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INTRODUCTION

The goal of this study guide workbook is to provide practice and help carrying out essential problem-
solving strategies that are standard in modern physics. The aim here is not to overwhelm the student
with comprehensive coverage of every type of problem, but to focus on the main strategies and
techniques with which most physics students struggle.

This workbook is not intended to serve as a substitute for lectures or for a textbook, but is rather
intended to serve as a valuable supplement. Each chapter includes a concise review of the essential
information, a handy outline of the problem-solving strategies, and examples which show step-by-
step how to carry out the procedure. This is not intended to teach the material, but is designed to
serve as a time-saving review for students who have already been exposed to the material in class or
in a textbook. Students who would like more examples or a more thorough introduction to the material
should review their lecture notes or read their textbooks.

Every problem in this study guide workbook applies the same strategy which is solved step-by-
step in at least one example within the chapter. Study the examples and then follow them closely in
order to complete the exercises. Many of the exercises are broken down into parts to help guide the
student through the exercises. Each exercise tabulates the corresponding answers on the same page.
Students can find full solutions at the end of each chapter.

The prerequisites for using this workbook include first-year physics (including energy, waves,
and electricity and magnetism) and calculus (including derivatives and integrals). Although
Schrödinger’s equation in quantum mechanics is a differential equation, students do not need previous
exposure to differential equations: This workbook provides a concise introduction to basic
differential equations in Chapter 12, and shows how to apply these methods in the remaining chapters.





1 SPECIAL RELATIVITY CONCEPTS

Relevant Terminology

Galilean relativity – our experience with the relative motion of objects traveling at speeds much
slower than the speed of light.

Special relativity – the physics of the relative motion of objects where at least one object is traveling
at a very high speed (compared to the speed of light).

Ether – a hypothetical substance once believed to fill space; it was believed to serve as a medium
for the transmission of light waves.

Photon – a single particle in a beam of light.

Interferometer – a device involving the interference of two beams of light, which was used by
Michelson and Morley to measure the speed of light relative to the earth.

Time dilation – the phenomenon whereby time appears to travel more slowly for objects moving fast
(close to light speed) relative to other observers.

Length contraction – the phenomenon whereby objects moving fast (close to light speed) appear
shorter relative to other observers.

Simultaneity – when two events occur at the exact same moment relative to an observer, the events
are said to be simultaneous for that observer.

Momentum – mass times velocity.

Inertia – the natural tendency of any object to maintain constant momentum.

Mass – a measure of inertia.

Vacuum – a region of space completely devoid of matter (it doesn’t even contain air).

Inertial reference frame – a frame that travels with constant velocity.





Galilean Relativity

In our everyday experience with objects that travel much slower than the speed of light, relative
velocities appear to obey the formula for vector addition. Suppose that one observer (designated R)
is at rest while a second observer (designated M) is moving with speed v relative to the first
observer. Suppose also that each observer sets up a coordinate system with the x-axis along the
relative velocity

If each observer measures the velocity of an object, the x-components of the velocities that they
measure (uR and uM) are related by the following vector addition formula, provided that neither
observer nor the object are traveling close to light speed.

uM = uR – v

This equation is actually pretty simple: It’s just subtraction. The challenge is to remember what the
notation means (M stands for moving, while R stands for rest) so that you can apply the equation
correctly. We will explore this equation further in the examples that follow.





The Mysterious Ether

Physicists once believed in a hypothetical substance called the ether, which was believed to
permeate all of space. At the time, all other waves besides light were known to travel in a medium.
You can see ripples travel along the surface of water. Sound waves create alternating regions of
compression (high pressure) and rarefaction (low pressure) in a medium such as air, water, wood, or
metal. Light was also known to be a wave, yet sunlight can travel through space (a near-perfect
vacuum). Since all other waves required a medium in which to propagate, the concept of the ether
could explain the transmission of light through space.

It turns out that the ether hypothesis is incorrect, as demonstrated by the Michelson-Morley
experiment. Light can travel through a perfect vacuum (without an ether).





The Earth, Light, and the Hypothetical Ether

The result of the Michelson-Morley experiment—that the ether doesn’t exist—came as a big shock
to the physics community at the time. To understand why, we must explore the ether as it had been
believed to exist. The ether was believed to permeate all of space. The reference frame of the ether
was believed to serve as an absolute reference frame. That is, the speed of light was only believed to
travel c = 2.9979 × 108 m/s in a reference frame that was at rest relative to the ether. Furthermore, it
was believed that the vector addition equation of Galilean relativity applied to objects moving any
speed, including light itself. (Like the ether, this also proved to be incorrect.)

The earth orbits the sun and therefore must be moving relative to the hypothetical ether (as the
direction of earth’s velocity is constantly changing). From the point of view of the ether, the earth is
moving relative to the ether with instantaneous speed v. From the point of view of earthlings, the earth
seems to be stationary and we would instead interpret the ether to be moving with speed v. (You
should have experience with this. If you are sitting in a bus that is moving, objects outside of the bus
appear to be moving relative to you.) From the perspective of “stationary” earthlings, the ether is seen
as an “ether wind” (when you run through air that is originally still, the air seems to pass by you like
a sort of wind).

Imagine that you get in a motorboat and travel along the surface of a river. The boat would travel with
a speed of 30 m/s on a still pond, but there is a river current of 10 m/s. When the boat is headed
downstream, it would be traveling 30 + 10 = 40 m/s relative to the land. When the boat is headed
upstream, it would be traveling 30 – 10 = 20 m/s relative to the land. When the boat is headed cross-
stream, apply the Pythagorean theorem to determine that the boat travels

relative to the land.

The same principle as the motorboat and river was believed to apply to the earth traveling through the
hypothetical ether. Imagine that you shine a beam of light from earth and wish to measure the speed of
light. According to the ether hypothesis, the light would travel with speed c = 2.9979 × 108 m/s
relative to the ether. The earth travels with speed v = 30,000 m/s relative to the sun. As the earth
orbits the sun, the direction of its velocity constantly changes. The speed of light would equal c + v
when the light is heading “downwind” (when the earth happens to be traveling along the ether wind),
the speed of light would equal c – v when the light is heading “upwind,” and the speed of light would



equal

when the light is heading “across wind.” However, when Michelson and Morley investigated this, no
such changes in the speed of light were detected. The laws of Galilean relativity do not apply to
light or to objects moving fast (close to light speed). The ether does not exist. The speed of light
turned out to be a universal constant (independent of the motion of the observer or source).





Why c + v, c – v, and

Seemed to Make Sense

Imagine a father and son playing catch on a boat that is at rest. They throw the ball with a speed of 20
m/s east and west. They continue to play catch the same way even when the boat starts traveling 50
m/s to the east. When the ball travels 20 m/s east relative to the boat, it is traveling 50 + 20 = 70 m/s
to the east relative to the land. When the ball travels 20 m/s to the west relative to the boat, it is
traveling 50 – 20 = 30 m/s to the east relative to the land. This is the way relative velocities work at
speeds that are small compared to the speed of light. It agrees with everyday experience.

Now imagine a spaceship traveling 0.7c (or 70% the speed of light) relative to earth. The spaceship
suddenly turns on its headlights. How fast is the beam of light traveling relative to earth? Based on
our experience with low speeds (Galilean relativity), it’s intuitive to expect the beam of light to be
traveling 0.7c + c = 1.7c relative to the earth. But that’s not what happens. It turns out that the beam of
light travels c = 2.9979 × 108 m/s relative to the ship and that the beam of light also travels c =
2.9979 × 108 m/s relative to earth, with no contradiction! Although c + v seemed to make sense, it
turned out to contradict experiments.





The Michelson-Morley Experiment

Michelson and Morley used an interferometer that was designed to detect small changes in the
speed of light. When an incident beam of light reached a glass slab, it split into two: One beam
reflected from the surface of the glass towards mirror M1, and a second beam refracted through the
glass towards mirror M2. After reflecting off mirrors M1 and M2, the beams met back up at the glass,
and light from each beam reached a telescope, where an interference pattern was viewed. The entire
apparatus could be rotated.

The two beams would travel in different directions relative to the ether, and thus the two beams
would have different speeds relative to the earth if the ether hypothesis were true. For example, if the
beam heading toward M1 were traveling upwind with speed c – v (in which case it would then travel
downwind with speed c + v after reflection), then the beam heading toward M1 would be traveling
crosswind with speed

Thus, the two beams would return to the glass at different times, creating an interference pattern when
viewed through the telescope (since the beams would be slightly out of phase due to the time lag).

However, the Michelson-Morley experiment failed to detect any change in the speed of light as the
apparatus was rotated. It turns out that light (which is an electromagnetic wave) does not require a
medium (such as the ether) in order to propagate. Light can travel through a perfect vacuum. There is
no preferred or absolute reference frame for measuring the speed of light. It turns out that the speed of
light is a universal constant, independent of the motion of the source or the observer.





The Problem

The Michelson-Morley experiment contradicted the expectations of the ether hypothesis. How could
the speed of light be the same in each beam of the interferometer, regardless of the orientation of the
apparatus?

If a boat is traveling north, it can launch a cannonball farther to the north (relative to the land) than it
could if the boat were at rest. This is the principle of vector addition applied in Galilean relativity,
which agrees with human experience (with objects traveling much slower than the speed of light).

Imagine a spaceship traveling one-half the speed of light (0.5c) relative to earth. Also imagine a beam
of light traveling parallel to the spaceship. An observer on earth measures the speed of the beam of
light to be c = 2.9979 × 108 m/s. What will an observer on the spaceship measure the speed of the
beam of light to be? According to the Michelson-Morley experiment, the answer is the same: c =
2.9979 × 108 m/s. (Note that the answer isn’t 0.5c.)

Your experience with relative motion at low speeds is much different. If you’re sitting in a bus
traveling 40 m/s and a car passes you traveling 50 m/s, each second the car gets 10 m further ahead of
the bus, so the car seems to be traveling 10 m/s relative to you. However, if you’re in a spaceship and
proceed to measure the speed of light, the Michelson-Morley experiment shows that you will get c =
2.9979 × 108 m/s regardless of how fast the ship is traveling. Even if the spaceship travels 0.99c
relative to earth, an observer on the ship still measures the speed of light to be c = 2.9979 × 108 m/s
(and not 0.01c).

Albert Einstein introduced his theory of special relativity to resolve this seeming paradox, but it came
with some interesting consequences: time dilation and length contraction. The underlying issue is
that time, space, and light behave much differently than our everyday experience with low-speed
motion suggests. The two different observers (in the spaceship and on earth) actually measure
distance and time differently due to time dilation and length contraction. If there is a meterstick on the
spaceship and an observer on earth proceeds to measure the length of that meterstick as the spaceship
travels very fast (close to light speed), the observer on earth measures the meterstick to be
significantly less than one meter long. Similarly, if there is a pendulum on the spaceship that oscillates
with a period of exactly one second relative to an observer on the spaceship, an observer on earth
measures the period of that same pendulum to last significantly longer than one second. When the
relative speed between two observers is in the neighborhood of the speed of light, the observers
significantly disagree on such basic notions as what meters and seconds are! As bizarre as this may
seem, Einstein’s theory of special relativity not only explains the Michelson-Morley experiment, it
also agrees with countless other scientific tests.





Einstein’s Theory of Special Relativity

The theory of special relativity applies to objects that move with constant velocity (meaning that
they move with constant speed and also travel in a straight line). Einstein developed his theory of
special relativity from two fundamental postulates:

1. The laws of physics are the same in any inertial reference frame. (An inertial reference
frame is any coordinate system that has constant velocity. Recall that constant velocity means
both constant speed and traveling in a straight line.) This means that any physics experiment will
yield the same results in any laboratory that travels with constant velocity, whether the
laboratory is at rest on earth or moving in a spaceship with a velocity of 0.8c relative to the
earth.

2. Any observer in an inertial reference frame would measure the speed of light to be c = 2.9979
× 108 m/s, regardless of the velocity of the observer and also regardless of the velocity of the
light source.

One consequence of special relativity is that there isn’t any preferred (or absolute) reference frame
(such as an ether). Any inertial reference frame is equally as good as any other.

What does it mean to be at rest? You can be at rest relative to earth, but earth is revolving around the
sun. Even if an object is at rest relative to the sun, the sun is traveling through space relative to other
stars. Since the laws of physics are the same in all inertial reference frames, it would be impossible
to find a particular reference frame that you could say is truly at “rest.” As long as you’re moving
with constant velocity, you’re entitled to consider yourself to be at “rest” and to consider everything
else moving relative to you. Even if you’re in a bus that is traveling 30 m/s west past a station, you
may consider yourself to be at rest and may consider the station as traveling 30 m/s to the east
(opposite to you). A woman at the station may consider herself to be at rest and consider you to be
traveling 30 m/s to the west. You are both entitled to be correct when working out physics with your
own inertial reference frames. According to Einstein, it’s all relative.

As we will explore mathematically in Chapters 2-5, the theory of special relativity comes with a few
seemingly strange consequences. In particular, even seemingly fundamental concepts like length and
time are relative, and different observers in different inertial reference frames measure length and
time differently:

• Two events that appear to occur simultaneously in one inertial reference frame may appear to
occur at different times in another inertial reference frame.

• Length contraction: When an object is moving relative to an inertial reference frame, the
object appears shorter (along the direction of motion) than it does relative to an inertial
reference frame that is at rest relative to the object.

• Time dilation: Time passes more slowly on a clock in a moving inertial reference frame than it
does for an inertial reference frame that is at rest relative to the clock.





Simultaneity Is Relative

One consequence of the postulates of special relativity is that whether or not two events appear to
occur simultaneously (at the same time) depends on the inertial reference frame from which the events
are observed. If two events are observed to occur simultaneously in one inertial reference frame, they
may not be observed to occur simultaneously in another inertial reference frame.

For example, consider the spaceship traveling close to the speed of light in the illustration above. The
spaceship passes very close to a space station that is orbiting the earth. The space station is traveling
so much slower than the speed of light that it is practically at rest relative to the very fast spaceship.
One astronaut is stationed at point Q on the space station, while another astronaut is stationed at point
P on the spaceship. There are lights on the space station at the points labeled 1 and 2. These two
lights remain off almost all of the time. The lights are programmed to flash quickly at the exact instant
that the two ends of the spaceship happen to be (momentarily) positioned directly above the lights. At
this exact instant, point A is directly above point 1, point B is directly above point 2, and points P and
Q are exactly midway between points 1 and 2 (and are thus midway between points A and B).

Observer Q is at rest relative to the space station and is exactly midway between points 1 and 2, such
that the light emitted by each point during the flash travels the same distance to reach observer Q.
Thus, observer Q on the space station sees the two lights flash simultaneously. In contrast, observer P
is traveling close to the speed of light relative to points 1 and 2. Light from point 2 reaches observer
P before light from point 1. Observer P doesn’t see the two lights flash simultaneously. Which
observer is correct? According to special relativity, both are correct. Whether you are practically at
rest (like the space station) or traveling close to the speed of light relative to the earth (like the
spaceship), the laws of physics are the same. There isn’t a preferred inertial reference frame that
makes observations more “correct.”





Time Dilation

Time passes more slowly on a clock in a moving inertial reference frame than it does for an inertial
reference frame that is at rest relative to the clock. This is known as time dilation.

You can see how time dilation is a direct consequence of the postulates of special relativity by
considering the illustration above. The spaceship is traveling to the right with a speed that is close to
the speed of light. The spaceship passes by a space station that is orbiting the earth. The space station
is traveling so much slower than the speed of light that it is practically at rest relative to the very fast
spaceship. As the spaceship is passing the space station, an astronaut inside of the spaceship turns on
a flashlight, shining a beam of light straight upward in the diagram (perpendicular to the direction that
the spaceship is traveling). The spaceship has transparent walls such that an observer inside of the
space station can see the beam of the flashlight shining inside of the spaceship as it passes the space
station.

Relative to the astronaut inside of the spaceship (observer P), the flashlight beam appears to travel
straight upward, as shown in the left diagram above. Relative to an observer inside of the space
station (observer Q), the flashlight beam appears to travel diagonally up and to the right, as shown in
the right diagram above. (Of course, the photons in the beam of light have inertia, which is the natural
tendency of all objects to travel with constant momentum. If you ride in an airplane traveling 500 mph
and throw a ball straight upwards, you will catch the ball in your hand because of inertia. The ball
certainly won’t smack the back of the airplane mid-flight. If you’ve forgotten about inertia, it may help
to review an introductory physics textbook.)

Observer P sees the beam of light take a shorter path (distance LP, which is straight upward), whereas
observer Q sees the beam of light take a longer path (distance LQ, which is diagonal). According to
the second postulate of special relativity, both observers must measure the speed of light to be the
same value. Either observer takes the distance (L) traveled and divides by the corresponding time (t)
measured to determine the speed of light. The subscripts P and Q indicate which observer makes the
measurement.



Since LQ > LP, in order for both observers to measure the same value for the speed of light, it follows
that tQ > tP. Since observer P is at rest relative to the flashlight, while observer Q is moving relative
to the flashlight, the inequality tQ > tP means that time travels more slowly for clocks (and observers
and objects) that are moving relative to an event. This is called time dilation. We will explore the
mathematics of time dilation further in Chapter 2.

The effect is mutual. Note that observer Q is moving relative to P, but also that observer P is moving
relative to Q. Therefore, time dilation depends on your perspective:

• Relative to observer P on the spaceship, time passes more slowly for observer Q who is on the
space station. This is what we found in our example since we let observer P shine the flashlight
inside of the spaceship.

• Relative to observer Q on the space station, time passes more slowly for observer P who is on
the spaceship. If we had let observer Q shine the flashlight inside of the space station (instead of
letting observer P shine the flashlight inside of the spaceship), we would have found that the time
measured by observer P would have been longer.





Length Contraction

When an object is moving relative to an inertial reference frame, the object appears shorter (along the
direction of motion) than it does relative to an inertial reference frame that is at rest relative to the
object. This is known as length contraction.

You can see how length contraction comes about by considering the illustration above. The spaceship
is traveling from earth’s sun to Alpha Centauri with a speed that is close to the speed of light.
Observer S is an astronaut aboard the spaceship, while observer E is stationed on earth. Each
observer proceeds to measure the distance from the sun to Alpha Centauri (L) and the time of the trip
(t).

Observer E on earth measures the distance to be LE and the time to be tE, such that the speed of the
spaceship is v = LE/tE. Since the earth is “moving” relative to the spaceship, time is dilated for
observer E, meaning that tE > tS. Observer S is at “rest” relative to the spaceship, and sees Alpha
Centauri getting closer to the spaceship with the same speed v. (The perspective is different—
whether earth is at rest and the spaceship is moving, or whether the spaceship is at rest and the stars
are moving—but the speed is the same.) Observer S measures the distance to be LS and the time to be
tS such that v = LS/tS.

Since observer S is at “rest” relative to the spaceship, time passes “normally” for observer S, such
that tS < tE. If tS < tE, how can v = LS/tS and v = LE/tE both result in the same speed? The answer is
that LS < LE. This means that the distance between the stars appears shorter for observer S than it
does for observer E. Note that observer S is moving relative to the distance between the stars.
Therefore, distance is shorter (along the direction of motion) relative to an inertial reference frame
that it is moving relative to the distance than it is for a reference frame that is at rest relative to the
distance. This is known as length contraction. We will explore the mathematics of length contraction
further in Chapter 2.

The effect is mutual. Note that observer S is moving relative to E, but also that observer E is moving
relative to S. Therefore, length contraction depends on your perspective:

• Relative to observer S on the spaceship, distances measured along the direction of the
spaceship’s motion (such as the distance between the sun and Alpha Centauri) appear shorter
than they do for observer E on earth. This is what we found in our example since observer S is
moving relative to the distance between the two stars.



• Relative to observer E on earth, the length of the spaceship is shorter than it is for observer S
on the spaceship. If we had considered measurements of the length of the spaceship (instead of
the distance between the stars) in our example, this is what we would have found.

• Relative to observer S on the spaceship traveling from the sun to Alpha Centauri, a second
spaceship parked on earth would appear shorter (along the line connecting the two stars) than it
is for observer E on earth.

Note that the effects of time dilation and length contraction that we discussed in this example involve
two different perspectives:

• For observer E on earth, v = LE/tE, we noted that time was dilated (tE > tS) for observer E
because the earth is “moving” relative to the spaceship.

• For observer S on the spaceship, v = LS/tS, we noted that length was contracted (LS < LE) for
observer S because the spaceship is “moving” relative to the two stars.





Relativistic Mass

As the relative speed between two inertial reference frames gets closer to the speed of light, the
effects of special relativity—including time dilation and length contraction—become more
pronounced. In the limit that the relative speed approaches the speed of light, time slows down to a
complete stop and length contracts to zero. However, you can’t actually reach this limit. An object
that has mass can be accelerated to nearly light speed (like 0.99c or 0.999c), but can never reach the
speed of light exactly.

In Galilean relativity, it would be very easy to accelerate an object faster than the speed of light.
According to Newton’s second law of motion, the net force acting on an object equals the object’s
mass times its acceleration:

(This equation applies to objects that have constant mass, but that’s not a problem for Galilean
relativity, where ordinarily an object’s mass isn’t expected to change while it accelerates.) The mass
of an electron is 9.1 × 10–31 kg. If you applied a force of just 1 N (one Newton) to an electron,
according to Galilean relativity, the electron would experience an acceleration of

What does this acceleration mean? It means that starting from rest, after a just 1 s (one second), an
electron would have a speed of v = 1.1 × 1030 m/s (since acceleration describes the rate at which
velocity increases). That’s way, way faster than the speed of light in vacuum, which is c = 2.9979 ×
108 m/s.

In the laboratory, it doesn’t happen that way. Although it is very easy to accelerate electrons to very
high speeds, once the speed of an electron reaches the neighborhood of the speed of light in vacuum,
it becomes increasingly harder to accelerate the electron. We can accelerate electrons up to 0.9c or
even 0.99c, but trying to reach 0.99999c is extremely difficult. Why? According to Einstein’s theory
of relativity, mass isn’t constant: The faster an electron travels, the more mass the electron has
(relative to the laboratory). We call this relativistic mass.

Recall that mass is a measure of inertia in the following sense: The more mass an object has, the
more difficult it is to overcome the object’s inertia in order to accelerate the object. The relativistic
mass of an object describes the object’s inertia. As the object travels closer to the speed of light
(relative to an inertial reference frame), the greater its relativistic mass (and relativistic inertia): It
becomes harder and harder to accelerate the object.

There are two types of mass:



• An object’s rest mass tells you how difficult it is to accelerate the object relative to an
observer for which the observer and object are both at rest.

• An object’s relativistic mass tells you how difficult it is to accelerate the object relative to an
observer for which the object is traveling close to the speed of light.





Proper Time, Proper Length, and Rest Mass

When you compare measurements of time, distance, or mass made by observers in different inertial
reference frames, it’s important to be able to determine which of the measurements will be larger and
which will be smaller. If you can identify the proper time, the proper length, and the rest mass
properly, this will help with your comparisons.

• The proper time corresponds to a time interval measured by a clock that is at rest relative to
the events. Observers who are moving relative to the events measure a greater time interval due
to time dilation.

• The proper length corresponds a distance measured by a tape measure (or other device used
for measuring distance) that is at rest. Observers who are moving relative to the distance
measure a shorter distance due to length contraction.

• The rest mass corresponds to the mass of an object measured by an observer who is at rest
relative to the object. Observers who are moving relative to the object measure a larger mass
called relativistic mass.

Note: In some relativity questions, the proper time and proper length are not measured by the same
observer: Proper time and proper length may come from different perspectives (that is, two different
inertial reference frames).





Symbols and SI Units





Constants





Strategy for Solving Galilean Relativity Problems

To solve a problem involving Galilean relativity (which applies to problems with relative speeds that
are small compared to the speed of light in vacuum), follow these steps:

• Setup a coordinate system with the x-axis along the direction of the relative velocity,

• Galilean relativity involves vector subtraction. For one-dimensional problems, simply
subtract according to the following equation:

uM = uR – v

•• uR is the velocity of an object as measured by an observer at rest (called R).

•• uM is the velocity of an object as measured by an observer (called M) that is moving relative
to the observer that is at rest.

•• v is the relative speed between the two observers.





Strategy for Solving Conceptual Special Relativity Problems

To solve a conceptual problem involving time dilation, length contraction, or relativistic mass, follow
these steps. (For mathematical problems, see Chapters 2-5.)

• It may help to draw a diagram and label both objects and observers.

• The laws of special relativity apply to inertial observers—observers who travel with
(approximately) constant velocity (which means that speed and direction are both constant).
Any inertial observer is free to claim to be at rest, and can make equally valid arguments based
on this claim.

• When applying time dilation, identify the proper time: The proper time is measured by an
observer whose clock is at rest relative to the events. Any observer who is moving relative to
the events will measure a longer time due to time dilation.

• When applying length contraction, identify the proper length: The proper length is measured
by an observer who is at rest relative to the distance being measured. Any observer who is
moving relative to the distance will measure a shorter distance due to length contraction.

• When working with relativistic mass, identify the rest mass: The rest mass is measured by an
observer who is at rest relative to the object. Any observer who is moving relative to the object
will measure a greater mass called relativistic mass.



Example: A monkey is riding on a boat that is traveling 12 m/s to the east along a river. As the boat
passes a boy who is standing on the bank of the river, the monkey throws a banana 18 m/s to the east
relative to the monkey. How fast is the banana moving relative to the boy?

Setup a coordinate system with +x directed to the east. Identify the given information:

• The relative speed between the monkey and the boy is v = 12 m/s.

• The monkey is the moving observer. The velocity of the banana relative to the monkey is uM =
18 m/s to the east.

• The boy is at rest. The velocity of the banana relative to the boy is uR.

Since these speeds are small compared to the speed of light, we may apply the equation for Galilean
relativity:

The banana is moving 30 m/s relative to the boy.

Note: It is standard in physics to neglect air resistance unless stated otherwise in a problem.



Example: A monkey is riding on a boat that is traveling 12 m/s to the east along a river. As the boat
passes a boy who is standing on the bank of the river, the monkey throws a banana 18 m/s to the west
relative to the monkey. How fast is the banana moving relative to the boy?

Compare these two examples carefully. What is different? This time the monkey throws the banana to
the west, which is opposite to the boat’s motion. Setup a coordinate system with +x directed to the
east. Identify the given information:

• The relative speed between the monkey and the boy is v = 12 m/s.

• The monkey is the moving observer. The velocity of the banana relative to the monkey is uM =
–18 m/s. Velocity includes direction: For one-dimensional problems, minus signs distinguish
between forward and backward.

• The boy is at rest. The velocity of the banana relative to the boy is uR.

Since these speeds are small compared to the speed of light, we may apply the equation for Galilean
relativity:

The banana is moving 6 m/s relative to the boy. Since uR is negative, the banana is heading west
(along –x) relative to the boy.



Example: A monkey drives a blue car 30 m/s to the north. On the same street, another monkey drives
a red car 20 m/s to the south. What is the velocity of the red car relative to the monkey in the blue
car?

Don’t overthink it. This problem is simpler, since there isn’t a banana (or other object) moving
relative to both observers. We’re just trying to determine the relative velocity

between the two monkeys. You can reason this out as follows:

• In one second, the blue car will travel 30 m north relative to the ground.

• In one second, the red car will travel 20 m south relative to the ground.

• Thus, in one second, the red car will be 20 + 30 = 50 m south of the blue car.

• Since the red car will be 50 m further south of the blue car each second, the velocity of the red
car is –50 m/s relative to the blue car, meaning 50 m/s to the south.



Example: One astronaut is in a space station that is orbiting the earth. Another astronaut is in a
spaceship. The space station is practically at rest relative to the very fast spaceship, and the
spaceship is traveling close to the speed of light relative to the earth. The spaceship and space station
both have transparent walls such that either astronaut can make observations (with the aid of a
telescope) of what’s going inside of the other space craft.

(A) How does the astronaut inside of the spaceship appear to age relative to the astronaut inside of
the space station?

Identify the proper time. The astronaut on the spaceship measures the proper time because this
astronaut is at rest relative to himself (or herself). An observer who is moving relative to the
spaceship will measure a longer time due to time dilation. Therefore, relative to the astronaut on the
space station, the astronaut on the spaceship appears to age more slowly than the astronaut on the
space station. (Let’s not worry about make-up, genetic differences in aging, etc. Let’s treat the
astronauts equally, as if they are identical twins.)

(B) Both astronauts measure the length of the spaceship. Compare their measurements.

Identify the proper length. The astronaut on the spaceship is at “rest” relative to the distance being
measured. An observer who is moving relative to the spaceship will measure a shorter distance due
to length contraction. Therefore, the spaceship appears to be shorter relative to the astronaut inside of
the space station than it does relative to the astronaut inside of the spaceship.

(C) Both astronauts measure the mass of the spaceship. Compare their measurements.

The astronaut in the spaceship measures the spaceship’s rest mass, whereas the astronaut in the space
station measures the spaceship’s relativistic mass, which is larger.





Chapter 1 Problems

1. A monkey is standing on the top of a train that is traveling 36 m/s to the south. A girl is standing on
the ground beside the railroad tracks. As the train passes the girl, the monkey throws an apple with a
speed of 12 m/s relative to the train.

(A) If the monkey throws the apple to the south, what is the speed of the apple relative to the girl?

(B) If the monkey throws the apple to the north, what is the speed of the apple relative to the girl?

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) 48 m/s (B) 24 m/s



2. A monkey is riding inside of a train car that is traveling to the west with constant velocity. A girl is
standing on the ground beside the railroad tracks. The monkey paints a red X on the floor of the train
car (that is, the X is on the bottom of the train car, not on the ground). As the train car is passing the
girl, the monkey holds a banana directly over the X and releases the banana. The train car has large
windows (with no curtains), such that the girl is able to watch the banana fall and see where it lands.

(A) Where does the banana land? Explain your answer.

(B) What path does the banana take relative to the monkey?

(C) What path does the banana take relative to the girl?

Want help? Check the solution at the end of the chapter.

Answers: 2. (A) on the X

(B) straight line (C) parabola



3. On a still pond, a monkey rides a boat 32 m/s to the east. This monkey throws an orange 20 m/s to
the east relative to himself. The monkey’s father rides a boat 24 m/s to the east, the monkey’s mother
is standing still on a pier, and the monkey’s uncle rides a boat 10 m/s to the west.

(A) Find the velocity of the monkey relative to his father.

(B) Find the velocity of the monkey relative to his mother.

(C) Find the velocity of the monkey relative to his uncle.

(D) Find the velocity of the monkey’s father relative to the monkey.

(E) Find the velocity of the monkey’s mother relative to the monkey.

(F) Find the velocity of the monkey’s uncle relative to the monkey.

(G) Find the velocity of the monkey’s father relative to the monkey’s mother.

(H) Find the velocity of the monkey’s mother relative to the monkey’s father.

(I) Find the velocity of the monkey’s father relative to the monkey’s uncle.

(J) Find the velocity of the monkey’s uncle relative to the monkey’s father.

(K) Find the velocity of the monkey’s mother relative to the monkey’s uncle.

(L) Find the velocity of the monkey’s uncle relative to the monkey’s mother.

(M) Find the velocity of the orange relative to the monkey.

(N) Find the velocity of the orange relative to the monkey’s father.

(O) Find the velocity of the orange relative to the monkey’s mother.

(P) Find the velocity of the orange relative to the monkey’s uncle.

Want help? Check the solution at the end of the chapter.

Answers: 3. (A) 8 m/s E (B) 32 m/s E

(C) 42 m/s E (D) 8 m/s W (E) 32 m/s W

(F) 42 m/s W (G) 24 m/s E (H) 24 m/s W

(I) 34 m/s E (J) 34 m/s W (K) 10 m/s E

(L) 10 m/s W (M) 20 m/s E (N) 28 m/s E



(O) 52 m/s E (P) 62 m/s E



4. Two identical spaceships travel with a relative speed close to the speed of light. As shown below,
the spaceships travel in opposite directions. At the exact moment that the spaceships pass one another,
scientists aboard each ship create identical clones of a chimpanzee. In this way, the two chimpanzees
are effectively identical twins. Their names are Marco and Polo.

(A) Scientists aboard Marco’s ship have one photograph of Marco on his 30th birthday, and compare
it to a photograph taken with a telescope of exactly how Polo looked after 30 years according to
calendars kept by Marco’s scientists (after accounting for the time it took for light to reach Marco’s
ship from Polo’s ship). How do the photographs compare?

(B) Scientists aboard Polo’s ship have one photograph of Polo on his 30th birthday, and compare it to
a photograph taken with a telescope of exactly how Marco looked after 30 years according to
calendars kept by Polo’s scientists (after accounting for the time it took for light to reach Polo’s ship
from Marco’s ship). How do the photographs compare?

(C) Which team of scientists is correct? Explain your answers to parts (A) and (B).

(D) Which ship appears longer according to measurements made by Marco’s scientists?

(E) Which ship appears longer according to measurements made by Polo’s scientists?

(F) Which ship has more mass according to measurements made by Marco’s scientists?

(G) Which ship has more mass according to measurements made by Polo’s scientists?

(H) Which ship appears taller according to measurements made by Marco’s scientists?

Want help? Check the solution at the end of the chapter.

Answers: 4. (A) Polo looks younger than 30

(B) Marco looks younger than 30

(C) both! (D) Marco’s (E) Polo’s

(F) Polo’s (G) Marco’s (H) same



5. As illustrated below, when a spaceship is parked at rest inside of a space garage, the ship is too
long to fit inside of the garage.

As illustrated below, when the same spaceship is traveling close to the speed of light, it can
momentarily fit inside of the same space garage according to observers stationed in the space garage.
(This space garage is special: There are front and back doors which sense the presence of the
spaceship, and which open or close almost instantly. Of course, the spaceship will only be inside of
the space garage with both doors shut for a tiny fraction of a second relative to observers stationed in
the space garage.)

(A) Explain how the spaceship is able to fit inside of the space garage with both doors closed
simultaneously (for a tiny fraction of a second) from the point of view of observers stationed in the
space garage.

(B) From the point of view of astronauts inside of the spaceship, is the spaceship able to fit inside of
the space garage with both doors closed simultaneously? Explain.

Want help? Check the solution at the end of the chapter.

Answers: 5. (A) length contraction

(B) no; the doors do not appear to be closed simultaneously relative to observers in the spaceship



6. When cosmic rays interact with atoms high in earth’s atmosphere, particles called muons can be
produced. Muons are particles similar to electrons, except that they have about 200 times as much
mass and are unstable. Muons decay very quickly: A muon produced at rest only lasts a couple of
microseconds before decaying into other particles. Based on the short average lifetime of a muon (as
measured in the muon’s rest frame), almost none of the muons produced in the upper atmosphere
should reach earth’s surface, yet a very large number of these muons are detected at earth’s surface.

(A) From the point of view of scientists stationed on the ground, explain how a large number of
muons are able to reach earth’s surface even though their average lifetime (as measured in the muon’s
rest frame) is too short for them to survive that long.

(B) Now explain this from the reference frame of the muons (instead of the reference frame of
scientists stationed on the ground).

Want help? Check the solution at the end of the chapter.

Answers: 6. (A) time dilation

(B) length contraction



7. For each question below, state whether it is theoretically possible or impossible according to
special relativity. Explain your answers.

(A) A chimpanzee could travel to a star that is 10,000 light-years away in her natural lifetime. Note:
A light-year is the distance that light travels in one year.

(B) A chimpanzee could go on a space trip and appear younger than her own daughter when she
returns to earth.

(C) A chimpanzee could go on a space trip and appear younger than she was when she left the earth.

Want help? Check the solution at the end of the chapter.

Answers: 7. (A) possible

(B) possible (C) impossible





Solutions to Chapter 1

1. Setup a coordinate system with +x directed to the south. Identify the given information:

• The relative speed between the monkey and the girl is v = 36 m/s.

• The monkey is the moving observer. The velocity of the apple relative to the monkey is uM.
This value will be different in parts (A) and (B) since the apple is thrown in a different direction
in each part.

• The girl is at rest. The velocity of the apple relative to the girl is uR.

Since these speeds are small compared to the speed of light, we may apply the equation for Galilean
relativity. As usual, we neglect air resistance unless stated otherwise.

uM = uR – v

(A) Since the apple is thrown south and we chose +x to point south, uM = 12 m/s.

The apple is moving 48 m/s relative to the girl.

(B) Since the apple is thrown north and we chose +x to point south, uM = –12 m/s.

The apple is moving 24 m/s relative to the girl.



2. (A) The banana lands directly on the X. Why? Because the banana has inertia. Recall from
Newton’s laws of motion (which are taught in first-year physics) that inertia is the natural tendency of
all objects to maintain constant velocity. According to Newton’s second law of motion, a net external
force is needed to accelerate an object (and thus change the object’s velocity), since

When the monkey releases the banana, a net gravitational force acts downward, causing the banana to
accelerate downward. However, there are no forces acting horizontally, so the banana doesn’t
accelerate horizontally. The banana maintains a constant horizontal component of velocity (vx), while
the vertical component of velocity (vy) changes. That’s why, in projectile motion, horizontally we
have

and vertically we have

Horizontally, vx is constant (because ax = 0), whereas vertically there is uniform acceleration (ay =
–g = –9.81 m/s2 is constant).

You can verify this by riding in an airplane. If you throw an eraser straight upward relative to you
while sitting inside of the airplane, you will catch the eraser because it has inertia. The eraser surely
won’t land behind you, even if the airplane is traveling 300 m/s and if the eraser is in the air for half a
second (in which case the airplane travels 150 m horizontally).

(B) Relative to the monkey, the banana appears to fall in a straight line downward, no different than if
the train had been parked when the monkey released the banana. The laws of physics are the same in
any inertial reference frame, meaning that the result of dropping a banana from rest will be the same
whether the train is at rest or moving with constant velocity.

(C) Relative to the girl, the banana follows the arc of a parabola, beginning with a horizontal tangent.
The same path would result if the girl had the banana and threw it horizontally. The banana follows
the path of a projectile, which is parabolic.

From the monkey’s point of view, the monkey claims that the train is at “rest” (but that the girl and
ground are moving). According to the monkey, vx = 0 and the banana falls straight downward.

From the girl’s point of view, the girl claims that she is at “rest” (but that the train is moving).
According to the girl, vx isn’t 0. Relative to the girl,



and

which can be combined to make

which is the equation of a parabola. To derive this equation, you need to combine the following
equations:



3. Setup a coordinate system with +x directed to the east.

 





4. (A) Marco appears to age normally relative to the scientists on Marco’s ship. Because the proper
time for Polo’s aging process is measured by Polo’s team, Marco’s team will measure Polo’s aging
process to occur more slowly due to time dilation. Therefore, when Marco’s team compares their
photographs, Polo will appear younger.

(B) Polo appears to age normally relative to the scientists on Polo’s ship. Because the proper time for
Marco’s aging process is measured by Marco’s team, Polo’s team will measure Marco’s aging
process to occur more slowly due to time dilation. Therefore, when Polo’s team compares their
photographs, Marco will appear younger.

(C) Both teams are correct. Marco’s team believes that Polo appears younger when Marco celebrates
his 30th birthday, and Polo’s team believes that Marco appears younger when Polo celebrates his 30th

birthday, and both teams are correct because both teams are inertial observers (since both spaceships
travel with constant velocity). According to special relativity, there is no preferred reference frame;
and the laws of physics are the same for all inertial observers. (For the chimpanzees to actually meet
up, note that one would have to accelerate.)

(D) Marco’s ship appears normal relative to the scientists on Marco’s ship. Because the proper length
for Polo’s ship is measured by Polo’s team, Marco’s team will measure the length of Polo’s ship to be
shorter than normal due to length contraction; Marco’s appears longer.

(E) Polo’s ship appears normal relative to the scientists on Polo’s ship. Because the proper length for
Marco’s ship is measured by Marco’s team, Polo’s team will measure the length of Marco’s ship to
be shorter than normal due to length contraction; Polo’s appears longer.

(F) Marco’s team measures Marco’s ship to have its rest mass. When Marco’s team measures the
mass of Polo’s ship, Polo’s ship’s relativistic mass appears greater than its rest mass. (Let’s assume
that both teams of scientists have the same combined rest mass.)

(G) Polo’s team measures Polo’s ship to have its rest mass. When Polo’s team measures the mass of
Marco’s ship, Marco’s ship’s relativistic mass appears greater than its rest mass.

(H) The height is the same for each. (Length contraction occurs only along the direction of the
velocity. The height, which is perpendicular to the velocity, is unaffected.)



5. (A) Since the proper length of the spaceship is measured by astronauts inside of the ship, astronauts
stationed in the space garage measure the length of the spaceship to be shorter than normal due to
length contraction. The concept of length contraction explains how the ship is short enough to fit in the
garage while traveling close to the speed of light.

(B) The spaceship has its usual length relative to astronauts inside of the spaceship. You can’t explain
this in terms of length contraction because length contraction would make the space garage appear
shorter than usual relative to astronauts inside of the spaceship. The answer has to do with the fact
that different inertial observers often disagree on whether or not two events occur simultaneously; this
is one of those times. Whereas astronauts stationed in the garage momentarily see the spaceship fit
inside of the garage with both doors temporarily closed, astronauts aboard the spaceship don’t see the
two doors closed at the same instant. Rather, astronauts aboard the spaceship see the door on the right
side of our diagram close first (while the back of the spaceship sticks out on the left side of our
diagram). They then see the front door open. The spaceship continues a short ways until the back of
the spaceship is safely inside of the garage. At this point, the door on the left side of our diagram
quickly closes (while the front of the spaceship sticks out on the right side of our diagram).



6. (A) Since the proper time would be measured by a reference frame traveling with the muons
themselves, scientists on earth’s surface measure a longer lifetime due to time dilation. That is,
because the muons travel close to the speed of light relative to the earth, their average lifetime is
much longer than it would be if they were at rest, which allows them to travel a longer distance
before they decay.

(B) From the reference frame of the muons, their lifetime is normal (they measure the proper time).
Instead, the muons “see” length contraction: Since scientists on earth’s surface measure the proper
length for the muons’ trip, a reference frame attached to the muons would measure a shorter distance.
That is, because the muons travel close to the speed of light (although from their perspective, the
muons are at rest and the earth is traveling close to the speed of light towards the muons), the distance
between earth’s surface and where they are produced in earth’s atmosphere is much shorter than
would be if they were at rest, which allows them to reach earth’s surface in less time. It’s instructive
to compare how these different perspectives lead to equivalent conclusions through two quite
different effects.



7. (A) Theoretically, it is possible, provided that the chimpanzee travels in a spaceship with a speed
that is close enough to the speed of light (that’s the hard part). Relative to observers on earth, the
chimpanzees would age much more slowly than normal through time dilation. (However, the initial
part of the trip requires acceleration, and the end of the trip involves deceleration, both of which
involve general relativity, which is a step beyond special relativity.)

(B) Theoretically, it is possible, for the same reason as part A, provided that the chimpanzee travels
in a spaceship that is close enough to the speed of light. If the chimpanzee ages slowly enough due to
time dilation, she could appear younger than her daughter when she returns to earth. However,
whatever the age difference is between the chimpanzee and her daughter, at least that number of years
must pass on earth for this to be possible. For example, if the chimpanzee is 30 years old and her
daughter is 12 years old, at least 18 years must pass on earth during the trip (plus additional years
depending on how fast the ship travels; we’ll explore the mathematics involved in time dilation in
Chapter 2).

(C) This is theoretically impossible (without plastic surgery or age defying medicine). While time
can slow down due to time dilation, in special relativity time can’t go backwards.





2 TIME DILATION AND LENGTH CONTRACTION

Relevant Terminology

Time dilation – the phenomenon whereby time appears to travel more slowly for objects moving fast
(close to light speed) relative to other observers.

Length contraction – the phenomenon whereby objects moving fast (close to light speed) appear
shorter relative to other observers.

Proper time – a time interval measured by a clock that is at rest relative to the events. An observer
who is moving relative to the events measures a greater time interval due to time dilation.

Proper length – a distance measured by an observer who is at rest relative to the distance. An
observer who is moving relative to the distance measures a shorter distance due to length contraction.

Inertial reference frame – a frame that travels with constant velocity.





Time Dilation

Time passes more slowly on a clock in a moving inertial reference frame than it does for an inertial
reference frame that is at rest relative to the clock. This is known as time dilation.

In the diagram above, the spaceship is traveling to the right with a speed that is close to the speed of
light. The spaceship passes by a space station that is practically at rest relative to the very fast
spaceship. As the spaceship is passing the space station, an astronaut inside of the spaceship turns on
a flashlight, shining a beam of light straight upward in the diagram (perpendicular to the direction that
the spaceship is traveling).

Relative to the astronaut inside of the spaceship (observer P), the flashlight beam appears to travel
straight upward (left diagram). Relative to an observer inside of the space station (observer Q), the
flashlight beam appears to travel diagonally (right diagram).

In the illustration above:

• LP is the distance that the light travels according to observer P.

• LQ is the distance that the light travels according to observer Q.

• LS is the distance that the spaceship travels horizontally during this time.

These three distances are related by the Pythagorean theorem:

According to the second postulate of special relativity, both observers must measure the speed of
light to be the same value. Either observer takes the distance (L) traveled and divides by the
corresponding time (t) measured to determine the speed of light (c). The subscripts P and Q indicate



which observer makes the measurement.

Observer Q can also measure the speed (v) of the spaceship by dividing the horizontal distance (LS)
traveled by the corresponding time (tQ).

Multiply each equation by the corresponding time.

LP = c tP

LQ = c tQ

LS = v tQ

Substitute these expressions into the equation from the Pythagorean theorem.

Solve for tQ.

Divide the numerator and denominator each by c2.







Length Contraction

When an object is moving relative to an inertial reference frame, the object appears shorter (along the
direction of motion) than it does relative to an inertial reference frame that is at rest relative to the
object. This is known as length contraction.

In the diagram above, a spaceship is traveling from earth’s sun to Alpha Centauri with a speed that is
close to the speed of light. Observer S is an astronaut aboard the spaceship, while observer E is
stationed on earth.

Observer E on earth measures the distance to be LE and the time to be tE, such that the speed of the
spaceship is

v = LE / tE

Observer S on the spaceship measures the distance to be LS and the time to be tS such that

v = LS / tS

According to observer E, the ship is “moving” while the stars are at rest, whereas according to
observer S, the earth and stars are “moving” while the spaceship is at “rest,” but either way the speed
of the spaceship is the same:

Solve for LS.

Since the spaceship’s clock is at “rest” relative to the journey, observer S measures the proper time
and the passage of time aboard the spaceship appears dilated relative to observer E. Use the time
dilation equation with tS as the proper time:



 

Note: When applying the above equation to other problems, the proper length will often not be
measured by an observer on earth. That just happened to be the case in this example. In a given
problem, you must apply the concept of proper length to determine which observer measures the
proper length.

Note that the effects of time dilation and length contraction that we discussed in this example involve



two different perspectives:

• For observer E on earth, v = LE / tE, we noted that time was dilated (tE > tS) for observer E
because the earth is “moving” relative to the spaceship.

• For observer S on the spaceship, v = LS / tS, we noted that length was contracted (LS < LE) for
observer S because the spaceship is “moving” relative to the two stars.





Time Dilation and Length Contraction Equations

In the equations below, t0 represents the proper time (measured by an observer who is at rest relative
to the events) and L0 represents the proper length (measured by an observer who is at rest relative to
the distance). Note that t0 and L0 are not necessarily measured by the same observer in a problem (in
fact, these were measured by different observers when we derived the equation for length contraction
in the previous section).

 





Symbols and SI Units





Constants





Strategy for Solving Time Dilation and Length Contraction
Problems

To solve a problem involving time dilation or length contraction, follow these steps:

• It may help to draw a diagram and label both objects and observers.

• When applying time dilation, identify the proper time (t0), which is measured by an observer
whose clock is at rest relative to the events.

• When applying length contraction, identify the proper length (L0), which is measured by an
observer who is at rest relative to the distance being measured.

Note that t0 and L0 are not necessarily measured by the same observer in a problem.



Example: A chimpanzee astronaut sleeps for 8 hours according to a spaceship’s clock while traveling
at 0.5c (half the speed of light) relative to the earth. For how much time does the chimpanzee appear
to be sleeping relative to an observer on earth?

Which observer measures the proper time? The spaceship’s clock is at rest relative to the
chimpanzee. Therefore, the chimpanzee measures the proper time: t0 = 8 hr. The observer on earth
measures a greater time, td, due to time dilation. The relative speed is v = 0.5c. Use the time dilation
equation.

 



Example: A spaceship has a length of 20 m when it is parked near the surface of the earth. When a
chimpanzee astronaut in the spaceship travels at 0.8c relative to the earth, what length does the
spaceship appear to have relative to an observer on earth?

Which observer measures the proper length? The chimpanzee is at rest relative to the length of the
spaceship. Therefore, the chimpanzee measures the proper length: L0 = 20 m. The observer on earth
measures a shorter distance, Lc, due to length contraction. The relative speed is v = 0.8c. Use the
length contraction equation.





Chapter 2 Problems

1. A chimpanzee astronaut travels in a spaceship at 0.6c relative to the earth. According to the
chimpanzee, the spaceship is 30 m long and the trip takes 12 years.

(A) How long is the spaceship relative to an observer on earth?

(B) How long does the trip take relative to an observer on earth?

(C) How far does the spaceship travel according to an observer on earth?

Note: One light-year (ly) is the distance that light travels in one year.

(D) How far does the spaceship travel according to the chimpanzee?

(E) Explain your answers to parts C and D.

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) 24 m (B) 15 years

(C) 9.0 ly (D) 7.2 ly

(E) time dilation vs. length contraction



2. How fast must a spaceship travel relative to another observer in order to appear half as long as it
really is?

Want help? Check the solution at the end of the chapter.

Answer:



3. Muons that are produced at rest have an average lifetime of

A beam of muons is produced that travels 0.99c relative to the earth.

(A) How far does classical physics expect the muons to travel on average? (For this question, pretend
that the muons don’t follow the laws of special relativity.)

(B) Relative to observers on earth, how far will the muons actually travel on average?

(C) Relative to a reference frame attached to the muons, how far do the muons travel on average?

(D) Explain your answers to parts B and C.

Want help? Check the solution at the end of the chapter.

Answers: 3. (A) 0.65 km

(B) 4.6 km (C) 0.65 km

(D) time dilation vs. length contraction



4. A chimpanzee astronaut travels in a spaceship at (12/13)c relative to the earth. According to
observers stationed on earth, the trip takes 26 years.

(A) How far does the spaceship travel relative to the earth?

(B) How far does the spaceship travel relative to the chimpanzee?

(C) How long does the trip take relative to the chimpanzee?

Want help? Check the solution at the end of the chapter.

Answers: 4. (A) 24 ly (B) (120/13) ly = 9.2 ly (C) 10 yr





Solutions to Chapter 2

1. The relative speed is v = 0.6c.

(A) Regarding the length of the spaceship, the chimpanzee measures the proper length since the
chimpanzee is at rest relative to the spaceship: L0 = 30 m. Use the equation for length contraction to
determine what an observer on earth measures.

Recall that the way to divide by a fraction is to multiply by its reciprocal.

(B) Regarding the time of the trip, the chimpanzee measures the proper time since the ship’s clock is
at “rest” relative to the journey: t0 = 12 yr. Use the equation for time dilation to determine what an
observer on earth measures.

(C) Multiply the speed of the ship by the time of the trip as measured by an earth observer.



Note that one lightyear (ly) equals c times 1 yr. That is, the speed of light times one year equals the
distance that light travels in one year. (If you prefer meters, use c = 2.9979 × 108 m/s and convert 1 yr
to 31,536,000 seconds to get 8.5 × 1016 m.) Unlike part A, the observer on earth measures the proper
length for this distance (which is at rest relative to earth).

(D) Multiply the speed of the ship by the time of the trip as measured by the chimpanzee.

Since the observer on earth measures the proper length of the trip (since the starting and ending points
of the journey—which are likely the sun and a nearby star—aren’t moving relative to the earth), the
chimpanzee measures a shorter length due to length contraction. We could have obtained the same
answer from the length contraction equation (using d for the distance of the trip, so as not to confuse it
with the L that we used for the length of the ship in part A). It’s instructive to compare part D with
part A, since in part A the chimpanzee measured the proper length, whereas in part D the observer on
earth measures the proper length.

 



 

 



(A) Multiply the speed of the muons by the average lifetime.

(B) The average lifetime will be dilated relative to observers on earth.

(C) In the muons’ reference frame, the lifetime is normal, but the distance that they travel (on average)
is contracted.

 



 

(A) Multiply the speed of the ship by the time of the trip as measured by an earth observer.



Note that one lightyear (ly) equals c times 1 yr. That is, the speed of light times one year equals the
distance that light travels in one year. (If you prefer meters, use c = 2.9979 × 108 m/s and convert 1 yr
to 31,536,000 seconds to get 2.3 × 1017 m.)

(B) Since the observer on earth measures the proper length of the trip (since the starting and ending
points of the journey—which are likely the sun and a nearby star—aren’t moving relative to the
earth), the chimpanzee measures a shorter length due to length contraction.

(C) Divide the distance by the speed.





3 THE LORENTZ TRANSFORMATION

Relevant Terminology

Time dilation – the phenomenon whereby time appears to travel more slowly for objects moving fast
(close to light speed) relative to other observers.

Length contraction – the phenomenon whereby objects moving fast (close to light speed) appear
shorter relative to other observers.

Inertial reference frame – a frame that travels with constant velocity.





The Galilean Transformation

The Galilean transformation involves Galilean relativity (Chapter 1), which only applies when the
objects and observers are traveling with speeds that are small compared to the speed of light.
Suppose that there are two different observers, O and O', where O' moves with constant velocity

relative to O. The Galilean transformation relates the coordinates (t, x, y, z) and (t', x', y', z') of the
two observers. If we setup our coordinate systems such that the +x- and +x'-axes are oriented along
the relative velocity,

and if we start our clocks such that O and O' coincide at t = t' = 0, the Galilean transformation is:

t' = t

x' = x – vt

y' = y

z' = z

Note that vt equals the distance between the two coordinate systems at time t. To see that this Galilean
transformation agrees with the Galilean relativity equation that we learned in Chapter 1, take a
derivative with respect to time (noting that dt' = dt since t' = t):

Since a derivative of x with respect to time equals the x-component of velocity, the above equation is
identical to the Galilean relativity equation uM = uR – v from Chapter 1.





The Lorentz Transformation

The Galilean transformation doesn’t apply when the relative velocity is significant compared to the
speed of light. The Lorentz transformation accounts for the effects of special relativity, and applies at
all speeds (low or high):

Recall the following definitions from Chapter 2:

Also recall that O' moves with constant velocity

relative to O.

The Lorentz transformation is convenient when you know the coordinates (t, x, y, z) in O and wish to
find the coordinates (t', x', y', z') in O'. What if you know (t', x', y', z') and wish to find (t, x, y, z)? In
that case, use the following inverse transformation:

In some problems, we don’t measure instantaneous values of the coordinates, but instead measure
intervals (such as a time interval between two events, or the endpoints of a rod). In terms of intervals,
the Lorentz transformation is:







Time Dilation and Length Contraction in the Lorentz
Transformation

Time dilation and length contraction are actually built into the Lorentz transformation. Let’s consider
time dilation first. Suppose that observer O' measures the proper time:

 







Rotational Invariance in Galilean Relativity

 

 







Lorentz Invariance

 

 







Tensor Notation

 

 



 



 





Notation





The Kronecker Delta





The Levi-Civita Symbol

 







The Metric Tensor

 







The Scalar Product between 4-Vectors

 







Tensor Relations and Identities

The following relations and identities are sometimes handy when working with tensors:





Symbols and SI Units

 



 

 



 

 







Constants





Strategy for Problems Involving the Lorentz Transformation

To solve a problem that involves the Lorentz transformation, follow these steps:

 



 







Strategy for Problems Involving Tensor Notation

To solve a problem that involves tensor notation, follow these steps:

 



 



 



Example: A 4-vector is defined to have the following components. Show whether or not this 4-vector
is Lorentz invariant.

 





Example: For each expression below, indicate how many sums are implied (if any) and how many
terms the expression represents.

 



Example: Rewrite the equation below longhand.



Example: What, precisely, does each symbol below equal or represent?

 

 





Example: Simplify the following expressions.

 



 









 



 



 

 



 



 





Chapter 3 Problems

1. Relativistic 4-momentum is defined to have the following components. Show whether or not
relativistic 4-momentum is Lorentz invariant.

Want help? Check the solution at the end of the chapter.

Answer: 1. It is.



2. For each expression below, indicate how many sums are implied (if any) and how many terms the
expression represents.

Want help? Check the solution at the end of the chapter.

Answers: 2. (A) 1, 3 (B) 2, 9

(C) 2, 9 (D) 2, 16 (E) 3, 64 (F) 1, 4



3. Rewrite each equation below longhand.

Want help? Check the solution at the end of the chapter.

Answers: The answers to this problem can be found at the end of the chapter.



4. For each symbol below, indicate precisely what it equals or represents.

Want help? Check the solution at the end of the chapter.

Answers: 4. (A) ct (B) –xy (C) z

(D) 1 (E) 0 (F) 1 (G) 0 (H) 1 (I) –1

(J) –1 (K) 1 (L) 0 (M) 1 (N) –1

(O) –1 (P) 0 (Q) y (R) ct



5. Simplify each expression below.

Want help? Check the solution at the end of the chapter.

Answers:



6. Derive each of the following relations.

Want help? Check the solution at the end of the chapter.

Answers: The answers to this problem can be found at the end of the chapter.





Solutions to Chapter 3

1. According to the given equation, the contravariant components of the 4-momentum are:

 



 

 



 



3. (A) Note that there is an implied summation over the repeated index i, but that there isn’t any
summation over the index j. Why not? Because i is repeated in the same term, whereas j isn’t repeated
in the same term (j appears only once in two different terms). What appears to be one equation is
actually 3 separate equations: one equation for each possible value of j.



 





 



 





6. (A) Taking the implied sum over a repeated index to apply even when the index is repeated within
the subscripts of the same symbol, we get:

 



 

 



 

 



 



 

 



 







4 RELATIVE VELOCITY

Relevant Terminology

Inertial reference frame – a frame that travels with constant velocity.

Relative Velocity

Suppose that observer O claims to be at rest and that observer O' moves with constant velocity

relative to observer O, where the x-axis is oriented along the velocity. Suppose also that observer O'
measures the x-component of the velocity of an object to be u'x, where



is the x-component of the velocity of the object measured by observer O. The equation that relates u'x
to ux is the Lorentz transformation for velocity. If two different observers measure the velocity of an
object, the Lorentz velocity transformation equation can be used to relate their measurements.







Symbols and SI Units





Constants

Relative Velocity Strategy

To solve a one-dimensional relative velocity problem, follow these steps:



Example: A spaceship passes earth with a speed of 0.7c relative to earth. The spaceship fires a
rocket in its forward direction with a speed of 0.5c relative to the spaceship. What is the speed of the
rocket relative to the earth?

Identify the observers and the object, and setup a coordinate system.

• Take the earth to be at rest. The earth is observer O.

• The spaceship is observer O'. Orient +x along the spaceship’s velocity.

• The object is the rocket.

Identify the given information.

• The relative speed between O and O' is v = 0.7c.

• The velocity of the rocket relative to the spaceship (observer O') is u'x = 0.5c.

We’re solving for the speed of the rocket relative to earth, which is ux. Choose the second equation
from the strategy.

Example: Derive the equation for ux in terms of v and u'x.

Begin with the equation for relative velocity.



 





Chapter 4 Problems

1. A spaceship passes earth with a speed of 0.6c relative to earth. The spaceship fires a rocket in its
forward direction. The rocket has a speed of 0.8c relative to earth. What is the speed of the rocket
relative to the spaceship?

Want help? Check the solution at the end of the chapter.

Answer: 1. 0.38c



2. Relative to an observer on earth, one spaceship is heading towards the earth with a speed of 0.9c
while a second spaceship is heading towards the earth from the opposite direction with a speed of
0.5c. What is the velocity of each spaceship relative to the other spaceship?

Want help? Check the solution at the end of the chapter.

Answers: 2. –0.97c, –0.97c





Solutions to Chapter 4

1. Identify the observers and the object, and setup a coordinate system.

• Take the earth to be at rest. The earth is observer O.

• The spaceship is observer O'. Orient +x along the spaceship’s velocity.

• The rocket is the object.

Identify the given information. Note: This problem is different from the example. This problem gives
you the speed of the rocket relative to the earth, whereas the example gave you the speed of the rocket
relative to the spaceship. In the example, we were given v and u'x and were solving for ux, but in this
problem we are given v and ux and are solving for u'x.

• The relative speed between O and O' is v = 0.6c.

• The velocity of the rocket relative to the earth (observer O) is ux = 0.8c.

We’re solving for the speed of the rocket relative to the spaceship (observer O'), which is u'x. Choose
the first equation from the strategy.



2. Identify the observers and the object, and setup a coordinate system.

• Take the earth to be at rest. The earth is observer O.

• Take the first spaceship to be observer O'. Orient +x along the first spaceship’s velocity.

• The second spaceship is the object.

Identify the given information.

• The relative speed between O and O' is v = 0.9c.

• The velocity of the second spaceship relative to the earth (observer O) is ux = –0.5c. Why is it
negative? Because it is heading in the opposite direction of the first spaceship.

We’re solving for the velocity of the second spaceship relative to the first spaceship (observer O'),
which is u'x. Choose the first equation from the strategy.





5 RELATIVISTIC MOMENTUM AND ENERGY

Relevant Terminology

Momentum – mass times velocity.

Inertia – the natural tendency of any object to maintain constant momentum.

Mass – a measure of inertia.

Energy – the ability to do work, meaning that a force is available to contribute towards the
displacement of an object.

Kinetic energy – work that can be done by changing speed. Moving objects have kinetic energy.
Hence, kinetic energy is considered to be energy of motion.





Momentum and Energy

 



 



 





 



 



 





Mass and Energy

A few particles found in nature have zero rest mass. A common example is the photon (a particle of
light). Yet, such particles still carry energy and momentum.

E = pc (if m0 = 0)







Relativistic 4-Momentum

The relativistic 4-momentum combines energy (divided by the speed of light) and momentum into a
single 4-vector (it may help to review tensor notation in Chapter 3):

When energy and momentum are both conserved for a process, we can combine the two conservation
laws together into conservation of 4-momentum. (As we will explore next, this is common for
relativistic collisions.) Recall that the covariant form of a 4-vector is obtained by negating the signs
of the spatial components (Chapter 3).

The 4D scalar product of a 4-momentum vector with itself is (see the solution to Problem 1 from
Chapter 3):





Relativistic Collisions

In classical collisions between macroscopic objects moving at speeds that are slow compared to the
speed of light, both mass and momentum are conserved, but kinetic energy is only conserved for
elastic collisions. Relativistic collisions are different. In relativistic collisions between particles,
both energy and momentum are conserved, but kinetic energy and rest mass are only conserved for
elastic collisions. Note that rest mass is not conserved in general for a relativistic collision.





The Lab and CM Frames

Two different common inertial reference frames may be helpful for analyzing a collision.





Conservation Laws Versus Invariance

Note the distinction between conservation and invariance.

• A quantity is conserved if it is the same before and after a collision.

• A quantity is invariant if it is the same in different inertial reference frames.

Following are a few examples:





Electron Volts





Symbols and SI Units

 



 





Metric Prefixes





Constants





Notes Regarding Units





Strategy for Relating Energy, Momentum, and Speed

To relate speed and energy for a relativistic object, follow these steps:





Relativistic Collision Strategy

To solve a problem that involves a relativistic collision, follow these steps:

 



 





Example: A proton has a mass of 1.67262 × 10–27 kg.

 



 



 

 



 



 



 

 



 



 

 



 



Example: An electron scatters off of a heavy nucleus.

 

 







Chapter 5 Problems

1. A particle with a mass of 3.5654 × 10–30 kg travels with a speed of 0.6c.

(A) Determine the rest mass of the particle in units of MeV/c2.

(B) Determine the momentum of the particle in units of MeV/c.

(C) Determine the rest energy of the particle in units of MeV.

(D) Determine the kinetic energy of the particle in units of MeV.

(E) Determine the total energy of the particle in units of MeV.

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) 2.0000 MeV/c2  (B) 1.5 MeV/c

(C) 2.0000 MeV (D) 0.50 MeV (E) 2.5 MeV



2. Deuterium—which is also called “heavy hydrogen”—is an isotope of hydrogen consisting of one
proton, one neutron, and one electron. A deuterium nucleus is called a deuteron. Thus, a deuteron
consists of one proton and one neutron bound together (since the nucleus doesn’t include electrons).
The rest mass of a proton and neutron are:

mp = 1.67262 × 10–27 kg

mn = 1.67493 × 10–27 kg

The rest mass of a deuteron is:

md = 3.34358 × 10–27 kg

(A) Compare the rest mass of a deuteron with the sum of its parts. Explain any discrepancy.

(B) What minimum energy is required to separate the proton and neutron of a deuteron?

Want help? Check the solution at the end of the chapter.

Answers: 2. (A) 3.34755 × 10–27 kg; it’s greater than md due to nuclear binding energy

(B) 2.23 MeV



3. Two monkeys each have special guns that launch tiny balls of dough with speeds of 0.8c relative to
the gun. Each tiny ball of dough has a rest mass of 3.0 mg. When the monkeys fire the guns towards
one another, the two tiny balls of dough collide in midair. After the collision, the two tiny balls of
dough stick together.

(A) Determine the rest mass of each tiny ball of dough in units of TeV/c2.

(B) Determine the initial momentum of each tiny ball of dough in units of TeV/c.

(C) Determine the rest energy of each tiny ball of dough in units of TeV.

(D) Determine the initial kinetic energy of each tiny ball of dough in units of TeV.

(E) Determine the initial total energy of each tiny ball of dough in units of TeV.

(F) Determine the speed of the composite object after the collision relative to the monkeys.

(G) Determine the rest mass of the composite object after the collision.

(H) Compare your answer to Part G with your answer to Part A. Explain any discrepancy.

Want help? Check the solution at the end of the chapter.

Answers: 3. (A) 1.7 × 1018 TeV/c2

(B) 2.3 × 1018 TeV/c

(C) 1.7 × 1018 TeV

(D) 1.1 × 1018 TeV

(E) 2.8 ×1018 TeV

(F) 0

(G) 5.6 × 1018 TeV/c2

(H) kinetic energy is converted into rest mass



(A) Write down the 4-momentum for each particle in the rest frame of the kaon.

(B) In the rest frame of the kaon, derive an equation for the energy of each pion in terms of the rest
masses of the particles.

(C) In the rest frame of the kaon, derive an equation for the momentum of each pion in terms of the
rest masses of the particles.

(D) In the rest frame of the kaon, determine the speed of each pion.

Want help? Check the solution at the end of the chapter.



 

Want help? Check the solution at the end of the chapter.





Solutions to Chapter 5

 





2. (A) A deuteron consists of a proton and a neutron. If you add the mass of one proton to the mass of
one neutron, you get:



3. (A) First convert from milligrams (mg) to kilograms (kg), noting that m = 10–3 and k = 103.

 



 



 

 



 



 



 

 



 

 







6 BLACKBODY RADIATION

Relevant Terminology

Blackbody – an ideal absorber of thermal radiation, meaning that it absorbs 100% of the thermal
radiation that is incident upon it.

Thermal radiation – thermal energy (heat) that is transferred in the form of electromagnetic radiation.

Wavelength – the horizontal distance between two consecutive crests in a wave.

Frequency – the number of oscillations completed per second.

Work – work is done when there is not only a force acting on an object, but when the force also
contributes toward the displacement of an object.

Energy – the ability to do work, meaning that a force is available to contribute towards the
displacement of an object.

Kinetic energy – work that can be done by changing speed. Moving objects have kinetic energy.
Hence, kinetic energy is considered to be energy of motion.

Power – the rate at which work is done or the rate at which energy is transferred.

Intensity – power per unit area.

Temperature – a measure of the average kinetic energy of the molecules of a substance.

Emission rate – the rate at which an object emits thermal radiation.

Absorption rate – the rate at which an object absorbs thermal radiation.

Emissivity – a measure of how efficiently an object emits (or absorbs) thermal radiation.

Quantum – a fixed elemental unit corresponding to the minimum possible value that can be measured
for a quantity that comes in discrete bundles like energy or angular momentum.

Quantized – limited to integer multiples of a quantum unit. A quantity like energy or angular
momentum that is quantized is discrete (rather than continuous).





Thermal Radiation

Objects constantly absorb and emit radiation in the form of electromagnetic waves.

• When an object absorbs radiation, this causes the object’s temperature to increase.

• When an object emits radiation, this causes the object’s temperature to decrease.

• When the absorption and emission rates become equal, the object is in a state of radiative
equilibrium and the object’s temperature remains constant.





Electromagnetic Waves





Electromagnetic Spectrum

 





The Spectrum of Thermal Radiation

Condensed matter (solids and liquids) states emit a continuous spectrum of thermal radiation. Their
thermal radiation spectra depend very strongly on temperature, but only a little on the composition of
the material.

• At low temperatures, most solids and liquids don’t emit enough thermal radiation (in the
visible spectrum) to see them. At night, with the lights off, they are invisible. (You can see them
during the day or with the lights on because in that case you are seeing reflected light, which is
different. With thermal radiation, we’re concerned with light that a body emits, not light that it
reflects.)

• As the temperature of a body increases, at first it becomes hot to touch, but doesn’t appear hot.
That is, you still can’t see it with your eyes at night with the lights off. If you use infrared
goggles, however, then you can see light from the thermal radiation that it emits. In this
temperature range, most of the thermal radiation is infrared.

• Once a body’s temperature increases high enough, it emits enough visible light to see it even at
night with the lights off. (This is emitted light, not reflected light). When it first becomes visible,
it appears a dull red. (One way to see this is to dip a metal rod into a fire and wait for it to heat
up sufficiently.)

• As the temperature increases further, the body changes color. From low temperature to high
temperature, we see dull red, dark red, bright red, orange, yellow/orange, yellow/white, and
white (or blue/white).





Wavelength, Frequency, and Temperature

 





Kirchhoff’s Law for Radiation

Suppose that two bodies can only exchange energy via thermal radiation. When they attain radiative
equilibrium, the absorption rate (a) of each body equals its emission rate (e). That is, a1 = e1 and a2 =
e2. It follows that e1/a1 = e2/a2 = 1, which is Kirchhoff’s law for radiation. This law shows that good
absorbers are also good emitters.

Blackbodies

A blackbody is a perfect absorber of thermal radiation, absorbing 100% of the radiation that is
incident upon it. The reason for studying the spectrum of thermal radiation emitted by a blackbody is
that the spectrum is completely independent of the composition of the material. Two common
examples of approximate blackbodies include a furnace and a star. Consider a furnace with thick,
highly insulated walls and a small hole in the door. Such a furnace has the structure of a cavity. Any
thermal radiation incident upon the small hole enters the cavity and is reflected so many times inside
of the cavity such that the incident thermal radiation is almost entirely absorbed by the cavity. The
temperature of the cavity walls increases as the cavity absorbs thermal radiation, such that the cavity
walls emit thermal radiation. Some of this emitted thermal radiation escapes through the hole, such
that the cavity not only absorbs thermal radiation, it also emits thermal radiation. (It is a blackbody
because it doesn’t reflect thermal radiation.) From observations made outside of the cavity, the hole
itself has the characteristic behavior of a blackbody. The thermal radiation emitted by the blackbody
through the hole depends only on two quantities: temperature (T) and frequency (f).





Blackbody Radiation

Blackbody radiation is independent of the composition of the material as well as the shape of the
body. Theoretically, since blackbody radiation doesn’t depend on the shape of the body, this allows
us to choose whichever shape makes the calculation simplest. For simplicity, let us assume that the
blackbody is a cavity with a small hole in the wall (like our example of a furnace with a small hole in
the door), and let us choose a cube with edge length L as the shape of the cavity.





Cavity Radiation

 

 



 



 



 







The Law of Equipartition of Energy (Classical Result)

The law of equipartition of energy doesn’t just apply to gases: It extends to any system with a large
number of entities (where all of the entities are of the same kind). The electromagnetic standing
waves in a blackbody cavity form such a system. (Technically, this is a sort of gas: It is a “photon
gas,” but when the blackbody radiation problem was being investigated in the history of physics, the
concept of a photon was as of yet unknown.)





Energy of a Single Electromagnetic Standing Wave in a Cavity
(Classical)





The Number of Electromagnetic Standing Waves in a Cavity

 

 



 



 

 







The Rayleigh-Jeans Formula (Classical Prediction)

This is the Rayleigh-Jeans formula for blackbody radiation. Note that this equation doesn’t agree
with experimental results (as we will explore next). Classical physics fails to explain blackbody
radiation. We must apply principles of quantum physics instead of classical physics in order to
explain experimental data relating to blackbody radiation.





The Ultraviolet Catastrophe

 





Planck’s Solution to the Ultraviolet Catastrophe

Max Planck solved the blackbody radiation problem by postulating that the electromagnetic standing
waves can’t have an arbitrary value of energy, but that their energy is quantized. This means that
energy is a discrete quantity, rather than a continuous variable.





Average Energy of Electromagnetic Standing Waves (Classical
Physics)

To understand how the quantization of energy solves the blackbody radiation problem, we will first
examine the classical result for the average energy of the electromagnetic standing waves in the
cavity, and then we will redo the calculation using Planck’s postulate.

In statistical thermodynamics, the average energy is given by the following formula:

 







Average Energy of Electromagnetic Standing Waves (Quantum
Physics)

The previous result is the classical result from the law of equipartition of energy (discussed earlier).
Now we will see how Planck’s quantization of energy corrects the calculation.

 



 





Energy Density per Frequency for a Blackbody Cavity (Quantum
Prediction)





Energy Density and Intensity

Note that there are two similar quantities related to the energy of a blackbody cavity:

• The energy density, u, is the energy per unit volume inside of the cavity: u = U/V. The energy
density has SI units of J/m3.

• The intensity, I, is the power per unit area escaping through the cavity hole: I = P/A. The
intensity has SI units of W/m2.





Energy Density Per Unit Frequency and Spectral Radiance

 





 

 



 





Dependence on Frequency and Wavelength

 







Wien’s Displacement Law





Stefan’s Law





Deriving Stefan’s Law

 



 



 







Deriving Wien’s Displacement Law

 



 



 







Symbols and SI Units

 



 



 



 

 



 





Constants





Metric Prefixes and the Angstrom





Absolute Temperature





Notes Regarding Units





Differences in Notation and Terminology

If you read a variety of modern physics textbooks or attend lectures by a variety of modern physics
professors, you’ll discover that the notation for blackbody radiation can vary wildly from one
textbook or course to another. Unfortunately, the notation for this topic isn’t at all standard. Even
worse, many of the original textbooks on the subject tend to adopt notation that is fairly easy to
misinterpret (but that’s just the notation: many of the original modern physics textbooks are quite
valuable sources of content knowledge).

 



 







Strategy for Solving Thermal Radiation Problems

How you solve a problem involving thermal radiation depends on which kind of problem it is:

 

 



 



Example: One heated metal rod glows orange while another heated metal rod glows yellow. The
rods are otherwise identical. Which rod is hotter?



Example: The temperature of a blackbody is increased from 1000 K to 2000 K.



 



 





Example: Examine the graph depicting the ultraviolet catastrophe. Although the Rayleigh-Jeans
prediction disagrees with experiment for ultraviolet and higher frequencies, the Rayleigh-Jeans
prediction does agree with experiment for very low frequencies.

 

 







Chapter 6 Problems

1. For each of the following cases, indicate which object is hotter.

(A) Compare the surface temperature of a red giant to a yellow main sequence star.

(B) Compare a blackbody with a wavelength of maximum spectral radiance equal to 524 nm to a
blackbody with a wavelength of maximum spectral radiance equal to 576 nm.

(C) Compare a blackbody with a wavelength of maximum spectral radiance in the infrared region to a
blackbody with a wavelength of maximum spectral radiance that is ultraviolet.

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) Ty > Tr

(B) T524 > T576

(C) TUV > TIR



2. The wavelength of maximum spectral radiance is 4800 Angstroms for one star and 6400 Angstroms
for a second star.

(A) Find the ratio of the surface temperature of the second star to the first star.

(B) Find the corresponding ratio of the intensity of radiation at the surface of each star.

Want help? Check the solution at the end of the chapter.

Answers: 2. (A) 3/4 = 0.75

(B) 81/256 ~ 0.32



3. Sirius A is 8.611 lightyears from earth. Starlight from Sirius A has an intensity of 1.166 × 10–7

W/m2  when it reaches earth. Sirius A’s spectral radiance is a maximum for a wavelength of 301.0
nm.

(A) What is the surface temperature of Sirius A?

(B) What is the total power radiated from the surface of Sirius A?

(C) What is the intensity at the surface of Sirius A?

(D) What is the radius of Sirius A?

Want help? Check the solution at the end of the chapter.

Answers: 3. (A) 9635 K

(B) 9.711 × 1027 W

(C) 4.89 × 108 W/m2

(D) 1.26 × 109 m



4. The Rayleigh-Jeans prediction for blackbody radiation according to classical physics is:

Want help? Check the solution at the end of the chapter.



Want help? Check the solution at the end of the chapter.





Solutions to Chapter 6



2. Treat the stars as approximate blackbodies.



3. First identify the information given in the problem:

 



 





 



 



 



5. Planck’s formula for Rf is:

 



 



 

 



 

 







7 THE PHOTOELECTRIC EFFECT

Relevant Terminology

Photoelectron – an electron that is ejected when a photon strikes a metallic surface.

Photon – a particle of light.

Wavelength – the horizontal distance between two consecutive crests in a wave.

Frequency – the number of oscillations completed per second.

Monochromatic – a single, well-defined wavelength (or frequency).

Work – work is done when there is not only a force acting on an object, but when the force also
contributes toward the displacement of an object.

Energy – the ability to do work, meaning that a force is available to contribute towards the
displacement of an object.

Kinetic energy – work that can be done by changing speed. Moving objects have kinetic energy.
Hence, kinetic energy is considered to be energy of motion.

Potential energy – work that can be done by changing position. All forms of potential energy are
stored energy.

Electric potential – electric potential energy per unit charge.

Potential difference – the difference in electric potential between two points; also called the
voltage. It is the work per unit charge needed to move a test charge between two points.

Stopping potential – a limiting electric potential difference for which no photoelectric effect is
observed.

Current – the instantaneous rate of flow of charge across a conductor.

Work function – the minimum energy with which an electron is bound to the metal.

Quantum – a fixed elemental unit corresponding to the minimum possible value that can be measured
for a quantity that comes in discrete bundles like energy or angular momentum.

Quantized – limited to integer multiples of a quantum unit. A quantity like energy or angular
momentum that is quantized is discrete (rather than continuous).







The Photoelectric Effect

When light with sufficient frequency is incident upon a metallic surface, electrons (called
photoelectrons) can be ejected from the surface. This is known as the photoelectric effect. One way
to observe the photoelectric effect is with a circuit similar to the schematic diagram shown on the
previous page, where:

• A DC power supply provides a potential difference

across an evacuated tube.

• The tube contains two metal plates: an emitter (E) and a collector (C).

• A voltmeter measures the potential difference

across the plates.

• An ammeter measures the current (I) through the power supply.

• Monochromatic light (having a single, well-defined wavelength) shines on plate E.

• When the photoelectric effect occurs, photoelectrons ejected from the emitter (plate E) flow
across the gap in the tube to the collector (plate C).

• When the circuit is in complete darkness, the current (I) is zero.

• When photoelectrons jump across the gap from plate E to plate C, a nonzero current (I) results.

• The power supply potential difference

—sometimes called the voltage—may be adjusted. When

is positive, the negative terminal connects to plate E and the positive terminal connects to plate
C. When

is negative, the polarity is reversed.

The following experimental observations have been established regarding the photoelectric effect:

• For a given metallic surface at plate E, a minimum cutoff frequency (fc) is needed in order for
the incident light shining at plate E to produce the photoelectric effect. When the incident light



has a frequency less than fc, no photoelectrons are ejected from plate E and the current (I) is
zero. The value of fc depends on the metal used at plate E.

• Even if f > fc, there is a stopping potential, Vs, for which the current drops to zero. When

(where the negative sign indicates that the polarity of the DC power supply is reversed
compared to the previous schematic diagram), no photoelectrons are ejected from plate E.

• When f > fc and

the photoelectric effect is observed immediately: Photo-electrons travel from plate E and
collect at plate C without any noticeable delay. The photoelectric effect doesn’t take time to
build up.

• Increasing the intensity (I) of light shining on plate E has no effect on the maximum kinetic
energy (Km) of the photoelectrons. However, increasing the intensity does increase the number
of photoelectrons that are ejected from plate E.

• Increasing the frequency (f) of the light shining on plate E does increase the maximum kinetic
energy (Km) of the photoelectrons.





Classical Predictions for the Photoelectric Effect

Classical physics was unable to explain the following features of the photoelectric effect:

• Why is there a cutoff frequency (fc)? According to classical physics, the photoelectric effect
was expected to occur for all frequencies, provided that the incident light had sufficient intensity
(I).

• Why isn’t there a noticeable time delay? Classical physics expected that it would take time for
the photoelectric effect to build up before photoelectrons would be ejected from the metallic
surface.

• Why doesn’t the intensity (I) of the incident light affect the maximum kinetic energy (Km) of the
photoelectrons? Since light is an electromagnetic wave, as the intensity of light increases, the
oscillating electric field

increases, and electric force equals charge times electric field

where e is the charge of a proton (such that –e is the charge of an electron). Yet this increased
force didn’t increase the maximum kinetic energy of the photoelectrons. Why not?

• Why does frequency (f) matter? Classical physics couldn’t explain why increasing the
frequency of the incident light increased the maximum kinetic energy (Km) of the photoelectrons.





Quantum Explanation of the Photoelectric Effect

Albert Einstein formulated a quantum explanation for the photoelectric effect which also interprets
Planck’s solution to the blackbody radiation problem (Chapter 6). Recall Planck’s formula from
Chapter 6: En = nhf, where h = 6.626 × 10–34 J∙s is Planck’s constant and n is a positive integer.
Planck’s formula shows that electromagnetic waves inside a blackbody cavity have their energy
quantized, meaning that they come in discrete bundles. A quantum of energy is the minimum value of
the energy, which is hf. Why is the energy quantized? Why does the energy of electromagnetic waves
have a minimum value? Einstein’s solution to the photoelectric effect naturally answers these
questions.

Einstein realized that electromagnetic waves (of all kinds, not just those found in blackbody cavities)
are made up of particles which we call photons. One photon is a single particle of light with energy

The minimum possible energy in a beam of light is

since one is the least number of photons that you can have. A quantum of energy is the energy of one
photon. The total energy in a beam of monochromatic light is E = nhf, where n is the total number
photons in the beam. The reason that a beam of light can’t have an energy of 4.5hf, for example, is that
you can’t have half a photon.

The energy of a single photon is proportional to the frequency of the light:

Light with higher frequency effectively carries photons with more energy. For example, since blue
light has higher frequency than red light, a single blue photon carries more energy than a single red
photon.

Einstein showed that the concept of a photon—a particle of light with energy

—could explain the photoelectric effect. There are two key concepts: The energy of a single photon is
proportional to the frequency of the light, and the photons in the beam of light interact with atoms in
the metallic surface on a one-to-one basis (that is, a single photon from the beam interacts with a



single atom).

• Why is there a cutoff frequency (fc)? A single photon interacts with a single atom. If the
energy of the photon,

exceeds the binding energy of an electron, the atom releases the electron (creating a
photoelectron) when it absorbs the photon. Since a photon’s energy is proportional to frequency,
a minimum frequency ensures that the photons will have enough energy to free electrons from the
metallic surface.

• Why isn’t there a noticeable time delay? Since photons interact with atoms on a one-to-one
basis, as soon as the first photons in the beam of light strike the metallic surface, photoelectrons
are instantaneously ejected from the plate.

• Why doesn’t the intensity (I) of the incident light affect the maximum kinetic energy (Km) of the
photoelectrons? Higher intensity means that the beam of light contains more photons. However,
the energy of each photoelectron depends on the energy of each photon, which depends on
frequency, not intensity, according to

• Why does frequency (f) matter? Increasing the frequency of the incident light results in higher
energy photons, since

When the photons interact with atoms in the metallic surface, the excess energy produces
photoelectrons with additional kinetic energy. Thus, increasing the frequency of the light shining
on plate E increases the maximum kinetic energy (Km) of the photoelectrons.





Photoelectric Effect Equations

 



 





Symbols and SI Units

 



 





Constants





Metric Prefixes





Electron Volts





Strategy for Problems Involving the Photoelectric Effect

If a problem involves the photoelectric effect, follow these steps:

 



 



Example: Between a blue photon and a violet photon, which carries more energy?



Example: Light with a wavelength of 200 nm shines on a metal with a work function of 4.0 eV.

 



 





Example: Suppose that you measure stopping potential as a function of frequency and plot the data.



Example: A particular beam of monochromatic light with a wavelength of 400 nm has one billion
photons per square meter per second. What is the intensity of the beam of light?





Chapter 7 Problems

1. For each question below, indicate which photon carries more energy.

(A) Compare an orange photon to a yellow photon.

(B) Compare a 400-nm photon to a 500-nm photon.

(C) Compare a 5.0 × 1014-Hz photon to a 6.0 × 1014-Hz photon.

(D) Compare an infrared photon to an ultraviolet photon.

(E) Compare an ultraviolet photon to a photon in a gamma ray.

(F) Compare a photon in an x-ray to a photon in a microwave.

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) yellow

(B) 400 nm

(C) 6.0 × 1014 Hz

(D) UV

(E) gamma ray

(F) x-ray



2. Consider a variety of metal plates made from the following common metals: copper (Cu),
aluminum (Al), iron (Fe), silver (Ag), and lead (Pb). Each of these metals has a work function in the
range 4.0 eV < W0 < 5.0 eV. Note: These values only apply to Part A below.

(A) If you shine visible light on any of these metals, would photoelectrons result? Explain.

(B) For wavelengths of visible light

what numerical values of work functions in electron Volts would be needed to observe the
photoelectric effect?

Want help? Check the solution at the end of the chapter.

Answers: 2. (A) no; fc is ultraviolet

(B) W0 < 1.65 eV to W0 < 3.26 eV



3. A He-Ne laser produces red light with a wavelength of 633 nm and an intensity of 1.5 mW. How
many photons per square meter per second are in the laser beam?

Want help? Check the solution at the end of the chapter.

Answer: (3) 4.78 × 1015/m2/s



4. Light with a frequency of 900 THz shines on a metal with a work function of 3.00 eV. The mass of
an electron is 9.11 × 10–31 kg.

(A) What is the energy of each incident photon in electron Volts?

(B) What is the cutoff frequency for observing the photoelectric effect?

(C) What is the cutoff wavelength for observing the photoelectric effect?

(D) What is the kinetic energy of the fastest photoelectrons in electron Volts?

(E) What is the stopping potential?

Want help? Check the solution at the end of the chapter.

Answers: 4. (A) 3.72 eV (B) 725 THz (C) 414 nm (D) 0.72 eV (E) 0.72 V



5. Light with a wavelength of 300 nm shines on a metal. The fastest photoelectrons produced are
observed to have a kinetic energy of 2.00 eV.

(A) What is the stopping potential?

(B) What is the work function for the metal in electron Volts?

(C) What is the cutoff wavelength for observing the photoelectric effect?

Want help? Check the solution at the end of the chapter.

Answers: 5. (A) 2.00 V (B) 2.13 eV (C) 582 nm



6. For a given metal, the stopping potential is 1.75 V when the incident light has a wavelength of 250
nm.

(A) What is the work function for the metal?

(B) What is the stopping potential when the wavelength is reduced to 125 nm?

(C) What is the cutoff wavelength for observing the photoelectric effect?

(D) What is the maximum kinetic energy of the photoelectrons when the wavelength is 250 nm?

(E) What is the maximum kinetic energy of the photoelectrons when the wavelength is 125 nm?

Want help? Check the solution at the end of the chapter.

Answers: 6. (A) 3.21 eV (B) 6.71 V (C) 386 nm (D) 1.75 eV (E) 6.71 eV





Solutions to Chapter 7

 





 



 







 



 



 



 





8 THE COMPTON EFFECT

Relevant Terminology

Photon – a particle of light.

Wavelength – the horizontal distance between two consecutive crests in a wave.

Frequency – the number of oscillations completed per second.

Quantum – a fixed elemental unit corresponding to the minimum possible value that can be measured
for a quantity that comes in discrete bundles like energy or angular momentum.

Quantized – limited to integer multiples of a quantum unit. A quantity like energy or angular
momentum that is quantized is discrete (rather than continuous).





Compton Scattering

 



 



 







Photon Energy, Momentum, Frequency, and Wavelength





The Compton Effect





Photons Scattering with Bound Electrons





Symbols and SI Units

 





Constants





Electron Volts and Angstroms





Strategy for Problems Involving the Compton Effect

If a problem involves the Compton effect, follow these steps:



Example: A photon with an initial wavelength of 0.0200 nm scatters off a stationary electron at an
angle of 60.0° compared to its initial direction.

 

 



 



 



 







Chapter 8 Problems

1. A photon with an initial wavelength of 0.1250 Angstroms scatters off a stationary electron.

(A) Which scattering angle maximizes the wavelength of the scattered photon?

(B) What is the maximum possible wavelength of the scattered photon?

(C) Which scattering angle minimizes the wavelength of the scattered photon?

(D) What is the minimum possible wavelength of the scattered photon?

(E) What is the maximum possible fractional energy loss for the photon?

(F) What is the maximum possible kinetic energy of the recoiling electron in keV?

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) 180°

(B) 0.1735 Angstroms

(C) 0°

(D) 0.1250 Angstroms

(E) 28%

(F) 27.72 keV



2. A photon scatters off a stationary electron. Measurements show that the photon’s energy is 50.0 keV
before scattering and 49.0 keV after scattering.

(A) What is the photon’s fractional energy loss?

(B) What is the kinetic energy of the recoiling electron in electron Volts?

(C) What are the wavelengths of the initial and final photons?

(D) What is the angle between the initial photon and the scattered photon?

Want help? Check the solution at the end of the chapter.

Answers: 2. (A) 2.0%

(B) 1.0 keV

(C) 0.0248 nm, 0.0253 nm

(D) 37°



Want help? Check the solution at the end of the chapter.





Solutions to Chapter 8

 



 

 



 



 



 



 



Note: The best practice is to keep a few extra digits throughout the calculation and round the final
answer after the calculation is complete. (The 0.05 × 10–11 could be more precise.)



3. Conservation of energy for Compton scattering can be expressed as:

 



 



 







9 BOHR’S MODEL

Relevant Terminology

Photon – a particle of light.

Wavelength – the horizontal distance between two consecutive crests in a wave.

Frequency – the number of oscillations completed per second.

Work – work is done when there is not only a force acting on an object, but when the force also
contributes toward the displacement of an object.

Energy – the ability to do work, meaning that a force is available to contribute towards the
displacement of an object.

Ionization energy – the energy needed to remove the electron(s) from an atom.

Kinetic energy – work that can be done by changing speed. Moving objects have kinetic energy.
Hence, kinetic energy is considered to be energy of motion.

Potential energy – work that can be done by changing position. All forms of potential energy are
stored energy.

Electric potential – electric potential energy per unit charge.

Angular momentum – moment of inertia times angular velocity.

Quantum – a fixed elemental unit corresponding to the minimum possible value that can be measured
for a quantity that comes in discrete bundles like energy or angular momentum.

Quantized – limited to integer multiples of a quantum unit. A quantity like energy or angular
momentum that is quantized is discrete (rather than continuous).

Atomic number – the number of protons in the nucleus of an atom.





Bohr’s Model of the Atom

Niels Bohr developed a simple quantum model of the hydrogen atom, which provides a good
approximation for predicting energy levels and frequencies for spectral lines. According to Bohr’s
model:





Equations for Bohr’s Model

 



 



 



 



 



 



 







Symbols and SI Units

 



 







Constants

 





Electron Volts and Angstroms

Important Distinction





Strategy for Solving Problems Relating to Bohr’s Model

To solve a problem that involves Bohr’s model, follow these steps:

• If the problem gives you numerical values, identify the corresponding symbols. The charts on
the previous pages define the symbols used in this chapter.

• If the problem asks you to derive an equation in symbols, make a list of the symbols that you
want to have in your final answer. Any symbol not on this list you will want to eliminate using
algebraic substitutions.

• Identify the desired unknown(s) that you are solving for.

• Find equations that involve the desired unknown(s) and the given values. Equations that relate
to Bohr’s model are listed and described earlier in this chapter.

• Apply algebra to solve for the desired unknown.

• If you are solving a problem with numerical values, you have two options regarding the units:



Example: Consider the lithium ion Li2+, where the 2+ indicates that the atom has lost two electrons
compared to neutral lithium.



Example: An electron in a hydrogen atom drops down from the n = 3 orbital to the ground state. What
is the wavelength of the emitted photon?



Example: Derive the following formula for the period of the electron’s motion in Bohr’s model.

 







Chapter 9 Problems

1. Determine each of the following quantities in the units specified for the n = 4 state of the hydrogen
atom. Note: The mass of an electron is 9.109 × 10–31 kg.

(A) the orbital radius of the electron in Angstroms

(B) the electron’s electric potential in V

(C) the speed of the electron in terms of c

(D) the electron’s total energy in eV

(E) the acceleration of the electron in m/s2

(F) the net force on the electron in N

(G) the electron’s angular momentum in eV·s

(H) the electron’s potential energy in eV

(I) the electron’s linear momentum in eV/c

(J) the electron’s kinetic energy in eV

(K) the period of the electron’s motion in s

(L) the electron’s frequency in Hz

Want help? Check the solution at the end of the chapter.



2. Determine the wavelength of the photon for each of the following transitions for an electron in a
hydrogen atom. Also indicate whether the photon is emitted or absorbed in each case.

(A) from n = 3 to n = 2

(B) from n = 2 to n = 3

(C) from n = 4 to n = 7

(D) from n = 5 to the ground state

(E) from n = 6 to n = 2

Want help? Check the solution at the end of the chapter.

Answers: 2. (A) 655 nm, emitted

(B) 655 nm, absorbed

(C) 2160 nm, absorbed

(D) 94.7 nm, emitted

(E) 409 nm, emitted





Solutions to Chapter 9

 



 



 



 



 



 





 



 

 







10 THE DE BROGLIE RELATION

Relevant Terminology

Photon – a particle of light.

Wavelength – the horizontal distance between two consecutive crests in a wave.

Frequency – the number of oscillations completed per second.

Velocity – a combination of speed and direction.

Momentum – mass times velocity.





Wave-Particle Duality of Light

Is light wave-like or particle-like in nature? The answer is both!

• Young’s double-slit experiment demonstrates convincingly that light exhibits wave-like
properties. The interference pattern that appears on the screen is characteristic of waves (like
water waves and sound waves) with a definite wavelength.

• The photoelectric effect demonstrates that light interacts with matter with particle-like
properties. In this case light behaves like a beam of photons, where each photon has energy hf
and interacts with an atom on a one-to-one basis.

Light has a dual nature: It exhibits both wave-like and particle-like properties. The wave-like and
particle-like properties complement one another. Whether the wave-like nature or the particle-like
nature of light (or some extent of each) is revealed depends on the nature of the experiment being
conducted.

• If you shine a monochromatic beam of light through a narrow slit, the beam of light reveals its
wave-like nature, forming a diffraction pattern on a screen.

• If you shine a beam of ultraviolet light on a metal and measure the cutoff frequency for
producing photoelectrons, the incident light reveals itself as a beam of photons, interacting with
atoms on a one-to-one basis.

• If you direct a beam of x-rays on a sample and the x-rays interact with electrons via Compton
scattering, the detectors measure the incident and scattered wavelengths of the x-rays through
light’s wave-like properties, while the explanation for how the scattered wavelengths are
related to the incident wavelength involves light’s particle-like properties (as the photons
interacted with electrons in atoms).





Wave-Particle Duality of Matter

Since light—which was previously believed to be purely wave-like—turns out to also exhibit
particle-like properties, you might wonder if matter—which consists of particles like protons and
electrons—also exhibits wave-like behavior. The answer is yes. If you direct a beam of electrons
through a double-slit, they form an interference pattern on a screen.

The de Broglie Relation

If particles of matter—like electrons—exhibit wave-like behavior, what is their wavelength? The
answer to this question is related to another question: If particles of light—like photons—exhibit
particle-like behavior, what is their momentum?



 







Symbols and SI Units

 





Constants

Electron Volts and Angstroms





Notes Regarding Units





Strategy for Problems Involving Wave-Particle Duality

If a problem involves the dual nature of radiation (like light) or the dual nature of matter (like a
proton or electron), follow these steps:

 





Example: Find the momentum and wavelength for each of the following particles. The rest mass of an
electron is 9.109 × 10–31 kg.

 







Chapter 10 Problems

1. Find the momentum and wavelength for each of the following particles. The rest mass of an
electron is 9.109 × 10–31 kg.

(A) An electron has a kinetic energy of 100 eV.

(B) An electron has a kinetic energy of 100 keV.

(C) A photon has a kinetic energy of 100 keV.

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) 10.0 keV/c, 1.23 Angstroms

(B) 335 keV/c, 0.0370 Angstroms

(C) 100 keV/c, 0.124 Angstroms



Want help? Check the solution at the end of the chapter.





Solutions to Chapter 10

 



 

 



 

 









11 HEISENBERG’S UNCERTAINTY PRINCIPLE

Relevant Terminology

Photon – a particle of light.

Wavelength – the horizontal distance between two consecutive crests in a wave.

Frequency – the number of oscillations completed per second.

Velocity – a combination of speed and direction.

Momentum – mass times velocity.

Energy – the ability to do work, meaning that a force is available to contribute towards the
displacement of an object.





Uncertainty in Measurements

Even in classical physics, there is inherent uncertainty in any measurement. However, if you have an
unlimited budget, ample time, a well-trained research team, ideal facilities, and the best
instrumentation that you can imagine, in classical physics there is no limit, in principle, to how
precisely you can make your measurements.

In quantum physics, it turns out that there is a limit to how precisely measurements can be made.
Specifically, the more precisely you measure position, the more uncertainty there is in
momentum, and vice-versa. (We will explore the uncertainty principle in the next section.)

Consider some of the standard problems from an introductory, first-semester physics class. For
example, suppose that a ball is thrown from a height of 20 m above level ground at an angle of
30° above the horizontal with an initial speed of 40 m/s. In classical physics, we use this given
information to predict where the ball will land on the ground and how fast it will be moving just
before impact.

In quantum mechanics, not only can’t you know both exactly where the ball will land and how fast it
will be moving just before impact—but you can’t even ask the question!

In quantum mechanics, you can’t know both exactly where an object is and exactly what the object’s
momentum is in the beginning of the problem, let alone predict what the position and momentum will
be at some later time.

Instead, you would have to ask a question like this in quantum mechanics. There is an electron
somewhere in the region a < x0 < b with an initial speed in the range c < vx0 < d. What is the
probability that the electron will be in the region e < x < f some specified time later?





Heisenberg’s Uncertainty Principle







The Energy-Time Uncertainty Principle





Symbols and SI Units

 







Constants

Electron Volts





Strategy for Problems Involving Heisenberg’s Uncertainty
Principle

If a problem involves Heisenberg’s uncertainty principle, follow these steps:

 





Example: An experiment is designed to simultaneously measure the position and speed of an
electron. The experiment determines that the electron lies in a volume with a diameter of one
Angstrom. The mass of an electron is 9.109 × 10–31 kg. What is the minimum possible uncertainty in
the electron’s speed? Assume that the electron’s speed is nonrelativistic.



Example: A tiny steel ball is released from rest from a height H above horizontal ground on a planet
which, unlike earth, doesn’t rotate on its axis (so there is no Coriolis force). Due to Heisenberg’s
uncertainty principle, the ball won’t land on the exact point directly under its initial position. Show
that the ball is expected to miss by a distance of:

 







Chapter 11 Problems

1. An experiment is designed to simultaneously measure the position and speed of an electron. The
experiment determines that the electron has a speed of 25 km/s with an accuracy of 0.2%. The mass of
an electron is 9.109 × 10–31 kg. What is the minimum possible uncertainty in the electron’s position?

Want help? Check the solution at the end of the chapter.



Want help? Check the solution at the end of the chapter.





Solutions to Chapter 11





12 DIFFERENTIAL EQUATIONS

Differential Equations in Physics

 



 





First-Order, Separable Differential Equations

A differential equation is first-order if there are no second-order (or higher) derivatives. A first-
order differential equation is separable if it is possible, by applying algebra, to put each variable on
its own side of the equation. For example, consider the following equation.





Second-Order, Separable Differential Equations

 





Applying the Chain Rule to Differential Equations

In physics, some differential equations can be solved by applying the chain rule. For example,
consider the second-order differential equation below.

 







Partial Differential Equations

 







Boundary Conditions

As we have seen, the solution to a differential equation leads to an integral. Every indefinite integral
involves a constant of integration. The solution to a first-order differential equation involves one
constant of integration, while the solution to a second-order differential equation involves two
constant of integration. These constants can be determined from the boundary conditions specified in
the problem. (Alternatively, you can build these boundary conditions into the solution by doing
definite integrals rather than indefinite integrals.) As an example, consider the simple case of uniform
acceleration, meaning that ax = a is a constant.

 



 





Desirable Properties of Differential Equations and their Solutions

For a first-order differential equation, the function should be smooth and continuous such that its first
derivative is well-defined. For a second-order differential equation, the function and its first
derivative should both be smooth and continuous such that the function’s second derivative is well-
defined. The function should also be single-valued. For some applications in physics (such as
Schrödinger’s equation), it is also desirable for the function to be finite. The solution to a differential
equation should be both unique and complete. What does this mean? Suppose that you solved a
differential equation, obtaining y(x) = sin(x) as a solution. That wouldn’t be a unique solution if y(x)
= cos(x) also solved the same problem. Suppose that you solved a differential equation, obtaining y =
0 as a solution. Your solution would be incomplete if y = x2 + 3x also solved the equation: In this
case, you only found the special case where x happens to be zero.

For many second-order differential equations, a complete solution has the following form:

y(x) = A f(x) + B g(x)

We will see a few common examples of this on the following page.





A Few Common Special Cases

 





Complex Numbers





Strategy for Solving Differential Equations

To solve a differential equation, follow these steps:

• If the differential equation is first-order (it doesn’t have higher than first derivatives), first see
if the differential equation is separable. Try to apply algebra in order to put each variable on its
own side of the equation, like we showed earlier and as you will see in the examples.

• If a first-order differential equation has three variables (instead of two), you may be able to
apply the chain rule to rewrite the equation in terms of just two variables, like we showed
earlier and as you will see in one of the examples.

• If a differential equation involves a second derivative, try to rewrite it as a first-order
differential equation by making a substitution, like we showed earlier and as you will see in the
examples.

• If a second-order differential equation has one of the following structures, you should
recognize it as a common special case (discussed earlier in this chapter).

• If the problem specifies any boundary conditions, use these to determine the constants of
integration. Alternatively, you may perform definite integrals. Review the pages on boundary
conditions and see the examples.

• If the differential equation involves complex numbers, review the page on complex numbers.

• If a differential equation can’t be solved by one of the techniques that we reviewed in this
chapter, consult a textbook on the subject of differential equations.

• If a problem asks you to show that an equation solves a differential equation, simply plug the



expression into the differential equation and see if both sides are equal.

• Check your answer: Solving a differential equation sometimes involves much work, but it’s
easy to check your answer. Simply plug your solution into the original differential equation and
check that both sides are equal.



 

 





 



 





 



 



 

 





Example: Solve the following differential equation. Include no more than two constants of integration
in your final answer.

 



 





 





Chapter 12 Problems

Want help? Check the solution at the end of the chapter.



2. While a toy car accelerates along a straight line, its acceleration equals:

Want help? Check the solution at the end of the chapter.



Want help? Check the solution at the end of the chapter.



Want help? Check the solution at the end of the chapter.



Want help? Check the solution at the end of the chapter.





Solutions to Chapter 12

 



2. (A) Begin with the first-order differential equation involving velocity.

 



 



 



 

 



 



 



 





 



 



 



 





 



 







13 SCHRÖDINGER’S EQUATION

Relevant Terminology

Frequency – the number of oscillations completed per second.

Energy – the ability to do work, meaning that a force is available to contribute towards the
displacement of an object.

Kinetic energy – work that can be done by changing speed. Moving objects have kinetic energy.
Hence, kinetic energy is considered to be energy of motion.

Potential energy – work that can be done by changing position. All forms of potential energy are
stored energy.

Momentum – mass times velocity.

Wave function – a quantity that helps to determine probabilities relating to matter waves.

Eigenvalues – a set of values for which a differential equation has a nonzero solution.





Schrödinger’s Equation for One-dimensional Motion

 







The Wave Function





Separating Variables in Schrödinger’s Equation

 



 





Operators, Eigenfunctions, and Eigenvalues

 



 





Angular Frequency and Wave Number





Schrödinger’s Equation in Three Dimensions

 





Symbols and SI Units

 



 



 





Constants





Electron Volts and Angstroms

Important Distinction

In earlier chapters, we used U for potential energy and V for electric potential. However, in the
context of Schrödinger’s equation, it is fairly common to use the symbol V for potential energy.
Therefore, in this chapter we are using V for potential energy (instead of U).





Strategy for Applying Schrödinger’s Equation

If a problem involves applying Schrödinger’s equation, follow these steps:

 



 



 





 



 



 



 



 



 





 



 



 



 







Chapter 13 Problems

Want help? Check the solution at the end of the chapter.



 



Want help? Check the solution at the end of the chapter.



 



 



Want help? Check the solution at the end of the chapter.

Answers: The answers to this problem can be found at the end of the chapter.



Want help? Check the solution at the end of the chapter.

Answers: The answers to this problem can be found at the end of the chapter.





Solutions to Chapter 13

 



 



 



 



 



 





 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 

 



 

 

 



 

 

 



 



 

 





 



 



 



 



 



 





14 PROBABILITIES AND EXPECTATION VALUES

Relevant Terminology

Frequency – the number of oscillations completed per second.

Energy – the ability to do work, meaning that a force is available to contribute towards the
displacement of an object.

Kinetic energy – work that can be done by changing speed. Moving objects have kinetic energy.
Hence, kinetic energy is considered to be energy of motion.

Potential energy – work that can be done by changing position. All forms of potential energy are
stored energy.

Momentum – mass times velocity.

Wave function – a quantity that helps to determine probabilities relating to matter waves.





Normalization

 







Operators





Expectation Values





The Root-Mean-Square Deviation

Probabilities





Gaussian Integrals

 





 







Where Do the Other Gaussian Integrals Come From?

 







Wave Functions for the Simple Harmonic Oscillator and the
Hydrogen Atom





Symbols and SI Units

 



 



 







Constants





Electron Volts and Angstroms





Strategy

If a problem involves normalization, probability, expectation values, or variance (or root-mean-
square values), choose the relevant formula:

 



 



 



 



 



 



 



 



 



 



 



 



 







Chapter 14 Problems

Want help? Check the solution at the end of the chapter.





Solutions to Chapter 14

 



 



 



 



 



 



 



 



 



 



 







WAS THIS BOOK HELPFUL?

A great deal of effort and thought was put into this book, such as:
• Breaking down the solutions to help make physics easier to understand.
• Careful selection of problems for their instructional value.
• Multiple stages of proofreading, editing, and formatting.
• Physics instructors and students provided valuable feedback.

If you appreciate the effort that went into making this book possible, there is a simple way that you
could show it:

Please take a moment to post an honest review.

For example, you can review this book at Amazon.com or BN.com (for Barnes & Noble).

Even a short review can be helpful and will be much appreciated. If you’re not sure what to write,
following are a few ideas, though it’s best to describe what’s important to you.

• Were you able to understand the explanations?
• Did you appreciate the list of symbols and units?
• Was it easy to find the information you were looking for?
• How much did you learn from reading through the examples?
• Would you recommend this book to others? If so, why?



 





GET A DIFFERENT ANSWER?

If you get a different answer and can’t find your mistake even after consulting the hints and
explanations, what should you do?

Please contact the author, Dr. McMullen.

How? Visit one of the author’s blogs (see below). Either use the Contact Me option, or click on one
of the author’s articles and post a comment on the article.

monkeyphysicsblog.wordpress.com
improveyourmathfluency.com

chrismcmullen.com

Why?

• If there happens to be a mistake (although much effort was put into perfecting the answer key),
the correction will benefit other students like yourself in the future.
• If it turns out not to be a mistake, you may learn something from Dr. McMullen’s reply to your
message.

99.99% of students who walk into Dr. McMullen’s office believing that they found a mistake with an
answer discover one of two things:

Every effort was made to ensure that the final answer given to every problem is correct. But all
humans, even those who are experts in their fields and who routinely aced exams back when they
were students, make an occasional mistake. So if you believe you found a mistake, you should report
it just in case. Dr. McMullen will appreciate your time.

https://monkeyphysicsblog.wordpress.com/
https://improveyourmathfluency.com/
https://chrismcmullen.com/




ABOUT THE AUTHOR

D Dr. Chris McMullen has over 20 years of experience teaching university physics in California,

Oklahoma, Pennsylvania, and Louisiana. Dr. McMullen is also an author of math and science
workbooks. Whether in the classroom or as a writer, Dr. McMullen loves sharing knowledge and the
art of motivating and engaging students.

The author earned his Ph.D. in phenomenological high-energy physics (particle physics) from
Oklahoma State University in 2002. Originally from California, Chris McMullen earned his Master’s
degree from California State University, Northridge, where his thesis was in the field of electron spin
resonance.

As a physics teacher, Dr. McMullen observed that many students lack fluency in fundamental
math skills. In an effort to help students of all ages and levels master basic math skills, he published a
series of math workbooks on arithmetic, fractions, long division, algebra, trigonometry, and calculus
entitled Improve Your Math Fluency. Dr. McMullen has also published a variety of science books,
including introductions to basic astronomy and chemistry concepts in addition to physics workbooks.

www.amazon.com/author/chrismcmullen

Author, Chris McMullen, Ph.D.

https://amazon.com/author/chrismcmullen








SCIENCE

Dr. McMullen has published a variety of science books, including:
• Basic astronomy concepts
• Basic chemistry concepts
• Balancing chemical reactions
• Calculus-based physics textbook
• Calculus-based physics workbooks
• Calculus-based physics examples
• Trig-based physics workbooks
• Trig-based physics examples
• Creative physics problems
• Modern physics

www.monkeyphysicsblog.wordpress.com

http://www.monkeyphysicsblog.wordpress.com




MATH

This series of math workbooks is geared toward practicing essential math skills:
• Algebra and trigonometry
• Calculus
• Fractions, decimals, and percentages
• Long division
• Multiplication and division
• Addition and subtraction

www.improveyourmathfluency.com

http://www.improveyourmathfluency.com




ALGEBRA

For students who need to improve their algebra skills:
• Isolating the unknown
• Quadratic equations
• Factoring
• Cross multiplying
• Systems of equations
• Straight line graphs

www.improveyourmathfluency.com

http://www.improveyourmathfluency.com




PUZZLES

The author of this book, Chris McMullen, enjoys solving puzzles. His favorite puzzle is Kakuro (kind
of like a cross between crossword puzzles and Sudoku). He once taught a three-week summer course
on puzzles. If you enjoy mathematical pattern puzzles, you might appreciate:

300 + Mathematical Pattern Puzzles

Number Pattern Recognition & Reasoning:
• Pattern recognition
• Visual discrimination
• Analytical skills
• Logic and reasoning
• Analogies
• Mathematics

Dr. McMullen’s newest math puzzle book is:

Pyramid Math Puzzle Challenge





THE FOURTH DIMENSION

Are you curious about a possible fourth dimension of space?
• Explore the world of hypercubes and hyperspheres.
• Imagine living in a two-dimensional world.
• Try to understand the fourth dimension by analogy.
• Several illustrations help to try to visualize a fourth dimension of space.
• Investigate hypercube patterns.
• What would it be like to be a four-dimensional being living in a four-dimensional world?
• Learn about the physics of a possible four-dimensional universe.
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