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Divergence of perturbation theory: Steps towards a convergent series

Sergio A. Pernice
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

Gerardo Oleaga
Departamento de Matematica Aplicada, Facultad de Matematicas, Universidad Complutense, 28040 Madrid, Spain

~Received 14 August 1996; published 24 December 1997!

The mechanism underlying the divergence of perturbation theory is exposed. This is done through a detailed
study of the violation of the hypothesis of Lebesgue’s dominated convergence theorem using familiar tech-
niques of quantum field theory. That theorem governs the validity~or lack of it! of the formal manipulations
done to generate the perturbative series in the functional integral formalism. The aspects of the perturbative
series that need to be modified to obtain a convergent series are presented. Useful tools for a practical
implementation of these modifications are developed. Some resummation methods are analyzed in the light of
the above mentioned mechanism.@S0556-2821~97!04424-X#

PACS number~s!: 11.10.Jj
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I. INTRODUCTION

A typical quantity used to analyze the nature of the p
turbative expansion in quantum field theory is the partit
function

Z~l!5
1

Z0
E @df#e2S[f] , ~1!

with

S@f#5E ddxF1

2
~]mf!21

1

2
m2f21

l

4
f4G . ~2!

The normalization factor 1/Z0 is the partition function of the
free field (Z→1 whenl→0). The analysis of the perturba
tive expansion of any Green’s function goes along sim
lines to that forZ. In the example above we consider a sca
field theory for simplicity.

The traditional argument for understanding the diverg
nature of the perturbative expansion can be traced bac
Dyson @1#. Although the form was different, the content
his argument is captured by the following statement: ‘‘If t
perturbative series were to converge to the exact result,
function being expanded would be analytic inl at l50. But
the function (Z for example! is not analytic inl at that
value. Therefore, as a function ofl, the perturbative series i
either divergent or converges to the wrong answer.’’

Estimates of the large order behavior of the coefficients
the perturbative series showed that the first possibility is
one actually realized@2,3#. ThatZ, as a function ofl, is not
analytic atl50 can be guessed by simply noting that if
its functional integral representation@Eq. ~1!# we make the
real part ofl negative~though arbitrarily small!, the integral
diverges. In fact, there is a branch cut in the first Riema
sheet that can be chosen to lie along the negative real
extending froml52` to l50 @4,5#.

The above argument is very powerful and extends to
perturbative series of almost all other nontrivial field the
ries. It has also motivated a series of very important cal
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lations of the large order behavior of the perturbative coe
cients @2# and general analysis of the structure of fie
theories@6#, as well as improvements over perturbative co
putations of different physical quantities@2#.

For all its power, it is fair to say that this argument, as
typically the case with areductio ad absurdumtype of argu-
ment, fails to point towards a solution of the problem
divergence. It is only through the indirect formalism of Bor
transforms that questions of the recovery of the full theo
from its perturbative series can be discussed@5,7,8#.

In this paper an alternative way of understanding the
vergent nature of the perturbative series is presented.
way of understanding the problem complements the tra
tional argument briefly described above, hopefully illumina
ing aspects that the traditional approach leaves obscure
particular, as we will see, the arguments in this paper po
directly towards the aspects of the perturbative series
need to be modified to achieve a convergent series. I
hoped that the way of understanding the problem prese
here will help to provide new insights into the urgent pro
lem of extracting nonperturbative information out of qua
tum field theories.

In Sec. II we develop our analysis of the divergence
perturbation theory. In Sec. III we point out the ingredien
that, according to the analysis of Sec. II, a modification
perturbation theory would need to achieve convergence.
also present a remarkable formula~64! that allows us to
implement such modifications in terms of Gaussian integr
paving the way for the application of this convergent mo
fied perturbative series to quantum field theories. The pr
of the properties of the function~64! is given in Appendix A.
In Sec. IV we analyze recent work on the convergence
various optimized expansions@9–16# in terms of the ideas
presented here. In Sec. V we summarize our results and m
tion directions of the work currently in preparation. Finall
in Appendix B, we apply the ideas of this paper in a simp
but illuminating example for which we actually develop
convergent series by modifying the aspects of the pertu
tive series pointed out by our analysis as the source of di
gence.
1144 © 1997 The American Physical Society
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II. LEBESGUE’S DOMINATED CONVERGENCE THEOREM AND PERTURBATION THEORY

A. Wrong step in perturbation theory

Although the notation will not always be explicit, we will work in an Euclidean space of dimension smaller than 4 a
a finite volume.

Let us remember how the perturbative series is generated in the functional integral formalism for a quantity likeZ:

Z~l!5E @df#expS 2E ddxF1

2
~]mf!21

1

2
m2f2G2

l

4E ddxf4D ~3!

5E @df# (
n50

`
~21!n

n! S l

4E ddxf4D n

expS 2E ddxF1

2
~]mf!21

1

2
m2f2G D ~4!

5 (
n50

` E @df#
~21!n

n! S l

4E ddxf4D n

expS 2E ddxF1

2
~]mf!21

1

2
m2f2G D . ~5!
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The final sum is in practice truncated at some finite or
N. The functional integrals that give the contribution of e
ery ordern are calculated using Wick’s theorem and Fey
man’s diagram techniques with the corresponding renorm
ization.

We see then that the generation of the perturbative se
in the functional integral formalism is a two-step proce
First Eq. ~4!, the integrand, is expanded in powers of t
coupling constant, and then Eq.~5!, the sum, is interchange
with the integral.1

It will be convenient to have a simpler example in whi
the arguments of this paper become very transparent. C
sider the simple integral

z~l!5
1

Ap
E

2`

`

dxe2[x21~l/4!x4] ~6!

and its corresponding perturbative expansion

z~l!5
1

Ap
E

2`

`

dx(
n50

`
~21!n

n! S l

4
x4D n

e2x2
~7!

5
1

Ap
(
n50

` E
2`

`

dx
~21!n

n! S l

4
x4D n

e2x2
~8!

[ (
n50

`

~21!ncnln. ~9!

This simple integral has been used many times in the pa
a paradigmatic example of the divergence of perturba

1In this paper we will often use the familiar word ‘‘integrand’’ t
refer toe2S or any functional inside the functional integration sym
bol. It would be more precise to preserve this word fore2Sint in the
measure defined by the free field. The terminology used here
however, common practice in the quantum field theory literat
and also helps to emphasize the similarities with the intuitive fin
dimensional case presented below.
r

-
l-

es
.

n-

as
n

theory @8#. It is therefore especially well suited for a com
parison between the traditional arguments and the ones
sented in this paper.

Again we use the two-step process to generate the pe
bative series. First the integrand is expanded in powers ol,
Eq. ~7!, and then the sum is interchanged with the integ
~8!. In this simple example the perturbative coefficients c
be calculated exactly for arbitraryn. In the largen limit they
become

cn;A 2

2p
~n21!! when n→`. ~10!

With such factorial behavior, the series diverges for all
different from zero as is well known. On the other hand, t
function z(l), as defined in Eq.~6!, gives a well-defined
positive real number for every positive reall. Therefore one
or both of the two steps done to generate the perturba
series must be wrong.

Similarly, in the functional integral case normalized wi
respect to the free field~1!, Z is a well-defined number while
its perturbative series diverges. Again, one or both of the
steps must be wrong.

The first step, the expansion of the integrand in powers
l, is clearly correct. As the integrand~not the integral! is
analytic inl for every finitel, the expansion merely corre
sponds to a Taylor series. The second step, the interch
of sum and integral, must therefore be the wrong one.

The next obvious step is then to recall the theorems
govern the interchange between sums and integrals in o
to understand in detail why this step is wrong in our ca
The most powerful theorem for this purpose is Lebesgu
well-known theorem of dominated convergence. In a simp
fied version, sufficient for our purposes, it says the follo
ing.

Let f N be a sequence of integrable functions that conve
pointwisely to a functionf ,

f N→ f as N→`, ~11!

and bounded in absolute value by a positive integrable fu
tion h ~dominated!:

is,
e
e
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u f Nu<h , ;N. ~12!

Then, it is true that

lim
N→`

E f N5E lim
N→`

f N5E f . ~13!

As a special case, if the convergence~11! is uniform and the
measure of integration is finite, then the interchange is a
valid. It should be emphasized that Lebesgue’s theorem
lows from the axioms of abstract measure theory. Theref
if the problem under consideration involves a well-define
measure, as is the case for the quantum field theories con
ered here@16#, the theorem holds.

In our case we can write, formally,2

f N@f~x!#5
1

Z0
(
n50

N
~21!n

n! S l

4E ddxf4D n

3expS 2E ddxF1

2
~]mf!21

1

2
m2f2G D ~14!

for the functional integral case and

f N~x!5
1

Ap
(
n50

N
~21!n

n! S l

4
x4D n

e2x2
~15!

for the simple integral example.
One important aspect of the dominated convergence th

rem approach to analyze the divergence of perturbat
theory is that it focuses on the integrands, objects that
relatively simple to analyze. On the contrary, the analytici
approach briefly described in the Introduction focuses on
integrals which are much more difficult to analyze. So befo
we try to understand the aspects of the dominated conv
gence theorem that fail in our case, it will be useful to stu
some properties of the integrand for the intuitive simple e
ample. In Fig. 1, the exact integrand, together with som
perturbative approximations, are displayed. We can appre

2See previous footnote.

FIG. 1. Exact integrand, zeroth, second, and fourth perturbat
approximations.l51.
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ate the way in which the successive approximations beh
For smallx, and up to some critical value that we callxc,N
~where the subindexc stands forcritical while the subindex
N indicates that this value changes with the order! the per-
turbative integrands approximate the exact integrand v
well. Even more,xc,N grows with N. But for x bigger than
xc,N a ‘‘bump’’ begins to emerge. The height of thes
bumps, as we will see in detail shortly, grows factoria
with the order, while the width remains approximately co
stant. So the larger the order in perturbation theory,
larger the region in which the perturbative integrands
proximate the exact integrand very well, but the stronger
upcoming deviation. As we will see shortly, it is precise
this deviation that is responsible for the divergence of
perturbative series and the famous factorial growth. We w
also see that an exactly analogous phenomenon happe
the functional integral case and is again responsible for
divergence of the perturbative series.

Returning to the problem of understanding the aspect
the dominated convergence theorem that fail in the pertu
tive series, we will now show that the sequence of integra
of Eq. ~14! and Eq.~15! converges, respectively, to the exa
integrands

F5
1

Z0
expS 2E ddxF1

2
~]mf!21

1

2
m2f2G2

l

4E ddxf4D
~16!

and

f 5
1

Ap
e2[x21~l/4!x4] , ~17!

but not in a dominatedway. That is, there is no positive
integrable functionh that satisfies Eq.~12!.

B. Failure of domination in the simple example

That the sequence of integrands of Eq.~14! and Eq.~15!
converges, respectively, to the exact integrands~16! and~17!
is obvious, since, as mentioned before, for finitel they are
analytic functions ofl and so their Taylor expansions con
verge~at least for finite field strength!. To see the failure of
the domination hypothesis it is convenient to analyze
‘‘shape’’ of every term off N . Namely, for the field theory
case,

cn@f~x!#[
1

Z0

~21!n

n!

1

4nS lE ddxf4D n

3expS 2E ddxF1

2
~]mf!21

1

2
m2f2G D ,

~18!

while for the simple integrand

cn~x!5
1

Ap

~21!n

n! S l

4D n

x4ne2x2
. ~19!

In this section we analyze the failure of the domination h
pothesis for the simple example~6! because it turns out to b

e
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remarkably similar to the field theory example analyzed
the next section. In Fig. 2 we can examine the functio
c3(x) andc4(x) for l51 corresponding to the simple inte-
grand case that we analyze first. The maximum ofcn(x) is
reached at

xmax56~2n!1/2. ~20!

There, for largen, the function takes the value

cn~xmax!5
1

2p3/2
~21!n~n21!!ln. ~21!

On the other hand, the width remains constant asn increases
as can be seen by a Gaussian approximation around
maximumxmax5(2n)1/2:

cn~x!'
1

2p3/2
~21!n~n21!!exp$22@x2~2n!1/2#2%ln.

~22!

The integration of this Gaussian approximation gives, f
largen,

E dxcn~x!'
1

2

&

2p
~21!n~n21!!ln, ~23!

in accordance with Eq.~10! if we take into account the factor
of 2 coming from the two maxima6(2n)1/2.

The mechanism of convergence of thef N’s to f now be-
comes clear. Thef N’s are made out of a pure Gaussian~the
‘‘free’’ term ! plus ‘‘bumps’’ ~the perturbative corrections!
that alternate in sign~see Fig. 2!. The height of these bumps
grows factorially with the order, while their width remains
approximately constant. More specifically, the Gaussian a
proximation around the maxima@Eq. ~22!#, which becomes
exact when the order goes to infinity, has a variance ind
pendent of the order. For fixedN and for x smaller than a
certain value, the bumps exhibit a delicate near-cancellati
leaving only a small remnant that modifies the free integra
into the interacting one. However, forx larger than that
value, the last bump begins to emerge and, being the la

FIG. 2. Exact integrand and fourth perturbative approximatio
together with the third and fourth terms.l51.
s
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st,

does not have a successor to cancel it~in the N→` limit,
there is no last bump and the convergence is achieved
every x). Consequently, beyond a certain valuexc,N , the
function f N deviates strongly fromf and is governed by the
uncanceledNth bump, with height proportional to (N21)!
and finite variance. This is so because, since the height o
bump grows factorially with the order, forN large enough
the last bump is far greater than all the previous ones
remains almost completely uncanceled. Furthermore, s
the variance of the bumps is independent of the order,
means that for every finite order, there is a region offinite
measurein which the perturbative integrand is of the ord
of the height of the last bump. In Fig. 2 we can see how
functionc4(x) is left almost completely uncanceled byc3(x)
and dominates the deviation off 4 from f .

That xc,N ~the value ofuxu up to which the perturbative
integrand very accurately approximates the exact one! grows
with N, going to infinity whenN→`, is a simple conse-
quence of Taylor’s theorem applied to the analytic functi
e2lx4/4.

The above analysis makes clear the failure of the do
nation of the sequence of Eq.~15! towards f @Eq. ~17!#.
Indeed, any positive functionh(x) with the property

u f N~x!u<h~x!, ;N, ~24!

fails to be integrable, since it has to ‘‘cover’’ the bum
whose area grows factorially withN. Therefore, although the
sequence off N(x)’s converges tof (x), the convergence is
not dominated, as we wanted to show.

Equation~23!, together with the above comments, ind
cates that the same reason for which the sequence of
grands~19! fails to be dominated is the one that produces
factorial growth in the perturbative series.

In the field theory case, although we cannot rely on fi
ures such as Eqs.~1! and ~2! to guide our intuition, we will
see that the analogy with the simple integral example is
close that the interpretation is equally transparent.

C. Failure of domination in quantum field theory

For quantum field theory, as for the simple example a
lyzed above, it is convenient to consider every te
cn@f(x)# @Eq. ~18!# of the perturbative approximationf N
@Eq. ~14!# to the exact integrand@Eq. ~16!#,

cn@f~x!#5
1

Z0

~21!n

n!
expS 2E ddxF1

2
~]mf!21

1

2
m2f2G

1nlnF ~l/4!E ddxf4G D , ~25!

where we have written thenth power of the interaction in
exponential form. The mathematical analysis below follo
closely the discussions in Chap. 38 of Ref.@8#. Although the
problem treated there is different from the one treated h
many techniques used in@8# can be directly applied here.

For n large enough, the analysis of its ‘‘shape’’ reduces
the familiar procedure of finding its maxima, as in the ca
of the simple integrand. The equation determining t

n
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maxima ofcn@f(x)# is the equation that minimizes the e
ponent, and can be thought of as the equation of motion
the effective action

S@f#5E ddxF1

2
~]mf!21

1

2
m2f2G2nlnFl4E ddxf4G ,

~26!

which is

2¹2f1m2f2
4n

E ddxf4

f350. ~27!

Making the change of variables

f~x!5mS *ddxf4

4n D 1/2

w~mx!

5md/221S 4n

E dduw4~u!D 1/2

w~mx!, ~28!

we find thatw satisfies the equation

2¹2w~u!1w~u!2w3~u!50, u[mx. ~29!

This equation corresponds to the instanton equation of
negative masslf4 theory. The analysis of its solutions ca
be found in many places. We are interested in solutions w
minimal, finite action. For these solutions, in the infinite vo
ume limit, scaling arguments provide very interesting info
mation. We mentioned at the beginning of Sec. II A that
work in a finite volume. However, if the volume is larg
enough, the infinite volume arguments used below rem
valid up to errors that go to zero exponentially fast when
volume goes to infinity.

Since the solutionfmax(x) „the subindex ‘‘max’’ indi-
cates that, in functional space,cn@f(x)# reaches its maxi-
mum atfmax(x); this should not be confused with the fa
that the the action~26! reaches itsminimumthere… is a mini-
mum of the action~26!, then given an arbitrary constanta,
S@afmax(x)# should have a minimum ata51 @8,17#. This
implies the equation

E ddx~]mfmax!
21m2E ddxfmax

2 24n50. ~30!

Similarly, S@fmax(ax)# should also have a minimum a
a51, implying

~22d!

d E ddx~]mfmax!
22m2E ddxfmax

2 12n50.

~31!

Solving the system of equations~30! and ~31! we obtain

E ddx~]mfmax!
25n d, ~32!

m2E ddxfmax
2 5n~42d!, ~33!
of

e

th

-

in
e

from which we conclude in particular that the integral

E ddxF1

2
~]mfmax!

21
1

2
m2fmax

2 G52n ~34!

is independent of the dimension. The relations~32! and~33!
can be explicitly checked in the cased51 ~quantum me-
chanics!, in which the solutions to Eq.~27! are known ana-
lytically. They are

fmax
d51~ t !5S 3n

2mD 1/2 1

cosh@m~ t2t0!#
, ~35!

giving

E dt~ḟmax
d51!25n, ~36!

m2E dt~fmax
d51!253n. ~37!

Since w(u), introduced in Eq.~28! and satisfying Eq.
~29!, is dimensionless~as isu5mx), and the corresponding
fmax(x) has finite action, the quantity

A[
1

4E dduw4~u! ~38!

is a finite, pure number greater than zero@8#. For the
quantum-mechanical case mentioned above,A54/3. For the
casesd.1, A is not explicitly known but, as noted, it mus
be a finite, positive, pure number. With the definition~38!,
Eq. ~28! becomes

fmax~x!5md/221S n

AD 1/2

w~mx!. ~39!

Sincew(mx) satisfies then-independent equation~29!, we
conclude that the field strength offmax grows with the
square root of the ordern.

Equation~34!, together with the definition~38! and the
relation ~39!, allow us to write an expression for the actio
~26! at f5fmax,

S@fmax#52n2nlnFlmd24

A
n2G . ~40!

The value ofcn@f(x)# at f5fmax then becomes, for large
n,

cn@fmax~x!#'
1

Z0

~21!n

2p
~n21!! S lmd24

A D n

. ~41!

With the change of variables

f~x!5fmax~x!1md/221fq~mx!, ~42!

the Gaussian approximation ofcn@f# aroundfmax is
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cn@w~u!#'
1

Z0

~21!n

2p
~n21!! S lmd24

A D n

3expS 2
1

2E ddu1ddu2fq~u1!$@2¹u1

2 11

23w2~u1!#d~u12u2!%fq~u2! D ~43!

3expS 2
1

2E ddu1ddu2fq~u1!

3@~1/A!w3~u1!w3~u2!#fq~u2! D , ~44!

whereu5mx andw(u), the solution of Eq.~29!, is related to
fmax through Eq. ~39!. This Gaussian approximation be
comes exact in the limitn→`.

The second derivative operator, which we callD, is, then,

D5D local1Dnonlocal, ~45!

with

D local52¹21123w2 ~46!

and

Dnonlocal5
1

A
uv&^vu with ^uuv&5w3~u! ~47!

andA given in Eq.~38!.
The operatorD local is well known~see, for example,@8#!.

It hasd eigenvectorsu0m& with zero eigenvalues given by

^uu0m&5
]

]um
w~u!. ~48!

These vectors are also zero eigenvectors ofD, as can be seen
by noting thatuv& is orthogonal to them:

^vu0m&50. ~49!

They reflect the translation invariance of the action~26!.
D local is also known to have one and only one negat

eigenvector.D, on the contrary, is a positive semidefini
operator. We can prove this in a line-by-line analogy w
the corresponding proof forD local, which uses Sobolev in
equalities and is given in Appendix 38 of Ref.@8#,

D>0, ~50!

in the operator sense.
Projecting out thed-dimensional eigenspace of eige

value zero, the resulting operator, which we callD8, is posi-
tive definite:

D85D local8 1Dnonlocal.0. ~51!

This equation explicitly states that the projection over
strictly positive eigenvectors modifies onlyD local. The non-
local part, as we saw, is a projector orthogonal to the z
modes and is therefore not modified under that operation
e

e

o

Equations~50! and~51! suggest that the operatorD, with
the corresponding renormalization ford.1, generates a
well-defined Gaussian measure in a finite volume~remember
d,4). In fact, the determinant ofD local8 has been calculated
many times in the past@8#, and a generalization of a
quantum-mechanical argument of Ref.@18# indicates that
this is all we need to compute the determinant ofD8. The
argument goes as follows:

Det@D8#5DetFD local8 1
1

A
uv&^vuG

5Det@D local8 #S 11
1

A
^vuD local821uv& D . ~52!

Sincew(u) is orthogonal to]mw(u) ~the zero modes ofD
andD local),

D local8 w5D localw522w3. ~53!

The last equality follows from the definition ofD local in Eq.
~46! and Eq.~29! satisfied byw. InvertingD local8 and remem-
bering the definition ofuv& andA in Eqs.~47! and ~38!, we
obtain

^vuD local821uv&522A. ~54!

Replacing this result in Eq.~52!, we arrive at the result

Det@D8#52Det@D local8 #. ~55!

As already mentioned,D local8 has one and only one negativ
eigenvector; consequently its determinant is negative. Eq
tion ~55! indicates then that Det@D8# is positive, as it should
be according to Eq.~51!. The effect of the nonlocal part is to
change the sign of the determinant of the local part.

The preceding equations allow us to integrate the Gau
ian approximation ofcn@w(u)# given in Eqs.~43! and ~44!.
Using the method of collective coordinates to project out
zero modes, the Jacobian of the corresponding chang
variables is, at leading order in 1/n,

J5 )
m51

d F E ~]mfmax!
2ddxG1/2

, ~56!

where no sum overm is implied.
It can be shown that the solutions of Eq.~27! correspond-

ing to minimal action are spherically symmetric@8#. Equa-
tion ~56! can then be written as

J5F1

dE ~]mfmax!
2ddxGd/2

, ~57!

where now a sum overm from 1 to d is implied. Using Eq.
~32! we then find

J5nd/2. ~58!

With this expression, the functional integral ofcn@w(u)# can
be written as
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1

Z0
E @df#cn@f#5

~21!n

2p
~n21!! S lmd24

A D n

~59!

3~Volmd!nd/2S 2DetFD local8

D0
G D 21/2

,

~60!

whereD0[2¹211. The factors in the line~59! correspond
to the value ofcn@f# at fmax up to the normalization 1/Z0 as
can be seen in Eq.~41!. The factor ‘‘Vol’’ arises after the
integration over the flat coordinates corresponding to
center offmax. The nd/2 comes from the Jacobian of th
change of variables as mentioned before. The factormd

arises after the rescaling of the fields that makes them dim
sionless in bothcn@f# and Z0. This happens because the
ared more integration variables inZ0 due to the integration
over the collective coordinates in the numerator. Finally,
factor (2Det@D local8 #)21/2 is the result of the integration ove
the coordinates orthogonal to the zero modes ofD, while
(Det@D0#)1/2 is the dimensionless normalization factor~the
mass dimension of both the numerator and the denomin
was already taken care of in the termmd). The minus sign is
due to the nonlocal part ofD that, as proved above, simpl
changes the sign of the determinant of the local part, mak
it positive.

Equations~59! and~60! should agree with the correspon
ing result from Ref. @18# in the case d51, where
2Det@D local8 /D0#51/12 @8,18# and A54/3. We see that the
results are identical provided we take into account the dif
ent normalization here and a factor of 2 that accounts for
undetermined sign of the solution of Eq.~27!, allowing both
positive and negative solutions that contribute equally to
functional integral.

For d52 or 3, the formal expressions~59! and~60! need
of course to be renormalized. All the arguments in this s
tion remain valid for the theory with a Pauli-Villars regula
ization @8#. The action~2! becomes

S@f#5E ddxF1

2
fS 2¹21

¹4

L2 1m2Df1
l

4
f4

1
1

2
dm2~L!f2G . ~61!

The modification of the kinetic part of the action affects bo
Eq. ~27! and the scaling arguments, but by an amount t
decreases asL22 when the ultraviolet cutoffL becomes
large.

As shown in Ref.@8#, although the counterterm increas
with the cutoff, it is also proportional to at least one power
l. Therefore if we take the smalll limit before the large
cutoff limit, we are justified in ignoring the counterterm
Eq. ~27! and in the scaling arguments. On the other hand
contributes to the results~59! and ~60! an amount that ex-
actly cancels the divergence in the Det@D local8 #, making the
final expression finite as it should be.

In the largen limit, where the Gaussian approximation
~43! and ~44! become exact, the expressions~59! and ~60!
give the large order behavior of the perturbative series oZ
~up to the factor of 2 mentioned above! without any assump
e

n-

e

or

g

r-
e

e

-

t

f

it

tion about the analytic structure inl @18#. A completely
analogous procedure would give the large order behavio
any Green’s function.

Equations~39!, ~41!, ~43!, ~44!, ~59!, and~60! allow us to
draw an accurate picture of the mechanism underlying
lack of domination~in the sense of Lebesgue’s theorem! of
the convergence of the sequence of perturbative integra
~14! towards Eq.~16!, and consequently of the mechanis
underlying the divergence of the perturbative series. In fa
this picture is very similar to the one described in the pre
ous section for the simple integral example. This is perh
not surprising given the similarity of their large order beha
ior.

In a finite volume, there is a region of finite measure
field space in which the perturbative approximati
f N@f(x)# of Eq. ~14! approximates the exact integrand~16!
with an error smaller than a given prescribed number. T
region grows withN, becoming the full field space in th
N→` limit. As in the simple example, this is a consequen
of Taylor’s theorem applied to the~analytic! integrand~16!.

The problem is that, for any finiteN, outside that region
the approximate integrandf N@f(x)# strongly deviates from
the exact one. This can be seen by noting that the maxim
every term off N grow factorially with the order. Therefore
for large enoughN, the last term is far greater than the pr
vious ones at its maxima. Furthermore, as shown above,
Gaussian approximation around that maxima~which be-
comes exact forN→`) defines a measure that does not go
zero asN→` @in fact, it is independent ofN, Eqs.~43! and
~44!#. This means that for every finiteN, there is a region of
finite measure in field space~and this measure does not go
zero asN→`) in which the deviation between the perturb
tive integrand and the exact one is of the order of
maxima of the last term off N , i.e., of the order of (N21)!.
No integrable functional can therefore satisfy the prope
~12! of Lebesgue’s theorem.

This is the mechanism that makes the sequence of pe
bative integrands, although convergent to the exact one, n
dominated in the sense of Lebesgue’s theorem. It is there
also the mechanism that makes the sequence of integ
~i.e., the perturbative series! divergent. In fact, as Eqs.~59!
and~60! show, the famous factorial growth of the large ord
coefficients of the perturbative series is a consequence,
integration, of exactly this behavior.

III. STEPS TOWARDS A CONVERGENT SERIES

It was mentioned in the Introduction that the analysis
the divergence of perturbation theory presented in this pa
would point directly towards the aspects of the perturbat
series that need to be modified in order to generate a con
gent series. This is the topic of the present section.

In the previous section we analyzed perturbation the
from the point of view of the dominated convergence the
rem. We have detected the precise way in which the con
gence of the sequence of perturbative integrands to the e
one takes place and the way this convergence fails to
dominated. We have learned that for any finite orderN, the
field space naturally divides into two regions. In the first on
which grows with the order, eventually becoming the fu
field space~in the N→` limit !, the perturbative integrand
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very accurately approximate the exact one. In the other o
however, the deviation between the perturbative and e
integrands is so strong that the sequence of integrals
verges.

It is then clear thatif we could somehow modify the inte
grands, order by order, in the region where they devia
from the exact one, while preserving them as they are in
other region, then, with a ‘‘proper’’ modification, such
modified sequence of integrands would converge in a do
nated way. According to the dominated convergence th
rem, their integrals would then converge to the exact in
gral, achieving the desired goal of a convergent modifi
perturbation theory.

Let VN be the region of field space in which theNth
perturbative integrand approximates with a given prescri
error the exact integrand~16!. The characteristic function
Ch„VN ,$f(x)%… of that region is equal to 1 for field configu
rations belonging to it and 0 otherwise:

Ch„VN ,$f~x!%…[H 1 for $f~x!%PVN,

0 for $f~x!%¹VN.
~62!

One possible realization of the above strategy of mod
ing the integrands~14! in the ‘‘bad’’ region of field space is
to make them zero there. We would have

f N8 @f~x!#5
1

Z0
(
n50

N
~21!n

n!
e2S0S l

4E ddxf4D n

3Ch„VN ,$f~x!%…. ~63!

According to the analysis of the previous section, if w
chooseVN appropriately, the sequence off N8 @f(x)# will
exhibit dominated convergence, and the corresponding in
change between sum and integral will now be allowed
rigorous proof of this is left for a paper currently in prep
ration. For the purposes of the present argument, it is s
cient to rely on the analysis of the previous section to assu
its validity. Also, in the next section we will analyze, alon
the lines of the general ideas of this paper, some resum
tion schemes for which rigorous proofs of convergence h
recently been given@9–16#. As that analysis will show, thes
methods strongly rely on the general notions underlying
~63!. Their convergence supports, then, the validity of t
dominated nature of the convergence of Eq.~63! towards Eq.
~16!.

An urgent issue, however, is the practical applicability
the above strategy. To implement it, we need a functio
representation of the characteristic function~62! ~or an ap-
proximation to it! that only involvesGaussian and polyno
mial functionals. In the same way in which a functional re
resentation of the Diracd function allows us to perform
functional integrals with constraints, the Faddeev-Pop
quantization of gauge theories being the most famous
ample, a functional representation of the characteristic fu
tion ~62! would allow us to functionally integrate only th
desired region of functional space. Since, basically, the fu
tionals we know how to integrate reduce to Gaussians m
tiplied by polynomials, the desired representation of
characteristic function shouldonly involve those functionals
Conversely, if it only involves those functionals, all the s
e,
ct
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-
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phisticated machinery developed for perturbation theory~in-
cluding all the perturbative renormalization methods! would
automatically be applicable. With this in mind, consider t
function

W~M ,u![e2Mu(
j 50

M
~Mu! j

j !
, ~64!

whereM is a positive integer. Note thatW(M ,u) arises from
15e2Mue1Mu by expanding the second exponential up
orderM . HereW(M ,u) has the following remarkable prop
erties.

~1! W(M ,u)→1 whenM→` for 0,u,1. The conver-
gence is uniform, with the error going to zero as

R~M ,u!<eM [ lnu2~u21!]
1

A2pM

u

12u11/M
. ~65!

~2! W(M ,u)→0 whenM→` for 1,u. The convergence
is also uniform, with an error of the form

W~M ,u!<eM [ lnu2~u21!] . ~66!

As we see, the exponent corresponds to the same func
in both cases. Foru.0, this function is always negative
except at its maximum, atu51, where it is 0. Therefore the
convergence is in both cases exponentially fast inM , with
the exponent becoming more and more negative, for a fi
M , when u differs more and more from 1. The proof o
properties~1! and ~2! is in Appendix A.

If we replace u by a positive definite quadratic form
^fuDuf&/CN , then the insertion of Eq.~64! into the func-
tional integral would effectively cut off the region of integra
tion ^fuDuf&.CN :

ZN8 @f~x!#5
1

Z0
E @df# (

n50

N
~2Sint!

n

n!

3 e2S0 lim
M→`

WS M ,
^fuDuf&

CN
D ~67!

5
1

Z0
(
n50

N
~21!n

n!
lim

M→`
E @df#

3e2S0~Sint!
nWS M ,

^fuDuf&
CN

D . ~68!

CN is a constant that changes with the orderN of the expan-
sion in l, increasing withN but in such a way that in the
region wherê fuDuf&,CN , the difference between the pe
turbative and the exact integrands is smaller than a gi
prescribed error. Since the convergence ofW is uniform ac-
cording to properties~1! and ~2!, with errors given in Eqs.
~65! and ~66!, the corresponding interchange between
sum in Eq.~68! and the functional integral is justified. Th
fact thatu becomes aquadraticform implies that the result-
ing integrands are Gaussians multiplied by monomia
Therefore the familiar Feynman diagram techniques can
used to integrate them. It also implies that no new loo
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1152 57SERGIO A. PERNICE AND GERARDO OLEAGA
appear and the sum inj from Eq. ~64! becomes an algebrai
problem. A typical functional integral to compute has t
form

E @df#expS 2E ddxF1

2
~]mf!21

1

2
m2f21~fDf/CN!G D

3S E ddxf4D nS E ddxfDf D m

, ~69!

as can be seen by replacing the definition~64! into Eq. ~68!
with u5^fuDuf&/CN .

Note that at any given order inl it is not necessary in
principle to go to infinity inM . That would amount to re-
placing the perturbative integrands by zero in the reg
^fuDuf&.CN , realizing the strategy mentioned before. B
since the convergence inW is uniform, a finite, large enough
M ~depending on the order in the expansion in the coup
constant! would suffice to tame the behavior of the perturb
tive integrands and transform them into adominatedconver-
gent sequence. In fact, as we will see, many methods
improvement of perturbation theory use effectively formu
~64! without sendingM→` for any given finite order in
perturbation theory. In any case, as already mentioned,
limit is in principle computable, since it does not involv
new loops. Work in this direction is in progress.

The convergence of the sequence~68! towardsZ(l) may
be thought, at first sight, to be in conflict with our we
established knowledge about the nonanalyticity of this fu
tion at l50. In fact, Eq.~68! seems to be a power series
l ~the powers ofl coming from the powers ofSint); there-
fore, if convergent, that power series would define a funct
of l analytic atl50. It must be recognized, however, th
the validity of Lebesgue’s dominated convergence theo
is completely independent of any analyticity considerati
Therefore, if its hypothesis is satisfied, its conclusions m
be valid. This being said, the question of how to reconc
the convergence of Eq.~68! with the nonanalyticity ofZ(l)
deserves an answer. To begin with, even at finite order inl,
the function~68! is not necessarily analytic atl50 despite
its analytic appearance. This is because the constantCN may
have an implicit nonanalytic dependence onl. In Appendix
B this is actually the case in the context of a simple exam
to which the present ideas are applied. But the mechan
that ultimately introduces the proper nonanalyticity inl is
the limit processN→`. Given a nonanalytic function suc
as Z(l) one can always construct a sequence of anal
functions that converge to it. Satisfying the hypothesis of
dominated convergence theorem is a way of achieving t
avoiding all the complicated andmodel-dependentissues of
nonanalyticity. Note that the validity of this hypothesis for
given sequence of integrands can be checked independ
of any analyticity consideration.

In Appendix B we prove the convergence of the gene
strategy discussed here for the simple integral example
lyzed in Sec.~II B !. For that case, makingu5(x/xc,N)2, the
function W(M ,u) becomes in the limit the characterist
function of the intervaluxu,xc,N . We use this to explicitly
compute the nonanalytic functionz(l) @Eq. ~6!#, calculating
only Gaussian integrals. We also show explicitly how
nonanalytic dependence ofxc,N on l naturally arises just by
n
t

g
-
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at

-

n

m
.

st
e

le
m

ic
e
t,

tly

l
a-

demanding the validity of Lebesgue’s hypothesis and ho
the N→` limit process captures the full nonanalyticity o
z(l). The same method also works for the ‘‘negative ma
case,’’ where the Borel resummation method fails. In Fig.
we can appreciate the convergence ofW towards the charac-
teristic function of the intervaluxu,xc,N for xc,N51 for two
different values ofM .

IV. IMPROVEMENT METHODS
OF PERTURBATION THEORY

The analysis of the mechanism of divergence of the pe
turbative series presented in this paper, together with t
formula ~64! and its properties, offers a large range of po
sibilities to construct a convergent series. In the previo
section we have shown how that formula can be used
effectively cut off the region of field space where the stron
deviation between perturbative and exact integrands ta
place. But as we will see, this is only one possible wa
among many, to use Eq.~64! to transform the sequence of
perturbative integrands into a dominated one.

Another example of its possible use is the so-called ‘‘o
timized d expansion’’ @19,20#. In a series of papers@9–
11,21#, it was proved that such an expansion converges
the partition function of the anharmonic oscillator in finite
Euclidean time. The problem of convergence in the infini
Euclidean time~or zero temperature! limit for the free energy
or any connected Green’s function is still under investig
tion, as well as its extension to quantum field theorie
@10,12#. The method was proved to generate a converge
series for the energy eigenvalues@13,14#, although such
studies make heavy use of analyticity properties valid sp
cifically in the models studied. In these works, it was rea
ized that many methods of improvement of perturbatio
theory, such as the order-dependent mappings of Re
@22,23#, possess the same general structure as the linead
expansion. A considerable amount of work has been de
cated to investigating the virtues and limitations of th
method and extensions of it@11,15#.

Although it is not appropriate to give a detailed analys
of these methods here, we would like to briefly indicate ho
they can be understood in terms of the ideas presented in

FIG. 3. FunctionW(M ,x,xc,N) with xc,N51 for M53 ~dashed
line! andM560 ~solid line!. The convergence towards the charac
teristic function of the intervaluxu,xc,N is apparent.
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paper. In what follows, our analysis is restricted tod51
~quantum mechanics! where rigorous results about the co
vergence of the methods considered here are available.

Let us consider the case of the anharmonic oscillator.
action is given in Eq.~2! for d51. The idea of the method i
to replace it by an interpolating action

Sd5E dtF1

2
~dtf!21

1

2S m21
l

2m
a Df2

1d
l

4S f42
a

m
f2D G . ~70!

Clearly, the dependence on the parametera in Sd is lost
whend51. For that value, the action~70! reduces to Eq.~2!.
However, if we expand up to a finite order ind and then
maked51, the result still depends ona. The idea is to tune
a, order by order in the expansion ind, so that the result is
a convergent series. It was shown in the references m
tioned above that the method works ifa is tuned properly.
For example, in Ref.@9#, the asymptotic scalinga.N2/3 was
used to prove the convergence of the method for the parti
function at finite Euclidean time.

It is interesting to note that, originally@9,21#, a was tuned
according to heuristic prescriptions such as the ‘‘principle
minimal sensitivity’’ @20# ~at any given order ind, choosea
so that the result is insensitive to small changes in it! or the
criterion of ‘‘fastest apparent convergence’’~the value ofa
at which the next order ind vanishes!. But later @10,12#, it
was realized that the best strategy was simply to leava
undetermined, find an expression for the error~that obvi-
ously depends ona), and then choosea so that the error
goes to zero when the order ind goes to infinity. It is clear
that a structural understanding of the convergence of t
method can help to construct the generalizations necessa
overcome the difficulties associated with the convergenc
the infinite volume limit for connected Green’s functions,
well as the extensions to general quantum field theories.

To understand the ‘‘optimizedd expansion’’ in terms of
the ideas presented in this paper, let us expand the functi
integral corresponding to the action~70! in powers ofd up to
a finite orderN, and maked51 as the method indicates,

Z~m,l,a,N!5
1

Z0
E @df#expH 2E dtF1

2
~dtf!2

1
1

2S m21
la

2mDf2G J F (
n50

N
~21!n

n!

3S l

4E f42
la

4mE f2D nG . ~71!

The general analysis of the mechanism of divergence
perturbation theory of Sec. II indicates that if the functi
~71! generates a convergent series witha scaling properly
with N, then, barring miraculous coincidences, the cor
sponding integrands should converge in a dominated
~or, even better, uniformly! towards the exact integrand~14!.
We want to obtain a qualitative understanding of how t
method achieves that.
ts

n-

n

f

to
in

al

of

-
y

s

Expanding the binomial and making some element
changes of variables in the indices of summation, we ob
the expression

Z~m,l,a,N!5
1

Z0
E @df#expH 2E dtF1

2
~dtf!2

1
1

2S m21
la

2mDf2G J H (
i 50

N
~21! i

i !

3S l

4E f4D iF (
k50

N2 i
1

k! S la

4mE f2D kG J .

~72!

This equation already shows some of the distinctive cha
teristics of the method. As we see, thei th power of the
interacting action in the expansion ofe2Sint up to orderN is
multiplied by

W~N2 i ![expS 2~la/4m!E f2D F (
k50

N2 i
1

k! S la

4mE f2D kG .

~73!

Note thatW(N) corresponds to the functionW(M ,u) with
M5N (N is the order in the expansion ofe2Sint) and the
variable u replaced by the quadratic form
@(l/4m)*f2#/CN , whereCN5N/a. Taking, for example,
a.N2/3 as in Ref.@9# ~where it was proved that with such
scaling the method generates a convergent series!, we see
that, according to the previous section,W(N) is an approxi-
mation of theu function in the region of field space chara
terized by

la

4mE dxf2<N1/3. ~74!

Equation~72!, however, shows that the mechanism us
to achieve dominated convergence cannot be reduced
simple insertion of the functionW(M ,u) with M5N and
u5@(l/4m)*f2#/CN . That would be the case if all the
powers of the expansion ofe2Sint up to orderN were multi-
plied byW(N). But Eq.~72! shows that thei th power of the
interacting action is in fact multiplied byW(N2 i ).

At this point it is convenient to pause for a moment in o
study of the ‘‘optimizedd expansion’’ to give some usefu
definitions.

Let us callpassivemechanisms~to achieve dominated o
uniform convergence of a sequence of integrands to the e
one! those that can be reduced to the product of theNth
perturbative integrand and the characteristic function o
regionVN of field space for some sequence$VN%.

Passive methods use only information that is alrea
available in the perturbative integrands; they just get rid
the ‘‘noise’’ inherent to perturbation theory. Because of th
in addition to defining a convergent series, they can also
very useful for studying perturbation theory itself. The fun
tion W(N,u), with u replaced by a properly selected qu
dratic operator, was specially designed to make pas
methods practical. In a sense, Sec. III is a discussion of p
sive methods.
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1154 57SERGIO A. PERNICE AND GERARDO OLEAGA
Active mechanisms are those that are not passive, as
fined above.

What kind of mechanism is the one underlying the ‘‘o
timized d expansion’’ method?

A trivial generalization of the proof, in the previous se
tion, of the convergence ofW(M ,u) towards theu function
for u.0 shows that the function

W̄~M ,u,i ![e2Mu (
n50

M2 i
~Mu! i

i !
~75!

also converges towards theu function for u.0 in the limit

M→`, i fixed. ~76!

In this sense, the ‘‘optimizedd expansion’’ method does
have passive aspects. As Eqs.~72! and~73! show, it amounts
to multiplying thei th power of the expansion up to orderN

of eSint by W̄ with u5@(l/4m)*f2#/CN and CN5N/a.
Since this function converges to the characteristic function
the region characterized by Eq.~74!, this means that the firs
i terms of the expansion up to orderN of eSint areeffectively
multiplied by the same function~an approximate characte
istic function! for i !N. Therefore, the firsti terms, with
i !N, use only the information available in the perturbati
series to converge to the exact integrand.

What about the other terms, i.e., the ones characterize
i &N? Surprisingly, these terms produce a convergence
the corresponding integrands towards the exact one th
faster than possible with only passive components.

It is not the place here to study this aspect in detail, and
let us simply show this ‘‘faster than passive’’ convergen
for the simple integral example.

Applied to the ‘‘massless’’ version of the integral~6!, the
optimizedd expansion method was proved to generate a r
idly convergent sequence in Ref.@21#. That is, the sequenc
given by

I N[ (
n50

N
~21!n

n! E
2`

`

dxe2a~N! x2S l

4
x42a~N!x2D n

~77!

was proved to converge to

I[E
2`

`

dxe2lx4/4 ~78!

whena(N).AN with an error that goes to zero at the ve
fast rate ofRN,CN1/4e20.663N whenN→`. C is a numeri-
cal constant.

We are interested in understanding whether the co
sponding convergence of the integrands is faster than
sive. For our qualitative purposes, it is enough to observe
Fig. 4, the convergence towards the exact integrand

I exa~x!5e2~l/4!x4
~79!

of both the perturbative integrand

I pert5 (
n50

N
~2lx4/4!n

n!
~80!
e-

f

by
of
is

o

p-

e-
s-

in

and the optimizedd expansion integrand

I ode5 (
n50

N
~21!n

n!
e2a~N!x2S l

4
x42a~N!x2D n

, ~81!

with a(N).AN, for N54.
We can see how accurate the convergence ofI ode(x) is,

even at this low order. In particular, when the perturbativ
integrand begins to diverge,I ode(x) continues to approximate
the exact integrand remarkably well. In the inset, we ca
appreciate the difference betweenI exa(x) and I ode(x). Note
the difference in they axis scale of the main graph and the
inset.

It is then clear that the optimizedd expansion method,
with its subtle combination of passive and active compo
nents, manages to generate a sequence of integrands
~uniformly! converges towards the exact one at a rate that f
exceeds the possibilities within a purely passive method.

From this qualitative discussion of the optimizedd expan-
sion method we can deduce two general lessons:~1! Any
method of improvement of the perturbative series in a give
quantum theory, where a functional integral representation
the quantity under study exists, must rely, at the level of th
integrands, on an improvement over the pointwise conve
gence of the Taylor series in the coupling constants ofe2S;
~2! the problem of finding a convergent series reduces to t
problem of finding a dominated convergent sequence of i
tegrands towardse2S. This second simple statement not only
provides a guide to the construction of convergent scheme
but also emphasizes the fact that, in principle, a dominat
convergent sequence of integrands does not have to have
relation whatsoever to the corresponding Taylor expansio
In order to be able to use the usual techniques of quantu
field theory, it is reasonable to restrict the search for a co
vergent scheme to a sequence of integrands of the gene
form

FIG. 4. In the main plot, the superiority of the convergence o
the fourth order optimizedd expansion~‘‘ode’’ ! with respect to the
same order perturbative approximation is evident. In the subgrap
the difference between the ‘‘ode’’ and the exact integrand is plo
ted. Note the difference in the scales of they axis of the main and
subgraph.
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f N5e2S0(
n50

N

anSInt
n f n~^fuDnuf&!, ~82!

where the functionalf n of the quadratic form^fuDnuf&
should take care of the nondominated convergence tha
bound to appear with only powers of the interacting acti
The functionW of Sec. III, with its possible generalization
is an ideal candidate for this purpose. But the selection of
coefficientsan amounts to a pure problem in optimization
the convergence of the integrands — noa priori connection
with any Taylor series is necessary.

V. CONCLUSIONS

In this paper we have exposed the mechanism, at the l
of the integrands, that makes the perturbative expansion
functional integral divergent. We have seen in detail how
sequence of integrands violates the domination hypothes
Lebesgue’s dominated convergence theorem. That theo
as is well known, establishes the conditions under which
is allowed to interchange an integration and a limit, in p
ticular the interchange that takes place in the generatio
perturbation series.

It was shown that at any finite order in perturbati
theory, the field space divides into two regions. In one
gion, whose measure grows with the order, the perturba
integrands very accurately approximate the exact integra
In the other region, however, a strong deviation takes pla
It was shown that the behavior in this second region viola
the hypothesis of Lebesgue’s theorem and, conseque
generates the divergence of perturbation theory. The fam
factorial growth of the large order coefficients of the pert
bative series was shown to be an effect, after integration
the very mechanism that violates the hypothesis of the th
rem.

All of the above was done explicitly without relying o
the particular analytic properties of the models studied. I
therefore natural to assume that similar mechanisms of
violation of Lebesgue’s hypothesis are present in any o
quantum field theory, although for just renormalizable the
ries other mechanisms are responsible for renormalons. S
ies in this direction are in progress.

The mechanism of divergence presented here points
wards a simple way to achieve a convergent series: Integ
only in the ‘‘good’’ region of field space. Since this regio
grows with the order, becoming in the limit the whole fie
space, integrating in a correspondingly increasing region
would obtain a convergent series. A step towards a prac
implementation of this program was made with the constr
tion of the functionW, Eq. ~64!. This function allows us to
introduce a Gaussian representation of the character
function of regions of field space, in much the same way t
the imposition of constraints in the functional integral w
allowed by a functional representation of the Diracd func-
tion. A rigorous proof of the convergence of this practic
implementation of the above-mentioned strategy is
progress. In Appendix B it was applied to a simple integ
example.

Finally, a qualitative analysis of the optimizedd expan-
sion method of improvement of perturbation theory in ter
of the ideas of this paper was presented. Some general p
is
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schemes, as well as to understand and improve old o
have been established.
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APPENDIX A

In this appendix we will prove the two properties of fo
mula ~64!.

Because foru.0 all the terms of the sum definin
W(M ,u) are positive, we have triviallyW(M ,u).0. On the
other hand, since in the Taylor expansion ofeMu all the
terms are positive, we have(n50

M (Mu)n/n!<eMu. Therefore
W(M ,u)<1. So for everyM and positive or zerou we have

0<W~M ,u!<1. ~A1!

Consider first the case 0,u,1:

12W~M ,u!5e2Mu (
n5M11

`
~Mu!n

n!
[R~M ,u!. ~A2!

We will prove thatR(M ,u)→0 whenM→`.
Changing variables toj 5n2M , we get

R~M ,u!5e2Mu
~Mu!M

M ! (
j 51

`

~Mu! j
M !

~ j 1M !!
~A3!

<e2Mu
~Mu!M

M ! (
j 51

`
~Mu! j

~M11! j ~A4!

<e2Mu
~Mu!M

M !

u

12u11/M
. ~A5!

But M M/M !→eM/A2pM for largeM , and so

R~M ,u!<eM [ lnu2~u21!]
1

A2pM

u

12u11/M
. ~A6!

The exponent is negative in the region 0,u,1 since both
lnu and (u21) are negative there andu lnuu.uu21u. There-
fore

R~M ,u!→0 when M→` ~A7!

in the region 0,u,1 and property~1! is proved with an
exponentially fast convergence.

In the regionu.1, we have

W~M ,u!5e2Mu(
n50

M
~Mu!n

n!
<e2MuuM (

n50

M
Mn

n!
~A8!

<eM [ lnu2~u21!] . ~A9!
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The first inequality is valid becauseu.1 and the second
becauseeM.(n50

M Mn/n!. The exponent is again negativ
For u.1, both lnu and (u21) are positive, but now
u lnuu,uu21u. So property~2! is also valid with an exponen
tially fast convergence.

For u51 all we know is thatW is bounded by Eq.~A1!.
That is all we need. Numerics suggestW(M ,1)→1/2 when
M→`.

This finishes our proof.

APPENDIX B

In this appendix we apply the strategy discussed in S
III to generate a series convergent to the functionz(l) @Eq.
~6!#. This is done using the functionW of Eq. ~64! and com-
puting exclusivelyGaussian integrals; therefore, we restr
ourselves to using only those techniques that are also a
able in quantum field theory.

As mentioned in Sec. III, the simplest possible modific
tion of the perturbative integrand~15! that would transform
the corresponding sequence into a dominated one amoun
keeping them as they are foruxu,xc,N and replacing them by
zero for uxu.xc,N . That is,

f N8 5H p21/2(
n50

N
~21!n

n! S l

4
x4D n

e2x2
for uxu,xc,N ,

0 for uxu.xc,N.
~B1!

In fact, choosingxc,N so as to properly avoid the region i
which the deviation takes place, the sequence off N8 con-
vergesuniformly towards the exact integrand~17! as we will
show shortly. Consequently, the corresponding sequenc
integrals

E
2`

`

dx fN8 5p21/2E
2xc,N

xc,N
dx(

n50

N
~21!n

n! S l

4
x4D n

e2x2
~B2!

5p21/2(
n50

N E
2xc,N

xc,N
dx

~21!n

n! S l

4
x4D n

e2x2

~B3!

will converge to the desired integral

z~l!5p21/2E
2`

`

dxe2[x21~l/4!x4] . ~B4!

In Eq. ~B2! the change in the limits of integration from6`
to 6xc,N is just due to the definition off N8 in Eq. ~B1!. The
interchange between sum and integral in Eq.~B3! is now
allowed because in the region@2xc,N ,xc,N# we have uni-
form convergence~this is a stronger condition than dom
nated convergence!. The resulting integrals are not Gaussi
due to the finite limits of integration. We will show how the
can be calculated using only Gaussian integrals.

A trivial way to achieve convergence of the sequence
integrals of thef N8 of Eq. ~B1! towards Eq.~B4! amounts to
keepingxc,N equal to a finite constant ‘ ‘a’ ’ independent of
N, while taking the limitN→`. In this limit, Eq. ~B3! be-
comes identical top21/2*2a

a dxe2[x21(l/4)x4] , since for finite
c.

t
il-

-

to

of

f

a the Taylor series of the integrands converges uniform
Therefore, as already said, the interchange between sum
integral is legal. Finally, taking the limita→`, we would
obtain the desired convergence towardsz(l).

However, better use can be made of the information av
able in f N8 for finite N. For example, for every finiteN, we
can choosexc,N so that

u f N8 ~x!2 f ~x!u<
eT,N

2xc,N
for uxu,xc,N , ~B5!

with eT,N going to zero asN→`. Then, since we have

u f N8 ~x!2 f ~x!u<e2[xc,N
2

1~l/4!xc,N
4 ][

ec,N

2
for uxu.xc,N ,

~B6!

the f N8 (x) will uniformly converge towards the exact inte
grand f (x) if Eq. ~B5! is consistent withxc,N→` when
N→`. Indeed, if this happens, we would have

U E
2`

`

@ f ~x!2 f N~x!#dxU<eT,N1ec,N→0 when N→`.

~B7!

The term eT,N comes trivially from Eq.~B5!, while ec,N
comes from Eq.~B6! and the inequality

E
xc,N

`

e2[x21~l/4!x4]dx<e2[xc,N
2

1~l/4!xc,N
4 ]5ec,N , ~B8!

valid for xc,N.1.
Applying Taylor’s theorem to the functione2lx4/4 one

can easily show that the condition~B5! is satisfied if

xc,N5F ~N11!!
eT,N

2 S 4

l D ~N11!G1/@4~N15/4!]

. ~B9!

Note that the nonanalytic dependence ofxc,N on l arises
automatically from the imposition of Eq.~B5! to satisfy the
hypothesis of Lebesgue’s theorem.

Remember that the only condition oneT,N ~in order to
achieve convergence of the sequence of integrals! is to go to
zero whenN→` consistently withxc,N→` in that limit.
Choosing, for example,

eT,N5e24N1/4
, ~B10!

we obtain, asymptotically,

xc,N→~4N/el!1/4. ~B11!

This implies@through Eq.~B6!#

ec,N→e2~4N/el!1/22N/e. ~B12!

Equations~B10! and ~B12! show the exponential rate a
which the convergence of the sequence of integrals ta
place.

Clearly the form~B10! for eT,N is not unique, nor even
the most efficient one, but enough to achieve convergen
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In Table I one can appreciate the numerical converge
for l54/10.

Up to now we have proved that the general strategy
Sec. III does, in fact, generate a convergent sequence
wardsz(l). However, the resulting integrals in Eq.~B3! are
not Gaussians, making the applicability of the method
quantum field theory dubious, to say the least. We will sh
now that the integrals of Eq.~B3! can be computed, usin
Eq. ~64! with u5(x/xc,N)2, calculating only Gaussian inte
grals. The steps involved are

E
2xc,N

xc,N
xre2x2

dx5E
2`

`

xre2x2
lim

M→`

W~M ,x,xc,N!dx ~B13!

5 lim
M→`

E
2`

`

xre2x2
W~M ,x,xc,N!dx

~B14!

5 lim
M→`

(
n50

M
1

n! S M

xc,N
2 D nE

2`

`

3e2~11M /xc,N
2

!x2
x2n1rdx. ~B15!

The two properties ofW validate both equalities~B13! and
~because of the uniformity of the convergence inW) ~B14!.
In the last line, Eq.~B15!, we just make explicit the meanin
of Eq. ~B14!. So it is clear that these two properties a
enough to prove the validity of Eq.~B15!, where only Gauss-
ian integrals are present. But it is a good exercise to fin
direct proof of it in the case at hand, where everything can
computed exactly. We do this next.

For r odd the integrals vanish, and so let us consider
case wherer is even, that is,r 52t, for any integert.

On the one hand, we have

E
2xc,N

xc,N
x2te2x2

dx5~xc,N!2t11(
k50

`
~21!k

k!

~xc,N!2k

~k1t11/2!
,

~B16!

where the necessary interchange between sum and integ
arrive at the result is allowed due to the uniform converge
of the Taylor series of e2x2

in the finite segment
@2xc,N ,xc,N#.

On the other hand,

TABLE I. Integration over the small field configurations on
produces a convergent series. In the last column the improvem
over the perturbative values can be appreciated.

Order
Exact value
(l54/10) Convergent series Perturbative serie

2 0.837043 0.803160 0.848839
4 0.837043 0.830264 0.854087
6 0.837043 0.835516 0.901897
8 0.837043 0.836667 1.316407
20 0.837043 0.837044 2.337553108
ce

f
to-

n

a
e

e

l to
e

lim
M→`

(
n50

M
1

n! S M

xc,N
2 D nE

2`

`

e2~11M /xc,N
2

!x2
x2~n1t !dx ~B17!

5 lim
M→`

(
n50

M
1

n!
G~n1t11/2!

3S xc,N
2

M D t11/2S 11
xc,N

2

M D 2~n1t11/2!

~B18!

5 lim
M→`

(
n50

M
1

n! S xc,N
2

M D t11/2

(
k50

`
~21!k

k!

3G~n1t1k11/2!S xc,N
2

M D k

~B19!

5~xc,N!2t11(
k50

`
~21!k

k!

~xc,N!2k

~k1t11/2!

3F lim
M→`

~k1t11/2!

M ~k1t11/2! (
n50

M
G~n1t1k11/2!

n! G . ~B20!

In Eq. ~B18! we have used the equation

E
2`

`

x2ne2px2
dx5

G~n11/2!

pn11/2
, ~B21!

in Eq. ~B19! we have expanded the last term of Eq.~B18! in
powers ofxc,N

2 /M and carried out some cancellations, a
finally in Eq. ~B20! we have interchanged theM→` limit
with the infinite sum ink.

Comparing Eqs.~B16! and~B20!, we see that the validity
of Eq. ~B15! depends on the validity of the equation

lim
M→`

~k1t11/2!

M ~k1t11/2! (
n50

M
G~n1k1t11/2!

n!

51 ; integers k,t.0. ~B22!

That this identity holds for every integert andk can be seen
by considering the following analytic function of the com
plex variablez:

O~z![ lim
M→`

~1/z!

M ~1/z! (n50

M
G~n11/z!

G~n11!!
. ~B23!

If the identities~B22! hold, this function must be identically
1, since for 1/zj5 j 11/2 with j integer it reduces to them
and for ever increasingj , we obtain a sequence accumulatin
at z50 on which the function should be 1.

Conversely we will prove thatO(z) is indeed identically
1 as an analytic function ofz, proving in consequence th
identities~B22! for arbitrary t andk. Consider the sequenc
1/zj5 j 11 for j integer. This sequence also accumulates
z50, and for all its points we have

nt
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O„1/~ j 11!…5 lim
M→`

~ j 11!

M ~ j 11! (
n50

M
G~n1 j 11!

G~n11!
~B24!

5 lim
M→`

~ j 11!

M ~ j 11! (n50

M

P i 51
j ~ i 1n! ~B25!

5 lim
M→`

~ j 11!

M ~ j 11!F (n50

M

nj1O~nj 21!G ~B26!

5 lim
M→`

~ j 11!

M ~ j 11!
FM ~ j 11!

~ j 11! 1O~M j !G →
M→`

1.

~B27!

ThereforeO(z)51 for all z. This finishes the direct proof o
Eq. ~B15!.
-

.

9.
As was mentioned before, Eq.~B9!, derived indepen-
dently of any analyticity consideration, and only with th
purpose of satisfying the hypothesis of Lebesgue’s theor
introduces a nonanalyticity in the sequence of integrals off N8
even for finiteN. But even for the case wherexc,N is fixed to
a constanta, discussed before, in which the limitN→` is
taken first, and thena is sent to infinity, and therefore th
sequence is made out of truly analytic functions, the conv
gence towardsz(l) is perfectly compatible with analyticity
considerations. The functionsp21/2*2a

a dxe2[x21(l/4)x4] ~the
result of theN→` limit ! are clearly analytic inl. But they
converge to~in fact they define! the nonanalytic function
z(l) whena→`. The limit of an infinite sequence of ana
lytic functions does not have to be analytic.

Another important issue is that the same method a
works for the ‘‘negative mass case,’’ where the Borel resu
mation method fails. Indeed, from the discussion of this
pendix it must be obvious that, with a proper scaling ofxc,N ,
the f N8 ’s with a negative quadratic part of the exponent a
converge uniformly towards e[x22(l/4)x4] for x in
@2xc,N ,xc,N#. Therefore, the sequence of integrals is a
convergent.
,
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