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INTRODUCTION

The goal of this study guide workbook is to provide practice and help carrying out essential problem-
solving strategies that are standard in modern physics. The aim here is not to overwhelm the student
with comprehensive coverage of every type of problem, but to focus on the main strategies and
techniques with which most physics students struggle.

This workbook 1s not intended to serve as a substitute for lectures or for a textbook, but is rather
intended to serve as a valuable supplement. Each chapter includes a concise review of the essential
information, a handy outline of the problem-solving strategies, and examples which show step-by-
step how to carry out the procedure. This is not intended to teach the material, but is designed to
serve as a time-saving review for students who have already been exposed to the material in class or
in a textbook. Students who would like more examples or a more thorough introduction to the material
should review their lecture notes or read their textbooks.

Every problem in this study guide workbook applies the same strategy which is solved step-by-
step 1n at least one example within the chapter. Study the examples and then follow them closely in
order to complete the exercises. Many of the exercises are broken down into parts to help guide the
student through the exercises. Each exercise tabulates the corresponding answers on the same page.
Students can find full solutions at the end of each chapter.

The prerequisites for using this workbook include first-year physics (including energy, waves,
and electricity and magnetism) and calculus (including derivatives and integrals). Although
Schrodinger’s equation in quantum mechanics is a differential equation, students do not need previous
exposure to differential equations: This workbook provides a concise introduction to basic
differential equations in Chapter 12, and shows how to apply these methods in the remaining chapters.






1 SPECIAL RELATIVITY CONCEPTS

Relevant Terminology

Galilean relativity — our experience with the relative motion of objects traveling at speeds much
slower than the speed of light.

Special relativity — the physics of the relative motion of objects where at least one object is traveling
at a very high speed (compared to the speed of light).

Ether — a hypothetical substance once believed to fill space; it was believed to serve as a medium
for the transmission of light waves.

Photon — a single particle in a beam of light.

Interferometer — a device involving the interference of two beams of light, which was used by
Michelson and Morley to measure the speed of light relative to the earth.

Time dilation — the phenomenon whereby time appears to travel more slowly for objects moving fast
(close to light speed) relative to other observers.

Length contraction — the phenomenon whereby objects moving fast (close to light speed) appear
shorter relative to other observers.

Simultaneity — when two events occur at the exact same moment relative to an observer, the events
are said to be simultaneous for that observer.

Momentum — mass times velocity.

Inertia — the natural tendency of any object to maintain constant momentum.

Mass — a measure of inertia.

Vacuum — a region of space completely devoid of matter (it doesn’t even contain air).

Inertial reference frame — a frame that travels with constant velocity.






Galilean Relativity

In our everyday experience with objects that travel much slower than the speed of light, relative
velocities appear to obey the formula for vector addition. Suppose that one observer (designated R)
is at rest while a second observer (designated M) is moving with speed v relative to the first
observer. Suppose also that each observer sets up a coordinate system with the x-axis along the
relative velocity

—

1%

If each observer measures the velocity of an object, the x-components of the velocities that they
measure (up and u,,) are related by the following vector addition formula, provided that neither

observer nor the object are traveling close to light speed.
MM =Up—V

This equation is actually pretty simple: It’s just subtraction. The challenge is to remember what the
notation means (M stands for moving, while R stands for rest) so that you can apply the equation
correctly. We will explore this equation further in the examples that follow.






The Mysterious Ether

Physicists once believed in a hypothetical substance called the ether, which was believed to
permeate all of space. At the time, all other waves besides light were known to travel in a medium.
You can see ripples travel along the surface of water. Sound waves create alternating regions of
compression (high pressure) and rarefaction (low pressure) in a medium such as air, water, wood, or
metal. Light was also known to be a wave, yet sunlight can travel through space (a near-perfect
vacuum). Since all other waves required a medium in which to propagate, the concept of the ether
could explain the transmission of light through space.

It turns out that the ether hypothesis is incorrect, as demonstrated by the Michelson-Morley
experiment. Light can travel through a perfect vacuum (without an ether).






The Earth, Light, and the Hypothetical Ether

The result of the Michelson-Morley experiment—that the ether doesn’t exist—came as a big shock
to the physics community at the time. To understand why, we must explore the ether as it had been
believed to exist. The ether was believed to permeate all of space. The reference frame of the ether
was believed to serve as an absolute reference frame. That is, the speed of light was only believed to

travel ¢ = 2.9979 x 10® m/s in a reference frame that was at rest relative to the ether. Furthermore, it
was believed that the vector addition equation of Galilean relativity applied to objects moving any
speed, including light itself. (Like the ether, this also proved to be incorrect.)

The earth orbits the sun and therefore must be moving relative to the hypothetical ether (as the
direction of earth’s velocity is constantly changing). From the point of view of the ether, the earth is
moving relative to the ether with instantaneous speed v. From the point of view of earthlings, the earth
seems to be stationary and we would instead interpret the ether to be moving with speed v. (You
should have experience with this. If you are sitting in a bus that is moving, objects outside of the bus
appear to be moving relative to you.) From the perspective of “stationary” earthlings, the ether is seen
as an “ether wind” (when you run through air that is originally still, the air seems to pass by you like
a sort of wind).

Imagine that you get in a motorboat and travel along the surface of a river. The boat would travel with
a speed of 30 m/s on a still pond, but there is a river current of 10 m/s. When the boat is headed
downstream, it would be traveling 30 + 10 = 40 m/s relative to the land. When the boat is headed
upstream, it would be traveling 30 — 10 = 20 m/s relative to the land. When the boat is headed cross-
stream, apply the Pythagorean theorem to determine that the boat travels

V302 + 102 = /1000 ~ 32 m/s

relative to the land.
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The same principle as the motorboat and river was believed to apply to the earth traveling through the
hypothetical ether. Imagine that you shine a beam of light from earth and wish to measure the speed of

light. According to the ether hypothesis, the light would travel with speed ¢ = 2.9979 x 108 m/s
relative to the ether. The earth travels with speed v = 30,000 m/s relative to the sun. As the earth
orbits the sun, the direction of its velocity constantly changes. The speed of light would equal ¢ + v
when the light is heading “downwind” (when the earth happens to be traveling along the ether wind),
the speed of light would equal ¢ — v when the light is heading “upwind,” and the speed of light would



equal

V2 + 2

when the light is heading “across wind.” However, when Michelson and Morley investigated this, no
such changes in the speed of light were detected. The laws of Galilean relativity do not apply to
light or to objects moving fast (close to light speed). The ether does not exist. The speed of light
turned out to be a universal constant (independent of the motion of the observer or source).






Why ¢+ v, c—v, and

V2 + 2
Seemed to Make Sense

Imagine a father and son playing catch on a boat that is at rest. They throw the ball with a speed of 20
m/s east and west. They continue to play catch the same way even when the boat starts traveling 50
/s to the east. When the ball travels 20 m/s east relative to the boat, it is traveling 50 + 20 = 70 m/s
to the east relative to the land. When the ball travels 20 m/s to the west relative to the boat, it is
traveling 50 — 20 = 30 m/s to the east relative to the land. This is the way relative velocities work at
speeds that are small compared to the speed of light. It agrees with everyday experience.

Now imagine a spaceship traveling 0.7¢ (or 70% the speed of light) relative to earth. The spaceship
suddenly turns on its headlights. How fast is the beam of light traveling relative to earth? Based on
our experience with low speeds (Galilean relativity), it’s intuitive to expect the beam of light to be
traveling 0.7¢c + ¢ = 1.7¢ relative to the earth. But that’s not what happens. It turns out that the beam of
light travels ¢ = 2.9979 x 10® nv/s relative to the ship and that the beam of light also travels ¢ =
2.9979 x 10® nv/s relative to earth, with no contradiction! Although ¢ + v seemed to make sense, it
turned out to contradict experiments.






The Michelson-Morley Experiment

Michelson and Morley used an interferometer that was designed to detect small changes in the
speed of light. When an incident beam of light reached a glass slab, it split into two: One beam
reflected from the surface of the glass towards mirror M/, and a second beam refracted through the

glass towards mirror M,. After reflecting off mirrors M, and M,, the beams met back up at the glass,

and light from each beam reached a telescope, where an interference pattern was viewed. The entire
apparatus could be rotated.

incident light

to telescope < \ >|
M,

glass

M, e—

The two beams would travel in different directions relative to the ether, and thus the two beams
would have different speeds relative to the earth if the ether hypothesis were true. For example, if the
beam heading toward M, were traveling upwind with speed ¢ — v (in which case it would then travel

downwind with speed ¢ + v after reflection), then the beam heading toward M; would be traveling
crosswind with speed

V2 + p?2

Thus, the two beams would return to the glass at different times, creating an interference pattern when
viewed through the telescope (since the beams would be slightly out of phase due to the time lag).

However, the Michelson-Morley experiment failed to detect any change in the speed of light as the
apparatus was rotated. It turns out that light (which is an electromagnetic wave) does not require a
medium (such as the ether) in order to propagate. Light can travel through a perfect vacuum. There is
no preferred or absolute reference frame for measuring the speed of light. It turns out that the speed of
light is a universal constant, independent of the motion of the source or the observer.






The Problem

The Michelson-Morley experiment contradicted the expectations of the ether hypothesis. How could
the speed of light be the same in each beam of the interferometer, regardless of the orientation of the
apparatus?

If a boat is traveling north, it can launch a cannonball farther to the north (relative to the land) than it
could if the boat were at rest. This is the principle of vector addition applied in Galilean relativity,
which agrees with human experience (with objects traveling much slower than the speed of light).

Imagine a spaceship traveling one-half the speed of light (0.5¢) relative to earth. Also imagine a beam
of light traveling parallel to the spaceship. An observer on earth measures the speed of the beam of

light to be ¢ = 2.9979 x 10® m/s. What will an observer on the spaceship measure the speed of the
beam of light to be? According to the Michelson-Morley experiment, the answer is the same: ¢ =
2.9979 x 10® nvs. (Note that the answer isn’t 0.5c¢.)

Your experience with relative motion at low speeds is much different. If you’re sitting in a bus
traveling 40 m/s and a car passes you traveling 50 nv/s, each second the car gets 10 m further ahead of
the bus, so the car seems to be traveling 10 nv/s relative to you. However, if you’re in a spaceship and
proceed to measure the speed of light, the Michelson-Morley experiment shows that you will get ¢ =

2.9979 x 10® nv/s regardless of how fast the ship is traveling. Even if the spaceship travels 0.99¢

relative to earth, an observer on the ship still measures the speed of light to be ¢ =2.9979 x 108 my/s
(and not 0.01c¢).

Albert Einstein introduced his theory of special relativity to resolve this seeming paradox, but it came
with some interesting consequences: time dilation and length contraction. The underlying issue is
that time, space, and light behave much differently than our everyday experience with low-speed
motion suggests. The two different observers (in the spaceship and on earth) actually measure
distance and time differently due to time dilation and length contraction. If there is a meterstick on the
spaceship and an observer on earth proceeds to measure the length of that meterstick as the spaceship
travels very fast (close to light speed), the observer on earth measures the meterstick to be
significantly less than one meter long. Similarly, if there is a pendulum on the spaceship that oscillates
with a period of exactly one second relative to an observer on the spaceship, an observer on earth
measures the period of that same pendulum to last significantly longer than one second. When the
relative speed between two observers is in the neighborhood of the speed of light, the observers
significantly disagree on such basic notions as what meters and seconds are! As bizarre as this may
seem, Einstein’s theory of special relativity not only explains the Michelson-Morley experiment, it
also agrees with countless other scientific tests.






Einstein’s Theory of Special Relativity

The theory of special relativity applies to objects that move with constant velocity (meaning that
they move with constant speed and also travel in a straight line). Einstein developed his theory of
special relativity from two fundamental postulates:

1. The laws of physics are the same in any inertial reference frame. (An inertial reference
frame is any coordinate system that has constant velocity. Recall that constant velocity means
both constant speed and traveling in a straight line.) This means that any physics experiment will
yield the same results in any laboratory that travels with constant velocity, whether the
laboratory is at rest on earth or moving in a spaceship with a velocity of 0.8c relative to the
earth.

2. Any observer in an inertial reference frame would measure the speed of light to be ¢ =2.9979

x 108 m/s, regardless of the velocity of the observer and also regardless of the velocity of the
light source.

One consequence of special relativity is that there isn’t any preferred (or absolute) reference frame
(such as an ether). Any inertial reference frame is equally as good as any other.

What does it mean to be at rest? You can be at rest relative to earth, but earth is revolving around the
sun. Even if an object is at rest relative to the sun, the sun is traveling through space relative to other
stars. Since the laws of physics are the same in all inertial reference frames, it would be impossible
to find a particular reference frame that you could say is truly at “rest.” As long as you’re moving
with constant velocity, you’re entitled to consider yourself to be at “rest” and to consider everything
else moving relative to you. Even if you’re in a bus that is traveling 30 m/s west past a station, you
may consider yourself to be at rest and may consider the station as traveling 30 m/s to the east
(opposite to you). A woman at the station may consider herself to be at rest and consider you to be
traveling 30 m/s to the west. You are both entitled to be correct when working out physics with your
own inertial reference frames. According to Einstein, it’s all relative.

As we will explore mathematically in Chapters 2-5, the theory of special relativity comes with a few
seemingly strange consequences. In particular, even seemingly fundamental concepts like length and
time are relative, and different observers in different inertial reference frames measure length and
time differently:

* Two events that appear to occur simultaneously in one inertial reference frame may appear to
occur at different times in another inertial reference frame.

* Length contraction: When an object is moving relative to an inertial reference frame, the
object appears shorter (along the direction of motion) than it does relative to an inertial
reference frame that is at rest relative to the object.

* Time dilation: Time passes more slowly on a clock in a moving inertial reference frame than it
does for an inertial reference frame that is at rest relative to the clock.






Simultaneity Is Relative

One consequence of the postulates of special relativity is that whether or not two events appear to
occur simultaneously (at the same time) depends on the inertial reference frame from which the events
are observed. If two events are observed to occur simultaneously in one inertial reference frame, they
may not be observed to occur simultaneously in another inertial reference frame.

spaceship

space station

For example, consider the spaceship traveling close to the speed of light in the illustration above. The
spaceship passes very close to a space station that is orbiting the earth. The space station is traveling
so much slower than the speed of light that it is practically at rest relative to the very fast spaceship.
One astronaut is stationed at point Q on the space station, while another astronaut is stationed at point
P on the spaceship. There are lights on the space station at the points labeled 1 and 2. These two
lights remain off almost all of the time. The lights are programmed to flash quickly at the exact instant
that the two ends of the spaceship happen to be (momentarily) positioned directly above the lights. At
this exact instant, point A is directly above point 1, point B is directly above point 2, and points P and
Q are exactly midway between points 1 and 2 (and are thus midway between points A and B).

Observer Q is at rest relative to the space station and is exactly midway between points 1 and 2, such
that the light emitted by each point during the flash travels the same distance to reach observer Q.
Thus, observer Q on the space station sees the two lights flash simultaneously. In contrast, observer P
1s traveling close to the speed of light relative to points 1 and 2. Light from point 2 reaches observer
P before light from point 1. Observer P doesn’t see the two lights flash simultaneously. Which
observer is correct? According to special relativity, both are correct. Whether you are practically at
rest (like the space station) or traveling close to the speed of light relative to the earth (like the
spaceship), the laws of physics are the same. There isn’t a preferred inertial reference frame that
makes observations more “correct.”

spaceship

A {PR————> 7 amomentlater

1 2 (when light from point 2

space station






Time Dilation

Time passes more slowly on a clock in a moving inertial reference frame than it does for an inertial
reference frame that is at rest relative to the clock. This is known as time dilation.

. spaceship
ﬁ

space station

You can see how time dilation is a direct consequence of the postulates of special relativity by
considering the illustration above. The spaceship is traveling to the right with a speed that is close to
the speed of light. The spaceship passes by a space station that is orbiting the earth. The space station
is traveling so much slower than the speed of light that it is practically at rest relative to the very fast
spaceship. As the spaceship i1s passing the space station, an astronaut inside of the spaceship turns on
a flashlight, shining a beam of light straight upward in the diagram (perpendicular to the direction that
the spaceship is traveling). The spaceship has transparent walls such that an observer inside of the
space station can see the beam of the flashlight shining inside of the spaceship as it passes the space
station.

..............

Relative to the astronaut inside of the spaceship (observer P), the flashlight beam appears to travel
straight upward, as shown in the left diagram above. Relative to an observer inside of the space
station (observer Q), the flashlight beam appears to travel diagonally up and to the right, as shown in
the right diagram above. (Of course, the photons in the beam of light have inertia, which is the natural
tendency of all objects to travel with constant momentum. If you ride in an airplane traveling 500 mph
and throw a ball straight upwards, you will catch the ball in your hand because of inertia. The ball
certainly won’t smack the back of the airplane mid-flight. If you’ve forgotten about inertia, it may help
to review an introductory physics textbook.)

Lo

Observer P sees the beam of light take a shorter path (distance Lp, which 1s straight upward), whereas
observer Q sees the beam of light take a longer path (distance L, which is diagonal). According to
the second postulate of special relativity, both observers must measure the speed of light to be the
same value. Either observer takes the distance (L) traveled and divides by the corresponding time (¢)

measured to determine the speed of light. The subscripts P and Q indicate which observer makes the
measurement.



L L
c=—= , =2

tp to

Since Ly > Lp, in order for both observers to measure the same value for the speed of light, it follows
that 7, > ¢p. Since observer P is at rest relative to the flashlight, while observer Q is moving relative
to the flashlight, the inequality 7, > ¢p means that time travels more slowly for clocks (and observers

and objects) that are moving relative to an event. This is called time dilation. We will explore the
mathematics of time dilation further in Chapter 2.

The effect 1s mutual. Note that observer Q 1s moving relative to P, but also that observer P is moving
relative to Q. Therefore, time dilation depends on your perspective:

* Relative to observer P on the spaceship, time passes more slowly for observer Q who is on the
space station. This is what we found in our example since we let observer P shine the flashlight
inside of the spaceship.

* Relative to observer Q on the space station, time passes more slowly for observer P who is on
the spaceship. If we had let observer Q shine the flashlight inside of the space station (instead of
letting observer P shine the flashlight inside of the spaceship), we would have found that the time
measured by observer P would have been longer.






Length Contraction

When an object is moving relative to an inertial reference frame, the object appears shorter (along the
direction of motion) than it does relative to an inertial reference frame that is at rest relative to the
object. This is known as length contraction.

earth’s Alpha
sun Centauri
spaceship

>

You can see how length contraction comes about by considering the illustration above. The spaceship
is traveling from earth’s sun to Alpha Centauri with a speed that is close to the speed of light.
Observer S is an astronaut aboard the spaceship, while observer E is stationed on earth. Each
observer proceeds to measure the distance from the sun to Alpha Centauri (L) and the time of the trip

(f).

Observer E on earth measures the distance to be Ly and the time to be 7z, such that the speed of the

E %

spaceship is v = Lg/tg. Since the earth is “moving” relative to the spaceship, time is dilated for
observer E, meaning that 75 > . Observer S is at “rest” relative to the spaceship, and sees Alpha

Centauri getting closer to the spaceship with the same speed v. (The perspective i1s different—
whether earth is at rest and the spaceship is moving, or whether the spaceship is at rest and the stars
are moving—but the speed 1s the same.) Observer S measures the distance to be Lg and the time to be

tgsuch that v = L¢/ts.

Since observer S is at “rest” relative to the spaceship, time passes “normally” for observer S, such
that tg < tg. If tg < g, how canv = L¢/tg and v = L/ty both result in the same speed? The answer is

that Ly < Lz. This means that the distance between the stars appears shorter for observer S than it

does for observer E. Note that observer S is moving relative to the distance between the stars.
Therefore, distance is shorter (along the direction of motion) relative to an inertial reference frame
that it is moving relative to the distance than it is for a reference frame that is at rest relative to the
distance. This is known as length contraction. We will explore the mathematics of length contraction
further in Chapter 2.

The effect is mutual. Note that observer S is moving relative to E, but also that observer E is moving
relative to S. Therefore, length contraction depends on your perspective:

* Relative to observer S on the spaceship, distances measured along the direction of the
spaceship’s motion (such as the distance between the sun and Alpha Centauri) appear shorter
than they do for observer E on earth. This is what we found in our example since observer S is
moving relative to the distance between the two stars.



* Relative to observer E on earth, the length of the spaceship is shorter than it is for observer S
on the spaceship. If we had considered measurements of the length of the spaceship (instead of
the distance between the stars) in our example, this is what we would have found.

* Relative to observer S on the spaceship traveling from the sun to Alpha Centauri, a second
spaceship parked on earth would appear shorter (along the line connecting the two stars) than it
is for observer E on earth.

Note that the effects of time dilation and length contraction that we discussed in this example involve
two different perspectives:

 For observer E on earth, v = Lz/t;, we noted that time was dilated (75 > ¢5) for observer E
because the earth is “moving” relative to the spaceship.

* For observer S on the spaceship, v = L¢/t5, we noted that length was contracted (L < Ly) for
observer S because the spaceship is “moving” relative to the two stars.






Relativistic Mass

As the relative speed between two inertial reference frames gets closer to the speed of light, the
effects of special relativity—including time dilation and length contraction—become more
pronounced. In the limit that the relative speed approaches the speed of light, time slows down to a
complete stop and length contracts to zero. However, you can’t actually reach this limit. An object
that has mass can be accelerated to nearly light speed (like 0.99¢ or 0.999¢), but can never reach the
speed of light exactly.

In Galilean relativity, it would be very easy to accelerate an object faster than the speed of light.
According to Newton’s second law of motion, the net force acting on an object equals the object’s
mass times its acceleration:

YF = ma.

(This equation applies to objects that have constant mass, but that’s not a problem for Galilean
relativity, where ordinarily an object’s mass isn’t expected to change while it accelerates.) The mass
of an electron is 9.1 x 1073! kg. If you applied a force of just 1 N (one Newton) to an electron,
according to Galilean relativity, the electron would experience an acceleration of

F 1N
a=—= = 1.1 x 103°m/s?.
m  9.1x10"31kg

What does this acceleration mean? It means that starting from rest, after a just 1 s (one second), an

electron would have a speed of v = 1.1 x 103 m/s (since acceleration describes the rate at which
velocity increases). That’s way, way faster than the speed of light in vacuum, which is ¢ = 2.9979 x

108 m's.

In the laboratory, it doesn’t happen that way. Although it is very easy to accelerate electrons to very
high speeds, once the speed of an electron reaches the neighborhood of the speed of light in vacuum,
it becomes increasingly harder to accelerate the electron. We can accelerate electrons up to 0.9¢ or
even 0.99¢, but trying to reach 0.99999c¢ is extremely difficult. Why? According to Einstein’s theory
of relativity, mass isn’t constant: The faster an electron travels, the more mass the electron has
(relative to the laboratory). We call this relativistic mass.

Recall that mass is a measure of inertia in the following sense: The more mass an object has, the
more difficult it is to overcome the object’s inertia in order to accelerate the object. The relativistic
mass of an object describes the object’s inertia. As the object travels closer to the speed of light
(relative to an inertial reference frame), the greater its relativistic mass (and relativistic inertia): It
becomes harder and harder to accelerate the object.

There are two types of mass:



* An object’s rest mass tells you how difficult it is to accelerate the object relative to an
observer for which the observer and object are both at rest.

* An object’s relativistic mass tells you how difficult it is to accelerate the object relative to an
observer for which the object is traveling close to the speed of light.






Proper Time, Proper Length, and Rest Mass

When you compare measurements of time, distance, or mass made by observers in different inertial
reference frames, it’s important to be able to determine which of the measurements will be larger and
which will be smaller. If you can identify the proper time, the proper length, and the rest mass
properly, this will help with your comparisons.

* The proper time corresponds to a time interval measured by a clock that is at rest relative to
the events. Observers who are moving relative to the events measure a greater time interval due
to time dilation.

» The proper length corresponds a distance measured by a tape measure (or other device used
for measuring distance) that is at rest. Observers who are moving relative to the distance
measure a shorter distance due to length contraction.

* The rest mass corresponds to the mass of an object measured by an observer who is at rest
relative to the object. Observers who are moving relative to the object measure a larger mass
called relativistic mass.

Note: In some relativity questions, the proper time and proper length are not measured by the same
observer: Proper time and proper length may come from different perspectives (that is, two different
inertial reference frames).






Symbols and SI Units

Symbol Name SI Units
% relative speed between two observers m/s
c speed of light in vacuum m/s

the x-component of the velocity of an object
UR m/s
as measured by an observer at rest (called R)
the x-component of the velocity of an object
Uy as measured by an observer (called M) that is m/s
moving relative to the observer that is at rest
L, distance measured by observer A m
ts time measured by observer A S







Constants

Quantity ‘ Value

speed of light in vacuum ¢ =2.9979 x 10° m/s







Strategy for Solving Galilean Relativity Problems

To solve a problem involving Galilean relativity (which applies to problems with relative speeds that
are small compared to the speed of light in vacuum), follow these steps:

* Setup a coordinate system with the x-axis along the direction of the relative velocity,

i

v

* Galilean relativity involves vector subtraction. For one-dimensional problems, simply
subtract according to the following equation:

Upyy—Up—V
*s up 1s the velocity of an object as measured by an observer at rest (called R).

*s u,, 1s the velocity of an object as measured by an observer (called M) that is moving relative
to the observer that is at rest.

*+ v is the relative speed between the two observers.






Strategy for Solving Conceptual Special Relativity Problems

To solve a conceptual problem involving time dilation, length contraction, or relativistic mass, follow
these steps. (For mathematical problems, see Chapters 2-5.)

* It may help to draw a diagram and label both objects and observers.

* The laws of special relativity apply to inertial observers—observers who travel with
(approximately) constant velocity (which means that speed and direction are both constant).
Any inertial observer is free to claim to be at rest, and can make equally valid arguments based
on this claim.

* When applying time dilation, identify the proper time: The proper time is measured by an
observer whose clock is at rest relative to the events. Any observer who is moving relative to
the events will measure a longer time due to time dilation.

» When applying length contraction, identify the proper length: The proper length is measured
by an observer who is at rest relative to the distance being measured. Any observer who is
moving relative to the distance will measure a shorter distance due to length contraction.

* When working with relativistic mass, identify the rest mass: The rest mass is measured by an
observer who is at rest relative to the object. Any observer who is moving relative to the object
will measure a greater mass called relativistic mass.



Example: A monkey is riding on a boat that is traveling 12 m/s to the east along a river. As the boat
passes a boy who is standing on the bank of the river, the monkey throws a banana 18 nvs to the east
relative to the monkey. How fast is the banana moving relative to the boy?

Setup a coordinate system with +x directed to the east. Identify the given information:
* The relative speed between the monkey and the boy is v =12 m/s.

 The monkey is the moving observer. The velocity of the banana relative to the monkey is u;, =
18 m/s to the east.

* The boy is at rest. The velocity of the banana relative to the boy 1s up.

Since these speeds are small compared to the speed of light, we may apply the equation for Galilean
relativity:

uM:uR_v
18:uR_12
up =184+ 12 =130 m/s

The banana is moving 30 nvs relative to the boy.

Note: It is standard in physics to neglect air resistance unless stated otherwise in a problem.



Example: A monkey is riding on a boat that is traveling 12 m/s to the east along a river. As the boat
passes a boy who is standing on the bank of the river, the monkey throws a banana 18 nvs to the west
relative to the monkey. How fast is the banana moving relative to the boy?

Compare these two examples carefully. What 1s different? This time the monkey throws the banana to
the west, which i1s opposite to the boat’s motion. Setup a coordinate system with +x directed to the
east. Identify the given information:

* The relative speed between the monkey and the boy is v =12 m/s.

» The monkey is the moving observer. The velocity of the banana relative to the monkey is u;, =

—18 m/s. Velocity includes direction: For one-dimensional problems, minus signs distinguish
between forward and backward.

* The boy is at rest. The velocity of the banana relative to the boy 1s up.

Since these speeds are small compared to the speed of light, we may apply the equation for Galilean
relativity:

Uy — U — U
—18 = up — 12
up =—18+12 =|—6m/s

The banana 1s moving 6 nvs relative to the boy. Since up 1s negative, the banana is heading west
(along —x) relative to the boy.



Example: A monkey drives a blue car 30 m/s to the north. On the same street, another monkey drives
a red car 20 nm/s to the south. What is the velocity of the red car relative to the monkey in the blue
car?

Don’t overthink it. This problem is simpler, since there isn’t a banana (or other object) moving
relative to both observers. We’re just trying to determine the relative velocity

r—h

[

between the two monkeys. You can reason this out as follows:
* In one second, the blue car will travel 30 m north relative to the ground.
* In one second, the red car will travel 20 m south relative to the ground.
* Thus, in one second, the red car will be 20 + 30 = 50 m south of the blue car.

» Since the red car will be 50 m further south of the blue car each second, the velocity of the red
car 1s —50 nv/s relative to the blue car, meaning 50 nvs to the south.




Example: One astronaut is in a space station that is orbiting the earth. Another astronaut is in a
spaceship. The space station is practically at rest relative to the very fast spaceship, and the
spaceship is traveling close to the speed of light relative to the earth. The spaceship and space station
both have transparent walls such that either astronaut can make observations (with the aid of a
telescope) of what’s going inside of the other space cratft.

(A) How does the astronaut inside of the spaceship appear to age relative to the astronaut inside of
the space station?

Identify the proper time. The astronaut on the spaceship measures the proper time because this
astronaut is at rest relative to himself (or herself). An observer who is moving relative to the
spaceship will measure a longer time due to time dilation. Therefore, relative to the astronaut on the
space station, the astronaut on the spaceship appears to age more slowly than the astronaut on the
space station. (Let’s not worry about make-up, genetic differences in aging, etc. Let’s treat the
astronauts equally, as if they are identical twins.)

(B) Both astronauts measure the length of the spaceship. Compare their measurements.

Identify the proper length. The astronaut on the spaceship is at “rest” relative to the distance being
measured. An observer who is moving relative to the spaceship will measure a shorter distance due
to length contraction. Therefore, the spaceship appears to be shorter relative to the astronaut inside of

the space station than it does relative to the astronaut inside of the spaceship.

(C) Both astronauts measure the mass of the spaceship. Compare their measurements.

The astronaut in the spaceship measures the spaceship’s rest mass, whereas the astronaut in the space
station measures the spaceship’s relativistic mass, which is larger.







Chapter 1 Problems

1. A monkey is standing on the top of a train that is traveling 36 nmv/s to the south. A girl is standing on
the ground beside the railroad tracks. As the train passes the girl, the monkey throws an apple with a
speed of 12 m/s relative to the train.

(A) If the monkey throws the apple to the south, what is the speed of the apple relative to the girl?
(B) If the monkey throws the apple to the north, what is the speed of the apple relative to the girl?
Want help? Check the solution at the end of the chapter.

Answers: 1. (A) 48 m/s (B) 24 m/s



2. A monkey is riding inside of a train car that is traveling to the west with constant velocity. A girl is
standing on the ground beside the railroad tracks. The monkey paints a red X on the floor of the train
car (that is, the X 1s on the bottom of the train car, not on the ground). As the train car is passing the
girl, the monkey holds a banana directly over the X and releases the banana. The train car has large
windows (with no curtains), such that the girl is able to watch the banana fall and see where it lands.

(A) Where does the banana land? Explain your answer.
(B) What path does the banana take relative to the monkey?
(C) What path does the banana take relative to the girl?
Want help? Check the solution at the end of the chapter.
Answers: 2. (A) onthe X

(B) straight line (C) parabola



3. On a still pond, a monkey rides a boat 32 m/s to the east. This monkey throws an orange 20 m/s to
the east relative to himself. The monkey’s father rides a boat 24 m/s to the east, the monkey’s mother
is standing still on a pier, and the monkey’s uncle rides a boat 10 m/s to the west.

(A) Find the velocity of the monkey relative to his father.

(B) Find the velocity of the monkey relative to his mother.

(C) Find the velocity of the monkey relative to his uncle.

(D) Find the velocity of the monkey’s father relative to the monkey.

(E) Find the velocity of the monkey’s mother relative to the monkey.

(F) Find the velocity of the monkey’s uncle relative to the monkey.

(G) Find the velocity of the monkey’s father relative to the monkey’s mother.
(H) Find the velocity of the monkey’s mother relative to the monkey’s father.
(D) Find the velocity of the monkey’s father relative to the monkey’s uncle.
(J) Find the velocity of the monkey’s uncle relative to the monkey’s father.
(K) Find the velocity of the monkey’s mother relative to the monkey’s uncle.
(L) Find the velocity of the monkey’s uncle relative to the monkey’s mother.
(M) Find the velocity of the orange relative to the monkey.

(N) Find the velocity of the orange relative to the monkey’s father.

(O) Find the velocity of the orange relative to the monkey’s mother.

(P) Find the velocity of the orange relative to the monkey’s uncle.

Want help? Check the solution at the end of the chapter.

Answers: 3. (A) 8 m/s E (B) 32 m/s E

(C)42nm/s E(D) 8 m/s W (E) 32 m/s W

(F) 42 m/s W (G) 24 m/s E (H) 24 m/s W

(D34nm/sE(J)34m/s W(K) 10 /s E

(L) 10 m/s W (M) 20 m/s E (N) 28 m/s E



(0) 52 /s E (P) 62 m/s E



4. Two i1dentical spaceships travel with a relative speed close to the speed of light. As shown below,
the spaceships travel in opposite directions. At the exact moment that the spaceships pass one another,
scientists aboard each ship create identical clones of a chimpanzee. In this way, the two chimpanzees
are effectively identical twins. Their names are Marco and Polo.

spaceship

i

spaceship
- f)}
(A) Scientists aboard Marco’s ship have one photograph of Marco on his 30" birthday, and compare
it to a photograph taken with a telescope of exactly how Polo looked after 30 years according to
calendars kept by Marco’s scientists (after accounting for the time it took for light to reach Marco’s
ship from Polo’s ship). How do the photographs compare?

(B) Scientists aboard Polo’s ship have one photograph of Polo on his 30" birthday, and compare it to
a photograph taken with a telescope of exactly how Marco looked after 30 years according to
calendars kept by Polo’s scientists (after accounting for the time it took for light to reach Polo’s ship
from Marco’s ship). How do the photographs compare?

(C) Which team of scientists is correct? Explain your answers to parts (A) and (B).

(D) Which ship appears longer according to measurements made by Marco’s scientists?
(E) Which ship appears longer according to measurements made by Polo’s scientists?
(F) Which ship has more mass according to measurements made by Marco’s scientists?
(G) Which ship has more mass according to measurements made by Polo’s scientists?
(H) Which ship appears taller according to measurements made by Marco’s scientists?
Want help? Check the solution at the end of the chapter.

Answers: 4. (A) Polo looks younger than 30

(B) Marco looks younger than 30

(C) both! (D) Marco’s (E) Polo’s

(F) Polo’s (G) Marco’s (H) same



5. As illustrated below, when a spaceship is parked at rest inside of a space garage, the ship is too
long to fit inside of the garage.

space garage

As illustrated below, when the same spaceship is traveling close to the speed of light, it can
momentarily fit inside of the same space garage according to observers stationed in the space garage.
(This space garage is special: There are front and back doors which sense the presence of the
spaceship, and which open or close almost instantly. Of course, the spaceship will only be inside of
the space garage with both doors shut for a tiny fraction of a second relative to observers stationed in
the space garage.)

= = e

(A) Explain how the spaceship is able to fit inside of the space garage with both doors closed
simultaneously (for a tiny fraction of a second) from the point of view of observers stationed in the
space garage.

(B) From the point of view of astronauts inside of the spaceship, is the spaceship able to fit inside of
the space garage with both doors closed simultaneously? Explain.

Want help? Check the solution at the end of the chapter.
Answers: 5. (A) length contraction

(B) no; the doors do not appear to be closed simultaneously relative to observers in the spaceship



6. When cosmic rays interact with atoms high in earth’s atmosphere, particles called muons can be
produced. Muons are particles similar to electrons, except that they have about 200 times as much
mass and are unstable. Muons decay very quickly: A muon produced at rest only lasts a couple of
microseconds before decaying into other particles. Based on the short average lifetime of a muon (as
measured in the muon’s rest frame), almost none of the muons produced in the upper atmosphere
should reach earth’s surface, yet a very large number of these muons are detected at earth’s surface.

(A) From the point of view of scientists stationed on the ground, explain how a large number of
muons are able to reach earth’s surface even though their average lifetime (as measured in the muon’s
rest frame) is too short for them to survive that long.

(B) Now explain this from the reference frame of the muons (instead of the reference frame of
scientists stationed on the ground).

Want help? Check the solution at the end of the chapter.
Answers: 6. (A) time dilation

(B) length contraction



7. For each question below, state whether it is theoretically possible or impossible according to
special relativity. Explain your answers.

(A) A chimpanzee could travel to a star that is 10,000 light-years away in her natural lifetime. Note:
A light-year is the distance that light travels in one year.

(B) A chimpanzee could go on a space trip and appear younger than her own daughter when she
returns to earth.

(C) A chimpanzee could go on a space trip and appear younger than she was when she left the earth.
Want help? Check the solution at the end of the chapter.
Answers: 7. (A) possible

(B) possible (C) impossible






Solutions to Chapter 1

1. Setup a coordinate system with +x directed to the south. Identify the given information:
* The relative speed between the monkey and the girl is v =36 m/s.

» The monkey is the moving observer. The velocity of the apple relative to the monkey 1s u,,.

This value will be different in parts (A) and (B) since the apple is thrown in a different direction
in each part.

* The girl is at rest. The velocity of the apple relative to the girl is up.

Since these speeds are small compared to the speed of light, we may apply the equation for Galilean
relativity. As usual, we neglect air resistance unless stated otherwise.

uM:uR—V

(A) Since the apple is thrown south and we chose +x to point south, u,, = 12 nvs.

12:uR_36
ug =12+ 36 =48 m/s

The apple is moving 48 nv/s relative to the girl.

(B) Since the apple 1s thrown north and we chose +x to point south, u;, =—12 m/s.

urp = —12+4+36 =24 m/s

The apple is moving 24 nv/s relative to the girl.



2. (A) The banana lands directly on the X. Why? Because the banana has inertia. Recall from
Newton’s laws of motion (which are taught in first-year physics) that inertia is the natural tendency of
all objects to maintain constant velocity. According to Newton’s second law of motion, a net external
force is needed to accelerate an object (and thus change the object’s velocity), since

YF = ma.

When the monkey releases the banana, a net gravitational force acts downward, causing the banana to
accelerate downward. However, there are no forces acting horizontally, so the banana doesn’t
accelerate horizontally. The banana maintains a constant horizontal component of velocity (v,), while

the vertical component of velocity (v,) changes. That’s why, in projectile motion, horizontally we
have

Ax = v,t

and vertically we have
Ay = vyt +-a,t?
Y = Vyot +-ay

Horizontally, v, is constant (because a, = 0), whereas vertically there is uniform acceleration (a, =
—g =-9.81 n/s? is constant).

You can verify this by riding in an airplane. If you throw an eraser straight upward relative to you
while sitting inside of the airplane, you will catch the eraser because it has inertia. The eraser surely
won’t land behind you, even if the airplane is traveling 300 m/s and if the eraser is in the air for halfa
second (in which case the airplane travels 150 m horizontally).

(B) Relative to the monkey, the banana appears to fall in a straight line downward, no different than if
the train had been parked when the monkey released the banana. The laws of physics are the same in
any inertial reference frame, meaning that the result of dropping a banana from rest will be the same
whether the train is at rest or moving with constant velocity.

(C) Relative to the girl, the banana follows the arc of a parabola, beginning with a horizontal tangent.
The same path would result if the girl had the banana and threw it horizontally. The banana follows
the path of a projectile, which is parabolic.

From the monkey’s point of view, the monkey claims that the train 1s at “rest” (but that the girl and
ground are moving). According to the monkey, v. = 0 and the banana falls straight downward.

From the girl’s point of view, the girl claims that she is at “rest” (but that the train is moving).
According to the girl, v, isn’t 0. Relative to the girl,



Ax = v,t
and
Ay = v, t +=q.t>
Y = Uy, +5ay

which can be combined to make

Ay = Ax tan 8, — —2—— Ax?

2 2
2v§ cos= 8

which is the equation of a parabola. To derive this equation, you need to combine the following
equations:

Ax = v,t

1 2

Ay =v 2 5 ayt
Ux = Uxo

Vo = Vp COS B,
yo = Vg Sin 6,

ay, =—g



3. Setup a coordinate system with +x directed to the east.
p = pier, k = monkey, f = father
m = mother, u = uncle, 0 = orange
v, = the x-component of the velocity of a relative to b
Ukp =32m/s , vp,=24m/s , Vp, =0
vy =—10m/s , v, =20m/s
Vab = Vac — Vpc

(A) Vygp = Vgp — Vpp = 32 — 24 = 8 m/s (east)
(B) Vkm = Vkp — Uy = 32 — 0 = 32 m/s (east)
(C) Yy = Vp — Vyp = 32 — (=10) = 32 + 10 = 42 m/s (east)
(D) vfg = Vpp — Vg = 24 — 32 = —8 m/s (west)
(E) Vimk = Vmp — Vip = 0 — 32 = =32 m/s (west)
(F) vy = vyp — Vkp = —10 — 32 = =42 m/s (west)
(G) Ve = Vpp — Upp = 24— 0 = 24 m/s (east)
(H) vipr = Vpp — Vp = 0 — 24 = =24 m/s (west)
(D) vey = Vg — vy, = 24— (—10) = 24 + 10 = 34 m/s (east)
(J) vur = Vyp — V5, = —10 — 24 = =34 m/s (west)
(K) Yoy = Vimp — Vyp = 0—(=10) = 0+ 10 = 10 m/s (east)
(L) vym = Vyp — Vppp = =10 = 0 = =10 m/s (west)
(M) v,;,, = 20 m/s (east); this was stated in the problem



(N) In the formula v, = v,. — v}, (which you can verify is consistent
with the formulas used in parts A thru M), let a = o (orange), b = f
(father), and ¢ = k (monkey). Recall from part D that v, = -8 m/s:
Vor = Vor — Vg = 20 — (=8) = 20 + 8 = 28 m/s (east)

Alternatively, you can reason this out conceptually: The orange is
traveling 20 m/s faster than the monkey, who is traveling 8 m/s faster
than the father: 20 + 8 = 28 m/s.

(0) Vo, = Vor — Vi = 20 — (—32) = 20 + 32 = 52 m/s (east)

(P) Recall from part F that v, = —42 m/s.

Vou = Vor — Vyux = 20 — (—42) = 20 + 42 = 62 m/s (east)
Alternatively, you can reason this out conceptually: The orange is
traveling 20 m/s faster than the monkey, who is traveling 42 m/s
faster than the uncle (since 32 m/s to the east and 10 m/s to the west
have a relative speed of 42 m/s): 20 + 42 = 62 m/s.



4. (A) Marco appears to age normally relative to the scientists on Marco’s ship. Because the proper
time for Polo’s aging process is measured by Polo’s team, Marco’s team will measure Polo’s aging
process to occur more slowly due to time dilation. Therefore, when Marco’s team compares their
photographs, Polo will appear younger.

(B) Polo appears to age normally relative to the scientists on Polo’s ship. Because the proper time for
Marco’s aging process i1s measured by Marco’s team, Polo’s team will measure Marco’s aging
process to occur more slowly due to time dilation. Therefore, when Polo’s team compares their
photographs, Marco will appear younger.

(C) Both teams are correct. Marco’s team believes that Polo appears younger when Marco celebrates

his 30™ birthday, and Polo’s team believes that Marco appears younger when Polo celebrates his 30™
birthday, and both teams are correct because both teams are inertial observers (since both spaceships
travel with constant velocity). According to special relativity, there is no preferred reference frame;
and the laws of physics are the same for all inertial observers. (For the chimpanzees to actually meet
up, note that one would have to accelerate.)

(D) Marco’s ship appears normal relative to the scientists on Marco’s ship. Because the proper length
for Polo’s ship is measured by Polo’s team, Marco’s team will measure the length of Polo’s ship to be
shorter than normal due to length contraction; Marco’s appears longer.

(E) Polo’s ship appears normal relative to the scientists on Polo’s ship. Because the proper length for
Marco’s ship is measured by Marco’s team, Polo’s team will measure the length of Marco’s ship to
be shorter than normal due to length contraction; Polo’s appears longer.

(F) Marco’s team measures Marco’s ship to have its rest mass. When Marco’s team measures the
mass of Polo’s ship, Polo’s ship’s relativistic mass appears greater than its rest mass. (Let’s assume
that both teams of scientists have the same combined rest mass.)

(G) Polo’s team measures Polo’s ship to have its rest mass. When Polo’s team measures the mass of
Marco’s ship, Marco’s ship’s relativistic mass appears greater than its rest mass.

(H) The height 1s the same for each. (Length contraction occurs only along the direction of the
velocity. The height, which is perpendicular to the velocity, is unaffected.)



5. (A) Since the proper length of the spaceship is measured by astronauts inside of the ship, astronauts
stationed in the space garage measure the length of the spaceship to be shorter than normal due to
length contraction. The concept of length contraction explains how the ship is short enough to fit in the
garage while traveling close to the speed of light.

from the perspective of the space garage
[ = [ e

(B) The spaceship has its usual length relative to astronauts inside of the spaceship. You can’t explain
this in terms of length contraction because length contraction would make the space garage appear
shorter than usual relative to astronauts inside of the spaceship. The answer has to do with the fact
that different inertial observers often disagree on whether or not two events occur simultaneously; this
is one of those times. Whereas astronauts stationed in the garage momentarily see the spaceship fit
inside of the garage with both doors temporarily closed, astronauts aboard the spaceship don’t see the
two doors closed at the same instant. Rather, astronauts aboard the spaceship see the door on the right
side of our diagram close first (while the back of the spaceship sticks out on the left side of our
diagram). They then see the front door open. The spaceship continues a short ways until the back of
the spaceship is safely inside of the garage. At this point, the door on the left side of our diagram
quickly closes (while the front of the spaceship sticks out on the right side of our diagram).

from the perspective of the spaceship

| >




6. (A) Since the proper time would be measured by a reference frame traveling with the muons
themselves, scientists on earth’s surface measure a longer lifetime due to time dilation. That is,
because the muons travel close to the speed of light relative to the earth, their average lifetime is
much longer than it would be if they were at rest, which allows them to travel a longer distance
before they decay.

(B) From the reference frame of the muons, their lifetime is normal (they measure the proper time).
Instead, the muons “see” length contraction: Since scientists on earth’s surface measure the proper
length for the muons’ trip, a reference frame attached to the muons would measure a shorter distance.
That is, because the muons travel close to the speed of light (although from their perspective, the
muons are at rest and the earth is traveling close to the speed of light towards the muons), the distance
between earth’s surface and where they are produced in earth’s atmosphere is much shorter than
would be if they were at rest, which allows them to reach earth’s surface in less time. It’s instructive
to compare how these different perspectives lead to equivalent conclusions through two quite
different effects.




7. (A) Theoretically, it is possible, provided that the chimpanzee travels in a spaceship with a speed
that is close enough to the speed of light (that’s the hard part). Relative to observers on earth, the
chimpanzees would age much more slowly than normal through time dilation. (However, the initial
part of the trip requires acceleration, and the end of the trip involves deceleration, both of which
involve general relativity, which is a step beyond special relativity.)

(B) Theoretically, it is possible, for the same reason as part A, provided that the chimpanzee travels
in a spaceship that is close enough to the speed of light. If the chimpanzee ages slowly enough due to
time dilation, she could appear younger than her daughter when she returns to earth. However,
whatever the age difference is between the chimpanzee and her daughter, at least that number of years
must pass on earth for this to be possible. For example, if the chimpanzee is 30 years old and her
daughter is 12 years old, at least 18 years must pass on earth during the trip (plus additional years
depending on how fast the ship travels; we’ll explore the mathematics involved in time dilation in
Chapter 2).

(C) This 1s theoretically impossible (without plastic surgery or age defying medicine). While time
can slow down due to time dilation, in special relativity time can’t go backwards.






2 TIME DILATION AND LENGTH CONTRACTION

Relevant Terminology

Time dilation — the phenomenon whereby time appears to travel more slowly for objects moving fast
(close to light speed) relative to other observers.

Length contraction — the phenomenon whereby objects moving fast (close to light speed) appear
shorter relative to other observers.

Proper time — a time interval measured by a clock that is at rest relative to the events. An observer
who 1s moving relative to the events measures a greater time interval due to time dilation.

Proper length — a distance measured by an observer who is at rest relative to the distance. An
observer who is moving relative to the distance measures a shorter distance due to length contraction.

Inertial reference frame — a frame that travels with constant velocity.






Time Dilation

Time passes more slowly on a clock in a moving inertial reference frame than it does for an inertial
reference frame that is at rest relative to the clock. This is known as time dilation.

. spaceship
ﬁ

space station

In the diagram above, the spaceship is traveling to the right with a speed that is close to the speed of
light. The spaceship passes by a space station that is practically at rest relative to the very fast
spaceship. As the spaceship 1s passing the space station, an astronaut inside of the spaceship turns on
a flashlight, shining a beam of light straight upward in the diagram (perpendicular to the direction that
the spaceship is traveling).

oooooooooooooo
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Relative to the astronaut inside of the spaceship (observer P), the flashlight beam appears to travel
straight upward (left diagram). Relative to an observer inside of the space station (observer Q), the
flashlight beam appears to travel diagonally (right diagram).

In the 1llustration above:

* Lp 1s the distance that the light travels according to observer P.
* L is the distance that the light travels according to observer Q.
* L 1s the distance that the spaceship travels horizontally during this time.

These three distances are related by the Pythagorean theorem:
2 712 2
12 =12 +13

According to the second postulate of special relativity, both observers must measure the speed of
light to be the same value. Either observer takes the distance (L) traveled and divides by the
corresponding time (¢) measured to determine the speed of light (¢). The subscripts P and Q indicate



which observer makes the measurement.

L L
c=— , c=-2

tp to
Observer Q can also measure the speed (v) of the spaceship by dividing the horizontal distance (L)

traveled by the corresponding time (7).

%)

(%

Multiply each equation by the corresponding time.

LP =C tP
LQ =C tQ
LS =V tQ
Substitute these expressions into the equation from the Pythagorean theorem.
& o—s T2 2
132 = 1%+ 13
c’ty = vt§ + c’tp
Solve for 7.
c?tl — vity = c’tp
tg(c? —v?) = c?tp

2 4.7
(2 ctp
Q c2 — p2

Divide the numerator and denominator each by 2.



-

2
Since v < ¢, it follows that 1 — (Z) < 1, such

c

that t, > tp: Time is dilated for observer Q

relative to observer P. Note that ¢, is called the
proper time: the clock is at ‘rest’ relative to P.






Length Contraction

When an object is moving relative to an inertial reference frame, the object appears shorter (along the
direction of motion) than it does relative to an inertial reference frame that is at rest relative to the
object. This is known as length contraction.

earth’s Alpha
sun Centauri
spaceship

>

In the diagram above, a spaceship is traveling from earth’s sun to Alpha Centauri with a speed that is
close to the speed of light. Observer S is an astronaut aboard the spaceship, while observer E is
stationed on earth.

E %

Observer E on earth measures the distance to be Lz and the time to be 7z, such that the speed of the
spaceship is

v=~Lg/tg
Observer S on the spaceship measures the distance to be L¢ and the time to be #¢ such that
v=Lg/tg
According to observer E, the ship is “moving” while the stars are at rest, whereas according to

observer S, the earth and stars are “moving” while the spaceship is at “rest,” but either way the speed
of the spaceship is the same:

Solve for Ly.

t
LS — _SLE
tg

Since the spaceship’s clock is at “rest” relative to the journey, observer S measures the proper time
and the passage of time aboard the spaceship appears dilated relative to observer E. Use the time
dilation equation with ¢ as the proper time:



ts

n-©

Solve for the ratio Z—S Multiply both sides of the equation
E

tE:

Cc

by J 1— (3)2 and divide by t;.

5 fi- @
E \ C
Substitute this expression into the equation Lg = :—5 L.
5

VA 2
LS=LEV1—(E)

2
Since v < ¢, it follows that 1 — (E) < 1,suchthat L < L,

€

showing that length is contracted for observer S relative to
observer E. Note that Ly is called the proper length in this
example since observer E is at rest relative to the stars
(and since in this example we are measuring the distance
between the stars).

Note: When applying the above equation to other problems, the proper length will often not be
measured by an observer on earth. That just happened to be the case in this example. In a given
problem, you must apply the concept of proper length to determine which observer measures the
proper length.

Note that the effects of time dilation and length contraction that we discussed in this example involve



two different perspectives:

* For observer E on earth, v =L/ t;, we noted that time was dilated (5 > ) for observer E
because the earth is “moving” relative to the spaceship.

* For observer S on the spaceship, v =Lg/ t5, we noted that length was contracted (Lg < Lp) for
observer S because the spaceship is “moving” relative to the two stars.






Time Dilation and Length Contraction Equations

In the equations below, #, represents the proper time (measured by an observer who 1s at rest relative
to the events) and L represents the proper length (measured by an observer who is at rest relative to
the distance). Note that 7, and L, are not necessarily measured by the same observer in a problem (in

fact, these were measured by different observers when we derived the equation for length contraction
in the previous section).

Lo

to
BN T

C

LC:L)'/—O:LO\/l——BZ:LO 1—(3)

\ C

In the equations above, the symbols § and y are defined as follows:
v 1

1
SR







Symbols and SI Units

Symbol ‘ Name ‘ SI Units

relative speed between two observers
speed of light in vacuum
distance measured by observer A

I T

Note: The symbols § and y are the lowercase Greek letters beta and gamma.







Constants

Quantity ‘ Value

speed of light in vacuum ¢ =2.9979 x 10° m/s







Strategy for Solving Time Dilation and Length Contraction
Problems

To solve a problem involving time dilation or length contraction, follow these steps:
* It may help to draw a diagram and label both objects and observers.

» When applying time dilation, identify the proper time (#,), which is measured by an observer
whose clock is at rest relative to the events.

Lo

to
T

« When applying length contraction, identify the proper length (L), which is measured by an

observer who is at rest relative to the distance being measured.

L

L.=2=1,J1-B%2=1L, 1—(3)2

Y \ ¢

Note that #; and L are not necessarily measured by the same observer in a problem.



Example: A chimpanzee astronaut sleeps for 8 hours according to a spaceship’s clock while traveling
at 0.5¢ (half the speed of light) relative to the earth. For how much time does the chimpanzee appear
to be sleeping relative to an observer on earth?

Which observer measures the proper time? The spaceship’s clock is at rest relative to the
chimpanzee. Therefore, the chimpanzee measures the proper time: ¢, = 8 hr. The observer on earth

measures a greater time, 74, due to time dilation. The relative speed is v = 0.5¢. Use the time dilation
equation.

o 8 8

9.2 hr

-p
=
|l

Recall that the way to divide by a fraction is to multiply by its

- 16 _ 16V3 _ 16V3 _
reciprocal. Note that == = ——= = —= since V33 = 3. We

multiplied = by g in order to rationalize the denominator.

\/_

You can verify with a calculator that - = 2 and = both equal

9.2 (after rounding to two significant flgures).



Example: A spaceship has a length of 20 m when it is parked near the surface of the earth. When a
chimpanzee astronaut in the spaceship travels at 0.8¢ relative to the earth, what length does the
spaceship appear to have relative to an observer on earth?

Which observer measures the proper length? The chimpanzee is at rest relative to the length of the
spaceship. Therefore, the chimpanzee measures the proper length: L, = 20 m. The observer on earth

measures a shorter distance, L., due to length contraction. The relative speed 1s v = 0.8c. Use the
length contraction equation.

Le=to |1- (%) =20 |1 (25

= 204/1 — (0.8)2 = 20v1 — 0.64 = 20+0.36
L. =20(0.6) =[12m







Chapter 2 Problems

1. A chimpanzee astronaut travels in a spaceship at 0.6¢ relative to the earth. According to the
chimpanzee, the spaceship is 30 m long and the trip takes 12 years.

(A) How long is the spaceship relative to an observer on earth?

(B) How long does the trip take relative to an observer on earth?

(C) How far does the spaceship travel according to an observer on earth?
Note: One light-year (ly) is the distance that light travels in one year.

(D) How far does the spaceship travel according to the chimpanzee?

(E) Explain your answers to parts C and D.

Want help? Check the solution at the end of the chapter.

Answers: 1. (A) 24 m (B) 15 years

(©)901ly(D)7.21y

(E) time dilation vs. length contraction



2. How fast must a spaceship travel relative to another observer in order to appear half as long as it
really is?

Want help? Check the solution at the end of the chapter.

Answer:

?c = 0.87c = 2.6 X 10° m/s



3. Muons that are produced at rest have an average lifetime of
2.2 us (where p = 107° is the prefix micro).

A beam of muons is produced that travels 0.99¢ relative to the earth.

(A) How far does classical physics expect the muons to travel on average? (For this question, pretend
that the muons don’t follow the laws of special relativity.)

(B) Relative to observers on earth, how far will the muons actually travel on average?

(C) Relative to a reference frame attached to the muons, how far do the muons travel on average?
(D) Explain your answers to parts B and C.

Want help? Check the solution at the end of the chapter.

Answers: 3. (A) 0.65 km

(B) 4.6 km (C) 0.65 km

(D) time dilation vs. length contraction



4. A chimpanzee astronaut travels in a spaceship at (12/13)c relative to the earth. According to
observers stationed on earth, the trip takes 26 years.

(A) How far does the spaceship travel relative to the earth?

(B) How far does the spaceship travel relative to the chimpanzee?
(C) How long does the trip take relative to the chimpanzee?

Want help? Check the solution at the end of the chapter.

Answers: 4. (A) 24 1y (B) (120/13) ly=9.2 1y (C) 10 yr






Solutions to Chapter 2

1. The relative speed is v = 0.6c¢.

Use the equations for  and y:
v 0.6¢

:—:—:0
G C
1 1

1
' T A-pr Vi-062 vi-036
1 1 1 5

~ /064 08 4/5 4

(A) Regarding the length of the spaceship, the chimpanzee measures the proper length since the
chimpanzee is at rest relative to the spaceship: Ly = 30 m. Use the equation for length contraction to

determine what an observer on earth measures.

[ o 30_30_5
Ty 3 T4
4
4 120
=30X=-—=——=1(24m

5 5

Recall that the way to divide by a fraction is to multiply by its reciprocal.

(B) Regarding the time of the trip, the chimpanzee measures the proper time since the ship’s clock is
at “rest” relative to the journey: #, = 12 yr. Use the equation for time dilation to determine what an
observer on earth measures.

5 60
ty = yt, :2(12) = = 15 yr

(C) Multiply the speed of the ship by the time of the trip as measured by an earth observer.




dE = Vi = (O6C)(].5 yr) =19.0 ly

Note that one lightyear (ly) equals ¢ times 1 yr. That is, the speed of light times one year equals the
distance that light travels in one year. (If you prefer meters, use ¢ = 2.9979 x 10® m/s and convert 1 yr

to 31,536,000 seconds to get 8.5 x 106 m.) Unlike part A, the observer on earth measures the proper
length for this distance (which is at rest relative to earth).

(D) Multiply the speed of the ship by the time of the trip as measured by the chimpanzee.

de =vt,=vty=(0.6c)(12yr) =|7.21y

Since the observer on earth measures the proper length of the trip (since the starting and ending points
of the journey—which are likely the sun and a nearby star—aren’t moving relative to the earth), the
chimpanzee measures a shorter length due to length contraction. We could have obtained the same
answer from the length contraction equation (using d for the distance of the trip, so as not to confuse it
with the L that we used for the length of the ship in part A). It’s instructive to compare part D with
part A, since in part A the chimpanzee measured the proper length, whereas in part D the observer on
earth measures the proper length.

Thatis, Ly = L, and Ly = % in part A, whereas d, = dr and

14
de = %in part D (where the subscript E stands for earth and
the subscript C stands for chimpanzee).
d, dg 9 5 4 36
de =—=—= 9+—-=9x—-=—=72ly

1% y_ﬁz 4 5 5



(E) In part C, the speed of the ship is % = 19—50 = (.6¢. Compare
E

dc

with part D:
tc

the [same] What's different are the two perspectives. On earth,
the distance is the proper length, dp = 9.2 ly, while the time is
dilated, ty = 15 yr. To the chimpanzee, the length is contracted,
dc = 7.2y, while the time is proper, t, = 12 yr. These two
different phenomena (time dilation and length contraction) lead
to exactly the same effect in the two different perspectives.

%c = 0.6¢. Either way, the speed of the ship is

2. According to the problem, L, = %" Plug this into the equation L, = L?" to get %" = Ly—” The

1
1-p2

S - -1 Ml - — B2 and divi
toget2 = o Square both sides to get 4 5 Multiply both sides by 1 - f* and divide

by 4 toget 1 - f* = i Add f* to both sides and subtract % from both sides: 1 —i = %, This

two denominators must be equal for this equation to be true: y = 2. Sety = 2iny =

simplifies to Z = B*. Squareroot both sides to get ? = [. Plug this into the equation f = %
BV . V3 L om
to get—- =~ Multiply both sides by ¢ to get v = —c|=|0.87¢| (to two significant figures).

2

[ you prefer meters per second, plug in ¢ = 2.9979 x 10° m/s to get v ={2.6 x 10° m/s|




3. Use ¢ =2.9979 x 10% m/s to get v = 0.99¢ = 2.9679 x 10° m/s. Use the
equations for § and y:

=—=0.99
C

v 0.99¢
'B_c

1 1 1 1 1
PT =g Vi-09% VI-09801 4000199 0.14107

(A) Multiply the speed of the muons by the average lifetime.

dclassical = vto = (29679 X 108)(22 X 10_.6)
= 653 m = |0.65 km

=7.0888

(B) The average lifetime will be dilated relative to observers on earth.

tr = yt, = (7.0888)(2.2 X 107°)
= 15.595x107°s~ 16 x 107°s =16 pus
dr = vty = (2.9679 x 10%)(15.595 x 107°)
= 4628 m = |4.6 km

(C) In the muons’ reference frame, the lifetime 1s normal, but the distance that they travel (on average)
is contracted.

L _do_ 4628 _
M= T70888 0T

0.65 km

Q




dg 4628

= = 0.99c. Compare

tg  15.595x107°

(D) In part B, the speed of the muons is

W~ 2?(512_6 = 0.99c. Either way, the speed of the muons is the

with part C:

tm
same]. (It's exactly the same, though if you plug in our rounded numbers,
they will differ slightly due to round-off error.) What's different are the
two perspectives. On earth, the distance is the proper length, d; = 4.6 km,
while the time is dilated, t; = 16 ps. For the muons’ frame, the length is
contracted, dy = 0.65 km, while the time is proper, t, = 2.2 us. These two
different phenomena (time dilation and length contraction) lead to exactly
the same effect in the two different perspectives.

4. The relative speed is v = 1—2 c. Use the equations for ff and y:

12,
_v_13" _
B_c_ c 13
1 1 1
]/: — p—
J1- 52 J 12\’ \/1_@
1-(13) 169
1 1 13
ot 5/13 5
169

(A) Multiply the speed of the ship by the time of the trip as measured by an earth observer.

12
dE =7V tE — (EC) (26 yr) = |24 ly




Note that one lightyear (ly) equals ¢ times 1 yr. That is, the speed of light times one year equals the
distance that light travels in one year. (If you prefer meters, use ¢ = 2.9979 x 10% m/s and convert 1 yr
to 31,536,000 seconds to get 2.3 x 10" m.)

(B) Since the observer on earth measures the proper length of the trip (since the starting and ending
points of the journey—which are likely the sun and a nearby star—aren’t moving relative to the
earth), the chimpanzee measures a shorter length due to length contraction.

dy dp 24 13
dC = — = ﬁ = _——

y v 3 5

b
= 24 X > 120 9.21
C A3 T 13 ik
(C) Divide the distance by the speed.
d. 120/13
= = =11
e =~ =13/13 ~ 20"
Alternatively, use the time dilation formula:
te 26
tg=Yto=VYte - tc=—=-5==10yr

y  13/5






3 THE LORENTZ TRANSFORMATION

Relevant Terminology

Time dilation — the phenomenon whereby time appears to travel more slowly for objects moving fast
(close to light speed) relative to other observers.

Length contraction — the phenomenon whereby objects moving fast (close to light speed) appear
shorter relative to other observers.

Inertial reference frame — a frame that travels with constant velocity.






The Galilean Transformation

The Galilean transformation involves Galilean relativity (Chapter 1), which only applies when the
objects and observers are traveling with speeds that are small compared to the speed of light.
Suppose that there are two different observers, O and O', where O' moves with constant velocity

m—

[

relative to O. The Galilean transformation relates the coordinates (¢, x, y, z) and (¢, x', ', z') of the
two observers. If we setup our coordinate systems such that the +x- and +x'-axes are oriented along
the relative velocity,

m—

[

and 1f we start our clocks such that O and O' coincide at ¢ = ¢' = 0, the Galilean transformation is:

=t
xX'=x—vt

y'=y

Z'=z

Note that vt equals the distance between the two coordinate systems at time ¢. To see that this Galilean
transformation agrees with the Galilean relativity equation that we learned in Chapter 1, take a
derivative with respect to time (noting that df' = dt since ¢' = ¢):

dx’_dx
dt _ dt *

Since a derivative of x with respect to time equals the x-component of velocity, the above equation is
identical to the Galilean relativity equation u;, = up — v from Chapter 1.







The Lorentz Transformation

The Galilean transformation doesn’t apply when the relative velocity is significant compared to the

speed of light. The Lorentz transformation accounts for the effects of special relativity, and applies at
all speeds (low or high):

v ,
t :y(t—c—zx) , X' =yl —vt)
y'=y , z=z

Recall the following definitions from Chapter 2:

% 1 1
L=

c " AZE 1_(v)2

C

Also recall that O' moves with constant velocity
— 1
relative to O.
The Lorentz transformation is convenient when you know the coordinates (¢, x, y, z) in O and wish to

find the coordinates (7', x', )", z') in O'. What if you know (¢, x', ', z') and wish to find (¢, x, y, z)? In
that case, use the following inverse transformation:

t =y(t’ +C£2x’) , x=yk"+vt')

y=y , z=z2

In some problems, we don’t measure instantaneous values of the coordinates, but instead measure
intervals (such as a time interval between two events, or the endpoints of a rod). In terms of intervals,
the Lorentz transformation is:



v
At' =y (At — C—zAx) , Ax' =y(Ax — vAt)

Ay' =Ay , Az’ =Az
Note that At =t, —t, At' =t; —t;, Ax = x, — xq, Ax' =
X5 — X1, etc. The inverse Lorentz transformation in terms
of time intervals is:

v 4 !
At:y(At +C—2Ax) . Ax = y(Ax' + vAt)
Ay =Ay" , Az =AZ






Time Dilation and Length Contraction in the Lorentz
Transformation

Time dilation and length contraction are actually built into the Lorentz transformation. Let’s consider
time dilation first. Suppose that observer O' measures the proper time:

At" = At,. In order for observer 0 to measure the proper time, 0’ must see the events occur
at the same place, meaning that Ax’ = 0. (Put another way, the clock used by 0' is at rest
relative to the events.) Plug Ax' = () into At =y (At’ + C%Ax’) to get At = yAt' = yAt,, which

is the equation for time dilation from Chapter 2.



Now let's consider length contraction. Suppose that observer 0 measures the proper length:
Ax' = L. For simplicity, suppose that one endpoint lies at x; = 0 and the other endpoint
lies at x5 = L. (Observe that Ax' = xp = x3 = Ly = 0 = L,.) In order for 0’ to measure the
proper length, 0" must be at rest relative to the distance. This means that the coordinates
x, = 0 and x = L aren't changing. Since observer 0 is moving relative to 0' (it's mutual: it's
similarly true that 0" is moving relative to 0), when we determine x, and x; we must make
these measurements at the same time relative to O (since the values of x, and x are constantly
changing due to the relative motion between 0 and 0'). It's convenient to measure x, and x
att, =t = 0. Since we originally setup our coordinate system with the two origins coincident
at t = (), this guarantees that x, = x, = 0. According to the Lorentz transformation, x5 =
y(xg — vtg). Att, =tz = 0, this reduces to x = yxp. Recall that x5 = Ly, such that Ly = yxs,

which leads to xp = % Since x, = 0, observer O measures the length of the rod to be Ax =

Xp— ¥ = % - = Lf = [, which is the equation for length contraction from Chapter 2. (At

other times, you still get the same result for Ax = x5 — x,, since the equations for x, and x;
both involve the term —yvt, which will cancel out when subtracting x - x4.)






Rotational Invariance in Galilean Relativity

[n Galilean relativity, the distance between two points is invariant. When we say invariant,
we mean that it has the same value (it is a constant) regardless of which coordinate system
you use to measure the distance. For example, consider the distance between points A and B
in the diagram below. If you measure the horizontal distance between these points, Ax =
Xg — Xy, and the vertical distance between these points, Ay = y, - y,, you could find the
distance between A and B using the Pythagorean theorem: Ax* + Ay* = d. Now consider
the rotated coordinate system (x',y"). The distance equals Ax"® + Ay"® = d in the rotated
coordinate system. In Galilean relativity, the distance between points A and B must be the
same in either coordinate system: For example, the length of a rod doesn't change when it is
rotated. We conclude that Ax® + Ay* = Ax"® + Ay" in Galilean relativity. If we extend our
argument to three dimensions, we find that Ax* + Ay* + Az* = Ax"® + Ay" + Az, This
means that the quantity Ax® + Ay? + Az* is a Galilean invariant.

y
A
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Lorentz Invariance

As we have learned, different observers don't always measure the same lengths in special
relativity. Due to length contraction, the quantity Ax® + Ay® + Az” isn't a Lorentz invariant,
[t turns out that ¢“At? - Ax® - Ay* - Az* is invariant under Lorentz transformations. Note
that cAt is the distance that light travels in time At relative to 0. To see that the quantity

ctAt? - Ax* - Ay* - Az* is a Lorentz invariant, apply the Lorentz transformation equations.
2

v
cAAt? - Ax® - Ay? - Az* = ¢yt (At’ + C—zAx’) —y(Ax' 4 vt - Ayt - A7

p p?
= 2y (At’2 + 00 4 FAx'z) A (A + 208t A + P07 - by - A2
vZ
= c2y2At” + 2upPAt' Ay 4+ FyZAx'2 — 20y - 2oy MY - pRyRAE - By - A7

2

= y2At" (2 - v) + y2hx"” (c_z - 1) Ay - A7”

1
Note that y* = T r — Wewilluse both y? = - ——andy ==
: (c) 2 7@ =g
2\+2 2 2 2 Cz 12( 42 2 1 12 vz 2 2
C*At" = Ax* - Ay" = Az® = —— A (¢* - v) +—— M 5 - 1 - Ay - s
c2-v LY
CZ

CEAtE - Ax? - Ayt - Az% = At - A - Ay - Az



v2
2 2 -1
Note that 1 - :—2 =- C—z = 1), such that (Cz vz)
1__
c2

= —1. We see that c*At” — Ax* - Ay* - Az?

is indeed Lorentz invariant, since we have shown that it equals c2At" - Ax'* - Ay - Az
Any inertial observer who measures c2At® - Ax” — Ay® - Az will get the same value. One
way to interpret Lorentz invariance is that the speed of light is the same for all observers.
Suppose that an observer proceeds to measure the speed of light in vacuum. During time
interval At, the distance that light travels from (x;,y;,2,) to (xy, vy, 2,) is Ax? + Ay* + Az%,

JAx24

7 ArP+ayi+Az?
At?
Multiply by At? and subtract Ax? + Ay® + Az? to get c*At® — Ax® - Ay? — Az% = ( (note
that this only equals zero when measuring the speed of light). Lorentz invariance shows that
this expression will equal zero for any inertial observer, which equates to saying that the

speed of light is the same for all inertial observers.

such that the speed of light equals ¢ = 2: s Square both sides to get ¢






Tensor Notation

All advanced work in relativity is done using tensor notation. The reason for adopting tensor
notation has to do with convenience. For example, the equation R}, = 0,I, - d,I;, looks
like a single equation when written with tensor notation, but would instead involve writing
256 separate equations if you insist upon writing the same thing without using tensor notation.

Thus, anyone who does much work in relativity quickly learns the value of tensor notation.

Lowercase Greek letters (like @, u, or v) are used to represent spacetime indices, where 0
corresponds to ct and 1-3 correspond to the spatial coordinates (x, y,z). In relativity, there
are two types of indices:

o contravariant indices are up, like A* and g*".

o covariant indices are down, like A, and g,,,.

The notation A* could refer to A° (the time component of 4), A* (the x-component of 4), 4°
(the y-component of 4), or A* (the z-component of A). A first-rank tensor, like A* or B, is
called a 4-vector. A 4-vector is the generalization of a vector to spacetime. A 4-vector has 4
components: one time component and three spatial components. There are two kinds of

4-vectors: contravariant with the index up (like A*) and covariant with the index down
(like A,).



A particularly useful 4-vector is the position-time 4-vector. The contravariant and covariant
position-time 4-vectors have the following components:

(W ={etxyz , {x)={ct-x-y-2)
As we will see, the relative minus signs between time and space for the covariant 4-vector
help to construct Lorentz invariance.

[t is so common in relativity for equations to include sums that almost all books and papers
on the subject follow Einstein summation notation, which means that summation over an
index is implied when the same index is repeated (in a term). For example, A*B, implies a

sum over the index y:

A¥B, = ABy + A'B, + AB, + A’B,
[n contrast, the expression A*B, doesn't imply any summation because none of its indices
are repeated. The expression AB, could be A*By, A*B,, or any of 16 possibilities. Unless the
values of the indices are given, you have no way of knowing which. Compare with A*B,,, which

equals a sum of four specific terms (according to the equation above).



With Einstein summation notation, the contravariant and covariant forms of the position-
time 4-vectors can be used to express Lorentz invariance concisely as:
i, =3y
Since there is an implied summation over the index u on both sides, the above equation is
shorthand for:
Tl TR T o T s T e T s o o
Plugging in the values for each component, the above equation becomes:
I L L
The above equation expresses Lorentz invariance, but it's more concise to write x¥x, = x™x,,.

The Lorentz transformation may be expressed with tensor notation as:

s Jey?
where the components /', of the second-rank tensor A can be arranged in a matrix as:
y ¥ 00
p=|7V8 v 00
00 10
00 01

What may look like one equation, x'* = AY x", is actually a set of four equations: a different
equation for each possible value of the index u. On the right-hand side of the equation, there
is an implied sum over the repeated index v. For example, when y = 1, the equation becomes
(0= A0x = A + Adat + AQx® 4+ A3x Recall that /0 = ct', x® = ct, x* = x,x* = y,and
x> = 2. We know this because {x*} = {ct, x,y,z}. The equation for x" is ct’ = yct - yfx +

0y +0zorct' = yct —ypx. Using f = ;, we getct' = yct - y%x ort' = y(t - :—zx)






Notation

Latin indices (like i, j, and k) represent spatial indices (1, 2, 3), whereas Greek indices (like
i, v, and p) represent spacetime indices (0, 1, 2, 3). For example, the quantity x; could be
X1, Xz, 01 X3 (but not x, ), whereas the quantity x, could be x,, x;, x,, or 5. The distinction

between contravariant and covariant indices is only made in the context of spacetime indices
(represented by Greek letters).






The Kronecker Delta

The Kronecker delta symbol, d;; (not to be confused with the delta function, which means
something else entirely), equals 1 when the indices are the same and 0 otherwise:
lifi=]
U100fi #]
For example, d;, = 0 and &,, = 1. When an expression involves a Kronecker delta, the only
nonzero terms arise when the Kronecker delta’s indices are equal. This means that we may
effectively remove the Kronecker delta symbol and replace one of its indices with the other.

For example, consider the expression A;0;;. Whenever i # j, we get zero, such that the only
nonzero term s A;d;; = A;. As another example, note that 4;B,6;; = A;B; (which represents
the dot product between two vectors, A, B + 4,B, + A;B;). The expression A;B;6;; involves

two implied sums (one over i and another over j), which is the sum of 9 terms. However, 6
of these terms are zero, since the Kronecker delta equals zero when i # j. The three nonzero
terms are included in the single implied sum A;B;. Going from 4;B;4;; to A;B;, we removed

the Kronecker detla and replaced j with i.






The Levi-Civita Symbol

The three-dimensional Levi-Civita symbol is defined as follows:
1 for €153, €23, and €54,
Eije =1~ 1 fOr €13, €513, and €554
0 if any two indices are equal
Note that the Levi-Civita symbol changes sign with the interchange of any two indices. For

example, €3, = €153 and €35 = —€34,. One example of where the Levi-Civita symbols is

useful is in forming the vector product. For example, if C=AxB, then ¢ k= € B, with
an implied double sum over the repeated indices i and j. Although this double sum includes
9 terms, only 2 of these terms are nonzero. For example, for 5 = €;;54;B;, the only nonzero
terms arise when i=1and j =2 or when i=2 and j = 1 (5 = €534, B, + €;134,8, =
(1)ABy + (=1)4,B; = A,B, - A,B, = A,B, - A,B, = (. Note that ;5 equals zero if i or

jequals 3 (orif i equals j).



There is also a four-dimensional Levi-Civita symbol:
(-1 for even permutations of €23 1 for even permutations of €1y

1 for odd permutations of "' €,,,, = {~1 for odd permutations of €y,
0 if any two indices are equal 0 if any two indices are equal

An even permutation is obtained by swapping indices an even number of times. For example,
e can be formed from €°14° with exactly two swaps: First, interchange the 2 and 3 to get
and then interchange the 1and 3 to get €***2, An odd permutation involves swapping
32 s a single swap different from ¢,

chvpo =

—

0132

indices an odd number of times. For example, €

[t's correct in both three and four dimensions to count the number of swaps. Note that it's
incorrect in four dimensions to describe this as “cyclic order.” Although €53, €,13, and €51,
follow a cyclic order in three dimensions (1 before 2 before 3 before 1 before 2 etc.), in four
dimensions (that is, spacetime) the Levi-Civita symbol doesn't follow a cyclic order.






The Metric Tensor

The metric tensor is fundamental to tensor notation for both special and general relativity.
[n special relativity, the metric tensor is defined as:
lifu=v=0
ywz{—lﬁﬂ:v>0
Oifu#v
The nonzero elements are g% = 1, g = -1, g% = -1, and g* = -1. If both indices are
lowered instead of raised, the elements of the metric tensor are the same:
lifp=v=10
%W:{—lﬁu:v>0
Oifu#v



However, if one index is raised and the other is lowered, you instead get the four-dimensional
Kronecker delta: gl = 6/, which equals 1if 4 = v and 0 if s # v. The metric tensor can be
used to relate the covariant and contravariant forms of the position-time 4-vector:

Xy = guvxv , w=g",
For example, g,,x" includes an implied sum over the index v: 3 of the 4 terms will be zero.
The only nonzero term arises when p = v. Recall that the components of the position-time
4-yector are {x*} = {ct,x,y,2} and {xu] ={ct,~x,~y,~z}. What g,,,x" effectively does is
change the sign of the spatial components only, effectively changing the contravariant form
into the covariant form (while g*"x, does vice-versa). The covariant and contravariant forms
of any spacetime 4-vector can be similarly related via the metric tensor:

A =g,A AP =g"A,
Lorentz invariance can be expressed using the metric tensor as follows:

Jkx’ = gkt






The Scalar Product between 4-Vectors

The four-dimensional scalar product between two 4-vectors is:
A'B, = A’B, + A'B, + A°B, + A’B,
Since B¥ = g*'B,, it follows that B’ = By, B* = =By, B* = -B,, and B* = —B,, such that:
AMB, = A°B" - A'B! - 4B - 'R = A°B" - A-B
Note that A - B is the usual three-dimensional scalar product between ordinary vectors in 3D
space: A+ B = A,B; = 4B, + A,B, + A;B.,

[fwe letin B = A, we get the scalar product of a 4-vector with itself:

A4, = (A2 - KA
Note that A+ A = (41)2 + (42)2 + (43)? is the square of the magnitude: A+ A = ||K||2 in 3D
space. (What can get confusing is that books on vector algebra commonly write A-Ras Al
yet books on relativity commonly write A*A,, as A%, but the quantities A-Aand AFA, aren't

- - i
the same. One way around this is to write A-A = ||A|| versus A*A, = A* or at least write

- —y12
A% with an arrow for |[A]| so that you can distinguish between the 3D and 4D quantities.



In 3D space, A+ A = HZ\HZ is always positive (except for the null vector, in which case it is
er0). However, in 4D spacetime, A*A, = A?* can actually be negative.

o WhenAfA, = A% > (), the 4-vector is considered to be time-like.

o WhenA*A, = A* <0, the 4-vector is considered to be space-like.

o WhenA*A, = A% = (, the 4-vector is considered to be light-like.

Note: For books or instructors that define A, to be negative and A; to be positive (contrary
to the convention adopted in this book), the above conditions are reversed.






Tensor Relations and Identities

The following relations and identities are sometimes handy when working with tensors:

Ogi€rme = 0
€ijk€ijk =
Eijmeijn = 26mn
€imn€ ipq — 6mp6 R quanp
9" 9y = 4
P eng = 66B

HvPag, o = —2 (555;; _ 555;;)






Symbols and SI Units

Name ‘ 5l Units
y relative speed between two observers m/s
C speed of light in vacuum m/s
t time measured by 0 S
t time measured by 0' S
At time interval measured by 0 S
At time interval measured by 0’ S
(%,9,2) position coordinates measured by 0 m
(,y,2) position coordinates measured by 0' m




Ax, Ay, Az X=X, Y, =Yl =4 m
Ax', Ay’ Az ¥, =Xy, =y 25— 14 m
P ob o8 of (ct,x,9,2) m
(%o, %1, %3, %3) (ct,—x,-y,-2) m
p fraction of the speed of light unitless
y time dilation factor unitless
i, ], k,mn,p,q spatial indices (1,2,3) N/A
Y, p,0,a,0 spacetime indices (0,1,2,3) N/A
X; a spatial coordinate: xy, X,, 0r x5 m
y a contravariant spacetime coordinate (a component .
of the position-time 4-vector): x°, x*, x% or x°
” a covariant. spacetime coordinate (a component of .
the position-time 4-vector): xo, x;, Xy, Or X3
P a contravariant spacetime coordinate measured by 0' m
X a covariant spacetime coordinate measured by 0' m




with covariant indices

A a spatial component of a 3D vector: A, 4,, or 4, it depends
n a contravariant component of a  denends
1
4D spacetime vector: A°, A%, 4%, or 4° P
a covariant component of a
A, , ; it depends
4D spacetime vector: A, Ay, 4,, or A
A avector in 3D space it depends
A a component of the Lorentz transformation matrix unitless
0jj the Kronecker delta in 3D space unitless
enPo the 4D Levi-Civita symbol with contravariant indices unitless
Evpo the 4D Levi-Civita symbol with covariant indices unitless
) a component of the metric tensor ,
g . . unitless
with contravariant indices
a component of the metric tensor ,
B unitless




A'B the scalar product between two 3D vectors it depends

A'B, the scalar product between two 4-vectors it depends

4] the magnitude of a 3D vector it depends

Note: The following Greek letters are uppercase lambda (A), lowercase delta (¢), a variation
of lowercase epsilon (¢), lowercase mu (), lowercase nu (v), lowercase rho (p), lowercase
sigma (¢), lowercase alpha (), and lowercase beta ().






Constants

Quantity ‘ Value

speed of light in vacuum ¢ =2.9979 x 10° m/s







Strategy for Problems Involving the Lorentz Transformation

To solve a problem that involves the Lorentz transformation, follow these steps:

o Setup a coordinate system with +x along the relative velocity. Identify observers 0
and 0', where 0’ moves with constant velocity v relative to 0. Apply the equations for
the Lorentz transformation.

/

’:y(t—zx) , X =ylx-vt) , y=y , 7=z

CZ
4 / _ / / — &l — i