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Preface

HE theory of relativity is a core component of physics curricula, yet the level at which it’s

taught can differ widely, from minimal coverage of special relativity (SR) in modern physics
courses, to treatments using four-vectors in mechanics courses, to covariant treatments of electro-
dynamics, to graduate courses on general relativity (GR). I have sought to create a text aimed at
advanced undergraduate/first-year graduate students, which starts with the foundations of SR and
continues through to GR, at roughly the same level of sophistication. What makes that a challenge is
the mathematics involved toward the end of the journey. General relativity requires the mathematics
of curved spaces, the province of differential geometry. If linear algebra comprises the mathematics
of quantum mechanics, differential geometry is the lingua franca of GR, and most physics stu-
dents learn this branch of mathematics in courses on GR. We start at the beginning developing the
mathematics as required with the goal of providing in one voice, hopefully in an accessible style,
the full picture of the subject. I assume students have had, or are taking, the standard courses in
undergraduate physics curricula—analytical mechanics, quantum mechanics, electrodynamics, and
mathematical methods—but not dedicated courses in relativity beyond what one encounters in a
modern physics course. I assume familiarity with the Michelson-Morley experiment (MM). I do not
presuppose a mastery of tensors; we supply a reasonably in-depth treatment of tensors, on flat and
curved spaces. There are numerous texts on relativity available, of varying degrees of rigor. I have
sought a middle ground between treatments that are qualitative and lacking in mathematical details
and works written by experts for experts.

Here are some points of note.

Minus signs: Minus-sign ambiguities arise at several places in relativity. The first is the Lorentz
metric. We choose (—+++); this seems best (to me)—it singles out time as the quantity warranting
special treatment, so true in relativity, and it leaves alone the Euclidean metric for spatial variables.
Students must learn from the outset that relativity mostly is about time. The perennial debate over the
Lorentz metric will not be settled here. Another source of minus sign confusion is in the Riemann
curvature tensor 2% s: I have put the indices associated with derivatives in the third and fourth
places, i.e., v and 6. We take the Ricci tensor as the contraction over the first and third indices of the

Riemann tensor, R, = R Lo Finally, the energy-momentum tensor is defined so that 79 > 0.

Notation: An attempt has been made at being consistent. Scalar quantities are indicated in italic
font: the speed of light, c. Vector quantities are indicated with boldface italic font: force F'. Tensors
considered as geometric objects are indicated with boldface Roman font: T (this notation doesn’t
appear until Chapter 5). Components of tensors are indicated in italic font with indices: T,,,. Tensor
densities are indicated with Gothic symbols, ‘T; that notation is sparingly used.

Units: I have kept all the factors of ¢, G, and £ in formulas. There is a certain panache in advanced
physics of working in units where ¢ = G = 1, etc. The aim of this practice is to: 1) avoid repetitively
writing the same old factors, and 2) gain insight into the geometric meaning of formulas. In a first—
and perhaps only—exposure to the subject, I have consistently worked in SI units.

Mathematics: Relativity is a mathematical theory; there’s no way around that. Tensors constitute
the very language of relativity: An equation of physics expressed as a relation between tensors,
if valid in one reference frame, is valid in all reference frames. Yet the mathematical preparation
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of students in this area is often insufficient for a study of relativity, and the power of the theory
cannot be harnessed without knowledge of its mathematical structure. To fill this gap, roughly 25%
of the book is devoted to the mathematics of relativity. Chapter 5 is an introduction to tensors
on flat spaces. Most courses will not cover all this material; consider the latter half of Chapter 5
reference material (which is used throughout the book). The first half of Chapter 5 comprises a
“tensor starter kit"—a foundation for the use of tensors in SR. For GR, a deeper understanding must
be developed. To study GR at anything beyond a superficial level requires a working knowledge
of tensor fields on curved spaces, which is developed in Chapters 13 and 14. I considered putting
the material in Chapter 13 (manifolds) into an appendix, but decided against: It should be part of
the main exposition of the subject. Nevertheless, it could be skipped on a first reading. Chapter 14
(curvature) presumes a familiarity with manifolds, but not all their properties in detail. Consult the
latter half of Chapter 5 and Chapter 13 as needed. The mathematics contained in Chapters 5, 13, and
14, if encountered for the first time, would be daunting despite my attempts to guide you through the
maze. It takes time to become proficient in the theory of relativity, to learn its methods and scope.
Physics students tend to learn mathematics on a “need-to-know” basis, and most learn this material
in courses on GR. Physicists often find themselves strangers in a strange land of mathematics.

Organization: Chapter 1 presents an overview of SR and GR. Chapters 2-10 develop non-
gravitational phenomena (SR), first without, and then with the use of tensors. Chapters 11 and
12 introduce the principle of equivalence (the equivalence of local gravity and acceleration) and
the treatment of accelerated motion in SR. Chapters 13 and 14 are where a traditional book on
GR would begin. Chapters 15—-18 present Einstein’s field equation, the standard first topics in GR,
and the extent to which they have been tested, mainly on the scale of the solar system. Chapter 19
concludes with a brief introduction to cosmology. Appendices contain specialized topics.

History: I have reproduced passages from the writings of Newton, Einstein, Minkowski, and others.
It’s instructive for students to see how the luminaries of physics have grappled with the very subject
they are encountering. No attempt has been made to offer a history of relativity.

Going outside the box: Relativity is foundational to much of physics. The book is offered against
the backdrop of the corpus of physical theory, to which the student is assumed to have had exposure.
When instructive I point out parallels with other branches of physics; I do not pretend that other parts
of physics don’t exist.

Disclaimers: In addition to typos and outright blunders, I welcome comments on what is not clear.
Invariably, when delving into a subject with sufficient depth you get “hot” on the material, and many
conclusions seem obvious. Later, however, they may not be so obvious. I have attempted to give all
the details necessary to derive the important equations. If the presentation seems ploddingly slow at
times, I’ve succeeded in bringing you up to speed. It’s all relative!

Acknowledgments: I thank my colleague Brett Borden for being my [ATEX guru and differential
geometry sounding board. I thank the editorial staff at CRC Press, in particular Francesca McGowan
and Rebecca Davies. I thank Evelyn Helminen for making figures. I thank my family, for they have
seen me too often buried in a computer. My wife Lisa I thank for her encouragement and consum-
mate advice on how not to mangle the English language. Finally, to the students of NPS, I have
learned from you, more than you know. Try to remember that science is a “work in progress”; more
is unknown than known.

James H. Luscombe

Monterey, California



CHAPTER 1

Relativity

A theory of space, time, and gravity

ELATIVITY is a theory of space and time that provides the foundation for much of physics. It

applies to any branch of physics that makes use of the four variables z, y, z, ¢, where =, y, z are
independent spatial coordinates and ¢ denotes time.! While originating from a reasonable premise
(see below), the theory of relativity? implies conceptions of space, time, matter, and motion vastly
different from what our everyday experience of the world leads us to formulate. To understand
physics in full, as applied to phenomena beyond ordinary experience, one must study relativity (as
well as quantum mechanics); our everyday experience is but a special case of all that’s possible in
the universe. We’ll see that relativity consists of two theories: the special theory of relativity (SR)
and the general theory of relativity (GR).

1.1 THE PRINCIPLE OF RELATIVITY
TO VANQUISH COORDINATES, TRANSCEND THEM

In broadest terms, relativity holds that the universe doesn’t care what systems of coordinates, or
reference frames we use to describe physical phenomena.® Such a statement hardly sounds rev-
olutionary, yet its implications are far-reaching because in the theory of relativity time is taken
as a coordinate in a four-dimensional geometry of space and time, rather than as a parameter in
pre-relativistic physics.* Coordinates are essential for making measurements and performing calcu-
lations, yet they’re not fundamental—they don’t exist in nature—they 're artifacts of our thinking,
what we as humans impose on the world. Therein lies the rub. We need coordinates for practical
purposes, yet the goal of physics is to formulate laws of nature as manifestations of an objective
reality, that which occurs independently of human beings.’ The laws of physics should be expressed
in a way that’s independent of coordinate system. Relativity is an outgrowth of a single idea, the

!Isn’t that all of physics? Classical thermodynamics, for example, utilizes variables that characterize the state of thermal
equilibrium, which is independent of position and time.

2Referring to relativity as a theory can give the impression that it’s speculative. Relativity has been thoroughly tested
and is among the most secure theories in physics. It’s up to us to fit our minds to the Procrustean bed of physics.

3We use the terms reference frame and coordinate system interchangeably.

4Classical physics refers to non-quantum physics; relativity belongs to classical physics. Pre-relativistic refers to physics
developed prior to the advent of relativity, which dates to the year 1905.

SWe use the term objective as it’s used in science, to refer to objects that exist, or processes that occur, independently
of the presence of human beings. That idea conflicts with the acausality of measurement as taught in quantum mechanics.
There is a successful marriage of quantum mechanics with SR (the Dirac equation), but not with GR. Progress has been
made in incorporating quantum effects into GR, such as Hawking radiation, but there is not presently a consistent theory of
quantum GR, what’s referred to as quantum gravity.
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principle of relativity, that physical laws be independent of the reference frame used to represent
them. Relativity is therefore a law about laws.® Albert Einstein said: “.. . time and space are modes
by which we think, and not conditions in which we live.’[2, p81] The program of relativity is to
express equations of physics in such a way that, if true in one system of space-time coordinates, are
true in any coordinate system, and thereby transcend coordinates. We will travel far in the theory of
relativity in pursuit of this goal, which, as we’ll see, is achieved by expressing equations as relations
between tensors,’ tensors defined on a four-dimensional geometry where time is a dimension.

1.2 THE LAW OF INERTIA: FOUNDATION OF SPECIAL RELATIVITY
Motion exists . ..relatively to things that lack it.—Galileo, 1632[3, p116]

Motion is ubiquitous, yet learning to describe it correctly took a long time to achieve. Galileo
taught, for the purposes of formulating laws of motion, that states of uniform motion are the same
as rest,® when observed from reference frames in which the law of inertia holds, inertial refer-
ence frames (IRFs).” There are an unlimited number of possible IRFs, which therefore comprise
a class of frames from which to describe motion. Our first order of business is to examine inertia
and IRFs, because SR is based on the equivalence of IRFs. That we have singled out a particular
type of reference frame is what puts the “special” in SR. There are two aspects to the principle of
relativity: The fype of phenomena that are the same for observers in equivalent reference frames,
and the class of equivalent frames of references. With SR, Einstein showed that mechanical and
electromagnetic phenomena obey the same laws for all inertial observers;'? with GR, he extended
the class of equivalent observers to all observers, wherein he provided an explanatory framework for
gravitational phenomena. We must understand how relativity is implemented for IRFs (SR) before
tackling arbitrary frames of reference (GR).

1.2.1 Inertia

The property of matter known as inertia, so familiar to us today, had a difficult time in becoming
established. Pick up a rock and throw it. What makes it move when it leaves your hand? According
to Aristotle, “Everything that is in motion must be moved by something,” an idea seemingly so
compelling, it stood for almost 20 centuries.!! Galileo refuted that idea with a simple experiment.'?
Drop a stone from the mast of a ship that’s at rest; note where it lands. Now repeat the experiment on
a ship that’s in uniform motion. In the Aristotelian theory, the rock would land at a point displaced

The principle of relativity is a different kind of law than other physical principles. It presumes the existence of laws of
nature, that there are reproducible manifestations of the workings of nature waiting for us to describe, of which we possess a
language rich enough to accurately describe. That language is mathematics, which physics relies on heavily. It’s remarkable
that mathematics, a human invention, applies so well to the description of nature. To quote Eugene Wigner:[1] “...the
mathematical formulation of the physicist’s often crude experience leads in an uncanny number of cases to an amazingly
accurate description of a large class of phenomena. This shows that the mathematical language has more to commend it than
being the only language which we can speak; it shows that it is, in a very real sense, the correct language.”

7If you're uneasy about tensors, don’t worry; students are frequently ill-prepared when it comes to tensors. The mathe-
matics of tensors will be developed as we proceed. Vectors are special cases of tensors.

8Galileo did not explicitly isolate the concept of inertial motion as a general principle, yet it’s quite clear from his
writings that he understood it. Even today, students of physics are well advised to read Galileo’s Dialogue.[3]

9There are reference frames in which the law of inertia does not hold, noninertial reference frames—see Section 1.6.

10We11 refer to inertial observers as observers at rest relative to IRFs. The “observer” is essentially the reference frame.

1T Aristotle classified motion as natural and unnatural. Natural motion occurs among the four elements air, earth, fire,
and water, which seek to find their natural places, e.g., heavy objects naturally move toward the center of the earth. Natural
motion is unforced, not requiring the action of an external agency. Unnatural motion, however, such as horizontal motion
on Earth, is forced and requires a mover. What’s the “mover” when the rock leaves your hand? Aristotle argued that air,
displaced by the motion of the rock, wraps around the rock and pushes it on. A rock thrown in vacuum would not move!

12The history of inertia is more involved than our account here. A succession of investigators in the time between Aristotle
and Galileo questioned the Aristotelian theory.
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from the mast by the distance the ship had moved during the fall."> Galileo maintained there would

be no displacement because, first, the rock shares in the motion of the ship,14 and second, free
particles move without movers, that free particles—those with no forces acting on them—once set
in motion, maintain that state of motion, termed inertial motion."> The rock accelerates under the
action of gravity, but maintains its constant motion in the direction of the uniform motion of the ship
because there is no force acting in that direction (assuming negligible wind resistance).'®

The primary state of motion, that exhibited by free particles, is inertial—in a straight line at
constant speed. Free particles of and by themselves cannot change their states of motion. That fact
is highly important (essential, actually) for SR and GR. The unfolding of the inertia concept mirrors
the historical development of physics, from Aristotle to Einstein, at least as far as our understanding
of motion is concerned. Galileo’s experiment with the ship is a variant of an argument used by
Aristotle to prove that Earth is immobile: An object projected straight up from the surface of the
earth returns to the same place and thus Earth could not have moved in the meantime. Galileo
maintained that nothing can be inferred from such an argument about Earth’s motion or rest. What
Galileo asserted is that, except in relation to other objects, uniform motion of one’s reference frame
cannot be detected—a fundamental tenet of relativity—in this case by mechanical means.!”

Isaac Newton conceived of inertia not just as the property of free objects to maintain states of
uniform motion, but also by what he called the inherent force, the property by which matter resists
changes in motion: “Inherent force of matter is the power of resisting by which every body, so far as
it is able, perseveres in its state either of resting or of moving uniformly straight forward.”[4, p404]
Thus there are two aspects of inertia: perseverance and resistance. His definition of inertia should
be read together with his first law of motion: “Every body perseveres in its state of being at rest or
of moving uniformly straight forward, except insofar as it is compelled to change its state by forces
impressed.”’[4, p416] Objects move inertially unless prevented from doing so by imposed forces,
to which they provide a resistance, the inertial force.'"® The inertial force is the reaction by which
objects “push back™ against forces attempting to prevent states of inertial motion:

Because of the inertia of matter, every body is only with difficulty put out of its state
either of resting or of moving. Consequently, inherent force may also be called by the
very significant name of force of inertia. Moreover, a body exerts this force only during
a change of its state, caused by another force impressed upon it, and this exercise of
force is, depending on the view point,'? both resistance and impetus:?° resistance inso-
far as the body, in order to maintain its state, strives against the impressed force, and
impetus insofar as the same body, yielding only with difficulty to the force of a resist-

131n the Aristotelian theory, once the stone has been released (and no longer has a mover), it can only undergo its “natural”
motion toward the center of Earth; where the ship goes after the release of the rock is immaterial.

14This point, obvious to us today, was one that Galileo had to take pains to establish, that objects can have a superposition
of motions, i.e., velocity is a vector quantity. In the Aristotelian theory, objects not subject to movers can only have their
natural motions. That objects can have “two motions” (downwards and sideways) was foreign to the Aristotelian worldview.

13Galileo based this conclusion on his experiments with inclined planes: Objects accelerate on planes oriented downward,
decelerate on those oriented upwards, and have no acceleration on horizontal planes.

16Truth in advertising: A particle dropped from a sufficiently high point would show a displacement from the Coriolis
acceleration. By Earth’s rotation, a body dropped from a high elevation has a higher transverse velocity than the ground.
Such a displacement actually confirms Galileo’s hypothesis that different types of motion can be imparted to particles.

"In the Aristotelian theory, the speed of the ship could be inferred from the displacement of the rock. Perhaps one has
ridden in a train through a tunnel (or a submarine), where, if the ride is smooth enough, one doesn’t have a sense of motion.
The MM experiment failed to detect uniform motion by electromagnetic means.

18We’ll see in GR that your weight is the force which must be supplied to prevent you from continuing in a state of
inertial motion. What’s seen as accelerated motion in three dimensions (under the force of gravity) corresponds to a constant
state of motion in four-dimensional spacetime (defined on page 5). As shown in GR, gravity is a property of spacetime.

19What we refer to as reference frame, Newton called point of view.

20Impetus is another word for momentum. What we call momentum, Newton called quantity of motion, defined [4, p404]
as “the velocity and quantity of matter jointly”’; hence momentum p = mw. In SR, momentum is defined as p = m~yv
(where v = (1 — v2/¢?)~1/2 and c s the speed of light), an alternative “quantity of motion.” For v < ¢, y ~ 1.
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ing obstacle, endeavors to change the state of that obstacle. Resistance is commonly
attributed to resting bodies and impetus to moving bodies; but motion and rest .. .are
distinguished from each other only by point of view, and bodies commonly regarded as
being at rest are not always truly at rest.[4, p404]

Inertial reference frames

In IRFs the law of inertia holds true, that free particles move in straight lines at constant speed. In
view of the transition to GR, several issues are exposed by this benign statement.

1. What'’s a free particle? The answer is seemingly self-evident: If free particles are unacceler-

ated, then not-free particles are accelerated, right? Not so fast. Such reasoning doesn’t take
into account how acceleration is measured. Not all unaccelerated particles are free, and not
all free particles are unaccelerated: It depends on the reference frame. In IRFs, acceleration is
caused solely by forces. No force, no acceleration, and forces arise from physical interactions.
In noninertial reference frames (see Section 1.6), acceleration can be an artifact of the choice
of frame and not necessarily the result of forces. Forces can be identified from their physical
sources. Acceleration—seemingly the quantity most accessible to direct observation—is not
unambiguous because to measure it a standard of rest must be specified. Consider Earth in
the gravitational field of the sun. In a frame with the sun at rest, Earth’s acceleration is in
the direction of the force produced by the sun; Newton’s second law of motion is satisfied.
In a frame with Earth at rest, however, it is not satisfied because Earth’s acceleration is zero.
Newton’s second law is not a general law of physics because we’re free to choose reference
frames in which it doesn’t work.?! IRFs are frames in which objects with no forces acting on
them have no acceleration.

. What’s a straight line? In a given geometry, the straightest possible line is called a geodesic
curve, a concept that we’ll develop. But what specifies the geometry? In GR, the geometry
of spacetime?” is not something known a priori, but is instead determined by its energy-
momentum content. Spacetime geometry is therefore physical, something that emerges from
the distribution of matter-energy-momentum. Spacetime in GR is not something passive and
inert; it evolves in response to matter. The version of Newton’s first law that survives to GR is
that free particles follow geodesic paths in spacetime, those determined by the distribution of
energy-momentum. We return to this idea when we take up GR.

. What’s constant speed? For speed, we need time. But whose time? Newtonian mechanics
utilizes an absolute time that pervades the universe—see page 8. In relativity, time and space
do not have separate existences and are reference-frame specific.

1.2.3 Equivalence of inertial reference frames

Once a frame has been found meeting the criteria for an IRF, any other frame moving relative to it
with constant velocity also constitutes an IRF.?* A natural equivalence among IRFs is established
by free particles: All inertial observers agree that the trajectories of free particles are described by
constant velocity; all agree on the law of inertia. The value of the speed is reference-frame specific,
but all agree on its constancy. Thus, all inertial observers agree on the laws of mechanics: Forces
manifest in changes of states of inertial motion. Different inertial observers can observe the same
phenomena and describe them by the same laws. Transforming from one set of inertial observers to

another does not change the laws—the very heart of the principle of relativity.

211n a sense, that’s the problem GR fixes.
228pacetime is defined on page 5. Is it obvious what the geometry of spacetime should be?
23The motion of free objects is seen as unaccelerated in both frames.
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1.2.4 Coordinate transformations and the principle of covariance

Transformation is central to relativity. Transformations between reference frames are effected math-
ematically as transformations among the different coordinates assigned to the same event by all the
different, yet equivalent inertial observers. An event is a point in space at a point in time. Any-
thing that happens, or has happened or will happen, comprises an event. The totality of all events
is a four-dimensional continuum referred to as spacetime (no hyphen). We require that the math-
ematical form of the laws of physics be unaffected by changes in reference frames, changes in the
coordinates assigned to events, a theme that accompanies us from Newtonian mechanics to SR to
GR, that the laws of physics be expressed in a way that their form is invariant under progressively
more general coordinate transformations. Form invariance of physical laws is called the principle
of covariance, the requirement that the equations of physics adhere to the principle of relativity by
having the same mathematical form in all reference frames.

Coordinate transformations in SR must be linear. All inertial observers agree that the spacetime
trajectories (worldlines) of free particles are straight (see Section 1.4). Coordinate transformations
between IRFs must be such as to map straight lines in spacetime onto straight lines so as to preserve
the law of inertia. Only homogeneous, linear transformations map straight lines onto straight lines,
where both lines pass through the same origin of the coordinate system. We’ll work through some
examples to see how inertial frames can differ and yet be equivalent.

1.2.4.1 Boosts

Figure 1.1 shows frames S and .S” with origins displaced by vector R, where the coordinate axes

Z 4
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Figure 1.1 Frames S and S’ in boost configuration: coordinate axes are parallel.

are parallel. We will of course be interested in the case of relative motion where R = R(t) is time
dependent, but for now let R be fixed. Any transformation between frames with parallel axes (as in
Fig. 1.1) is called a boost.

In Fig. 1.1 the same point in space, denoted with an asterisk, is referenced by vectors 7 and 7,
with 7" = r — R (law of vector addition). This simple (linear) coordinate transformation can be
“inverted” by interchanging primed and unprimed quantities and letting R — —R, r = ' + R.
That rule will stand us in good stead with linear coordinate transformations: Interchange primed
and unprimed quantities and reverse the transformation parameter (velocity, angle, etc.). Suppose
S is an IRF, i.e., a frame in which a free particle is unaccelerated, # = 0. By differentiating the
transformation equation we conclude that # = 0. If S is an IRF, so is S’ when it’s connected to S
by a displacement. There is no unique origin for IRFs.
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1.2.4.2 Rotations

A more complicated example of a linear transformation is a rotation. Figure 1.2 shows frames S and

~

Figure 1.2 Frames having a common origin with axes rotated through a fixed angle ¢.

S’ having a common origin but with coordinate axes rigidly rotated relative to each other by a fixed
angle ¢. How are the coordinates assigned to the same point related? It’s an exercise in trigonometry

to show that / , »
€ cos sin r\ x
(3/) - <— sin ¢ cos¢>) (y) = R.() (y) ; (1.1)

where we’ve introduced the rotation operator, R (¢), which effects a rotation about the z-axis (com-
ing out of the paper, not shown) through an angle ¢. The inverse transformation is obtained by inter-
changing primed and unprimed quantities and by letting ¢ — —¢. If in S a free particle is observed
to be unaccelerated, with & = 0 and ¢ = 0, then because ¢ is constant, #’ = 0 and ' = 0. A frame
rotated relative to an IRF is also an IRE.>* There is no unique orientation of IRFs. General linear
transformations involving both boosts and rotations are covered in Chapter 6.

1.2.4.3 Q@Galilean transformations

Now let R in Fig. 1.1 vary linearly with time, R = wt, where v is a constant vector. Both
observers carry identical clocks, which are synchronized when the origins coincide. By “common
sense” reasoning, T and 7’ are related by ' = r — vt. Implicit is the assumption that time in S’, /,
is the same as that in S, t' = ¢ (absolute time, see page 8). This “obvious” assumption was rarely
made explicit in pre-relativistic physics. By differentiating the transformation formula, we have the
Galilean velocity addition formula®® ' = u — v, where u = dr/dt and v’ = dr’/d#. If in S a
free particle is described by # = 0, then # = 0 as well. If S is an IRF, then so is S’ if it’s moving
uniformly relative to S. It’s difficult to appreciate at first the deep implications of this result!

The transformation 7’ = r — vt can be written in terms of its vector components:

x x Vg
v)i=1lyl|—tlv]| - (1.2)
z z v,

Equation (1.2) underscores the pre-relativistic concept that we live in a three-dimensional world
with time as a universal parameter (¢ = t). If time is included as a separate dimension, however,
r’ = r — vt and t' = ¢ can be expressed as a linear transformation in four-dimensional spacetime:

t 1 000 t

' —v; 1 0 0 x . .

1= =, 01 0 Y (Galilean transformation) (1.3)
Z —v, 0 0 1 z

24The frames S and S’ are related through a fixed angle. A rotating reference frame, with ¢» = ¢(t) is not an IRF.
2 How velocities transform between IRFs in SR is treated in the next two chapters.
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Let’s get in the habit of listing the time “coordinate” first,® as in Eq. (1.3). Equation (1.3) is the
Galilean transformation (GT), the form of relativity based on everyday experience. Despite its
common-sense appeal, the GT does not lead to predictions in agreement with experiment;>” it will
be replaced by another linear transformation of spacetime coordinates that does lead to agreement
with experiment—the Lorentz transformation (LT).?8

1.2.4.4 Form invariance

The idea of form invariance can be illustrated using the GT, because acceleration is invariant under
that transformation: @’ = (d2?/dt’?)r’ = (d?/dt?)(r — vt) = (d?/dt?)r = a. Observers in S and
S’ agree on the form of Newton’s second law: F' = ma’ = ma = F, where mass is the same in
all IRFs.?’ The laws of mechanics are invariant under the GT. What about electromagnetism?
Maxwell’s equations predict the existence of electromagnetic waves that propagate with a speed
given in terms of electromagnetic parameters, ¢ = 1/,/€ofig. It’s shown in Appendix A that the
wave equation transforms under the GT for frames in relative motion along a common x-axis as:

0? 1 02 5, oy 07 1 0% 20 0?

) AN .

ox?2 2 o2 ox'2 2 0ot? 2 02O
Form invariance therefore does not hold for the wave equation under the GT, implying a crack
in the foundation of physics. The inconsistency is that Maxwell’s equations are fundamental laws

of physics, yet a prediction of those equations is not invariant under the GT, while the laws of
mechanics are. Let’s consider the three possible explanations for this inconsistency:

(A3)

1. The principle of relativity applies to mechanics, but not to electromagnetism. Maxwell’s equa-
tions predict a speed of electromagnetic waves, but don’t specify a reference frame. Perhaps
there is only one reference frame in which the speed of light is ¢? If so, one could detect that
frame by electromagnetic means—the MM experiment.

2. The principle of relativity applies to mechanics and electromagnetism but Maxwell’s equa-
tions are incorrect. If so, one should find discrepancies between the predictions of Maxwell’s
equations and experimental results. Such discrepancies have yet to be found.

3. The principle of relativity applies to mechanics and electromagnetism, but Newton’s laws
are incorrect. If so, one should find discrepancies between the predictions of Newton’s laws
and experimental results—something routinely done at particle accelerators which produce
speeds v < c. If Newton’s laws are incorrect, so is the GT, and we’re back to square one.

Einstein opted for the third explanation. He asserted that the principle of relativity applies to all of
physics, not just to mechanics. He then took that idea to its logical extreme. The speed of light is a
law of physics, not merely something that we measure. Einstein took the bold step of asserting that
the speed of light is the same for all inertial observers, which experiment has shown to be true!

1.3 SPACE, TIME, AND SPACETIME
1.3.1 Newtonian space and time

Relativity is concerned with space and time and how the two are related through motion. It’s useful
to state Newton’s conceptions of space and time, which, while not satisfactory by today’s standards,
continue to frame the discussion:[4, p408]

261 pre-relativistic physics, time is a parameter, not a coordinate.

2TWhat’s wrong with common sense? If you had to put your finger on it, it would be the assumption that t' = ¢, the
notion of absolute simultaneity.

28The properties of Lorentz transformations are developed throughout this book.

29Mass is the same in all IRFs, wherein all observers claim themselves at rest.
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e Absolute space, of its own nature without reference to anything external, always remains
homogeneous and immovable.

e Absolute, true, and mathematical time, in and of itself and of its own nature, without reference
to anything external, flows uniformly and by another name is called duration.

What’s meant by absolute? Einstein gave a good definition:[5, pS5] “...absolute means not only
physically real, but also independent in its physical properties, having a physical effect, but not itself
influenced by physical conditions.” We’ll use absolute in Einstein’s sense—physically existing, but
not influenced by physical conditions. Newton’s space and time are absolute in that sense: They
exist—by definition—independent of anything else. These notions unravel in relativity. Space and
time are not independent of each other, but are two aspects of a single entity: spacetime.

It’s understandable that space would be conceived as absolute. Look out at the night sky. Space
appears as a vast, fixed arena containing the objects of the universe. Already we’re up against cosmo-
logical questions. Does space exist independently of the objects in the universe (as Newton would
have it), passively containing them, or do the properties of space manifest because of the objects in
the universe (the picture afforded by GR)? Is the universe separate from the objects it contains? Is it
a vast collection of independent objects, or is it a single entity? GR will weigh in on these questions.

1.3.2 Simultaneity—the death knell of absolute time

Snap your fingers. In the Newtonian framework you’ve just specified “now” at every point of the
universe, no matter how distant, because time exists independently of space. That notion is indicated
in Fig. 1.3. Two points in space having the same time are said to be simultaneous. An instant of time

time

space

Figure 1.3 Surfaces of simultaneity in Newtonian spacetime.

thus determines a three-dimensional surface of simultaneity,® extending throughout all of space.
Simultaneity is therefore absolute in pre-relativistic physics, existing independently of anything
else. In relativity, simultaneity is not absolute—two events simultaneous in one IRF, are not in
another. Sit equidistant between two friends, and have them snap their fingers at the same time; you
hear both simultaneously. To someone walking past you at a constant rate, however, the same finger-
snaps would not be simultaneous.?' The finger-snap would be heard first from the sound source that
the walker is moving toward. Whose description of these events is “right”? Relativity shows there
is no absolute meaning to the “same time.” Absolute time does not exist—it’s not true that time
exists independently of anything else. Time is not a parameter provided by the universe, as it is in
pre-relativistic physics; relativity shows that time exists locally, relative to a given reference frame.

30 Actually a three-dimensional hypersurface. Our familiar notion of surface (such as the surface of an apple) is a two-
dimensional set of points, or manifold, embedded in three-dimensional space. A hypersurface is an (n — 1)-dimensional
manifold embedded in n-dimensional space. Manifolds and hypersurfaces will be systematically introduced in later chapters.

31The relativity of simultaneity is illustrated in Fig. 1.6.
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The term relativity is misleading. Relativity does not claim that “everything is relative” (as is
sometimes falsely stated), only that some things are relative, such as simultaneity. Relative refers to
measurements made relative to a given reference frame, the results of which may not be the same
in all reference frames. The purpose of relativity is to discover what is not relative, that what is the
same for all observers is a law of physics. Relativity shows that simultaneity is not a law of physics.

1.3.3 Absolute space—is it real?

Absolute space, “homogeneous and immovable,” would be the ultimate reference frame from which
it could be decided whether objects are “really” at rest. How would we recognize an object abso-
lutely at rest? The answer is, we can’t.’> Rest cannot be ascertained against a backdrop of “noth-
ingness” (absolute space); there must be other objects around to compare with—rest exists only in
relation to other objects, which can be considered reference frames. The same is true of motion. We
cannot perceive motion in itself (relative to absolute space); motion is perceived only in relation to
objects—all motion is relative.>® Nevertheless, if a reference frame could exist from which all mo-
tion is relative to, yet which is itself absolutely at rest, let yourself be at rest in that frame. Someone
drifting by in a rocket ship would say you’re in motion! Everything moves with respect to everything
else, and every inertial observer claims they are at rest.

Absolute space is thus an empty concept because only relative motion can be observed. Perhaps
that’s why it went largely unchallenged in the 200 years between the time of Newton and the late
19 century, because it has no observable consequences.>* The concept of absolute space received
support, however, from Maxwellian electrodynamics. Maxwell’s equations predict a speed of elec-
tromagnetic waves, but they don’t specify a reference frame—what better evidence for a preferred
frame like absolute space? Physicists of the late 19" century inferred there must be only one ref-
erence frame in which the speed of light is ¢ (called the ether frame, presumably absolute space).
Einstein, however, reached the opposite conclusion: If Maxwell’s equation don’t specify a reference
frame, all inertial observers measure the same speed of light.

1.3.4 Spacetime coordinates and notational conventions

In the theory of relativity time is taken as a coordinate in the specification of physical phenomena,
in addition to spatial coordinates. Ask a friend to meet you for coffee. You must specify a point in
space, three coordinates (on the surface of Earth usually two suffice), at a point in time, making four
numbers in all. Thus, you’re asking to meet your friend at a specified spacetime point, i.e., event.
The “gist” of relativity is that different observers assign different coordinates to the same events,
underscoring that coordinates are without fundamental significance. Events are physical and exist
independently of the coordinates assigned to them.® The procedure in SR by which coordinates
are assigned to events, the coordinization of spacetime, is discussed below. In GR, the assignment
of spacetime coordinates is associated with its mathematical structure as a manifold. In SR, space-
time is flat, while in GR spacetime is curved. Flat geometries can be covered by a single system
of coordinates, whereas curved geometries require overlapping coordinate systems. Curved geome-

32The unobservability of absolute space underscores a lesson from the history of physics: Physics is based on what can
be measured. Notions of what might or could exist “anyway,” but that we can’t detect, like absolute space, tend to get excised
from physics. “Excess” theoretical structures imply that alternative theories are possible.

33Recall Galileo’s words (page 2): “Motion exists relative to things that lack it”.

34There were objections to absolute space most notably from George Berkeley and Ernst Mach. Berkeley’s 1721 essay
On Motion objected to absolute space because it’s not observable; see [6], paragraphs 58, 59, and 64. Mach’s Science
of Mechanics [7] (published in 1883) provided the most incisive and influential critique of Newtonian mechanics. Mach
contended we’re not allowed to invent concepts like absolute space. In the world we know of, motion is relative. We should
not invent concepts that contravene that fact. “No one is competent to predicate things about absolute space and absolute
motion; they are things of thought, pure mental concepts, that cannot be produced in experience.”

33Spacetime in SR is absolute—existing, but not influenced by physical conditions.
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tries, however, are locally flat—what we learn about coordinatizing spacetime in SR applies to
limited regions of spacetime in GR. To locate an object in three-dimensional space, three numbers,
or coordinates, must be specified. In the Cartesian coordinate system, the numbers are tradition-
ally denoted (x,y, z). But there are other coordinate systems, e.g., spherical coordinates, (7,0, ¢).
We’ll denote spatial coordinates in a way that doesn’t commit to a particular coordinate system with
the notation (z', 2%, 2?), or simply 2%, where it’s understood that i = 1,2,3. The use of super-
scripts takes some getting used to, but it’s standard notation in tensor analysis.>® When there’s a
possibility for confusion, we’ll denote the square of z as ()2 to avoid mistaking it with the co-
ordinate 2%; contrary to what you might think, problems of that sort do not occur often. The time
coordinate will be parameterized, for reasons explained in Section 1.4, as 2 = ct. An event thus
has coordinates z°, ', 22, 23. To save writing, spacetime coordinates are conventionally denoted
z#, where it’s understood that p = 0, 1, 2, 3. Greek letters denote spacetime coordinates, x*, while
Roman letters denote spatial coordinates, 2. The indices p and k are dummy indices having no
absolute meaning. Thus, Zi:o v =20 + Z?Zl 27, As we’ll see, two types of coordinates arise
in non-orthogonal coordinate systems: contravariant, denoted with superscripts, x*, and covari-
ant, denoted with subscripts, z,,. Because GR seeks to work in arbitrary coordinate systems—not
necessarily orthogonal—both types of coordinates, z” and x,,, will be used.

Sidebar discussion: In 1908 Hermann Minkowski delivered a seminal presentation, Space and
Time,’” in which he showed that the results of SR, as derived algebraically by Einstein in 1905,
have a natural and intelligible explanation when space and time are conceived geometrically as
belonging to a four-dimensional continuum with a non-Euclidean geometry.

The views of space and time which I wish to lay before you have sprung from the soil
of experimental physics, and therein lies their strength. They are radical. Henceforth
space by itself, and time by itself, are doomed to fade away into mere shadows, and
only a kind of union of the two will preserve as an independent entity.

Many of the terms we use in relativity are due to Minkowski: Proper time, spacelike vector, timelike
vector. He didn’t use the term [lightcone, but he did speak of “front” and “back” cones, which we
will call future and past lightcones. It’s clear that Minkowski had worked out much concerning
the geometry of spacetime, what today we call Minkowski space (see Chapter 5). Minkowski died
suddenly in 1909 at age 44; one can only wonder what additional contributions he might have made.
What we call spacetime, Minkowski called the world: “A point of space at a point of time, that is,
a system of values z,y, z,t, I will call a world-point. The multiplicity of all thinkable x,y, 2,1
systems we will christen the world.” The term worldline is due to Minkowski:

We fix our attention on the substantial point which is at the world-point x, v, z, t, and
imagine that we are to recognize this substantial point at any other time. Let the varia-
tions dz, dy, dz of the space coordinates of this substantial point correspond to a time
element d¢. Then we obtain, as an image, so to speak, of the everlasting career of the
substantial point, a curve in the world, a worldline, the points of which can be referred
unequivocally to the parameter ¢ from —oo to +0o0. The whole universe is seen to re-
solve itself into similar worldlines, and .. .in my opinion physical laws might find their
most perfect expression as reciprocal relations between these worldlines.

36To quote O. Veblen (from 1927), [8, p1] “Recent advances in the theory of differential invariants and the wide use
of this theory in physical investigations have brought about a rather general acceptance of a particular type of notation, the
essential feature of which is the systematic use of subscripts and superscripts ....” The use of subscripts and superscripts
is not as arbitrary as it might first appear; the way the two types of indices are used in calculations is quite logical and
consistent.

3TReprinted in The Principle of Relativity [9, p73], an important collection of articles by Einstein, Lorentz, Minkowski,
and Weyl. A chance to read the original literature in English translation.
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1.4 SPACETIME DIAGRAMS

Comprehending relativity is greatly facilitated through the use of spacetime diagrams, a