-' 
ms-, 
ms-2 
Jkg- '  
Jkg- '  
J kg-' 
Various 
Am-' 
kg-' m3 s - ~  
None 

(D9) 

(3.7f) 

(3.8)-(3.11) 

( ~ 1 7 )  

Section 7 

(2.38a) 
(D31) 

(D4) 

(Dl01 

(D16) 
(2.13a) 
(2.13a) 

(2.13) 

(4.12) 
(2.13 b) 
(8.14e) 

(D1.2) 
(6.30b) 
(6.30a,c) 
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Table A1 (Continued) 

S. I. BRAGINSKY AND P. H. ROBERTS 

Quantity Name Units Definition 

Soret coefficient 
Thermal conductivity ~ c , K ~  (2 0) 
Incompressibility puf 
Couple 
Mass of entire core, mass of SIC 
Mass of FOC 
Pressure 
Reduced pressure 
Energy dissipation per unit volume 
Energy dissipation 
Radius vector from geocenter 
Distance from geocenter 
Rejection coefficient 
Distance from the polar axis 
Time 
Time on geological scale 
Time on convectional scale 
Specific entropy 
Temperature 
(Adiabatic) velocity of sound 
Isothermal velocity of sound 
Potential of gravitational field 
Velocities of CMB, ICB 
Effective gravitational potential 
Fluid velocity 
Volume of entire core, volume of SIC 
Volume of FOC 
Distance northwards from equatorial plane 

P J P ,  

Irl 
(5.15) 

(2.8b) 

APPENDIX B: GRAVITATIONAL ENERGY 

The theory of Newtonian gravitation bears a close relationship with that of electro- 
statics; there are also significant differences, of which the opposite sign (attraction of 
masses rather than repulsion of like charges) is not alone. The basic field equations are 

v X g = o ,  v . g =  - 4 x k ~ p .  (BL21 

As in electrostatic theory, (Bl )  and (B2) are the pointwise forms of more general integral 
statements 

$cg .dC = 0, fA g'd* = - 4nkN pd v, (B374) 

where A is any closed surface containing a volume V ,  and C is any closed curve. When 
applied at a surface where p changes discontinuously, they imply that 

[n x g] = 0 ,  [n-g] = - 4 n k N p A ,  on A ,  (B5,6) 
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GEODYNAMO CONVECTION 77 

where pa is the concentrated surface mass density and n is the unit outward normal to 
A.  In most models of gravitational phenomena, pa is zero, and then (B5) and (B6) give 

[g] = 0 on A provided pa = 0. (B6a) 

When mass is contained only in a bounded volume, V,  surrounded by vacuum, g”, we 
have 

g = O W 2 ) ,  for r + w .  (B7) 

Equations (Bl) and (B2) allow one to write the gravitational force per unit volume as 

is the gravitational stress tensor. With the help of (BS), the gravitational force and 
couple on a body .Ir are readily expressed as integrals over its surface A .  It is easy to 
show from (B5), (B6), (B7), (B8) and (B8a) that the self-force and self-couple on V are 
zero. 
According to (BI) and (B2), we have 

g = - VU, V2U = 471kNp, (B9,lO) 

and (B.5) and (B6) are satisfied if we apply 

[u] = 0, [n-VU] = 4 n k N p , ,  on A, (B11,12) 

while (B6a) becomes 

[ U ] = O ,  [n.VU]=O, on A provided pa=O. (Blla,12a) 

Condition (B7) reduces to 

U = o(r-’), for r-co. (B13) 

The gravitational energy of a mass distribution is defined to be the energy required to 
assemble it from masses brought “from infinity”. It is (for pa = 0) 

g g = + S p U d I / .  (B14) 

This is in fact negative since energy is extracted during the process of assembly. By using 
(BlO), (B1 la) and (B12a), we find that (B14) can be written as 

$ UdA.VU-- 1 (VU)’dV, (B15) 
8g=--[ 1 UV2UdV=- 

8% Y 8 n k N  Am 871kN Y ,  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
3:

08
 0

9 
Ju

ly
 2

01
4 



78 S. 1. BRAGINSKY AND P. H. ROBERTS 

where the surface integral is taken at infinity and vanishes by (B13); fm is all space. We 
then obtain an alternative to (B14), namely 

This provides a definition of the energy density for gravitation that is, apart from sign, 
exactly analogous to the energy density that arises in electrostatics. It is interesting to 
note that even a second alternative expression for d g  exists. By (B7), (B8), (B8a) and an 
application of the divergence theorem, we have 

where the volume integrals are taken over all space so that the surface integral is at 
infinity. By (B16,B16a) we now see that 

We may use (B16a) to derive a pointwise expression of gravitational energy 
conservation. By (B9), (B10) and (2.2), we have 

1 1 1 y.a g. = - ~ v,uv,(a, u)  = - - vi(ua,vi u) + - u a p  u d r u g =  -- 
1 

4nkN ' ' ' 4nkN 4nkN 4nkN 

which may be written as 

a , u g  + v .19 = - pv -g ,  
where 

(B20a) 
4nkN 

Despite the possible discontinuity in p U n - V  at a surface A of discontinuity in p, we 
have 

[n*Ig]=OO, on A.  (B21) 

To see this, we take the motional derivative of (B11) and (B6) with respect to the 
velocity, n .  V,, of A along its normal and obtain 

[a,U]=-n.V,[[n.VU], on A,  (B22) 

[n.a,g] = -n*V,[n-Vg] -4nkNPA, on A.  (B23) 

On applying (B12) and (B2) and using Pa = - i[pn.(V - V,)], we reduce these to 

[[la, V ]  = -4nkNpAn-VA,  [rn-d,gTI =4nkNlpn.V1, on A.  (B22a,23a) 
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GEODYNAMO CONVECTION 79 

Taking the scalar product of (B20a) with n and again applying (Bll), we obtain (B21) 
from (B23a). (In fact, Ig = Ig 1, vanishes identically for a spherically symmetric system.) 
It is also worth noticing that, according to (B7) and (B13), 

I g =  O ( F ~ ) ,  for r +  00. (B24) 

By a transformation similar to (B19), it is possible to show that (B20) also holds when 
(B16a) and (B20a) are replaced by 

1 
8nkN ug = ; p  u, 1 9  = p uv + -(gat u - ua, g).  (B25,26) 

Though more symmetrical, these are perhaps not quite convenient as the other forms, 
since n - Ig would in general be discontinuous on A.  

Many of these results have been derived on the assumption that the gravitational 
field is self-generated; see (B7) and (B13). If an externally generated field, 

(I3271 g e x t  = - VU'"', 

is present in addition, it is necessary to add ugext to the right-hand sides of (B16a) and 
(B25) and to add I g e x t  to the right-hand sides of (B20a) and (B26), where 

p x t  = U e x t ,  ~ g e x t  = u e x t v v .  (B28,29) 

Equation (7.33) provided an estimate of the power, at<, released by gravitational 
settling. This estimate presumed, consistently with the basis of the Boussinesq model of 
Section 8, that the density of the FOC is almost constant. We conclude this Section by 
attempting, again through the use of (7.33), to derive a more accurate estimate of at<. It 
is possible to represent the density of the FOC with an inaccuracy of at most - 0.5% by 
a simple parabolic law which, replacing r by the non-dimensional r/Rl, is 

where p1 and p2 are given by PREM and are listed in Table 1, so that 
pd E 2580.81 kgm-3. The resulting mass, M I 2  = 1.8367 x loz4 kg, of the FOC agrees 
well with the value 1.841 1 x loz4 kg given by PREM. We adjust the mass of the SIC to 
give the g2 obtained from PREM and listed in Table 1. The value, g1 = 10.66msP2 
implied by (B30) then agrees well with the PREM value listed in Table 1. Since 
aU/& = g = k, A(r)/r2, where M(r)  is the mass contained in the sphere of radius 
r centered on 0, we find that 

From (7.33) we have 
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80 S. I.  BRAGINSKY A N D  P. H.  ROBERTS 

We have here appealed to (8.35), which holds for nonuniform p, provided that we 
assume, as we shall, that is constant in the FOC; we have also used (6.23b) and 
(D48c). The final integral in (B32) is easily evaluated with the help of (B30) and (B31). 
Writing also ? = Y"/t2, we find that 

AP t20 

APO t 2  
d'= 0.38-- 10l2 W. (B32a) 

We have used the full Apo =0.6 x lo3 kgm-3 in this evaluation instead of 
A'p ~ 0 . 5  x 103kgm-3. The coefficient in (B32a) is about 10% greater than that 
appearing in (8.37a), where the approximations p = po and g = gl r were used. 

It is clear from the derivation of (7.32) that, in general, dt # bg. Changes in p (and 
therefore in € g )  arise from variations in p ,  S and (. All three are properly accounted for 
in Sections 6-8, but d' involves only the (-created p-variations. It is also apparent 
that, if at is not constant, even variations in ( will cause the volume of the core and 
therefore R, to  change, with a concomitant modification to the distribution of p in the 
mantle that will make a nonzero contribution to &g. When at is constant however, the 
mantle and SIC do not contribute to &g, and (B32) has a simple interpretation. In time 
lit, a fraction a t ( 2 N  6t of the mass in a unit volume situated at a distance of r from the 
geocenter is effectively carried to the ICB, releasing gravitational energy of paat(2N6t 
[U,(r) - U,]. Integrating this over the FOC, we obtain (B32) as the total gravitational 
energy release. In this case therefore = kg.  

We may use the constant-a' model to estimate dtp2, a quantity arising in Section 
6 (see footnote 8). According to this model R, and p ,  are independent o f t  and 8, pa is 
independent of r in the FOC. We have 

3r2  i, 4nkNR, 
a 1 p a = - q  AP, a 19- (1 - r 3 )  8, Pa. (B33,34) 

3r 

Differentiating the equation, drp = - pg, of hydrostatic equilibrium with respect to 
t and integrating over r,  we find that 

where we have used (B9) and a, p1 = 0. Combining (B33) and (B35), we obtain 

where, for the model defined by (B30), we have by (B31) 

(B36a) 
i.e. f ~ 0 . 6 9 .  
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GEODYNAMO CONVECTION 81 

APPENDIX C: LOCAL TURBULENCE 

Turbulence plays a crucial role in the MHD of Earth’s core, but no theory has yet been 
developed to describe it fully. The discussions that have so far been published might be 
better described as intelligent speculations than as deductive theories. As we have 
mentioned in Section 4, proposals have fallen into two main categories: developments 
of the classical ideas of large-scale turbulence in which energy is injected at a macro- 
scale and cascades to dissipation at a microscale, and new ideas concerning local 
turbulence in which energy enters at the microscale level, at which it is also dissipated 
(see Braginsky 1964b; Braginsky & Meytlis, 1990). Both proposals fully recognize the 
importance of Coriolis and Lorentz forces, and both therefore visualize turbulence that 
is far from isotropic. Despite its small length scale, turbulence of the second kind 
enormously enhances the diffusion of heat and composition. We speculated in Section 4 
that this diffusion is so large that it would quench instabilities on the macroscale that 
might otherwise have been expected to provide the source of classical turbulence of the 
first kind. We therefore concentrate in this appendix on turbulence of Braginsky- 
Meytlis type. We summarize their proposal, which they call “local turbulence”, and 
derive a new relationship that has considerable bearing on the arguments of Sections 
4 and 6. 

Local turbulence is caused by a simple local instability: that of a heavy fluid overlying 
a lighter one. Because of the strong influence of Coriolis and Lorentz forces, this 
instability has a fundamentally different character from the usual buoyancy-driven 
instability. We will exhibit the instability through the simplest possible example; 
namely the growth of a disturbance in a plane layer in which !2 and g are constant and 
parallel: R=R1, ,  g = - g l z ,  and in which the main flow and magnetic field are 
constant and horizontal: V = Vl, ,  B = Bl, .  The cylindrical coordinates (s. 4, z )  for the 
core therefore correspond to (x, y, z) ,  in that order. We suppose that this equilibrium 
state is slightly perturbed, so that V, B, C and P become V + v, B + b, C + c and P + p ,  
where v, b, c and p are infinitesimal quantities whose squares and products can be 
neglected, i.e. we appeal to linear stability theory and we seek to find the growth rate, y a ,  
of the resulting motion. In the notation of Section 4, v, b, c and p correspond to Vt, 
Bt(po p o ) -  l”, Ct and Pt. Since we have no small letter counterparts for S and t (s being 
used-see above-for cylindrical radius), we continue to use St and t’ for the 
departures of S and 5 from their equilibrium values. The effect of V is merely to Doppler 
shift Im y,, and we shall for simplicity transform to the frame in which V =  0. 

The linearized equations (6.1)-(6.4), (6.6) and (6.7) give 

O =  - V d -  2S‘l x v + cg + B ’ V b ,  

0 = B .  Vv + VV’b, 

(C1) 

(C2) 

V * v = O ,  V * b = O ,  (C4,5) 

where d = p + B * b. We have assumed here that the microscale magnetic Reynolds 
number is negligibly small so that d,  b,  which would otherwise have replace 0 on the 
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82 S. I. BRAGINSKY A N D  P. H. ROBERTS 

left-hand side of (C2), has been discarded. We have divided B and b by J(po po), so that 
these fields now have dimensions of velocity; 1 cms-' is equivalent to 11.7 G. The 
Lorentz force has been written as the divergence of the magnetic stress tensor, and the 
term V(B - b) has been absorbed into the pressure gradient. We have neglected the 
molecular fluxes 1' and Is appearing in (6.3) and (6.4), and t and S therefore obey 
equations of identical form. This marks it possible to combine them together into 
a single equation governing the perturbed codensity, 

instead of two equations governing r,' and S: separately; see (6.17). The linearized form 
of this single equation is (C3). 

Solutions to (Cl)-(C5) can be sought as a superposition of elementary perturbations 
that, near the point x = xo, have the form 

where k is a constant wave vector; the suffix k will usually be omitted in what follows 
and V will often be replace by ik. Substituting (C7) into (C2) we obtain a linear relation 
between b and v: 

1 
b =- ( B - V )  V. 

rl k2 

The Lorentz force can then be expressed as an anisotropic frictional force: 

where 

In conditions prevailing in Earth's core, the 'coefficient of magnetic friction', y B ,  is very 
large. For example, if B N 10' G = 8.5 cm s - l ,  then y B  - 4 x s-l, which is much 
greater than even the frequency R of the Earth's rotation, which itself is so large that 
Coriolis forces dominate large scale motions in the core. 

Operating on (Cl) by V x in order to eliminate the pressure gradierlt, we may express 
v in terms of c: 

where 

k', = k;  + k : ,  V, = 1,V, + 1,V, = V - 1,V,, R, = 2Rkz/k. 
(ClOa, b, c) 
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GEODYNAMO CONVECTION 83 

Applying (C3) we now see that the perturbation grows exponentially as exp(y,t), 
where 

(C11,12) 

The assumption VC = 1,V, C is used here. The Archimedean frequency, w,, is the Brunt 
frequency, but for unstable rather than stable situations. 

The growth rate y, is real and depends on the squares of k,,  k ,  and k,. Hence, from the 
elementary solutions (C7), growing cells can be constructed with sinusoidal coordinate 
dependence, i.e. standing rather than progressing cells. The magnitude of w, in the core 
can be estimated as gC,/L, where C, - lo-*. This gives mu- 3 x lO-’s-’ (or 
27c/w, - 1 yr) which is much smaller than both 22 and y,. If all components of k were of 
the same order of magnitude, y, would be of order w:/yB or (in the case of small k , )  of 
order w,’/22, i.e. the characteristic time over which such cells would grow would be of 
the order of a thousand years. In other words, the magnetic frictional force and the 
Coriolis force both strongly suppress the growth of instabilities that are more or less 
isotropic, It is well known however that Coriolis forces have a much weaker influence 
on perturbations that are elongated in the direction of f2, and it is immediately seen 
from (ClOc) that, if k ,  << k,  then the a,,., that enters (Cl l )  is much smaller than 222. In an 
analogous way, perturbations that are elongated in the direction of B (i.e. those for 
which k ,  << k )  experience less magnetic friction; for these y, <<ye. It follows that 
plate-like cells, that are elongated in the directions both of and of B, are less 
suppressed by Coriolis and magnetic forces and will grow fastest. This conclusion was 
reached by Braginsky (1964b), who argued that small-scale turbulence in the core 
consists of a collection of such plate-like cells. This simple idea, of elongation of 
turbulent cells in directions parallel to both f2 and B, provides us with a plausible 
qualitative picture of anisotropic local turbulence. 

A quantitative theory of turbulence based on these ideas is still lacking, but 
a ‘heuristic theory’ was developed by Braginsky & Meytlis (1990). They argued that, 
for the dominating cells, k ,  - k ,  << kx  so k ,  - k ,  N k. They concluded that 
the relative dimensions of the cells in the three coordinate directions is given by 
y,-R,, which according to (C11) maximizes the growth rate y,, and which 
implies that 

where 

2Q B2 
E, - -, that is E, - 2 

Y E  B2’ 

(C 13a, b) 

(C14a, b) 

Here B,  = ,/(222r]), which corresponds to approximately 20G, is the natural scale for 
measuring dynamo created field strength. Considered as a function of position in the 
core, E, varies strongly; E, - 1/25 might be taken as representative of the FOC as 
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84 S. I .  BRAGINSKY AND P. H. ROBERTS 

a whole. For the modes (C13a, b), (C11) may now be rewritten as 

(C1 la) 

Equation (C8) may be written, in order of magnitude, as b - ( k , / k : ) ( B / q ) v  and, taking 
into account (C13a) and k ,  = k, ,  we obtain 

On the basis of qualitative arguments, Braginsky & Meytlis (1990) concluded that 
a typical turbulent velocity, v,, is of order y a / k , .  

It will be seen that nothing in the foregoing discussion determines the absolute 
dimensions of the cells. This would not have been the case had we included thermal 
and/or viscous diffusion, but the molecular transport coefficients for these processes are 
so small that they are surely irrelevant even on the dimensions of the turbulent cells. It 
seems much more likely that the dimensions of the cells are determined by the nonlinear 
processes that have been omitted from this linear stability analysis. The inclusion of 
these processes adds considerable complexity, and so far their effects have not been 
quantitatively analyzed. In applying their qualitative analysis to core turbulence, 
Braginsky & Meytlis (1990) visualized a statistical ensemble of cells of all shapes and 
sizes but predominantly those having dimensions t, - n / k ,  = t,, and 
t( - ty  - n / k y  - /, - n / k , ) ,  with characteristic velocities vI  - v,  and v - v y  - vz; corres- 
pondingly b - by - b, ,  On the basis of heuristic arguments, Braginsky & Meytlis (1990) 
concluded that, if the viscosity is as small as that typically quoted for the core (see 
Appendix E), approximate equipartition will establish itself in local core turbulence: 

Applying this to (CSa), we obtain k ,  - 2R/B or t, - 2 km; (C13a, b) give 
t - t , / E ,  = 50 km. Using v - yJk,  (see above) and (C1 la), we can estimate v. Based on 
the arguments adumbrated above, Braginsky & Meytlis (1990) estimated that 

Clearly icix is much smaller than ic;, but it nevertheless greatly exceeds the molecular 
diffusivities K~ - 10- m2 s -  and - lo-' mz s -  '. The magnetic Reynolds number, 
9?/ - v t J q  - E,, of this turbulent motion is approximately 9?( - t,/t << 1. This justifies 
the neglect of d ,  b in (C2) because d, b / q V 2 b  - y , /qk t  - k,v /qkt  - B(t,/t - 9; << 1. 

It may be recalled that expression (C11) rested on the assumption that VC = l , V , C ,  
so that terms perpendicular to 1, disappear when we calculate V-VC.  For plate-like 
perturbations and for VC = l ,V,C + l ,V ,C this term is of order v, /v ,  - k, /k , ,  i.e. 
small, and the result (C1 1) is still approximately correct; only the component V ,  C of VC 
is influential in exciting the instability. The model on which the present discussion is 
based is therefore not quite as narrow as might at  first sight appear. 
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GEODYNAMO CONVECTION 85 

Assuming that turbulence in the core is of this type, it is possible to relate the entropy 
source, 8, directly to the ohmic dissipation, Q', of the microscale currents. It should be 
stressed here that, although Ibl<< IBI, it is not true that (V x bl - Ibl/L, is small 
compared with IV x BI - /B//L. Thus Qjis not a negligibly small part of the total ohmic 
heating, QJ + Qj. To establish the stated relationship, we first note that the neglect of 
8, b in (C2) is equivalent to assuming that the microscale electric field, e, is dominated by 
its potential part, which we write here as - V [J(po po) cp], i.e. (C2) is a consequence of 
Ohms law in the form 

where in present units j = V x b. It follows from this expressions that 

(C17) qj2  = B.(j x v) - V-(cpj). 

The equation of motion (Cl) and (C4) give 

cv * g = B.(j x v) + V * ( pv). (C 18) 

The ohmic dissipation due to the microscale currents j is 

By (C17) and (C18), we have 

The final term vanishes when we interpret the average over the turbulent ensemble as 
a local average over space. We therefore have 

where 

Ic = - aspo (Siv)' - a'po ((,'v)' = - as I" - at I@. (C20a) 

We have here used (C6), (4.26) and (4.30); see also (6.18a). It follows from (C20) and (4.37) 
that 

a'=Qj /T, ,  or a'=g-IC/T,. (C21,21a) 

It should be no surprise that d is given by the Joule dissipation of the electric 
currents associated with the turbulence. The right-hand side of (C20) is the rate of 
working of the gravitational force on the rising mass flux, 1'. All this energy is 
dissipated locally into heat, in this case through Joule heating. If other dissipation 
mechanisms acted, e.g. the viscous regeneration of heat, Q', by the microscale 
motions, they would also have to be included, along with Q', in (C21). According to 
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86 S. 1. BRAGINSKY AND P. H. ROBERTS 

(C19) and (C15), 

so that Q" << Qj for the linear plate-like cells under consideration. if  however strong 
nonlinearities developed in the small-scale turbulence and as a result local viscous 
dissipation became of the same order as the rate of working, -g-Ic, of the buoyancy 
force, the latter would have to make good both ohmic and viscous losses, i.e. (C21) 
would be replaced by 0' = (Qj + Q")/T, but (C21a) would still be valid. 

The estimation of turbulent momentum transport is not straightforward. Adopting 
the Reynolds analogy for 

one might write in a first approximation 

where, by (C23), v$ = v$ and, if 71:' is to vanish identically when (V) '  is solid body 
rotation, v;fk = v&. Arguments of the type used in elementary treatments of the kinetic 
theory of gases suggest that 

with similar results for other off-diagonal elements of the "viscosity tensor" v$. 
Fluctuating turbulent magnetic fields, of strength b - u, contribute terms of the same 
order of magnitude to (C24). The estimates (C24) and (C15a) imply that 
v1iXy - ic~,1Px/P, - 3 x 10- m2s- '. Although this exceeds the molecular viscosity ofthe 
core, the transfer of mean momentum by Reynolds stresses on length scales of order 
L is negligible in the main body of the core. Nevertheless, because it acts on large- 
scale motions, it is this turbulent viscosity that should be employed in the description 
of internal shear layers that may exist within the core, such as the shear 
layer surrounding the tangent cylinder that has recently been studied by Ruzmaikin 
(19931, Hollerbach (1994) and by Kleorin et al. (1995). It is therefore this turbulent 
velocity that should be used in computing the viscous dissipation, Q"', in that shear 
layer, which might conceivably be a significant part of the total viscous dissipation Q" in 
the core. 

APPENDIX D: THERMODYNAMICS 

This appendix has three objectives: (1) to provide a summary of thermodynamic 
relations needed in the main body of the paper, (2) to provide a synopsis of the 
derivation of (2.36)-(2.40), and (3) to set up a simple model of the core as a binary 
alloy. 
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GEODYNAMO CONVECTION 87 

The starting point for the first objective is the internal energy per unit mass ~ ' ( p ,  S ,  5) 
for which 

dC1 = $ d p  + T d S  + p d t ,  
P 

and from which it therefore follows that 

from which we have 

It is sometimes convenient however to use p ,  S and t as independent variables instead of 
p, S and t. In this case the enthalpy, E~ = E' + p / p ,  plays the role of ~ ' ( p ,  S, 5 )  and 
(D5)-(D7) are replaced by 

p - ' d p  = ( p u ~ ) - ' d p - u S d S - a e d t ,  (D13) 

(D14) 

(D 15) 

d T  = ( a s / p ) d p  + (T/c , )dS - (h'/c,)dt, 

d p  = ( a 5 / p ) d p  + (ht; /cp)dS + p'dt ,  

from which it follows that 

(D16,17) 

Note that all extensive quantities (E', S ,  etc.) are per unit mass (not per mole) and that 
correspondingly 5 is the mass fraction (not the molar fraction) of the light constituent. 
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88 S. 1. BRAGINSKY A N D  P. H. ROBERTS 

A comparison of (D5)-(D7) with (D13)-(D15) suggests that, in an analogy with the 
names ‘thermal coefficient of volume expansion’ for a, ‘isothermal compositional 
expansion coefficient’ for a$, and ‘isothermal compositional derivative of chemical 
potential’ for p;, we might name as the ‘entropy coefficient of volume expansion’, a< the 
‘adiabatic compositional expansion coefficient’, and p c  the ‘adiabatic compositional 
derivative of chemical potential’. Central roles are played by a5 and as in the theory 
developed in this paper. 

Three other useful quantities that arise are 

It follows in the usual way that 

a’: c ashs (2)  =%=:, c p - c , = a 2 T u ~ ,  a$--,<=-. T (D22,23,24) 

All these results are readily generalized if the core is modeled by a multi-constituent 
alloy. The starting point that replaces (Dl) is 

K 

ds’ = p d p  + T d S  + pkdSk,  
P k =  1 

the summation being over all K constituents of the alloy. By the definition of tk as 
a mass fraction, it follows that 

K 

1 i k  = 1, 
k = l  

so that (Dla) may be rewritten as 

Evidently our binary alloy, of a light constituent (L) and a heavy constituent (H), 
concerns K = 2. In this case (Dlb) coincides with (Dl) when we define p = p L  - p H ,  
(=  tr. and t8 = 1 - tL. For other K ,  results (D2)-(D24) may be generalized in an 
obvious way. 

We now turn to our second objective: a summary of the facts that we need from 
diffusion theory for the case K = 2. For a more complete discussion, see chapter VI of 
Landau & Lifshitz (1987). They derive linear relations for the fluxes of light constituent 
and entropy which, in a notation that differs from theirs, are 
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GEODYNAMO CONVECTION 89 

Onsager’s reciprocity principle implies that 

see for example Landau & Lifshitz (1980) or deGroot & Mazur (1962). It is convenient 
to eliminate V p  from (D26) and (2.34) by writing (D25) as 

(D25a) 1 B ’  vp = --I‘ - -VT. 
a’ a‘ 

It follows that 

The rate of entropy production, os, is given by [cf. Landau and Lifshitz (198O)l 

K T  1 
T a 

ToS = -(VT)2 + + Q’ + Q” + QR, 

where 

It is clear from (D29) that positivity of os requires that c1’ and the thermal conductivity 
K T  should be non-negative. 

It is convenient to introduce a different notation that eliminates a’, B’ and 7’: 

The three original transport coefficients (a’, /?’ and y’) are apparently replaced by five, 
namely KT,  18, k$, k: and p’, but p‘ - p$k$ is in fact a thermodynamic property of the 
fluid (h‘), as is k$.  In this new notation, we may write (D25) and (D28) as 

 TI^ = + p’F,  I* = - K ~ V  T .  (D36,37) 

Equations (2.36)-(2.40) now follow from (2.33) and (2.34) in a straightforward way. 

on which therefore 
The ICB is a surface on which the solid and liquid core are in phase equilibrium and 

[ p i  = 0, [E“ - p<] = 0 on the ICB; (D38,39) 
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90 S. I. BRAGINSKY AND P. H. ROBERTS 

see for example Loper & Roberts (1978). In Section 6, we introduced two different latent 
heats (6.30a, b): 

hL = E: - c:, hN = h,  - p 2 t Z N .  (D40,41) 

+ TS, it follows from (D38)-(D41) that (D40) is Since T is continuous and E~ = 
equivalent to 

h N  = TZ(S2 - SN). (D42) 

Finally, in setting up a simple model of the core, we should recognize at the outset 
that information about the physical chemistry of the core is largely non-existent. Even 
its composition is uncertain. It is generally agreed only that its principal constituent is 
iron (Fe) and that light admixtures are also present. Which element dominates those 
admixtures is not known, the competing merits of oxygen (0), sulfur (S), and silicon (Si) 
being vigorously but inconclusively argued. In view of these uncertainties, it seems 
justified to take a simple view of the core, in which the specific volume, p- l ,  simply 
depends on the total amounts of heavy (H) and light (L) constituent in the core, the 
volume that each occupies depending only on p and T :  

where p H  is the density of heavy fluid (iron) and peL ,  is the effective density of the light 
constituent, which (because of volume changes that occur when it is dissolved in iron) 
differs from its actual density, pAd, in the absence of iron. Equation (D43) can be 
rewritten as 

By (D17) and (D44) we have" 

PS P H  

(D44,45) 

We shall assume for simplicity that p H / p e L  and hence 6,, are independent of p ,  T and 
and are the same for solid and fluid phases. It then follows that, since 5 and S are 

constant in the FOC, so are a<, p / p H  and the mean molecular weight of the core, A, 
which is related to those of the heavy and light elements by 

An expression for the density jump Ap = p N  - p 2  at the ICB r = R ,  can be obtained 
by applying (D44) both to the FOC (where the density of iron is p H  and the admixture 

We ignore here the difference between a5 and a$. Taking from Appendix E as = 6.28 x 10- kg J ' "K, 
hc = -0.5 x lo7 J kg- I ,  T2 = 5,300"K and ac - 0.6, we see from (D24) that ar, -a$ = - h h S / T  - 
6 x - 0.1 x ac at r = r 2 .  
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GEODYNAMO CONVECTION 91 

concentration is t2 = t;,) and to the SIC (where they are p i  and tN).  After some algebra, 
we obtain 

where Asp is the density jump through solidification and Atp is the density jump arising 
from the difference in t; between liquidus and solidus: 

= P N ( l  - p H / & ) ,  A<P = P N ( P H / P i ) u r 4 2 W  (D48a, b) 

Here 1 - pH/j& - l o - ’  is very small, and we shall therefore replace (D48b) by 

< P - P N  - @5 t 2 N .  (D48c) 

We now recall the rejectionfactor, so called because it quantifies the amount of light 
constituent rejected by the solid when the fluid freezes onto the SIC: 

Dividing (D48c) by p N u c t 2  making use of (D44), (D46) and (D48), we find that 

[It is not necessary to specify where the denominator in (D50) is to be evaluated, since 
p/pH is the same everywhere in the FOC in our model.] The right-hand side of (D5O) 
does not depend on any special property of the alloy, such as S,,, t,, or even its 
composition! It is a potentially useful method of discriminating between the rival 
claims of Ad = 0, S and Si. If the phase diagrams of FeAd for these three elements could 
be measured at megabar pressures, it would be discovered which of the resulting values 
of rFs agreed best with the value deduced from (D50); see Appendix E. That element 
might then be considered to be the most likely light constituent predominating in the 
core. 

To make the model defined by (D44) definite, we must estimate two of the three 
unknowns 6,,, t;, and p/p,, the third then following from (D44). We know p from 
Earth models such as PREM and p H  from shock wave experiments on iron; we can 
therefore find p/pH; see Appendix E. The final datum is, in the case of Si, obtained by 
estimating 6,, from laboratory experiments at normal pressures; in the case of S, it is 
the 5, implied by a conjecture by Boness and Brown (1990); in the case of 0, we adopt 
a value for 6,, derived by Loper (1978). 

APPENDIX E: NUMERICAL VALUES 

Many parameters play parts, of varying degrees of importance, in determining how 
the core behaves. These parameters can be conveniently thought of as falling into 
four .categories: geometrical, thermodynamic, physico-chemical and electromagnetic. 
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92 S. I. BRAGINSKY AND P. H. ROBERTS 

Those accessible to seismology are the best determined. They have already been listed 
in Table 1 in Section 3. 

The temperature of the core is known with much less precision. It is constrained by 
the condition T2 = T,(p,, t,), which expresses the fact that the ICB is at the melting 
temperature corresponding to pressure p ,  and composition t,, but the functional 
relationship T, = T,(p, t) is unknown. This is hardly surprising while uncertainty 
persists about which light element predominates amongst the light admixtures of the 
iron alloy, the competing merits of S, Si and 0 being variously, but inconclusively, 
argued. There is even current uncertainty about what T, is for pure iron at core 
pressures, different experimental techniques leading to significantly different T,. The 
present situation is described, and the existing contradictions are analyzed, by Ander- 
son (1994, 1995). Direct static measurements of the melting point of iron have been 
performed by Boehler (1993) up to pressures of 2 Mbar. He also obtained, by extrapola- 
tion to p ,  = 3.3 Mbar, an ICB temperature of T2 = T,(p,) = 4850°K. In contrast, 
shock wave measurements of T, at pressures near 3.3 Mbar have been made by many 
authors and have generally shown a markedly greater value of T,. According to 
Anderson (1994), the reason for the difference may be the existence of a phase transition 
to a new, high pressure, fcc form of iron, with a triple point near 2 Mbar, and which 
deflects the melting curve, T= T,(p), upwards. Until uncertainty is removed, Anderson 
(1994) recommends that the value T,(p,) = 6000°K be adopted for pure iron. The 
theoretical calculations of Poirier & Shankland (1993) of the melting point of fcc iron at 
3.3 Mbar gave 6060"K, and they further suggested a rather large depression of the 
melting point, namely 500-1000"K, through the presence of the alloying elements. 
Anderson (private communication) also recommended to us that we should suppose 
that this depression is of order 700"K, so implying that T, = 5300°K. In contrast, 
Boehler (1993), who measured T, for an Fe-0 alloy, found that the depression of the 
melting point due to oxygen is very small, at least up to pressures of 2 Mbar, implying 
that T, = 4850°K. 

Estimates of y, a, cp  and other thermodynamic properties of Earth's core have 
been made by many authors. Convenient tabulations have been provided by Stacey 
(1992), who gave for example y1 = y(R,) = 1.27 and y2  = y(R,) = 1.44. In 
later work (Stacey, 1994), he modified several of his estimates, and in particular 
took, as we shall, y1  = 1.27 and y, = 1.35. This smallness of the reduction ( -  6%) 
in y,  underscores the robustness of this parameter in studies of Earth's interior. 
As (3.7e,f) show, the Gruneisen constant is in fact the only thermodynamic parameter 
needed when estimating the adiabatic temperature gradient, - V, Ta(r). Given the 
temperature T, = 5300°K of the CMB, T, follows throughout the core by integration 
in r .  We performed this integration in a simple (and perhaps simplistic) way. By (3.7e, f )  
we have 

Since g is roughly proportional to P, we represented the right-hand side of (El) by the 
following simple interpolant: 
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GEODYNAMO CONVECTION 93 

where a, = 0.029619 and a, = 0.002207 are constants chosen so that (E2a) agrees with 
the q l  and q2 implied by the values of y1 and y2 quoted above. From (El) and (E2a, b) it 
follows that 

T =  T,exp{ -(x2 - 1)[a, + $ a , ( x 2  + l)]}. (E3) 

This gives Tl = 4000°K. The adiabatic gradient at the CMB is then 0.89"K km- I; at the 
ICB it is 0.276"K km-'. The 'average' temperature (6.25b) of the FOC implied by this 
model is To = 4590°K. 

The shock Hugoniot for pure iron, as determined experimentally by Brown and 
McQueen (1986), intersects the pT-curve implied by (E3) and PREM, at a radius of 
approximately 2780 km within the FOC, where p = 204 GPa, T = 4520°K and the core 
density is p = 10.84 lo3 kgm-,. The shock data for this p and Tgives the correspond- 
ing pH as 11.98 lo3 kg m-3, so that 

pH/p = 1.1057, 

which is the same throughout the core according to model (D44). 
We already noted in Appendix D that the density discontinuity, Vp at  the ICB is 

composed of two parts: Asp due to contraction on solidification, and Acp due to the 
difference in liquidus and solidus compositions, the former of which is comparatively 
small. Taking Asp=0.1103kgm-3 so that Agp=Ap-Aspz0 .5x  103kgm-3, we 
find from (D50) that the rejection coefficient, pFS, is approximately 0.41. Because the 
difference between the atomic radii of 0 and Fe is probably large under core 
conditions, we would expect that 0 would have a low solubility in solid Fe and that the 
rejection factor, rFS,  and the density discontinuity, Ap, would be rather larger if 0 were 
the principal alloying constituent. Correspondingly, the small difference between the 
atomic radii of Fe, S, and Si (see below) suggests that, rF; and Ap should be small 
(though not zero) for Ad = S or Si. Our estimate of rFs - 41% leads us to favor Ad = S 
and Si over Ad = 0. We now consider how 6,, and 5, can be estimated for Ad = 0, 
S and Si. 

Boness and Brown (1990) noted that the (Wigner-Seitz) atomic radii of Fe and 
S are close to one another when p is between 100 and 350Gpa and that these 
elements can therefore readily form solid-solution alloys. They used this fact 
to model FeS mixtures under core conditions. They found, from very detailed 
quantum mechanical calculations, that the dependence of p on p for Fe,S is (for 
core temperatures) rather close to that of the PREM model of Dziewonski and 
Anderson (1981). While conceding that it is somewhat speculative to do so, we 
adopt the Fe3S model of Boness and Brown (1990) as the basis for our estimates 
for Ad = S, i.e. we take 5 = As/(& + 3A,,) = 0.16 which by (D44) and (E4) implies 
that a,, = 0.66. 

Matassov (1977) measured the density, p (0 ,  FeSi at atmospheric pressure over 
a range of 4 expected to cover core compositions. Although he found that the specific 
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94 S. I. BRAGINSKY A N D  P. H. ROBERTS 

volume depends nonlinearly on 5, we found that his data is reasonably well fitted by 
(D44) with S,, = 0.68 and p,, = 7.87 x lo3 kgm- 3,  the density of iron at NTP. This 
value of S,, was self-consistently determined so that the implied p falls onto the 
relevant segment of the (p-plot shown in Figure 4.10 of Matassov (1977) which it did at 
( = 15.75%. Also p:, = p i " '  + S,,) = 4.68 x lo3 kgm-3. This is significantly greater 
than the density of solid crystalline silicon, which is pgi = 2.42 x lo3 kgm-3. This 
underscores the importance of allowing for the effects of chemical interactions when 
modeling alloys. 

For Ad = 0, Loper (1978) gave p,", = 4.4 x lo3 kgm-3 and p i  = 8.57 x lo3 kgm-3. 
The former was obtained on the basis of laboratory data; the latter resulted from 
correcting the density p H  = 7.87 x lo3 kgrnp3 quoted above to allow for close packing 
at high pressure. It follows from (D45) that S,, = 0.95, and then (D44) and (E4) give 

Our values for 6,, for Ad = S, Si and 0 led via (D46), D47) and (D49) to the values 
fo rd ,  A and t2 - shown in Table El .  Our estimates of the mean molecular weight 
Ad = Si and for Ad = S are close to the value, A = 48.1, to which Stacey (1994) was led 
from other considerations, while that for 0 is somewhat smaller. Despite being 
hampered by a serious lack of information about the effects of high pressure on the 
phase diagrams of FeAd where Ad = S, Si or 0, we are favorably impressed by the 
consistency the Ad = Si and Ad = S models present. While conceding that S is, 
according to the arguments given here, an equally plausible candidate for Ad, we shall 
nevertheless concentrate on an FeSi core below. 

[, = 14.1%. 

Table E l  Compositional Parameters 

S 32.07 0.66 0.60 16.0 6.6 49.9 
Si 28.09 0.68 0.61 15.8 6.5 48.3 
0 16.00 0.95 0.84 14.1 5.8 41.3 

Stacey (1994) recently revised his earlier estimates (Stacey 1992) of the specific heats. 
He argued that the electronic contribution to these had previously been under- 

the gas constant. For iron (AFe = 55.85), we therefore have cre = 670 J kg-'"K-', and 
more generally for a material of mean atomic weight 2, we have 

estimated, and he proposed that c, % 4.5 R per mole, where R = 8314 Jmole-'"K- ' i S 

AF' AF' 
A A 

=CFe=--  - - 670 z J kg- 'OK. 
u v  

Since 

we have, after using (3.7f) to eliminate CI from (E6), 
-Fe 
L. 
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GEODYNAMO CONVECTION 95 

so that, substituting values from Table 1 and adopting the values of y and Ta t  the CMB 
and ICB given earlier, we obtain 

6705 kg-'"K-' 670 J kg-'"K-l 
cp2 = - (E7a, b) "' = (j/AF,) - 0.0751' (A/AF,) - 0.0534' 

Choosing 2 = 48.3 (see above), we find the values of cpl and cp2 shown in Table E2. 
These may be compared with the recent values of Stacey (1994): cpl = 845 J kg- 'OK-', 
cp2 = 826 J kg-'"K-'. Tfwe took S instead of Si, we would have cpl = 819 J kg-'"K-' 
and cp2 = 798 Jkg-'"K-', whereas 0 would give cpl = 1006Jkg-'"K-' and 
cp2 = 974 J kg-'"K-'. Since y is so robust, any change in c p  implies, according to (3.7f), 
a corresponding revision in the coefficient of volume expansion, u. We obtain (for 
2 = 48.3) the values shown in Table E2, which are close to those of Stacey (1994): 
u1 = 1.68 x 10-50K-', u2 = 1.00 x 10-50K-'; Anderson (1994) gives u1 = 1.62 x 
I O - S O K - ~ ,  u2 = 0.83 x ~ o - ~ o K - ' .  

Table E2 Values of some Thermodynamic Parameters of the Core 

Tl =4000"K 
Tz =5300"K 
To =4590"K 

y1 = 1.35 
y z  = 1.27 
a, = 1.76 x 10-5"K-1 
az =0.98 x 10-50K-1 
cPl =848Jkg-' 'K-' 
cP2 
as =8.30x 10-5kgJ-'"K, 
as =6.28x 10-5kgJ- 'oK, 

AT12 T2 - T,  = 1300°K 

= 826 J kg- '"K ~ 

Temperature of the CMB, 
Temperature of the ICB, 
Average temperature of the FOC, 
Temperature contrast across the FOC, 
Giuneisen constant at the CMB, 
Giuneisen constant at the ICB, 
Thermal coefficient of volume expansion at the CMB. 
Thermal coefficient of volume expansion at the ICB, 
Specific heat at constant pressure at the CMB, 
Specific heat at constant pressure at the ICB, 
Entropy coefficient of volume expansion at CMB, 
Entropy coefficient of volume expansion at ICB, 

Equations (D8)-(D12) and (D16)-(D24) contains a number of further physico-chemi- 
cal parameters whose values depend on pressure and on the specific admixture 
involved. They are unknown, and can be estimated only very roughly. The value 
h 5 -  - lo7 Jkg- '  was given by Gubbins et al. (1979) for FeS. According to  Kubas- 
chewski & Alcock (1979), h5 - - 3 x lo6 J kg- for Si at NTP, while for 0 it exceeds 
lo7 Jkg-'. We have adopted h5 - -5  x lo6 J kg-'. We should emphasize that this 
value is very uncertain, and its dependence on pressure is unknown. The situation is 
scarcely better for h, and h,. We assume that h, - h,. We follow Gubbins et al. (1979) 
by taking h, = lo6 J kg-'. This value falls into the interval of uncertainty, 0.8 x lo6 
Jkg- '  < h, < 1.5 x lo6 Jkg-', given by Anderson & Young (1988) for pure iron. 

The kinetic coefficient in which we are most interested is the magnetic diffusivity, u. 
Its value is important for dynamo theory. The electrical resistivity of metals arises from 
the scattering of the conduction electrons by thermal oscillations of the ions (phonons) 
and impurities (admixtures). The first of these processes introduces a linear increase of 
q with T, although increasingp tends to offset this. These dependencies are considerably 
complicated by phase transitions and by structural and chemical changes. 

Measurements of electrical conductivity at high pressure were made by Keeler 
& Mitchell (1986) for Fe and by Matassov (1977) for FeSi. Matassov also includes the 
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96 S. 1. BRAGINSKY AND P. H. ROBERTS 

results Keeler and Mitchell for pure iron. The measurements were made by shock wave 
techniques, so that an increase in p is accompanied by the increase in T along the 
Hugoniot. Matassov (1977) found that an increase in the Si content decreases the 
conductivity. He also found that, for a geophysically relevant concentration of Si, 
namely 25% atomic or 4 = 14.4% (which is rather close to our estimate; see Table El), 
the change in conductivity produced by an increase in pressure from 521 kbar to 
2518 kbar and by an increase in temperature from 672°K to 2518°K nearly compen- 
sated each other. For p = 1422 kbar, which is scarcely more than p l ,  the conductivity 
was found to be 8.7 x lo5 Sm- '. To adapt this to core conditions, we should make 
a reduction because of the greater temperature, T ,  e 4000"K, of the CMB, and also 
decrease it further because the experimental specimens were solid, not fluid like the 
core; melting always reduces the conductivity. While these corrections are somewhat 
uncertain, a conductivity of 4 x lo5 S m-'  seems quite plausible, corresponding to 
u] = 2 m2s- '. Because the increases in pressure and temperature with depth in the core 
tend to change the conductivity in opposing ways, we anticipate that u] does not vary 
strongly across the FOC. It may be anticipated however that the conductivity of the 
SIC will be greater than that of the FOC for three reasons: solids conduct better than 
fluids, p increases with depth in the SIC but the increase in T is slight, and the SIC 
contains smaller amounts of impurities (the admixtures) that reduce its conductivity. 
According to the data of Keeler and Mitchell, as cited by Matassov (1977), the electrical 
conductivity of pure Fe is, at  the same p and T, approximately twice that of FeSi at 14.4%. 
Having no other experimental data available, we shall suppose that this result its typical, 
and shall assume that u] = 2 m2s ~ in the FOC but that q N  = 1.5 m's- in the SIC. 

The thermal conductivity of the core can be estimated through its electrical 
conductivity by using the Wiedemann-Franz law, K = k, Tlu], where k, = 
0.02 W m s-  'OK - 2  is the Lorentz constant (appropriately modified because u] has been 
used, instead of the more usual electrical conductivity, in the expression for K T ) .  Taking 
q=2rn2s- '  and T ,  = 4 x  103"K, we find that KT=40Wm-'"K- '  and 
K T  = 5.7 x m2s-'. This led to the estimate of 9: = 5.4 x 1 O I 2  W for the heat flux 
out of the core down the adiabat. This is about 8 times less than the heat flux through 
the surface of Earth, namely 42 x loL2 W, according to Pollack et at. (1993). 

The measured viscosity of liquid iron at atmospheric pressure is v - lop6 m2 s-'. 
Increasing T decreases v, while increases in p tend to increase v because larger p 
makes the relative displacement of atoms more difficult. The estimate of core vis- 
cosity most often cited, namely v - m2 s- '  (Gans, 1972), stems from a statement 
made in the modern theory of fluids: fluid viscosity does not change along the 
melting curve, T= T,,,(p). And the whole fluid core is near (though above) the 
melting temperature. Poirier (1988) gives v1 = 3 x 10-7m2s-1  and v 2  = 6 x 
m2 s- l .  These values, which we adopt here, should nevertheless be used with caution, 
No experimental measurements of v have yet been made at core pressures, and the 
theory of fluids, from which the constancy of v on the melting curve was inferred, 
contains a number of strongly simplfying assumptions. It is not impossible that, at the 
megabar pressures prevailing in the FOC, a large increase in v with depth occurs. 

The viscosity of a fluid is related to its compositional diffusivity by a relation of the form 
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GEODYNAMO CONVECTION 97 

where k ,  = 1.38 x JOK-’ is Boltzmann’s constant and a is of the order of a few 
inter-atomic distances (see Frenkel, 1958). If v is the same as at atmospheric pressure, 
then according to (E8) laboratory measurements of IC< are applicable to the core. On 
this basis and using laboratory measurements of the diffusion of S and Si, Loper 
& Roberts (1983) made the estimate - 3 x 10-9m2s-’. Poirier (1988) gave 
IC< - 6 x m2s- ’. This diffusivity might be even smaller if the kinematic viscosity is 
greater than 10-6m2s-1. We will suppose that lies between 10-9m2s-1 and 
10- * rn’s-’, but both of these values are so small that molecular diffusion of composi- 
tion may be safely ignored except over very small distances. For example, taking 
K < -  3 x 10-9m2s-’, we find that the characteristic diffusion distance, (rC%)1’2 over 
a time-interval of t = lo3 yr is only about 10 m. This weak molecular diffusion is 
completely insignificant, compared with turbulent mixing. 

We conclude this Appendix with the argument that let us to adopt 0.05 as an estimate 
of A2.  Referring to (6.37d) and using values given in Tables 1 and E2, we see that 
g,y2 R,/u; z 0.064. According to Lindemann’s law, 

where K ,  is the isothermal incompressibility which may, with an error of less than 
lo%, be taken to be the adiabatic incompressibility, K ,  = p 11:. This, by (3.7e, f), is also 
y T(dp/dT),,<. It follows that 

but we should recognize that, depending as it does on the difference between two 
gradients, estimates made on the basis of (E10) are unlikely to be robust. Taking 
yz = 1.27 (see Table E2), we find from (6.37d) that Amu - 0.03. The estimation of 
A,{ from (6.41) is even more uncertain. The pre-factor, 3v-zPN/y12PO, is 0.159. Taking 
t2, = 0.06 and h5 = - 5 x lo6 J kg- ’, we find that the first term in square brackets, 
~,h~/c,T,,  is approximately -0.067. The second term depends on the unknown 
physical chemistry of the core, and is very hard to estimate reliably. Taking 
(dTm/d(a)p - - AT,,,/&, where AT, - 700°K is the depression of the melting tempera- 
ture through the alloying elements, we find that the second term is about -0.05. In 
total A,< - 0.02 and, by (6.40), A, - 0.05. 

Note added in Proof: 
As stated below (2.Q we have not considered the effects of variable rotation and have 
ignored the Poincare force, -ph x r, that strictly should be present on the right-hand 
side of (2.1). We wish to draw attention here to a recently published review (Malkus, 
1994) that discusses the dynamical implications of a varying R, especially for the 
luni-solar precession, and that considers the consequences for core energetics. 
Malkus, W.V.R., “Energy sources for planetary dynamos,” in: Lectures on Solar and 
Planetary Dynamos, (Eds. M.R.E. Proctor and A.D. Gilbert). Cambridge UK: Univer- 
sity Press, pp. 161-179 (1994). 
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