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Preface

T HE theory of relativity is a core component of physics curricula, yet the level at which it’s
taught can differ widely, from minimal coverage of special relativity (SR) in modern physics

courses, to treatments using four-vectors in mechanics courses, to covariant treatments of electro-
dynamics, to graduate courses on general relativity (GR). I have sought to create a text aimed at
advanced undergraduate/first-year graduate students, which starts with the foundations of SR and
continues through to GR, at roughly the same level of sophistication. What makes that a challenge is
the mathematics involved toward the end of the journey. General relativity requires the mathematics
of curved spaces, the province of differential geometry. If linear algebra comprises the mathematics
of quantum mechanics, differential geometry is the lingua franca of GR, and most physics stu-
dents learn this branch of mathematics in courses on GR. We start at the beginning developing the
mathematics as required with the goal of providing in one voice, hopefully in an accessible style,
the full picture of the subject. I assume students have had, or are taking, the standard courses in
undergraduate physics curricula—analytical mechanics, quantum mechanics, electrodynamics, and
mathematical methods—but not dedicated courses in relativity beyond what one encounters in a
modern physics course. I assume familiarity with the Michelson-Morley experiment (MM). I do not
presuppose a mastery of tensors; we supply a reasonably in-depth treatment of tensors, on flat and
curved spaces. There are numerous texts on relativity available, of varying degrees of rigor. I have
sought a middle ground between treatments that are qualitative and lacking in mathematical details
and works written by experts for experts.

Here are some points of note.

Minus signs: Minus-sign ambiguities arise at several places in relativity. The first is the Lorentz
metric. We choose (−+++); this seems best (to me)—it singles out time as the quantity warranting
special treatment, so true in relativity, and it leaves alone the Euclidean metric for spatial variables.
Students must learn from the outset that relativity mostly is about time. The perennial debate over the
Lorentz metric will not be settled here. Another source of minus sign confusion is in the Riemann
curvature tensor Rαβγδ; I have put the indices associated with derivatives in the third and fourth
places, i.e., γ and δ. We take the Ricci tensor as the contraction over the first and third indices of the
Riemann tensor, Rµν = Rαµαν . Finally, the energy-momentum tensor is defined so that T 00 ≥ 0.

Notation: An attempt has been made at being consistent. Scalar quantities are indicated in italic
font: the speed of light, c. Vector quantities are indicated with boldface italic font: force F . Tensors
considered as geometric objects are indicated with boldface Roman font: T (this notation doesn’t
appear until Chapter 5). Components of tensors are indicated in italic font with indices: Tµν . Tensor
densities are indicated with Gothic symbols, T; that notation is sparingly used.

Units: I have kept all the factors of c, G, and ~ in formulas. There is a certain panache in advanced
physics of working in units where c = G = 1, etc. The aim of this practice is to: 1) avoid repetitively
writing the same old factors, and 2) gain insight into the geometric meaning of formulas. In a first—
and perhaps only—exposure to the subject, I have consistently worked in SI units.

Mathematics: Relativity is a mathematical theory; there’s no way around that. Tensors constitute
the very language of relativity: An equation of physics expressed as a relation between tensors,
if valid in one reference frame, is valid in all reference frames. Yet the mathematical preparation

xi



xii � Preface

of students in this area is often insufficient for a study of relativity, and the power of the theory
cannot be harnessed without knowledge of its mathematical structure. To fill this gap, roughly 25%
of the book is devoted to the mathematics of relativity. Chapter 5 is an introduction to tensors
on flat spaces. Most courses will not cover all this material; consider the latter half of Chapter 5
reference material (which is used throughout the book). The first half of Chapter 5 comprises a
“tensor starter kit”—a foundation for the use of tensors in SR. For GR, a deeper understanding must
be developed. To study GR at anything beyond a superficial level requires a working knowledge
of tensor fields on curved spaces, which is developed in Chapters 13 and 14. I considered putting
the material in Chapter 13 (manifolds) into an appendix, but decided against: It should be part of
the main exposition of the subject. Nevertheless, it could be skipped on a first reading. Chapter 14
(curvature) presumes a familiarity with manifolds, but not all their properties in detail. Consult the
latter half of Chapter 5 and Chapter 13 as needed. The mathematics contained in Chapters 5, 13, and
14, if encountered for the first time, would be daunting despite my attempts to guide you through the
maze. It takes time to become proficient in the theory of relativity, to learn its methods and scope.
Physics students tend to learn mathematics on a “need-to-know” basis, and most learn this material
in courses on GR. Physicists often find themselves strangers in a strange land of mathematics.

Organization: Chapter 1 presents an overview of SR and GR. Chapters 2–10 develop non-
gravitational phenomena (SR), first without, and then with the use of tensors. Chapters 11 and
12 introduce the principle of equivalence (the equivalence of local gravity and acceleration) and
the treatment of accelerated motion in SR. Chapters 13 and 14 are where a traditional book on
GR would begin. Chapters 15–18 present Einstein’s field equation, the standard first topics in GR,
and the extent to which they have been tested, mainly on the scale of the solar system. Chapter 19
concludes with a brief introduction to cosmology. Appendices contain specialized topics.

History: I have reproduced passages from the writings of Newton, Einstein, Minkowski, and others.
It’s instructive for students to see how the luminaries of physics have grappled with the very subject
they are encountering. No attempt has been made to offer a history of relativity.

Going outside the box: Relativity is foundational to much of physics. The book is offered against
the backdrop of the corpus of physical theory, to which the student is assumed to have had exposure.
When instructive I point out parallels with other branches of physics; I do not pretend that other parts
of physics don’t exist.

Disclaimers: In addition to typos and outright blunders, I welcome comments on what is not clear.
Invariably, when delving into a subject with sufficient depth you get “hot” on the material, and many
conclusions seem obvious. Later, however, they may not be so obvious. I have attempted to give all
the details necessary to derive the important equations. If the presentation seems ploddingly slow at
times, I’ve succeeded in bringing you up to speed. It’s all relative!

Acknowledgments: I thank my colleague Brett Borden for being my LATEX guru and differential
geometry sounding board. I thank the editorial staff at CRC Press, in particular Francesca McGowan
and Rebecca Davies. I thank Evelyn Helminen for making figures. I thank my family, for they have
seen me too often buried in a computer. My wife Lisa I thank for her encouragement and consum-
mate advice on how not to mangle the English language. Finally, to the students of NPS, I have
learned from you, more than you know. Try to remember that science is a “work in progress”; more
is unknown than known.

James H. Luscombe

Monterey, California



C H A P T E R 1

Relativity
A theory of space, time, and gravity

R ELATIVITY is a theory of space and time that provides the foundation for much of physics. It
applies to any branch of physics that makes use of the four variables x, y, z, t, where x, y, z are

independent spatial coordinates and t denotes time.1 While originating from a reasonable premise
(see below), the theory of relativity2 implies conceptions of space, time, matter, and motion vastly
different from what our everyday experience of the world leads us to formulate. To understand
physics in full, as applied to phenomena beyond ordinary experience, one must study relativity (as
well as quantum mechanics); our everyday experience is but a special case of all that’s possible in
the universe. We’ll see that relativity consists of two theories: the special theory of relativity (SR)
and the general theory of relativity (GR).

1.1 THE PRINCIPLE OF RELATIVITY
TO VANQUISH COORDINATES, TRANSCEND THEM

In broadest terms, relativity holds that the universe doesn’t care what systems of coordinates, or
reference frames we use to describe physical phenomena.3 Such a statement hardly sounds rev-
olutionary, yet its implications are far-reaching because in the theory of relativity time is taken
as a coordinate in a four-dimensional geometry of space and time, rather than as a parameter in
pre-relativistic physics.4 Coordinates are essential for making measurements and performing calcu-
lations, yet they’re not fundamental—they don’t exist in nature—they’re artifacts of our thinking,
what we as humans impose on the world. Therein lies the rub. We need coordinates for practical
purposes, yet the goal of physics is to formulate laws of nature as manifestations of an objective
reality, that which occurs independently of human beings.5 The laws of physics should be expressed
in a way that’s independent of coordinate system. Relativity is an outgrowth of a single idea, the

1Isn’t that all of physics? Classical thermodynamics, for example, utilizes variables that characterize the state of thermal
equilibrium, which is independent of position and time.

2Referring to relativity as a theory can give the impression that it’s speculative. Relativity has been thoroughly tested
and is among the most secure theories in physics. It’s up to us to fit our minds to the Procrustean bed of physics.

3We use the terms reference frame and coordinate system interchangeably.
4Classical physics refers to non-quantum physics; relativity belongs to classical physics. Pre-relativistic refers to physics

developed prior to the advent of relativity, which dates to the year 1905.
5We use the term objective as it’s used in science, to refer to objects that exist, or processes that occur, independently

of the presence of human beings. That idea conflicts with the acausality of measurement as taught in quantum mechanics.
There is a successful marriage of quantum mechanics with SR (the Dirac equation), but not with GR. Progress has been
made in incorporating quantum effects into GR, such as Hawking radiation, but there is not presently a consistent theory of
quantum GR, what’s referred to as quantum gravity.

1



2 � Core Principles of Special and General Relativity

principle of relativity, that physical laws be independent of the reference frame used to represent
them. Relativity is therefore a law about laws.6 Albert Einstein said: “. . . time and space are modes
by which we think, and not conditions in which we live.”[2, p81] The program of relativity is to
express equations of physics in such a way that, if true in one system of space-time coordinates, are
true in any coordinate system, and thereby transcend coordinates. We will travel far in the theory of
relativity in pursuit of this goal, which, as we’ll see, is achieved by expressing equations as relations
between tensors,7 tensors defined on a four-dimensional geometry where time is a dimension.

1.2 THE LAW OF INERTIA: FOUNDATION OF SPECIAL RELATIVITY
Motion exists . . . relatively to things that lack it.—Galileo, 1632[3, p116]

Motion is ubiquitous, yet learning to describe it correctly took a long time to achieve. Galileo
taught, for the purposes of formulating laws of motion, that states of uniform motion are the same
as rest,8 when observed from reference frames in which the law of inertia holds, inertial refer-
ence frames (IRFs).9 There are an unlimited number of possible IRFs, which therefore comprise
a class of frames from which to describe motion. Our first order of business is to examine inertia
and IRFs, because SR is based on the equivalence of IRFs. That we have singled out a particular
type of reference frame is what puts the “special” in SR. There are two aspects to the principle of
relativity: The type of phenomena that are the same for observers in equivalent reference frames,
and the class of equivalent frames of references. With SR, Einstein showed that mechanical and
electromagnetic phenomena obey the same laws for all inertial observers;10 with GR, he extended
the class of equivalent observers to all observers, wherein he provided an explanatory framework for
gravitational phenomena. We must understand how relativity is implemented for IRFs (SR) before
tackling arbitrary frames of reference (GR).

1.2.1 Inertia

The property of matter known as inertia, so familiar to us today, had a difficult time in becoming
established. Pick up a rock and throw it. What makes it move when it leaves your hand? According
to Aristotle, “Everything that is in motion must be moved by something,” an idea seemingly so
compelling, it stood for almost 20 centuries.11 Galileo refuted that idea with a simple experiment.12

Drop a stone from the mast of a ship that’s at rest; note where it lands. Now repeat the experiment on
a ship that’s in uniform motion. In the Aristotelian theory, the rock would land at a point displaced

6The principle of relativity is a different kind of law than other physical principles. It presumes the existence of laws of
nature, that there are reproducible manifestations of the workings of nature waiting for us to describe, of which we possess a
language rich enough to accurately describe. That language is mathematics, which physics relies on heavily. It’s remarkable
that mathematics, a human invention, applies so well to the description of nature. To quote Eugene Wigner:[1] “. . . the
mathematical formulation of the physicist’s often crude experience leads in an uncanny number of cases to an amazingly
accurate description of a large class of phenomena. This shows that the mathematical language has more to commend it than
being the only language which we can speak; it shows that it is, in a very real sense, the correct language.”

7If you’re uneasy about tensors, don’t worry; students are frequently ill-prepared when it comes to tensors. The mathe-
matics of tensors will be developed as we proceed. Vectors are special cases of tensors.

8Galileo did not explicitly isolate the concept of inertial motion as a general principle, yet it’s quite clear from his
writings that he understood it. Even today, students of physics are well advised to read Galileo’s Dialogue.[3]

9There are reference frames in which the law of inertia does not hold, noninertial reference frames—see Section 1.6.
10We’ll refer to inertial observers as observers at rest relative to IRFs. The “observer” is essentially the reference frame.
11Aristotle classified motion as natural and unnatural. Natural motion occurs among the four elements air, earth, fire,

and water, which seek to find their natural places, e.g., heavy objects naturally move toward the center of the earth. Natural
motion is unforced, not requiring the action of an external agency. Unnatural motion, however, such as horizontal motion
on Earth, is forced and requires a mover. What’s the “mover” when the rock leaves your hand? Aristotle argued that air,
displaced by the motion of the rock, wraps around the rock and pushes it on. A rock thrown in vacuum would not move!

12The history of inertia is more involved than our account here. A succession of investigators in the time between Aristotle
and Galileo questioned the Aristotelian theory.



Inertia � 3

from the mast by the distance the ship had moved during the fall.13 Galileo maintained there would
be no displacement because, first, the rock shares in the motion of the ship,14 and second, free
particles move without movers, that free particles—those with no forces acting on them—once set
in motion, maintain that state of motion, termed inertial motion.15 The rock accelerates under the
action of gravity, but maintains its constant motion in the direction of the uniform motion of the ship
because there is no force acting in that direction (assuming negligible wind resistance).16

The primary state of motion, that exhibited by free particles, is inertial—in a straight line at
constant speed. Free particles of and by themselves cannot change their states of motion. That fact
is highly important (essential, actually) for SR and GR. The unfolding of the inertia concept mirrors
the historical development of physics, from Aristotle to Einstein, at least as far as our understanding
of motion is concerned. Galileo’s experiment with the ship is a variant of an argument used by
Aristotle to prove that Earth is immobile: An object projected straight up from the surface of the
earth returns to the same place and thus Earth could not have moved in the meantime. Galileo
maintained that nothing can be inferred from such an argument about Earth’s motion or rest. What
Galileo asserted is that, except in relation to other objects, uniform motion of one’s reference frame
cannot be detected—a fundamental tenet of relativity—in this case by mechanical means.17

Isaac Newton conceived of inertia not just as the property of free objects to maintain states of
uniform motion, but also by what he called the inherent force, the property by which matter resists
changes in motion: “Inherent force of matter is the power of resisting by which every body, so far as
it is able, perseveres in its state either of resting or of moving uniformly straight forward.”[4, p404]
Thus there are two aspects of inertia: perseverance and resistance. His definition of inertia should
be read together with his first law of motion: “Every body perseveres in its state of being at rest or
of moving uniformly straight forward, except insofar as it is compelled to change its state by forces
impressed.”[4, p416] Objects move inertially unless prevented from doing so by imposed forces,
to which they provide a resistance, the inertial force.18 The inertial force is the reaction by which
objects “push back” against forces attempting to prevent states of inertial motion:

Because of the inertia of matter, every body is only with difficulty put out of its state
either of resting or of moving. Consequently, inherent force may also be called by the
very significant name of force of inertia. Moreover, a body exerts this force only during
a change of its state, caused by another force impressed upon it, and this exercise of
force is, depending on the view point,19 both resistance and impetus:20 resistance inso-
far as the body, in order to maintain its state, strives against the impressed force, and
impetus insofar as the same body, yielding only with difficulty to the force of a resist-

13In the Aristotelian theory, once the stone has been released (and no longer has a mover), it can only undergo its “natural”
motion toward the center of Earth; where the ship goes after the release of the rock is immaterial.

14This point, obvious to us today, was one that Galileo had to take pains to establish, that objects can have a superposition
of motions, i.e., velocity is a vector quantity. In the Aristotelian theory, objects not subject to movers can only have their
natural motions. That objects can have “two motions” (downwards and sideways) was foreign to the Aristotelian worldview.

15Galileo based this conclusion on his experiments with inclined planes: Objects accelerate on planes oriented downward,
decelerate on those oriented upwards, and have no acceleration on horizontal planes.

16Truth in advertising: A particle dropped from a sufficiently high point would show a displacement from the Coriolis
acceleration. By Earth’s rotation, a body dropped from a high elevation has a higher transverse velocity than the ground.
Such a displacement actually confirms Galileo’s hypothesis that different types of motion can be imparted to particles.

17In the Aristotelian theory, the speed of the ship could be inferred from the displacement of the rock. Perhaps one has
ridden in a train through a tunnel (or a submarine), where, if the ride is smooth enough, one doesn’t have a sense of motion.
The MM experiment failed to detect uniform motion by electromagnetic means.

18We’ll see in GR that your weight is the force which must be supplied to prevent you from continuing in a state of
inertial motion. What’s seen as accelerated motion in three dimensions (under the force of gravity) corresponds to a constant
state of motion in four-dimensional spacetime (defined on page 5). As shown in GR, gravity is a property of spacetime.

19What we refer to as reference frame, Newton called point of view.
20Impetus is another word for momentum. What we call momentum, Newton called quantity of motion, defined [4, p404]

as “the velocity and quantity of matter jointly”; hence momentum p = mv. In SR, momentum is defined as p = mγv
(where γ = (1− v2/c2)−1/2 and c is the speed of light), an alternative “quantity of motion.” For v � c, γ ≈ 1.
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ing obstacle, endeavors to change the state of that obstacle. Resistance is commonly
attributed to resting bodies and impetus to moving bodies; but motion and rest . . . are
distinguished from each other only by point of view, and bodies commonly regarded as
being at rest are not always truly at rest.[4, p404]

1.2.2 Inertial reference frames

In IRFs the law of inertia holds true, that free particles move in straight lines at constant speed. In
view of the transition to GR, several issues are exposed by this benign statement.

1. What’s a free particle? The answer is seemingly self-evident: If free particles are unacceler-
ated, then not-free particles are accelerated, right? Not so fast. Such reasoning doesn’t take
into account how acceleration is measured. Not all unaccelerated particles are free, and not
all free particles are unaccelerated: It depends on the reference frame. In IRFs, acceleration is
caused solely by forces. No force, no acceleration, and forces arise from physical interactions.
In noninertial reference frames (see Section 1.6), acceleration can be an artifact of the choice
of frame and not necessarily the result of forces. Forces can be identified from their physical
sources. Acceleration—seemingly the quantity most accessible to direct observation—is not
unambiguous because to measure it a standard of rest must be specified. Consider Earth in
the gravitational field of the sun. In a frame with the sun at rest, Earth’s acceleration is in
the direction of the force produced by the sun; Newton’s second law of motion is satisfied.
In a frame with Earth at rest, however, it is not satisfied because Earth’s acceleration is zero.
Newton’s second law is not a general law of physics because we’re free to choose reference
frames in which it doesn’t work.21 IRFs are frames in which objects with no forces acting on
them have no acceleration.

2. What’s a straight line? In a given geometry, the straightest possible line is called a geodesic
curve, a concept that we’ll develop. But what specifies the geometry? In GR, the geometry
of spacetime22 is not something known a priori, but is instead determined by its energy-
momentum content. Spacetime geometry is therefore physical, something that emerges from
the distribution of matter-energy-momentum. Spacetime in GR is not something passive and
inert; it evolves in response to matter. The version of Newton’s first law that survives to GR is
that free particles follow geodesic paths in spacetime, those determined by the distribution of
energy-momentum. We return to this idea when we take up GR.

3. What’s constant speed? For speed, we need time. But whose time? Newtonian mechanics
utilizes an absolute time that pervades the universe—see page 8. In relativity, time and space
do not have separate existences and are reference-frame specific.

1.2.3 Equivalence of inertial reference frames

Once a frame has been found meeting the criteria for an IRF, any other frame moving relative to it
with constant velocity also constitutes an IRF.23 A natural equivalence among IRFs is established
by free particles: All inertial observers agree that the trajectories of free particles are described by
constant velocity; all agree on the law of inertia. The value of the speed is reference-frame specific,
but all agree on its constancy. Thus, all inertial observers agree on the laws of mechanics: Forces
manifest in changes of states of inertial motion. Different inertial observers can observe the same
phenomena and describe them by the same laws. Transforming from one set of inertial observers to
another does not change the laws—the very heart of the principle of relativity.

21In a sense, that’s the problem GR fixes.
22Spacetime is defined on page 5. Is it obvious what the geometry of spacetime should be?
23The motion of free objects is seen as unaccelerated in both frames.



Coordinate transformations � 5

1.2.4 Coordinate transformations and the principle of covariance

Transformation is central to relativity. Transformations between reference frames are effected math-
ematically as transformations among the different coordinates assigned to the same event by all the
different, yet equivalent inertial observers. An event is a point in space at a point in time. Any-
thing that happens, or has happened or will happen, comprises an event. The totality of all events
is a four-dimensional continuum referred to as spacetime (no hyphen). We require that the math-
ematical form of the laws of physics be unaffected by changes in reference frames, changes in the
coordinates assigned to events, a theme that accompanies us from Newtonian mechanics to SR to
GR, that the laws of physics be expressed in a way that their form is invariant under progressively
more general coordinate transformations. Form invariance of physical laws is called the principle
of covariance, the requirement that the equations of physics adhere to the principle of relativity by
having the same mathematical form in all reference frames.

Coordinate transformations in SR must be linear. All inertial observers agree that the spacetime
trajectories (worldlines) of free particles are straight (see Section 1.4). Coordinate transformations
between IRFs must be such as to map straight lines in spacetime onto straight lines so as to preserve
the law of inertia. Only homogeneous, linear transformations map straight lines onto straight lines,
where both lines pass through the same origin of the coordinate system. We’ll work through some
examples to see how inertial frames can differ and yet be equivalent.

1.2.4.1 Boosts

Figure 1.1 shows frames S and S′ with origins displaced by vector R, where the coordinate axes

x

y

z
S

R

r′

∗

r

y′

x′

z′ S′

Figure 1.1 Frames S and S′ in boost configuration: coordinate axes are parallel.

are parallel. We will of course be interested in the case of relative motion where R = R(t) is time
dependent, but for now letR be fixed. Any transformation between frames with parallel axes (as in
Fig. 1.1) is called a boost.

In Fig. 1.1 the same point in space, denoted with an asterisk, is referenced by vectors r and r′,
with r′ = r − R (law of vector addition). This simple (linear) coordinate transformation can be
“inverted” by interchanging primed and unprimed quantities and letting R → −R, r = r′ + R.
That rule will stand us in good stead with linear coordinate transformations: Interchange primed
and unprimed quantities and reverse the transformation parameter (velocity, angle, etc.). Suppose
S is an IRF, i.e., a frame in which a free particle is unaccelerated, r̈ = 0. By differentiating the
transformation equation we conclude that r̈′ = 0. If S is an IRF, so is S′ when it’s connected to S
by a displacement. There is no unique origin for IRFs.
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1.2.4.2 Rotations

A more complicated example of a linear transformation is a rotation. Figure 1.2 shows frames S and

SS′ ∗

x

y

x′

y′

φ

Figure 1.2 Frames having a common origin with axes rotated through a fixed angle φ.

S′ having a common origin but with coordinate axes rigidly rotated relative to each other by a fixed
angle φ. How are the coordinates assigned to the same point related? It’s an exercise in trigonometry
to show that (

x′

y′

)
=
(

cosφ sinφ
− sinφ cosφ

)(
x
y

)
≡ Rz(φ)

(
x
y

)
, (1.1)

where we’ve introduced the rotation operator,Rz(φ), which effects a rotation about the z-axis (com-
ing out of the paper, not shown) through an angle φ. The inverse transformation is obtained by inter-
changing primed and unprimed quantities and by letting φ→ −φ. If in S a free particle is observed
to be unaccelerated, with ẍ = 0 and ÿ = 0, then because φ is constant, ẍ′ = 0 and ÿ′ = 0. A frame
rotated relative to an IRF is also an IRF.24 There is no unique orientation of IRFs. General linear
transformations involving both boosts and rotations are covered in Chapter 6.

1.2.4.3 Galilean transformations

Now let R in Fig. 1.1 vary linearly with time, R = vt, where v is a constant vector. Both
observers carry identical clocks, which are synchronized when the origins coincide. By “common
sense” reasoning, r and r′ are related by r′ = r − vt. Implicit is the assumption that time in S′, t′,
is the same as that in S, t′ = t (absolute time, see page 8). This “obvious” assumption was rarely
made explicit in pre-relativistic physics. By differentiating the transformation formula, we have the
Galilean velocity addition formula25 u′ = u − v, where u ≡ dr/dt and u′ ≡ dr′/dt′. If in S a
free particle is described by r̈ = 0, then r̈′ = 0 as well. If S is an IRF, then so is S′ if it’s moving
uniformly relative to S. It’s difficult to appreciate at first the deep implications of this result!

The transformation r′ = r − vt can be written in terms of its vector components:x′y′
z′

 =

xy
z

− t
vxvy
vz

 . (1.2)

Equation (1.2) underscores the pre-relativistic concept that we live in a three-dimensional world
with time as a universal parameter (t′ = t). If time is included as a separate dimension, however,
r′ = r − vt and t′ = t can be expressed as a linear transformation in four-dimensional spacetime:

t′

x′

y′

z′

 =


1 0 0 0
−vx 1 0 0
−vy 0 1 0
−vz 0 0 1



t
x
y
z

 . (Galilean transformation) (1.3)

24The frames S and S′ are related through a fixed angle. A rotating reference frame, with φ = φ(t) is not an IRF.
25How velocities transform between IRFs in SR is treated in the next two chapters.
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Let’s get in the habit of listing the time “coordinate” first,26 as in Eq. (1.3). Equation (1.3) is the
Galilean transformation (GT), the form of relativity based on everyday experience. Despite its
common-sense appeal, the GT does not lead to predictions in agreement with experiment;27 it will
be replaced by another linear transformation of spacetime coordinates that does lead to agreement
with experiment—the Lorentz transformation (LT).28

1.2.4.4 Form invariance

The idea of form invariance can be illustrated using the GT, because acceleration is invariant under
that transformation: a′ ≡ (d2/dt′2)r′ = (d2/dt2)(r − vt) = (d2/dt2)r = a. Observers in S and
S′ agree on the form of Newton’s second law: F ′ = ma′ = ma = F , where mass is the same in
all IRFs.29 The laws of mechanics are invariant under the GT. What about electromagnetism?

Maxwell’s equations predict the existence of electromagnetic waves that propagate with a speed
given in terms of electromagnetic parameters, c = 1/√ε0µ0. It’s shown in Appendix A that the
wave equation transforms under the GT for frames in relative motion along a common x-axis as:

∂2

∂x2 −
1
c2
∂2

∂t2
=
(
1− v2/c2

) ∂2

∂x′2
− 1
c2

∂2

∂t′2
+ 2v
c2

∂2

∂x′∂t′
. (A.3)

Form invariance therefore does not hold for the wave equation under the GT, implying a crack
in the foundation of physics. The inconsistency is that Maxwell’s equations are fundamental laws
of physics, yet a prediction of those equations is not invariant under the GT, while the laws of
mechanics are. Let’s consider the three possible explanations for this inconsistency:

1. The principle of relativity applies to mechanics, but not to electromagnetism. Maxwell’s equa-
tions predict a speed of electromagnetic waves, but don’t specify a reference frame. Perhaps
there is only one reference frame in which the speed of light is c? If so, one could detect that
frame by electromagnetic means—the MM experiment.

2. The principle of relativity applies to mechanics and electromagnetism but Maxwell’s equa-
tions are incorrect. If so, one should find discrepancies between the predictions of Maxwell’s
equations and experimental results. Such discrepancies have yet to be found.

3. The principle of relativity applies to mechanics and electromagnetism, but Newton’s laws
are incorrect. If so, one should find discrepancies between the predictions of Newton’s laws
and experimental results—something routinely done at particle accelerators which produce
speeds v . c. If Newton’s laws are incorrect, so is the GT, and we’re back to square one.

Einstein opted for the third explanation. He asserted that the principle of relativity applies to all of
physics, not just to mechanics. He then took that idea to its logical extreme. The speed of light is a
law of physics, not merely something that we measure. Einstein took the bold step of asserting that
the speed of light is the same for all inertial observers, which experiment has shown to be true!

1.3 SPACE, TIME, AND SPACETIME

1.3.1 Newtonian space and time

Relativity is concerned with space and time and how the two are related through motion. It’s useful
to state Newton’s conceptions of space and time, which, while not satisfactory by today’s standards,
continue to frame the discussion:[4, p408]

26In pre-relativistic physics, time is a parameter, not a coordinate.
27What’s wrong with common sense? If you had to put your finger on it, it would be the assumption that t′ = t, the

notion of absolute simultaneity.
28The properties of Lorentz transformations are developed throughout this book.
29Mass is the same in all IRFs, wherein all observers claim themselves at rest.
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• Absolute space, of its own nature without reference to anything external, always remains
homogeneous and immovable.

• Absolute, true, and mathematical time, in and of itself and of its own nature, without reference
to anything external, flows uniformly and by another name is called duration.

What’s meant by absolute? Einstein gave a good definition:[5, p55] “. . . absolute means not only
physically real, but also independent in its physical properties, having a physical effect, but not itself
influenced by physical conditions.” We’ll use absolute in Einstein’s sense—physically existing, but
not influenced by physical conditions. Newton’s space and time are absolute in that sense: They
exist—by definition—independent of anything else. These notions unravel in relativity. Space and
time are not independent of each other, but are two aspects of a single entity: spacetime.

It’s understandable that space would be conceived as absolute. Look out at the night sky. Space
appears as a vast, fixed arena containing the objects of the universe. Already we’re up against cosmo-
logical questions. Does space exist independently of the objects in the universe (as Newton would
have it), passively containing them, or do the properties of space manifest because of the objects in
the universe (the picture afforded by GR)? Is the universe separate from the objects it contains? Is it
a vast collection of independent objects, or is it a single entity? GR will weigh in on these questions.

1.3.2 Simultaneity—the death knell of absolute time

Snap your fingers. In the Newtonian framework you’ve just specified “now” at every point of the
universe, no matter how distant, because time exists independently of space. That notion is indicated
in Fig. 1.3. Two points in space having the same time are said to be simultaneous. An instant of time

Figure 1.3 Surfaces of simultaneity in Newtonian spacetime.

thus determines a three-dimensional surface of simultaneity,30 extending throughout all of space.
Simultaneity is therefore absolute in pre-relativistic physics, existing independently of anything
else. In relativity, simultaneity is not absolute—two events simultaneous in one IRF, are not in
another. Sit equidistant between two friends, and have them snap their fingers at the same time; you
hear both simultaneously. To someone walking past you at a constant rate, however, the same finger-
snaps would not be simultaneous.31 The finger-snap would be heard first from the sound source that
the walker is moving toward. Whose description of these events is “right”? Relativity shows there
is no absolute meaning to the “same time.” Absolute time does not exist—it’s not true that time
exists independently of anything else. Time is not a parameter provided by the universe, as it is in
pre-relativistic physics; relativity shows that time exists locally, relative to a given reference frame.

30Actually a three-dimensional hypersurface. Our familiar notion of surface (such as the surface of an apple) is a two-
dimensional set of points, or manifold, embedded in three-dimensional space. A hypersurface is an (n − 1)-dimensional
manifold embedded in n-dimensional space. Manifolds and hypersurfaces will be systematically introduced in later chapters.

31The relativity of simultaneity is illustrated in Fig. 1.6.
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The term relativity is misleading. Relativity does not claim that “everything is relative” (as is
sometimes falsely stated), only that some things are relative, such as simultaneity. Relative refers to
measurements made relative to a given reference frame, the results of which may not be the same
in all reference frames. The purpose of relativity is to discover what is not relative, that what is the
same for all observers is a law of physics. Relativity shows that simultaneity is not a law of physics.

1.3.3 Absolute space—is it real?

Absolute space, “homogeneous and immovable,” would be the ultimate reference frame from which
it could be decided whether objects are “really” at rest. How would we recognize an object abso-
lutely at rest? The answer is, we can’t.32 Rest cannot be ascertained against a backdrop of “noth-
ingness” (absolute space); there must be other objects around to compare with—rest exists only in
relation to other objects, which can be considered reference frames. The same is true of motion. We
cannot perceive motion in itself (relative to absolute space); motion is perceived only in relation to
objects—all motion is relative.33 Nevertheless, if a reference frame could exist from which all mo-
tion is relative to, yet which is itself absolutely at rest, let yourself be at rest in that frame. Someone
drifting by in a rocket ship would say you’re in motion! Everything moves with respect to everything
else, and every inertial observer claims they are at rest.

Absolute space is thus an empty concept because only relative motion can be observed. Perhaps
that’s why it went largely unchallenged in the 200 years between the time of Newton and the late
19th century, because it has no observable consequences.34 The concept of absolute space received
support, however, from Maxwellian electrodynamics. Maxwell’s equations predict a speed of elec-
tromagnetic waves, but they don’t specify a reference frame—what better evidence for a preferred
frame like absolute space? Physicists of the late 19th century inferred there must be only one ref-
erence frame in which the speed of light is c (called the ether frame, presumably absolute space).
Einstein, however, reached the opposite conclusion: If Maxwell’s equation don’t specify a reference
frame, all inertial observers measure the same speed of light.

1.3.4 Spacetime coordinates and notational conventions

In the theory of relativity time is taken as a coordinate in the specification of physical phenomena,
in addition to spatial coordinates. Ask a friend to meet you for coffee. You must specify a point in
space, three coordinates (on the surface of Earth usually two suffice), at a point in time, making four
numbers in all. Thus, you’re asking to meet your friend at a specified spacetime point, i.e., event.

The “gist” of relativity is that different observers assign different coordinates to the same events,
underscoring that coordinates are without fundamental significance. Events are physical and exist
independently of the coordinates assigned to them.35 The procedure in SR by which coordinates
are assigned to events, the coordinization of spacetime, is discussed below. In GR, the assignment
of spacetime coordinates is associated with its mathematical structure as a manifold. In SR, space-
time is flat, while in GR spacetime is curved. Flat geometries can be covered by a single system
of coordinates, whereas curved geometries require overlapping coordinate systems. Curved geome-

32The unobservability of absolute space underscores a lesson from the history of physics: Physics is based on what can
be measured. Notions of what might or could exist “anyway,” but that we can’t detect, like absolute space, tend to get excised
from physics. “Excess” theoretical structures imply that alternative theories are possible.

33Recall Galileo’s words (page 2): “Motion exists relative to things that lack it”.
34There were objections to absolute space most notably from George Berkeley and Ernst Mach. Berkeley’s 1721 essay

On Motion objected to absolute space because it’s not observable; see [6], paragraphs 58, 59, and 64. Mach’s Science
of Mechanics [7] (published in 1883) provided the most incisive and influential critique of Newtonian mechanics. Mach
contended we’re not allowed to invent concepts like absolute space. In the world we know of, motion is relative. We should
not invent concepts that contravene that fact. “No one is competent to predicate things about absolute space and absolute
motion; they are things of thought, pure mental concepts, that cannot be produced in experience.”

35Spacetime in SR is absolute—existing, but not influenced by physical conditions.
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tries, however, are locally flat—what we learn about coordinatizing spacetime in SR applies to
limited regions of spacetime in GR. To locate an object in three-dimensional space, three numbers,
or coordinates, must be specified. In the Cartesian coordinate system, the numbers are tradition-
ally denoted (x, y, z). But there are other coordinate systems, e.g., spherical coordinates, (r, θ, φ).
We’ll denote spatial coordinates in a way that doesn’t commit to a particular coordinate system with
the notation

(
x1, x2, x3), or simply xi, where it’s understood that i = 1, 2, 3. The use of super-

scripts takes some getting used to, but it’s standard notation in tensor analysis.36 When there’s a
possibility for confusion, we’ll denote the square of x as (x)2 to avoid mistaking it with the co-
ordinate x2; contrary to what you might think, problems of that sort do not occur often. The time
coordinate will be parameterized, for reasons explained in Section 1.4, as x0 ≡ ct. An event thus
has coordinates x0, x1, x2, x3. To save writing, spacetime coordinates are conventionally denoted
xµ, where it’s understood that µ = 0, 1, 2, 3. Greek letters denote spacetime coordinates, xρ, while
Roman letters denote spatial coordinates, xk. The indices ρ and k are dummy indices having no
absolute meaning. Thus,

∑3
ν=0 x

ν = x0 +
∑3
j=1 x

j . As we’ll see, two types of coordinates arise
in non-orthogonal coordinate systems: contravariant, denoted with superscripts, xµ, and covari-
ant, denoted with subscripts, xν . Because GR seeks to work in arbitrary coordinate systems—not
necessarily orthogonal—both types of coordinates, xν and xν , will be used.

Sidebar discussion: In 1908 Hermann Minkowski delivered a seminal presentation, Space and
Time,37 in which he showed that the results of SR, as derived algebraically by Einstein in 1905,
have a natural and intelligible explanation when space and time are conceived geometrically as
belonging to a four-dimensional continuum with a non-Euclidean geometry.

The views of space and time which I wish to lay before you have sprung from the soil
of experimental physics, and therein lies their strength. They are radical. Henceforth
space by itself, and time by itself, are doomed to fade away into mere shadows, and
only a kind of union of the two will preserve as an independent entity.

Many of the terms we use in relativity are due to Minkowski: Proper time, spacelike vector, timelike
vector. He didn’t use the term lightcone, but he did speak of “front” and “back” cones, which we
will call future and past lightcones. It’s clear that Minkowski had worked out much concerning
the geometry of spacetime, what today we call Minkowski space (see Chapter 5). Minkowski died
suddenly in 1909 at age 44; one can only wonder what additional contributions he might have made.
What we call spacetime, Minkowski called the world: “A point of space at a point of time, that is,
a system of values x, y, z, t, I will call a world-point. The multiplicity of all thinkable x, y, z, t
systems we will christen the world.” The term worldline is due to Minkowski:

We fix our attention on the substantial point which is at the world-point x, y, z, t, and
imagine that we are to recognize this substantial point at any other time. Let the varia-
tions dx,dy,dz of the space coordinates of this substantial point correspond to a time
element dt. Then we obtain, as an image, so to speak, of the everlasting career of the
substantial point, a curve in the world, a worldline, the points of which can be referred
unequivocally to the parameter t from −∞ to +∞. The whole universe is seen to re-
solve itself into similar worldlines, and . . . in my opinion physical laws might find their
most perfect expression as reciprocal relations between these worldlines.

36To quote O. Veblen (from 1927), [8, p1] “Recent advances in the theory of differential invariants and the wide use
of this theory in physical investigations have brought about a rather general acceptance of a particular type of notation, the
essential feature of which is the systematic use of subscripts and superscripts . . . .” The use of subscripts and superscripts
is not as arbitrary as it might first appear; the way the two types of indices are used in calculations is quite logical and
consistent.

37Reprinted in The Principle of Relativity [9, p73], an important collection of articles by Einstein, Lorentz, Minkowski,
and Weyl. A chance to read the original literature in English translation.
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1.4 SPACETIME DIAGRAMS
Comprehending relativity is greatly facilitated through the use of spacetime diagrams, also called
Minkowski diagrams, and we’ll use them freely. On such diagrams, time is displayed along the
vertical axis, with spatial dimensions displayed on horizontal axes (see Fig. 1.4). It’s simplest to

A

x = v(t+ t0)

B

t

x

θ

∆x

∆t C

Figure 1.4 Particle worldlines: A is at rest, B is in uniform motion, and C is accelerated.

take time as orthogonal38 to the three-dimensional space of spatial variables, as in Fig. 1.3. While
we employ an orthogonal spacetime coordinate system, the geometry of spacetime is non-Euclidean
(as we’ll show); don’t be fooled into thinking that an orthogonal set of axes implies a Euclidean
geometry. Many ingrained habits must be unlearned in “doing” geometry on spacetime diagrams,
particularly in calculating distances. Particle A is at rest in the reference frame of Fig. 1.4. The
“motion” (history) in spacetime of a stationary object is a line parallel to the time axis. Particle B
has constant velocity; its worldline is straight, with speed v = ∆x/∆t = tan θ m s−1. Particle C is
accelerating; its worldline is curved. In IRFs the worldlines of free particles are straight.

x

ct

∆x

c∆t

lightline

Figure 1.5 Lightline (photon worldline) on a spacetime diagram.

Of particular interest are the worldlines of photons; see Fig. 1.5. Using meters and seconds as
the units of length and time, the worldline of a photon would be almost parallel to the spatial axis,
with θ ≈ π/2. There’s nothing fundamental about units, however; one size doesn’t fit all and it’s
common to adopt units that are suited to the problem at hand (e.g., the electron volt). It’s convenient
to scale times by 1/c ≈ 3.3 ns m−1, the time for light to travel one meter. With t → t/(1/c) = ct,
the worldline of a photon—the lightline—is at the angle π/4 with respect to the ct and x-axes. We’ll
draw lightlines at 45◦ angles relative to the space and time axes.

The relativity of simultaneity can be illustrated on a spacetime diagram. Consider a photon
source C in a train car39 situated equidistant between detectors A and B; see Fig. 1.6. The source
emits photons back to back. In a reference frame at rest with respect to the train car, photons arrive
at the detectors simultaneously. In a reference frame at rest relative to the train station, however,

38In rotating reference frames, the orthogonality between space and time breaks down.
39Einstein’s relativity tends to get done in train stations and in elevators.
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ct′
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t′A = t′B
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Figure 1.6 Relativity of simultaneity. Photons are received simultaneously in the frame of
the emitter, but not in a frame in which emitter and receiver are moving to the right.

which the train is assumed passing through, the photon source and the detectors are in motion with
speed v from left to right. The two frames synchronize their identical clocks when the origins of their
coordinate systems coincide, whereupon the photons are emitted. Seen from the frame of the station,
event A happens before B; the photon first encounters detector A moving toward it. Simultaneity is
not absolute: What’s observed as simultaneous in one IRF, is not in another.

There’s a fundamental reason to use ct as the temporal coordinate. The fusion of space and time
into spacetime requires that spacetime coordinates all have the same dimension. The coordinates
of an event in one IRF are, under the LT, a linear combination of the coordinates in another IRF,
which can be accomplished only if space and time coordinates have the same dimension. We require
a conversion factor between spatial and temporal measures, which must be the same for all IRFs.
We’ll show (Chapter 3) that a LT followed by a LT, is itself a LT—what’s required by the principle
of relativity that all IRFs be equivalent. Such universality is possible only if the conversion factor is
universal. The principle of relativity requires a universal speed. Experiment shows that speed is the
speed of light. For frames in relative motion along a common x-axis (see Fig. 3.1), the spacetime
coordinates transform under the LT (Eq. (3.17))

ct′

x′

y′

z′

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 , (1.4)

where γ ≡ (1 − β2)−1/2 is the Lorentz factor, with β ≡ v/c. Under the LT, the time coordinate
in S′ is a mixture of the time and space coordinates in S.40 For that reason, the time coordinate
x0 = ct must have the dimension of length.

The worldline of an object at rest in a given IRF is parallel to the time axis in that frame, e.g.,
worldline A in Fig. 1.4. The worldline of A might just as well be the time axis in that frame, what
we’ll assume from now on. Let observerB be at rest relative toA—see Fig. 1.7. At time t1,A emits
a photon toward B that’s reflected by a mirror attached to B, with the return of the photon recorded
at time t2. A concludes that B has the spatial coordinate xp = c(t2− t1)/2, half the time difference
between emission and reception, and that the reflection event occurred at time tp = (t2 + t1)/2,
the mean of the two times. This procedure is called the radar method of coordinatizing spacetime;
it assigns spacetime coordinates to events,

(ctp, xp) =
( 1

2c(t2 + t1), 1
2c(t2 − t1)

)
(1.5)

40It is sometimes said (erroneously) that the GT is the version of the LT for low speeds, v � c, yet that cannot be
true—the GT does not mix in the spatial coordinate for the new time coordinate, at any speed.
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ctA

x

B

ct1

ct2

(ctp, xp)

Figure 1.7 Radar method of assigning coordinates to events.

based on measurements made by A using light signals.41 The radar method builds in the isotropy of
the speed of light (established in the MM experiment). The “outbound” speed of light is the same
as that for the photon’s return journey, and we are free to orient A and B in any direction.

We can redraw Fig. 1.7 as the left portion of Fig. 1.8. A photon emitted at time t1 is reflected

t1

t2

(t, x)

t− x/c

t+ x/c

(t, x)

Figure 1.8 Photon emitted at t− x/c is reflected at (t, x) and received at t+ x/c.

from spacetime point (t, x) and received at time t2. We haven’t drawn observerB in Fig. 1.8, whose
only role in Fig. 1.7 was to hold a reflector. Using Eq. (1.5), we can solve for t1 and t2 in terms of
(t, x), t1 = t− x/c and t2 = t+ x/c; these times are shown in the right portion of Fig. 1.8.

1.5 RELATIVITY OF CAUSALITY: SPACELIKE AND TIMELIKE
While spacetime coordinates are reference-frame dependent, there is an invariant involving the
squares of coordinates that’s the same for all inertial observers,42 the spacetime separation

s2 ≡ −(x0)2 +
3∑
i=1

(xi)2 . (1.6)

For an event with coordinates xµ in one IRF, the coordinates of the same event in another IRF, xµ
′
,

are such that43

−(ct′)2 + (x′)2 + (y′)2 + (z′)2 = s2 = −(ct)2 + (x)2 + (y)2 + (z)2 . (1.7)

41Note that the radar method does not call upon us to compare times as measured in different reference frames; it uses
measurements made in a single reference frame.

42That there is an invariant quantity among coordinates assigned by different inertial observers to the same event implies
that spacetime possesses an intrinsic geometry—the subject matter of the rest of the book.

43Equation (1.7) applies to IRFs having a common spacetime origin. Note the prime placed on the index, xµ
′
.
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Equation (1.7) can be verified using the special case of a LT given by Eq. (1.4); it’s true, however, for
any LT. In Chapter 4 we define a LT as any linear transformation that leaves s2 invariant. The space-
time separation is an example of a quantity that’s not relative—it’s observer independent. A way to
motivate the invariance of s2 is to consider two IRFs in relative motion along their common x-axis.
At the instant their origins coincide, a flash of light is emitted. Both see an expanding wavefront that
in their coordinates is described by −(ct)2 + x2 = 0. In whatever way the coordinates transform
between IRFs, by the principle of relativity both must conclude that x2−(ct)2 = 0 = (x′)2−(ct′)2.
While a wavefront of light is described by s2 = 0, Eq. (1.7) holds for any value of s2.

x1

x0

xµ(1)
xµ(2)∆xµ

Figure 1.9 Spacetime separation vector between distinct events.

The separation between events is defined analogously.44 Consider two events in a given IRF that
have coordinates xµ(1) and xµ(2). Define the difference vector45 ∆xµ (see Fig. 1.9)

∆xµ ≡ xµ(2) − x
µ
(1) =


x0

x1

x2

x3


(2)

−


x0

x1

x2

x3


(1)

≡


∆x0

∆x1

∆x2

∆x3

 .

The spacetime separation between these events is defined in the same way as in Eq. (1.6):

(∆s)2 = −(∆x0)2 +
3∑
i=1

(∆xi)2 . (1.8)

Even though the separation has been defined as the square of the quantity ∆s, the value of (∆s)2

can be, depending on the events, positive, zero, or negative. There is the temptation to define ∆s
itself as an imaginary quantity when (∆s)2 < 0, a temptation we will resist.46

The three possible signs of (∆s)2 provide an absolute way of characterizing spacetime separa-
tions. Because (∆s)2 is an invariant, no LT can change its sign.

(∆s)2 is called:


spacelike if (∆s)2 > 0 ;
lightlike if (∆s)2 = 0 ;
timelike if (∆s)2 < 0 .

Figure 1.10 shows examples of the three types of spacetime separations. Timelike separations do
not have to be “above” the lightline, nor spacelike separations “below.” It’s the slope of the lines
that counts, not their location in a spacetime diagram.

44Because coordinates are defined relative to an origin, s2 is the separation between the event with coordinates xµ and
the event at the origin.

45Such a vector is called a four-vector; see Chapter 5.
46One could either work with a Euclidean geometry that allowed pure imaginary distances, or one could work with a

non-Euclidean geometry from the outset. The latter is more in keeping with the requirements of GR; we will not venture
down the path of “ict”—as was done in the early days of relativity.
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x

ct timelike
lightlike

spacelike

Figure 1.10 Timelike, lightlike, and spacelike separations of spacetime events.

We can always find a reference frame in which spacelike-separated events are simultaneous: For
∆t = 0, it is automatically the case that (∆s)2 > 0. However, for frames in which (∆s)2 > 0,
∆t can be of either sign or zero. Thus, one cannot speak of a causal relation between spacelike-
separated events. For A and B spacelike-separated events, one can find frames in which the events
occur in either order,47 in whichA precedesB orB precedesA. This fact is a major departure from
pre-relativistic physics, in which the time order of events is absolute.48 Timelike-separated events,
on the other hand, can never be simultaneous: No reference frame can be found for which ∆t = 0
as it would violate (∆s)2 < 0. The temporal order in which timelike-separated events occur is
therefore absolute because we can’t find a frame in which ∆t vanishes. Only for timelike-separated
events can we speak of causality.

1.6 SEGUE TO GENERAL RELATIVITY: NONINERTIAL FRAMES
Newton’s laws work in IRFs, which as we have seen, are frames of reference in which Newton’s
laws work! What saves us from a circular trap is the ability to identify physical sources of force;
only in IRFs is the acceleration of objects solely due to forces—only in IRFs does the Newtonian
paradigm apply (F = ma). From the point of view of fundamental physics, Newton’s second law
is limited by its specialization to IRFs. GR provides equations of motion valid in arbitrary frames of
reference. To what extent do noninertial reference frames find use in Newtonian dynamics, despite
nominally being excluded from the framework of pre-relativistic mechanics? Such a question might
appear off topic, but given that SR is based on the equivalence of IRFs, and that GR frees itself from
IRFs, it’s useful to look at pre-relativistic uses of noninertial frames.

1.6.1 Linear acceleration

Referring to Figure 1.1, r = R + r′ where now we allow all quantities to be time dependent.
Differentiating twice with respect to absolute time, r̈ = A + r̈′ where A ≡ R̈ is the relative
acceleration between frames.49 Let S be an IRF in which the observed acceleration of a particle of
mass m is associated with a force, r̈ = F /m. We therefore have an equation similar to Newton’s
second law:

r̈′ = 1
m

(F −mA) . (1.9)

The acceleration observed in the accelerated frame (r̈′) is due to forces (F ) and the force-like
quantity −mA, termed the fictitious force, so named because, while it has the dimension of force,
is not a force; genuine forces can be traced to physical interactions. Acceleration and force have the
same values in all IRFs; they are absolute, observer-independent quantities. In noninertial frames,
r̈′ is an apparent acceleration: It’s not absolute, it’s reference-frame dependent; from Eq. (1.9) r̈′ is

47Demonstrated in Section 2.4.
48For the most part the predictions of SR smoothly go over to those of Newtonian mechanics as v/c → 0. Certain

conclusions, however, have no counterpart in pre-relativistic physics, such as the acausality of spacelike-separated events.
49The transformation of acceleration under the LT, which does not assume absolute time, is covered in Chapter 3.
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offset from the acceleration due to forces F /m by the acceleration of the reference frame, A. The
accelerationA in the fictitious force is the acceleration of the frame, not that of the particle.

Figure 1.11 shows a noninertial frame N , an elevator accelerating relative to IRF I .50 In I , a

I

N

free particle
A

I

N

elevator meets particle

A

Figure 1.11 Left: In I r̈ = 0 (free particle); in N , apparent acceleration r̈′ = −A. Right:
In N , r̈′ = 0 (at rest); in I , F = mA.

free particle has inertial motion, r̈ = 0, whereas in N it has acceleration r̈′ = −A. An observer in
N concludes a force produces the observed acceleration, yet there is no force, no physical agency
acting on the particle, which is why −mA is called fictitious. When the elevator floor meets the
particle, however, the fictitious force becomes real.51 At this point, the elevator prevents the particle
from continuing (“persevering”) in its inertial motion. An inertial observer concludes there is a force
on the object, F = mA, which follows from Eq. (1.9) with r̈′ = 0. The object resists changes in
its inertial state and exerts a force back on the elevator, −mA ≡ Fi (“endeavors to change the state
of that obstacle”).52 When observed from a noninertial frame, a particle moving by inertia appears
to accelerate in the direction opposite to the acceleration of the frame; we can still apply Newton’s
second law in this case by regarding the apparent acceleration as caused by a fictitious force. When,
however, the particle is prevented from moving by inertia and made to move with the acceleration
of the frame, the particle resists acceleration through a real force, the inertial force.

1.6.2 Rotating reference frame

Inertial forces arise in rotating reference frames. Consider a frame (x′, y′, z′) rotating at a constant
rate Ω relative to an IRF (x, y, z) about the common z, z′ axis. As is well known,53 the acceleration
observed in a rotating frame is related to the force F through an equation analogous to Eq. (1.9),

r̈′ = 1
m

(F − 2mΩ× ṙ′ −mΩ×Ω× r) . (1.10)

The inertial force Fi = −2mΩ× ṙ′−mΩ×Ω×r involves the Coriolis force and the centrifugal
force. These forces are quite real, as anyone who has ridden a merry-go-round can attest.

50Assume the elevator is sufficiently outside the gravitational field of Earth that gravity can be ignored.
51It’s sometimes said, incorrectly, that any force observed in a noninertial frame is a fictitious force. Forces in noninertial

frames are quite real, as anyone who’s ridden in an automobile can attest. “Real fictitious forces” are best given another
name—inertial force—because they arise from the inertia of matter.

52We’re referring to Newton’s words cited in Section 1.2.
53Any standard text on classical mechanics will have a derivation of the centrifugal and Coriolis forces.
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1.6.3 D’Alembert’s principle

By d’Alembert’s principle,54 Newton’s second law is written in a seemingly trivial wayF−ma = 0,
equivalentlyF+Fi = 0, so that an object in motion can be treated as if in static equilibrium between
impressed forces F and the inertial force Fi (produced by the mass in response to the changes in
inertial motion brought about by F ).[10, p88] That a mass in motion can be treated as if at rest
underscores the relativity of motion. An object appears at rest in a frame moving with an object
(r̈′ = 0), and in such a frame we have from either Eq. (1.9) or Eq. (1.10) equilibrium between
impressed and inertial forces. D’Alembert’s principle could be considered a precursor to GR—it
gives insight into how an equation of motion might appear in an arbitrary frame of reference.

An example from elementary mechanics illustrates these ideas. The left portion of Fig. 1.12
schematically shows a car undergoing acceleration A as seen from an IRF. Attached to the car is

θ

m

A

m

T

W

I

m

T

W

Fi

N

Figure 1.12 Ball hanging from the ceiling of an accelerating car. Forces as seen from an
inertial frame, I , and a noninertial frame, N .

a ball of mass m hanging from a string. The forces “impressed” on the ball are the tension T in
the string and its weight W . As shown in the middle portion of Fig. 1.12, these are the forces that
cause the ball to undergo the acceleration observed in inertial frame I , T +W = mA. In the usual
coordinate system involving horizontal and vertical components, where vertical is defined by the
direction of gravity, Newton’s second law separates into two scalar equations T sin θ = mA and
T cos θ−mg = 0, from which we find tan θ = A/g and T = m

√
g2 +A2. In the noninertial frame

N of the car, no acceleration is observed and Eq. (1.9) gives the same equation of force balance:
0 = T +W −mA. When the car is not accelerated, the ball hangs “straight down” in the direction
of gravity with the tension equal to the weight, T = mg. With the car accelerated, we can view the
tension as balancing the resultant ofW and the inertial force Fi = −mA, T = − (W + Fi) (right
portion of Fig. 1.12). Alternatively, the inertial force is the opposite of (reaction to) the resultant of
the physical forces, T andW , Fi = − (T +W ).

1.7 GENERAL RELATIVITY: A THEORY OF GRAVITATION

1.7.1 Newtonian gravitation—consistent with the theory of relativity?

In elementary physics one first learns about Newton’s law of motion F = ma, which applies for
any force F , and, second, Newton’s law of gravitation—an expression for a force law—that masses
m1 and m2 at locations r1 and r2 experience an attractive force of magnitude

F = G
m1m2

|r1 − r2|2
,

where G is the gravitational constant. Newton’s law of gravity works well in explaining many phe-
nomena, from predicting solar eclipses to sending satellites to distant planets. Despite its successes,
however, Newtonian gravitation is not consistent with relativity, for two main reasons.

54D’Alembert’s principle is a formulation of classical mechanics equivalent to Hamilton’s principle (a more well-known
formulation of classical mechanics.) See Appendix D.
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1. The locations specified by r1 and r2 in Newton’s formula are implicitly assumed to occur at
the same time. Relativity shows there is no absolute meaning to the “same time.”

2. What mediates gravity? If m1 were to move suddenly, Newton’s formula would have that
the force on m2 would change instantly, yet instantaneous interactions are not physical, the
bugaboo of action at a distance.55

Newton wrote in 1693:[11, p217] “. . . so that one body may act upon another at a distance
through a vacuum without the mediation of anything else, by and through which their action and
force may be conveyed from one to another, is to me so great an absurdity, that I believe no man
who has in philosophic matters a competent faculty of thinking could ever fall into it.” In 1713
he wrote,[4, p943] “I have not as yet been able to deduce from phenomena the reason for these
properties of gravity, and I do not feign hypotheses . . . it is enough that gravity really exists and
acts according to the laws that we have set forth, and is sufficient to explain all the motions of the
heavenly bodies . . . ”. Newton appeals to pragmatism: Even though he can’t explain the workings
of gravity, his law of gravity works and works well and, as he tells it, explains “all” the motions of
celestial bodies. Or does it?

1.7.2 Do we need a relativistic theory of gravitation?

Under what conditions do relativistic effects become important in gravitational physics? We know
that modifications to Newtonian dynamics manifest as speeds become comparable with the speed of
light, v . c. What relativistic effects are specifically associated with gravity? Consider the energy
of the gravitational field. In Newtonian theory, the energy stored in the gravitational field of a mass
M of radius R with uniform mass density is given by the expression56

Egrav = 3
5
GM2

R
.

Let’s ignore the numerical factor and take as a measure of gravitational energy the terms GM2/R.
The rest energy is another kind of energy, Erest = Mc2. By forming the ratio Egrav/Erest we obtain
a characteristic dimensionless number specifying the gravitational energy relative to the rest energy,

Egrav

Erest
= GM

Rc2
≡ Φ
c2
, (1.11)

where Φ is the gravitational potential—the gravitational potential energy per mass—which has the
dimension of speed squared.57 Newton’s law of gravity, like Coulomb’s law, is a 1/r2 law. Any
result obtained in electrostatics has an analog in Newtonian gravity. For future reference, Table 1.1
compares the properties of the Newtonian gravitational field with those of the electrostatic field.

55Newton’s law of gravitation was controversial when it was introduced. Aristotle taught that heavenly objects (stars and
planets) by their nature move in circles at constant speed, while on Earth heavy objects move toward the center of Earth.
Stones fall, but planets don’t. Descartes, in an attempt to explain planetary orbits, proposed that the sun sets up a whirlpool
motion to keep planets moving in circular motion. Kepler (at roughly the same time) discovered that planets move in elliptical
orbits, not circular. It’s against this backdrop that Newton’s law of gravity is startling. Newton offered no explanation of how
the sun could exert an influence on Earth over vast distances—action at a distance. He “merely” offered a formula that
predicts the motion of objects subject to gravity. With his inverse-square law, Newton could account for Kepler’s three laws
of planetary motion; he also showed that Descartes’s whirlpool hypothesis contradicts Kepler’s third law. To illustrate the
difficulty inherent with action at a distance, what would you think of a theory purporting that radiant energy disappears
from the sun and eight minutes later appears on Earth without accounting for how it happens? Newton’s law of gravity is an
effective, phenomenological description that provides no explanation for the mechanism of gravity. As we’ll see, GR holds
that spacetime itself is the underlying substrate that mass couples to.

56A similar expression holds for the energy stored in the electric field associated with a uniform ball of charge, a calcu-
lation you’ve probably already done.

57The electrostatic potential is the energy per charge, which is given a special unit—a volt is a joule per coulomb.
Gravitational energy per mass (the gravitational potential) has the dimension of speed squared; just think of kinetic energy
∝ mv2.
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Table 1.1 Comparison of Newtonian gravitation theory with electrostatics.

Newtonian gravitation Electrostatics

Force between point objects Fgrav = −GMm

r2 r̂ Felec = Qq

4πε0r2 r̂

Field vector of a point source g = −GM
r2 r̂ E = Q

4πε0r2 r̂

Gauss’s law ∇ · g = −4πGρ ∇ ·E = ρelec/ε0

Irrotational field (of point source) ∇× g = 0 ∇×E = 0

Potential energy of point objects U(r) = −GMm

r
Uelec(r) = Qq

4πε0r

Potential of a point source Φ(r) = −GM
r

Φelec(r) = Q

4πε0r
Poisson equation ∇2Φ = 4πGρ ∇2Φelec = −ρelec/ε0

Potential of an extended source Φ(r) = −G
∫

ρ(r′)
|r − r′|

d3r′ Φelec(r) = 1
4πε0

∫
ρelec(r′)
|r − r′|

d3r′

Local energy density −|g(r)|2

8πG
ε0
2 |E(r)|2

A large value of the ratio in Eq. (1.11) (of order unity) would indicate an object for which the
gravitational energy is comparable to Mc2. The dimensionless quantity in Eq. (1.11) occurs in GR
as a measure of the significance of relativistic effects in gravity; be on the lookout for it. While
v � c is an indicator that Newtonian dynamics provides an accurate description, Φ � c2 is an
indicator that Newtonian gravitation should suffice. Numerical values of this ratio are listed in Table
1.2 for various systems.

Table 1.2 Ratio of gravitational to rest-mass energy.
System GM/(Rc2) ≡ Φ/c2 Comment

Earth 10−9 GPS system inoperable
without relativistic corrections

Sun 10−6 Precession of planetary orbits
unaccounted by Newtonian mechanics

Black hole 0.5 As relativistic as it gets

Universe 0.5 Ditto for the universe!

The gravitational energy of the Earth is seemingly a negligible fraction (10−9) of its rest energy
and thus we would conclude that the Newtonian theory of gravity should suffice. While largely true,
there are nonetheless small effects due to time dilation in a gravitational field that must be taken into
account if the global positioning system (GPS) is to operate properly. Gravitational time dilation is
not the special relativistic time dilation (“moving clocks run slow”), but rather is an effect associated
with gravity, that clocks run slower the deeper they are in a gravitational potential well. The GPS
system would go wrong in a matter of minutes if relativistic effects were not taken into account.
Even for weak gravity there are important effects that Newtonian theory cannot describe.
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For the sun, with Egrav ≈ 10−6Mc2, the orbit of Mercury precesses at a small but measurable
rate that cannot be accounted for in Newtonian mechanics, yet which is explained precisely by GR.
The precession of orbits is one of the classic tests of GR.58

Newton’s law of gravity contains no characteristic length scale over which it applies: It’s
intended to apply for any distance. GR, however, features an intrinsic length associated with
a spherically symmetric mass M , the Schwarzschild radius rS ≡ 2GM/c2. (Remarkably, the
Schwarzschild radius can be obtained from Newtonian mechanics as the radius of an object for
which the escape velocity vesc =

√
2GM/R = c.) If M lies within the Schwarzschild radius, then

r = rS defines an event horizon for external observers: Signals emitted cannot reach outside ob-
servers and we have a black hole. Black holes are regions of spacetime from which nothing, not even
light, can escape. For black holes, Egrav/Erel = 1

2 . Clearly implicit in the description of a black hole
is the prediction that gravity affects the propagation of light. Gravitational lensing, the deflection of
light by gravity, is an experimental tool for investigating dark matter, a hypothesized form of matter
that, while not luminous, can nevertheless be inferred from its gravitational influences.

For the universe, GM/Rc2 can be estimated from its mean mass density ρ and size R: M =
4
3πR

3ρ. Let ρ be the critical density obtained from cosmological theory,59 ρc ≡ 3H2
0/(8πG) ≈

10−29 g cm−3, where H0 is the Hubble constant. Thus, GM/Rc2 = 1
2 (RH0/c)2. Take the size

of the universe to be R = ctH where tH ≡ H−1
0 is the Hubble time, the approximate age of the

universe. With these substitutions,GM/Rc2 = 1
2 . While one can question any of these assumptions,

the larger point is that the universe is “just” as relativistic as a black hole!
Because gravity is always attractive, why doesn’t the universe collapse? Newton concluded that

the universe must be infinite in extent to avoid such a collapse. GR, however, predicts an expanding
universe! To preclude this possibility,60 Einstein introduced an adjustable constant, the cosmological
constant Λ, with the purpose of producing a static, finite-sized universe. It was later shown (in 1922,
by Alexander Friedmann) that GR predicts an expanding universe no matter what the value61 of Λ.
The “standard model” of cosmology, the Friedmann-Robertson-Walker model, is derived from GR,
including Λ, a term now thought to be associated with dark energy, a proposed form of energy
that leads to a universe that’s not only expanding, but is accelerating in its expansion. In 1998 an
acceleration to the expansion of the universe was discovered, and Λ was invoked as an explanation.62

Thus, astrophysical and cosmological phenomena63 require for their explanation a relativistic
theory of gravitation. We need a theoretical framework that can handle arbitrary gravitational fields,
from the environment near planets and stars, to that of black holes, and ultimately the universe. GR
is a theoretical tool for describing spacetime that incorporates the effects of gravity.

1.7.3 Thinking about relativistic gravity

Can Newtonian gravity be “fixed up” so as to be relativistically correct? The short answer is no. No
“tweak” of Newton’s formula has ever been found, perhaps with factors of γ here and there; it takes
a major revamping of our concepts of space and time.

It’s instructive to ask, given that action at a distance is a flaw of Newtonian gravitation, how
is that problem sidestepped with Coulomb’s law, which has the same structure as Newton’s law of

58The three classic tests of GR are the precession of orbits, the bending of light by gravity, and the gravitational redshift.
59The mean density of the universe ρ is thought to be quite close to the critical value, ρc. Knowledge of ρ is of crucial

importance to cosmology, as it determines whether the universe is open or closed. It’s found that ρ/ρc = 1.0023± 0.005.
When contemplating a number like 10−29 g cm−3, it’s helpful to keep in mind the density of Earth (∼ 5.5 g cm−3) or the
density of the sun (∼ 1.4 g cm−3). The universe as a gravitating system can perhaps be considered another state of matter,
that which is governed by an incomprehensibly small density.

60In 1929, it was deduced that the universe is expanding from the redshift in spectral lines observed from distant galaxies.
To Einstein in 1917, it was obvious that the universe must be static.

61As shown by Friedmann, Einstein’s static solution of the equations of GR is not stable against small perturbations.
62The 2011 Nobel Prize in Physics was awarded for the discovery of the accelerating expansion of the universe.
63And even the terrestrial GPS system.
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gravity? The force between charges q1 and q2 has magnitude

F = k
q1q2

|r1 − r2|2
,

where k is a proportionality factor that depends on the unit of charge adopted. Coulomb’s law suffers
from the same disease as Newton’s law—action at a distance and instantaneous interactions. What
saves the day is the field concept. Charge q1 sets up a condition in space—the electric field—that
q2 interacts with at its location, which can be symbolized: Charge1 ←→ Field ←→ Charge2. We
obtain an expression for the static electric field simply by rewriting Coulomb’s law,

F = q2

(
k

q1

|r1 − r2|2

)
≡ q2E .

Now, merely writing F = qE would be a change of variables if we didn’t ascribe physical re-
ality to the field. And we do ascribe reality to the field because we discover—using Maxwell’s
equations—that the electromagnetic field is a dynamical quantity that propagates at the speed of
light and transports energy and momentum. Through Maxwell’s equations, we discover that the
electromagnetic field satisfies a wave equation. Thus, electromagnetism is not transmitted instanta-
neously as Coulomb’s law would lead us to suspect, but is instead a propagating field at finite speed.
Is the same true of gravity? The concept of a field, one that has dynamical properties, answers the
problem posed by action at a distance: It’s the field that mediates the interaction between particles,
and the field propagates at finite speed.

Physics thrives on analogies. The paradigm of propagating fields leads us to ask: Can we formu-
late a field theory of gravity? Start by rewriting the force law:

F = m2

(
G

m1

|r1 − r2|2

)
≡ m2g ,

where g signifies the gravitational field. The Newtonian gravitational field satisfies Gauss’s law
∇·g = −4πGρ, where ρ is the local mass density. Note that the divergence of g is negative—there’s
a negative flux of field lines through any closed surface; gravity is always attractive. This seems like
a promising start, but what are the other “Maxwell equations” for gravity? Recall the crucial dis-
coveries in electromagnetism: Charges in motion (currents) produce magnetic fields, time-varying
electric fields induce magnetic fields, and time-varying magnetic fields induce electric fields. Are
there analogous phenomena in gravity? Does matter in motion lead to new phenomena, akin to a
magnetic field, that affect the motion of nearby masses?

There are no “Maxwell equations” for the gravitational field that have been discovered through
experiments, akin to Faraday induction. Thus there is no way, based on analogies with the electro-
magnetic field, to develop a field theory of gravity. Yet that’s what GR accomplishes—a relativistic
field theory of gravity distinct from the theory of the electromagnetic field. Once the machinery of
GR has been developed, we’ll discover analogs between gravity and electromagnetism in limiting
cases, that the gravitational field satisfies a set of equations analogous to the equations of electro-
statics and magnetostatics. GR predicts frame dragging, a gravitational analog of the Lorentz force
in electromagnetism—that spacetime is altered by objects in motion, “dragging” nearby objects out
of position compared to the predictions of Newtonian physics. While the frame-dragging effect is
small, experimental confirmation was reported in 2011. GR also predicts a propagating disturbance
in spacetime, gravitational waves, which were detected in 2016.64

64The 2017 Nobel Prize in Physics was awarded for the observation of gravitational waves.
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1.7.4 How does GR work?

The central content of GR is the Einstein field equation which schematically has the form

Local curvature of spacetime = 8πG
c4

(Local energy-momentum density) .

The curvature of spacetime, or equivalently, the geometry of spacetime, is determined by the energy-
momentum contained in that spacetime. Spacetime curvature in turn completely determines the
trajectories of particles. Mathematically, the Einstein field equation is a relation between second-
rank tensor fields65

Gµν = 8πG
c4

Tµν . (1.12)

(You’ll know what this all means soon enough: Gµν is the curvature tensor and Tµν is the energy-
momentum tensor that describes the density and flux of energy-momentum in spacetime.) Just as
Maxwell’s equations relate the electromagnetic field to its sources (charge and current densities), the
Einstein equation relates spacetime curvature to its source: energy-momentum density. In Maxwell’s
equations, the electromagnetic field is on spacetime; in Einstein’s equation, spacetime itself is the
field! Gravity is not a force in the usual sense; gravity is spacetime!

The spacetime separation, Eq. (1.8) can be written

(∆s)2 =
3∑

µ=0

3∑
ν=0

ηµν∆xµ∆xν , (1.13)

where the quantity ηµν is the Lorentz metric tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.14)

The metric tensor66 contains the information required to calculate the separation between spacetime
points with coordinate differences ∆xµ. Note the metric “signature” in Eq. (1.14), the terms on the
diagonal, (− + ++). This pattern holds for all inertial observers; the metric tensor in SR is fixed.
Because of the minus sign for the time coordinate, the geometry is not Euclidean.67

The worldlines of truly free particles would be straight throughout all of spacetime. When one
contemplates gravitation, one realizes that global inertial frames (holding for all of spacetime) are
an idealization: We can’t avoid the rest of the matter of the universe! Force-free motion can therefore
have only approximate validity. In GR the separation between spacetime points, which in Eq. (1.13)
applies for finite coordinate differences ∆xµ, is replaced by infinitesimally separated spacetime
coordinates dxµ:

(ds)2 =
3∑

µ=0

3∑
ν=0

gµν(x)dxµdxν , (1.15)

65The Einstein field equations are a set of 10 equations between the elements of second-rank symmetric tensors in
the four-dimensional geometry of spacetime. These equations are variously referred to in both the singular (Einstein’s field
equation), because it’s one equation between two tensors, and in the plural (field equations), because there are 10 independent
equations between the components of the curvature tensor and the energy-momentum tensor. When you refer to “Einstein’s
equation,” people assume you’re referring to E = mc2. The Einstein field equations are vastly richer in content than
E = mc2.

66All things tensor will be explained in upcoming chapters.
67The spacetime geometry of SR is called semi-Euclidean because while not strictly a Euclidean geometry, which would

have metric signature (+ + ++), is nevertheless a flat geometry.
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where the quantities gµν(x) are not constant, but vary throughout spacetime—a metric tensor field.68

The curvature tensor Gµν in Eq. (1.12) is, as we’ll see, a complicated expression involving
derivatives of the metric tensor field gµν(x). The Einstein field equation implies a set of ten non-
linear partial differential equations for gµν(x). Once the tensor components gµν(x) are known, the
equations of motion for particles and photons are known. Particles and photons in free fall (subject
to no forces other than gravity) follow geodesic curves, the shortest possible paths in spacetime,
determined through a variational principle δ

∫
ds = 0. Motion, however, determines the energy-

momentum tensor Tµν . There is thus a feedback mechanism; see Fig. 1.13. Motion determines the

TµνGµν

gµν

Figure 1.13 Motion determines spacetime curvature, which determines motion.

energy-momentum tensor Tµν , which determines the curvature tensor through the Einstein equation,
the solution of which determines the metric tensor gµν , which controls motion. GR explains gravity
in terms of a varying metrical relation between neighboring spacetime points, gµν(x), wherein par-
ticles get closer together in the future than they are now. Gravity is a manifestation of the curvature
of spacetime, that determined by the distribution of energy-momentum.

1.7.5 Gravity is spacetime

That last statement requires elaboration, which we’ll do in a roundabout way. What do we need
to understand GR? For one, we have to enlarge our mathematical toolbox. The mathematics of
curvature is the province of differential geometry, the theory of tensor fields on curved manifolds.
The requirement imposed by the principle of relativity, that laws of physics be independent of
the reference frame used to represent them, leads to a program, the principle of covariance, of
expressing equations of physics as relations among tensors because, if a tensor equation is true in one
reference frame, it’s true in all reference frames. Once the mathematical foundation of tensor fields
has been laid, the Einstein field equation can be introduced forthwith. It’s important to recognize that
a truly new equation of physics cannot be derived from something more fundamental. Once the field
equation has been written down (however it was conceived), there isn’t a lot of wiggle room: Either
its predictions agree with experimental measurements or they don’t, and so far GR has passed every
test put to it. Is that all we need, more math, in particular the mathematics of tensors? (That and the
physical insight of Albert Einstein.) What about SR? In a sense GR doesn’t require SR, implausible
as that might sound. The thesis of GR is that energy-momentum causes spacetime curvature, where
spacetime is modeled as a four-dimensional manifold. The surface of Earth is curved yet we know
locally it can be approximated as flat. So too with spacetime: Curved spacetime is locally flat.
Manifolds are locally flat at any point, where the condition for flatness is that the derivatives of
the metric tensor vanish in a neighborhood of that point. That leaves open the question of what the
metric tensor should be for small regions of spacetime. Einstein’s answer is that it should correspond
to the metric of SR. In 1911, in the time between the development of SR and that of GR, Einstein
proposed the equivalence principle that the effects of gravitation are eliminated in a reference frame
of limited spatial extent that’s freely falling in gravity. In a freely falling frame, objects not subject
to forces (other than gravity) remain either at rest or in a state of uniform motion;69 a freely falling

68We study tensor fields in Chapter 13.
69Einstein called this the happiest thought of his life.
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frame is therefore an IRF, where SR holds sway. SR therefore becomes a theoretical “boundary
condition” on GR: the theory of spacetime that results for vanishing gravity. GR must give rise to two
incompatible limits as shown in Fig. 1.14: SR as G→ 0 and Newtonian gravity for v � c. GR thus

General relativity

Special relativity Newtonian gravity

G→0 v�c

Figure 1.14 General relativity supersedes special relativity and Newtonian gravity

supersedes both theories.70 It’s only in this sense that GR needs SR; GR is the more comprehensive
theory. Even though it serves as but a limiting case of GR, it’s important to develop SR to understand
what is discarded from the Newtonian framework. We do this first without tensors, and then, once
tensors have been introduced, we develop special-relativistic physics in tensor form. Getting back
to gravity, freely falling particles move along geodesic curves in four-dimensional spacetime at
a constant rate—no acceleration, no force required.71 In three-dimensional, space-only geometry,
such particles appear to accelerate, which the Newtonian paradigm associates with a force. It’s from
this perspective we say that gravity is not a force in the usual sense but rather is a manifestation of
the properties of spacetime. This point of view is fully developed in the book.

1.8 HASTA LA VISTA, GRAVITY
In the next chapter we begin a systematic exposition of SR, first without tensors, and then once ten-
sors have been introduced (Chapter 5), we cover special-relativistic physics using tensors, following
through with Einstein’s program of the principle of covariance. Only in Chapter 15 is gravity taken
up as a manifestation of spacetime curvature. At this point we say hasta la vista gravity, knowing
that we’ll catch up with you further on down the trail.

SUMMARY
We have presented an overview of the special and general theories of relativity without delving into
specifics. Many definitions have been introduced which form the basic vocabulary of the subject.

• The theory of relativity is an outgrowth of a single idea, the principle of relativity, that the laws
of physics be expressed in a way that’s independent of the reference frame used to represent
them. The principle of covariance is the requirement that equations of physics adhere to the
principle of relativity by having the same mathematical form in all reference frames, a goal
achieved by expressing equations as relations between tensors defined on a four-dimensional
geometry where time is a dimension.

• A primitive concept in relativity is an event—a point in space at a point in time. The totality
of all events is a four-dimensional continuum: spacetime. The theory of relativity is the study
of the geometry of spacetime, the relation between points of space and points of time—which
in broad terms is what physics is about. In SR spacetime is absolute—physically existing,
but not influenced by physical conditions. In GR, spacetime geometry is determined by the
distribution of energy and momentum. GR achieves a symmetry between spacetime acting
on matter (particles follow geodesic curves established by the curvature of spacetime) and

70Newtonian mechanics is correct for phenomena with v � c and for which Planck’s constant can be ignored. To the
diagram in Fig. 1.14 we should add another axis with ~ 6= 0, a theory that has yet to be formulated.

71See Section 14.3.5.
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matter acting on spacetime (curvature determined by energy-momentum through the Einstein
field equation). Such a symmetry, which might be expected generally—Newton’s third law,
implies that spacetime is physical.

• SR is based on the equivalence of IRFs established by free particles; SR is the law of inertia
expressed in spacetime. All inertial observers see the worldlines of free particles as straight,
and all inertial observers can claim themselves at rest. The geometry of spacetime in SR is
flat. The conditions for flatness were not specified in this chapter, but a hallmark of a flat
geometry is that the metric tensor consists of constant elements, as in the Lorentz metric,
Eq. (1.14). SR shows that the laws of mechanics and electromagnetism are equivalent for all
inertial observers, but not gravitational phenomena, which requires the machinery of GR—the
transition from global to local IRFs.

EXERCISES

1.1 Are the events A and B in Fig. 1.6 timelike, lightlike, or spacelike separated? That they are
simultaneous in one frame, but not in another suggests what type of spacetime separation?
What if in the right portion Fig. 1.6, the train was traveling from right to left, would event A
still occur before B?

Note: The remainder of the exercises for Chapter 1 require no relativity. Work them using
nonrelativistic physics.

1.2 ObjectsO1,O2, separated by a distance L, move along the x-axis with speed v < c.O1 emits
a photon toward O2, reflecting at event E1, which O1 absorbs at event E2. See Fig. 1.15.
Calculate the times t1 and t2 in terms of L, v, and c. It may be helpful to draw the “space
only” version of the diagram.

x

t

E1

E2

t1

t2

L

Figure 1.15 Figure for Exercise 1.2.

1.3 A river of width L flows with speed vr with respect to its banks. Two swimmers can swim
relative to still water at speed c, where c > vr. The swimmers decide to have a contest. One
will swim across the river and back. Call the time to accomplish this task T⊥. The other will
swim up the river the same distance L and back. Call the time to accomplish this task T‖.

a. Show that

T‖ = 2L/c
1− β2 ≡

2L
c
γ2 T⊥ = 2L/c√

1− β2
≡ 2L

c
γ , (P1.1)
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where β ≡ vr/c. Thus, T‖ > T⊥. For the across-the-river swim to arrive at the point on
the other bank directly across from the starting point, the swim must be “aimed” upstream
at an angle tan θ = vrT⊥/(2L) relative to the line joining the points directly across the
river from each other.

b. Show that for small β:

T‖ − T⊥ = L

c
β2 +O(β4) . (P1.2)

1.4 Consider Fig. 1.16. In the same river, a swimmer swims out to a distance L1 and back at a
constant angle φ relative to the bank. Call T (φ) the time to accomplish this task.

φ
L1

L2

vr

Figure 1.16 A swimmer swims to a distance L1 in the river, and back, at an angle φ relative
to the bank. A second swimmer swims to a distance L2 and back, at an angle φ+ π/2.

a. Derive a formula for T (φ). It’s instructive to use the Galilean velocity transformation. Let
c denote the velocity of the swimmer in the frame of the water. Relative to still water, the
swimmers swim at speed c. The velocity of the swimmer as observed from the bank is
v = vr + c, or c = v − vr. “Dot” this vector into itself to find

c2 = v2 + v2
r − 2vvr cos(v, vr) ,

where (v, vr) denotes the angle between the vectors v and vr. Show that

T (φ) = 2L1/c

1− β2

√
1− β2 sin2 φ , (P1.3)

where β = vr/c.

b. Show that Eq. (P1.3) reduces to Eq. (P1.1) in the appropriate cases.

c. A second swimmer swims out to a distance L2 and back at a constant angle φ + π/2
relative to the bank. Let T (φ + π/2) be the time to accomplish this task. Write down a
formula for T (φ+ π/2). Take Eq. (P1.3) and let L1 → L2 and φ→ φ+ π/2.

d. Calculate the difference in time for the swimmers to accomplish their tasks, ∆T (φ) ≡
T (φ+ π/2)− T (φ). Show that

∆T (φ) = 2L2/c

1− β2

√
1− β2 cos2 φ− 2L1/c

1− β2

√
1− β2 sin2 φ . (P1.4)

e. Using Eq. (P1.4), show that for small β

∆T (π/2)−∆T (0) = β2

c
(L1 + L2) +O(β4) . (P1.5)

f. Now imagine that we continuously change the angle φ in Fig. 1.16. Using Eq. (P1.4),
show that, to leading order in small β, the time difference between the two legs changes
with the angle according to

d
dφ∆T (φ) = β2(L1 + L2)

c
sin 2φ+O(β4) . (P1.6)
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Basic special relativity

T HE basics of special relativity (SR) are presented in this chapter using spacetime diagrams.

2.1 COMPARISON OF TIME INTERVALS: THE BONDI K-FACTOR

A B

T

kT

BA

T

kT

Figure 2.1 Inertial observers A and B emit photons separated by time T . Each sees the
other move away at the same speed, v. Photons in the moving frames are received separated
in time by kT , where k = k(v).

Let inertial observers A and B in relative motion carry identical clocks, the worldlines of which
are shown in Fig. 2.1.1 A sends two flashes of light to B, a time T apart. What time separation
does B measure? Not T—the second photon has further to travel. Perhaps if we knew the relative
speed between A and B, the time in B could be calculated? That presupposes, however, the New-
tonian conception that time is the same everywhere. SR shows that time is specified by a clock in a
reference frame. We know that worldlines of free particles are straight in IRFs, and that spacetime
coordinates in different IRFs are related by a linear mapping (Section 1.4). The time difference mea-
sured in B must therefore be proportional2 to T , call it kT . The Bondi k-factor [12] is a function of
the relative speed between frames, k = k(v). In particular, as v → 0, k(v)→ 1. Both observers see
the other moving away at the same speed, and thus the k-factor must be the same for both observers
(equivalence of IRFs). Photons emitted by B separated by time T are measured by A to have a time
separation kT (see Fig. 2.1). The rabbit is in the hat.

A and B synchronize their clocks when their worldlines cross (see Fig. 2.2). After time T , A
emits a photon toward B, which is reflected back to A. On B’s clock, the photon arrives at time kT .

1The worldline of an observer is the time axis in its reference frame. Imagine yourself holding a clock in a room: You
define the time axis for your reference frame. We don’t show the spatial axes in spacetime diagrams except when necessary.
The worldline is the location of x = 0 in that frame.

2This one assumption is really the whole show. The time measurements involved are at the same spatial locations in
each frame, ∆x = 0. Thus, ∆t in one frame is linearly related to ∆t in another.

27
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A B

kT

T

t

x

k(kT )

Figure 2.2 Photon emitted at time T , reflected at time kT , and received at time k2T .

A records the arrival of the photon at a time that’s a multiple, k, of the time at which B reflected
the photon, kT . Thus, A records the arrival of the photon at time k2T . Using Eq. (1.5), A assigns
coordinates to the photon reflection from B:

(ct, x) =
( 1

2c(k
2T + T ), 1

2c(k
2T − T )

)
. (2.1)

What was never in doubt is that A sees B moving at speed v, which in A’s coordinates is expressed
as x = vt. Thus, using Eq. (2.1),

β = v

c
= x

ct
= cT (k2 − 1)/2
cT (k2 + 1)/2 = k2 − 1

k2 + 1 . (2.2)

Solve Eq. (2.2) for k:

k =

√
1 + β

1− β . (2.3)

Voila! We see that k(0) = 1 as expected. There’s a sign convention implicit in Eq. (2.3): β > 0
corresponds to the “receiver” moving away from the photon source. Thus, k > 1 for β > 0. For the
source approaching the receiver, let β → −β, 0 < k < 1. From Eq. (2.3), k(−v) = k−1(v).

The k-factor, which relates time intervals, is the inverse of the relativistic Doppler factor, which
relates frequencies3 (derived in Appendix B, Eq. (B.3)). It seems that we’ve arrived at a fundamental
result of SR without invoking any relativity! If we examine the argument, however, we see that it uses
the principle of relativity, that all inertial observers can claim themselves at rest, and the isotropy
of the speed of light (through the use of the radar method). We motivated the k-factor by appealing
to linearity, that all inertial observers see straight worldlines of free particles. The k-factor is thus
firmly rooted in the fundamentals of relativity. As we now show, all the standard results of SR can
be derived using the k-factor.

We can see the connection with the Doppler effect by referring to Fig. 2.3. An emitter emits
signals regularly with time separation ∆t; it thus emits at the frequency fe ≡ (∆t)−1. The receiver
receives signals separated by time ∆trec; hence the received frequency is frec = (∆trec)−1. The
reception time is related to the emission time through the k-factor, ∆trec = k∆t. We therefore have
the relativistic Doppler effect, in agreement with Eq. (B.3),

frec = 1
k
fe . (2.4)

While the receiver is approaching the emitter, k < 1, a blueshift, and after, k > 1, a redshift.

3The relativistic Doppler effect is the classical Doppler effect combined with time dilation. Time dilation is not some-
thing we “officially” know about yet; it’s derived in Section 2.2.
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∆treceiver worldline

approaching

receding

emitter worldline

Figure 2.3 Doppler effect. Approaching observer receives photons at a blueshifted fre-
quency; receding observer receives photons at a redshifted frequency.

2.2 TIME DILATION
Figure 2.4 shows the worldlines of inertial observers A and B who have synchronized their clocks.

x

A
t

B
(t, x)

t− x/c

x

T

Figure 2.4 Time dilation. Proper time T occurs at time t = γT in reference frame A.

A emits a photon at time t− x/c that’s reflected by B. A assigns coordinates (t, x) to the reflection
event. B records the arrival of the photon at time T using its clock. B is at rest relative to the clock;
time measured in that frame is the proper time. The time T is related to the time t − x/c through
the k-factor:

T = k(t− x/c) . (2.5)

In A, x = vt, implying

T = k(t− βt) = kt(1− β) = t
√

1− β2 , (2.6)

where we’ve used Eq. (2.3). Equation (2.6) is usually written

t = 1√
1− β2

T = γT . (2.7)

Equations (2.6) or (2.7) are referred to as time dilation—“moving clocks run slow.” Suppose B
measures T to be one hour. A will measure a time longer than one hour, and conclude that the
moving clock runs slower. We show in Chapter 4 that the effect is symmetrical: Both observers
claim a moving clock runs slow.
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A B
(t, x)
(T, x′ = 0)t

x

t− x/c

A B

t

x

(t, x)
(T, x′ = 0)

Figure 2.5 Left: k-factor relates time for two events (black dots), T = k(t − x/c) Right:
Time dilation relates the time coordinates assigned to the same event, t = γT .

Let’s be clear on what times are being compared. The k-factor relates the time coordinates of
two distinct events—emission and reception of a photon, shown as black dots in Fig. 2.5. Emission
occurs at time t − x/c in A, and reception occurs at event (T, x′ = 0) in B. The worldline of the
clock, B, defines the line x′ = 0, just as the time axis in A is the line x = 0. The k-factor relates the
reception time in B to the emission time in A, with T = k(t− x/c). The time dilation factor on the
other hand relates the time coordinates assigned to the same event by two observers, with t = γT .

2.3 VELOCITY ADDITION
Figure 2.6 shows the worldlines of three inertial observers, A, B, and C, which synchronize their
clocks as they pass at the origin. A emits two photons with a time separation T . The two photons

A

B

C

T

kABT

kACT = kBCkABT

Figure 2.6 Composition rule for k-factors.

arrive in B separated by time kABT , where kAB is the k-factor associated with the relative speed
between A and B. The photons arrive in C separated by time kACT . Alternatively, the photons
leave frame B separated in time kABT , which arrive in frame C with time separation kBCkABT .
Thus, kACT = kBCkABT , implying the k-factors satisfy a multiplicative composition law:

kAC = kABkBC . (2.8)

The k-factor is a proxy for speed: the larger is β, the larger is k. The projection of the interval T
(along the time axis in the rest frame) onto the time axes of frames in motion is a measure of speed.
The way the geometry of spacetime works, k-factors are multiplicative between frames.
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Combining Eq. (2.2) with Eq. (2.5),

βAC = k2
AC − 1
k2
AC + 1 = k2

ABk
2
BC − 1

k2
ABk

2
BC + 1 . (2.9)

Using Eq. (2.3) for each of the k-factors, it follows that (show this)

βAC = βAB + βBC
1 + βABβBC

, (2.10)

the Einstein velocity addition formula. For low speeds, βAB � 1, βBC � 1, and βAC ≈ βAB +
βBC , the Galilean velocity addition formula. If we substitute βBC = 1 in Eq. (2.10), we obtain
βAC = 1 for any βAB . There is an invariant limiting speed implied by the theory, β = 1.

Example. Apply the velocity addition formula to the speed of light in a moving medium. The speed
of light in the rest frame of a medium of index of refraction n, is c/n. What is the speed of light u
when the medium has speed v relative to the lab frame? Using Eq. (2.10),

u = v + c/n

1 + v/(cn) = c

n
+ v

(
1− 1

n2

)
1

1 + v/(nc) .

The coefficient multiplying v, (1− n−2), the Fresnel drag coefficient, was confirmed in the Fizeau
water tube experiment of 1851, where v � c. Relativistic velocity addition thus has an observable
consequence at relatively slow speeds—the speed of the flow of water in the Fizeau experiment.4

Example. Particles A and C have velocities βA = 0.95 and βC = −0.95 relative to a linear
accelerator. What is the velocity of C relative to A? It’s helpful to draw a spacetime diagram—
see Fig. 2.7. B is a laboratory observer, situated between A and C; the precise location of B is

A B C

T

kABT

kBCkABT = kACT

Figure 2.7 Spacetime diagram for particles A and C approaching each other.

unimportant. Because A and C are both approaching B, we can set βAB = βBC = −0.95 and use
Eq. (2.10) to conclude that βAC = −0.9987. In Fig. 2.7, particle A emits two photons separated by
time T . Because A is approaching B, kAB < 1; similarly for kBC .

4The Fizeau experiment is worth learning about—an ingenious interferometric experiment not unlike the MM experi-
ment. It uses a tube constructed so that water can flow in opposite directions, through which beams of light pass in such a
way that each beam propagates in the direction of water flow. The light beams are then brought together to interfere, where
the change in phase is correlated with the speed of the water. In the Fizeau experiment, the flow of water can simply be
turned off, something that Michelson and Morley couldn’t do—turn off the motion of the earth!
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2.4 LORENTZ TRANSFORMATION
Figure 2.8 shows the worldlines of observers A and B in relative motion (what we often call frames
S and S′), which synchronize their clocks as they pass. Each uses the radar method to assign coor-
dinates to the same event, P : (t, x) and (t′, x′). A photon emitted by A at time t−x/c reflects from
event P and is received at time t+ x/c. B emits a photon at time t′ − x′/c which reflects from the
same event, and is recorded at time t′+x′/c. Note the symmetry: Both observers claim to be at rest;
both emit a photon at the “same time” using their respective coordinates, t− x/c and t′ − x′/c.

A

B

(t, x)
(t′, x′)

t′ − x′/c

t− x/c

t′ + x′/c

t+ x/c

P

Figure 2.8 Inertial observers A and B use the radar method to assign coordinates to the
same event, (t, x) and (t′, x′).

The emission and reception times in the two frames are naturally related through the k-factor:

t′ − x′/c = k(t− x/c)
t+ x/c = k(t′ + x′/c) . (2.11)

Solve Eq. (2.11) for (t′, x′):

ct′ = 1
2
(
k−1 + k

)
ct+ 1

2
(
k−1 − k

)
x

x′ = 1
2
(
k−1 − k

)
ct+ 1

2
(
k−1 + k

)
x .

Using Eq. (2.3), we have the matrix equation (show this)(
ct′

x′

)
= γ

(
1 −β
−β 1

)(
ct
x

)
, (2.12)

the same as Eq. (A.6).

Location of x′-axis: Lines of simultaneity

With the LT, we can find the location of the x′-axis—the spatial axis of S′—in relation to the space
and time axes of S. The t′-axis is the worldline seen in S, x = vt, or ct = β−1x. The same
result follows from Eq. (2.12) as the locus of points with x′ = 0 (check it!). What about the x′-
axis? Answer: The locus of points associated with t′ = 0, which from Eq. (2.12) is ct = βx.
Figure 2.9 shows the x′ and t′ axes both situated at the angle φ with respect to the x, t axes, where
tanφ = β. As β → 1, φ → π/4. The coordinates assigned to the same event in each reference
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x

ct

x′

ct′

φ

φ

∗

x

t
t′

x′

Figure 2.9 Coordinates assigned to the same event—the asterisk—in reference frames in
relative motion with speed β: (t, x) and (t′, x′). The t′ and x′-axes form the same angle φ
with respect to the t and x-axes, with tanφ = β.

frame are found by projecting onto the respective space and time-axes, as shown. Knowing the x′-
axis provides a way to test for the simultaneity of events (in S′): If two events can be connected by
a line parallel to the x′ axis, they have the same time in that frame. Lines parallel to the x-axis are
lines of simultaneity.5

We began our discussion of spacetime diagrams by agreeing to take the time axis as orthogonal
to the space of spatial variables. All IRFs are equivalent, yet the space and time axes of S′ do
not appear orthogonal in Fig. 2.9. We don’t know yet how to form the inner product of spacetime
vectors. We’ll see that the t′ and x′-axes are indeed orthogonal in S′.

Example. Particle B moves away from A at speed β = 0.25, from left to right. What are the
coordinates in the moving frame assigned to an event that in the rest frame occurs at ct = 2.25 and
x = 1.5? For β = 0.25, γ = 4/

√
15 = 1.03. Use the LT, Eq. (2.12):(

ct′

x′

)
= 1.03

(
1 −0.25

−0.25 1

)(
2.25
1.5

)
=
(

1.94
0.97

)
.

These are the coordinates shown in Fig. 2.9. What if the speed is negative (particle moves from right
to left)? Figure 2.10 shows the spacetime diagram for β = −0.25.

x

ctct′

x′

∗t
t′

φ

φ

x′

x

Figure 2.10 Spacetime diagram for a particle moving with negative velocity, right to left.

5Lines parallel to the t-axis are lines of co-locality; between timelike separated events one can always find a frame of
reference where the events occur at the same location in space.
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Example. Relativity of causality
Spacelike-separated events can occur simultaneously or in either time order, depending on the ref-
erence frame (mentioned in Section 1.5). The left portion of Fig. 2.11 shows spacelike-separated
events A and B as seen from a reference frame moving with speed β = 0.26 relative to the un-
primed frame. A precedes B in both frames. In the right portion of Fig. 2.11 the same events occur
in the opposite order in a frame moving with speed β = 0.71.

x

ct

A

B

x′

ct′

x

ct

A

B
x′ct′

Figure 2.11 Time order of spacelike-separated events is reference-frame dependent.

2.5 LENGTH CONTRACTION
We now discuss, from several points of view, length contraction, the converse of time dilation, a
phenomenon students (and others) tend to find more confusing than time dilation.

2.5.1 Using the k-factor

A rod of rest length D moves along the x-axis with speed v from left to right. Figure 2.12 shows
the worldlines of the front and back ends of the moving rod as Bfront and Bback from the perspective
of reference frame A. Clocks are synchronized when the front edge of the rod passes the origin, O.
You may find it helpful to visualize how you would use a radar gun to measure the distance to an
approaching rod, traveling straight at you. As we now show, the length of the rod as measured in A
is d = D/γ, the phenomenon of length contraction.

A emits a photon at time −d/c (negative time, relative to the origin O), which reflects from
the back end of the rod, event E. The reflected photon arrives in A at time d/c. The coordinate of
the back end of the rod is, from the radar method, d. In B the emitted photon passes the front end
of the rod at point P in Fig. 2.12. It’s as if in frame B a photon was emitted from the front end
of the rod toward the back end. Such a photon would have been emitted at time −d/(kc) in the
B-frame. We’ve used that k(−v) = k−1(v); the receiver (front end of the rod) is moving toward the
source—negative speed. The reflected photon encountersBfront at pointQ in Fig. 2.12, which occurs
at time kd/c (use the k-factor together with the time d/c in the A-frame). By the radar method, the
coordinates for event E in frame B are

(ct′, x′) =
(
d

2(k − k−1), d2(k + k−1)
)

= (dβγ, dγ) . (2.13)

Thus D = γd, or d = D/γ: Rods in motion appear shorter than the length measured in its rest
frame. We’ll show in Chapter 4 that the relation is symmetrical: Both observers claim that a rod in
motion has a length shorter than its rest length. The line labeled D in Fig. 2.12 is where the x′-axis
in B intersects event E (a line of simultaneity). In both reference frames, the spatial coordinates of
the two ends of the rod have been obtained at the same time.
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Figure 2.12 Length contraction. Rod of rest length D has length D/γ measured in A.

2.5.2 Using the Lorentz transformation

Length contraction can be more readily demonstrated using the Lorentz transformation (LT). Figure
2.13 shows the worldlines of the front and back ends of the moving rod asBfront andBback as seen in
the frame of observer A. Both observers want to measure the length of the rod, and both are careful
to measure the two ends of the rod at the same time in their reference frames.6 But of course, what’s
simultaneous in one frame is not in another. Observer B, at rest relative to the rod, measures ∆x′
at t′ = 0 as the rest length of the rod. Observer A records the locations of the two ends of the
rod at time t, measuring the length as ∆x. The events used to measure length in frame A are not
simultaneous in frame B, and vice versa; see Fig. 2.13. Referring to the events with ∆t = 0, we
have from Eq. (2.12), (

c∆t′
∆x′

)
= γ

(
1 −β
−β 1

)(
0

∆x

)
.

Thus, ∆x′ = γ∆x (length contraction) and c∆t′ = −βγ∆x (relativity of simultaneity).

2.5.3 Pole and barn

A paradox is a conflict between reality and your feeling of what reality ought to be.
—Richard Feynman [13, p18-9]

One of the more well-known of the supposed paradoxes associated with SR is the pole and barn
problem. In this thought experiment, a runner carries a pole that in its rest frame is 20 m long (a

6To measure the length of a stick moving past you, you wouldn’t first measure the location of one end of the stick, and
then only an hour later measure the location of the other end.
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Figure 2.13 Length contraction ∆x = ∆x′/γ where ∆x′ is the proper length.

long pole!). The runner is headed toward a barn that in its rest frame is 10 m long. The speed of the
runner is such that γ = 2 (β =

√
3/2). In the frame of the barn, the pole appears 10 m long because

of relativistic length contraction. Thus, the pole fits entirely within the barn at one instant of time.
In the frame of the pole, however, the barn appears 5 m long, and the pole cannot fit entirely within
the barn. Can these descriptions be reconciled?

xB

ctB

xP

ctP

A′

B′

A B

10 m 10 m

Back pole

Back barn

Front pole

Front barn

20 m 5m

Back pole

Back barn

Front barn

Front pole

Barn Frame Pole Frame

Figure 2.14 Reference frames of barn and pole on spacetime diagrams (not to scale).

The left portion of Fig. 2.14 shows the events in the reference frame of the barn, with the pole
approaching from left to right. We consider the front of the pole and the front of the barn to be on
the right, with the back of the pole and the back of the barn to the left. The front of the pole first
encounters the back of the barn. As the pole passes through the barn there is an instant of time when
the pole fits entirely within the barn. These events are labeled in Fig. 2.14 as A (back of the pole
encountering the back of the barn) and B (front of the pole encountering the front of the barn).

The same events are shown in the reference frame of the pole in the right portion of Fig. 2.14.
We can place the origin of spacetime coordinates wherever we want, but to use the LT formula the
origins of the two systems of spacetime coordinates must coincide.7 In both diagrams the origin is
the event in which the front of the pole encounters the back of the barn. Events A and B (from the
left diagram) are shown in the right diagram as events A′ and B′. The events are the same, but the
coordinates assigned to them are different in the two frames.

7Because the Lorentz transformation is a linear, homogeneous coordinate transformation.
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In the barn frame, A has coordinates (20/
√

3, 0)—the time to cover 10 m at speed β =
√

3/2.
In the pole frame, the same event has coordinates(

ctP
xP

)
= γ

(
1 −β
−β 1

)(
ctB
xB

)
=
(

2 −
√

3
−
√

3 2

)(
20/
√

3
0

)
=
(

40
√

3
−20

)
.

B has coordinates in the barn frame (20/
√

3, 10) and coordinates (10/
√

3, 0) in the pole frame.
Where’s the paradox? Well, there isn’t one, save for our intuition-derived expectation that the

pole fitting entirely within the barn should be an objective fact, the same for all observers. That’s
the point of the exercise: What’s simultaneous in one frame (events A and B in the barn frame) is
not in another (A′ and B′ in the pole frame).

2.5.4 Length contraction, Minkowski, and the fourth dimension

Objects in motion have a length L contracted in the direction of motion, L ≤ L0, where L0 is the
rest length. Does that mean objects in motion shrink? Consider an analogy from crystallography.
Through a crystal lattice, various planes may be drawn containing lattice points, lattice planes,
labeled by Miller indices8 (hkl), e.g., the (100) plane or the (110) plane—see Fig. 2.15. A plane is

Figure 2.15 Separation between atoms in a crystal is lattice-plane dependent.

a two-dimensional slice of a three-dimensional geometry. Restricting your attention to one of these
planes, what is the distance between lattice points? The answer depends on the plane. Does it make
sense to ask what is the real distance between atoms? There’s no definitive answer if all we see is a
two-dimensional sampling of the points that have an arrangement in three dimensions.

The same reasoning applies to objects we see at an instant of time in our three-dimensional
world, objects that exist in four-dimensional spacetime. Figure 2.16 shows the worldlines of the

x

ct
x′

P P Q Q

P ′
P ′

Q′
Q′

ct′

Figure 2.16 Worldtubes intersecting lines of simultaneity for frames in relative motion.

ends of two identical rods, much as in the previous figures. The points of an extended object (such

8This nomenclature is discussed in any book on solid-state physics.
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as a rod), considered in spacetime as a collection of worldlines, comprise a worldtube, shown in
crosshatch in Fig. 2.16. In the (t, x) coordinate system the rest length, or proper length, is the line
PP . In the (t′, x′) system, attached to an identical rod moving along the x-axis, the rest length is
the lineQ′Q′. The line PP , as seen from the (t′, x′) system is shown as P ′P ′, whileQ′Q′ is shown
as QQ in the (t, x) system.9

Minkowski argued that the apparent deformation of a moving object can be understood as aris-
ing from a three-dimensional slice (surface of simultaneity) of a four-dimensional entity. The length
depends on the intersection of the worldtube with an observer’s space—surface of simultaneity.
The way the non-Euclidean geometry of spacetime works, the intersection with the rest-space of an
observer produces the largest length.10 By considering spacetime as a whole, by taking a geometric
point of view, Minkowski found that the perplexing results of SR can be given an intelligible expla-
nation. His most far-reaching conclusion is that observers in relative motion have different spaces
as well as times. One must arrive at this conclusion if surfaces of simultaneity (observer-dependent
slices) in a four-dimensional spacetime are three-dimensional spaces.

The usual length contraction hypothesis, according to Minkowski

. . . sounds extremely fantastical, for the contraction is not to be looked upon as a con-
sequence of resistances in the ether, or anything of that kind, but simply as a gift from
above—as an accompanying circumstance of the circumstance of motion.

Minkowski held that the idea of a four-dimensional world explains the principle of relativity:

. . . the word relativity-postulate . . . seems to me very feeble. Since the postulate comes
to mean that only the four-dimensional world of space and time is given by phenomena,
but that the projection in space and in time may still be undertaken with a certain degree
of freedom, I prefer to call it the postulate of the absolute world (or briefly, the world-
postulate).

We should then have in the world no longer space, but an infinite number of spaces,
analogously as there is in three-dimensional space an infinite number of planes. Three-
dimensional geometry becomes a chapter in four-dimensional physics.

Basically, because in a four-dimensional world observers in relative motion have their own spaces
and times, all inertial observers describe phenomena the same way because all are at rest in their
respective frames. Thus, every inertial observer measures the same speed of light using its own rest-
space coordinates and time. There cannot be absolute motion in the sense of Newton because there
is not just one space and one time.

Minkowski’s explanation of length contraction—the same four-dimensional worldtube inter-
sected by spaces of different observers—makes a compelling case for the reality of four-dimensional
spacetime. Einstein did not at first embrace Minkowski’s theory, but soon started to make use of
tensor methods in spacetime geometry. General relativity (GR) would not be possible without a
geometrical perspective on spacetime.

2.5.5 FitzGerald-Lorentz contraction

In 1888 Oliver Heaviside showed (based on the ether model) that the electric field surrounding a
spherical charge would cease to have spherical symmetry if the charge was in motion relative to the
ether. In the Heaviside model, the longitudinal component of the electric field (in the direction of
motion) is affected by motion, but not the transverse components.11 In 1889, G.F. FitzGerald took

9We’re using the notation employed by Minkowski.[9, p78] Why? To encourage you to read the original literature!
10In a crystal, the lattice constant is reported as the shortest distance between atoms.
11This is of course exactly the opposite from SR, where the longitudinal field component is invariant and the transverse

components transform between IRFs. See Chapter 8.
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Heaviside’s result and suggested ad hoc that the shape of an object would be altered in the direction
of motion. As is well known, if the length L of the arm in a Michelson interferometer is distorted
in the direction of motion such that L → L

√
1− β2, it would explain the null result of the MM

experiment while preserving the notion of the ether. In 1892, Lorentz independently published the
same idea, although Lorentz attempted to work through detailed models of inter-molecular forces
that would demonstrate the effect. The idea came to be known as the FitzGerald-Lorentz contraction
hypothesis (FL).

Einstein’s hypothesis that the speed of light is the same in all IRFs also accounts for the null re-
sult of the MM experiment, without making assumptions about the internal constitution of matter. As
we’ve seen, an identical formula L = L0

√
1− β2 is derived in SR, and it’s important to understand

the difference between relativistic length contraction and the FL contraction. Length contraction in
SR is a coordinate effect, the difference in spatial coordinates of something that should be seen in
its totality in four-dimensional spacetime. There is not implied an actual contraction, in distinction
to the FL contraction. Asking whether a stick “really” contracts is tantamount to asking whether
it’s “really” moving, which can be answered only from absolute space. If SR is correct and there is
no ether and length contraction is a “real” contraction, the MM experiment would show a positive
result, because the FL contraction would introduce a time difference between the arms of the inter-
ferometer. A real length contraction is not compatible with the null result of the MM experiment
and isotropy of the speed of light.

2.5.6 Experimental status

There is no direct experimental confirmation of relativistic length contraction. Elementary parti-
cles can be made to move rapidly (speeds comparable to c), but their linear dimensions cannot be
measured directly, while macroscopic objects, the dimensions of which can be measured, cannot be
made to move at relativistic speeds. The predictions of SR all emerge from the principle of relativ-
ity, and length contraction is one of its consequences. It’s often said that SR rests on two postulates
(the way Einstein presented it): the principle of relativity and the invariance of the speed of light
in IRFs. The principle of relativity alone predicts a universal speed, which experiment shows to be
the speed of light.12 Time dilation has been confirmed through the measurement of the relativistic
Doppler effect (Ives-Stillwell experiment [14]). The MM experiment [15] showed that the speed of
light is isotropic, used in the derivation of the radar method. The Kennedy-Thorndike experiment
[16] showed that the speed of light is independent of the velocity of the source, implicitly used in the
derivation of each of the effects of SR (Doppler effect, time dilation, Lorentz transformation, length
contraction). While there is no direct confirmation of length contraction, we show in Chapter 8 that
the Lorentz force q (E + v×B) can be derived without approximation as a frame transformation,
a derivation that relies heavily on length contraction.

2.5.7 Length contraction in one frame is time dilation in another

Time dilation and length contraction are each a consequence of the relativity of simultaneity. Both
effects emerge from a comparison of events measured from reference frames in relative motion. In a
frame at rest relative to clocks and rods, measurements taken at the same location (proper time) and
at the same time (proper length), are different from measurements made in a frame in which clocks
and rods are in motion, the measurements of which occur at different locations (time dilation) and
at different times (length contraction). As we now show, what can be interpreted as time dilation in
one frame can be interpreted as length contraction in another.

12Thus, Einstein’s second postulate is not strictly necessary. We argue in Chapter 3 that Einstein’s second postulate is the
assertion that photons have no rest mass.
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Referring to Fig. 2.7, particles A and C are launched at time t = 0 with speeds of 0.95c, a
distance L = 3.2 km apart (the length of the Stanford Linear Accelerator). At what time do the
particles collide, in the lab frame and in the frame of one of the particles? In lab-frame coordinates
(see Fig. 2.17), the particles collide at half their initial separation, tL = L/(2v) = 1.6 km/0.95c =
5.61µs. The proper time, the time that particle A experiences before the collision is, from Eq. (2.7),
T = t/γ = 1.75µs, where γ = 3.2 for β = 0.95. Moving clocks run slow.

xL

ctL

ctA

A C

L

Figure 2.17 In laboratory coordinates, C starts at L and collides with A at L/2

Let’s calculate that time using length contraction, knowing (page 31) that in the rest frame of
A, C approaches with speed βr = 0.9987. The Lorentz factor associated with βr is γr = 19.51.
One might think that C “sees” a contracted length L/γr = 3200 m/19.51 = 164 m (for the starting
separation L = 3.2 km). A would then suffer a collision after a time L/(γrβrc) = 0.55µs, not the
same as our previous calculation of 1.75µs. What’s wrong with this apparently too-facile argument?
As is often the case, the problem lies in simultaneity. The starting separation is specified in the lab
frame; only in that frame can we say the particles are 3.2 km apart at t = 0. What length should we
use?

Let’s write down the LT between the lab frame and the IRF associated with A. The laboratory
is rushing from right to left in frame A—negative velocity. From Eq. (2.12) with β → −β,(

ct′L
x′L

)
= γ

(
1 β
β 1

)(
ctA
xA

)
. (2.14)

The inverse of Eq. (2.14) is found by reversing the speed, β → −β (see Exercise 2.3). Thus, we
have the equivalent LT (

ctA
xA

)
= γ

(
1 −β
−β 1

)(
ct′L
x′L

)
. (2.15)

The location of the tL axis (in the (tA, xA) coordinate system) is found from Eq. (2.14) by setting
xL = 0 (ctA = −β−1xA); the location of the xL axis is found by setting tL = 0 in Eq. (2.14)
(ctA = −βxA). These axes are shown in Fig. 2.18.

In the lab frame, particle C starts at (0, L). The coordinates in A associated with that event are
found from Eq. (2.15): (

ctA
xA

)
= γ

(
1 −β
−β 1

)(
0
L

)
.

In A, C starts at coordinates (ctA = −βγL, xA = γL), i.e., in A the rest length is γL, because
that’s what gets contracted to the length L specified in the lab frame, a frame that’s now in motion
with respect to A. The time coordinate cTA = −βγL is the time difference in A between events
that are simultaneous in the lab frame.

The worldline of C in Fig. 2.18 connects the event with coordinates (−βγL, γL) with the col-
lision with A at (cT, 0). We can compute T from the known relative velocity between A and C:

βr = γL

cT + βγL
,
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Figure 2.18 Events of Fig. 2.17 shown in the frame of particle A. Not drawn to scale.

or
cT = γL

βr
(1− βrβ) . (2.16)

Using Eq. (2.16), T = 1.75µs, the same as we found in the lab frame using time dilation.
We can ask, what equivalent length, call it D, did particle C traverse at speed βrc? That is,

express cT in terms of an equivalent length,

cT = γL

βr
(1− ββr) ≡

D

βr
.

It is not difficult to show that
1− ββr = 1

γr
, (2.17)

where γr ≡ (1− βr)−1/2 (use βr = 2β/(1 + β2)). Thus, particle C sees the rest length γL in the
A frame contracted to γL/γr.

2.6 FOUNDATIONAL EXPERIMENTS

2.6.1 The Michelson-Morley experiment: Isotropy of c

Exercise 1.4 is modeled on the MM experiment. The “swimmers” are beams of light, and the river
is the ether, streaming past us in our reference frame at speed vr. Our speed relative to the ether
is unknown, but can be estimated to be on the order of the speed of Earth in its orbit around the
sun, vr ≈ 3 × 104 m s−1. (Thus, βr ≈ 10−4.) Associated with the time difference ∆T between
the arms of the interferometer is a shift of N = f∆T fringes, where f is the frequency of the
light. Fringes are alternating bands of light and dark seen when the beams of light in the arms of
the interferometer are brought together, and correspond to alternating conditions of constructive and
destructive interference. A single fringe represents one wavelength of the light source. Associated
with the time difference given by Eq. (P1.2), we should expect to see N = (L/λ)β2 fringe shifts
implied by the motion of Earth relative to the ether. The trouble is, we can’t stop the earth to count
fringe shifts. Staring through the telescope in the interferometer, there’s no “zero” marking on the
fringes, implying that N = (L/λ)β2 can’t be tested. Michelson came up with the idea of watching
the fringe pattern as the apparatus is rotated; in that way one could actually observe the number
of fringe shifts ∆N . In rotating the apparatus through π/2 radians, one should, using Eq. (P1.5),
expect to see ∆N fringe shifts, where

∆N = c

λ
(∆T (π/2)−∆T (0)) ≈ β2

λ
(L1 + L2) .
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As the interferometer is rotated continuously, Eq. (P1.6) gives the expected change in fringe shift
per radian

d
dφ∆N(φ) = c

λ

d
dφ∆T (φ) = β2L1 + L2

λ
sin 2φ+O(β4) . (2.18)

In the MM experiment L1 + L2 ≈ 22 m and the yellow light of sodium was used, λ = 589
nm. Michelson expected to see 0.4 fringe shift and he estimated he would have been able to observe
0.01 fringe shift. Figure 2.19 shows the fringe-shift measurements from the MM experiment (solid

Figure 2.19 Fringe-shift measurements from the MM experiment (solid lines) versus ori-
entation of the interferometer.[15] Dashed curve is Eq. (2.18) divided by eight. Upper data
taken at noon, lower data taken in the evening. Reprinted by permission of the American
Journal of Science.

lines), reported as fractions of a wavelength, for various orientations of the interferometer—upper
data taken at noon, lower data taken in the evening.[15] The dashed curve is the result of Eq. (2.18)
divided by eight. The number 0.05λ in Fig. 2.19 represents 0.4 fringe shift (what they expected to
observe) divided by eight. Just to be clear: What they expected to observe would have been eight
times as large as the dashed curve in Fig. 2.19. The area under the dashed curve, say fromN (north)
to E (east) is

∫ π/2
0 sin 2φdφ = 1.

The data shown in Fig. 2.19 represents the first experiment in support of SR. Michelson and
Morley stated about their results: “It seems fair to conclude from the figure that if there is any
displacement due to the relative motion of the earth and the luminiferous ether, this amount cannot
be much greater than 0.01 of the distance between the fringes” (which we note is in the noise of
their measurements). They concluded: “It appears, from all that precedes, reasonably certain that if
there be any relative motion between earth and the luminiferous ether, it must be small . . . .”

The MM experiment can be called the most successful failed experiment.13 The experiment has
been repeated with ever-increasing precision, but always with the same negative result. In 1979 a
group reported [17] a fringe shift of (1.5± 2.5)× 10−15, consistent with no effect at all. In 2009, a
group reported [18] a measurement of the isotropy of the speed of light, ∆c/c ∼ 10−17. It appears
we’re unable to detect motion relative to the ether, and if it can’t be measured, does it exist?

13For which Albert Michelson was awarded the 1907 Nobel Prize in Physics!
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2.6.2 The Kennedy-Thorndike experiment: c 6= c(v)
The Kennedy-Thorndike (KT) experiment [16] is a modification of the MM experiment where the
arms of the interferometer are intentionally made as different as possible.14 Let the longitudinal arm
oriented in the direction of the earth’s motion have length LL, and let the transverse arm be oriented
perpendicular to the longitudinal arm with length LT 6= LL.

To analyze the KT experiment, assume 1) the ether frame exists and 2) the FL contraction is real.
We know these assumptions can be used to explain the results of the MM experiment; let’s see how
we do with the KT experiment. Take the lengths LL and LT to be measured in the ether frame.15

The interferometer travels with speed v in the ether frame. We can use Eq. (P1.1) for the round-trip
times, except now the longitudinal arm has the contracted length LL/γ(v). The traversal time in the
longitudinal direction is then TL = 2LLγ(v)/c, and that for the transverse arm is TT = 2LT γ(v)/c
(no contraction in the transverse direction—Chapter 3). The number of fringe shifts produced as a
consequence of the earth’s motion relative to the ether is

N = f (TL − TT ) = 2∆L
c

fγ(v) , (2.19)

where f is the frequency of the light. Equation (2.19) has in common with the MM experiment that
it can’t be tested directly because we can’t stop the earth. In the MM experiment the apparatus was
rotated to detect a shift in fringe pattern. In the KT experiment, the apparatus was firmly fixed in the
laboratory; the “rotation” is provided by Earth itself, either from its daily rotation or its annual orbit
around the sun. The fringe shift between Earth having velocity v and v′ is, from Eq. (2.19),

∆N = 2∆L
c

f (γ(v′)− γ(v)) . (2.20)

Like the MM experiment, the KT experiment produced a null result within experimental uncer-
tainties, ∆N ≈ 0, which from Eq. (2.20) would not seem possible because v′ 6= v. The experi-
mental finding can be reconciled with the prediction of Eq. (2.20) if we attribute to the ether a new
ability, that of altering the frequency of light in a velocity-dependent manner. For Eq. (2.20) to pro-
duce ∆N = 0, it must be true that f ′γ(v′) = fγ(v), where f ′ and f are frequencies that have been
altered (by motion through the ether) relative to the frequency measured in the ether frame, call it
f0. That is, for Eq. (2.20) to produce a null result, it must be the case that f ′γ(v′) = fγ(v) = f0.

On the basis of the ether model we require, to explain the MM experiment, the ability of the
ether to contract objects in the direction of motion, and, to explain the KT experiment, the ability
of the ether to modify the vibrational frequencies of systems in motion, all so that it (the ether) can
evade detection! On the other hand, Einstein’s hypothesis, that the speed of light is the same in all
IRFs, naturally accounts for the MM experiment because there’s no preferred orientation of IRFs,
and the KT experiment because all IRFs in relative uniform motion are equivalent, in addition to SR
making numerous other predictions. The MM experiment shows that the round-trip time required for
light to cover a distance in free space is independent of direction, i.e., the speed of light is isotropic,
while the KT experiment shows that the round-trip time for light to cover a distance is independent
of the velocity of the source. Thus, the speed of light is independent of the velocity of the source.
The ether model requires length contraction and time dilation for motion with respect to a unique
reference frame, the ether, whereas in SR these relations are symmetric between IRFs: All inertial
observers see rods in motion contracted and moving clocks run slow—Chapter 4.

14The MM experiment was carefully crafted to have equal-length arms.
15Such an assumption renders these quantities unknowable—that’s the problem with absolute space that “makes no

impression on our senses”—but we’re assuming the ether frame to exist; no conclusion will depend on the value of ∆L.
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SUMMARY
Spacetime diagrams were used to illustrate the basic effects of SR, the “ingredients” used in descrip-
tions of processes in space and time: time dilation, length contraction, simultaneity, the Doppler
effect, and the velocity addition formula. These phenomena are interrelated—time dilation in one
frame can be explained as length contraction in another. It’s not always clear which effect is most
appropriate to use in analyzing a given problem. Can these effects be viewed from a unified perspec-
tive? Yes, and there are two ways of going about that. The first is to consider how all the spacetime
coordinates change between IRFs; this is accomplished using the LT. With the LT at our disposal,
we can focus on the relevant events involved in a given problem. We present a systematic derivation
of the LT in the next chapter. The second way is to exploit relativistic invariance, to focus on what
does not change between frames, the subject of Chapter 4.

EXERCISES

2.1 Derive Eq. (2.10) from Eq. (2.9) using Eq. (2.3) for each of the k-factors.

2.2 Derive Eq. (2.17). Use that βr = 2β/(1 + β2).

2.3 The inverse of Eq. (2.12) is found by setting β → −β. Show that

γ2
(

1 β
β 1

)(
1 −β
−β 1

)
=
(

1 0
0 1

)
.

2.4 Derive the k-factor from the Lorentz transformation. Referring to Fig. 2.20, a photon is emit-
ted at time T and received in a frame moving away at time kT . The Lorentz transformation
relates the coordinates assigned to the same event:(

ct
x

)
= γ

(
1 β
β 1

)(
kcT

0

)
.

We’ve used the inverse transformation. The time t is the time T plus the time for the photon
to travel the distance x, t = T + x/c. Show that k is given by Eq. (2.3).

kcT

cT

ct

x

Figure 2.20 Derive the k-factor using the Lorentz transformation.
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Lorentz transformation, I

W E provide a systematic derivation of the Lorentz transformation1 (LT) and examine its kine-
matical consequences, what can be said without taking into account the causes of motion.

(Relativistic dynamics is taken up in Chapter 7.) We derive the LT first for frames in standard con-
figuration (defined below) and then for frames not in standard configuration. Along the way, the
velocity addition formula emerges as a bonus.

We make two assumptions about space and time (appropriate for SR), that space is isotropic
(all directions are equivalent) and that spacetime is homogeneous (no location or instant of time is
preferred).2 These concepts are distinct: Isotropy does not necessarily imply homogeneity, nor does
homogeneity necessarily imply isotropy. One could have homogeneous, anisotropic spaces (a crys-
talline environment, for example, where one direction is preferred over the others), and one could
have inhomogeneous, isotropic spaces (all spatial directions equivalent, yet a special location of the
origin—a set of concentric spheres about a specified origin). Remarkably, these two assumptions
together with the principle of relativity suffice to determine the LT.

3.1 FRAMES IN STANDARD CONFIGURATION
Let IRFs S and S′ be in relative motion with velocity v. Whatever is the direction of v, it is by
assumption constant (IRF); let v define the direction of the x-axis. The observers synchronize their
clocks when the origins of their coordinate systems coincide, i.e., where and when they have a
common spacetime origin. Frames in standard configuration move along their common x-axis with
their y and z-axes parallel, as shown in Fig. 3.1.

x

y

z

v
S

x′

y′

z′
S′

Figure 3.1 Frames in standard configuration. S′ moves to the right along the common x-
axis with y and z-axes parallel.

1The LT is derived in Appendix A as the linear transformation that preserves the form of the wave equation. The same
is derived in Section 2.4 using the k-factor method. The more ways you have of looking at something, the better.

2In GR, spacetime is neither homogeneous nor isotropic; the gravitational field results from the curvature of spacetime.
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3.1.1 General form of the Lorentz transformation

The LT, symbolized L(v), is a linear mapping between the spacetime coordinates assigned to events
by different inertial observers. All inertial observers see straight worldlines for free particles, and
straight lines are preserved under homogeneous, linear mappings.3 The most general linear homo-
geneous mapping between four-dimensional spaces has 16 parameters. For frames in standard con-
figuration, that number can be reduced considerably by invoking homogeneity and isotropy. Write
L(v) as a 4× 4 matrix containing four unknown functions of v, α(v), δ(v), γ(v), η(v):

θt′

x′

y′

z′

 =


α(v) δ(v)θ 0 0

−vγ(v)/θ γ(v) 0 0
0 0 η(v) 0
0 0 0 η(v)



θt
x
y
z

 ≡ L(v)


θt
x
y
z

 . (3.1)

We’ve introduced in Eq. (3.1) an unknown parameter θ having the dimension of speed. We argued
in Section 1.4 that the principle of relativity requires a universal speed, the same in all IRFs.4 Let θ
represent that speed; experiment will show that θ = c.

We indicate mathematically that L is a mapping from the coordinates of S to those of S′ with
the notation L : S → S′. That is, L associates an element of S with an element5 of S′. Denote

the matrix in Eq. (3.1) in block form:
(
A B
C D

)
. Block B = 0 because of isotropy: We’re free

to orient the y and z-axes however we choose; the assignment of x′ and t′ can depend only on the
relative speed and not on the orientation of y and z, otherwise clocks situated differently around the
x-axis would show different times in violation of the assumption of isotropy. Block C = 0 because
of homogeneity: The assignment of y′ and z′ can’t depend on the choice of spacetime origin. Block
D is diagonal because frames in standard configuration have parallel y and z-axes. The coefficients
η(v) are the same for y and z because of isotropy; we’ll show that η(v) = 1. In block A there
are functions α(v) and δ(v) in the equation for t′, but only one independent function γ(v) in the
equation for x′, because the location of x′ = 0 (in S) is described by x = vt.

3.1.2 What if S′ moves to the left?

We could equally well consider the motion of S′ along the negative x-axis (Fig. 3.2), in which case

x

y

z

v

S

x′

y′

z′
S′

Figure 3.2 Motion of S′ along negative x-axis of S.

the LT would follow from Eq. (3.1) by letting t→ t, x→ −x, y → −y, z → z, t′ → t′, x′ → −x′,

3That is, lines that pass through the origin.
4This is because, as we’ll show, LTs have the property that a LT followed by a LT is itself a LT.
5The level of mathematical maturity is only going to increase from here on. Don’t fight it; mathematics is in your future

lightcone.
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y′ → −y′, and z′ → z:
θt′

−x′
−y′
z′

 =


α(−v) δ(−v)θ 0 0

vγ(−v)/θ γ(−v) 0 0
0 0 η(−v) 0
0 0 0 η(−v)



θt
−x
−y
z

 ≡ L(−v)


θt
−x
−y
z

 . (3.2)

By changing the sign of x but keeping the sense of time unchanged (the “orientation” of time),
v → −v. We’ve changed the signs of y and y′ for cosmetic purposes: to keep S and S′ right-handed
systems when we reverse the sense of the x and x′-axes. It’s as if we’ve rotated Fig. 3.1 180 degrees
about the z-axis in S to produce Fig. 3.2.

Equation (3.2) can be derived from Eq. (3.1) by defining a “reverse” operator,

R ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

Apply R to Eq. (3.1):

R


θt′

x′

y′

z′

 = RL(v)


θt
x
y
z

 = RL(v)R−1R


θt
x
y
z

 . (3.3)

Comparing Eqs. (3.3) and (3.2), we require that RL(v)R−1 = L(−v). By working out RL(v)R−1

(do it!), we learn that α(v), γ(v), and η(v) must be even functions, whereas δ(v) is an odd function.
An odd function of v can be written fodd(v) = vfeven(v). Let’s represent δ(v) in terms of the
even function α(v), θδ(v) = −vα(v)/f(v), where f(v) is an unknown even function having the
dimension of speed. The mapping L(v) : S → S′ can now be parameterized

θt′

x′

y′

z′

 =


α(v) −vα(v)/f(v) 0 0

−vγ(v)/θ γ(v) 0 0
0 0 η(v) 0
0 0 0 η(v)



θt
x
y
z

 = L(v)


θt
x
y
z

 . (3.4)

We still have four functions of v to determine: α(v), f(v), γ(v), η(v).

3.1.3 Inverse transformation

If frame S sees S′ moving away with speed v to the right, S′ sees S moving away with speed v to
the left. We’ll call this the inverse transformation. By the principle of relativity, the mapping S′ → S
must be of the same form as L(v) in Eq. (3.4), except for v → −v (see Fig. 3.3):

θt
x
y
z

 = L(−v)


θt′

x′

y′

z′

 = L(−v)L(v)


θt
x
y
z

 , (3.5)

where we’ve used Eq. (3.4). From Eq. (3.5), it must be the case that L(−v)L(v) = I , the identity
mapping, and hence L−1(v) = L(−v). The inverse LT is the original LT with the sign of the velocity
reversed. Working out L(−v)L(v) (do it!), we find

L(−v)L(v) =


α
[
α− v2γ/(θf)

]
(α− γ)vα/f 0 0

(vγ/θ)(γ − α) γ
[
γ − v2α/(θf)

]
0 0

0 0 η2 0
0 0 0 η2

 . (3.6)
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x′

y′

z′

v

S′

x

y

z
S

Figure 3.3 Inverse transformation: Motion of S along negative x′-axis.

For the right side of Eq. (3.6) to be the unit matrix we require η(v) = ±1. Because η(0) = 1, we
have η = 1. Thus, coordinates transverse to the motion are unaffected. For the off-diagonal terms
in Eq. (3.6) to vanish, we require α(v) = γ(v), implying that γ(v) =

[
1− v2/(θf(v))

]−1/2
. Thus,

the LT for frames in standard configuration has the form

L(v) =


γ(v) −vγ(v)/f(v) 0 0

−vγ(v)/θ γ(v) 0 0
0 0 1 0
0 0 0 1

 . (3.7)

There’s still f(v) and θ to determine.

3.1.4 Group property

All IRFs are equivalent. If we transform from S to S′, and then from S′ to S′′, the net effect must
be the same as a single transformation from S to S′′, its group property. We’ll show that the group
property requires f(v) to be a constant; it will also establish the Einstein velocity addition theorem.
Using Eq. (3.7), transforming from S to S′,

t′ = γ(v1) [t− v1x/(θf(v1)] x′ = γ(v1)(x− v1t) , (3.8)

where v1 is the speed of S′ as seen from S. Transforming from S′ to S′′,

t′′ = γ(v2) [t′ − v2x
′/(θf(v2)] x′′ = γ(v2)(x′ − v2t

′) , (3.9)

where v2 is the speed of S′′ as seen from S′. Substitute Eq. (3.8) in Eq. (3.9). We find

t′′ = γ(v1)γ(v2)
(

1 + v1v2

θf(v2)

)[
t−
(

1 + v1v2

θf(v2)

)−1(
v1

f(v1) + v2

f(v2)

)
x

θ

]
(3.10)

x′′ = γ(v1)γ(v2)
(

1 + v1v2

θf(v1)

)[
x−

(
1 + v1v2

θf(v1)

)−1
(v1 + v2)t

]
.

By the principle of relativity, Eq. (3.10) must be equivalent to a LT from S to S′′. Equation
(3.10) must therefore have the same form as Eq. (3.8) for some speed w, the speed of S′′ as seen
from S:

t′′ = γ(w) [t− wx/(θf(w))] x′′ = γ(w)(x− wt) . (3.11)

The factors multiplying the square brackets in Eq. (3.10) must be identical (so that Eq. (3.10) has
the same form as Eq. (3.11)), implying that f(v1) = f(v2) or that f(v) is a constant; call it f . With
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f(v) = f , Eq. (3.10) simplifies:

t′′ = γ(v1)γ(v2)
(

1 + v1v2

θf

)[
t− x

fθ

v1 + v2

1 + v1v2/(θf)

]
x′′ = γ(v1)γ(v2)

(
1 + v1v2

θf

)[
x− v1 + v2

1 + v1v2/(θf) t
]
. (3.12)

Comparing Eq. (3.12) with Eq. (3.11) suggests that the compound speed w is given by

w = v1 + v2

1 + v1v2/(θf) . (3.13)

Equation (3.13) is more than a suggestion, however; it will be a requirement if it can be shown that

γ(w) = γ(v1)γ(v2)
(
1 + v1v2

θf

)
(3.14)

when w is given by Eq. (3.13). You’re going to show (Exercise 3.1) that Eq. (3.14) is an identity
when the compound speed is given by Eq. (3.13) for any θ and f . We therefore have the form of the
velocity addition formula and the LT, except for the constants θ and f .

3.1.5 Existence of a limiting speed

The velocity addition formula Eq. (3.13) implies the existence of a universal limiting speed, which
we denote for now as ψ. Let v1 and v2 both be equal to ψ. We have from Eq. (3.13)

w = 2ψ
1 + ψ2/(θf) .

In order for w = ψ, we must have ψ2 = θf . If v1 = ψ, Eq. (3.13) (with θf = ψ2) implies w = ψ
for any v2. If v1 = ψ − µ1 and v2 = ψ − µ2, with µ1 ≥ 0 and µ2 ≥ 0, Eq. (3.13) implies that
w ≤ ψ for any µ1, µ2, with equality holding for µ1 or µ2 equal to zero or both (see Exercise 3.2).

It might seem that Eq. (3.13) implies three universal speeds, θ, f , and ψ. Simplicity emerges if
θ = ψ, which, because ψ2 = θf , implies that f = θ. In that case there is a symmetry in the LT—see
Eq. (3.7)—the space and time variables transform in an equivalent way.

3.1.6 Value of the limiting speed

The value of the limiting speed must be found experimentally. Figure 3.4 shows four data points for
measured speeds β and kinetic energiesEk of electrons.[19] The solid line represents the prediction
of SR and the dashed line is the Newtonian prediction. We’ll show (in Chapter 7) that kinetic energy
is related to speed through the relation Ek = (γ − 1)mc2, implying that

β2 = 1−
(
1 + Ek/mc

2)−2
,

which is plotted in Fig. 3.4 as the solid curve. For low speeds β2 ≈ 2Ek/mc2, which is shown as a
dashed line. The data clearly show the existence of a limiting speed, in accord with the predictions
of SR and completely at odds with Newtonian mechanics, with the limiting speed equal to the speed
of light within experimental accuracy. This experiment was repeated at much higher energies, up to
20 GeV, with the limiting speed found to equal c within 2 parts in 107.[20] Note that for an energy
of 20 GeV, the abscissa in Fig. 3.4 would extend to the right by a factor of 4000.

Taking θ = f = c as consistent with experiment, we have the LT from Eq. (3.8)

t′ = γ(t− vx/c2) x′ = γ(x− vt) y′ = y z′ = z , (3.15)
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Figure 3.4 Measured speeds [19] (black dots) versus kinetic energy of electrons.

the same as Eq. (A.6) and Eq. (2.12), while the velocity addition formula from Eq. (3.13),

w = v1 + v2

1 + v1v2/c2
, (3.16)

the same as Eq. (2.10). Multiply by c, and the LT for frames in standard configuration is
ct′

x′

y′

z′

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 . (3.17)

3.1.7 Why c? Do photons have mass?

The question naturally arises why the speed of light is the limiting speed. While there’s no definitive
answer, the only particles that travel at the speed of light are those with zero rest mass. In SR the
connection between energy and momentum is, as we’ll show, E2 = (pc)2 + (mc2)2. If m = 0, then

|p| = E/c . (m = 0) (3.18)

As we show in Chapter 7, in SR, p = γmv and E = γmc2. Eliminating γm between these
equations, we have the general formula, valid for any m

p = Ev/c2 . (any m) (3.19)

Equation (3.19) is compatible with Eq. (3.18) only if |v| = c for m = 0. Does the photon have a
rest mass, mγ? Experiment places an upper bound on a possible photon mass,6 mγ < 10−18eV/c2.
While extremely small (24 orders of magnitude smaller than the electron mass, and 18 orders of
magnitude smaller than the neutrino mass), if mγ 6= 0 the speed of light would not be identical
with the limiting speed ψ implied by the LT. Photons have momentum because they have energy,
even though they have zero mass. That photons act as particles carrying energy and momentum is
verified in Compton scattering experiments.

The LT contains a finite universal limiting speed (the same in all IRFs) which we’ve identified
with the speed of light in vacuum. The universality of c follows from the principle of relativity; it
does not have to be postulated. If c 6= ψ, photons have a nonzero rest mass, and c would not be
universal. Einstein’s postulate of the universality of c is equivalent to the photon having zero mass.

6A good source of information on the properties of elementary particles is the Particle Data Group, maintained online.
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3.1.8 Discussion

Let’s take a moment and review the essentials of the derivation just given. A linear mapping between
four-dimensional spaces would have 16 parameters in general. For frames in standard configuration,
that number reduces to four independent parameters when homogeneity and isotropy of spacetime
are assumed, Eq. (3.4). When the principle of relativity is invoked, leading to L−1(v) = L(−v), that
the mapping from S → S′ is the same as that from S′ → S (with v → −v), the LT takes the form
of Eq. (3.7) containing f(v) and θ. Invoking the principle of relativity again, that a LT followed by
a LT is itself a LT (all IRFs are equivalent), we find that f(v) = f , a constant. Comparison with
experiment establishes that the limiting speed θ = f = c, leaving us with the LT in the form of Eq.
(3.17). That the LT can be derived under such general assumptions lends considerable support to
the correctness of SR. In fact, it might lead one to wonder where all the non-intuitive “weirdness”
associated with SR comes from; where did we take a “radical” step? It seems that the radical step, if
it can be considered such, is in the inclusion of a separate time for each IRF, that time can no longer
be considered absolute, that it too is relative to the frame of reference. Once we sign off on the idea
that physics is most naturally viewed from the perspective of four-dimensional spacetime, the rest
is the equivalence of IRFs, something that has long been known from the law of inertia. SR is the
law of inertia expressed in spacetime.

3.2 FRAMES NOT IN STANDARD CONFIGURATION
Up to now our picture of reference frames in relative motion has been that of Fig. 3.1. Because the
relative velocity v is constant (IRFs), frames in standard configuration suffice for many purposes,
where the x-axis is aligned with v. There are occasions, however, when we need the LT between
reference frames having a more general relationship.

To derive the LT for a general boost (see Fig. 1.1), where v is not aligned with a coordinate axis,
express the position vector r as a sum of vectors parallel and perpendicular to v, r = r‖ + r⊥ (see
Fig. 3.5). The vector r‖ is the projection of r onto v,

x

y

z

v, r‖

r⊥
r

Figure 3.5 Decomposition of r = r‖ + r⊥ into vectors parallel and perpendicular to v.

r‖ = (v̂ · r) v̂ = (v · r) v
v2 , (3.20)

where v̂ ≡ v/v is a unit vector. The vector r⊥ is by definition r⊥ = r− r‖. For the components of
r‖, the already known LT applies, while the components of r⊥ are unchanged. From Eq. (3.15),

t′ = γ
[
t− v · r‖/c2

]
r′‖ = γ(r‖ − vt) r′⊥ = r⊥ . (3.21)

We then have, using Eq. (3.21),

r′ = r′‖ + r′⊥ = γ(r‖ − vt) + r⊥ = γ(r‖ − vt) + r − r‖ = r + (γ − 1)r‖ − γvt . (3.22)
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Combining Eq. (3.20) with Eqs. (3.21) and (3.22), we have the vector form of the LT,

t′ =γ
[
t− r · v/c2

]
r′ =r + (γ − 1)(r · v)v

v2 − γvt = r + γ2

c2(1 + γ) (r · v)v − γvt

=γ(r − vt) + γ2

c2(1 + γ)v× (v× r) , (3.23)

where we’ve usedA× (B ×C) = B(A ·C)−C(A ·B) in the last line.
Referring all vectors to the (x, y, z) basis, Eq. (3.23) can be expressed as a matrix equation,

ct′

x′

y′

z′

 =


γ −βxγ −βyγ −βzγ
−βxγ 1 + αβ2

x αβxβy αβxβz
−βyγ αβyβx 1 + αβ2

y αβyβz
−βzγ αβzβx αβzβy 1 + αβ2

z



ct
x
y
z

 , (3.24)

where α ≡ γ2/(1 + γ). If βy = βz = 0 and βx = β, Eq. (3.24) reduces to Eq. (3.17). Note the
symmetry of the matrix in Eq. (3.24), which arises because boosts connect frames having parallel
coordinate axes.

Equation (3.24) is therefore not the most general LT, because it prescribes transformations
among a particular class of reference frames—those having parallel coordinate axes. We show in
Chapter 6 that an arbitrary LT can be represented as a rotation followed by a boost. Rotations are
described by three angles and boosts are described by three velocity components. The most general
LT requires six parameters to be completely specified.

3.3 TRANSFORMATION OF VELOCITY AND ACCELERATION
The LT is a linear mapping between the coordinates of IRFs in relative motion. Velocity and ac-
celeration involve ratios of differences between space and time coordinates. We can use the LT to
“build” the transformation equations for these quantities.7

3.3.1 Velocity transformation

Let S′ move relative to S with constant velocity v. Let u = dr/dt be the velocity of a particle as
seen in S and let u′ = dr′/dt′ be the velocity of the same particle seen in S′. Form the differentials
dr′ and dt′ from Eq. (3.23) holding v constant:

dr′ =γ (dr − vdt) + γ2

c2(1 + γ)v× (v× dr)

dt′ =γ
[
dt− dr · v/c2

]
= γdt

[
1− u · v/c2

]
. (3.25)

Divide dr′ by dt′ in Eq. (3.25) to obtain the velocity transformation equation

u′ = u− v
1− v · u/c2 + γ

c2(1 + γ)
v× (v× u)

(1− v · u/c2) . (3.26)

By decomposing u = u‖ + u⊥ into vectors parallel and perpendicular to v, we obtain

u′‖ =
u‖ − v

1− v · u/c2 , (3.27)

7Which is to say, the velocity and acceleration vectors do not transform according to the LT because they are not four-
vectors. In Chapter 7 we define velocity and acceleration four-vectors by differentiating the four spacetime coordinates with
respect to the proper time; these vectors do transform with the LT.
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while u⊥ transforms as
u′⊥ = u⊥

γ [1− v · u/c2] . (3.28)

Whereas the coordinates transverse to v are left unchanged, r′⊥ = r⊥, the same is not true for the
transverse velocity components; time transforms between frames, time is not absolute.

The inverse of Eq. (3.26) provides a clean statement of velocity addition in vector form. Switch
primes and unprimes, and let v → −v:

u = v + u′

1 + v · u′/c2 + γ

c2(1 + γ)
v× (v× u′)

(1 + v · u′/c2) . (3.29)

Equation (3.29) specifies the resultant of adding the velocity of S′ relative to S, v, to the velocity
seen in S′, u′.

3.3.2 Non-colinear velocities

Equation (3.29) differs from Eq. (3.16), which applies for colinear velocities (all in the same line).
When v and u′ are not colinear, new physical effects manifest.8 For non-colinear velocities, there’s
an asymmetry in Eq. (3.29): The two velocities do not occur in the formula in a symmetrical manner.
We define the direct sum of two velocities, which has ordered “slots” for the vectors being added,

va ⊕ vb ≡
va + vb

1 + va · vb/c2
+ γa
c2(1 + γa)

va × (va × vb)
1 + va · vb/c2

, (3.30)

where γa ≡ 1/
√

1− v2
a/c

2 is the Lorentz factor associated with va. The relativistic addition of
velocities is not associative,

v1 ⊕ v2 6= v2 ⊕ v1 . (3.31)

Only when the velocities are colinear does v1 + v2 = v2 + v1.

3.3.3 Acceleration transformation

The transformation equation for the acceleration vector a = du/dt can be obtained by differentiat-
ing Eq. (3.26) (v is constant),

du′ = 1
γ (1− v · u/c2)2

[
du− γ

c2(1 + γ) (v · du)v + 1
c2
v× u× du

]
. (3.32)

Divide Eq. (3.32) by dt′ in Eq. (3.25) to obtain

a′ = 1
γ2 [1− v · u/c2]3

[
a− γ

c2(1 + γ) (v · a)v + 1
c2
v× u× a

]
. (3.33)

While Eq. (3.33) is a complicated expression, it suffices to note that a′ 6= a! That alone tells us that
F = ma is not consistent with SR.9 We show in Chapter 7 how to “fix up” Newton’s second law to
be relativistically correct. Equation (3.33) can be simplified by decomposing a into vectors parallel
and perpendicular to v, a = a‖ + a⊥. We find:

a′‖ =
a‖

γ3 [1− v · u/c2]3
a′⊥ = a⊥ + v× (u× a)/c2

γ2 [1− u · v/c2]3
. (3.34)

We’ll use Eq. (3.34) in Chapter 12.

8The prime example is Thomas precession.
9We showed in Chapter 1 that F = ma is invariant under the Galilean transformation.
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3.4 RELATIVISTIC ABERRATION AND DOPPLER EFFECT
Let frames S and S′ be in standard configuration—see Fig. 3.6. Let an object in S′ have velocity
u′ in the x′-y′ plane. Let u′ be oriented to the x′-axis at angle θ′ so that u′x = u′ cos θ′ and

x

y S

u

θ
x′

y′ S′

u′

θ′

v

Figure 3.6 Relativistic aberration.

u′y = u′ sin θ′. What is the angle θ observed in S between the velocity u and the x-axis? That
question can be answered using the velocity transformation equations.

Use the inverse transformations of Eqs. (3.27) and (3.28):

ux = u cos θ = u′x + v

1 + vu′ cos θ′/c2 = u′ cos θ′ + v

1 + vu′ cos θ′/c2

uy = u sin θ =
u′y

γ (1 + vu′ cos θ′/c2) = u′ sin θ′

γ (1 + vu′ cos θ′/c2) . (3.35)

Divide the two equations in Eq. (3.35),

uy
ux

= tan θ = u′ sin θ′

γ (v + u′ cos θ′) . (3.36)

For a light ray in S′, set u′ = c in which case Eq. (3.36) becomes

tan θ = sin θ′

γ(β + cos θ′) . (3.37)

Equation (3.37) is the formula for the relativistic aberration of light. As β → 1, the angle θ gets
increasingly compressed into a cone of half-angle θ ≈ γ−1, a phenomenon known as relativistic
beaming. To show this, set β = 1 in Eq. (3.37), in which case we have, approximately,

tan θ ≈ 1
γ

tan(θ′/2) . (3.38)

Irrespective of the emission angle θ′, θ is compressed into γ−1 for sufficiently large γ.
Referring now to Fig. 3.7, suppose there’s a source of light at rest at the origin of S′ that emits

signals with frequency fe (as measured by an observer at rest relative to S′). The source emits
signals into the direction θ′, measured from the x′-axis. Let E′1, E′2 denote the events in S′ at which
successive light signals are emitted; the first at t′ = 0 and the second at ∆T ′ ≡ f−1

e . In S, event
E1 (corresponding to E′1) occurs at the origin at t = 0, for which a light ray is seen to be emitted
into the direction θ, measured with respect to the x-axis. (The two frames synchronized their clocks
as the origin of S′ passed the origin of S.) Event E2 in S (corresponding to E′2) occurs at time
t2 = γ∆T ′ (time dilation) at position x2 = βγc∆T ′, at which another ray of light is seen to be
emitted in S. (Figure 3.7 is not a spacetime diagram.10) In S, both rays are detected at a distant

10There are no spacetime diagrams in Chapter 3, which works with three-vectors, vectors in three spatial dimensions.
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Figure 3.7 Two photons emitted from source at rest in S′ in direction θ′, observed in S.

location P . The question is, What is the time ∆T in S between the reception of the two signals?
The first arrives at P at time T1 = r1/c, where r1 is the distance of P to the origin. The second
signal arrives at P at time T2 = γ∆T ′ + r2/c, where r2 is the distance from P to the location x2.
Thus,

∆T = T2 − T1 = γ∆T ′ + 1
c

(r2 − r1) . (3.39)

Assume that P is sufficiently distant that we can approximate r2 ≈ r1 − x2 cos θ = r1 −
βγc∆T ′ cos θ. Thus, from Eq. (3.39),

∆T = γ∆T ′ (1− β cos θ) . (3.40)

Let fo ≡ (∆T )−1 denote the frequency observed in S; from Eq. (3.40)

fo = fe
γ (1− β cos θ) = γ (1 + β cos θ′) fe , (3.41)

where the second equality follows from the aberration formula; see Exercise 3.8b. Equation (3.41)
is a general expression for the relativistic Doppler effect.

We’ll show in Section 5.3.2 that both Eqs. (3.41) and (3.37) (Doppler shift and aberration)
emerge as the result of a single LT involving an appropriately defined four-vector, a vector in space-
time. That is, the Doppler effect (involving time) and aberration (involving spatial directions) are
two aspects of the same thing when viewed from the perspective of four-dimensional spacetime.

For θ′ = π in Eq. (3.41) (radiation emitted against the direction of motion, source receding), we
recover our previous result, Eq. (2.4), the longitudinal Doppler effect. For θ = π/2 in Eq. (3.41)
(radiation received in S orthogonal to the direction of motion), we have the transverse Doppler
effect:

fo = 1
γ
fe . (3.42)

The transverse Doppler effect is a direct consequence of the time dilation of a moving clock; there
is no analogous effect in pre-relativistic physics. It was first measured in 1979.[21]

SUMMARY
We derived the LT for frames in standard configuration using the homogeneity and isotropy of
spacetime, and the principle of relativity, Eq. (3.17). The theory predicts a limiting speed, which
experiment shows is the speed of light. We derived the LT for a general boost—where the velocity
does not line up with coordinate axes—in Eq. (3.24). The addition of non-colinear velocities v1 and
v2 is not associative, v1 + v2 6= v2 + v1.
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EXERCISES

3.1 Show that Eq. (3.14) is an identity when the compound speed is given by Eq. (3.13), for any
θ and f . Hint: Square Eq. (3.14) first. Don’t forget the definition γ(v) =

[
1− v2/(θf)

]−1/2
.

3.2 Show that Eq. (3.13), written in the form w = v1 + v2

1 + v1v2/ψ2 , where ψ is the limiting speed,

implies that w ≤ ψ. Hint: Let v1 = ψ − µ1 and v2 = ψ − µ2, where µ1 ≥ 0 and µ2 ≥ 0.

3.3 Referring to Fig. 1.1, suppose that the vector R is time dependent, with R = vt + 1
2at

2,
where v and a are constant vectors. The two observers synchronize their clocks as the origins
coincide. Suppose S is an IRF. Show that S′ is not an IRF if a 6= 0. Assume absolute time.

3.4 Derive Eq. (1.3). Let r′ = r − vt. Assume absolute time.

3.5 Derive Eq. (1.1). Show that if one frame in Fig 1.2 is an IRF, the other is as well. Thus, there
is no unique orientation to IRFs. Note: φ is fixed here. One system is rotated with respect to
the other, not rotating.

3.6 Write down the inverse transformation to Eq. (1.1). Show that Rz(φ)Rz(−φ) = I2, the 2× 2
identity matrix.

3.7 Show, under the transformation Eq. (1.1), that (x′)2 + (y′)2 = x2 + y2. That is, the distance
to the origin (axis of rotation) is preserved under a rigid rotation of the coordinate axes.

3.8 a. Referring to Eq. (3.37), show that the aberration formula can be written

cos θ = β + cos θ′

1 + β cos θ′ .

Hint: cos2 θ = (1 + tan2 θ)−1

b. Show that γ(1 + β cos θ′) = [γ(1− β cos θ)]−1.

3.9 Let A = Aẑ be a velocity vector in a rectangular (x, y, z) coordinate system. Consider the
vectorA+dAwhere dA = dA‖ẑ+dA⊥ŷ is a differential velocity with components parallel
and perpendicular to A. Define another differential velocity dw ≡ γ2

AdA‖ẑ + γAdA⊥ŷ,
where γA ≡ 1/

√
1−A2/c2. Using Eq. (3.30) show, to first order in small quantities, that

A⊕ dw = A+ dA.



C H A P T E R 4

Geometry of Lorentz
invariance

W HAT is the essence of SR? If you had to reduce relativity to a one-line description what
might it be? The Bondi k-factor was derived in Chapter 2 using the principle of relativity

(all inertial observers can claim themselves at rest, isotropy of the speed of light). The standard
effects of SR were then derived using the k-factor, including the LT. Can it be said that the k-factor
is the essence of SR? In Chapter 3 the LT was derived using the principle of relativity (all IRFs are
equivalent), linearity (all inertial observers see straight worldlines for free particles), and isotropy
and homogeneity of spacetime. Perhaps the LT is the heart of SR? The invariance of the spacetime
separation follows from the LT, but can also be explained using the principle of relativity (all inertial
observers claim they are at rest, all measure the same speed of light, Section 1.5). Amongst these
interconnected ideas, can one be seen as more fundamental? As we continue in our study of rela-
tivity, we will have fewer opportunities to explicitly invoke the principle of relativity, and we’ll rely
progressively more on the use of Lorentz invariance. A Lorentz invariant is a quantity that remains
unchanged under the LT, what all inertial observers find to be the same. Lorentz invariance brings
to the fore Einstein’s program for relativity that what is not relative has objective meaning.

In this chapter we look at the geometry of spacetime implied by the Lorentz invariance of the
spacetime separation. We will promote invariance to a more fundamental status than the LT. Instead
of saying that the invariant separation follows from the LT, the LT will be defined as any linear
transformation that preserves the spacetime separation. If we had to come up with a “tagline” for
SR, it might be the physics of the invariant separation in absolute spacetime. Such a description
presages that for GR, which might be the physics of dynamic spacetime.

4.1 LORENTZ TRANSFORMATIONS AS SPACETIME ROTATIONS
In this section we show that boosts can be considered rotations in spacetime. To develop that idea
we first consider rotations in Euclidean space and apply what we learn to LTs.

4.1.1 Active vs. passive transformations

Equation (1.1), which describes how the components of a two-dimensional vector transform upon
rigidly rotating the x and y-axes counterclockwise through an angle φ (see Fig. 4.1), can be written

(r)′ = R(φ)r . (4.1)

Parentheses have been placed around r in Eq. (4.1) to indicate that r is the same vector before and
after the transformation: only the coordinates have changed as a result of changing the coordinate
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Figure 4.1 Left: Passive transformation—same vector r, different coordinate system.
Right: Active transformation—different vectors, r, r′, same coordinate system.

system (left portion of Fig. 4.1). A rotation can just as well be seen, however, as a transformation of
the vector, changing not the coordinate system but changing r to a new vector r′,

r′ = R(φ)r , (4.2)

where the components of r and r′ are expressed with respect to the same coordinate system (right
portion of Fig. 4.1). In either case, the coordinates are transformed. The transformation in the form
(r)′ = R(φ)r is a passive transformation, leaving the vector unchanged but changing the coordinate
axes, while r′ = R(φ)r is an active transformation, changing the vector with respect to the same
coordinate system. It’s not necessary to make the notational distinction in Eq. (4.1). Rotating the
coordinate axes counterclockwise by the angle φ is equivalent to rotating the vector r clockwise
through φ. The components of r′ in an active rotation are the same as those of (r)′ in a passive
rotation except for the sign of the angle: a positive angle in the active transformation is opposite to
that for the passive.

4.1.2 Rotational symmetry

Symmetries have two aspects: a transformation and something invariant under the transformation.
For rotations the distance to the rotation axis is preserved: x′2 + y′2 = (x cosφ + y sinφ)2 +
(−x sinφ+ y cosφ)2 = x2 + y2. The terms x2 + y2 can be generated from the inner product rTr:

rTr =
(
x y

)(x
y

)
= x2 + y2 . (4.3)

Rotational invariance can then be expressed as r′Tr′ = rTr. Using Eq. (4.2),

rTr = r′Tr′ = rTRT (φ)R(φ)r , (4.4)

where we’ve used for matrices A and B, (AB)T = BTAT . Rotational symmetry requires of R

RT (φ)R(φ) = I , (4.5)

or that RT (φ) = R−1(φ) = R(−φ) (an orthogonal matrix). It can be seen explicitly from Eq. (1.1)
that RT (φ) = R(−φ).

The inner product in Euclidean space is defined by r · r ≡ rTr = x2 + y2. Clearly r · r ≥ 0,
where equality implies r = 0. The length (norm) of r is defined as ||r|| ≡

√
r · r =

√
x2 + y2.

From Eq. (4.4) the inner product is invariant under rotations, as is the norm, ||r′|| = ||R(φ)r|| =
||r||. The invariance of the inner product generalizes to different vectors, r′1 · r′2 = r1 · r2. The
distance from r1 to r2 is also preserved, ||R(φ)r1 −R(φ)r2|| = ||R(φ)(r1 − r2)|| = ||r1 − r2||.
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Even though the coordinates change under rotation, the norm and the inner product do not. Coordi-
nates are relative to a coordinate system, but the norm and inner product are absolute quantities—
they have the same value in all frames connected by rotation. Because these quantities are absolute,
they have geometric meaning. A geometry is characterized by its symmetries, its invariants.

Seen as a passive transformation, the invariance of the inner product under rotations should not
come as a surprise—it’s the same vector before and after the transformation. Seen as an active trans-
formation, rotations map circles onto themselves—an invariant circle; see Fig 4.2. Let x = cosα

x

y r

r′
α

φ

Figure 4.2 Invariant circle under active rotations (dashed line).

and y = sinα be the coordinates for a point on the unit circle. The rotation matrixR(φ) maps (x, y)
into (x′, y′), where(

x′

y′

)
=
(

cosφ sinφ
− sinφ cosφ

)(
cosα
sinα

)
=
(

cosα cosφ+ sinα sinφ
sinα cosφ− cosα sinφ

)
=
(

cos(α− φ)
sin(α− φ)

)
.

The transformed point in the active rotation lies on the unit circle at the angle α − φ. All possible
rotations in the Euclidean plane about a fixed axis are represented by the mapping of a point on a
circle into another point on the same circle.

4.1.3 Invariance of the spacetime separation under Lorentz transformations

Under LTs the spacetime separation from the origin is preserved:

−(ct′)2 + x′2 + y′2 + z′2 = −(ct)2 + x2 + y2 + z2 . (1.7)

In analogy with rotations, therefore, boost transformations can be considered rotations in spacetime,
even though they can’t be visualized as such. Rotations in Euclidean space are the result of twisting
around an axis of rotation. About what axis are we twisting in implementing a LT? It can’t be
visualized. If we generalize the concept of rotation to be a mapping affecting pairs of coordinate
axes (x and y, for example), the LT is a rotation in that sense. In four-dimensional spacetime, there
are
(4

2
)

= 6 pairs of axes: three pair the time axis with a spatial axis, and the other three involve
space-space pairs of axes.1 We show in Chapter 6 that the most general LT is characterized by
six independent parameters pertaining to mappings of the six possible pairs of coordinate axes in
four-dimensional spacetime.

Equation (1.7) specifies that for an event with spacetime coordinates (ct, x, y, z) in one frame,
then for the coordinates of the same event in another IRF, (ct′, x′, y′, z′), the two sets of coordinates
are such that Eq. (1.7) is satisfied.2 For frames in standard configuration, the transverse coordinates
are unaffected by the motion, and in that case −(ct)2 + x2 is an invariant, one that’s easier to see
the geometric meaning of.

1We’re using the binomial coefficient, “N choose k,”
(
N
k

)
= N !/(k!(N−k)!). In three dimensions there are

(3
2

)
= 3

pairs of coordinate axes, the same number as the dimension of the space, and thus we can associate a three-dimensional
vector with a rotation. The case of three dimensions is special, however: n = 3 is the non-trivial solution of

(
n
2

)
= n. Only

in three dimensions can we associate a rotation with a vector in the same space. The axis of rotation in a four-dimensional
space would be a vector in a six-dimensional space.

2Such a statement is possible only if the two frames have a common spacetime origin.
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The hyperbolic form of the LT (for frames in standard configuration) is, from Eq. (A.5):(
ct′

x′

)
=
(

cosh θ sinh θ
sinh θ cosh θ

)(
ct
x

)
≡ L(θ)

(
ct
x

)
, (4.6)

where tanh θ = −β. Using Eq. (4.6),

−(ct′)2 + x′2 =− (ct cosh θ + x sinh θ)2 + (ct sinh θ + x cosh θ)2 (4.7)

=(cosh2 θ − sinh2 θ)(−(ct)2 + x2) = −(ct)2 + x2 .

For given coordinates (ct, x), compute the number k ≡ −(ct)2 + x2, where k can be positive,
negative, or zero (contrast with the Euclidean distance, which is always positive). Equation (4.7)
shows that −(ct′)2 + x′2 = k for all possible LTs starting with (ct, x). The locus of points such
that −(ct)2 + x2 = k is a hyperbola; see Fig. 4.3. The active form of the LT maps hyperbolas onto
themselves, the invariant hyperbola. The asymptotes are the lightlines ct = ±x.

x

ct

k > 0
k < 0

Figure 4.3 Invariant hyperbola−(ct)2+x2 = k. For k > 0 or k < 0 there are two branches.

Figure 4.4 shows the LT from the passive and active points of view. As a passive transformation

x

ct

(r)

ct′

x′

φ

φ

tanφ = β

x

ct

r

r′

θ

α

√
k

tanh θ = −β
P

Q

Figure 4.4 Passive and active forms of the Lorentz transformation.

the same spacetime point has coordinates in two reference frames (left portion of Fig. 4.4). To
understand the active transformation, consider the hyperbola associated with k > 0. As shown
in the right portion of Fig. 4.4, the spacetime vector r intersects the hyperbola at point P with
coordinates ct =

√
k sinhα and x =

√
k coshα, where α is a hyperbolic angle, the angle between
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r and the x-axis.3 The LT maps the point (ct, x) into (ct′, x′), where(
ct′

x′

)
=
(

cosh θ sinh θ
sinh θ cosh θ

)(√
k sinhα√
k coshα

)
=
√
k

(
sinh(α+ θ)
cosh(α+ θ)

)
.

The transformed coordinates (relative to the same coordinate axes) are to be found on the hyperbola
with ct′ =

√
k sinh(α+θ) and x′ =

√
k cosh(α+θ), i.e., at the hyperbolic angle α+θ, the pointQ

in Fig. 4.4. A boost is therefore a rotation4 along the invariant hyperbola through the angle θ, where
tanh θ = −β.

4.2 KINEMATIC EFFECTS FROM THE INVARIANT HYPERBOLA

x

ct

√
k

x′

ct′

P

Q

Figure 4.5 P lies on the hyperbola−(ct)2 +x2 = k which intersects the x-axis for all IRFs
at the same values x′ =

√
k.

Event P in Fig. 4.5 has coordinates (ct, x) in one frame and (ct′, x′) in another. P lies on the
hyperbola−(ct)2 +x2 = k for some k > 0. The hyperbola intersects the x-axis (t = 0) at x =

√
k,

and the x′-axis (t′ = 0) also at x′ =
√
k (point Q). Because the hyperbola is Lorentz invariant, it

intersects the x′-axis associated with any LT (starting from (ct, x)) at the same value, x′ =
√
k.

The invariant hyperbola can be used to illustrate time dilation and length contraction. Referring
to Fig. 4.6, IRFs S and S′ in relative motion synchronize their clocks when the origins coincide.
The worldlines of the clocks consist of the time axes, t and t′. Let the clock in S′ show one unit of
time at event B′ which is where the unit hyperbola (k = −1) intersects the t′-axis. The hyperbola
intersects the t-axis at event A, which is also one unit of time for the clock in S. In S, event B is
simultaneous with B′ (draw a line parallel to the x-axis). Because B > A, S concludes that the
moving clock in S′ runs slow. As seen from S′, however, event A′ is simultaneous with A (draw
a line parallel to the x′-axis). Because A′ > B′, S′ concludes that the clock in S runs slow. Both
observers conclude that a clock in motion runs slow.

Referring again to Fig. 4.6, let there be a rigid rod in S′, in motion relative to S. At the instant
the back end of the rod is at the origin of both frames, the front end is at Q′ in S′, where the unit
hyperbola (k = 1) intersects the x′-axis. (S′ measures Q′ as the length of the rod at t′ = 0.) The
hyperbola intersects the x-axis at P , also at one unit of length. The worldline of the front end of the
rod intersects the x-axis at Q, which is the measured length in S (two ends of the rod at the same
time, t = 0). Because Q < P , S concludes that the moving rod is contracted in length. Now let the
rod be at rest in S, in motion relative to S′. S measures the length of the rod as P (both ends at the

3Hyperbolic angle is measured in hyperbolic radians, twice the area enclosed by the vector r, the unit hyperbola, and
the x-axis, similar to a circular radian which is twice the area between r, the unit circle, and the x-axis.[22, p444] The range
of hyperbolic angle is unlimited, as we see from tanh θ = −β.

4The non-associativity of velocity addition (Section 3.3) is a consequence of the non-commutativity of rotations in
four-dimensional spacetime. As is well known, three-dimensional rotations do not commute.
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Figure 4.6 Length contraction and time dilation using the invariant hyperbola.

same time, t = 0). The worldline of the front edge of the rod intersects the x′-axis at P ′, which is
the length measured by S′ (both ends of the rod at the same time, t′ = 0.) Because P ′ < Q′, S′

concludes that a moving rod is contracted in length. Both observers conclude that a rod in motion
is contracted.

Length contraction and time dilation are thus symmetric between IRFs. That’s quite possibly the
key difference between SR and the ether model (Section 2.6), wherein length contraction and time
dilation purportedly occur relative to the ether in order to explain the MM and KT experiments,
properties attributed to the ether for the sole purpose of allowing it to evade detection! In SR, length
contraction and time dilation are relations between coordinates assigned to events by any two IRFs.

4.3 CLASSIFICATION OF LORENTZ TRANSFORMATIONS
We now define a LT to be any linear transformation that preserves the spacetime separation. To see
how that comes about, define a time inversion operator T that maps t → −t and leaves the spatial
coordinates unchanged, a matrix representation of which is:

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (4.8)

With T , the spacetime separation can be generated from rTTr = −(ct)2 + x2 + y2 + z2. With
the coordinates in another IRF obtained from the LT, (r)′ = L(v)r, we have the invariance of the
separation expressed in the form r′TTr′ = rTTr, implying that r′TTr′ = rTLTTLr = rTTr. We
thus have a requirement on any linear transformation L that preserves the spacetime separation,

LTTL = T . (4.9)

Equation (4.9) is analogous to the orthogonality condition for Euclidean rotations, Eq. (4.5), which
could be written RT IR = I to make it appear like Eq. (4.9). Instead of the operator T , however, we
could just as well define the parity operator, which inverts the spatial coordinates and leaves time
unchanged:

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (4.10)
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Equation (1.7) would then be generated by the invariance of rTPr, implying

LTPL = P . (4.11)

Equations (4.9) and (4.11) each impose a requirement on transformations that preserve the
spacetime separation. Which should we use? It’s traditional in the relativity literature to write

LT ηL = η , (4.12)

where η is a diagonal matrix with either (−1, 1, 1, 1) on the diagonal, symbolized diag(−1, 1, 1, 1),
or diag(1,−1,−1,−1). Both conventions are in prevalent use. We will use η = diag(−1, 1, 1, 1),
Eq. (1.14).5 The matrix η is the Lorentz metric tensor. Any linear transformation satisfying Eq.
(4.12) is a LT.

Transformations satisfying Eq. (4.12) have the mathematical property of constituting a group,
the Lorentz group. Without venturing unduly into group theory, the four properties a set of elements
must have to be a group are easily demonstrated:6

• If L1 and L2 are LTs, so is the composition L ≡ L1L2. From Eq. (4.12), LT2 L
T
1 ηL1L2 =

LT2 ηL2 = η. A LT followed by a LT is itself a LT, a manifestation of the principle of
relativity—all IRFs are equivalent.7

• The composition law for LTs (matrix multiplication) is associative: (L1L2)L3 = L1(L2L3).

• There exists an identity element L = I , which qualifies as a LT, IηI = η.

• For each L there exists L−1 in the group, which is more difficult to prove, although it must be
so physically by the principle of relativity. Take the determinant of Eq. (4.12). Using the rules
of determinants, including detLT = detL, we find (detL)2 = 1 and hence detL = ±1.
Because detL 6= 0, L−1 exists. To show that it belongs to the group, multiply Eq. (4.12)
from the left by

(
LT
)−1

and from the right by L−1:
(
LT
)−1

LT ηLL−1 =
(
LT
)−1

ηL−1,

and thus η =
(
L−1)T ηL−1 because for any matrix

(
LT
)−1 =

(
L−1)T . Hence, L−1 is a LT.

For later use with tensor analysis, it will be useful to adopt a notation for the elements of the
LT matrix, the utility of which will become apparent in the next chapter. Denote the elements of
the LT matrix as Lµν , where the top (bottom) index labels rows (columns), and where Greek letters
conventionally have the range (0, 1, 2, 3), with 0 labeling the time coordinate (Section 1.3).

It can be shown (Exercise 4.1) that
(
L0

0
)2 ≥ 1. There are then four possible types of LT: L0

0 ≥ 1
(orthochronous), L0

0 ≤ −1 (non-orthochronous), detL = ±1 (proper or improper). These consti-
tute four categories of LTs, conventionally denoted as follows.

• L↑+ : detL = +1, L0
0 ≥ 1, proper, orthochronous LTs.

The requirement detL = +1 (proper LTs) excludes the possibility of P or T as LTs. As
a result, LTs ∈ L↑+ connect smoothly with the identity transformation as the transformation
parameter (speed or rotation angle) continuously goes to zero. The requirement L0

0 ≥ 1 maps
positive time onto positive time, “orthochronous.”

• L↑− : detL = −1, L0
0 ≥ 1, improper, orthochronous LTs.

This class allows for the possibility of P as a LT, but excludes T .

5I prefer (−1, 1, 1, 1) because it singles out time for special treatment, and relativity is all about time.
6I say without unduly venturing into group theory because it’s a vast subject. Much you may try to resist it, “der

Gruppenpest” is an essential part of theoretical physics, which, if studied long enough, will entail picking up at least a
nodding acquaintance with group theory. Groups are defined in almost any undergraduate book on algebra.

7We showed explicitly in Section 3.1.4 that the group property is satisfied among frames in standard configuration; here
we’re establishing it for any linear transformation that satisfies Eq. (4.12).
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• L↓− : detL = −1, L0
0 ≤ −1, improper, non-orthochronous LTs.

This class includes T but excludes P .

• L↓+ : detL = +1, L0
0 ≤ −1, proper, non-orthochronous LTs.

This class allows for the combined operation PT , inversion of time and space.

Only LTs ∈ L↑+ are elements of the Lorentz group, because only this class includes the identity
transformation. As a result, only LTs ∈ L↑+ can be built up out of infinitesimal LTs (Chapter 6).
It can be shown that L ∈ L↓− can be written as the product TL′, with L′ ∈ L↑+. Thus we have
the mapping TL↑+ → L↓−. Similarly, we have the mappings PL↑+ → L↑− and TPL↑+ → L↓+. All
possible LTs can therefore be obtained from L ∈ L↑+ and the discrete transformations T and P .8

4.4 SPACETIME GEOMETRY AND CAUSALITY

4.4.1 Vector norm

A geometry involves the ability to specify the distance between points, and a natural way to do that
is through the inner product between vectors—which allows one to assign a magnitude to vectors.
We define the inner product between spacetime position vectors9 using the Lorentz metric:

r · r ≡ rT ηr =
(
ct x y z

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 =
(
−ct x y z

)
ct
x
y
z

 (4.13)

=− (ct)2 + x2 + y2 + z2 .

In this way r · r is a Lorentz invariant: For (r)′ = L(v)r,

r′ · r′ ≡ (L(v)r)T ηL(v)r = rTLT (v)ηL(v)r = rT ηr ≡ r · r ,

where we’ve used Eq. (4.12). The invariance of the dot product extends to different position vectors,
r′1 ·r′2 = r1 ·r2. The invariant inner product is highly useful in practice: If its value is known in one
IRF, it has the same value in any other frame obtained from the first by a LT. Just as with rotations
in Euclidean space, the invariance of the inner product among spacetime vectors is a property of the
geometry. While coordinates transform between IRFs, there is an intrinsic property of the spacetime
geometry, the inner product, which has been defined to generate the spacetime separation.

The norm of a spacetime vector can now be defined,

||r|| ≡


√
r · r for r spacelike (r · r > 0)
√
−r · r for r timelike (r · r < 0)

0 for r lightlike (r · r = 0)
. (4.14)

A vector with unit norm is a unit vector. Note that in contrast with Euclidean geometry, where
r ·r = 0 implies r = 0, a spacetime vector can have zero norm and be non-zero. A vector with zero
norm is called a null vector. Because the norm has been defined using the inner product, it too is a
Lorentz invariant.

Spacetime separations are non-intuitive. The analog of the “3-4-5” right triangle in Euclidean
geometry is in spacetime geometry a “3-5-4” triangle (see Fig. 4.7), an instance of time dilation—

8In quantum field theory, systems with Lorentz symmetry must also have CPT symmetry—that the physics is unaffected
by the combined transformation CPT where C (“charge conjugation”) converts a particle into its antiparticle.

9The symbol r has been used to denote two-dimensional vectors, as in Eq. (4.3), three-dimensional vectors, as in Eq.
(3.23), and now as a four-dimensional vector. Soon we’ll refer to a spacetime position vector as a four-vector.
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Figure 4.7 Moving clocks run slow: in the non-Euclidean geometry of spacetime.

the length of the hypotenuse (proper time) is shorter than the base of the triangle (time ascribed
to the moving clock). The hypotenuse is a timelike vector with norm

√
−[−52 + 32] = 4. Does

the hypotenuse in Fig. 4.7 look shorter than the base of the triangle? Don’t bring your geometric
expectations, based on a lifetime of Euclidean reasoning, to spacetime diagrams. Figure 4.8 shows

x

ct

x

ct

Figure 4.8 Timelike unit vectors (left) and spacelike unit vectors (right).

timelike and spacelike unit vectors: Each vector in Fig. 4.8 connects the origin with a unit hyperbola.
These are not all unit vectors in the same frame; each would be a unit vector in some IRF, however.

4.4.2 Orthogonality

Can spacetime vectors be orthogonal? We assumed in setting up spacetime diagrams that the time
axis (timelike) is orthogonal to the space axis (spacelike). Vectors can be timelike, lightlike, or
spacelike. Is orthogonality possible for each type of vector? For A and B spacetime position vec-
tors, can A ·B = 0, where the inner product is defined in Eq. (4.13)? Denote the time component
ofA asA0 and the space components as ~A (a notation we use in Chapter 5). Then, using Eq. (4.13),
A ·A = −(A0)2 + || ~A||2, where here || ~A|| =

√
~A · ~A is the Euclidean norm of the spatial part of

the vector. A spacetime vector is spacelike, lightlike, or timelike according to whether || ~A|| > |A0|,
|| ~A|| = |A0|, or || ~A|| < |A0|. Orthogonality implies that A0B0 = ~A · ~B. Of the three types of
vector (timelike, spacelike, lightlike), which can meet this condition?

• LetA be a timelike vector. VectorB can be orthogonal toA only ifB is spacelike.
Proof : Assume that A0B0 = ~A · ~B (orthogonality) and |A0| > || ~A|| (timelike). Then,
|A0B0| = | ~A · ~B| ≤ || ~A|| || ~B|| (Schwartz inequality). But |A0| > || ~A||, implying that
|B0| < || ~B||. For orthogonality to hold,B can only be spacelike.
Timelike vectors cannot be orthogonal, and timelike vectors cannot be orthogonal to lightlike
vectors. A timelike vector can only be orthogonal to a spacelike vector.

• LetA be a lightlike vector. VectorB can be orthogonal toA ifB is spacelike or lightlike.
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Proof : From A0B0 = ~A · ~B, |B0| = | ~A · ~B|/|A0| ≤ || ~A|| || ~B||/|A0| (Schwartz). But
|A0| = || ~A|| (lightlike), implying that || ~B|| ≥ |B0|.B is either spacelike or lightlike.
Lightlike vectors can be orthogonal to lightlike and spacelike vectors; two lightlike vectors
can be orthogonal if and only if they’re scalar multiples of each other.

• It is possible for spacelike vectors to be orthogonal.

=⇒ Two spacetime vectors can be orthogonal if at least one of them is spacelike or both are light-
like, in which case they are proportional to each other.

4.4.3 Partition of spacetime

Spacetime can be partitioned into five regions (see Fig. 4.9):

T+ ≡ Future timelike, (∆s)2 < 0, t > 0;
T− ≡ Past timelike, (∆s)2 < 0, t < 0;
S ≡ Spacelike, (∆s)2 > 0;

L+ ≡ Future lightlike (future light cone), (∆s)2 = 0, t > 0;
L− ≡ Past lightlike (past light cone), (∆s)2 = 0, t < 0 .

The LT maps each of these regions onto itself. Because (∆s)2 is Lorentz invariant, the spacelike

Figure 4.9 Partition of spacetime into spacelike, lightlike, and timelike regions.

region S is mapped onto itself under the LT; likewise with timelike and lightlike regions, where we
include future and past sets. The past and future sets, however, are separately preserved under the
LT. We prove this for T+, where for t > 0, we must show that t′ > 0 for x ∈ T+. From Eq. (4.6),

ct′ = ct cosh θ + x sinh θ . (4.15)

For x ∈ T+, −ct < x < ct. Using this inequality together with Eq. (4.15), it can be shown that
te−θ < t′ < teθ, and hence that t′ > 0 if t > 0. The proof for T− is similar. It’s simple to show that
the future and past light cones are separately preserved under the LT.

4.4.4 Temporal order and causality

Events in T+ cannot be simultaneous in any reference frame, and the temporal order in which events
occur is the same for all observers (discussed in Section 1.5). Event A in Fig. 4.10 has t > 0 and
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Figure 4.10 Absolute past and absolute future. Events in T+ occur after the event at O in
any reference frame. Events in T− occur before O in all reference frames.

occurs after the event at the origin, O. No LT can change the time coordinate of A to t < 0. Thus
A occurs after O in all IRFs. For this reason, T+ is called the absolute future because events in this
region occur after O in all frames. Likewise, T− is called the absolute past because events in this
region occur before O in any frame.

Events on the future light cone, L+, can be influenced by electromagnetic signals from a source
at O. Because physical effects cannot propagate faster than light, any effect originating at O can
reach only those points inside T+ or on L+. And because the temporal order of events cannot be
altered by a LT in this region of spacetime, it’s possible to introduce notions of cause and effect in an
absolute sense, independent of reference frame. A causal connection between events can exist only
if they are timelike or lightlike separated. Vectors that are either timelike or null are called causal
spacetime vectors. At each point in spacetime, there corresponds a light cone with its vertex at that
point—see Fig. 4.11. Each event along the worldline of a particle can affect only those events that

Figure 4.11 A point in spacetime can influence only those events within its future lightcone.

lie in or on its future light cone, and can be affected only by events in or on its past light cone.10

10In quantum field theory, measurements of a field at the origin and at an event P do not interfere if P is spacelike
separated from the origin. Operators must therefore commute for spacelike-separated events.
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SUMMARY
• A LT is any linear transformation such that LT ηL = η, where η = diag(−1, 1, 1, 1).

• The inner product between spacetime vectors is Lorentz invariant where r · r = rT ηr.

• Spacetime can be partitioned into a future timelike region, a past timelike region, a spacelike
region, and the future and past light cones. The LT maps each of these regions into themselves.

• There can be a causal connection between events in spacetime, where notions of cause and
effect, “earlier” and “later” are independent of reference frame, only if they are timelike or
lightlike separated.

• Two spacetime vectors can be orthogonal if one of them is spacelike or both are lightlike.

EXERCISES

4.1 Show that
(
L0

0
)2 = 1 +

∑3
i=1
(
Li0
)2

. Conclude that
(
L0

0
)2 ≥ 1. Hint: Use Eq. (4.12).

4.2 Show that L−1 = ηLT η and LT = ηL−1η. Hint: (η)2 = I .

4.3 Assume a 2D LT, where η =
(
−1 0
0 1

)
,

L =
(
L0

0 L0
1

L1
0 L1

1

)
.

a. Use the result of Exercise 4.2 to find L−1 in terms of the matrix elements of L. Because
we have generally that L−1(v) = L(−v), use your result for L−1 to argue that the off-
diagonal terms must be odd functions of v, while the diagonal terms are even functions.

b. Use your result for L−1 to conclude that L must be a symmetric matrix with L1
1 = L0

0.
Hint: Compare the results of LL−1 = I with LT ηL = η.

4.4 Show that the inner product between two spacetime vectors is invariant under the LT, r′1·r′2 =
r1 · r2, where the inner product is defined as r1 · r2 = rT1 ηr2.

4.5 Events A, B, and C have spacetime coordinates (ct, x) of (2, 1), (7, 4), and (5, 6), respec-
tively. For each pair of events, answer the questions: (1) Are the events timelike, spacelike, or
lightlike separated?; (2) Is it possible that one of the events could be caused by the other?

4.6 Show:

a. If two lightlike vectors are orthogonal, they are scalar multiplies of each other;

b. That the inner product between a lightlike vector and a timelike vector is negative;

c. That the sum of a lightlike vector and a timelike vector is timelike. Use the result of the
previous problem;

d. For two future-pointing timelike vectors, i.e., spacetime vectors A, B with A0 > 0 and
B0 > 0, thatA ·B < 0;

e. For A a future-pointing timelike vector and B a past-pointing timelike vector, that A ·
B > 0.



C H A P T E R 5

Tensors on flat spaces

E INSTEIN’S program for GR, that the laws of physics be independent of coordinate system, is
realized by expressing equations as relations between tensors.1 Tensors are highly useful in SR

as well: The time has come to address this important topic.
Tensors are generalizations of vectors. In an n-dimensional space, a vector is specified by n

numbers. A second-rank tensor requires n2 numbers for its specification; a rank-r tensor requires
nr numbers. Physical quantities exist requiring more than n numbers for their specification, the
stress tensor for example. We start by defining vectors in spacetime, and then work our way up to
tensors. The traditional way of introducing tensors is through their transformation properties—how
the nr numbers transform between reference frames (Section 5.1). In Section 5.5 we show that
tensors are linear relations between scalars, vectors, and even other tensors.

5.1 TRANSFORMATION PROPERTIES

5.1.1 Spacetime position four-vector

Spacetime is modeled as a four-dimensional continuum2 obtained from the concatenation of space
(R3) with time (R), R4 = R3 × R. Unadorned R4, however, cannot support the physics of SR; we
require a mathematical model having more structure. Minkowski space (MS) is a four-dimensional
vector space (with points in one-to-one correspondence with those of R4) spanned by one timelike
basis vector, et, and three spacelike basis vectors, ex, ey , ez , where by convention basis vectors
are labeled with subscripts.3 While any four linearly independent vectors can constitute a basis
(known as a tetrad), in IRFs we require time to be orthogonal to space. Points in MS (events) are
located by a position vector (relative to the origin-event4) r = rtet + rxex + ryey + rzez , called a
four-vector, where by convention coordinates are labeled with superscripts. A change in reference
frame is a change of basis vectors (the passive form of the transformation) in such a way that the
components of r transform according to the LT.5 In Section 4.4 we were careful, in introducing
the inner product, to refer to spacetime position vectors, because so far that’s the only four-vector
we have: a position vector for every event. As we develop SR, a succession of four-vectors will be
introduced. The edifice of relativity theory is built on four-vectors and the Lorentz invariants that
can be constructed from them. With the understanding that additional four-vectors are forthcoming,

1A sizable portion of Einstein’s 1916 article is devoted to tensors in a section, “Mathematical Aids to the Formation of
Generally Covariant Equations.”[9, p111].

2Appendix C reviews linear algebra, including the Cartesian product. While the universe is well described as a four-
dimensional entity, string theory is a proposed framework for quantum gravity that invokes extra spatial dimensions.

3Every vector space has a basis, with its dimension the maximum number of linearly independent vectors.
4Vector spaces require a zero vector, which we can take as an arbitrarily chosen event for the spacetime origin.
5Minkowski space is an inner-product space endowed with a very specific structure; it’s not simply a vector space. To

speak of timelike and spacelike vectors, an inner product must already have been introduced—Section 4.4.

69
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we refer in this chapter to arbitrary four-vectorsA:

A = Atet +Axex +Ayey +Azez . (5.1)

We’ll soon distinguish two types of vectors: contravariant and covariant. Any vector whose prove-
nance can be traced to the position vector (more generally to oriented line elements) is referred to
as contravariant. The vectorA in Eq. (5.1) has the form of a contravariant vector. Covariant vectors
are a geometrically distinct type of vector, related to oriented surface elements.

We adopt a notational convention that allows us to write four-vectors more compactly than
Eq. (5.1). We reserve zero to label the time component of four-vectors as well as the associated
basis vector, and we use 1, 2, 3 to label spatial components and basis vectors, instead of x, y, z, or
r, θ, φ. Thus, Eq. (5.1) can be writtenA = A0e0 +A1e1 +A2e2 +A3e3. This convention enables
the use of summation notation: A =

∑3
α=0A

αeα. Note the Greek letter α as the summation
index. A convention in the theory of relativity is that if the sum runs from 0 to 3, use a Greek
letter as the summation index; however, if the sum runs from 1 to 3, use a Roman letter. Thus,∑3
α=0A

αeα = A0e0 +
∑3
i=1A

iei. Now, having introduced this convention, much of what we
cover in this chapter is general tensor analysis pertaining to any space and not specifically to MS.
When that’s the case there’s no need to adopt a notation that singles out the timelike dimension.
When we deal with relativity, however, we stick to the convention.

We will encounter expressions involving sums over numerous indices, and writing out the sum-
mation symbols becomes cumbersome. The Einstein summation convention is that repeated raised
and lowered indices imply a sum. Thus,

∑3
α=0A

αeα ≡ Aαeα. Of course, α is a dummy index
that has no absolute meaning. The expressions Aαeα = Aβeβ = Aγeγ are equivalent and imply
the same sum. Remember: The rule is that repeated upper and lower indices imply a summation.
Terms such asAαeβ do not imply a sum. I will gradually work in the summation convention to gain
practice with it, but after a point I will simply use it without comment.

We’ll use xµ to denote the components of the four-position, xµ = (x0, x1, x2, x3). Not just
any collection of four numbers constitutes the components of a four-vector.6 For example, can we
package the components of the electric field vectorE into a four-vector, finding something suitable
to include as the time component? It turns out the answer is No. Likewise there is no four-vector
having the components of the orbital angular momentum L as its spatial part.7

5.1.2 Metric tensor

We defined the inner product between position four-vectors in Eq. (4.13) so as to produce an in-
variant under the LT, the spacetime separation. Here we generalize the inner product for arbitrary
four-vectors in a way that it generates an invariant under any invertible coordinate transformation,
which includes the LT. For vectors defined with respect to the same basis, A = Aαeα, B = Bβeβ
(summation convention), form the inner product by “dotting” them together,

A ·B =
(
A0e0 +A1e1 +A2e2 +A3e3

)
·
(
B0e0 +B1e1 +B2e2 +B3e3

)
=AαBβ (eα · eβ) ≡

3∑
α=0

3∑
β=0

AαBβ (eα · eβ) , (5.2)

where a double sum is implied by two sets of repeated upper and lower indices. There are 16 terms
in Eq. (5.2) when it’s expanded out. We’ve “passed the buck” in defining the inner product between
four-vectors to the inner product between basis vectors, eα · eβ . We’re going to leave these as
unspecified for now and represent them with a new symbol labelled by two indices,

gαβ ≡ eα · eβ . (5.3)

6Another way of saying that Minkowski space is not R4.
7Fear not, however: The vectors E and L will find their place as components of tensors.
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The 16 quantities {gαβ} are the elements of the metric tensor,8 our first tensor. The metric tensor
is one way to define a geometry:9 Geometric properties such as arc length and surface area can be
calculated once the metric has been specified. Said differently, each geometry (including spacetime)
has its own metric tensor. Combining Eqs. (5.3) and (5.2),

A ·B = gαβA
αBβ

≡ 3∑
α=0

3∑
β=0

gαβA
αBβ

 .

The components of the metric tensor are symmetric in their indices, gαβ = gβα; the metric tensor
is always symmetric. For an n-dimensional space, a symmetric second-rank tensor has n(n+ 1)/2
independent elements (show this); in MS there are 10 independent elements of the metric tensor.

To calculate the metric tensor, we must understand what’s meant by basis vector in this context.
Consider the infinitesimal displacement vector10 in the spherical coordinate system,

ds = drr̂ + rdθθ̂ + r sin θdφφ̂ ≡ drer + dθeθ + dφeφ
=
∑
i

(coordinate differential)i × (basis vector)i ≡
∑
i

dxiei . (5.4)

The basis vector ei is whatever multiplies the coordinate differential dxi in the expression for ds.
In spherical coordinates, er = r̂, eθ = rθ̂, and eφ = r sin θφ̂. Basis vectors are not necessarily
unit vectors: their magnitude and direction generally vary throughout a coordinate system. The
vectors {ei} are tangent to the coordinate curves that pass through a given point and point toward
increasing values of the coordinate, the coordinate basis. Figure 5.1 shows coordinate basis vectors

x

y

z

P

φ

θ

eθ

eφ

er

Figure 5.1 Coordinate basis vectors at point P in the spherical coordinate system.

er, eθ, and eφ “attached” to the point P . Only one coordinate curve is shown in Fig. 5.1, the portion
of a semicircle11 that results for fixed values of r and φ, with 0 ≤ θ ≤ π/2. The coordinate curve
for the radial coordinate is the ray (for fixed θ and φ) 0 ≤ r <∞, while that for the azimuth angle
is the circle (for fixed θ and r) 0 ≤ φ < 2π.

8Actually, Eq. (5.3) specifies the covariant elements of the metric tensor, gαβ . We will shortly introduce gαβ , the
contravariant elements of the metric tensor.

9What is a geometry? O. Veblen and J.H.C. Whitehead offered:[23, p17] “. . . a branch of mathematics is called a geom-
etry because the name seems good, on emotional and traditional grounds, to a sufficient number of competent people.”

10The infinitesimal displacement vector ds is the prototype contravariant vector. Anything called vector (in this case
contravariant) must have the properties of the prototype.

11Semicircle because the polar angle has the range 0 ≤ θ ≤ π.
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We can now calculate the metric tensor for the spherical coordinate system using Eq. (5.3):

[gij ] =

grr grθ grφ
gθr gθθ gθφ
gφr gφθ gφφ

 =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 , (5.5)

where [gij ] indicates the tensor components arranged as a matrix. The matrix in Eq. (5.5) is diagonal
because the coordinate system is an orthogonal coordinate system, with, for example, er · eθ =
rr̂ · θ̂ = 0. The metric tensor is always diagonal for orthogonal coordinate systems. Using Eqs.
(5.4) and (5.5), we have the square of the line element in spherical coordinates:

(ds)2 ≡ ds · ds = gijdxidxj = grr(dr)2 + gθθ(dθ)2 + gφφ(dφ)2 . (5.6)

The line element ds =
√

ds · ds represents a physical displacement and must have the dimension of
length. The metric tensor supplies the information required to calculate the distance between points,
the separation of which is characterized by coordinate differentials. If the coordinates do not have
a physical dimension, such as angular coordinates, the metric tensor must carry the information so
that gijdxidxj has the dimension of length squared (see gθθ and gφφ in Eq. (5.5)).

We can write (ds)2 in Eq. (5.6) in the following way:

(ds)2 =
(
dr dθ dφ

)1 0 0
0 r2 0
0 0 r2 sin2 θ

dr
dθ
dφ

 =
(
dr r2dθ r2 sin2 θdφ

)dr
dθ
dφ


= (dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2 = gijdxidxj . (5.7)

Equation (5.7) has the form of Eq. (4.13) except with η replaced by [gij ].
Now consider an arbitrary three-dimensional coordinate system where point P is at the intersec-

tion of three coordinate curves labeled by (u, v, w) (see Fig. 5.2). For a nearby point Q define the

Figure 5.2 General (u, v, w) coordinate system.

vector ∆s ≡ −−→PQ; ∆s is also the vector ∆s ≡ (r+ ∆r)− r, where r+ ∆r and r are the position
vectors for Q and P relative to the origin (not shown). To first order in small quantities,

ds = ∂r

∂u
du+ ∂r

∂v
dv + ∂r

∂w
dw , (5.8)

where the derivatives (with respect to coordinates) are evaluated at P . The derivatives

eu ≡ ∂r/∂u
∣∣
P

ev ≡ ∂r/∂v
∣∣
P

ew ≡ ∂r/∂w
∣∣
P

(5.9)

form a local basis—an arbitrary ds in the neighborhood of P can be expressed as a linear combina-
tion of them—and they’re tangent to the coordinate curves. A local set of basis vectors is determined
by the local structure of the coordinate system.
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Example. The position vector in spherical coordinates can be written

r = r sin θ cosφx̂+ r sin θ sinφŷ + r cos θẑ .

Applying Eq. (5.9), we have the vectors of the coordinate basis

er =∂r/∂r = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ
eθ =∂r/∂θ = r cos θ cosφx̂+ r cos θ sinφŷ − r sin θẑ
eφ =∂r/∂φ = −r sin θ sinφx̂+ r sin θ cosφŷ .

The norms of these vectors are ||er|| = 1, ||eθ|| = r, and ||eφ|| = r sin θ (show this). The magnitude
and direction of the basis vectors are not constant. The unit vectors are thus

êr = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ
êθ = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ
êφ =− sinφx̂+ cosφŷ .

Clearly, by definition, er = êr, eθ = rêθ, and eφ = r sin θêφ.

What about Minkowski space? For spherical coordinates, the geometry was specified first and
then we derived the metric tensor. Physics determines the metric of spacetime for us. From Eq.
(4.13), (ds)2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 ≡ gαβdxαdxβ , and thus we have the
Lorentz metric tensor, what we previously wrote down in Eq. (1.14):

[gαβ ] = η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.14)

Note that the inner product between the time basis vectors, e0 · e0 = −1, which is non-intuitive but
consistent with our definition of timelike unit vector (Section 4.4).

In Euclidean geometry (ds)2 = gijdxidxj > 0 for any sign of the differentials dxi. A metric
is said to be positive definite12 if (ds)2 > 0 for all dxi, unless the coordinate differentials vanish,
dxi = 0. Said differently, the distance between two points in a Euclidean geometry vanishes only
if the points are coincident. In MS, however, (ds)2 can be positive, negative, or zero (spacelike,
timelike, lightlike), in which case the metric is said to be indefinite. With an indefinite metric, two
points may be at zero distance [(ds)2 = 0] without being coincident (dxi 6= 0). We show in Section
5.6 that an indefinite metric must have a nonzero null vector.

5.1.3 Dual basis, lowering and raising indices

The basis vectors {ej}nj=1 for an arbitrary coordinate system will not in general be mutually orthog-
onal. It’s highly useful nonetheless to have some type of orthogonality relations among basis vectors.
To that end, we define another set of vectors, {ei}ni=1, the dual basis, labeled with superscripts, that

12A test for positive definiteness is provided by Sylvester’s criterion that various determinants (principal minors) associ-
ated with [gij ] all be positive.[24, p52] The Lorentz metric fails this test: It’s not positive definite, and in fact is indefinite.
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are orthogonal to each of the vectors {ej}, such that13

ei · ej = δij ≡

{
1 if i = j

0 if i 6= j
, (i, j = 1, · · · , n) (5.10)

where we’ve written the Kronecker delta in a new way.14 By definition, e2 ·e1 = 0 and e1 ·e2 = 0,
but in general e1 · e2 6= 0.

Figure 5.3 shows a non-orthogonal basis e1, e2 for vectors confined to a plane. Any vector in

e1

e2

A

A1e1

A2e2

e2

e1

A1e
1

A2e
2

Figure 5.3 Basis vectors e1, e2, and dual basis vectors e1, e2.

the plane can be expressed as a linear combination A = A1e1 + A2e2. The dual basis vectors e1

and e2 are shown, constructed so as to satisfy Eq. (5.10): e2 · e1 = 0, e2 · e2 = 1, e1 · e2 = 0, and
e1 · e1 = 1. The same vector can be expressed as a linear combination of the dual basis vectors:
A = A1e

1 +A2e
2, where the components ofA in the dual basis are labeled with subscripts.

We can express a vector in either basis. Using the summation convention,

A = Aiei = Ake
k . (5.11)

There must be a connection between the componentsAi andAk (of the same vector). Take the inner
product of both sides of Eq. (5.11) with ej ,

ej ·A = Aiej · ei = Aigji = Akej · ek = Akδ
k
j = Aj ,

where we’ve used Eqs. (5.3) and (5.10). Thus,

Aj = gjiA
i . (5.12)

13The number of dual basis vectors {ei}ni=1 is the same as that for the original basis {ej}nj=1; the two sets are isomor-
phic. In crystallography the dual basis is called the reciprocal basis. For the (generally non-orthogonal) directions of crystal
axes {ei}3

i=1, the dual basis vectors are defined as

e1 =
e2 × e3

e1 · (e2 × e3)
e2 =

e3 × e1

e1 · (e2 × e3)
e3 =

e1 × e2

e1 · (e2 × e3)
.

These vectors satisfy ei ·ej = δij . Could it be said that one cannot understand solid-state physics without first studying GR?
14The dual basis vectors span a logically distinct vector space known as the dual space, which plays a fundamental role in

tensor analysis. Appendix C contains an introduction to the dual space. From a set of vectors (in general non-orthogonal), a
new, orthonormal set of vectors can always be found (Gram-Schmidt process). The dual basis is not such a set. The dual basis
is in general non-orthogonal; the vectors {ei} are orthonormal to every vector in the set {ej}, but not amongst themselves.
The Gram-Schmidt process is a basis transformation in a given vector space; the dual basis is the basis of another space.
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Equation (5.12) is an instance of lowering an index: The (covariant) metric tensor connects the
components of a vector in the dual basis Aj with its components in the coordinate basis,15 Ai. Now
take the inner product between Eq. (5.11) and ej :

ej ·A = Aiej · ei = Aiδji = Aj = Ake
k · ej , (5.13)

where we’ve used Eq. (5.10). We define the contravariant elements of the metric tensor as (compare
with Eq. (5.3))

gij ≡ ei · ej , (5.14)

where gij = gji. Combining Eqs. (5.14) and (5.13),

Aj = Akg
kj . (5.15)

Equation (5.15) is an instance of raising an index: The contravariant metric tensor connects the
components of a vector in the coordinate basis Aj with its components in the dual basis, Ak.

Is there a relation between the contravariant and covariant elements of the metric tensor, gij and
gij? Combining Eq. (5.15), the raising of an index, Ai = gijAj , with Eq. (5.12), the lowering of an
index, Aj = gjkA

k,
Ai = gijAj = gijgjkA

k . (5.16)

Equation (5.16) is equivalent to (
δik − gijgjk

)
Ak = 0 . (5.17)

But because the {Ak} are arbitrary,
gijgjk = δik . (5.18)

The two types of metric tensors are inverses of each other. Using Eq. (5.5) we have for spherical
coordinates, [

gij
]

=

1 0 0
0 1/r2 0
0 0 1/(r2 sin2 θ)

 . (5.19)

The representation of vectors in the coordinate and dual bases provides a convenient expression
for the inner product,

A ·B =
(
Aiei

)
·
(
Bke

k
)

= AiBkei · ek = AiBkδ
k
i = AiBi , (5.20)

where we’ve used Eq. (5.10). Likewise, AiBi = gijAjgikB
k = AjB

kδjk = AjB
j , where we’ve

used Eq. (5.18).16 Note that Eq. (4.13) can be written r · r = xµxµ.
We now prove a useful result, that we can form an identity operator out of the basis vectors,

(summation convention)
I ≡ eiei ≡ eiei , (5.21)

where there is no “dot” between the vectors; Eq. (5.21) is an operator.17 In Cartesian coordinates,
Eq. (5.21) reads I = exex + eyey + ezez . Let I = eiei act on a vector defined first with respect to
the dual basis, and then with respect to the coordinate basis,

I ·A =eiei ·
(
Aje

j
)

= eiAj
(
ei · ej

)
= eiAjδ

j
i = eiAi = A

=eiei ·
(
Ajej

)
= eiAj (ei · ej) = eiAjgji = eiAi = A ,

15Note from Eq. (5.12) that all componentsAi in the coordinate basis contribute to the componentsAj in the dual basis.
16Such index manipulations are affectionately known as index gymnastics.
17The juxtaposition of two vectors without a dot or cross between them is called a dyad. A dyadic is a sum of dyads. The

dyadic identity operator in Eq. (5.21) is analogous to the completeness relation I =
∑

n
|n〉 〈n| in Dirac notation.
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where we’ve used Eq. (5.10) in the first line and Eq. (5.12) in the second line to lower the index.
Raising and lowering indices applies to basis vectors as well. Expand a dual basis vector in the

coordinate basis,
ei = cijej , (5.22)

where the cij are unknown expansion coefficients. Take the inner product between ek and both sides
of Eq. (5.22), ek · ei ≡ gik = cijek · ej = cijδkj = cik, where we have used Eq. (5.10). Hence,
cik = gik and ei = gijej , just like Eq. (5.15). By a similar argument, ei = gije

j . We can now
establish the identity of the two forms for I in Eq. (5.21), ekek = gkje

jgklel = δlje
jel = elel.

5.1.4 Coordinate transformations

We now examine how the components of ds change under invertible coordinate transformations.
Dry and technical as this material tends to be, it’s highly important for learning about tensors.18

Let there be n independent, analytic functions of the coordinates x1, · · · , xn, yi(x1, · · · , xn)
(i = 1, · · · , n), which we can denote {yi(xj)}ni=1. A set of functions is independent if the Jacobian
determinant—the determinant of the matrix of partial derivatives ∂yi/∂xj (the Jacobian matrix)—
does not vanish identically. The functions yi then provide another set of coordinates, a new set of
numbers to attach to the same point in space,

yi = yi(x1, · · · , xn) , i = 1, · · · , n (5.23)

and constitute a transformation of cooordinates.19 By assumption (nonvanishing Jacobian determi-
nant), Eq. (5.23) is invertible: xj = xj(y1, · · · , yn), (j = 1, · · · , n).

Consider a point P with coordinates xi and a neighboring pointQwith coordinates xi+dxi; see
Fig. 5.4. The points (P,Q) define the infinitesimal displacement vector ds ≡ −−→PQ with components

P

Q

yi

xi

yi + dyi

xi + dxi

Figure 5.4 Infinitesimally separated points in two coordinate systems.

dxi. Referring to the same points (P,Q) let there be a different coordinate system, yj . In this
coordinate system the same vector ds has components dyj . The components of ds in the two
systems of coordinates are related by calculus,

dyi = ∂yi

∂xj

∣∣∣
P

dxj ≡ Aijdxj , i = 1, · · · , n (5.24)

where the partial derivatives Aij = ∂yi/∂xj
∣∣
P

comprise the elements of the Jacobian matrix asso-
ciated with the coordinate transformation at point P .20 The derivatives exist through the analyticity

18We should be interested in coordinate transformations for two broad reasons. In SR, a LT is a change in basis vectors
in MS. In GR, spacetime cannot be modeled as MS. The curved spacetime of GR requires the mathematical structure of a
four-dimensional manifold. A curved manifold cannot be covered by a single coordinate system; it must rely on overlapping
“coordinatizations” of spacetime. Overlapping coordinate systems are another way of describing the same spacetime event
using different coordinate systems.

19For the most part we treat coordinate transformations from the passive point of view, where new coordinates are
assigned to the same points. Coordinate transformations can, however, be viewed in the active sense where new coordinates
refer to different points in the same coordinate system (same basis vectors), in which case the transformation equations
determine a mapping between points.

20In writing the elements of the Jacobian matrix asAij , we’re using the notation for matrix elements introduced in Section
4.3. The top index labels rows and the bottom index columns.
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of the transformation equations, Eq. (5.23). The quantities Aij are constant for Q in an infinitesimal
neighborhood of P . Equation (5.24) then represents a locally linear transformation, even though the
transformation equations in (5.23) are not necessarily linear.21

We adopt a notational device—the Schouten index convention—that simplifies tensor transfor-
mation equations.[25] Instead of inventing a different symbol for each new coordinate system (y,
x′, x̄, etc), choose x to represent coordinates once and for all. Coordinates in different coordinate
systems are distinguished by primes attached to indices. Thus, Eq. (5.24) is written dxi′ = Ai

′

j dxj ,
with Ai

′

j ≡ ∂xi
′
/∂xj ; Eq. (5.23) is written xi

′ = xi
′(xj).

Coordinate differentials in one coordinate system thus determine the coordinate differentials in
another coordinate system. The transformation inverse to Eq. (5.24) is

dxi = ∂xi

∂xj′

∣∣∣
P

dxj
′
≡ Aij′dxj

′
, i = 1, · · · , n (5.25)

where Aij′ denotes the partial derivatives {∂xi/∂xj′
∣∣
P
}. Combining Eqs. (5.24) and (5.25), dxi =

Aij′dxj
′ = Aij′A

j′

k dxk, or (
δik −Aij′A

j′

k

)
dxk = 0 . (5.26)

The matrices
[
Aij′
]

and
[
Aj
′

k

]
are thus inversely related22

Aij′A
j′

k = δik . (5.27)

Equation (5.27) is simply the chain rule: (∂xi/∂xj′)(∂xj′/∂xk) = ∂xi/∂xk = δik.
Equations (5.24) and (5.25) indicate how the components of ds transform between coordinate

systems. How do the basis vectors transform? We now use the key fact that ds is the same when
expressed in the two basis sets, {ei} and {ej′},23

ds = dxiei = dxj
′
ej′ . (5.28)

Using a familiar strategy, take the inner product between ds and ek on both sides of Eq. (5.28),

ek · ds = dxiek · ei = dxiδki = dxk = dxj
′
ek · ej′ = Aj

′

l dxlek · ej′ , (5.29)

where we’ve used Eqs. (5.10) and (5.24). Thus,

Aj
′

l e
k · ej′dxl = dxk . (5.30)

By the reasoning used in Eqs. (5.17) and (5.26), Eq. (5.30) implies that Aj
′

l e
k · ej′ = δkl, in turn

implying that [ek ·ej′ ] is the inverse of the matrix
[
Aj
′

l

]
(because the inverse of a matrix is unique).

Referring to Eq. (5.27), we identify24

ek · ej′ = Akj′ = ∂xk

∂xj′
. (5.31)

21We’re anticipating the possibility of nonlinear coordinate transformations (which we’ll need in GR). At point P , the
derivatives (∂yi/∂xj)|P are constant only within a small neighborhood of P ; a nonlinear transformation can thus be treated
as if it’s linear within a small region. The LT is strictly linear and the restriction of derivatives to their values at a point is
unnecessary.

22In other notational schemes one must come up with different symbols for the Jacobian matrix and its inverse; e.g., U
and U , or U and U−1. In either case, one has to remember which matrix applies to which transformation. In the Schouten
method there is one symbol with two types of indices, primed and unprimed. Other schemes use the same symbol for the
Jacobian matrix and its inverse, but with two ways of writing the indices, Aij and A i

j . Not only does one have to remember
which applies to which transformation, such a scheme quickly becomes unintelligible to students at the back of the room.

23We have chosen once and for all to represent basis vectors with the symbol e.
24Note that because of the prime on the index there is (hopefully) no chance of confusing Ak

j′ = ek · ej′ (from Eq.

(5.31)) with ek · ej = δkj (from Eq. (5.10)). In the Schouten method, the symbol Aj
k

is defined as the Kronecker delta,

Aj
k
≡ δj

k
.



78 � Core Principles of Special and General Relativity

Similarly, in Eq. (5.28) take the inner product between ds and ek
′
, a dual basis vector in the trans-

formed coordinate system,

ek
′
· ds = dxiek

′
· ei = Ail′dxl

′
ek
′
· ei = dxj

′
ek
′
· ej′ = dxj

′
δk
′

j′ = dxk
′
,

where we’ve used Eq. (5.25) and the analog of Eq. (5.10) in the transformed coordinate system,
ek
′ · ej′ = δk

′

j′ . We conclude that Ail′e
k′ · ei = δk

′

l′ and hence that

ek
′
· ei = Ak

′

i = ∂xk
′

∂xi
. (5.32)

Jacobian matrices therefore connect basis vectors in different coordinate systems (as well as coor-
dinate differentials). From Eqs. (5.31), (5.32), and the identity operator, Eq. (5.21), we obtain the
transformation equations between basis vectors,

ei = I · ei = ej′e
j′ · ei = ej′A

j′

i ei′ = I · ei′ = eje
j · ei′ = ejA

j
i′ . (5.33)

Likewise, the dual basis vectors transform inversely to Eq. (5.33)

ei = I · ei = ej
′
ej′ · ei = Aij′e

j′ ei
′

= I · ei
′

= ejej · ei
′

= Ai
′

j e
j . (5.34)

You will refer to these equations more than once; remember where you put them.

5.1.5 Tensor transformation properties: Contravariant, covariant, and all that

5.1.5.1 Scalar fields: φ′(r′) = φ(r)
An invariant is a quantity that does not change under coordinate transformations. The simplest type
of invariant is a scalar, a number, such as the spacetime separation. A scalar field is a function
φ(r) that assigns a number to each point in space. Points are invariant under passive coordinate
transformations, which attach different labels (coordinates) to points, but do nothing to the points
themselves. Any set of points is therefore invariant, as is any point function. The value of a scalar
field is invariant under passive coordinate transformations.25 If a point has coordinates xi and xj

′

in two coordinate systems, we require of a scalar field that φ(xi) = φ(xi(xj′)) ≡ φ′(xj′), i.e., the
form of the function of the transformed coordinates may change, φ′, but not its value φ′(r′). Scalars
do not exhaust the possible types of invariants under coordinate transformations; invariants other
than scalars exist.

5.1.5.2 Contravariant tensors

How do the components of vectors other than ds transform under a change of basis? The question
can be answered because we know how basis vectors transform. Calculus was used in Eq. (5.25)
to specify the transformation property of the components of ds = dxiei. We could establish how
basis vectors transform (Eqs. (5.33) and (5.34)) by requiring ds to be the same when represented in
different bases, ds = dxiei = dxj′ej′ , Eq. (5.28). That ds is the same in different bases implies
that it has an existence independent of coordinate system. A quantity having such a property is said
to be a geometric object. The infinitesimal displacement vector ds is the prototype of a class of
geometric objects referred to as contravariant vectors.26

A vector T = T iei has contravariant components T i if they transform as T i
′ = Ai

′

j T
j , i.e., like

Eq. (5.25). In that way T is a geometric object, T = T jej = T jAi
′

j ei′ = T i
′
ei′ , where we’ve used

25The temperature at a point, for example, doesn’t care what coordinates you assign to the point.
26By a contravariant vector, we mean a vector with contravariant components. The same terminology applies to con-

travariant tensors, covariant tensors, etc.
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Eq. (5.33). The contravariant components transform inversely (“contra”) to the transformation of
basis vectors. Any set of n quantities {T i} that transform like the components of ds,

T k
′

= Ak
′

j T
j = ∂xk

′

∂xj
T j , (5.35)

are said to be the contravariant components of a vector. Any mathematical objects that transform
like the components of ds form the contravariant components of a vector.

A set of (n)2 quantities {T ij} are said to be the contravariant components of a second-rank
tensor if they transform as

T i
′j′ = Ai

′

kA
j′

l T
kl = ∂xi

′

∂xk
∂xj

′

∂xl
T kl . (5.36)

One way to create tensors is by multiplying vector components. For Ai and Bj contravariant vector
components, T ij ≡ AiBj comprise the components of a second-rank tensor because they auto-
matically transform properly. A set of (n)r objects {T i1···ir} that transform as the product of r
contravariant vector components, T k

′
1k
′
2···k

′
r ≡ A

k′1
m1A

k′2
m2 · · ·A

k′r
mrT

m1m2···mr are the contravariant
components of a tensor of rank r.

Example. Show that {gij} are contravariant tensor elements. To do so, we must show that they
transform properly. Starting from the definition Eq. (5.14), gi

′j′ = ei
′ · ej′ = Ai

′

k e
k · Aj

′

l e
l =

Ai
′

kA
j′

l g
kl, where we have used Eq. (5.34), in agreement with Eq. (5.36).

Transformation relations such as Eq. (5.36) pertain to the components of tensors, but they do
not define what a tensor is. Like vectors, tensors are geometric objects. It’s common practice to
refer to symbols like T ij as “tensors,” but that’s not correct. We’ll use a special notation to indicate
tensors: boldface Roman font for tensors, T, as distinguished from boldface italic font for vectors,
A. A second-rank tensor T is a generalization of a vector,27 T ≡ T ijeiej . A second-rank tensor is
independent of coordinate system,

T′ =T i
′j′ei′ej′ = Ai

′

l A
j′

mT
lmAki′A

n
j′eken =

(
Aki′A

i′

l

)(
Anj′A

j′

m

)
T lmeken

=δklδnmT lmeken = T kneken = T ,

where we’ve used Eqs. (5.36), (5.33), and (5.27). It’s important to distinguish the tensor components
T ij from the tensor as a whole, T, just as we distinguish a vector, A, from its components, Ai. A
rank-r tensor is T = T k1k2···krek1ek2 · · · ekr . At some point we’ll break training and start referring
to tensor components as tensors (despite our admonition); continually referring to “the tensor whose
components are T ij” becomes cumbersome. The distinction between a tensor and its components
should be kept in mind nevertheless.

5.1.5.3 Covariant tensors and mixed tensors

The invariance of scalar fields (φ′(r′) = φ(r)) allows us to introduce how derivatives transform
between coordinate systems. Using Eq. (5.25),

∂φ′

∂xj′
= ∂xi

∂xj′
∂φ

∂xi
= Aij′

∂φ

∂xi
. (5.37)

Again, calculus is used to establish a prototype transformation equation. The form of Eq. (5.37)
is the inverse of the form of Eq. (5.35) (note the location of the indices); Eq. (5.37), however,

27The order in which the basis vectors is written is important; in general T ij 6= T ji.
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has the same form as Eq. (5.33). Just as the infinitesimal displacement vector ds is the prototype
contravariant vector, the gradient of a scalar field∇φ is the prototype of a class of geometric objects
called covariant vectors. A vector T = Tme

m has covariant components Ti if they transform as
Tn′ = Amn′Tm, so that T = Tme

m = TmA
m
n′e

n′ = Tn′e
n′ , from Eq. (5.34). Any set of n quantities

{Ti} that transform like

Tj′ = Aij′Ti = ∂xi

∂xj′
Ti (5.38)

are the covariant components of a vector—they “co-vary” with the basis vectors28 ei.
A set of (n)2 objects {Tij} that transform like

Ti′j′ = Aki′A
l
j′Tkl (5.39)

are covariant components of a second-rank tensor. A second-rank tensor with covariant compo-
nents, T ≡ Tije

iej , is independent of basis (as can readily be shown). A set of (n)r objects
{Tk1···kr} that transform like Tk′1···k′r = Am1

k′1
· · ·Amrk′r Tm1···mr are the covariant components of

a tensor of rank r, T = Tk1···kre
k1 · · · ekr .

We now define mixed tensors. A set of (n)3 objects {T ijk} that transform as

T i
′

j′k′ = Ai
′

pA
l
j′A

m
k′T

p
lm (5.40)

are the components of a third-rank tensor with one contravariant and two covariant indices. Nota-
tionally, the upper and lower indices are set apart, T ijk. It’s good hygiene in writing the components
of mixed tensors not to put superscript indices aligned with subscript indices (as in T ijk); adopting
this convention helps avoid mistakes.29 The components of a mixed tensor of type (p, q) (having p
contravariant indices and q covariant indices) are a set of n(p+q) objects {T i1···ipj1···jq} that trans-
form as

T
k′1···k

′
p

m1′ ···m′q
= A

k′1
t1 · · ·A

k′p
tpA

s1
m′1
· · ·Asqm′qT

t1···tp
s1···sq . (5.41)

The tensor of type (p, q) is T = T
k1···kp

m1···mqek1 · · · ekpem1 · · · emq . A tensor as a geometric
object is independent of the basis vectors used to represent it: T = Tije

iej = T ijeie
j = T j

i e
iej =

T ijeiej .
Is δij an element of a second-rank mixed tensor as the notation suggests? How does it transform?

Using Eq. (5.41),
(
δij
)′ ≡ Ai

′

kA
m
j′ δ

k
m = Ai

′

kA
k
j′ = δi

′

j′ , from Eq. (5.27). The transformation of δij ,(
δij
)′

, has the value of δij in the new frame. The Kronecker delta is a constant tensor, a tensor with
elements that are numerically the same in every coordinate system. (The same is not true of δij .30)
Equation (5.10) defines the elements of the mixed metric tensor, gij = ei · ej = δij .

5.1.5.4 Inner product is a scalar

We now show that the inner product defined by Eq. (5.2) is invariant. Using Eq. (5.20),

(T ·U)′ = Ti′U
i′ = Aki′A

i′

j TkU
j = δkjTkU

j = TjU
j = T ·U , (5.42)

where we’ve used Eqs. (5.35), (5.38), and (5.27). If we know the value of the inner product in one
coordinate system, we know it in all coordinate systems. Note that the metric tensor is lurking in Eq.
(5.42) from lowering indices: T ·U = gαβT

αUβ = TβU
β .

28A useful mnemonic for the placement of indices is “co goes below.”
29For example, by writing gναCµαλ = Cµ λν we know where ν “comes from.” Had we written Cµλν , where would ν

“go” if later we decide to raise the index?
30The Kronecker symbol was defined in Eq. (5.10) as a mixed tensor. The Kronecker symbol as it’s usually written, δij ,

is in general tensor analysis obtained by lowering an index: δij = gikδ
k
j = gij .
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5.1.6 Tensor contraction and outer product

When a contravariant (upper) index is set equal to a covariant (lower) index and summed over, it
reduces a tensor of type (p, q) to one of type (p− 1, q − 1), i.e., it lowers the tensor rank by two, a
process called contraction. Consider T ij ≡ U iVj , a second-rank tensor formed from the product of
vector components U i and Vj . If we set j = i and sum over i, T ii ≡ U iVi, we form a scalar. The
inverse process, of forming the components of higher-rank tensors from products of the components
of lower-rank tensors, is called the outer product. The product of the components of a tensor of type
(r, s) with the components of a tensor of type (p, q) form the components a new tensor of type
(r + p, s+ q). For example, the quantities T ijk = U ijVk are the components of a third-rank tensor.
If we set j = k and sum, we lower the rank by two to form a vector (first-rank tensor), T i ≡ U ikVk.
To prove that T i is the component of a vector, we must show that it transforms like one,

T i
′

= U i
′k′Vk′ = Ai

′

l A
k′

mU
lmAnk′Vn = Ai

′

l

(
Ak
′

mA
n
k′

)
U lmVn = Ai

′

l δ
n
mU

lmVn

= Ai
′

l U
lnVn = Ai

′

l T
l ,

where we’ve used Eqs. (5.36), (5.38), and (5.27). The tensor that results from components obtained
through outer products is called the tensor product, C = A ⊗ B. If A = αiei and B = βjej ,
C = αiβjei ⊗ ej ≡ Cijei ⊗ ej . The quantities ei ⊗ ej are a basis for type (2, 0) tensors formed
from the basis vectors ei for type (1, 0) tensors.

5.1.7 Quotient theorem

The direct test for whether a set of mathematical objects form tensor components is to verify that
they transform appropriately. There is an indirect method for checking the tensorial character of a
set of quantities known loosely as the quotient theorem, which says that in an equation UV = T , if
V and T are known to be elements of a tensor, then U is also a tensor element. With the quotient
theorem, we use known tensors to ascertain the tensor character of putative tensors.

Suppose {Tr} is a set of quantities we wish to test for its tensor character. Let {Xr} be the
components of a contravariant vector. If the sum TrX

r is an invariant, then by the quotient the-
orem, the quantities Tr form the elements of a covariant vector. From the given invariance, we
have TrXr = Ts′X

s′ . We can use the known transformation properties of Xr, Eq. (5.35), to write
TrX

r = Ts′A
s′

j X
j , or equivalently

(
Tj − Ts′As

′

j

)
Xj = 0. Because the {Xj} are arbitrary, the

terms in parentheses must vanish, establishing Tj = As
′

j Ts′ as the elements of a covariant vector.
Let’s take a more challenging example. Suppose we run into an equation,

Tmnkl = UmSnkl , (5.43)

where it’s known that T is a type (2, 2) tensor and U is a vector. By the quotient theorem we’re
entitled to conclude that S is a tensor of type (1, 2). To show this, introduce contravariant vector
components {xi} and covariant vector components {yr}. Multiply Eq. (5.43) by ymynxkxl and
contract,

Tmnklymynx
kxl = UmSnklymynx

kxl = (Umym)Snklynxkxl . (5.44)

We take this step so that the left side of Eq. (5.44) is a scalar (because we have contracted all
indices); Umym is also a scalar. We have therefore established that Snklynx

kxl is a scalar, and
thus Sn

′

k′l′yn′x
k′xl

′ = Snklynx
kxl. Now use the transformation properties of xi and ym, Eqs.

(5.35) and (5.38), Sn
′

k′l′A
i
n′yiA

k′

j x
jAl

′

mx
m = Sijmyix

jxm. Because xi and yj are arbitrary,
Sn
′

k′l′A
i
n′A

k′

j A
l′

m = Sijm, establishing S as a type (1, 2) tensor.
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5.1.8 Geometric interpretation of covariant vectors

We’ve now met the main players: scalars, contravariant and covariant vectors, and their generaliza-
tions as tensors. Contravariant vectors share the attributes of the displacement vector and should
simply be called vectors. What then are covariant vectors? Their components transform like those
of the gradient vector, which doesn’t immediately convey a picture of what they are. For many stu-
dents a course in relativity is their first introduction to covariant vectors, and one might wonder how
important they are, given that one has arrived this far in a scientific education without encountering
them.31 Can we provide a geometric interpretation of covariant vectors?

As we now show, covariant vectors represent families of parallel planes.32 Figure 5.5 shows a

Figure 5.5 Plane in 3-space. The vector r − r0 lies in the plane.
plane in 3-space. Locate a point on the plane having coordinates (x1

0, x
2
0, x

3
0) with the fixed vector

r0. Let r locate an arbitrary point on the plane with coordinates (x1, x2, x3). Let there be a vector
w perpendicular to the plane with components (w1, w2, w3). The vector r − r0 lies in the plane
and thus w · (r − r0) = 0. By the quotient theorem, w is a covariant vector. The coordinates {xj}
of all points on the plane then satisfy the equation of a plane wixi = d, where d ≡ w · r0 is
a constant. The intercept pi of the plane with the ith coordinate axis is found by setting all other
coordinates xj = 0 (j 6= i), with the result that pi = d/wi (see Fig. 5.6). For a plane parallel to

Figure 5.6 Covariant vectors w represent families of parallel planes.
the first, its coordinates satisfy wixi = d′, where d′ 6= d is another constant. The intercepts of the
parallel plane are given by qi ≡ d′/wi. Subtracting these equations, wi = (d′ − d) /

(
qi − pi

)
.

The components wi are therefore related to the intercepts made by a pair of parallel planes with the
coordinate axes. The direction of w is perpendicular to the planes, and the magnitude is specified

31One reason covariant vectors are relatively unfamiliar is that the distinction between contravariant and covariant is
unnecessary in orthogonal coordinate systems, and physics is most often done using orthogonal coordinate systems. We’re
marching towards GR, however, which touts itself as applying to any coordinate system.

32Planes are two-dimensional structures embedded in three-dimensional space. Planes in higher-dimensional spaces are
called hyperplanes: (n− 1)-dimensional structures embedded in n-dimensional spaces, with n > 3.
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by the distance separating the planes in the family, with magnitude inversely proportional to the
interplanar separation.33

The connection with gradients thus becomes apparent. The level set of a function is the locus
of points such that f(x1, · · · , xn) = f0, where f0 is a given constant value. As is well known, the
gradient of a function is orthogonal to its level set.34 Consider the change in a scalar field φ over a
displacement ds = duiei, with

dφ = ∂φ

∂ui
dui . (5.45)

We can represent dφ (a scalar) as an inner product between ds and a new vector (the gradient) such
that dφ ≡ ∇φ · ds. If ds lies within the level set, dφ = 0, implying that∇φ is orthogonal to the
level set of φ. By the quotient theorem,∇φ is a covariant vector which we can represent in the dual
basis,∇ ≡ ei∇i,

dφ =∇φ · ds = (∇iφ)ei · (dujej) = (∇iφ) dujδij = (∇iφ) dui . (5.46)

Comparing Eqs. (5.46) and (5.45), ∇i ≡ ∂/∂ui. Note the location of the indices: A derivative with
respect to a contravariant component, ui, is a covariant vector component, ∇i. To show that ∇i is
the component of a covariant vector is simple; see Eq. (5.37),∇i′ = Aji′∇j .

Example. The electric field E is a geometric object. It has a natural representation as a covariant
vector Ei = −∇iφ from its role as the gradient of the electrostatic potential φ(r). It’s also naturally
represented as a contravariant vector from its relation to the Newtonian equation of motion Ei =
(m/q)dvi/dt. The two quantities are related through the metric tensor,Ei = gijEj . The distinction
is necessary only in non-orthogonal coordinate systems.

Gradients provide a geometric interpretation of the dual basis vectors. Vectors normal to the
level set of a function35 f(u, v, w) can be expressed in a basis of normals to coordinate surfaces,

eu ≡∇u ev ≡∇v ew ≡∇w . (5.47)

A coordinate surface is the surface that results by holding one of the coordinates fixed.36 A sphere,
for example, results by holding the radial coordinate fixed and letting the coordinates θ, φ vary; the
sphere is the coordinate surface associated with the radial coordinate.37 Figure 5.7 illustrates the
distinction between coordinate basis vectors eα (tangents to coordinate curves) and the dual basis
vectors eβ , orthogonal to coordinate surfaces. The vectors in Eq. (5.47) are dual to the basis vectors
ei in the sense of Eq. (5.10), (u, v, w ≡ u1, u2, u3)

ei · ej =∇ui · ∂r
∂uj

= ∂ui

∂xk
∂xk

∂uj
= ∂ui

∂uj
= δij . (5.48)

Example. Consider a coordinate system (u, v, w) defined by x = u+v, y = u−v, and z = αuv+w,
where α is a constant. These equations can be inverted, with

u = 1
2(x+ y) v = 1

2(x− y) w = z − α

4 (x2 − y2) .

33Your inner mathematician would want to know that vectors defined from families of parallel planes can be added to
other such vectors to produce new vectors of the same type. They can, as shown in the delightful book by Weinreich.[26]

34Anyone who’s worked with topographic maps knows that a steeper terrain (gradient) is implied by contours of equal
elevation spaced closer together.

35Defined with respect to a general (u, v, w) coordinate system.
36In an n-dimensional space with n > 3, (n − 1)-dimensional coordinate surfaces—called hypersurfaces—result by

holding one of the n coordinates fixed.
37For a sphere, the unit vector r̂ is both tangent to the radial coordinate curve and orthogonal to the radial coordinate

surface: The distinction between the two types of vectors is unnecessary in orthogonal coordinate systems.
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Figure 5.7 Vectors of the coordinate basis eα are tangent to coordinate curves, vectors of
the dual basis eβ are orthogonal to coordinate surfaces.

The coordinate surfaces for u = u0 and v = v0 are planes, while the surface for w = w0 is a
hyperbolic paraboloid. The position vector can be written

r = (u+ v)x̂+ (u− v)ŷ + (αuv + w)ẑ .

Using Eq. (5.9), we find the coordinate basis vectors

eu = ∂r

∂u
= x̂+ ŷ + αvẑ ev = ∂r

∂v
= x̂− ŷ + αuẑ ew = ∂r

∂w
= ẑ .

It’s easily shown that eu · ev = α2uv, eu · ew = αv, ev · ew = αu; this is not an orthogonal
coordinate system. From Eq. (5.47),

eu =∇u = 1
2(x̂+ ŷ) ev =∇v = 1

2(x̂− ŷ) ew =∇w = ẑ − α

2 (xx̂− yŷ) .

It can be verified that eu · eu = ev · ev = ew · ew = 1 and eu · ev = eu · ew = ev · ew = 0.
Equation (5.10) is satisfied.

5.1.9 Connection with relativity

If a tensor equation is true in one reference frame, it’s true in all reference frames. Suppose we
have a relation between tensors, valid in one coordinate system, Aij = Bij . Write this equation
as Dij = 0, where Dij ≡ Aij − Bij . If Dij = 0 in one coordinate system, then Di′j′ = 0 in
any coordinate system, because the tensor transformation equations are linear and homogeneous.
Thus, Ai′j′ = Bi′j′ in all coordinate systems. While the individual components Aij , Bij transform
between frames, the form of the equation is the same in all coordinate systems.38 For physical laws
to be the same for all observers, they must be formulated in a covariant manner, which is why it’s
so important to be able to establish whether a given set of objects constitute a tensor.

Let’s pause for a passage from Einstein’s 1916 article on GR. Based on what we’ve covered in
this chapter, you should be able to follow what he says:[9, p121]

38Tensor equations are called covariant equations because their form co-varies with transformations between coordinate
systems.
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Let certain things (“tensors”) be defined with respect to any system of coordinates
by a number of functions of the coordinates, called the “components” of the tensor.
There are then certain rules by which these components can be calculated for a new
system of coordinates, if they are known for the original system of coordinates, and if
the transformation connecting the two systems is known. The things hereafter called
tensors are further characterized by the fact that the equations of transformation for
their components are linear and homogeneous. Accordingly, all the components in the
new system vanish, if they all vanish in the original system. If, therefore, a law of nature
is expressed by equating all the components of a tensor to zero, it is generally covariant.
By examining the laws of the formation of tensors, we acquire the means of formulating
generally covariant laws.

We can write the LT in tensor notation as a coordinate transformation in MS:

xµ
′

= Lµ
′

ν x
ν . (5.49)

Regardless of the details of the LT (whether simple, as in Eq. (3.17), or more complicated as in
Eq. (3.24)), because the LT is linear, Lµ

′

ν = ∂xµ
′
/∂xν , the same as Eq. (5.35). Thus, we can use

all the apparatus of tensor analysis in SR with the LT as the Jacobian matrix, Aij , and indeed we
must use tensor analysis in relativity to formulate covariant equations. The inverse of Eq. (5.49)
is xµ = Lµν′x

ν′ where Lµν′ is obtained from Lµ
′

ν by letting β → −β. The analog of Eq. (5.27) is
Lµν′L

ν′

α = δµα.
By definition the LT satisfies Eq. (4.12), LTηL = η, a matrix equation. In terms of tensor com-

ponents (using (LT )µλ = Lλµ), Eq. (4.12) is equivalent to ηµν = LκµL
λ
νηκλ. The defining requirement

of a LT is none other than the transformation equation for the Lorentz metric! The Lorentz metric
is the same in all IRFs: The principle of relativity requires the invariance of the spacetime interval
(ds)2. The Lorentz metric is thus a constant tensor in MS. If xµ transforms as in Eq. (5.49), the
basis vectors transform inversely, showing that the LT is equivalently a change of basis vectors,

eα′ = Lβα′eβ . (5.50)

The time axis in an IRF is perpendicular to the spatial axes, so that η0i = e0 · ei = 0. It would
not appear from Fig. 2.9 and similar figures that time is orthogonal to space in the transformed
frame. Nevertheless, as we now show, in the transformed frame η0′1′ = 0. Using Eq. (5.50),

η1′0′ ≡ e1′ · e0′ =Lα1′eα · L
β
0′eβ = Lα1′L

β
0′ηαβ

=L0
1′L

0
0′η00 + L1

1′L
1
0′η11 + L2

1′L
2
0′η22 + L3

1′L
3
0′η33 , (5.51)

where we’ve used that [η] is diagonal. Thus, η1′0′ = (βγ)(γ)(−1) + (γ)(βγ)(1) = 0.

5.2 TENSOR DENSITIES, INVARIANT VOLUME ELEMENT
We now bring onto the stage another member from our cast of mathematical players, densities (the
final member of the “fab four” prototypes of physical quantities, in addition to scalars, covariant,
and contravariant vectors). Consider the integral of a scalar field,

∫
φ(x)dnx. Is the integral a scalar?

Not in general. While φ′(r′) = φ(r) under a coordinate transformation, we have to take into account
the transformation of the volume element. Under the change of variables xi = xi(xj′), the volume
element of a multiple integral transforms as

dnx ≡ dx1 · · · dxn = Jdx1′ · · · dxn
′
≡ Jdnx′ (5.52)
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(so that the integral transforms as
∫
φ(xi)dnx =

∫
φ(xi(xj′))Jdnx′ ≡

∫
φ′(xj′)Jdnx′), where

“the Jacobian” J is the determinant of the Jacobian matrix Aij′ ,

J =

∣∣∣∣∣∣∣∣∣∣
∂x1

∂x1′ · · · ∂x1

∂xn′
...

...
∂xn

∂x1′ · · · ∂xn

∂xn′

∣∣∣∣∣∣∣∣∣∣
≡
∣∣∣∣ ∂(x1, · · · , xn)
∂(x1′ , · · · , xn′)

∣∣∣∣ ≡ ∣∣∣∣ ∂xi∂xj′

∣∣∣∣ =
∣∣Aij′ ∣∣ . (5.53)

In general we work with oriented volume elements, implying that we don’t take the absolute value
of the Jacobian determinant.39

Relative tensors of weight w have components that (by definition) transform according to the
rules we have developed (such as Eq. (5.41)), with the additional requirement of the Jacobian raised
to an integer power, w:40

T
k′1···k

′
p

m′1···m′q
= JwA

k′1
t1 · · ·A

k′p
tpA

s1
m′1
· · ·Asqm′qT

t1···tp
s1···sq . (5.54)

Linear combinations of tensors of the same weight produce new tensors with that weight. Products
of tensors of weights w1 and w2 produce tensors of weight w1 +w2. Contractions of relative tensors
do not change the weight. A tensor equation must be among tensors of the same weight. We require
that tensor equations valid in one coordinate system be valid in all others; this property would be lost
in an equation among tensors of different weights. Relative tensors with w = ±1 occur frequently,
what we’ll call tensor densities. Tensors that transform with w = 0 are called absolute tensors.

The covariant metric tensor is an absolute tensor: From Eq. (5.39),

gi′j′ = Ali′A
m
j′ glm . (5.55)

The determinant of the metric tensor, however, is a relative scalar of weight41 w = 2. Let g denote
the determinant of the covariant metric tensor (a convention we adhere to). Applying the product
rule for determinants to Eq. (5.55),

g′ = J2g , (5.56)

where we have used Eq. (5.53). The sign of g is an absolute quantity, invariant under coordinate
transformations. Equation (5.56) then provides an alternate expression for the Jacobian, one that
separates the contributions from the coordinate systems it connects: J =

√
g′/g. For positive def-

inite metrics, g > 0; for the Lorentz metric, g = −1. Using Eq. (5.56),
√
|g′| = J

√
|g| and thus√

|g| is a scalar density (transforms with w = 1).
Combining J =

√
g′/g with Eq. (5.52), we have the invariant volume element√

|g′|dy1 · · · dyn =
√
|g|dx1 · · · dxn . (5.57)

Note how Eq. (5.57) has a net weight of w = 0:
√
|g|dnx is an absolute scalar. (Under x → y,

dny = J−1dnx from Eq. (5.52).) Thus, the integral of a scalar field
∫
φdnx is not invariant, but∫

φ
√
|g|dnx is, something we make frequent use of in GR; in SR it’s unnecessary because |g| = 1.

Substituting J =
√
g′/g in Eq. (5.54), we find that

(|g′|)−w/2T k
′
1···k

′
p

m′1···m′q
= A

k′1
t1 · · ·A

k′p
tpA

s1
m′1
· · ·Asqm′q

(
(|g|)−w/2T t1···tps1···sq

)
.

39By not taking the absolute value of the determinant, we allow for the possibility of transformations with J < 0.
Transformations for which J < 0 allow us to further classify tensors as pseudotensors, those that transform as tensors when
J > 0, but transform with an additional change of sign when J < 0.

40Beware: Relative tensors are also defined with w replaced by −w. I have adopted a definition that leads to w = +2
for the determinant of the covariant elements of the metric tensor.

41The same is true of the determinant of any covariant second-rank absolute tensor.
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For a tensor T of weight w, (|g|)−w/2T transforms as an absolute tensor. Conversely, an absolute
tensor U when multiplied by (|g|)w/2 becomes a tensor of weight w. In particular,

√
|g|U is a

tensor density.
A notational issue arises if J = 1. The Jacobian of proper LTs is unity, for example (Section

4.3). In that case densities “fly under the radar”: Physical quantities that properly are tensor densities
nominally transform as absolute tensors when J = 1. It’s traditional in the theory of tensor analysis
to indicate densities with a special notation, with Gothic letters: T instead of T. I will use this
notation sparingly, but it can come in handy; without it, one has to keep calling attention to the fact
that certain symbols represent tensor densities.

5.3 DERIVATIVES OF TENSORS AND THE FOUR-WAVEVECTOR

5.3.1 Derivatives of tensors

Is the derivative of a tensor a tensor? How would we answer such a question? I hope you’re saying,
“How does it transform?”. Before delving into that question, we need to establish some notation.

In Section 5.1 we used the gradient of a scalar function to motivate the concept of covariant
vector, ∇ = ei∇i. Because a geometric object is independent of basis, however, we could have
declared it to be a contravariant vector, ∇ = ei∇i—the contravariant components of a vector
can always be found from the covariant components by raising the index: ∇j = gjk∇k. For the
gradient as a contravariant vector, the change in a scalar function dφ =∇φ · ds would require that
we express ds = eidxi as a covariant vector, with the result that dφ =

(
∇iφ

)
dxi, in which case

we would conclude that ∇i = ∂/∂xi (note the placement of the indices). The quantity ∇i, being
the contravariant component of a vector, must transform as such,

∇i
′

= ∂

∂xi′
= ∂xk
∂xi′

∂

∂xk
=
(
∂xk
∂xi′

)
∇k . (5.58)

By Eq. (5.35), however, Eq. (5.58) should read ∇i′ = Ai
′

k∇k. Comparing Eqs. (5.58) and (5.35),
we conclude that Ai

′

k ≡ ∂xi
′
/∂xk = ∂xk/∂xi′ . Using Eq. (5.27), Akj′ ≡ ∂xk/∂xj

′ = ∂xj′/∂xk.
Note how the indices work here.

We now define the four-gradient, for which we switch to a fairly standard notation. Let ∂µ
denote the covariant four-vector of partial derivatives ∂/∂xµ (instead of ∇µ which will be used in
Chapter 14 for another purpose),42

∂µ ≡
∂

∂xµ
=
(

∂

∂x0 ,∇
)

=
(

∂

∂(ct) ,∇
)

= (∂0,∇) .

Likewise, let ∂µ denote the contravariant version. However, instead of ∂µ = ∂/∂xµ (which is
correct), use the fact that it can be obtained by raising the index, ∂µ = gµν∂ν . Using the Lorentz
metric,

∂µ = ηµν∂ν =
(
− ∂

∂x0 ,∇
)

=
(
− ∂

∂(ct) ,∇
)

= (−∂0,∇) =
(
∂0,∇

)
.

The only effective difference between ∂µ and ∂µ is in the time component, ∂0 = −∂0. The inner
product ∂µ∂µ generates the wave-equation operator,

∂µ∂µ = ∂µ∂
µ = − ∂2

∂(x0)2 +∇2 = − 1
c2
∂2

∂t2
+∇2 . (5.59)

42Another prevalent notation for the partial derivative is to write ∂φ/∂xµ (what we’re calling ∂µφ) as φ,µ. This taxes
everyone’s eyesight. In this notation, ∂Aν/∂xµ ≡ Aν,µ, what we’ll write as ∂µAν , which causes less eye strain.
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As an inner product, the wave-equation operator is invariant. The wave equation is preserved under
the LT (Appendix A); here we see that it can be written compactly in covariant form,43 ∂µ∂µ.

Getting back to the issue, consider the partial derivative of a tensor, ∂T ρ/∂xβ ≡ F ρβ . We have
written F ρβ in tensor notation, but is it a tensor? How does it transform? By differentiating Eq. (5.35),
we derive the transformation equation for the derivative of a tensor:

∂Tλ
′

∂xα′
= ∂xβ

∂xα′
∂

∂xβ

(
Aλ
′

ρ T
ρ
)

= Aβα′A
λ′

ρ

∂T ρ

∂xβ
+Aβα′

∂2xλ
′

∂xβ∂xρ
T ρ . (5.60)

Equation (5.60) is not in the form of a homogeneous transformation that we require of tensors. The
derivative of a tensor is not in general a tensor (at least, not for the partial derivative). For SR,
however, with its flat geometry (MS) and linear coordinate transformations, the inhomogeneous
term in Eq. (5.60) vanishes, ∂βAλ

′

ρ = 0. Within the confines of SR we can treat partial derivatives of
tensors as tensors. When we venture into GR, however, which is based on more general coordinate
transformations, we’ll have to face the matter of how to define the derivative of a tensor so that it
transforms as a tensor, yet reduces to the partial derivative on a flat geometry (see Chapter 14).

5.3.2 The four-wavevector

Among solutions to the homogeneous wave equation ∂µ∂µφ(xα) = 0 are monochromatic plane
waves φ = φ0ei(k·x−ωt), which we can write in the relativistically suggestive form φ =
φ0ei(k·x−(ω/c)x0). The three-wavevector k = kn̂ has magnitude k = 2π/λ, with the propagation
direction represented by the unit vector n̂. To satisfy the wave equation, there must be a relation
between ω and k, the dispersion relation, ω = ck. We can write the phase factor in covariant form
if we define the four-wavevector

kµ ≡
(
−ω
c
,k
)

= ω

c
(−1, n̂) . (5.61)

In that way, kµxµ = −ωt + k · x. Whenever we add a new four-vector to the pantheon of four-
vectors (which right now consists of the prototype contravariant and covariant four-vectors, dxµ and
∂µ), we must provide justification for why we’re entitled to do so. In this case we have a scalar field
φ and thus the phase kµxµ is a scalar. By the quotient theorem kµ is a covariant vector. The spatial
parts of kµ meet our expectation of covariant vector (Section 5.1.8): k = 2π/λ is proportional to
the density of waves (number of wave crests per unit distance, 1/λ), and k · x is fixed for a plane
perpendicular to k (equation of a plane). The time component of kµ is proportional to the density
of waves in time, k0 = −(2π/c)f (with the frequency f the number of wave crests per unit time).
The contravariant version kµ = ηµνkν = (ω/c)(1, n̂), and thus kµ is a null vector, kµkµ = 0.

We can now use the fact that because kµ is a four-vector, it transforms as such under the LT,
kµ = Lµν′k

ν′ . For S and S′ in standard configuration, let kν
′ = (ω′/c)(1, cos θ′, sin′, 0) in S′ and

kµ = (ω/c)(1, cos θ, sin θ, 0) in S. Under the LT,

(ω/c)


1

cos θ
sin θ

0

 = (ω′/c)


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1




1
cos θ′
sin θ′

0

 . (5.62)

The time component of Eq. (5.62) yields ω = ω′γ (1 + β cos θ′), the relativistic Doppler effect, Eq.
(3.41), while the spatial parts of Eq. (5.62) generate Eq. (3.37), the relativistic aberration formula.
With one equation, the LT of the four-wavevector, we obtain the Doppler effect and aberration
formulas, which were obtained in Section 3.4 by a more laborious procedure. What in one IRF is
partitioned into frequency and direction of propagation has a different partition in another IRF.

43The wave equation operator, which can be considered the Laplacian operator in a four-dimensional space with Lorentz
metric, is sometimes written �2, which is termed the d’Alembertian operator. I prefer ∂µ∂µ—which is easier to write.
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5.4 INTERLUDE: DRAW A LINE HERE
The rest of this chapter contains more advanced material on tensors; it could be skipped on a first
encounter—read it when you need it. What we’ve covered provides a foundation for the use of
tensors in SR. For GR a deeper understanding of tensors must be developed. If you’re not familiar
with the dual vector space, now would be a good time to consult Appendix C. From here on, we
step up the level of mathematical sophistication, what the subject requires us to do, and which we’ll
do again44 in Chapter 13. What we develop in the rest of Chapter 5 is used in Chapters 13 and 14.

5.5 TENSORS AS MULTILINEAR MAPPINGS
So what are tensors, really? Our treatment has emphasized the transformation properties of tensors,
that tensors consist of sets of quantities that transform according to certain rules. This approach
leaves one with a lifeless view of tensors. In this section we give a definition that’s not circular, as
in a tensor is anything that acts like a tensor. We show that tensors are linear mappings between
vectors, scalars, and other tensors. That tensors are operators can be seen from their definition as
geometric objects, T = T ijeiej , and that dyadic sums are operators (page 75).

5.5.1 Bilinearity defined

For vector spaces V1, V2, a function F that acts on elements of the set V1 × V2 (see Appendix C) to
produce a number, F : V1 × V2 → R, is bilinear if it’s linear in both arguments:

F (ax1 + bx2,y) = aF (x1,y) + bF (x2,y)
F (x, ay1 + by2) = aF (x,y1) + bF (x,y2)

}
bilinear function

for a, b ∈ R, x,x1,x2 ∈ V1, and y,y1,y2 ∈ V2.

5.5.2 Tensor product space

Let V be a vector space with basis {ei}ni=1, with V ∗ the space dual to V with basis {ej}nj=1, so
that45 ej(ei) = δji . The set of all bilinear functions that act on V1 × V2 themselves form a vector
space, the tensor-product space denoted V ∗1 ⊗V ∗2 (similar to V ∗, the set of all functionsω : V → R).
For dual vectors ω1 ∈ V ∗1 and ω2 ∈ V ∗2 , define bilinear functions ω1 ⊗ ω2 ∈ V ∗1 ⊗ V ∗2 (the tensor
product of ω1 and ω2), ω1 ⊗ ω2 : V1 × V2 → R such that, for v1 ∈ V1 and v2 ∈ V2,

ω1 ⊗ ω2(v1,v2) ≡ ω1(v1)ω2(v2) . (5.63)

Bilinear functions that act on V1 × V2 can be represented as linear combinations of tensor prod-
ucts. For F : V1 × V2 → R a bilinear function, let the numbers Fµν ≡ F (eµ, eν) be the result
of F acting on basis vectors of V1, V2. The function (actually, tensor) can be constructed from46

F = Fµνe
µ ⊗ eν . For x ∈ V1 and y ∈ V2,

F (x,y) = F (xi1ei1 , yi2ei2) = xi1yi2F (ei1 , ei2) ≡ xi1yi2Fi1i2 = Fi1i2e
i1 ⊗ ei2(x,y)

= Fi1i2e
i1(x)ei2(y) ,

44An analogy from hiking is apt: The top of the mountain is never where you want it to be.
45We use the notation of Appendix C where Eq. (C.1) replaces Eq. (5.10).
46What’s the difference between expressing a tensor as F = Fµνeµ ⊗ eν and what we had earlier in this chapter,

F = Fµνeµeν? Answer: Nothing, really, except that the tensor product notation enforces a sense of order, of where the
basis vectors “come from.” The order of the basis vectors matters in cases where Fµν 6= Fνµ.
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where we’ve used Eq. (5.63) and ei(x) = ei(xjej) = xjδij = xi. The terms eµ1 ⊗ eµ2 are linearly
independent and form a basis for the space V ∗1 ⊗ V ∗2 . The dimension of V ∗1 ⊗ V ∗2 is the product of
the dimensions of V1 and V2.

The tensor product has the properties (for any scalar λ and any vectors u, v, w):

u⊗ (v ⊗w) = (u⊗ v)⊗w
λ (v ⊗w) = (λv)⊗w = v ⊗ (λw)
(u+ v)⊗w = u⊗w + v ⊗w
u⊗ (v +w) = u⊗ v + u⊗w .

 rules of the tensor product

It’s associative and distributive but not commutative, u⊗v 6= v⊗u (the tensor product is based on
ordered pairs). Consider (v1 − v2) ⊗ (w1 −w2) = v1 ⊗w1 − v2 ⊗w1 − v1 ⊗w2 + v2 ⊗w2.
This expression cannot be simplified further; each tensor product is distinct, with its own identity,
an element of a larger-dimensional vector space.

5.5.3 Second-rank tensors as bilinear functions

Elements of the tensor-product space V ∗1 ⊗V ∗2 are second-rank covariant tensors. Using Eqs. (5.34)
and (5.39), Fµνeµ ⊗ eν transforms as a geometric object:

F = Fµνe
µ ⊗ eν = FµνA

µ
µ′e

µ′ ⊗Aνν′eν
′

= Fµ′ν′e
µ′ ⊗ eν

′
.

We have an intrinsic definition of tensor (akin to a vector being an element of a vector space): A
second-rank covariant tensor T is an element of the tensor-product space V ∗1 ⊗ V ∗2 , the space of
bilinear functions T : V1 × V2 → R. The action of T on a pair of vectors can be symbolized
in a coordinate-independent way as T(u,v). In a basis, T(u,v) = Tµνe

µ ⊗ eν
(
uiei, v

jej
)

=
Tµνu

ivjeµ(ei)eν(ej) = Tiju
ivj .

Contravariant tensors are likewise elements of a tensor-product space. For v1 ∈ V1 and v2 ∈ V2,
we can construct a bilinear function that acts on V ∗1 × V ∗2 , v1 ⊗ v2 : V ∗1 × V ∗2 → R, such that the
action of v1 ⊗ v2 on an element (ω1,ω2) ∈ V ∗1 × V ∗2 has the value

v1 ⊗ v2(ω1,ω2) = v1(ω1)v2(ω2) = ω1(v1)ω2(v2) ,

where we’ve used Eq. (C.2). Bilinear functions that act on V ∗1 ×V ∗2 form a vector space, V1⊗V2, the
elements of which are second-rank contravariant tensors, Fµνeµ ⊗ eν . Mixed tensors have similar
definitions. The space of all bilinear functions v ⊗ ω : V ∗ × V → R is V ⊗ V ∗, the elements of
which are the tensors Fµνeµ ⊗ eν . The space of all bilinear functions ω ⊗ v : V × V ∗ → R is
V ∗ ⊗ V , the elements of which are the tensors F ν

µ eµ ⊗ eν .

5.5.4 Higher-rank tensors: Multilinear mappings

A map T : V1 × · · · × Vr → R is multilinear if it’s linear in each argument, T(v1, · · · , avi +
bv′i, · · · ,vr) = aT(v1, · · · ,vi, · · · ,vr) + bT(v1, · · · ,v′i, · · · ,vr), 1 ≤ i ≤ r, where vi ∈ Vi and
(a, b) ∈ R. Multilinear mappings that act on products of vector spaces, for v ∈ V and ω ∈ V ∗,

v ⊗ · · · ⊗ v︸ ︷︷ ︸
k

⊗ω ⊗ · · · ⊗ ω︸ ︷︷ ︸
l

V ∗ × · · · × V ∗︸ ︷︷ ︸
k

×V × · · · × V︸ ︷︷ ︸
l

→ R (5.64)

form a vector space denoted T kl (V ), the elements of which are type (k, l) tensors, Tkl : (V ∗)k ×
(V )l → R; Tkl thus operates on k dual vectors and l vectors and produces a number. A type (0, 1)
tensor is a dual vector (check it!). A type (1, 0) tensor is an element of V ∗∗ (isomorphic to V ,
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Appendix C). A basis for T kl (V ) can be constructed out of tensor products of the basis vectors
for V and V ∗, ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejl . The tensor is the linear combination Tkl =
T i1···ikj1···jlei1⊗· · ·⊗eik⊗e

j1⊗· · ·⊗ejl , with Tm1···mk
n1···nl = Tkl (em1 , · · · , emk , en1 , · · · , enl).

The tensor product of a tensor A of type (r, s) and a tensor B of type (k, l) is a new tensor, A⊗ B,
of type (r + k, s+ l), an operator on (V ∗)r+k × (V )s+l such that

A⊗ B(ω1, · · · ,ωr+k,v1, · · · ,vs+l)
= A(ω1, · · · ,ωr,v1, · · · ,vs)B(ωr+1, · · · ,ωr+k,vs+1, · · · ,vs+l).

Tensors are mappings between products of vector spaces and numbers. Another role of tensors,
however, is that they can map tensors to tensors. A type (1, 2) tensor, T = T ijkei ⊗ ej ⊗ ek, when
acting on (ω,v1,v2) produces a number, T : V ∗ × V × V → R. The action of T on a dual vector,
however, T(ω, ·, ·) = T ijkei⊗ej⊗ek(ω) = (T ijkω(ei))ej⊗ek = (T ijkωi)ej⊗ek ≡ Tjkej⊗ek,
produces a covariant tensor. Thus we can equally well express the action of T as T : V ∗ → V ∗ ⊗
V ∗. The same T acting on vectors produces a vector, T(·,v1,v2) = T ijkei ⊗ ej ⊗ ek(v1,v2) =(
T ijke

j(v1)ek(v2)
)
ei ≡

(
T ijka

jbk
)
ei ≡ T iei, which we can express as T : V × V → V .

Tensors wear many hats.
The mathematical style of this section may be unfamiliar, yet it’s on par with the level of math-

ematics in graduate texts in GR. GR requires a level of mathematical maturity a notch higher
than in other branches of physics. You should take away that tensors are multilinear “machines”
that effect mappings between geometric objects (scalars, vectors, and other tensors). The com-
ponents of a tensor T in a given basis are the values it produces acting on basis vectors, e.g.,
Tijk···l = T(ei, ej , ek, · · · , el).

5.6 METRIC TENSOR REVISITED
That tensors can wear different hats (mappings onto numbers, mapping between spaces) is exempli-
fied by the metric tensor, a type (0, 2) symmetric, bilinear function g : V × V → R, i.e., it takes a
pair of vectors (in either order) and produces a number. That idea generalizes our original definition
as the dot product between basis vectors, Eq. (5.3). We can, however, also let g act on a single vector
g(v, ·) = gµνe

µ ⊗ eν(viei) = gµνv
iδµi e

ν = gµνv
µeν ≡ vνe

ν , and we see that g : V → V ∗, thus
providing a natural accounting for the lowering of an index. What about raising indices, can g act on
a dual vector, g(ω, ·)? That operation isn’t defined. We know, however (Appendix C), that there’s a
one-to-one correspondence between vν and vν . The mapping g : V → V ∗ must be invertible; there
must exist a unique linear mapping g−1 : V ∗ → V such that

v = viei = g−1(g(v)) = g−1(vjej) = vjg−1(ej) = vj

[(
g−1)kl ek ⊗ el] ej

= vj
(
g−1)kl ekδjl = vj

(
g−1)kj ek ≡ vkek .

Thus,
(
g−1)kj vj ≡ gkjvj = vk. It’s customary to omit the inverse symbol, where it’s understood

that the contravariant tensor (g with upper indices) is the inverse of g with lower indices, Eq. (5.18).
The lowering of an index on gjk produces: gjk = gklg

jl =
(
g−1)jl gkl = δjk, which was defined in

Eq. (5.10), ej · ek.
In a sense we’ve come full circle. We started this chapter with the inner product of basis vectors,

Eq. (5.3). We now know that g is a bilinear invertible function, what’s called nondegenerate. We also
know that the elements of any tensor are specified by its action on the basis vectors gαβ = g(eα, eβ).
The metric g also connects the elements of V and V ∗ in a natural way (raising and lowering indices).

A symmetric bilinear function g is nondegenerate (invertible) when:

• The matrix of components [gij ] has a nonvanishing determinant, g 6= 0;

• For every nonzero v ∈ V , there exists a w ∈ V such that g(v,w) 6= 0.
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These are equivalent aspects of a transformation being invertible. A matrix A has an inverse if and
only if detA 6= 0. The second requirement follows from the fact that g : V → V ∗ is invertible if and
only if the nullity (dimension of the null space) of g is zero. In that case, for every nonzero v ∈ V ,
g(v) 6= 0; g(v) is not the zero functional. Thus, for a vector w ∈ V , [g(v)] (w) ≡ g(v,w) 6= 0.
Symmetric bilinear functions g can be classified as follows. For nonzero v ∈ V ,

• g is positive (negative) definite if g(v,v) > 0 (g(v,v) < 0);

• g is definite if it is either positive definite or negative definite;

• g is positive (negative) semidefinite if g(v,v) ≥ 0 (g(v,v) ≤ 0);

• g is semidefinite if either positive semidefinite or negative semidefinite;

• g is indefinite if not definite.

Vectors u,v ∈ V are called g-orthogonal if g(u,v) = 0. A null vector of g is orthogonal
to itself, g(v,v) = 0. If g is definite, the only null vector is the zero vector. If g is indefinite, it
must have a nonzero null vector.47 A basis {ei}ni=1 is called g-orthonormal if g(ei, ej) = 0 for
i 6= j, and g(ei, ei) (no sum) has one of the values +1, −1, or 0. Let n+, n−, and n0 denote the
number of vectors ej for which g(ej , ej) is respectively +1, −1, or 0, where n+ + n− + n0 = n.
Every symmetric bilinear function g on V has an orthonormal basis; moreover, the numbers n+,
n−, and n0 are the same for all square matrices obtained from [gij ] by a transformation SgST ,
where S is a non-singular matrix (Sylvester’s “law of inertia”).48 The integer s ≡ n+ − n− is
called the signature of g. For g nondegenerate, an orthonormal basis must have n0 = 0 and thus its
determinant g = (−1)n− .

5.7 SYMMETRY OPERATIONS ON TENSORS
A tensor whose components remain unchanged when two of its covariant or two of its contravariant
arguments are transposed is said to be symmetric in these two arguments. For example, if

T
(
ω1, · · · ,ωk,v1, · · · ,vi, · · · ,vj , · · · ,vl

)
= T

(
ω1, · · · ,ωk,v1, · · · ,vj , · · · ,vi, · · · ,vl

)
,

then T is symmetric in contravariant arguments i and j. A tensor whose values change sign when
two of its covariant or two of its contravariant arguments are transposed is antisymmetric in these
arguments. Transposing covariant and contravariant arguments makes no sense, as they are defined
with respect to different basis sets; symmetry and antisymmetry are with respect to covariant or
contravariant arguments only. The symmetry or antisymmetry of a tensor is a geometric property,
independent of basis transformations. A tensor antisymmetric (symmetric) in all of its arguments is
said to be totally antisymmetric (totally symmetric).49

We now introduce a notation for signifying symmetric and antisymmetric tensors; its use can
save much writing in complicated expressions. First, a permutation π of the integers (1, · · · , n) is
a one-to-one mapping of the set onto itself with the values π(1), · · · , π(n). (We use 0123 as the
reference list in relativity.) The permutation π : 1234 → 4132 has values π(1) = 4, π(2) = 1,

47Proof : Because g is not positive definite, there is a nonzero vector v ∈ V such that g(v, v) ≤ 0. Because g is
not negative definite, there is a nonzero vector w ∈ V such that g(w,w) ≥ 0. Let u ≡ αv + (1 − α)w so that
g(u,u) = α2g(v, v) + 2α(1 − α)g(v,w) + (1 − α)2g(w,w). For α = 0, g(u,u) = g(w,w) ≥ 0, and for α = 1,
g(u,u) = g(v, v) ≤ 0. With an appeal to continuity, there must exist some value of α for which g(u,u) = 0.

48For a real symmetric matrixA and for S an invertible matrix such thatD = SAST is diagonal, the number of negative
elements inD is the same for all S. That’s the “inertia” in Sylvester’s law of inertia—the invariance of the numbers n−, n+
and n0.[27, p360]

49The distinction is often lost between tensors that are symmetric or antisymmetric in various indices versus totally
symmetric or antisymmetric tensors; it’s often just assumed that an “antisymmetric tensor” is totally antisymmetric.
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π(3) = 3, and π(4) = 2. There are n! permutations of n integers. The symmetric part of a tensor
(with respect to indices i1 · · · in) is defined with (parentheses around the indices)

T(i1···in) ≡
1
n!
∑
π

Tiπ(1)···iπ(n) ,

where the sum is over the n! permutations of (1 · · ·n). The antisymmetric part (with respect to
i1 · · · in) is defined with [square brackets around the indices]

T[i1···in] ≡
1
n!
∑
π

δπTiπ(1)···iπ(n) ,

where δπ , the parity (also called the signum (sign)) of the permutation is +1 for even permutations
and −1 for odd permutations.50 An even (odd) permutation is a permutation obtained through an
even (odd) number of pairwise interchanges of the numbers, starting from the reference sequence
(1 · · ·n). The sequence 2413 is an odd permutation of 1234. A second-rank tensor can be decom-
posed into symmetric and antisymmetric parts, Tij = T(ij) + T[ij]. The same is not true of higher-
rank tensors. For example, Tijk 6= T(ijk) + T[ijk]. The notation can apply to any groups of indices.
For example, T (ij)k

[lm] ≡
1
4 (T ijklm + T jiklm − T

ijk
ml − T

jik
ml) denotes a tensor symmetric in its

first two contravariant indices and antisymmetric in its covariant indices.

5.8 LEVI-CIVITA TENSOR AND DETERMINANTS
Totally antisymmetric tensors and determinants play an important role in differential geometry.
Determinants share with totally antisymmetric tensors the property of being antisymmetric under
interchange of columns. In this section we introduce some concepts from the theory of determinants
and allied expressions.

5.8.1 Generalized Kronecker delta

Generalized Kronecker deltas δi1···ikj1···jk have k superscripts and k subscripts, with k ≤ n, where each
index ranges from 1 to n such that:

δi1···ikj1···jk ≡


+1 if i1 · · · ik is an even permutation of j1 · · · jk,
−1 if i1 · · · ik is an odd permutation of j1 · · · jk,
0 if i1 · · · ik is not a permutation of j1 · · · jk or if i1 · · · ik are not all distinct.

For n = 3 and k = 2, δ11
ij = δ22

ij = δij11 = δ12
13 = 0, but δ12

12 = δ13
13 = δ21

21 = 1 and δ12
21 = δ13

31 =
δ21
12 = −1. These quantities can be used to produce antisymmetrized expressions. Any three-rowed

determinant (for example) can be constructed from among the quantities
(A1 ··· An
B1 ··· Bn
C1 ··· Cn

)
:

δabcijkAaBbCc = Ai (BjCk −BkCj)+Aj (BkCi −BiCk)+Ak (BiCj −BjCi) =

∣∣∣∣∣∣
Ai Aj Ak
Bi Bj Bk
Ci Cj Ck

∣∣∣∣∣∣ .
The quantity δk1···km

s1···sm is a type (m,m) tensor.51

50The parity of a permutation is unique. While there are many ways of realizing a given permutation of the reference
sequence through pairwise exchanges, all ways require either an even or an odd number of exchanges.[28, p47]

51Proof : Let T s1···sm be the components of a type (m, 0) tensor. Then, δk1···km
s1···sm T s1···sm generates an alternating

sum ofm! terms, Tk1k2···km−Tk2k1···km + · · · , i.e., a linear combination of (m, 0) tensors, and hence an (m, 0) tensor.
By the quotient theorem, δk1···km

s1···sm is a type (m,m) absolute tensor.
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5.8.2 Levi-Civita symbols

The permutation symbols, or the totally antisymmetric symbols or the Levi-Civita symbols, are a
special case of the generalized Kronecker delta:

εi1···in ≡ δ1···n
i1···in = δi1···in1···n ≡ εi1···in =


+1 if i1 · · · in is an even permutation of 1 · · ·n,
−1 if i1 · · · in is an odd permutation of 1 · · ·n,
0 if two or more indices are equal.

Permutation symbols always have n indices (whereas δj1···jk
i1···ik is such that k ≤ n). For n = 3, out of

the 33 = 27 possible values of εijk, only 3! = 6 are non-zero, with ε123 = ε231 = ε312 = 1 and
ε132 = ε213 = ε321 = −1. There is only one independent element of εijk or εijk.

For an n× n matrix A with elements Aαβ , define a function of its matrix elements:

DA(β1, · · · , βn) ≡ εα1···αnA
α1
β1
· · ·Aαnβn .

This expression implies an alternating sum of n!, n-tuple products of the matrix elements (there
are n! ways to choose α1 · · ·αn so that they’re all distinct). The terms within each n-tuple come
from a different row of the matrix (α1 · · ·αn are distinct) and, as we’ll see, a different column.
The function DA(β1, · · · , βn) is antisymmetric in all column indices β.52 Thus, DA(β1, · · · , βn)
vanishes if any two indices βi and βj are equal. The quantity DA(β1, · · · , βn) has the properties
of the determinant53 of A, and in fact equals detA (−detA) when β1 · · ·βn is an even (odd)
permutation of 1 · · ·n. Thus,

εα1···αnA
α1
β1
· · ·Aαnβn = εβ1···βn detA . (5.65)

Through an analogous argument it can be shown that

εα1···αnAβ1
α1
· · ·Aβnαn = εβ1···βn detA . (5.66)

Equations (5.65) and (5.66) generalize the more-frequently encountered definitions of determinant:
detA = εi1···inA

i1
1 · · ·Ainn = εi1···inA1

i1
· · ·Anin .[30, p30] The product rule for determinants is

easily derived with these results: For n× n matrices A, B, C such that C = AB,

detA detB = detAεβ1···βnB
β1
1 · · ·Bβnn = εα1···αnA

α1
β1
· · ·AαnβnB

β1
1 · · ·Bβnn

= εα1···αn

(
Aα1
β1
Bβ1

1

)
· · ·
(
AαnβnB

βn
n

)
≡ εα1···αnC

α1
1 · · ·Cαnn = detC .

The generalized Kronecker delta is the determinant of Kronecker deltas (upper indices are totally
antisymmetric, which must be a permutation of the lower indices),

δα1···αk
β1···βk = εa1···akδ

αa1
β1

δ
αa2
β2
· · · δαakβk

=

∣∣∣∣∣∣∣
δα1
β1

· · · δα1
βk

...
...

δαkβ1
· · · δαkβk

∣∣∣∣∣∣∣ = k!δ[α1
β1
· · · δαk]

βk
. (5.67)

For example, δi1i2j1j2
= δi1j1

δi2j2
− δi1j2

δi2j1
is a generalized Kronecker delta.

52Proof : Interchange indices αi ↔ αj among the matrix elements Aαi
βk

in the n-tuple, then restore the matrix elements
back to their previous positions with respect to the order of the indices in εα1···αn , and now interchange αi ↔ αj in
εα1···αn ; DA(β1, · · · , βn) is antisymmetric under βi ↔ βj .

53The determinant of an n × n matrix [Aij ] can be defined as a function of its columns detA = f(C1, · · · , Cn) with
C1 ≡ Ai1, · · · , Cn ≡ Ain. The function f is determined by the properties that 1) it’s multilinear and antisymmetric in its
arguments, and 2) produces the value 1 for the identity matrix.[29, p99]
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Equations (5.65) and (5.66) hold for any n × n matrix. Applying Eq. (5.65) to the Jacobian
matrix we have (see Eq. (5.53)) εα1···αnA

α1
β′1
· · ·Aαnβ′n = εβ′1···β′nJ . The permutation symbol thus has

the transformation property:

εβ′1···β′n = J−1Aα1
β′1
· · ·Aαnβ′n εα1···αn . (5.68)

Comparing with Eq. (5.54), εα1···αn is a covariant tensor with weight w = −1. From Eq. (5.66)
it follows that εγ

′
1···γ

′
n = JA

γ′1
β1
· · ·Aγ

′
n

βn
εβ1···βn ; εi1···in is therefore a contravariant tensor of

weight54 w = +1. Combining Eqs. (5.68) and (5.65), (εβ1···βn)′ = J−1Aα1
β′1
· · ·Aαnβ′n εα1···αn =

J−1Jεβ′1···β′n ; thus (εβ1···βn)′ = εβ′1···β′n , the transformed permutation symbol has the value of
εβ1···βn in the new frame. The permutation symbol εβ1···βn is a constant tensor; ditto for εβ1···βn .

By the rules established in Section 5.2, we obtain an absolute covariant tensor by multiplying
εi1···in with

√
|g|. We define the covariant Levi-Civita tensor as

εi1···in ≡
√
|g|εi1···in . (5.69)

Note the change in notation from εi1···in (permutation symbol, tensor density), to εi1···in , absolute
tensor. The contravariant Levi-Civita tensor follows from raising indices on εi1···in . From Eq. (5.69),

εj1···jn ≡ gj1i1 · · · gjninεi1···in =
√
|g|gj1i1 · · · gjninεi1···in =

√
|g|
(
det gij

)
εj1···jn ,

where in the last equality we have the determinant of the contravariant metric tensor, multiplied
by εj1···jn . Using Eq. (5.18), det gij = g−1, the inverse of g (determinant of the covariant metric
tensor). Writing g = sgn(g)|g| (where sgn(g) is the sign of g), we have for the contravariant tensor

εj1···jn = sgn(g)√
|g|

εj1···jn = (−1)n− 1√
|g|
εj1···jn , (5.70)

where we have used sgn(g) = (−1)n− (the sign of g is invariant, Section 5.2, which in a g-
orthornormal basis is (−1)n− , Section 5.6). In Minkowski space, ε0123 = −ε0123.

A type (n, n) totally antisymmetric tensor (in n-dimensional space) can have only one indepen-
dent element: all nonzero tensor elements are equal to plus or minus times the same quantity. The
generalized Kronecker delta δα1···αn

β1···βn is therefore proportional to the outer product of permutation
tensors δα1···αn

β1···βn = λεα1···αnεβ1···βn , where λ is a scalar. The proportionality constant can be evalu-
ated with any set of indices for which both sides of the formula are nonzero. From Eqs. (5.69) and
(5.70), consistency requires that λ = (−1)n− . We then have the useful result, using Eq. (5.67),

δi1···inj1···jn = (−1)n−εi1···inεj1···jn = εi1···inεj1···jn =

∣∣∣∣∣∣∣
δi1j1

· · · δi1jn
...

...
δinj1

· · · δinjn

∣∣∣∣∣∣∣ . (5.71)

5.9 PSEUDOTENSORS
Consider a right-handed three-dimensional Cartesian coordinate system as in Fig. 5.8. Associated
with the vectors x, y is the third z = x × y. The vector cross product is antisymmetric in its
operands (A × B = −B × A), and there is a definite (but conventional) role assigned to the
vectors participating in the cross product, Vector1 × Vector2. The direction of A× B is that of
the thumb on a human’s right hand as A is “crossed” into B. The cross product is a different kind

54We could use a Gothic letter, such as E or e, for the Levi-Civita symbols. We conform to more standard notation and
use ε to denote the Levi-Civita symbol (a tensor density), and ε to denote the absolute Levi-Civita tensor.
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z = x× y
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y′

z′

r
z′ = x′ × y′

Left handed

Figure 5.8 Right-handed and left-handed three-dimensional coordinate systems.

of vector, one derived from two vectors. An antisymmetric combination of two vectors is called a
bivector (which is also an antisymmetric tensor, see Section 5.10.2).

An inversion of the coordinate axes in a right-handed system produces a left-handed coordinate
system, with z′ = x′ × y′ given by the direction of the thumb on the left hand; Fig. 5.8. Under an
inversion, the coordinates of the position vector r in the transformed system are the negative of their
values in the original system: (x′, y′, z′) = (−x,−y,−z). Vectors with components that transform
under inversion like the components of r are called polar vectors. Note that r is the same vector
before and after the inversion (passive transformation), in keeping with the requirement that a vector
is a geometric object that maintains its identity under a change of basis.

Are all vectors polar? Yes (on semantic grounds) and no because nonpolar vector-like quantities
exist. Figure 5.9 shows the cross productA×B between polar vectors. Under inversion, the com-

Figure 5.9 The vector cross product is a pseudovector.

ponents ofA andB are negative relative to the inverted coordinate axes, but those of C = A×B
are positive. The cross product of polar vectors is therefore a fundamentally different kind of object:
It’s not a polar vector and should not be called a vector. Vectors with components that do not change
sign under inversion are called axial vectors or pseudovectors.

Pseudotensors transform as tensors when the Jacobian of the transformation is positive, but
transform with an additional change of sign for J < 0. For J > 0, pseudotensors have all the
invariance properties expected of tensors.55 We infer from its transformation property, Eq. (5.68),
that the permutation symbol εα1···αn is a pseudotensor in spaces of an odd number of dimensions.
For an inversion of a three-dimensional Cartesian system, the Jacobian matrix has (−1,−1,−1) on
its diagonal (zeros otherwise), and hence J = −1. A third-rank tensor made from three covariant
vectors Tijk = UiVjWk (not a pseudotensor) would change sign under inversion, but not εijk. The
components of the cross product C ≡ F ×G (for F and G contravariant vectors) can be written

55The term pseudotensor is unfortunate, implying false tensor; perhaps “half-tensor” or “demi-tensor” would be better.



Totally antisymmetric tensors � 97

Ci = εijkF
jGk. It’s readily shown using Eq. (5.68) that Ci transforms as Ci′ = J−1Aji′Cj . The

cross product, which only lives in three dimensions—see below—is a pseudovector.
Polar vectors are related to the prototype vector, r: velocity, v = ṙ; acceleration, a = v̇ = r̈;

force, F = ma; electric field,E = F /q; current density, J = ρv. Axial vectors are associated with
a cross product: torque, τ = r×F ; angular velocity, v = ω× r; angular momentum, L = r×p;
magnetic field, F = qv×B. Generally we have the rules for three-vectors:

• polar vector× polar vector = pseudovector

• pseudovector× pseudovector = pseudovector

• polar vector× pseudovector = polar vector.

Note that this classification relates to the behavior of vectors under inversion of spatial axes.
A pseudoscalar results from the inner product between a polar vector and an axial vector, such

as between electric and magnetic field vectors,E ·B. A pseudoscalar reverses sign under inversion.
ForA,B, and C polar vectors,A · (B ×C) is a pseudoscalar.

Should pseudotensors concern us? Do the equations of physics depend on our choice of coor-
dinate system? Pseudovectors depend on a handedness convention, which is arbitrary. The cross
product associates a vector with a plane, and there are two sides to a plane. Does the universe care
which hand we use? If not, then a valid equation of physics cannot equate tensors with pseudoten-
sors. Faraday’s law relates two axial vectors, ∇× E = −∂B/∂t. Note that the curl of the curl
does not change the vector character of what it operates on, as in the free-space wave equations:
∇×∇×E = −(1/c2)∂2E/∂t2 and∇×∇×B = −(1/c2)∂2B/∂t2.

5.10 TOTALLY ANTISYMMETRIC TENSORS
Totally antisymmetric tensors are a significant part of tensor analysis. On the physics side,
Maxwell’s equations can be put in covariant form using antisymmetric tensors. On the math side,
the generalization of the classic theorems of vector calculus to higher dimensions can be given
systematic expression with antisymmetric tensors. We document their properties in this section.

5.10.1 Dual tensors

Antisymmetric tensors have the property that from them new tensors can be defined known as dual
tensors.56 The idea is based on a simple property: The contraction of an antisymmetric tensor Aµν
with a symmetric tensor Sµν produces zero.57 Consider the tensor comprised of the product of
Xj and Y k, the components of three-vectors. The contraction of XjY k with εijk picks out the
antisymmetric part,

εijkX
jY k = 1

2
[
εijk

(
XjY k −XkY j

)
+ εijk

(
XjY k +XkY j

)]
because the contraction of εijk with a symmetric tensor is zero. The elements of the antisymmetric
tensor T jk ≡ XjY k−XkY j are therefore naturally associated with the elements of a three-vector,

Pi ≡ 1
2εijkT

jk . (5.72)

The vector P is called the dual of the tensor T, denoted ∗T ≡ P . Equation (5.72) can be written
(∗T)i = 1

2εijkT
jk. (By raising and lowering indices, (∗T)i = 1

2ε
i
jkT

jk = 1
2ε
ijkTjk.) Does it go

56The use of the word dual in dual tensor has nothing to do with the dual in dual space. Beware.
57Proof : AµνSµν = −AνµSµν = −AνµSνµ = −AµνSµν , where in the last equality we have let µ↔ ν.
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the other way, can an antisymmetric tensor be associated with the components of a vector? We need
a way to invert Eq. (5.72). Using Eq. (5.71),

εlmiεijk = δljδ
m
k − δlkδmj . (5.73)

Contracting Eq. (5.72) with εlmi and using Eq. (5.73), it’s readily shown that T lm = εlmiPi. One
calls T the dual of P , T = ∗P , with (∗P )ij = εijkPk (equivalently (∗P )ij = εijkP

k). It can
be shown that ∗ (∗P ) = P and ∗ (∗T) = T. The dual-tensor pairs (not densities) for n = 3 and
n− = 0 are shown in Table 5.1 (εijk = √gεijk).

Table 5.1 Tensor-dual tensor pairs for n = 3, n− = 0
Tensor Dual tensor

[
Ai
]

=
(
A1, A2, A3) [

(∗A)ij
]

= √g

 0 A3 −A2

−A3 0 A1

A2 −A1 0


[
Aij
]

=

 0 A12 A13

−A12 0 A23

−A13 −A23 0

 [(∗A)i] = √g
(
A23,−A13, A12)

In four dimensions, associated with a second-rank antisymmetric tensor T is its dual, ∗T, another
second-rank antisymmetric tensor with elements

(∗T)mn ≡
1
2εmnrtT

rt . (5.74)

By raising and lowering indices on Eq. (5.74),

(∗T)rt = 1
2ε
rt
mnT

mn = 1
2ε
rtmnTmn . (5.75)

We thus have a dual pair of antisymmetric second-rank tensors, the elements of which are given in
Table 5.2. Each has six independent elements; each is a “repackaging” of the same information. In
this case ∗ (∗T) = −T, which can be shown using the identity obtained from Eq. (5.71) with n = 4
and n− = 1, εksmnεrtmn = −2 (δrkδts − δrsδtk).

Table 5.2 Tensor-dual tensor pairs for n = 4, n− = 1

Tensor Dual tensor

[Tαβ ] =

 0 T01 T02 T03
−T01 0 T12 T13
−T02 −T12 0 T23
−T03 −T13 −T23 0

 [
(∗T )αβ

]
= 1√

|g|

 0 −T23 T13 T12
T23 0 −T03 T02
−T13 T03 0 −T01
−T12 −T02 T01 0


For a rank-m totally antisymmetric tensor in n dimensions (m ≤ n) with elements T r1···rm , the

elements of its dual, a rank (n−m) tensor, are defined by

(∗T)r1···rn−m ≡
1
m!εs1···smr1···rn−mT

s1···sm . (5.76)

By raising and lowering indices (and by renaming indices),

(∗T)r1···rm = 1
(n−m)!ε

s1···sn−mr1···rmTs1···sn−m . (5.77)
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In general, ∗ (∗T) = (−1)m(n−m)+n−T. (Respect the order of the indices in the Levi-Civita tensor
and use Eq. (5.71)). For n = 4 and m = 1 there’s a dual relation between a four-vector and a third-
rank tensor, (∗T)r1 = 1

3!ε
s1s2s3r1Ts1s2s3 , (∗T)r1r2r3

= εs1r1r2r3T
s1 . An antisymmetric third-rank

tensor in four dimensions has “four choose three”
(4

3
)

= 4 independent components, just enough to
associate with the components of a four-vector. A scalar (denoted ∗T ) can be obtained by setting
m = n = 4 in Eq. (5.76), ∗T = 1

4!εs1s2s3s4T
s1s2s3s4 = 1

4!ε
s1s2s3s4Ts1s2s3s4 . The “taxonomy”

of antisymmetric tensors and their duals will become clearer when we introduce the Hodge star
operator, below.

5.10.2 Exterior algebra: wedge products, k-multivectors, and k-forms

Recall (Section 5.5.2) that for a vector space V , the tensor product space V ⊗ V is the space of all
bilinear functions (second-rank contravariant tensors) F ∈ V ⊗V : V ∗×V ∗ → R. The subspace of
V⊗V obtained from the restriction to antisymmetric bilinear functions, denoted V ∧V or∧2V , is the
space of antisymmetric second-rank contravariant tensors, the wedge product (or exterior product58)
space. The elements of ∧2V are constructed from wedge products of vectors v1,v2 ∈ V :

v1 ∧ v2 ≡ v1 ⊗ v2 − v2 ⊗ v1

so that v1 ∧ v2(ω1,ω2) = v1(ω1)v2(ω2) − v2(ω1)v1(ω2). The wedge product exploits the non-
commutativity of tensor products, v1 ⊗ v2 6= v2 ⊗ v1, and satisfies for u,v,w ∈ V and λ ∈ R:
(same as the rules for the tensor product, page 90, except with the imposition of antisymmetry)

u ∧ v = −v ∧ u antisymmetry
(u ∧ v) ∧w = u ∧ (v ∧w) = u ∧ v ∧w associativity

(λu) ∧ v = u ∧ (λv) = λ (u ∧ v)
(u+ v) ∧w = u ∧w + v ∧w
u ∧ (v +w) = u ∧ v + u ∧w .

 bilinearity

Note that v ∧ v = 0. Elements of ∧2V are called bivectors.
Let {ei}ni=1 be a basis for V . For u = uiei and v = vjej , u ∧ v =

(
uiei

)
∧
(
vjej

)
=

uivj (ei ∧ ej). For each “diagonal” term ei ∧ ei = 0; moreover ej ∧ ei = −ei ∧ ej for i < j, so
that for the bivector A

A ≡ u ∧ v =
∑
i<j

(
uivj − ujvi

)
ei ∧ ej ≡

∑
i<j

Aijei ∧ ej = 1
2A

ijei ∧ ej . (5.78)

The typical element of ∧2V is a linear combination of wedge products ei ∧ ej , 1 ≤ i < j ≤ n,
which form a basis. The dimension of ∧2V is thus

(
n
2
)

= 1
2n(n − 1). The components Aij in

Eq. (5.78) are antisymmetric, as are the basis vectors ei ∧ ej , hence the factor of 1
2 in front of

the unrestricted sum over i and j. The components of u ∧ v (an element of ∧2V , in the basis
{ei ∧ ej}) are antisymmetric combinations of the components of u and v (elements of V , in the
basis {ei}), (u ∧ v)ij = δijlmu

lvm. The virtue of wedge-product basis vectors is that they naturally
carry information about orientation—see Fig. 5.10, a topic we discuss below.

The wedge product extends to more than two vectors. The kth-wedge product of vectors v ∈ V ,
v1 ∧ · · · ∧ vk ≡ δi1···ik1···k vi1 ⊗ · · · ⊗ vik , termed a k-multivector,59 is an element of the space ∧kV ,

58The term exterior was introduced by the mathematician Hermann Grassmann in 1844. The wedge product of two
bivectors containing a common vector (a ∧ b) ∧ (a ∧ c) = 0. The wedge product of bivectors is nonzero only if they have
no vectors in common, or that the wedge product is “exterior” to (outside of) each other. The exterior product should not be
confused with the outer product defined in Section 5.1.6.

59We’ve used the term k-multivector instead of what they are often called, k-vectors, to avoid confusion with 4-vectors,
vectors in Minkowski space.
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e1 −e1
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e2

e1 ∧ e2
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e2 ∧ e1 = −e1 ∧ e2

Figure 5.10 Oriented basis vectors, e1, −e1, e1 ∧ e2, e2 ∧ e1.

the space of all totally antisymmetric type (k, 0) tensors.60 For ease of notation, ∧0V ≡ R and
∧1V ≡ V . For fixed dimension n of the base space V , we can only have type (k, 0) antisymmetric
tensors defined on products of V for61 k ≤ n. The dimension of ∧kV is

(
n
k

)
.

Example. The elements of ∧3V consist of totally antisymmetric combinations of products of three
vectors called trivectors:

a ∧ b ∧ c ≡ a⊗ b⊗ c− a⊗ c⊗ b+ c⊗ a⊗ b− c⊗ b⊗ a+ b⊗ c⊗ a− b⊗ a⊗ c .

Using the basis for V , an element of ∧3V can be expressed as an unrestricted sum over indices

a ∧ b ∧ c = 1
3! (a ∧ b ∧ c)ijk ei ∧ ej ∧ ek ,

where the components of the trivector are totally antisymmetric combinations of the components
of the individual vectors (i.e., the determinant), (a ∧ b ∧ c)ijk = δijklmna

lbmcn. The wedge product
between a vector and a bivector is a trivector: (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b ∧ c.

The wedge product vanishes among linearly dependent vectors. If u = λv, clearly u ∧ v = 0. A
set of vectors {v1, · · · ,vk} is linearly independent if (and only if) v1 ∧ · · · ∧ vk 6= 0, i.e., if it’s a
nonzero element (tensor) of ∧kV .

Example. In R3 with basis vectors {e1, e2, e3}, let a = 1
2 (e2 − e3), b = 2 (e1 − e2), and c =

−2e1 + 5e2− 3e3. The wedge product between a and b is a∧ b = −e1 ∧ e2− e2 ∧ e3− e3 ∧ e1.
The trivector a ∧ b ∧ c = (3 + 2− 5) e1 ∧ e2 ∧ e3 = 0. In this case c = 6a− b; c is not linearly
independent of a and b.

Wedge-product spaces can equally well be constructed out of dual vectors, denoted ∧kV ∗, the
space of all antisymmetric type (0, k) tensors, the elements of which are called k-forms. The Levi-
Civita tensor εαβγδ is a 4-form. All results for k-multivectors hold for k-forms by interchanging the
roles of V and V ∗. Dual vectors are called 1-forms because ∧1V ∗ ≡ V ∗.

5.10.3 Oriented area: Generalization of a× b to arbitrary dimension

We need to be able to describe areas in a covariant manner, i.e., using tensors. In three-dimensional
space a pair of vectors (a, b) specify an area, that enclosed by the parallelogram they span (see Fig.
5.11), with magnitude found from the cross product |a × b|. As we’ll explain, the cross product
is valid only in three dimensions. In this subsection we show that a generalization of a × b (no

60The kth-wedge product v1 ∧ · · · ∧ vk involves vi1 ⊗ · · · ⊗ vik and hence is a multilinear function on ⊗kV ∗, and
thus is a type (k, 0) tensor, restricted by δi1···ik1···k to be totally antisymmetric in all arguments.

61For k > n, we run out of distinct indices so that antisymmetric tensors of order greater than n are zero.
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a

b

Figure 5.11 Area of the parallelogram spanned by a and b equal to |a× b|.

absolute value), valid in any dimension, is the oriented area a ∧ b—a signed area—which is a
second-rank antisymmetric tensor, and which in three dimensions is dual to a vector (Table 5.1).
We’re accustomed to the idea of surface areas as vectors for n = 3. For arbitrary n, the oriented
area is (as we show) an element of a vector space of dimension 1

2n(n − 1). The case of n = 3 is
special, the non-trivial solution of n = 1

2n(n− 1).
The oriented area spanned by vectors (a, b) is defined through the requirement that it be specified

by an antisymmetric, bilinear function A(a, b), such that for λ, µ ∈ R:

A(a, b) = −A(b,a) antisymmetry

A(a, λb+ µc) = λA(a, b) + µA(a, c)
A(λa+ µb, c) = λA(a, c) + µA(b, c) .

}
bilinearity

We shouldn’t be surprised if we find that A(a, b) = a ∧ b because wedge products share the same
properties (see page 99). Let’s show first that the requirements make sense.

If a or b is scaled by a factor λ, we want the area they span to scale by the same factor (see Fig.
5.12), a requirement that argues for bilinearity. For negative λ, the orientation of the parallelogram

a

b

2a
b

Figure 5.12 Area scales linearly with the size of the vector: A(2a, b) = 2A(a, b).

a

b

−a

b

Figure 5.13 Oriented area: A(−a, b) = −A(a, b).

is reversed, and the oriented area changes sign (Fig. 5.13). If we didn’t allow for a signed area
A(a, b) wouldn’t behave properly. From A(a, b+ c) = A(a, b) +A(a, c) set c = −b; if area was
strictly a positive quantity we’d have the nonsensical resultA(a, 0) = 2A(a, b) 6= 0. WithA(a, b) a
bilinear function, with c = −b, A(a, 0) = A(a, b)−A(a, b) = 0. We also want A(a,a) = 0: zero
area enclosed by a single vector. By writing a = b+ c, A(a,a) = 0 implies A(b, c) = −A(c, b);
bilinearity of A(a, b) implies antisymmetry.

The quantity |a||b| sin θ (no absolute value sign) satisfies the requirements for an oriented area.
Antisymmetry follows from the sign of the angle θ. Additivity follows from the property of parallel-
ograms that the area spanned by its sides is invariant under a shear transformation where one of its
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sides is displaced in the direction parallel to the other side,62 A(a, b+αa) = A(a, b)+αA(a,a) =
A(a, b); see Fig. 5.14. A geometric proof of additivity is shown in Figure 5.15.

a

b
θ

Figure 5.14 Oriented area is preserved under b→ b+ αa: A(a, b) = A(a, b+ αa).

a

b+ c

b
c

= =

a

b

+

a

c

Figure 5.15 Oriented areas are additive: A(a, b+ c) = A(a, b) + A(a, c).

Let (e1, e2) be a two-dimensional orthonormal basis with a = aiei and b = bjej . The oriented
area spanned by a and b is, using bilinearity and antisymmetry, given by the expression A(a, b) =
A(aiei, bjej) = aibjA(ei, ej) =

(
a1b2 − a2b1

)
A(e1, e2) =

∣∣ a1 a2

b1 b2

∣∣A(e1, e2). Thus, the oriented
area (spanned by a and b) is a multiple (the determinant of the vector components) of that spanned
by e1 and e2 (see Fig. 5.16), which we can take to be unity because the basis is orthonormal. This

e1

e2
a

b

Figure 5.16 Oriented area spanned by a, b is proportional to that spanned by e1, e2.

expression for A(a, b) is almost the formula for a×b (when computed in terms of the components
of a and b), except that we have not equatedA(e1, e2) with a unit vector perpendicular to the plane.
Instead, A(e1, e2) carries the orientation specified by e1 and e2.

62Invariance under shear transformations is analogous to the invariance of the value of a determinant of a matrix to adding
multiples of one column of the matrix to another column. It’s also a property of the wedge product: a ∧ (b+ αa) = a ∧ b.
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Now let {ei}3i=1 be an orthonormal basis, with a = aiei and b = bjej . We have

A(a, b) = aibjA(ei, ej) = (a1b2 − a2b1)A(e1, e2) + (a2b3 − a3b2)A(e2, e3)
+ (a3b1 − a1b3)A(e3, e1) (5.79)

=
∣∣∣∣a1 a2

b1 b2

∣∣∣∣A(e1, e2) +
∣∣∣∣a2 a3

b2 b3

∣∣∣∣A(e2, e3) +
∣∣∣∣a3 a1

b3 b1

∣∣∣∣A(e3, e1) .

Referring to Fig. 5.17, the area enclosed by the cross-hatched parallelogram is a superposition of the

x

y

z

Figure 5.17 Projection of a parallelogram onto the three coordinate planes.

oriented areas obtained from projections onto each of the planes defined by pairs of coordinate axes.
Each of the three projections is the oriented area obtained from the restrictions of the vectors a, b to
two dimensions. Projections are linear operations: parallelograms are projected onto parallelograms.
Equation (5.79) indicates that oriented areas add like vectors. The three projected areas coincide
with the Euclidean components of a×b, except that we haven’t equated with spatial unit vectors the
oriented areas spanned by the basis vectors in the coordinate planes,A(e1, e2), etc. Rather, the three
areas A(ei, ej) serve as a basis for a space of oriented areas. Equation (5.78) (three-dimensional
space), has the same form as the expression for a ∧ b in an n-dimensional space, Eq. (5.79).

We can now generalize to arbitrary dimension. Consider a parallelogram63 spanned by a and b
in an n-dimensional space with basis {e1, · · · , en}. There are

(
n
2
)

= 1
2n(n− 1) planes spanned by

{ei, ej} with 1 ≤ i < j ≤ n. Projections onto planes spanned by {ei, ej} are obtained by omitting
all components of a and b except those for ei and ej . We may regard the

(
n
2
)

projections as the
components of a vector representing the oriented area in a new vector space, the space of oriented
areas. Each of these components is necessary to specify the geometric orientation in n dimensions.64

Only in three dimensions does the number of coordinate planes equal the dimension of the space,
and thus only in three dimensions can we associate the oriented area with a vector a×b of the same
dimension as the space of the vectors a and b.

The oriented area spanned by n-dimensional vectors x,y ∈ V is a bilinear antisymmetric
function A(x,y), whose value is a vector in the space of oriented areas of dimension 1

2n(n − 1).
The wedge-product space ∧2V , the space of antisymmetric vector products, is also of dimension
1
2n(n− 1). Are the two the same? Vector spaces are isomorphic if (and only if) they have the same
dimension. The space ∧2V represents every possible bilinear antisymmetric product of vectors, and

63The generalization of parallelograms to higher dimensions are known as parallelotopes.[31, p122]
64The orientation of a parallelogram in four dimensions is specified by six projections onto coordinate planes.
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thus any antisymmetric, bilinear function A(x, y) is proportional to x∧y, implying that the spaces
are the same.

Example. In R2, with a = aiei and b = bjej , it’s straightforward to show that a ∧ b =∣∣∣∣a1 a2

b1 b2

∣∣∣∣ e1 ∧ e2. As shown on page 102, A(a, b) =
∣∣∣∣a1 a2

b1 b2

∣∣∣∣A(e1, e2).

5.10.4 Oriented volume: Generalization of a · (b× c)
Let vectors a, b, c ∈ R3 span a parallelepiped (see Fig. 5.18), the volume of which we denote as

a

b

c

Figure 5.18 Parallelepiped formed from vectors a, b, c.

Vol(a, b, c). For vectors in three dimensions, Vol(a, b, c) = |a · (b× c)|. Because the triple vector
product is cyclically invariant, however [a · (b× c) = b · (c× a) = c · (a× b)], a · (b× c) (no
absolute value) is totally antisymmetric, similar to a∧b∧c. That would suggest (but not prove) the
oriented (signed) volume spanned by a, b, c is found from the expression a ∧ b ∧ c. We show that
is indeed the case, in n-dimensional space the oriented volume spanned by vectors {v1, · · · ,vn} is
given by the wedge product v1 ∧ · · · ∧ vn.

We’re guided by two requirements, that for Vol(v1, · · · ,vn):

• If a vector is scaled by a factor λ, the volume is scaled by the same factor,
Vol(v1, · · · , λvi, · · · ,vn) = λVol(v1, · · · ,vi, · · · ,vn), implying multilinearity.

• If vi = vj for j 6= i, we require that Vol(v1, · · · ,vi, · · · ,vj , · · · ,vn) = 0, implying
Vol(v1, · · · ,vn) is a totally antisymmetric function—the same as v1 ∧ · · · ∧ vn.

These requirements imply that parallelepipeds spanned by the vectors {v1,v2, · · · ,vn} and {v1 +
λv2,v2, · · · ,vn} have the same volume for any value of λ.

A theorem that we sketch the proof of, is that for vectors in an n-dimensional space, paral-
lelepipeds spanned by {u1, · · · ,un} and {v1, · · · ,vn} have equal volumes if the n-fold wedge
products are equal up to a sign, u1 ∧ · · · ∧ un = ±v1 ∧ · · · ∧ vn. To show this, we transform the
set of vectors {vi} into the set {uj} through a sequence of transformations, of two types. Either
multiply vj by a number λ, or add λvj to another vector vk (shear transformation). The substitu-
tions ui → λui and ui → ui + λuk are such that u1 ∧ · · · ∧ un changes in the same way as
Vol(u1, · · · ,un). Under successive transformations vi → λui or vj → uj + λuk, v1 ∧ · · · ∧ vn
and Vol(v1, · · · ,vn) transform in the same way until {vi} has become {ui} (up to the ordering of
vectors), with u1 ∧ · · · ∧ un = αv1 ∧ · · · ∧ vn and Vol(u1, · · · ,un) = αVol(v1, · · · ,vn) where
α is a number. The two oriented volumes are the same if α = ±1.

We therefore have a means of comparing n-dimensional volumes:

Vol(v1, · · · ,vn) = v1 ∧ · · · ∧ vn
u1 ∧ · · · ∧ un

Vol(u1, · · · ,un) , (5.80)
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but not (yet) of determining the volume. We’re allowed to “divide tensors” in Eq. (5.80) because for
V an n-dimensional space, the highest non-trivial wedge-product space is ∧nV , the dimension of
which is

(
n
n

)
= 1. Any n-multivector v1 ∧ · · · ∧ vn can serve as a basis for ∧nV .

Let {ei}ni=1 be an orthonormal basis for V . The parallelepiped spanned by these vectors can be
taken to have unit volume for an n-dimensional space. With the vectors {ui} in Eq. (5.80) given by
the basis vectors {ei}, fix the proportionality by setting Vol(e1, · · · , en) = (1)e1 ∧ · · · ∧ en. The
oriented volume of an n-dimensional parallelepiped is then (relative to the unit volume)

Vol(v1, · · · ,vn) = v1 ∧ · · · ∧ vn . (5.81)

In what follows, we need the use of a theorem. Let A be a linear operator on the n-dimensional
space V , A : V → V , and let V have the basis {ei}ni=1. Then,

(Ae1) ∧ · · · ∧ (Aen) = (detA) e1 ∧ · · · ∧ en , (5.82)

where detA is the determinant of the matrix elements65 of A. As an immediate application, ex-
pressing the ith contravariant vector in the basis {ej}, vi = vji ej , we have combining Eqs. (5.82)
and (5.81),

Vol(v1, · · · ,vn) = v1 ∧ · · · ∧ vn =
(

det vji
)
e1 ∧ · · · ∧ en . (5.83)

The determinant of the vector components det vij can be interpreted as a volume change factor.

Example. In Cartesian coordinates, let a = ax̂, b = bŷ, and c = cẑ. Using Eq. (5.81), we have
that Vol(a, b, c) = abc x̂ ∧ ŷ ∧ ẑ, the same as obtained from Eq. (5.83).

One could worry that the unit-volume tensor e1 ∧ · · · ∧ en has been chosen arbitrarily and will
change if we select another orthonormal basis. It turns out that e1 ∧ · · · ∧ en is the same for any
orthonormal basis, up to a sign. Let there be two orthonormal bases, {ei} and {fj}. Then there
exists an orthogonal transformation R that maps {ei} into {fj} such that66 detR = ±1. We then
have as a special case of Eq. (5.82)

f1 ∧ · · · ∧ fn = detRe1 ∧ · · · ∧ en = ±e1 ∧ · · · ∧ en . (5.84)

We’re entitled to refer to the volume given by Eq. (5.81) as the volume.

5.10.5 Ordered basis

The ± factor in Eq. (5.84) is an essential ambiguity that cannot be avoided. A nonzero element θ
of ∧nV specifies an orientation of V . Ordered bases fall into two classes: those in the orientation
and those not. An ordered basis {ei}ni=1 is in the orientation specified by θ if e1 ∧ · · · ∧ en = αθ,
where α > 0. The orientation is the collection of bases having the same sign as θ. There are only

65Proof : LetAer = Ajrej , r = 1, · · · , n, i.e., the action of A on er is to produce an element of V , which has its own
expansion in the basis {ei}. From the multilinearity of the wedge product,

(Ae1) ∧ · · · ∧ (Aen) = Ai11 · · ·A
in
n ei1 ∧ · · · ∧ ein = Ai11 · · ·A

in
n εi1···ine1 ∧ · · · ∧ en = (detA) e1 ∧ · · · ∧ en ,

where we’ve used ei1 ∧· · ·∧ein = εi1···ine1∧· · ·∧en and Eq. (5.65).Your inner mathematician might worry that detA
is basis dependent. It turns out the value of a determinant is the same in all bases. If the abstract operator A is represented
by a matrix A in one basis and by A′ in another, then there exists an invertible matrix R such that A′ = RAR−1.
Taking determinants, detA′ = detR detA (detR)−1 = detA. Why the concern with basis independence? As budding
relativists, you seek what is the same in all reference frames. Accept no substitute.

66Proof : Let fi = Rjiej , where {fi} and {ej} are both orthonormal bases under the inner product g. Then, g(fi, fj) =
δij = Rki R

l
jg(ek, el) = Rki R

l
jδkl =

∑
k
Rki R

k
j = Rki (Rj

k
)T . Thus, det δij = 1 =

[
detRij

]2
.
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two orientations, α > 0 or α < 0; there is no third alternative.67 Orientations with α > 0 (α < 0)
are called right-handed (left-handed). For example, in R3 the bases {ex, ey, ez} and {ey, ex, ez}
are in different orientations because ex ∧ ey ∧ ez = −ey ∧ ex ∧ ez .

For each n-dimensional space68 V , elements of the highest wedge-product space ∧nV specify
oriented volumes v1 ∧ · · · ∧ vn, what we’ll refer to as n-volumes.

Table 5.3 Volume elements of n-dimensional oriented vector spaces.
n-volume The old way Covariant way
2-volume a× b a ∧ b
3-volume a · (b× c) a ∧ b ∧ c
4-volume ? a ∧ b ∧ c ∧ d

5.10.6 Hodge star operator

For V an n-dimensional space, ∧p V and ∧n−p V have the same dimension—and are isomorphic—
because of the symmetry of the binomial coefficients,

(
n
p

)
=
(
n
n−p
)
. The Hodge star operator,

denoted simply as ∗, is a linear mapping ∗ : ∧p → ∧n−p that implements the isomorphism.69 This
mapping accounts for the “taxonomy” among tensors and their duals noted in Sec 5.10.1.

To proceed, we must define an inner product for multivectors. For V a two-dimensional space,
denote the inner product for ∧2V as 〈v1 ∧ v2,v3 ∧ v4〉 to distinguish it from g(v1,v2). We require
〈·, ·〉 to be symmetric and bilinear (Section 5.6). Let V have an orthonormal basis {ei} (with respect
to g). For simplicity take 〈e1 ∧ e2, e1 ∧ e2〉 = 1. Then, for u = uiei and v = vjej ,

〈u ∧ v, e1 ∧ e2〉 =
(
u1v2 − u2v1) 〈e1 ∧ e2, e1 ∧ e2〉 =

∣∣∣∣u1 u2

v1 v2

∣∣∣∣ =
∣∣∣∣g(u, e1) g(u, e2)
g(v, e1) g(v, e2)

∣∣∣∣ ,
where g(u, ei) = ui. Generalizing, the inner product for ∧kV is defined as70

〈u1 ∧ · · · ∧ uk,v1 ∧ · · · ∧ vk〉 ≡ det g(ui,vj) . (5.85)

For each k, therefore,
〈e1 ∧ · · · ∧ ek, e1 ∧ · · · ∧ ek〉 = (−1)n

k
− , (5.86)

where nk− is the number of minus signs in the g-orthonormal basis {ei}ki=1.

Example. Consider the bivectorA = 1
2A

ijei ∧ ej , Eq. (5.78). Using Eq. (5.85),

〈el ∧ em,A〉 = 1
2A

ij〈el ∧ em, ei ∧ ej〉 = 1
2A

ij

∣∣∣∣ gli glj
gmi gmj

∣∣∣∣ = 1
2A

ij (gligmj − gmiglj)

= 1
2 (Alm −Aml) = Alm .

The inner product returns Alm, similar to ei ·B = ei ·Bjej = Bjgij = Bi.

For {ei}ni=1 an orthonormal basis on V , let ω ≡ e1 ∧ · · · ∧ en be a basis for the “top space”
∧nV ; ω is unique up to a choice of sign,71 which we take to be positive. The idea behind the star

67Because {ei} is linearly independent—a basis.
68A proviso should be added: vector spaces V with inner product g(vi, vj).
69Two spaces related by the Hodge star operator are called Hodge duals. The dual in Hodge dual (those spaces related by

∗ : ∧k → ∧n−k) has nothing to do with the dual in dual spaces, the distinction between V and V ∗.
70For k = 1 Eq. (5.85) reduces to the inner product between single vectors.
71Shown in Section 5.10.4.
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operator ∗ : ∧kV → ∧n−kV is as follows. For α ≡ e1 ∧ · · · ∧ ek, we’d “like” α ∧ (∗α) = ω, so
that ∗(e1 ∧ · · · ∧ ek) = ek+1 ∧ · · · ∧ en—that’s the gist of the idea.

The Hodge operator is defined with an extra requirement so that for two k-multivectors α =
v1 ∧ · · · ∧ vk and β = u1 ∧ · · · ∧ uk, with 1 ≤ k ≤ n,

α ∧ (∗β) ≡ 〈α,β〉ω . (5.87)

From Eq. (5.87), ω ∧ (∗ω) = 〈ω,ω〉ω = (−1)n− ω, where we’ve used Eq. (5.86) and n− is the
number of minus signs in the g-orthonormal basis for V . Thus, ∗ω = (−1)n− 1, where 1 denotes
the basis vector of ∧0V , the dual of ∧nV . Using Eq. (5.87), 1 ∧ (∗1) = g(1,1)ω = ω, where
g(1,1) ≡ 1. Thus, ∗1 = ω; the dual of ∧0 is ∧n. From Eq. (5.87): 〈α,β〉 = (−1)n− ∗ (α ∧ ∗β).

Let eI ≡ e1 ∧ · · · ∧ ek and eJ ≡ ek+1 ∧ · · · ∧ en so that72 eI ∧ eJ = ω. Using Eq. (5.87),
eI ∧ (∗eI) = 〈eI , eI〉ω = 〈eI , eI〉eI ∧ eJ so that ∗eI = 〈eI , eI〉eJ . The wedge product eJ ∧
(∗eJ) = 〈eJ , eJ〉eI ∧ eJ . It’s straightforward to show that73 eI ∧ eJ = (−1)k(n−k)

eJ ∧ eI , so
that ∗eJ = (−1)k(n−k) 〈eJ , eJ〉eI . These results are summarized in Table 5.4.

Table 5.4 Hodge duals.
∗1 = ω ≡ eI ∧ eJ ∗ω = (−1)n−1
∗eI = 〈eI , eI〉eJ ∗eJ = (−1)k(n−k)〈eJ , eJ〉eI

By combining these results, ∗(∗eI) = (−1)k(n−k) 〈eI , eI〉〈eJ , eJ〉eI . But, for an orthonormal
basis, 〈eI , eI〉〈eJ , eJ〉 = det g(ei, ei) det g(ej , ej) = 〈ω,ω〉 = (−1)n− . For k-multivectors,
therefore, the star operator composed with itself satisfies

∗ ◦ ∗ = (−1)n−+k(n−k)
. (5.88)

We found the same relation in our discussion of dual tensors, near Eq. (5.77).
For n = 3, we have the wedge-product spaces ∧0,∧1,∧2,∧3, all having an odd number of

dimensions, 1, 3, 3, 1. There is therefore a dual relation between ∧0 and ∧3 and between ∧1 and
∧2. From Eq. (5.88) with n− = 0, ∗ ◦ ∗ = 1 for all k (check it!). In this case, ∗e1 = e2 ∧ e3,
∗e2 = e3 ∧ e1 and ∗e3 = e1 ∧ e2. There is thus a close resemblance between the cross product
and the wedge product. They are in fact Hodge duals, ∗ (a× b) = a ∧ b. The space ∧0 is a space
of scalars but its dual ∧3 is a space of pseudoscalars (see Section 5.9). This can be seen from the
relation among basis vectors, ∗1 → e1 ∧ e2 ∧ e3. Under an inversion 1 is invariant (scalar) but ω
changes sign (pseudoscalar). Likewise, ∧1 is a space of vectors and ∧2 is a space of pseudovectors,
as can be seen from the basis vectors ∗e1 → e2 ∧ e3: Under inversion e1 changes sign (vector) but
e2 ∧ e3 does not (pseudovector).

For Minkowski space, we have the wedge-product spaces ∧0,∧1,∧2,∧3,∧4 with dimensions
1, 4, 6, 4, 1. There is an isomorphism between vectors and totally antisymmetric third-rank tensors
(∗∧1 → ∧3), and a relation between second-rank antisymmetric tensors, ∗∧2 → ∧2. It should
be noted that the isomorphism ∗∧2 → ∧2 does not imply the identity of the two second-rank
antisymmetric tensors, only that they are isomorphic.

72The notation I = (i1, · · · , ik) is a multi-index, a strictly-increasing string of integers 1 ≤ i1 < i2 < · · · < ik ≤ n.
73Consider that u ∧ v1 ∧ · · · ∧ vk = (−1)kv1 ∧ · · · ∧ vk ∧ u, i.e., “pulling” a vector through a k-multivector entails

k interchanges and hence k minus signs. For a ∈ ∧pV and b ∈ ∧qV , a ∧ b ∈ ∧p+qV , unless p+ q > n in which case it
is zero. The wedge product satisfies the antisymmetry condition a ∧ b = (−1)pqb ∧ a.
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5.11 INTEGRATION ON MINKOWSKI SPACE

5.11.1 Differential volume elements

One dimensional

The “volume element” along a curve is the differential displacement vector dx with components
dΣα = dxα (in a notation we’ll use for the higher-dimensional volume elements). The direction in
which the curve is traversed specifies the orientation. If the orientation is reversed, the signs of dΣα
are reversed.

Two dimensional

A pair of infinitesimal contravariant vectors dx(1) and dx(2) specify an oriented area dx(1)∧dx(2),

the components of which are dΣαβ ≡
(
dx(1) ∧ dx(2)

)αβ = δαβµν dxµ(1)dx
ν
(2). The vectors dx(i)

have components dxµ(i) (µ = 0, 1, 2, 3), relative to a coordinate system in MS. The order of the
vectors is important and specifies the orientation of dx(1) ∧ dx(2).

Three dimensional

Three vectors dx(1), dx(2), and dx(3) specify an oriented volume dx(1) ∧ dx(2) ∧ dx(3), with

dΣαβγ ≡
(
dx(1) ∧ dx(2) ∧ dx(3)

)αβγ = δαβγµνσdxµ(1)dx
ν
(2)dxσ(3). The order in which the vectors

are written determines the orientation. The quantity dΣαβγ , a third-rank antisymmetric tensor, has
as its dual a four-vector with components (dΣ∗)λ ≡

1
3!εαβγλdΣαβγ (from Eq. (5.77)).74 Consider

an arbitrary linear combination the vectors dx(i), A ≡
∑3
i=1 a(i)dx(i); dΣ∗ is orthogonal75 to A.

Thus, dΣ∗ is normal to every vector lying in the surface having oriented volume dΣ.

Four dimensional

In four dimensions, four vectors dx(1), dx(2), dx(3), dx(4) determine an oriented volume dx(1) ∧
dx(2) ∧ dx(3) ∧ dx(4), the components of which are

dΣαβγδ ≡
(
dx(1) ∧ dx(2) ∧ dx(3) ∧ dx(4)

)αβγδ = δαβγδµνστdxµ(1)dx
ν
(2)dxσ(3)dxτ(4) .

The order in which the vectors are written determines the orientation. The orientation is usually
chosen so that dΣ0123 > 0. We can associate a scalar with dΣαβγδ , its dual dΣ∗ ≡ 1

4!εαβγδdΣαβγδ .

5.11.2 Stokes’s theorem

Stokes’s theorem relates the integral of the gradient of a tensor over the volume of an n-dimensional
space Vn to an integral of the tensor evaluated at the surface Sn−1 that bounds76 Vn, which we
indicate schematically as

∫
Vn
∇(T)dV n =

∫
Sn−1

TdS(n−1). To apply the theorem, the orientations
of Sn−1 and Vn must agree. Let dx(1) ∧ · · · ∧ dx(n) be an oriented volume element of Vn and
dy(1) ∧ · · · ∧ dy(n−1) an oriented volume element of Sn−1. Let dy(0) be a vector in Vn that’s
orthogonal to every vector in the surface Sn−1 and that’s outwardly pointing. The relation between

74We’re writing the dual of dΣαβγ as (dΣ∗)λ instead of (∗dΣ)λ to avoid confusion with another use of the symbol ∗d,
the exterior derivative—Section 13.7.

75Proof : Consider the inner product Aλ (dΣ∗)λ =
∑3

i=1 a(i)dxλ(i) (dΣ∗)λ. There is, for each value of i, a term of

the form dxλ(i)εαβγλdxα(1)dxβ(2)dxγ(3). For each i, there are terms of the form dxλ(i)dxµ(i) (µ equals one of the indices
(α, β, γ)), symmetric in λ and µ, which vanish when contracted with εαβγλ.

76Stokes’s theorem is the fundamental theorem of calculus in higher dimensions:
∫ b
a

(df/dx)dx = f(b)− f(a).
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vectors lying in the surface Sn−1 and those belonging to the space Vn is illustrated schematically
in Fig. 5.19 (schematic because the figure shows only part of the surface: Sn−1 is a closed surface).

dx(2)

dx(3)

dx(1)

dy(2)dy(1)

dy(0)

Figure 5.19 Vectors belonging to the surface (dy(1), dy(2)) and the volume (dx(i), dy(0)).

The orientation of dy(0) ∧ dy(1) ∧ · · · ∧ dy(n−1) must match that of dx(1) ∧ · · · ∧ dx(n).
We state without proof Stokes’s theorem, that for a tensor F defined on Vn,∫

V2

∂γF
α
βdΣγβ =

∮
S1

FαβdΣβ (n = 2)∫
V3

∂σF
α
βγdΣσβγ =

∮
S2

FαβγdΣβγ (n = 3)∫
V4

∂τF
α
βγσdΣτβγσ =

∮
S3

FαβγσdΣβγσ , (n = 4) (5.89)

where α can be absent or present or could be replaced by two or more free indices.
Let’s show how this works for n = 2, where S1 is chosen parallel to the coordinate axes. Let V2

be a square where S1 is traversed in the clockwise direction (see Fig. 5.20). The vector dy0 must be

dy1
dy0

dy1

dy0

dy1dy0

dy1

dy0

dx(2)

dx(1)

S1

V2

Figure 5.20 Orientation of dy0 and dy1 on S1 everywhere matches that of dx(1) and dx(2).

outwardly pointing at all points of S1. Let the direction of S1 fix the orientation of V2: dx(1)∧dx(2)
must have the same orientation as dy0 ∧ dy1. Let dx(1) = (0, 0,dy, 0) and dx(2) = (0, dx, 0, 0).
Thus, dΣγβ = δγβµνdx

µ
(1)dx

ν
(2) = δγβ21 dydx. Applying Eq. (5.89) to Fαβ defined on V2,∫

V2

∂γF
α
βdΣγβ =

∫
V2

∂γF
α
βδ
γβ
21 dydx =

∫
V2

(∂2F
α
1 − ∂1F

α
2) dydx

=
∫

top
Fα1dx−

∫
bottom

Fα1dx−
∫

right
Fα2dy +

∫
left
Fα2dy ≡

∮
S1

Fαµdxµ .
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Gauss’s theorem

Gauss’s theorem relates the integral over Vn of the divergence of a tensor to an integral of the tensor
evaluated at the surface Sn−1. For n = 4 it states that:∫

V4

∂βF
αβdΣ∗ =

∮
S3

FαβdΣ∗β , (5.90)

where dΣ∗ is the dual of dΣαβγδ and dΣ∗β is the dual of dΣργσ. The free index α gets a “free ride”;
it can be absent, present, or replaced by two or more free indices.

5.12 THE GHOST OF TENSORS YET TO COME
The title of this chapter is tensors on flat spaces, yet no explicit use was made of the geometry be-
ing flat, and in fact we won’t officially define flatness until Chapter 14 (vanishing of the Riemann
tensor). Where the property of flatness lurks is in the implicit assumption that spacetime can be
covered by a single coordinate system—sufficient and appropriate for SR where inertial observers
see force-free motion as straight lines in spacetime. GR is based on the recognition that IRFs are an
idealization having only local, approximate validity. In Chapter 13 we consider tensors on more gen-
eral spaces known as manifolds. In SR we can assume that partial derivatives of tensors are tensors
because of the strictly linear coordinate transformations between IRFs (Section 5.3). Derivatives of
tensors on manifolds are treated in Chapters 13 and 14.

SUMMARY
This chapter comprised our first look at tensors, a topic of considerable importance to relativity.

• Minkowski space is a four-dimensional vector space having one timelike e0 and three space-
like basis vectors ei, i = 1, 2, 3, where basis vectors are labeled with subscripts. Points in
MS (events) are located relative to an origin-event with position four-vectors, r = xµeµ,
where coordinates (x0, x1, x2, x3) are labeled with superscripts. We adhere to the Einstein
summation convention that repeated raised and lowered indices imply a summation.

• Coordinate basis vectors {eα} are locally tangent to coordinate curves. The position four-
vector xµeµ has the geometric character of a line element; it has contravariant components,
where contravariant and covariant refer to behavior under coordinate transformations. Asso-
ciated with the coordinate basis is another set of vectors {eβ}, the dual basis (labeled with
superscripts) that are everywhere orthogonal to the vectors {eα}, such that eβ · eα = δβα.
A vector expressed in the dual basis B = Bβe

β (with components labeled by subscripts) is
called a covariant vector. Covariant vectors are orthogonal to coordinate surfaces and have
the geometric character of a wave vector, where consecutive planes of equal phase become
closer as the magnitude of the wave vector increases. The distinction between covariant and
contravariant vectors is unnecessary in orthogonal coordinate systems.

• The components of the metric tensor are the inner products between basis vectors, either
gαβ = eα · eβ or gαβ = eα · eβ . The mixed metric tensor gαβ = eα · eβ = δαβ . The
metric tensor connects the contravariant and covariant components of vectors (raise and lower
indices), Aα = gαβAβ and Aµ = gµνA

ν . The inner product between vectors is expressed
using the metric tensor,A ·B = gαβA

αBβ = AαBα.

• Transformations between coordinate systems are smooth, invertible functions, xj
′ = xj

′(xi)
and xi = xi(xj′), where we use the Schouten index convention. A transformation is invertible
when the Jacobian determinant of the transformation does not vanish identically.
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• The importance of tensors to relativity is that if a tensor equation is valid in one reference
frame, it’s valid in any reference frame. It’s important therefore to be able to establish whether
a given set of mathematical objects constitute a tensor. The quotient theorem provides an
indirect test for tensor character.

• The Lorentz metric is invariant under the LT, eµ′ · eν′ = eµ · eν = ηµν . It’s a constant tensor
in MS. Other constant tensors are the Kronecker delta δij and the Levi-Civita symbol, εi1···in .

• Spacetime gradients come in two varieties, covariant ∂µ ≡ ∂/∂xµ, and contravariant, ∂µ ≡
∂/∂xµ. The are related by raising an index, ∂µ = gµν∂ν . The construct ∂µ∂µ = ∂µ∂µ
generates the wave equation operator and is a Lorentz invariant.

• Relative tensors transform with the Jacobian raised to an integer power w, Jw. Tensors that
transform with w = ±1 are called tensor densities. Tensors that transform with w = 0 are
called absolute tensors. The quantity

√
|g|dnx is an absolute scalar, where g is the determi-

nant of the covariant components of the metric tensor. The sign of g is an absolute quantity.

• Antisymmetric tensors have associated with them new tensors called dual tensors.

EXERCISES

5.1 Show that (arst + astr + asrt)xrxsxt = 3arstxrxsxt.

5.2 Show that a symmetric second-rank tensor in n dimensions has n(n + 1)/2 independent
components.

5.3 What is the metric tensor for cylindrical coordinates, (ρ, φ, z)? Hint: The line element is
ds = dρρ̂+ ρdφφ̂+ dzẑ.

5.4 Simplify the expression gijAiBj −AkBk.

5.5 Show in polar coordinates that if dxi =
(

dr
dθ

)
then dxi =

(
dr r2dθ

)
.

5.6 Of the three four-vectors, A = 4e0 + 3e1 + 2e2 + e3, B = 5e0 + 4e1 + 3e2, and C =
e0 + 2e1 + 3e2 + 4e3, which is timelike, which is lightlike, and which is spacelike?

5.7 Show that for xµ = (ct, r), then xµ = (−ct, r).

5.8 Show that the metric tensor gij transforms as a second-order covariant tensor.

5.9 If [gij ] =
(
A 1
1 0

)
, what is

[
gij
]
?

5.10 Show that the metric tensor g = gije
iej is actually the identity I. Hint: Use Eq. (5.21).

5.11 Show that if δij has the usual values for the Kronecker delta in one frame, it does not have
those values in another frame. Show that (δij)′ =

∑
aA

a
iA

a
j .

5.12 In an n-dimensional space, evaluate δki δ
i
k. (Answer: n. Why?)

5.13 Verify that Lκ0ηκλL
λ
0 = −1.

5.14 If γ = 2 and xµ =
(
1 1

)
, show that x0′ = x1′ = 2−

√
3. Show that the transformed basis

vectors are e0′ = 2e0 +
√

3e1 and e1′ =
√

3e0 + 2e1. Draw a spacetime diagram showing
all quantities. Show explicitly that xi

′
ei′ = xjej .
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5.15 Verify using Eq. (5.72) that for three-dimensional Euclidean space, P1 = T 23, P2 = −T 13,
and P3 = T 12.

5.16 Show that in three-dimensional Euclidean space, ∗ (∗P )i = P i. You’ll need εijkεjkm = 2δim
(from Eq. (5.71)). Show that ∗ (∗Tlm) = Tlm. Use Eq. (5.73).

5.17 Show that in MS for a second-rank antisymmetric tensor, ∗ (∗T )mn = −Tmn. Use Eqs.
(5.74) and (5.75) and the identity εksmnεrtmn = −2 (δrkδts − δrsδtk).

5.18 Show that εi1···inε
i1···in = (−1)n−n!.

5.19 Show that if the quantities {Ai1···ik} are totally antisymmetric in their indices, then
δi1···ikj1···jkAi1···ik = k!Aj1···jk .

5.20 Show for the generalized Kronecker delta in an n-dimensional space that

δ
i1···irir+1···ik
j1···jrir+1···ik = (n− r)!

(n− k)!δ
i1···ir
j1···jr .

Hint: The indices ir+1 · · · ik must all be distinct, and they must also be different from any of
the indices i1 · · · ir. Consider the binomial coefficient

(
n−r
k−r
)
, the number of ways to choose

(k − r) indices from (n − r) where order is immaterial. There is then a sum over (k − r)!
permutations of the indices ir+1 · · · ik.

5.21 Let F be a second-rank antisymmetric covariant tensor with respect to the basis eµ, i.e.,Fµν =
−Fνµ. Show that the contravariant components Fµν are also antisymmetric. Show that F is
antisymmetric in any coordinate system, i.e., show Fµ

′ν′ = −F ν′µ′ and Fµ′ν′ = −Fν′µ′ .
Antisymmetry is thus an intrinsic (coordinate-independent) property.

5.22 Show from the fact that antisymmetry is coordinate independent for a second-rank tensor, a
symmetric tensor Fµν = Fνµ is symmetric in any coordinate system.

5.23 Show that in MS,

εs1r1r2r3εs1a1a2a3 = −
[
δr1
a1

(
δr2
a2
δr3
a3
− δr2

a3
δr3
a2

)
+ δr1

a2

(
δr2
a3
δr3
a1
− δr2

a1
δr3
a3

)
+ δr1

a3

(
δr2
a1
δr3
a2
− δr2

a2
δr3
a1

)]
.

Hint: The indices take on four values. How do we know that? Well, you are told this is MS
(four dimensions) and you noticed that for an n-dimensional space the Levi-Civita symbol
εi1···in has n indices, each of which takes n values (as opposed to the generalized Kronecker
symbol which has k ≤ n symbols, each of which takes n values).

5.24 Show that a tensor of type (1, 1) maps a vector onto a vector, T1
1(v) : V → V .

5.25 Consider a three-dimensional spacetime, with one timelike unit vector e0 and two spacelike
unit vectors, e1 and e2. The metric relation for this space is (ds)2 = −(dx0)2 + (dx1)2 +
(dx2)2. Starting from the volume element ω = e0 ∧ e1 ∧ e2, show that the Hodge duals are
given by ∗e0 = −e1 ∧ e2, ∗e1 = e2 ∧ e0, and ∗e2 = e0 ∧ e1. Hint: For sets of wedge
products eI ∧ eJ = ω, ∗eI = 〈eI , eI〉eJ (Section 5.10.6).
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Lorentz transformation, II

N OW that we’ve had an exposure to tensors, we delve deeper into the properties of Lorentz
transformations, freely making use of the concepts and notation developed in Chapter 5.

6.1 DECOMPOSITION INTO ROTATIONS AND BOOSTS
We show that Lorentz transformations can be uniquely decomposed into the product of a boost and
a rotation. The proof begins at Eq. (6.17). First we consider rotations and boosts separately.

6.1.1 Rotations

Rotations about spatial axes can be represented as spacetime transformations using 4 × 4 real ma-
trices with the (0, 0) element equal to unity. Such operations are passive transformations involving
the mapping of coordinate axes (see Fig. 6.1). The 4 × 4 matrices for counterclockwise rotations

1

2

3

1′

2′

3′

Figure 6.1 Rotation of 1-2-3 coordinate system into 1′-2′-3′ system.

about each of the (1, 2, 3)-axes through angle θ are as follows:

R1(θ) =


1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ

 = I + θ


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

+O(θ2) ≡ I + θJ1 +O(θ2)

R2(θ) =


1 0 0 0
0 cos θ 0 − sin θ
0 0 1 0
0 sin θ 0 cos θ

 = I + θ


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

+O(θ2) ≡ I + θJ2 +O(θ2)

113
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R3(θ) =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 = I+θ


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

+O(θ2) ≡ I+θJ3+O(θ2) . (6.1)

We’ve written Ri(θ) as the sum of the identity matrix I and a matrix θJi containing the terms that
are first order in small values of θ. Is a rotation a LT? A LT must satisfy Eq. (4.12), LT ηL = η, and
(L0

0)2 ≥ 1 (Exercise 4.1). These requirements are met by the matrices Ri(θ) in Eq. (6.1). Rotations
are valid LTs.

The matrices Ji in Eq. (6.1) are known as the infinitesimal rotation generators,

J1 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 J2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 J3 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 . (6.2)

They satisfy the commutation relations [Ji, Jj ] = −εijkJk. The operator for finite-angle rotations
about an arbitrary axis can be developed through repeated applications of infinitesimal rotations, as
we now show. The matrices Ji are antisymmetric.

Rotations do not commute in general: RiRj 6= RjRi. They do commute, however, for infinites-
imal rotation angles. By writing Ri ≈ I + dθiJi (no sum),

RiRj ≈
(
I + dθiJi

) (
I + dθjJj

)
= I2 + dθiJiI + dθjIJj + dθidθjJi ◦ Jj

≈ I + dθiJi + dθjJj ≈ RjRi .

The non-commuting part begins at second order in infinitesimal quantities. To first order in small
angles, RiRj = RjRi. An infinitesimal rotation can be built up as (where we keep terms to first
order in small quantities)

R(dθ) ≡R1(dθ1)R2(dθ2)R3(dθ3) = I + dθ1J1 + dθ2J2 + dθ3J3

=I +


0 0 0 0
0 0 dθ3 −dθ2

0 −dθ3 0 dθ1

0 dθ2 −dθ1 0

 ≡ I + ε , (6.3)

where ε denotes the matrix of infinitesimal angles in Eq. (6.3). Rotation matrices satisfy RTR = I ,
Eq. (4.5), and thus for infinitesimal rotations (I + εT )(I + ε) = I , which will be satisfied to first
order if ε is antisymmetric, εT = −ε (which we see explicitly in Eq. (6.3)).

Applying the infinitesimal rotation operator R(dθ) = I + ε to the position vector r, r′ =
R(dθ)r = (I + ε)r, or dr ≡ r′ − r = εr. In terms of components,

0
dx
dy
dz

 =


0 0 0 0
0 0 dθ3 −dθ2

0 −dθ3 0 dθ1

0 dθ2 −dθ1 0




0
x
y
z

 =


0

ydθ3 − zdθ2

zdθ1 − xdθ3

xdθ2 − ydθ1

 . (6.4)

Equation (6.4) is equivalent to dr = r × dθ, where we’ve made a vector out of the infinitesimal
rotation angles, dθ = dθ1e1 + dθ2e2 + dθ3e3 (permissible only for infinitesimal angles).1 The
matrices Ri in Eq. (6.1) describe counterclockwise, passive transformations of the coordinate axes.
When applied to the vector r, however, Eq. (6.4) describes an active, clockwise rotation of r through
the infinitesimal angle dθ.

1Technically dθ is a pseudovector; see the rules on page 97.
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For given angles dθ1, dθ2, dθ3, dθ defines a direction in space, the axis of rotation. Instead
of specifying dθ, however, it’s easier to first specify the axis of rotation with a unit vector n̂, and
define the rotation about n̂. Let dθ = n̂dφ, which defines the angle of rotation dφ about n̂. Clearly,
dφ = |dθ|. Let n1, n2, n3 be the components of n̂ with respect to the coordinate system, n̂ = nix̂i
(sum implied), with dθi = nidφ. Define the generator for infinitesimal rotations about n̂,

J(n̂) ≡ niJi =


0 0 0 0
0 0 n3 −n2

0 −n3 0 n1

0 n2 −n1 0

 . (6.5)

The operator for an infinitesimal rotation dφ about n̂ is then

R(n̂,dφ) = I + dφJ(n̂) . (6.6)

Rotations through a finite angle φ about the fixed axis n̂ can be realized from a succession of
infinitesimal rotations about the same axis. Define the rotation operator as the limit of N rotations
through angle φ/N as N →∞. Using Eq. (6.6):

R(n̂φ) ≡ lim
N→∞

(
1 + φ

N
J(n̂)

)N
= eφJ(n̂) , (6.7)

where we’ve used the Euler definition of the exponential function. The operator for a rotation φ
about a fixed axis n̂ is the exponential of the generator. The exponential of an operator is defined
from the power series,

exp(φJ(n̂)) =
∞∑
m=0

φm

m! J(n̂)m , (6.8)

and hence we need all powers of J(n̂) for Eq. (6.8) to serve as a practical expression for rotations.
Fortunately, Eq. (6.8) can be summed because the powers of J(n̂) close among themselves in a sim-
ple way. By the Cayley-Hamilton theorem, a square matrix satisfies its own characteristic equation,
which from Eq. (6.5) is λ3 = −λ. Therefore, J(n̂)3 = −J(n̂). For n = 1, 2, · · · ,

J(n̂)2n = (−1)n+1J(n̂)2 J(n̂)2n+1 = (−1)nJ(n̂) . (6.9)

Combining Eq. (6.9) with Eq. (6.8) and separating even and odd powers,

R(n̂φ) =eφJ(n̂) =
∞∑
m=0

φm

m! J(n̂)m = I +
∞∑
n=0

φ2n+1

(2n+ 1)!J(n̂)2n+1 +
∞∑
n=1

φ2n

(2n)!J(n̂)2n

=I + J(n̂)
∞∑
n=0

(−1)n φ2n+1

(2n+ 1)! + J(n̂)2
∞∑
n=1

(−1)n+1 φ2n

(2n)!

=I + J(n̂) sinφ+ J(n̂)2(1− cosφ) . (6.10)

A rotation is thus characterized by three parameters: the angle φ and the unit vector n̂. Because∑3
i=1(ni)2 = 1, there are only two independent components of n̂.
From Eq. (6.10), R(n̂φ) is the 4× 4 matrix

R(n̂, φ) =


1 0 0 0
0
0 Rij
0

 , (6.11)
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where Rij = δij cosφ+ (1− cosφ)ninj + sinφεijknk. Written out as a matrix,

[Rij ] =

( cosφ+ (n1)2(1− cosφ) n3 sinφ+ n1n2(1− cosφ) −n2 sinφ+ n1n3(1− cosφ)
−n3 sinφ+ n1n2(1− cosφ) cosφ+ (n2)2(1− cosφ) n1 sinφ+ n2n3(1− cosφ)
n2 sinφ+ n1n3(1− cosφ) −n1 sinφ+ n3n2(1− cosφ) cosφ+ (n3)2(1− cosφ)

)
.

For finite rotations, the rotation operator has no particular symmetry; it is, however, orthogonal
R(−φ) = RT (φ) (show this).

6.1.2 Boosts

The LT for arbitrary boosts2 was given in Eq. (3.24). We now obtain the same result through a suc-
cession of infinitesimal boosts. Using the hyperbolic form of the LT, Eq. (4.6), where the parameter
θ is related to the velocity by tanh θ = −β, the 4 × 4 matrices for boosts in each of the three
directions are

Lx(θ) =


cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

 = I + θ


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

+O(θ2) ≡ I + θK1 +O(θ2)

Ly(θ) =


cosh θ 0 sinh θ 0

0 1 0 0
sinh θ 0 cosh θ 0

0 0 0 1

 = I + θ


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

+O(θ2) ≡ I + θK2 +O(θ2)

Lz(θ) =


cosh θ 0 0 sinh θ

0 1 0 0
0 0 1 0

sinh θ 0 0 cosh θ

 = I + θ


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

+O(θ2) ≡ I + θK3 +O(θ2) .

In analogy with Eq. (6.2) we define the boost generators,

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 . (6.12)

The matrices Ki have the commutation relation [Ki,Kj ] = εijkJk. The boost generators and the
rotation generators have the commutation property [Ji,Kj ] = −εijkKk. The matrices Ki are sym-
metric.

Infinitesimal boosts in different directions commute,

LiLj = (I + dθiKi)(I + dθjKj) ≈ I + dθiKi + dθjKj ≈ LjLi ,

where dθi = −dβi. Finite-velocity boosts, however, do not commute for different directions, as evi-
denced by the non-associative addition of non-colinear velocities, Eq. (3.31). A general infinitesimal
boost can be built up as

L ≡ L1L2L3 =I + dθ1K1 + dθ2K2 + dθ3K3

=I +


0 dθ1 dθ2 dθ3

dθ1 0 0 0
dθ2 0 0 0
dθ3 0 0 0

 .

2Refer to Fig. 1.1, withR = βct.
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Specify a velocity direction with the unit vector β̂, where dθ = β̂dθ. Let β̂ have components
relative to the coordinate axes, b1, b2, b3, where dθi = bidθ. Define K(β̂) as the generator of
infinitesimal boosts in the direction β̂,

K(β̂) ≡ biKi =


0 b1 b2 b3

b1 0 0 0
b2 0 0 0
b3 0 0 0

 . (6.13)

The operator for an infinitesimal boost dθ in direction β̂ is then (analogous to Eq. (6.6))

L(β̂,dθ) = I + dθK(β̂) . (6.14)

We can “integrate” Eq. (6.14) to obtain a finite boost in the fixed direction β̂:

L(β) ≡ lim
N→∞

(
1 + θ

N
K(β̂)

)N
= eθK(β̂) . (6.15)

The operator for a boost β is the exponential of the generator, analogous to Eq. (6.7). Using Eq.
(6.13) it’s simple to show that K(β̂)2n = K(β̂)2 and K(β̂)2n+1 = K(β̂). We can therefore sum
the infinite series implicit in Eq. (6.15),

L(β) = I +K(β̂)
∞∑
n=0

θ2n+1

(2n+ 1)! +K(β̂)2
∞∑
n=1

θ2n

(2n)!

= I +K(β̂) sinh θ + (cosh θ − 1)K(β̂)2 = I − βγK(β̂) + (γ − 1)K(β̂)2 ,

where sinh θ = −βγ and cosh θ = γ. A boost is thus determined by three parameters, β = ββ̂,
where |β̂| = 1 has only two independent components. As a matrix L(β) is

L(β) =


γ −γβ1 −γβ2 −γβ3

−γβ1

−γβ2 Lij
−γβ3

 , (6.16)

where Lij = δij + γ2

1+γβ
iβj is the space-space part

[Lij ] =

1 + α(β1)2 αβ1β2 αβ1β3

αβ2β1 1 + α(β2)2 αβ2β3

αβ3β1 αβ3β2 1 + α(β3)2

 ,

where α ≡ γ2/(1 + γ). Equation (6.16) is identical to Eq. (3.24). The matrix
[
Lij
]

is symmetric.

6.1.3 Decomposition into a rotation and a boost

We now show that an arbitrary LT, denoted Λ, can be decomposed into a boost and a rotation,

Λ = L(β)R(n̂φ) . (6.17)

Note what this is not saying: Equation (6.17) is not informing us that a rotation followed by a boost
constitutes a LT, what could be symbolized as LR→ Λ. We already know that because of the group
property satisfied by LTs (Section 4.3). The theorem says something much stronger, that a given
Λ can be decomposed into the product of a boost and a rotation, Λ → LR. Because Λ is a LT it
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satisfies Eq. (4.12), ΛT ηΛ = η. There are 16 elements of Λ, yet because η is symmetric only 10
equations are implied by Eq. (4.12). The most general LT must contain six parameters. These are
the three parameters that specify the boost β, and the three that specify the rotation, φn̂.

Multiply the matrices representing rotations and boosts, Eq. (6.11) and Eq. (6.16):

Λ =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0

Λ2
0 Λij

Λ3
0

 =


γ −γβ1 −γβ2 −γβ3

−γβ1

−γβ2 Lik
−γβ3




1 0 0 0
0
0 Rkj
0

 .

(6.18)
We find for the time components of Eq. (6.18),

γ = Λ0
0 − γβi = Λi0 − γβjRji = Λ0

i . (6.19)

The three boost parameters are thus determined by the first column of Λ, Λµ0 :

βi = −Λi0/Λ0
0 . (6.20)

The complete boost matrix L(β) is specified by the first column of Λ. Using the results of Eq. (6.19)
in Eq. (6.16),

L =


Λ0

0 Λ1
0 Λ2

0 Λ3
0

Λ1
0

Λ2
0 δij + Λi0Λj0

1 + Λ0
0

Λ3
0

 . (6.21)

Note that L is symmetric for any β. From the (0, 0) component of ηαβ = ΛγαΛρβηγρ,

(Λ0
0)2 −

∑
i

(
Λi0
)2 = 1 , (6.22)

from which we infer that
(
Λ0

0
)2 ≥ 1, while the (0, i) components imply that

Λ0
0Λ0

i −
∑
j

Λj0Λji = 0 . (6.23)

Combining Eq. (6.20) with Eq. (6.22), we have (because
(
Λ0

0
)2 ≥ 1)

β2 ≡
3∑
i=1

(βi)2 = 1− 1
(Λ0

0)2 ≤ 1 .

The boost parameter defined by Eq. (6.20) is therefore physically admissible.
Now, invert Eq. (6.17)

R = L−1(β)Λ = L(−β)Λ (6.24)

and show that the matrix R so obtained represents a rotation. Because L is completely determined
in terms of the elements of Λ, using Eq. (6.21), Eq. (6.24) is equivalent to

R =


Λ0

0 −Λ1
0 −Λ2

0 −Λ3
0

−Λ1
0

−Λ2
0 δij + Λi0Λj0

1 + Λ0
0

−Λ3
0




Λ0
0 Λ0

1 Λ0
2 Λ0

3
Λ1

0
Λ2

0 Λij
Λ3

0

 . (6.25)
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Multiplying these matrices, we find from the (0, 0) element of Eq. (6.25),

R0
0 =

(
Λ0

0
)2 − 3∑

j=1

(
Λj0
)2

= 1 ,

where the second equality follows from Eq. (6.22). Likewise, from Eq. (6.25),

R0
i = Λ0

0Λ0
i −

3∑
j=1

Λj0Λji = 0 ,

which follows from Eq. (6.23). It can be shown that Ri0 = 0, but it takes a few more steps. The
space-space part of Eq. (6.25) is given by

Rjk =− Λj0Λ0
k +

3∑
l=1

(
δjl + Λj0Λl0

1 + Λ0
0

)
Λlk = −Λj0Λ0

k + Λjk + Λj0
1 + Λ0

0

3∑
l=1

Λl0Λlk

=Λjk −
Λj0Λ0

k

1 + Λ0
0
, (6.26)

where we’ve used Eq. (6.23) between the first and second lines. The rotation matrix is thus com-
pletely determined by the elements of Λ,

R =


1 0 0 0
0

0 Λjk −
Λj0Λ0

k

1 + Λ0
0

0

 . (6.27)

It can be shown from Eq. (6.27), using the space-space part of ηαβ = ΛγαΛρβηγρ, that RTR = I and
thus Eq. (6.27) satisfies the requirement for a rotation matrix, Eq. (4.5).

We have to show uniqueness. Assume there are two decompositions of the same Λ, Λ = L(β)R
and Λ = L(β′)R′. If this were true, it would imply that

I = L−1(β)ΛR−1 = L−1(β)L(β′)R′R−1 = L(−β)L(β′)R′R−1 . (6.28)

The (0, 0) component of Eq. (6.28) is equivalent to 1 = L(−β)0
αL(β′)α0 , which in turn is equivalent

to γγ′(1− β · β′) = 1, or
1− β · β′ =

√
(1− β2)(1− β′2) . (6.29)

The only solution to Eq. (6.29) is β′ = β, implying from Eq. (6.28) that R′ = R.

6.2 INFINITESIMAL LORENTZ TRANSFORMATION
We’ve considered separately infinitesimal rotations and boosts; let’s combine them to characterize
the most general infinitesimal LT. Start by writing

Λµν = δµν + λµν , (6.30)

where [λµν ] is a matrix containing infinitesimal parameters. For any LT ηαβ = ΛµαΛνβηµν , which,
using Eq. (6.30), implies to first order that ηανλνβ + ηβµλ

µ
α = 0. The matrix [λµν ] must be such that

ηανλ
ν
β is antisymmetric in (α, β). Thus, λαα = 0 (no sum), λi0 = λ0

i , and λij = −λji .
The matrix [λµν ] is therefore a 4 × 4 matrix with zeros on the diagonal having six independent

elements—just enough for the six parameters of a LT. The combined set of rotation and boost
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generators, Eqs. (6.2) and (6.12), is a natural six-dimensional basis for matrices of this type. Thus,
for infinitesimal parameters βi and θi,

[λµν ] =
3∑
i=1

(
θi [Ji]µν − β

i [Ki]µν
)

=


0 −β1 −β2 −β3

−β1 0 θ3 −θ2

−β2 −θ3 0 θ1

−β3 θ2 −θ1 0

 . (6.31)

Sometimes it’s convenient to “package” the parameters of an infinitesimal LT into a quantity that’s
antisymmetric. Define ωαβ ≡ ηανλνβ ,

[ωαβ ] =


0 β1 β2 β3

−β1 0 θ3 −θ2

−β2 −θ3 0 θ1

−β3 θ2 −θ1 0

 . (6.32)

Elementary boosts act as rotations where one of the axes affected is the time axis (Chapter 4). Spatial
rotations about coordinate axes affect the other two axes. For either elementary boosts or rotations,
two axes are involved. The quantities ωαβ specify the parameter involved with the transformation
affecting the α and β-axes.

6.3 SPINOR REPRESENTATION OF LORENTZ TRANSFORMATIONS
It hardly needs to be said that the LT has the form of a 4×4 real matrix. It turns out that LTs can also
be obtained from 2×2 complex matrices with unit determinant. If that elicits a “so-what” response,
stay tuned: Experience shows that the more ways you have of looking at something, the better.3

To start, we need the Pauli spin matrices σi (i = 1, 2, 3):

σ1 ≡
(

0 1
1 0

)
σ2 ≡

(
0 −i
i 0

)
σ3 ≡

(
1 0
0 −1

)
. (6.33)

If we add to the collection of Pauli matrices the 2 × 2 identity matrix σ0 ≡
(

1 0
0 1
)
, the set

{σ0, σ1, σ2, σ3} ≡ {σµ} is a basis for complex 2 × 2 matrices (Exercise 6.4). The Pauli matri-
ces are Hermitian; they’re also unitary because (σi)2 = σ0. They have the properties:

{σl, σm} = 2δlmσ0 [σl, σm] = 2iε n
lm σn σjσk = σ0δjk + iε l

jk σl , (6.34)

where {A,B} ≡ AB +BA is the anticommutator, in addition to the commutator, [A,B] ≡ AB −
BA. They have the trace properties,

Trσi = 0 Trσiσj = 2δij Trσjσkσl = 2iεjkl , (6.35)

where TrA ≡
∑
iAii indicates the sum of diagonal elements.

Spacetime coordinates xµ can be “encoded” in a 2 × 2 Hermitian matrix, X , using the basis
{σµ}: (for real coefficients, {σµ} is a basis for 2× 2 Hermitian matrices)

X ≡ xµσµ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (6.36)

3As noted by Richard Feynman: “It always seems odd to me that the fundamental laws of physics, when discovered, can
appear in so many different forms that are not apparently identical at first, but, with a little mathematical fiddling you can
show the relationship. . . . There is always another way to say the same thing that doesn’t look at all like the way you said it
before. I don’t know what the reason for this is. I think it is somehow a representation of the simplicity of nature. . . . Perhaps
a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing
the same thing.”[32]
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The coordinates xµ can be recovered from X with the relation

xµ = 1
2 TrσµX . (6.37)

Equation (6.37) can be verified directly from Eq. (6.36), or using 1
2 Trσµxνσν = 1

2x
ν Trσµσν =

1
2 (2δµν)xν = xµ. There is a one-to-one correspondence between the set of all 2 × 2 Hermitian
matrices (call itH2) and R4: Every matrix X ∈ H2 is associated with a point xµ ∈ R4 through Eq.
(6.37), and the same point in R4 implies the same matrix X through Eq. (6.36).

Now define the “transform” of X (which effects a LT, as we’ll show),

X ′ ≡MXM† , (6.38)

where M is a 2 × 2 complex matrix with unit determinant (unimodular), detM = 1. Like X , X ′

is Hermitian.4 The set of all complex 2 × 2 unimodular matrices M comprises a group known as5

SL(2,C). The coordinates x′µ associated with X ′ can be found from Eq. (6.37): x′µ ≡ 1
2 TrσµX ′.

The quantities x′µ are real from the hermiticity6 of X ′ and σµ. Equation (6.38) implies7 detX ′ =
detX The determinant of X is a Lorentz invariant: detX = (x0)2 − (x1)2 − (x2)2 − (x3)2 =
−xµxµ. The construct X ′ = MXM† thus effects a LT, a linear mapping between spacetime coor-
dinates that preserves the spacetime interval.8 Combining Eqs. (6.38), (6.36), and (6.37),

x′µ = 1
2 TrσµX ′ = 1

2 TrσµMXM† = 1
2 TrσµMxνσνM

† = 1
2
(
TrσµMσνM

†)xν .
Remarkably, there’s an association between matrices M ∈ SL(2,C) and LTs:

Λ(M)µν ≡ 1
2 TrσµMσνM

† . (6.39)

How is this possible? A complex 2 × 2 matrix is associated with eight real numbers, but because
we require detM = 1 + 0i there are only six independent parameters, just enough to encode
the six parameters of a LT. Equation (6.38) defines, for each M ∈ SL(2,C), a mapping from
the set of 2 × 2 Hermitian matrices onto itself, H2 → H2. It’s an active LT: Under X → X ′

induced by M , we have the coordinate transformation xµ → x′µ, where xµ and x′µ are refer-
enced to the same basis. Proper, orthochronous LTs have det [Λµν ] = 1 with Λ0

0 ≥ 1 (Section
4.3). The LT defined by Eq. (6.39) has those properties (Exercise 6.14). The group property of
LTs is preserved by Eq. (6.38): If X ′ = MXM† and X ′′ = NX ′N†, with N,M ∈ SL(2,C),
then X ′′ = NMXM†N† = (NM)X(NM)†, where NM ∈ SL(2,C). The LTs induced by Eq.
(6.38) therefore have the property Λ(MN) = Λ(M)Λ(N). A correspondence thus exists between
SL(2,C) and the set of all LTs, the Lorentz group, call it L. Every LT can be seen as arising from
an element of SL(2,C). The correspondence is not one-to-one, however: For each M ∈ SL(2,C),
−M induces the same LT.9

Any matrix M ∈ SL(2,C) generates a LT through Eq. (6.39).10 We’d like to be able to choose
these matrices in a systematic way so that the LTs they generate are in a form we recognize. Let’s

4(X′)† = (MXM†)† = (M†)†X†M† = MXM† = X′.
5The product of matrices M1,M2 ∈ SL(2,C) is an element of the group and the inverse of any matrix in SL(2,C) is

an element of the group: detM−1 = (detM)−1 = 1.
6(x′µ)∗ = 1

2 Trσ∗µX′∗ = 1
2
∑

ij
(σµ)∗ijX

′∗
ji = 1

2
∑

ji
(σµ)jiX′ij = 1

2 TrσµX′ = x′µ.
7Because detM = 1: detX′ = detMXM† = detM detX detM† = |detM |2 detX = detX .
8Linearity: M (X + αY )M† = MXM† + αMYM†.
9A property-preserving mapping between algebraic structures (such as between groups) is known as a homomorphism.

10Now would be a good time to interject the distinction between a group and its representations. Groups of transforma-
tions are abstract, whereas representations are explicit instantiations of the group elements, often in the form of matrices.
The term “SL(2,C) representation” is loose (but common) jargon. Elements M ∈ SL(2,C) do not represent LTs in the
sense of group representations. Yet, there’s a LT for every M ∈ SL(2,C). A careful statement is: The Lorentz group has
representations given by Eq. (6.38) for every M ∈ SL(2,C).
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guess, based on Eqs. (6.7) and (6.15), that the matrices M can be expressed as exponentials of
appropriate generators,

M = exp
( 6∑
i=1

fiGi

)
. (6.40)

We know that matrices M ∈ SL(2,C) are associated with six independent real numbers; let these
be represented by the quantities {fi}6i=1 in Eq. (6.40). The strategy is to let the parameters fi be
infinitesimals and relate the Gi to the boost and rotation generators Ki and Ji.

For an infinitesimal LT, we have using Eqs. (6.38), (6.36), (6.40) to first order, and (6.30):

X ′ = MXM† =
(
I +

∑
i

fiGi

)
(xνσν)

(
I +

∑
i

fiG
†
i

)
= xν

[
σν +

∑
i

fi

(
σνG

†
i +Giσν

)]
= x′µσµ = (Lµνxν)σµ = (δµν + λµν )xνσµ = xµσµ + xνλµνσµ ,

implying that to first order in small quantities,

λµνσµ =
6∑
i=1

fi

(
σνG

†
i +Giσν

)
. (6.41)

Equation (6.41) connects the generators Gi with the generators of the LT; see Eq. (6.31).
Let G1 be associated with an infinitesimal boost in the x1-direction. With λµν = β1 [K1]µν from

Eq. (6.31),11 we have from Eq. (6.41)

β1 [K1]µν σµ = f1

(
σνG

†
1 +G1σν

)
which is satisfied by f1 = β1 and G1 = 1

2σ1. The same holds for the other directions: fi = βi and
Gi = 1

2σi, i = 1, 2, 3. The form ofM that generates boosts is (with b = β/β and σ ≡ (σ1, σ2, σ3))
the Hermitian matrix

MB(β) =e(b·σ)θ/2 = I cosh θ/2 + (b · σ) sinh θ/2

=
(

cosh θ/2 + b3 sinh θ/2 (b1 − ib2) sinh θ/2
(b1 + ib2) sinh θ/2 cosh θ/2− b3 sinh θ/2

)
, (6.42)

where (b · σ)2n = I and (b · σ)2n+1 = b · σ. Combining Eqs. (6.42) and (6.39), it can be shown
that

Λ(β) =


cosh θ b1 sinh θ b2 sinh θ b3 sinh θ
b1 sinh θ
b2 sinh θ δij + bibj(cosh θ − 1)
b3 sinh θ

 , (6.43)

which is identical to Eq. (6.16) with tanh θ = −β. Contrast Eq. (6.42) with Eq. (6.15), both involve
exponentials of a matrix: L = eθK involves the 4 × 4 boost generator K, whereas M involves the
2× 2 Pauli matrices with half the boost parameter θ.

Example. Let

M(θ) =
(

cosh θ/2 sinh θ/2
sinh θ/2 cosh θ/2

)
.

11There’s a slippery minus sign lurking here. Equation (6.31) specifies a passive infinitesimal LT, whereas Eq. (6.38)
refers to an active LT, with the two related by Lpassive(β) = Lactive(−β). That’s why we chose λµν = +β1 [K1]µν .
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Note that detM = 1. Using the result of Exercise 6.14, the LT induced by M(θ) is
x′0

x′1

x′2

x′3

 =


cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3

 ,

a boost in the x1-direction.

Let G4 be associated with an infinitesimal rotation about the x1-axis. With λµν = θ1 [J1]µν from
Eq. (6.31), we have from Eq. (6.41)

θ1 [J1]µν σµ = f4(σνG†4 +G4σν)

which is satisfied by f4 = θ1 and G4 = i
2σ1. The same holds for the other directions: fj+3 = θj

and Gj+3 = i
2σj , j = 1, 2, 3. The form of M that generates rotations is the unitary matrix

MR(n̂φ) =ei(n̂·σ)φ/2 = I cosφ/2 + i(n̂ · σ) sinφ/2

=
(

cosφ/2 + in3 sinφ/2 (in1 + n2) sinφ/2
(in1 − n2) sinφ/2 cosφ/2− in3 sinφ/2

)
(6.44)

where n̂ ·σ = niσi, with ni the components of the rotation axis n̂. Combining Eq. (6.44) with Eq.
(6.39), we find, identical to Eq. (6.11),

Λ(n̂φ) =


1 0 0 0
0
0 Rij
0

 .

With M = HU expressed as the product of a Hermitian matrix H and a unitary matrix U (each
having unit determinant), we recover the decomposition of LTs as the product of a rotation and a
boost, Λ(HU) = Λ(H)Λ(U) = LR.

6.4 THOMAS-WIGNER ROTATION
Let an accelerated particle12 have velocity u at time t in IRF K. We show in Chapter 7 that there is
always an IRF frame K ′ in which the particle is instantaneously at rest. At t + dt the particle has
velocity u+du inK and appears instantaneously at rest in another frame,K ′′. LetK ′ be connected
to K by a boost L(u) and K ′′ connected to K by a boost L(u + du). The components of a four-
vector A in K ′ and K ′′ are related to those in K by A′ = L(u)A and A′′ = L(u + du)A. The
components of A′′ are thus related to those of A′ by A′′ = L(u+ du)L(−u)A′. Is the compound
transformation ΛT ≡ L(u + du)L(−u) equivalent to a boost with velocity du? Surprisingly, the
answer is No. For |du| � |u|, ΛT is (as we show) a LT with a new boost velocity dw and a rotation
n̂dφ, where the rotation is about the direction u×du with angle dφ = [γ2/((1 + γ)c2)] |u× du|,
and where dw = γ2du‖ + γdu⊥, with du = du‖ + du⊥ decomposed into vectors parallel and
perpendicular to u (see Fig. 6.2). The infinitesimal velocity dw is, in the notation of Eq. (3.30), the
velocity such that u⊕dw = u+du to first order (Exercise 6.10). The composition of non-colinear
boosts thus results in a LT that is the product of a boost and a rotation, the Thomas-Wigner rotation.13

The Thomas-Wigner rotation is one of the more subtle effects of physics; it’s a manifestation of the
non-associativity of the addition of non-colinear velocities.

12Accelerated motion is treated in Chapter 12. In that chapter we’ll make use of results obtained in this section.
13Discovered by L.H. Thomas in 1926[33] and later derived by Wigner.[34]
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u

du

u+ du

du‖

du⊥

du

γ2du‖

γdu⊥

dw

Figure 6.2 A particle has velocity u at time t and u+du at time t+dt. The velocity change
du can be decomposed into vectors parallel and perpendicular to u: du = du‖ + du⊥.
The boost dw = γ2du‖ + γdu⊥ is such that u⊕ dw = u+ du to first order.

Our goal is to find ΛT ≡ L(u+ du)L(−u) for du� |u|, which, if we were to work with LTs
in the form of 4 × 4 matrices would be a task of considerable complexity. Exhibiting the Thomas
rotation simplifies if we use the SL(2,C) representation of LTs (Section 6.3). Any conclusions we
draw from MT ≡ M(u + du)M(−u) will apply to ΛT because Eq. (6.39) is a homomorphism
between SL(2,C) and the Lorentz group L↑+ (Section 4.3).

The boost matrix MB in Eq. (6.42) can be written in the form (Exercise 6.8), converting from
θ = − tanh β to the Lorentz factor γ:

MB(u) =
√

1 + γ

2 I − γ

c
√

2(1 + γ)
u · σ . (6.45)

Let’s write, to first order, MB(u + du) ≡ MB(u) + dM , with dM (a matrix) the differential of
Eq. (6.45). With this definition, MT can be written

MT = (M(u) + dM) ◦M(−u) = I + dM ◦M(−u) . (6.46)

The differential dM is, from Eq. (6.45),

dM = dγ
2
√

2(1 + γ)
I − (2 + γ)dγ

c(2(1 + γ))3/2u · σ −
γ

c
√

2(1 + γ)
du · σ , (6.47)

with dγ = (γ3/c2)u · du. Using Eq. (6.46), it can be shown that by combining Eqs. (6.47) and
(6.45) and making use of the result of Exercise 6.5:

MT = I − γ

2cdu · σ − γ3

2c3(1 + γ) (u · du)(u · σ) + i γ2

2c2(1 + γ) (u× du) · σ . (6.48)

The following relation can be derived (Exercise 6.9),

γdu · σ + γ3

c2(1 + γ) (u · du)(u · σ) = [γdu⊥ + γ2du‖] · σ ≡ dw · σ , (6.49)

where du = du⊥ + du‖ is resolved into vectors perpendicular and parallel to u. Combining Eqs.
(6.48) and (6.49), the matrix MT is, to first order in small quantities,

MT = I + 1
2

(
−dw

c
+ i γ2

c2(1 + γ)u× du
)
· σ . (6.50)

Now examine the form of the boost and rotation matrices, Eqs. (6.42) and Eq. (6.44), for in-
finitesimal parameters: MB(dβ) ≈ I − 1

2 (dβ · σ) and MR(n̂dφ) ≈ I + i
2dφ(n̂ · σ) (for
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small arguments). Thus, MT factorizes (correct to first order), MT ≈ MB(dw)MR(n̂dφ), cor-
responding to an infinitesimal velocity boost dw = γdu⊥ + γ2du‖ and an infinitesimal rotation
n̂dφ = γ2(u×du)/(c2(1+γ)), so that the rotation is about the direction ofu×duwith magnitude
(Thomas rotation)

dφ = γ2

c2(1 + γ) |u× du| , (6.51)

The rate of rotation is
dφ
dt = γ2

c2(1 + γ) |u× a| , (6.52)

where a is the acceleration. Thomas rotation is purely kinematical: It occurs regardless of the cause
of acceleration as long as u× a 6= 0.

Using the correspondence M → Λ we have, correct to first order, that

ΛT ≡ L(u+ du)L(−u) = L(dw)R(n̂dφ) = R(n̂dφ)L(dw) . (6.53)

Equation (6.53) implies
L(dw)L(u) = R(−n̂dφ)L(u+ du) . (6.54)

The two boosts on the left of Eq. (6.54) affect the relativistic addition of velocities, u ⊕ dw =
u+ du. This compound LT, call it Λ ≡ L(dw)L(u), can be decomposed into a boost followed by
a rotation, what we have in Eq. (6.54). A boost followed by a boost is not a boost for non-colinear
velocities. Boost transformations are represented by symmetric matrices. The product of symmetric
matrices, however, is not necessarily symmetric so that the product of non-colinear boosts is not
itself a boost. Indeed, the antisymmetric part of the product of symmetric matrices is related to the
commutator between the matrices (Exercise 6.13), and LTs in different directions do not commute.

SUMMARY
• Rotations are LTs. A rotation through an infinitesimal angle dφ about the direction n̂ is de-

scribed by the operator R(n̂,dφ) = I + dφJ(n̂), where J(n̂) is the infinitesimal rotation
generator. The operator for finite rotations about n̂ is R(n̂φ) = eφJ(n̂). Rotations are speci-
fied by three parameters: φ and n̂. There are only two independent components to n̂ because
of the constraint

∑3
i=1(ni)2 = 1. The rotation matrix has no particular symmetry, but is

orthogonal RT (φ) = R−1(φ) = R(−φ).

• The LT for an infinitesimal boost is L(β̂,dθ) = I + dθK(β̂) where β̂ is a unit vector in
the direction of the relative velocity, dθ is the infinitesimal change in the parameter θ, with
tanh θ = −β, and where K(β̂) is the boost generator. The operator for a finite boost is
L(β) = eθK(β̂). Boosts are specified by the three components of β. The boost matrix is
symmetric.

• An arbitrary LT, Λ, can be uniquely decomposed into the product of a rotation and a boost,
Λ = L(β)R(n̂φ). Given the elements of Λ, the elements of L(β) and the elements of R(n̂φ)
are uniquely determined.

• The composition of non-colinear boosts is not a boost, but rather is a boost followed by
a rotation, L(u + du)L(−u) = L(dw)R(n̂dφ), where dw = γ2du‖ + γdu⊥, with
du = du‖+du⊥ decomposed into vectors parallel and perpendicular to u. The infinitesimal
velocity dw is such that the relativistic addition of velocities u⊕dw = u+ du. The rotation
is about the direction u× du, through the angle dφ = γ2 |u× du| /(c2(1 + γ)). If du is
parallel to u, dφ = 0 and dw = γ2du.
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EXERCISES

6.1 Show that the characteristic polynomial of the rotation generator matrix Eq. (6.5) is λ3 +λ =
0. The components of the unit vector n̂ are constrained so that

∑3
i=1(ni)2 = 1.

6.2 Show that Eq. (6.10) for a rotation of 90◦ about the x-axis reduces to Rx(π/2) in Eq. (6.1).

6.3 Verify that Eq. (6.21) is a symmetric matrix. Does the matrix R in Eq. (6.27) have any partic-
ular symmetry?

6.4 a. Show that the Pauli matrices σi, Eq. (6.33), together with the 2×2 unit matrix, σ0, form a
basis set for 2×2 complex matrices. That is, show that any possible complex 2×2 matrix
can be expressed as a linear combination of the basis matrices.

b. Show that the set {σ0, σ1, σ2, σ3} is a basis for 2× 2 Hermitian matrices when the expan-
sion coefficients are real numbers.

6.5 Show for arbitrary three-vectorsA andB that (σ·A)(σ·B) = (A·B)I+iσ·(A×B), where
σ ≡ (σ1, σ2, σ3) is a “vector” of Pauli matrices. Use the properties of the Pauli matrices in
Eq. (6.34). Note that the final result is not symmetric inA andB.

6.6 Show using Eqs. (6.38) and (6.42) that Λ(M)0
0 = cosh θ.

6.7 Show for n = 1, 2, · · · that (b · σ)2n = I where b is a unit vector.

6.8 Show that MB in Eq. (6.42) can be written

MB(u) =
√

1 + γ

2 I − γ

c
√

2(1 + γ)
u · σ .

The quantities bi are given by (β)i/β = ui/(cβ).

6.9 Derive Eq. (6.49). Decompose du into vectors parallel and perpendicular to u: du = du‖ +
du⊥. Hint:

(
u · du‖

)
u = u2du‖.

6.10 Show that dw ≡ γ2du‖ + γdu⊥ is such that u ⊕ dw = u + du where the direct sum is
defined in Eq. (3.30).

6.11 Show that the generators of 2× 2 unimodular matrices found in Section 6.3 satisfy the same
commutation relations as the generators of boost and rotation LTs.

6.12 Commutators among the boost generators Ki do not close among themselves (whereas they
do among the rotation generators Ji). Define new generators

Li ≡ 1
2 (Ji + iKi) Ri ≡ 1

2 (Ji − iKi) .

Show that

[Li, Lj ] = −εijkLk [Ri, Rj ] = −εijkRk [Li, Rj ] = 0 .

6.13 Let M and N be symmetric matrices, Mij = Mji and Nij = Nji. You’re going to show that
the product of symmetric matrices is not necessarily symmetric, where the antisymmetric part
of the product of symmetric matrices is related to the commutator between the matrices.

a. Show that (MN)ij = (NM)ji.
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b. Define, for any matrix D, its symmetric and antisymmetric parts Dij = 1
2 (Dij +Dji) +

1
2 (Dij − Dji) ≡ DS

ij + DA
ij . Define the commutator of two matrices as [M,N ]ij ≡

(MN)ij − (NM)ij . Show that the commutator of two symmetric matrices is given by

[M,N ]ij = 2(MN)Aij .

The composition of two boosts is the product of two symmetric matrices. You’ve just
shown that the product of two symmetric matrices (MN) does not have to be symmetric,
and the antisymmetric part of (MN) is related to the commutator of M and N .

6.14 The terms Λµν in Eq. (6.39) effect a linear transformation of coordinates preserving the space-
time interval, and hence is a LT for any 2 × 2 complex unimodular matrix M . The deter-
minant of proper LTs is +1 (Chapter 4). Can we calculate the determinant of the matrix
[Λµν ] with elements specified by Eq. (6.39)? The direct approach would be to use Eq. (5.65),
εµ0µ1µ2µ3Λµ0

0 Λµ1
1 Λµ2

2 Λµ3
3 , which would be quite difficult. A simpler approach (although not

simple) is to show that the matrix [Λµν ] can be factored as the product of two matrices. Let M

have elements M =
(
a b
c d

)
.

a. Work out directly the eight matrices specified by σµM and σνM†.

b. Show using Eq. (6.39) that
Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3
Λ2

0 Λ2
1 Λ2

2 Λ2
3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

 = 1
2


a b c d
c d a b
−ic −id ia ib
a b −c −d



a∗ b∗ −ib∗ a∗

b∗ a∗ ia∗ −b∗
c∗ d∗ −id∗ c∗

d∗ c∗ ic∗ −d∗

 .

c. Write this as Λ = 1
2AB. Show that detA = −4i (detM)2 and detB = 4i (detM∗)2.

Conclude that det Λ = |detM |4. Only when we specify detM = 1 do we have a proper
LT, what we inferred from Eq. (6.38).

d. For orthochronous LTs, Λ0
0 ≥ 1 (Exercise 4.1). Show this condition is satisfied by Λ0

0 as
specified by Eq. (6.39) if detM = 1. This problem is tantamount to showing that because
detM = 1, the elements of M satisfy the inequality |a|2 + |b|2 + |c|2 + |d|2 ≥ 2. Hint:
For positive real quantities x and y, x+ y ≥ 2√xy, with equality holding if y = x (show
this). Write down the sum of the magnitude squared of four complex numbers (a, b, c, d):
|a|2 + |b|2 + |c|2 + |d|2. Use the inequality to show that |a|2 + |b|2 + |c|2 + |d|2 ≥
2 (|ad|+ |bc|). Now invoke detM = 1, ad−bc = 1. Prove the inequality |1+z| ≥ 1−|z|
for any complex number z.

6.15 Show that the matrix

M =
(

eθ/2 0
0 e−θ/2

)
generates a boost in the x3-direction. It may be convenient to use the factorization derived in
Exercise 6.14.

6.16 Minkowski space can have bases consisting of four null (lightlike) vectors, a null basis. Just as
with any basis, there’s not a unique null basis. As an example, define the four vectors (where
{eµ}3µ=0 is the usual orthogonal basis that generates the Lorentz metric η = diag(−1, 1, 1, 1))

ê0 = e0 + e1 ê1 = e0 − e1 ê2 = e0 + e2 ê3 = e0 + e3 .
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a. Show that the vectors êµ are each null, i.e., êµ · êµ = 0 (no sum).

b. Are the vectors êµ linearly independent? If so, we can speak of a null basis, along with the
conclusion that a basis of null vectors spans Minkowski space. Hint: Work out the wedge
product ê0 ∧ ê1 ∧ ê2 ∧ ê3. Equivalently, consider the basis transformation in matrix form:

ê0
ê1
ê2
ê3

 =


1 1 0 0
1 −1 0 0
1 0 1 0
1 0 0 1



e0
e1
e2
e3

 .

Evaluate the determinant of this matrix.

c. Show that the metric tensor ĝαβ defined by these basis vectors has the form

[ĝ]αβ ≡ êα · êβ = −


0 2 1 1
2 0 1 1
1 1 0 1
1 1 1 0

 .

In Section 5.6 we mentioned Sylvester’s law of inertia, that the signature of the metric
tensor is an invariant. Show that the metric tensor ĝαβ obeys Sylvester’s theorem. (Hint:
Find the eigenvalues.) The null basis is clearly not an orthogonal basis. We showed in
Section 4.4 that null vectors can be orthogonal if and only if they’re proportional to each
other, i.e., not linearly independent. We cannot have an orthogonal, null basis.

6.17 Show that the matrices in Eq. (6.42) and Eq. (6.44) have unit determinant. Show that the
matrix in Eq. (6.44) is unitary.

6.18 Show that Eq. (6.54) follows from Eq. (6.53).

6.19 a. Show to first order in small quantities that

MB(u+ du)MR(n̂dφ)MB(−u) = I + i γ
2

2c2 (u× du) · σ − γ2

2cdu · σ , (P6.1)

where n̂dφ = γ2(u× du)/(c2(1 + γ)). Make liberal use of the result of Exercise 6.5.

b. Using the correspondenceM → Λ, including the correspondence of the generators 1
2σ →

K and i
2σ → J , whereK and J are “vectors” of the boost and rotation generators, show

that Eq. (P6.1) is equivalent to

L(u+ du)R(n̂dφ)L(−u) = I + γ2

c2
(u× du) · J − γ2

c
K · du . (P6.2)

We’ll use this formula in Chapter 12.
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Particle dynamics

W E take up the dynamical description of motion involving four-momentum, the generalization
of Newton’s quantity of motion that brings together energy and momentum.

7.1 PROPER TIME, FOUR-VELOCITY, AND FOUR-ACCELERATION

Proper time

Time is not a parameter provided by the universe, something external to one’s frame of reference,
rather it’s local to each reference frame, and the most local time is the proper time, what’s mea-
sured on the wordline of a clock, the time between events in the frame of the clock that are without
spatial separation. Proper time can be defined on accelerated worldlines if we work with infinitesi-
mal quantities—over short enough time intervals accelerated motion can be approximated as having
uniform speed, where SR holds sway. Figure 7.1 shows an accelerated worldline. One can always

x

ct S ct′ S′

x′

x′

∆(ct)

∆x

∆(cτ)
A

B

Figure 7.1 Instantaneous rest frame S′, in which events A and B are co-local.

find an IRF, an instantaneous rest frame, that briefly serves as a proxy for the rest frame of a clock,
in which events appear at the same location.1 In Fig. 7.1, events A and B occur at the same location
in S′ for the time interval ∆(cτ). From the invariance of the spacetime separation between IRFs
(here S and S′), we have referring to Fig. 7.1,

− (c∆τ)2 = − (c∆t)2 + (∆r)2 = ∆xµ∆xµ , (7.1)

1We can find an instantaneous rest frame because the tangent to the worldline of a material particle, the four-velocity, is
a timelike vector (see below). The worldline shown in Fig. 7.1 is notional and not accurately drawn.

129
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where ∆r ≡
√

(∆x)2 + (∆y)2 + (∆z)2. Equation (7.1) implies

(∆τ)2 = (∆t)2

[
1− 1

c2

(
∆r
∆t

)2
]

= − 1
c2

∆xµ∆xµ . (7.2)

Letting all quantities become infinitesimal, we have a differential form of time dilation

dτ = dt
√

1− β2(t) = 1
c

√
−dxµdxµ , (7.3)

where β(t) ≡ u(t)/c, with u(t) = dr/dt the instantaneous velocity as seen in S. If u(t) is known
for ti < t < tj , the elapsed proper time can be found by integrating Eq. (7.3):

τj − τi =
∫ tj

ti

dt′
√

1− β2(t′) . (7.4)

The left portion of Fig. 7.2 shows the proper time in the frame of an accelerated clock obtained

x

ct S

τ0t0

τ1t1

τ2t2

τ3t3

x

ct S

τ0t0

τ1t1

τ2t2

τ3t3

Figure 7.2 Proper time along an accelerated worldline (left) and a straight worldline (right).

by integrating Eq. (7.4), and the associated times in S. The differences between the proper times
shown in Fig. 7.2 represent equal “ticks” of the clock in its rest frame, as it’s seen to accelerate in
S: τ3 − τ2 = τ2 − τ1 = τ1 − τ0. The right part of Fig. 7.2 shows an unaccelerated worldline for
which there’s a linear relation between proper time and coordinate time, t = γτ ; for accelerated
worldlines the connection between t and τ is nonlinear.

In Newtonian mechanics, particle trajectories xi(t) are parameterized by absolute time, which
in pre-relativistic physics is the same for all observers. In relativity, time is a coordinate, implying
that spacetime trajectories (worldlines) be given as parameterized curves, xµ = xµ(λ), where λ
is an observer-independent parameter.2 The proper time cdτ =

√
−dxµdxµ is a Lorentz-invariant

measure of the arc length of worldlines. All observers agree on the proper time along a given
worldline. However, like any line integral, the path length (proper time) depends on the curve,
which has an interesting twist in the non-Euclidean geometry of spacetime. Figure 7.3 shows two
paths (I and II) between the same endpoints A and B. Using Eq. (7.4), we have the inequality

∆τI =
∫ B

A,I

dt >
∫ B

A,II

dt
√

1− β2(t) = ∆τII , (7.5)

because β 6= 0 along path II . What appears to be the shortest path on a spacetime diagram is
actually the path with the longest elapsed proper time! Among all worldlines connecting timelike-
separated events, the straight worldline has the longest elapsed proper time. Basically this is the
twin paradox, which we analyze in a later chapter. In Euclidean space, a straight line is the shortest
distance between two points; in MS a straight line is the longest distance between timelike-separated
points. Expectations of distance between points based on our experience with space-only geometry
lead to erroneous conclusions in the geometry of spacetime.

2The worldlines of free particles have a simple parameterization in terms of the proper time: t = γτ and x = βcγτ .
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x

ct

A

B

I II

Figure 7.3 The straightest path in Minkowski space is the longest path.

Four-velocity

The four-velocity is the rate of change of the coordinate differentials dxα on the worldline with
respect to the proper time

Uα ≡ d
dτ x

α(τ) . (7.6)

We’re entitled to call Uα a four-vector because we have differentiated the prototype four-vector xµ

with respect to an invariant quantity,3 τ . Using Eq. (7.3), we have the useful result

d
dτ = dt

dτ
d
dt = γ

d
dt . (7.7)

Combining Eq. (7.7) with Eq. (7.6),

Uα = dxα

dτ = γ
dxα

dt = γ (c,u) , (7.8)

where u ≡ dr/dt is the three-velocity. Note that Uµ → (c, 0) as u → 0. From Eq. (7.8), Uα =
ηαβU

β = γ (−c,u). The norm of the four-velocity (an invariant) isUαUα = −c2. The four-velocity
is a timelike vector; if we worked in units where c = 1 it would be a timelike unit vector. The four-
velocity is tangent to the worldline at every point. On an accelerated worldline the direction of U
changes, but not its magnitude—see Fig. 7.4.

x

ct

Uα

Uα

Uα

Uα

Uα

Figure 7.4 Four-velocity vector is tangent to the worldline at every point.

Four-acceleration

The four-acceleration is similarly defined,

Aα ≡ d
dτ U

α = γ
d
dt (γ (c,u)) ,

3Differentiating the LT xµ = Lµ
ν′x

ν′ with respect to the invariant parameter τ produces Uµ = Lµ
ν′U

ν′ , the transfor-
mation formula for the four-velocity. The four-velocity transforms like a contravariant four-vector.
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which is a four-vector for the same reason that Uα is. The components of Aα are A0 = γcγ̇,
Ai = γ2ai + γuiγ̇, where a is the three-vector acceleration a ≡ du/dt and γ̇ = γ3(u ·a)/c2. The
four-acceleration is thus

Aµ = γ2
(
γ2u · a

c
,a+ γ2u

u · a
c2

)
. (7.9)

Note that Aµ → (0,a) as u → 0. The four-acceleration is spacelike. Differentiate UβUβ = −c2:
UβAβ+AβUβ = 2UβAβ = 0. Thus,Aα is orthogonal to Uβ (in any IRF), and a vector orthogonal
to a timelike vector is spacelike (Section 4.4). One can show explicitly that AαAα > 0.

7.2 THE ENERGY-MOMENTUM FOUR-VECTOR
We discussed in Section 1.2 how the non-invariance of the wave equation under the GT implies, if
mechanics and electrodynamics are to be subject to the principle of relativity, that Newton’s second
law must be modified to be relativistically correct. One should recognize that any truly new equation
in physics cannot be derived from something more fundamental, it can only be motivated and made
plausible, and that ultimately its validity can only be established through testing against experiment.

With that said, what guidelines do we have in producing a relativistically correct mechanics?
First, the equation of motion should have the same form in every IRF, which can be achieved through
the use of four-vectors, or more generally tensors. Second, for a free particle it must reduce to
Aµ = 0. If Aµ vanishes in one frame it vanishes in all IRFs (because it’s a four-vector). Third, the
equation of motion should reduce to F = ma in any frame where the speed of the particle is much
less than the speed of light. Of course, F = ma is a relation among three-vectors, not four-vectors.
These considerations suggest Kµ ≡ mAµ as a covariant equation of motion for a suitably defined
four-force, Kµ (the Minkowski force); Kµ is a four-vector because m is an invariant and Aµ is a
four-vector. The four-momentum defined as Pµ ≡ mUµ = mγ(c,u) is a four-vector for the same
reason; Pµ is timelike, PαPα = m2UαUα = −m2c2. Putting together these definitions,

d
dτ P

µ = Kµ , (7.10)

would be a suitable generalization of Newton’s second law. Too bad we don’t know what Kµ is.
Ready for the new physics? The quantities Uµ andAµ are kinematic descriptions of worldlines;

where’s the dynamics? We’re going to redefine the three-momentum as

p = mγu = mu√
1− β2

. (7.11)

The transition to relativistic mechanics comes from redefining the three-momentum from p = mu
to p = mγu; Newton was understandably wrong with his quantity of motion. Defining p = mγu is
consistent with the definition Pµ = mUµ so that Pµ = (mγc,p). We require that the three-vector
form of Newton’s second law still holds

dp
dt = F , (7.12)

with p given by Eq. (7.11). The spatial part of Kµ must then be γF , i.e., Kµ = (K0, γF ), so that
the spatial part of Eq. (7.10) is consistent with Eq. (7.12). The time component K0 can be found
fromKµUµ = mAµUµ = 0, implying thatK0 = γF ·u/c. Thus,K0c has the dimension of power
delivered by the force.4 The four-force is now determined: Kµ = γ(F · u/c,F ); Kµ is also called
the power-force four-vector.

4While K0c has the interpretation of the power delivered by the force, K0 has the dimension of force. All components
of a four-vector must have the same physical dimension.
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We’re lacking a physical interpretation of P 0 = mγc. From the time component of Eq. (7.10),

dP 0

dτ = γ
dP 0

dt = K0 = γ

c
F · u =⇒ d

dt
(
P 0c

)
= F · u . (7.13)

Because F · u is the rate of work done, P 0c can be interpreted as the energy

E = P 0c = mγc2 . (7.14)

Equation (7.14) is of course Einstein’s famous equation showing the equivalence of mass and energy.
A constant could seemingly be added to Eq. (7.14) and satisfy Eq. (7.13), a constant having the
dimension of energy. Such a constant, however, must be zero;5 E = mγc2 already captures a
constant energy associated with a particle, mc2.

The kinetic energy of a particle, T , is the work done on it from rest,

T =
∫
F · dr =

∫ dp
dt · dr =

∫ dp
dt · udt =

∫
dp · u =

∫
d(mγu) · u

= m

∫
(γdu+ udγ) · u = m

∫ (
γdu+ uγ3u · du

c2

)
· u = m

∫
γ

(
1 + u2

c2
γ2
)
u · du

= m

∫
γ3 1

2d(u2) = m

2

∫ d(u2)
(1− u2/c2)3/2 = γmc2 + α = E + α ,

where we’ve used the trick u ·du = 1
2d(u ·u) = 1

2d(u2) and α is an integration constant. Because
T = 0 if γ = 1, α = −mc2. We thus have the expression for the kinetic energy,

T = (γ − 1)mc2 =⇒ E = T +mc2 . (7.15)

Example. At CERN electrons can be accelerated to energies exceeding 100 GeV. What is the speed
of an electron of 100 GeV total energy? Use E = γmc2 to find γ,

γ = E

mc2
= 102 GeV

0.511× 10−3 GeV
= 1.96× 105 .

Take apart the Lorentz factor to find the speed:

β =
√

1− 1
γ2 ≈ 1− 1

2γ2 = 1− 1.3× 10−11 .

The electron speed differs from the speed of light by one part in 1011.

The four-momentum is now specified in terms of dynamical quantities:

Pµ = (E/c,p) , (7.16)

where p = mγu and E = mγc2. Energy and momentum are components of a four-vector (the
“momenergy”), and transform together under a LT, Pµ

′ = Lµ
′

ν P
ν . For this reason, the four-

momentum is called the energy-momentum four-vector. From Eq. (7.16), PµPµ = −m2c2 =
− (E/c)2 + p2 or6

E =
√

(pc)2 + (mc2)2 . (7.17)

5At lowest order in β, the spatial parts of the LT for Pµ (Pµ
′ = Lµ

′
ν P

ν ) imply the three-vector relation p′ = p−βP 0.
On the other hand, the GT of the momentum is p′ = p − mcβ for all β (multiply the Galilean velocity formula by m).
We require therefore that in the limit of small speeds, limβ→0 P

0 = mc. The LT of Pµ would not have the correct
non-relativistic limit if we took E = P 0c+ α, where α is a nonzero constant.

6When we solve PµPµ = −E2/c2 + p2 = −m2c2 for E, we obtain E = ±
√
p2c2 +m2c4. One would normally

exclude the negative sign as unphysical. In relativistic quantum mechanics, the complete set of solutions unavoidably con-
tains negative energies. In 1928 Dirac postulated antiparticles based on this “doubling” of the solutions to the equations of
relativistic quantum mechanics. The antiparticle to the electron, the positron, was discovered in 1932.
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We can set m = 0 in Eq. (7.17) and extend four-momentum to photons.7 With p = E/c in Eq.
(7.16), the four-momentum of a photon Qµ ≡ (E/c) (1, n̂) is a null vector, with n̂ a unit vector
specifying the direction of propagation. We see that Qµ is proportional to the four-wavevector,
kµ = (ω/c) (1, n̂), Eq. (5.61). A proportionality factor is naturally suggested by the Planck relation
E = ~ω for the energy of a photon, and thus

Qµ = ~ω
c

(1, n̂) = ~kµ . (7.18)

The identityQµ = ~kµ for photons is “one half” of wave-particle duality, with the three-momentum
of photons (particles) given in terms of a wave property p = ~k. Does the converse relation hold
for massive particles (“matter waves”) with wave properties ascribed to particles, kµ = Pµ/~?
The extension of p = ~k to particles of nonzero mass, k = p/~ = mγv/~, confirmed in the
Davisson-Germer experiment, contributed decisively to the development of quantum mechanics.
Wave-particle duality is anticipated by SR.

7.3 ACTION PRINCIPLE FOR PARTICLES
The methods of analytical mechanics apply in SR with suitable modifications. By Hamilton’s prin-
ciple, Eq. (D.17), of all the paths x(t) a particle might take between fixed endpoints, the actual path
is the one that extremizes the action integral

S[x] ≡
∫ t1

t0

L(x, ẋ)dt , (7.19)

where the integrand L is the Lagrangian function. In pre-relativistic mechanics L is the differ-
ence between the kinetic and potential energies, L(x, ẋ) = T (ẋ) − V (x); we’ll show how that’s
generalized in SR. Analytical mechanics specifies the canonical momentum, Eq. (D.25), and the
Hamiltonian function H , Eq. (D.26):

p ≡ ∂L

∂ẋ
H ≡ pẋ− L ; (7.20)

definitions that are retained in SR. The Hamiltonian H = H(p, x) is a function of p and x and is
a constant of the motion, Eq. (D.32), a constant we can take to be the energy. The extremal path is
such that first-order variations δx(t) around it lead to second-order variations of the action integral,
a condition signified by writing δS = 0,

δS =
∫

δL

δx(t)δx(t)dt =
∫ [

∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
δx(t)dt = 0 , (7.21)

where we’ve used Eq. (D.10). By requiring the integrand in Eq. (7.21) to vanish, we obtain the
Euler-Lagrange equation, the differential equation that describes the extremal path

∂L

∂x
= d

dt

(
∂L

∂ẋ

)
. (7.22)

The Lagrangian formalism is a trusty machine for generating equations of motion.
To what extent do these ideas work in SR? Consider a free particle in one dimension. It would

seem natural to take the Lagrangian to be the relativistic kinetic energy, Eq. (7.15):

L
?= mc2 (γ − 1) = mc2

[
1√

1− ẋ2/c2
− 1
]
. (wrong!) (7.23)

7The particle nature of photons is established in Compton scattering experiments.
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What is the canonical momentum obtained from Eq. (7.23)? Using Eq. (7.20),

p = ∂L

∂ẋ
= mc2

∂γ

∂ẋ
= mγ3ẋ . (wrong!) (7.24)

Equation (7.24) is not the same as Eq. (7.11); it’s not right. What about the Hamiltonian? Using
Eqs. (7.20), (7.23), and (7.24), H = p2/(mγ3)−mc2(γ − 1), which is not the same as Eq. (7.17).
Something is wrong: The Lagrangian of a free particle is not the kinetic energy! We can’t generalize
from nonrelativistic to relativistic physics. It usually doesn’t work that way.

At this point, let’s guess at the Lagrangian for a free particle:8

L = −mc2
√

1− v2/c2 . (7.25)

It’s a simple matter to show that Eq. (7.25) correctly reproduces the relativistic momentum and the
relativistic Hamiltonian:

p = ∂L

∂ẋ
= mγẋ H = pẋ− L = c

√
p2 +m2c2 = cP 0 .

The methods of analytical mechanics generate the components of the energy-momentum four-vector
using Eq. (7.25) as the Lagrangian. Guessing, however, is not satisfactory; we’d like to know how
to derive Eq. (7.25).

What do we want from a relativistic action principle? The action, a scalar, should not depend
on our choice of coordinates; it should therefore be expressed in terms of Lorentz invariants. The
simplest scalar along worldlines is the proper time τ , the arc length of the worldline. Take as the
action of a free particle

S = −α
∫ B

A

dτ , (7.26)

where the minus sign gets the nonrelativistic limit right and α is a constant, characteristic of a
particle. (We show that α = mc2, where we stick to the convention that action has the dimension of
energy × time.) We can put Eq. (7.26) into the same form as Eq. (7.19) by writing

S = −α
∫

dτ = −α
∫ dτ

dt dt ≡
∫
Ldt .

The Lagrangian is then

L = −αdτ
dt = −α

√
1− β2 = −mc2

√
1− β2 , (7.27)

the same as Eq. (7.25), where we’ve used Eq. (7.2). The constant α can be obtained from the form
of L for slow speeds: L = −α + 1

2αβ
2 + O(β4). Taking α = mc2 establishes contact with the

pre-relativistic Lagrangian, L = −mc2 + 1
2mu

2; a constant added to the Lagrangian does not affect
the equations of motion.

The Lagrangian of a free particle is not the kinetic energy. In units of mc2, T = γ − 1 while
L = −γ−1. As β → 0, γ − 1 = 1

2β
2 + 3

8β
4 + O(β6) and −γ−1 = −1 + 1

2β
2 + 1

8β
4 + O(β6).

The canonical momentum is basically ∂L/∂β. We see that ∂T/∂β matches ∂L/∂β as β → 0, and
hence we may replace the Lagrangian with the nonrelativistic kinetic energy for sufficiently slow
speeds. The two functions are completely different for large β, however: T diverges as β → 1, while
L→ 0 as β → 1. In fact, L must vanish as β → 1: The arc length of a lightlike curve is zero.

8Students sometimes leave off the prefactor of −mc2 from the relativistic Lagrangian, Eq. (7.25). That term, however,
is needed to make the identification of the canonical momentum with the spatial parts of Pµ and the identification of the
Hamiltonian with the energy, as the time component cP 0. We need that factor!
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For forces derivable from a potential energy function, Fi = −∂V/∂xi, the relativistic equations
of motion are generated by the Lagrangian9

L(x, ẋ) = −mc2
√

1− β2 − V (x) . (7.28)

From Eq. (7.28),
∂L

∂ẋi
= mγẋi

∂L

∂xi
= − ∂V

∂xi
,

which when combined with Eq. (7.22) produces the equation of motion

d
dt (mγẋi) = − ∂V

∂xi
, (7.29)

the same as Eq. (7.12).
For a particle of charge q (see Eq. (D.41))

L(x, ẋ) = −mc2
√

1− β2 − qφ+ qu ·A , (7.30)

where φ is the scalar potential andA is the vector potential. From Eq. (7.30),

∂L

∂ẋi
= mγẋi + qAi

∂L

∂xi
= −q ∂φ

∂xi
+ qu · ∂A

∂xi
,

which when combined with Eq. (7.22) leads to the equation of motion

d
dt (mγẋi) = −q ∂φ

∂xi
− qdAi

dt + qu · ∂A
∂xi

= q [E + u×B]i . (7.31)

The equivalence between Eq. (7.31) and the Lorentz force is shown in Appendix D.

7.4 KEPLER PROBLEM IN SPECIAL RELATIVITY
We analyze the Kepler problem in SR (we revisit this problem in GR). Consider a particle of mass
m in the Newtonian gravitational potential produced by massM , V (r) = −k/r, where k ≡ GMm.
The motion is planar, just as in Newtonian mechanics; therefore, work in polar coordinates (r, θ) so
that the velocity squared is v2 = ṙ2 + r2θ̇2. The Lagrangian, Eq. (7.28), is in this case

L(r, ṙ, θ̇) = −mc2
√

1− 1
c2
(
ṙ2 + r2θ̇2

)
+ k

r
= −mc2γ−1 + k

r
. (7.32)

The canonical momenta are therefore

pr ≡
∂L

∂ṙ
= mγṙ pθ ≡

∂L

∂θ̇
= mγr2θ̇ . (7.33)

The angular momentum pθ is constant because ∂L/∂θ = 0 (and hence the motion is planar). The
Hamiltonian, another constant of the motion, is from Eq. (D.26):

H ≡ pr ṙ + pθ θ̇ +mc2γ−1 − k

r
= c

√
m2c2 + p2

r +
p2
θ

r2 −
k

r
. (7.34)

We seek the orbit equation r(θ). It turns out to be easier to work with the variable u ≡ r−1 and
then convert to r = u−1 when required. Thus,

du
dθ = − 1

r2
dr
dθ = − 1

r2
ṙ

θ̇
= −pr

pθ
, (7.35)

9Note that we’ve written force as a covariant vector because it’s derived from the gradient of the potential energy
function.
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where we’ve used Eq. (7.33). An expression for pr can be obtained from Eq. (7.34),

p2
r = 1

c2

(
H + k

r

)2
− p2

θ

r2 −m
2c2 . (7.36)

By squaring Eq. (7.35), using Eq. (7.36), and substituting r−1 = u we have(
du
dθ

)2
= 1
p2
θ

p2
r = 1

p2
θ

[
1
c2

(H + ku)2 − p2
θu

2 −m2c2
]
. (7.37)

Now differentiate Eq. (7.37) with respect to θ. We find

d2u

dθ2 + α2u = kH

p2
θc

2 , (7.38)

where α2 ≡ 1− k2/(pθc)2 is a constant. The solution of Eq. (7.38) can be written

u(θ) = 1
p

(1 + ε cosα (θ − θ0)) , (7.39)

where p ≡
(
p2
θc

2 − k2) /(kH) is a characteristic length, θ0 is a constant we can take as zero, and
ε, the eccentricity, is a parameter of the orbit obtained from ε = (rmax − rmin)/(rmax + rmin). The
orbit equation is, from Eq. (7.39) with θ0 = 0,

r(θ) = p

1 + ε cosαθ . (7.40)

The orbit described by Eq. (7.40) differs from the classic Kepler orbit in one significant way:
α 6= 1. Relativistic Kepler motion is an ellipse with an advancing line of the apsides (see Fig. 7.5).
The apsis (plural apsides) is a point on the orbit of either closest approach to the center of force

∆θ

Figure 7.5 Precessing orbit, from Eq. (7.40) with ε = 0.75 and α = 0.96. Line of the
apsides advances by ∆θ per revolution. Classical Kepler orbit shown as a dashed curve.

(the periapsis) or the point furthest away (the apoapsis), with the line between them the line of the
apsides. Successive points of apoapsis occur at angles θ = (2n + 1)π/α, where n is an integer
(show this). After one revolution, the line of the apsides advances through the angle

∆θ = 2π
α

(mod 2π) = 2π√
1− k2/(pθc)2

(mod 2π) . (7.41)

To calculate ∆θ requires that we know the angular momentum pθ. For the classic Kepler prob-
lem (α = 1) it’s straightforward to show that p2

θ = kmp. For the relativistic problem, however,
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determining pθ entails a fair amount of algebra. At the turning points of the motion pr ∝ ṙ = 0, and
thus from the constancy of H , Eq. (7.34),

c

√
m2c2 +

p2
θ

r2
min
− k

rmin
= c

√
m2c2 +

p2
θ

r2
max
− k

rmax
. (7.42)

Equation (7.42) can be solved for pθ, with the result10

p2
θ = GMm2p

[√
1 + G2M2

4a2c4
+ GM

2ac2
1 + ε2

1− ε2

]
. (7.43)

The nonrelativistic result is found by letting c→∞ in Eq. (7.43). Using the parameters of the orbit
of Mercury and the mass of the sun, GM/(ac2) ≈ 10−10; the nonrelativistic value for pθ is thus
an excellent approximation in this case. Using the nonrelativistic expression for pθ in Eq. (7.41),
k2/(p2

θc
2) = GM/[ac2(1−ε2)] which is also small. We may therefore approximate Eq. (7.41) with

its Taylor expansion,

∆θ ≈ πGM

ac2(1− ε2) . (7.44)

The orbit of Mercury is known to exhibit an advancing perihelion,11 the famous 43′′ per century
(an arcsecond is 4.848 × 10−6 radians). As we’ll see in Chapter 17, GR also predicts an elliptical
orbit featuring an advancing periapsis. For the orbit of Mercury the prediction of GR agrees with
the observed value of 43′′ per century. The formula for the precession angle obtained in GR is the
same as Eq. (7.44) except for a factor of six; the precession angle predicted by SR is a sixth that
predicted by GR—see Eq. (17.58).

7.5 COVARIANT EULER-LAGRANGE EQUATION
Equation (7.29) is the relativistic generalization of Newton’s second law. It’s not “fully” relativistic,
however, in that it’s a relation among three-vectors, not four-vectors. The interaction potential V (r)
(in the Kepler problem, for example) is a function only of the instantaneous spatial location of the
particle. Neither the equations of motion, nor the Lagrangian have been expressed in covariant form.
In this section we obtain the covariant Lagrangian of a free particle.

In pre-relativistic mechanics the action integral is stationary around a path in configuration space
where the spatial location of a particle is specified by generalized coordinates, {qi}ni=1. The points
of the paths (actual and varied) are labeled by absolute time. In the path functional S[path] =∫
L(qi(t), q̇i(t))dt, time is integrated out, leaving the action as a function solely of the path.

In the theory of relativity time is another coordinate, “configuration space” is spacetime and
paths are worldlines. We therefore need a parameter other than time to label the points of worldlines
(actual and varied). The proper time would meet this need except that τ is path dependent (Section
7.1). We assume that a parameter exists, call it λ, such that the coordinates of all worldlines can be
parameterized xµ(λ). At the end of the calculation we set λ = τ .

A straight line in MS (inertial motion) has the longest elapsed proper time between the events
that it connects (Section 7.1). In GR, the worldline of a free particle is a geodesic, the straightest pos-
sible curve on a curved geometry (Chapter 14). Extremal proper time is a property that distinguishes
the worldlines of free particles. Using the spacetime metric, −(cdτ)2 = (ds)2 = gµνdxµdxν , im-
plying cdτ =

√
−gµνdxµdxν . The covariant generalization of Eq. (7.26) is12

S = −mc2
∫

dτ = −mc
∫ √

−gµν
dxµ
dλ

dxν
dλ dλ . (7.45)

10The quantity a is the semi-major axis of the orbit, a = 1
2 (rmax + rmin).

11Perihelion is the point of closest approach in the orbit of a planet around the sun.
12We “borrow” a factor of c from α = mc2 to include with cdτ in Eq. (7.45).
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The covariant generalization of Eq. (7.27) is then:

L = −mc2 dτ
dλ = −mc

√
−gµν

dxµ
dλ

dxν
dλ ≡ −mc

√
−gµνUµUν , (7.46)

where the four-velocity Uα = dxα/dλ is tangent to the worldline. When in Chapter 8 we allow a
coupling to the electromagnetic field, Lwill also contain the coordinates xµ. Let’s do the variational
calculus with L = L(xµ, Uµ). In that case,

δS = −mc
∫ [

∂L

∂xµ
δxµ + ∂L

∂Uµ
δUµ

]
dλ = −mc

∫ [
∂L

∂xµ
δxµ + ∂L

∂Uµ
d

dλδx
µ

]
dλ , (7.47)

where δUµ = (d/dλ)δxµ(λ), the variation in the derivative is the derivative of the variation, Eq.
(D.7). The second term in Eq. (7.47) can then be integrated by parts with the integrated term van-
ishing because the endpoints of the path are held fixed. Thus,

δS = −mc
∫ [

∂L

∂xµ
− d

dλ

(
∂L

∂Uµ

)]
δxµdλ .

To have δS = 0 for arbitrary (and independent) variations δxµ, the integrand must vanish, leaving
us with the Euler-Lagrange equation in covariant form

d
dτ

(
∂L

∂Uµ

)
= ∂L

∂xµ
, µ = 0, 1, 2, 3 (7.48)

where we have identified λ = τ for the extremal worldline.
There’s another way to define the free-particle Lagrangian, basically the square of Eq. (7.46).

Substitute (L)2 in Eq. (7.48),

d
dλ

(
∂L2

∂Uµ

)
− ∂L2

∂xµ
= d

dλ

(
2L ∂L

∂Uµ

)
− 2L ∂L

∂xµ
= 2L

[
d

dλ

(
∂L

∂Uµ

)
− ∂L

∂xµ

]
+ 2 ∂L

∂Uµ
dL
dλ

=− 2mc2 ∂L

∂Uµ
d2τ

dλ2 = 0 ,

where the terms in square brackets vanish by Eq. (7.48), and in the second line we have used L =
−mc2dτ/dλ, Eq. (7.46). For the extremal path τ is at most a linear function of λ (shown in Chapter
14, the affine parameterization) and thus d2τ/dλ2 = 0. Thus, we can equally well take for the
free-particle Lagrangian

L = 1
2mgµν

dxµ

dλ
dxν

dλ = 1
2mgµνU

µUν (7.49)

instead of (7.46). Equation (7.49) leads to the same equation of motion as (7.46), even in GR, and
is more convenient to use in certain calculations.

Let’s calculate the canonical momentum using the two Lagrangians. Using Eq. (7.46),

∂L

∂Uµ
=−mc ∂

∂Uµ
√
−gρσUρUσ = −mc

2
√
−gκλUκUλ

(
−gρσUρδσµ − gρσδρµUσ

)
= −mc

2
√
−gκλUκUλ

(−gρµUρ − gµσUσ) = mcgµσU
σ√

−gκλUκUλ
= mUµ ,

where we have used ∂Uα/∂Uβ = δαβ and we have lowered the index on Uσ . Because this equation
applies for the actual worldline, set UβUβ = −c2. If we use Eq. (7.49), ∂L/∂Uµ leads us directly to
mUµ. For either form of the free-particle Lagrangian, Eq. (7.46) or Eq. (7.49), the Euler-Lagrange
equation yields dPµ/dτ = 0 or Aµ = 0, the law of inertia.
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7.6 PARTICLE CONSERVATION LAWS
In pre-relativistic mechanics, conservation of linear momentum, angular momentum, and energy
follow directly from Newton’s second law. Another way to establish conservation laws, one that
we can use in the theory of relativity, involves coordinate transformations that leave the action
integral invariant. The path taken by a particle is the one that extremizes the action (Hamilton’s
principle). The value of the action integral is invariant under coordinate transformations (Appendix
D). As we’ll show, invariance of the action implies the existence of conserved quantities along
worldlines. Conservation of four-momentum is implied by invariance under spacetime translations
(homogeneity of spacetime) and conservation of angular momentum is implied by the invariance of
the action under LTs.

Invariance, conservation—is there a difference? An invariant does not change between reference
frames; a conserved quantity doesn’t change during processes. Momentum may be conserved in a
given reference frame, but is not an invariant (it transforms as a four-vector). In Chapter 9 we show
that conservation laws associated with fields (as opposed to particles) can also be derived from
invariance of the action.

Consider a nonrelativistic free particle in one dimension with action integral

S =
∫ tf

ti

1
2mẋ

2dt . (7.50)

The worldline of stationary action is obtained from Lagrange’s equation, which in this case (ẍ = 0)
is a straight line x(t) = α+ βt, where α and β are integration constants, to be fit to the endpoints:

α = xitf − xf ti
tf − ti

≡ xitf − xf ti
∆t β = xf − xi

tf − ti
≡ ∆x

∆t .

Substituting ẋ = β back into Eq. (7.50), we obtain the action function,

S = 1
2mβ

2∆t = 1
2m

(∆x)2

∆t = m

2
(xf − xi)2

tf − ti
. (7.51)

What transformations leave S invariant? We can shift the origin of the coordinates, x→ x′ = x+a,
and we can shift the origin of time, t → t′ = t + b; both transformations leave S unchanged. We
show in Eq. (7.60) that the first symmetry implies conservation of momentum and the second implies
conservation of energy.

Is the nonrelativistic action invariant under the GT? Under x → x′ = x − vt, t → t′ = t, we
have from Eq. (7.51)

S → S′ = m

2
(∆x′)2

∆t′ = m

2
(∆x− v∆t)2

∆t = S −mv∆x+ m

2 v
2∆t .

The nonrelativistic action is therefore not invariant under the GT (S′ 6= S); there are no conserved
quantities implied by the GT. The relativistic action, however, is a Lorentz invariant (by construc-
tion). For a free particle, from Eq. (7.26)

S = −mc2
∫

dτ = −mc2∆τ = −mc2
√

(∆t)2 − (∆x)2/c2 . (7.52)

The action function in Eq. (7.52) is invariant under a shift of the spacetime origin, which (as we
have noted) implies conservation of energy and momentum.

As another example, take a nonrelativistic particle in a uniform gravitational field,

S =
∫ tf

ti

(m
2 ẋ

2 −mgx
)

dt . (7.53)
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Lagrange’s equation gives ẍ = −g, and hence x(t) = α+ βt− 1
2gt

2. Solving for α and β in terms
of the endpoints of the motion,

α = tfxi − tixf
∆t − 1

2gtitf β = ∆x
∆t + 1

2g (tf + ti) . (7.54)

Substituting x(t) back into Eq. (7.53), and using Eq. (7.54), we obtain

1
m
S = 1

2
(∆x)2

∆t − g∆t
2 (xf + xi)−

g2

4! (∆t)3
. (7.55)

What are the symmetries of S now? Clearly, S is not invariant under a shift in the origin. Under
x → x + a in Eq. (7.55), S → S −mga∆t. Because S is not invariant under this transformation,
momentum is not conserved along the worldline, which we should not expect for a particle in a
gravitational field. Equation (7.55) however is invariant under time translations, t→ t+b, implying
conservation of energy.

Let’s now consider what’s implied by invariance of the relativistic action integral under an in-
finitesimal change in spacetime coordinates, xµ → xµ + δxµ. We require

δS =
∫ λ2

λ1

(
∂L

∂xµ
δxµ + ∂L

∂ẋµ
δ(ẋµ)

)
dλ = 0 . (7.56)

Following the same steps as in Eq. (7.47), Eq. (7.56) is equivalent to

δS = ∂L

∂(ẋµ)δx
µ
∣∣∣λ2

λ1
+
∫ λ2

λ1

[
∂L

∂xµ
− d

dλ

(
∂L

∂ẋµ

)]
δxµdλ = 0 . (7.57)

In the usual variational problem (Appendix D), in order to discover the extremal path, we vary the
path such that the variation vanishes at the endpoints. In that case, we would set the integrated part
in Eq. (7.57) to zero, and we would require the vanishing of the integrand in Eq. (7.57) to derive
Eq. (7.48). Here we are doing something different. We are changing variables on the extremal path
and are demanding that the action be invariant. In that case, Euler’s equations are satisfied and the
integral in Eq. (7.57) vanishes, leaving us with the conservation law (set λ = τ and Uµ = dxµ/dτ )

∂L

∂Uµ
δxµ

∣∣∣τ2

τ1
= 0 . (7.58)

With Pµ = ∂L/∂Uµ, Eq. (7.58) is equivalent to

Pµδx
µ
∣∣∣τ2

τ1
= 0 . (7.59)

Invariance of the action under xµ → xµ + δxµ implies the existence of a quantity Pµδxµ that is the
same at the endpoints of the worldline, i.e., is conserved.

For δxµ derived from constant shift in coordinates, δxµ = (cδt, δr), Eq. (7.59) becomes

Pµδx
µ
∣∣∣τ2

τ1
= (−Eδt+ p · δr)

∣∣∣τ2

τ1
= 0 , (7.60)

implying (as advertised) that energy and momentum are conserved along the worldline if the action
is invariant under a translation of spacetime coordinates, i.e., if the action is independent of the
location of the origin of the spacetime coordinate system.

What’s implied by invariance under infinitesimal LTs, δxµ = λµνx
ν (Section 6.2)? From Eq.

(7.59), Pµδxµ = Pµλ
µ
νx

ν = Pαηαµλ
µ
νx

ν . Because ηαµλµν is antisymmetric in (α, ν) (Section 6.2),
Eq. (7.59) picks out the antisymmetric part of the tensor Pαxν and is equivalent to

1
2 (Pµxν − P νxµ) ηµρλρν

∣∣∣τ2

τ1
= 0 .
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Define the angular momentum tensor

Mµν ≡ xµP ν − xνPµ . (7.61)

Invariance of the action under infinitesimal LTs implies that Mµν is conserved along worldlines.
An antisymmetric second-rank tensor in four dimensions has six independent components. Three
are associated with the orbital angular momentum pseudovector, Li ≡ 1

2εijkM
jk, the dual of the

spatial parts of Mµν . The time components of Eq. (7.61) form a vector M0i = x0P i − xiP 0 =
c
(
tP i − xiE/c2

)
which implies the constancy of tp−rE/c2. BecauseE and p are conserved, Eq.

(7.59), a free particle moves with the constant velocity

dr
dt = c2p

E
. (7.62)

Equation (7.62) is the same as Eq. (3.19). With E = γmc2, Eq. (7.62) implies p = mγv.

More than one free particle

A system of n particles is described by n worldlines xµi (τi) (i = 1, . . . , n), each characterized by
its own proper time τi. We must introduce a separate proper time for each particle; proper time
is recorded in an instantaneous rest frame and we cannot find a frame instantaneously at rest with
respect to more than one particle. Each worldline is parameterized separately,

cdτi =
√
−gµνdxµi dxνi =

√
−gµν

dxµi
dλi

dxνi
dλi

dλi =
√
−gµνUµi Uνi dλi .

The action integral for non-interacting particles is the generalization of Eq. (7.45),

S = −
∑
i

mic

∫
dλi
√
−gµνUµi Uνi . (7.63)

Hamilton’s principle applied to the variation of the worldlines xµi (λi) leads to a separate Euler-
Lagrange equation for each particle. Without providing details, invariance of S under spacetime
translations implies conservation of the total momentum

∑
i pi and the total energy,

∑
iEi. Invari-

ance under infinitesimal LTs leads to conservation of the total angular momentum tensor,
∑
iM

µν
i ,

the spatial components of which imply conservation of the total angular momentum, and the time
components imply that

∑
i

(
tpi − Eiri/c2

)
= constant. Because the total energy is a constant,∑

i riEi∑
iEi

=
c2t
∑
i pi∑

iEi
+ constant .

The center of energyR ≡
∑
i riEi/

∑
iEi moves with constant velocity,

dR
dt =

c2
∑
i pi∑

iEi
=
∑
imiγivi∑
imiγi

= constant . (7.64)

Equation (7.64) is the analog of the center-of-mass theorem in pre-relativistic mechanics. For non-
relativistic speeds γi → 1 and R →

∑
imiri/

∑
imi; the expression for R reduces to that of the

Newtonian center of mass. Note that R is not the spatial part of a four-vector. The location of the
center of energy is reference-frame dependent.
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7.7 ENERGY-MOMENTUM CONSERVATION
Processes involving relativistic particles are studied in nuclear and high-energy physics, processes
in which particles initially far enough apart to be considered free, come together and interact over
small spacetime regions, and then move apart again as free particles. In such processes, the total
four-momentum of the particles is conserved:

N∑
i=1

P νi =
N ′∑
j=1

P
′ν
j , (7.65)

where we allow for the possibility that the number of particles after the interaction N ′ is not the
same as before, N . Equation (7.65) has been verified in countless experiments.

The analysis of Eq. (7.65) is often easiest in a particular frame of reference. We know that
through the use of Lorentz invariants, the results obtained are independent of reference frame. Eval-
uating such invariants, however, is often easiest in a particular frame—why not use that one? In this
section we review selected processes between relativistic particles and the reference frames used to
analyze them.

7.7.1 Center of momentum frame

The center of momentum (CM) frame is the IRF in which the spatial part of the total four-momentum
is zero,

∑
i pi = 0. The analysis of many processes simplifies in the CM frame. It’s always possible

to find such a frame because of the timelike character of Pµ for material particles. The total four-
momentum in the CM frame is thus PµCM = (E/c, 0), where E =

∑
iEi =

∑
imiγic

2. The “rest
mass” in the CM frame, MCM = E/c2 =

∑
imiγi, is not the sum of the masses of the individual

particles because of their velocities ui relative to the CM frame. The center of energy is at rest in
the CM frame.

7.7.2 Spontaneous decay

Almost all particles will decay into others if they can while not violating conservation laws—energy-
momentum of course—but others like charge conservation. A particle of massM can spontaneously
decay into particles with masses m1, m2 and momenta p1, p2. Working in the CM frame, four-
momentum conservation implies Mc2 = E1 + E2 and 0 = p1 + p2. Using Eq. (7.15), Mc2 =
m1c

2 + m2c
2 + T1 + T2. Because T1 + T2 > 0, spontaneous decay is possible only if M >

m1 + m2. For charged pion decay π+ → µ+ + νµ, π− → µ− + νµ, Mπ± = 139.57 MeV/c2,
mµ± = 105.66 MeV/c2, andmνµ < 0.17 MeV/c2; the inequalityM > m1+m2 is easily satisfied.

7.7.3 Pair production, pair annihilation

The positively charged electron e+ (positron) was discovered in 1932. Soon afterwards it was dis-
covered that a photon could undergo pair production, where a photon is annihilated and an elec-
tron and a positron are created together, γ → e+ + e−. One would think that a photon of energy
E = 2mc2 could convert its energy into an electron-positron pair (m is the electron mass). As we
now show, pair production cannot occur spontaneously in free space; another particle is necessary.

Let Qµ = (E/c)(1, n̂) be the photon four-momentum, Eq. (7.18), the conservation of which
in γ → e+ + e− would require Qµ = Pµ = ((E+ + E−)/c,p+ + p−). This equation cannot be
satisfied (try it!). Before the reaction, the four-momentum is lightlike (QµQµ = 0), and afterwards
it is timelike (PµPµ < 0). We cannot get into the CM frame of a photon (without killing it).

The problem can be circumvented by allowing another massive body to participate: The sum of
a lightlike vector and a timelike vector is timelike (Exercise 4.6c.). Consider γ+X → X ′+e++e−,
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where X denotes another body of mass M . In the rest frame of X the total four-momentum Pµ =(
E +Mc2, En̂

)
/c and thus

PµPµ = − 1
c2
(
E +Mc2

)2 + (E/c)2
.

By four-momentum conservation P
′µ = Pµ, and by Lorentz invariance PµPµ = P

′µP
′

µ.
We are free to evaluate the invariant in an arbitrary inertial frame. In the CM frame P

′µ =
((EX′ + E+ + E−)/c, 0) and thus

P
′µP

′

µ = − 1
c2

(EX′ + E+ + E−)2
.

The threshold energy is the photon energy E such that the particles in the final state have no kinetic
energy. At threshold,

(
E +Mc2

)2 − E2 =
(
Mc2 + 2mc2

)2
or

E = 2mc2
(

1 + m

M

)
.

Form/M � 1 (such as in the vicinity of a nucleus), the threshold energy E & 2mc2. If the process
occurs near another electron, the threshold energy E = 4mc2.

The inverse process is pair annihilation, e+ +e− → γ+γ. (The process e+ +e− → γ does not
conserve energy-momentum.) Because two photons are created, we can get into the zero momentum
frame associated with the final state. Let p+ and p− be the momenta of the positron and electron,
and let q1, q2 be the momenta of the photons. In the CM frame of the initial state one has p− =
−p+. Momentum conservation requires that q2 = −q1, i.e., the photons are emitted in opposite
directions with equal momenta and hence with equal energies. From energy conservation, the energy
of each photon is Eγ =

√
(pc)2 +m2c4. The smallest possible photon energy is obtained if p = 0,

or Eγ = mc2. The special case of a lightlike four-momentum vector with zero spatial part allows
us to equate it to a timelike vector (Pµ for e+, e−).

7.7.4 Compton scattering: γ + e→ γ′ + e′

Compton scattering is the inelastic scattering of a photon by a free particle. The effect gives ex-
perimental confirmation that the momentum of electromagnetic radiation is carried by particles
called photons. In this process, a photon of energy E scatters from a particle (usually an electron)
into a direction at an angle θ from the incident direction (see Fig. 7.6). Because the electron re-

γ

m

γ′

m′
θ

Figure 7.6 Compton scattering of a photon from an electron.

coils, the scattered photon has an energy E′ < E. Let the four-momentum of the photon (electron)
before and after the collision be Qµ and Q′µ (Pµ and P ′µ). From four-momentum conservation
Pµ +Qµ = P ′µ +Q′µ. We can eliminate P ′µ (four-momentum of recoil electron):

P ′µP ′µ = (Pµ + Qµ −Q′µ)(Pµ + Qµ −Q′µ) = PµPµ + 2Pµ(Qµ −Q′µ) + (Qµ −Q′µ)(Qµ −Q′µ)
= PµPµ + 2Pµ(Qµ −Q′µ) + QµQµ − 2QµQ′µ + Q′µQ′µ

This equation simplifies considerably because of the invariant magnitude of four-vectors: P ′µP ′µ =
PµPµ = −m2c2 and QµQµ = Q′µQ′µ = 0 (null vector). Energy-momentum conservation there-
fore reduces to the equation

Pµ(Qµ −Q′µ) = QµQ′µ . (7.66)
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In the rest frame of the electron Pµ = (mc, 0, 0, 0), Qµ = (E/c)(1, 1, 0, 0), and Q′µ = (E′/
c)(1, cos θ, sin θ, 0). The inner products are thus QµQ′µ = (EE′/c2)(−1 + cos θ) and Pµ(Qµ −
Q′µ) = m(E′ − E). Substituting these results in Eq. (7.66), we find

1
E′
− 1
E

= 1
mc2

(1− cos θ) .

Using the Planck relation E = hc/λ, we have the (experimentally verified) Compton scattering
formula as it’s usually written:

λ′ − λ = h

mc
(1− cos θ) ≡ λC (1− cos θ) ,

where λC = h/(mc) is the Compton wavelength, the wavelength of a photon such that its energy
is equal to mc2. For electrons λC ≈ 2.4 × 10−12 m. Note that nowhere in these formulas does the
charge of the particle appear. Photons carry no charge!

SUMMARY
• The proper time dτ is the time measured by a clock along its worldline. In an IRF, dτ =√
−(ds)2/c = dt

√
1− β2, where β = u/c is the instantaneous velocity as seen from that

frame. The proper time is an invariant quantity cdτ =
√
−dxµdxµ and provides an absolute

(observer-independent) means to parameterize the worldline, xµ = xµ(τ).

• The elapsed proper time between events is path-dependent. Straight worldlines between
events have the longest proper time; this is the basis of the so-called twin paradox.

• The four-velocity is defined as

Uα = dxα

dτ = γ
d
dt (ct,x) = γ(c,u) .

The four-velocity is a timelike vector (UαUα = −c2), tangent to the worldline with an in-
variant magnitude.

• The four-momentum Pµ = mUµ = (E/c,p) whereE = mγc2 and p = mγu. The invariant
magnitude ofPµ is given byPµPµ = −mc2. The connection between energy and momentum
is E = c

√
p2 +m2c2.

• The four-acceleration Aµ = dUµ/dτ is a spacelike vector orthogonal to Uµ, AµUµ = 0.

• The Lagrangian for a particle is L = −mc2
√

1− β2 − V (x). For a charged particle L =
−mc2

√
1− β2 − qφ + qu · A. The free-particle Lagrangian is the integrand of the action

integral, L = −mc2(dτ/dt).

• The covariant free-particle Lagrangian can be written in two ways, L = −mc
√
−gµνUµUν

and L = 1
2mgµνU

µUν . Both lead to the same equations of motion. The first form emphasizes
the geometric feature that the elapsed proper time for a straight line in spacetime is the longest,
the second leads to an extremum in the coordinate-invariant generalization of the kinetic
energy.

• The Euler-Lagrange equations in covariant form are

d
dτ

(
∂L

∂Uµ

)
= ∂L

∂xµ
. µ = 0, 1, 2, 3
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• The canonical momentum is Pµ = ∂L/∂Uµ.

• The angular momentum tensor is Mµν = xµP ν − xνPµ. The angular momentum pseu-
dovector L is the dual associated with the spatial parts of Mµν , Li = 1

2εijkM
jk. The time

components M0i form a three-vector associated with the relativistic version of the center of
mass theorem in mechanics.

• Invariance of the action integral under coordinate transformations is a recipe that allows us
to identify conserved quantities along the worldline of a particle. Invariance under a shift in
the origin of spacetime coordinates implies energy-momentum conservation, and invariance
under infinitesimal LTs implies conservation of the angular momentum tensor.

EXERCISES
7.1 Show explicitly using (7.6) and (7.9) that the four-acceleration and the four-velocity are or-

thogonal, UβAβ = 0.

7.2 Derive the form for the relativistic Hamiltonian,H = c
√
p2 +m2c2, starting with Eq. (7.25),

the relativistic Lagrangian, and the definition of the Hamiltonian in Eq. (7.20). The Hamilto-
nian should be a function of position and momentum, H = H(x, p).

7.3 Show from Eq. (7.52) that the relativistic action for a free particle becomes, an expansion for
∆x� c∆t,

Srel = −mc2∆t+ 1
2m

(∆x)2

∆t + · · · .

The nonrelativistic action, Eq. (7.51), thus “lives” inside the relativistic action.

7.4 Derive Eq. (7.55), the nonrelativistic action for a particle in a gravitational field.

7.5 Using Eq. (7.9), show explicitly that the four-acceleration is spacelike, AαAα > 0. Show
either (or both) of these results:

AαAα = γ6
[
a2 − 1

c2
(u× a)2

]
= γ4

(
a2 + γ2

c2
(u · a)2

)
.

Why are the terms in square brackets positive?

7.6 Show that a covariant definition of the energy (valid in any reference frame) is E = −PµUµ.
(This involves an inner product between four-vectors, an invariant quantity. Is there a partic-
ular reference frame that simplifies the expression?)

7.7 Show that an electron in vacuum cannot emit a photon, as in e− → e− + γ.

7.8 Show explicitly that the process γ → e+ + e− cannot conserve energy and momentum in
vacuum.

7.9 Let the four-acceleration in Eq. (7.9) be denoted Aµ = (A0,A). Show that A0 = u · A/c.
Because the norm AµAµ is invariant, the four components of Aµ cannot be independent.

7.10 Derive the Hamiltonian for the relativistic Kepler problem, Eq. (7.34).

7.11 Show that for a free particle the angular momentum tensor is constant, i.e., dMµν/dτ = 0,
as we would expect from Eq. (7.61).

7.12 Show that U0Ai − UiA0 = −cγ3ai, where ai is the three-acceleration. Use Eq. (7.9).
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Covariant electrodynamics

T HE material in this chapter is often referred to as “relativistic electrodynamics.” Such a term,
however, is redundant: Electrodynamics is consistent with SR and has been since its inception;

there never was a nonrelativistic predecessor. What’s meant by relativistic electrodynamics is the
covariant theory of the electromagnetic field. It’s useful to see the covariant formulation of elec-
tromagnetism (essential, actually): constructs encountered here have analogs in GR, which is also a
relativistic field theory.

8.1 ELECTROMAGNETISM IN SPACE AND TIME
The electromagnetic field is described by four interrelated equations known collectively as
Maxwell’s equations:

∇ ·B = 0 ∇×E + ∂B

∂t
= 0

∇ ·D = ρ ∇×H − ∂D

∂t
= J , (8.1)

where the charge density function ρ(r) and the current density vector J(r) are the sources of the
fields. Writing Maxwell’s equations in their customary form—with three-vectors—carries with it
the implication that space is decoupled from time. The covariant version of Maxwell’s equations is
developed in Section 8.5. Note that there are two sets of field vectors: (E,B), which are prescribed
independently of sources, and (D,H) which are determined by (ρ,J ). We’ll refer to the equations
involving (E,B) as the homogeneous Maxwell equations, and those for (D,H) the inhomogeneous
Maxwell equations. Maxwell’s equations as written in Eq. (8.1) are explicitly free of parameters
pertaining to a medium, including free space. In free space D = ε0E and B = µ0H , where
ε0 = 107/(4πc2) and µ0 = 4π/107 in SI units. By definition, ε0µ0 = c−2. E and H can arguably
be considered the fundamental fields.1

1H is often called the magnetic field withB referred to as the magnetic induction. Edward Purcell remarked:[35, p392]
“This seems clumsy and pedantic. If you go into the laboratory and ask a physicist what causes the pion trajectories in
his bubble chamber to curve, he’ll probably answer ‘magnetic field,’ not ‘magnetic induction’.” Purcell further noted: “It
is only the names that give trouble, not the symbols.” B has the fundamental property that it always has zero divergence,
∇·B = 0. Moreover, the Lorentz force qv×B involvesB.H however responds to currents, independent of the medium,
and currents are subject to experimental control; from that point of viewH can be seen as fundamental. The two are related
by B = µ0(H +M) where M is the magnetization of the medium. For the two electric fields, D couples to free charges
(independent of the medium), while E is controlled by potential gradients. In this case, potentials are easier to control
experimentally than the placement of charge; E can be seen as fundamental. The two are related by D = ε0E + P , where
P is the polarization of the medium. For the purposes of classifying fields, it should be recognized thatE andH are vectors,
whereas D and B are vector densities. From that point of view (E, H) should be treated on equal footing. Add to that the
criterion of which fields are subject to experimental control and E andH are often taken as the fundamental fields.

147
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Table 8.1 Tensor character of electromagnetic fields (↔ indicates isomorphism)
E = covariant vector B = covariant bivector↔ contravariant vector density
D = contravariant vector density H =contravariant bivector density↔ covariant vector

The pairs (E,H) and (D,B) have different tensor characters,2 summarized in Table 8.1. To
see this, introduce scalar and vector potential functions φ andA such that

B =∇×A E = −∇φ− ∂A

∂t
. (8.2)

In that way the homogeneous Maxwell equations are satisfied identically. From Eq. (8.2) we see
that the vector E in Faraday’s law (the only place where E “officially” appears in Eq. (8.1)) occurs
naturally in the theory as a covariant vector (related to a gradient, the prototype covariant vector).
The quantity A in Eq. (8.2) must then be considered a covariant vector. So far so good: E and A
are covariant vectors. The B-field, however, (from B = ∇×A) has the structure of a covariant
bivector, B ↔ 1

2Bije
i ∧ ej (Section 5.10.2). Ordinarily such an observation would find no place

in applications of electromagnetic theory; in our march to GR, however, we need to understand
the fundamental transformation properties of the electromagnetic fields. This aspect of theB-field,
formally present in the non-covariant theory as an isomorphism with an antisymmetric tensor Bij
in three dimensions, presages what we’ll find in the covariant formulation, that the electromag-
netic field comprises a second-rank antisymmetric tensor in four dimensions. Such a tensor has six
independent elements, just enough for the components of E and B. In three dimensions, Bjk is
isomorphic to a contravariant vector density Bi = 1

2ε
ijkBjk (its dual, Section 5.10.1).3 That B

is a contravariant quantity can be seen from the integral relation
∮
S
B · da = 0: the surface area

vector da, being normal to S is a covariant vector, implying that B is a contravariant vector per
area, or vector density. Likewise, D is a contravariant vector density:

∮
S
D · da = Q (charge Q

is a Lorentz scalar, Section 8.3). From the Ampère-Maxwell law we infer that H has the struc-
ture of a contravariant bivector density, H = 1

2H
ijei ∧ ej . The dual of Hij is a covariant vector,

Hi = 1
2εijkH

jk, which can be inferred from
∮
H · dl = I; a covariant vector is a vector per length.

Note thatE ·D andH ·B both generate scalar densities; 1
2 (E ·D+H ·B) is the energy density

of the electromagnetic field.4 That (E,H) and (D,B) have different tensor properties implies that
constitutive relations must be in the form of tensor equations: Di = εijEj and Bk = µklHl, where
εij and µkl denote second-rank tensor densities, the permittivity and permeability tensors.5

2Maxwell [36, p11–13] distinguished two types of vectors, forces and fluxes, corresponding to our distinction between
vectors (E,H) and vector densities (D,B). We do a disservice in teaching electromagnetism when we introduceD andH
as “auxiliary”; they’re an integral part of the framework of Maxwell’s equations.

3The notation for vector densities is explained in Section 5.2, and εijk transforms with w = +1, Section 5.8.2.
4Shown in any standard text on electromagnetism.
5Constitutive relations apply between the Fourier components of the fields. One typically works in the frequency domain

and Fourier transforms the time coordinate. Such a linear operation does not change the tensor character of the fields. For
free space, when we write D = ε0E two things are happening: The covariant components Ej are being mapped into the
contravariant componentsDi, and we’re converting a vector into a vector density. It might be thought for isotropic free space
that the permittivity tensor εij is the number ε0 multiplied by a “unit tensor,” δij . The quantity δij can be obtained by raising
an index on the Kronecker delta δij , with δik = gkjδij = gki. The free-space fields are related byDi = ε0gikEk = ε0Ei.
Thus, the free-space replacement D → ε0E is actually short hand for quite a bit: convert E (naturally a covariant vector,
with units V/m) into its contravariant form, then multiply by ε0 which brings to the party the right units to convert E into a
vector density,D (C/m2). Similar remarks apply for the free-space replacementB → µ0H .



Charge conservation � 149

From here on we assume free-space fields (D = ε0E and B = µ0H). Combining Eq. (8.2)
with the inhomogeneous Maxwell equations, we obtain6

∇2φ+ ∂

∂t
(∇ ·A) = − ρ

ε0
∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A+ 1

c2
∂φ

∂t

)
= −µ0J . (8.3)

The differential equations for φ and A are thus coupled in a nontrivial manner, and one wonders
whether introducing potential functions was a good idea. There is a way, however, that these equa-
tions simplify: Suppose that

∇ ·A+ 1
c2
∂φ

∂t
= 0 , (8.4)

the Lorenz condition. If Eq. (8.4) holds, the equations in Eq. (8.3) separate,

∇2φ− 1
c2
∂2φ

∂t2
= − ρ

ε0
∇2A− 1

c2
∂2A

∂t2
= −µ0J . (8.5)

While φ andA appear to be uncoupled in Eq. (8.5), they remain coupled through the Lorenz condi-
tion. The sources are also coupled through the continuity equation (see below).

The Lorenz condition can always be satisfied through a gauge transformation. The potentials
(φ,A) are not unique in their determination of (E,B): The transformation

A→ A′ = A+∇χ φ→ φ′ = φ− ∂χ

∂t
, (8.6)

where χ(r, t) is an arbitrary scalar function, leaves E and B unchanged; E and B are said to be
gauge invariant. Suppose φ and A are such that ∇ · A + ∂(φ/c2)/∂t = f(r, t) 6= 0. Under the
transformation Eq. (8.6), the new potentials would satisfy

∇ ·A′ + 1
c2
∂φ′

∂t
−
(
∇2χ− 1

c2
∂2χ

∂t2

)
= f(r, t) .

By choosing χ to satisfy the inhomogeneous wave equation,

∇2χ− 1
c2
∂2χ

∂t2
= −f(r, t) ,

φ′ and A′ now satisfy the Lorenz condition. Using potentials that satisfy Eq. (8.4) is said to be
working in the Lorenz gauge, which we assume to be the case in what follows.

Balance equations and charge conservation

Conserved quantities satisfy continuity equations, and because conservation laws play an important
role in SR and GR, let’s take a moment and derive the continuity equation. Balance equations (for
any quantity ψ) have the form

d
dt

∫
V

ρψdV = −
∮
S

Jψ · dS +
∫
V

σψdV . (8.7)

Here V is a volume bounded by surface S having outward-pointing surface element dS, ρψ is the
density of ψ ([ψ] m−3), Jψ is the flux of ψ through S ([ψ] m−2 s−1), and σψ is a source term
representing the rate per volume at which ψ is created or destroyed in V , ([ψ] m−3 s−1). Equation
(8.7) specifies that the rate of change of the amount of ψ in V is accounted for by flows through S,

6The vectorA appearing in Eq. (8.3) should be taken as its contravariant version:A divided by area must have the same
tensor character as µ0J .
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and by the net rate of creation of ψ in V by means other than flow; there are no other possibilities,7

which is why it’s called a continuity equation. When the transport of ψ occurs because of flow8

(convection), Jψ = ρψv. If
∮
Jψ · dS is positive (negative), the amount of ψ in V decreases

(increases) in time. By applying the divergence theorem to Eq. (8.7) (for fixed V ), we arrive at the
local form of a balance equation:

∂ρψ
∂t

+∇ · Jψ = σψ . (8.8)

If σψ = 0, ψ is conserved; in that case the only way ψ in V can change is to flow through S.
Charge is conserved and thus it obeys the continuity equation (in non-covariant form)

∂ρ

∂t
+∇ · J = 0 . (8.9)

Equation (8.9) is secretly buried in Maxwell’s equations: Take the divergence of the Ampère-
Maxwell law in Eq. (8.1) and make use of Gauss’s law.

8.2 SOURCES IN SPACETIME: THE FOUR-CURRENT
How does density transform between reference frames? The topic was covered in Section 5.2, where
we noted that because the Jacobian of the LT is unity, LTs do not highlight the density feature of
physical quantities. Density is the amount of a substance, “stuff,” per volume. While the amount
of stuff is invariant, volume is not. We know from Eq. (5.57) that

√
|g|d4x is invariant. In SR

|g| = 1; 4-volume is thus invariant under the LT, dx0′dx1′dx2′dx3′ = dx0dx1dx2dx3. Let the
primed variables denote the rest frame. By time dilation, dx0 = γdx0′ , and thus charge density
transforms under the LT as ρ = γρ0, where ρ0 is the proper density.

The current four-vector density or simply four-current is defined as

Jµ ≡ (ρc, ρu) = (ρc,J) . (8.10)

As with the introduction of any four-vector, we must show that it belongs to the club, and here
there’s a quick way and a sophisticated way. The quick way is to show that it transforms as expected
under the LT. In the rest frame, Jν

′ = (ρ0c, 0). In another IRF connected by a boost, we have
using Eq. (6.16), Jµ = Lµν′J

ν′ = (γρ0c,βγρ0c) = (ρc, ρu), where ρ = γρ0. Note that Jµ =
ρ0(γc, γu) = ρ0U

µ. The four-current is timelike, JαJα = −ρ2
0c

2 (from UαUα = −c2), and is
tangent to worldlines of charged particles. The continuity equation, (8.9), can then be written in
covariant form,9

0 = ∂ρ

∂t
+∇ · J = ∂ρc

∂(ct) + ∂J i

∂xi
= ∂J0

∂x0 + ∂J i

∂xi
= ∂Jµ

∂xµ
= ∂µJ

µ . (8.11)

Conservation is expressed covariantly as the vanishing four-divergence of Jµ.
The fancy way is to show that Jµ is related to the four-velocity in a Lorentz invariant manner.

Let z(t) be the worldline of a particle in a particular reference frame. We can ascribe “density” to a
particle through the use of the Dirac delta function,

ρ(r, t) = qδ3(r − z(t)) J(r, t) = q
dz
dt δ

3(r − z(t)) ,

7An example of a source term occurs in semiconductor physics, where additional charge carriers are generated by the
interaction of electromagnetic radiation with the semiconductor.

8The Poynting vector S, the flux of electromagnetic energy, is given by S = uc with u the density of electromagnetic
energy. Not all currents are convective, however. There can be diffusive transport, such as in Ohm’s law, J = σE.

9Implying that if charge is conserved in one frame, it’s conserved in all frames connected to the first by a LT.
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where δ3(x) is such that
∫

d3xf(x)δ3(x − y) = f(y). These expressions can be combined into
a four-vector through the device of introducing the integral over time of another delta function and
then changing variables to the proper time,

ρ(xµ) = q

∫ ∞
−∞

dz0δ(x0 − z0)δ3(r − z) = q

∫ ∞
−∞

dτ dz0

dτ δ
4(x− z(τ))

J(xµ) = q

∫ ∞
−∞

dz0 dz
dt δ(x

0 − z0)δ3(r − z) = qc

∫ ∞
−∞

dτ dz
dτ δ

4(x− z(τ)) ,

where δ4(x−y) ≡ δ(x0−y0)δ(x1−y1)δ(x2−y2)δ(x3−y3) is the four-dimensional delta function
and zµ(τ) = (z0, z) is parameterized by the proper time. We have let dz0 → (dz0/dτ)dτ in the
first integral and dz0(dz/dt) = cdz → c(dz/dτ)dτ in the second. Multiplying the expression for
ρ by c, we have the four-current Jµ as an integral over the four-velocity Uµ = dzµ/dτ ,

Jµ(xα) = (ρc,J) = qc

∫ ∞
−∞

dτUµ(τ)δ4(x− z(τ)) . (8.12)

Before accepting Eq. (8.12) as a four-vector we should ascertain that the delta function is Lorentz
invariant. The two requirements on δ4(x − y) are that it’s nonzero only if xµ − yµ = 0 and∫

d4xδ4(x)f(x) = f(0). The first property is independent of reference frame: From xµ
′ − yµ′ =

Lµ
′

ν (xν − yν), if xµ = yµ in one frame, the same is true in all frames. Thus, we can write
δ4(x′ − y′) = Sδ4(x − y), where S is a constant. (Recall that δ(ax) = δ(x)/|a|; while y′ → x′

as y → x, there could be scale factors.) It turns out that S = 1 for a LT. Writing x′ = Lx for
xµ
′ = Lµ

′

ν x
ν ,

f(y′) =
∫

d4x′δ4(x′ − y′)f(x′) =
∫

d4xJ−1Sδ4(x− y)f(Lx) = J−1Sf(y′) ,

where J is the Jacobian, Eq. (5.52). Thus, S = J and J = 1 for a LT. The Dirac delta function is
therefore a Lorentz invariant.10

8.3 CONSERVATION IN SPACETIME: SPACELIKE HYPERSURFACES
A hypersurface Σ is an (n − 1)-dimensional surface embedded in an n-dimensional space. For
example, setting x0 = 0 in MS specifies a hypersurface spanned by three spacelike vectors. At any
point of Σ there’s a vector nα orthogonal to all vectors lying in Σ at that point.11 Hypersurfaces are
classified as spacelike, null, or timelike according to whether nα is timelike, null, or spacelike (see
Fig. 8.1). Spacelike hypersurfaces (SHs) have timelike normals, and timelike hypersurfaces have
spacelike normals. For Σ not null, nµ can be normalized so that nµnµ = ε, where ε = −1 (+1) for
Σ spacelike (timelike). SHs play an important role in the theory of relativity.

Let {yi} be coordinates intrinsic to hypersurface Σ. Displacements on Σ are described by
(ds)2

Σ ≡ hijdyidyj , where hij is the induced metric on Σ, the restriction of gµν (the metric of
the embedding space) to vectors tangent to Σ. We show in Section 13.6 that if gµν is positive defi-
nite, so is the induced metric on Σ. If, however, gµν is indefinite then the induced metric is indefinite
on timelike hypersurfaces, but positive definite on SHs. On a three-dimensional hypersurface the in-
variant volume element is dΣ ≡

√
|h|d3y where h ≡ dethij . The oriented volume element can be

10The Dirac function δ4(x) is not invariant under arbitrary coordinate transformations because d4x is not invariant.
However,

√
|g|d4x is an invariant, implying that δ4(x)/

√
|g| is invariant under general coordinate transformations.

11The normal vector belongs to the n-dimensional embedding space. If for example the hypersurface is specified by
x1 = 0 in an n-dimensional space, the coordinates of a point in the hypersurface are x1 = 0, x2, · · · , xn. The normal
vector nα is such that nαxα = 0, where n1 6= 0. As discussed in Section 5.11 for the elements of the oriented 3-volume
dΣαβγ , its dual (dΣ∗)λ is a vector orthogonal to the hypersurface.
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Figure 8.1 Hypersurfaces are spacelike or timelike if its normal is timelike or spacelike

written dΣµ ≡ nµdΣ. Note that dΣµ as a vector belongs to the embedding space. To apply Gauss’s
theorem, we need the orientations of Σ and the embedding space to agree (Section 5.11). We specify
the orientation so that nµXµ > 0 for a vector Xµ that points out12 of Σ.

Combining the continuity equation, (8.11), with Gauss’s theorem, Eq. (5.90), we have that the
net flux in spacetime is zero, ∮

S

JµdΣµ = 0 , (8.13)

where S denotes a closed hypersurface. Nothing is lost or gained along the worldlines of a con-
served quantity. Consider a region of space large enough so that Jµ → 0 on timelike hypersurfaces
(see Fig. 8.2). A physical four-current differs from zero only in a finite region of space; thus we

Figure 8.2 The net flux in spacetime is zero for conserved quantities

can choose spatial boundaries (timelike hypersurfaces) so that on them Jµ = 0. A finite region of
space, in spacetime is a tube of infinite length in the time direction, the worldtube. Because Eq.
(8.13) requires a closed hypersurface, we “cap off” the worldtube by SHs, Σ1 and Σ2. Zero net
flow then requires that

∫
Σ1
JµdΣµ +

∫
Σ2
JµdΣµ = 0. Taking the outwardly pointing normals,

dΣ(1)
µ = −δ0

µd3y and dΣ(2)
µ = δ0

µd3y, we have from Eq. (8.13)∮
S

JβdΣβ = Q(Σ2)−Q(Σ1) = 0 , (8.14)

where Q(Σ) ≡
∫

Σ J
0d3y. Equation (8.14) indicates that the total charge in a SH is independent of

SH, i.e., conserved.

12If for a vector Xµ that points out of the volume we require nµXµ > 0, then n0 > 0 for a future pointing vector (take
Xµ = (X0, 0, 0, 0)), with X0 > 0. For a metric where nαnα < 0, nα is inwardly pointing. See R.M. Wald[37, p434] or
Hawking and Ellis.[38, p50]
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A continuity equation implies the existence of a fixed quantity contained in a SH. In the rest
frame take the outwardly pointing normal (to Σ) to be nµ = (1, 0, 0, 0). In another IRF, nµ′ =
Lνµ′nν = L0

µ′ = γ(1,β) (Note that nµ
′
nµ′ = −1; the spacelike character of Σ is preserved under

LTs.) If in one frame Q =
∫
J0d3y, then in any other frame (related by a LT) Q =

∫
JµdΣµ

because of the Lorentz invariance of JµdΣµ. Conserved quantities can then be written in covariant
form, Q =

∫
Σ J

µdΣµ for SHs Σ. There are two interrelated ideas here: The invariance and the
conservation of charge: Q is conserved because it’s independent of the SH used to evaluate it (a SH
is a slice of “now”), and Q is a Lorentz invariant because the LT maps SHs onto SHs.

8.4 THE FOUR-POTENTIAL
We can group the potentials φ andA into a single quantity, the four-potential13

Aµ ≡ (φ/c,A) (8.15)

(Aµ should not be confused with the four-acceleration Aµ). The wave equations for φ and A in
Eq. (8.5) are the time and space components of a single wave equation for Aµ. Using Eqs. (8.15),
(8.10), and (5.59), the four equations implied by Eq. (8.5) are equivalent to an inhomogeneous wave
equation for the components of the four-potential,

∂µ∂
µAα = −µ0J

α . (8.16)

Because ∂µ∂µ is Lorentz invariant, we have from Eq. (8.16) that Aα transforms the same as Jα and
hence is a four-vector. The Lorenz condition in covariant form is,

0 = 1
c2
∂φ

∂t
+∇ ·A = ∂(φ/c)

∂(ct) +∇ ·A = ∂A0

∂x0 + ∂Ai

∂xi
= ∂µA

µ . (8.17)

Note that the covariant four-potential Aµ = (−φ/c,A).

8.5 MAXWELL EQUATIONS IN COVARIANT FORM: FIELD TENSOR
We define the electromagnetic field tensor (antisymmetric, covariant tensor):14

Fµν ≡ ∂µAν − ∂νAµ ≡ (∂ ∧A)µν . (8.18)

Derivatives of tensors transform as tensors under the restricted, linear coordinate transformations
of SR (Section 5.3), but not under the more general transformations used in GR. It turns out that
the antisymmetric combination of derivatives in Eq. (8.18) transforms as a tensor even on curved
manifolds.15 The field tensor is the generalization of the curl to four dimensions applied to the four-
potential: It’s a four-dimensional covariant bivector. Instead of B = ∇× A, Fµν = (∂ ∧A)µν
covariantly “encodes” both of the relations in Eq. (8.2). An antisymmetric second-rank tensor in n
dimensions has n(n − 1)/2 independent elements, just enough (for n = 4) for the six components
of E andB!

We can evaluate {Fµν} by combining Eqs. (8.18), (8.15), and (8.2):

[Fµν ] =


0 −E1/c −E2/c −E3/c

E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0

 . (8.19)

13The dimension of φ/c (Volt · s/m) is the same as that forA, as can seen from the Lorenz condition Eq. (8.4).
14The field tensor is sometimes called the Faraday tensor.
15Thus, Fµν is a bona fide tensor even in curved spaces.
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To derive the top row of [Fµν ], F0i ≡ ∂0Ai − ∂iA0 = ∂Ai/∂(ct) + ∂i(φ/c) = −Ei/c. The
diagonal elements Fαα are identically zero (antisymmetry). The other independent elements of Eq.
(8.19) follow from Eq. (8.18) using Bi = 1

2ε
ijkFjk.

The field tensor is gauge invariant. The four-vector version of the gauge transformation is16

A′α = Aα + ∂αχ . (8.20)

Combining Eq. (8.20) with Eq. (8.18),

F ′µν = ∂µA
′
ν−∂νA′µ = ∂µ (Aν + ∂νχ)−∂ν (Aµ + ∂µχ) = ∂µAν−∂νAµ+∂µ∂νχ−∂ν∂µχ = Fµν ,

where we assume that ∂µ∂νχ = ∂ν∂µχ. From Eq. (8.20) it can be seen that Aµ satisfies the Lorenz
condition, Eq. (8.17), when the gauge function χ satisfies ∂α∂αχ = −∂βAβ .

The homogeneous Maxwell equations can be expressed as a covariant equation involving Fµν :

εµνλσ∂νFλσ = 0 . (µ = 0, 1, 2, 3) (8.21)

For example, take µ = 0:

ε0νλσ∂νFλσ =ε01λσ∂1Fλσ + ε02λσ∂2Fλσ + ε03λσ∂3Fλσ

=ε0123∂1F23 + ε0132∂1F32 + ε0213∂2F13 + ε0231∂2F31 + ε0312∂3F12 + ε0321∂3F21

=2ε0123∂1F23 + 2ε0231∂2F31 + 2ε0312∂3F12

=2ε0123 (∂1F23 + ∂2F31 + ∂3F12) = 2∂iBi = 2∇ ·B = 0 ,

where we have used ε0123 = 1 and the antisymmetry of εµνλσ and Fλσ . For µ a spatial index, Eq.
(8.21) generates the components of Faraday’s law. In the notation of Section 5.7, the homogeneous
Maxwell equations can be written ∂[αFβγ] = 0.

A simpler way to write Eq. (8.21) is to use the dual of the field tensor (see Eq. (5.75)),

εµνλσ∂νFλσ ≡ 2∂ν (∗F )µν = 0 . (µ = 0, 1, 2, 3) (8.22)

Combining Eq. (8.19) with Eq. (5.75), we find that

[∗Fµν ] =


0 B1 B2 B3

−B1 0 −E3/c E2/c
−B2 E3/c 0 −E1/c
−B3 −E2/c E1/c 0

 . (8.23)

The homogeneous Maxwell equations are the vanishing four-divergence of the dual field tensor,
∂ν (∗F )µν = 0. For µ = 0, ∂ν

(
∗F 0ν) = ∂i (∗F )0i = ∂iB

i = 0.
The inhomogeneous Maxwell equations can be expressed in covariant form with the introduc-

tion of another antisymmetric tensor, (actually a tensor density, but we won’t use the notation Gµν)

[Gµν ] ≡


0 D1c D2c D3c

−D1c 0 H3 −H2
−D2c −H3 0 H1
−D3c H2 −H1 0

 . (8.24)

It can readily be verified that the inhomogeneous Maxwell equations are equivalent to

∂νG
µν = Jµ . (µ = 0, 1, 2, 3) (8.25)

16We put the primes here not on the index, but on the function. In the index convention of Section 5.1 we put the prime
on an index to indicate a new coordinate system. Here we are transforming a function; hence the primes on the function.
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As a check, set µ = 0 in Eq. (8.25): ∂νG0ν = c∂iD
i = J0 = ρc, Gauss’s law. Can Gµν be derived

from Fµν? No, in the same way that the inhomogeneous Maxwell equations cannot be derived
from the homogeneous. In free space, however, the replacements D → ε0E and H → µ−1

0 B are
equivalent to the replacement Gµν → µ−1

0 Fµν , where Fµν = ηµαηνβFαβ = ∂µAν − ∂νAµ is the
contravariant version of Fµν :

[Fµν ] =


0 E1/c E2/c E3/c

−E1/c 0 B3 −B2
−E2/c −B3 0 B1
−E3/c B2 −B1 0

 . (8.26)

From Eq. (8.26),Ei = cF 0i andBi = 1
2εijkF

jk. The inhomogeneous Maxwell equations for fields
in free space can then be expressed covariantly as

∂νF
µν = µ0J

µ . (µ = 0, 1, 2, 3) (free space) (8.27)

Thus, Maxwell’s equations can be expressed covariantly in terms of the divergence of four-
dimensional second-rank antisymmetric tensors, ∗Fµν andGµν , Eqs. (8.22) and (8.25), or, for fields
in free space, Eq. (8.27). The covariant form of Maxwell’s equations was derived by Minkowski in
1907, a development that’s sometimes criticized as not providing anything “new.” We can hardly
expect the covariant formulation of a theory that was already consistent with SR to predict new
physical effects. Minkowski’s contribution demonstrates that physical fields (E and B) can be de-
scribed as tensor fields on a four-dimensional spacetime manifold, which is a huge achievement.
Can Newton’s law of gravity be so expressed? That is in fact the goal of GR, and we’ll be guided
by what we learn in this chapter. We show in Eq. (8.43) that dPµ/dτ = qFµνUν , that the Newton-
Maxwell equation of motion is relativistically correct once the mechanical side of the equation is
fixed up by packaging p = mγv and E = mγc2 into a four-vector.

8.6 LORENTZ TRANSFORMATION OF E AND B FIELDS
A side benefit of packaging the components of E andB into a tensor is that we immediately know
the LT of E and B from the transformation property of tensors. Einstein used a different approach
in his 1905 paper: He derived the transformation equations for E and B by applying the LT to the
coordinates of the two curl equations in free space and demanding that the form of the equations be
invariant (the principle of covariance). Einstein had not yet adopted the four-dimensional geometric
view of spacetime. The elements of Fµν transform under the LT as

Fµ
′ν′ = Lµ

′

α L
ν′

β F
αβ . (8.28)

We cannot directly transform E and B under the LT because they are not four-vectors. As we’ll
see, the components of E andB transform among themselves, and thus we need a six-dimensional
animal to express their transformation properties—but that’s just what we have, an antisymmetric
second-rank tensor in four dimensions.

Let’s work through some examples using the LT for frames in standard configuration. From Eq.
(8.28), with µ = 0 and ν = 1

F 0′1′ = E1′

c
=L0′

αL
1′
β F

αβ = L0′
α

(
L1′

0 F
α0 + L1′

1 F
α1
)

= L0′
α

(
−βγFα0 + γFα1)

=− βγL0′
1 F

10 + γL0′
0 F

01 = (βγ)2F 10 + γ2F 01 = γ2(1− β2)E
1

c
= E1

c
.

The longitudinal component of E is invariant, E1′ = E1; the same is true of the longitudinal
component ofB. As another example, take µ = 0 and ν = 2

F 0′2′ = E2′

c
= L0′

αL
2′
β F

αβ = L0′
α F

α2 = L0′
0 F

02 + L0′
1 F

12 = γF 02 − βγF 12 = γ
E2

c
− βγB3 ,
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and hence E2′ = γ
(
E2 − vB3

)
. The transverse components of the fields thus transform among

themselves. Note that the components of the field vectors transform differently under the LT than
do components of the position vector. We find that for frames in standard configuration:

E1′ =E1 E2′ = γ
(
E2 − vB3

)
E3′ = γ

(
E3 + vB2

)
B1′ =B1 B2′ = γ

(
B2 + v

c2
E3
)

B3′ = γ
(
B3 −

v

c2
E2
)
. (8.29)

We can put Eq. (8.29) in vector form. DecomposeE andB into vectors parallel and perpendic-
ular to v, E = E‖ +E⊥ andB = B‖ +B⊥. From Eq. (8.29),

E′‖ =E‖ E′⊥ = γ (E⊥ + v×B)

B′‖ =B‖ B′⊥ = γ

(
B⊥ −

1
c2
v×E

)
. (8.30)

The projection of E onto v is E‖ = (v ·E)v/v2, and E⊥ = E −E‖, allowing us to write

E′ =γ (E + v×B)− (γ − 1) (v ·E) v
v2

B′ =γ
(
B − 1

c2
v×E

)
− (γ − 1) (v ·B) v

v2 . (8.31)

Finally, using the “BAC-CAB” rule, an equivalent way of writing Eq. (8.31) is

E′ =E + γ(v×B)− γ2

c2(1 + γ)v× (v×E)

B′ =B − γ

c2
(v×E)− γ2

c2(1 + γ)v× (v×B) . (8.32)

To lowest order in v, E′ ≈ E + v×B andB′ ≈ B − (v×E)/c2.
Statements such as “the field is purely electric” (or magnetic) lack intrinsic meaning. While the

magnetic field may be zero in a particular frame, it will be nonzero in another frame, as we see from
Eq. (8.32). In general one has electric and magnetic fields; the two fields do not separately exist,
they’re aspects of a single entity, which all observers agree is a tensor quantity, Fµν .

8.7 LORENTZ FORCE AS A RELATIVISTIC EFFECT
The “relativism” between electric and magnetic fields can be illustrated by showing that the force
experienced by a charge in motion relative to a current-carrying wire arises from an electric field in
the rest frame of the charge. A current-carrying wire is electrically neutral (a charge at rest relative
to such a wire is neither attracted nor repelled). We can conceive a current-carrying wire (in the
lab frame) to be a line density λ (charge per length) of immobile positive charges, together with a
line density of equal and opposite sign moving with a constant speed v to the left (the drift speed),
producing a current I = λv directed to the right (see Fig. 8.3). Consider a positive charge q that in
the lab frame moves at speed u to the right. In the rest frame of q (call it the q-frame), the positive
charges of the wire move to the left with speed v+ = u, but the electrons in the wire move to the
left with a different speed v−, which from the velocity addition theorem, Eq. (3.16), is

v− = u+ v

1 + uv/c2
.

In the rest frame of the electrons in the wire, the charge contained in length l0 is λ0l0 = λl, where
l = l0

√
1− β2

v is the contracted length in the lab frame (βv ≡ v/c) and λ0 is the line density in
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Figure 8.3 Left: Rest frame of wire. Right: Rest frame of charge

the electron frame. Thus, λ0 = λ
√

1− β2
v ≡ λ/γv (how densities transform, Section 8.2). There

are three frames of reference here: the lab frame, the rest frame of electrons in the wire, and the
rest frame of q. The line density of electrons as observed in the q-frame is thus λ̃− = λ0γ− where
γ− ≡ (1− β2

−)−1/2 with β− ≡ v−/c. Thus,

λ̃− = γ−λ0 = γ−
γv
λ = γu(1 + uv/c2)λ ,

where we’ve used Eq. (3.14), γ− = γvγu(1 + uv/c2), with γu ≡ 1/
√

1− β2
u and βu ≡ u/c. The

line density of positive charges in the q-frame is λ̃+ = γuλ. The net line density in the q-frame is
thus

λ̃ ≡ λ̃− − λ̃+ = γu
uv

c2
λ .

The wire, which in the lab frame is electrically neutral, appears negatively charged in the q-frame
because of the difference in transformations between the densities of positive and negative charges
in the wire. As u→ 0, λ̃→ 0.

In its frame, therefore, q experiences a force from the electric field at a distance r from a nega-
tively charged wire, (the coordinate r is unaffected by the LT)

qE = qλ̃

2πε0r
(−r̂) = γu

quvλ

2πε0c2r
(−r̂) = γu

µ0Iqu

2πr (−r̂) = γu
µ0Iqu

2πr ẑ× φ̂ ≡ γuqu×B ,

where r̂ points from the wire to q, u = uẑ (ẑ points along the wire) and B = µ0Iφ̂/(2πr) (the
B-field of a long wire). The spatial part of the four-force Kµ is γF (Section 7.2). The three-force
in the lab frame is therefore qu×B. The Lorentz force is a consequence of frame transformations.
The magnetic force is a second-order effect in powers of (speed/c)—the speed of the particle and
the speed of the current; that it’s an appreciable force at all in the lab frame is a testament to the
strength of the Coulomb force.

8.8 INVARIANTS OF THE ELECTROMAGNETIC FIELD
The transformation properties of the electromagnetic field follow from the transformation proper-
ties of the field tensor, Eq. (8.28). A scalar derived from the field tensor would therefore imply a
Lorentz-invariant relation among the field components.

There are two independent invariants that can be built this way, call them I1 and I2; any other
invariants are functions of I1 and I2. The first is the scalar density

I1 ≡
1
2G

µνFµν = −EiDi +HiB
i = −E ·D +H ·B , (8.33)

where we’ve used Eqs. (8.24) and (8.19). For free-space fields, Eq. (8.33) is equivalent to I1 =
FµνFµν = |B|2 − |E|2 /c2. If for example I1 = 0 in one reference frame, e.g., |B| = |E| /c, then
that condition holds in any reference frame. The second invariant is the pseudoscalar density

I2 ≡ −
c

4 (∗F )µν Fµν = EiB
i = E ·B , (8.34)
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that is, E ·B is the same in all IRFs.
Thesse invariants allow us to make qualitative statements about the fields that are valid in any

IRF. If I2 = 0 in one frame, i.e.,E andB are orthogonal, they are orthogonal in all frames. Suppose
in one frame that I1 > 0, i.e., |B| > |E| /c. Then it would be possible to find a frame in which E
vanishes, but not B. Likewise, if I1 < 0, it would be possible to find a frame in which B = 0 but
not E. If I2 = 0 and I1 = 0, such as occur in electromagnetic plane waves, then |E| = c |B| and
E ·B = 0 in all IRFs.

8.9 ACTION PRINCIPLE FOR CHARGED PARTICLES

8.9.1 Covariant equation of motion for a charged particle

The non-covariant Lagrangian for a charged particle is L = −mc2
√

1− β2 + q(−φ+ u ·A), Eq.
(7.30). Noting that q(−φ+u ·A) is basically AµJµ = ρ(−φ+u ·A), we are led to consider as a
generalization of Eq. (7.45):

S = −mc
∫ √

−gµνdxµdxν +
∫
AµJ

µd3xdt . (8.35)

The new term in Eq. (8.35) involves the Lorentz invariants d3xdt and AµJµ.17 Because it involves
the spacetime volume element, it’s appropriate for describing the coupling of the current density to
the field. We want the action for a particle coupled to the electromagnetic field. Using Eq. (8.12)
for Jµ (the “density” of a particle)∫

AµJ
µd3xdt = q

∫
Aµ

∫
dτUµδ4(x− z(τ))d4x = q

∫
dτAµUµ = q

∫
Aµdxµ , (8.36)

where d3xdt = d4x/c. Combining Eqs. (8.36) and (8.35), we have the action integral of a point
charge coupled to the field

S =
∫ [
−mc

√
−gµν

dxµ
dλ

dxν
dλ + q

dxµ

dλ Aµ(x)
]

dλ =
∫ [
−mc

√
−gµνUµUν + qUµAµ(x)

]
dλ ,

(8.37)
and hence the generalization of Eq. (7.46),

L = −mc
√
−gµνUµUν + qAµU

µ . (8.38)

What equation of motion is implied by Hamilton’s principle? Using Eq. (8.38),

∂L

∂Uµ
= mUµ + qAµ

∂L

∂xµ
= qUα

∂Aα
∂xµ

. (8.39)

The canonical momentum ∂L/∂Uµ is the “kinetic” momentum mUµ associated with an uncharged
mass, together with the additional term qAµ, a momentum associated with the coupling to the field.
From the covariant Euler-Lagrange equation, Eq. (7.48),

d
dτ (mUµ + qAµ) = qUα

∂Aα
∂xµ

. (8.40)

Equation (8.40) can be cast into a more transparent form using the chain rule

dAµ
dτ = ∂Aµ

∂xν
dxν

dτ = Uν
∂Aµ
∂xν

. (8.41)

17Equation (8.35) is valid only in SR. It should be written with the invariant volume element
√
|g|d4x (Section 5.2). In

SR g = −1. We use the more general formulation in GR.
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Combining Eqs. (8.40) and (8.41),

m
dUµ
dτ = q

(
∂Aν
∂xµ

− ∂Aµ
∂xν

)
Uν = qFµνU

ν . (8.42)

Equation (8.42) is the covariant equation of motion for a point charge. Equivalently, Eq. (8.42) can
be written

dPµ

dτ = qFµνUν . (8.43)

The quantity qFµνUν is the four-force experienced by a charged particle (see Eq. (7.10)).
The equation of motion Eq. (8.43) is gauge invariant because Fµν is, yet the Lagrangian Eq.

(8.38) is not. Huh? Two Lagrangians are equivalent—generate the same equations of motion—if
they differ by the total time derivative of a function. That function is none other than the gauge
function. Under Aµ → Aµ + ∂µχ, UµAµ → UµAµ + dxµ(∂µχ)/dτ = UµAµ + dχ/dτ . For
the action integral Eq. (8.35), the interaction term transforms as JµAµ → JµAµ + Jµ∂µχ =
JµAµ + ∂µ (Jµχ) − χ∂µJ

µ. The last term vanishes by the continuity equation, (8.11). Under
the gauge transformation, JµAµ generates the four-divergence ∂µ (Jµχ). By Gauss’s theorem,∫
V4

d4x∂µ (Jµχ) =
∫
S3

(Jµχ) dΣµ. For the equation of motion derived from Hamilton’s principle
to be gauge invariant, the end points of the varied worldlines must be held fixed on the hypersurface
enclosing the volume of integration.

8.9.2 Lagrangian density for the electromagnetic field

Equations (8.35) or (8.37) can be written schematically as S = SM +SFM , where SM , the “matter”
action, describes the motion of a free particle and SFM , the “field-matter” action, contains the
interaction between Aµ(x) and a charge or current. Here we add a third term, SF , an action for the
field, so that for a system consisting of a particle, the electromagnetic field, and the field-particle
interaction, S = SM + SF + SFM . When S is varied with respect to the worldlines xµ, treating
Aµ as given, Hamilton’s principle leads to the particle equation of motion, Eq. (8.43). As we now
show, when S is varied with respect to the generalized “coordinates” of the field, Aµ, treating
the worldlines xµ(τ) (and hence the four-current Jµ) as given, Hamilton’s principle produces the
“equation of motion” for the field, Eq. (8.27), the Maxwell equation with sources.

To build the action for the field, we require that SF be: 1) Lorentz invariant; 2) gauge invariant
(so that it leads to the correct field strengthsE andB); and 3) at most quadratic in the fields so that
it leads to equations of motion linear in the fields (the electromagnetic fields obey superposition).
These requirements suffice to determine SF .18 The first requirement can be met by constructing SF
out of the invariants for the field, I1 and I2, Eqs. (8.33) and (8.34). We rule out I2, however, because
it’s a pseudoscalar. We rule out nonlinear combinations such as (I1)2 and (I2)2 as they do not lead
to linear equations of motion. We also rule out AµAµ as it’s not gauge invariant. The action integral
meeting these requirements is

SF = α

∫
FµνF

µνd3xdt , (8.44)

where α is a constant to be determined (we show that α = −1/(4µ0)).
Adding Eq. (8.44) to Eq. (8.35), we have the action integral for the combined system of matter,

matter-field interactions, and the field:

S = SM +
∫

d3xdt [AµJµ + αFµνFµν ] . (8.45)

18SF is determined up to the divergence of a four-vector which could depend on the fields. The surface integral that
follows from Gauss’s theorem does not contribute to the equations of motion because the variations vanish at the surface of
the volume of integration.
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The integrand in Eq. (8.45) is a Lagrangian density (Appendix D),

L ≡ AµJµ + αFµνFµν . (8.46)

A Lagrangian density is the Lagrangian for fields, where the generalized “coordinates” are the field
degrees of freedom Aµ(x). The Lagrange equation for fields is Eq. (D.65),

∂µ

(
∂L

∂(∂µAν)

)
= ∂L

∂Aν
. (ν = 0, 1, 2, 3) (8.47)

To take the derivative in Eq. (8.47), we need to express FαβFαβ in terms of Aν :

FαβFαβ = gαλgβρFλρFαβ = gαλgβρ (∂λAρ − ∂ρAλ) (∂αAβ − ∂βAα) .

Now we can take the derivative,

∂

∂(∂µAν)F
αβFαβ = gαλgβρ

[
Fλρ

(
δµαδ

ν
β − δ

µ
βδ
ν
α

)
+ Fαβ

(
δµλδ

ν
ρ − δµρδνλ

)]
= −4F νµ .

The derivative on the right of Eq. (8.47) is, using Eq. (8.46), ∂L /∂Aν = Jν . Equations (8.46) and
(8.47) imply that −4α∂µF νµ = Jν . By setting −4α = 1/µ0 we reproduce Eq. (8.27), ∂µF νµ =
µ0J

ν . For future reference,
∂LF

∂(∂µAν) = 1
µ0
F νµ , (8.48)

where LF ≡ −FαβFαβ/(4µ0). Note the order of the indices in Eq. (8.48).

8.9.3 More than one charged particle

What should the action integral be for a system of charged particles, {qi}ni=1? We know that n
particles are described by n worldlines {zµi (τi)}ni=1, each with its own proper time τi (Section 7.6).
A straightforward generalization of Eq. (8.45) would be

S = −
∑
i

mic

∫
dλi
√
−gµνUµi Uνi +

∫
d3xdt

(∑
i

AµJ
µ
i −

1
4µ0

FµνFµν

)
, (8.49)

where Jµi (x) = qic
∫
dλiU

µ
i (λi)δ4(x − zi(λi)), Eq. (8.12). The first term in Eq. (8.49) represents

the inertial properties of the particles, Eq. (7.63), the second term captures the coupling of charges
to the field, while the third is the action integral for the free electromagnetic field. Varying S in
Eq. (8.49) with respect to the fields Aµ, for fixed worldlines, Hamilton’s principle leads (as in Eq.
(8.47)) to the Maxwell equations

∂νF
µν = µ0

∑
i

Jµi . (8.50)

Varying S in Eq. (8.49) with respect to the worldlines for prescribed fieldsAµ, we obtain an equation
of motion à la Eq. (8.43) for each particle

d
dτ P

µ
i = qiF

µνUiν . (i = 1, · · · , n) (8.51)

The total current generates the field, Eq. (8.50), and particles respond to the field, Eq. (8.51). All is
good, right? Well, since you asked, these equations are incomplete. Accelerated charges radiate en-
ergy (and the momentum that accompanies it); there is thus a loss of mechanical energy-momentum
(radiation damping) not accounted for in Eq. (8.51). (Energy-momentum of fields is treated in Chap-
ter 9.) Maxwell’s equations are time-reversal invariant (Exercise 8.5), yet radiation is an irreversible



Gauge invariance and charge conservation � 161

transfer of energy between particles and fields. Irreversibility is a tough one to get right. Closely
related is that the particle-field coupling in Eq. (8.49) is between charges and the field created by
other particles. There’s no prescription for a coupling between a charge and the field it creates, the
self-field, yet it’s the self-field that produces radiation damping. We’re going to have to leave this
issue here; length restrictions preclude us from venturing further down this fascinating path.

8.10 GAUGE INVARIANCE AND CHARGE CONSERVATION
What happens if we drop the requirement of gauge invariance? As we show, new physical possibili-
ties present themselves, namely that of a photon mass. Non-gauge-invariance also forces us to adopt
the Lorenz gauge to preserve charge conservation.

Let’s add the non-gauge-invariant termAµA
µ to the Lagrangian density (the Proca Lagrangian):

L = − 1
4µ0

FµνFµν −
1

2µ0Λ2AµA
µ +AµJ

µ , (8.52)

where Λ is an unknown parameter having the dimension of length.19 The length Λ can be associated
with an equivalent mass through the formula for the Compton wavelength, Λ ≡ h/(mγc), where
mγ is the implied photon mass. Combining Eqs. (8.52) and (8.47), we obtain the field equation

∂µF
νµ = µ0J

ν − (mγc/h)2
Aν . (8.53)

From Eq. (8.53), we obtain modifications to the inhomogeneous Maxwell equations:

∇ ·E = ρ

ε0
− (mγc/h)2

φ ∇×B = 1
c2
∂E

∂t
+ µ0J − (mγc/h)2

A . (8.54)

The field vectors (E,B) therefore couple to the potentials (φ,A) as well as to the sources (ρ,J );
in this theory the potentials have an independent existence and are not merely artifacts that help us
calculate the fields.20

By taking the divergence of the curl equation in Eq. (8.54),

∇ · (∇×B) = 0 = µ0∇ · J + 1
c2
∂

∂t
∇ ·E − (mγc/h)2∇ ·A = µ0∂µJ

µ − (mγc/h)2
∂µA

µ ,

where we’ve used Eq. (8.54) for∇·E. The Lorenz condition ∂µAµ = 0 is a requirement for charge
conservation, ∂µJµ = 0 (whereas for mγ = 0 they are separate conditions). The Proca theory is
not gauge invariant; it requires the Lorenz gauge to preserve charge conservation.

We can seek solutions to Eq. (8.54) by invoking the electromagnetic potentials, as in Eq. (8.2).21

For the case of electrostatics, the Poisson equation becomes

∇2φ− (mγc/h)2
φ = − ρ

ε0
. (8.55)

For a point charge Q, the solution of Eq. (8.55) is φ(r) = [Q/(4πε0r)] exp(−mγcr/h), leading to
a modification of the electrostatic field

E = Q

4πε0

(
1
r2 + mγc

hr

)
exp(−mγcr/h)r̂ . (8.56)

19The term AµAµ/(µ0Λ2) must have the same dimension as FµνFµν/µ0. From Eq. (8.18), FµνFµν has the same
dimension as AµAµ divided by length squared. The quantity Λ must therefore have the dimension of length.

20In quantum mechanics the vector potential couples to the phase of an electron’s wave function, leading to measurable
effects such as the Aharonov-Bohm effect, even when the magnetic field is zero. This illustrates the physical reality of the
potentials, which are not just calculational artifacts.

21That is to say, the homogeneous Maxwell equations are unaffected by the new term in the Lagrangian.
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More generally, combining Eqs. (8.18) and (8.53) and using the Lorenz condition, we obtain the
wave equation for the four-potential (compare with Eq. (8.16))22(

∂µ∂
µ − (mγc/h)2

)
Aν = −µ0J

ν . (8.57)

Equation (8.57) supports plane-wave solutions, Aµ = Aµ0 exp(ikαxα), with the dispersion relation
ω2 = c2k2 +

(
mγc

2/h
)2

.
Does the photon have mass? The weak bosons W± and Z are massive (mass of W± =

80.4 GeV/c2; mass of Z = 91.2 GeV/c2), and thus a photon mass is not altogether out of the
question. The range of the interaction, however, approximately the Compton wavelength associated
with the mass of the mediating boson, suggests a small photon mass. Attempts to measure mγ must
search either for discrepancies to a r−2 distance dependence of the electric field, Eq. (8.56), or for
a frequency-dependent speed of light. The group velocity vg = ∂ω/∂k = c(1−

(
mγc

2/hω
)2)1/2,

and thus for hω � mγc
2, vg ≈ c

(
1− 1

2
(
mγc

2/hω
)2)

. For two wave packets with frequencies

ω1 > ω2 � (mγc
2)/h, the difference in propagation speed is

∆v
c
≈ 1

2
(
mγc

2/h
)2( 1

ω2
2
− 1
ω2

1

)
≈

m2
γc

2

8π2h2

(
λ2

2 − λ2
1
)
.

For waves of different frequencies that travel the same distance L there is a difference in arrival
times ∆t ≈ L(∆v)/c2 which provides an estimate for mγ . A study in 1999 of the difference in
arrival times from gamma-ray bursts from supernovae placed an upper limit to the photon mass at
mγ < 2.4× 10−11 eV/c2.[39]

Gauge invariance, charge conservation, and a possible mass of the photon are thus interrelated
concepts. As discussed in Section 3.1.7, Einstein’s second postulate for SR (the universality of the
speed of light) is equivalent to the photon having zero mass and experimentally it has been found
that the universal limiting speed predicted by SR is equal to c with high precision.

SUMMARY
This chapter has treated electrodynamics from the covariant perspective.

• The current four-vector density (four-current) Jα = (ρc, ρu). The electromagnetic potentials
form a four-vector, the four-potential Aµ = (φ/c,A). In covariant form charge conservation
and the Lorenz condition are written ∂µJµ = 0 and ∂µAµ = 0. The four-potential satisfies
an inhomogeneous wave equation ∂µ∂µAα = −µ0J

α in the Lorenz gauge.

• A continuity equation ∂µJ
µ = 0 implies the existence of a conserved quantity Q =∫

Σ J
µdΣµ that’s independent of the SH Σ.

• The tensor Fµν and its dual (∗F )µν allow Maxwell’s equation to be written in covariant form,
∂βF

αβ = µ0J
α and ∂β(∗F )αβ = 0, where Fµν = ∂µAν − ∂νAµ. The components of the

electric (magnetic) field are related to the elements of the field tensor through Ei = cF 0i

(Bi = 1
2εijkF

jk).

• The transformation equations forE andB under the LT are obtained from the transformation
of the field tensor, Fµ

′ν′ = Lµ
′

α L
ν′

β F
αβ .

22Equation (8.57) should be contrasted with the Klein-Gordon equation (KG), the relativistic quantum equation in which
the Compton wavelength naturally appears. The Hamiltonian for free particles is H = cP 0 =

√
(pc)2 + (mc2)2. Instead

of trying to solve the Schrödinger equation in the form Hψ = Eψ, reinterpret the equation as H2ψ = E2ψ. Making the
usual correspondences, E → i~∂/∂t and p→ −i~∇, the KG equation is

(
∂µ∂µ − (mc/~)2)ψ = 0. The KG equation

applies for a scalar field, whereas the Proca equation is for a vector field, Aµ; it also involves the sources Jµ.
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• The quantities I1 = 1
2F

µνFµν = |B|2 − |E|2/c2 and I2 = (c/4)(∗F )µνFµν = E ·B are
relativistic invariants of the electromagnetic field.

• The covariant Lagrangian of a charged particle (in prescribed electromagnetic potentials Aµ)
is L = −mc

√
−gµνUµUν+qAµUµ. The covariant equation of motion for a charged particle

is dPµ/dτ = qFµνUν .

• The Lagrangian density for the electromagnetic field L = −FµνFµν/(4µ0) +AµJ
µ.

EXERCISES
8.1 Show that the four-current as given by Eq. (8.12) satisfies the continuity equation, ∂µJµ = 0.

Use the identity

d
dτ δ (x− z(τ)) = dzα

dτ
∂

∂zα
δ(x− z) = −Uα ∂

∂xα
δ(x− z) .

8.2 Show that F lm = εilmBi. Use the relation Bi = 1
2εijkF

jk and Eq. (5.73).

8.3 Show that the spatial components of Eq. (8.21) reproduce Faraday’s law.

8.4 In a material medium there are bound charges and free charges, bound currents and free
currents. The total charge density ρ = ρf + ρb and the total current density J = Jf + Jb,
where ρb = −∇·P and Jb = ∂P /∂t+∇×M , withP andM the response of the medium
to the applied fields, E andH .

a. Can the three-vector relations D ≡ ε0E + P and H ≡ B/µ0 −M be packaged inside
tensor equations? There are three pairs of three-vectors (D, H), (E, B), and (P , M ),
each pair with six quantities. This suggests the use of antisymmetric second-rank four-
dimensional tensors to encode relations between pairs of three-vectors. Show that

Gµν = 1
µ0
Fµν −Mµν ,

where Gµν and Fµν are given by Eqs. (8.24) and (8.26), and

Mµν ≡


0 −cP 1 −cP 2 −cP 3

cP 1 0 M3 −M2
cP 2 −M3 0 M1
cP 3 M2 −M1 0

 .

b. Define the bound current four-vector density Jµb = (ρbc,Jb). Show that ∂νMµν = Jµb .

c. Show that ∂µJ
µ
b = 0. Hint: This follows trivially from the antisymmetry of Mµν .

8.5 Maxwell’s equations are invariant under the LT, Section 8.5. You’re going to show that they’re
also invariant under the parity and time reversal operations P and T (Section 4.3). In Section
5.9 we introduced the distinction between polar and axial vectors, with polar vectors such
as the electric field changing sign under P (what we can denote as P (E) = −E), and
axial vectors like the magnetic field invariant under P (P (B) = +B). We can use a similar
notation for the signature under time reversal.

a. Show that the entries in the table are correct, then verify that Maxwell’s equations in Eq.
(8.1) are separately invariant under P and T .
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E D B H ρ J ∇ ∂t
P − − + + + − − +
T + + − − + − + −

PT − − − − + + − −

b. Suppose magnetic monopoles were found to exist with ∇ ·H = ρm. How would the
monopole density ρm behave under P and T ?

c. How doA and φ behave under P and T ? Complete the following table:

A φ
P
T

d. How does the four-current Jµ transform under PT , an inversion of both space and time
axes? Ditto for the four-potential Aµ.

e. How does the four-gradient ∂µ transform under PT ? Show that the wave-equation opera-
tor ∂µ∂µ is invariant under PT .

8.6 Starting from Eq. (8.32), show that E′ ·B′ = E ·B.
Note that (A×B) · (C ×D) = (A ·C)(B ·D)− (A ·D)(B ·C).

8.7 What are the dimensions of the four-potential? Hint: L = qAµU
µ.

8.8 The Minkowski force was defined in Section 7.2 as Kµ = dPµ/dτ , where it was shown
that Kµ must have the form Kµ = (γF · u/c, γF ) where F is the three-force. Equation
(8.43) gives us an explicit expression for the Minkowski force, Kµ = qFµνUν . Show that
qUνF

µν meets the requirements of the Minkowski force. You should find F 0νUν = γ

c
E · v

and F iνUν = γ(E + v×B)i. Use the result of Exercise 8.2.

8.9 Show that the time component of Eq. (8.43) reduces to mc2γ̇ = qu ·E.

8.10 Work out the time component of Eq. (8.41). Interpret this equation.
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Energy-momentum of fields

C ONSERVATION laws for particles (energy, momentum, angular momentum) follow from in-
variance of the action integral to transformations of spacetime coordinates (Section 7.6). In

this chapter we show how conservation laws for fields follow from the same type of reasoning. To
do so, we establish Noether’s theorem, one of the central tools of field theory.1

9.1 SYMMETRIES AND CONSERVATION LAWS
The action integral associated with a set of physical fields {φα(x)} is an integral of the Lagrangian
density over spacetime (Appendix D), S =

∫
L (φα, ∂µφα)d4x. We’re going to examine the be-

havior of S under infinitesimal coordinate transformations, which we’ll write in the form

xµ → xµ = xµ + εiλµi (x) , (9.1)

where the εi are infinitesimal parameters and the quantities λµi (x) are known functions. The range
of the index i is at this point unspecified; the εi need not be part of a four-vector. The form of Eq.
(9.1) is sufficiently general that it allows us to consider within the same formalism infinitesimal
translations, λµν (x) = δµν , and infinitesimal LTs, where the functions λµi (x) have more structure
(Section 6.2). Invariance of S under Eq. (9.1) is called a continuous symmetry because the εi can
vary continuously, as opposed to discrete symmetries such as parity and time reversal (Section 4.3).
We allow for the possibility of infinitesimal variations in the fields under Eq. (9.1),

φα(xµ)→ φα(xµ) = φα(xµ) + εiΩiα(x) , (9.2)

where the Ωiα(x) are known functions. Noether’s theorem is that for every continuous symmetry of
S there exists a conserved quantity. The reader uninterested in the proof should skip to Eq. (9.10).

Invariance of the action integral under Eq. (9.1) requires that∫
V ′

L (x)d4x =
∫
V

L (x)d4x , (9.3)

where V is a spacetime volume, V ′ is obtained from V under Eq. (9.1), and L is the Lagrangian
density expressed in the new coordinates. Rewrite Eq. (9.3) as follows:

0 =
∫
V ′

(
L (x)−L (x)

)
d4x+

∫
V ′

L (x)d4x−
∫
V

L (x)d4x . (9.4)

We’ve massaged Eq. (9.3) in this way so that the integrand of the first integral in Eq. (9.4) is first
order in small quantities; consequently, we can let V ′ → V and consistently work to first order. At

1There is no shortage of proofs to Noether’s theorem, discovered in 1918. We follow that given in Gross.[40]
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that point we can substitute x for x as a change in dummy variables. Equation (9.4) then becomes
to first order

0 =
∫
V

(
L (x)−L (x)

)
d4x+

∫
V

(L (x) + ∂µL (x)δxµ) Jd4x−
∫
V

L (x)d4x , (9.5)

where in the second integral we have replaced L (x) with its first-order Taylor expansion around
x, and where J is the Jacobian determinant of the transformation x → x. From Eq. (5.53) and Eq.
(9.1), J = det ∂xµ/∂xν = det (δµν + εi∂νλ

µ
i (x)). Because we want only terms to first order in

ε, we need keep only the product of the diagonal terms in the Jacobian determinant, which to first
order is J = 1 + εi∂µλ

µ
i . Substituting this result for J into Eq. (9.5), we have, keeping terms to first

order,

0 =
∫
V

(
L (x)−L (x)

)
d4x+ εi

∫
V

∂µ(λµi L )d4x . (9.6)

Equation (9.6) is equivalent to Eq. (9.3) to first order in small quantities.
The integrand of the first integral in Eq. (9.6) is the functional variation δL (x) at point x (see

Eq. (D.6)),

δL (x) ≡ L (x)−L (x) = ∂L

∂φα
δφα(x) + ∂L

∂(∂µφα)δ(∂µφα(x)) , (9.7)

where the variations δφα and δ(∂µφα) are similarly defined (Appendix D). We can eliminate ∂L /
∂φα from Eq. (9.7) using the Lagrange equation for fields, Eq. (D.65). Together with δ(∂µφα) =
∂µ(δφα), Eq. (9.7) is equivalent to

δL (x) = ∂µ

(
∂L

∂(∂µφα)

)
δφα(x) + ∂L

∂(∂µφα)∂µ(δφα(x)) = ∂µ

[
∂L

∂(∂µφα)δφα(x)
]
. (9.8)

The variation δφα(x) can be written

δφα(x) ≡ φα(x)− φα(x) = φα(x)− φα(x)− (φα(x)− φα(x))
= εiΩiα(x)− εiλµi (x)∂µφα = εi [Ωiα(x)− λµi (x)∂µφα] , (9.9)

where we’ve used Eqs. (9.1) and (9.2), and in the last equality we’ve replaced φα → φα because
we’re already at first order in ε. Combining Eqs. (9.9), (9.8), and (9.6),

0 = εi
∫
V

d4x∂µ

[
∂L

∂(∂µφα) (−λνi (x)∂νφα + Ωiα(x)) + λµi (x)L
]
. (9.10)

The εi are independent parameters and V is arbitrary: The integrand of Eq. (9.10) must vanish for
each value of the index i,

∂µJ
µ
i = 0 , (i = 1, 2, · · · ) (9.11)

where
Jµi ≡ λ

µ
i (x)L + ∂L

∂(∂µφα) [−λνi (x)∂νφα + Ωiα(x)] . (9.12)

Equation (9.11) is a continuity equation for each i. Noether’s theorem is that for each continuous
symmetry of S there is a conserved current, Jµi prescribed by Eq. (9.12). Conservation laws for
fields are expressed as continuity equations among the components of a tensor field.
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9.2 SPACETIME HOMOGENEITY: ENERGY-MOMENTUM TENSOR
The first thing to try in an application of Noether’s theorem is invariance under infinitesimal transla-
tions, xµ → xµ = xµ + εµ (homogeneity of spacetime), implying from Eq. (9.1) that λµν (x) = δµν .
In addition, Ωiα(x) = 0 because φα(x) ≡ φα(x), for any tensor field under a shift in coordi-
nates. We show that invariance under spacetime translations implies conservation of field energy
and momentum.

From Eqs. (9.11) and (9.12) with2 λµν (x) = δµν = g µν and Ωiα = 0,

∂

∂xµ

[
g µν L − (∂νφα) ∂L

∂(∂µφα)

]
= 0 . (ν = 0, 1, 2, 3) (9.13)

The terms in square brackets comprise the canonical energy-momentum tensor,

T µ
ν ≡ g µν L − (∂νφα) ∂L

∂(∂µφα) . (9.14)

It’s convenient to raise the index on Eq. (9.14) and work with the contravariant tensor

Tµν = gµνL − (∂µφλ) ∂L

∂(∂νφλ) , (9.15)

in terms of which Eq. (9.13) is a set of four continuity equations

∂νT
µν = 0 . (µ = 0, 1, 2, 3) (9.16)

Continuity equations imply the existence of conserved quantities (Section 8.3)

Qµ ≡
∫

Σ
Tµ0d3y =

∫
TµνdΣν (µ = 0, 1, 2, 3) (9.17)

contained within a given SH Σ. The four quantities Qµ, the Noether charges—we’ll look at their
physical interpretations shortly—transform as the components of a four-vector. To establish that,
use the quotient theorem. The strategy is to show that BµQµ is a scalar for some four-vector, Bµ.
Let Bµ be a vector with constant (non-spatially varying) components. Contract Eq. (9.16) with Bµ,
∂νBµT

µν ≡ ∂νC
ν = 0, where Cν ≡ BµT

µν . By Section 8.3,
∫

Σ C
0d3y is a scalar. From Eq.

(9.17), BµQµ =
∫

ΣBµT
µ0d3y =

∫
Σ C

0d3y, a scalar.3

Interpretation of T µν

Noether’s theorem provides a recipe for constructing the tensor Tµν for any system of fields and
for identifying conserved quantities given only the Lagrangian density L and metric tensor gµν .
The quantity Tµν plays a significant role in GR—it’s “one half” of Einstein’s field equation! It’s
essential that we understand the physical interpretation of Tµν .

From its definition T 00 is the Hamiltonian density (compare Eq. (9.15) with Eq. (D.72)),

T 00 = −L + ∂0φ
λ ∂L

∂(∂0φλ) = H ,

where we’ve used η00 = −1 and ∂0 = −∂0. From Eq. (9.17),

Q0 =
∫

Σ
H d3x = E .

The tensor element T 00 is the energy density of the field.
2The mixed metric tensor is the Kronecker delta, Eq. (5.10). We write λµν = g µν with the contravariant index set off for

no reason other than cosmetic: In this way it’s the rows of T νµ that turn out to satisfy continuity equations, ∂µT νµ = 0
(which makes comprehending the content of the energy-momentum tensor easier in my opinion). If we had taken λµν = gµν
(covariant index set off), the columns would have satisfied continuity equations, ∂µTµν = 0.

3The essentials of this argument can be traced to Weyl.[41, p272]
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What is the interpretation of the other conserved quantities, Qi? Invariance of the action under
spatial translations in the ith-direction implies a conserved quantity we will call the i-component of
the field momentum. Because the time component (of the four-momentum) cP 0 = E = Q0, we
identify a four-momentum for the field through the relation Pµ = Qµ/c. Under this interpretation,
which is standard, we have for the spatial components of the field momentum,

P i = 1
c
Qi = 1

c

∫
Σ
T i0d3x .

T i0/c is the momentum density of the field in the ith direction, denoted gi. Thus, T i0 = gic.
If we integrate Eq. (9.16) over a finite three-volume V , we have the balance equation

d
dt

∫
V

Tµ0d3x = −c
∫
V

∂iT
µid3x = −c

∫
S

TµidΣi . (9.18)

For µ = 0 in Eq. (9.18), we see that the rate of change of field energy in V is balanced by the energy
transported across the boundary of V . Thus, cT 0i is the energy current density in the ith direction,
denoted Si; T 0i = Si/c. The spatial components of Eq. (9.18) are

d
dt

∫
V

1
c
T i0d3x = −

∫
S

T ijdΣj

or that the rate of change of the i-component of momentum in V is balanced by the transport of
i-momentum through the boundary of V . The quantity T ij thus represents the rate of change of
i-momentum per unit area in the jth direction,

T ij = ∆P i/∆t
∆Σj

= F i

∆Σj
≡ σij ,

where F i is a force (time rate of change of momentum is a force). The spatial components T ij thus
tell us the force exerted by the field in the ith-direction across a surface oriented in the jth-direction,
what is termed a stress. The space-space part of Tµν is the stress tensor, σij .

There are thus four parts to the energy-momentum tensor,

T 00 = energy density ≡ w cT 0i = (energy current density)i ≡ Si

1
c
T i0 = (momentum density)i ≡ gi T ij = (force)i

(area)j
≡ σij ,

which we can display as a matrix

[Tµν ] =


w S1/c S2/c S3/c
g1c σ11 σ12 σ13

g2c σ21 σ22 σ23

g3c σ31 σ32 σ33

 . (9.19)

From here on, we take for granted the interpretation of the energy-momentum tensor:

T =

 energy density energy current density
momentum stress tensor

density

 .
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9.3 SPACETIME ISOTROPY: ANGULAR MOMENTUM TENSOR
Next consider what Noether’s theorem has to say about invariance under LTs, which implies isotropy
of spacetime. For particles, invariance of the action under infinitesimal LTs implies conservation
of angular momentum along worldlines (Section 7.6). Do fields have angular momentum? (Hint:
Photons have spin.) In this section, we examine angular momentum as a consequence of Noether’s
theorem.

LTs depend on six parameters (Chapter 6, three for rotations, three for boosts). The range of
the index i in Eq. (9.1) for infinitesimal LTs is therefore 1 ≤ i ≤ 6. Instead of arranging the six
parameters as a vector, however, they can be “packaged” in an antisymmetric 4 × 4 matrix as in
Eq. (6.32). To use Noether’s theorem, we need to know how coordinates and fields transform under
Lµν = δµν + λµν , where [λµν ] contains the infinitesimal parameters of the transformation, Eq. (6.31).
For coordinates, compare Eq. (9.1) with the variation in coordinates produced by the LT. We identify
εiλµi (x) = λµνx

ν (apologies for notational abuse). For fields, we have to do a little more work.
How do four-vector fields (such as Aµ(x)) transform under the LT? To answer, form the scalar

product ψ(x) ≡ nµφ
µ(x) where nµ are the elements of a fixed but otherwise arbitrary four-vector.

From the invariance of scalar fields (Section 5.1),

ψ(x) = nν′φ
ν′(x) = nµφ

µ(x) = ψ(x) , (9.20)

where xµ = Lµνx
ν . From Eq. (9.20), nµφµ(x) = Lν

′

µ nν′φ
µ(x) = nν′φ

ν′(x). Four-vector fields
transform as a four-vector when the position coordinates are also transformed,

φν
′
(x) = Lν

′

µ φ
µ(x) . (9.21)

Comparing Eq. (9.2) with Eq. (9.21) when we use Lµν = δµν +λµν , we identify εiΩiα(x) = λναφν(x).
Let Jµ ≡ εiJµi be the net current in Eq. (9.12) summed over the six independent parameters of

the LT. With εiλµi (x)→ λµνx
ν and εiΩiα(x)→ λναφν(x), we have using Eq. (9.12),

Jµ = λµνx
νL + ∂L

∂(∂µφα) [−λρνxν∂ρφα + λραφρ(x)] (9.22)

Combine Eq. (9.14) (canonical energy-momentum tensor T µ
ρ ) with Eq. (9.22) to obtain

Jµ = λρνx
νT µ

ρ + λραφρ
∂L

∂(∂µφα) . (9.23)

Raise indices here appropriately, with the result

Jµ = ητνλ
ν
ρ

[
xρT τµ + φτ

∂L

∂(∂µφρ)

]
≡ ωτρ

[
xρT τµ + φτ

∂L

∂(∂µφρ)

]
, (9.24)

where ωτρ = ητνλ
ν
ρ , Eq. (6.32). Because ωτρ is antisymmetric, the contraction in Eq. (9.24) picks

out the antisymmetric part with respect to (τ, ρ) (Section 5.10.1):

Jµ = 1
2ωτρJ

ρτµ ,

where Jρτµ is the angular momentum current density tensor

Jρτµ ≡ xρT τµ − xτT ρµ + φτ
∂L

∂(∂µφρ)
− φρ ∂L

∂(∂µφτ ) . (9.25)

Noether’s theorem therefore implies six conservation laws (the parameters ωτρ are indepdent),

∂µJ
ρτµ = 0 . (ρ = 0, 1, 2, τ > ρ) (9.26)
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By the reasoning of Section 8.3, Eq. (9.26) implies six conserved quantities,

Jβλ ≡
∫

Σ
Jβλ0d3y =

∫
JβλµdΣµ . (9.27)

The quantity Jβλ is the (antisymmetric) angular momentum tensor for fields.
In seeking an interpretation of the angular momentum current, a natural idea is to take the first

group of terms in Eq. (9.25) as representing what can be termed the orbital properties of the field—
the spacetime flow of energy and momentum, with the second group representing something else,
an intrinsic angular momentum, call it spin:

Jρτµ = xρT τµ − xτT ρµ︸ ︷︷ ︸
orbital momentum density

+ φτ
∂L

∂(∂µφρ)
− φρ ∂L

∂(∂µφτ )︸ ︷︷ ︸
spin density

.

Thus, write Jρτµ as the sum of two terms Jρτµ = Lρτµ + Sρτµ, with

Lρτµ ≡ xρT τµ − xτT ρµ (9.28)

Sρτµ ≡ φτ ∂L

∂(∂µφρ)
− φρ ∂L

∂(∂µφτ ) . (9.29)

Splitting the angular momentum into orbital and spin parts is an appealing idea, but there’s no
guarantee it’s anything other than giving names to the terms: neither Lρτµ nor Sρτµ need be sep-
arately conserved—it’s the total angular momentum Jρτµ that’s conserved, Eq. (9.26). For this
idea to be well defined physically, an independently existing orbital angular momentum would
have to transform like a tensor under the LT, which would be defined by an integral over a SH,
Lβλ ≡

∫
LβλµdΣµ (likewise with the spin, Sβλ ≡

∫
SβλµdΣµ). Independence of SH, however,

would imply a conservation law, ∂µLβλµ = 0 (similarly ∂µSβλµ = 0). From Eq. (9.26),

0 = ∂µJ
ρτµ = ∂µL

ρτµ + ∂µS
ρτµ = T τρ − T ρτ + ∂µS

ρτµ ,

where we’ve differentiated Lρτµ using Eq. (9.28) and we’ve used the continuity equations for T τµ,
Eq. (9.16), implying

∂µS
ρτµ = T ρτ − T τρ ≡ 2T [ρτ ] . (9.30)

We arrive at an important conclusion: We can meaningfully speak of a field spin density when the
canonical energy-momentum tensor is symmetric; otherwise, the separation into orbital and spin
angular momentum cannot be made relativistically invariant.

Scalar fields

Scalar fields transform under the LT such that Ωiα(x) = 0 in Noether’s theorem. Tracing through
the steps, for a scalar field Jρτµ = Lρτµ: there is no spin part to the angular momentum of a scalar
field. Because the total (conserved) angular momentum is “all orbital” in this case, the canonical
energy-momentum tensor of a scalar field is necessarily symmetric. Only multi-component fields
(like Aµ(x)) can have a nonzero spin density.

Example. The elastic displacement field φ(x, t) of an isotropic medium is a scalar field. Its La-
grangian density is (see Eq. (D.66)) L = − 1

2 (∂µφ) (∂µφ). Using Eq. (9.15), we find the energy-
momentum tensor for this field:

Tµν = gµνL − (∂µφ) ∂L

∂(∂νφ) = gµνL + (∂µφ) (∂νφ) ,

which is symmetric. As an exercise, you should be able to show that T 00 = 1
2
[
(∂0φ)2 +

∑
i(∂iφ)2].
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9.4 SYMMETRIC ENERGY-MOMENTUM TENSOR
Is it possible to represent the angular momentum in “r×p” form? We defer for now the why behind
this question; let’s see if it can be done. At issue is whether an equivalent energy-momentum tensor
θµν can be found such that Jρτµ in Eq. (9.25) can be written in the form

Jρτµθ ≡ xρθτµ − xτθρµ . (9.31)

What would we require of θµν? First, do no harm: The conservation law Eq. (9.26) should be
satisfied. From Eq. (9.31),

∂µJ
ρτµ
θ = θτρ − θρτ + xρ∂µθ

τµ − xτ∂µθρµ . (9.32)

For the right side of Eq. (9.32) to vanish, θµν must 1) be symmetric and 2) have zero divergence,
∂νθ

µν = 0, i.e., θµν should satisfy the conservation law expected of an energy-momentum ten-
sor, Eq. (9.16). Add to this list the requirement that conserved quantities be preserved, the Noether
charges Qµ, Eq. (9.17), and the angular momentum tensor Jβλ, Eq. (9.27). As we’ll see, the sym-
metry requirement on θµν is the most difficult; after that, the rest fall into place.

The antisymmetric part of the canonical energy-momentum tensor T [µν] is equal to the diver-
gence of the spin density, Eq. (9.30); T [µν] is the source of the field spin density. Perhaps we can
use the spin current to build a symmetric tensor θµν . Let

Tµν → θµν ≡ Tµν + ∆µν = T (µν) + T [µν] + ∆(µν) + ∆[µν] , (9.33)

where ∆µν is to be determined such that θµν is symmetric. Choose ∆[µν] so that it cancels T [µν],
where we use Eq. (9.30):

∆[µν] = −T [µν] = − 1
2∂λS

µνλ .

We are done if we can find a suitable expression for the symmetric part, ∆(µν). Let

∆(µν) = 1
2∂λ

(
Sµλν + Sνλµ

)
.

Thus, ∆µν = 1
2∂λ

(
Sµλν + Sνλµ − Sµνλ

)
results in a symmetric tensor θµν . But wait, there’s

more. Consider the terms
ψµλν ≡ 1

2 (Sµλν + Sνλµ − Sµνλ) , (9.34)

which are antisymmetric in the second and third indices: ψµλν = −ψµνλ, as follows from the
antisymmetry of Sλνµ, Eq. (9.29). The antisymmetry of ψµλν implies that

∂νθ
µν = ∂νT

µν + ∂ν∂λψ
µλν = ∂νT

µν

because ∂ν∂λ is symmetric. Thus, ∂νθµν = 0 if ∂νTµν = 0. The modification of the canonical
energy-momentum tensor in Eq. (9.33) is therefore equivalent to

Tµν → θµν = Tµν + ∂λψ
µλν . (9.35)

We can add to Tµν the divergence of a third-rank tensor antisymmetric in its latter two indices and
achieve the symmetric energy-momentum tensor, θµν .

What we require of Tµν is that it have zero divergence (Noether’s theorem). Beyond that, we’re
free to modify it so that it’s symmetric. The Noether charges Qµ are invariant under Eq. (9.35).
From Eq. (9.17),

Q
µ ≡

∫
V

θµ0d3x =
∫
V

Tµ0d3x+
∫
V

∂λψ
µλ0d3x = Qµ +

∫
V

∂iψ
µi0d3x

=Qµ +
∫
S

ψµi0dSi , (9.36)
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where we’ve used ψµ00 = 0 (antisymmetry). Now let V encompass all of space (implicit in the
definition of Qµ), and assume that the surface terms vanish in Eq. (9.36) because the fields fall off
sufficiently rapidly as |x| → ∞; Q

µ = Qµ.
The same conclusion holds for the angular momentum tensor, but it takes more doing. It can be

shown that (Exercise 9.10)

Jαβµθ = Jαβµ + ∂λ
(
xαψβλµ − xβψαλµ

)
. (9.37)

Thus, under Tµν → θµν = Tµν + ∂λψ
µλν , where ψµλν is an antisymmetric tensor, the angular

momentum current transforms as Jαβµ → Jαβµθ = Jαβµ + ∂λG
αβλµ where Gαβλµ ≡ xαψβλµ −

xβψαλµ is antisymmetric in (α, β) and (λ, µ). Using Eq. (9.37),

J
αβ ≡

∫
Jαβ0
θ d3x =

∫
Jαβ0d3x+

∫
d3x∂λG

αβλ0 = Jαβ+
∫

d3x∂iG
αβi0 = Jαβ+

∫
Gαβi0dSi .

As usual, argue that for physical fields the surface terms vanish; J
αβ = Jαβ .

Thus, it’s always possible to find a symmetric energy-momentum tensor θµν by removing the
antisymmetric part of the canonical energy-momentum tensor T [µν], which is the source of the
spin angular momentum of the field. The symmetric tensor θµν describes the same total energy-
momentum as does Tµν , implying that the total energy-momentum due to field spin is zero. Field
spin only modifies the distribution of energy-momentum. The location of energy-momentum is
important in GR, because energy-momentum is the source of the gravitational field, and in GR the
field couples to θµν rather than Tµν .

9.5 THE ELECTROMAGNETIC FIELD

9.5.1 Symmetric energy-momentum tensor for the electromagnetic field

What we’ve developed applies to any system of fields; all we require is a Lagrangian density func-
tion. Here we specialize to the electromagnetic field. Combining L = −FαβFαβ/(4µ0) (Section
8.9) with Eq. (9.15), we have the canonical energy-momentum tensor: (using Eq. (8.48))

µ0T
µν = −1

4g
µνFαβF

αβ − (∂µAλ)Fλν . (9.38)

It’s straightforward to show from Eq. (9.38) that

T 00 = 1
2µ0
|B|2 + ε0

2 |E|
2 + ε0 [∇ · (φE)− φ∇ ·E] . (9.39)

The components T i0 and T 0i are more difficult to calculate. It can be shown that

T i0 = gic+ 1
cµ0

[
∇ · (EAi)−Ai∇ ·E

]
, (9.40)

where gi = ε0(E ×B)i, and

T 0i = 1
c
Si + 1

cµ0
(∇φ×B)i − ε0

c

∂φ

∂t
Ei ,

with Si = (E ×B)i/µ0. That suffices; we won’t calculate T ij .
The canonical energy-momentum tensor is thus not symmetric, T 0i 6= T i0. Moreover, the tensor

elements are not what we expect: T 00 is not the energy density, T i0 6= gic, and T 0i 6= Si/c. Despite
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these shortcomings, the conserved quantities Qµ are obtained correctly from Tµ0. From Eqs. (9.39)
and (9.40), we have, setting∇ ·E = 0 for the free field,

Q0 =
∫

all space
T 00d3x =

∫
all space

(
1

2µ0
|B|2 + ε0

2 |E|
2
)

d3x ≡ Ufield

Qi =
∫

all space
T i0d3x = c

∫
all space

gid3x = cP ifield ,

where the additional terms in Eqs. (9.39) and (9.40) convert to surface integrals and vanish at infinity.
We can put Tµν into symmetric form by adding a suitable term, Tµν → θµν = Tµν + ∂λψ

µνλ.
How to choose ψ? Guess. We can construct ψ out of the field tensor, Fλν , which is antisymmetric.
Let’s try ψµλν = fAµFλν , where f is an unknown scalar. From Eq. (9.35),

θµν = Tµν + f∂λ
(
AµFλν

)
= Tµν + f (∂λAµ)Fλν + fAµ∂λF

λν . (9.41)

Combining Eqs. (9.38) and (9.41),

θµν = gµνL − 1
µ0
∂µAλF

λν + f (∂λAµ)Fλν + fAµ∂λF
λν .

Using Aλ = gλαA
α and ∂λ = gλα∂

α,

θµν = gµνL − 1
µ0
gλαF

λν (∂µAα − fµ0∂
αAµ) + fAµ∂λF

λν .

By choosing f = 1/µ0,

θµν = gµνL − 1
µ0
gαλF

µαFλν + 1
µ0
Aµ∂λF

λν , (9.42)

where we’ve used Eq. (8.18). Combining Eq. (9.42) with L = −FαβFαβ/(4µ0), and using
∂νF

µν = 0 for free fields, we have the symmetric energy-momentum tensor

θµν = − 1
µ0

(
gαλF

µαFλν + 1
4g

µνFαβF
αβ

)
. (9.43)

Using Eq. (9.43) we find

θ00 = 1
2µ0
|B|2 + ε0

2 |E|
2 = uEM θi0 = θ0i = 1

cµ0
(E ×B)i = Si

c
= gic

θij =− ε0
(
EiEj − 1

2δ
ij |E|2

)
− 1
µ0

(
BiBj − 1

2δ
ij |B|2

)
≡ −σij . (9.44)

The elements of θµν agree with the interpretation of the energy-momentum tensor (Section 9.2) by
reproducing the known energy and momentum density of the electromagnetic field. The quantity
σij is the Maxwell stress tensor. We’ll show (next section) that for free fields, ∂νθµν = 0, i.e.,
electromagnetic energy-momentum is conserved when there are no charges to steal it. Because of
the symmetry of θµν , g = S/c2, i.e., the electromagnetic momentum is parallel to the Poynting
vector—wherever there’s a flow of energy, there’s a flow of momentum.

9.5.2 Field-particle interactions

Electromagnetic fields, represented by the field tensor Fµν , are generated by the four-current Jµ

through the Maxwell equation ∂νFµν = µ0J
µ, Eq. (8.27). Particles respond to the electromagnetic
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field through the equation of motion dPµ/dτ = qFµνUν , Eq. (8.43). The paradigm is that fixed
particle currents generate fields (Fµν) and fixed fields determine the motion of charged particles,
Pµ. There must be a more dynamical linkage, however, between particles and fields. The intermedi-
ary is the energy-momentum tensor θµν . We show that θµν responds to fields and currents through
the equation of motion ∂νθµν = −fµ, where fµ ≡ FµαJα is the Lorentz force-density four-vector
(Eq. (9.48)).4

Let’s take the divergence of θµν from Eq. (9.43):

−µ0∂νθ
µν =∂ν

(
gαλF

µαFλν + 1
4g

µνFαβF
αβ

)
=gαλFµαµ0J

λ + gαλF
λν∂νF

µα + 1
4∂

µ
(
FαβF

αβ
)
, (9.45)

where we’ve used Eq. (8.27), ∂νFλν = µ0J
λ. To massage this equation further, we note that

Fαβ∂µFαβ = Fαβ∂
µFαβ . Thus, from Eq. (9.45),

−µ0∂νθ
µν = µ0JαF

µα + gαλF
λν∂νF

µα + 1
2Fαβ∂

µFαβ . (9.46)

Next, we note that gαλFλν∂νFµα = Fαβ∂
βFµα. Equation (9.46) can then be written

−µ0∂νθ
µν = µ0JαF

µα + 1
2
[
Fαβ

(
2∂βFµα + ∂µFαβ

)]
. (9.47)

The terms in square brackets vanish, as we now show. The homogeneous Maxwell equations can be
written ∂µFαβ + ∂βFµα + ∂αF βµ = 0 (µ 6= α 6= β), Eq. (8.21). Thus,

2∂βFµα + ∂µFαβ =∂βFµα + ∂βFµα + ∂µFαβ = ∂βFµα − ∂µFαβ − ∂αF βµ + ∂µFαβ

=∂βFµα − ∂αF βµ .

The terms in square brackets then vanish5 because Fαβ∂βFµα = Fαβ∂
αF βµ.

The equation of motion for θµν is then, from Eq. (9.47),

∂νθ
µν = −JαFµα ≡ −fµ . (9.48)

The force density fµ = JαF
µα = (J · E/c, ρE + J × B) = (f0,f). The time and space

components of Eq. (9.48) are

∂νθ
0ν = ∂0θ

00 + ∂iθ
0i = ∂0θ

00 + 1
c
∂iS

i = −f0 = −1
c
J ·E ,

which is Poynting’s theorem, ∂uEM/∂t+∇ · S = −J ·E, and

∂νθ
iν = ∂0θ

i0 + ∂jθ
ij = −f i = − (ρE + J ×B)i . (9.49)

Written as a vector equation, Eq. (9.49) is equivalent to

∂

∂t
g +∇ · θ = − (ρE + J ×B) . (9.50)

Equation (9.50) is the balance equation for the field momentum: The rate of loss of field momen-
tum is balanced by the Lorentz force acting on charged particles. The single covariant equation,

4The covariant expression for the Lorentz force is qFµνUν , whereas the force density (force per volume) is FµνJν .
The four-current is a four-vector density.

5Use the antisymmetry of Fαβ and Fµα, and let β → α and α→ β.
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Eq. (9.48), contains Poynting’s theorem on energy balance as the time component and momentum
balance for its spatial part.

From Eq. (9.48) we see that field energy-momentum is not conserved due to the coupling of the
field to currents. We expect, however, for the system of fields and particles that energy-momentum
is conserved. Define an energy-momentum tensor for the combined system of fields and particles,
θµν ≡ θµνF +θµνM , where θµνF is the field energy-momentum tensor, Eq. (9.43), and θµνM is an energy-
momentum tensor for “matter,” so that for the combined system energy-momentum is conserved,
∂νθ

µν = 0. Because ∂νθ
µν
F = −fµ, Eq. (9.48), total energy-momentum conservation requires

∂νθ
µν
M = fµ . (9.51)

Equation (9.51) of course begs the question of what is θµνM . We can guess at θµνM for a point
mass m as a generalization of the four-current for a point charge, Eq. (8.12), the transport of four-
momentum in the various spacetime directions:

θµνM ≡ c
∫ ∞
−∞

dτPµUνδ4(x− z(τ)) = mc

∫ ∞
−∞

dτUµUνδ4(x− z(τ)) . (9.52)

We see that θµνM defined this way is a symmetric tensor. Keep in mind that θµνM does not follow
from Noether’s theorem; it’s been “cooked up,” yet it does the job. The divergence of Eq. (9.52) is
(Exercise 9.7)

∂νθ
µν
M = mc

∫ ∞
−∞
Aµδ4(x−z(τ))dτ = c

∫ ∞
−∞

qFµαUαδ
4(x−z(τ))dτ = FµαJα = fµ , (9.53)

where we’ve used Eq. (8.43) in the second equality and Eq. (8.12) in the third. Thus, Eq. (9.51) is
satisfied; the energy-momentum of particles and fields is conserved.

SUMMARY
• For every continuous symmetry of the action, there’s a conserved quantity associated

with fields (Noether’s theorem). Invariance under spacetime translations leads to energy-
momentum conservation, and invariance under LTs leads to conservation of angular momen-
tum.

• Conservation of energy-momentum is expressed in terms of continuity equations of the rows
of the energy-momentum tensor, ∂νTµν = 0. The quantitiesQµ =

∫
Σ d3xTµ0 are conserved.

• The tensor Tµν must be symmetric to conserve angular momentum. If the canonical energy-
momentum tensor is not symmetric, it can be symmetrized by adding to it the divergence of
a third-rank antisymmetric tensor, Tµν → θµν ≡ Tµν + ∂λψ

µλν . This procedure does not
change the conserved quantities Qµ.

• The energy-momentum tensor has the structure:

[Tµν ] =


W S1/c S2/c S3/c
g1c σ11 σ12 σ13

g2c σ21 σ22 σ23

g3c σ31 σ32 σ33

 .

where W is the energy energy, Si is the energy current density, gi is the momentum density,
and σij is the stress tensor, σij = F i/(∆a)j . Symmetry of the tensor implies that Si = gic2.

• For the electromagnetic field interacting with particles, ∂νθµν = −fµ, where fµ = FµνJν
is the Lorentz force-density four-vector. The one tensor equation ∂νθµν = −fµ contains as
its time component Poynting’s theorem on energy balance and for its spatial part the equation
for momentum balance in terms of the Maxwell stress tensor.
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EXERCISES

9.1 Fill in the steps from Eq. (9.5) to Eq. (9.6).

9.2 Derive Eq. (9.39) for T 00 using the canonical energy-momentum tensor, Eq. (9.38).

9.3 Show that θµν as given in Eq. (9.43) is symmetric. Show that the covariant version of Eq.
(9.43) is given by −µ0θµν = 1

4gµνF
αβFαβ + gλβFµβFλν .

9.4 Verify the first line of Eq. (9.44) using Eq. (9.43) for the symmetric energy-momentum tensor.

9.5 Verify the result given in Section 9.5.2 for fµ = (J ·E/c, ρE + J ×B) is correct.

9.6 a. Derive the energy-momentum tensor for the Proca Lagrangian, Eq. (8.52). Using Eq.
(9.42) show that the symmetric tensor is given by

θµν = θµν0 + 1
µ0

(mγc

~

)2
(
AµAν − 1

2g
µνAαAα

)
,

where θµν0 is the tensor for mγ = 0, Eq. (9.43).

b. From θ0i, show that the Poynting vector in this theory is

S = 1
µ0

(
E ×B +

(mγc

~

)2
φA

)
.

c. Show from θ00 that the energy density is given by

W = 1
2µ0

(
|B|2 +

(mγc

~

)2
|A|2

)
+ ε0

2

(
|E|2 +

(mγc

~

)2
φ2
)
.

d. Show that while θµν has been modified by the inclusion of a massive photon, the form of
Eq. (9.48) is preserved. The Lorentz force density is thus unchanged for a massive photon.
In particular, Poynting’s theorem is still given by ∂W/∂t+∇ · S = −J ·E.

9.7 Derive the first equality in Eq. (9.53). Use the identity given in Exercise 8.1 and integrate by
parts.

9.8 Is the canonical energy-momentum tensor for the electromagnetic field, Eq. (9.38), gauge
invariant? What about the symmetric tensor, Eq. (9.43)?

9.9 Fill in the steps between Eq. (9.22) and Eq. (9.23).

9.10 Derive Eq. (9.37). Start with Eq. (9.31) and substitute Eq. (9.35). Show that

xα∂λψ
βλµ = ∂λ

(
xαψβλµ

)
− ψβαµ .

Use Eq. (9.34) to show that
ψαβµ − ψβαµ = Sαβµ .

Use Eq. (9.25) combined with Eq. (9.29). Bob’s your uncle.
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Relativistic hydrodynamics

R ELATIVISTIC hydrodynamics is the study of matter in the fluid state,1 with relativistic flow
velocities or with energy densities sufficiently great that they generate gravitational fields. The

subject is needed in astrophysics (gamma ray bursts, relativistic jets, and the collapse of stars that
produce black holes); it’s also used in cosmology. In this chapter we develop the energy-momentum
tensor Tµν of a perfect fluid—an idealized fluid in which energy dissipation due to viscosity or
heat flow is ignored. Classical hydrodynamics is based on balance equations for mass, energy,
and momentum, concepts that are distinct in nonrelativistic physics, but which are interrelated in
relativity, mass-energy, and energy-momentum. We begin with a review of the nonrelativistic theory.

10.1 NONRELATIVISTIC HYDRODYNAMICS

10.1.1 Mass balance

Conservation of mass is expressed as a continuity equation, Eq. (8.9),

∂ρ

∂t
+∇ · (ρv) = 0 , (10.1)

where J = ρv is the mass current density with ρ the mass density and v the fluid velocity.

10.1.2 Momentum balance

The balance equation for momentum in a volume V is (see Eq. (8.7), general balance equation)

d
dt

∫
V

ρvdV︸ ︷︷ ︸
rate of change of momentum in V

= −
∮
S

ρvv · dS︸ ︷︷ ︸
momentum flux through S

+
∫
V

ρFdV︸ ︷︷ ︸
momentum produced by

external forces

+
∮
S

σ · dS ,︸ ︷︷ ︸
momentum produced by

short-range internal forces at S
(10.2)

where we’re using dyadic notation: (vv)ij ≡ vivj . The first integral on the right accounts for the
momentum convected through the surface S bounding V . The other two integrals represent sources
of momentum production: F is an external force (per mass) that couples to the particles within V
(such as the gravitational field), and σ, the stress tensor, represents the effect of short-range internal
forces (per area) acting at S. In a fluid there is always a normal component of the surface force (per
area), the pressure P , with σ = −P I (I is the unit dyad). In terms of components,2 σij = −Pδij .
This form of the stress tensor ignores the effects of viscous forces—sufficient for our purposes.

1A precise definition of fluid is elusive—a system with a sufficiently large number of particles that the dynamics of
individual particles cannot be tracked, and in which the collective motion of particles can be approximated in terms of a few
variables such as mass density ρ or flow velocity v.

2Because we’re dealing with nonrelativistic hydrodynamics, we dispense with covariant notation.

177



178 � Core Principles of Special and General Relativity

The surface integrals in Eq. (10.2) can be converted into volume integrals through the divergence
theorem, giving us the local form of the momentum balance equation, the Euler equation:

∂(ρv)
∂t

+∇ · (ρvv) = ρF +∇ · σ , (10.3)

where the divergence of a tensor has the components (∇ · σ)k = ∂iσ
i
k. The divergence of the

stress tensor (at a point) is the force density (at that point) due to internal forces in the fluid.3

If we set the external force F = 0 in Eq. (10.3) (a free fluid), and move the internal force to the
left of the equation, we have a conservation law (continuity equation) for fluid momentum

∂

∂t
g +∇ · (ρvv − σ) = 0 ,

where g = ρv is the momentum density. Written in terms of components:

∂

∂t
gi + ∂k (Pδik + ρvivk) = 0 , (10.4)

where we’ve used∇ · (P I)=∇P (Exercise 10.4).
The equations of hydrodynamics tend to simplify if we introduce a special time derivative, the

convective derivative D/dt ≡ ∂/∂t + v · ∇. To an observer moving with the fluid (Lagrangian
observer), D/dt = ∂/∂t. In the lab frame, however, (Eulerian observer) a vector field A(r, t)
changes in time and space. For small dt and dr, A(r + dr, t + dt) ≈ A(r, t) + dt (∂A/∂t) +
(dr · ∇)A; as dt → 0, we obtain the total time derivative DA/dt = ∂A/∂t + (v · ∇)A, where
v(r, t) = dr/dt is the velocity field in the Eulerian reference frame. The goal of relativity theory
is to relate the descriptions obtained in different reference frames. It’s a simple exercise to show
that Uµ∂µ = γD/dt; the convective derivative is almost a Lorentz invariant. Using the result of
Exercise 10.3, Euler’s equation can be written

ρ
Dv
dt = ρF +∇ · σ . (10.5)

10.1.3 Energy balance

In a perfect fluid energy dissipation is ignored, implying that flows are isentropic.4 In hydrodynam-
ics it’s usually more convenient to work with specific, “per mass” quantities. Denoting s = S/m as
the specific entropy (entropy per mass), isentropic flow is such that

Ds
dt = ∂s

∂t
+ v · ∇s = 0 . (10.6)

We assume that local thermodynamic equilibrium applies at any point of the fluid, and thus the
state variables of classical thermodynamics (which describe a global equilibrium state, independent
of space and time) become field quantities, functions of space and time. If the only form of work
available to the fluid is mechanical, the first law of thermodynamics is dE = TdS − PdV , where
E is the internal energy and T is the absolute temperature. Enthalpy H ≡ E + PV plays a role
in hydrodynamics;5 its differential is dH = TdS + V dP . Defining h = ε + P/ρ as the specific
enthalpy, where ε is the specific energy, we have dh = Tds + dP/ρ, where V/m = 1/ρ. For
isentropic flow (ds = 0),∇h =∇P/ρ, and Euler’s equation becomes ∂v/∂t+ (v ·∇)v = −∇h.
The velocity field of the free fluid responds to gradients in enthalpy, Dv/dt = −∇h.

Let’s derive the energy transport equation (the analog of Poynting’s theorem). The energy per
volume is 1

2ρv
2 + ρε.

3We should denote the stress tensor as a mixed tensor density (such as we found in Eq. (9.14)). The divergence of the
stress tensor is a force density: If σ is a force per area, its divergence is a force per volume,∇ · σ = f =⇒ ∂iσ

i
j = fj .

4Thermodynamics enters our discussion. Entropy measures the number of microscopic degrees of freedom consistent
with a given macroscopic state. Isentropic flow implies no additional transfer of energy to microscopic degrees of freedom.

5Enthalpy includes the work required to “make room” for a system by displacing volume V against the pressure P .
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Kinetic energy

For the kinetic energy term,

1
2
∂ρv2

∂t
= 1

2v
2 ∂ρ

∂t
+ ρv · ∂v

∂t
= −v

2

2 ∇ · ρv + ρv ·
(
−1
ρ
∇P − (v · ∇)v

)
= −v

2

2 ∇ · ρv − v · ∇P − ρv · (v · ∇)v = −v
2

2 ∇ · ρv − ρv · ∇h

+ Tρv · ∇s− 1
2ρv · ∇(v2)

= −v
2

2 ∇ · ρv − ρv · ∇(h+ v2

2 ) + Tρv · ∇s , (10.7)

where in the first line we’ve used the continuity equation and Euler’s equation, and in the second
line∇P = ρ∇h− Tρ∇s and v · (v · ∇)v = 1

2v · ∇(v2).

Internal energy

For the internal energy, we use that dE = TdS−PdV is equivalent to dε = Tds+ (P/ρ2)dρ. We
then have

∂ρε

∂t
= ρ

∂ε

∂t
+ ε

∂ρ

∂t
= ρ

(
T
∂s

∂t
+ P

ρ2
∂ρ

∂t

)
+ ε

∂ρ

∂t
= ρT

∂s

∂t
+ h

∂ρ

∂t
= −ρTv · ∇s− h∇ · (ρv) ,

(10.8)
where we’ve used Eqs. (10.1) and (10.6) and h = ε+ P/ρ.

Total energy

Combining Eqs. (10.7) and (10.8), the entropy gradients cancel (mercifully),

∂

∂t

(
1
2ρv

2 + ρε

)
= −

(
h+ v2

2

)
∇ · (ρv)− ρv · ∇

(
h+ v2

2

)
= −∇ ·

(
ρv

(
h+ v2

2

))
,

and we obtain a continuity equation for energy

∂

∂t

(
1
2ρv

2 + ρε

)
+∇ ·

(
ρv

(
h+ 1

2v
2
))

= 0 . (10.9)

Energy is conserved—not surprising because we haven’t allowed energy dissipation. The energy
current density, however, ρv(h + 1

2v
2) involves the transport of enthalpy. To see why that’s the

case, develop a balance equation by integrating Eq. (10.9) over space,

d
dt

∫
d3xρ(ε+ v2/2) +

∮
ρv(ε+ v2/2) · dS = −

∮
Pv · dS . (10.10)

The right side of Eq. (10.10) resembles “Joule heating” in Poynting’s theorem (Section 9.5.2), but
the comparison isn’t apt. The quantity −J ·E represents an irreversible transfer of energy from the
electromagnetic field into the motion of particles, while the right side of Eq. (10.10) represents a
reversible conversion of internal energy into work, and is not dissipated. The total energy (kinetic
energy and internal energy of the fluid) is conserved when we take into account transport of enthalpy.

10.1.4 Nonrelativistic energy-momentum tensor

Equations (10.4) and (10.9) express the conservation of fluid momentum and energy. We can write
these equations in a compact form resembling conservation of energy and momentum of general
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fields, Eq. (9.16), by defining a tensor-like quantity (in analogy with Eq. (9.19))

Tµν ≡


w J1 J2 J3
g1 T11 T12 T13
g2 T21 T22 T23
g3 T31 T32 T33

 , (10.11)

where

T00 =w ≡ ρε+ 1
2ρv

2 T0i = Ji ≡ ρvi(h+ 1
2v

2)
Ti0 =gi = ρvi Tij = Pδij + ρvivj . (10.12)

Equations (10.4) and (10.9) can then be written using the notation of Eq. (10.11)

∂T00

∂t
+ ∂T0i

∂xi
= ∂w

∂t
+ ∂Ji
∂xi

= 0 ∂Ti0
∂t

+ ∂Tik
∂xk

= ∂gi
∂t

+ ∂Tik
∂xk

= 0 . (10.13)

We say that Eq. (10.11) is “tensor like” because, even though we’ve used tensor notation, it’s not
a tensor: It doesn’t transform as one. We’ve written the conservation laws this way only to suggest
how to get started with a relativistic theory (next section). While the “space-space” part of Eq.
(10.11), Tij , is symmetric, T0i 6= Ti0—there is no “E = mc2” in classical hydrodynamics.

10.2 ENERGY-MOMENTUM TENSOR FOR PERFECT FLUIDS
Assume that a reference frame can be found in which all particles of the fluid are at rest. For such a
frame, set all fluid velocities to zero in Eq. (10.11), leaving us with an energy-momentum tensor:

T
µν =


ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 , (10.14)

where we’ve let ρε → ρc2 as the internal energy density, with ρ the proper density.6 The conserva-
tion laws in Eq. (10.13) reduce to w = constant, P = constant, ∂νT

µν = 0.
Starting with Eq. (10.14), we can obtain the energy-momentum tensor in an IRF through a LT,

Tµν = LµαL
ν
βT

αβ
. (10.15)

Because Eq. (10.14) is diagonal, Eq. (10.15) is equivalent to

Tµν = ρc2Lµ0L
ν
0 + P

3∑
i=1

Lµi L
ν
i . (10.16)

Clearly Tµν is symmetric. Using Eq. (6.16) for an arbitrary boost, it’s straightforward to show that7

Tµν = Pηµν + ψ

c2
UµUν , (10.17)

where ψ ≡ ρc2 + P is the enthalpy density (enthalpy per volume). The elements of Tµν are

T 00 = −P + γ2ψ = γ2ρc2 +
(
γ2 − 1

)
P = γ2 (ρc2 + Pβ2)

T 0i = T i0 = ψ

c
γ2vi T ij = Pδij + ψ

c2
γ2vivj . (10.18)

6At this point, we could let ρε→ ρc2 + ρε, where ε is the internal energy because (for example) the medium is elastic.
Traditional thermodynamics ignores the rest-mass energy, whereas for our purposes we’re going to ignore ε.

7Equation (10.17) is often given as the definition of a relativistic perfect fluid.
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Using the results established in Section 9.2, the energy current Si ≡ cT 0i and the momentum
density gi ≡ T i0/c are, from Eq. (10.18),

Si = γ2ψvi gi = γ2 ψ

c2
vi . (10.19)

Clearly gi = Si/c2 holds in this theory, just as in electrodynamics, Eq. (9.44). The factors of γ2

can be traced to the fact that there is already one factor of γ in E = mγc2 and Uµ = cγ (1,β); the
second factor of γ comes from the LT of densities (Section 8.2).

In the relativistic theory of hydrodynamics, both the energy and momentum currents involve
transport of enthalpy (in the nonrelativistic theory, enthalpy transport contributes only to the energy
current). This is because “E = mc2” is missing from the nonrelativistic theory. It’s a good habit to
watch for where P enters the theory. Pressure has dimensions of energy density; hence P/c2 has
dimensions of mass density. In GR, the “mass-energy” of pressure contributes to gravitation.

10.3 ENERGY-MOMENTUM CONSERVATION
The equations of energy-momentum conservation are obtained from ∂νT

µν = 0, Eq. (9.16). Ap-
plied to Eq. (10.17), we have

∂µP + 1
c2
∂ν (ψUµUν) = 0 . (10.20)

The equation of energy conservation is the time component of Eq. (10.20), µ = 0,

−∂0P + 1
c
∂ν (γψUν) = ∂

∂t

(
γ2(ρc2 + Pβ2)

)
+∇ ·

(
γ2ψv

)
= 0 . (10.21)

In the low-speed limit, Eq. (10.21) reduces to:

∂ρ

∂t
+∇ ·

(
(ρ+ P/c2)v

)
= 0 . (v � c) (10.22)

For P � ρc2, Eq. (10.22) reduces to Eq. (10.1) (that is, when we neglect the equivalent mass-
energy density of the pressure). Both limits, v � c and P � ρc2, are obtained by letting c → ∞.
The equation for energy conservation thus reduces to mass conservation in the nonrelativistic limit.
In relativistic hydrodynamics, there is no mass conservation equation. Mass is not conserved, but
energy is. The equation for energy conservation is the relativistic generalization of the mass conti-
nuity equation. Note how mass conservation differs from charge conservation. Charge conservation
is built into the field equations of electromagnetism.8 While charges generate the electromagnetic
field, they don’t carry electromagnetic energy, which is contained in the electromagnetic field. In
the theory of relativity, mass both carries energy and generates the gravitational field.

Momentum conservation is obtained from the spatial parts of Eq. (10.20); setting µ = i,

∂iP + 1
c
∂0
(
γ2ψvi

)
+ 1
c2
∇ ·

(
γ2ψvvi

)
= 0 . (10.23)

Using Eq. (10.21) in Eq. (10.23), it can be shown

∂v

∂t
+ (v · ∇)v = − 1

γ2 (ρ+ P/c2)

(
∇P + v ∂

∂t
(P/c2)

)
, (10.24)

which is the relativistic generalization of the Euler equation. Equation (10.24) reduces to the non-
relativistic Euler equation in the limit c→∞.

8Take the divergence of the Ampère-Maxwell equation, and use Gauss’s law.
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10.4 PARTICLE NUMBER CONSERVATION
While mass is not conserved, the number of particles (baryons at a fundamental level, or atoms at
reasonable temperatures) is conserved. We must put in “by hand” a continuity equation for particle
number. Baryons (particles composed of three quarks) can undergo transmutations and thus while
the rest mass of a group of baryons may not be conserved, the number of baryons is. Conservation
of particle number (baryon or lepton) is a tenet of the standard model of particle physics.

Let n denote the number density of particles in the rest frame. (We’re assuming a reference
frame in which all particles are at rest.) Define the number flux four-vector Nµ by the requirements
that in the rest frame, N

0 = nc and N
i = 0. The quantity nc is the number of particles per area per

time to cross a spacelike surface in the rest frame (see Fig. 10.1). Under a LT (to an IRF in which the
particles all have the same velocity), Nµ = LµνN

ν = Lµ0nc = nUµ. We posit a continuity equation
for the number of particles,

∂µN
µ = ∂µ(nUµ) = ∂t(γn) +∇ · (nγv) = 0 . (10.25)

Particle number conservation does not follow from Noether’s theorem, from a spacetime symmetry;
we take it as an experimentally verified aspect of our world.

Figure 10.1 N
0 = nc is the flux of particles through a spacelike hypersurface.

10.5 COVARIANT EQUATION OF MOTION
Equation (10.24) is the relativistic generalization of the Euler equation. It is, however, not in covari-
ant form—it involves the three-velocity, not the four-velocity. The Euler equation specifies the accel-
eration of a fluid; a covariant version would involve spacelike quantities because four-acceleration
is spacelike and orthogonal to the four-velocity (Section 7.1). What we do have in covariant form
are the conservation laws, Eq. (10.20). For this purpose it’s useful to view Aµ ≡ ∂νT

µν as the
components of a four-vector (components that have magnitude zero because of the conservation
laws). We then resolve each of the components Aµ into timelike and spacelike quantities (through
the application of a projection operator), Aµ = AµT + AµS , which is a Lorentz-invariant procedure.
The conservation laws can then be written 0 =

∑
µA

µ
T +

∑
µA

µ
S . Because timelike and spacelike

vectors are linearly independent, we have separately
∑
µA

µ
T = 0 and

∑
µA

µ
S = 0.

We seek an operator that projects out of an arbitrary four-vector any components lying in the
spacelike hypersurface (SH) orthogonal to the four-velocity. A three-vectorA can be written as the
sum of a projection along a given unit vector n̂ and a vector orthogonal to n̂,A = n̂(n̂ ·A) +A⊥.
The operator Pn ≡ I − n̂(n̂· ) would then project out of A its component orthogonal to n̂,
A⊥ = PnA. In the case of four-vectors, take the unit vectors to be in the direction of the four-
velocity, nµ = Uµ/c. Define the projection operator

Pµ
ν ≡ δµν + UµUν/c

2 (10.26)
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that projects out of a four-vector any components orthogonal to Uµ. A plus sign is used in Eq.
(10.26) because UµUµ = −c2. As can be verified, Pµ

ν U
ν = 0; Uµ (timelike) has no spacelike

component. For an arbitrary four-vector Bµ, Pµ
νB

ν = Bµ + (UνBν)Uµ/c2. We then have that
Uµ (Pµ

νB
ν) = 0: Because Uµ is timelike, Pµ

νB
ν is spacelike (see Section 4.4.2). The projection

of Aν in the timelike direction is
(
−UµUν/c2

)
Aν .

First consider the timelike projection of the conservation laws. The projection of ∂νTλν = 0
along the direction of Uµ is (−Uµ/c2)Uλ∂νTλν , implying Uλ∂νTλν = 0. From Eq. (10.20), we
have Uν∂νP +Uλ∂ν

(
ψUλUν

)
/c2 = 0. This equation is equivalent to (using the result of Exercise

10.9)

Uν∂νρ+ 1
c2
ψ∂νU

ν = 0 . (10.27)

Equation (10.27) is a useful identity relating the compressibility of the fluid to the divergence of the
four-velocity. As c→∞, Eq. (10.27) reduces to Eq. (10.1).

From Pµ
α∂νT

αν we obtain the projections of ∂νTαν = 0 onto the directions orthogonal to Uµ,

(ρ+ P/c2)Uν∂νUµ +
(
ηµν + UµUν

c2

)
∂νP = 0 , (10.28)

where we’ve used Eq. (10.20) and the result of Exercise 10.9. Equation (10.28) is the covariant
generalization of the Euler equation. There are four equations implicit in Eq. (10.28), whereas the
nonrelativistic Euler equation is among three-vectors. For v � c and P � ρc2, the spatial parts of
Eq. (10.28) reduce to the nonrelativistic Euler equation. The time component of Eq. (10.28) vanishes
as c→∞.

10.6 LAGRANGIAN DENSITY
What is the Lagrangian density of the perfect fluid? We know that L should be a Lorentz invariant.
What scalar invariants can be built out of the velocity field, Uµ? Let’s try L = a+ bUµU

µ, where
a and b are unknown scalar fields. Using this form for L in Eq. (9.15), the energy-momentum
tensor obtained from Noether’s theorem, we would have Tµν = L ηµν = ηµνa + bηµνUνU

ν =
aηµν+bUµUν . We obtain agreement with Eq. (10.17), the energy-momentum tensor obtained from
hydrodynamics, by choosing a = P and b = ψ/c2. We would then have L = P + ψUµU

µ/c2.
However, UµUµ = −c2, so that9

L = P − ψ = −ρc2 . (10.29)

SUMMARY
• Nonrelativistic hydrodynamics is based on five equations expressing conservation of mass,

momentum, and energy, concepts that are distinct in pre-relativistic physics but become inter-
related in relativity theory. In relativistic hydrodynamics, there are four continuity equations
expressing conservation of energy and momentum. There is no mass conservation law in rel-
ativistic hydrodynamics, mass being subsumed by energy.

• The energy-momentum tensor of the perfect fluid10 is Tµν = ρUµUν+P (ηµν+UµUν/c2).

• From Tµν we obtain the energy current Si = γ2ψvi whereψ is the enthalpy density in the rest
frame, and the momentum density gi = γ2ψvi/c2. In relativistic hydrodynamics energy and
momentum transport involve enthalpy. This is where “E = mc2” enters the theory: Pressure
has units of energy density and contributes to energy transport; P/c2 has units of mass density
and contributes to momentum transport.

9Equation (10.29) would be L = −ρ(c2 + ε) if we included an internal energy function of the medium.
10What today we refer to as a perfect fluid, Einstein in his 1916 article called a frictionless adiabatic fluid.[9, p152]
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• Conservation of energy-momentum is expressed by the zero divergence of Tµν , ∂νTµν = 0.
The time component of ∂νTµν = 0, Eq. (10.21), expresses energy conservation and is the
relativistic generalization of the mass continuity equation. In relativity, energy is conserved,
and energy is tied to mass. The spatial parts of ∂νTµν = 0, Eq. (10.24), are the relativistic
generalization of the Euler equation. Conservation of particle number is expressed by Eq.
(10.25), a continuity equation for n, the number density in the rest frame. The covariant Euler
equation is given in Eq. (10.28).

EXERCISES

10.1 In a gravitational field g, there is a force per mass F = g in Euler’s equation. Show that Eq.
(10.9) is modified to read ∂( 1

2ρv
2 + ρε)/∂t+∇ ·

(
ρv(h+ v2/2)

)
= ρv · g.

10.2 Show that∇·(ρvv) = ρ(v ·∇)v+v∇·ρv. The divergence of a tensor T is, in this notation,
(∇ · T)i ≡

∑
j ∂jTij .

10.3 Using the results of Exercise 10.2, show that ∂ (ρv) /∂t+∇ · (ρvv) = ρDv/Dt.

10.4 Show that∇ · (P I) =∇P .

10.5 Show that, for any scalar function φ, ρDφ/Dt = (∂/∂t)(ρφ) +∇ · (φρv).

10.6 Show that Uµ∂µ = γD/Dt.

10.7 Show that Eq. (10.6) can be combined with Eq. (10.1) to produce an entropy continuity equa-
tion, ∂(ρs)/∂t+∇ · (ρsv) = 0.

10.8 Show the vector identity v · (v · ∇)v = 1
2v · ∇

(
v2).

10.9 Show that UµUν∂νUµ = 0. Start by differentiating UµUµ = −c2. Show that this leads to the
identity Uµ∂νUµUν = −c2∂νUν .

10.10 For nonrelativistic matter, the pressure is much less than the mass-energy density, P � ρc2.
Compute, in Pascals, the value of ρc2 obtained using the ordinary density of water. Compare
with ordinary atmospheric pressure.

10.11 Show, using Eq. (10.17), that ρUµ = −UνTµν/c2. A covariant definition of the mass cur-
rent is thus Jµ ≡ ρUµ = −UνTµν/c2. Is Jµ conserved? Does ∂µJµ = 0? Show that
∂µJ

µ = −P∂νUν/c2 (use the result from Exercise 10.9). Combine this result with Eq.
(10.27) to conclude that ∂µJµ = (P/ψ)Uν∂νρ. The extent to which ∂µJµ 6= 0 is related to
the compressibility of the fluid. Mass is energy; if energy can change, mass is not conserved.

10.12 Using Eq. (10.17), show that UµUνTµν = ρc4. Thus, UµUνTµν is a covariant definition of
ρ.

10.13 Show that the projection operator defined in Eq. (10.26) obeys the property of a projection
operator: Pµ

ν

(
Pν
λA

λ
)

= Pµ
λA

λ for arbitrary four-vector Aλ.

10.14 Show directly that for any four-vectorAν , the component orthogonal to Uµ, Pµ
νA

ν , is space-
like.

10.15 Show that Pµ
α∂νT

αν = 0 leads to Eq. (10.28). Use the results of Exercise 10.9.

10.16 Show that by contracting Eq. (10.28) withUµ, you are led back to the result shown in Exercise
10.9. Why does this make sense?
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Equivalence of local gravity
and acceleration

I N Section 1.8 we bid au revoir to gravity in order to develop spacetime physics as it pertains to
non-gravitational phenomena (SR). It’s time to return gravity to the fold.

11.1 THE EÖTVÖS EXPERIMENT
Aristotle taught that heavier objects fall in gravity faster than lighter ones—which is true for mo-
tion in resistive media. Galileo noted that: “. . . the difference of speed in moveables of different
heaviness is found to be much greater in more resistant mediums.”[42, p75] When friction can be
minimized, however, objects fall at the same rate: “Yet balls of gold, lead, copper, porphyry, and
other heavy materials differ almost insensibly in the inequality of motion through air. . . . I came to
the opinion that if one were to remove entirely the resistance of the medium, all materials would
descend with equal speed” (my emphasis).1 Galileo refuted the Aristotelian theory with a simple
argument. Consider two objects of unequal weight, and let them be connected by a string. Under
free fall, the nominally faster object would be retarded by the slower, due to the string, and the nom-
inally slower object would be sped up by the faster. But the two objects together make a composite
object heavier than either of its parts, which now falls slower than the heavier of its parts would fall
by itself. Galileo: “. . . from the supposition that the heavier body is moved more swiftly than the
less heavy, I conclude that the heavier moves less swiftly.”[42, p66]

The resolution is that, in the absence of friction, all objects fall at the same rate. Write Newton’s
law of motion in the form F = mia, where the inertial mass mi is the property of matter that
resists changes in inertial motion (Section 1.2.1), and the force law in the form F = mgg (if all
other forces have been eliminated, such as drag), where the gravitational mass mg is the property
of matter that couples to the gravitational field (Section 1.7.1). We customarily takemi = mg ≡ m,
so that a = g, independent of any property of the object. Acceleration under gravity is independent
of any attribute of an object! Gravity is a special kind of force.

The two types of mass, however, are logically distinct. What if mi 6= mg? Objects A and B
would not accelerate the same under gravity, with aA = (mg/mi)A g and aB = (mg/mi)B g.
Let’s do the experiment: Does aA = aB? The difference in acceleration between objects is charac-
terized by the Eötvös parameter, η, a dimensionless quantity defined as the difference in acceleration

1Such an experiment was performed by the Apollo astronauts in 1971, where a simultaneously released hammer and
feather were observed to strike the lunar surface at the same time.

185
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divided by the average acceleration,

η ≡ |aA − aB |
1
2 (aA + aB)

= 2
∣∣(mg/mi)A − (mg/mi)B

∣∣
(mg/mi)A + (mg/mi)B

.

One could measure the time to fall, t =
√

2h/[g(mg/mi)], so thatmg/mi = 2h/(gt2), from which
η = 2

∣∣t2B − t2A∣∣ / (t2B + t2A
)
.

Another experiment is to compare the oscillation periods of pendulums of the same length made
of different materials. Galileo used a lead ball and a cork ball, with the lead ball approximately
100 times as heavy as the cork ball. He watched the two pendulums, released at the same time,
and could observe no difference in their motion. The oscillation period T = 2π

√
(mi/mg)(l/g)

and thus η = 2
∣∣T 2
B − T 2

A

∣∣ /(T 2
B + T 2

A). Newton performed this experiment around 1680, and from
his data one can estimate η ≈ 10−3. Friedrich Bessel repeated the experiment in 1832 and found
η ≈ 2× 10−5.

By far the most accurate experiment is that of Loránd Eötvös, who devised a torsion balance
technique, starting in 1885 and repeated and refined by Eötvös and co-workers until 1920. Eötvös
found η < 5 × 10−9. The Eötvös experiment has been repeated with ever-increasing precision.
In 2008 a group reported η = (0.3 ± 1.8) × 10−13,[43] consistent with η = 0, or mi = mg .
Einstein took the identity mi ≡ mg as a fact of experience and used it to far-reaching effect in
establishing GR. The Eötvös experiment provides the foundation for GR, just as the Michelson-
Morley experiment provides the foundation for SR.

The classic Eötvös experiment uses Earth as a laboratory, which as a rotating object allows us
to probe the difference between mg (associated with gravity), and the inertial mass mi (associated
with inertial forces). The experiment consists of a balance suspended in gravity from a torsion fiber
(dashed line in Fig. 11.1), having objectsA andB at distances l and l′ from the fiber. The centrifugal

x

z

l′

l

az

az

ax

ax

(mg)Bg

(mg)Ag

B

A

Figure 11.1 Eötvös torsion balance; z is the local vertical and x points from north to south.

force from Earth’s rotation has components in the z and x-directions (depending on one’s latitude
on Earth). Objects A and B, being different, have unequal inertial masses. A torque is produced
about the z-axis from the horizontal components of the centrifugal force,

τz = (mi)Bl′ax − (mi)Alax . (11.1)

The forces in the vertical direction produce a torque about the x-axis, τx = az
[
(mi)Bl′−(mi)Al

]
−

g
[
(mg)Bl′ − (mg)Al

]
. In equilibrium there’s no rotation about the x-axis; τx = 0 implies l′ =

l [(mi)Aaz − (mg)Ag] / [(mi)Baz − (mg)Bg], which when combined with Eq. (11.1) leads to

τz = (mi)Aaxl
(mg/mi)A − (mg/mi)B

(mg/mi)B − az/g
.

A torque τz exists only if (mg/mi)A 6= (mg/mi)B . The Eötvös experiment seeks to measure τz .
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11.2 THE EQUIVALENCE PRINCIPLE
The experimentally verified equivalence of gravitational and inertial mass implies the equivalence
of uniform gravity and accelerated reference frames. Consider yourself in an elevator car S at rest
in a uniform gravitational field g (left part of Fig. 11.2). A released object accelerates downward
with a = g. Now consider the same elevator car S′ in free space where gravitational fields are
negligible, but where the elevator is accelerated with a = −g (right part of Fig. 11.2). A released

S object g

Fgravity = mg

S′
a = −g

Ffictitious = −ma = mg

Figure 11.2 Left: Elevator car S stationary in a uniform gravitational field g; a released
object falls with acceleration g. Right: Elevator car S′ in a gravity-free region accelerated
upward with magnitude a = g; object moves downward with acceleration g.

object in S′ accelerates downward with a = g: Free objects in linearly accelerated frames have the
acceleration of the frame; set F = 0 in Eq. (1.9). The object in S moves because of gravity, that in
S′ because of the reference frame. Are there measurements one could make in these elevators that
would distinguish a gravitational field from an accelerated frame?

Einstein’s equivalence principle (EP) says No:

It is impossible to distinguish a uniform gravitational field from an accelerated refer-
ence frame; the two are physically equivalent.

The EP provides a framework for understanding physics in gravitational fields if we can first under-
stand it in accelerating reference frames.

The identity mi = mg is clearly required for the validity of the EP. Starting from the EP,
however, we can go the other way and infer the equality mg = mi. Assume objects A and B
with (mg/mi)A 6= (mg/mi)B . In the gravitational field of a source mass M0, there would be
accelerations aA,B = (GM0/r

2)(mg/mi)A,B . Step into one of the elevators and let go of the
objects. There are two possibilities:

1. aA = aB , in which case we are in the gravity-free elevator, because all free objects accelerate
the same in an accelerated frame.

2. aA 6= aB , in which case we are in the elevator in a gravitational field.

This thought experiment implies a violation of the EP because a gravitational field could be distin-
guished from an accelerated frame. Taking the EP as valid, we must have mg = mi for all objects.
It might be thought that the EP and the Eötvös experiment establish only that the ratio mg/mi is
universal, leaving the possibility thatmi is proportional, but not equal, tomg . Ifmg = αmi, with α
a universal constant, it would be absorbed into the gravitational constant, G→ Gα, because what’s
measured would be Gα.

11.3 TIDAL FORCES AND REFERENCE FRAMES
Note the proviso of the equivalence of uniform gravity with acceleration. Strictly speaking, uniform
gravitational fields are a convenient fiction.2 The EP applies in regions of space small enough that the

2Add uniform gravitational field to the list of idealizations in physics: massless pulleys, perfectly thermally insulating
substances, black-body radiators, parallel-plate capacitor without fringing fields. Idealizations are useful because they can
be conceived of as the limiting behavior of actual physical systems.
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gravitational field is ostensibly uniform. If the spatial extent of the “elevator” is too large, tidal forces
become apparent (as we now explain), in which case it is possible to distinguish a gravitational field
from an accelerated frame. We can “wave away” gravity through a frame transformation, but only
locally, not globally. It’s an experimental question as to how small a reference frame must be for the
effects of gravity to be effectively uniform; we want∇g ·∆r � g.

11.3.1 Tidal forces

Consider two particles of mass m separated by a distance ∆r in an inhomogeneous gravitational
field, g(r) (see Fig. 11.3). Because g varies over ∆r, the gravitational forces at r and r + ∆r are

g(r2) g(r3)g(r1)

F (r)
F (r + ∆r)

∆r

Figure 11.3 Inhomogeneous gravitational field.

not the same. The difference in force between the two locations, f(r,∆r) ≡ F (r+ ∆r)−F (r) is
the tidal force. It depends on two vectors, a reference position3 r, and ∆r, the distance over which
F (r) varies appreciably in the vicinity of r. In terms of vector components,

fi = Fi(r + ∆r)− Fi(r) ≈ ∆r · ∇Fi = m∆r · ∇gi , (11.2)

where we’ve used F = mg and the fact that |∆r| is small. Figure 11.4 shows schematically the

Gravitational forces on Earth from the moon

Moon

Tidal forces

Figure 11.4 Tidal forces on Earth produced by the moon.

tidal forces experienced on Earth, which are what remain of the gravitational field of the moon after
we subtract the force on the center of Earth.4 There’s always a reference location in a discussion of
tidal forces; here it’s the center of Earth. The earth is in free fall around the moon, free fall being
motion with no acceleration other than that provided by gravity. A reference frame in free fall can
be treated as an IRF because of the equivalence of inertial and gravitational mass. The tidal force is
what we experience of the moon’s gravitational field in the rest frame of the earth.

Figure 11.5 shows a coordinate system to analyze tidal forces. At a distance r from the center
of Earth, we find, using Eq. (11.2), the tidal force in the radial (z) direction,

fz = 2GMm

r3 z +O(z2/r4) , (11.3)

3That the tidal force depends on a reference position r indicates that it’s a vector field.
4There are also tidal forces associated with the sun.
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z

x

y

r

Figure 11.5 Coordinate system for tidal forces at distance r from the center of Earth.

where |z/r| � 1. Note that fz > 0 (fz < 0) for z > 0 (z < 0). Tidal forces stretch objects in the
radial direction. In the lateral directions, tidal forces are attractive. The transverse component of the
tidal force is given by

fx = −GMm

r3 |x|+O(x3/r5) , (11.4)

for |x| � r. Likewise, in the y direction, fy ≈ −
(
GMm/r3) |y|.

The tidal force is the difference in forces experienced by neighboring particles. Such particles
could be isolated test particles, or they could be infinitesimal mass elements in an extended object.
If an object has finite extent in the x, y, z directions, then in an inhomogeneous field all three forces
(fx, fy, fz) are present simultaneously. An initially spherical object would be deformed under tidal
stresses: stretched in the radial direction and compressed in the transverse directions—what happens
to the oceans on Earth.

11.3.2 Tidal acceleration tensor

In terms of the gravitational potential Φ(r) (Section 1.7.2), the tidal force is, using Eq. (11.2),

fi = m∆r · ∇gi = m
3∑
l=1

∆rl
∂gi
∂xl

= −m
3∑
l=1

∆rl
∂2Φ
∂xl∂xi

. (11.5)

The tidal force is thus a manifestation of the curvature of Φ(r). Applying Newton’s second law to
the difference in forces that make up the tidal force, we have the relative acceleration of the masses,

fi = m
d2∆ri

dt2 . (11.6)

Equating Eqs. (11.5) and (11.6), the equation of motion for the inter-particle separation is

d2∆ri
dt2 = −

3∑
l=1

∂2Φ
∂xi∂xl

∆rl ≡
3∑
l=1

ail∆rl . (11.7)

Equation (11.7) is the Newtonian deviation equation. It can be used (for Φ � c2 and v � c) to
calculate the separation between nearby particles. The quantities aij ≡ −∂2Φ/∂xi∂xj form the
tidal acceleration tensor. We’ll derive the relativistic version of Eq. (11.7) in Chapter 14.

11.3.3 Torques due to tidal forces

Tidal forces produce torques. Referring to Fig. 11.5, the infinitesimal torque dτ on a mass dm at
location (x, y, z) is, using Eqs. (11.3) and (11.4):

dτ = x̂(yfz − zfy) + ŷ(zfx − xfz) + ẑ(xfy − yfx) = 3GM
r3 dm (x̂yz − ŷxz) .
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Integrating over the mass (r is constant), the net torque is

τ = 3GM
r3

(
− x̂Iyz + ŷIzx

)
,

where Iyz, Izx are the products of inertia. The tidal force thus causes a change in the angular mo-
mentum, the spin S of a rigid body, with

dSx
dt = −3GM

r3 Iyz
dSy
dt = 3GM

r3 Izx
dSz
dt = 0 .

The spin vector precesses about the z-direction. The rate of change of S is a measure of the tidal
force field.

The Gravity Probe B satellite experiment (GPB), concluded in 2011, measured two hitherto
unverified precessional effects predicted by GR, the geodetic and frame-dragging effects.[44] These
effects are quite small, and thus it was essential to eliminate precessions due to tidal forces to the
greatest extent possible. The experiment utilized precisely manufactured spherical gyroscopes, with
Iyz = Izx ≈ 0 to within a few parts in 106. We return to the GPB experiment in Chapter 17.

11.3.4 Freely falling reference frames

Consider a large laboratory falling toward Earth. In the lab depicted in the left portion of Fig. 11.6,
the gravitational forces are different at the top and bottom of the laboratory. To an Earth-based

Figure 11.6 Tidal forces are repulsive in the falling laboratory on the left, and attractive in
the lab on the right.

observer, the lower particle is accelerating faster than the upper particle. To an observer attached
to the center of the laboratory—the comoving frame—test particles at those locations would appear
to repel each other: The upper particle accelerates toward the top of the lab and the lower particle
accelerates toward the bottom. Such a frame is not an IRF—particles released at rest do not remain
at rest. This repulsive force is a fictitious force (Section 1.6.1): It’s not due to a physical agency,
but is an artifact of the reference frame. In the laboratory depicted in the right part of Fig. 11.6, the
particles, which are falling toward the center of the earth, appear to attract each other.

If the size of the reference frame is restricted so that∇g ·∆r � g, g(r) ≈ g and differential
accelerations between nearby particles are eliminated. A freely falling frame of sufficiently limited
extent is therefore an IRF. We’ll call this a local IRF. The transition from SR to GR is the transition
from global IRFs of unlimited extent to local IRFs.
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11.4 WEAK AND STRONG EQUIVALENCE PRINCIPLES
It’s instructive to quote from Einstein’s 1911 article (my emphasis added):[9, p99]

In a homogeneous gravitational field (acceleration of gravity g) let there be a stationary
system of coordinates S, oriented so that the lines of force of the gravitational field run
in the negative direction of the z-axis. In a space free of gravitational fields, let there be
a second system of coordinates S′, moving with uniform acceleration g in the positive
direction of the z-axis. . . . Relatively to S, as well as relatively to S′, material points
which are not subjected to the action of other material points move in keeping with the
equations

d2x

dt2 = 0, d2y

dt2 = 0, d2z

dt2 = −g .

For the accelerated system S′ this follows directly from Galileo’s principle,5 but for
the system S, at rest in a homogeneous gravitational field, from the experience that all
bodies in such a field are equally and uniformly accelerated. This experience, of the
equal falling of all bodies in the gravitational field, is one of the most universal which
the observation of nature has yielded; but in spite of that the law has not found any
place in the foundations of our edifice of the physical universe.

But we arrive at a very satisfactory interpretation of this law of experience, if we assume
that the systems S and S′ are physically exactly equivalent, that is, if we assume that
we may just as well regard the system S as being in a space free from gravitational
fields, if we then regard S as uniformly accelerated.

As long as we restrict ourselves to purely mechanical processes in the realm where
Newton’s mechanics holds sway, we are certain of the equivalence of the systems S
and S′. But this view of ours will not have any deeper significance unless the systems
S and S′ are equivalent with respect to all physical processes, that is, unless the laws
of nature with respect to S are in entire agreement with those with respect to S′. By
assuming this to be so, we arrive at a principle, which if it is really true, has great
heuristic importance. For by theoretical consideration of processes which take place
relatively to a system of reference with uniform acceleration, we obtain information as
to the career of processes in a homogeneous gravitational field.

The EP is, as Einstein says, of “great heuristic importance” in that it lets us investigate physics
in a gravitational field, physics that we might not understand (such as propagation of light in a grav-
itational field), by considering the same physics in an accelerated frame. Einstein recognized there
might be different versions of the EP according to the physics that’s equivalent between a frame in
a gravitational field and an accelerated frame. Under the overall banner of the EP, refinements have
been put forth: the weak equivalence principle (WEP) and the strong equivalence principle (SEP).

The WEP is simply mg = mi, that the motion of freely falling test particles is independent of
composition and structure.6 Einstein conjectured that all laws of physics, such as electromagnetism
and quantum phenomena, would be equivalent between a frame in a uniform gravitational field and
an accelerated frame, which is the SEP. The WEP replaces “laws of physics” with “laws of motion
of freely falling test particles.” The distinction between the SEP and the WEP is useful—it’s possible
there could be physical effects that violate the SEP and still satisfy the WEP. The name weak EP is
unfortunate, however, as it might imply that the WEP is lacking in import. To the contrary, the WEP,
through Eötvös-type experiments, is one of the most securely established results in all of physics!
The WEP is not weak!

5By Galileo’s principle, Einstein means the invariance of acceleration under the GT. S and S′ are shown in Fig. 11.2.
6A test particle is one with no internal structure other than its ability to fall in gravity: electrically neutral; negligi-

ble gravitational binding energy compared to its rest mass; negligible angular momentum; and small enough that inhomo-
geneities of the gravitational field have negligible effect on its motion.
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11.5 SPACETIME IS GLOBALLY CURVED, LOCALLY FLAT
The WEP establishes one of the main paradigms of GR, that spacetime is flat locally.7 In a space free
of gravitational fields, a released object floats (left portion of Fig. 11.7).8 In a freely falling reference

object a = g Ffictitious = −mia

Fgravity = mgg

Figure 11.7 Left: Laboratory in free space; released object floats. Right: Freely falling
laboratory; released object floats.

frame (right portion of Fig. 11.7) a released object floats; in such a frame the object experiences the
force of gravity F = mgg and the apparent fictitious force, F = −mia, where a = g. The net force
is zero (because mg = mi) and the object floats. A sufficiently small freely falling reference frame
is an IRF: Gravity disappears! Gravitational effects over a small enough region can be obviated by
letting the laboratory fall.

Every freely falling frame of sufficiently small size is a local inertial frame, and hence is one in
which SR applies, and the spacetime of SR is flat. Thus, in regions of spacetime small enough that
gravitational fields are uniform, spacetime is locally flat. A flat region of spacetime cannot “cover”
all of spacetime, which GR shows is globally curved.

The power of the WEP becomes apparent when combined with the principle of covariance. By
the WEP, at any point in an arbitrary gravitational field there is a local inertial frame in which the
effects of gravitation are absent. This allows us to write the equations governing any sufficiently
small system in a gravitational field if we first know the equations governing it in the absence of
gravity. We need only write the equations in covariant form. Such equations will be true in the
presence of gravity because covariance guarantees that if they’re true in one set of coordinates,
they’re true in all coordinates, and the WEP tells us that there is a set of coordinates in which the
equations are true—the local IRF at the spacetime point of the system.

11.6 ENERGY COUPLES TO GRAVITY
We established in Chapter 7 the equivalence of mass and energy, E = mc2, where m in this for-
mula is the inertial mass. The equivalence of inertial and gravitational mass would indicate that
energy couples to gravity as if it had mass, mg = E/c2 (demonstrated below). Energy is subject to
gravitation, and one can have energy without mass (photons).9

Gravitational mass of energy

In Fig. 11.8, S is a reference frame at rest in a uniform gravitational field g oriented in the negative
z-direction, with instruments K1, K2 rigidly attached to the z-axis a distance ∆z apart so that the
gravitational potential of K2 exceeds that of K1 by g∆z. Instrument K1 can emit a definite amount
of energy E, which K2 receives. Following the “recipe” of the EP, let S′ be the equivalent frame
that’s gravity free but accelerating in the positive z-direction with a = g, with identical instruments
K1 and K2. Let energy E be emitted in S′ from K1 toward K2 when S′ is instantaneously at rest

7In Section 14.4.4 we show mathematically that any manifold is locally flat. With the EP we have a physical reason why
this must be the case. Flatness is defined as the vanishing of the Riemann tensor, Section 14.4.

8Compare Fig. 11.7 with Fig. 11.2.
9Energy is more general than mass: Energy is conserved, but not mass (Chapter 10).
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K2

∆z

S

x′

y′

z′
S′

K1

K2
a = g

x′′

y′′

z′′
S0

Figure 11.8 Frame S at rest in a uniform gravitational field, S′ the equivalent accelerated,
gravity-free frame, and S0 an auxiliary IRF.

with respect to IRF S0. Radiation arrives at K2 at time ∆t = ∆z/c, when K2 has speed relative to
S0, v = g∆z/c. Energy is emitted when K1 is at rest relative to an IRF, and received by K2 when
it has speed g∆z/c in an IRF. We can use the LT between these frames.

Use the photon four-momentum Qµ = (E/c)(1, n̂), where n̂ is the direction of propagation
(Eq. (7.18)). For a photon traveling in the positive z-direction, we have the LT for a frame also
moving in the positive z-direction:

E′

c


1
0
0
1

 = E

c


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ




1
0
0
1

 .

Thus, E′ = Eγ(1− β). The radiation measured at K2 does not have energy E, but rather a smaller
energy E′. At lowest order in β,

E′ = E (1− β) = E
(
1− g∆z/c2

)
. (11.8)

By the EP, the same relation holds in S, which is not accelerated but situated in a gravitational
field. In S, we may replace g∆z in Eq. (11.8) by the difference in gravitational potential between
K2 and K1, ∆Φ = g∆z, leaving us with:

E′ = E − E

c2
∆Φ . (11.9)

Equation (11.9) is a statement of energy conservation if we recognize the photon energy E as
having an equivalent gravitational mass E/c2. The association of mass with energy, m = E/c2,
is the converse of E = mc2, the association of energy with mass. Work is done in traversing the
gravitational field, and the energy arriving at K2 is reduced by an amount (E/c2)∆Φ. If we had
reversed the roles of K2 and K1, the energy arriving from the higher gravitational potential would
be greater by an amount (E/c2)∆Φ, where E is the energy emitted.

Gravity couples to all forms of energy

Gravitational fields and acceleration cannot be distinguished on the basis of releasing test particles.
What about more realistic particles? Nucleons (proton or neutron) participate in the strong force,
but electrons don’t; it’s not unreasonable to ask whether different particles couple to gravity differ-
ently. The mass of bound systems—such as nuclei—is less than the mass of their parts by the mass
equivalent of the binding energy,10 ∆m = Eb/c

2. Gravity must couple to binding energies so that

10The binding energy Eb is the energy required to separate a nucleus into its constituent parts. For a nucleus with A
nucleons and Z protons, of mass M(A,Z), Eb(A,Z) ≡ Amnc2 + Z(mp −mn)c2 −M(A,Z)c2, where mn (mp) is
the free neutron (proton) mass.
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the gravitational mass of the composite system is less than that of its constituent parts. The binding
energy, however, depends on the nature of the forces holding the system together—it’s a function of
the number of nucleons A (which couple to the strong force), and the number of protons Z (which
couple to the electromagnetic force).11 The ratio A/Z is unity in hydrogen, and approximately 2.5
in heavier atoms. Differences in the gravitational force experienced by nuclei of different A/Z ratio
(a violation of the SEP) are in principle subject to experimental investigation.

What about gravitationally bound systems, does the gravitational binding energy contribute
equally to the inertial and gravitational masses? Stated more inclusively: Does gravity couple to
all forms of energy in an equivalent manner? If the SEP were violated, Earth and Moon, having
different gravitational binding energies would have different ratios of inertial to gravitational mass,
and hence would have different accelerations toward the sun. Such an effect would eventually lead to
a polarization of the moon’s orbit around the earth, a phenomenon known as the Nordvedt effect.[45]
The Lunar Laser Ranging Experiment rules out the Nordvedt effect to high precision and provides
experimental support for the SEP.12

11.7 GRAVITY AFFECTS TIME

11.7.1 Gravitational frequency shift

We now establish another equivalence associated with gravity, that supplied by the association of
energy with frequency through the Planck relation, E = hν. Gravity couples to energy and energy
is related to frequency. Ergo, gravity affects time. By applying the Planck formula to Eq. (11.9), the
frequency of the received radiation, ν, is related to the frequency of the emitted radiation ν0 by

ν = ν0
(
1− ∆Φ

c2
)
, (11.10)

where ∆Φ ≡ Φrec − Φemit. Rewrite Eq. (11.10) as

ν − ν0

ν0
≡ ∆ν

ν0
= −∆Φ

c2
. (11.11)

If light travels “uphill,” out of a gravitational potential well, ∆Φ > 0, and the received frequency is
less than that transmitted; it’s shifted toward the red end of the spectrum, redshifted. For light that
travels “downhill,” further into a gravitational well, ∆Φ < 0 and the received frequency is greater
than that transmitted; the light is blueshifted. The gravitational frequency shift occurs because of 1)
energy conservation and 2) energy-mass equivalence; it’s not a consequence (yet) of GR, although
GR naturally incorporates these effects into the theory.

11.7.2 The Pound-Rebka-Snider experiment

The gravitational frequency shift was verified in the 1959 Pound-Rebka experiment [47] and in the
1964 Pound-Snider experiment [48] which measured the shift in photon energy in either falling or
rising through a height of 22.6 m. The expected fractional change in frequency is, from Eq. (11.11),

∆ν
ν0

= g∆z
c2

= 9.8m/s2 × 22.6m
(3× 108m s−1)2 = 2.46× 10−15 ,

11The Weizsäcker formula is an expression for nuclear binding energies:

Eb(A,Z) = avA− asA2/3 − ac
Z2

A1/3 − aa
(A− 2Z)2

A
− ap

1
A1/2 ,

where the parameters {ai} are obtained from a best fit to measured binding energies.
12Reflecting arrays were left on the surface of the moon by the astronauts of the Apollo 11, Apollo 14, and Apollo 15

missions. The Lunar Laser Ranging Experiment measures the earth-moon distance using, you guessed it, laser ranging. It’s
found that a SEP violation parameter (similar to the Eötvös parameter) has the value [46] η = (4.4± 4.5)× 10−4.
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a small effect. Pound and Rebka measured a fractional frequency shift of (2.57 ± 0.26) × 10−15,
and thus ∆νexpt/∆νtheory = 1.05± 0.10. Pound and Snider improved the agreement between theory
and experiment with ∆νexpt/∆νtheory = 1.00± 0.01.

How was such a small effect measured? The experiment used the 14.4 keV photon from the γ
decay 57Fe∗ → 57Fe+γ and allowed it to “fall” through 22.6 m, where they observed its absorption
by a 57Fe target. The excited state 57Fe∗ has a relatively long lifetime ≈ 10−7 s, leading to an
approximate energy width of the photon, Γ ≈ 10−8eV; Pound and Rebka measured Γ = 1.6×10−8

eV. The fractional width of the γ-ray is thus Γ/E = 1.1 × 10−12. The absorption (by the reverse
process, 57Fe + γ → 57Fe∗) of such a narrow γ-ray would normally be impossible due to the recoil
energy of the nucleus, ER. Using Eq. (P11.1), ER ≈ 2×10−3 eV; the recoil energy far exceeds the
energy width,ER � Γ. The experiment would not have been possible were it not for the Mössbauer
effect, where the nucleus is embedded in a crystal lattice; in this case ER is absorbed by the crystal
so that essentially no energy is lost to recoil, on emission or absorption.

Narrow as it is, the width of the 14.4 keV photon is 500 times larger than the effect they were
trying to measure, seemingly rendering the experiment impossible. The photon would need to “fall”
through a distance of 10 km before ∆Φ/c2 ≈ Γ/E. Pound and Rebka devised a method that
allowed the experiment to succeed. If the γ-ray source is imparted a small velocity v, there is
a Doppler shift of the spectral line, (∆E/E)Doppler = β. If β & Γ/E, absorption of the γ-ray
is impossible. The maximum velocity one could give to the emitter and still have the γ-ray be
absorbed is βmax = Γ/E ≈ 10−12 or v = 3 × 10−2 cm/s. Pound and Rebka used the Doppler
shift to offset the expected gravitational frequency shift. For the configuration where photons are
“dropped,” we expect a blueshift from the energy gained by the photon. Imparting a slight velocity
upward to the emitter would produce a Doppler redshift, and decrease the energy of the photon.
The energy arriving at the absorber would then be Earrive = E0 + (∆E)gravity + (∆E)Doppler =
E0 + E0

(
∆Φ/c2)

)
− βE0. Maximum absorption occurs for Earrive = E0, when

β = ∆Φ
c2

= g∆z
c2

. (11.12)

The Doppler shift that offsets the anticipated gravitational blueshift occurs for v = 7.38× 10−5 cm
s−1, a small velocity! Note that Eq. (11.12) holds independent of the photon energy, and hence its
gravitational mass; the EP in action.

In the experiment, the 57Fe absorber covered a scintillator, which was viewed by a photomul-
tiplier tube. The γ-ray source was attached to a transducer, which could impart a small velocity.
The velocity of the transducer was modulated periodically, with v = v0 cosωt, where v0 is arbi-
trary, as long as it’s much greater than 7.4 × 10−5 cm/s. Maximum absorption, where Eq. (11.12)
is met, corresponds to a minimum counting rate from the photomultiplier tube. This minimum sig-
nal was correlated with the phase of the transducer, from which they could obtain the velocity. The
experiment showed that the photon has an interaction with the gravitational field in accord with the
predictions of the EP.

11.7.3 Gravitational time dilation

The gravitational frequency shift, Eq. (11.10), presents a conundrum. How do we reconcile the
experimentally observed frequency shift with the fact that the number of wave crests reaching the
receiver is the same as that emitted by the source? Wave crests are a periodic phenomenon that can be
regarded as the ticks of a clock. The gravitational frequency shift has been experimentally verified,
and the number of ticks (wave crests) is the same at both clocks, and the clocks are identical. We
must conclude that the time interval between successive ticks is altered by the local gravitational
field. Time is affected by gravity! Let’s let Einstein speak for himself (refer to Fig. 11.8):

On a superficial consideration, Eq. (11.10) seems to assert an absurdity. If there is
constant transmission of light fromK1 toK2, how can any other number of periods per
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second arrive at K2 than is emitted at K1? But the answer is simple. We cannot regard
ν1 or ν2 simply as frequencies (as the number of periods per second) because we have
not yet determined the time in system S. What ν1 denotes is the number of periods with
reference to the time-unit of the clock U inK1, while ν2 denotes the number of periods
per second with reference to the identical clock in K2. Nothing compels us to assume
that the clocks U in different gravitational potentials must be regarded as going at the
same rate.[9, p105]

We can view Eq. (11.10) as stating

ν(r + ∆r) = ν(r)
(
1−∆Φ/c2

)
, (11.13)

where ∆Φ ≡ Φ(r + ∆r) − Φ(r). Define a local unit of time as the time between wave crests,
t(r) ≡ 1/ν(r), so that Eq. (11.13) is equivalent to

t(r + ∆r)− t(r)
t(r + ∆r) = ∆Φ

c2
. (11.14)

In the limit ∆r → 0, Eq. (11.14) becomes
1
t

dt
dr = 1

c2
dΦ
dr , or simply

dt
t

= 1
c2

dΦ . (11.15)

Equation (11.15) expresses the change in local time scale with a small change in gravitational po-
tential. Even though Eq. (11.15) cries out to be integrated, t(Φ2) = t(Φ1) exp

(
∆Φ/c2

)
, where

∆Φ = Φ2 − Φ1, the temptation should be resisted. Why? The argument leading to Eq. (11.8) is
based on small velocities and small separations in space; Eq. (11.15) is approximate.13 We derive in
Chapter 17 the result that supplants Eq. (11.15),

dt(r) = dt(∞)
√

1 + 2Φ(r)/c2 , (11.16)

where dt(∞) is the time scale where Φ = 0. Equation (11.16) expresses the effect mentioned in
Chapter 1: Clocks run slower the lower they are in a gravitational potential.

We cannot observe time dilation locally, at one point in space; the gravitational field affects our
time standards the same as it affects the clock being studied. We must compare clocks at different
points in space. Comparing clocks at locations r1 and r2, we have from Eq. (11.16)

dt1
dt2

=

√
1 + 2Φ(r1)/c2
1 + 2Φ(r2)/c2 . (11.17)

For weak fields (Φ/c2 � 1) and Eq. (11.17) reduces to

dt1
dt2
≈ 1 +

(
Φ1 − Φ2

)
/c2 = 1 + ∆Φ/c2 , (11.18)

the same as Eq. (11.15), ∆t/t = ∆Φ/c2.

13Einstein recognized the approximate nature of the conclusions reached this way. From his 1911 article:[9, p99] “The
relations here deduced, even if the theoretical foundation is sound, are valid only to a first approximation.” One must have
GR at hand to have a tool capable of incorporating all relevant physics without approximation.
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SUMMARY
Because mi = mg , the effects of a gravitational field cannot be distinguished from a linearly accel-
erated reference frame over regions of space small enough that tidal forces are negligible. The EP
is a cornerstone of GR, along with the principle of covariance. It has several consequences.

• Spacetime is locally flat. Because of the EP, we cannot distinguish between an IRF in the
absence of gravity, and a small reference frame freely falling in a gravitational field. Every
sufficiently small freely falling frame is locally an IRF, implying that in regions of spacetime
small enough that gravitational fields are uniform, spacetime is locally flat.

• Energy couples to gravity. Because of the equivalence of mass and energy, E = mc2, and the
equivalence mi = mg , energy acts as if it has a gravitational mass, mg = E/c2.

• Photons undergo a frequency shift in a gravitational field, with ∆ν/ν = −∆Φ/c2. Photons
are redshifted if they climb out of a gravitational potential well, and blueshifted if they fall
into a gravitational potential well.

• Clocks run slower the further they are into a gravitational potential well (gravitational time
dilation). Over small changes in Φ, time is altered according to ∆t/t = ∆Φ/c2.

EXERCISES

11.1 In your hand you hold a can of water that’s open to the atmosphere at the top. At the same
time you puncture a hole in the side of the can at a distance h below the water line, you let go
of the can. Describe what happens to the water. Hint: From Bernoulli’s principle, the velocity
of the water escaping the hole is v =

√
2gh.

11.2 Derive Eq. (11.3). Start with Eq. (11.2), and use the formula for the Newtonian gravitational
force at locations r and r + z. Assume that z � r.

11.3 The tidal force considered as a vector field has zero divergence,∇ · f = 0.

a. Show directly from Eqs. (11.3) and (11.4) that∇·f = 0. Do not differentiate with respect
to r (which should be treated as a constant). These formulas are valid only for x, y, z small
compared to r.

b. Show from Eq. (11.5) that this result is to be expected. In forming the divergence using
Eq. (11.5), you should recognize the Poisson equation—see Table 1.1. Is there a local
source of tidal forces?

11.4 Compute the curl of the tidal force vector field f using Eqs. (11.3) and (11.4) (treat r as a
constant). You should find ∇× f = 0. Thus we have ∇ · f = 0 and ∇× f = 0. Why
doesn’t this present a violation of Helmholtz’s theorem of vector calculus? (Not treated in
this book; look it up!)

11.5 a. Which exerts a stronger gravitational force on the earth, the moon or the sun? Calculate
the ratio of the forces acting on the earth, FSun/FMoon.

b. Which produces a stronger tidal force at the earth, the moon or the sun? Calculate the
ratio of fMoon/fSun. Use Eq. (11.3).
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11.6 A spherical solid moon with mass Mm and radius R orbits a planet with mass Mp at distance
r (distance from center of planet to center of moon). Show that if r = R (2Mp/Mm)1/3, loose
rocks on the surface of the moon will become dislodged due to tidal effects. This distance is
known as the Roche limit. A moon approaching a planet closer than the Roche limit will be
disrupted by tidal forces. What is the Roche limit for the earth-moon system? Express your
answer in units of the radius of the earth. What is the distance between the earth and the
moon, in units of the radius of the earth?

11.7 When a quantum system makes a radiative transition between energy levels E2 and E1, the
energy of the photon is Eγ = E2 − E1, right? The actual energy of the emitted photon is
reduced from the nominal value (E0 ≡ E2 − E1) by the recoil energy of the emitter. In the
rest frame of the emitter, the recoil momentum is p = Eγ/c.

a. Energy conservation requires that E0 = Eγ + ER, where ER is the kinetic energy of the
recoil, ER = (γ − 1)Mc2, with M the mass of the emitter. Show that

E0−Eγ = (γ−1)Mc2 = Mc2(
√

1 + (p/Mc)2−1) = Mc2(
√

1 + (Eγ/Mc2)2−1) .

b. Show that Eγ = E0
(
1 + E0/(2Mc2)

)
/
(
1 + E0/(Mc2)

)
. Clearly, Eγ < E0.

c. Show that ER =
(
E2

0/2Mc2
)
/
(
1 + E0/Mc2

)
. If E0 �Mc2,

ER = E2
0

2Mc2
+O

(
E3

0/(Mc2)2) . (P11.1)

11.8 Consider a photon emitted from the sun. Is the photon redshifted or blueshifted when received
on Earth? (You choose a frequency of the photon.) What’s the total change in gravitational
potential from the surface of the sun to the surface of the earth? Calculate the energy shift of
the received photon.
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Acceleration in special
relativity

O NE often hears that SR can’t “handle” accelerated motion, and that to treat acceleration GR
must be invoked. GR is a theory of gravitation that entails a connection between energy-

momentum and the spacetime metric; until that relation is established, we haven’t left the realm of
SR. What’s fair to say is that accelerated motion isn’t handled in SR as naturally as inertial motion.
In this chapter we consider applications of SR to accelerated motion.

We showed in Chapter 3 how the three-acceleration a transforms using the LT, which involves
not just the relative velocity v between frames, but also the instantaneous velocity u of a particle in
one of the frames. For a parallel to v, we have from Eq. (3.34):

a = a′
(1− v2/c2)3/2

(1 + u′v/c2)3 . (12.1)

SR is based on the equivalence of IRFs, and clearly there is no IRF in which an accelerated particle
is always at rest. There is, however, an IRF for which any event on the worldline of a material
particle is momentarily at rest, the instantaneous rest frame; see Fig. 7.1. In such a frame, u′ = 0,
and a′ is called the proper acceleration. It’s the device of instantaneous rest frames that allows us
to treat accelerated motion in SR.1

12.1 LINEAR ACCELERATION
We treat the case of constant linear acceleration as experienced in the frame of the object, with
a′ = g = constant.2 Equation (12.1) prescribes the equation of motion of such an object in an
instantaneous rest frame:

du
dt = g

(
1− u2/c2

)3/2
. (12.2)

Equation (12.2) can be integrated.3 For the initial condition of starting at rest, we have the instanta-
neous speed at time t in “our” IRF:

u(t) = gt√
1 + g2t2/c2

. (12.3)

1We used an instantaneous rest frame in Section 11.6 to derive the gravitational mass equivalent of energy, m = E/c2.
2We use the symbol g to give it a familiar connotation.
3By integrating Eq. (12.2), we are finding the effect of a compound LT made up from a sequence of transformations

between instantaneous rest frames. LTs have the group property (Section 4.3) that a LT followed by a LT is itself a LT.
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For t� c/g the speed varies linearly with time,4 u ∼ gt , but then approaches c asymptotically for
t� c/g. Integrating Eq. (12.3), we obtain the equation of the worldline x = x(t),

x(t)− x0 = c2

g

√
1 + g2t2

c2
− c2

g
, (12.4)

where x0 is the initial position. Equation (12.4) is the equation of a hyperbola:(
x− x0 + c2/g

)2 − (ct)2 = c4/g2 , (12.5)

the asymptotes of which are the lines x = x0 − c2/g ± ct. The asymptotes intersect at the focus of
the hyperbola P , at t = 0 and x = x0 − c2/g, (see Fig. 12.1). The worldline lies outside the future
light cone of P . The asymptote is termed an event horizon, a boundary in spacetime beyond which
signals will never reach the accelerated observer.

x
x0

ct

c2/g

P

Event horizon
Worldline

Figure 12.1 Worldline of constant acceleration and event horizon, the future lightline of P .

Accelerated worldlines have some unusual properties in relation to the event horizon. By com-
bining Eqs. (12.3) and (12.4), the instantaneous velocity can be written

β(t) = u(t)
c

= gt/c√
1 + g2t2/c2

= ct

x(t)− x0 + c2/g
= tan θ , (12.6)

where θ < π/4 is shown in Fig. 12.2. In LTs, the angle θ on a spacetime diagram between the

x
x0

ct

c2/g

P

Event horizon
B

x
Aθ

θ

θ
ct

Figure 12.2 The instantaneous speed at B is β = tan θ.

x′-axis (of an IRF at moving at speed β) and the x-axis (of our IRF) is such that tan θ = β (see
Fig. 2.9). The line PB in Fig. 12.2 is therefore the x′-axis of the IRF in which the event B is
momentarily at rest. The tangent to the worldline atB, the time axis of the instantaneous rest frame,
is also at angle θ relative to the time axis of our IRF. As the speed increases, the time axis (tangent
to the worldline) gets continually bent towards the direction of the lightline, with θ → π/4.

4For g ∼ 10 m s−2, c/g is about 1 year; t = c/g is the time to accelerate to the speed of light in Newtonian mechanics.
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The x′-axis is in general a line of simultaneity (Section 2.4), and thus for the accelerated ob-
server all events on the line PB in Fig. 12.2 are simultaneous with B, including P . Because B
is chosen arbitrarily, however, we conclude that P is simultaneous with every event on the world-
line! Such behavior is indicative of a coordinate singularity. Infinitely many lines t′ = constant pass
through P (see Fig. 12.3).5 The coordinate system breaks down at P . Event horizons and coordinate
singularities are features of accelerated reference frames from a spacetime perspective.

x
c2/g

P

Event horizon

Figure 12.3 Lines of simultaneity. P is simultaneous with every event on the worldline.

There’s another remarkable feature about constant linear acceleration: The distance from the
accelerated observer to P is constant! Figure 12.4 shows the coordinates x and x′ assigned to event

P x
c2/g

A

x′

B

x

ct

ct

x(t) =
√

(c2/g)2 + (ct)2

x′

ct′

Figure 12.4 In the accelerated frame the distance PB is the same as PA, c2/g.

B in two IRFs, which are therefore related by a LT. We find x′ = x/γ, which can be seen from
the LT: (

ct
x

)
= γ

(
1 β
β 1

)(
0
x′

)
.

The instantaneous value of the Lorentz factor is, using Eq. (12.6), γ(t) =
√

1 + (gt/c)2. The
coordinate x′ is thus given by

x′ = x

γ
=
√

(c2/g)2 + (ct)2√
1 + (gt/c)2

= c2

g
, (12.7)

a constant.
The proper time for the accelerated observer is found by combining Eq. (12.6) with Eq. (7.3):

dτ = dt
√

1− u2(t)
c2

= dt√
1 + g2t2/c2

. (12.8)

5We haven’t drawn the time axis ct in Fig. 12.3 for simplicity, but it’s of course still there. The equations simplify if the
initial condition is taken as x0 = c2/g.
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Letting gt/c = sinh θ, Eq. (12.8) reduces to dτ = cdθ/g, which is trivially integrated:

τ = c

g
θ = c

g
sinh−1 (gt/c) , (12.9)

where we assume τ(0) = 0. Inverting Eq. (12.9), we have the connection between the proper time
in the accelerated frame and the time in an IRF,

ct = c2

g
sinh (gτ/c) . (12.10)

Equation (12.10) is not the linear relationship we have in SR, t = γτ . Combining Eqs. (12.10) and
(12.4), we find

x− x0 = c2

g
(cosh (gτ/c)− 1) . (12.11)

Equations (12.10) and (12.11) comprise a parameterization of the worldline in terms of τ . In terms
of the proper time, the instantaneous velocity is

u = (dx/dτ)/(dt/dτ) = c tanh(gτ/c) .

As g → 0, τ → t, and x→ x0 + 1
2gt

2.

Example. An acceleration of 1 ly/(year)2 = 9.5 m/s2, approximately one Earth “g”! In these units
c = 1 (one light year per year). Work out the clock time for an observer accelerating with this
value of g to travel 1010 light years (ly), a sizable fraction of the universe. For large values of x,
cosh x ≈ sinh x ≈ 1

2ex. From Eq. (12.11), eτ ≈ 2(∆x) = 2×1010, or τ ≈ 23.7 years. Not bad! 24
years of constant acceleration takes you across the universe. How much time transpires on an Earth
clock? From Eq. (12.10) with τ = 23.7 we have approximately 1010 years! Most of the journey is
done at a speed, relative to Earth, of almost the speed of light, u = c tanh(23.7) ≈ c.

12.1.1 Coordinate system for linearly accelerated observers

A spacetime coordinate system (t′, x′) can be developed using the worldlines of accelerated par-
ticles, just as the worldlines of free particles comprise a coordinate system for Minkowski space.
Figure 12.5 shows worldlines associated with different values gi of the acceleration; these intersect

x
P

t′ = t′1

t′ = t′2

t′ = t′3

c2/g1 c2/g2 c2/g3 c2/g4

Figure 12.5 Hyperbolas associated with accelerated worldlines are a set of curves equidis-
tant from P ; lines of constant slope are lines of simultaneity.
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the x-axis at different distances from P , c2/gi. Worldlines associated with different values of g
thus comprise a set of curves of constant distance to P . The straight lines in Fig. 12.5 are lines of
simultaneity. A locus of points equidistant from P is what we require of a time axis, just as a locus
of points of constant time is what’s required of a spatial axis. Where in spacetime we place a time
axis is more involved than for Minkowski space—the spacetime of SR is homogeneous (Chapter 3),
whereas now we have a distinguished feature, the event horizon.

From Eq. (12.6), βγ = gt/c. Because events on the same line connected to P have the same
instantaneous speed (β = tan θ), they have the same value of the product gt, where, to be clear, t is
the time in the IRF. Thus, for events 1 and 2 in Fig. 12.6, g1t1 = g2t2. From the invariance of gt on
the same line, we infer from Eq. (12.10) the invariance of the product gτ ; for events 1 and 2 in Fig.
12.6, g1τ1 = g2τ2. From g1τ1 = g2τ2 and Eq. (12.10), we have

ct2 = c2

g2
sinh(g2τ2/c) = c2

g2
sinh(g1τ1/c) . (12.12)

We’ll use this equation momentarily.

x

ct

P

t′ = constant

1

2

x1 x2

ct1

ct2

c2/g1 c2/g2

Figure 12.6 Events 1 and 2 are such that g1t1 = g2t2 and g1τ1 = g2τ2.

We now choose, arbitrarily, worldline 1 in Fig. 12.6 to be the t′-axis; we also place the origin of
the (t, x) coordinate system at t′ = 0 (see Fig. 12.7). Furthermore, we let τ1 be the coordinate time

x

ct ct′
x′

x

ct

ct′

α

x′

Figure 12.7 Coordinate system for accelerated observer.

t′ for all events along the constant-time line from P . In Eq. (12.12) therefore we set τ1 = t′, giving
us a connection between the time coordinates assigned to the same event:

ct = c2

g2
sinh

(g1

c2
ct′
)
. (12.13)

The coordinate x′ is the difference between the invariant distances from P where the worldlines
intersect the x-axis: x′ = (c2/g2) − (c2/g1); thus c2/g2 = c2/g1 + x′. Equation (12.13) can
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therefore be written

ct =
(
x′ + c2

g1

)
sinh

(g1

c2
ct′
)
. (12.14)

Let α ≡ c2/g1 be a parameter of the coordinate system—the location of the t′-axis relative to P . For
this coordinate system, therefore (that specified by the parameter α), we have a connection between
(t′, x′) in the accelerated system, and t in the IRF:

ct = (x′ + α) sinh(ct′/α) . (12.15)

The other equation, x = x(t′, x′), can be obtained, referring to worldline 2 in Fig. 12.6, using Eq.
(12.11) with x0 = c2/g2 − α, g2τ2 = g1τ1 = g1t

′, and x′ = c2/g2 − c2/g1:

x = (α+ x′) cosh(ct′/α)− α . (12.16)

Equations (12.15) and (12.16) are the transformation equations between the uniformly accelerated
(primed) system and the IRF (unprimed). The inverse transformation is not difficult to figure out:

x′ =
√

(x+ α)2 − (ct)2 − α ct′ = 1
2α ln

(
x+ α+ ct

x+ α− ct

)
. (12.17)

The inverse transformation is not a simple matter of swapping primes for unprimes and reversing
the velocity; unlike the LT, these transformations are nonlinear.

12.1.2 Metric tensor for linearly accelerated frame

The region to the right of the event horizon can thus be covered by two coordinate grids: the Carte-
sian grid (t, x) of an inertial observer and the hyperbolic grid (t′, x′) of accelerated observers. What
is the metric tensor for the accelerated coordinate system? We can use Eq. (5.39), the transforma-
tion equation for gµν , and the coordinate transformation equations (12.15) and (12.16) to build the
Jacobian matrix:

g′µν = AαµA
β
νgαβ , (12.18)

where the derivatives (see Eq. (5.24))

A0
0 = ∂ct

∂ct′
= (1 + x′/α) cosh(ct′/α) A0

1 = ∂ct

∂x′
= sinh(ct′/α)

A1
0 = ∂x

∂ct′
= (1 + x′/α) sinh(ct′/α) A1

1 = ∂x

∂x′
= cosh(ct′/α) . (12.19)

Using the Lorentz metric for the IRF,

gαβ =
(
−1 0
0 1

)
, (12.20)

we find, combining Eqs. (12.18), (12.19), and (12.20), the metric tensor field6 for the accelerated
system:

g′µν(x′) =
(
− (1 + x′/α)2 0

0 1

)
. (12.21)

The fact that g′01 = 0 in Eq. (12.21) implies that the basis vectors in the accelerated coordinate
system are orthogonal. Referring to Fig. 12.8, lines from P to the worldline define the x′-axis in
the instantaneous rest frame at the point of intersection. We can put a coordinate basis vector e1
at that point, pointing in the spatial direction. The tangent to the worldline is the time axis in the
instantaneous rest frame, and we can attach a timelike basis vector e0 at the same point. Because
the accelerated worldline is obtained from a progression of instantaneous rest frames, the local basis
vectors remain orthogonal at each point of the worldline. We have indicated with dashed lines the
light cone at each point.

6The metric tensor is different at each point in spacetime—a tensor field.
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P

e1

e0

e1
e0

Figure 12.8 Timelike and spacelike basis vectors remain orthogonal along the worldline.

12.1.3 Time dilation for accelerated clocks

What is the implication of the time component g00 being a function of position, g00 = g00(x)?
From (ds)2 = g′µνdx′µdx′ν = −(1 + x′/α)2(cdt′)2 + (dx′)2, we see that for a stationary clock
(dx′ = 0) the proper time depends on the location in the coordinate system:

dτ = (1 + x′/α)dt′ =
√
|g00(x′)|dt′ . (12.22)

Positions are relative to the origin of coordinates, which in this case is at the distance c2/g1 from
P . Relative to P , x′ = c2/g − c2/g1. A positive coordinate x′ labels a worldline with a weaker
acceleration g < g1; negative x′ labels a worldline of stronger acceleration g > g1. The coordinate
system, and hence the metric tensor, represents the effects of a spatially varying acceleration field,
which, per the EP, we can think of as mimicking a gravitational field where the magnitude of the
acceleration is dependent upon the distance from a singular location. That

√
|g00| becomes larger

for x′ > 0 implies that clocks “there” run faster than at x′ = 0. Conversely, relative to a worldline
at x′ > 0, clocks at the origin run slower. These effects are analogous to gravitational time dilation,
Section 11.7.3. There is a limit to how negative the coordinate x′ can become, x′ > −c2/g1 = −α.
As x′ → −α, g00 → 0, and time differences vanish: Point P is the intersection of an infinite number
of lines with t′ = constant.

12.2 TWIN PARADOX
The twin paradox, another of the supposed paradoxes associated with SR, would customarily have
been treated in an earlier chapter; it’s been deferred to now so we can bring to bear the effects
of acceleration. The problem is to predict which of two observers, E, who stays on Earth, or S,
who goes off in a spaceship and returns, will be younger when they reunite. S takes off at speed
β = 0.8 for a location D = 4 ly from Earth. If S turns around instantly upon reaching D and heads
back with the same speed, S returns (by Earth clocks) in TE = 2D/β = 10 years. S, however,
sees D Lorentz-contracted to D/γ = 2.4 ly (γ = 5/3). By spaceship clocks S returns to Earth in
TS = 2(D/γ)/β = TE/γ = 6 years. Apparently S ages less than E: Moving clocks run slow,
including the clock of a beating heart. We showed in Section 4.2, however, that time dilation is a
symmetrical effect: Both inertial observers conclude that a clock in motion runs slow. Each of E or
S would conclude that the other is younger when they reunite. There is no contradiction, however:
S is not a single IRF, whereas E is; there’s no symmetry between the observers. As we have framed
the problem, S is associated with two IRFs connected by an infinite acceleration. Paradox lost.

Figure 12.9 shows the spacetime diagram of the journey, where lines of simultaneity are shown
in the E-frame (left) and in the S-frame (right). In S, there are two lines of simultaneity connected
to event A, one associated with the outbound journey (B) and the other with the inbound journey
(C). Thus, there’s a discontinuity in the perceived age of E—an unphysical artifact of our assump-
tion that S instantly reverses course and undergoes infinite acceleration. S must instantly “jump
ship” to another reference frame with β = −0.8. Physically, S must experience an acceleration to
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t (yr)

D x (ly)

10 6E

1 0.6
2 1.2
3 1.8
4 2.4
5 3
6 3.6
7 4.2
8 4.8
9 5.4

t (yr)

D x (ly)

10 6

x′

S

0.6
11.2

2

1.8

3

8.2

4

8.8
5

9.4

6.4 yrs

B

C

A

Figure 12.9 S travels to D = 4 ly and back at speed β = 0.8. Lines of simultaneity in the
earth frame E (left) and in the spacecraft frame S (right). In S there is a discontinuity in
the age of E as S abruptly changes course for the return journey.

turn around, and time slows down in acceleration fields, Eq. (12.22). The “missing” years can be
accounted for using what we’ve developed in this chapter.

Motion in a noninertial frame can be treated using the mechanics of Chapter 7. Start with the
free-particle Lagrangian, Eq. (7.49),

L = m

2 gµν ẋ
µẋν = −m2

(
1 + gx/c2

)2
c2ṫ2 + m

2 ẋ
2 , (12.23)

where we’ve used the metric tensor Eq. (12.21), and where the “dot” notation means a derivative
with respect to the proper time of the observer.7 The effects of acceleration are contained in the
metric, a theme we’ll see in GR. We can treat the observer as a free particle in a coordinate system
that contains the effects of the acceleration. The metric tensor is physical.

The canonical momenta are obtained from the Lagrangian, Pµ ≡ ∂L/∂ẋµ = mgµαẋ
α. Thus,

P0 = mg00ẋ
0 = mg00cṫ = −m

(
1 + gx/c2

)2
cṫ P1 = mg11ẋ

1 = mg11ẋ = mẋ . (12.24)

The quantity P0 is a constant of the motion because ∂L/∂x0 = 0. The norm of the four-momentum
is a constant, PαPα = −m2c2, so that gµνPµPν = −m2c2. The contravariant metric tensor is the
inverse of gµν ; from Eq. (12.21), g00 = g−1

00 and g11 = 1. Thus,

g−1
00 (P0)2 + (P1)2 = −m2c2 , (12.25)

a result that can be likened to Eq. (7.16). Using P1 = mẋ in Eq. (12.25),

ẋ2 = −g−1
00 (x) (P0/m)2 − c2 . (12.26)

Equation (12.26) can be rewritten

dτ = dx√
−g−1

00 (x) (P0/m)2 − c2
= dx(1 + gx/c2)√

(P0/m)2 − c2 (1 + gx/c2)2
(12.27)

7Time is a coordinate, ṫ ≡ dt/dτ . You never had a problem with ẋ; time is another spacetime coordinate. In IRFs,
ṫ = dt/dτ = γ is a constant; in an accelerated frame it’s a dynamical variable.
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which can be integrated,

τ2 − τ1 = −1
g

√
(P0/m)2 − c2 (1 + gx/c)2

∣∣∣∣x2

x1

. (12.28)

To make progress we must evaluate P0. As applied to the motion of S, ẋ = 0 at the turning
point D. Thus from Eq. (12.26), (P0/m)2 = −g00(D)c2, which allows us to simplify Eq. (12.28):

τ2 − τ1 = − c
g

√
−g00(D) + g00(x)

∣∣∣∣x2

x1

= −
√

2
g

(D − x) + 1
c2

(D2 − x2)
∣∣∣∣x2

x1

. (12.29)

Equation (12.29) represents the proper time for a uniformly accelerated observer to travel from
x1 → x2, where x1 < x2 ≤ D. Now set x2 = D, in which case Eq. (12.29) simplifies further,

∆τ =
√

2
g

(D − x) + 1
c2

(D2 − x2) . (12.30)

Equation (12.30) specifies the proper time for constant acceleration between x and D. Clearly
the answer depends on the value of g. To make contact with our previous analysis, let g become
large. In the limit g →∞ in Eq. (12.30),

∆τ = 1
c

√
D2 − x2 . (12.31)

Let x in Eq. (12.31) denote the point where the acceleration begins, at the point where inertial
motion ends, which in the S-frame is x = D/γ, the Lorentz-contracted length for the traveler in
motion at constant speed. From Eq. (12.31),

∆τ = D

c

√
1− 1

γ2 = Dβ

c
. (12.32)

With D = 4 ly and β = 0.8, ∆τ = 3.2 years, half of the “missing” 6.4 years. The complete
turnaround time is 2Dβ/c.

12.3 ROTATING REFERENCE FRAME

y

x
x′

y′

z, z′

ωt

φ

φ′

S, S′

Figure 12.10 Rotating reference frame: φ = ωt+ φ′.

We now consider a frame S′ that rotates at a constant rate ω relative to an inertial frame S, about
the z-axis common to both frames (see Fig. 12.10). It’s convenient to use cylindrical coordinates,
(ρ, φ, z), along with the coordinate basis (eρ = ρ̂, eφ = ρφ̂, ez = ẑ). We take the coordinates in
S′ to be related to those in S by

t′ = t ρ′ = ρ φ′ = φ− ωt z′ = z . (12.33)
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As we’ll see, such a simple coordinate transformation has surprisingly far-reaching consequences.
The azimuth angle in the rotating frame is related to that in S by φ = φ′ + ωt. Taking t′ = t,
however, would seemingly be a throwback to the GT. In accelerated systems, proper time intervals
vary throughout the system8 because of the spatial dependence of g00, dτ =

√
|g00|dt. In such

systems there will always be a location where g00 = −1. In the rotating frame that location is the
inertial frame at ρ′ = 0. The coordinate transformation Eq. (12.33) leads to a metric tensor for
the rotating frame where g00 = g00(ρ′), Eq. (12.35). Setting t′ = t is a kind of bootstrap process:
We will be led to a description of time in a rotating frame through the metric tensor brought about
by Eq. (12.33). Because time is unambiguous at ρ = 0, it becomes a standard coordinate in our
analysis. Back to Eq. (12.33), taking ρ′ = ρ seems reasonable because coordinates perpendicular
to the velocity remain unchanged. However, ρ′ = ρ immediately leads to a problem known as
Ehrenfest’s paradox. Lengths are contracted in the direction of motion. We would expect therefore
the circumference of a rotating disk as observed in S, C = 2πρ, to be less than that in the rest
frame, C ′ = 2πρ′. Thus we have an apparent contradiction: ρ′ = ρ and 2πρ < 2πρ′. The paradox
arises from applying to a system with non-constant velocities, the constant-velocity results of SR,
and hence points to the limits of SR. We’ll see how the paradox is resolved.

12.3.1 Metric tensor for rotating frame

The spacetime separation in S, (ds)2 = −(cdt)2 + (dρ)2 + (ρdφ)2 + (dz)2, becomes, under the
substitutions in Eq. (12.33), the spacetime separation expressed in the rotating-frame coordinates:

(ds)2 = −(cdt′)2
(

1− ρ′2ω2

c2

)
+ 2ωρ′2

c
dφ′d(ct′) + (dρ′)2 + (ρ′dφ′)2 + (dz′)2 . (12.34)

We can then “read off” the metric tensor from Eq. (12.34):

[gµν ] =


−1 + ρ2ω2/c2 0 ωρ2/c 0

0 1 0 0
ωρ2/c 0 ρ2 0

0 0 0 1

 =


−1/γ2 0 ωρ2/c 0

0 1 0 0
ωρ2/c 0 ρ2 0

0 0 0 1

 , (12.35)

where γ ≡ 1/
√

1− ω2ρ2/c2. A coordinate singularity lurks in Eq. (12.35): As ωρ → c, g00 → 0.
The proper time is, from dτ =

√
|g00|dt,

dτ =
√

1− ρ2ω2

c2
dt = dt/γ . (12.36)

Time runs slower in a rotating frame the further the distance from the axis of rotation. Do we see
a pattern? For linear acceleration, dτ(0) < dτ(x), Eq. (12.22), where x > 0 is the direction of
less acceleration, and in Eq. (12.36), dτ(ρ) < dτ(0), where ρ > 0 is the direction of greater
acceleration. Time runs slower in regions of greater acceleration.

The metric tensor Eq. (12.35) is not diagonal; g02 6= 0. The rotating coordinate system is not
time-orthogonal; in a rotating frame, time is not orthogonal to the space spanned by spatial coordi-
nates. Using Eq. (5.33),αµ = Aνµeν , we can construct a set of spacetime basis vectors {αµ} for the
rotating frame, where the Jacobian matrix is found by differentiating the coordinate transformation
equations (12.33), Aνµ ≡ ∂xν/∂x′µ. The basis vectors found this way are

α0 = e0 + ω

c
e2 αi = ei . (i = 1, 2, 3) (12.37)

Even though the time coordinates are equal, t′ = t, the timelike basis vectors α0 and e0 are not—
the “direction” of time for a rotating observer is skewed to have a component in the φ-direction, the
direction of rotation.

8As we’ve seen in Section 12.1.2 and as we will see in GR.
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12.3.2 Rest space of a rotating observer

The rest space of an observer is defined as the local three-dimensional space orthogonal to the
timelike basis vector, i.e., a SH (Section 8.3). To find a set of basis vectors for this space, define the
projections of the spacelike vectors αi onto the direction orthogonal to α0 as αi⊥, where

αi⊥ ≡ αi −
(
αi ·α0

α0 ·α0

)
α0 = αi −

gi0
g00
α0 . (i = 1, 2, 3) (12.38)

We then define the spatial metric tensor as

γij ≡ αi⊥ ·αj⊥ =
(
αi −

gi0
g00
α0

)
·
(
αj −

gj0
g00
α0

)
= gij −

gi0gj0
g00

, (12.39)

where γij is symmetric. By construction, γ00 = γ0i = γi0 = 0. If the geometry is such that g0i = 0,
there is no difference between γij and gij . From Eqs. (12.35) and (12.39),

[γij ] =

1 0 0
0 ρ2γ2 0
0 0 1

 . (12.40)

Using γij , the spacetime interval can be written

(ds)2 =gµνdxµdxν = γijdxidxj + g00

[
(dx0)2 + 2 g0i

g00
dx0dxi + gi0gj0

g2
00

dxidxj
]

≡(dl)2 − (dt̂)2 , (12.41)

where the spatial line element is

(dl)2 ≡ γijdxidxj = (dρ)2 + γ2 (ρdφ)2 + (dz)2
, (12.42)

and where

dt̂ ≡
√
|g00|

[
dx0 + g0i

g00
dxi
]

= 1
γ

[
dx0 − ωρ2γ2dφ/c

]
(12.43)

is a time increment orthogonal to the spacelike directions. The local hypersurface of simultaneous
events, the rest space, is specified by dt̂ = 0.

12.3.3 Tetrad basis for rotating observer

A tetrad is a local set of orthonormal vectors9 {e′µ(τ)}, where one is timelike and three are space-
like, such that e′0(τ) is tangent to the worldline and e′µ(τ) · e′ν(τ) = ηµν , the Lorentz metric
tensor—a metric tensor for a time-orthogonal coordinate system. Define e′0 ≡ α0/

√
|g00|; that en-

sures e′0 ·e′0 = −1. The local rest space, spanned by the vectors {αi}, is orthogonal to e′0(τ), which
can be used to construct the other members of the tetrad. Because the magnitude of αi⊥ is

√
γii

(Eq. (12.39)), we can take one of the spatial vectors as e′i = αi⊥/
√
γii= (αi − gi0α0/g00) /√γii.

Clearly e′0 · e′i = 0. Another spacelike member of the tetrad is chosen such that e′j · e′i = δij . The
third spacelike vector can be taken as e′k = e′i × e′j . Following this recipe, we find

e′0 =γα0 = γ
(
e0 + ω

c
eφ

)
= γ

(
e0 + ωρ

c
φ̂
)

e′φ = 1
γρ

(
αφ + γ2ωρ

2

c
α0

)
= γ

(ωρ
c
e0 + φ̂

)
e′ρ =αρ = eρ e′z = αz = ez , (12.44)

9We mentioned tetrad basis in Section 5.1.1. The choice of basis for a given vector space is not unique.
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where we’ve used Eq. (12.37). The vectors e′0 and e′φ are shown in Fig. 12.11. The definition of e′0
and e′φ is a local LT (Exercise 12.6),(

e′0
e′φ

)
= γ

(
1 ωρ/c

ωρ/c 1

)(
e0
φ̂

)
. (12.45)

time

eρ eφ

e0
e′0

eφ

e0
e′0

e′φ

Figure 12.11 Basis vectors e′0 and e′φ and worldline of a rotating observer (not drawn to
scale). The z-direction is not included in this figure.

12.3.4 Simultaneity

The distance from (ρ, φ, z) to (ρ, φ + dφ, z) in the rotating frame is, from Eq. (12.43), dl =
√
γ22dφ = γρdφ. Thus the circumference in the rotating frame is C ′ =

∫ 2π
0
√
γ22dφ = 2πγρ,

implying that in S, C = 2πρ = C ′/γ, as we’d expect. Note, however, that C ′/ρ = 2πγ > 2π,
the hallmark of a curved surface (Chapter 14)—a development not anticipated in the statement of
Ehrenfest’s paradox! The rest space of a rotating disk is curved; moreover, it has a negative cur-
vature because C ′/ρ > 2π. It’s not spacetime that’s curved in this example. We started out with
Minkowski space, and a flat spacetime remains so under coordinate transformations such as Eq.
(12.33).10 Our notions of space are radically altered in a rotating frame, and so is the measure of
time.

Time is presented to us as the progression of SHs, “one at a time.” By writing the spacetime
separation in the form of Eq. (12.41), simultaneous events are characterized by dt̂ = 0. From Eq.
(12.43), simultaneous events are those that are infinitesimally related by

g00dx0 + g0idxi = 0 , (12.46)

which specifies a local plane spanned by the coordinate differentials {dxµ}.
Clocks may be synchronized (t̂ = constant) for events that lie on an open curve in spacetime by

integrating Eq. (12.46),

∆x0 = −
∫

g0i

g00
dxi = −

∫
g02

g00
dφ = γ2ωρ2

c
∆φ . (12.47)

This equation gives the time difference (along the t-axis) for events that are simultaneous in the
rotating frame. Synchronization of clocks around a closed path is not possible because the closed-
loop integral does not vanish,11

∆x0 = −
∮

g0i

g00
dxi 6= 0 , (12.48)

10The Riemann curvature tensor (Chapter 14) is zero in Minkowski space, and a tensor that vanishes in one reference
frame vanishes in another that’s connected to it by linear coordinate transformations such as Eq. (12.33).

11Equation (12.46) is not an exact differential form.



Sagnac effect � 211

implying that t̂ is not single-valued. It’s not in general possible to synchronize clocks over the entire
reference frame; the exceptional case is when all the terms g0i = 0. The impossibility of global
clock synchronization is not a property of spacetime, but rather a property of the coordinate system
we use to describe it. It’s always possible to choose a coordinate system such that at a point the
metric tensor is diagonal, but it may not be possible to arrange for a global coordinate system in
which g0i = 0 everywhere.

12.4 THE SAGNAC EFFECT
The Sagnac effect is named after an experiment performed by Georges Sagnac in 1913. The experi-
mental arrangement is indicated in Fig. 12.12. There is a source of light, a beam splitter (BS), three

BS

M1

M2M3

Source

Detector

ω

Figure 12.12 Sagnac interferometer. M1, M2, M3 are mirrors, and BS is a beam splitter.

mirrors (M1, M2, M3), and a detector. The beams traverse a closed path in opposite directions, and
then recombine. Sagnac found that the interference pattern changes when the apparatus is rotated
at a rate ω. In contrast to the Michelson interferometer, which was rotated through π/2 (Section
2.6.1), the Sagnac interferometer is continuously rotating at a constant rate.

We can understand the Sagnac effect in terms of the time delay between the beams propagating
in opposite directions in a rotating reference frame. In writing the spacetime separation in the rest
space as (ds)2 = (dl)2 − [dt̂]2 (Eq. (12.41)), the null separation (ds)2 = 0 implies that light
propagates in a rotating frame such that dl = ±dt̂. Using Eqs. (12.42) and (12.43), the path of null
separation for light propagating in a ring (dρ = 0, dz = 0) is specified by

γρdφ = ± 1
γ

(
dx0 − ωρ2γ2dφ/c

)
,

or
dx0 = ργ2dφ (1± ωρ/c) . (12.49)

Integrating Eq. (12.49) over 2π, we have the time for light to propagate around the ring in the two
directions

T± = 2πργ2

c
(1± ωρ/c) = 2πρ/c

1∓ ωρ/c = 2πρ
c∓ ωρ

, (12.50)

where the upper (lower) sign refers to the time for light to propagate around one circuit of the system
in (against) the direction of rotation. The time delay between the beams is thus given by,

∆T ≡ T+ − T− = 4πωρ2γ2

c2
= 4Aγ2ω

c2
, (12.51)

where A is the area enclosed by the path. We’ve used A = πρ2, the area of a circle. Experiment
shows that the effect depends only on the magnitude of the area enclosed by the beams, and not the
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shape. From the time delay, there’s a phase difference 2πf∆T between the beams, where f is the
frequency of the light. The number of fringe shifts is then given by ∆N = f∆T = c∆T/λ, or

∆N = c

λ
∆T = 4γ2ωA

cλ
. (12.52)

In Sagnac’s experiment, ω = 14 rad sec−1, A = 0.0863 m2, λ = 0.436 × 10−6 m, and γ ≈ 1.
Equation (12.52) predicts a shift of ∆N = 0.037 fringes, in agreement with his findings! Equation
(12.52) has subsequently been verified in numerous experiments.

Of note, in 1925 Albert Michelson performed a version of the Sagnac experiment (that Michel-
son had proposed in 1904, but not performed until 1925), utilizing an interferometer with a large
area: 1113 × 2010 feet = 207836 m2. The rotation of the interferometer was provided by the rota-
tion of Earth! He detected ∆N = 0.230 ± 0.005 fringe shifts, agreeing with the theoretical value
of 0.236 fringe shifts.[49] How did Michelson “stop the earth” in order to get a reference against
which to measure the fringe shift? He employed in the same experiment two interferometers, where
the area enclosed by the second interferometer was too small to give a measurable Sagnac effect. In
this way, through clever design of the optics, he was able to measure a displacement between two
sets of fringes.

12.5 RELATIVISTIC DESCRIPTION OF SPIN
Spin angular momentum is defined in the theory of relativity as a four-vector Sµ such that S0 = 0
in the rest frame.12 As a consequence Sµ is orthogonal to Uµ,

UµSµ = 0 , (12.53)

where Sµ = (−S0,S) (in the rest frame Uµ = (c, 0) and Sµ = (0,S)). As a covariant equation,
(12.53) is valid in any IRF13 and can be taken as an alternate definition of Sµ. In an arbitrary inertial
frame,

S0 = −S0 = 1
c
u · S . (12.54)

The spin four-vector is spacelike and lies in a SH orthogonal to the worldline. Because the direction
of Uµ in general changes between t and t+ dt, the SH at time t in which S lies, does not in general
coincide with that at time t + dt. As a consequence, S(t) has an infinitesimal component out of
the hyperplane of S(t + dt); see Fig. 12.13. The vector S(t + dt) is the projection of S(t) onto

Figure 12.13 The spin vector at time t lies out of the SH at time t+ dt.

the hypersurface at time t + dt (as dt → 0); S(t + dt) has the same length as S(t) because dt is
infinitesimal. Thus, the components of S in the instantaneous rest frame at t + dt are equal to the
components of S in the instantaneous rest frame at time t, which may be taken as another definition
of the spin vector, along with S0 = 0 in a rest frame.

12The orbital angular momentum three-vector L is the dual of the spatial parts of the angular momentum tensor Mµν ,
Eq. (7.61), which vanishes in rest frame of a particle.

13By the quotient theorem, Sµ comprises a four-vector, when defined by Eq. (12.53).
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Our goal is to derive an equation of motion for Sµ; the reader uninterested in the details should
skip to Eq. (12.60). Let a particle have velocity u in IRF K. The particle appears instantaneously
at rest in IRF K ′. Frame K ′ is related to K by a boost L(u). At t + dt the particle has velocity
u + du relative to K, and appears instantaneously at rest in IRF K ′′, which is related to K by a
boost L(u+du). We showed previously that L(u+du) = R(n̂dφ)L(dw)L(u), Eq. (6.53), where
the infinitesimal velocity dw is such that the relativistic addition of velocities u ⊕ dw = u + du
(Section 3.3) and the rotation is about the direction of u× du through the angle dφ, Eq. (6.51). A
boost followed by a boost (here L(dw)L(u)) is not a boost when the velocities are non-colinear.

By the properties of the spin vector in its rest frame, we have, referring to the spin in frame K,
the equality (written loosely) L(u+du)S(t+dt) = R(n̂dφ)L(u)S(t), where we have to take into
account the rotation of the reference frame between t and t+ dt. Written in terms of components,

Sα(t+ dt) =
[
L(−(u+ du))R(n̂dφ)L(u)

]α
ν
Sν(t) . (12.55)

Using the result of Exercise 6.19 with u→ −u and du→ −du, we have the infinitesimal LT that
effects the terms in Eq. (12.55)

Sα(t+ dt) =
[
I + γ2

c2
(u× du) · J + γ2

c
K · du

]α
ν

Sν(t) , (12.56)

where J andK are vectors comprised of the rotation and boost generators (Section 6.1).
From the time component of Eq. (12.56) we obtain the equation of motion for S0,

dS0

dt = γ2

c
S · du

dt . (12.57)

The spatial components of Eq. (12.56) are

S(t+ dt) = S(t) + γ2

c
S0du+ γ2

c2
S × (u× du) . (12.58)

Using Eq. (12.54) to eliminate S0 from Eq. (12.58), we find the equation of motion for the spatial
components

d
dtS = γ2

c2
u

(
S · du

dt

)
. (12.59)

By combining Eqs. (12.57) and (12.59), the covariant equation of motion for Sµ is (as can be
verified):

dSµ

dτ = Uµ

c2
Sν

dUν

dτ . (12.60)

Equation (12.60) is a purely kinematical prediction of SR: Spin components evolve by virtue of the
acceleration of the particle (the Thomas-Wigner rotation), without reference to the underlying cause
of the acceleration. For a free particle, dSµ/dτ = 0.

How does the spin vector transform between IRFs? Boost into the instantaneous rest frame,
S′ = L(u)S. Using Eq. (6.16), we find

S′ = S − γ

(1 + γ)c2u(u · S) . (12.61)

The inverse transformation is

S = S′ + γ2

(1 + γ)c2u(u · S′) . (12.62)

Note the minus sign difference between Eqs. (12.61) and (12.62) and also that there is a single factor
of γ in Eq. (12.61).
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12.6 COVARIANT SPIN DYNAMICS
Equation (12.60) is a kinematic equation of motion for an accelerated spin without regard to the
forces causing the acceleration. It would be natural at this point to consider Thomas precession and
spin-orbit coupling in atomic physics—topics we omit in favor of brevity.14 If we were, however,
to consider these phenomena, we would see that to introduce the coupling of a spin to the electro-
magnetic field typically involves a series of nonrelativistic approximations. To sort through these
approximations and to make them relativistically correct is a daunting task. Is there a systematic
way to derive a covariant equation of motion for spins that accounts for the causes of acceleration?
There is, and it’s instructive to see the process: Simply “write down” the answer by examining all
the possibilities that could go into a covariant equation.15

We want a covariant equation of motion for the four-vector Sα. The left side of the equation
should simply be dSα/dτ . The right side must then be a four-vector as well. How many ways can
we construct a four-vector that builds in the relevant physics of the fields and the acceleration? Such
an equation should be linear in the spin and in the fields, “riffing” the nonrelativistic physics of
Larmor precession. The equation can also involve Uα and dUα/dτ , such as occurs in Eq. (12.60).
Higher time derivatives are assumed absent. Using Sα, the electromagnetic field tensor Fαβ , Uα,
and dUα/dτ as building blocks, we can construct the four-vectors

FαβSβ
(
SλF

λµUµ
)
Uα

(
Sβ

dUβ

dτ

)
Uα .

That’s it. Other possibilities (FαβUβSλUλ, UλFλµUµSα, or SλFλµUµdUα/dτ ) either vanish, are
higher order in the fields, or reduce to multiples of the three above. Our candidate equation is then

dSα

dτ = A1F
αβSβ + A2

c2
(
SλF

λµUµ
)
Uα + A3

c2

(
Sβ

dUβ

dτ

)
Uα , (12.63)

where A1, A2, and A3 are unknown constants. Equation (12.53) provides an important constraint
that must be built in. Differentiating Eq. (12.53),

d
dτ (UαSα) = Uα

dSα

dτ + Sα
dUα

dτ = 0 . (12.64)

Contract Eq. (12.63) with Uα,

Uα
dSα

dτ = A1UαF
αβSβ −A2SλF

λµUµ −A3Sβ
dUβ

dτ , (12.65)

where we’ve used UαUα = −c2. Combine Eqs. (12.64) and (12.65) to obtain

0 = (1−A3)Sβ
dUβ

dτ + (A1 +A2)UαFαβSβ , (12.66)

where we’ve used SβdUβ/dτ = SαdUα/dτ and the antisymmetry of Fαβ . The choices A3 = 1
and A2 = −A1 cry out to be made, reducing Eq. (12.63) to one unknown,

dSα

dτ = A1

[
FαβSβ −

1
c2
(
SλF

λµUµ
)
Uα
]

+ 1
c2

(
Sβ

dUβ

dτ

)
Uα . (12.67)

Examine Eq. (12.67) in the rest frame. The time component is identically zero (Exercise 12.12). The
spatial components of Eq. (12.67) in the rest frame reduce to

dS
dt = A1(S ×B) , (12.68)

14The woods are lovely, dark and deep, but I have promises to keep, and miles to go before I sleep.—Robert Frost
15We often tell students that the way to solve differential equations is to guess. Here we’re guessing at the form of the

differential equation itself!
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where we’ve used Eq. (8.26). To make contact with Larmor precession, we identify A1 = gq/(2m)
where g is the g-factor. We then have the covariant equation of motion,

dSα

dτ = 1
c2

(
Sβ

dUβ

dτ

)
Uα + gq

2m

[
FαβSβ −

1
c2
(
SλF

λµUµ
)
Uα
]
. (12.69)

If the fields vanish, Eq. (12.69) reduces to Eq. (12.60). If we now combine Eq. (12.69) with Eq.
(8.43), dUα/dτ = (q/m)FαβUβ , we obtain the Bargmann-Michel-Telegdi equation [50]

dSα

dτ = gq

2mFαβSβ + q

mc2

(
1− g

2

) (
SβF

βλUλ
)
Uα . (12.70)

Our definition of spin (four-vector Sµ with S0 = 0 in its rest frame) describes how experimen-
tally measured quantities can be treated in the theory of relativity. It does not, however, explain the
phenomenon of spin. It’s often said that spin is a relativistic effect because the Dirac equation of
relativistic quantum mechanics describes the class of particles (fermions) with spin 1

2~. However,
the nonrelativistic limit of the Dirac equation (the Pauli equation) describes the interaction of spin-
1
2 particles with the electromagnetic field. Spin is a quantum effect. Relativity provides an elegant
framework for describing (and hence understanding) spin, but does not explain it; indeed it can have
no intuitive explanation—it’s new!

SUMMARY
This chapter has examined several applications of SR to accelerated motion.

• Constant linear acceleration leads to hyperbolic motion in spacetime. The asymptotes of the
hyperbola form an event horizon, a boundary in spacetime beyond which events cannot send
signals to the worldline of the accelerated observer. An event horizon is associated with a
coordinate singularity—in this case infinitely many lines of t = constant pass through a
single point. The coordinate system is ill-defined at that point.

• A coordinate system can be developed using the worldlines of linearly accelerated observers,
the metric tensor for which is given by Eq. (12.21). The effects of acceleration are contained
in the metric tensor. The proper time dτ =

√
|g00(x)|dt then depends on the location relative

to the event horizon, or, said differently, on the value of the acceleration. Clocks in regions of
greater acceleration run slower than in regions of lesser acceleration. Carried to an extreme,
time differences vanish at the event horizon.

• The metric tensor in a rotating frame is given by Eq. (12.35). In this system, time slows down
toward the perimeter of a rotating disk, where the acceleration is greatest. Because g02 6= 0,
the metric tensor describes a non-time-orthognal reference frame, where the direction of time
is skewed to have a component in the direction of rotation. The timelike basis vector in the
rotating frame, α0, is a combination of the timelike and spacelike basis vectors in the inertial
reference frame.

• The rest space of an observer is the local three-dimensional hypersurface orthogonal to the
timelike basis vector. We defined a new set of spacelike basis vectors orthogonal to the time-
like basis vector, αi⊥ = αi − (gi0/g00)α0. The metric tensor obtained from the αi⊥,
γij ≡ αi⊥ · αj⊥, the spatial metric tensor, γij = gij − gi0g0j/g00. The spacetime sepa-
ration can be written as (ds)2 = (dl)2 − (dt̂)2, the difference between a spatial line element
spanning the rest space, (dl)2 = γijdxidxj , and a time increment dt̂ orthogonal to the space-
like directions, dt̂ =

√
|g00|

(
dx0 + g0idxi/g00

)
. The rest space is specified by dt̂ = 0.

• A tetrad is a set of four orthonormal basis vectors, {e′µ(τ)}, one timelike and three spacelike,
that satisfy: e′0(τ) is a unit vector tangent to the worldline, and e′µ(τ) · e′ν(τ) = ηµν .
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• The Sagnac experiment is a rotating interferometer where the light beams traverse closed
paths in opposite directions and then recombine. There is a time delay between the beams,
∆T = 4Aγ2ω2/c2, where A is the area enclosed by the beams.

• Spin in relativity is a four-vector Sµ such that the time component vanishes in the rest frame
of the particle. Its spatial part S lies in a SH orthogonal to the worldline.

• Equation (12.60) is a covariant equation of motion for Sµ given the acceleration of the parti-
cle, dUµ/dτ . It’s a relativistic kinematic effect, that the product of non-colinear boosts pro-
duces a rotation of the coordinate axes, regardless of the nature of the forces causing the
acceleration.

EXERCISES
12.1 A large parallel plate capacitor is charged to a potential difference of 106 V. The plates are 5

cm apart. How long does it take an electron to travel from the negative to the positive plate,
starting from rest? Compute both the relativistic and nonrelativistic results.

12.2 Show using Eq. (12.17) that all points on the event horizon have the coordinates x′ = −α
and t′ →∞. Hint: Set x = −α+ ct.

12.3 Derive Eq. (12.28).

12.4 Derive Eq. (12.34). In passing to Eq. (12.35), why are there no factors of 2 in the metric
tensor?

12.5 Derive Eq. (12.37). Build the Jacobian matrix using the coordinate transformation Eq.
(12.33).

12.6 Show that the transformation in Eq. (12.45) meets the requirement of a Lorentz transforma-
tion, Eq. (4.12).

12.7 Derive Eqs. (12.57) and (12.58) from Eq. (12.56).

12.8 Derive Eq. (12.59).

12.9 Show that the time derivative of S0, as given by Eq. (12.54), reduces to Eq. (12.57) when you
make use of Eq. (12.59).

12.10 Show that the time component of Eq. (12.60) reduces to Eq. (12.57). Hint: You will encounter
terms proportional to dγ/dτ . Do not evaluate dγ/dτ . Show, using Eq. (12.54) that all terms
proportional to dγ/dτ , when combined, vanish.

12.11 Derive the spin transformation equations (12.61) and (12.62). Use Eq. (12.54) when needed
and that S0′ = 0.

12.12 Show that the time component of Eq. (12.67) vanishes identically in the rest frame of the spin.

12.13 Show that
SλF

λµUµ = − γ
c2

(u · S)(E · u) + γS · (E + u×B) .

Use Eq. (12.54) to eliminate the time component.

12.14 Show that the time and space components of FαβSβ are given by

F 0βSβ = 1
c

(E · S) F iβSβ = Ei

c2
(u · S) + (S ×B)i .
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Tensors on manifolds

T HE treatment of tensors in Chapter 5 implicitly presumes a flat geometry, that spacetime can
be covered by a single coordinate system. A coordinate grid covering Minkowski space can

be constructed from the worldlines of free particles—straight lines at constant speed, always and
everywhere. When it comes to gravitation, one realizes that global inertial frames are not possible:
We can’t get away from the matter of the universe(!); force-free motion has only local, approximate
validity. As we’ve seen (Chapter 11), uniform gravitational fields are equivalent to IRFs and thus
uniform gravitational fields are equivalent to no gravitational field. Real gravitational fields are
inhomogeneous and lead to relative accelerations between neighboring observers (Section 11.3).
The effective interaction brought about by inhomogeneous gravitational fields implies a metrical
relation between neighboring points in spacetime involving a metric tensor gµν(x) that varies in
spacetime, a tensor field, such as occurs in accelerated systems (Chapter 12). We’ll see that a non-
constant metric field implies a curved geometry (Chapter 14).

A relativistic theory of gravitation requires a spacetime more general than Minkowski space,
one that can be flat locally, approximating local inertial frames, but which is not flat globally. This
need is met by the mathematical structure of a manifold. To get on the same page with GR, we must
acquire the mathematical tools of tensors on manifolds. Whereas Chapter 5 presumes a fixed space-
time metric (Lorentz metric), in GR we will be solving for the metric field gµν(x) that represents
gravitation. We can benefit therefore from a more general perspective on tensors. Such a program,
however, represents a decided jump in mathematical sophistication—welcome to GR.

This chapter introduces manifolds and tensor fields. It could be skipped on a first reading (read it
when you need it). It may seem we’re becoming unduly immersed in points of mathematical finery,
which experience in physics shows can typically be overlooked. The theory of manifolds, however,
is a subject where it pays to be precise; a little bit of rigor goes a long way.

13.1 MANIFOLDS

13.1.1 Definitions

A manifold of dimension n is a set of points M with the property that subsets of M can be placed
in local correspondence with points1 of Rn. A basic concept is a chart, a pair (Uα, φα) consisting
of an open subset Uα ⊂ M and a homeomorphic mapping2 φα : Uα → Rn such that the image

1As we’ll discuss, points of M are in local correspondence with points of Rn in such a way that M inherits the
smoothness property of Rn. According to Robert Geroch:[51] “The idea, then, is to isolate, from all the rich structure of
Rn (e.g., its metric structure, its vector-space structure, its topological structure), that one small bit of structure we call
‘smoothness’.” Summaries of manifolds are given in Wald [37, Chapter 2] and in Hawking and Ellis.[38, Chapter 2]

2A map φ : U → Rn is one-to-one (or injective) if no two distinct points of U are associated with the same point of
Rn. A homeomorphism is a continuous one-to-one map φ with a continuous inverse mapping, φ−1. A subset O of Rn is
open if for any x ∈ O there is a number ε > 0 such that whenever d(x, y) < ε, y is also in O, where d(x, y) is the usual
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of Uα under φα, Oα ≡ φα(Uα) ⊂ Rn, is open in Rn (see Fig. 13.1). A chart (Uα, φα) specifies
a continuous one-to-one correspondence between a set of points Uα ⊂ M and a set of points
Oα ⊂ Rn. For p ∈ Uα, because φα(p) ∈ Rn, the chart defines n real-valued functions, coordinate
functions xi : Uα → R, i = 1, · · · , n, so that φα(p) = (x1(p), · · · , xn(p)). The numbers xi(p)
are the coordinates of p. A chart thus specifies a coordinate system3 in Rn for a neighborhood of
p ∈ M . Back to what is a manifold, a manifold is a set M together with a collection of charts
{(Uα, φα)} (an atlas) such that several conditions are met. We require that the subsets {Uα} cover
M , that M =

⋃
α Uα is the union of subsets. Each p ∈ M is contained in at least one subset4 Uα.

Figure 13.1 indicates that charts Uα, Uβ on M overlap, which they must: Unless M is flat it cannot

Figure 13.1 Subsets of an n-dimensional manifold M are mapped into subsets of Rn. The
coordinates of the overlap of subsets on M are related by the transition map φα ◦ φ−1

β .

be covered by a single chart.5 Our definition so far features continuity, but not differentiability
(which implies continuity). A map φ of an open set O ⊂ Rn to an open set O′ ⊂ Rm is of
class Cr if the coordinates (x′1, · · · , x′m) of the image point φ(p) ∈ O′ are r-times continuously
differentiable functions of the coordinates (x1, · · · , xn) of p ∈ O. If a map is Cr for all r ≥ 0, it is
said to be C∞, or smooth. Smoothness is a statement about differentiability. We restrict ourselves to
smooth manifolds where all mappings are C∞. We want the charts of M to overlap smoothly. Two
charts are compatible if: 1) φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are open in Rn, and 2) the transition
maps (coordinate transformations) φβ ◦ φ−1

α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ), and their inverses
φα ◦ φ−1

β : φβ(Uα ∩Uβ)→ φα(Uα ∩Uβ) are smooth. We can now define manifold as we’ll use it:
a pair (M,C) of a set M and an atlas C of charts on M such that the charts cover M and any two
charts in C are compatible.6

Euclidean distance in Rn. A set is open if every point in the set is surrounded by points that are also in the set. We have
invoked subsets of Rn as being open because we know what Euclidean distance means. To say that a subset of a manifold
is open requires that a topology be defined on it. A topology retains the notion of nearness without having to say how close.
Without delving into the intricacies of topology, we can say that a subset S of M is open if, for all p ∈ S, there is a chart
(U, φ) such that p ∈ U and U ⊂ S. For our purposes, the domain of every chart is open.

3Note that no one coordinate system associated with a manifold is distinguished at the expense of others; all concepts
developed in the theory of manifolds are therefore “coordinate-system neutral”—well suited for the theory of relativity.

4Every point of a manifold M must be in at least one chart, yet we require that no point of M be in an infinite number
of charts. This requirement is met by imposing on M the (not very restrictive) property of paracompactness.

5A sphere for example (a two-dimensional manifold) cannot be mapped in its entirety onto R2 in a continuous one-to-
one manner; at least two coordinate systems are required.

6The fine print. Two additional conditions are imposed on manifolds. First, manifolds are required to be Hausdorff. A
manifold M is Hausdorff if for distinct points p, q ∈ M there exist disjoint open sets Uα, Uβ ⊂ M such that p ∈ Uα
and q ∈ Uβ . We can therefore distinguish points, a reasonable requirement. The Hausdorff property does not follow from
the definition of manifold and must be stipulated; non-Hausdorff manifolds are pathological. The second requirement is that
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Example. Examples of manifolds

(1) n-sphere, Sn

Let M consist of (n+ 1) real numbers (x1, · · · , xn+1) such that
∑n+1
i=1 (xi)2 = 1, the n-sphere

Sn. Define subsets of M , U+
i ≡ {(x1, · · · , xn+1) : xi > 0}, the “upper half” with respect to

coordinate xi, and U−i ≡ {(x1, · · · , xn+1) : xi < 0}, the “lower half.” Shown in Fig. 13.2 is
U+

1 , the portion of the 1-sphere (a circle) corresponding to points x1 > 0. Define the projections
φ±i : U±i → Rn that eliminate xi from the list (x1, · · · , xn+1)

φ+
i (x1, · · · , xn+1) = (x1, · · · , xi−1, xi+1, · · · , xn+1) = φ−i (x1, · · · , xn+1) .

The n + 1 pairs (U±i , φ
±
i ) are compatible charts on M and cover M . We thus have an n-

dimensional manifold, the n-sphere Sn. For n = 1 the charts provide one-to-one mappings
between half-circles (subsets of M ) and lines (see Fig. 13.2). In this way, S1 consists of points
that locally “look” like lines. For n = 2, M is the unit sphere; the charts provide one-to-one
mappings onto planes. S2 consists of points that locally look like planes.

x1

x2
1

-1

φ+
1 (U+

1 )

U+
1

Figure 13.2 One-dimensional manifold U+
1 consisting of points (x1)2 + (x2)2 = 1 such

that x1 > 0. U+
1 locally looks like a portion of the real line because open subsets of U+

1
can be placed in one-to-one correspondence with open subsets of R.

(2) Product manifolds

Let M , M ′ be manifolds of dimensions n, n′. The product manifold M ×M ′ is a new man-
ifold of dimension (n + n′). Let (U, φ) be a chart on M and (U ′, φ′) a chart on M ′, i.e.,
for p ∈ U and p′ ∈ U ′, φ(p) = (x1, · · · , xn) and φ′(p′) = (y1, · · · , yn′). Associate
with U , U ′ the set V ≡ U × U ′ where (p, p′) ∈ V . Define a map φ : V → Rn+n′ as
φ(p, p′) = (x1, · · · , xn, y1, · · · , yn′). We thus have a chart (V, φ) on M ×M ′. Because M ,
M ′ are manifolds, M ×M ′ is a manifold. As examples, R1 × S1 is a cylinder and S1 × S1 is
a torus. The manifold Rn1 × Rn2 is Rn1+n2 . (By the way, Rn is a manifold.)

manifolds be paracompact. A collection {Oα} of open sets of M is said to be an open cover of a subset A ⊂ M if the
union of these sets contains A. A finite cover contains a finite number of sets. A refinement of a cover is a new cover such
that every set in the new cover is a subset of some set in the old cover. A cover is locally finite if every point p ∈ M has an
open neighborhood that intersects only finitely many sets in the cover. M is paracompact if every open cover has a locally
finite open refinement.[52] A connected Hausdorff manifold M is paracompact if and only if M can be covered by a locally
finite, countable family of charts, and a partition of unity exists, which allows integration on M to be defined. Examples of
non-Hausdorff and nonparacompact manifolds are given by Geroch in [53, p100].
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13.1.2 Maps on manifolds

We now consider mappings between manifolds.7 We start with functions8 on M , f : M → R, an
assignment of a real number to each point p ∈ M . A function is smooth if for all charts (U, φ) of
M , the composite function f ◦ φ−1 : Rn → R is smooth;9 see Fig. 13.3. The set of all smooth
functions at p ∈ M is denoted Fp. For {xi} the coordinates of p ∈ M , the effect of the composite
map f ◦ φ−1 can be written f(xi): f(xi) represents the value of f at the point p ∈ M associated
with coordinates xi.

Figure 13.3 Left: A function f : M → R is smooth if f ◦ φ−1 : Rn → R is smooth. Right:
A map ψ : M →M ′ is smooth if f ◦ ψ : M → R is smooth.

Smooth functions define smooth mappings between manifolds. Let ψ : M →M ′ be a mapping
between manifolds M , M ′ of dimensions n, n′. For f a function on M ′, f ◦ ψ is a function10

on M . The map ψ : M → M ′ is smooth11 if for every smooth function f on M ′, f ◦ ψ is a
smooth function on M . In terms of charts, for (U, φ) on M and (V, µ) on M ′, the map ψ is smooth
if µ ◦ ψ ◦ φ−1 is smooth. A smooth function is thus a special case of a smooth mapping, one
for which the target manifold M ′ is R. The definition of smoothness applies to maps of the form
ψ : O → M ′, where O is an open subset of M (the restriction of ψ to O, ψ|O). An open subset of
M is a manifold in its own right because it inherits the charts of M whose domains are subsets of
O. A diffeomorphism ψ : M →M ′ is a one-to-one map having a smooth inverse, in which case M
and M ′ are said to be diffeomorphic.12 A diffeomorphism requires n′ = n; the dimensions of the
manifolds must be equal. A diffeomorphism is a manifold analog of isomorphism between vector
spaces. Diffeomorphic manifolds are identical in terms of their smoothness properties.

13.1.3 Curves on manifolds

A smooth curve on a manifoldM is a smooth mapping γ : I →M from an open interval13 I ⊂ R to
M ; see Fig. 13.4. The image of the parameter t ∈ I under γ is denoted γ(t). Note that the “curve” is
the map and not the set of image points in M : The same image can be produced by different maps.

7Manifolds are equipped with mappings φ : M → Rn. Here we consider mappings between manifolds M and M ′.
8We’ve already invoked functions on manifolds through the coordinate functions xi : Uα → R, i = 1, · · · , n.
9Reread the definition of C∞, which is in terms of mappings between Rn. Smoothness of functions on M is defined in

terms of functions on Rn where we know what such things mean. Manifolds “import” the smoothness property of Rn.
10The function f ◦ ψ is referred to as the pullback of f ; see Section 13.2.2.1.
11Smoothness of mappings between manifolds is determined by the smoothness of mappings between Rn and Rn′ .
12A homeomorphism is a one-to-one map having a continuous inverse. A diffeomorphism is a one-to-one map having a

smooth (differentiable) inverse.
13As an open subset of R, I inherits the manifold structure of R.
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Figure 13.4 A curve γ on M is a mapping γ : I →M from an open interval I ⊂ R to M .

13.2 VECTOR AND TENSOR FIELDS

13.2.1 Vectors as operators, tangent space

Referring to Fig. 13.4, let p ∈ M be such that γ(c) = p for c ∈ I . For a function f on M , the
composite map f◦γ : R→ R is a function on R. For u ∈ I , how do the numbers f◦γ(u) ≡ f(γ(u))
vary for u near c? The quantity [f(γ(u))− f(γ(c))] is a measure of how close γ(u) ∈ M is to p
for u near c. The directional derivative on M ,

d(f ◦ γ)
du

∣∣∣∣
c

≡ lim
s→0

1
s

[f(γ(c+ s))− f(γ(c))] , (13.1)

specifies the rate of change of f : M → R along the points specified by γ. Contrast Eq. (13.1) with
the directional derivative on Rn, Dv , the derivative of a function φ in the direction of a vector v,

Dvφ(x) ≡ lim
h→0

1
h

[φ(x+ hv)− φ(x)] = vi(∂φ/∂xi) = v · ∇φ(x) ,

where (v1, · · · , vn) are the components of v with respect to the coordinate axes in Rn. On M no
“axes” are distinguished. In Rn, Dv is based on the direction specified by v. OnM there is no sense
of global direction.14 Local direction on M is specified by γ(u). In Rn a vector is a displacement
from “here” to “there.” On a manifold the notion of finite displacement loses its meaning. In Rn
there is a one-to-one correspondence between vectors and directional derivatives, v ↔ Dv . We
break that correspondence on manifolds and define vectors at a point p ∈ M , tangent vectors, as
directional derivatives at that point. Tangent vectors are “here” on M , precisely at one point; hence
the term tangent.

Tangent vectors have a vector-space structure—the tangent space. The tangent space at p ∈M ,
the set of all directional derivatives at p, is denoted Tp(M). For fixed γ, the directional derivative
tγ(f) ≡ d(f ◦ γ)/du|p is an operator that maps functions f ∈ Fp onto numbers, tγ : Fp → R.
To cement the relation between directional derivatives and vectors, we require that t possess the
properties customarily associated with derivatives, that for fixed γ and for f, g ∈ Fp and α, β ∈ R:

1. t is linear: t(αf + βg) = αt(f) + βt(g);

2. t satisfies the derivation property (product rule of calculus): t(fg) = f(p)t(g) + g(p)t(f).

Both points are easily checked. The linearity property establishes Tp(M) as a vector space.
A point p ∈ M , with chart (U, φ), has coordinates (x1(p), · · · , xn(p)) under φ : U → Rn. A

coordinate curve15 γi through p is specified by φ−1 : Rn →M when all coordinates are held fixed

14For an arrow moving “west” on Earth, its direction on one side of the earth is opposite to that on the other side.
15Make sure you understand the distinction between coordinate functions and coordinate curves.
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except the ith, γi(u) ≡ φ−1(x1(p), · · · , xi−1(p), xi(p) + u, xi+1(p), · · · , xn(p)). The directional
derivative associated with γi at p defines the partial derivative of f with respect to xi, d(f ◦ γi)/
du|u=0 ≡ ∂f/∂xi|p ≡ (∂i|p)f . When f = xj(p) (the jth coordinate function), ∂ixj = δji .

The partial derivatives {∂i|p}ni=1 form a basis for Tp(M) (the coordinate basis), and thus the
dimension of Tp(M) is the same as that of M . To be a basis the set {∂i|p}ni=1 must be linearly
independent and it must span Tp(M). If the set was not linearly independent, we could find nonzero
numbers V j such that V j∂j |p = 0; applied to xk, V j∂jxk = V jδkj = V k = 0 for k = 1, · · · , n, a
contradiction. For the second requirement it must be shown that any t ∈ Tp(M) can be expressed
as a linear combination

t = ai
∂

∂xi
≡ aiei . (ai ∈ R) (13.2)

We omit a proof of Eq. (13.2); see [29, p52]. Equation (13.2) makes precise what we said in Section
5.1.2, that basis vectors are locally tangent to coordinate curves.

Figure 13.5 shows a two-dimensional manifold,M . Through p ∈M pass two coordinate curves,

Figure 13.5 Tangent space Tp(M) attached to point p of manifold M . Tp(M) is spanned
by basis vectors eu and ev. Each point has its own tangent space, e.g., Tq(M).

u and v. The vectors tangent to the curves at p, eu, ev , are a basis for Tp(M). Tangent vectors are
not “in” the manifold, they are in Tp(M) which is said to be attached toM at p. A point q ∈M 6= p
has its own distinct tangent space, Tq(M). Figure 13.5 shows a two-dimensional manifold so that
it may be visualized. A manifold, however, has its own existence; it should not be thought of as
embedded in a higher-dimensional Euclidean space.

If in one chart p ∈ M has coordinates {xi} and Tp(M) has the basis {∂/∂xi}, then in an
overlapping chart p has coordinates {yj} and Tp(M) has the basis {∂/∂yj}. The same vector
t ∈ Tp(M) can be expressed in either basis, t = ai(∂/∂xi) = bj(∂/∂yj). Using Eq. (13.2), the
coefficients ai and bj are related by (xi is a coordinate function)

t
(
xi
)

= aj
∂xi

∂xj
= ajδij = ai = t

(
xi
)

= bj
∂xi

∂yj
. (13.3)

Equation (13.3) is the transformation law for contravariant vector components, Eq. (5.35). The basis
vectors of Tp(M) transform the “other” way, ∂/∂xi = (∂yj/∂xi)∂/∂yj , Eq. (5.33). Contravariant
vectors at p ∈M are elements of the tangent space Tp(M).

13.2.2 Differentials as operators, cotangent space

If vectors on manifolds are directional derivatives, what would dual vectors on manifolds be? Dual
vectors map vectors onto numbers (Appendix C). A dual vector ω at p ∈ M would be a mapping
ω : Tp(M) → R. The set of all dual vectors at point p is the cotangent space, denoted T ∗p (M).
What mathematical objects act on derivatives to produce numbers? Those that are defined to do so!
To develop that idea requires that we learn more about mappings between manifolds.
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13.2.2.1 Pullback of functions, pushforward of vectors

For M , N manifolds of dimensions m, n, let φ : M → N be a smooth map. Associated with φ are
two other maps,16 the pullback φ∗ and the pushforward φ∗. Let f : N → R be a smooth function.
Then f ◦ φ : M → R is a function on M (see the right part of Fig. 13.3), which can be formalized
as an operator, the pullback of f , φ∗f ≡ f ◦ φ (see Fig. 13.6). For p ∈ M , let q = φ(p) ∈ N . The

Figure 13.6 Pullback φ∗f ≡ f ◦ φ is a function on M for f a function on N .

pullback “pulls” f (defined on N ) to a function defined on M , φ∗f , such that

(φ∗f) (p) ≡ f(φ(p)) . (13.4)

The pullback is a mapping between the space of functions, φ∗f : Fq → Fp.
The pullback effects another operation, the pushforward of a vector t ∈ Tp(M) as a mapping

between tangent spaces φ∗t : Tp(M) → Tφ(p)(N). The pushforward “pushes” t ∈ Tp(M) to
φ∗t ∈ Tφ(p)(N), such that for all f ∈ Fq ,

(φ∗t) f ≡ t(φ∗f) = t(f ◦ φ) . (13.5)

It can be shown that φ∗t meets the requirements of a tangent vector: linearity and the derivation
property.[29, p56] The mapping φ : M → N is an association between the points of manifolds; it
effects (in math-speak induces) the operations φ∗ and φ∗ that map functions and vectors between
manifolds. These operations are indicated schematically in Fig. 13.7.

Fp Fφ(p)
φ∗f

Tp(M) Tφ(p)(N)
φ∗t

Figure 13.7 Operations of pullback of a function and pushforward of a vector.

It helps to see how this works with coordinates. Let {xi}mi=1 be the coordinates of p ∈ M
and {ya}na=1 be the coordinates of φ(p) ∈ N . An arbitrary t ∈ Tp(M) can be expressed in the
coordinate basis ti(∂/∂xi)|p, Eq. (13.2). Because φ∗t ∈ Tq(N), we can write φ∗t = βa(∂/∂ya)|q .
From Eq. (13.5) (using the chain rule),

(φ∗t) f = βa
∂f

∂ya
= t(f ◦ φ) = ti

∂(f ◦ φ)
∂xi

= ti
∂ya

∂xi
∂f

∂ya
. (13.6)

The components of φ∗t are thus related to those of t by βa = (∂ya/∂xi)ti; the action of φ∗t is the
n × m Jacobian matrix ∂ya/∂xi. Equation (13.6) has the form of Eq. (5.35) (transformation law
for the contravariant components of a vector), except that Eq. (13.6) is more general: It connects
contravariant vectors on manifolds of unequal dimensions. Because Eq. (13.6) holds for all f ,

φ∗t = ti
∂ya

∂xi
ea , (13.7)

where {ea ≡ ∂/∂ya} is the coordinate basis in the target space.

16The notation for pullbacks (φ∗, upper star) and pushforwards (φ∗, lower star) is fairly standard, but not universal.
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13.2.2.2 Differential of a map

In the special case N = R, φ is a function f : M → R. The pushforward under f is, by Eq.
(13.5), (f∗t)g = t(f∗g) = t(g ◦ f), where g : R → R. By definition f∗t : Tp(M) → Tc(R)
where c ≡ f(p). Because Tc(R) is one-dimensional, f∗t = a(d/du)|c, where a is a constant. To
evaluate a choose g(u) = u, the identity function, which implies that a = t(f). The pushforward
of a vector t ∈ Tp(M) under a function f : M → R defines a linear map known as the differential
of f , df : Tp(M)→ R, such that

df(t) ≡ t(f) . (13.8)

The quantity df therefore brings to the party what we sought for the dual of a tangent vector, a
mapping from tangent vectors to numbers.17 The cotangent space T ∗p (M) is the set of all differen-
tials df at p. For f the coordinate function xi and t the tangent to the jth coordinate curve, ∂j |p, the
action of dxi (the differential of the coordinate function xi) on ∂j |p is, by Eq. (13.8):

dxi(∂j |p) = (∂j |p)xi = ∂xi

∂xj
= δij . (13.9)

The set of operators {dxi|p}mi=1 are dual to the basis of Tp(M), {∂j |p}mj=1, and form a basis for
T ∗p (M). Compare Eq. (13.9) with Eq. (5.48) (or Eq. (C.1)).

Let’s look at df in terms of coordinates. Let f : M → R and let {xi} be the coordinates of
p ∈M . For t ∈ Tp(M), t = ti(∂i|p). From Eq. (13.8), (df)t = ti∂if , where ti = t(xi) = (dxi)t,
also by Eq. (13.8). Hence, df(t) = (∂if)dxi(t). Because this relation holds for any t,

df = (∂if)dxi . (13.10)

While Eq. (13.10) looks familiar, dxi is an operator, a symbol for the map dxi(∂/∂xj) = δij ; see
Eq. (13.9). For another set of coordinates at p, {yj} (those obtained from an overlapping chart), we
would have another basis for T ∗p (M), {dyj}, related to the basis vectors {dxi} by

dyj = ∂yj

∂xi
dxi ≡ Aji′dx

i′ . (13.11)

Equation (13.11) has the same form as Eq. (5.34) (transformation equation for the dual basis vec-
tors). The components of df , ∂if , transform as in Eq. (5.38), the transformation equation for the
covariant components of a vector, ∂/∂yj = (∂xi/∂yj)∂/∂xi. Covariant vectors at p ∈ M are
elements of the cotangent space T ∗p (M).

13.2.3 Tensor fields

We can now define tensors on manifolds. Vector spaces Tp(M), T ∗p (M) exist at every point of M .
Tensors of type (k, l) can be constructed at each point p ∈ M as multilinear functions on products
of Tp and T ∗p , Tkl |p : (T ∗p )k × (Tp)l → R (see Section 5.5). A tensor field is an assignment of a
tensor to every point p ∈M , where the tensors all have the same index structure. We can anticipate
an issue with tensor fields. Whereas the points of Minkowski space are isomorphic with those of R4,
the spacetime of GR—a four-dimensional manifold—has points only locally in correspondence with
those of R4 and does not possess the global vector-space structure of R4. Comparing tensors from
different points of M , for example for computing derivatives, is therefore problematic. If our goal
is to represent physics on the spacetime manifold, e.g., in terms of partial differential equations, we
must find a way of establishing a relationship between tensors at separate points of M . A means for
doing that is presented in Chapter 14 which comes from equipping the manifold with an additional

17Equation (13.8) is a special case of the natural pairing between vectors and duals discussed in Appendix C, Eq. (C.2).
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structure, the affine connection, leading to one way of taking derivatives, the covariant derivative. In
this chapter we restrict ourselves to what can be said about tensor fields using just the properties of
smooth manifolds. We will be led to another derivative, the Lie derivative.

A vector field is an assignment of a vector to every point of a manifold. A vector selected from
the tangent space at every point, v|p ∈ Tp(M), is a contravariant vector field, the tangent field. For
f : M → R, v|p(f) is a number for each p ∈ M . The tangent field is said to be smooth if for each
smooth function f , v(f) is smooth. A covariant vector field ω is smooth if for each smooth tangent
field v, the function ω(v) is smooth. A tensor field Tkl is smooth if for smooth covariant vector
fields ω1, · · · ,ωk and smooth tangent fields v1, · · · ,vl, Tkl (ω1, · · · ,ωk,v1, · · · ,vl) is a smooth
function. Note the progression: from functions onM , contravariant vector fields; from contravariant
vector fields, covariant vector fields; from both, tensor fields.

The metric field g is an assignment18 to every x ∈M of the tensor g|x = gµν(x)eµ ⊗ eν where
the components gµν(x) = g|x(eµ, eν) are smooth functions (with {eµ} the coordinate basis of
Tx(M) and {eµ} the coordinate basis for T ∗x (M)). Einstein’s field equation is a set of differential
equations for gµν(x). At every point p of a manifold M equipped with a metric, a basis can be
found (a g-orthonormal basis, Section 5.6), {vi}ni=1 ∈ Tp(M) such that g(vi,vj) = 0 for i 6= j
and g(vi,vi) = ±1. A Riemannian manifold has signature (+ · · ·+) for the terms g(vi,vi), while
a manifold with signature (−+ ++) is called Lorentzian. Once a metric field has been introduced,
the signature is the same at every point of a connected manifold.19

13.3 INTEGRAL CURVES, CONGRUENCES, AND FLOWS
Every point of a curve γ(t) has a tangent vector, the directional derivative at that point. Is the
converse true? Let X be a tangent field on M . A curve γ : I → M is the integral curve of X if,
for each t ∈ I ⊂ R, the tangent field of γ(t) coincides with X|γ(t). An integral curve “threads” a
smooth vector field seen as a collection of arrows; Fig. 13.8. Integral curves always exist. If γ(t) has
coordinates xi(t) and X has components Xi, finding the integral curve associated with X reduces
to solving a set of coupled first-order differential equations,

d
dtx

i = Xi(x1(t), · · · , xn(t)) . (i = 1, · · · , n) (13.12)

Such systems of differential equations have unique solutions for prescribed starting values.20

M
γ(−2)

γ(−1)
γ(0) γ(1) γ(2) γ(3)

Figure 13.8 Integral curve γ(t) threads a given vector field on M .

18It would be possible to have more than one metric field on a manifold. There are bi-metric theories of gravity in which
the spacetime manifold has two metric tensors instead of one.

19More fine print. A manifold M is connected if the only subsets of M that are simultaneously open and closed are the
empty set andM itself.[29, p46] The set of points on which the metric field has any given signature is open—the components
gµν(x) are continuous functions, and because a metric must be invertible to be a metric (Section 5.6), if the metric has a
given signature at a point p ∈M , there is an open subset O of M containing p such that gµν has the same signature at each
point of O. The set of points of M at which gµν has some other signature is also open, and thus the set of points at which
gµν has the given signature is also closed. (A set of points is closed if its complement is open.) These statements imply that
the metric field on a connected manifold has the same signature at every point.

20Existence and uniqueness of the solutions of ordinary differential equations is proved in books on differential equations.
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Example. Examples of integral curves

1. LetX = x∂x+y∂y be a vector field (X assigns to the function f the number x∂xf +y∂yf ).
Equation (13.12) implies dx/dt = x and dy/dt = y. The integral curve passing through
(a, b) at t = 0 is γ(t) = (aet, bet).

2. Let X = −y∂x + x∂y be a vector field. Implied by Eq. (13.12) is the pair of differential
equations dx/dt = −y and dy/dt = x. The integral curve passing through (a, b) at t = 0 is
γ(t) = (a cos t− b sin t, a sin t+ b cos t).

Integral curves associated with the same vector field cannot cross.21 Every smooth vector field
X has a unique family of curves having the property that precisely one curve passes through each
p ∈ M such that the tangent to the curve at p is X|p. Because an integral curve passes through
every point p, they “fill” the manifold. A non-intersecting, manifold-filling set of curves is referred
to as a congruence. The congruence can be regarded as the manifold itself.

M

Figure 13.9 A manifold filling set of curves is a congruence.

Two integral curves can coincide if one is a reparameterization of the other. Let γ : I → M
be an integral curve of X with I = (a, b). Let c be a real number with I ′ ≡ (a + c, b + c). Then
γ′(t) ≡ γ(t − c) is also an integral curve for X with t ∈ I ′.[29, p121] We can state this idea
formally: Let α : I ′ → I be a diffeomorphism mapping the interval I ′ to the interval I (open
subsets of R are manifolds). The reparameterized curve γ′ = γ ◦ α : I ′ →M . If 0 is in both I and
I ′, the starting value of γ′, γ′(0) is the point γ(−c) of M (see Fig. 13.10). The starting value has
thus been shifted under a diffeomorphism.

γ′(0)
γ′(1)

γ′(2)

γ(1)
γ(2)

γ(0)

Figure 13.10 Two parameterizations of the same integral curve.

That idea is quite powerful and leads to a useful concept. Consider the integral curves of a
vector field as the flow lines of a fluid (as in Fig. 13.9), where the “motion” of a point on the
curve is provided by a diffeomorphism of the manifold to itself. The flow of a vector field X is the
continuous sequence of mappings φt : R×M → M , t ∈ R, such that for fixed t, φt : M → M is
the diffeomorphism φt(γ(0))→ γ(t), where γ(t) is the integral curve associated withX that passes

21The argument is the same as why in classical mechanics, trajectories in phase space cannot cross: Each is obtained
from first-order differential equations, the solutions of which are unique.
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through γ(0). In other words, φt “pushes” a point along the integral curve by an amount22 controlled
by the parameter t. The set of maps {φt|t ∈ R} comprises a group: for t, s ∈ R, φt ◦ φs = φt+s,
the identity map is φ0, and the inverse (φt)−1 = φ−t. The flow φt is a one-parameter group of
diffeomorphisms23 of M associated with vector fieldX .

A congruence can be considered a mapping of a manifold onto itself. Through each point p ∈
M there passes one curve of the family. Each curve is associated with a one-parameter group of
diffeomorphisms, φt, such that for sufficiently small24 t, each p ∈ M is mapped to the point q =
φt(p) lying at a parameter distance t along the curve (see Fig. 13.11).

P

Q

t
t

M

Figure 13.11 Each p ∈ M is mapped under φt to q = φt(p) lying at parameter distance t
along an integral curve.

13.4 MAPPINGS OF TENSORS
The pullback operation applies to dual vectors25 with φ∗ω : T ∗φ(p)(N) → T ∗p (M), a mapping
between cotangent spaces such that for ω ∈ T ∗φ(p)(N) and for all t ∈ Tp(M),

(φ∗ω)t ≡ ω(φ∗t) . (13.13)

Compare Eq. (13.13) with Eq. (13.4). For xi the coordinates of p ∈ M and ya the coordinates
of φ(p) ∈ N , because φ∗ω ∈ T ∗p (M), φ∗ω = fie

i, where ei = dxi. Thus, for t = tiei (with
ei = ∂/∂xi), and for ω = ωbe

b (eb = dyb), we have from Eq. (13.13),

(φ∗ω) t = fie
i
(
tjej

)
= fit

i = ω (φ∗t) = ωbe
b

(
ti
∂ya

∂xi
ea

)
= ωat

i ∂y
a

∂xi
, (13.14)

where we’ve used Eqs. (13.9) and (13.7). The components of φ∗ω (i.e., fi) are thus related to those
of ω (i.e., ωa) by fi = ωa(∂ya/∂xi), a generalization of the transformation law for covariant vector
components, Eq. (5.38). Because Eq. (13.14) holds for all t,

φ∗ω = ωa
∂ya

∂xi
dxi . (13.15)

The pullback operation commutes with the differential of a function,

φ∗ (df) = d(φ∗f) , (13.16)

which follows from [φ∗(df)]t = df(φ∗t) = (φ∗t)f = t(φ∗f) = d(φ∗f)t, where we’ve used
Eqs. (13.13), (13.8), (13.5), and (13.8) again. When expressed in terms of coordinates, Eq. (13.16)
is equivalent to the chain rule for partial derivatives.

22We’re sweeping under the rug that the parameter values of the integral curve can be taken from all of R. A vector field
X is said to be complete if its integral curve is defined by the entire real line. If X is not complete, its flow is defined only
locally and the parameter t must be considered sufficiently small.

23See [37, p18] or [38, p27].
24The proviso for small t is to avoid potential problems of “running out of manifold.”
25Functions (scalar fields) can be considered rank-zero covariant vectors, just as points can be considered rank-zero

contravariant vectors.
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For diffeomorphisms (φ−1 : N → M is one-one), we can use φ−1 to extend φ∗ and φ∗. The
pullback under φ−1 of a function f ∈ Fp is such that

(
(φ−1)∗f

)
φ(p) ≡

(
f ◦ φ−1)φ(p) = f(p) for

p ∈ M . Hence, (φ−1)∗f is effectively a pushfoward on functions, Fp → Fφ(p),
(
φ−1)∗ f ≡ φ∗f .

The pushforward of a vector under φ−1,
(
(φ−1)∗t

)
f ≡ t

(
(φ−1)∗f

)
for t ∈ Tφ(p)(N) for all

f ∈ Fp, is effectively the pullback under φ,
(
φ−1)

∗ t ≡ φ
∗t, with (φ∗t) f = t (φ∗f). The pullback

of a dual vector under φ−1,
(
(φ−1)∗ω

)
t ≡ ω

(
(φ−1)∗t

)
for ω ∈ T ∗p (M) for all t ∈ Tφ(p)(N) is

effectively a pushforward under φ,
(
φ−1)∗ ω ≡ φ∗ω, with (φ∗ω) t = ω (φ∗t). These operations

are illustrated in Fig. 13.12 (compare Fig. 13.12 with Fig. 13.7).

T ∗p (M) T ∗φ(p)(N)φ∗ω
Fp Fφ(p)

(φ−1)∗f
Tp(M) Tφ(p)(N)

(φ−1)∗t

Figure 13.12 Pullback of a dual vector, pushforward of a function, and pullback of a vector.

The pushforward of a type (k, l) tensor under a diffeomorphism is defined such that(
φ∗Tkl

) (
ω1, · · · ,ωk, t1, · · · , tl

)
|φ(p) ≡ Tkl

(
φ∗ω1, · · · , φ∗ωk, (φ−1)∗t1, · · · , (φ−1)∗tl

)
|p ,

for ωi ∈ T ∗φ(p)(N) and ti ∈ Tφ(p)(N). The operator (φ−1)∗ is effectively the pullback, for ωi ∈
T ∗p (M) and ti ∈ Tp(M),((
φ−1)

∗ Tkl
)

(ω1, · · · ,ωk, t1, · · · , tl)|p ≡ Tkl
(
(φ−1)∗ω1, · · · , (φ−1)∗ωk, φ∗t1, · · · , φ∗tl

)
|φ(p) .

13.5 THE LIE DERIVATIVE
We’re now in a position to define a derivative of tensor fields. A manifold can be covered by a non-
intersecting family of integral curves associated with a vector field v, where each curve is generated
by a group of diffeomorphisms, φt with t ∈ R (Section 13.3). The pushforward associated with φt,
φt∗, would map a tensor at p ∈M , T|p, to the point φt(p). How does φt∗T compare with the tensor
that’s “already there,” T|φt(p)?

The Lie derivative26 £v of tensor field T with respect to tangent field v is defined in terms of
the difference between the pullback of T|φt(p) and T|p as t→ 0,

(£vT)p ≡ lim
t→0

1
t

[
(φ−t)∗ T|φt(p) − T|p

]
, (13.17)

where φ−t ≡ (φt)−1. The Lie derivative measures the rate of change of T relative to the contravari-
ant vector field v. This idea is illustrated in Fig. 13.13 where we’ve used an arrow to represent a

v

p

(φ−t)∗T |φt(p)T |p

φt(p)

T |φt(p)

Figure 13.13 Lie derivative of a tensor field T is obtained from the difference between the
tensor at p, T|p, with that at φt(p), T|φt(p), by pulling it back to p.

26Named after the mathematician Sophus Lie, pronounced Lee. It’s traditionally denoted £v , a notation we adhere to.
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generic tensor field T. As with any derivative, £v is linear, £v (λS + µT) = λ£vS + µ£vT, and
it obeys the product rule, £v (S⊗ T) = (£vS)⊗ T + S⊗ (£vT). Additionally, it commutes with
contractions:27 £v

(
Tµµ
)

= δµν£vT νµ . It’s also type preserving: For T a type (k, l) tensor, £vT is
a type (k, l) tensor. The Lie derivative is one of several ways to define derivatives on manifolds
(see Chapter 14). Its advantage is that it uses only the intrinsic properties of smooth manifolds; its
disadvantage is that it requires a vector field v to be specified.28

The Lie derivative of various objects is found by working out their pullbacks. Let p ∈ M have
coordinates xµ. The coordinates of φt(p) are, for infinitesimal t, generated by the vector v at p,

φt(xµ) ≡ xµ = xµ + tvµ +O(t2) . (t→ 0) (13.18)

The pullback of a function at xµ is, from Eq. (13.4), (φ∗t f) (xµ) = f(xµ+ tvµ) ≈ f(xµ)+ tvµ∂µf .
Using Eq. (13.17), the Lie derivative of a scalar field is the directional directive,

£vf = vµ∂µf . (13.19)

Evaluating the pullback of tensors is more involved. Key to understanding why is that the dif-
feomorphism φt is an active transformation:29 The point p with its local coordinate system xµ is
sent to φt(p), which has a different system of coordinates, xµ (see Eq. (13.18)). Because tensors are
expressed with respect to the basis vectors underlying these coordinates, we have to transform the
basis vectors. The pushforward of a contravariant vector field u under φ−t is, using Eq. (13.7),

φ−t∗
(
u|φt(p)

)
=ua(xλ + tvλ)∂x

µ

∂xa
eµ =

(
ua(x) + tvλ∂λu

a
)

(δµa − t∂avµ) eµ +O(t2)

=u|p + t
[
vλ∂λu

µ − ua∂avµ
]
eµ +O(t2) ,

where we’ve kept terms to first order in t. Using Eq. (13.17),

£vu =
(
vλ∂λu

µ − uλ∂λvµ
)
eµ ≡ [v,u] , (13.20)

where eµ ≡ ∂µ. Equation (13.20) defines the commutator (Lie bracket) of the vector fields u and v,
which is itself a contravariant vector field (Lie derivative is type preserving). In component form,
(£vu)µ = vλ∂λu

µ − uλ∂λvµ. Note that we need to know all components of v and u to evaluate
just one component of the derivative, (£vu)µ. The Lie bracket is antisymmetric: [v,u] = − [u,v].
In particular, [v,v] = 0, which makes sense: the rate of change of v relative to itself is zero.

The pullback of a dual vector is, using Eqs. (13.15) and (13.18),

φ∗tω = ωa(xλ + tvλ)∂x
a

∂xµ
eµ =

(
ωa(x) + tvλ∂λωa

) (
δaµ + t∂µv

a
)
eµ +O(t2)

= ω|p + t
[
ωa∂µv

a + vλ∂λωµ
]
eµ +O(t2) .

Thus, from Eq. (13.17),

£vω = [vλ∂λωµ + ωλ∂µv
λ]eµ ≡ {ω,v} , (13.21)

the anticommutator of ω and v. In component form, (£vω)µ = vλ∂λωµ + ωλ∂µv
λ.

The pullback of g = gabe
a ⊗ eb is φ∗t g|φt(p) = gµν(xλ + tvλ)∂axµ∂bxνea ⊗ eb, from which

it’s straightforward to show that

(£vg)ab = vλ∂λgab + gaλ∂bv
λ + gλb∂av

λ . (13.22)

27The three properties of the Lie derivative mirror the fundamental operations on tensors at a point of addition, outer
product, and contraction. The Lie derivative interacts with tensors preserving these fundamental properties.

28The Lie derivative also does not reduce to the partial derivative on flat spaces; it generalizes the directional derivative.
29The distinction between active and passive transformations is discussed in Section 4.1.1.
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The analysis can be repeated for a tensor of type (k, l) with the result that there is a plus sign for
every covariant index and a negative sign for every contravariant index

(£vT)a1···ak
b1···bl = vλ∂λT

a1···ak
b1···bl −

k∑
n=1

T
a1···an−1αan+1a···ak
b1···bl ∂αv

an +
l∑

m=1
T a1···ak
b1···bm−1αbm+1···bl∂bmv

α .

(13.23)

13.6 SUBMANIFOLDS, EMBEDDINGS, AND HYPERSURFACES

13.6.1 Submanifolds

A k-dimensional submanifold S of an n-dimensional manifold M (1 ≤ k ≤ n) is a subset of M
that is itself a manifold. Roughly speaking, a k-dimensional submanifold is a k-dimensional surface
in M that locally looks like Rk, as indicated in Fig. 13.14. Precisely speaking, S ⊂ M is a k-

Figure 13.14 k-dimensional submanifold S of an n-dimensional manifold M .

dimensional submanifold if, for each point p ∈ S, there is an n-chart (U, φ) of M such that for
p ∈ U , φ(U ∩ S) consists of the points of φ(U) with xk+1 = · · · = xn = 0. That is, for each
point p of S, there is an n-chart containing p such that S intersects U at those points (of U ) that
are assigned the value zero for (n− k) coordinates. The number (n− k) is the co-dimension of S.
A submanifold is thus a manifold.30 For k = n, S is an open subset of M ; for k = n − 1, S is a
hypersurface31 in M .

Example. Examples of submanifolds

1. Let S be a subset of Rn with
∑n
i=1(xi)2 = 1. Then S is a (n− 1)-dimensional submanifold

of Rn; it’s the manifold Sn−1 defined in Section 13.1.1. Note that the charts used to define
Sn−1 simply eliminate one coordinate, which the definition of submanifold sets to zero.

2. Let M1 and M2 be manifolds of dimension n1 and n2, and let M = M1×M2 be the product
manifold. Fix a point p1 ∈M1, and let S consist of all points of M of the form (p1, p2) with
p2 ∈ M2. Then S is a submanifold of M of dimension n2. Consider the cylinder S1 × R1.
Fix a point of S1; R1 is a one-dimensional submanifold of the cylinder.

30Proof : S is a subset ofM , so S is a set. If (U, φ) is a chart onM withU consisting of points having (n−k) coordinates
zero, then (x1, · · · , xk) are coordinate functions on U ∩ S. But U ∩ S is a subset of S and (x1, · · · , xk) are coordinates
on this subset; therefore we have a k-chart. A k-dimensional submanifold of M is thus a k-dimensional manifold; it inherits
the smoothness of M through its charts.

31Hypersurfaces were introduced in Section 8.3.
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13.6.2 Embeddings

Let S and M be manifolds of dimensions k and n, with 1 ≤ k ≤ n. Referring to Fig. 13.15, an
embedding of S in M (with S embedded in M ) is a smooth map32 ψ : S → M if: 1) ψ is one-
to-one, and 2) for p ∈ S there is a neighborhood U ⊂ S so that for ψ(p) ∈ M there is a chart
(V, µ) with µ : V → Rn and µ(ψ(p)) = (y1, · · · , yn), the quantities xi ≡ yi ◦ ψ|U (i = 1, · · · , k)
are coordinates for p. The manifold S is an embedded submanifold of M if the identity map is an

Figure 13.15 Embedding of S in M under the mapping ψ.

embedding.33 An embedded submanifold cannot intersect itself because embeddings are one-to-one.
Curves can intersect themselves, however (γ(t1) = γ(t2) for t1 6= t2). One-dimensional embedded
submanifolds are curves, but not the converse; not all curves are embedded submanifolds. If the
requirement that ψ is one-to-one is omitted but the requirement of obtaining coordinates of S from
those of M is retained, ψ is said to be an immersion (with S immersed in M ).34 In what follows we
work with embedded submanifolds.

13.6.3 Coordinate slices

A coordinate slice of dimension k in an n-dimensional manifoldM (a k-slice) are points in U ⊂M
with coordinates (x1, · · · , xn) such that (n − k) of the coordinates are held fixed: for p ∈ U ,
{xi(p) = ci}ni=k+1, where the constants ci determine the slice. A slice specifies a submanifold.[29,
p42] Figure 13.16 shows a one-dimensional coordinate slice of R3.

x3

x1

x2

Figure 13.16 One-dimensional coordinate slice of R3: x1 and x2 are held fixed.

13.6.4 Tangents and normals to submanifolds

Let S be an embedded k-dimensional submanifold of an n-dimensional manifoldM specified by the
identity map ψ : S → M . A curve γ : I → S passing through p ∈ S is also a curve in M through

32The embedding is the map ψ : S →M .
33For S an embedded submanifold of M , a point of S, which is also a point of M , is taken by the identity map to that

point of M . The identity map is one-to-one and smooth because S is a smooth manifold.
34There are several inequivalent definitions of embeddings and immersions in the literature; beware. We have adopted

definitions that guarantee the greatest smoothness; differential geometry is the study of smoothness. What we have defined
as embeddings are also referred to in the literature as imbeddings.
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p. Vectors tangent to curves on M passing through p are elements of the n-dimensional vector
space Tp(M). Vectors tangent to curves on S (passing through p) are elements of a k-dimensional
subspace of Tp(M), Tp(S). A contravariant vector u at p ∈ S with components (u1, · · · , uk), is,
under the embedding, a contravariant vector at p ∈ M with components (u1, · · · , uk, 0, · · · , 0),
which we can indicate with the pushforward map ψ∗ : Tp(S) → Tψ(p)(M), where ψ(p) ≡ p.
Vectors in M of the form (u1, · · · , uk, 0, · · · , 0) are said to be tangents to S. Let ω be a covariant
vector at p ∈ M , an element of the cotangent space T ∗p (M). Such a vector is said to be normal to
S (at p) if ωiui = 0 (i = 1, · · · , n) for all tangents to S (at p), which is possible only if ω has the
form (0, · · · , 0, ωk+1, · · · , ωn). Normal vectors to S (at p) therefore form an (n − k)-dimensional
subspace of T ∗p (M). Under the pullback ψ∗ : T ∗ψ(p)(M)→ T ∗p (S), ω is normal to S if its pullback
is the zero vector of T ∗p (S), ψ∗(ω) = 0. At any point p of a k-dimensional submanifold of M there
is a k-dimensional subspace of Tp(M) and an (n− k)-dimensional subspace of T ∗p (M).

Example. For Minkowski space, consider the three-dimensional submanifold S obtained by setting
the time coordinate to zero, x0 = 0. Corresponding to contravariant vectors in S, (x1, x2, x3), are
the tangent vectors in M , (0, x1, x2, x3). Vectors normal to S are of the form ω = (ω1, 0, 0, 0). The
pullback of ω is the zero vector (0, 0, 0).

13.6.5 Metric submanifolds, hypersurfaces, and induced metrics

Could a vector be both tangent to, and normal to a submanifold S? The question can be answered
if we equip M with a metric field g. For a metric g on M , the pullback ψ∗ associated with the
embedding ψ : S → M defines a symmetric tensor field on S, hab|p ≡ (ψ∗gab)|ψ(p). If hab|p
is nondegenerate at all p ∈ S, hab is a metric field on S, the induced metric,35 where for u,v ∈
Tp(S), ψ∗g(u,v)|p = g(ψ∗u, ψ∗v)|ψ(p) (see Section 13.4). In such a case, S is said to be a metric
submanifold relative to the background metric g on M . A submanifold S is a metric submanifold if
and only if at each point p of ψ(S), the only vector v tangent to, and normal to S is v = 0.36 For a
metric submanifold there are at each point of ψ(S) ∈ M two sets of vectors (tangents and normals
to S) having no vector in common except the zero vector. There is therefore a vector space at each
point of ψ(S) comprised of basis vectors that are either tangent to, or normal to S, but not both.

For S a submanifold of a Riemannian manifold37 M (under an embedding ψ : S → M ), let
there be a contravariant vector v tangent to S with components vi. Use the metric tensor to lower the
index, vj = gjiv

i. If the covariant vector v were normal to S, we would have vivi = gijv
ivj = 0.

But there cannot be nonzero vectors satisfying this condition for a positive-definite metric. Every
submanifold of a Riemannian manifold is a metric submanifold. The induced metric is positive
definite: (ψ∗g)(u,v)|p = g(ψ∗u, ψ∗v)|ψ(p) > 0 for u,v ∈ Tp(S).

The same cannot be said of a Lorentzian manifold. Consider the hypersurfaces S of a Lorentzian
manifold M . We know there is a vector nα normal to all vectors tangent to S. Because the metric
g on M is indefinite, there are three possibilities for the inner product: nαnα > 0, nαnα = 0, and
nαnα < 0. If nαnα = 0, we have a nonzero vector that is both tangent to, and normal to S (a null

35A metric must be invertible (nondegenerate) to be a metric, Appendix C.
36Proof : First assume that hab is not invertible (and hence S is not a metric submanifold), that for all vb ∈ Tp(S) there

is some nonzero ua ∈ Tp(S) such that habuavb = 0 (the null space of hab is non-empty). By definition, habuavb =
(ψ∗gab)uavb = gabψ∗(ua)ψ∗(vb). The pushforward ψ∗vb ≡ wb is tangent to S (the pushforward of ua is also a
nonzero tangent to S). Thus, gabψ∗(ua)wb = 0 for all wb. The covariant version of ψ∗(ua), gabψ∗(ua), is therefore
normal to S. Hence, if hab is not invertible, there are nonzero vectors both tangent to, and normal to S. The converse is
straightforward. Let there be a nonzero vector wa tangent to S with wa = gabw

b normal to S. Then, 0 = wawa =
gabw

awb = gabψ∗u
aψ∗ub = (ψ∗gab)uaub; ua, the vector on S such that wa = ψ∗ua, is in the null space of ψ∗gab.

Hence, hab is not invertible and S is not a metric submanifold.
37Riemannian and Lorentzian manifolds are equipped with metric fields—Section 13.2.3.
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hypersurface); by the above theorem, a metric does not exist on S because ψ∗g is not invertible.
If nαnα > 0 (timelike hypersurface), the induced metric g(ψ∗(u), ψ∗(v)) (for u,v ∈ Tp(S)) is
indefinite to preserve the indefinite character of g. For the same reason, if nαnα < 0 (spacelike
hypersurface), the induced metric is positive definite. These results are summarized in Table 13.1.

Table 13.1 Hypersurfaces of a Lorentzian manifold.
nαn

α Induced metric
> 0 indefinite, timelike hypersurface
= 0 not defined, null hypersurface
< 0 positive definite, spacelike hypersurface

13.7 DIFFERENTIAL FORMS AND EXTERIOR DIFFERENTIATION

13.7.1 Differential forms

We defined p-forms in Chapter 5 as elements of the wedge-product space ∧pV ∗ (over the dual
of the n-dimensional vector space V ), the space of all totally antisymmetric type (0, p) tensors,
0 ≤ p ≤ n (Section 5.10.2). We now define a differential p-form as a p-form field at every point of
an n-dimensional manifold. (To save writing, we’ll refer to differential p-forms simply as p-forms.)
A 0-form field is a smooth function on M , and a 1-form field is a covariant vector field. For {xi}
the coordinates of x ∈M , the set of differentials {dxi} (a basis for T ∗x (M)) is a basis for 1-forms:
Any 1-form ω can be expressed as ωidxi, where the coefficients ωi are smooth functions. Denote
the vector space of p-forms at x ∈M as ∧pT ∗x (M). An element ω ∈ ∧pT ∗x (M) can be constructed
from basis p-forms,

ω = 1
p!ωii···ip(x)dxi1 ∧ · · · ∧ dxip =

∑
i1<···<ip

ωi1···ip(x)dxi1 ∧ · · · ∧ dxip , (13.24)

where the coefficients ωi1···ip are smooth functions and antisymmetric in all indices. Differential
forms on R3 are listed in Table 13.2.

Table 13.2 Differential forms on R3.

0-form ω = F (x, y, z)
1-form ω = A(x, y, z)dx+B(x, y, z)dy + C(x, y, z)dz
2-form ω = A(x, y, z)dy ∧ dz +B(x, y, z)dz ∧ dx+ C(x, y, z)dx ∧ dy
3-form ω = F (x, y, z)dx ∧ dy ∧ dz

Example. The wedge product between 1-forms is a 2-form: (Adx+Bdy+Cdz)∧(Ddx+Edy+
Fdz) = (AE−BD)dxdy+ (BF −CE)dydz+ (CD−AF )dzdx, where we have suppressed
the functional dependence of the coefficients and we have written dxdy for dx ∧ dy, etc. The
wedge product between a 1-form and a 2-form is a 3-form: (Adx + Bdy + Cdz) ∧ (Pdydz +
Qdzdx+Rdxdy) = (AP +BQ+ CR)dxdydz. There are no higher p-forms on R3.
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13.7.2 Exterior derivative

The exterior derivative, d, is a mapping between wedge-product spaces at the same point of the
manifold d : ∧pT ∗x (M)→ ∧p+1T ∗x (M) having the following properties.38 For ω ∈ ∧pT ∗x (M) and
η ∈ ∧qT ∗x (M) (p and q forms),

(1) d(ω + η) = dω + dη. (linearity)

(2) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη. (antiderivation property)

(3) d(dω) = 0 for any ω. (d ◦ d ≡ d2 = 0 “Poincaré lemma”)

(4) df = (∂if)dxi. (Exterior derivative of a 0-form is a 1-form)

The fourth requirement reproduces Eq. (13.10). There is precisely one expression for d meeting
these requirements (for ω a p-form),39

dω = 1
p!
∂ωµ1···µp
∂xν

dxν ∧ dxµ1 ∧ · · · ∧ dxµp =
∂ω|µ1···µp|

∂xν
dxν ∧ dxµ1 ∧ · · · ∧ dxµp , (13.25)

where |µ1 · · ·µp| means that the indices are ordered with µ1 < · · · < µp. Note the “extra” dxν
in Eq (13.25); dω is a (p + 1)-form (compare with Eq. (13.24)). We can see that d2 = 0 using
Eq. (13.25): d2ω = ∂2ω|µ1···µp|/∂x

α∂xβdxα ∧ dxβ ∧ dxµ1 ∧ · · · ∧ dxµp = 0. The 2-form
dxα ∧dxβ is antisymmetric in (α, β), but the second derivatives are symmetric (if ∂α∂β = ∂β∂α);
the contraction between a symmetric and antisymmetric tensor is zero (Section 5.10.1). The Lie
derivative (which applies to any tensor field) is a generalization of the directional derivative; the
exterior derivative (which applies only to differential forms) generalizes the gradient.

The exterior derivative of a 1-form is a 2-form. For ω = ωidxi, from Eq. (13.25),

dω = (∂jωi)dxj ∧ dxi =
∑
j<i

(∂jωi − ∂iωj)dxj ∧ dxi ,

which in R3 we recognize as the components of the curl, εijk(∇× ω)i = (dω)jk, where (∇×
ω)i = ε lmi ∂lωm. The exterior derivative of a 2-form is a 3-form. For a 2-form in R3, F = F1dx2∧
dx3 + F2dx3 ∧ dx1 + F3dx1 ∧ dx2, the exterior derivative is, from Eq. (13.25),

dF =
(
∂F1

∂x1 + ∂F2

∂x2 + ∂F3

∂x3

)
dx1 ∧ dx2 ∧ dx3 ,

which we recognize as the divergence, ∇ · F = (dF )123. The classic results of vector calculus,
∇×∇f = 0 and∇ · (∇× ω) = 0, are instances of d2 = 0.

Let’s see what kind of fun we can have by combining the exterior derivative with the Hodge star
operator (Section 5.10.6). For a 1-form α, ∗α is an (n − 1)-form, and thus d(∗α) is an n-form. It
can be shown that (the Hodge operator involves the metric tensor)

d(∗α) = 1√
|g|

∂(
√
|g|αν)
∂xν

ε , (13.26)

where ε ≡
√
|g|dx1 ∧ · · · ∧ dxn is the volume form, a generalization of the invariant volume

element, Eq. (5.57). (Thus, the volume form requires that a metric be defined on the manifold.) The
dual of Eq. (13.26) produces a 0-form, a scalar field

∗d(∗α) = (−1)n− 1√
|g|

∂

∂xν
(
√
|g|αν) , (13.27)

38The exterior derivative dα of a differential form field α occurs in the version of Stokes’s theorem on manifolds, Eq.
(13.34), and for that reason the exterior derivative is a generalization of the gradient.

39The uniqueness of Eq. (13.25) is shown in [54, p21] and in [55, p17].
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the covariant divergence. There are other combinations of d and ∗ that generalize the differential
operators of vector calculus.

13.7.3 Maxwell’s equations

From Eq. (8.19), Fµν is a second-rank antisymmetric covariant tensor. The associated differential
2-form is, using Eq. (13.24):

F =−E1

c
dx0∧dx1−E2

c
dx0∧dx2−E3

c
dx0∧dx3+B3dx1∧dx2+B2dx3∧dx1+B1dx2∧dx3.

The exterior derivative of F is then a 3-form. From Eq. (13.25),

dF =− 1
c

∂E1

∂xµ
dxµ ∧ dx0 ∧ dx1 − 1

c

∂E2

∂xν
dxν ∧ dx0 ∧ dx2 − 1

c

∂E3

∂xλ
dxλ ∧ dx0 ∧ dx3

(13.28)

+ ∂B3

∂xρ
dxρ ∧ dx1 ∧ dx2 + ∂B2

∂xσ
dxσ ∧ dx3 ∧ dx1 + ∂B1

∂xφ
dxφ ∧ dx2 ∧ dx3 .

Expanding the terms in Eq. (13.28), it can be shown that

dF = 0 . (13.29)

The homogeneous Maxwell equations are subsumed into one equation involving a differential form,
dF = 0. We see that a gauge transformation consists of modifyingF such thatF → F ′ = F+dA,
whereA is any 1-form. Under such a transformation dF ′ = 0 because d2 = 0 for anyA.

The dual of F , ∗F , is a 2-form (in Minkowski space). We find (using Eq. (5.74) with |g| = 1)

∗F = B1dx0∧dx1+B2dx0∧dx2+B3dx0∧dx3+1
c
E3dx1∧dx2+1

c
E2dx3∧dx1+1

c
E1dx2∧dx3 .

The exterior derivative of ∗F is a 3-form. From Eq. (13.25),

d(∗F ) =∂B1

∂xν
dxν ∧ dx0 ∧ dx1 + ∂B2

∂xµ
dxµ ∧ dx0 ∧ dx2 + ∂B3

∂xλ
dxλ ∧ dx0 ∧ dx3 (13.30)

+ 1
c

∂E3

∂xσ
dxσ ∧ dx1 ∧ dx2 + 1

c

∂E2

∂xρ
dxρ ∧ dx3 ∧ dx1 + 1

c

∂E1

∂xφ
dxφ ∧ dx2 ∧ dx3 .

Expanding the terms in Eq. (13.30), we find

d(∗F ) = µ0 (∗J) , (13.31)

where the dual of the 1-form Jµ is a 3-form. We find, using Eq. (5.76),

∗J = −J1dx0∧dx2∧dx3−J2dx0∧dx3∧dx1−J3dx0∧dx1∧dx2 +ρcdx1∧dx2∧dx3 .
(13.32)

The inhomogeneous Maxwell equations are equivalent to a single equation among differential
forms, d(∗F ) = µ0(∗J). Equations (13.29) and (13.31) are equivalent to the tensor form of
Maxwell’s equations, Eqs. (8.22) and (8.27).

13.8 INTEGRATION ON MANIFOLDS

13.8.1 Orientable manifolds

We introduced in Section 5.10.5 the orientation of an n-dimensional vector space V as a nonzero
element θ of ∧nV . An ordered basis for V , {ei}ni=1, is in the orientation specified by θ if for
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e1 ∧ · · · ∧ en = αθ, α > 0. There are precisely two possibilities: α > 0 or α < 0; α 6= 0
because basis vectors are linearly independent. Orientation on a manifold requires, at each p ∈ M ,
an orientation provided by the basis vectors of Tp(M) or T ∗p (M). In what follows, we use the basis
of the cotangent space. A manifold M is orientable if it’s possible to assign a nowhere vanishing
orientation onM , i.e., if the sign of the orientation is the same at all points ofM . Manifolds without
orientation exist, the Möbius strip being a famous example.

Two charts of an n-manifold M , (φα, Uα) and (φβ , Uβ), with overlapping domains are orienta-
tion compatible if the Jacobian determinant of the transition map is positive. Letωα ≡ e1

α∧· · ·∧enα
be a basis vector of ∧nT ∗p (M), where the set {eiα}ni=1 is the coordinate basis of T ∗p (M) associated
with (φα, Uα). Let {ejβ}nj=1 be the coordinate basis of T ∗p (M) associated with (φβ , Uβ). The two
sets of basis vectors are related by a linear transformation eiα = Aije

j
β , where the Aij are elements

of the Jacobian matrix associated with the transition map, Eq. (13.11). Under the transformation,

ωα = e1
α ∧ · · · ∧ enα = A1

j1
· · ·Anjne

j1
β ∧ · · · ∧ e

jn
β (13.33)

= A1
j1
· · ·Anjnε

j1···jne1
β ∧ · · · ∧ enβ = detAije1

β ∧ · · · ∧ enβ ≡ Jωβ ,

where we’ve used Eqs. (5.82) and (5.53). The transition maps must have J > 0 for the orientation
to be well defined. A manifold is orientable if, in addition to the criteria established in Section 13.1,
its charts are all orientation compatible.

An n-dimensional manifold M is orientable if and only if it admits a non-vanishing n-form. Let
α be a nowhere-vanishing n-form on M , i.e., for each local chart there is a function f 6= 0 such
that α = fe1 ∧ · · · ∧ en. It follows that α(e1, · · · , en) = f 6= 0, where {ei}ni=1 are coordinate
basis vectors of Tx(M). We can always find a chart for each point x ∈ M so that f(x) > 0
(otherwise replace the coordinate x1 with −x1). Let (φα, Uα) and (φβ , Uβ) be two such charts, so
thatα = fe1

α∧· · ·∧enα = ge1
β∧· · ·∧enβ , where f, g > 0, i.e.,α is a geometric object, independent

of chart. From Eq. (13.33), we must have fJ = g. Hence, J > 0 because f, g > 0. To prove the
converse requires that M be paracompact.[56, p63]

13.8.2 Manifold with boundary

A manifold with boundary is a manifold with an “edge” to it. To describe that edge, define
Rn+ ≡ {(x1, · · · , xn)|xn ≥ 0}, i.e., Rn+ is Rn with the nth coordinate non-negative; it can be
considered the “upper half” of Rn and is sometimes denoted 1

2R
n. (One could similarly define

Rn−.) The hemisphere x2 + y2 + z2 = 1 with z ≥ 0 is a two-dimensional manifold with boundary.
The edge of the hemisphere (z = 0) is in correspondence with the circle x2 + y2 = 1, while the rest
of the hemisphere (the interior with z > 0) is in correspondence with the open disk x2 + y2 < 1.

An n-dimensional manifold with boundary M is defined as in Section 13.1, except for the
modified requirement that the image of every chart map is an open subset of Rn or Rn+. The
boundary of M , denoted ∂M , is the set of points of M that are mapped (by the chart maps
of M ) into (x1, · · · , xn−1, 0). The boundary ∂M is an (n − 1)-dimensional manifold without
boundary; it’s also an (n − 1)-dimensional submanifold of M .40 For example, the closed ball
Bn(1) = {x ∈ Rn| |x| ≤ 1} is a smooth manifold with boundary. Its boundary is ∂Bn(1) = Sn−1,
the (n− 1)-sphere.

Let M be an oriented n-manifold with boundary. The boundary ∂M is an oriented (n − 1)-
dimensional submanifold of M . The orientation on ∂M , the induced orientation, is defined as
follows. Suppose that near the boundary M is described by xn ≥ 0. The orientation on ∂M is
specified by the differential form δdx1 ∧ · · · ∧ dxn−1 where δ = ±1 is determined by the require-
ment δ(−dxn) ∧ dx1 ∧ · · · ∧ dxn−1 = dx1 ∧ · · · ∧ dxn. Here −dxn is outwardly pointing to

40Let p ∈ ∂M and let (U, φ) be a chart of M near p that maps into Rn+. Then (U ∩ ∂M, φ) is a chart that maps to
{(x1, · · · , xn)|xn = 0}, i.e., an open subset of Rn−1.
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the manifold with boundary. It may be instructive to review the choice of orientations described in
Section 5.11 so that the orientation of the boundary matches that of the embedding space.

13.8.3 Stokes’s theorem

To establish notation, consider an n-manifold M and a subset N ⊂ M . The complement of N is
the set M −N ≡ {x ∈ M |x /∈ N}. N is said to be closed if its complement is open. The closure
of N , denoted N , is defined as the intersection of all closed sets that contain N . (The intersection
of an arbitrary collection of closed sets is closed, the union of a finite number of closed sets is
closed.) The interior of N , denoted int(N), is defined as the union of all open sets contained within
N . The boundary of N , ∂N , is the set of all points that lie in N but not in int(N). Note that
int(N) ≡ N − ∂N is an n-dimensional manifold without boundary.

We now state the generalized Stokes’s theorem.41 LetM be an n-dimensional oriented manifold
with boundary, and let α be an (n− 1)-form field on M . Then∫

int(M)
dα =

∫
∂M

α . (13.34)

Note the correct number of “d’s” in Eq. (13.34): α is an (n− 1)-form and comes to the party with
(n− 1) differentials; dα is an n-form and has n differentials.42

Example. On a two-dimensional manifold M , let there be the 1-form φ = φidxi. Using Eq.
(13.25), dφ is the 2-form

dφ = (∂φi/∂xj)dxj ∧ dxi =
(
∂φ2

∂x1 −
∂φ1

∂x2

)
dx1 ∧ dx2 .

From Stokes’s theorem, Eq. (13.34),∫
M

dφ =
∫
M

(
∂φ2

∂x1 −
∂φ1

∂x2

)
dx1 ∧ dx2 =

∫
∂M

φ =
∫
∂M

φidxi ,

from which we recognize the customary vector-calculus form of Stokes’s theorem,
∫

(∇×φ)·dS =∮
φ · dl. The orientation of ∂M must match that of M .

Stokes’s theorem equates two integrals, each over a manifold without boundary. We have,
however, yet to define integration on manifolds! The integral of a continuous n-form field α =
α(x1, · · · , xn)dx1 ∧ · · · ∧ dxn over the domain of the chart (U, φ) of an orientable n-manifold is
defined as ∫

U

α ≡
∫
φ(U)

α(x1, · · · , xn)dx1 · · · dxn , (13.35)

where the integral on the right is the standard Riemann multiple integral in Rn. It might seem that
the integral defined this way is dependent on the choice of chart. From Eq. (13.33) we see that an n-
form on an n-manifold transforms in just the same way as integrals transform in Rn (see Eq. (5.52)).
Equation (13.35) provides a coordinate-independent definition of integral over a single chart of M .

To extend the integral in Eq. (13.35) to all of M , sum over the charts. To do so relies on the
paracompactness property ofM . Paracompact manifolds are (by definition) covered by locally finite
atlases, {(Uα, φα)}, which means that each point of M is covered by a finite number of open sets

41Proven in [57, p124] and in [54, p64].
42The fact that Stokes’s theorem on manifolds is formulated in terms of differential forms is one of the primary reasons

to study the exterior derivative.
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Uα. On a paracompact manifold, one can always find a partition of unity subordinate to the charts
{Uα}, a set of smooth functions {gα(x)} such that (x denotes x1, · · · , xn): 1) 0 ≤ gα(x) ≤ 1
for each α; 2) the support of each function gα (the closure of the set where gα is nonvanishing)
is contained in the corresponding Uα; 3)

∑
α gα(x) = 1 at every point of x ∈ M (the sum here

is a finite sum because only finitely many gα are nonvanishing at any point x).[52, p272] Multiply
the sum property by an arbitrary function: f(x) =

∑
α f(x)gα(x) ≡

∑
α fα(x), where fα(x) =

f(x)gα(x) is the “fraction” of f(x) that has support on the set Uα. The advantage of decomposing
f(x) into a sum over the functions fα(x) is that fα is zero outside of Uα. The integral of each fα is
defined by a relation analogous to Eq. (13.35). With these technicalities, the integral of an n-form
α over an oriented n-manifold is∫

M

α =
∑
β

∫
φβ(Uβ)

gβ(x1
β , · · · , xnβ)α(x1

β , · · · , xnβ)dx1
β · · · dxnβ , (13.36)

where {xiβ} are the local coordinates associated with Uβ .[37, Appendix B][38, p26]

SUMMARY
This chapter introduced the properties of manifolds and tensor fields, concepts that are used in GR.

• Manifold: An n-dimensional manifold M is a set of points such that open subsets can be put
into correspondence with open subsets of Rn. A chart on M is a pair (Uα, φα) consisting of
Uα ⊂ M and a mapping φα : Uα → Oα ⊂ Rn. For p ∈ Uα, φα(p) specifies coordinates
xi(p) ∈ Rn (i = 1, · · · , n), which is the job of a manifold: establish coordinate systems
for each p ∈ M . The domains of the charts cover the manifold, M =

⋃
α Uα, and meet

other criteria discussed in Section 13.1. Functions on manifolds, f : M → R, and mappings
between them, φ : M → N , are defined in Section 13.1.2.

• Tangent space: Vectors at each point p ∈ M , t, are directional derivatives evaluated at that
point. As derivatives, they act on functions to produce numbers, t(f) = a number. They
form a vector space, the tangent space Tp(M), which has the same dimension as M . Vectors
(directional derivatives) are not “in” the manifold M ; they “touch” M at one point and are
said to be tangent to M . The tangent space Tp(M) is the set of all tangents at p ∈ M . The
coordinate basis for Tp(M) is the set of partial derivatives with respect to the coordinate
curves {ei ≡ ∂/∂xi|p}ni=1. Contravariant vectors are elements of the tangent space.

• Cotangent space: The cotangent space T ∗p (M) is the dual space to Tp(M), the set of all
mappings ω : Tp(M) → R; it requires some fancy footwork to define. Associated with a
mapping φ between points of manifolds φ : M → N are two other mappings, the pullback
φ∗ and the pushforward, φ∗. For a function f : N → R, the pullback of f under φ, φ∗f ,
is a function on M such that (φ∗f)p = f(φ(p)). The pushforward of a vector t ∈ Tp(M)
is a mapping between tangent spaces, φ∗t : Tp(M) → Tφ(p)(N). It maps a tangent vector
defined onM , t, to one defined onN , φ∗t, such that (φ∗t)f ≡ t(φ∗f) = t(f ◦φ), where f is
defined onN . For the special case ofN = R, the pushforward of a vector t ∈ Tp(M) under a
function f : M → R defines a linear map known as the differential of f , df : Tp(M)→ R,
such that df(t) = t(f). The cotangent space T ∗p (M) is the set of all mappings df on Tp(M).
If f is the coordinate function xi and t is the tangent to the jth coordinate curve, ∂j |p, the
action of dxi on ∂j |p is dxi(∂i) = ∂i(xj) = δij . The operators {dxi|p}mi=1 are dual to the
basis of Tp(M), {∂j |p}mj=1, and form a basis for T ∗p (M). For any df we have an expansion
in the basis, df = (∂if)dxi. The quantity dxi is not a number, but a symbol for the linear
map dxi(∂/∂xj) = δij . Covariant vectors are elements of the cotangent space.
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• Tensor field: Tensors at a point p ∈ M are multilinear maps over products of vector spaces,
Tkl |p : (T ∗p )k × (Tp)l → R. A tensor field is the assignment of a tensor Tkl |p to each p ∈M .
The tangent field v is the selection of a vector v|p ∈ Tp(M) from each p ∈M . For f : M →
R, v|p(f) is a number at each p ∈ M . A tangent field is smooth if for each smooth function
f , v(f) is smooth. A covariant vector field ω is smooth if for each smooth tangent field v, the
function ω(v) is smooth. A tensor field Tkl is smooth if for all smooth covariant vector fields
ω1, · · · ,ωk and smooth tangent fields v1, · · · ,vl, Tkl (ω1, · · · ,ωk,v1, · · · ,vl) is a smooth
function.

• Metric signature: The metric field g assigns to every x ∈ M the covariant tensor g|x =
gµν(x)eµ ⊗ eν where the components gµν(x) = g|x(eµ, eν) are smooth functions (with
{eµ} the coordinate basis of Tx(M) and {eµ} the coordinate basis for T ∗x (M)). Because
directional derivatives generalize the displacement vectors of flat space, the infinitesimal dis-
tance “squared” in the neighborhood of p is built up out of Tp(M) × Tp(M). When g acts
on a pair of vectors from Tp, it produces a number associated with p. At every point p ∈ M ,
a g-orthonormal basis can be found, {vi}ni=1 ∈ Tp(M) such that g(vi,vj) = 0 for i 6= j
and g(vi,vi) = ±1. A Riemannian manifold has signature (+ · · ·+) for the diagonal terms
g(vi,vi), while a manifold with signature (− + ++) is called Lorentzian. The signature is
the same at every point of a connected manifold.

• Integral curve: An integral curve is a curve for which its tangent at point p coincides with
a contravariant vector field v at that point, v|p. Precisely one integral curve passes through
each p ∈ M . Thus they cannot intersect and “fill” a manifold (a congruence). The integral
curves of a vector field can be considered the flow lines of a fluid, where the “motion” of a
point on the curve is generated by a diffeomorphism of the manifold to itself. The flow of a
vector field is a parameterized set of mappings φt : R×M → M , t ∈ R, such that for fixed
t, φt : M →M , and for fixed p ∈M , φt(p) : R→M is a curve that passes through p.

• Lie derivative: A congruence is a mapping of the manifold onto itself. For small t, each
p ∈ M is mapped to the point φt(p) lying at the parameter t further along the curve.
Starting from T|p, how does the pushforward tensor φt∗T differ from the tensor that’s
“already there,” T|φt(p)? The Lie derivative £v of tensor field T with respect to vector
field v is defined as the difference between the pullback of T|φt(p) and T|p as t → 0,
(£v)p = limt→0

(
φ−t∗T|φt(p) − T|p

)
/t. For scalar fields f , £vf = vµ∂µf is the direc-

tional derivative along v. For tensor fields, £vT measures the rate of change of T relative to
v. The Lie derivative applies to any tensor field, but requires a vector field v.

• Differential forms: A differential p-form is a tensor field of antisymmetric type (0, p) tensors.
The main difference between differential p-forms and p-forms (Section 5.10.2) is that the
expansion coefficients ωµ1,··· ,µp(x) are smooth functions and the basis vectors are obtained
from the local cotangent space.

• Exterior derivative: The exterior derivative d is a mapping between wedge-product spaces at
the same point of the manifold, d : ∧pT ∗x (M)→ ∧p+1T ∗x (M). Combinations of the exterior
derivative with the Hodge star operator provide generalizations of the classic differential op-
erators of vector calculus. The exterior derivative is a generalization of the gradient; it applies
only to differential forms.

• Stokes’s theorem: Integrals on n-dimensional oriented manifolds are given as integrals over
n-form fields, which by their transformation properties are naturally set up to provide a chart-
independent definition of integral. For N an n-dimensional oriented manifold with bound-
ary and α an (n − 1)-form on the (n − 1)-dimensional boundary ∂N , Stokes’s theorem is∫

int(N) dα =
∫
∂N
α, where int(N) is the interior of N .
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EXERCISES

13.1 a. LetX = ∂x be a vector field on R2. Find the integral curve associated withX that passes
through (a, b) at t = 0. A: γ(t) = (a+ t, b).

b. Let X = x∂x − y∂y be a vector field on R2. Find the integral curve associated with X
that passes through (a, b) at t = 0. A: γ(t) = (aet, be−t).

13.2 Does the Lie derivative transform like a tensor? Consider the Lie derivative of a vector com-
ponent, £vAµ = vλ∂λA

µ −Aλ∂λvµ.

13.3 Take the exterior derivative of d(∗F ) = µ0(∗J) (Eq. (13.31), with ∗J given in Eq. (13.32)),
and show that it reproduces the continuity equation(

∂ρ

∂t
+∇ · J

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 0 .

13.4 Show that the exterior derivative of a p-form ω transforms as a tensor.

13.5 Show that when expressed in terms of coordinates, Eq. (13.16) is equivalent to the chain rule
for partial derivatives.

13.6 For φ : M → N a map between manifolds, and for ω1,ω2 ∈ T ∗p (N) show that

φ∗ (ω1 ⊗ ω2) = φ∗ω1 ⊗ φ∗ω2 .

Hint: Invent vectors t1, t2 ∈ Tp(M) for φ∗(ω1 ⊗ ω2) to act on. For the mathematically in-
clined, the pullback operation φ∗ is a homomorphism, a map that preserves structure between
algebraic objects. Show that φ∗ (ω1 ∧ ω2) = φ∗ω1 ∧ φ∗ω2.

13.7 Show, for φ : M → M ′ a mapping between manifolds M and M ′, and for A a differential
form on M ′, that the exterior derivative commutes with the pullback operator, d(φ∗A) =
φ∗(dA).

13.8 Show that the Lie derivative commutes with the exterior derivative, that for ω a p-form field
and v a contravariant vector field, d (£vω) = £v (dω).

13.9 From the definition of the commutator Eq. (13.20) and the action of a tangent vector on a
function f , Eq. (13.3), show that the commutator of vector fields u and v acting on a scalar
field f can be written [u,v] f = u (v(f))− v (u(f)).

13.10 Show for u, v smooth vector fields and f a smooth function on a manifold M :

a. £(fv)u = f£vu− v£uf .

b. (£u£v −£v£u) f = (£uv) f = £(£uv)f .
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Differential geometry

T HE central content of GR is the Einstein field equation, Gµν =
(
8πG/c4

)
Tµν , a relation

between two tensors: Gµν , which characterizes the local curvature of spacetime, and Tµν ,
which specifies the local density and flux of energy-momentum. The energy-momentum tensor Tµν
is treated in Chapters 9 and 10, and we officially take up Einstein’s equation in Chapter 15.

In this chapter we develop the mathematics of curvature. Our intuitive notions of curvature are
based on experience with two-dimensional surfaces embedded in three-dimensional space. The ex-
trinsic curvature is described in terms of quantities available in the space in which the surface is
embedded, such as radius of curvature. Spacetime is not embedded in a higher-dimensional geom-
etry as far as we know. The intrinsic curvature of a manifold is specified in terms of its attributes
without reference to an embedding space. To speak of the curvature of four-dimensional space-
time we require its intrinsic curvature. As we’ll see, intrinsic curvature is defined in terms of two
interrelated mathematical concepts: parallel transport and the covariant derivative. The covariant
derivative is yet another derivative on manifolds, in addition to the Lie and exterior derivatives.

14.1 COVARIANT DIFFERENTIATION

14.1.1 Is the partial derivative of a tensor, a tensor?

There are two ways to answer that. First: How does the derivative of a tensor transform? Equation
(5.60) (reproduced here) shows the result of differentiating the transformation law for contravariant
vector components, Tλ

′ = Aλ
′

ρ T
ρ:

∂Tλ
′

∂xα′
= ∂xβ

∂xα′
∂

∂xβ

(
Aλ
′

ρ T
ρ
)

= Aβα′A
λ′

ρ

∂T ρ

∂xβ
+Aβα′

(
∂Aλ

′

ρ

∂xβ

)
T ρ . (14.1)

The partial derivative does not transform as a tensor (unless ∂βAλ
′

ρ ≡ 0, such as in SR). If it weren’t
for the inhomogeneous terms in Eq. (14.1) we’d conclude that the partial derivative of a type (1, 0)
tensor is a type (1, 1) tensor. For tensors of arbitrary rank, if not for those inhomogeneous terms, the
derivative of a type (k, l) tensor would be a type (k, l+ 1) tensor. Physics is chock-full of equations
involving derivatives, and we want tensors to help us write equations in covariant form (independent
of coordinate system), yet partial derivatives of tensors are not in general tensors. We must find a
generalized derivative that transforms as a tensor on manifolds yet reduces to the partial derivative
on flat spaces.1 That need is met by the covariant derivative, defined below.

1There are combinations of derivatives that do transform as tensors. The generalization of the curl to arbitrary dimen-
sions, ∂µAν − ∂νAµ, is such an example. The electromagnetic field tensor, Eq. (8.18), is therefore defined on manifolds
the same as in flat spacetime.

241
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The second way is to look at the definition of derivative,

∂T ρ

∂xβ
= lim

dxβ→0

T ρ(x+ dxβ)− T ρ(x)
dxβ . (14.2)

The numerator in Eq. (14.2) is not in general a vector! We’re comparing (subtracting) vectors from
different points, yet the transformation properties of tensors are defined at a point. Each point of a
manifold is equipped with a tangent space, and there is no natural way of identifying the “same”
vector from different vector spaces. On flat spaces we’re taught to “slide” a parallel copy of a
vector from one point to another to form the difference (see Fig. 14.1). How do we ensure that the

x

A(x)

x+ dx

A(x+ dx)

x

∆A

Figure 14.1 Sliding vectors on a flat space to join them at a common base.

vector remains unchanged as it’s “transported”? We could demand that the vector components be
unchanged in the process. That would work in Cartesian coordinates, where the basis vectors have a
fixed orientation, but not in polar coordinates where the basis vectors are a function of position. The
mere fact that the difference between vectors could be defined in one coordinate system but not in
another tells us that the numerator in Eq. (14.2) is not a vector. We must agree on a way of subtracting
tensors from different points of a manifold that can be done in a covariant manner. Didn’t we do
that with the Lie derivative, Eq. (13.17)? In that case “transport” is along a curve associated with a
vector field and hence the answer depends on the choice of vector field.2 The Lie derivative does not
reduce to the partial derivative on a flat geometry, a feature we require. The scheme we develop in
this chapter is called parallel transport and is defined in Eq. (14.45). The modification of Eq. (14.2)
is given in Eq. (14.48). From here on we use the symbol ∇ to denote the covariant derivative (what
we said we would do in Section 5.3). To understand the geometric interpretation of ∇ requires that
we understand the process of parallel transport, yet parallel transport is defined in terms of ∇. To
get started,∇ is defined by a set of requirements.

14.1.2 Requirements on ∇
The derivative operator ∇ on a manifold M is defined an abstract mapping at a point p ∈ M from
type (k, l) tensors to type (k, l + 1) tensors,3 ∇ : T kl → T kl+1. For tensor T with components
T i1···ikj1···jl , we indicate the components of ∇T, (∇T )i1···ikµj1···jl (with an extra index µ), as ∇µT i1···ikj1···jl
even though the notation is misleading:∇µ is not a covariant vector; it indicates the extra index that
∇ brings to the party.4 The index on∇µ is (as we’ll see) related to the variation of the tensor in the
direction of the coordinate curve xµ.

The covariant derivative∇ is defined to satisfy five requirements:[37, p31]

2What about the exterior derivative, Eq. (13.25)? It applies to tensors only of a particular index structure, differential
forms that are antisymmetric in all indices.

3The covariant derivative thus appears similar to the exterior derivative, a mapping between wedge-product spaces at a
point of the manifold, d : ∧pT ∗x (M) → ∧p+1T ∗x (M), spaces that already exist. The covariant derivative creates a new
tensor field, for which there are many possibilities.

4What we’re writing as∇µT i1···ikj1···jl
(components of the tensor field produced by the covariant derivative), is denoted in

other books as T i1···ikj1···jl;µ
. I’ve avoided that notation—difficult for students to see that semicolon from the back of the room.
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(1) ∇ is linear,∇ (αS + βT) = α∇S + β∇T ; (for tensors S, T and α, β ∈ R)

(2) ∇ satisfies the product rule,∇ (S⊗ T) = (∇S)⊗ T + S⊗ (∇T) ;

(3) ∇ commutes with contractions,∇µ(Tλλρ) = (∇T )λµλρ ;

(4) For any scalar field φ,∇µφ = ∂µφ ;

(5) For any scalar field φ,∇[µ∇ν]φ = 0 . (no torsion property)

The first three would be expected of any derivative; the Lie derivative satisfies these requirements
(Section 13.5). The analog of property (4) for the Lie derivative is Eq. (13.19): £vφ = vµ∂µφ. Re-
quirement (5), the no-torsion property, is discussed in Section 14.3. We now have several equivalent
ways of writing the directional derivative of scalar fields φ along a vector field v: tangent vector Eq.
(13.2), Lie derivative Eq. (13.19), and now covariant derivative. By property (4),

v (φ) = vλ∂λφ = £vφ = vλ∇λφ . (14.3)

14.1.3 Uniqueness, not

It’s useful (essential, actually) to examine the uniqueness of operators meeting these criteria.5 As-
sume one has two operators ∇ and ∇′ on the same manifold M meeting the five requirements. By
property (4),∇ and∇′ must agree in their action on scalar fields,

(
∇′µ −∇µ

)
φ = (∂µ − ∂µ)φ = 0.

What about tensors? Let ω be a covariant vector field on M . The operation
(
∇′µ −∇µ

)
ων effects

a linear map from dual vectors to type (0, 2) tensors; the operator
(
∇′µ −∇µ

)
is therefore a type

(1, 2) tensor,6 the components of which we denote Cαµν . For any two derivative operators ∇′ and
∇, there is a tensor Cαµν such that for all ων ,

∇µων = ∇′µων − Cαµνωα . (14.4)

Equation (14.4) combined with property (5) implies that7

Cα[µν] = 0 (14.5)

i.e., Cαµν is symmetric8 in µ, ν. Equation (14.5) need not hold if requirement (5) is dropped.
We can use Eq. (14.4) to infer the action of

(
∇′µ −∇µ

)
on contravariant vector fields. We know

that
(
∇′µ −∇µ

)
(ωνtν) = 0 because ωνtν is a scalar field. Applying property (2) (product rule),

0 =
(
∇′µ −∇µ

)
(ωνtν) = ων

(
∇′µ −∇µ

)
tν + tν

(
∇′µ −∇µ

)
ων

= ων
(
∇′µ −∇µ

)
tν + tνCαµνωα (14.6)

= ων
[(
∇′µ −∇µ

)
tν + tαCνµα

]
,

where we’ve used Eq. (14.4) and renamed indices. We conclude from Eq. (14.6) that

∇µtν = ∇′µtν + Cνµαt
α . (14.7)

5Uniqueness is not normally of interest to physicists, yet it’s important in this case. While we’re at it then, what about
existence? A connected Hausdorff manifold admits a derivative operator if and only if it’s paracompact.[53, p100]

6This point follows from the quotient theorem. A nice explanation is given in [37, p33].
7Proof : Set ων = ∇νφ = ∇′νφ in Eq. (14.4) (property (4)):∇µ∇νφ = ∇′µ∇′νφ−Cαµν∇αφ. Antisymmetrize over

µ, ν, invoke property (5), and thus Cα[µν]∇αφ = 0. Because this relation holds for any φ, Eq. (14.5) follows.
8We’ll refer to Cαβγ as a symmetric tensor instead of “symmetric in its lower indices.” Symmetry or antisymmetry

pertain to one type of index, covariant or contravariant, but not both; see Section 5.7.
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Compare Eqs. (14.7) and (14.4); the only effective difference is a minus sign. Using Eqs. (14.4) and
(14.7), it’s straightforward to infer for a general tensor field that

∇µTα1···αk
β1···βl = ∇′µT

α1···αk
β1···βl +

k∑
i=1

CαiµνT
α1···αi−1ναi+1···αk
β1···βl −

l∑
j=1

CνµβjT
α1···αk
β1···βj−1νβj+1···βl . (14.8)

The difference between derivative operators is completely characterized by a tensor field Cα(µν).
Conversely, if ∇′ is a derivative operator, and Cαµν is a symmetric tensor field, then ∇ as defined
by Eq. (14.8) is also a derivative operator.

Derivative operators on manifolds are never unique: One can choose any type (1, 2) tensor
field Cα(µν) and get another derivative. The collection of derivative operators on a manifold almost
has the structure of a vector space. What’s lacking for a complete analogy with vector spaces is
that there’s no “origin,” no natural “zero derivative operator.” By selecting (arbitrarily) a derivative
operator ∇ as distinguished, there is then a one-to-one correspondence between the collection of
derivative operators on M and the vector space of tensors Cα(µν). Linear spaces lacking a unique
origin are called affine spaces.

14.1.4 Connection coefficients: Bootstrapping from ∂µ

Manifolds have plenty of derivative operators, with any one easily obtainable from another. Could
we see just one? We know they exist, we understand their non-uniqueness properties, but we don’t
yet know their form. Reaching for our bootstraps, take ∇′ in Eq. (14.8) to be the partial derivative,
∇′µ = ∂µ. Partial derivatives exist on manifolds (Section 13.2.1). In a particular chart with coor-
dinates {xµ}, we have {∂/∂xµ} and {dxµ} as the coordinate bases. For any smooth tensor field
Tα1···αk
β1···βl in that coordinate system, we can form partial derivatives, ∂µTα1···αk

β1···βl . The partial deriva-
tive satisfies the five conditions listed above. The fifth property in particular is the equality of mixed
partial derivatives, which holds for all smooth tensor fields, not just scalar fields. Of course, there’s
a glaring problem here: We’re not entitled to set ∇′µ = ∂µ! The covariant derivative is supposed to
be a mapping between tensor fields, but the partial derivative of a tensor is not a tensor, Eq. (14.1).
So, while ∂µ meets the five conditions, it does not fulfill its mission as a mapping between tensor
fields. Not to worry. Invent a set of three-index symbols {Γαβγ}, the connection coefficients, (n)3

functions on an n-manifold to be determined so that, emulating Eq. (14.7), the quantity

∇µtν ≡ ∂µtν + Γνµαtα (14.9)

does meet the required properties of ∇. That is, the quantities {Γνµα} are crafted so that ∇µtν as
given by Eq. (14.9) transforms as the element of a type (1, 1) tensor, in addition to meeting the five
criteria.9 Note that the covariant derivative of the vector component tν requires all other components
tα, a feature it shares with the Lie derivative (Section 13.5).

If we demand that∇µtν as defined in Eq. (14.9) transforms as a type (1, 1) tensor, we can infer
how the connection coefficients must transform. We “want”∇µ′tν

′ = Aµµ′A
ν′

ν ∇µtν . Thus,

∇µ′tν
′

Eq.(14.9)
↓
≡ ∂µ′t

ν′ + Γν
′

µ′α′t
α′

want
↓= Aµµ′A

ν′

ν ∇µtν
Eq.(14.9)
↓= Aµµ′A

ν′

ν

(
∂µt

ν + Γνµαtα
)
. (14.10)

Use Eq. (14.1) to effect a partial cancellation:

Γν
′

µ′α′t
α′ = Aµµ′A

ν′

ν Γνµαtα −A
µ
µ′

(
∂µA

ν′

α

)
tα . (14.11)

9We’ll see that for flat spaces the quantities Γαβγ vanish, in which case ∇µ reduces to the partial derivative, ∂µ. In
Section 14.2 we look at the geometric meaning of the connection coefficients.
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On the left side of Eq. (14.11) substitute tα
′ = Aα

′

α t
α (Eq. (5.35)); the equation that remains is true

for each tα and thus α is a free index. Contract with Aαρ′ and use the orthogonality property Eq.
(5.27), Aαρ′A

α′

α = δα
′

ρ′ . What remains is the transformation equation:

Γν
′

µ′ρ′ = Aαρ′A
µ
µ′A

ν′

ν Γνµα −Aαρ′A
µ
µ′∂µA

ν′

α . (14.12)

Any set of quantities {Γνµρ} that transform as in Eq. (14.12) is a valid set of connection coefficients.
They do not, however, comprise the elements of a tensor (why they’re called symbols).10 In Eq.
(14.9) a sum of two non-tensorial objects is a tensor. The connection coefficients are sometimes
given the Zen-like notation { λµν} to emphasize that they’re not tensors. Just to be clear, in passing
from Eq. (14.7) to Eq. (14.9), the symmetric tensor Cαβγ has been replaced by a non-tensorial set of
quantities Γαβγ which turn out to be symmetric in the lower indices (Section 14.1.5).

Example. Show explicitly that ∇µtν transforms as a type (1, 1) tensor. From Eqs. (14.9), (14.1),
and (14.12), (and using orthogonality, Aαα′A

α′

σ = δασ )

∇µ′tν
′

= ∂µ′t
ν′ + Γν

′

µ′α′t
α′ = Aµ

µ′A
ν′
ν ∂µtν + Aβ

µ′(∂βAν′
ρ )tρ +

(
Aν′
ν Aµ

µ′A
α
α′Γνµα −Aρ

α′A
β
µ′(∂βAν′

ρ )
)

Aα′
σ tσ

= Aµ
µ′A

ν′
ν

(
∂µtν + Aα

α′A
α′
σ Γνµαtσ

)
+ Aβ

µ′(∂βAν′
ρ )
(

tρ −Aρ
α′A

α′
σ tσ

)
= Aµ

µ′A
ν′
ν

(
∂µtν + Γνµαtα

)
= Aµ

µ′A
ν′
ν ∇µtν .

Equation (14.9) specifies the form of ∇ acting on a contravariant vector component. We can
infer that for a covariant vector by forming the scalar field φ = ωνt

ν and using property (4). Using
Eq. (14.9), we require that

∇µων = ∂µων − Γαµνωα (14.13)

for the product rule to be satisfied, analogous to Eq. (14.4). Using Eqs. (14.9) and (14.13), it’s
straightforward to derive the analog of Eq. (14.8):11

∇µTα1···αk
β1···βl = ∂µT

α1···αk
β1···βl +

k∑
i=1

ΓαiµνT
α1···αi−1ναi+1···αk
β1···βl −

l∑
j=1

ΓνµβjT
α1···αk
β1···βj−1νβj+1···βl . (14.14)

There’s a + (−) sign for every contravariant (covariant) index, opposite to the Lie derivative in its
assignment of plus and minus signs, Eq. (13.23).

Equation (14.14) indicates that∇µ is completely specified by the connection coefficients {Γαµγ}.
Connection coefficients, however, are not prescribed in the definition of manifold (Chapter 13);
they must be imposed as an additional structure.12 The covariant derivative is thus defined with
respect to a particular set of connection coefficients. The message here is that we have to choose
the connection coefficients. It would be possible to have more than one type of connection on a
manifold, so long as Eq. (14.12) is satisfied for each. Suppose we have two covariant derivatives
on a manifold, ∇µ and ∇̃µ, each defined as in Eq. (14.9) with their own connections Γλµν and Γ̃λµν
which separately satisfy Eq. (14.12). The difference Γλµν − Γ̃λµν is a tensor. Subtract the versions

10This point could have been anticipated (by a very prescient reader!): In flat space, the connection coefficients vanish. If
the {Γλµν} were the elements of a tensor, then Γλµν = 0 in one coordinate system would imply they vanish in all coordinate
systems. Because Γλµν 6= 0 in general coordinate systems, the connection coefficients are not be a tensor.

11To derive Eq. (14.14) form a scalar field φ = T
µ1···µk
ν1···νl A

ν1
(1) · · ·A

νl
(l)B

(1)
µ1 · · ·B

(k)
µk , where A(i), 1 ≤ i ≤ l (B(j),

1 ≤ j ≤ k) are a collection of contravariant (covariant) vectors, and apply the rules for∇ that have already been established.
12Analogous to imposing an inner product on a vector space; the axioms of vector spaces do not include an inner product.
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of Eq. (14.9) for each derivative and use Eq. (14.7): (∇µ − ∇̃µ)tν = (Γνµα − Γ̃νµα)tα = Cνµαt
α,

implying that
Γ̃λµν = Γλµν − Cλµν . (14.15)

There is thus a family of connection coefficients on a manifold differing by type (1, 2) tensors. The
quantities Γαβγ are called the affine connection.

14.1.5 Torsion tensor

By Eq. (14.15) the connection coefficients share the symmetry of Cλµν , i.e., Γα[αβ] = 0. What if the
no-torsion requirement is dropped? Set ων = ∇νφ = ∇′νφ in Eq. (14.4): ∇µ∇νφ = ∇′µ∇′νφ −
Cαµν∇αφ. Antisymmetrize over µ and ν, and assume ∇′ is torsion free, but ∇ is not. In that case
∇[µ∇ν]φ = −Cα[µν]∇αφ. The torsion tensor is defined Tαµν ≡ 2Cα[µν], implying that

(∇µ∇ν −∇ν∇µ)φ = −Tαµν∇αφ . (14.16)

Substituting Eq. (14.9) in Eq. (14.16), we find

Tαµν = Γαµν − Γανµ = 2Γα[µν] . (14.17)

The torsion tensor is zero in standard GR (for physical reasons explained in Section 14.3). Only
n2(n+ 1)/2 elements of the set {Γαµν} are independent when Γα[µν] = 0.

14.1.6 Christoffel symbols and metric compatibility

Equation (14.8) indicates that operators ∇,∇′ satisfying the requirements in Section 14.1.2 are not
uniquely specified in their action on tensor fields; the requirements allow covariant derivatives to
differ by tensors Cα(βγ). Equation (14.14) shows the action ∇µ on tensor fields when we’ve “boot-
strapped” from the partial derivative,∇′µ = ∂µ; we can define∇µ this way if we can find connection
coefficients Γαβγ satisfying Eq. (14.12). The connection coefficients, however, are not unique; they
can also differ by a tensor Cα(βγ), Eq. (14.15). How to choose the connection coefficients?

We’ve been concerned with the general issue of defining derivatives on manifolds. We require,
however, not the most general manifolds but (for use in GR) those equipped with metric fields. That
allows us to single out a set of connection coefficients. We show for gαβ a given metric field on M ,
there is a unique torsion-free derivative satisfying ∇µgαβ = 0. We start by noting from Eq. (14.8)
a result specific to torsion-free covariant derivatives of a metric field,(

∇µ −∇′µ
)
gαβ = −Cνµαgνβ − Cνµβgνα = − (Cβµα + Cαµβ) = −2C(αβ)µ , (14.18)

where we’ve lowered an index13 and used the symmetry of Cαβγ in its second and third indices
(no-torsion requirement). Uniqueness of ∇µgαβ is implied by C(αβ)µ = 0, which combined with
the no-torsion requirement implies Cαβγ = 0. If we can find a form of ∇µ such that ∇µgαβ = 0
implies Cαβγ = 0 for all gαβ , we’re done.

Let’s see what we can learn from Eq. (14.18) by equating

∇′µgαβ = 2C(αβ)µ . (14.19)

Equation (14.19) can be solved formally. A tensor satisfying Eq. (14.19) is (check it!)

Cαµν = 1
2g

αρ
(
∇′µgνρ +∇′νgµρ −∇′ρgµν

)
. (14.20)

13Thus, Eq. (14.18) applies to the metric tensor and not a general second-rank covariant tensor.
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Equation (14.20) represents the unique solution of Eq. (14.19). To show uniqueness, assume another
solution of Eq. (14.19) exists, C̃αµν . Form the differenceDα

µν ≡ C̃αµν−Cαµν and show thatD = 0.
Directly from Eq. (14.19) we have that D(αµ)ν = 0 (show this), i.e., Dαµν is antisymmetric in
its first two indices, Dαµν = −Dµαν . By the torsion-free requirement, Dαµν is symmetric in its
second and third indices, Dαµν = Dανµ. By permuting indices Dαµν = 0: Dαµν = −Dµαν =
−Dµνα = Dνµα = Dναµ = −Dανµ = −Dαµν . Now use Eq. (14.14) to write

∇′µgαβ = ∂µgαβ − Γ̃νµαgνβ − Γ̃νµβgνα . (14.21)

Combine Eq. (14.21) with Eq. (14.20); it can be shown that (using the symmetry of Γ̃αµν)14

Cαµν = 1
2g

αρ (∂µgνρ + ∂νgµρ − ∂ρgµν)− Γ̃αµν . (14.22)

If we take as the connection coefficients the terms Γ̃αµν = Γαµν , where

Γαµν ≡
1
2g

αρ

(
∂gνρ
∂xµ

+ ∂gµρ
∂xν

− ∂gµν
∂xρ

)
, (14.23)

then Cαβγ = 0 from Eq. (14.22), implying∇′µgαβ = 0 from Eq. (14.19) and uniqueness.
The terms in Eq. (14.23) are the Christoffel symbols.15,16 You should memorize Eq. (14.23);

you’ll end up memorizing it if you use it enough. The Christoffel symbols have the property that

gβνΓνµα + gανΓνµβ = ∂µgαβ , (14.24)

and hence ∇µgαβ = 0. One can verify (laboriously) that the Christoffel symbols transform as
required by Eq. (14.12). Note that the Christoffel symbols are symmetric in the lower two indices.

Example. Evaluate the Christoffel symbols in plane polar coordinates. The metric tensor in this
coordinate system is given by

[gij ] =
(

1 0
0 r2

) [
gij
]

=
(

1 0
0 r−2

)
.

Of the 23 possible Christoffel symbols in this coordinate system, three are nonzero:

Γθrθ = Γθθr = 1
r

Γrθθ = −r (14.25)

(and thus Γrrr = Γrθr = Γrrθ = Γθrr = Γθθθ = 0). Let’s derive some of these results using Eq. (14.23),

Γrrθ =Γrθr = 1
2g
rr

[
∂grθ
∂r

+ ∂grr
∂θ
− ∂grθ

∂r

]
+ 1

2g
rθ

[
∂gθθ
∂r

+ ∂gθr
∂θ
− ∂grθ

∂θ

]
= 0

Γrθθ = 1
2g
rr

[
∂grθ
∂θ

+ ∂grθ
∂θ
− ∂gθθ

∂r

]
+ 1

2g
rθ

[
∂gθθ
∂θ

+ ∂gθθ
∂θ
− ∂gθθ

∂θ

]
=− 1

2g
rr ∂gθθ

∂r
= − 1

2 (1)(2r) = −r .

14Equation (14.22) is in the form of Eq. (14.15), Cλµν = Γλµν − Γ̃λµν .
15The Christoffel symbols are derived in another context in Appendix D, Eq. (D.23).
16A manifold with the Christoffel symbols as the connection coefficients is said to be metrically connected.
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Example. The Christoffel symbols associated with the Lorentz metric are all zero.

A derivative operator is metric compatible if ∇µgαβ = 0. We’ve just shown there is precisely
one torsion-free covariant derivative compatible with a given metric. We still have the flexibility to
choose the metric, which is what Einstein’s field equation does (determine the metric field). We now
have a complete algebraic specification of the covariant derivative, Eq. (14.14) combined with Eq.
(14.23). We’re lacking a geometric interpretation, but that will come shortly (Section 14.3).

14.1.7 Comparison of derivatives on manifolds

In Chapter 13 we introduced the Lie and the exterior derivative. Table 14.1 compares the three types
of derivatives defined on manifolds. In this section we show how the action of these derivatives can
be expressed in terms of the covariant derivative.

Table 14.1 Derivatives on manifolds.
Lie derivative Exterior derivative Covariant derivative

Generalization of Directional derivative Gradient Gradient

Requires Contravariant vector field Nothing Connection coefficients

Applies to All tensor fields Differential forms All tensor fields

Index structure Type preserving Adds one index Adds one index
of result

The action of the Lie derivative on scalar fields can be expressed in terms of the covariant
derivative, Eq. (14.3): £vφ = vλ∇λφ. Combined with the result of Exercise 13.10, we have for
vector fields u, v, and scalar field φ,

(£uv)φ = (£u£v −£v£u)φ = £u
(
vλ∇λφ

)
−£v

(
uλ∇λφ

)
= uβ∇β

(
vλ∇λφ

)
− vβ∇β

(
uλ∇λφ

)
= uβvλ (∇β∇λ −∇λ∇β)φ+

(
uβ∇βvλ − vβ∇βuλ

)
∇λφ . (14.26)

The second line of Eq. (14.26) follows because the Lie derivative is type preserving. For the
same reason, the left side of Eq. (14.26) represents a tangent vector acting on φ; thus (£uv)φ =
(£uvλ)∇λφ. Invoking the no-torsion property in Eq. (14.26),

£uvλ = uβ∇βvλ − vβ∇βuλ . (14.27)

For a covariant vector, £vωβ , use the trick that the Lie derivative satisfies the product rule:
£v(uβωβ) = uβ£vωβ + ωβ£vuβ . Thus,

uβ£vωβ = £v
(
uβωβ

)
− ωβ£vuβ = vλ∇λ

(
uβωβ

)
− ωβ

(
vλ∇λuβ − uλ∇λvβ

)
= uβ

(
vλ∇λωβ + ωλ∇βvλ

)
,

where we have used Eq. (14.27). Because uβ is arbitrary,

£vωβ = vλ∇λωβ + ωλ∇βvλ . (14.28)
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Using Eqs. (14.27) and (14.28), it’s straightforward to derive the general result

£vTµ1···µk
ν1···νl = vλ∇λTµ1···µk

ν1···νl +
l∑
i=1

Tµ1···µk
ν1···νi−1ανi+1···νl∇νiv

α −
k∑
j=1

T
µ1···µj−1αµj+1···µk
ν1···νl ∇αvµ

j

.

(14.29)
Equations (13.23), (14.8), (14.14), and (14.29) have definite similarities.

An implication of formulas such as Eqs. (14.27)–(14.29), which connect £v with combinations
of covariant derivatives is that the right side of each equation is independent of the choice of connec-
tion coefficients (so long as they’re torsion free), because the left side certainly is. Take Eq. (14.28).
Allegedly (using Eqs. (14.4) and (14.7)),

vλ∇′λωβ + ωλ∇′βvλ
?= vλ

(
∇λωβ + Cαλβωα

)
+ ωλ

(
∇βvλ − Cλβαvα

)
= vλ∇λωβ + ωλ∇βvλ +

[
vλωαC

α
λβ − ωλvαCλβα

]
.

The terms in square brackets vanish through index substitutions (check it!). A similar conclusion is
obtained from the totally antisymmetric combination of indices∇[µων1···νn]. Using Eq. (14.8),

∇µων1···νn = ∇′µων1···νn −
n∑
j=1

Cνµνjων1···νj−1ννj+1···νn . (14.30)

Antisymmetrizing over all indices in Eq. (14.30) and using Eq. (14.5), we have ∇[µων1···νn] =
∇′[µων1···νn], i.e.,∇[µων1···νn] is independent of derivative operator. From Eqs. (13.25) and (14.14),
∇[µων1···νn] is the same as the exterior derivative of an n-form:

(dω)µν1···νn = ∂[µων1···νn] = ∇[µων1···νn] , (14.31)

further underscoring that∇[µων1···νn] is independent of our choice of∇.

14.1.8 Covariant divergence

In Chapter 13 we obtained the covariant divergence through a combination of the Hodge star op-
erator and the exterior derivative, Eq. (13.27). We now derive the same result using the covariant
derivative. To do so, we require the formula for the derivative of a determinant, Eq. (C.7). Applying
Eq. (C.7) to the determinant of the covariant metric tensor (g) is particularly simple because, from
Eq. (5.18),

(
g−1)

ij
= gij . Hence, from Eq. (C.7),

dg = ggjidgij . (14.32)

The total differential of any element gij is dgij = (∂gij/∂xl)dxl; likewise for the determinant,
dg = (∂g/∂xl)dxl. From Eq. (14.32), then, we have the intermediate result

1
g

∂g

∂xl
= gji

∂gij
∂xl

. (14.33)

Next, take the expression for Γijk, Eq. (14.23), set k = i and sum,

Γiji = 1
2g

il

[
∂gli
∂xj

+ ∂glj
∂xi
− ∂gji
∂xl

]
= 1

2g
il ∂gli
∂xj

, (14.34)

where the second and third terms in Eq. (14.34) cancel. Combining Eqs. (14.33) and (14.34), we
obtain the useful result

Γiji = 1
2g

∂g

∂xj
= ∂

∂xj
ln√g .
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Finally, from the equation for∇jAk, Eq. (14.9), set j = k and sum:

∇kAk = ∂Ak

∂xk
+AiΓkki = ∂Ak

∂xk
+Ai

∂

∂xi
ln√g = 1

√
g

∂

∂xi
(√
gAi

)
, (14.35)

the same as Eq. (13.27).

Example. Spherical coordinates. The metric tensor for spherical coordinates is given in Eq. (5.5).
The determinant is therefore g = r4 sin2 θ and hence

√
g = r2 sin θ. A generic vector in spherical

coordinates isA = Arer +Aθeθ +Aφeφ. The covariant divergence is, using Eq. (14.35),

1
√
g

∂

∂xi
(√
gAi

)
= 1
r2 sin θ

[
∂

∂r

(
r2 sin θAr

)
+ ∂

∂θ

(
r2 sin θAθ

)
+ ∂

∂φ

(
r2 sin θAφ

)]
= 1
r2

∂

∂r

(
r2Ar

)
+ 1

sin θ
∂

∂θ

(
sin θAθ

)
+ ∂Aφ

∂φ
=∇ ·A ,

the usual expression for the divergence in spherical coordinates.

14.2 WHAT DO THE CONNECTION COEFFICIENTS TELL US?
Consider the total differential of a vector field t = tα(x1, · · · , xn)eα (without specifying what “d”
means):

dt = dtαeα + tαdeα =
(
∂tα

∂xβ
dxβ

)
eα + tα

(
∂eα
∂xβ

dxβ
)
. (14.36)

The first term is a linear combination of basis vectors; we know what that means. The second
term involves derivatives of vectors—the very quantity we’re trying to formulate with the covariant
derivative. We expect a change eβ → eβ + deβ under xα → xα + dxα because coordinate basis
vectors are tangent to coordinate curves (Section 13.2.1). We know that the spacetime manifold
M is locally flat (Section 11.5). Thus, in a sufficiently small neighborhood of p ∈ M there is a
local inertial frame, the basis vectors of which are constants; call them {e0

β}. The coordinate basis
{eα} in a neighborhood of p ∈ M can be expressed in the basis {e0

β}, eα(x) = Aβ
′

α (x)e0
β′ .

Differentiating this formula (the e0
β′ are constants), ∂µeα = (∂µAβ

′

α )e0
β′ = (∂µAβ

′

α )Aρβ′eρ, where
we’ve inverted the basis transformation, e0

β′ = Aρβ′eρ. Thus there is a three-index symbol, call it
γρµα ≡ (∂µAβ

′

α )Aρβ′ , effecting the derivative of eα along the coordinate curve xµ:

∂µeα = γρµαeρ ,
(
= Γρµαeρ

)
(14.37)

which we note involves all other vectors of the basis. We’ll show that γναµ = Γναµ, the Christoffel
symbols.17 While we invoked a physical argument to get to this point (spacetime manifold is locally
flat), it’s not necessary to do so. We’ll reach the same conclusion once we define geodesic curves on
a manifold, which in turn require parallel transport and the covariant derivative. It’s all connected!

We first show that γραβ is symmetric. In a coordinate basis, eα = ∂α (Section 13.2.1), and
partial derivatives commute, ∂µ∂α = ∂α∂µ. Thus, ∂µeα = ∂αeµ. This symmetry implies, using Eq.
(14.37), γρµαeρ = γραµeρ, i.e., γρµα is symmetric in its lower indices. We now show that γραν = Γραν .
Using Eq. (14.37), deα = (∂µeα)dxµ = γραµeρdxµ. Form the differential of gαβ ≡ eα · eβ , Eq.
(5.3): dgαβ = eα · deβ + deα · eβ = (γρµβgαρ + γραµgβρ)dxµ. The partial derivative of gαβ can

17Many books define the connection coefficient with Eq. (14.37); Eq. (14.23) is then obtained when metric compatibil-
ity is imposed. We’ve inverted that order, postulating the connection in Eq. (14.9), arriving at Eq. (14.23) through metric
compatibility, and then motivating Eq. (14.37) as reasonable.
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thus be written ∂µgαβ = γρµβgαρ + γραµgβρ (compare with Eq. (14.24)). Combine this result with
Eq. (14.21) (erase primes and tildes):

∇µgαβ = (γρµβ − Γρµβ)gαρ + (γραµ − Γρµα)gρβ . (14.38)

With an appeal to uniqueness, metric compatibility (∇µgαβ = 0) requires γραβ = Γραβ , Eq. (14.23).
With γρµα = Γρµα in Eq. (14.37), isolate Γρµα using the orthogonality properties of the basis

vectors. Let the dual basis vector eβ act on Eq. (14.37),

Γβµα = eβ (∂µeα) . (14.39)

The connection coefficients describe how basis vectors change along coordinate curves; Γβµα is the
rate of change of eα along the coordinate curve associated with xµ, projected onto eβ .

Example. In polar coordinates Γrθθ = −r, Eq. (14.25). The rate of change of eθ = rθ̂ in the θ
direction is deθ = −rr̂dθ and thus Γrθθ = −r (projection onto the r direction).

The connection “connects” the bases of tangent spaces Tx(M) and Tx+dx(M). The total change
in basis vectors between a point of the manifold having coordinates xα and a point with coordinates
xα + dxα is found from Eq. (14.37) by summing over all directions:

deα = (∂µeα)dxµ =
(
Γρµαeρ

)
dxµ . (14.40)

Equation (14.40) can be “psyched out” by noting that the infinitesimal changes deα are: 1) pro-
portional to the differentials dxµ; and 2) deα can be represented in the basis set {eρ}. Make the
proportionality into an equality by inventing a three-index proportionality coefficient γρµα, which,
as we’ve shown, is the same as Γρµα.

Example. Illustrate Eq. (14.40) in polar coordinates using the Christoffel symbols:

der =Γkrjekdxj = Γrrjerdxj + Γθrjeθdxj = Γrrrerdr + Γrrθerdθ + Γθrreθdr + Γθrθeθdθ

=Γθrθeθdθ = 1
r
eθdθ = 1

r

(
rθ̂
)

dθ = θ̂dθ ,

where we’ve used Eq. (14.25). For the other basis vector we have, keeping only the nonzero terms,

deθ = Γrθθerdθ + Γθθreθdr = −rerdθ + 1
r
eθdr = −rr̂dθ + θ̂dr , (14.41)

where we’ve used er = r̂ and eθ = rθ̂. Using deθ = d(rθ̂) = rdθ̂+ θ̂dr, we see that Eq. (14.41)
is the same as dθ̂ = −dθr̂, a familiar result.

How do the dual basis vectors {eα} change under xβ → xβ + dxβ? From Eq. (C.1),
eα
(
eβ
)

= δβα; hence, d
(
eα(eβ)

)
= 0, or eα

(
deβ

)
= −eβ (deα). Using Eq. (14.40), eα

(
deβ

)
=

−eβ
(
Γσαρeσdxρ

)
= −Γσαρδβσdxρ = −Γβαρdxρ, implying that

deβ = −Γβραeαdxρ . (14.42)

Note that neither deα nor deβ are tensor quantities.
Returning to Eq. (14.36), we have, using Eq. (14.40)

dt =
(
∂βt

α + tλΓαλβ
)

dxβeα = ∇βtαdxβeα . (14.43)
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The derivative ∇βtα is the rate of change of tα along coordinate curve xβ taking into account the
change in basis vectors as the coordinate grid changes. The quantity dtα = ∇βtαdxβ is the total
change of tα summed over coordinate differentials dxβ . The total change in the vector t is found
by summing over the directions eα, dt = dtαeα = ∇βtαdxβdeα, Eq. (14.43).

Equation (14.43) is problematic, however—it mixes coordinate differentials and basis vectors,
quantities which belong to different spaces (Chapter 13). The problem is obviated if dt is taken to
be a tensor, with dxβ a basis vector of the dual space, T ∗x (M). The covariant derivative ∇t, by
definition a type (1, 1) tensor field, can be written:

∇t = (∇t)αβ e
β ⊗ eα ≡ ∇βtαeβ ⊗ eα =

(
∂βt

α + tσΓαβσ
)
eβ ⊗ eα . (14.44)

Concordance between Eqs. (14.44) and (14.36) (considered now a type (1, 1) tensor field) is
achieved if we let dxβ → eβ and we write18 Eq. (14.40) as deα ≡ Γρβαeβ ⊗ eρ.

14.3 PARALLEL TRANSPORT AND GEODESIC CURVES
At this point we know quite a bit about the covariant derivative. What we don’t know, however, is
how it solves the problem posed in Section 14.1. Let’s do that, and then explore further uses of∇µ.

14.3.1 Covariant directional derivative

Consider a curve γ : I → M , parameterized by λ ∈ I ⊂ R (see Fig. 14.2), the points of which

xα(λ)

xα(λ+ dλ) M

Figure 14.2 The points of γ(λ) are characterized by coordinates xα(λ).

are associated with coordinates xα(λ). Let Uβ denote the components of the tangent vector to the
curve, Uβ = dxβ/dλ. The change in a vector field A = Aµeµ along the curve, the covariant
directional derivative,19 is found by setting dxβ = Uβdλ in Eq. (14.43),

D
dλA ≡ U

β∇βAαeα .

The rate of change of Aµ along γ(λ) is

D
dλA

µ = Uα∇αAµ = dxα

dλ

(
∂Aµ

∂xα
+ ΓµαβA

β

)
= d

dλA
µ + UαΓµαρAρ . (14.45)

14.3.2 Parallel transport

A vector v given at every point of γ(λ) with tangent vector Uβ is said to be parallel transported20

if the covariant directional derivative vanishes at all points of γ(λ):

Uµ∇µvα = Uµ
(
∂µv

α + Γαµρvρ
)

= 0 . (14.46)

18Similarly, Eq. (14.42) should be written deβ = −Γβραeρ ⊗ eα.
19Some books define the covariant derivative as what we’re calling the covariant directional derivative, and use the

notation∇U ≡ Uβ∇β where∇β is what we have defined as the covariant derivative. Beware.
20Parallel transport (a noun) is defined by Eq. (14.46). We have, in making a verb out of parallel transport, referred to a

vector as being parallel transported. Some books use parallely transported as the verb form of parallel transport.
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Equation (14.46)—a set of coupled first-order differential equations—specifies a criterion by
which vectors remain constant relative to a curve, which we indicated in Section 14.1 that we
would need. The magnitude of vectors is constant under parallel transport: Uµ∇µ (AαAα) =
Uµ∇µ

(
gαβA

αAβ
)

= gαβU
µ∇µ

(
AαAβ

)
= gαβ

(
AαUµ∇µAβ +AβUµ∇µAα

)
= 2AαUµ∇µ

Aα = 0, where we’ve used metric compatibility. Moreover, the inner product of two vectors
each parallel transported along the same curve is constant: Uµ∇µ (AαBα) = AαU

µ∇µBα +
BβU

µ∇µAβ = 0. Equation (14.46) provides a criterion for the parallelity of a vector along γ(λ)
(with respect to∇).21 The definition of parallel transport extends to tensors of arbitrary rank,

Uµ∇µT i1···ikj1···jl = 0 . (14.47)

It’s a trivial observation that the parallel transport of zero is zero; yet that implies tensor equations
are preserved under parallel transport (see discussion in Section 5.1.9).

Example. The nonzero Christoffel symbols in polar coordinates are Γθrθ = Γθθr = r−1 and Γrθθ =
−r, Eq. (14.25). Using Eq. (14.45), we have the differential equations for parallel transport

dAr

dλ + ΓrθθAθ
dθ
dλ = 0 dAθ

dλ + ΓθrθAr
dθ
dλ + ΓθθrAθ

dr
dλ = 0 .

Let the curve for parallel transport be the circle r = R, in which case:

dAr

dθ = RAθ
dAθ

dθ = − 1
R
Ar .

The solution of these coupled differential equations is, for initial conditions Ar(θ0) and Aθ(θ0),

Ar(θ) = Ar(θ0) cos(θ − θ0) +RAθ(θ0) sin(θ − θ0)

Aθ(θ) = Aθ(θ0) cos(θ − θ0)− 1
R
Ar(θ0) sin(θ − θ0) .

The magnitude of a vector is constant, gαβAα(θ)Aβ(θ) = gαβA
α(θ0)Aβ(θ0), yet the same is not

true of the individual components. Consider Aθ(θ0) = 0 (see Fig. 14.3). In that case,

Ar(θ) = Ar(θ0) cos(θ − θ0) Aθ(θ) = − 1
R
Ar(θ0) sin(θ − θ0)

andAθ does not remain zero. The vector tangent to the curve is Uµ = (0, 1) and thus Uµ = (0, R2).
The inner product between U andA varies over the circle, UµAµ = −RAr(θ0) sin(θ − θ0).

R

θ0
dθ

Ar

−(Ar/R)dθ

Figure 14.3 Parallel transport of vector with Aθ(θ0) = 0.

21Parallelity seems not to be an official word of the English language. But it should be (or perhaps parallelness). Paral-
lelity: The property of being parallel. This word is intended to be different from the closely related official word parallelism.



254 � Core Principles of Special and General Relativity

Example. Parallel transport on the 2-sphere of radius R. The nonzero elements of the metric tensor
are gθθ = R2 and gφφ = R2 sin2 θ, Eq. (5.5), and the nonzero Christoffel symbols are Γθφφ =
− sin θ cos θ and Γφθφ = Γφφθ = cot θ, Exercise 14.4. The equations of parallel transport are, from
Eq. (14.45),

dAθ

dλ − sin θ cos θAφ dφ
dλ = 0 dAφ

dλ + cot θ
(
Aθ

dφ
dλ +Aφ

dθ
dλ

)
= 0 .

Let the curve for parallel transport be the circle θ = θ0, in which case

dAθ

dφ = sin θ0 cos θ0A
φ dAφ

dφ = − cot θ0A
θ .

The solution of these coupled differential equations is

Aθ(φ) = Aθ0 cosαφ+Aφ0 sin θ0 sinαφ Aφ(φ) = Aφ0 cosαφ−Aθ0 sinαφ/ sin θ0 ,

where α ≡ cos θ0 and Aθ0, Aφ0 are the initial conditions at φ = 0. The vector tangent to the circle
is Uµ = (0, 1) and thus Uµ = (0, R2 sin2 θ0). The inner product UµAµ = R2 sin2 θ0A

φ(φ) =
R2 sin2 θ0(Aφ0 cosαφ − Aθ0 sinαφ/ sin θ0). The parallel-transported vector rotates relative to U
(except when θ0 = π/2, in which case UµAµ = R2Aφ0 = constant). Consider Aφ0 = 0, Aθ0 =
−1 =⇒ UµA

µ = R2 sin θ0 sinαφ. At φ = 0, Aµ is orthogonal to the curve; at φ = π/(2 cos θ0),
it’s aligned with the tangent.

14.3.3 Parallel transport and the covariant derivative

Armed with the knowledge of parallel transport, we can complete the picture of the covariant deriva-
tive. Let δAµ ≡ −ΓµβνAβdxν denote the change in Aµ that occurs in parallel transport through dxν
(see Fig. 14.4). The covariant derivative is almost the same as the customary definition of derivative,

xν

Aµ(x)

Aµ(x) + δAµ

xν + dxν

Aµ(x+ dx) = Aµ + dAµ

∇νAµ = dAµ − δAµ

dxν

Figure 14.4 Aµ(x) is parallel transported from xν to xν + dxν , picking up an extra compo-
nent δAµ. The covariant derivative is the difference Aµ(x+ dxν)− (Aµ(x) + δAµ).

Eq. (14.2), except it’s the parallel-transported version of the vector that’s subtracted at xν + dxν :

∇νAµ = lim
dxν→0

Aµ(x+ dx)− (Aµ(x) + δAµ)
dxν (14.48)

= lim
dxν→0

Aµ(x+ dx)−Aµ(x)
dxν + ΓµαβA

β dxα

dxν = ∂νA
µ + ΓµνβA

β ,

in agreement with Eq. (14.9) (dxα/dxν = δαν ).
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14.3.4 No-torsion property

We can use parallel transport to understand the geometric significance of the no-torsion requirement.
Let P be a point with coordinates xµ. Let points Q and S have coordinates xµ+dxµ and xµ+dyµ,
and let X = dxµeµ and Y = dyµeµ be infinitesimal vectors. Parallel transport X along the line
PS to obtain the vector ST . Similarly, parallel transport Y along the line PQ to obtain vector QR.
Points T and R will coincide if dyµ + dxµ − Γµνλdxλdyν = dxµ + dyµ − Γµλνdyνdxλ, or if

(Γµλν − Γµνλ) dxλdyν = 0 . (14.49)

For Eq. (14.49) to hold, i.e., for the parallelogram in Figure 14.5 to close, we must have Γµνλ = Γµλν .
If Γµαβ were not symmetric, and the parallelogram did not close, the manifold wouldn’t be flat even
on a small scale, which in the context of GR is a violation of the equivalence principle (Section
11.5). Standard GR requires a torsion-free spacetime manifold.

P
dxµ

Q

S

dyµ dyµ + δ(dyµ)
R

T

dxµ + δ(dxµ)

Figure 14.5 Parallelogram does not close unless the manifold is torsion free.

14.3.5 Geodesic curves

Geodesics are a class of curves of particular importance to GR. Geodesics are curves along which
the tangent vector U is parallel transported:

Uµ∇µUα = 0 . (14.50)

The tangent to any curve “follows” the curve, but not all curves are such that the tangent at one
point of the curve is obtained from parallel transport of the tangent from any other point. A vector
V parallel transported along a geodesic maintains a constant inner product with U .

Using Eq. (14.45), we have the differential equation for the coordinates xα(λ) of the geodesic,

d2xα

dλ2 + Γαµρ
dxµ

dλ
dxρ

dλ = 0 . (14.51)

Equation (14.51), the geodesic equation, is a system of coupled second-order ordinary differential
equations for the functions xµ(λ), and as such has unique solutions22 for given p ∈M and tangent
vector Uβ ∈ Tp(M). Similar to Newtonian mechanics where a unique solution of the equation of
motion exists for given initial position and velocity, a unique geodesic passes through any point
of a manifold with a given tangent vector. Note that the summation over UαUβ in Eq. (14.51)
is symmetric in (α, β), and thus an antisymmetric component of Γµαβ would not contribute to Eq.
(14.51).

22Existence and uniqueness of the solutions of ordinary differential equations is proved in books on differential equations,
such as [58, p85] or [59, p22].
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There is another sense in which geodesics are unique. Suppose operators ∇ and ∇′ exist on M
having identical geodesic curves, i.e., for all smooth curves γ : I → M , γ is a geodesic of ∇ if
and only if it’s a geodesic of ∇′. Then23 ∇′ = ∇. A derivative operator determines a family of
geodesics; conversely, a covariant derivative is characterized by its geodesics.

Example. Geodesics on the 2-sphere. The nonzero Christoffel symbols are Γθφφ = − sin θ cos θ
and Γφθφ = Γφφθ = cot θ (Exercise 14.4). The differential equations for the geodesic are, from Eq.
(14.51)

d2θ

dλ2 − sin θ cos θ
(

dφ
dλ

)2
= 0 d2φ

dλ2 + 2 cot θdφ
dλ

dθ
dλ = 0 .

Clearly, θ = π/2, φ = a + bλ is a solution to both differential equations; another is φ = c,
θ = d+ eλ, where (a, b, c, d, e) are constants. Any great circle is a geodesic.

What parameterizations leave the form of the geodesic equation invariant? Change to a new
parameter τ = τ(λ):

d
dλ = dτ

dλ
d
dτ

d2

dλ2 =
(

dτ
dλ

)2 d2

dτ2 + d2τ

dλ2
d
dτ . (14.52)

Substitute Eq. (14.52) in Eq. (14.51):

d2xν

dτ2 + Γναβ
dxα

dτ
dxβ

dτ = −d2τ

dλ2

(
dτ
dλ

)−2 dxν

dτ . (14.53)

For Eq. (14.53) to look like Eq. (14.51) we require d2τ/dλ2 = 0 or that τ(λ) = aλ + b, where
(a, b) are constants: We can shift the origin of λ ∈ I ⊂ R and we can rescale λ, which amounts to
a scaling of the tangent vector, U → U ′ = U/a. A parameterization that preserves the form of Eq.
(14.51) is an affine parameterization. It was used in Section 7.5 to show the equivalence of the two
forms of the free-particle Lagrangian, Eqs. (7.46) and (7.49).

Geodesics have the property of being the straightest possible curves,24 which we expect would
extremize the distance between points (see Appendix D). Distance is a metrical concept. The length
of a curve γ : I → M , with parameterization λ ∈ I , having tangent field Uµ, passing through
p, q ∈M with coordinates xµ(λ1) and xµ(λ2), for M having metric field gµν , is defined as:25

S(p, q) =
∫ λ2

λ1

√
gµν

dxµ
dλ

dxν
dλ dλ ≡

∫ λ2

λ1

√
gµνUµUνdλ . (14.54)

As shown in Appendix D, the path of stationary action for a free particle is the same as the geodesic
curve when the connection coefficients are given by the Christoffel symbols (set V = 0 in Eq.
(D.22)). The derivatives of the metric tensor that emerge in a variational calculation reflect the fact
that in varying the path around the geodesic we must in general take into account variations in the
metric field. The geodesic differential equation (14.51) is the generalization of what we have in SR
for the motion of free particles: dUµ/dτ = d2xµ/dτ2 = 0. The version of Newton’s first law of
motion in GR is that free particles follow geodesic curves on the spacetime manifold.

23Proof : Contract Eq. (14.7) with Uµ and set tν = Uν : Uµ∇µUν = Uµ∇′µUν + CνµαU
µUα. By assumption

Uµ∇µUν = 0 and Uµ∇′µUν = 0. Thus CνµαU
µUα = 0, implying Cνµα = 0, and hence that∇′ = ∇ from Eq. (14.8).

24Hermann Weyl characterized a geodesic as a curve that “preserves its direction unchanged.”[41, p115]
25Equation (14.54) presumes gijU iUj > 0, true for a Riemannian manifold or for spacelike separated events on a

Lorentzian manifold. For timelike separated events,
√
gijU iUj is replaced with

√
−gijU iUj ; Section 4.4.1.
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14.3.6 Maxwell equations on a manifold

We can now ask what is the form of Maxwell’s equations on a manifold? By the equivalence princi-
ple, if we can write equations in covariant form in the absence of gravitation, then they are true in a
gravitational field (Section 11.5). On manifolds we must replace partial derivatives by the covariant
derivative, ∂ν → ∇ν . Is that all we need to do—rewrite Maxwell’s equations using the covariant
derivative? Basically, yes. Maxwell’s equations in Minkowski space are given by Eqs. (8.21) and
(8.27). The field tensor on a manifold is still given by Eq. (8.18), Fµν = ∂µAν − ∂νAµ—the extra
terms introduced by the covariant derivative cancel (Exercise 14.17). The homogeneous Maxwell
equations, (8.21), are unchanged for the same reason (Exercise 14.18). The generalization of Eq.
(8.27) (inhomogeneous Maxwell equations) on a manifold is, using Eq. (14.35),

∇βFαβ = 1√
−g

∂λ
(√
−gFαλ

)
= µ0J

α . (14.55)

The equation for charge conservation is ∇µJµ = µ−1
0 ∇µ∇νFµν = 0 (∇µ∇ν is symmetric in

(µ, ν) and Fµν is antisymmetric), so that∇µJµ = ∂λ(
√
−gJλ) = 0.

The equation of motion for a charged particle on flat spacetime is Eq. (8.43), mdUµ/dτ =
qFµνUν . On a manifold the ordinary derivative ofUµ is replaced by the directional covariant deriva-
tive along the worldline, Eq. (14.45):

DUµ

dτ = Uα∇αUµ = dUµ

dτ + ΓµαρUαUρ = q

m
FµνUν . (14.56)

In the absence of the electromagnetic field, Eq. (14.56) becomes the geodesic equation (14.51). The
motion of a free particle has zero four-acceleration along the worldline, DUµ/dτ = 0. We haven’t
stated so explicitly, but the four-acceleration is given by Aµ = Uα∇αUµ.

To convert a covariant equation valid in flat spacetime to one valid in arbitrary coordinates:

(1) Replace partial derivatives with covariant derivatives, ∂µ → ∇µ;

(2) Replace ordinary derivatives with the directional covariant derivative, d/dτ → D/dτ ;

(3) Replace the metric tensor for flat spacetime, ηµν → gµν .

14.4 THE RIEMANN TENSOR
We can now define the intrinsic curvature of a manifold, which is described by a fourth-rank tensor.

14.4.1 Commutator of covariant derivatives

In the following we need the second covariant derivative. We start by forming the total differential
of the derivative operator, considered as a type (1, 1) tensor field, T ≡ ∇jT kejek:

dT =d(∇jT k)ejek +∇jT kejdek +∇jT kekdej

=d(∇jT k)ejek +∇jT kejΓmknemdxn −∇jT kekΓjmnemdxn , (14.57)

where we’ve used Eqs. (14.40) and (14.42). The total differential of∇jT k is, using Eq. (14.9),

d(∇jT k) = ∂

∂xl
(
∇jT k

)
dxl = ∂

∂xl

(
∂T k

∂xj
+ ΓkjpT p

)
dxl

=
[
∂2T k

∂xl∂xj
+ Γkjp

∂T p

∂xl
+ T p

∂Γkjp
∂xl

]
dxl . (14.58)
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The terms in square brackets in Eq. (14.58) are therefore an explicit expression for ∂l(∇jT k).
Combining Eqs. (14.58) and (14.57),

dT =
[
∂l(∇jT k) + Γklm∇jTm − Γmlj∇mT k

]
dxlejek ≡ ∇l∇jT kejekdxl . (14.59)

The terms in square brackets in Eq. (14.59) define the second covariant derivative, ∇l∇jT k. The
second covariant derivative transforms as a type (1, 2) tensor,∇l′∇j′T k

′ = Ak
′

α A
β
l′A

λ
j′∇β∇λTα.

Covariant derivatives do not commute,∇µ∇νTα 6= ∇ν∇µTα. Using Eq. (14.59),

(∇µ∇ν −∇ν∇µ)Tα = ∂µ(∇νTα) + Γαβµ∇νT β − Γβνµ∇βTα − [∂ν(∇µTα)
+ Γαβν∇µT β − Γβµν∇βTα]

= ∂µ

(
∂Tα

∂xν
+ ΓανρT ρ

)
+ Γαβµ∇νT β − ∂ν

(
∂Tα

∂xµ
+ ΓαµρT ρ

)
− Γαβν∇µT β

=
[(
∂µΓανρ + ΓαβµΓβνρ

)
−
(
∂νΓαµρ + ΓαβνΓβµρ

)]
T ρ

[∇µ,∇ν ]Tα ≡ RαρµνT ρ , (14.60)

where Eq. (14.60) uniquely defines a fourth-order tensor field

Rαρµν ≡
(
∂Γανρ
∂xµ

+ ΓαµβΓβνρ
)
−
(
∂Γαµρ
∂xν

+ ΓανβΓβµρ
)
, (14.61)

the Riemann curvature tensor field.26 The Riemann tensor involves derivatives of the Christof-
fel symbols and hence second derivatives of the metric tensor. The second group of terms in
Eq. (14.61) follows from the first under the interchange µ ↔ ν. Thus Rαρµν is antisymmetric
in the last two indices, Rαρµν = −Rαρνµ, as it must be—the commutator on the left side of
Eq. (14.60) is antisymmetric in µ and ν. The Riemann tensor transforms as a type (1, 3) tensor,
Ri
′

j′k′l′ = Ai
′

αA
β
j′A

γ
k′A

δ
l′R

α
βγδ .

A manifold for which Rαρµν = 0 everywhere is said to be flat. A necessary and sufficient con-
dition for the metric tensor to contain constant elements is the vanishing of the Riemann tensor.[60,
p25] Either condition, a metric tensor with constant elements or Rαβγδ = 0 can be taken as the
hallmark of a flat geometry.

14.4.2 Parallel transport around a closed curve

γ1

γ2

λ1 λ2

M

Figure 14.6 Two curves connecting points λ1, λ2 on M .

Parallel transport is defined with respect to prescribed curves. By integrating Eq. (14.45) along
a curve γ(λ) starting at λ = λ1, we obtain the parallel-transported value of Aµ at λ = λ2, Aµ‖ :

Aµ‖ (γ(λ2)) ≡ Aµ(γ(λ1))−
∫ γ(λ2)

γ(λ1)
ΓµαβA

β(λ)dxα

dλ dλ . (µ = 0, 1, 2, 3) (14.62)

26Equation (14.60) should be compared with Eq. (14.16). The no-torsion property of the manifold [∇µ,∇ν ]φ = 0
refers to scalar fields, while Eq. (14.60) refers to the non-commutativity of the covariant derivative acting on vector fields.
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To calculateAµ‖ we must know the value of the other vector componentsAβ as well as the Christoffel
symbols at each point of γ(λ) for λ1 ≤ λ ≤ λ2. The result is path dependent:27 Referring to Fig.
14.6, Aµ‖ (λ2) obtained on γ1 is not the same as that obtained on γ2.

Apply Eq. (14.62) to a closed curve C (for example join γ1(λ) in Fig. 14.6, λ1 ≤ λ ≤ λ2,
to γ2(λ), λ2 ≥ λ ≥ λ1): Aµ‖ (λ1) = Aµ(λ1) −

∮
C

ΓµαβAβdxα. In general, Aµ‖ (λ1) 6= Aµ(λ1).
Unless the manifold is flat, a vector parallel transported around a closed curve produces a vector
different from the initial vector. This effect is illustrated in Fig. 14.7. Define the difference between

Figure 14.7 Parallel transport of a vector around a closed curve consisting of three seg-
ments of great circles (geodesics).

the starting value, Aµ0 (λ), and the value of Aµ‖ after parallel transport around a closed curve:

∆Aµ ≡ Aµ‖ (λ)−Aµ0 (λ) = −
∮
C

ΓµαβA
βdxα . (14.63)

The extent to which ∆Aµ 6= 0 provides another way to characterize curvature;28 in essence ∆Aµ is
a “curvature meter.” As we show, ∆Aµ is related to the Riemann tensor for an infinitesimal closed
curve. The reader uninterested in the details should skip to Eq. (14.70).

Consider a point p with coordinates xµp and a closed curve C surrounding p. Figure 14.8 shows

p

ξµ(λ)

O

C(λ)

Figure 14.8 Parallel transport around a closed circle C(λ).

such a curve as a circle, but no conclusions we reach will depend on C being a circle. Let the
points of C have coordinates xµ(λ), which we can express relative to the coordinates of p, xµ(λ) =
xµp + ξµ(λ). Equation (14.63) can then be written as an integral over dξµ because xµp is a constant,

∆Aµ = −
∮
C

ΓµαβA
αdξβ . (14.64)

27For parallel transport to be independent of path, Γµ
αβ
Aβdxα must be an exact differential, which occurs only if the

Riemann tensor vanishes, i.e., the manifold is flat. We omit a proof—this chapter is long enough already.
28∆Aµ = 0 only for a flat space; ∆Aµ 6= 0 on a curved space.
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Equation (14.64) is an integral equation; it cannot be integrated directly because the unknown Aα

is part of the integrand. We can, however, set up an iterative method of solution, one that can be
implemented to any desired level of accuracy. Approximate Eq. (14.64) by setting Aα = Aα0 in the
integral, and thus Aµ(λ) ≈ Aµ0 −Aα0

∫
Γµαβdξβ . Substitute this result back into Eq. (14.64):

Aµ(λ) ≈ Aµ0−
∫

Γµαβ
(
Aα0 −A

γ
0

∫
Γαγρdξρ

)
dξβ = Aµ0−Aα0

∫
Γµαβdξβ+Aγ0

∫
Γµαβ

(∫
Γαγρdξρ

)
dξβ .

(14.65)
Equation (14.65) represents two terms in a Neumann series.29 The iterative process can be repeated
indefinitely, but we stop at second order in ξ, which we presume to be small. We now Taylor expand
the Christoffel symbols Γµαβ(λ) around their values at xµp ,

Γµαβ(λ) ≈
(

Γµαβ
)
p

+
(
∂σΓµαβ

)
p
ξσ . (14.66)

Substitute Eq. (14.66) into the first integral on the right of Eq. (14.65),∮
Γµαβdξβ ≈

(
∂σΓµαβ

)
p

∮
ξσdξβ , (14.67)

where we’ve extended the integral to the closed curve and we’ve used
∮

dξβ = 0. For the second
term on the right of Eq. (14.65) we can, consistent to second order in ξ, keep only the zeroth-order
values for the Christoffel coefficients. Thus,∮

Γµαβ
(∫

Γαγρdξρ
)

dξβ ≈
(

ΓµαβΓαγρ
)
p

∮
(
∫

dξρ)dξβ =
(

ΓµαβΓαγρ
)
p

∮
ξρdξβ . (14.68)

Combine Eqs. (14.68) and (14.67) with Eq. (14.65), and we have to lowest order in ξ

∆Aµ = −Aα0
(
∂σΓµαβ − ΓµγβΓγασ

)
p

∮
ξσdξβ . (14.69)

Because
∮

d(ξσξβ) = 0, it follows that
∮
ξσdξβ = −

∮
ξβdξσ , and thus∮

ξσdξβ = 1
2

∮
(ξσdξβ − ξβdξσ) ≡

∮
dΣσβ ≡ Sσβ

defines an antisymmetric tensor, Sσβ = −Sβσ . We know from Section 5.11 that a differential
element of surface area is an antisymmetric tensor, dΣαβ ≡ (dx(1) ∧dx(2))αβ . It’s straightforward
to show from Eq. (14.69) and the antisymmetry of Sαβ that

∆Aµ = −1
2A

α
0

[(
∂σΓµαβ + ΓµγσΓγαβ

)
−
(
∂βΓµασ + ΓµγβΓγασ

)]
p
Sσβ = −1

2R
µ
ασβA

α
0S

σβ ,

(14.70)
where we’ve used Eq. (14.61). The quantity Sσβ is the projection of the area enclosed by the curve
onto the plane spanned by ξσ and ξβ .

Example. Let x = r cos θ and y = r sin θ; then

1
2

∮
(xdy − ydx) = 1

2

∫ 2π

0
dθr2(cos2 θ + sin2 θ) = πr2 .

29Neumann series occur in the solution of Fredholm integral equations of the second kind. Such equations occur fre-
quently in physics, notably in quantum and electromagnetic scattering.
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We now have two interpretations of the Riemann tensor. From Eq. (14.60) it’s related to the
commutator of the covariant derivative. The non-commutativity of derivatives is related to the fact
that the coordinate basis vectors in an arbitrary coordinate system change along different coordi-
nate curves in a way that they have no correlation with each other. Equation (14.70) provides a more
qualitative picture: The change in a vector parallel transported around a small closed curve is propor-
tional to the area enclosed by the curve and to the starting value of the vector, ∆A ∝ [A0 × (area)].
The proportionality factor is the Riemann tensor.

14.4.3 Geodesic deviation

xµ(λ)

x̃µ(λ)

ξµ(λ)

Figure 14.9 Deviation vector ξµ(λ) between two nearby geodesic curves.

There is a third manifestation of curvature that can be quantified in terms of the Riemann tensor,
the rate at which neighboring geodesic curves either diverge from or approach each other. Consider
a geodesic curve xµ(λ). Let there be another, nearby geodesic x̃µ(λ), also parameterized by λ. Let
the separation between the curves be given by the vector ξµ(λ) ≡ x̃µ(λ) − xµ(λ); see Fig. 14.9.
We wish to obtain a differential equation for ξµ(λ). Both x̃µ and xµ satisfy Eq. (14.51),

d2xµ

dλ2 + Γµαβ
dxα

dλ
dxβ

dλ = 0 d2x̃µ

dλ2 + Γ̃µαβ
dx̃α

dλ
dx̃β

dλ = 0 , (14.71)

where Γ̃µαβ is obtained from the coordinates x̃µ(λ). To obtain an equation for ξµ(λ), subtract the
equations in (14.71), substituting x̃µ = xµ + ξµ, and, as in Eq. (14.66), take to first order in ξα,
Γ̃µαβ ≈ Γµαβ + (∂σΓµαβ)ξσ . To first order in ξ we find:

d2ξµ

dλ2 + Γµαβ
[

dxα

dλ
dξβ

dλ + dξα

dλ
dxβ

dλ

]
+
(
∂σΓµαβ

)
ξσ

dxα

dλ
dxβ

dλ = 0 . (14.72)

We will be aided in the interpretation of Eq. (14.72) if we stop and define the second covariant
directional derivative.

The second covariant directional derivative is, using Eq. (14.45),

D2Aµ

dλ2 = D
dλ

(
DAµ

dλ

)
= d

dλ

(
DAµ

dλ

)
+ dxα

dλ Γµαρ
DAρ

dλ

= d
dλ

(
dAµ

dλ + dxβ

dλ ΓµβσA
σ

)
+ dxα

dλ Γµαρ
(

dAρ

dλ + dxγ

dλ ΓργψA
ψ

)
.

Equation (14.72) can be written in terms of D2/dλ2 by adding and subtracting the appropriate
terms. For example, let ξ̈µ → (d/dλ)(ξ̇µ+ ẋβΓµβσξσ)−(d/dλ)(ẋβΓµβσξσ), where the dot indicates
a derivative with respect to λ. When this is done, we obtain

D2

dλ2 ξ
µ +Rµβσαξ

σ dxα

dλ
dxβ

dλ = 0 . (14.73)

Equation (14.73) is the equation of geodesic deviation. It describes how geodesics deviate from
each other (either approaching or separating), according to the curvature described by the Riemann
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tensor. Because free particles follow geodesics, Eq. (14.73) describes the relative acceleration of
two free particles on a curved manifold, an acceleration due entirely to the geometry. In Section
11.3.2, we described the Newtonian deviation between particles under the influence of tidal forces,
Eq. (11.7). In the Newtonian paradigm, accelerations are caused by forces; here we see that the
relative acceleration of particles in free fall is associated with the geometry.

14.4.4 Normal coordinates: Local flatness

P
xµ(s)

Figure 14.10 Point xµ(s) on geodesic curve where s is the arc length from P .

Consider a point P on a geodesic curve. Let another point on the curve have coordinates xµ(s),
where s is the arc length from P ; see Fig. 14.10. Form the Taylor expansion of xµ(s),

xµ(s) = xµP + sẋµ + 1
2s

2ẍµ + 1
6s

3...
xµ +O(s4) , (14.74)

where the dot indicates a derivative with respect to s, evaluated at P . Because xµ(s) is on the
geodesic, we have from Eq. (14.51) ẍµ = −Γµαβ ẋαẋβ . Evaluate the third derivative as the derivative
of the second derivative:

...
xµ =− d

ds (Γµαβ ẋ
αẋβ) = −Γµαβ(ẋαẍβ + ẍαẋβ)− ẋαẋβ∂σ(Γµαβ)ẋσ

=
[
2ΓµαρΓ

ρ
βσ − ∂σΓµαβ

]
ẋσẋαẋβ ≡ Sµαβσẋ

σẋαẋβ ,

where we’ve used ẍµ = −Γµαβ ẋαẋβ and d(Γµαβ)/ds = ∂σ(Γµαβ)ẋσ . Substitute back into Eq.
(14.74), and we have the Taylor expansion along the geodesic,

xµ(s) = xµP + sẋµ − 1
2s

2Γµαβ ẋ
αẋβ + 1

6s
3Sµαβσẋ

αẋβ ẋσ +O(s4) . (14.75)

Now define a new coordinate,

yµ(s) ≡ xµ(s)− xµP + 1
2s

2Γµαβ ẋ
αẋβ − 1

6s
3Sµαβσẋ

αẋβ ẋσ . (14.76)

By combining Eqs. (14.75) and (14.76), the new coordinates, the normal coordinates (also called
Riemannian coordinates), are linear in s along the geodesic,

yµ(s) = sẋµ +O(s4) , (14.77)

where ẋµ is a constant, the tangent vector that singles out the geodesic passing through xµP .
In terms of these coordinates, geodesics are straight lines (for small s); d2yµ/ds2 = O(s2)

from Eq. (14.77). As we now show, Christoffel symbols evaluated in normal coordinates vanish if
the {Γαµν} are symmetric. From Eq. (14.76), we have to lowest order

yµ = xµ − xµP + 1
2Γµαβ(xα − xαP )(xβ − xβP ) ,

where we’ve approximated ẋ ≈ (x−xP )/s. The transformation properties between the coordinates
xµ and yµ are described by

Aαβ = ∂xα

∂yβ
∣∣
P

= δαβ A
α

β = ∂yα

∂xβ
∣∣
P

= δαβ ∂λA
α

β

∣∣
P

= 1
2
(
Γαλβ + Γαβλ

) ∣∣
P

;
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see Eqs. (5.24) and (5.25). Using Eq. (14.12), the Christoffel symbols Γλµν in normal coordinates
have the value

Γλµν = δλβδ
α
µδ

τ
νΓβατ −

1
2δ

α
µδ

τ
ν

(
Γλατ + Γλτα

)
= 1

2
(
Γλµν − Γλνµ

)
= Γλ[µν] . (14.78)

Through any point on a manifold passes a unique geodesic curve with a given tangent vector,
and now we see that a coordinate system exists at a point on a geodesic where the connection coef-
ficients vanish if they are symmetric—Eq. (14.78). This result is significant for two reasons. From
a practical standpoint, because we have found a local frame in which all the Christoffel symbols
vanish, any results proved in that frame involving tensors are valid in any other frame. From the
physics perspective, the existence of normal coordinates provides the mathematical justification for
the picture presented by the equivalence principle that spacetime is locally flat (re-read the argument
motivating Eq. (14.37)). The converse of the Christoffel symbols vanishing at a point is that the first
derivatives of the metric vanish at that point—see Eq. (14.24). In the neighborhood of this point,
the manifold is locally flat and we have a local inertial frame, where SR holds sway. Locally the
spacetime manifold looks like Minkowski space. At any point P , gµν |P = ηµν .

14.4.5 Symmetries of the Riemann tensor

From Eq. (14.61), Rαρµν is antisymmetric in the last two indices,

Rαρµν = −Rαρνµ . (14.79)

Thus, the Riemann tensor vanishes if any two of the latter pair of indices (µ, ν) are equal. For
example, Rαρ11 = 0. If we lower the first index, Rαρµν = gαβR

β
ρµν , it turns out that the tensor is

antisymmetric in the first two indices as well,

Rαρµν = −Rραµν . (14.80)

The Riemann tensor vanishes if any two of the first pair of indices are equal, R11µν = 0. Equa-
tion (14.79) is manifestly obvious but Eq. (14.80) is not. Start from a scalar field φ = AβB

β =
gβαA

αBβ and apply Eq. (14.60),

[∇µ,∇ν ]φ = [∇µ,∇ν ] gαβAαBβ = gαβ [∇µ,∇ν ]AαBβ

=gαβ
(
Aα [∇µ,∇ν ]Bβ + ([∇µ,∇ν ]Aα)Bβ

)
=gαβ

(
AαRβρµνB

ρ +RαρµνA
ρBβ

)
= RαρµνA

αBρ +RβρµνA
ρBβ

0 = (Rαρµν +Rραµν)AαBρ , (14.81)

where we’ve taken gαβ through the commutator (∇ρgαβ = 0). The left side of Eq. (14.81) vanishes
by the no-torsion property. Because Aα and Bρ are arbitrary, Eq. (14.80) holds. A consequence of
Eqs. (14.79) and (14.80) is that Rαβγδ = Rβαδγ . A third symmetry relation is (see Exercise 14.13):

Rαβγδ = Rγδαβ . (14.82)

The final symmetry is the cyclic relation among the lower indices:

Rαρµν +Rαµνρ +Rανρµ = 0 . (14.83)

This relation follows from Eq. (14.61) under a cyclic permutation of the three lower indices. Equa-
tion (14.83) holds if the first index is lowered, Rαρµν +Rαµνρ +Rανρµ = 0.

There are n4 elements of Rαρµν on an n-dimensional space. The number of independent ele-
ments, however, is reduced by the symmetries of the Riemann tensor. As we now show, there are
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n2(n2 − 1)/12 independent elements. Let m ≡
(
n
2
)

= n(n − 1)/2. Antisymmetry in the first
and second pairs of indices, Eqs. (14.79) and (14.80), would imply that only m2 elements of the
Riemann tensor can be chosen independently. That number, however, is reduced because there are(
m
2
)

= m(m − 1)/2 ways of satisfying Eq. (14.82) included in m2. Additionally, Eq. (14.83) pro-
vides

(
n
4
)

equations of constraint. The number of independent components is(
n

2

)2
−
(
m

2

)
−
(
n

4

)
= 1

12n
2(n2 − 1) . (14.84)

Table 14.2 summarizes the number of independent elements versus the dimension of the space.

Table 14.2 Number of independent elements of the Riemann tensor.

Dimension n4 n2(n2 − 1)/12
2 16 1
3 81 6
4 256 20

Example. Riemann tensor on a 2-sphere. By Eq. (14.84) there is only one independent element,
Rθφθφ; all other nonzero terms are related to Rθφθφ by symmetry. From Eq. (14.61),

Rθφθφ = ∂

∂θ
Γθφφ + ΓθθβΓβφφ −

∂

∂φ
Γθθφ − ΓθφβΓβθφ

= ∂

∂θ
Γθφφ −

∂

∂φ
Γθθφ + ΓθθθΓθφφ + ΓθθφΓφφφ − ΓθφθΓθθφ − ΓθφφΓφθφ .

By the results of Exercise 14.4,

Rθφθφ = ∂

∂θ
Γθφφ − ΓθφφΓφθφ = ∂

∂θ
(− sin θ cos θ)− (− sin θ cos θ) cot θ = sin2 θ .

Lowering the index, Rθφθφ = gθβR
β
φθφ = gθθR

θ
φθφ + gθφR

φ
φθφ = Rθφθφ = sin2 θ. The nonzero

elements are thus given by Rθφθφ = −Rθφφθ = Rφθφθ = −Rφθθφ. If we wanted to find Rφθφθ we
would raise an index

Rφθφθ = gφαRαφθφ = gφφRφθφθ = 1
sin2 θ

sin2 θ = 1 .

Note that Rφθφθ 6= Rφθφθ. The sphere is not flat—the Riemann tensor does not vanish.

14.4.6 The Bianchi identity

We now prove a relation that turns out to be of crucial importance in GR, the Bianchi identity:

∇λRαβγδ +∇δRαβλγ +∇γRαβδλ = 0 , (14.85)

which involves a cyclic permutation among the indices that label derivatives, (λ, γ, δ). Equation
(14.85) is sometimes referred to as the second Bianchi identity, with the first Bianchi identity be-
ing the cyclic relation, Eq. (14.83). While Eq. (14.83) follows trivially from the definition of the
Riemann tensor, proving Eq. (14.85) is considerably more involved.
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We first prove a relation involving the third covariant derivative. Start with Eq. (14.60) and
lower the index,30

[∇µ,∇ν ]Tα = RαρµνT
ρ . (14.86)

Let Tα = Aαβv
β , where Aαβ is a second-rank tensor and vβ is a vector; the contravariant version

is Tα = Aαβv
β . Substitute into Eq. (14.86): [∇µ,∇ν ](Aαβvβ) = RαρµνA

ρ
βv

β , or, equivalently,

Aαβ [∇µ,∇ν ]vβ + ([∇µ,∇ν ]Aαβ)vβ = RαρµνA
ρ
βv

β . (14.87)

Make use of Eq. (14.60) in the first term in Eq. (14.87): AαβRβρµνv
ρ + ([∇µ,∇ν ]Aαβ)vβ =

RαρµνA
ρ
βv

β . By relabeling indices we have ([∇µ,∇ν ]Aαβ)vβ = RαρµνA
ρ
βv

β − AαλRλβµνvβ .
Because this equation applies for all vβ ,

[∇µ,∇ν ]Aαβ = RαρµνA
ρ
β −R

λ
βµνAαλ . (14.88)

Equation (14.88) defines the action of the commutator on a type (0, 2) tensor. Now set Aαβ =
∇βAα in Eq. (14.88); the desired result is

[∇µ,∇ν ]∇βAα = Rαρµν∇βAρ −Rλβµν∇λAα . (14.89)

Take the covariant derivative of Eq. (14.60),

∇λ([∇µ,∇ν ]Aα) = ∇λ(RαρµνAρ) = Rαρµν∇λAρ + (∇λRαρµν)Aρ . (14.90)

Permute the indices (λ, µ, ν) in Eq. (14.90) cyclically and add the equations. The left-hand side
(lhs) of the resulting equation will involve a sum of commutators of the form ∇λ[∇µ,∇ν ]Aα.
These terms can be converted into a sum of commutators of the form [∇µ,∇ν ]∇λAα through the
following identity among commutators:

∇λ[∇µ,∇ν ]+∇µ[∇ν ,∇λ]+∇ν [∇λ,∇µ] = [∇µ,∇ν ]∇λ+[∇ν ,∇λ]∇µ+[∇λ,∇µ]∇ν . (14.91)

Apply Eq. (14.89) to the terms in Eq. (14.91). The lhs is then given by

lhs = [Rαρµν∇λ +Rαρνλ∇µ +Rαρλµ∇ν ]Aρ −
(
Rρλµν +Rρµνλ +Rρνλµ

)
∇ρAα . (14.92)

The terms in parentheses in Eq. (14.92) vanish by Eq. (14.83). The right side is given by

rhs = [Rαρµν∇λ +Rαρνλ∇µ +Rαρλµ∇ν ]Aρ + (∇λRαρµν +∇µRαρνλ +∇νRαρλµ)Aρ .
(14.93)

After canceling common terms between Eqs. (14.92) and (14.93), we are left with the Bianchi iden-
tity, Eq. (14.85). Note that Eq. (14.85) is a relation among five indices—lots of room for mischief.

14.5 THE RICCI TENSOR AND SCALAR FIELD

14.5.1 The Ricci tensor

The Ricci tensor is a type (0, 2) tensor obtained from a contraction (the trace) of the Riemann
tensor. The contraction Rααµν = 0: Starting from Rαρµν = gασRσρµν , it follows that Rααµν =
gρσRσρµν = −gσρRρσµν = −Rσσµν , and hence Rααµν = 0, where we’ve used Eq. (14.80).
Because Rαρµα = −Rαραµ, Eq. (14.79), there is only one independent contraction of the Riemann

30We can lower the index because of metric compatibility.
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tensor. We define the Ricci tensor as the contraction of the first and third indices of the Riemann
tensor,31

Rµν ≡ Rρµρν = gρσRσµρν . (14.94)

The Ricci tensor is symmetric. Use Eq. (14.83): Rαρµν +Rαµνρ +Rανρµ = 0. Set α = ρ and sum,

Rρρµν +Rρµνρ +Rρνρµ = 0 . (14.95)

The first term vanishes, and for the second,Rρµνρ = −Rρµρν = −Rµν ; thus, Eq. (14.95) establishes
that Rνµ = Rµν . There are n(n+ 1)/2 independent elements for Rµν on an n-dimensional space.

14.5.2 The curvature scalar

The curvature scalar is the scalar field obtained from the trace of the Ricci tensor,

R ≡ Rαα = gαµgρσRσµρα = gαµRαµ . (14.96)

Yes, the same symbol R is used to denote the Riemann tensor, the Ricci tensor, and the curvature
scalar. The meaning should be clear from the number of indices. The quantity R is a scalar field—
not in general a number—and is a complicated expression involving first and second derivatives of
the metric tensor in such a way as to obtain a scalar. See Exercise 14.16.

Example. The three independent elements of the Ricci tensor on the unit sphere are, contracting
over the elements of the Riemann tensor (see example on page 264):

Rθθ =Rρθρθ = Rθθθθ +Rφθφθ = gφφRφθφθ = 1

Rθφ =Rρθρφ = Rθθθφ +Rφθφφ = 0

Rφφ =Rρφρφ = Rθφθφ +Rφφφφ = gθθRθφθφ = sin2 θ .

To obtain the curvature scalar, we must raise an index, Rαβ = gαρRρβ ,

Rθθ =gθρRρθ = gθθRθθ + gθφRφθ = 1

Rφθ =gφθRθθ + gφφRφθ = 0

Rφφ =gφθRθφ + gφφRφφ = 1 .

The curvature scalar is R = Rθθ + Rφφ = 2. If we had kept the radius of the sphere r in our
calculations, we would have obtained R = 2/r2.

14.5.3 The Weyl tensor

On an n-dimensional manifold, the traceless part of the Ricci tensor is defined as

Sµν ≡ Rµν −
1
n
gµνR ,

where R = Rαα is the Ricci scalar. It is said to be traceless, because, as is easily shown,32 Sαα = 0.
We could therefore writeRµν = n−1gµνR+Sµν ; we’ve split off its traceless part. Sµν is symmetric.

31The Ricci tensor is defined in some books as the contraction of the first and last indices of the Riemann tensor, intro-
ducing another source of minus sign ambiguity, in addition to that of the metric tensor in SR. Beware.

32The trick is to note that gµν = δµν and thus gαα = n.
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The Ricci decomposition is a way of expressing the Riemann tensor valid for n ≥ 3:

Rαβγδ = − 2
(n− 2)(n− 1)Rgα[γgδ]β + 2

(n− 2)
(
gα[γRδ]β − gβ[γRδ]α

)
+ Cαβγδ (14.97)

where the “remainder” Cαβγδ is the Weyl curvature tensor.[60, p90] The Weyl tensor has the same
symmetries as the Riemann tensor: Eqs. (14.79), (14.80), (14.82), and (14.83).

As can be verified using Eq. (14.97), all contractions of Cαβγδ vanish, Cααγδ = Cαβαδ =
Cαβγα = 0. The Weyl tensor is thus the traceless part of the Riemann tensor. Einstein’s equation
involves (as we’ll see) the Ricci tensor—the trace of the Riemann tensor. It’s convenient to remove
from the Riemann tensor its traceless part, the Weyl tensor. No part of the Weyl tensor is contained
in the Ricci tensor. The Riemann tensor has the property that Rααγδ = 0 (page 265), and thus
the additional contraction properties of the Weyl tensor (Cαβαδ = Cαβγα = 0) imply that it has
fewer independent elements than the Riemann tensor. From the antisymmetry property of the last
two indices, Cαβγα = 0 is not independent of Cαβαδ = 0, and thus, to count the extra number
of equations of constraint, it suffices to consider Cαβαδ = 0. The quantity Cαβαδ is symmetric in
(β, δ) (because Rβδ is symmetric). Thus, there are n(n + 1)/2 equations of constraint implied by
Cαβαδ = 0 not accounted for by Eq. (14.84). The Weyl tensor has, using Eq. (14.84),

1
12n

2(n2 − 1)− 1
2n(n+ 1) = 1

12n(n+ 1)(n+ 2)(n− 3)

independent elements. For n = 3, there are zero independent elements, and thus the Weyl tensor
vanishes in three dimensions. For n = 4, there are 10 independent elements of the Weyl tensor. If
Rµν = 0, thenRαβγδ = Cαβγδ 6= 0. The vanishing of the Ricci tensor (“Ricci flat”) is not sufficient
to say that a space is flat—the Riemman tensor need not be zero. In Einstein’s equation, Rαβ and R
are determined by the energy-momentum in spacetime; the Weyl tensor therefore represents a part
of the Riemann tensor that’s unconstrained by the physics of spacetime.

14.6 THE EINSTEIN TENSOR
We now define the Einstein curvature tensor, the importance of which will not be apparent until we
consider GR:

Gµν ≡ Rµν −
1
2gµνR . (14.98)

BecauseRµν is symmetric, so isGµν . A key feature ofGµν is that its covariant divergence vanishes,

∇νGµν = 0 . (14.99)

Equation (14.99) is crucially important for GR, and it’s worthwhile to derive it. Start from the
Bianchi identity, Eq. (14.85),

∇νRαβγµ +∇γRαβµν +∇µRαβνγ = 0 , (14.100)

where we’ve raised the two indices that are not permuted. Set α = γ and sum:

∇νRγβγµ +∇γRγβµν +∇µRγβνγ = 0 .

In the first term, we recognize the Ricci tensor, Rγβγµ = Rβµ, and in the last term we have Rγβνγ =
−Rγβγν = −Rβν . Thus,∇νRβµ +∇γRγβµν −∇µRβν = 0. Now set β = ν and sum:

∇νRνµ +∇γRγνµν −∇µRνν = 0 .
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In the middle term, interchange the indices in both sets of indices, Rγνµν = Rνγνµ = Rγµ, and in
the final term we recognize the curvature scalar Rνν = R. Thus,33

∇νRνµ +∇γRγµ −∇µR = 0 . (14.101)

The first two terms in Eq. (14.101) are identical. Thus, buried in the Bianchi identity is the relation

∇ν
(
Rνµ −

1
2δ

ν
µR

)
= ∇ν

(
Rνµ −

1
2g

ν
µR

)
≡ ∇νGνµ = 0 ,

where we have used gνµ = eν ·eµ = δνµ. Raise the index µ and we have Eq. (14.99). As a symmetric
tensor, Gµν would have n(n + 1)/2 independent components, but because of the zero-divergence
condition, that number is reduced by n, so thatGµν has n(n−1)/2 independent components. Table
14.3 summarizes the number of independent elements in the curvature tensors we’ve defined, the
Riemann, Ricci, Weyl, and Einstein tensors.

Table 14.3 Number of independent elements in the curvature tensors.

n Rαβγδ Rµν Cαβγδ Gµν
2 1 3 Not defined 1
3 6 6 0 3
4 20 10 10 6

14.7 ISOMETRIES, KILLING VECTORS, AND CONSERVATION LAWS
Symmetry involves 1) a transformation and 2) something invariant under the transformation (Section
4.1.2). Under a diffeomorphism φ : M → M of a manifold M to itself (Section 13.3), we can
compare a tensor T|p∈M with the pullback of the tensor field at φ(p), φ∗T|φ(p) (Section 13.5). If
φ∗T = T, φ is a symmetry transformation of the tensor field T. The Lie derivative thus serves as a
symmetry detector: A tensor field T is invariant along the vector field v if £vT = 0.

Of interest are mappings that preserve the metric tensor (for reasons we’ll discuss shortly). A
diffeomorphism φ : M → M is an isometry if it carries a metric field g to itself. If the local group
of diffeomorphisms φt generated by a vector field v is a group of isometries,34 v is said to be a
Killing field.35 For a Killing field v, the Lie derivative of the metric tensor is zero,

(£vg)αβ = vλ∇λgαβ + gαλ∇βvλ + gβλ∇αvλ = ∇βvα +∇αvβ = 0 ,

where we’ve used Eq. (14.29) and metric compatibility. A Killing field v satisfies Killing’s equation

∇αvβ +∇βvα = 0 . (14.102)

Equation (14.102) is a system of first-order differential equations for the vectors vµ that generate
isometries.

33Note that in the reduction of Eq. (14.100) to (14.101), we’ve passed from an equation involving five indices to three to
one. Every contraction lowers the rank of a tensor by two.

34That is, for each t, φt is an isometry.
35Named after the mathematician Wilhelm Killing.
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Example. Consider R2 with Cartesian coordinates, so that gij = δij . From Eq. (14.102) the differ-
ential equations for the Killing vectors are ∂jvi + ∂iv

j = 0, the solution of which can be written(
v1

v2

)
=
(
a
b

)
+ θ

(
0 1
−1 0

)(
x1

x2

)
,

where (a, b, θ) are constants. The isometries are therefore translations and rotations. Under x →
x′ = x+ a+ yθ, and y → y′ = y + b− xθ, (dx′)2 + (dy′)2 = (dx)2 + (dy)2 for infinitesimal θ.

There is a connection between Killing vectors and the Riemann tensor. From Exercise 14.12,
∇µ∇νξλ−∇ν∇µξλ = −Rαλµνξα. From Killing’s equation, however,∇µξλ = −∇λξµ, and hence
∇ν∇µξλ = −∇ν∇λξµ. We thus have specifically for Killing vectors, ∇µ∇νξλ + ∇ν∇λξµ =
−Rαλµνξα. Permute the indices (µνλ) cyclically. Add the (µνλ) equation to the (νλµ) equation
and subtract from it the (λµν) equation. The result is 2∇ν∇λξµ = −(Rαλµν +Rαµνλ −Rανλµ)ξα.
Use Eq. (14.83) to conclude that, for a Killing vector

∇ν∇λξµ = Rανλµξα . (14.103)

Second derivatives of Killing vectors thus occur as linear combinations of Killing vectors. From
uniqueness theorems of second-order differential equations, Killing fields are completely deter-
mined by their values at a point, ξµ|p, and by the values of their first derivatives at a point,
Lµν ≡ ∇µξν |p. If we’re given (ξµ, Lµν) at p ∈M , then their value at any other point is determined
by integrating Killing’s equation. From Eq. (14.102) Lµν = −Lνµ, and thus on an n-dimensional
manifold there are n+

(
n
2
)

= n(n+ 1)/2 initial values (ξµ, Lµν), and, accordingly, a maximum of
n(n + 1)/2 linearly independent Killing vectors. Manifolds that possess the maximum number of
Killing vectors are called maximally symmetric spaces.

Example. Isometries of Minkowski space
The Killing equation in Minkowski space is ∂µξν + ∂νξµ = 0, the solutions of which are
ξα = εα + ωαβx

β , where the εα are constants and ωαβ is an antisymmetric matrix with con-
stant elements. There are 10 independent Killing fields ξα specified by the four parameters εα and
the six independent elements of ωαβ , the maximum number in four dimensions—Minkowski space
is a maximally symmetric space. The four parameters εα specify translations and the remaining six
specify Lorentz transformations, three for rotations and three for boosts; Section 6.2. The Lorentz
metric is thus preserved under translations and Lorentz transformations. The matrix ωαβ is the gen-
erator of Lorentz transformations, Eq. (6.32).

As discussed in Chapter 9, for every continuous symmetry of the action integral there is a cor-
responding conservation law. We now take this to a deeper level: The isometries of the spacetime
manifold have physical significance in that they imply the existence of conserved quantities. For ξα

a Killing vector field and γ a geodesic curve with tangent field uβ , then ξαuα is constant along γ.
The proof is simple: uβ∇β(ξαuα) = uβuα∇βξα + ξαu

β∇βuα = 0. The second term vanishes
by Eq. (14.50) (geodesic), and the first term vanishes by Killing’s equation—u(αuβ)∇[βξα] = 0.
The quantity ξαuα is thus constant along a geodesic. Because freely falling particles and photons
travel on geodesics, there is a conserved quantity for every Killing vector field. For Minkowski
space with its 10 isometries, there are four spacetime translations corresponding to conservation
of four-momentum, three rotations corresponding to conservation of angular momentum, and three
boosts, which are tied to the relativistic center of mass theorem (all shown in Section 7.6).
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14.8 MAXIMALLY SYMMETRIC SPACES
A manifold may not have the maximum number of Killing vectors. From Exercise 14.20,

[∇µ,∇ν ]∇λξρ = −Rσλµν∇σξρ −Rσρµν∇λξσ . (14.104)

Equation (14.104) is valid for general tensors ∇λξρ, and is not specific to Killing vectors. Expand
out the left side of Eq. (14.104),

∇µ∇ν∇λξρ −∇ν∇µ∇λξρ = −Rσλµν∇σξρ −Rσρµν∇λξσ . (14.105)

Now substitute Eq. (14.103) into Eq. (14.105), and we have a result specific to Killing vectors

∇µ
(
Rανλρξα

)
−∇ν

(
Rαµλρξα

)
= −Rσλµν∇σξρ −Rσρµν∇λξσ . (14.106)

Expand out the derivatives on the left side of Eq. (14.106), and it’s straightforward to show(
∇µRανλρ −∇νRαµλρ

)
ξα =

[
−Rανλρδβµ +Rαµλρδ

β
ν +Rαλµνδ

β
ρ −Rαρµνδ

β
λ

]
∇βξα . (14.107)

There are thus metric-dependent restrictions on ξα and ∇βξα that would prevent a given manifold
from possessing the maximum number of independent Killing vectors.

Under what conditions does a manifold have the maximum number of Killing vectors? For such
spaces, we want there to be no restrictions on the values of ξα and ∇λξα. This will be the case if
the left side of Eq. (14.107) vanishes,

∇µRανλρ = ∇νRαµλρ . (14.108)

This condition would permit any value of ξα. The right side of Eq. (14.107) must then also vanish,
which we can write in the form ∆αβ

νλρµ∇βξα = 0. Because ∇βξα is antisymmetric (Killing’s

equation), the vanishing of the right side of Eq. (14.107) requires that ∆[αβ]
νλρµ = 0. Thus, the

terms in square brackets in Eq. (14.107) must be symmetric in (α, β):

−Rανλρδβµ +Rαµλρδ
β
ν +Rαλµνδ

β
ρ −Rαρµνδ

β
λ = −Rβνλρδ

α
µ +Rβµλρδ

α
ν +Rβλµνδ

α
ρ −Rβρµνδαλ .

(14.109)
Set β = µ in Eq. (14.109) and sum; we find

−nRανλρ +Rανλρ +Rαλρν −Rαρλν = −Rανλρ +Rµµλρδ
α
ν +Rµλµνδ

α
ρ −Rµρµνδαλ . (14.110)

On the left of Eq. (14.110) we can set Rαρλν = −Rαρνλ, in which case we can use the cyclic
relation to eliminate the three terms with cyclic permutations of (νλρ). On the right side, we can set
Rµµλρ = 0 (Section 14.5.1), and the other terms we recognize as the Ricci tensor. Thus, we obtain
a requirement on the curvature tensor for a maximally symmetric space,

(n− 1)Rανλρ = Rνρδ
α
λ −Rνλδαρ . (14.111)

Lower α and use the fact that δβσ = gβσ ; Eq. (14.111) is equivalent to

(n− 1)Rανλρ = Rνρgαλ −Rνλgαρ . (14.112)

The Riemann tensor is antisymmetric in the first two indices. From Eq. (14.112) we therefore require
Rνρgαλ − Rνλgαρ = −Rαρgνλ + Rαλgνρ. Now raise ν on this equation, Rνρgαλ − Rνλgαρ =
−Rαρδνλ+Rαλδνρ . Contract over ν and λ, and we have for the Ricci tensor of a maximally symmetric
space

nRαρ = Rgαρ , (14.113)
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where R = Rνν . Combining Eqs. (14.113) and (14.112), we have

Rανλρ = R

n(n− 1) (gαλgνρ − gαρgνλ) . (14.114)

Equation (14.114) is used in the relativistic theory of cosmology.
What can we say about the curvature scalar, R? Combining Eqs. (14.99) (secretly the Bianchi

identity) and (14.113), we have for each µ:

∇ν
(
Rµν − 1

2g
µνR

)
=
(

1
n
− 1

2

)
gµν∇νR =

(
1
n
− 1

2

)
∂µR = 0 , (14.115)

where we’ve used metric compatibility and that the action of∇ν on a scalar field is the same as ∂ν .
For n ≥ 3, we conclude from Eq. (14.115) that R = constant, i.e., a maximally symmetric space in
three or more dimensions is one of constant, homogeneous curvature.

SUMMARY
Chapter 14 is a foundational mathematical chapter, along with Chapters 5 and 13. In Chapter 5 we
introduced tensors on flat spaces, in Chapter 13 we put tensors on manifolds, and in this chapter we
considered derivatives of tensors and how they relate to curvature.

• Covariant derivative: The covariant derivative ∇µ transforms as a tensor and reduces to ∂µ
on a flat space. ∇µ gives the rate of change of a tensor in the coordinate direction xµ taking
into account the change in tensor components due to changes in basis vectors in an arbitrary
coordinate system. We discussed∇µ in two ways, algebraic and geometric.

– Equation (14.9) is an algebraic definition:∇µTλ = ∂µT
λ + ΓλµνT ν , where the connec-

tion coefficients {Γλµν} transform according to Eq. (14.12); they are not tensors. Equa-
tion (14.9) combines two non-tensorial objects in such a way as to transform as a tensor.
Standard GR is restricted to connection coefficients symmetric in the lower indices, oth-
erwise spacetime could not be locally flat, contrary to the prediction of the equivalence
principle. The Christoffel symbols Γλµν = 1

2g
λρ(∂µgνρ + ∂νgµρ − ∂ρgµν) are a unique

set of connection coefficients symmetric in the lower indices and compatible with the
metric tensor,∇ρgµν = 0.

– The connection coefficients connect the basis vectors of the tangent spaces at nearby
points of the manifold, Tx(M) and Tx+dx(M). The change eα → eα + deα under
xβ → xβ+dxβ is deα = Γµαβdxβeµ. The covariant derivative captures the total change
in a vector: d(Aαeα) = dAαeα + Aαdeα ≡ (∇βAα)dxβeα. Along a parametrized
curve xµ(λ), dxβ = (dxβ/dλ)dλ ≡ uβdλ, where uβ is the tangent vector to the curve.
The directional covariant derivative is DAµ/dλ = uα∇αAµ. Parallel transport is the
requirement that DAµ = uα∇αAµdλ = 0 along a curve. Under parallel transport, the
change in vector components due to the change in basis vectors is δAµ ≡ −ΓµαβAαdxβ .
This permits a geometric understanding of ∇µ provided by Eq. (14.48). Parallel trans-
port is path dependent (unless the space is flat): The vector that results from parallel
transport along a given path depends on the path taken.

• Geodesic curves: A geodesic is the straightest possible curve on a manifold, defined so that
the tangent to the curve is parallel transported along itself, uα∇αuµ = 0. The geodesic
equation d2xµ + Γµαβdxαdxβ = 0 is a system of coupled second-order differential equa-
tions. Geodesics extremize the distance between fixed points. Free particles follow geodesics.
The geodesic equation is the Euler-Lagrange equation for the free-particle Lagrangian L =
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√
gµν ẋµẋν . An affine parameterization, τ = aλ + b, where (a, b) are constants, leaves the

geodesic equation invariant. There is a unique geodesic through any point on a manifold with
a given tangent vector.

• Curvature: The extent to which covariant derivatives do not commute provides an algebraic
specification of the Riemann curvature tensor, [∇µ,∇ν ]Tα ≡ RαρµνT ρ, whereRαρµν is given
in Eq. (14.61). A manifold is flat if Rαρµν = 0 everywhere, or equivalently if the components
of the metric tensor are all constant. A geometric interpretation of curvature is the extent to
which a vector parallel transported around a close curve changes, ∆Aµ = − 1

2R
µ
ασβA

α
0S

σβ ,
where Aα0 is the initial value of the vector and Sσβ is an antisymmetric tensor that contains
the area of the loop. Another manifestation of curvature is the extent to which two nearby
geodesic curves, separated by the vector ξµ, either approach or diverge from each other as
specified by the geodesic deviation equation, D2ξµ + Rµβσαξ

σdxαdxβ = 0. Nearby free
particles either approach or diverge from each other, giving rise to an apparent acceleration
that’s caused not by forces, but by the geometry of spacetime.

• Ricci tensor and scalar field: The Ricci tensor Rµν = Rρµρν is the contraction of the first
and third indices of the Riemann tensor. The Ricci tensor is symmetric, Rµν = Rνµ. The
curvature scalar field is the contraction over the Ricci tensor, R = Rαα = gαβRαβ .

• Einstein tensor: The Einstein tensorGµν = Rµν− 1
2gµνR is a symmetric tensor and has zero

covariant divergence,∇νGµν = 0. This property is a consequence of the Bianchi identity.

• Killing vector fields: A Killing field ξ is a vector field along which the Lie derivative of the
metric tensor vanishes, £ξgµν = 0. The components of the Killing field obey Killing’s equa-
tion ∇µξν +∇νξµ = 0. There is a conserved quantity for every Killing field. The maximum
number of Killing vectors on an n-dimensional manifold is n(n+1)/2. Maximally symmetric
spaces (maximum number of Killing fields) are characterized by constant curvature, R.

EXERCISES

14.1 We showed for a torsion-free covariant derivative that £uvλ = uβ∇βvλ − vβ∇βuλ, Eq.
(14.27). We also showed, however, that £uvλ = uβ∂βv

λ − vβ∂βuλ, Eq. (13.20). Show how
these equations are consistent under the no-torsion proviso. Hint: What is u[βvα]Γλβα?

14.2 Show that ∇µων transforms as a type (0, 2) tensor. Use ∂α(Aρλ′Aλ
′

τ ) = 0 and hence that
Aρλ′∂αA

λ′

τ = −Aλ′τ ∂αA
ρ
λ′ .

14.3 Show that the torsion tensor Tλµν ≡ Γλµν − Γλνµ is indeed a tensor. Use Eq. (14.12).

14.4 Derive the Christoffel symbols on the surface of a sphere. Show that

Γθθθ =Γθθφ = Γθφθ = 0 Γθφφ = − sin θ cos θ

Γφθθ =Γφφφ = 0 Γφθφ = Γφφθ = cot θ .

14.5 Show explicitly that∇σgµν = 0 on the surface of the sphere. Use Eq. (14.14) and the results
from Exercise 14.4. For example, show that∇θgφφ = 0. Repeat for all the indices.

14.6 Show that for the determinant of the metric tensor g, ∇µg = 0. The quantity g is a scalar
density (Section 5.2), not a scalar; it’s a mistake to assume∇µg = ∂µg.



Exercises � 273

a. The direct way is to use the property of determinants that g is an alternating sum of n-
tuple products of elements of the metric tensor (Section 5.8.2); apply∇µ to this definition
of g and use∇µgαβ = 0 for all (α, β).

b. Another way is to make use of the covariant derivative of tensor densities, not covered in
this chapter, but which is presented here. For a tensor density of weight w of any index
structure, Tα1α2···

β1β2··· , we can write Tα1···
β1··· = √gw√g−wTα1···

β1··· . Thus,

∇µTα1···
β1··· = ∇µ

(√
g
w√

g
−w

Tα1···
β1···

)
=
(
∇µ
√
g
w)√

g
−w

Tα1···
β1···+

√
g
w∇µ

(√
g
−w

Tα1···
β1···

)
.

The first term vanishes by the result of the first part of this exercise. Make use of the fact
that
√
g−wTα1···

β1··· transforms as an absolute tensor (Section 5.2) and apply the rule for the
covariant derivative of a general tensor, Eq. (14.14). Show that the covariant derivative of
a tensor density of weight w is

∇µTα1···
β1··· =

(
usual terms if Tα1···

β1··· were a tensor, Eq.(14.14)
)
− wΓαµαT

α1···
β1··· . (P14.1)

Use ∂µg = 2gΓαµα, Section 14.1.8. Use Eq. (P14.1) to show that ∇µg = 0. What’s the
weight w of g?

14.7 Using the result of Exercise 14.6, show that:

a. ∂µ
(√
−ggαβ

)
=
√
−g
(
Γσµσgαβ − Γαµσgσβ − Γβµσgασ

)
. Hint:∇µ

(√
−ggαβ

)
= 0.

b. For Tα a tensor density of weight w = 1,∇αTα = ∂αT
α.

14.8 Derive the Christoffel symbols for the rotating coordinate system discussed in Section 12.3.1.
You will need to work out the inverse metric, gµν . You should find that there are eight nonzero
Christoffel symbols for this system. Show that:

Γρtt =− ω2

c2
ρ Γρtφ = Γρφt = −ω

c
ρ Γρφφ = −ρ

Γφtρ =Γφρt = ω

ρc
Γφρφ = Γφφρ = 1

ρ
.

14.9 Show that the condition for parallel transport of a covariant vector is given by dAµ =
ΓρµσAρdxσ .

14.10 Show that the analog of Eq. (14.70) for a covariant vector is ∆Aµ = 1
2Aλ,0R

λ
µβσS

βσ .

14.11 Can geodesic curves cross? Integral curves (Section 13.3) cannot intersect. Are geodesic
curves, integral curves?

14.12 Show that [∇µ,∇ν ]Tλ = −RαλµνTα. Note how this equation differs from Eq. (14.86).

14.13 Show that Rαβγδ = Rγδαβ . Write the cyclic relation Eq. (14.83) for each of the four values
of the first index. Now add these equations and use the symmetries already established.

14.14 Verify Eq. (14.91). This is an identity involving commutators—you don’t have to invoke any
properties of the covariant derivative.

14.15 Show that the Riemann tensor can be written in terms of derivatives of the metric tensor,

Rµνρσ = 1
2[∂ν∂ρgµσ − ∂µ∂ρgνσ − ∂ν∂σgµρ + ∂µ∂σgνρ] + gαβ [ΓανρΓβµσ − ΓαµρΓβνσ] .
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You may find it useful to first show that

gµα∂ρΓανσ = 1
2∂ρ(∂νgµσ + ∂σgµν − ∂µgνσ)− Γανσ∂ρgµα .

Then use Eq. (14.24).

14.16 Show from the result of Exercise 14.15 that the Ricci scalar is given by

R = ∂σ∂µgµσ − gσν∂ρ∂ρgνσ + gσνgρµgαβ
[
ΓανρΓβµσ − ΓαµρΓβνσ

]
From the complexity of this result, we should not underestimate the richness of the Ricci
scalar field!

14.17 Show that the “covariant curl”∇αAβ −∇βAα = ∂αAβ − ∂βAα. Use Eq. (14.13).

14.18 Show that the “cyclical divergence,” where the indices are permuted is a tensor, i.e., show for
Fαβ an antisymmetric tensor that∇αFβγ +∇βFγα +∇γFαβ = ∂αFβγ + ∂βFγα + ∂γFαβ .
Use Eq. (14.14). The homogeneous Maxwell equations have this property.

14.19 Suppose that the only symmetry property of the Riemann tensor was Eq. (14.79), Rαβγδ =
−Rαβδγ (which would be the case if the connection coefficients were not symmetric). How
many independent elements would the Riemann tensor have? Answer: n3(n − 1)/2, which
in four dimensions is 96.

14.20 Show that [∇ρ,∇σ]Tµν = −RλµρσTλν − RλνρσTµλ. This is an instance of a more general
result known as the Ricci identity,

[∇µ,∇ν ]Tα1···αp
β1···βq =

p∑
r=1

RαrσµνT
α1···αr−1σαr+1···αp
β1···βq −

q∑
k=1

RσβkµνT
α1···αp
β1···βk−1σβk+1···βp .

Equation (14.60) is a special case of Ricci’s identity.

14.21 The equation of a great circle in polar coordinates is cot θ = β sin(φ − α), where α, β are
constants. Using this equation, compute θ̈. Show that

θ̈ − sin θ cos θφ̇2 + β cos(φ− α) sin2 θ
(
φ̈+ 2 cot θφ̇θ̇

)
= 0 .

Argue that for this equation to be satisfied for all α and β, the geodesic equations on a sphere
must be satisfied.

14.22 Show that
∇νTµν = 1

√
g
∂ν(√gTµν) + ΓµνλT

λν .

Is there a “Gauss’s law” for Tµν for a curved manifold? What if Tµν is antisymmetric?

14.23 Show that the Killing equations on the unit sphere are given by

∂θξ
θ = 0 ∂φξ

θ + sin2 θ∂θξ
φ = 0 ∂φξ

φ + cot θξθ = 0 .

Use the results of Exercise 14.4. Show that the solutions to these equations are

ξθ = A sin(φ+ φ0) ξφ = A cot θ cos(φ+ φ0) +B ,

where A, B, and φ0 are constants. How many linearly independent Killing vectors are there
in this case? Is this a maximally symmetric space? Find values of A, B, and φ0 such that the
components of the three killing vectors are given by

ξ(1) = (sinφ, cot θ cosφ) ξ(2) = (cosφ,− cot θ sinφ) ξ(3) = (0, 1) .
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General relativity

15.1 INTRODUCTION

O UR exposition has brought together several theories of space, time, and motion. In pre-
relativistic physics space and time are absolute, existing independently of the contents of the

universe, and of each other. An instance of “now” is the same for every observer, at any point in the
universe. Space has the manifold structure of R3. Coordinates assigned to points xi are arbitrary, but
the distance between neighboring points, (ds)2 = aijdxidxj—where the metric a = diag(1, 1, 1),
is independent of coordinate system and describes an intrinsic property of space. The Christoffel
symbols vanish and the geodesic equation is d2xi/dt2 = 0. Free particles follow straight lines at
constant speed, xi = bi + vit (Newton’s first law). The Riemann tensor vanishes, and geodesics
do not deviate from each other. Einstein, in SR, modified the Newtonian framework by showing
that space and time do not have a separate existence, but together form an absolute spacetime that
has the manifold structure of R4. Coordinates xµ assigned to events are arbitrary, but the distance
between events, (ds)2 = ηαβdxαdxβ with η = diag(−1, 1, 1, 1), is independent of observer and
describes an intrinsic property of spacetime. The metric is constant, but with Lorentz signature. The
Christoffel symbols vanish and geodesics are described by d2xµ/dλ2 = 0. Worldlines of free parti-
cles are straight, xµ(λ) = aµ + bµλ, a geometric feature that all inertial observers agree upon. The
Riemann tensor vanishes, geodesics do not deviate, and we can establish a single coordinate system
that covers all of spacetime.

In GR, however (as we’ll see), Einstein showed that spacetime is not the passive, fixed backdrop
that it is in SR, but rather is physical, determined by the presence of matter, energy, and momentum.
Spacetime is modeled as a four-dimensional manifold with a metric field gµν(x) prescribed by
the (yet-to-be-established) Einstein field equation. In the framework of GR, gravity is not a force
in the usual sense, but is a manifestation of the curvature of spacetime. Whereas in Newtonian
mechanics tidal forces cause a relative acceleration between neighboring particles, in GR the same
acceleration is accounted for by geodesic deviation on a curved manifold. Just as a fictitious force
can be transformed away by changing to an IRF, the force of gravity can be transformed away
(locally) by changing to a freely falling reference frame. By the equivalence principle, a freely
falling frame is equivalent to an inertial frame in the absence of gravity, and is one in which the laws
of SR apply. At any point P of a manifold we can find coordinates in which the Christoffel symbols
vanish, (Γλµν)P = 0 (Section 14.4.4). At P then, (∂σgµν)P = 0, Eq. (14.24), and gµν |P = ηµν .
Before we write down Einstein’s equation for the metric field—and a truly new equation can only be
written down, not derived from something more fundamental—we show how gravitational effects
can be associated with the spacetime metric tensor.

275
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15.2 WEAK, STATIC GRAVITY
Suppose that in the neighborhood of a point in four-dimensional spacetime, the metric field has the
property

gµν(x) = ηµν + hµν(x) , (15.1)

where |hµν(x)| � 1, i.e., the Lorentz metric is perturbed by a tensor field hµν(x). Clearly hµν =
hνµ. We show that for a time-independent perturbation and for nonrelativistic speeds, the geodesic
equation takes the form of the Newtonian equation of motion in a gravitational field.

Let’s write the geodesic equation not in terms of the proper time, as in Eq. (14.51), but in terms
of the coordinate time x0 = ct. Under the change of variables τ = τ(t), the geodesic equation is,
from Eq. (14.53),

d2xν

dt2 + Γναλ
dxα

dt
dxλ

dt = −
(

dτ
dt

)2 d2t

dτ2
dxν

dt =
(

dτ
dt

)−1 d2τ

dt2
dxν

dt , (15.2)

where we’ve used the chain rule

d2t

dτ2 = d
dτ

(
dt
dτ

)
= dt

dτ
d
dt

(
dτ
dt

)−1
= −

(
dτ
dt

)−3 d2τ

dt2 .

From −c2(dτ)2 = (ds)2 = gµνdxµdxν and Eq. (15.1),

(dτ)2 = − 1
c2
gµνdxµdxν = − 1

c2
(ηµν + hµν)dxµdxν . (15.3)

Expand out the terms in Eq. (15.3) and divide by (dt)2:(
dτ
dt

)2
= 1− h00 −

2
c
h0i

dxi

dt −
1
c2

(ηij + hij)
dxi

dt
dxj

dt . (15.4)

Assuming nonrelativistic speeds, we have to lowest order in small quantities,

dτ
dt ≈

√
1− h00 ≈ 1− 1

2h00 . (15.5)

Using Eq. (15.5),
d2τ

dt2 ≈ −
1
2c∂0h00 . (15.6)

Using Eqs. (15.5) and (15.6), the term on the right of Eq. (15.2) is to lowest order(
dτ
dt

)−1 d2τ

dt2 ≈
− 1

2c∂0h00

1− 1
2h00

≈ −1
2c∂0h00 . (15.7)

The time and space components of Eq. (15.2) are, under the assumptions we’ve made:

Γ0
00 + 2

c
Γ0

0j
dxj

dt + 1
c2

Γ0
ij

dxi

dt
dxj

dt =− 1
2∂0h00

1
c2

d2xi

dt2 + Γi00 + 2
c

Γi0j
dxj

dt + 1
c2

Γijk
dxj

dt
dxk

dt =− 1
2c∂0h00

dxi

dt . (15.8)

Meanwhile, what about the Christoffel symbols? Substituting Eq. (15.1) into Eq. (14.23),

Γλµν = 1
2η

λρ (∂µhρν + ∂νhρµ)− 1
2∂

λhµν +O(h2) . (15.9)
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The Christoffel symbols thus start at first order in the perturbation—consistent with what we know
must hold: Γλµν → 0 as hαβ → 0. From Eq. (15.9) we find Γ0

00 = − 1
2∂0h00. The time component

in Eq. (15.8) thus starts at second order in small quantities and can be ignored.1 From Eq. (15.9),

Γi00 = ∂0hi0 −
1
2∂

ih00 Γi0j = 1
2 (∂0hij + ∂jhi0 − ∂ih0j) . (15.10)

We now set ∂0hµν = 0; our goal is to consider a time-independent perturbation to the geodesic
equation. Using Eq. (15.10), the spatial part in Eq. (15.8) is

1
c2

d2xi

dt2 = 1
2∂

ih00 −
1
c

(∂jhi0 − ∂ih0j)
dxj

dt , (15.11)

where we’ve kept second-order terms on the right of Eq. (15.11); we’ll wave them away shortly.
These terms look like a velocity-dependent force associated with a rotating coordinate system; we’ll
see them again when we consider frame dragging in Section 18.5. We’ll refer to a coordinate system
as nonrotating if ∂jhi0 − ∂ihj0 = 0. Thus, in a nonrotating coordinate system for small velocities
in a static field, Eq. (15.11) is

d2xi

dt2 = c2

2 ∂
ih00 . (15.12)

Compare Eq. (15.12) with the Newtonian equation of motion, mia = −mg∇Φ, where Φ is the
gravitational potential. With mg = mi, a = −∇Φ, or ai = −∂iΦ. Consistency with Newtonian
gravitation is achieved if we equate2

h00 = − 2
c2

Φ + constant . (15.13)

The constant can be set to zero: h00 vanishes as Φ → 0. We noted previously (Section 1.7.3) that
the gravitational potential has the dimension of velocity squared; Eq. (15.13) is consistent with the
starting assumption of |h00| small, or |Φ| � c2. Combining Eq. (15.13) with Eq. (15.1),

g00 ≈ −
(

1 + 2
c2

Φ
)
. (15.14)

Thus, the geodesic equation, an equation of motion for free particles in an arbitrary coordinate
system, has the form of the Newtonian equation of motion of a particle in a gravitational field
(nominally not a free particle) when the spacetime metric is perturbed from its value in SR.

15.3 THE EINSTEIN FIELD EQUATION

15.3.1 Motivation

Equation (15.14) illustrates a connection between gravitation, a physical effect, and the metric ten-
sor, a mathematical concept. It represents an evolution in Einstein’s view on the physicality of
spacetime. Whereas in SR he held that spacetime is independent (absolute) in its physical proper-
ties, having a physical effect, but not in itself influenced by physical conditions, in GR he contends
that physical conditions determine the spacetime metric. In doing so, he “breathes life” into the met-
ric tensor as a physical quantity. Let’s let Einstein speak for himself on how gravity is represented
by the spacetime metric tensor:

1The metric perturbation hµν is assumed small, and we’re assuming nonrelativistic speeds.
2What about the other terms, hµν for µ 6= 0, ν 6= 0? This method of analysis can only determine h00 in the limit of

weak gravity and nonrelativistic speeds—there is but one Newtonian field equation for gravity.
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· · · it follows that the quantities gστ are to be regarded from the physical standpoint as
the quantities which describe the gravitational field in relation to the chosen system of
reference. For, if we now assume the special theory of relativity to apply to a certain
four-dimensional region with the coordinates properly chosen, then the gστ have the
values given by ηστ . A free material point then moves, relatively to this system, with
uniform motion in a straight line. Then if we introduce new spacetime coordinates xµ,
by means of any substitution we choose, the gστ in this new system will no longer be
constants, but functions of space and time. At the same time the motion of the free
material point will present itself in the new coordinates as a curvilinear nonuniform
motion, and the law of this motion will be independent of the nature of the moving
particle. We shall therefore interpret this motion as a motion under the influence of a
gravitational field connected with the spacetime variability of gστ .[9, p120]

Let’s analyze this argument. In IRFs the worldlines of free particles are straight and the metric
tensor gµν = ηµν consists of constants. In terms of a new set of coordinates obtained under arbitrary
coordinate transformations (“substitutions”), worldlines of the same particles would not be straight,
gµν would contain functions of space and time, yet the description of motion would not depend on
inherent features of the particles. The free-fall motion of particles is likewise independent of ma-
terial composition (Eötvös-type experiments).3 We can therefore associate nonuniform worldlines
of otherwise free particles subject to gravitational fields with the spacetime variability of the metric
tensor—basically the equivalence principle argument repeated with arbitrary reference frames in-
stead of elevators. Einstein is saying that what we customarily associate with the manifestations of
a gravitational force is indistinguishable from the manifestations of the variability of the spacetime
metric field. Gravity is not a force in the usual sense of the word.

The fact of experience revealed by Eötvös-type experiments—free-fall worldlines independent
of the nature of the particle, depending only on initial conditions—cries out to be modeled with
geodesic curves,4 and suggests strongly that free-fall motion is controlled by the geometry of the
spacetime manifold. What laws might govern the gravitational field, seen as a geometric property of
spacetime? Harken back to pre-relativistic gravitation theory: The Newtonian gravitational potential
is specified by the Poisson equation,∇2Φ = 4πGρ(r), where ρ(r) is the local mass density function
(Table 1.1). In regions of space where ρ(r) is negligible, Φ satisfies the Laplace equation,∇2Φ = 0.
Of course, ∇2Φ = 0 does not imply Φ = 0; there are boundary conditions on Φ controlled by
nearby masses. Only if Φ = 0 everywhere can we say that gravitation is absent.5 In a spacetime with
Φ = 0 everywhere, free-particle worldlines are specified by d2xµ/dλ2 = 0, and the Riemann tensor
vanishes everywhere.6 Thus, to associate gravitation with spacetime geometry, the correspondence
Φ ↔ Rαβγδ is suggested. What property of the spacetime manifold would the Poisson equation
correspond to? Loosely speaking, the Laplacian operator involves second derivatives, and thus we
might expect a correspondence between ∇2Φ and a contraction of the Riemann tensor, the Ricci
tensor. Let’s examine the form of the Ricci tensor using Eq. (15.1) for the metric tensor. Ordinarily,
to find the Ricci tensor we must first have the Riemann tensor, which can be a daunting task to
evaluate. In this case, however, the Christoffel symbols begin at first order in the perturbation hµν ,
and thus products of Christoffel symbols can be ignored to lowest order. Thus, from Eq. (14.61),

Rαρµν = ∂µΓανρ − ∂νΓαµρ +O(h2) . (15.15)

3Free fall is defined on page 188.
4Through any point of a manifold there is a unique geodesic for given tangent vector.
5The Newtonian gravitational potential represents the work done per mass in bringing a test mass from a distant region

in which gravity vanishes into a region where a gravitational field exists, that produced by other masses.
6A necessary and sufficient condition for the metric tensor to consist of constant elements is that the Riemann tensor

vanish.[60, p25]
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Set α = µ in Eq. (15.15) and sum:

Rρν = ∂µΓµνρ − ∂νΓµµρ +O(h2) . (15.16)

In particular, R00 ≈ ∂µΓµ00 − ∂0Γµµ0 from Eq. (15.16), and, because we’re considering a time-
independent perturbation, set time derivatives to zero. Thus, R00 ≈ ∂iΓi00. Using Eqs. (15.10) and
(15.13), we have for R00 under the approximation of weak, static gravity:

R00 ≈ −
1
2∂i∂

ih00 = 1
c2
∇2Φ .

We thus have the correspondence c2R00 ↔ ∇2Φ in the weak-field limit. On the right side of the
Poisson equation is the mass density function, which through the equivalence of mass and energy
(E = mc2) represents an energy density. The Poisson equation can therefore be written:

R00 ≈
1
c2
∇2Φ = 4πG

c2
ρ = 4πG

c4
(
ρc2
)

= 4πG
c4

T00 , (15.17)

where ρc2 = T00 is an element of Tµν , the energy-momentum tensor for a perfect fluid, Eq. (10.17).

15.3.2 Writing it down

Equation (15.17) is not covariant, but it suggests a covariant generalization. Einstein proposed (in
October 1915) a simple proportionality between Rµν and Tµν ,

Rµν = κTµν , (wrong) (15.18)

where κ is a constant to be determined.7,8 He quickly realized, however (November 1915), that the
covariant divergence of the field equation must be zero. In flat spacetime, conservation of energy-
momentum of fields is associated with ∂νTµν = 0, Eq. (9.16); in curved spacetime we should have
∇νTµν = 0. The left side of Eq. (15.18) must therefore have zero covariant divergence (which it
does not). He was led to propose as a relativistic field theory of gravitation,

Rµν −
1
2gµνR = κTµν . (right) (15.19)

We showed in Section 14.6 that the combination of terms in Eq. (15.19) (now called the Einstein
tensorGµν ≡ Rµν− 1

2gµνR) has zero divergence,∇νGµν = 0. Equation (15.19) is the Einstein field
equation, the foundational equation for gravitational phenomena. We show that κ = 8πG/c4 below.
As noted in Section 14.6, the Einstein tensor has six independent components in four-dimensional
spacetime, yet the metric tensor has 10. That leaves four degrees of freedom—just enough to permit
a free choice of spacetime coordinate system (see Section 18.1.1). Table 15.1 compares GR with
Newtonian gravity.

15.3.3 Alternate form of the field equation

There is an equivalent way of writing Einstein’s equation that’s often more convenient. Start with
Eq. (15.19) and raise an index,

Rµν −
1
2δ

µ
νR = κTµν , (15.20)

7Equation (15.18) should not be underestimated. Einstein struggled for 10 years in his attempts to find a relativistic field
theory of gravity. You can’t get there from here: Equation (15.18) is fairly “outside the box” as compared with SR; getting
to Eq. (15.18) required Einstein’s deep insights into the nature of space, time, and gravity.

8Don’t we already have the proportionality constant in Eq. (15.17)? It turns out κ = 4πG/c4 is off by a factor of two.
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Table 15.1 Comparison of Newtonian gravitation with general relativity.
Newtonian gravitation General relativity (Λ = 0)

Field equation ∇2Φ = 4πGρ Rµν − 1
2gµνR = κTµν

Vacuum equation ∇2Φ = 0 Rµν = 0

No gravitational field Φ = 0 Rαβγδ = 0

where we’ve used gµν = δµν . Now set ν = µ in Eq. (15.20) and sum: R − 1
24R = κT , where

R = Rµµ, Eq. (14.96), 4 = δµµ , and where we’ve defined a scalar field associated with the energy-
momentum tensor, T ≡ Tµµ. Thus, R = −κT . Combine this result with Eq. (15.19), and we have
an equivalent form of the field equation,

Rµν = κ

(
Tµν −

1
2gµνT

)
. (15.21)

Clearly when Tµν = 0, Eq. (15.21) becomes the vacuum equation, Rµν = 0.

15.3.4 Determining the proportionality constant: κ = 8πG/c4

To evaluate the constant κ, we make use of the energy-momentum tensor for a perfect fluid, Eq.
(10.17) with ηµν → gµν : Tµν = (ρ + P/c2)UµUν + Pgµν . To construct the scalar T = Tµµ, raise
an index on Tµν and sum:

T = Tµµ =
(
ρ+ P

c2

)
UµUµ + Pδµµ =

(
ρ+ P

c2

)
(−c2) + 4P = −ρc2 + 3P , (15.22)

where we’ve used UαUα = −c2 (Section 7.1). We then have

Tµν −
1
2gµνT =

(
ρ+ P

c2

)
UµUν + 1

2gµν
(
ρc2 − P

)
. (15.23)

In the nonrelativistic limit U0 = −c, and thus

T00 −
1
2g00T = 1

2ρc
2 + 3

2P . (15.24)

As part of the “nonrelativistic limit” we assume that ρc2 � P . This approximation is almost always
valid; we ignore the pressure term here. Combining Eqs. (15.24) and (15.21), we have in the weak-
field limit

R00 ≈
1
c2
∇2Φ = κ

(
T00 −

1
2g00T

)
= 1

2κρc
2 = 4πGρ

c2
. (15.25)

With κ = 8πG/c4, Einstein’s equation agrees with Poisson’s equation in its domain of validity.9

With κ determined, Einstein’s equation is completely specified. Once specified, there is no “wig-
gle room”—either its predictions agree with the results of experiment or they do not. Determining
κ by requiring that Eq. (15.19) reproduce the Poisson equation for weak fields is standard practice

9Einstein’s equation is sometimes written with the value of κ = −8πG/c4. There are two reasons for this. One is the
“other” choice of Lorentz metric, η = diag(1,−1,−1,−1). However, even with this metric one also sees κ as given by
κ = 8πG/c4. The definition of the Ricci tensor is not standard. Whereas we have taken the Ricci tensor as the contraction
of the first and third indices of the Riemann tensor, Rαβ = Rρ

αρβ
, the Ricci tensor is also defined as the contraction over

the first and last indices, Rµν = Rαµνα, leading to another source of minus sign. Beware!
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in theoretical physics, “nailing down” unknown parameters by seeking agreement with previously
established theories in their domains of validity. This method does not guarantee that Eq. (15.19) is
correct for all gravitational phenomena, it merely asserts that the theory is not obviously wrong in
the nonrelativistic limit. Even for weak fields, however, GR predicts new phenomena not contained
in the Newtonian theory (precession of orbits, deflection of light, etc.—see Chapter 17). Whether
Eq. (15.19) allows us to interpret phenomena for strong gravitational effects remains to be seen. In
the 100 years of its existence, GR has successfully met every test. Tomorrow, however, discoveries
may be made that are not consistent with the framework of GR, in which case modifications to the
theory will be required.

15.3.5 The cosmological constant

Speaking of wiggle room, Einstein later realized (in 1917) that the field equation could be modified
and still satisfy the Bianchi identity. Because ∇νgµν = 0, a term proportional to the metric tensor,
Λgµν could be added to Eq. (15.19), where Λ is a constant:

Rµν −
1
2gµνR+ Λgµν = 8πG

c4
Tµν . (15.26)

The parameter Λ must have dimensions of (length)−2 so that 1/
√
|Λ| is a length. Current estimates

are Λ ≈ 10−52 m−2, so that 1/
√
|Λ| ≈ 1026 m (1010 ly). Thus, Λ is associated with length scales

comparable to the size of the universe—hence the term cosmological constant. Experimental tests
of GR on the scale of the solar system ignore Λ.

15.4 LAGRANGIAN FORMULATION
Einstein’s field equation, which one can say is the result of inspired guesswork, can be derived from
Hamilton’s principle.10 One requires a Lagrangian density of the gravitational field, Lg , such that
the action integral S =

∫
V

Lgd4x, where V is a region of spacetime bounded by a hypersurface is
stationary under suitable variations, δS = 0. The gravitational field is associated with derivatives
of the metric tensor; we vary S by varying the metric11 gµν → gµν + δgµν , where δgµν = 0 on
the boundary of V . Having a method for deriving Einstein’s equation provides a framework for
including the coupling of physical fields to gravity. Of course, Hamilton’s principle only reproduces
that which is already known, but the more ways you have of looking at a problem the better.12 It
turns out that having a variational approach to Einstein’s equation is highly significant.

15.4.1 Vacuum equation: Rµν = 0
How do we find Lg? We require that it be a scalar density, so it should be a function of scalars made
up out of the metric tensor and its derivatives. Effectively the only scalar we can obtain from the
Riemann tensor is the Ricci scalar field,13 R. The mathematician David Hilbert took Lg =

√
−gR,

10Variational calculus and Hamilton’s principle are reviewed in Appendix D.
11A change in coordinates induces a change in metric tensor, and S, a scalar, must be the same in all coordinate systems.
12From Richard Feynman:[32] “Theories of the known, which are described by different physical ideas, may be equiva-

lent in all their predictions and hence scientifically indistinguishable. However, they are not psychologically identical when
trying to move from that base to the unknown. For different views suggest different kinds of modifications which might be
made and hence are not equivalent in the hypotheses one generates from them in one’s attempt to understand what is not yet
understood.”

13The scalar field Rαα is the only invariant that can be obtained from the Riemann tensor made up of the metric tensor
gαβ as well as its first and second derivatives and that’s linear in the second derivatives.[41, Appendix II] If one tried any
other scalar fields such as RµνRµν or RαβγδRαβγδ , one would obtain equations involving fourth-order derivatives of the
metric, outside of the customary class of equations in physics.
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which14 (as we’ll show) leads to the Einstein vacuum equation under δS = 0. We can include Λ by
replacing R→ R− 2Λ (see Eq. (15.26)). The action integral for the gravitational field (the Hilbert
action) is

S =
∫
V

(R− 2Λ)
√
−g d4x . (15.27)

The quantity R = gρνRρν , where Rρν = Rαραν is (from the definition of the Riemann tensor),

Rρν = ∂µΓµνρ − ∂νΓµµρ + ΓµµβΓβνρ − ΓµνβΓβµρ . (15.28)

Thus, to vary S we require δgαβ , δ
√
−g, and δRµν . The first two are straightforward. From

gαβgβγ = δαγ ,
δgρα = −gρνgαβδgνβ . (15.29)

Using Eq. (14.32),

δ
√
−g = 1

2
√
−ggαβδgβα = −1

2
√
−ggαβδgαβ . (15.30)

The third type of variation δRµν entails a fairly involved calculation. The reader who is uninterested
in the details should skip to Eq. (15.39).

The variation in Christoffel symbols is, using Eq. (14.23),

δΓλµν = 1
2g

λρ (∂µδgρν + ∂νδgρµ − ∂ρδgµν) + 1
2δ(g

λρ) (∂µgρν + ∂νgρµ − ∂ρgµν) . (15.31)

Combining Eqs. (15.29) and (15.31), it’s straightforward to show that

δΓλµν = −gλα(δgαβ)Γβµν + 1
2g

λρ (∂µδgρν + ∂νδgρµ − ∂ρδgµν) . (15.32)

Next we make use of the covariant derivative of terms like

∇µδgρν = ∂µδgρν − Γσµρδgσν − Γσµνδgρσ , (15.33)

where we’ve used Eq. (14.14). It can then be shown that for the terms in Eq. (15.32),

∂µδgρν + ∂νδgρµ − ∂ρδgµν = ∇µδgρν +∇νδgρµ −∇ρδgµν + 2Γσµνδgρσ . (15.34)

Combining Eqs. (15.34) and (15.32),

δΓλµν = 1
2g

λρ [∇µδgρν +∇νδgρµ −∇ρδgµν ] . (15.35)

From Section 14.1.4 we know that δΓλµν , the difference between two connections, is a tensor, and
because δΓλµν is a tensor, we can form its covariant derivative

∇κ(δΓλµν) = ∂κ(δΓλµν) + ΓλκσδΓσµν − ΓσκµδΓλσν − ΓσκνδΓλµσ , (15.36)

where we’ve used Eq. (14.14). Using Eq. (15.36), we arrive at an intermediate result:

∇κ(δΓλµλ)−∇λ(δΓλµκ) = ∂κ(δΓλµλ)−∂λ(δΓλµκ) + ΓλκσδΓσµλ−ΓσκµδΓλσλ−ΓλλσδΓσµκ+ ΓσλµδΓλσκ .
(15.37)

We have set ν = λ in Eq. (15.36) and then subtracted from it the version of Eq. (15.36) where we
first let κ → λ and then ν → κ. Comparing Eq. (15.37) with Eq. (15.28), it’s straightforward to
show that (Palatini’s identity)

δRµκ = ∇λ(δΓλµκ)−∇κ(δΓλµλ) . (15.38)

14See Section 5.2 for making integrals relativistically invariant with the inclusion of
√
−g.
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To vary the Hilbert action, Eq. (15.27), we need to form the variation

δ
(
[gρνRρν − 2Λ]

√
−g
)

= (R− 2Λ)δ
√
−g +

√
−g (gρνδRρν +Rρνδg

ρν) . (15.39)

The δRρν term in Eq. (15.39) leads to a four-divergence. Using Eq. (15.38),

gρνδRρν =∇λ(gρνδΓλρν)−∇ν(gρνδΓλρλ) = 1√
−g

∂σ(
√
−ggρνδΓσρν)− 1√

−g
∂σ(
√
−ggρσδΓλρλ)

= 1√
−g

∂σ
(√
−g[gρνδΓσρν − gρσδΓλρλ]

)
≡ 1√

−g
∂σ
(√
−gWσ

)
,

where we’ve used Eq. (14.35) and we’ve taken gρν inside the covariant derivative. Thus,√
−ggρνδRρν = ∂σ (

√
−gWσ), a four-divergence. The integral of ∂σ (

√
−gWσ) over V becomes

an integral ofWσ on the hypersurface bounding V , which vanishes because δgµν = 0 on the bound-
ary. The variation δRρν therefore does not make a contribution to the variational problem; the Ricci
tensor is effectively a constant for the purposes of doing variational calculations. Thus,

δS =
∫
V

[
(R− 2Λ)δ

√
−g

δgµν
+
√
−gRµν

]
δgµν d4x . (15.40)

Using Eq. (15.30) in Eq. (15.40), we have, comparing with Eq. (15.27)

δS =
∫
V

δLg

δgµν
δgµνd4x =

∫
V

[
Rαβ −

1
2gαβ(R− 2Λ)

]
δgαβ

√
−gd4x . (15.41)

The requirement δS = 0 under variations of the metric thus results in the Einstein vacuum equation.

15.4.2 Matter fields

Can we obtain the full field equation from a variational treatment? We enlarge the scope of the action
S =

∫
L d4x to include the Lagrangian of matter fields,15 Lm, such that the total Lagrangian

L = Lg + αLm, where α is a constant. Invariance of S implies that

δS =
∫
V

[
δLg

δgµν
+ α

δLm

δgµν

]
δgµνd4x = 0 . (15.42)

We “want” the terms in square brackets to be Einstein’s equation, (15.26). That can be achieved by
defining the energy-momentum tensor density such that

√
−gTµν ≡ −

α

κ

δLm

δgµν
. (15.43)

We can take the derivative in Eq. (15.43) by writing Lm =
√
−g (Lm/

√
−g), with the result:

√
−gTµν = gµνLm − 2δ(Lm/

√
−g)

δgµν
, (15.44)

where we’ve used Eq. (15.30) and we’ve set16 α = 2κ. We see from Eq. (15.44) that among the
fields {Φα} represented by Lm(Φα,∇µΦα) we must include the metric field gµν as well. The
description of a physical system must include the metric field gµν as a fundamental field.

Equation (15.44) is not in the form of Eq. (9.15), the form of Tµν from Noether’s theorem, which
satisfies conservation laws ∂νTµν = 0, but is not necessarily symmetric (Section 9.4).17 While Tµν

15In GR, nongravitational fields are referred to as “matter” fields, which include the electromagnetic field.
16Taking α = 2κ reproduces known energy-momentum tensors.
17The energy-momentum tensor must be symmetric to conserve angular momentum; Section 9.3.
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as defined by Eq. (15.44) is symmetric, does it satisfy ∇νTµν = 0? Until that’s been established,
Eq. (15.44) is not an acceptable definition of Tµν . To check this point, we adopt the approach of
Noether’s theorem, that the action be invariant under a change in coordinates. Technically, however,
that’s difficult: We must connect a general coordinate transformation with a variation in the metric.
The two are of course related: A variation in the metric is tantamount to a change of coordinates.

We consider an infinitesimal coordinate transformation xµ → x′µ = xµ + ξµ(x), where ξµ(x)
is an infinitesimal smooth vector field. As a type (0, 2) tensor, gµν transforms as

g′µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) = [δρµ − ∂µξρ(x)][δσν − ∂νξσ(x)]gρσ(x)

=gµν(x)− gµσ(x)∂νξσ(x)− gρν(x)∂µξρ(x) +O(ξ)2 , (15.45)

where we’ve inverted ∂x′µ/∂xρ = δµρ + ∂ρξ
µ to first order in ξ to obtain ∂xρ/∂x′µ. A variation is

an infinitesimal change in functional form at a single point, Eq. (D.6). Thus,

δgµν(x) ≡g′µν(x)− gµν(x) = [g′µν(x′)− gµν(x)]− [g′µν(x′)− g′µν(x)] (15.46)

=[g′µν(x′)− gµν(x)]− ξσ∂σg′µν(x) = [g′µν(x′)− gµν(x)]− ξσ∂σgµν(x) +O(ξ2) .

Use Eq. (15.45) in Eq. (15.46):

δgµν(x) =− gµσ(x)∂νξσ(x)− gρν(x)∂µξρ(x)− ξσ∂σgµν(x)
=−£ξgµν = − (∇µξν +∇νξµ) , (15.47)

where we’ve used Eqs. (13.22) and (14.29).
From Eq. (15.42), the variation in the nongravitational action is (with α = 2κ)

δSm =2κ
∫
V

δLm

δgµν
δgµνd4x = −1

2

∫
V

Tµνδg
µν√−gd4x

=1
2

∫
V

Tµνδgµν
√
−gd4x =

∫
V

Tµν∇µξν
√
−gd4x , (15.48)

where we’ve used Eqs. (15.29), (15.43) and (15.47). Then, using Tµν∇µξν = ∇µ (Tµνξν) −
ξν∇µTµν , Eq. (15.48) becomes

δSm =
∫
V

∇µ(Tµνξν)
√
−gd4x−

∫
V

ξν∇µTµν
√
−gd4x . (15.49)

The first integral in Eq. (15.49) vanishes: It contains a covariant divergence which can be converted
into a surface integral and the functions ξµ(x) vanish on the boundary. Having δSm = 0 thus
requires the second integral in Eq. (15.49) to vanish. Because the ξµ are arbitrary,

∇µTµν = 0 . (15.50)

The energy-momentum tensor defined by Eq. (15.43) has vanishing covariant divergence if the ac-
tion for matter fields is a scalar.18

We can now formulate the gravitational field equations for systems where gravity couples to
matter fields. Take L = (R − 2Λ)

√
−g + 2κLm; this generates from δS = 0 Einstein’s equation

in the form Gµν + Λgµν = κTµν , where Tµν is given by Eq. (15.43). Note that the coupling
between spacetime curvature and energy-matter fields occurs without explicit specification of the
fields themselves; all we require is that there is an energy-momentum tensor associated with the
field. The geometry thus does not distinguish between physically different types of fields if they have
the same energy-momentum distribution. This is the general relativistic version of the equivalence
principle. We now show that Eq. (15.43) gives expected results for Tµν .

18The connection between∇µTµν = 0 and conservation laws is discussed in Section 18.9.
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15.4.2.1 Electromagnetic field

For the electromagnetic field,19 LF /
√
−g = −FαβFαβ/(4µ0) (Section 8.9.2). From Eq. (15.44),

−µ0Tµν = 1
4gµνF

αβFαβ −
1
2
δ(FαβFαβ)

δgµν
. (15.51)

To take the derivative in Eq. (15.51), note that FαβFαβ = gαλgβσFλσFαβ . Then,

δ(FαβFαβ)
δgµν

= FλσFαβ
(
gαλδβµδ

σ
ν + gβσδαµδ

λ
ν

)
= −2gαλFµαFλν . (15.52)

Combining Eqs. (15.52) and (15.51),

−µ0Tµν = 1
4gµνF

αβFαβ + gαλFµαFλν , (15.53)

the symmetric energy-momentum tensor for the electromagnetic field, θµν (Exercise 9.3).

15.4.2.2 Perfect fluid

Equation (15.44) reproduces Tµν for the perfect fluid. To show this is more difficult than the previous
example: We need to vary the metric subject to the constraints of constant entropy and particle
number, and to do that requires some thermodynamics.

In Chapter 10 we found it convenient to work with per-mass or per-volume quantities. Here it
will be convenient to work with per-particle quantities. The number density in the rest frame is
n = N/V . The enthalpy per particle w ≡ H/N = (E + PV )/N = (ρc2 + P )/n, where E =
ρc2V is the rest-mass energy contained in V . An exact rewrite of the first law of thermodynamics
(dE = TdS − PdV ) for fixed N is d(ρc2) = nTds + wdn, where s ≡ S/N is the entropy per
particle. We can therefore take ρ as a function of the independent variables s and n, ρ = ρ(s, n),
and hence the total differential dρ = (∂ρ/∂s)nds + (∂ρ/∂n)sdn. Comparing with the first law of
thermodynamics, we have the desired thermodynamic identity(

∂ρ

∂n

)
s

= w

c2
= 1
n

(
ρ+ P/c2

)
. (15.54)

We define the particle current vector density20 Nµ ≡ nUµ
√
−g. Contracting this quantity with

itself, NµNµ = n2UµUµ(−g) = n2c2g, and thus the total density (in the rest frame) is

n = 1
c

√
gαβNαNβ/g . (15.55)

We vary n with respect to the metric, keeping the particle number fixed, δNµ = 0,

δn = 1
2nc2

[
δgαβ
g

NαNβ − gαβ
g2 N

αNβδg

]
= −n2

[
δgαβ

UαUβ

c2
+ δg

g

]
=n

2

[
UαUβ
c2

+ gαβ

]
δgαβ . (15.56)

We can now apply Eq. (15.44) to the ideal fluid, for which L = −ρc2, Eq. (10.29):

Tµν = −gµνρc2 + 2c2 δρ

δgµν
. (15.57)

19Note the factor of
√
−g, something we should have been including all along;

√
−g = 1 in SR.

20Differs from the definition in Section 10.4 by the factor of
√
−g.
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The variation of ρ, holding the entropy fixed, is obtained from Eqs. (15.54) and (15.56):

δρ =
(
∂ρ

∂n

)
s

δn = w

c2
δn = 1

2(ρ+ P/c2)
(
UαUβ
c2

+ gαβ

)
δgαβ . (15.58)

Combining Eqs. (15.57) and (15.58),

Tµν = Pgµν + (ρ+ P/c2)UµUν , (15.59)

the same as Eq. (10.17) except for the replacement ηµν → gµν .

15.4.2.3 Is Eq. (15.43) cheating?

One might think that defining Tµν in terms of Lm, Eq. (15.43), is facile because it’s guaranteed to
reproduce the form of Einstein’s field equation. We’ve just given two examples where the “recipe”
of Eq. (15.44) reproduces previously established results21 for Tµν , and it leads to ∇νTµν = 0.
Carrying it a step further, combining Eqs. (15.43) and (15.42), we have that (requiring δS = 0),

κTµν = 1√
−g

δLg

δgµν
= Gµν + Λgµν , (15.60)

where the second equality is from Eq. (15.41). Equation (15.60) is a change in emphasis from how
GR is usually presented, that energy-momentum, as represented by Tµν , causes the curvature of
spacetime through Gµν = κTµν (setting Λ = 0). The interpretation of Eq. (15.60) is that the extent
to which Gµν 6= 0, is the energy-momentum of non-gravitational fields, κTµν = Gµν . The usual
interpretation of Gauss’s law,∇·E = ρ/ε0 is that ρ controls the divergence ofE. Turning it around,
as in Eq. (15.60), charge does not cause a non-zero divergence of E, charge is the non-vanishing
divergence of the electric field; charge is quantified by the extent to which∇ ·E 6= 0. In this view,
“matter” (energy-momentum) does not cause the non-vanishing ofGµν , matter is the non-vanishing
of Gµν ; matter is described by Gµν 6= 0.

15.5 DUST
In GR, dust is a pressure-free perfect fluid; such a system is of interest because an exact solution
of Einstein’s field equation can be found. A pressureless “fluid” can be visualized as a collection of
particles that move in an orderly fashion and interact with each other only gravitationally.22

For the energy-momentum tensor of dust, set P = 0 in Eq. (15.59), Tµν = ρUµUν , and thus the
field equation Gµν = κρUµUν . Because∇νGµν = 0, the equation of motion for dust is buried in

∇ν(ρUµUν) = 0 , (15.61)

Equation (15.61) is equivalent to both23

∇ν (ρUν) = 0
Uν∇νUµ = 0 . (15.62)

The first relation in Eq. (15.62) is the generalization of Eq. (10.25) (conservation of particle number)
to GR. The second is the equation for a geodesic, Eq. (14.50).

21Hawking and Ellis give two other examples—the Klein-Gordon field and a charged scalar fied.[38, pp67–70]
22Think of an ideal gas having no pressure—it would have no temperature; there would be no randomness to the motion

of the atoms. Pressure arises from short-range internal forces between the atoms of a fluid; Section 10.1.2.
23First show that Uα∇νUα = 0. Start from ∇ν(UαUα) = 0 (because UαUα = −c2); use metric compatibility to

show that Uα∇νUα = Uα∇νUα. Then expand Eq. (15.61):∇ν(ρUµUν) = Uµ∇ν(ρUν)+ρUν∇νUµ = 0. Contract
this equation with Uµ to conclude that∇ν(ρUν) = 0 and hence that Uν∇νUµ = 0.
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These results are significant for the theory, although it might not appear so at first sight. It would
be natural to surmise that of course free particles follow geodesic curves with zero four-acceleration.
Bear in mind that Eq. (15.62) is a consequence of the general relativistic field equation. Each particle
brings with it the energy-momentum that determines the local curvature of spacetime that in turn
determines the motion, and hence the energy-momentum. The theory provides a self-consistent
mechanism that embodies Wheeler’s adage: Matter tells space how to curve, space tells matter
how to move. Contrast with the electromagnetic field, where the field equations, i.e., Maxwell’s
equations, do not determine the equation of motion. If you follow the steps leading to the covariant
equation of motion for a charged particle, Eq. (8.43), it relies upon the form of the Lagrangian
for a charged particle, which in turn relies on the Lorentz force having been put in “by hand”;
Section D.5. There’s nothing like that in GR: The field equations determine the equation of motion.
The distinction between gravitational and electromagnetic fields lies in the nonlinear nature of the
Einstein equations. This discussion is continued in Section 18.9.

SUMMARY
• Einstein’s field equation is Rµν − 1

2gµνR + Λgµν = κTµν , where κ = 8πG/c4 and Λ is a
constant. The value of κ is obtained by requiring that it reproduce the Poisson equation in the
limit of weak, static gravity. An alternate way to write the Einstein equation isRµν = κ(Tµν−
1
2gµνT ) + Λgµν where T ≡ Tλλ . The unknown parameter Λ has dimension (length)−2; it’s
sufficiently small that 1/

√
Λ is comparable to the size of the universe. Tests of GR on the

scale of the solar system ignore Λ.

• The field equation can be derived by varying the action S =
∫

L d4x with respect to the
metric, where L = (R− 2Λ)

√
−g+ 2κLm, with Lm the Lagrangian density for nongravi-

tational fields. The fact that there is the same factor of κ for any Lm is the general relativistic
version of the equivalence principle: Gravity couples to all fields in the same manner.

EXERCISES

15.1 Show that Eq. (15.26) can be written

Rµν = κ

(
Tµν −

1
2gµνT

)
+ Λgµν .

Hint: Show that R = 4Λ− κT .

15.2 Show that Tµνδgµν = −Tαβδgαβ . Use Eq. (15.29).

15.3 Suppose in Eq. (15.24) we did not assume ρc2 � P . Show that the Poisson equation would
then be given by ∇2Φ = 4πG(ρ + 3P/c2). Even in Newtonian gravity there is an implied
“E = mc2” because pressure has the dimension of energy density and P/c2 has the dimen-
sion of mass density.

15.4 Show that ∂ν (
√
−ggρν) = −

√
−ggαβΓραβ . There are several parts to showing this result.

You’ll need Eq. (14.33), ∂λg = ggαβ∂λgαβ . You’ll also need ∂λgαβ = −gαβgργ∂λgβγ , Eq.
(15.29). Next take the definition of Γαµν and contract with gµν .

15.5 Show that ∂µ (
√
−ggρν) = −

√
−g
(

Γρµλgλν + Γνµλgρλ − Γαµαgρν
)

. Use Eq. (14.33), the
fact that∇µgρν = 0,∇µgαβ = 0, and Eq. (14.14). Does this expression agree with the result
of Exercise 15.4 when you set µ = ν and sum? Extra credit if you recall Exercise 14.7.
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15.6 In deriving the Einstein equation from a variational principle (Section 15.4), we varied the
action with respect to gµν and obtained the field equation with covariant indices, Gµν +
Λgµν = κTµν when we defined Tµν as in Eq. (15.44). Suppose we had chosen instead to
vary with respect to gµν? Show that the field equation is obtained with contravariant indices
by varying the action with respect to gµν if we define

√
−gTµν = 2δLm

δgµν
= gµνLm + 2δ(Lm/

√
−g)

δgµν
.

This result can be obtained either from the variational principle or by starting from Eq. (15.44)
and applying Eq. (15.29).

15.7 We found in Section 15.4.1 that starting from the Hilbert action for the gravitational field
(S =

∫
(R − 2Λ)

√
−gd4x), in forming the variation δS, the variation δRρν is equivalent

to a four-divergence (
√
−ggρνδRρν = ∂σ(

√
−gWσ)), and makes no contribution to the

vacuum equation. Instead of having to discover this in a variational calculation, is it possible
to explicitly display the four-divergence from the outset? Show that
√
−gR =

√
−ggρνRρν =

√
−ggρν

(
ΓµαρΓαµν − ΓµνρΓαµα

)
+ ∂σ

(√
−gV σ

)
. (P15.1)

a. Contract Eq. (15.28) with
√
−ggρν ,

√
−ggρνRρν =

√
−ggρν∂µΓµνρ −

√
−ggρν∂νΓµµρ +

√
−ggρν

(
ΓµµβΓβνρ − ΓµνβΓβµρ

)
.

b. To the two terms involving derivatives, apply the product rule of calculus,

∂µ
(√
−ggρνΓµνρ

)
=
√
−ggρν∂µΓµνρ + Γµνρ∂µ

(√
−ggρν

)
.

Show that we then have the intermediate result
√
−ggρνRρν =Γµµρ∂ν

(√
−ggρν

)
− Γµνρ∂µ

(√
−ggρν

)
+
√
−ggρν

(
ΓµµβΓβνρ − ΓµνβΓβµρ

)
(P15.2)

+ ∂σ
(√
−gV σ

)
,

where we have the four-divergence of V σ ≡ gρνΓσνρ − gρσΓµµρ.

c. Show that Eq. (P15.1) follows from Eq. (P15.2) using the results of Exercises 15.4 and
15.5. Thus, instead of

√
−gR as the Lagrangian density, we have an equivalent La-

grangian,24 which we’ll denote as L ≡
√
−ggρν

(
ΓµαρΓαµν − ΓµνρΓαµα

)
. The significance

of L is that it contains only first derivatives of the metric tensor, whereas R contains
second derivatives (Exercise 14.16). We’ll use this fact in Section 18.9.

24Two Lagrangians can differ by the derivative of a function that vanishes on the boundary of the variation domain and
yield the same equation of motion.
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The Schwarzschild metric

T HE Schwarzschild metric is a static, spherically symmetric solution of the Einstein vacuum
equation Rµν = 0, such as would apply exterior to a spherical, nonrotating mass1 where the

mass density is presumed small enough that Tµν ≈ 0 (and Λ = 0). The Schwarzschild metric is
one of a handful of exact solutions of the Einstein equation, and is undoubtedly the most important.
There are small but measurable effects that occur in Schwarzschild spacetime, and such measure-
ments constitute a crucial part of the extent to which GR has been quantitatively tested.

16.1 STATIC, SPHERICALLY SYMMETRIC SPACETIME METRICS

16.1.1 Static vs. stationary spacetimes

A spacetime is said to be stationary if it has a timelike Killing field, ξµ. Along a Killing field the
metric tensor is invariant; a timelike Killing vector is the requirement that the metric is preserved
under time translations. A spacetime is said to be static if it has a timelike Killing field ξµ that’s
hypersurface orthogonal.2 Static spacetimes are stationary, but stationary spacetimes are not static.

The difference between the two is that stationary spacetimes have metric tensors that are time-
translation symmetric, t → t + constant, whereas for static spacetimes the metric is also time-
reflection invariant, t→ −t.[37, p120] For a static spacetime, g0i = 0, i.e., “time” (timelike Killing
vector) has no projection onto spatial axes (such as found in a rotating coordinate system, Section
12.3.1). The metric for a static spacetime therefore has the form

(ds)2 = −U(x1, x2, x3)(dx0)2 +
3∑

ij=1
gij(x1, x2, x3)dxidxj ,

where xi are hypersurface coordinates. The Schwarzschild solution presumes a static spacetime.

16.1.2 Spherical symmetry

Having defined static spacetime, a spherically symmetric spacetime is one whose metric remains
invariant under rotations. We should therefore build the metric out of rotational invariants, which
for coordinates x and their differentials dx are x ·x, x · dx, and dx · dx. A spherically symmetric,
static spacetime interval has the form

(ds)2 = −F (r)(dx0)2 +D(r)(x · dx)2 + C(r)dx · dx ,

1We can conceive of the region exterior to a star, except real stars rotate.
2A vector field ξµ is hypersurface orthogonal if it satisfies ξ[α∇βξγ] = 0.[37, p436]
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where F , D, and C are functions of r ≡
√
x · x. In spherical coordinates the invariants are r2, rdr,

and (dr)2 + r2((dθ)2 + sin2 θ(dφ)2). With these substitutions,

(ds)2 = −F (r)(dx0)2 +
[
D(r)r2 + C(r)

]
(dr)2 + C(r)r2((dθ)2 + sin2 θ(dφ)2) .

If we now redefine the radial coordinate r̃ ≡ r
√
C(r), we can write

(ds)2 = −A(r̃)(dx0)2 +B(r̃)(dr̃)2 + r̃2((dθ)2 + sin2 θ(dφ)2 ,

where A and B are yet other functions. At this point we simply erase the tilde, and start with the
form of the Schwarzschild metric,

(ds)2 = −A(r)(cdt)2 +B(r)(dr)2 + r2 ((dθ)2 + sin2 θ(dφ)2) . (16.1)

The angular terms are often denoted (dΩ)2 ≡ (dθ)2 + sin2 θ(dφ)2. In matrix form,

[gαβ ] =


−A(r) 0 0 0

0 B(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (16.2)

If A = B = 1 we recover the Lorentz metric in spherical coordinates. The task is to find functions3

A and B such that Rµν = 0. To get the Ricci tensor we require the Christoffel symbols.4

16.2 RICCI TENSOR FOR THE SCHWARZSCHILD METRIC
We reproduce the formula for the Christoffel symbols,

Γαµν = 1
2g

αρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (14.23)

For an n-dimensional space, there would be n3 possible connection coefficients (64 for n = 4). That
number is reduced because of symmetry in the lower indices: There are n2(n + 1)/2 independent
Christoffel symbols (40 for n = 4). The Schwarzschild metric is diagonal, however, which reduces
the number of calculations we must do. Equation (14.23) shows that for an orthogonal coordinate
system (gαβ = 0 for β 6= α), Γαµν = 0 if α 6= µ 6= ν. How many ways are there for the indices
to not all be different? For each α, there are n terms Γαµµ and n − 1 independent terms Γααν where
ν 6= α. Thus, there are n(2n − 1) possibly nonzero terms (28 for n = 4). Table 16.1 shows the
Christoffel symbols associated with the Schwarzschild metric; only nine are nonzero.

We reproduce the formula for the elements of the Ricci tensor,

Rρν = ∂µΓµνρ − ∂νΓµµρ + ΓµµβΓβνρ − ΓµνβΓβµρ . (15.28)

Using Table 16.1 we find from direct calculations that Rρν = 0 for ρ 6= ν. For the diagonal terms
we find:

Rtt = ∂rΓrtt + Γrtt
[
Γrrr + Γθθr + Γφφr − Γtrt

]
= A′′

2B −
A′

4B

(
B′

B
+ A′

A

)
+ A′

rB
; (16.3)

3Equations (16.1) and (16.2) are the form of static, spherically symmetric spacetime metrics. They become the
Schwarzschild metric when we find A(r) and B(r) such that Rµν = 0. For brevity we’ll refer to Eqs. (16.1) and (16.2) as
the Schwarzschild metric until such a time when A and B are so determined.

4There is a recipe involved in GR that you’ll get to know: gαβ → Γαβγ → Rαβγδ → Rµν → R→ Gµν .
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Table 16.1 Christoffel symbols Γαµν for the Schwarzschild metric.

α = t α = r
Γttt = Γtrr = Γtθθ = Γtφφ = Γttθ = Γttφ = 0 Γrrt = Γrrθ = Γrrφ = 0

Γttr = 1
2g
tt∂rgtt = A′

2A Γrrr = 1
2g
rr∂rgrr = B′

2B

Γrtt = − 1
2g
rr∂rgtt = A′

2B
Γrθθ = − 1

2g
rr∂rgθθ = − r

B

Γrφφ = − 1
2g
rr∂rgφφ = − r

B
sin2 θ

α = θ α = φ

Γθθθ = Γθtt = Γθrr = Γθθt = Γθθφ = 0 Γφφφ = Γφtt = Γφrr = Γφθθ = Γφφt = 0
Γθφφ = − 1

2g
θθ∂θgφφ = − sin θ cos θ Γφφθ = 1

2g
φφ∂θgφφ = cot θ

Γθθr = 1
2g
θθ∂rgθθ = r−1 Γφφr = 1

2g
φφ∂rgφφ = r−1

Rrr =− ∂r
(

Γtrt + Γθθr + Γφφr
)

+ Γtrt
(
Γrrr − Γtrt

)
+ Γθθr

(
Γrrr − Γθθr

)
+ Γφφr

(
Γrrr − Γφφr

)
=− A′′

2A + A′

4A

(
B′

B
+ A′

A

)
+ B′

Br
; (16.4)

Rθθ =− ∂θΓφφθ + ∂rΓrθθ + Γrθθ
(
Γtrt + Γrrr

)
−
(

Γφθφ
)2

=1− 1
B

+ r

2B

(
B′

B
− A′

A

)
; (16.5)

Rφφ =∂θΓθφφ + ∂rΓrφφ + Γrφφ
(
Γtrt + Γrrr

)
− ΓθφφΓφθφ

= sin2 θ

[
1− 1

B
+ r

2B

(
B′

B
− A′

A

)]
= sin2 θRθθ . (16.6)

16.3 THE VACUUM SOLUTION
We seek solutions of the Einstein vacuum equation, Rµν = 0. From Eqs. (16.3)–(16.6):

Rtt =A′′

2B −
A′

4B

(
B′

B
+ A′

A

)
+ A′

rB
= 0 Rrr = −A

′′

2A + A′

4A

(
B′

B
+ A′

A

)
+ B′

Br
= 0

Rθθ =1− 1
B

+ r

2B

(
B′

B
− A′

A

)
= 0 .

We have three second-order, coupled, nonlinear differential equations for two functions, A(r) and
B(r). By the method of solution-by-staring-at-the-equations, the terms BRtt/A+Rrr lead us to

A′

A
+ B′

B
= 0 . (16.7)

Equation (16.7) is equivalent to d(AB)/dr = 0, which implies that

AB = λ = constant . (16.8)
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The functionsA andB are thus inversely proportional. If we now combine Eq. (16.7) withRtt = 0,
that equation becomes rA′′ + 2A′ = 0, which is equivalent to d(r2A′)/dr = 0, the solution of
which is

A(r) = −k
r

+ a , (16.9)

where a and k are constants. What about Rθθ = 0? When combined with Eqs. (16.7) and (16.8),
Rθθ = 0 is equivalent to d(rA)/dr = λ, the solution of which is equivalent to Eq. (16.9).

The constants are determined by the requirement that as r →∞ we recover the Lorentz metric.
A metric having that property is said to be asymptotically flat. We require that A(r) → 1 and
B(r)→ 1 as r →∞, forcing λ = 1 in Eq. (16.8) and a = 1 in Eq. (16.9). Thus,B(r) = (A(r))−1.
For a weak, static perturbation on the spacetime metric we found previously that

g00 ≈ −
(

1− 2GM
rc2

)
. (15.14)

From Eq. (16.1), g00 = −A and thus we choose k = 2GM/c2, where M is the mass outside of
which the metric form in Eq. (16.1) applies. The quantity

rS ≡
2GM
c2

(16.10)

is the Schwarzschild radius. For the sun, rS ≈ 3 km; for Earth rS ≈ 1 cm.
The Schwarzschild metric for empty spacetime exterior to a spherical mass M is thus

(ds)2 = − (1− (rS/r)) (cdt)2 + (dr)2

1− (rS/r)
+ r2 (dΩ)2

. (16.11)

The Lorentz metric is recovered as rS → 0, i.e., as M → 0. We see that the metric becomes
singular at r = rS and at r = 0. The first is an example of a coordinate singularity, where the
(t, r, θ, φ) coordinate system breaks down at r = rS . Non-flat manifolds cannot be covered by a
single coordinate system—coordinate systems fail to provide unique labels for spacetime points
somewhere. In Chapter 17 we present another coordinate system where the metric is well defined
at r = rS . At r = 0, however, GR itself breaks down: r = 0 is a true singularity—hopefully
a quantum theory of gravity will ameliorate that conclusion. The Schwarzschild metric applies to
systems where the radius R bounding M exceeds rS , such as the sun with R = 7 × 105 km �
rS = 3 km. As long as r > R > rS , we can apply the Schwarzschild metric, where the assumption
of Tµν = 0 remains valid. The other limit, where R < rS defines a black hole. A black hole has its
mass entirely contained within rS .

16.4 BIRKHOFF’S THEOREM
What if we were to relax the condition that the functions A(r), B(r) in the Schwarzschild metric
be time-independent? Consider the time-dependent generalization of Eq. (16.2):

[gαβ ] =


−A(r, t) 0 0 0

0 B(r, t) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 . (16.12)

You know the drill: Find the Christoffel symbols associated with the metric and then find the solu-
tions to Rµν = 0.

The Christoffel symbols generated by Eq. (16.12) are the same as in Table 16.1 with the excep-
tion of the three nonzero symbols:

Γttt = 1
2g

tt∂tgtt = Ȧ

2A Γtrr = −1
2g

tt∂tgrr = Ḃ

2A Γrrt = 1
2g

rr∂tgrr = Ḃ

2B ,
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where the dot indicates a partial time derivative. One can show that Rθθ and Rφφ are the same as in
Eqs. (16.5) and (16.6). The other components of the Ricci tensor are:

Rtt = [Rtt]− ∂tΓrrt + Γrrt
(
Γttt − Γrrt

)
=A′′

2B −
A′

4B

(
B′

B
+ A′

A

)
+ A′

rB
− B̈

2B + Ḃ

4B

(
Ȧ

A
+ Ḃ

B

)
; (16.13)

Rrr = [Rrr] + ∂tΓtrr + Γtrr
(
Γttt − Γrrt

)
=− A′′

2A + A′

4A

(
B′

B
+ A′

A

)
+ B′

Br
+ B̈

2A −
Ḃ

4A

(
Ȧ

A
+ Ḃ

B

)
; (16.14)

Rtr = ∂rΓrrt − ∂tΓrrr + Γrrt
(

Γtrt + Γθθr + Γφφr
)
− ΓrttΓtrr = Ḃ

Br
, (16.15)

where [Rtt], [Rrr] denote the terms given in Eqs. (16.3) and (16.4). Note that there is an off-diagonal
term Rtr, Eq. (16.15), associated with the time-dependent metric.

It follows from Eqs. (15.13) and (15.14) that for Rtt = Rrr = 0,

B

A
Rtt +Rrr = 1

r

(
A′

A
+ B′

B

)
= 1
ABr

∂

∂r
(AB) = 0 , (16.16)

so that AB = λ(t), where λ is possibly a function of t. From Eq. (16.15), in order for Rtr = 0 we
must have

Ḃ = 0 . (16.17)

Combining Eqs. (16.16) and (16.17) with Eq. (16.13) and rearranging, we have

Rtt = 1
r

∂

∂r
(A+ rA′)− B̈ = 0 . (16.18)

Using Eq. (16.16) in Eq. (16.5), the equation for Rθθ = 0 is equivalent to B2 = B − rB′. Using
AB = λ together with this result, we find thatA+rA′ = λ, which when combined with Eq. (16.18)
implies that B̈ = 0.

With Ḃ = B̈ = 0, Eqs. (16.13) and (16.14) revert to Eqs. (16.3) and (16.4). We can satisfy the
vacuum equation with A(r, t) = λ(t)A(r) and B(r, t) = (A(r))−1, where A(r) is the same as in
Eq. (16.11). Any time dependence inA(r, t) can be “waved away” by defining a new time coordinate
dt′ =

√
λdt. At this point, we’re back to the static Schwarzschild metric, Eq. (16.1). Thus, we have

Birkhoff’s theorem that a spherically symmetric solution of the vacuum field equation is necessarily
static, with a metric given by the Schwarzschild solution, Eq. (16.11). The gravitational field outside
a star that is radially pulsating, collapsing or expanding such that it maintains spherical symmetry,
is static. This is analogous to the result in Newtonian theory that the gravitational field outside a
spherically symmetric body is as if the entire mass is concentrated at the center: All that matters
is the total mass, not how it is arranged (so long as spherical symmetry is maintained). Birkhoff’s
theorem is also analogous to the result in electrodynamics that a pulsating spherical charge (a charge
monopole) emits no electromagnetic radiation. Gravitational radiation requires a time-dependent
mass quadrupole to emit radiation, a mode of oscillation that is not spherically symmetric.

16.5 SPATIAL GEOMETRY OF THE SCHWARZSCHILD METRIC
We now look at the geometry associated with the spatial part of the Schwarzschild metric. In Section
12.3.2 we gave a procedure for finding the spatial metric tensor in terms of basis vectors orthogonal
to the time direction. For a static spacetime with g0i = 0 such a procedure is unnecessary. A time
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slice (t = constant) through the four-dimensional geometry of the Schwarzschild metric can be
obtained by setting dt = 0 in Eq. (16.11). This gives us the metric for a three-dimensional manifold

(ds)2 =
(

1− rS
r

)−1
(dr)2 + r2 ((dθ)2 + sin2 θ(dφ)2) . (16.19)

The metric in Eq. (16.19) is positive definite (spacelike hypersurface, Table 13.1). Because the
Schwarzschild metric is time-independent we can speak of the coordinates (r, θ, φ) defined in one
time slice as having an enduring permanence that describes the same space of a time slice at a
different time. This splitting of spacetime into space and time is possible in any spacetime where
the metric is time-independent.

We can visualize the geometry described by Eq. (16.19) by embedding part of it in a three-
dimensional Euclidean space. Consider the slice obtained by setting dθ = 0 and θ = π/2,

(ds)2 =
(

1− rS
r

)−1
(dr)2 + r2(dφ)2 . (16.20)

The trick to embedding a two-dimensional geometry in three dimensions is to find a Euclidean
metric that yields the same distance relations as the original metric. Starting with cylindrical coor-
dinates, (ds)2 = (dr)2 + (dz)2 + r2(dφ)2. On a two-dimensional surface z = z(r, φ),

(ds)2 = (dr)2 + (dz)2 + r2(dφ)2 = (dr)2

[
1 +

(
dz
dr

)2
]

+ r2(dφ)2 . (16.21)

Equation (16.21) will agree with Eq. (16.20) if 1 + (dz/dr)2 = (1− (rS/r))−1 or if(
dz
dr

)2
= rS
r − rS

. (16.22)

Equation (16.22) is readily integrated to yield

z(r) = 2
√
rS (r − rS) . (16.23)

The surface described by Eq. (16.23) is known as Flamm’s parabaloid.

rS

rφ
dr

ds

Figure 16.1 Embedding of the 2-surface with metric given by Eq. (16.20) in three-
dimensional Euclidean space. The distance ds is not dr, rather ds = √grrdr.

This surface is drawn in Fig. 16.1. The first thing to note is that the radial coordinate is defined
only for r ≥ rS . As r →∞ (or rS → 0), Eq. (16.19) goes over to (ds)2 = (dr)2+r2(dΩ)2, and the
radial distance is given by the radial coordinate, r. As r → rS , however, changes in radial distance
are given by

√
grrdr. One should not confuse coordinates with distances.5 Flamm’s paraboloid

5On the street where I live, the addresses (coordinates) of the houses are 832, 850, 866, 878, and 898, even though the
distance between houses is the same.



Summary � 295

should not be confused with a gravitational potential well. The coordinate z in Eq. (16.21) has no
physical reality: It’s introduced for visualizing the geometry described by the metric Eq. (16.20); the
surface z(r, φ) has the property that distances measured within it match the distances given by the
Schwarzschild metric for the same change in radial coordinate, r. No particle could have a worldline
on Flamm’s paraboloid—a spacelike surface. Actual particles move along timelike trajectories.

SUMMARY
• The Schwarzschild metric,

[gµν ] =


−(1− rS/r) 0 0

0 (1− rS/r)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 ,

where rS = 2GM/c2 is the Schwarzschild radius, is a solution of the Einstein vacuum equa-
tion Rµν = 0. It applies to regions of spacetime where space is spherically symmetric and
where Tµν = 0. M is the mass outside of which the metric applies.

• Any spherically symmetric solution of the vacuum field equations must be static (Birkhoff’s
theorem). The spacetime surrounding a time-dependent but spherically symmetric mass is
governed by the Schwarzschild metric.

• A metric is asymptotically flat when at large distances (from the mass source) the metric
becomes indistinguishable from the Lorentz metric.

EXERCISES

16.1 In computing the Ricci tensor we run into the terms ΓµµβΓβνρ − ΓµνβΓβµρ. Show that for the
Christoffel symbols in Table 22.1,

ΓµµβΓβρν − ΓµνβΓβµρ =δρ,tδν,tΓrtt
[
Γrrr + Γθθr + Γφφr − Γtrt

]
+δρ,rδν,r

[
Γtrt
(
Γrrr − Γtrt

)
+ Γθθr

(
Γrrr − Γθθr

)
+ Γφφr

(
Γrrr − Γφrφ

)]
+δρ,θδν,θ

[
Γrθθ (Γrrt + Γrrr)−

(
Γφφθ
)2
]

+δρ,φδν,φ
[
Γrφφ

(
Γtrt + Γrrr

)
− ΓθφφΓφθφ

]
.

16.2 Likewise, in computing Rµν we run into the terms ∂µΓµνρ − ∂νΓµµρ. Show for the Christoffel
symbols in Table 22.1 that

∂µΓµνρ − ∂νΓµµρ =δν,tδρ,t∂rΓrtt − δν,rδρ,r∂r
[
Γttr + Γθθr + Γφφr

]
+δν,θδρ,θ

[
−∂θΓφφθ + ∂rΓrθθ

]
+ δν,φδρ,φ

[
∂θΓθφφ + ∂rΓrφφ

]
.

From the results of this and the previous problem we see that Rνρ is diagonal for the static
Schwarzschild metric.

16.3 Show directly from (22.4) that Rµν = 0 for µ 6= ν for the static Schwarzschild metric. Pick
one off-diagonal term, e.g., Rrθ, and use (22.4) to show that it vanishes.
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16.4 Verify the results given for the diagonal terms Rαα. Pick one term, e.g., Rtt, and show from
(22.4) that the result given is correct.

16.5 Show that (22.9) implies that AB = constant.

16.6 Show that (22.11) follows from Rtt = 0 combined with (22.9).

16.7 What is the magnitude of the Schwarzschild radius for the Sun, in km?

16.8 Show that (22.18) is correct. Using Γαµν associated with the time-dependent Schwarzschild
metric, show that ∂rΓrrt = ∂tΓrrr and ΓrrtΓtrt = ΓrttΓtrr.

16.9 Consider the spatial part of the metric for a rotating coordinate system, (18.47),

[γij ] =

1 0 0
0 γ2ρ2 0
0 0 1

 ,

where i = ρ, φ, z and γ = 1/
√

1− (ωρ)2/c2. Show that the maximum possible number
of nonzero, independent Christoffel symbols for this metric is 15. Show that only two are
nonzero,

Γρφφ = −1
2g

ρρ∂ρgφφ = −ργ4 Γφφρ = 1
2g

φφ∂ρgφφ = γ2

ρ
.

16.10 Calculate Rij for the spatial geometry associated with the rotating disk (previous problem).
Show that the nonzero terms are

Rρρ = −∂ρΓφφρ −
(

Γφρφ
)2

= −3γ4ω
2

c2
Rφφ = ∂ρΓρφφ − ΓφφρΓ

ρ
φφ = −3γ6ω

2ρ2

c2
.

16.11 Calculate the curvature scalar for the spatial geometry of the rotating disk (previous problem).
Show that

R = Rρρ +Rφφ = −6γ4ω
2

c2
= − 6ω2

c2(1− ρ2ω2/c2)2 .

This is not a space of constant curvature.

16.12 Show that the Schwarzschild metric (22.13) takes the isotropic form (22.22) with A and B
given by (22.24) through the change of variable given in (22.23).

16.13 Consider the spatial part of the Schwarzschild metric, (22.25). Calculate the elements of the
Ricci tensor for this metric. Show that

Rrr = −rS
r3 Rθθ = rS

2r3 Rφφ = rS
2r3 .

What is the curvature scalar for this three-dimensional manifold?

16.14 How many Killing vectors does the Schwarzschild metric have? Write down the 10 Killing
equations; use (19.22), £ξgµν = 0, so you don’t have to get into the Christoffel symbols. First
work out the Killing equations for the (θ, φ), (φ, φ), and (θ, θ) coordinates. Compare your
results with those of Problem 20.34. To preserve the symmetry of the sphere, we must take
ξr = 0. The components ξθ and ξφ are thus those of the unit sphere, which have three free
parameters. You should find that the remaining Killing equations imply that ξ0 = constant.
There are thus four Killing vectors associated with the Schwarzschild metric.
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Physical effects of
Schwarzschild spacetime

W E consider the physical effects associated with Schwarzschild spacetime, noting in particu-
lar the predictions of the theory that have been experimentally tested.

17.1 GEODESICS IN SCHWARZSCHILD SPACETIME
The differential equation for a geodesic is given by Eq. (14.51), which we reproduce here:

d2xµ

dτ2 + Γµαβ
dxα

dτ
dxβ

dτ = 0 . (14.51)

The Christoffel symbols for the Schwarzschild metric are given in Table 16.1. With this information
we can calculate the worldlines of freely falling particles exterior to a spherical mass.

17.1.1 Angular coordinates

Let’s first consider the angular variables.1 Using Eq. (14.51) and the nonzero entries in Table 16.1,
the geodesic equation for φ is

φ̈+ 2Γφφθφ̇θ̇ + 2Γφφrφ̇ṙ = φ̈+ 2 cot θφ̇θ̇ + 2
r
φ̇ṙ = 0 , (17.1)

where the dot signifies a derivative with respect to τ , and where the factors of two account for
Γφφθ = Γφθφ and Γφφr = Γφrφ. Equation (17.1) is equivalent to

1
r2 sin2 θ

d
dτ
(
r2 sin2 θφ̇

)
= 0 .

Thus there is a constant of the motion having the dimensions of angular momentum per mass

r2 sin2 θφ̇ = l = constant . (17.2)

The geodesic equation for θ is

θ̈ + 2Γθθr θ̇ṙ + Γθφφ(φ̇)2 = θ̈ + 2
r
θ̇ṙ − sin θ cos θφ̇2 = 0 . (17.3)

1Reminiscent of quantum mechanics, where we solve “once and for all” the angular part of the wave function (the
spherical harmonics, Ylm(θ, φ)) for a spherically symmetric potential.
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Equation (17.3) is equivalent to

1
r2

d
dτ
(
r2θ̇
)

= sin θ cos θφ̇2 . (17.4)

If θ = π/2 in Eq. (17.4), we have r2θ̇ = constant. Then if θ̇ = 0 at one time, θ̇ = 0 for all times.
By spherical symmetry, we’re free to orient the coordinate system so that θ = π/2 and θ̇ = 0
at an instant of time. We take, without loss of generality, θ̇ = 0 and θ = π/2. Trajectories are
planar in the vicinity of a spherical mass. With θ = π/2 in Eq. (17.2), we have r2φ̇ = constant—
seemingly Kepler’s second law. The spatial geometry associated with the Schwarzschild metric is
not Euclidean, however, and we cannot speak of “areas swept out”; yet we have formally r2φ̇ =
constant.2

17.1.2 Time coordinate

The geodesic equation for t is

ẗ+ 2Γttr ṫṙ = ẗ+ A′

A
ṫṙ = 1

A

d
dτ
(
ṫA
)

= 0 , (17.5)

where ṫ = dt/dτ is the derivative of the coordinate twith respect to τ . In SR, ṫ = γ; here we leave ṫ
unspecified, as a differential equation for one of the spacetime coordinates. Equation (17.5) implies
another constant of the motion,

ṫA = ṫ
(

1− rS
r

)
= k = constant , (17.6)

where k is dimensionless. For r � rS , ṫ → constant. In SR (free-particle motion for r � rS),
ṫ = γ and E = γmc2. We may interpret k as E/(mc2), where E is the total energy including the
gravitational potential energy along a timelike geodesic.

17.1.3 Radial coordinate

The geodesic equation for r is r̈+ Γrrr ṙ2 + c2Γrttṫ2 + Γrθθ θ̇2 + Γrφφφ̇2 = 0. Setting θ̇ = 0, θ = π/2,
making use of the results in Table 16.1, and using Eqs. (17.6) and (17.2), we have

r̈ + B′

2B ṙ
2 + A′

2A2B
c2k2 − l2

Br3 = 0 , (17.7)

where B = (1− rS/r)−1. Equation (17.7) is equivalent to

1
2ṙB

d
dτ

(
ṙ2B − k2c2

A
+ l2

r2

)
= 0 .

We thus have a fourth constant of the motion,

ṙ2B − k2c2

A
+ l2

r2 = constant . (17.8)

This constant is straightforward to evaluate because it’s related to the spacetime separation:
−c2(dτ)2 = gµνdxµdxν . Divide by (dτ)2, use the Schwarzschild metric and θ̇ = 0; we have
−c2 = gµν ẋ

µẋν = −Ac2ṫ2 + Bṙ2 + r2φ̇2, which is the same as Eq. (17.8). The constant in Eq.
(17.8) is then −c2 for material particles. For photons, however, (ds)2 = 0, and the constant is zero.
We’ll represent both cases with −c2α where α = 1 for particles and α = 0 for photons.

2Kepler’s first law (elliptical orbits) is not obeyed in general, and only approximately in the vicinity of the sun.
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Equation (17.8) is equivalent to

1
2 ṙ

2 − αGM
r

+ l2

2r2 −
l2GM

c2r3 = 1
2c

2(k2 − α) ≡ E . (17.9)

Equation (17.9) has the form of the nonrelativistic equation of motion in the effective potential

Veff(r) ≡ −α
GM

r
+ l2

2r2 −
l2GM

c2r3 . (17.10)

The first two terms in Eq. (17.10) are the Newtonian potential function for a particle gravitationally
interacting with M . The third is relativistic in origin; it vanishes as c → ∞. This term is dominant
for small r. If we write Eq. (17.9) as 1

2mṙ
2 +mVeff(r) = mE , it resembles the Newtonian statement

of energy conservation, with the conserved quantity 1
2mc

2(k2 − α). If we write the energy of a
particle (α = 1) as E = mc2 + EN , where EN is the Newtonian total energy, k = E/(mc2) =
1 + EN/(mc2). Equation (17.9) can then be written 1

2mṙ
2 + mVeff(r) = EN (1 + EN/(2mc2)),

which is consistent with Newtonian energy conservation when |EN | � mc2. Equation (17.9) is
almost in the form of the Newtonian equation for energy conservation, but not exactly.

17.1.4 Orbit equation

Often what’s wanted is not r(τ) but the closely related quantity r(φ), the orbit equation, the dif-
ferential equation for which can be obtained from dr/dφ = (dr/dτ)(dτ/dφ) = ṙ/φ̇. As noted in
Section 7.4, it’s easier to work with the variable u ≡ r−1. Using Eq. (17.2),

du
dφ = − 1

r2
dr
dφ = − 1

r2
ṙ

φ̇
= −1

l
ṙ .

Thus, du/dφ is proportional to dr/dτ because l is constant. Using Eq. (17.9) we have(
du
dφ

)2
= 2E

l2
+ 2αGM

l2
u− u2 + 2GM

c2
u3 . (17.11)

By differentiating Eq. (17.11), we obtain a second-order differential equation:

d2u

dφ2 + u = α
GM

l2
+ 3GM

c2
u2 . (17.12)

Both Eqs. (17.11) and (17.12) are used as the equations governing orbits.
The Newtonian version of Eq. (17.12) (α = 1 and c→∞) is

d2u

dφ2 + u = GM

l2
, (nonrelativistic) (17.13)

the solution of which is u = GM/l2+A cos(φ−φ0), whereA and φ0 are constants. Setting φ0 = 0,
the nonrelativistic orbit equation is

r = u−1 = (GM/l2 +A cosφ)−1 ≡ p

1 + ε cosφ , (17.14)

where p = l2/(GM) is the distance at φ = π/2, and the eccentricity ε = (rmax−rmin)/(rmax+rmin).
The distance a = 1

2 (rmax + rmin) = p/(1− ε2) is the semimajor axis; thus p = a(1− ε2).
Comparing Eqs. (17.12) and (17.13), it might appear that the only difference between the

relativistic and nonrelativistic theories—a difference achieved through considerable theoretical
development—is the single extra term in Eq. (17.12). Such an observation is misleading, however.
Whereas in nonrelativistic mechanics r represents the actual radial distance, in GR r is a coordinate;
the distance is obtained from the metric tensor.
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17.2 PARTICLE TRAJECTORIES
Understanding the allowed types of particle trajectories3 is greatly aided by familiarity with the
effective potential function, Eq. (17.10) with α = 1. It’s useful to write Veff in dimensionless form.
In terms of y ≡ r/rS , Eq. (17.10) can be written

1
c2
Veff(y) = 1

2

[
−1
y

+ ξ2

y2 −
ξ2

y3

]
, (17.15)

where ξ ≡ lc/(2GM) is a dimensionless parameter characterizing the angular momentum of the
trajectory. Figure 17.1 shows Veff/c

2 for ξ = 2.25.

r/rS

1
c2
Veff(r)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-0.02

0

0.05

y− y+

Vmax

Vmin

Figure 17.1 Effective gravitational potential for particles (ξ = 2.25).

As y → 0, the y−1, y−3 terms in Veff diverge to negative infinity, while the y−2 term (the
centrifugal barrier) diverges to positive infinity. The y−3 term dominates for small y, but whether
the function has local extrema depends on the value of ξ. Taking the derivative of Eq. (17.15),
V ′eff = c2(y2 − 2yξ2 + 3ξ2)/(2y4). The roots of y2 − 2yξ2 + 3ξ2 = 0 are

y± ≡ ξ2 ±
√
ξ4 − 3ξ2 . (17.16)

Real and distinct roots of Eq. (17.16) require ξ >
√

3. For ξ =
√

3, there are inflection points at
y = 6 and y = 3. Thus, for ξ ≤

√
3, an inwardly directed particle spirals towards y → 0. Of

course, the Schwarzschild metric is defined only for r > rS (y > 1). The zeros of Veff(y) occur at
the roots of y2− ξ2y+ ξ2 = 0, the two values (ξ2±

√
ξ4 − 4ξ2)/2. Real and distinct zeros require

ξ > 2. Thus, only for ξ > 2 does Veff(y) have the shape indicated in Fig. 17.1 where the maximum
at y = y− has a positive value. The maximum and minimum values of the potential are

1
c2
Veff(y±) = 1

54ξ2 y∓ (y∓ − 6) . (17.17)

In general, y+ ≥ 3 for ξ ≥
√

3, with y+ ∼ 2ξ2 for ξ �
√

3. The other root satisfies the inequality
3
2 ≤ y− ≤ 3 for

√
3 ≤ ξ < ∞, with the lower bound attained for ξ → ∞. For any ξ, the roots

satisfy y+y− = 3ξ2. For ξ �
√

3, Vmax ∼ 2
27ξ

2 and Vmin ∼ 1
24ξ
−2.

3Trajectory or orbit? An orbit is the gravitationally curved trajectory of an object, so in principle there is no difference
between the two terms, and we’ll use them interchangeably. Yet, orbit tends to connote closed, regularly repeating orbits,
such as the periodic elliptical path of planets in the solar system. In GR, closed orbits are rare, with non-repeating trajectories
the norm.
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The form of Veff(y) (Fig. 17.1) indicates the kinds of particle trajectories that can occur. Depend-
ing on the energy E —see Eq. (17.9), we can have bound orbits for Vmin < E < 0, where a particle
oscillates between the turning points (a special case is a circular orbit for E = Vmin). We’ll see that
we don’t get closed orbits as in Newtonian mechanics (Keplerian ellipses); rather the line of apsides
precesses (see Section 7.4). Scattering orbits occur for 0 < E < Vmax, unbound trajectories where
a particle comes in from infinity, scatters from Veff, and returns to infinity. For E > Vmax, we have
a new type of orbit—plunge orbits, where a particle spirals toward y → 1. Plunge orbits for l 6= 0
are a feature exclusive to GR; in Newtonian mechanics such orbits are precluded (the centrifugal
barrier becomes indefinitely large as y → 0). In the following we analyze two special cases: The
radial plunge orbit (l = 0) and the circular orbit. We return to bound orbits in Section 17.5.

17.2.1 Radial plunge trajectory

A particle inwardly directed toward M with constant φ has zero angular momentum, l = 0, Eq.
(17.2). In this case, we cannot use Eq. (17.12), which presumes l 6= 0. From Eq. (17.9), however,
with l = 0 and α = 1,

ṙ2 − 2GM
r

= c2(k2 − 1) . (17.18)

Differentiating Eq. (17.18),

r̈ = −GM
r2 , (17.19)

seemingly the same as Newtonian gravity! This development should be not too surprising: By setting
l = 0 we have “wiped out” the part of the effective potential that’s unique to GR. It should be kept
in mind, however, that r is a coordinate (not a distance) and that the derivative in Eq. (17.19) is with
respect to τ , the proper time, not the Newtonian absolute time. Appearances can be deceiving.

The constant k is determined by the initial conditions. From Eq. (17.18),

c2(k2 − 1) = ṙ2
0 −

2GM
r0

, (17.20)

where r0 is the initial coordinate and ṙ0 is the initial coordinate speed. For a particle released from
rest at r = r0,

k2 = 1− 2GM
r0c2

= 1− rS
r0

. (17.21)

Because k2 > 0, Eq. (17.21) applies for r0 > rS . Combining Eqs. (17.21) and (17.18),

ṙ2 = 2GM
(

1
r
− 1
r0

)
. (particle released from rest) (17.22)

Equation (17.22) has the same form as the Newtonian equation of energy conservation for a particle
in a gravitational field. Because ṙ2 > 0, Eq. (17.22) is defined only for r < r0, i.e., for a radially
in-falling particle.

The proper time for an observer starting from rest at r = r0 can be calculated from Eq. (17.22),

ṙ = dr
dτ = −

√
2GM

(
1
r
− 1
r0

)
, (17.23)

where we’ve taken the negative square root to account for an inwardly directed particle. From Eq.
(17.23) we have, assuming τ = 0 at r = r0,

τ(r) = 1√
2GM

∫ r0

r

dr
√

rr0

r0 − r
. (17.24)
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The integral can be evaluated,

τ(r) = r
3/2
0√

2GM

[
cos−1

(√
r

r0

)
+
√

r

r0

√
1− r

r0

]
. (17.25)

The most important conclusion to draw from Eq. (17.25) is that, for finite r0, the particle reaches
the Schwarzschild radius in finite proper time.

In terms of the coordinate time, however, it takes an infinite amount of time to reach the
Schwarzschild radius! We can eliminate the proper time:

dt
dr = dt

dτ
dτ
dr = ṫ

ṙ
= − 1

(1− rS/r)
1
c

√
r(r0 − rS)
rS(r0 − r)

, (17.26)

where we’ve used Eqs. (17.6), (17.21) and (17.22). Assuming t(r0) = 0,

t(r) =
√
r0 − rS√
2GM

∫ r0

r

r3/2

(r − rS)
√
r0 − r

dr . (17.27)

The integral in Eq. (17.27) diverges as r → rS . Because rS < r < r0, we have the inequality∫ r0

r

r3/2

(r − rS)
√
r0 − r

dr > r
3/2
S√
r0

∫ r0

r

dr
r − rS

= r
3/2
S√
r0

ln
(
r0 − rS
r − rS

)
,

and the right side diverges as r → rS .
We thus have a qualitative difference: To an observer at infinity (where dτ = dt) a particle

falling toward the origin never reaches the Schwarzschild radius; an observer comoving with the par-
ticle, however, does not find anything peculiar as it reaches the Schwarzschild radius in finite proper
time. This kind of discrepancy is a symptom of the coordinate singularity in the Schwarzschild met-
ric noted in Section 16.3. We can appreciate what’s happening here by considering the coordinate
speed, |dr/dt|. To simplify matters, let r0 →∞. We have from Eq. (17.26) in this limit,

1
c

∣∣∣∣drdt
∣∣∣∣ =
√
rS
r − rS
r3/2 . (r0 →∞)

In Schwarzschild coordinates, a particle released from rest at infinity reaches a maximum coordinate
speed of ≈ 0.385c at r = 3rS , and then declines to zero as r → rS ; it “never gets there.” Contrast
with Newtonian mechanics where a particle falling from rest at infinity has speed

1
c

∣∣∣∣drdt
∣∣∣∣
N

=
√
rS
r

(Newtonian mechanics)

at position r. The Newtonian speed monotonically goes to c as r → rS .

17.2.2 Circular orbits: r ≥ 3rS
Setting d2u/dφ2 = 0 and α = 1 in Eq. (17.12), u = GM/l2 + (3GM/c2)u2. Solving for l2,

l2 = GMr2

r − 3GM/c2
, (17.28)

where r = u−1 is the radius of the orbit. We cannot have circular orbits for r < 3
2rS (because

l2 > 0). As we now show, the minimum stable circular orbit occurs for r = 3rS . From Eq. (17.28),
the radii of circular orbits can be given in terms of the angular momentum, r = r(l). In terms of
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ξ = lc/(2GM) we find that r(ξ) = rSy±(ξ), where y± are given in Eq. (17.16). Only the orbits
given by r = rSy+(ξ) are stable because V ′′eff(y+) > 0 (V ′′eff(y−) < 0). Because in general y+ ≥ 3,
the smallest stable circular orbit occurs at r = 3rS . The existence of a minimum stable circular orbit
has interesting astrophysical consequences in terms of accretion disks surrounding massive objects.

The constant k can be found by combining Eq. (17.28) with Eq. (17.9):

k2 = (1− rS/r)2

1− 3
2rS/r

. (17.29)

For bound orbits we require E < 0, or that 0 < k2 < 1, which from Eq. (17.29) is satisfied for
r > 2rS . In general, k2 ≤ 8/9 for r ≥ 3rS , and thus the energy of a circular orbit is such that
−1/2 < E /c2 ≤ −1/18.

17.3 RADIAL NULL GEODESICS: KRUSKAL COORDINATES
We claimed in Section 16.3 that coordinate systems exist in which no singularity occurs at r = rS .
To see that’s the case, consider an invariant formed from the Riemann tensor (of which there are
many). The Kretschmann scalar is the contraction4 K ≡ RαβγδRαβγδ . For the Schwarzschild
metric, one finds [61, p332]K = 48G2M2/(c4r6). This value ofK is specific to the Schwarzschild
metric.5 The salient point is thatK is not singular at r = rS . Thus, coordinate systems exist in which
there is no singularity at r = rS : K is a scalar and has the same value in all coordinate systems.

Such coordinate systems can be developed using radial null geodesics.6 With l = 0 and α = 0
in Eq. (17.9), ṙ2 = c2k2, which, combined with Eq. (17.6), is equivalent to ṙ2 = c2ṫ2(1− rS/r)2.
We can eliminate the proper time,7(

dt
dr

)2
=
(

dt
dτ

dτ
dr

)2
=
(
ṫ

ṙ

)2

= 1
c2 (1− rS/r)2 . (17.30)

Integrate Eq. (17.30) (keeping the integral indefinite):

ct = ±
∫

rdr
r − rS

= ± [r + rS ln ((r/rS)− 1)] + constant .

Define a new coordinate
r∗ ≡ r + rS ln ((r/rS)− 1) , (17.31)

so that in terms of this coordinate the radial null geodesics are straight lines:

ct = ±r∗ + constant , (17.32)

where the plus (minus) sign indicates outgoing (incoming) light rays. Define new coordinates:8

u ≡ ct− r∗ v ≡ ct+ r∗ . (17.33)

4The Kretschmann scalar is analogous to the invariant we obtained for the electromagnetic field FµνFµν , Section 8.8.
5To derive the value ofK, it’s helpful to use the result of Exercise 14.15 (together with gαβ and the Christoffel symbols

associated with the Schwarzschild metric).
6The “trouble” with the Schwarzschild metric at r = rS involves the time and radial coordinates. Restrict our attention

to the two-dimensional space associated with dΩ = 0.
7We’ve used this step in deriving the orbit equation, and in deriving the coordinate time for radial plunge orbits for

particles. Equation (17.30) could appear problematic because dτ = 0 for photons. Null geodesics can be described by
coordinates xα(λ) as functions of an affine parameter λ (Section 14.3.5), with the null vector dxα/dλ tangent to the
worldline.

8From Eq. (17.32), (u, v) are constant on null trajectories; each null trajectory is labeled by values of (u, v).



304 � Core Principles of Special and General Relativity

In terms of these coordinates,9 from Eq. (16.11) for dΩ = 0:

(ds)2 = −(1− rS/r)dudv , (17.34)

where now r is defined implicitly through Eq. (17.31): r∗ = (v − u)/2. Using Eqs. (17.31) and
(17.33), it’s straightforward to show

1− rS
r

= rS
r

er
∗/rSe−r/rS = rS

r
e−r/rSe(v−u)/(2rS) . (17.35)

Eliminate the exponentials of u and v through another coordinate transformation:

U ≡ −e−u/(2rS) V ≡ ev/(2rS) . (17.36)

Using Eq. (17.36), Eq. (17.34) can be written:

(ds)2 = −4r3
S

r
e−r/(2rS)dUdV . (17.37)

We’re now free to “unfactorize” the product of differentials through another coordinate transforma-
tion (our last), basically the inverse of Eq. (17.33). Let

T ≡ 1
2 (V + U) =

√
(r/rS)− 1 er/(2rS) sinh(ct/(2rS))

X ≡ 1
2 (V − U) =

√
(r/rS)− 1 er/(2rS) cosh(ct/(2rS)) . (17.38)

The (T,X) coordinate system is known as the Kruskal-Szekeres coordinate system.10[62][63] It’s
straightforward to show that −(dT )2 + (dX)2 = −dUdV . The net effect of these transformations
is that we have a coordinate system in which the Schwarzschild metric takes the form

(ds)2 = 4r3
S

r
e−r/(2rS) (−(dT )2 + (dX)2)+ r2(dΩ)2 , (17.39)

which has no singularity at r = rS . Kruskal-Szekeres coordinates are a “gateway” into an analysis
of black holes.

17.4 GRAVITATIONAL DEFLECTION OF LIGHT
The gravitational potential for photons follows from Eq. (17.10) for α = 0. In dimensionless form,

1
c2
Veff(y) = ξ2

2

[
1
y2 −

1
y3

]
; (17.40)

see Fig. 17.2. Taking the derivative of Eq. (17.40), V ′eff = c2ξ2(3−2y)/(2y4). There is a single root
at y = 3/2 (for any ξ), where the potential has the value Veff(y = 3/2) = 2c2ξ2/27. The potential
goes to zero at y = 1, Veff(y = 1) = 0. There are no stable, bound orbits for photons. Photons
either scatter from Veff or, for sufficiently high energy, spiral into M . A circular orbit of r = 3rS/2
is possible for E /l2 = c4/(54G2M2) = 2/(27r2

S), but it’s not stable.
The differential equation for photon orbits follows from Eq. (17.9) with α = 0:

d2u

dφ2 + u = 3GM
c2

u2 . (17.41)

Let’s first examine the case of no scattering:M = 0 in Eq. (17.41). The solutions to d2u/dφ2 +u =
0 are u = A cos(φ+δ), whereA and δ are constants. For δ = 0, u = r−1

0 cosφ describes the photon
path as the line specified by r0 = r cosφ, where r0 is the point of closest approach to the nominal
scattering center at φ = 0. The asymptotes, where u → 0 (r → ∞), are given by φ = ±π/2. The
geometry of “no scattering” is shown in Fig. 17.3.

9To show Eq. (17.34), solve Eq. (17.33) for (ct, r∗) in terms of (u, v), and note that dr∗ = dr/(1− rS/r).
10Published independently by Kruskal and Szekeres in 1960.
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Figure 17.2 Gravitational potential for photons.

(M = 0)
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r φ

Figure 17.3 Geometry of no scattering.

17.4.1 Small-angle scattering

The nonlinear term 3GMu2/c2 in Eq. (17.41) has the dimension of (length)−1. Because u ≤ r−1
0

(r0 distance of closest approach), GM/(c2r0) sets a numerical scale for the nonlinear term. For
M the solar mass and R the solar radius as the distance of closest approach, GM/(c2R) ≈ 2 ×
10−6, suggesting a perturbative approach to solving Eq. (17.41). Define λ ≡ GM/(c2r0) as a
small dimensionless parameter.11 Next, assume that the solution to Eq. (17.41) can be written as
a perturbation expansion u(φ) = u0(φ) + u1(φ) + u2(φ) + · · · where u0(φ) = r−1

0 cosφ is the
solution corresponding to no scattering, and ui(φ), i ≥ 1, are unknown functions.12 Substituting
into Eq. (17.41), we have through second order,

d2u0

dφ2 + u0 + d2u1

dφ2 + u1 + d2u2

dφ2 + u2 + · · · = 3λr0(u0 + u1 + · · · )2 .

This equation implies a hierarchy of coupled differential equations for the unknown functions.
Through second order,

d2u1

dφ2 + u1 =3λr0u
2
0 = 3λ

r0
cos2 φ

d2u2

dφ2 + u2 =6λr0u0u1 = 6λ cosφu1 = 6λ2

r0
cosφ(1 + sin2 φ) , (17.42)

where we’ve used that the particular solution of the first-order equation is u1 = λ
(
1 + sin2 φ

)
/r0

(check it!). The solution to the second-order equation in Eq. (17.42) is given in Exercise 17.2. The
orbit equation for photons, through second order in λ, is:

u(φ) = 1
r0

(
cosφ+ λ(1 + sin2 φ) + 3

4λ
2(5φ sinφ− sin2 φ cosφ) +O(λ3)

)
. (17.43)

11Note that λ is the dimensionless parameter introduced in Section 1.7.2 as a measure of the relativistic importance of
gravity, Eq. (1.11). Here we see that this parameter (however small) leads to the gravitational bending of light.

12Perturbation theory is a method for obtaining approximate solutions to problems by using the solutions to simpler
problems (obtained from the original problem as some parameter is allowed to vanish). Hence u1 is based on u0, u2 is
based on u0 and u1, etc. It’s a method based on hope: While it can be quite successful (plan on success!), there’s no
guarantee that a given perturbation scheme will work, and one can get into trouble this way. See Section 17.4.3.
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The distance of closest approach, r1 ≡ (u(φ = 0))−1, is no longer equal to r0, but is numerically
quite close. From Eq. (17.43), r1 = r0(1 + λ+O(λ3))−1 = r0(1− λ+ λ2 +O(λ3)).

What asymptotes are implied by Eq. (17.43)? Assume13 u→ 0 as φ→ ±(π/2 + δ). From Eq.
(17.43) with u = 0,

sin δ = λ
(
1 + cos2 δ

)
+ 3

4λ
2
(

5(π2 + δ) cos δ + cos2 δ sin δ
)

+O(λ3) . (17.44)

From Eq. (17.44) it’s consistent to take δ small if λ is small. Treating δ as small in Eq. (17.44),

δ = 2λ+ 15π
8 λ2 +O(λ3) . (17.45)

The deflection angle ∆ ≡ 2δ (see Fig. 17.4). Thus, the deflection angle predicted by GR for the sun
is, to lowest order,14

∆ = 4GM
Rc2

= 1.75 arcseconds . (17.46)

Equation (17.46) is one of the central predictions of GR, and measuring ∆ is of the utmost
importance to assess the validity of the theory.15 Measurements of the gravitational deflection by
the sun yield the result [64]

∆observed

∆theory
= 0.9998± 0.0008 . (17.47)

Thus there is impressive agreement between theory and experiment. The gravitational bending of
light by typical stars is small. Consider however that for a galaxy (perhaps 1011 solar masses) the
deflection of light would be strong. The gravitational field of one galaxy can be used (gravitational
lensing) to image distant galaxies.

M

δ δ

∆ = 2δ

b b

r

φ

Figure 17.4 Geometry of gravitational deflection of light.

13Note that Eq. (17.43) is even in the variable φ.
14There are 60 arcminutes/degree and 60 arcseconds/arcminute. 1 arcsecond = 2π/(360× 3600) = 4.848× 10−6 rad.
15The traditional method for measuring ∆ consists of photographing a star field around the sun during a total eclipse, and

then comparing with photographs of the same star field taken later. The smallness of the deflection angle pushes this technique
to its limits. Better results are obtained using radio telescopes where, because the sun is not very bright at radio frequencies,
measurements can be made on radio sources near the sun at any time. The most accurate measurements use interferometry to
measure the relative separation between radio sources, as one of them passes behind the sun. Radio interferometry (at GHz
frequencies) provides much greater angular resolution than obtainable with optical instruments.
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17.4.2 Arbitrary deflection angle

A perturbative approach to solving Eq. (17.41) relies on the scattering angle being small. What if
the scattering is large? In that case it’s better to start with the first-order differential equation for the
orbit Eq. (17.11) (with α = 0),(

du
dφ

)2
= 2E

l2
− u2(1− rSu) ≡ 1

b2
− u2(1− rSu) , (17.48)

where b = l/
√

2E is the impact parameter—see Fig. 17.4 (E > 0 for scattering orbits). Photon
orbits depend on a single parameter b2 = l2/(2E ), in contrast to particle orbits which depend on two
independent parameters, l and E . The distance of closest approach is the point in the orbit u1 where
du/dφ = 0, where u2

1(1−rSu1) = 1/b2; it’s also the turning point defined by Veff(r1 ≡ u−1
1 ) = E ,

where ṙ = 0 (show this). All photon scattering orbits are such that 4b2 > 27r2
S (show this).

The turning angle is found by integrating Eq. (17.48) from asymptote to asymptote,16

∆φ = 2
∫ u1

0
du
[

1
b2
− u2 + rSu

3
]−1/2

≡ 2
√
rS

∫ u1

0

du√
(u− u1)(u− u2)(u− u3)

, (17.49)

where u1, u2, and u3 are the roots of the cubic equation rSu3 − u2 + 1/b2 = 0. Referring to Fig.
17.4, ∆φ = (π/2 + δ) − (−π/2 − δ) = π + 2δ = π + ∆, where ∆ is the total scattering angle.
Expressions for u1, u2, u3 are given in Appendix E, where it’s shown that u3 is always negative.
The root u1, associated with the turning point in the photon trajectory (see Fig. 17.5), is the smallest
positive root. The integral in Eq. (17.49) can be expressed as an incomplete elliptic integral of
the first kind (Section E.1), which are numerically tabulated. As 4b2 → 27r2

S and a circular orbit
becomes possible, u1 and u2 coalesce to a common value associated with the circular orbit, 2/(3rS).
In this limit the integral in Eq. (17.49) diverges: A circular orbit represents infinite scattering.

r/rS
0 1 2 3 4 5

0

Veff u−1
1

u−1
2

Figure 17.5 Locations of u1, u2 for a given E ; u1 locates the turning point.

17.4.3 Note on perturbation theory

A perturbation treatment of Eq. (17.49) provides an instructive lesson in perturbation theory: Choos-
ing the right zeroth-order solution. The zeroth-order solution of Eq. (17.41), u = b−1 cosφ (no
scattering), used in Eq. (17.49) also leads to no scattering (∆ = 0) if we set rS = 0. Can we
approximate the integrand in Eq. (17.49) for small rS? Let’s try an expansion in powers of rS :(

1
b2
− u2 + rSu

3
)−1/2

= 1√
b−2 − u2

(
1− 1

2
rSu

3

b−2 − u2 + · · ·
)
.

That idea leads to trouble. The limit of integration in Eq. (17.49), u1 > b−1, causing the leading term
in such an expansion to be singular. From Eq. (E.6), u1 = b−1(1+rS/(2b)+O(rS/b)2). Even if the

16The problem is symmetric in φ; hence the factor of two in Eq. (17.49).
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limit of integration could be fixed, the integrals in succeeding terms in the expansion would diverge.
One can integrate over a square-root singularity, but not over (b−2 − u2)−3/2 at the next order in
the perturbation expansion. We need another idea. We’re trying to develop a scheme for calculating
small modifications to the no-scattering photon trajectory that occurs in the nonrelativistic theory
(c → ∞). While photons are never nonrelativistic, we’re referring to what remains of Veff when
we make the r−3 term from GR disappear by formally letting c → ∞. We note from Eq. (17.10)
with α = 0 that the gravitational potential for photons, when we let c → ∞ still involves the
centrifugal barrier that diverges as r → 0. For finite c, the height of the potential is proportional
to c4 (Vmax ∼ ξ2c2 ∼ c4). By formally letting c get large we force Veff into having a large peak at
r = 3

2rS , which then rapidly plummets to zero at r = rS , all as rS → 0 as c→∞. From Eq. (E.7),
the root u2 = r−1

S (1 − (rS/b)2 + O(rS/b)4) for small rS . As c → ∞, u−1
2 → 0 and thus u−1

2
presents itself as a natural small parameter, and we have the following way to expand Eq. (17.49):

∆φ = 2
√
rSu2

∫ u1

0

du√
(u1 − u)(u− u3)

1√
1− u/u2

= 2
√
rSu2

∫ u1

0

du√
(u1 − u)(u− u3)

(
1 + u

2u2
+ · · ·

)
.

This expansion does not suffer from the maladies discussed above. In particular, the limit of inte-
gration is correct at every order of perturbation theory.

It’s straightforward to evaluate the integrals:∫ u1

0

du√
(u1 − u)(u− u3)

=2ψ∫ u1

0

udu√
(u1 − u)(u− u3)

=
√
−u1u3 + (u1 + u3)ψ , (17.50)

where
sin2 ψ ≡ u1

u1 − u3
= 1

2 + 1
2
√

3
tan(θ/6) . (17.51)

We’ve used the explicit expressions for the roots given by Eq. (E.2) to evaluate the right side of Eq.
(17.51), where θ is defined in Eq. (E.3). By writing ψ = π/4 + δ, sin2(π/4 + δ) = 1

2 + 1
2 sin 2δ;

hence from Eq. (17.51) sin 2δ = 1√
3 tan(θ/6). From Eq. (E.4), θ ≈ 3

√
3(rS/b) for small rS . We

conclude that for small rS/b,
ψ = π

4 + rS
4b +O(rS/b)2 . (17.52)

From Appendix E, for small x ≡ rS/b, u1 + u3 = x/b + O(x3), rSu2 = 1 − x2 + O(x4), and
u1u3 = −(1/b2)(1 + x2 +O(x4)). From Eq. (17.50),

∆φ = 2
√
rSu2

(
2ψ + 1

2u2
(
√
−u1u3 + (u1 + u3)ψ) + · · ·

)
. (17.53)

Expanding all quantities in Eq. (17.53) to first order in 1/c2, we have

∆φ = π + 4GM
c2b

+O(1/c4) ,

the same as Eq. (17.46) when we use ∆ = ∆φ− π.
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17.5 APSIDAL PRECESSION
We now examine bound orbits, the differential equation for which is Eq. (17.12),

d2u

dφ2 + u = 1
p

+ 3GM
c2

u2 , (17.12)

where p = l2/(GM) = a(1− ε2), with a the semimajor axis of the orbit and ε the eccentricity. The
orbit of Mercury exhibits the largest effects due to GR within the solar system (closest to the sun),
and we’ll focus our attention on that case. With ε = 0.2056 and a = 5.79 × 1010 m for Mercury,
and with M the solar mass, 3GM/(c2p) ≈ 5×10−8. The effects of GR are small and we can apply
the perturbation methods previously discussed.17

We therefore approximate the orbit equation as the sum of the Keplerian orbit, Eq. (17.14), and
an unknown function, u1(φ): u(φ) = p−1(1 + ε cosφ) + u1(φ). Substituting this guess into Eq.
(17.12), we obtain a differential equation for u1(φ),

d2u1

dφ2 + u1 = λ

p
(1 + ε cosφ)2 , (17.54)

where λ ≡ 3GM/(c2p). The particular solution to Eq. (17.54) is (check it!)

u1(φ) = λ

p

[
1 + εφ sinφ+ ε2

2

(
1− 1

3 cos 2φ
)]

.

The orbit equation, correct to first order in the small quantity λ, is thus

u(φ) = 1
p

[
1 + ε cosφ+ λ

(
1 + εφ sinφ+ ε2

2 (1− 1
3 cos 2φ)

)]
+O(λ2) . (17.55)

Let’s rewrite Eq. (17.55),

u(φ) = 1
p

[
1 + λ

(
1 + ε2

2 (1− 1
3 cos 2φ)

)
+ ε (cosφ+ λφ sinφ)

]
. (17.56)

The terms in parentheses proportional to λ in Eq. (17.56) represent a small, periodic alteration of the
orbit that repeats every two orbital periods. These terms would be difficult to detect experimentally.
The secular term, however, φ sinφ, represents an observable nonperiodic modification of the orbit.18

Consider that for λ� 1, cos (φ(1− λ)) = cosφ cosλφ+sinλφ sinφ ≈ cosφ+λφ sinφ, precisely
the terms we have in Eq. (17.56). We thus take as the approximate solution19 to Eq. (17.12), for
orbits such that λ� 1:

u(φ) ≈ 1
p

[1 + ε cos (φ(1− λ))] . (17.57)

Equation (17.57) describes a precessing ellipse20—see Fig. 7.5. The angle through which the
line of apsides advances in one period is defined by u(2π+δ) = u(0), implying that δ(1−λ) = 2πλ,
or that δ = 2πλ+O(λ2). The precession angle is thus

δ = 2πλ = 6πGM
c2p

= 3πrS
p

= 6πGM
c2a(1− ε2) rad/period . (17.58)

17We’re fortunate to live in an environment where the effects of GR are small and we can speak of approximate Keplerian
orbits. Otherwise our understanding of physics would have taken considerably longer to achieve than it did historically.

18There is a secular term at second order in the orbit equation for photons—Eq. (17.43). There are no bound, stable orbits
for photons, and hence the magnitudes of these terms have no chance to build up in time.

19Equation (17.57) reduces to the Keplerian orbit for λ = 0. The errors incurred upon adopting Eq. (17.57) as the
solution to Eq. (17.12) are on the same order as the terms in parentheses in Eq. (17.56) proportional to λ.

20The Kepler problem was treated in Chapter 7 using SR.
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The angle specified by Eq. (17.58) is small. For Mercury, δ = 5.019 × 10−7 rad/period. It’s
customary to report the precession angle as the total angle through which the orbit precesses in 100
years. Using Kepler’s third law, T = 2π

√
a3/GM , the period of Mercury is 7.6 × 106 s, or about

88 days. In 100 years there are 415.2 orbits of Mercury around the Sun. The precession angle per
century as predicted by GR for Mercury is therefore

∆φ = 42.98 arcseconds/century . (17.59)

This number, 43′′/cy, is now famous. The measured precession of the perihelion of Mercury is 574′′
per century.[65, p316] That number can largely be accounted for by the fact that Mercury (and the
other planets) do not respond to exactly a 1/r gravitational potential from the sun; the total gravi-
tational force also includes interactions with the other massive objects of the solar system (planets,
asteroids, etc.). When these interactions are included in a calculation of the orbit of Mercury (based
entirely on Newtonian mechanics), all but 43′′ can be accounted for—just the amount predicted by
GR! The “missing” 43′′ was known to 19th-century astronomers. Le Verrier, whose calculations on
the perturbations of the orbit of Uranus had led to the discovery of Neptune in 1846, proposed in
1859 that another planet, Vulcan, must exist inside the orbit of Mercury to account for the observed
precession. It was never found. The natural explanation of the residual precession, beyond what’s
accounted for by Newtonian mechanics, is one of the triumphs of GR. The perihelion advances of
the other planets predicted by GR (in arcseconds per century: 8.62 for Venus, 3.84 for Earth, 1.35
for Mars) are in excellent agreement with observations.[66]

We calculated the small-angle deflection of light in two ways: perturbative treatments of the
solutions of Eq. (17.41) and of the integral in Eq. (17.49). Let’s do the same for particle orbits.
From Eq. (17.11) with α = 1, the angle through one period of a bound orbit is given by

∆φ = 2
∫ u2

u3

du
[

2E

l2
+ 2GM

l2
u− u2 + rSu

3
]−1/2

= 2
√
rS

∫ u2

u3

du√
(u− u3)(u− u2)(u− u1)

,

(17.60)
where u3 < u2 < u1 are the factors of the cubic polynomial in Eq. (17.60), where u3 and u2 locate
the turning points of the motion—see Fig. 17.6. Expressions for ui are given in Section E.2.

r/rS

Veff(r)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

u−1
1 u−1

2 u−1
3

Figure 17.6 Locations of u1, u2, u3 for given E ; u2 and u3 locate the turning points.

In Newtonian mechanics we would “lose” the u3 term in Eq. (17.60) (c→∞):

∆φN = 2
∫ u+

u−

du
[

2E

l2
+ 2GM

l2
u− u2

]
≡ 2

∫ u+

u−

du√
(u+ − u)(u− u−)

. (17.61)

We needn’t write down expressions for u± because the value of the integral in Eq. (17.61) is the
same regardless of u±: ∫ u+

u−

du√
(u+ − u)(u− u−)

= π . (17.62)

In Newtonian mechanics, a bound orbit closes on itself with ∆φN = 2π.
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How to approximate the integrand in Eq. (17.60) for small rS? We’ve already seen that movie,
in Section 17.4. For large c, u1 ≈ r−1

S (1 − 1/ξ2), Eq. (E.14), and hence u−1
1 is a natural small

parameter. We thus expand Eq. (17.60) as

∆φ = 2
√
rSu1

∫ u2

u3

du√
(u− u3)(u2 − u)

1√
1− u/u1

= 2
√
rSu1

∫ u2

u3

du√
(u− u3)(u2 − u)

(
1 + u

2u1
+ · · ·

)
. (17.63)

Equation (17.62) provides the integral at lowest order. The integral at the next order in perturbation
theory is straightforward to evaluate, with the result∫ u2

u3

udu√
(u− u3)(u2 − u)

= π

2 (u2 + u3) . (17.64)

Combining Eqs. (17.62)–(17.64),

∆φ = 2π
√
rSu1

(
1 + u2 + u3

4u1
+ · · ·

)
. (17.65)

Expanding all quantities in Eq. (17.65) to first order in 1/c2,

∆φ = 2π
(

1 + 3
4ξ2

)
= 2π

(
1 + 3(GM)2

c2l2

)
= 2π

(
1 + 3GM

c2p

)
,

where we’ve made use of Eq. (E.14) and the angular momentum of the orbit, l2 = GMp. The
advance of the perihelion in one period is thus 6πGM/(c2p), the same as Eq. (17.58).

17.6 GRAVITATIONAL TIME DELAY
In Section 17.4 we computed the geodesic taken by photons, but not the time to traverse a given
trajectory. Light is delayed as its path is gravitationally bent near a massive object—see Fig. 17.7,
something that can be measured from radar signals reflected from planets such as Venus in the
vicinity of the sun.

Planet

Sun

Earth

r1

r

Figure 17.7 Light is delayed in time relative to the direct path between planet and Earth.

To calculate the time delay, start with(
dr
dt

)2
=
(

dr
dτ

dτ
dt

)2
=
(
ṙ

ṫ

)2
= (1− rS/r)2

(
c2 − l2

k2r2 (1− rS/r)
)
, (17.66)

where ṙ2 is obtained from Eq. (17.9) with α = 0 and ṫ is from Eq. (17.6). We can evaluate the
constant k at the point of closest approach r1 where ṙ = 0. From Eq. (17.9) with α = 0,

l2

k2 = c2r2
1

1− rS/r1
. (17.67)
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Combining Eqs. (17.66) and (17.67),

dr
dt = ±c(1− rS/r)

[
1−

(r1

r

)2 1− rS/r
1− rS/r1

]1/2
. (17.68)

For the sun r > r1 > rS , (rS/r) < 1 and (rS/r1) < 1. Expand Eq. (17.68) to first order in rS and
integrate: The time from r to r1, t(r, r1), is given by

ct(r, r1) =
∫ r

r1

rdr√
r2 − r2

1

[
1 + rS

r
+ r1rS

2r(r + r1) +O(r2
S)
]
. (17.69)

The integrals in Eq. (17.69) are straightforward:∫ r

r1

rdr√
r2 − r2

1
=
√
r2 − r2

1∫ r

r1

dr√
r2 − r2

1
= ln

(
(r/r1) +

√
(r/r1)2 − 1

)
∫ r

r1

dr√
r2 − r2

1

1
(r + r1) = 1

r1

√
r − r1

r + r1
. (17.70)

Combining Eqs. (17.69) and (17.70), the propagation time from r to r1, to first order in 1/c2, is

ct(r, r1) =
√
r2 − r2

1 + rS ln
(

(r/r1) +
√

(r/r1)2 − 1
)

+ rS
2

√
r − r1

r + r1
+O(r2

S) . (17.71)

The leading term in Eq. (17.71) represents the distance traveled by light in the absence of grav-
ity.21 The other terms are positive and represent the extra propagation time caused by the bending
of the photon trajectory. The gravitational time delay (also known as the Shapiro time delay) is
defined as ∆t ≡ t(r, r1)−

√
r2 − r2

1/c. The time delay for a signal sent to a planet (or spacecraft)
at distance rp from the sun, passing the sun at distance r1, from Earth at distance rE from the sun,
and back, is

∆t = 2rS
c

[
ln
(

(rE/r1) +
√

(rE/r1)2 − 1
)

+ 1
2

√
rE − r1

rE + r1

+ ln
(

(rp/r1) +
√

(rp/r1)2 − 1
)

+ 1
2

√
rp − r1

rp + r1

]
≈ 2rS

c

[
1 + ln

(
4rErp
r2
1

)]
. (17.72)

What is measured on Earth is actually the proper time ∆τ =
√

1− rS/rE∆t, but we can ignore
the distinction because rS/rE ≈ 2 × 10−8. The time delay is as large as it can be when the planet
and Earth are on opposite sides of the Sun, in superior conjunction. Figure 17.8 shows time delay
measurements from Venus over a 600-day period as it swept through superior conjunction.[67] It’s
important to appreciate the difficulty of the measurements shown in Fig. 17.8. The round-trip time
for a radar signal to Venus and back (in superior conjunction) is 1720 s, or about 29 minutes. To
detect 200 µs out of 1720 s implies an accuracy of 1 part in 107; 1% accuracy requires 1 part in 109.

17.7 PARAMETERIZED POST-NEWTONIAN FRAMEWORK
The parameterized post-Newtonian (PPN) framework is a formalism designed to put gravitational
physics on a more experimentally oriented footing.[68] The method posits a parametrized metric,

21Draw a Euclidean right triangle.
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Figure 17.8 Gravitational time delay of radar signals reflected from Venus. Reprinted figure
with permission from [67]. Copyright 1971 by the American Physical Society. Solid curve
is the prediction of GR.

which in its simplest form is

(ds)2 = −
[

1− 2GM
rc2

+ 2(β − γ)
(
GM

rc2

)2
]

(cdt)2 +
(

1 + 2γGM
rc2

)
(dr)2 + r2(dΩ)2 ,

(17.73)
where β and γ are dimensionless parameters whose values are to be found from experiment.22 The
predictions of Eq. (17.73) agree with those of GR for β = γ = 1. What values of β and γ have been
obtained from measurements? The most accurate determination of γ is from the Cassini spacecraft
mission. From the time delay of signals sent to and from the satellite as it went through solar
conjunction, a result of γ = 1+(2.1±2.3)×10−5 was found.[69] The most accurate determination
of β is from the lunar laser ranging experiment, where a value of β = 1 + (1.2 ± 1.1) × 10−4 has
been found.[46] These measurements confirm the predictions of GR to high accuracy.

17.8 THE GLOBAL POSITIONING SYSTEM
The Global Positioning System (GPS) is a collection of 24 satellites carrying atomic clocks in
circular orbits about the earth with 12-hour periods, arranged in six orbital planes, with each plane
inclined at 55◦ to the equatorial plane of Earth.[70] The satellites are positioned so that at least
four are always above the local horizon, from almost any point on Earth. Each satellite broadcasts
coded information on the positions and times of transmission events. A GPS receiver solves four
simultaneous equations, |r − ri| = c(t − ti), i = 1, 2, 3, 4, between the spacetime coordinates of
the four satellites to infer the spacetime coordinates on Earth. The GPS provides a rare practical

22They are not the same symbols used in SR.
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application of GR, how time is affected by gravity—the GPS would quickly become useless if
relativistic effects were not taken into account, as we now discuss.

How fast does a GPS satellite travel (orbital period P = 12 hours)? Using Kepler’s third law,
r3 = GMP 2/(4π2) (with M the mass of Earth), we find r = 2.661 × 104 km = 4.18RE ,
where RE denotes the radius of Earth. Relative to the center of Earth, the speed of the satellite is
vSat = 2πr/P = 3870 m s−1, or βSat ≡ vSat/c = 1.29 × 10−5. The satellite speed should be
contrasted with the “orbital” speed of the surface of the earth (relative to the center of Earth), which
at the equator travels with a speed of vE = 464 m s−1, or βE = 1.55× 10−6.

We now want to compare the satellite’s proper time with that at the surface of Earth. From
−(cdτ)2 = gµνdxµdxν and the Schwarzschild metric:

(dτ)2 = (1− rS/r) (dt)2 − (dr)2

c2 (1− rS/r)
− r2

c2
[
(dθ)2 + (sin θdφ)2] .

For simplicity set θ = π/2. For a circular orbit, dr = 0. Thus,(
dτ
dt

)2
= 1− rS

r
− β2 , (17.74)

where β = rdφ/(cdt). Equation (17.74) generalizes time dilation from SR, moving clocks run
slow, Eq. (7.3), to include a general-relativistic effect, clocks are slow in a gravitational potential,
and which also generalizes what we obtained from the equivalence principle, Eq. (11.18), to include
a special-relativistic effect. We can factor out dt by applying Eq. (17.74) to two locations and taking
a ratio (

dτSat

dt

)
(

dτE

dt

) = dτSat

dτE
=

√√√√√√1− rS
rSat
− β2

Sat

1− rS
RE
− β2

E

. (17.75)

Because the terms in the square root in Eq. (17.75) are small, of order 10−10, we can approximate
it with a Taylor expansion. To first order,

dτSat

dτE
≈ 1 + 1

2

(
rS
RE
− rS
rSat

)
− 1

2
(
β2

Sat − β2
E

)
. (17.76)

The first term in Eq. (17.76) is the general-relativistic effect, that by being higher in the gravitational
potential of the earth, clocks on satellites speed up relative to Earth clocks, while the second term
is the special-relativistic effect that satellite clocks in motion slow down relative to Earth clocks.
Putting in numbers,

dτSat

dτE
=1 + 1

2
rS
RE

(
1− 1

4.18

)
− 1

2
(
1.66× 10−10 − 2× 10−12)

=1 + 5.28× 10−10 − 0.82× 10−10

=1 + 4.46× 10−10 . (17.77)

The gravitational effect is larger than that from SR.
The net effect is that the satellite clock gains 0.446 ns every second relative to a clock on Earth

due to fundamental physics. In one day the satellite clock gains 86, 400 × 4.46 × 10−10 = 38.5
µs on the earth clock. Is that significant? Light travels 11.4 km in 38 µs, thus rendering the GPS
completely inaccurate. To maintain an accuracy on the ground of 10 m, satellite clocks must be
accurate to within 33.3 ns. With the satellite clock gaining 0.446 ns per second, the GPS would be
unable to meet this level of accuracy within minutes if relativistic effects were ignored. Of course,
the operators of the GPS do take into account relativistic effects, as well as other sources of error to
keep the system highly accurate.
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17.9 SPIN PRECESSION I: GEODETIC EFFECT
Geodetic precession is the change that occurs in the orientation of a spacelike vector as it’s trans-
ported around a closed timelike geodesic in the curved spacetime of a static mass source. It was
discovered theoretically by Willem de Sitter in 1916, within months of the publication of GR; hence
the effect is also called de Sitter precession. In this section we work out the geodetic effect as
another testable prediction of GR. It was announced in 2011 that the Gravity Probe B (GPB) exper-
iment had measured the geodetic precession of a gyroscope carried aboard a satellite in Earth orbit
in good agreement with GR. There is another, smaller, effect due to the earth’s rotation, the Lense-
Thirring effect. The GPB experiment also measured the Lense-Thirring effect, as we discuss in the
next chapter. Geodetic precession differs from Thomas precession (mentioned, but not developed,
in Section 12.6); whereas Thomas precession results from an accelerated spin, geodetic precession
occurs during free fall (no force other than gravity) in curved spacetime.

Spin is a four-vector Sµ with S0 = 0 in the rest frame (Section 12.5), implying that it’s orthog-
onal to the four-velocity, SµUµ = 0, Eq. (12.53). For a free particle in flat spacetime, dSµ/dτ = 0,
Eq. (12.60). For a free-fall particle in curved spacetime, DSµ = 0, or, from Eq. (14.45):

dSµ

dτ = −ΓµαβS
αUβ . (17.78)

Assume, as in the GPB experiment, that the spin is carried in a circular orbit around the source mass.
Thus, Ur = Uθ = 0 and we can set θ = π/2. Using Table 16.1 we find from Eq. (17.78),

dS0

dτ =− ΓtrtU0Sr
dSr

dτ = −U0S0Γrtt − UφSφΓrφφ (17.79)

dSθ

dτ = 0 dSφ

dτ = −ΓφrφS
rUφ . (17.80)

The equation of motion for S0 in Eq. (17.79) is equivalent to that for Sφ in Eq. (17.80) (Exercise
17.4). Using the orthogonality condition, we can eliminate S0U0 = −gφφUφSφ/g00 from the
equation for Sr:

dSr

dτ = UφSφ
(
gφφ
g00

Γrtt − Γrφφ
)
. (17.81)

For a circular orbit, Uµ = (cṫ, 0, 0,Ωṫ), where Ω = dφ/dt is the constant coordinate angular
speed. Using Table 16.1 and converting from proper time to coordinate time, we have the coupled
differential equations

dSr

dt = Ωr
(

1− 3rS
2r

)
Sφ

dSφ

dt = −Ω
r
Sr .

These coupled first-order differential equations are equivalent to uncoupled second-order differen-
tial equations:

d2

dt2

{
Sr

Sφ

}
= −Ω2

(
1− 3rS

2r

){
Sr

Sφ

}
≡ −(Ω′)2

{
Sr

Sφ

}
, (17.82)

where we note that Ω′ < Ω. Assume that at t = 0 the spin is oriented in the radial direction,
Sr(t = 0) = S, where S is the magnitude of the spin, implying Sθ = 0 and Sφ(t = 0) = 0. With
this initial condition,

Sr(t) = S cos Ω′t Sφ(t) = − [Ω/(Ω′r)]S sin Ω′t .

The spin vector rotates at the rate Ω′. After one period of the orbit, i.e., after a time 2π/Ω, the phase
of the spin differs from that of the orbit by (2π/Ω)(Ω−Ω′). The precession angle per period is thus

2π
Ω (Ω− Ω′) = 2π

(
1− Ω′

Ω

)
= 2π

(
1−

√
1− 3rS

2r

)
≈ 3πGM

c2r
. (17.83)
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The GPB satellite had a nearly-circular orbit of semimajor axis 7027.4 km.23 For this orbit Eq.
(17.83) gives an angle of 1.227 mas per period, where a “mas” is a milliarcsecond (1 mas = 4.848×
10−9 rad). It’s customary to quote this number in mas per year. Using Kepler’s third law, we infer
that the orbital period was 5863 s (about 98 minutes), and hence there are 5382.8 orbits per year.
The expected geodetic precession angle from GR is then 6606.1 mas/yr. The measured value was
6601.8 ± 18.3 mas/yr, confirming the result from GR to within 0.3%.[71]

Gravity Probe B experiment

The GPB experiment measured the precession effects predicted by GR for a freely spinning gy-
roscope. To do so, the experimental design had to minimize any precession due to the torques
produced by tidal forces (Section 11.3.3). The gyroscopes were fabricated to be almost perfectly
spherical and homogeneous. The quartz-sphere gyroscopes, 3.8 cm in diameter, were spherical to
within less than 40 atomic layers and had density variations ∆ρ/ρ ∼ 10−6. The differences in mo-
ments of inertia about any axis were ∆I/I ∼ 10−6. How to measure small changes in the spin-axis
orientation of a near-perfect sphere without any markings on it? The answer lies in superconduc-
tivity. The gyroscopes were coated with a layer of niobium 1270 nm thick. Niobium becomes a
superconductor for temperatures below 9 K. Rotating superconductors produce a magnetic field,
the London moment.[72, p213] A magnetic field is generated by surface currents created because of
the difference in rotation speeds between superconducting electrons and that of the material lattice.
Any change in this magnetic field (due to the gyroscope precessing) can be detected with an induc-
tion loop around the gyroscope. The gyros were kept at a temperature of 2 K and spun at about 72
Hz (4300 RPM). The satellite maintained its orientation by constantly keeping a telescope (on the
satellite) pointed at a particular star.

17.10 WEIGHT OF AN AT-REST OBSERVER
So far we’ve considered free fall along the geodesics of Schwarzschild spacetime. The worldline
of an observer “at rest,” however, with constant coordinates (r, θ, φ) is not a geodesic. Let’s calcu-
late the four-acceleration in curved spacetime, the rate of change of Uµ in the direction of Uµ

(covariant directional derivative) Aµ = Uα∇αUµ. The four-velocity of an observer at rest is
Uµ = (U0, 0, 0, 0). Using UµUµ = −c2, U0 = c/

√
−g00 = c/

√
1− rS/r, which is constant

for an observer at rest. Thus,

Aµ = dUµ

dτ + ΓµαβU
αUβ = dUµ

dτ + Γµ00(U0)2 . (17.84)

The only nonzero Christoffel symbol of the type Γµ00 is Γr00 = A′/(2B) (Table 16.1), and thus the
only nonzero component of Aµ is Ar = Γr00(U0)2 = GM/r2, the Newtonian acceleration! The
magnitude of the four-acceleration is

√
AµAµ = √grrAr = (GM/r2)/

√
1− rS/r. For r � rS

the acceleration is the Newtonian value. Don’t get too near rS .
An observer at rest is clearly not in free fall, and experiences a nonzero four-acceleration, the

“force of gravity.” Weight is the force we experience in a gravitational field, Fµ = mAµ, an inertial
force that must be supplied to prevent us from being in a state of free fall.24 A geodesic is the shortest
path in spacetime between fixed endpoints. As we’ve seen even in SR, a worldline that’s “straight”
by virtue of maintaining constant spatial coordinates is not the shortest path in spacetime.

23The orbit of the GPB satellite was very nearly circular. The eccentricity was ε = 0.0014, with a semimajor axis a =
7027.4 km. The orbit was also very nearly directly over the poles of Earth, with an inclination of 90.007◦.

24Richard Feynman was once asked in a popular lecture if he could design an anti-gravity machine. Feynman jokingly
replied that the best anti-gravity machine he knew of was the chair the questioner was sitting in, because it “supports your
behind above the surface of the earth.”
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SUMMARY
We considered the physical effects predicted by the Schwarzschild spacetime metric, which are
generally small (in the environment of the earth and the solar system), yet which are measurable.
Such tests validate GR to high accuracy.

• Apsidal precession: GR shows that gravitationally bound orbits do not close on themselves.
Instead the apsidal line advances in the direction of the orbit. GR predicts an apsidal pre-
cession for the orbit of Mercury of 43′′ per century, in precise agreement with astronomical
observations (beyond what can be accounted for through perturbations from other planets).

• Gravitational deflection of light: GR predicts that the path followed by light will be bent in a
gravitational field. For light rays just passing the surface of the sun, GR predicts a deflection
angle of 1.75′′ in excellent agreement with measured values.

• Gravitational time delay: As the path of light is bent in the gravitationally modified spacetime
of a large mass, the time for light to propagate on that path is delayed with respect to the
propagation time in the absence of gravitation. Measurements of the gravitational time delay
agree well with the predictions of GR (see Fig. 17.8).

• Gravitational frequency shift: The Pound-Rebka-Snider experiment (Section 11.7.2) con-
firmed the gravitational redshift or blueshift of photons either rising or falling in a gravi-
tational field. Closely related is time dilation in a gravitational field, an effect necessary to
keep the GPS working accurately—time slows down in a gravitational potential relative to
far-away clocks.

• Parameterized Post-Newtonian framework: The PPN framework specifies the spacetime met-
ric in terms of experimentally measurable parameters. The simplest PPN theory has two pa-
rameters, β and γ, both of which have the value unity in the Schwarzschild metric. Experi-
mentally it’s found that γ = 1 + (2.1± 2.3)× 10−5 and β = 1 + (1.2± 1.4)× 10−4.

• Geodetic precession: The GPB experiment confirmed to high accuracy the prediction of
geodetic spin precession (the change in the orientation of a spacelike vector as it is trans-
ported around a timelike geodesic in curved spacetime).

• Worldlines of at-rest observers (constant values of spatial coordinates) are not geodesics, and
hence are accelerated. “Standing still” is not the shortest path in spacetime. The acceleration
experienced by a stationary observer is the force (weight) that must be supplied to prevent a
state of free fall. The Schwarzschild metric predicts the Newtonian gravitational acceleration.

EXERCISES

17.1 For a radial particle trajectory, if we don’t make the assumption of starting from rest, show
that:

a. The equation of motion would be given by ṙ2 = ṙ2
0 + 2GM

(
1
r
− 1
r0

)
.

b. The value of k would be given by k2 = 1− rS
r0

+ ṙ2
0
c2

.

c. The energy of the trajectory would be given by E = 1
2 ṙ

2
0 −

GM

r0
.
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17.2 Verify that the solution to the second-order equation in Eq. (17.42) is

u2(φ) = 3λ2

4r0

(
5φ sinφ− sin2 φ cosφ

)
.

17.3 Derive Eq. (17.69).

17.4 In Section 17.9 the equivalence is asserted of the equation of motion for S0 in Eq. (17.79)
and that for Sφ in Eq. (17.80). Let’s show this.

a. From the orthogonality condition SµUµ = 0, show that for a circular orbit S0 =
−gφφUφSφ/(g00U

0). For a circular orbit, all components of the four-velocity are con-
stant as are the elements of the metric tensor. Thus there is a constant proportionality
between Sφ and S0.

b. Show, using the result from part a and Eq. (17.79), that

dSφ

dτ = g00

gφφ

(U0)2

Uφ
ΓtrtSr .

Show that for this result to be equivalent to Eq. (17.80), the following identity must hold

Γtrt
Γφrφ

= −
(
Uφ

U0

)2
gφφ
g00

.

c. Show from UµU
µ = −c2 that for a circular orbit

−gφφ
g00

(
Uφ

U0

)2

= 1 + 1
g00

( c

U0

)2
.

d. The equivalence of the equations of motion for S0 and Sφ thus requires that the following
be an identity

Γtrt
Γφrφ

= 1 + 1
g00

( c

U0

)2
.

Verify that this is indeed an identity using the Christoffel symbols for the Schwarzschild
metric, U0 = cṫ, and the value of k2 for a circular orbit, Eq. (17.29).
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Linearized gravity

I N this chapter we consider the linearized version of Einstein’s field equation, where the space-
time metric field is assumed to be slightly perturbed away from the Lorentz metric. We already

considered such a procedure in Section 15.2, where we treated the static case for nonrelativistic
speeds for the purposes of identifying the constant κ. Here we undertake a more systematic analysis
of the linearized field equation and its numerous consequences.

18.1 LINEARIZED FIELD EQUATION
Assume a spacetime metric field gµν(xα) = ηµν + hµν(xα) comprised of a small perturbation to
the Lorentz metric, |hµν(x)| � 1. The contravariant version is gµν = ηµν − hµν ; in that way
gµνg

νλ = δλµ + O(h2). For hµν ≡ 0, Gµν = 0, so we expect that Gµν vanishes in a smooth way
as hµν → 0; our job is to “dig out” the part of Gµν that’s first order in hµν . The right side of
Einstein’s equation does not vanish, however, as hµν → 0; Tµν 6= 0 on flat spacetime. There is then
something of a juggling act here: It would seem one cannot consistently take the limit hµν → 0 on
both sides of Einstein’s equation. The resolution is that we must rely on κ to set a smallness scale.
We’ll find solutions to the linearized field equation where hµν is proportional to κ and that are small
everywhere. As we use Tµν at lowest order, it’s useful to think of hµν(x) as a field on flat spacetime,
like the electromagnetic field Fµν(x). Indeed, we’ll find strong similarities between the perturbed
metric field in linearized gravity and the electromagnetic field on Minkowski spacetime.

18.1.1 Inhomogeneous wave equation

The Christoffel symbols at lowest order in hµν are given by Eq. (15.9):

Γλµν = 1
2
[
ηλρ (∂µhρν + ∂νhρµ)− ∂λhµν

]
+O(h2) . (15.9)

Because Γλµν ∼ O(h), the products of Christoffel symbols in the Riemann tensor, Eq. (14.61), can
be ignored. In the linear approximation the elements of the Ricci tensor are given by Eq. (15.16):
Rρν = ∂µΓµνρ−∂νΓµµρ+O(h2). Combining Eqs. (15.9) and (15.16), and working out the indicated
contractions,

Rρν = 1
2
[
−∂µ∂µhρν − ∂ν∂ρh+ ∂λ∂ρhλν + ∂µ∂νhµρ

]
+O(hµν)2 , (18.1)

where h ≡ hαα is the scalar field associated with hµν . The symmetry Rρν = Rνρ is preserved in this
approximation, Eq. (18.1). At this point we drop the “+O(h2)” symbols, it being understood that
equality means “to first order in hµν .” The Ricci scalar field obtained from Eq. (18.1) is:

R = −∂µ∂µh+ ∂λ∂ρhρλ . (18.2)

319
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Using Eqs. (18.1) and (18.2), we have the Einstein tensor at lowest order

Rρν −
1
2gρνR = 1

2
[
−∂µ∂µhρν − ∂ν∂ρh+ ηρν∂µ∂

µh− ηρν∂λ∂σhσλ + ∂λ∂ρhλν + ∂µ∂νhµρ
]
.

(18.3)
Remarkably, Eq. (18.3) can be simplified through a change of variables. Let ψρν ≡ hρν− 1

2ηρνh,
whereψρν(x) is a new field, the “trace-reversed” metric perturbation. If we knowψρν , then we know
hρν through

hρν = ψρν −
1
2ηρνψ , (18.4)

where ψ ≡ ψσσ = −h. Combining Eqs. (18.3) and (18.4), Einstein’s equation at linear order is

∂µ∂µψρν +
(
−∂λ∂ρψλν − ∂µ∂νψµρ + ηρν∂λ∂σψ

σλ
)

= −2κTρν , (18.5)

where the terms in parentheses have been grouped together for a reason that will be explained
shortly—they can be made to disappear!

Equation (18.5) can be simplified further through an infinitesimal coordinate transformation,

xµ → x′µ = xµ + ξµ , (18.6)

where ξµ is an unknown vector field of the same order of smallness as hµν . As with any coordinate
transformation, we need the Jacobian matrices, Eqs. (5.24) and (5.25): ∂x′µ/∂xν = δµν + ∂νξ

µ and
∂xν/∂x′λ = δνλ − ∂λξν , where the latter equation is defined so that Eq. (5.27) holds to first order.
The metric tensor in the new coordinate system is, to linear order, g′µν = gµν−∂νξµ−∂µξν , where1

ξµ = ηµνξ
ν . Using gµν = ηµν + hµν , we have to linear order,

h′µν = hµν − ∂νξµ − ∂µξν . (18.7)

By raising an index, Eq. (18.7) implies that h′λν = hλν−∂λξν−∂νξλ. Setting λ = ν and summing,

h′ = h− ∂λξλ − ∂λξλ = h− 2∂λξλ . (18.8)

From Eqs. (18.7) and (18.8) we obtain the transformation of ψµν under xµ → xµ + ξµ

ψ′µν = ψµν − ∂νξµ − ∂µξν + ηµν∂
λξλ . (18.9)

Now raise both indices in Eq. (18.9) and take the divergence; it’s straightforward to show that

∂νψ
′µν = ∂νψ

µν − ∂ν∂νξµ . (18.10)

We now come to the key point: If we choose ξµ so that ∂ν∂νξµ = ∂νψ
µν , we have

∂νψ
′µν = 0 . (18.11)

With Eq. (18.11) satisfied, each of the terms in parentheses in Eq. (18.5) vanishes in the trans-
formed coordinate system (show this). In this coordinate system, the linearized field equation is an
inhomogeneous wave equation,2

∂µ∂
µψ′ρν = −2κT ′ρν , (18.12)

where T ′ρν is the energy-momentum tensor in the transformed coordinate system. At this point we
can drop the primes from Eq. (18.12), which, as a tensor equation, holds in any coordinate system
so long as Eq. (18.11) is satisfied. After Eq. (18.12) has been solved, we have the elements of the
perturbed metric tensor using Eq. (18.4),

gµν = ηµν + hµν = ηµν
(
1− 1

2ψ
)

+ ψµν . (18.13)

1See Eq. (15.45). When raising or lowering the index on first-order quantities, we must use η the zeroth-order metric.
2Thus, in the transformed coordinate system Gµν is related to the wave equation operator Gµν = − 1

2∂λ∂
λψµν .
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18.1.2 Gauge invariance

Equation (18.6) is a gauge transformation.3 In electrodynamics, the four-potential Aµ satisfies
an inhomogeneous wave equation related to the sources of the fields, ∂µ∂µAα = −µ0J

α, Eq.
(8.16), when the Lorenz condition ∂µA

µ = 0 is met, Eq (8.17). The Lorenz condition can al-
ways be satisfied through a gauge transformation, Aµ → Aµ + ∂µχ, Eq. (8.20), where the gauge
scalar field χ satisfies the inhomogeneous wave equation, ∂α∂αχ = −∂βAβ (Section 8.5). In lin-
earized gravity, the tensor field ψµν satisfies an inhomogeneous wave equation related to its sources,
∂µ∂

µψρν = −2κTρν , Eq. (18.12), when the analogous Lorenz condition is met, ∂νψµν = 0, Eq.
(18.11). Equation (18.11) can always be satisfied if the gauge vector field ξµ satisfies the inhomo-
geneous wave equation, ∂ν∂νξµ = ∂νψ

µν . These results are summarized in Table 18.1.
In electrodynamics, the field tensor Fµν = ∂µAν − ∂νAµ, Eq. (8.18), is invariant under

Aµ → Aµ + ∂µχ, and the theory is said to be gauge invariant. What’s invariant under the gauge
transformation in GR? It’s the linearized Riemann tensor. From Eq. (14.61), we have at linear or-
der Rαρµν = ∂µΓανρ − ∂νΓαµρ. Using the linearized Christoffel symbols, Eq. (15.9), the linearized
Riemann tensor is

Rαρµν = 1
2 [∂α (∂νhµρ − ∂µhνρ)− ∂ρ (∂νhαµ − ∂µhαν)] . (linearized) (18.14)

It’s straightforward to show that Eq. (18.14) is invariant under the transformation in Eq. (18.7).

Table 18.1 Comparison of Linearized Gravity with Electrodynamics.
Linearized Gravity Electrodynamics

Field ψµν Aµ

perturbed metric tensor four-potential

Conservation law(s) ∂νT
µν = 0 ∂νJ

ν = 0

Field equation ∂µ∂µψρν − ∂λ∂ρψλν − ∂µ∂νψµρ ∂ν (∂µAν − ∂νAµ) = µ0J
µ

+ηρν∂λ∂σψσλ = −2κTρν

Gauge transformation xµ → xµ + ξµ(x) Aµ → Aµ + ∂µχ(x)

Invariant under the linearized Riemann tensor field tensor Fµν
gauge transformation

Lorenz condition ∂νψ
µν = 0 ∂µA

µ = 0

Gauge function ∂ν∂
νξµ = ∂νψ

µν ∂ν∂
νχ = −∂µAµ

vector gauge function scalar gauge function

Simplified field equation ∂µ∂
µψρν = −2κTρν ∂µ∂

µAα = −µ0J
α

Retarded solution ψρν(t,x) = Aα(t,x) =
κ

2π

∫
Tρν(t− |x− y|/c,y)

|x− y|
d3y

µ0

4π

∫
Jα(t− |x− y|/c,y)

|x− y|
d3y

3Gµν has six independent elements in four dimensions (Section 15.3.2), while Tµν has 10; thus there is room for four
independent degrees of freedom associated with gµν . Those degrees of freedom are represented by the vector field ξµ.
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18.1.3 Retarded solution

In the linearized theory the perturbation to the Lorentz metric ψµν(x) satisfies a wave equation
generated by κTµν(x). The first step in solving an inhomogeneous differential equation is to find
the Green function associated with that differential equation. We omit that step because of length
restrictions (even though it’s instructive to see in a relativistic context), and because we can simply
write down the answer because the same equation is encountered in electrodynamics (a relativistic
field theory), and the same math solves the same equations. The electromagnetic four-potential
Aµ(x) satisfies an inhomogeneous wave equation generated by the four-current Jµ(x) (Eq. (8.16)),
the solution of which can be expressed as a retarded field (see Table 18.1).4 Without further ado, the
retarded solution of Eq. (18.12) is5

ψρν(t,x) = κ

2π

∫
Tρν (t− |x− y| /c,y)

|x− y|
d3y , (18.15)

where the integration is over the spatial location of sources, y, with Tρν evaluated at the retarded
time tr ≡ t− |x− y|/c on the past light cone of the field point, x. See Fig. 18.1. Equation (18.15)
is the general solution to the problem of linearized gravity.

x1

x2

x0

xσ
yσ

retarded time

field point, “here, now”

source points, “there, then”

integrate over y-coordinates

Figure 18.1 Source at (x0 − |x− y|,y) is causally related to the field at (x0,x).

18.2 STATIC SOURCE
As the simplest application of Eq. (18.15), consider a static mass distribution ρ(r), where T00 = ρc2

and Tµν = 0 for µ 6= 0, ν 6= 0. In that case ψµν = 0 for µ 6= 0, ν 6= 0, with6

ψ00(x) = 4G
c2

∫
ρ(y)
|x− y|

d3y ≡ − 4
c2

Φ(x) , (18.16)

where Φ is the Newtonian gravitational potential; Table 1.1. The assumption that ψ00 is small is
equivalent to the requirement of weak gravity, |Φ| � c2. The scalar ψ = ψλλ = η00ψ00 = −ψ00,
and thus from Eq. (18.13), g00 = η00(1 + 1

2ψ00) + ψ00 = −1 + 1
2ψ00 = −(1 + 2Φ/c2) and

gii = 1 + 1
2ψ00 = 1− 2Φ/c2. The spacetime geometry is described by

(ds)2 = −
(

1 + 2
c2

Φ
)

(cdt)2 +
(

1− 2
c2

Φ
)

(dσ)2 , (18.17)

4There are also advanced fields, which have interesting uses, e.g., in the Wheeler-Feynman theory, but which we ignore
here. Retaining the advanced solutions produces a time-symmetric theory; including only the retarded solution breaks time-
reversal symmetry. A direction of time is selected by working solely with retarded fields.

5As shown in books on electrodynamics, Eq. (18.15) solves Eq. (18.12) and satisfies the Lorenz condition, Eq. (18.11).
Equation (18.11) was assumed in the derivation of Eq. (18.12); consistency requires that Eq. (18.15) satisfy Eq. (18.11).

6We can ignore time retardation for static sources.
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where (dσ)2 denotes the spatial line element. While Eq. (18.17) has the form of the Schwarzschild
metric for weak gravity (|Φ| � c2); Eq. (18.17) is more general than the Schwarzschild metric: The
potential Φ in Eq. (18.17) is the solution to the Poisson equation for any static mass distribution,
not necessarily spherically symmetric; moreover it’s not a vacuum solution, it’s not restricted to the
exterior of the mass distribution. Note that the metric in Eq. (18.17) is time-reversal symmetric.7

18.3 FAR FROM A SLOWLY VARYING SOURCE
Assume that the field point located by vector r is far removed from the source—in relation to its
size—indicated schematically in Fig. 18.2. That is, r ≡ |r| � y ≡ |y| for any source point located

y

O

r

r − y

θ

M

Figure 18.2 Geometry for Eq. (18.21). Mass is shown as spherical for simplicity.

by vector y. Under these conditions we can obtain an approximate solution to Eq. (18.15) involving
its multipole expansion. Start with

1
|r − y|

= 1
r

1√
1− (2y/r) cos θ + (y/r)2

= 1
r

∞∑
n=0

(y
r

)n
Pn(r̂ · ŷ)

= 1
r

[
1 + 1

r
r̂ · y + 1

2r2 (3r̂kr̂j − δjk) yjyk + · · ·
]
, (18.18)

where we’ve used the generating function for Legendre polynomials [73, p784] and that cos θ =
r̂ · ŷ = r̂iŷ

i, with r̂ = r/r and ŷ = y/y unit vectors. We also require the expansion

|r − y| = r − r̂ · y − 1
2r (r̂j r̂k − δjk) yjyk + · · · ≡ r −∆(y, r) , (r � |y|) (18.19)

where ∆ = r − |r − y| = r̂ · y + yjyk (r̂j r̂k − δjk) + · · · is a measure of the size of the source.
The retarded time between r and y is characterized by ∆: tr = t−r/c+∆(y, r)/c. The expansion
Eq. (18.19) occurs in the time argument of Tµν(tr,y). We can expand around a fixed retarded time
r0
t ≡ t− r/c (that at the origin):

Tµν(t− r/c+ ∆/c,y) =
∞∑
n=0

1
n!

(
∆
c

)n [
∂nTµν(t,y)

∂tn

]
∆=0

. (18.20)

A derivative with respect to time implies a characteristic time scale tc over which Tµν varies, with
∂/∂t ∼ t−1

c . Because ∆ is a measure of the size of the source, the product ∆∂/∂t represents a
characteristic speed with which the source varies. The series in Eq. (18.20) converges rapidly when
|∆∂/∂t| � c. Combining Eqs. (18.18) and (18.20) with Eq. (18.15), we have the general expansion
probing the variation of the source in space and time:

ψµν(t, r) = κ

2πr

∫
d3y

( ∞∑
n=0

1
n!

(
∆(y, r)

c

)n [
∂nTµν(t,y)

∂tn

]
∆=0

)

×
[
1 + 1

r
r̂ · y + 1

2r2 (3r̂kr̂j − δjk) yjyk + · · ·
]
. (18.21)

7The distinction between static and stationary spacetimes is introduced in Section 16.1.1.
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Equation (18.21) is clearly an intricate expression from which many details can be inferred. We
consider the simplest case of the lowest order in both expansions, appropriate for the observation
point far removed from a nonrelativistic source:

ψρν(t, r) = 4G
c4r

∫
d3yTρν(t− r/c,y) . (18.22)

Using T00 = T 00, T0i = −T 0i = −T i0, Tij = T ij , and the interpretation of Tµν (Section 9.2),∫
T00d3y = c2[M ]t−r/c = energy of source∫
T0id3y = −c

[
P i
]
t−r/c = −c×momentum of source in i direction∫

Tijd3y = integrated internal stress of source in i, j directions.

For an isolated source, M and P i are constants, and, because it’s always possible to work in a
reference frame where the momentum is zero, we take

ψ00 = 4GM
c2r

ψ0i = ψi0 = 0 . (18.23)

Note that ψ00 in Eq. (18.23) is the monopole approximation to ψ00 in Eq. (18.16).
Evaluating ψij relies on a trick. Consider ∂k(T ikyl) = T ikδlk + yl∂kT

ik = T il − yl∂0T
i0,

where we’ve used the conservation law ∂µT
iµ = 0. Thus,∫

T ild3y =
∫
∂k(ylT ik)d3y +

∫
yl∂0T

i0d3y = 1
2c

d
dt

∫
(ylT i0 + yiT l0)d3y , (18.24)

where the integral involving the divergence can be “waved away” (use Gauss’s theorem and that for
a localized source T ij = 0 on the surface), and we have symmetrized with respect to the indices
(i, l). Apply the same trick to ∂k(T ikyjyl) = T ilyj + T ijyl − yjyl∂0T

i0 and for the same reason
conclude that ∫

(T ilyj + T ijyl)d3y = 1
c

d
dt

∫
yjylT i0d3y . (18.25)

Combining Eqs. (18.24) and (18.25) (with j → l, l→ i, i→ 0),∫
T ild3y = 1

2c2
d2

dt2

∫
yiylT 00d3y . (18.26)

Combining Eqs. (18.26) and (18.22),

ψij(t, r) = 2G
c6r

[
d2

dt2 I
ij(t)

]
t−r/c

, (18.27)

where
Iij ≡

∫
yiyjT 00d3y (18.28)

is the second mass moment of the source. Equation (18.27) is used in the description of long-
wavelength (low frequency) gravitational waves.
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18.4 GRAVITOMAGNETISM: STATIONARY SOURCES
We consider a nonrelativistic stationary source, one that’s invariant under time translations (Section
16.1.1), so that ∂0T

µν = 0—the particles of the source are in steady-state motion. For this type of
source, time retardation is immaterial and Eq. (18.15) is equivalent to:

ψµν(x) = 4G
c4

∫
Tµν(y)
|x− y|

d3y . (18.29)

Using the energy-momentum tensor in Eq. (10.17), we have for nonrelativistic speeds: T 00 =
ρc2 +O(β2), T i0 = (ρc2 +P )βi +O(β3), and T ij = Pδij + (ρc2 +P )βiβj +O(β4). Assuming
reasonable pressures (P � ρc2), T 0i ∼ T 00βi and T ij ∼ T 00βiβj . We can therefore approximate
Tµν schematically as:

Tµν ≈ T 00


1 β1 β2 β3

β1

β2 βiβj

β3

 .

If we further approximate Tµν by keeping only terms up to O(β), there are four independent ele-
ments, T 0α. This approximation permits a correspondence between linearized gravity and electro-
magnetism. The electromagnetic four-potential for a stationary source (no time retardation) is8

Aα(x) = µ0

4π

∫
Jα(y)
|x− y|

d3y .

While there are always four components of Jα (four-vector), in linearized gravity there are four
independent elements to Tµν at this level of approximation, namely T 0ν .

Substituting T00 = ρc2 in Eq. (18.29), we have ψ00(x) = −4Φ(x)/c2, the same as Eq. (18.16).
Using T0i = −T 0i = −ρcvi in Eq. (18.29),

ψ0i = −4G
c3

∫ (ρvi)(y)
|x− y|

d3y ≡ Ag,i
c

,

where we have defined a gravitational analog of the vector potential,9 Ag,i = cψ0i. We take the
space-space terms ψij = 0 because the stress tensor Tij is second-order in β. In this case the scalar
field ψ = −ψ00. Using Eq. (18.13), the spacetime geometry associated a nonrelativistic stationary
source is described by

(ds)2 = −
(

1 + 2Φ
c2

)
(cdt)2 + 2

c
Ag,idx0dxi +

(
1− 2Φ

c2

)
(dσ)2 . (18.30)

The extra term in Eq. (18.30), compared with Eq. (18.17), reflects the motion of the source.10

The effect of source motion can be interpreted as a gravitational vector potential produced by a
mass current, akin to the magnetic vector potential produced by charge currents. We define the
gravitational four-potential (compare with Eq. (8.15)),

Aµg ≡
(

4
c

Φ,Ag

)
,

8Derived in any book on electromagnetism; it’s also the analog of Eq. (18.29).
9The vector potential in electromagnetism has the dimensions of energy/(charge speed). For the associated quantity in

gravitation let charge become mass, in which case the gravitational vector potential has the dimension of speed. The quantity
ψµν in Eq. (18.29) is dimensionless; thus we have defined Ag,i = cψ0i.

10The metric tensor for a rotating frame, Eq. (12.34), features a dx0dxi term.
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where Φ is the gravitational potential, Eq. (18.16), and (with J = ρv the mass current density)

Ag = −4G
c2

∫
J(y)
|x− y|

d3y . (18.31)

The analogy with electromagnetism is strong. We find from Eqs. (18.16) and (18.31)11

∇2Φ = 4πGρ ∇2Ag = 16πG
c2

J . (18.32)

Compared with the Poisson equations in electromagnetism for the scalar and vector potentials, we
have the correspondences

ε0 ↔ −
1

4πG µ0 ↔ −
16πG
c2

. (18.33)

The minus sign here can be traced to the fact that masses always attract, but like charges repel.
The analogy can be taken further by defining the gravitoelectric field, Eg = −∇Φ, and the grav-
itomagnetic field, Bg = ∇ × Ag . With the identity ∇ (1/|x− y|) = −(x − y)/|x − y|3, it’s
straightforward to show that Eg and Bg reduce to the usual expressions for the electrostatic and
magnetostatic fields when the identifications in Eq. (18.33) are used and the symbols ρ and J are
interpreted as charge and current densities. Note that it’s the potentials (Φ,A) that couple to the
spacetime metric in Eq. (18.30), and not the fields.

The fields Eg ,Bg satisfy the gravitational Maxwell equations,

∇ ·Eg = −4πGρ ∇ ·Bg = 0

∇×Eg = 0 ∇×Bg = −16πG
c2

J .

To show that the analog of Ampere’s law holds, we must show that∇·Ag = 0, which follows from
Eq. (18.31). The gravitoelectric field Eg is the Newtonian gravitational field g that we started with
in Table 1.1. The gravitomagnetic field, however, Bg is new to GR and predicts an additional type
of gravitational acceleration due to mass sources in motion.

18.5 FRAME DRAGGING
What is the motion of a particle in the gravitoelectromagnetic field? A charged particle accelerates
in the electromagnetic field with a = (q/m)(E + v×B). Under the correspondence q ↔ m, that
the “charge” of a particle in a gravitational field is its mass, we would expect a = Eg + v ×Bg .
In GR a free-fall worldline is a geodesic. The geodesic equation requires the Christoffel symbols
associated with Eq. (18.30); these are given in Table 18.2. Note that Γijk = 0 if the spatial indices are

Table 18.2 Christoffel symbols associated with spacetime metric Eq. (18.30).

Γ0
00 = 0 Γi00 = −1

4∂
iψ00 = 1

c2
∂iΦ

Γ0
0i = −1

4∂iψ00 = 1
c2
∂iΦ Γi0j = 1

2
[
∂jψ

i
0 − ∂iψ0j

]
= 1

2c
[
∂jA

i − ∂iAj
]

Γ0
ij = −1

2 [∂iψ0j + ∂jψ0i] Γijk = 1
c2
[
δjk∂

iΦ− δik∂jΦ− δij∂kΦ
]

11Use the standard identity∇2(1/|x− y|) = −4πδ(3)(x− y).
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all different. This is because the “space-space” part of the metric tensor is diagonal (see comments
in Section 16.2).

The linearized geodesic equation for nonrelativistic speeds is worked out in Section 15.2, where
it’s shown that the time component is second order in small quantities. The spatial part of Eq. (15.8)
is, to first order in the velocities, ẍi + c2Γi00 + 2cΓi0j ẋj = 0. Using Γi00 and Γi0j from Table 18.2,

ẍi + ∂iΦ + (∂jAi − ∂iAj)ẋj = 0 . (18.34)

Let’s work out the components of v×B = v×∇×A,

(v×B)i = εijkv
jBk = εijkε

k
lmv

j∂lAm = (δilδjm − δimδjl)vj∂lAm

= vj
(
∂iAj − ∂jAi

)
= −2cΓi0j ẋj . (18.35)

Combining Eqs. (18.34) and (18.35),

ẍi = (Eg)i + (v×Bg)i .

We have the remarkable result that a slow-moving particle in the gravitational field of a stationary
source experiences an acceleration entirely analogous to the Lorentz force on a charged particle.

An inertial reference frame (free-fall) would therefore appear to be rotating—free-fall motion
would appear to be subject to a Coriolis force.12 A rotating mass is said to drag the reference frame
with it—frame dragging. Below we calculate Bg for a slowly rotating mass. It might be thought
that frame dragging only occurs in the vicinity of a rotating mass. The gravitomagnetic field occurs
for any slow, steady motion of the mass source: The vector potentialAg is associated with any mass
current J , Eq. (18.31). From our treatment of the electromagnetic field (Chapter 8), while there are
exceptional reference frames in which E or B vanish, there is always some other frame in which
E and B are both present; both are aspects of the single entity, the electromagnetic field. Frame
dragging always occurs in the linearized gravitational field;Eg andBg are two aspects of the same
gravitational manifestation in spacetime. It’s only because frame-dragging effects are so small in
our everyday experience that we’re not aware of it—like the Coriolis force on Earth, which is not
ordinarily noticeable.

18.6 SLOWLY ROTATING SOURCE
We now calculate the gravitomagnetic field of a body rotating with constant angular speed, where
the velocity v at any point in the object is nonrelativitic, v � c. The first step is to obtain the vector
potential,Ag . Combining Eqs. (18.31) and (18.18), we have the multipole expansion,

Ag(x) = − 4G
rc2

[∫
J(y)d3y + xk

r2

∫
J(y)ykd3y + · · ·

]
. (18.36)

The first integral on the right of Eq. (18.36) vanishes due to conservation of mass. Using a variant
of the trick used in Section 18.3 (“sub-trick”):∫

Jjd3y =
∫
J i
∂yj

∂yi
d3y =

∫
dSiJ iyj −

∫
yj∂iJ

id3y = 0 , (18.37)

where we’ve integrated by parts. The remaining integrals each vanish because J i = 0 on the surface
and because of the conservation law for steady currents, ∂iJ i = 0.

To evaluate the second integral in Eq. (18.36), express J iyk as the sum of symmetric and an-
tisymmetric parts, J iyk = 1

2 (J iyk + Jkyi) + 1
2 (J iyk − Jkyi). By Eq. (18.25), the integral over

12The Coriolis force (acceleration seen in a noninertial, rotating frame), Ω × v, is related to v × Bg through the
correspondenceBg ∝ L ∝ Ω.
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the symmetric part vanishes for a stationary source (time derivative vanishes). Thus,
∫
ykJ id3y =

1
2
∫

(ykJ i − yiJk)d3y. Define the angular momentum of the mass source, L ≡
∫

(y× J)d3y. The
vectorL is independent of the choice of origin because

∫
J(y)d3y = 0. Let’s work out (L×x)i =

εi kj L
jxk = εi kj ε

j
lmxk

∫
ylJmd3y = (δimδkl − δilδkm)xk

∫
ylJmd3y = xk

∫
(ykJ i− yiJk)d3y. We

then have the remarkable result:

xk

∫
ykJ(y)d3y = 1

2L× x . (18.38)

Combining Eqs. (18.36)–(18.38), we have the gravitational vector potential at lowest order in a
multipole expansion,

Ag(x) = − 2G
c2r3 (L× x) . (18.39)

Equation (18.39) is exact for a spherically symmetric source. It’s then straightforward to show that
Bg =∇×Ag can be written

Bg = − 2G
c2r3

(
3L · r
r2 r −L

)
, (18.40)

what should be a familiar expression.13 Combining Eqs. (18.39) and (18.30), the spacetime metric
associated with a slowly rotating mass is

gµν =


−1− 2Φ/c2 A1/c A2/c A3/c

A1/c 1− 2Φ/c2 0 0
A2/c 0 1− 2Φ/c2 0
A3/c 0 0 1− 2Φ/c2

 . (18.41)

18.7 SPIN PRECESSION II: THE LENSE-THIRRING EFFECT
We now examine spin precession in the gravitoelectromagnetic field. Let’s consider some orders of
magnitude apropos of the GPB experiment. For Earth, Φ/c2 ∼ 10−9 (Table 1.2). The magnitude of
Ag can be estimated by taking L = Iω (I is Earth’s moment of inertia, ω its angular frequency).
Using Eq. (18.39), Ag/c ∼ (GωM)/c3 ≈ 10−15, where M is Earth’s mass. With these numbers
we can, referring to Eq. (18.41), ignore terms like g0ig0j , Φg0i, etc. The inverse of Eq. (18.41) is
in principle a full matrix. However, given the small magnitude of the off-diagonal elements, we can
take as gµν :

gµν =


−1 + 2Φ/c2 A1/c A2/c A3/c

A1/c 1 + 2Φ/c2 0 0
A2/c 0 1 + 2Φ/c2 0
A3/c 0 0 1 + 2Φ/c2

 .

The equation of motion for a spin Sµ in free fall is dSµ/dτ = −ΓµαβSαUβ , Eq. (17.78). It will
be convenient in what follows to work with the covariant spin, Sµ, in which case the equation of
motion is14 dSµ/dτ = ΓλµβSλUβ . Multiply by dt/dτ and we have

dSµ
dt = ΓλµβSλV β , (18.42)

13If you’re keeping track, Eq. (18.40) is “off” by a factor of−2 as compared with the standard expression for theB-field
produced by a magnetic dipole, when the correspondence for µ0 in Eq. (18.33) is used. The minus sign is because masses
attract. The factor of two is because in magnetostatics the magnetic moment is defined with a factor of 1

2 .
14Use DSµ = Uα∇αSµ = 0 and Eq. (14.13).
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where V α ≡ dxα/dt = (c,v). From the spatial parts of Eq. (18.42),

dSi
dt = Γ0

i0S0c+ Γ0
ijS0v

j + Γji0Sjc+ ΓjikSjv
k . (18.43)

We can eliminate S0 from Eq. (18.43) using SµUµ = 0, Eq. (12.53). Thus,

S0 = −U
i

U0Si = −1
c
v · S . (18.44)

The second term in Eq. (18.43) is negligible in magnitude compared to the other terms. The equation
of motion at lowest order is therefore

dSi
dt = −Γ0

i0(v · S) + cΓji0Sj + ΓjikSjv
k . (18.45)

Using the entries in Table 18.2, it’s straightforward to show that

ΓjikSjv
k = 1

c2
[(S · ∇Φ)vi − (S · v)∂iΦ− (v · ∇Φ)Si]

cΓji0Sj = 1
2 (S ×∇×Ag)i . (18.46)

Combining Eqs. (18.46) and (18.45), we have the vector equation

dS
dt = − 2

c2
∇Φ(v · S) + v

c2
(S · ∇Φ)− 1

c2
(v · ∇Φ)S + 1

2 (S ×Bg) , (18.47)

where we’ve usedBg =∇×Ag . The velocity-dependent terms lead to geodetic precession, while
the remaining term gives rise to the Lense-Thirring effect.

Equation (18.47) is a formidable expression. It can be simplified with the help of an invariant.
In free fall, SµSµ is constant. Hence,

gµνSµSν = g00(S0)2 + 2g0iS0Si + gijSiSj

= g00 (v · S)2

c2
− 2(v · S)(Ag · S)

c2
+ g11S2 = constant ,

where we’ve used Eq. (18.44) to eliminate the time component S0. The middle term is negligible
in comparison with the other terms (orbital speed β ≈ 2 × 10−5); thus, we have an approximate
invariant involving only the spatial parts of the spin vector (the spin in its rest frame)

S2
(

1 + 2Φ
c2

)
− (v · S)2

c2
= constant . (18.48)

Equation (18.48) suggests that through a suitable change of variables we might find a single quantity,
call it Σ, that approximately captures the constant in Eq. (18.48). Let [74, p234]

S ≡
(

1− Φ
c2

)
Σ + 1

2c2 v(v ·Σ) . (18.49)

Combining Eqs. (18.49) and (18.48), we find

S2
(

1 + 2Φ
c2

)
− (v · S)2

c2
= Σ2 + higher order terms = constant ,

so that to lowest order Σ2 = constant. The inverse of Eq. (18.49) is, to lowest order,

Σ =
(

1 + Φ
c2

)
S − 1

2c2 v (v · S) . (18.50)
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The significance of this development is that because Σ2 ≈ constant, we expect Σ to precess.
Take the time derivative of Σ; from Eq. (18.50)

dΣ
dt = dS

dt + S

c2
dΦ
dt −

v

2c2

(
S · dv

dt

)
− v · S2c2

dv
dt

= dS
dt + S

c2
(v · ∇Φ) + v

2c2 (S · ∇Φ) + (v · S)
2c2 ∇Φ , (18.51)

where we’ve ignored v ·dS/dt and ΦdS/dt as being higher order, and we’ve used dΦ/dt = v ·∇Φ
and dv/dt = −∇Φ. Combining Eqs. (18.47) and (18.51),

dΣ
dt = 1

2S ×Bg −
3

2c2 (∇Φ(v · S)− v(S · ∇Φ)) = S ×
[

1
2Bg −

3
2c2 (∇Φ× v)

]
.

The terms in parentheses are equivalent to S× (∇Φ× v) (“BAC-CAB”). At this order of approxi-
mation we can replace S by Σ. Thus, at lowest order in small quantities the equation of motion for
a spin in free fall in the gravitoelectromagnetic field is

dΣ
dt = Σ×Ω ,

where
Ω ≡ 1

2Bg −
3

2c2 (∇Φ× v) ≡ ΩLT + Ωgeodetic . (18.52)

The quantity Σ precesses around the direction of Ω at the rate |Ω| with no change in magnitude.
In Section 17.9 we calculated, for a spherically symmetric non-rotating source, the angle through

which a spin precesses in one period of a circular orbit as 3πGM/(c2r), Eq. (17.83). Here we
have obtained, from linearized gravity, a general expression for the spin precession rate where such
assumptions are not made. If there was no rotation of the source we’d have Bg = 0, Eq. (18.40).
SettingBg = 0 in Eq. (18.52), we have the geodetic precession rate

Ωgeodetic = − 3
2c2 (∇Φ× v) . (18.53)

Let’s check the prediction of Eq. (18.53) for a spherically symmetric source and a circular orbit,
∇Φ = (GM/r2)r̂ and v = rφ̇φ̂. In that case, the geodetic precession rate is

|Ωgeodetic| =
3GM
2c2r φ̇ . (18.54)

Equation (18.54) agrees with Eq. (17.83) when we set φ̇ × one orbital period = 2π. As noted
in Section 17.9, the GPB experiment (which used a highly circular orbit) measured the geodetic
precession to within 0.3% of the prediction of GR.

The Lense-Thirring precession is caused by the rotation of the source. Using Eq. (18.40),

ΩLT = 1
2Bg = −GIω

c2r3 (3(ẑ · r̂)r̂ − ẑ) ,

whereL = Iω = Iωẑ and r = rr̂. With the GPB experiment in mind, the direction and magnitude
of ΩLT changes over the course of the satellite orbit, owing to the term (ẑ · r̂)r̂. We can easily find
the average value of ΩLT over an orbital period. In the plane of the orbit let r̂(t) = ẑ cos(αt) +
x̂ sin(αt), where α is the orbital angular frequency. It’s then straightforward to show that the time
average over an orbital period yields 〈(ẑ · r̂)r̂〉 = 1

2 ẑ. The average precession rate is thus

〈ΩLT〉 = − GIω

2c2r3 ẑ .
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When all parameters pertaining to the GPB experiment are taken into account, GR predicts a pre-
cession rate of −39.2 mas/year,[71] whereas the measured value was −37.2 ± 7.2 mas/year, a 5%
agreement with GR. There are proposals to measure the effect to greater accuracy.[75]

The orbit for the GPB satellite was chosen with skill. For the geodetic effect, precession occurs
about the direction perpendicular to the orbital plane, Eq. (18.53). To maximize geodetic precession,
the spin S of the gyroscope should be in the orbital plane. For the Lense-Thirring effect, precession
occurs about the direction of Bg . For an equatorial orbit, Bg is perpendicular to the orbital plane;
in this case, the geodetic and Lense-Thirring effects align, rendering separate measurements of each
effect impossible. For a polar orbit, however,Bg is largely oriented along the orbit: Ωgeodetic and ΩLT
are orthogonal, making it possible to measure the two types of precession in the same experiment.

18.8 GRAVITATIONAL WAVES
In source-free regions Eq. (18.12) reduces to the homogeneous wave equation,

∂µ∂
µψρν = 0 . (18.55)

GR thus predicts propagating “ripples” in spacetime curvature, gravitational waves, that travel at
the speed of light.15 One way to view Einstein’s equation is in terms of the rigidity of spacetime,
considered as a medium. The quantity G/c4 has the dimension of [force]−1. Rewriting the field
equation: Stress =

(
c4/(8πG)

)
× curvature—it takes ≈ 5 × 1042 N m−2 to produce a curvature

of 1 m−2. Spacetime can be considered an extremely rigid medium that supports propagating defor-
mations traveling at the speed of light.16 In the following we consider the simplest type of solution
to the wave equation: monochromatic plane waves.17

18.8.1 Plane-wave solutions

How to solve differential equations? Guess. Here’s our intelligent guess:

ψρν = Aρν exp(ikµxµ) , (18.56)

where kµ = (−ω/c,k) is the four-wavevector, Eq. (5.61), and Aρν is a 4 × 4 symmetric18 matrix
of constant amplitudes, the polarization tensor. Equation (18.56) satisfies Eq. (18.55) when ω and
k = |k| are related by the linear dispersion relation ω = ck. Thus, kµ is a null vector with respect to
the Lorentz metric, kµkµ = 0. We can write kµ = (ω/c)(−1, n̂), where n̂, a unit vector, signifies
the direction of propagation.

The gauge condition Eq. (18.11) implies, for plane-wave solutions:

kνA
ρν = 0 . (18.57)

Equation (18.57) represents four equations of constraint among the 10 independent elements of
[Aρν ]; it’s a system of four equations in 10 unknowns. Thus, we would seemingly have six indepen-
dent parameters to choose among the Aρν . We expect, however, gravitational waves to be described
by two independent parameters, not six. Under coordinate transformations of the type of Eq. (18.6),
we know from Eq. (18.10) that the Lorenz condition, Eq. (18.11), and the wave equation (18.55) are
unchanged when the ξµ are harmonic functions, those that satisfy the wave equation

∂ν∂
νξµ = 0 . (18.58)

15Small perturbations of the spacetime metric pertain to the left side of Einstein’s equation Gρν = κTρν ; gravitational
waves are propagating disturbances in the curvature of spacetime.

16Sounds superficially like the ether frame that is relativity disposed of. Spacetime also supports the propagation of
electromagnetic fields. The spacetime of GR is not static and evolves in response to matter-energy-momentum.

17More complicated wave forms can be synthesized from plane waves through Fourier integrals.
18The matrix with elements Aρν is symmetric because the metric tensor is symmetric.
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The 10 functions ψµν are therefore constrained by eight supplementary conditions, Eqs. (18.11) and
(18.58), leaving the metric of gravitational waves to depend on only two independent parameters.
Together with the four constraint equations implied by Eq. (18.57), we’re free to choose four of the
amplitude parameters Aρν—the simplest choice is to set them to zero! Let’s do that.

18.8.2 Transverse traceless gauge

A useful gauge is obtained by requiring the trace be zero:

ψ ≡ ψαα = 0 . (18.59)

If ψ = 0, then from Eq. (18.4) h = 0, where h is the trace of hµν , the “original” perturbation to
the metric, gµν = ηµν + hµν . If ψ = 0, then hµν = ψµν , Eq. (18.4). Equation (18.59) places one
equation of constraint on the amplitudes (Aαα = 0) not provided by Eq. (18.57). For the other three
“picks,” we choose

A0i = 0 . (18.60)

Equations (18.59) and (18.60) represent four conditions we’re allowed to impose on the amplitudes
Aρν . Equation (18.60) combined with Eq. (18.57) implies A00 = 0. At this point the polarization
matrix has the form

[Aρν ] =


0 0 0 0
0 A11 A12 A13

0 A12 A22 A23

0 A13 A23 A33


such that

∑
iA

ii = 0. The gauge condition Eq. (18.57) implies kiAji = 0, or that

k ·A(j) = 0 , (j = 1, 2, 3) (18.61)

whereA(j) is the vector comprised of the row Aji. Equation (18.61) is the transversality condition.
To be definite, assume the wave travels in the +z-direction. Then, k = (0, 0, ω/c). Under these

conditions, transversality requiresAi3 = A3i = 0, implying, along with the traceless condition, that

[Aρν ] =


0 0 0 0
0 a b 0
0 b −a 0
0 0 0 0

 , (18.62)

i.e., the state of the gravitational wave is characterized by two independent parameters (a, b). Equa-
tion (18.62) is referred to as the transverse traceless gauge (or TT gauge for short).

18.8.3 Polarization states

The spacetime metric associated with gravitational plane waves in the TT gauge is found by com-
bining Eqs. (18.62), (18.56), and (18.13):

(ds)2 =− (cdt)2 + (dz)2 (18.63)

+ [1 + a cos(kz − ωt)] (dx)2 + 2b cos(kz − ωt)dxdy + [1− a cos(kz − ωt)] (dy)2 ,

where we’ve used the real part of Eq. (18.56). Thus, there are two independent polarization states:
b = 0, referred to as the + (plus) polarization, and a = 0, referred to as the × (cross) polarization.
Both polarization states are pulsating ellipses, oriented at 45◦ to each other. A general gravitational
wave is a superposition of the two polarization states. That the two states are at 45◦ to each other
contrasts the difference between the gravitational field (represented by a second-rank symmetric
tensor gαβ) and the electromagnetic field (represented by a four-vector Aµ), which has polarization
states of plane waves at 90◦ to each other.
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18.8.4 Gravitational wave interferometer

A schematic depiction of a gravitational wave detector is shown in Fig. 18.3. Consider a (+)-wave

y

z

x
∆x

∆y

A B

C

Figure 18.3 Idealized gravitational wave detector, wave propagating in z-direction.

propagating in the z-direction. In the z = 0 plane, object A is at the origin, with B situated on
the x-axis at coordinate separation ∆x and C on the y-axis at coordinate separation ∆y. From Eq.
(18.63), the proper distances (dt = 0) from A to objects B and C are

∆sAB =√g11∆x =
√

1 + a cosωt∆x ≈
(

1 + 1
2a cosωt

)
∆x

∆sAC =√g22∆y =
√

1− a cosωt∆y ≈
(

1− 1
2a cosωt

)
∆y .

The distances between (A,C) and (A,B) therefore oscillate with the frequency of the gravitational
wave! Figure 18.3 is in the form of the arms of a Michelson interferometer, which, if B and C
were mirrors, could be used to show constructive interference when the difference in the lengths of
the arms differs by an integer multiple of the wavelength λ of the electromagnetic radiation used
in the experiment (not shown in Fig. 18.3). In 2016, the LIGO experiment (Laser Interferometer
Gravitational-Wave Observatory) announced the first observation of gravitational waves.[76] Grav-
itational waves with frequency between 35 and 250 Hz were detected, which was attributed to a
pair of black holes merging into a single black hole. Since then, detection of other gravitational
waves have been reported. We do not have the necessary space to review the LIGO experiment in
any further detail. Suffice to say that with the GPB and LIGO experiments, 100-year-old predictions
of GR have at last been validated, and, with the observation of gravitational waves, a new type of
astronomy is made possible, in which gravitational waves provide information about the dynamics
of massive objects at far-off locations in the universe.

18.9 ENERGY-MOMENTUM OF GRAVITATION
The metric perturbation fieldψµν(x) has properties in common with the electromagnetic field (Table
18.1). On the basis of these analogies we’d expect radiative excitations of the gravitational field that
transport energy and momentum. Such expectations, however, beg the question: What is the energy
of the gravitational field?

In 1905 Einstein taught that mass is equivalent to energy, E = mc2; in 1911 he showed that
energy has inertia, E/c2, and in 1916 he showed that energy-momentum is the source of the grav-
itational field, generalizing the Newtonian model that mass is the source of gravity. Thus, mass is
energy, energy is mass, and energy generates gravity. Does the gravitational field, however—curved
spacetime, have an energy of its own? If so, then gravity generates itself—gravity gravitates! Ein-
stein’s equation is nonlinear: The source of the gravitational field, energy-momentum density, is de-
termined by the field itself. In contrast, charge, the source of the electromagnetic field, is unaffected
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by the field.19 Electromagnetic waves carry energy, but not charge; gravitational waves in carrying
energy in effect carry mass. Is it possible to specifically isolate an energy of the gravitational field?

What is energy? In other branches of physics it’s always possible to define a quantity for an
isolated system, call it energy, that’s constant. Allowing the system to interact with its environment,
balance equations express conservation of energy between system and environment. When there
are different forms of energy, it’s possible to convert one form into another. Energy-momentum of
the electromagnetic field is not conserved when the field couples to the four-current, Eq. (9.48),
but energy-momentum of the combined system of field and matter is conserved—expressed as a
continuity equation of the combined energy-momentum tensors, ∂ν(θµνF +θµνM ) = 0 (Section 9.5.2).
Let’s review what is meant when we say a quantity is conserved in spacetime. We showed in Chapter
8 that ∂νJν = 0 implies zero net flux in spacetime, Eq. (8.14),

∫
∂V

JαdΣα = Q(Σ2)−Q(Σ1) = 0,
where ∂V is a closed hypersurface, Σ2 and Σ1 are spacelike hypersurfaces (see Fig. 8.2), and
Q(Σ) ≡

∫
Σ J

0d3y. The quantity Q(Σ) is independent of Σ: The amount of charge in a spacelike
hypersurface is conserved in time. What about curved spacetime? The conclusion remains the same.
The covariant divergence can be related to the partial derivative,

√
|g|∇µJµ = ∂µ(

√
|g|Jµ), Eq.

(14.35). If∇µJµ = 0, we have, integrating Eq. (14.35) and using Gauss’s theorem, Eq. (5.90), that
the net flux vanishes through a closed hypersurface,

∫
∂V

JµdΣµ = 0.
What about tensor quantities? We know that if the action integral associated with matter fields20

is invariant under the coordinate transformation Eq. (18.6), then ∇νTµν = 0 (Section 15.4.2). If
∇νTµν = 0, then∇νT ν

µ = 0, which is more convenient here. Using Eqs. (14.14) and (14.35),

∇νT ν
µ =∂νT ν

µ + ΓννλT λ
µ − ΓλνµT ν

λ = 1√
|g|
∂ν

(√
|g|T ν

µ

)
− ΓλνµT ν

λ

= 1√
|g|
∂ν

(√
|g|T ν

µ

)
− 1

2T
ρν∂µgνρ , (18.64)

where the last identity is the result of Exercise 18.2. If∇νT ν
µ = 0, then integrating Eq. (18.64) and

applying Gauss’s theorem,∫
∂V

T ν
µ dΣν = Qµ(Σ2)−Qµ(Σ1) = 1

2

∫
V

T ρν∂µgνρ
√
|g|d4x , (18.65)

where Qµ(Σ) ≡
∫

Σ T
0
µ d3y. Thus, ∇νTµν = 0 does not imply zero net flux in spacetime and

Qµ(Σ) is not independent of Σ, i.e., in curved spacetime, energy-momentum of matter fields is not
conserved. Quantities obeying the continuity equation ∂νTµν = 0 are locally conserved;∇νTµν =
0 is not a conservation law.21

If we take that “gravity gravitates” characterizes the nonlinear nature of Einstein’s field equation
(that any form of energy-momentum acts as a source of the gravitational field, including that of the
gravitational field), what is discarded in linearizing the theory? The linearized field equation is con-
sistent22 with ∂νT ρν = 0, implying that energy-momentum of matter fields is conserved. From Eq.
(18.65) we see that nonconservation of matter energy-momentum is associated with ∂µgνρ 6= 0, i.e.,

19The charge of an electron is not altered by an interaction with the electric field. Because there are two kinds of charge,
however, positive and negative, as opposed to one kind of mass, an electric field can affect the net charge density at a
point, ρ(x), as in the self-consistent charge distribution in plasmas or semiconductors. In such cases the Poisson equation is
nonlinear, ε0∇2φe = −ρ(φe(x)): The charge distribution occurs in response to the same field that charges generate.

20When Tµν is defined as in Eq. (15.43).
21Landau and Lifshitz state, referring to∇νT ν

µ = 0:[77, p280] “In this form, however, this equation does not generally
express any conservation law whatever. This is related to the fact that in a gravitational field the four-momentum of matter
alone must not be conserved, but rather the four-momentum of matter plus gravitational field; the latter is not included in the
expression for T ν

µ .”
22Raise indices (ρ, ν) in Eq. (18.12), contract with ∂ν , implying ∂νT ρν = 0 because of the gauge condition, Eq. (18.11).

We’ve relied on the gauge condition to make this statement, but the theory is gauge invariant. We saw in Section 8.10 that
gauge invariance of the electromagnetic field is associated with charge conservation.
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when there is a gravitational field, when spacetime is curved. Equation (18.65) is a “work-energy
theorem”: The difference in matter energy-momentum at two times (spacelike hypersurfaces, Σ1,
Σ2) is due to the coupling of the (matter) source of the field with the gravitational field, T ρν∂µgνρ,
over the volume of spacetime enclosed between Σ1 and Σ2. The linearized theory ignores interac-
tions between the source and the gravitational field. The source-field coupling occurs implicitly in
the full field equation; no need to put it in explicitly. The effect of the source-field interaction is
reflected in the equation ∇νTµν = 0, where the covariant derivative depends on the metric, gαβ .
We have a self-consistent loop in GR: Tµν determines Gµν , but Tµν must satisfy ∇νTµν = 0,
which depends on gαβ , which is found from Gµν (see Fig. 1.13).

The fact that energy-momentum of matter is not conserved should not come as a surprise if
gravitational waves transport energy-momentum away from sources.23 It might be supposed that
gravitational energy would be radiated in the linear theory, where, just as in electrodynamics, the
radiated energy would be supplied by the agency producing the acceleration of matter.24 Such a
scenario would not conserve energy-momentum, because in GR we have to include all sources of
energy-momentum, including that which produces accelerating masses.

Returning to the question, we’d like a way to identify the energy of the gravitational field. To do
so, we must construct an energy-momentum tensor for the gravitational field. A way to do that can
be found in the Lagrangian formulation of Einstein’s equation, Section 15.4. As this is an involved
calculation, the reader uninterested in the details should skip to Eq. (18.72).

We found from Eq. (15.41), which we reproduce here, that for the action of the gravitational
field (set Λ = 0—it’s easy to put back)

δS =
∫
V

δLg

δgµν
δgµνd4x =

∫
V

[
Rαβ −

1
2Rgαβ

]
δgαβ

√
−gd4x , (15.41)

where Lg =
√
−gR (with Λ = 0). The integrands of the integrals in Eq. (15.41) must agree (up to

the divergence of a quantity which vanishes at the boundary of V ):

Rµν −
1
2Rgµν = 1√

−g
δLg

δgµν
= 1√

−g

[
∂Lg

∂gµν
− ∂λ

(
∂Lg

∂(∂λgµν)

)]
, (18.66)

where we’ve used the functional derivative,25 Eq. (D.63). It’s shown in Exercise 15.7 that an equiv-
alent Lagrangian for the gravitational field is given by:

L =
√
−ggρν

(
ΓµαρΓαµν − ΓµνρΓαµα

)
. (18.67)

The advantage of this form of the Lagrangian (as opposed to Lg =
√
−gR) is that it involves the

metric tensor and only its first derivatives, what we require on the right side of Eq. (18.66). We
invoke Einstein’s equation by setting the left side of Eq. (18.66) equal to κTµν , and we use the
Lagrangian L:

√
−gκTµν = ∂L

∂gµν
− ∂λ

(
∂L

∂(∂λgµν)

)
. (18.68)

We now make use of Eq. (18.64), which, because∇νT ν
µ = 0, implies that

∂ν
(√
−gT ν

µ

)
= 1

2(∂µgνρ)
√
−gT ρν = −1

2 (∂µgνρ)
√
−gTρν

= − 1
2κ (∂µgνρ)

[
∂L
∂gρν

− ∂λ
(

∂L
∂(∂λgρν)

)]
, (18.69)

23And we know that gravitational waves do transport energy: Something has to move the mirrors in the LIGO experiment.
24We see from Eq. (18.27) that the perturbation to the metric goes as the second time derivative of the mass moment.
25The functional derivative in the form of Eq. (D.63) assumes that the Lagrangian is a function only of the fields and its

first derivatives, whereas the Ricci scalar field (Hilbert Lagrangian) is a function of first and second derivatives of the metric.
Enter the results of Exercise 15.7.
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where we’ve used the result of Exercise 18.3 and Eq. (18.68). To make progress, we note that, using
the chain rule

∂µL = ∂L
∂gρν

∂µg
ρν + ∂L

∂(∂λgρν)∂µ∂λg
ρν . (18.70)

Combine Eq. (18.70) with the right side of Eq. (18.69). It can be shown:

(∂µgνρ)
[
∂L
∂gρν

− ∂λ
(

∂L
∂(∂λgρν)

)]
= ∂λ

(
Lδλµ − (∂µgρν) ∂L

∂(∂λgρν)

)
.

Define
√
−gt νµ ≡

1
2κ

(
Lδνµ − (∂µgρλ) ∂L

∂(∂νgρλ)

)
. (18.71)

The net effect of these manipulations is that by combining Eqs. (18.69) and (18.71),

∂ν
[√
−g
(
T ν
µ + t νµ

)]
= 0 . (18.72)

Thus, ∇νT ν
µ = 0 is equivalent to Eq. (18.72). We’ve therefore found a local conservation

law for the energy-momentum of matter fields, represented by T ν
µ , combined with that for the

gravitational field, conventionally denoted t νµ . That’s the good news. The bad news is that t νµ is
not a tensor! Because a coordinate system can always be found where at a given point ∂µgνρ = 0
and all Christoffel symbols vanish (Section 14.4.4), t νµ cannot be a tensor. A bona fide tensor,
if it vanishes in one coordinate system, vanishes in all coordinate systems. Because gravity can
be “waved away” locally (equivalence principle), there cannot be an energy-momentum tensor for
the gravitational field valid in all reference frames. These considerations imply that gravitational
energy is not localizable,26 something that exists at a point; rather, the interaction between matter
and gravitational fields occurs over an extended region of spacetime, what we see as an integration
in Eq. (18.65). The energy of the electromagnetic field, for example (and other physical fields), is
determined by the fields themselves, at a point. The gravitational field is the geometry of spacetime,
and it’s useful to conceive of an interaction between matter and geometry. The part of the metric
tensor that can’t be made to vanish is associated with second and higher-order derivatives of the
metric. These terms become significant over sufficiently extended regions of spacetime.

The quantity t νµ , introduced by Einstein in 1916, is known as the energy-momentum pseudoten-
sor, a special use of the word unrelated to customary usage.27,28 The pseudotensor was criticized
by Levi-Civita, Schrödinger, and others; the early objections have been summarized by Pauli.[79,
p176] Einstein’s reply was that even though one cannot attach physical meaning to the values of tµν

(because it’s impossible to localize energy-momentum of the gravitational field in a covariant way),
the integral expressions

Jµ ≡
∫

Σ
(Tµ0 + tµ0)

√
−gd3y (18.73)

do have physical meaning in prescribed circumstances (Σ is any hypersurface for which x0 = 0).
Einstein showed that the quantities Jµ in Eq. (18.73) are 1) independent of the choice of coor-
dinates in systems for which gµν → ηµν “outside” the system, what we have previously called
asymptotically flat, and 2) transform as a four-vector under linear coordinate transformations. We
can therefore speak of the energy-momentum of the gravitational field in systems that are isolated
by a far-field zone, far removed from the sources of the field.

26The nonlocalizability of energy is a generic issue with fields. Only the total integral of the Poynting vector over a closed
surface has meaning,

∮
S · da; one can add to S any quantity that integrates to zero over a closed surface.

27Pseudotensors are objects that transform as tensors for positive Jacobian determinant J , but with an extra minus sign
for J < 0 (Section 5.9). Apparently Eddington was the first to use the word pseudotensor in this context.[78, p134] The two
terms together T ν

µ + t νµ are referred to as the Einstein complex.
28That t νµ is not a tensor was explicitly called out by Einstein:[9, p147] “It is to be noticed that t ασ is not a tensor . . . ”.
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Equation (18.72) does not possess a unique solution. For any tµν that satisfies Eq. (18.72) we can
add to it the divergence of a third-rank quantity ψµ[νλ] that’s antisymmetric in the second and third
indices and still satisfy Eq. (18.72) (see Section 9.4). For this reason one finds in the literature a va-
riety of possible forms of tµν . That defined by Eq. (18.71) is not symmetric.29 A symmetric version
of the pseudotensor was found by Landau and Lifshitz,[77, p282] but we won’t write it down—it’s
a lengthy expression! Our purpose here is not to provide an exhaustive survey of pseudotensors.

SUMMARY
By working to first order in a small perturbation ψµν(x) to the Lorentz metric, Einstein’s field
equation reduces to an inhomogeneous wave equation, Eq. (18.12). Once ψµν(x) is known, by
solving the wave equation, we have an approximate metric tensor that represents a solution to the
field equation at lowest order in the perturbation; see Eq. (18.13). The perturbation field ψµν(x) has
many properties in common with the electromagnetic field (see Table 18.1), most notably that it can
be expressed as a retarded field, Eq. (18.15),

ψρν(t,x) = 4G
c4

∫
Tρν(t− |x− y|/c,y)

|x− y|
d3y , (18.15)

where the integral is over the sources evaluated at the retarded time. By approximating Eq. (18.15),
we have a systematic way of developing approximate solutions. While there are a few exact solutions
of Einstein’s equation,30 the method of this chapter provides a scheme for developing approximate
solutions based on perturbations to flat spacetime.

• For a static source with T00 = ρc2 and Tµν = 0 otherwise,

ψ00(x) = 4G
c2

∫
ρ(y)
|x− y|

d3y = − 4
c2

Φ(x) ,

where Φ is the Newtonian gravitational potential. The spacetime geometry is described by
Eq. (18.17),

(ds)2 = −
(

1 + 2
c2

Φ
)

(cdt)2 +
(

1− 2
c2

Φ
)

(dσ)2 ,

where (dσ)2 is the spatial line element. While this metric is in the form of the Schwarzschild
metric for weak gravity, it’s more general than the Schwarzschild metric. The potential Φ is
the solution to the Poisson equation for any static mass distribution, not necessarily spher-
ically symmetric. Moreover, the metric is not a vacuum solution; it is not restricted to the
exterior of the mass distribution.

• In the far-field approximation, when the observation point is far removed from the source (in
relation to its size), and the source particles have nonrelativistic speeds, we can approximate
ψµν as the first term in a multipole expansion,

ψµν(t,x) = 4G
c4r

∫
Tµν(t− r/c,y)d3y ,

where r = |x|. In this case ψ00(t, r) = (4G/(c2r)) [M ], ψ0i(t, r) = −(4G/(c3r))
[
P i
]
, and

ψij = (2G/(c6r))
[
Ïij
]
, where the brackets indicate quantities evaluated at the retarded time,

tr = t− r/c. Here Mc2 is the total energy of the source, P i is its total momentum in the ith

direction, and Iij =
∫
yiyjT 00d3y is the second mass moment of the source.

29And of course one cannot speak of symmetry or antisymmetry of mixed tensors—Section 5.7. One has to either raise
or lower an index.

30We’ve considered the Schwarzschild solution, but there are other exact solutions, notably the Kerr and the Reissner-
Nordström metrics, not treated in this book.
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• For stationary sources we do not have to consider time retardation and

ψµν(x) = 4G
c4

∫
Tµν(y)
|x− y|

d3y .

When pressure can be neglected, the energy-momentum tensor is such that T 0i ∼ T 00βi and
T ij ∼ T 00βiβj . For nonrelativistic speeds of the source particles, βi � 1, and, neglecting
terms second order in β, there are only four independent elements, T 0α, enabling a useful
analogy with electromagnetism. When these approximations apply,

(ds)2 = −
(

1 + 2
c2

Φ
)

(cdt)2 + 2
c

dx0Aidxi +
(

1− 2
c2

Φ
)

(dσ)2 ,

where Ai is a vector potential produced by a mass current, akin to the magnetic vector poten-
tial produced by charge currents. The gravitational four-potential, Aµg = (4Φ/c,Ag), where

Ag = −4G
c2

∫
J(y)
|x− y|

d3y ,

with J = ρv the mass current density. There is an analogy between linearized gravity for
stationary, nonrelativistic sources and electro- and magnetostatics. The gravitoelectric field
Eg = −∇Φ and the gravitomagnetic fieldBg =∇×Ag . The geodesic for a free particle in
the spacetime of a nonrelativistic stationary source is the analog of the Lorentz acceleration,
a = Eg + v × Bg . The gravitomagnetic field “drags” the reference frame, causing it to
effectively rotate—a free particle appears as if it was observed from a rotating reference frame
because v×Bg is the analog of the Coriolis force.

• For a slowly rotating source, the gravitomagnetic field is in the dipole approximation

Bg = − 2G
c2r3

(
3L · r
r2 −L

)
,

where L is the angular momentum of the source.

• A spin in the gravitoelectromagnetic field precesses about the direction

Ω = 1
2Bg −

3
2c2 (∇Φ× v) ,

where v is the orbital velocity. The velocity-dependent term is the geodetic precession effect.
Spin precession aboutBg is the Lense-Thirring effect, measured in the GPB experiment.

• In source-free regions of spacetime, GR predicts radiative solutions to the linearized field
equation, gravitational waves, observed in the LIGO experiment.

EXERCISES

18.1 Show that the linearized Riemann tensor Eq. (18.14) is invariant under the infinitesimal co-
ordinate transformation of the type in Eq. (18.6). Verify that the symmetries of the Riemann
tensor are exhibited by Eq. (18.14).

18.2 Show that ΓλνµT ν
λ = 1

2T
ρν∂µgνρ. Use the symmetry of gαβ and Tµν .

18.3 Show that (∂µgνρ)T ρν = −
(
∂µg

αβ
)
Tαβ . Start with gνρ = gανgβρg

αβ .
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Relativistic cosmology

W E now turn to the largest spacetime structure—the universe. Having delved into GR and the
extent to which it’s been tested on the scale of the solar system, we can ask what it has to

say about the universe—the view of spacetime provided by GR must be believable if we’re to have
confidence in its predictions for cosmology. Over cosmological distances, matter and energy are
governed by the weakest force, gravity.1

19.1 THE COSMOLOGICAL PRINCIPLE
Look out at the night sky. It would be natural to assume the universe is a vast array of independent
stars, yet that’s not in accord with what we find—stars gather into gravitationally bound systems
called galaxies, and there are vast numbers of galaxies.2 One might think that the universe is a
huge array of independent galaxies. That too is not in accord with what we find, that galaxies are
interacting objects, grouping into galactic clusters and ultimately superclusters, the largest known
structures. Is there a length scale beyond all structure—what could be termed cosmological dis-
tances—at which the universe has the same appearance from every point?

The cosmological principle is that at sufficiently large length scales the universe looks the same
regardless of location and direction from which it’s viewed. There are two ideas here: homogene-
ity—no unique location in the universe, and isotropy—no preferred direction. While these concepts
are logically distinct, homogeneity is implied if isotropy holds at every point. In Chapter 4 we
used homogeneity and isotropy of spacetime to derive the Lorentz transformation. In cosmology we
apply these ideas to space only because we have in the Big Bang an origin in time.3 The cosmo-
logical principle sounds good, but is it true? Homogeneity and isotropy clearly do not hold on the
scale of the solar system, nor on the scale of the galaxy; it’s only substantially beyond the scale of
intergalactic distances that these features become apparent. Homogeneity is found [81] on length
scales greater than ∼ 80h−1 Mpc.4 Galaxies, of size ≈ 100 kpc, are mere points on such cosmic
length scales. In a first application of GR to cosmology, we presume the validity of the cosmological
principle.

1The weak and strong forces are short ranged. The electromagnetic force, while long ranged, is screened by charges of
opposite sign, and the universe is, to the best of our knowledge, electrically neutral.[80] The electromagnetic force does not
contribute to the long-range evolution of the universe. That leaves gravity.

2It is only since the 1920s that the concept of galaxies existing outside our own was decisively settled.
3The Big-Bang Model is supported by the redshift-distance relation, Hubble’s law, implying an expanding universe. Run

the movie backwards, and there was a singular time when the universe was considerably smaller, denser, and hotter than at
present. An early hot universe is supported by the cosmic microwave background (CMB) radiation permeating the universe,
a thermal relic having the Planck frequency spectrum, and the observed abundances of the light elements.

4A parsec (pc) is the distance from which the astronomical unit (distance from Earth to Sun) subtends an angle of one
arcsecond,≈ 3.26 ly. The value of the Hubble constant is quoted asH = 100h (km/s) Mpc. Recent findings place h ∼ 0.7.

339
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19.2 A COORDINATE SYSTEM FOR COSMOLOGY
By the cosmological principle (and the evidence supporting it), the universe becomes homogeneous
and isotropic at sufficiently large length scales. Over such distances the universe demonstrates a level
of simplicity (as simple as it’s going to get) that actually restricts the type of coordinate system we
can use for its description. If the universe is to look the same everywhere and in every direction,
the curvature of space must be constant, and there are just three types of geometry for which this
is possible, as we show. In a sense GR, the ultimate in a relative theory of space and time, begins
to revert to an absolute theory when we get to the cosmological realm. At every locality there is
now a preferred reference frame, that in which the expansion of the universe is isotropic. And if
the universe appears the same everywhere, there must be a universal cosmic time, the same for all
observers at rest relative to the frame in which the universe everywhere has isotropic expansion.

A “moment of time” in GR is specified by a spacelike hypersurface (SH), and spacetime can
be partitioned into a one-parameter family, labeled by t, of nonintersecting SHs.5 Of course there’s
no unique way to partition spacetime into nonintersecting hypersurfaces; for cosmology we choose
SHs having constant curvature (to be consistent with the cosmological principle). Let coordinates
be established by a set of freely falling particles. Each particle carries a clock and has spatial coor-
dinates xi, taken as the coordinates when its clock reads t = 0. This reference frame is known as
the comoving coordinate system. The coordinates xi in the comoving frame form a spatial grid that
keep their values fixed.6

At each point of a SH there is a local Lorentz frame whose surface of simultaneity coincides
locally with the hypersurface and which is locally spanned by basis vectors ei orthogonal to the
local time direction, e0. The infinitesimal spacetime separation can therefore be written

(ds)2 = −(cdt)2 + gijdxidxj , (19.1)

because g0i = e0 · ei = 0. Along a worldline in the comoving coordinates dxi = 0. Thus, (ds)2 =
−(cdτ)2 = −(cdt)2; the parameter used to label SHs is the proper time, t = τ . Let xµ(τ) denote
the worldline of a free-falling particle in comoving coordinates

x0 = cτ xi = constant . (19.2)

The four-velocity—tangent to the worldline—is then Uµ = (c, 0, 0, 0). The worldline prescribed by
Eq. (19.2) will be a geodesic, d2xµ/dτ2 + ΓµαβUαUβ = 0, if we can show that Γµ00 = 0. From Eq.
(14.23), Γµ00 = 1

2g
µρ(2∂0g0ρ − ∂ρg00), which vanishes because g0i = 0 and g00 = −1.

19.3 SPACES OF CONSTANT CURVATURE
The cosmological principle singles out a class of SHs, those that “look the same” at every point.
To comply with the cosmological principle we assume that (at cosmological distances) space is

5The concept of congruence, a manifold-filling family of nonintersecting curves, admits higher-dimensional general-
izations that for lack of space we omitted in Chapter 13. A manifold can be decomposed into a family of nonintersecting
surfaces (higher-dimensional submanifolds).

6The earliest occurrence I have found of the term comoving coordinates is a single sentence in Tolman:[82] “For the
purposes of the investigation it will be simplest to use a set of comoving coordinates such that the spatial components
are determined by a network of meshes drawn so as to connect neighboring particles and allowed to move therewith.” The
complex of ideas associated with the comoving coordinate system is also known as Weyl’s postulate. From Weyl:[41, Section
34] “In the three-dimensional space x0 = 0 surrounding O we may mark off a region R, such that, in it, (ds)2 remains
definitely positive. Through every point of this region we draw the geodetic world-line which is orthogonal to that region,
and which has a time-like direction. These lines will cover singly a certain four-dimensional neighborhood of O. We now
introduce new coordinates which will coincide with the previous ones in the three-dimensional space R, for which we now
assign the coordinates x0, x1, x2, x3 to the point P at which we arrive, if we go from the point P0 = (x1, x2, x3) in R
along the orthogonal geodetic line passing through it, so far that the proper time of the arc traversed, P0P , is equal to x0.”
You should be able to parse Weyl’s words to see the comoving coordinate system as we have defined it.
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maximally symmetric in the sense of Section 14.8—that a maximally symmetric space, one that has
all the symmetries it can have, is characterized by a constant curvature scalar, R. The Ricci tensor
for a maximally symmetric, three-dimensional space is, from Eq. (14.113),

Rij = R

3 gij . (19.3)

As we’ll see, because there are exactly three choices for the sign of R (positive, negative, or zero),
there are three types of coordinate system that embody Eq. (19.3).

What is the metric tensor for such spaces? A three-dimensional maximally symmetric space has
six symmetries (Killing vectors),7 three translations and three rotations—homogeneity and isotropy.
Just as with the Schwarzschild metric, Eq. (16.1), the line element for a spherically symmetric space
has the form

(dσ)2 = B(r)(dr)2 + r2 ((dθ)2 + sin2 θ(dφ)2) , (19.4)

where B(r) is an unknown function.8 The form of Eq. (19.4) takes care of the isotropy require-
ment, what about homogeneity? It can be shown that a space that’s isotropic about every point is
homogeneous.[74, p379] The origin of the coordinate r in Eq. (19.4) is thus arbitrary; we can choose
any point as the origin because all points are equivalent.

The “recipe” of GR would have us at this point obtain the Christoffel symbols associated with
the metric specified by Eq. (19.4). But we’ve already done that: In Chapter 16 we worked out the
Christoffel symbols for the Schwarzschild metric. By setting A = 0 in Table 16.1, the Christoffel
symbols associated with Eq. (19.4) are given in Table 19.1. We’ve also already worked out the

Table 19.1 Nonzero Christoffel symbols for isotropic three-space.

Γrrr = B′

2B Γθφφ = − sin θ cos θ

Γrθθ = − r
B

Γφφθ = cot θ

Γrφφ = Γrθθ sin2 θ Γθθr = Γφφr = r−1

elements of the Ricci tensor. From Eqs. (16.4)–(16.6) with A = 0,

Rrr = B′

Br
Rθθ = 1− 1

B
+ rB′

2B2 Rφφ = Rθθ sin2 θ . (19.5)

Equating Eqs. (19.5) and (19.3), we obtain two differential equations for B:

Rrr = B′

Br
= R

3 grr = R

3 B Rθθ = 1− 1
B

+ rB′

2B2 = R

3 gθθ = R

3 r
2 . (19.6)

The equation for Rφφ reduces to that for Rθθ. We find from Eq. (19.6) (no integration required!):

B(r) = 1
1−Kr2 , (19.7)

where K ≡ R/6. The line element for a maximally symmetric three-space thus has the form

(dσ)2 = (dr)2

1−Kr2 + r2 ((dθ)2 + sin2 θ(dφ)2) , (19.8)

where K is a constant.

7The maximum number of Killing vectors an n-dimensional space can have is n(n+ 1)/2 (Section 14.7).
8We can’t simply “borrow” the function B(r) from the Schwarzschild metric, which satisfies the vacuum equation in

four-dimensional spacetime, Rµν = 0. The Ricci tensor for a maximally symmetric space is of the form of Eq. (19.3).
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19.4 FRIEDMANN-ROBERTSON-WALKER SPACETIME
A spacetime separation that builds in 1) the cosmological principle and 2) the expansion of the
universe is: (ds)2 = −(cdt)2 + S2(t)(dσ)2, where S(t) is a time-dependent scale factor (it will
be determined through Einstein’s equation) with (dσ)2 given by Eq. (19.8). Homogeneity requires
that S(t) is a function of time only, not space. The scale factor provides the ever changing dis-
tance between galaxies, galaxies that in the comoving frame have constant spatial coordinates.9 The
Friedmann-Robertson-Walker (FRW) metric is

(ds)2 = −(cdt)2 + S2(t)
[

(dr)2

1−Kr2 + r2((dθ)2 + sin2 θ(dφ)2)
]
. (19.9)

Let’s rescale the radial coordinate in Eq. (19.9) so that it absorbs the magnitude of K (for K 6= 0).
Let r ≡

√
|K|r. With this substitution,

(ds)2 = −(cdt)2 + S2(t)
|K|

[
(dr)2

1−Kr2/ |K|
+ r2((dθ)2 + sin2 θ(dφ)2)

]
.

Now let k ≡ K/|K| = (1, 0,−1) according to whether K > 0, K = 0, orK < 0. Likewise rescale
S(t). Let

R(t) ≡


S(t)√
|K|

if K 6= 0

S(t) if K = 0 .

Erasing the “bar” on r, we have the FRW metric as it’s usually written

(ds)2 = −(cdt)2 +R2(t)
[

(dr)2

1− kr2 + r2((dθ)2 + sin2 θ(dφ)2)
]
. (19.10)

In Eq. (19.10), the standard spacetime metric for cosmology, the coordinate r is dimensionless;
R(t) carries the dimension of length. There are three possible types of geometry for the universe
characterized by k = (1, 0,−1). Einstein’s field equation will give us differential equations forR(t);
the value of k cannot be determined through theory and is inferred experimentally. The Christoffel
symbols associated with the FRW metric are listed in Table 19.2.

The elements of the Ricci tensor can be derived using Eq. (15.28) and Table 19.2. It’s found that
Rµν = 0 for µ 6= ν. The diagonal terms are

Rtt =− 3
c2
R̈

R
Rrr = 1

c2(1− kr2)
(
RR̈+ 2Ṙ2 + 2kc2

)
Rθθ =r2

c2
(
RR̈+ 2Ṙ2 + 2kc2

)
Rφφ = Rθθ sin2 θ . (19.11)

Continuing with the “checklist” of GR,10 let’s get the Ricci scalar. First, we need to raise an index:
Rµν = gµαRαν . Because the metric Eq. (19.10) is diagonal, this is particularly simple: Rµν =
gµµRµν (no sum). We have

Rtt =gttRtt = 3
c2
R̈

R
Rrr = grrRrr = 1

c2R2

(
RR̈+ 2Ṙ2 + 2kc2

)
Rθθ =gθθRθθ = Rrr Rφφ = gφφRφφ = Rθθ = Rrr . (19.12)

9Imagine three galaxies at a given time, on a given SH. The same galaxies appear later (on a different SH) with the same
coordinates, yet with a different distance between them, where the distance is obtained from the metric.

10Which, in case you’ve forgotten is gµν → Γαλρ → Rµν → Rαα → Gµν .
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Table 19.2 Christoffel symbols for the Friedmann-Robertson-Walker metric.
α = t α = r
Γttt = Γttθ = Γttφ = Γttr = 0 Γrrθ = Γrrφ = Γrtt = 0

Γtrr = RṘ

c(1− kr2) Γrrr = kr

1− kr2

Γtθθ = r2RṘ

c
Γrrt = Ṙ

cR
Γtφφ = Γtθθ sin2 θ Γrθθ = −r(1− kr2)

Γrφφ = Γrθθ sin2 θ

α = θ α = φ

Γθθθ = Γθtt = Γθrr = Γθθφ = 0 Γφφφ = Γφtt = Γφrr = Γφθθ = 0

Γθθt = Ṙ

Rc
Γφφt = Ṙ

Rc
Γθφφ = − sin θ cos θ Γφφθ = cot θ
Γθθr = r−1 Γφφr = r−1

The fact that Rrr = Rθθ = Rφφ should be expected for a 3-space with constant curvature. The Ricci
scalar Rαα = Rtt + 3Rrr is then

Rαα = 6
c2R2

(
RR̈+ Ṙ2 + kc2

)
. (19.13)

The elements of the Einstein tensor are, from Gµν = Rµν − 1
2gµνR

α
α,

Gtt = 3
c2R2

(
Ṙ2 + kc2

)
Grr = − 1

c2R2

(
2RR̈+ Ṙ2 + kc2

)
grr

(19.14)

Gθθ =− 1
c2R2

(
2RR̈+ Ṙ2 + kc2

)
gθθ Gφφ = sin2 θGθθ .

The spatial elements all have the formGij = −gij(2RR̈+Ṙ2 +kc2)/(cR)2. We’ll use these results
to formulate Einstein’s equation for cosmology. First, however, we examine the possible geometries
implied by the spatial part of the FRW metric.

19.5 SPATIAL GEOMETRIES
The FRW metric pertains to spacetimes (one for each value of k) that are spatially homogeneous
and isotropic at each instant of time. What types of geometry are associated with the three values of
k? For fixed t, θ, and φ, the radial distance is proportional to the integral

χ ≡
∫ dr√

1− kr2
=


sin−1 r k = 1
r k = 0
sinh−1 r k = −1

. (19.15)

Define the function

Sk(χ) ≡


sinχ k = 1
χ k = 0
sinhχ k = −1

, (19.16)
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so that the spatial part of Eq. (19.10) is (at a fixed time, on a SH)

(dσ)2 = R2
0
[
(dχ)2 + S2

k(χ)
(
(dθ)2 + sin2 θ(dφ)2)] , (19.17)

where R0 ≡ R(t = t0). Writing the metric in terms of χ removes the coordinate singularity at
r = 1 for k = 1. Let’s examine the geometries described by Eq. (19.17) for k = 1, 0,−1.

19.5.1 k = +1: Positive curvature, closed space (S3)

For k = 1, Eq. (19.17) becomes

(dσ)2 = R2
0
[
(dχ)2 + sin2 χ

(
(dθ)2 + sin2 θ(dφ)2)] . (k = 1) (19.18)

Equation (19.18) is the metric for a space spanned by the coordinates (χ, θ, φ), which describes
the distance on the surface of a three-dimensional sphere, S3. Mathematically, S3 is covered by the
coordinate ranges 0 ≤ χ ≤ π, 0 ≤ θ ≤ π, and 0 ≤ φ < 2π (χ, θ, φ are hyperspherical coordinates).
We can gain an understanding of the geometry described by Eq. (19.18) by embedding it in a four-
dimensional geometry (see Section 16.5). Define Euclidean coordinates

w = R0 cosχ x = R0 sinχ sin θ cosφ y = R0 sinχ sin θ sinφ z = R0 sinχ cos θ .

An embedding is possible because

(dw)2 + (dx)2 + (dy)2 + (dz)2 = R2
0
[
(dχ)2 + sin2 χ

(
(dθ)2 + sin2 θ(dφ)2)] .

We thus have a four-dimensional space (R4) such that when its coordinates (w, x, y, z) are restricted
to the three-sphere specified byw2+x2+y2+z2 = R2

0, the distance relation on that surface matches
the spatial part of the FRW metric for k = 1. Our customary picture of a sphere, x2 +y2 +z2 = R2,
is the two-sphere, S2. For S2 there is a constraint among three Euclidean coordinates that produces
a surface covered by two independent coordinates, the usual angles (θ, φ). Consider z = R cos θ,
x = R sin θ cosφ, y = R sin θ sinφ; (dx)2 + (dy)2 + (dz)2 = R2[(dθ)2 + sin2 θ(dφ)2] so that we
have an embedding of S2 in R3.

Back to cosmology, the spatial geometry for k = 1 is a three-sphere covered by the three angles,
(χ, θ, φ). The area element for S3 (letting χ, θ, φ vary) is R3

0dχ(sinχdθ)(sinχ sin θdφ), with the
hyperarea (three-dimensional “area” of S3 embedded in R4)

A3 = R3
0

∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ π

0
sin2 χdχ = 2π2R3

0 . (19.19)

We can thus refer to R0 as the present radius of the universe if it turns out that the universe is
described by k = 1. Because A3 in Eq. (19.19) is finite, the geometry associated with k = 1 is
said to be closed. The use of an embedding space lends insight into geometries that are not easily
visualized, but the picture provided should not be taken literally. The three-dimensional volume
given by Eq. (19.19) is the totality of all the space that exists at any one time (if k = 1); it should
not be viewed as embedded in a higher-dimensional space.

To get a feeling for what’s implied by curvature, consider the simpler example of a two-sphere
of radius a. Imagine an ant starting at the top of the sphere that travels a distance D = aθ when
it crawls in a “straight line” (geodesic) to a point with polar angle θ (see Fig. 19.1). If the ant then
crawls along a circle at a constant distanceD from the top of the sphere, it travels the circumference
C(D) = 2πa sin θ = 2πa sin(D/a). For small values of D/a,

C(D) = 2πa sin(D/a) = 2πD
(

1− D2

6a2 + · · ·
)
.



Spatial geometries � 345

Figure 19.1 A sphere has positive curvature, a saddle has negative curvature.

The circumference of a circle of radius D on a sphere is thus not 2πD. Likewise, the area enclosed
by a circle of radiusD,A(D) = 2πa2(1−cos θ) = 2πa2(1−cos(D/a)). For small values ofD/a,

A(D) = πD2
(

1− D2

12a2 + · · ·
)
.

Thus, measurements made on the sphere are such that C/D < 2π and A/(D2) < π. Geometries
with C/(2πD) < 1 are said to have positive curvature; geometries with C/(2πD) > 1 are said to
have negative curvature,11 such as at a saddle point (Fig. 19.1). Curvature can thus be characterized
in terms of the “deficit” between the area or the circumference from their Euclidean values. The
Ricci scalar field is a number assigned to every point of a manifold that’s proportional to the amount
by which the local volume of a geodesic ball deviates from the volume of a ball in Euclidean space
of the same dimension.

19.5.2 k = 0: Flat space (R3)

For k = 0, set r = R0χ and Eq. (19.17) becomes

(dσ)2 = (dr)2 + r2((dθ)2 + sin2 θ(dφ)2) . (k = 0) (19.20)

Equation (19.20) is the metric for R3 covered by coordinates r ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ < 2π. The
volume of this space is infinite, and hence is an open geometry.

19.5.3 k = –1: Negative curvature, open space (hyperbolic)

For k = −1, Eq. (19.17) becomes

(dσ)2 = R2
0
[
(dχ)2 + sinh2 χ

(
(dθ)2 + sin2 θ(dφ)2)] , (k = −1) (19.21)

the metric for a three-dimensional space covered by coordinates (χ, θ, φ) with ranges χ ≥ 0,
0 ≤ θ ≤ π, 0 ≤ φ < 2π. The geometry described by Eq. (19.21) cannot be embedded in a
four-dimensional Euclidean space. It can, however, be embedded in an abstract four-dimensional
Minkowskian space (not spacetime) with metric signature (−+ ++). Consider the coordinates

w = R0 coshχ x = R0 sinhχ sin θ cosφ y = R0 sinhχ sin θ sinφ z = R0 sinhχ cos θ .

As can be shown, the distance relations match

−(dw)2 + (dx)2 + (dy)2 + (dz)2 = R2
0
[
(dχ)2 + sinh2 χ

(
(dθ)2 + sin2 θ(dφ)2)] .

The area element of the hypersurface is R3
0 sinh2 χdχ sin θdθdφ, and hence the hyperarea is

infinite—an open geometry. The surface specified by the coordinates of the embedding space is
given by w2 − (x2 + y2 + z2) = R2

0. The embedding space is flat (as is Minkowski space), but the
hypersurface has negative curvature.

11In Section 12.3.4 we noted that, in a rotating reference frame, space has a negative curvature.
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19.6 THE FRIEDMANN EQUATIONS
We now determine the scale factor R(t) so that the FRW metric satisfies the Einstein field equation.
For this purpose, we use the energy-momentum tensor for a perfect fluid, Eq. (15.59). Thus, we
assume that on cosmological length scales the motions of galaxies can be modeled as the motion
of a fluid. By combining Tµν = (ρ + P/c2)UµUν + Pgµν with the four-velocity in the comoving
frame, Uµ = (−c, 0, 0, 0), we have T00 = ρc2, T0i = 0, and Tij = Pgij . Now combine Einstein’s
equation, Gµν + Λgµν = κTµν , with Gµν in the comoving frame, Eq. (19.14). We find for the time
component (

Ṙ

R

)2

+ kc2

R2 = 8πG
3 ρ+ 1

3Λc2 (19.22)

and for the three spatial components

1
R2

(
2RR̈+ Ṙ2 + kc2

)
= −8πG

c2
P + Λc2 . (19.23)

It’s not surprising that the spatial parts of the Einstein equation are identical, given the high symme-
try built in through the cosmological principle.

By subtracting Eq. (19.22) from Eq. (19.23) we find

R̈

R
= −4πG

3

(
ρ+ 3P

c2

)
+ 1

3Λc2 . (19.24)

Equations (19.22) and (19.24) are two differential equations for R(t). They are referred to as the
Friedmann equations. Sometimes Eq. (19.22) is referred to as the Friedmann equation, with Eq.
(19.24) the acceleration equation. Note that P occurs in the acceleration equation, the geometry
parameter k occurs in Eq. (19.22), and Λ occurs in both.

We showed in Section 10.5 that projecting the conservation laws ∂νTµν = 0 onto and or-
thogonal to Uµ, using Tµν for the perfect fluid, results in Eqs. (10.27) and (10.28), the covariant
equations of hydrodynamics in flat spacetime. By letting ∂µ → ∇µ and ηµν → gµν in Eqs. (10.27)
and (10.28), we have the analogous projections of∇νTµν = 0,(

ρ+ P

c2

)
∇νUν + Uν∂νρ = 0 (19.25)

and (
ρ+ P

c2

)
Uν∇νUµ +

(
gµν + 1

c2
UµUν

)
∂νP = 0 . (19.26)

Equation (19.26) is Euler’s equation in GR. Let’s evaluate these equations in the comoving frame,
with Uµ = (c, 0, 0, 0). In that case the time component of Eq. (19.26) reduces to 0 = 0. The spatial
components reduce to ∂iP = 0, i.e., no pressure gradients, implying that P can only be a function of
time. Turning to Eq. (19.25), use∇νUν = ∂ν(

√
|g|Uν)/

√
|g|. The determinant of the FRW metric

is
√
|g| = R3(t)r2 sin θ/

√
1− kr2. In the spacetime of cosmology, therefore, free-fall worldlines

diverge because of the expanding scale factor

∇νUν = 1√
|g|
c∂0(

√
|g|) = 1

R3 ∂tR
3 = 3 Ṙ

R
. (19.27)

Combining Eqs. (19.27) and (19.25), in the comoving frame Eq. (19.25) reduces to

ρ̇+ 3(ρ+ P/c2) Ṙ
R

= 0 . (19.28)

Equation (19.28) is a statement of energy conservation (it comes from the projection of ∇νTµν =
0 onto the timelike direction). It can be derived directly, however. Differentiate Eq. (19.25) with
respect to time and make use of Eq. (19.24); the result is Eq. (19.28). It’s “nice,” however, to see
Eq. (19.28) emerge from∇νTµν = 0.
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19.7 NEWTONIAN COSMOLOGY
What do the Friedmann equations tell us? To get a handle on their meaning, let’s try to derive them
from a Newtonian perspective. Consider a “universe” consisting of a small mass m at the edge of
a fixed mass M that’s uniformly distributed throughout a sphere of time-dependent radius R(t)
(see Fig. 19.2). The mass density ρ(t) therefore varies in time, with M = 4πρ(t)R3(t)/3. From

R(t)

M

m

Figure 19.2 Mass M of radius R(t) (the universe) expanding against mass m.

Newton’s law of gravity and second law of motion, we have that R(t) varies in time as

R̈ = −GM
R2 = −4πG

3 ρR , (19.29)

which is not altogether different from the Friedmann acceleration equation, (19.24). Note that R̈ <
0, always. Comparing Eqs. (19.29) and (19.24), what we obtain from Newtonian theory obviously
doesn’t include Λ, which is new to GR, and we “miss” the pressure term, which can be attributed
to the lack of “E = mc2” in pre-relativistic mechanics. Pressure has dimensions of energy density;
P/c2 is an equivalent mass density that should be added to ρ. For matter under normal conditions
ρc2 � P and P can be ignored. One could object that pressure doesn’t occur in a single-particle
theory (Newton’s second law); it enters the cosmological equations from the energy-momentum
tensor of a fluid. We can group the term containing Λ in Eq. (19.24) into an equivalent pressure.
Write Eq. (19.24) as

R̈

R
= −4πG

3

(
ρ+ 3 P̃

c2

)
where

P̃ ≡ P − 2
3

Λ
κ
, (19.30)

with κ = 8πG/c4. The effect of Λ (for Λ > 0) is to reduce the effective pressure; the cosmological
constant is associated with a negative pressure (for Λ > 0).

We can derive the Newtonian version of Eq. (19.22) by multiplying Eq. (19.29) by Ṙ. We find

1
2

d
dt
(
Ṙ2) = −GM Ṙ

R2 = d
dt

(
GM

R

)
=⇒ d

dt

(
1
2 Ṙ

2 − GM

R

)
= 0 ,

and thus
1
2 Ṙ

2 − GM

R
= E , (19.31)

where E is a constant with dimensions of energy per mass. Equation (19.31) can be put in the form
of the Friedmann equation: (

Ṙ

R

)2

= 8πG
3 ρ+ 2E

R2 . (19.32)
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Comparing Eqs. (19.32) with (19.22), we can identify kc2 = −2E. In the Friedmann equation the
geometry parameter k has precisely the values k = 1, 0,−1. In the Newtonian version k is related
to the energy of the universe. For E > 0, the right side of Eq. (19.31) is always positive, implying
that Ṙ > 0 always. Positive energy (associated with k = −1) corresponds to an unbound universe
that expands indefinitely. For E < 0, the right side of Eq. (19.31) starts out positive (for R → 0)
but goes to zero at the maximum scale factor Rmax = GM/|E| (energy is all potential), at which
point, because R̈ < 0, the universe starts to contract. Negative gravitational energy, associated with
k = 1, a closed geometry, corresponds to a bound universe. The third possibility, E = 0 (k = 0)
corresponds to an expanding universe with Ṙ → 0 as t → ∞ and ρ → 0. The factor of Λ in the
Friedmann equation can be absorbed into an equivalent mass density. Write Eq. (19.22) as(

Ṙ

R

)2

+ kc2

R2 = 8πG
3 ρ̃ ,

where

ρ̃ ≡ ρ+ Λ
κc2

. (19.33)

The effect of Λ is to increase the effective mass density; the cosmological constant is associated
with a positive energy density (for Λ > 0).

19.8 COSMOLOGICAL REDSHIFT
With Eqs. (19.22), (19.24), and (19.28) we have the standard equations of cosmology. They are
not independent of each other. Which ones we use depends on the problem at hand. To implement
the Friedmann equations we have to make assumptions about the energy density of the universe,
specifically how pressure is related to the density. Before taking up cosmological models, let’s see
what can be inferred without explicit knowledge ofR(t). We could have done so before deriving the
Friedmann equations. It could be objected, however, that we should not discuss what can be inferred
independent of the form of R(t) without having first presented a path by which R(t) can be found,
so that we know it exists. Now that we know that, what can we learn?

Take our galaxy to be located at r = 0. Another galaxy having coordinate r is then at the
distance, using the FRW metric, Eq. (19.10),

D(t) = R(t)
∫ r

0

dr√
1− kr2

= χ(r)R(t) , (19.34)

where χ is defined in Eq. (19.15). The distance R(t)χ(r) is the proper distance—the distance that
could be measured by laying a tape measure between galaxies, if such a procedure could be done at
one time. At a later time the galaxy is at the distance D(t+ ∆t) = R(t+ ∆t)χ(r) (in the comoving
frame the coordinate r is constant). We observe the galaxy to have the recessional velocity,

v = dD
dt = χṘ = Ṙ

R
(Rχ) = Ṙ

R
D , (19.35)

which is precisely the form of Hubble’s law, with the Hubble “constant” (parameter) given by

H(t) ≡ Ṙ(t)
R(t) . (19.36)

Hubble’s law emerges as a consequence of the comoving reference frame description.12

12This shouldn’t come as a surprise—an isotropic expansion was built into the FRW metric from the outset.
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Photons propagate along lines of null separation, (ds)2 = 0. From Eq. (19.10), light travels in
such a way that (cdt)2 = R2(t)(dr)2/(1− kr2), or such that

c
dt
R(t) = dr√

1− kr2
. (19.37)

Now consider two light signals emitted at coordinate r1 at times t1 and t1 + ∆t1 that reach r2 at
times t2 and t2 + ∆t2. Then, from Eq. (19.37)

c

∫ t2

t1

dt
R(t) =

∫ r2

r1

dr√
1− kr2

= c

∫ t2+∆t2

t1+∆t1

dt
R(t) . (19.38)

Comparing the integrals on the two sides of Eq. (19.38), we have, schematically,∫ t2+∆t2

t1+∆t1
=
∫ t2

t1+∆t1
+
∫ t2+∆t2

t2

=
∫ t2

t1

=
∫ t1+∆t1

t1

+
∫ t2

t1+∆t1
,

so that ∫ t2+∆t2

t2

dt
R(t) =

∫ t1+∆t1

t1

dt
R(t) . (19.39)

Assuming that R(t) varies slowly over ∆t, we have from Eq. (19.39)

∆t2
R(t2) = ∆t1

R(t1) =⇒ ∆t2
∆t1

= R(t2)
R(t1) . (19.40)

Let ∆t be the time between the emission or reception of two successive wave crests, with c∆t = λ;
Eq. (19.40) implies

λo
λe

= R(to)
R(te)

, (19.41)

where “o” and “e” refer to observed and emitted. The redshift parameter is related to the change in
scale factor between emission and absorption

z ≡ λo − λe
λe

= R(to)
R(te)

− 1 . (19.42)

Clearly,
λo = λe(1 + z) . (19.43)

Equation (19.43) indicates that the wavelength becomes stretched during the propagation of the
photon between the times of emission and reception due to the evolution of R(t) in that time. The
larger the value of z, the more the scale factor has increased since the light was emitted. Larger z
values thus indicate a longer propagation distance as well as time. The redshift parameter specified
by Eq. (19.43) is the cosmological redshift due to the isotropic, homogeneous expansion of space.
The cosmological redshift differs conceptually from the Doppler shift. In a Doppler shift, emitter
and receiver are in relative motion in the same IRF. In the cosmological redshift, emitter and re-
ceiver are in their own IRFs at different points of the SH of the comoving coordinate system. The
relative motion in the latter case is that due to the change of the scale factor R(t). The Doppler and
cosmological redshifts are distinct from the gravitational redshift.
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19.9 THE EINSTEIN UNIVERSE
Are static solutions to the Friedmann equations possible? Let’s try it with Λ = 0. With Λ = 0
and Ṙ = 0 in Eq. (19.22) we have kc2 = 8πGρR2/3. Because all quantities are positive, we
conclude that k = 1. This looks good: a static spherical universe. If, however, we then set R̈ = 0
in Eq. (19.24), it can be satisfied (for Λ = 0) only if the pressure is negative, with P = −3ρc2. A
negative pressure is difficult to understand. As we’ll see, a negative pressure on the cosmological
scale has a repulsive gravitational effect, and something like a repulsive component to gravity would
be necessary to keep the universe from imploding on itself.

Already then we’ve encountered the prospect of a negative pressure by assuming Λ = 0. Can
we get a static solution with Λ 6= 0? Set Ṙ = R̈ = 0 in Eqs. (19.22) and (19.24),

kc2

R2 = 8πG
3 ρ+ 1

3Λc2 0 = −4πG
3 (ρ+ 3p/c2) + 1

3Λc2 .

We can again set k = 1 (all quantities are positive if Λ > 0). If we subtract these equations and set
P = 0 (P � ρc2) we find the radius of the Einstein universe (a static spherical universe)

RE = c√
4πGρ

. (19.44)

Substituting 4πGρ = c2/R2
E into the equations above, we obtain the value of Λ,

ΛE = 1
R2
E

. (19.45)

So far, so good: a static, spherical universe achieved by introducing Λ, which is indeed cosmological
because it’s related to the size of the universe. One small problem, however: The solution is not
stable! By setting 4πGρ = c2/R2

E and Λ = 1/R2
E in Eq. (19.22), we find:

Ṙ2 = c2
(
R2

R2
E

− 1
)
. (19.46)

If a small perturbation causes R to deviate from RE , then from Eq. (19.46) Ṙ 6= 0. The Einstein
static solution is therefore unstable. The parameter Λ does not fix the problem it was introduced to
fix, namely the evolution of the universe.

19.10 THE DE SITTER UNIVERSE
Imagine a universe that’s empty of all matter and radiation, but does have the cosmological constant
as part of its workings. How would such a universe evolve? This is known as the de Sitter universe.
From the Friedmann equations, (19.22) and (19.24), with ρ = P = 0

R̈ = 1
3Λc2R Ṙ2 + kc2 = 1

3Λc2R2 . (19.47)

The solutions to the acceleration equation are given by R(t) = C1eαt + C2e−αt where C1, C2
are constants and α ≡

√
Λc2/3. Note that

√
Λc2 has the dimension of (time)−1. For the other

Friedmann equation, a nonlinear differential equation, C1 and C2 must be chosen appropriately.13

The second equation is satisfied when 4α2C1C2 = kc2, or if C1C2 = 3k/(4Λ). If k = 0, either
C1 or C2 must vanish. Setting C2 = 0 leads to an exponentially growing solution R(t) = eαt.

13This is a good time to note how the solution of a nonlinear differential equation differs from the solutions of linear
differential equations. With linear differential equations, we’re accustomed to finding families of solutions; with nonlinear
differential equations, we’re fortunate to find just one solution.
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If k = 1, then C1 = C2 =
√

3/(4Λ) is a solution with R(t) =
√

3/Λ coshαt. For k = −1,
R(t) =

√
3/Λ sinhαt is a solution.

An “empty” universe thus evolves! Of course, it’s not empty: It has the energy density associated
with the cosmological constant, and we’ll show that Λ acts as a repulsive form of a gravity. The de
Sitter universe evolves on its own, without the “feedback” provided by matter that we’ve come to
expect in GR. As the universe expands, the density of matter and radiation decline to the point where
they become negligible, and the acceleration established by Λ dominates. The ultimate fate of the
universe apparently is to become the de Sitter universe.

19.11 DARK ENERGY
Let’s continue with the idea of a universe without matter and radiation. Start with Einstein’s equation
Gµν+Λgµν = κTµν and set to zero Tµν associated with conventional matter fields. Write Einstein’s
equation as if Λ represents the energy-momentum of a new substance, referred to as dark energy:

Gµν = −Λgµν ≡ κTΛ
µν . (19.48)

Use the form of Tµν for perfect fluids,14 Tµν = Pgµν + (ρ + P/c2)UµUν . Demand that the right
side of Eq. (19.48), −Λgµν , be written in the form of an equivalent stress-energy tensor:

−Λgµν ↔ κ
(
PΛgµν + (ρΛ + PΛ/c

2)UµUν
)
. (19.49)

To make (19.49) into an equality, require that κPΛ ≡ −Λ and ρΛ ≡ −PΛ/c
2. We are thus led to

define the pressure and energy density of the Λ “fluid,”

PΛ = −Λ
κ

= − c4

8πGΛ ρΛc
2 = −PΛ = c4

8πGΛ . (19.50)

If Λ > 0, then PΛ < 0 and ρΛc
2 > 0.

How to interpret negative pressure? Let’s do a simple calculation. Take the time derivative of
ρc2R3:

d
dt (ρc

2R3) = 3ρc2R2Ṙ+ c2R3ρ̇ = 3ρc2R2Ṙ− 3c2(ρ+ P/c2)ṘR2 = −3PṘR2 = −P d
dtR

3 ,

(19.51)
where we’ve used Eq. (19.28). Equation (19.51), d(ρc2R3) = −Pd(R3), has the form of the
first law of thermodynamics, dU = −PdV . The entropy term that would normally be present,
dU = TdS −PdV , is absent which is not surprising—the orderly motion of galaxies on geodesics
(inherent in the perfect fluid model) produces no change in entropy.15 Because the energy density
ρΛc

2 is constant, expanding the volume by ∆V increases the energy by ∆U = ρΛc
2∆V . Work is

therefore done on the system because ∆U > 0. The work done in an adiabatic, constant pressure
process is −P∆V . The pressure of a substance having a constant, positive energy density must be
negative!

Einstein’s equation can be written (Exercise 15.1) Rµν = κ(Tµν − gµνT/2) + Λgµν . For weak
gravity, R00 ≈ ∇2Φ/c2, Eq. (15.25), and from Eq. (15.24), T00 − 1

2g00T = 1
2 (ρc2 + 3P ). The

Poisson equation associated with Λ is therefore:

∇2Φ = 4πG(ρ+ 3P/c2)− Λc2 . (19.52)

Ignoring the pressure term, the solution to Eq. (19.52) outside a spherical mass M is

g = −∇Φ = −GM
r
r̂ + 1

3Λc2rr̂ . (19.53)

14What we’ve used to establish the Friedmann equations.
15One could say that in a reversible adiabatic expansion dS = 0—this is the universe, from where outside the system

would heat flow?
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The cosmological term is thus associated with a repulsive form of gravity, one that increases in
magnitude with r.

To make headway with the Friedmann equations, one must specify an equation of state, the
connection between the pressure and density, P = P (ρ). Because pressure and energy density have
the same dimension, in cosmology the equation of state is written simply as P = wρc2, where w is
a dimensionless constant. From Eq. (19.50), PΛ = −ρΛc

2, and thus w = −1 for dark energy. For
electromagnetic energy P = 1

3u, where u is the energy density, and hence w = 1
3 for radiation.16

For “cold” matter (nonrelativistic) P � ρc2, and we approximate the equation of state for matter
simply as w = 0. Thus, we work with w = 0, 1

3 ,−1 for matter, radiation, and dark energy.
From Eq. (19.51), with P = wρc2,

d(ρc2R3) = −3wρc2R2dR . (19.54)

A solution to Eq. (19.54) can be had by guessing ρ ∝ Rα, where α is an unknown exponent.
With this substitution, Eq. (19.54) becomes d(R3+α) = −3wR2+αdR, implying α = −3(1 + w).
The density therefore evolves with R(t) as ρ(t) ∝ R−3(1+w), or ρ(t)R3(1+w)(t) = constant. The
constant can be evaluated using the present-dat values of these quantities. Thus,

ρ(t) = ρ0

(
R0

R(t)

)3(1+w)
. (19.55)

Clearly, for matter, radiation, and dark energy, respectively,

ρM (t) = ρM,0

(
R0

R(t)

)3
ρR(t) = ρR,0

(
R0

R(t)

)4
ρΛ(t) = ρΛ,0 . (19.56)

We discussed in Section 15.4.2 that the same constant κ occurs in the Lagrangian L = (R −
2Λ)
√
−g + 2κLm, no matter the form of Lm, implying a universality of the coupling of energy

to gravity. Either we can treat Λ as something added on to Einstein’s equation, as in Eq. (15.26),
or we can treat Λ as representing a new form of energy, with its own stress-energy tensor, as in Eq.
(19.48). For many purposes it’s convenient to move Λ from the left side of Einstein’s equation to the
right in the form of a stress-energy tensor, κTΛ

µν = −Λgµν . We’re then “entitled” to write Einstein’s
equation in its original form, Gµν = κTµν , but with the total stress-energy tensor as

Tµν = TMµν + TRµν + TΛ
µν , (19.57)

where each of the terms matter, radiation, and Λ can be modeled as a perfect fluid. The total stress-
energy tensor can then be written (for i = M,R,Λ)

Tµν =
∑
i

T (i)
µν =

(∑
i

Pi

)
gµν +

(∑
i

ρi + 1
c2

∑
i

Pi

)
UµUν (19.58)

=
(∑

i

wiρic
2

)
gµν +

(∑
i

ρi(1 + wi)
)
UµUν =

(
1
3ρRc

2 − ρΛc
2
)
gµν +

(
ρM + 4

3ρR
)
UµUν .

Note that the energy density T00 = (ρM + ρR + ρΛ)c2.

16This formula is for cavity radiation—electromagnetic energy in thermal equilibrium with its surroundings (the walls
of a cavity) at temperature T—shown in books on thermodynamics; might we suggest [72]. Is the universe a big cavity?
The CMB is found to be unpolarized and highly isotropic—what we’d expect from the thermodynamic theory of radiation.
The spectral energy density of the CMB is found to occur as a Planck distribution with temperature T = 2.726 K. In
the early stages of the universe (not covered in this book), photons are scattered by charged particles, particularly free
electrons, providing an efficient mechanism for establishing thermal equilibrium; with free charges about the universe has
“opaque walls”—just what’s required for cavity radiation! In an adiabatic expansion of a photon gas, two things happen: 1)
V T 3 = constant, and thus the temperature drops as the universe expands, and 2) the spectral distribution is maintained
(Wien’s law), explaining the Planck spectrum today. In cosmology, electromagnetic radiation is modeled as a fluid with the
equation state P = 1

3u = 1
3ρRc

2 where ρR = u/c2.
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19.12 THE FRIEDMANN EVOLUTION EQUATION
We start with the Friedmann equation (19.22), written now as

Ṙ2

R2 + kc2

R2 = 8πG
3 (ρM + ρR + ρΛ) . (19.59)

Because from Eq. (19.36) Ṙ/R = H(t), Eq. (19.59) is equivalent to

1 + kc2

H2R2 = 8πG
3H2 (ρM + ρR + ρΛ) . (19.60)

Define the critical density

ρC ≡
3H2

8πG . (19.61)

Note that ρC evolves in time along with the Hubble parameter. At the present time, ρC,0 = 3H2
0/

(8πG) = 1.878h2 × 10−26 kg m−3. Next define the dimensionless (although time-dependent)
density ratios

ΩM ≡
ρM
ρC

ΩR ≡
ρR
ρC

ΩΛ ≡
ρΛ

ρC
. (19.62)

With these definitions, Eq. (19.60) becomes

kc2

H2R2 = ΩM + ΩR + ΩΛ − 1 . (19.63)

The numerical value of ΩM + ΩR + ΩΛ − 1 therefore tells us the curvature index k!

If ΩM + ΩR + ΩΛ


> 1 ⇒ the universe is closed
= 1 ⇒ the universe is flat
< 1 ⇒ the universe is open

. (19.64)

If we rewrite Eq. (19.63) as 1 = ΩM + ΩR + ΩΛ − kc2/(H2R2), we see that although the density
ratios Ωi, H , and R are separately time dependent, their sum is independent of time and hence the
value of k cannot change. The geometry of the universe is therefore fixed.

If we now combine the Friedmann equation in the form of Eq. (19.59) with Eq. (19.56),

Ṙ2 + kc2 = 8πG
3 R2

0

(
ρM,0

R0

R
+ ρR,0

R2
0

R2 + ρΛ,0
R2

R2
0

)
, (19.65)

suggesting we work with a dimensionless scale factor a(t) ≡ R(t)/R0. Thus, from Eq. (19.65)

ȧ2 = 8πG
3

(ρM,0

a
+ ρR,0

a2 + ρΛ,0a
2
)
− kc2

R2
0
. (19.66)

We can massage this equation a bit, by multiplying and dividing by H2
0 . We obtain

ȧ2 = H2
0

(
ΩM,0

a
+ ΩR,0

a2 + ΩΛ,0a
2 − Ωk,0

)
, (19.67)

where Ωi,0 ≡ ρi,0/ρC,0 and Ωk,0 ≡ kc2/(R2
0H

2
0 ). From (33.21), Ωk,0 = ΩM,0 + ΩR,0 + ΩΛ,0− 1.

Equation (19.67), which is the Friedmann equation in disguised form, is a differential equation for
the future of the universe! How’s that for hubris? The future of the universe in a single equation.
Note that the future is prescribed by the present values of the cosmological parameters.

Present-day cosmology is concerned with determining the values of (H0,ΩM,0,ΩR,0,ΩΛ,0).
We do not have the space here to discuss the measurements that lead to our knowledge of these
numbers—this concludes our brief look at cosmology. Cosmological models are obtained from Eq.
(19.67) under various scenarios concerning the parameters involved.
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SUMMARY
• An “instant of time” in GR is a spacelike hypersurface. In the comoving reference frame the

spatial coordinates are constant on SHs. In this frame the four-velocity Uµ = (c, 0, 0, 0). Free
particles move along geodesics with the four-velocity orthogonal to SHs. By the cosmolog-
ical principle, we want SHs to “look the same” everywhere, and hence we choose them as
maximally symmetric spaces. The metric for such a three-dimensional space has the form

(dσ)2 = (dr)2

1−Kr2 + r2((dθ)2 + sin θ(dφ)2) .

where K is a constant.

• The Friedmann-Robertson-Walker (FRW) model is a metric for relativistic cosmology with
(ds)2 = −(cdt)2 + S2(t)(dσ)2, where S(t) is an unknown time-dependent scale factor.
The FRW metric builds in the cosmological principle through the use of the line element
of the maximally symmetric three-space, (dσ)2, and the observed expansion of the universe
through the scale factor S(t). Because the curvatureK is a constant (cosmological principle),
it is either positive, negative, or zero. There are thus three possible types of spatial geometry
for the universe, each of constant curvature. The radial coordinate and S(t) can be rescaled
so that they absorb the magnitude of K. The rescaled line element is

(ds)2 = −(cdt)2 +R2(t)
[

(dr)2

1− kr2 + r2((dθ)2 + sin θ(dφ)2)
]
,

where k = (1, 0,−1). This is the standard metric of relativistic cosmology.

• The spatial geometry associated with k = 1 has positive curvature, finite volume (closed
geometry), and can be seen as a three-dimensional sphere embedded in four-dimensional
Euclidean space. The geometry for k = 0 is flat three-dimensional Euclidean space. The
geometry for k = −1 has negative curvature, and can be seen as a hyperboloid embedded in a
four-dimensional Minkowskian space (not spacetime) with metric signature (−+ ++). This
is an open space (infinite volume). The spatial geometry of the universe is an experimental
issue.

• The Friedmann equations are differential equations for the scale factor R(t) that result when
the FRW metric is combined with Einstein’s equation and Tµν for the perfect fluid.

• Hubble’s law emerges naturally from the Friedmann model, with the Hubble “constant” (pa-
rameter) given by H = Ṙ/R. The Friedmann model also naturally accounts for the cosmo-
logical redshift.
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Invariance of the wave
equation

W E examine how the wave equation ∂2/∂x2 − (1/c2)∂2/∂t2 transforms first under the gen-
eral transformation equations x′ = x′(x, t) and t′ = t′(x, t), and then ask what linear

transformation equations preserve its form.
By the rules of calculus,

∂

∂x
= ∂x′

∂x

∂

∂x′
+ ∂t′

∂x

∂

∂t′
∂

∂t
= ∂x′

∂t

∂

∂x′
+ ∂t′

∂t

∂

∂t′
.

The second derivative is surprisingly complicated:

∂2

∂x2 = ∂

∂x

(∂x′
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∂
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∂

∂t′

)
= ∂2x′

∂x2
∂

∂x′
+ ∂x′

∂x

∂
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∂

∂t′

)
+ ∂x′

∂x
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∂x

∂
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] ∂
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′
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∂t′
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)2 ∂2

∂t′2
.

A similar equation holds for ∂2/∂t2—let x → t; I won’t write it down. Now assemble the wave
equation in one system, and see how it compares with that in the other.

∂2

∂x2 −
1
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1
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∂t2
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− 1
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∂t

) ∂2

∂x′∂t′
. (A.1)

Now restrict transformations to be linear, apropos of SR, where all second derivatives vanish.
Equation (A.1) simplifies:

∂2

∂x2 −
1
c2
∂2

∂t2
=
[(∂x′

∂x

)2
− 1
c2

(∂x′
∂t
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∂t

) ∂2

∂x′∂t′
. (A.2)
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Galilean transformation

Under the Galilean transformation, for two frames in relative motion with speed v along their com-
mon x-axis, x′ = x−vt and t′ = t. Thus, ∂x′/∂x = 1, ∂x′/∂t = −v, ∂t′/∂t = 1, and ∂t′/∂x = 0,
and the wave equation transforms, from Eq. (A.2),

∂2

∂x2 −
1
c2
∂2

∂t2
=
(
1− v2/c2

) ∂2

∂x′2
− 1
c2

∂2

∂t′2
+ 2v
c2

∂2

∂x′∂t′
. (A.3)

The form of the wave equation is not preserved by the Galilean transformation.

Lorentz transformation

What linear spacetime coordinate transformation does preserve the wave equation? A linear trans-
formation that preserves the origin of coordinates can be written as a matrix equation,(

t′

x′

)
=
(
a11 a12
a21 a22

)(
t
x

)
. (A.4)

Thus, ∂t′/∂t = a11, ∂t′/∂x = a12, ∂x′/∂t = a21, and ∂x′/∂x = a22. From Eq. (A.2), the wave
equation will be invariant under Eq. (A.4) if(

∂x′

∂x

)2
− 1
c2

(
∂x′
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)2
= a2

22 −
1
c2
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∂t′

∂x

∂x′

∂x
− 1
c2
∂x′

∂t

∂t′

∂t
= a12a22 −

1
c2
a21a11 =0 .

These are three equations in four unknowns. The first can be solved identically by setting a22 =
coshφ and a21 = c sinhφ. Likewise, the second equation can be solved by setting a11 = cosh θ and
ca12 = sinh θ. The third equation then demands that sinh θ coshφ−sinhφ cosh θ = sinh(θ−φ) =
0, or φ = θ for real values of these parameters. Equation (A.4) can thus be written in terms of a
single parameter, θ, (

t′

x′

)
=
(

cosh θ sinh θ/c
c sinh θ cosh θ

)(
t
x

)
.

This equation can be brought into symmetrical form by multiplying by c:(
ct′

x′

)
=
(

cosh θ sinh θ
sinh θ cosh θ

)(
ct
x

)
= cosh θ

(
1 tanh θ

tanh θ 1

)(
ct
x

)
. (A.5)

Noting the identity cosh θ = (1− tanh2 θ)−1/2, Eq. (A.5) is fully specified by tanh θ.
For frames in uniform relative motion, the origin of one frame, x′ = 0, is equivalent to x = vt

in the other frame. We can therefore identify tanh θ = −β, where β ≡ v/c. Equation (A.5) is then
equivalent to (

ct′

x′

)
= γ

(
1 −β
−β 1

)(
ct
x

)
, (A.6)

where γ ≡ 1/
√

1− β2. Equation (A.6) is the Lorentz transformation in its most elementary form.
Equation (A.5) is the hyperbolic form of the Lorentz transformation.
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The Doppler effect

W E review the Doppler effect from the classical and relativistic perspectives.

Classical Doppler effect

A source of electromagnetic radiation emits a wave at time t = 0. After a time t, the wave has
traveled a distance ct; point A in Fig. B.1. The source is in motion with speed v � c to the right.

x

v∆T
ct

c(t−∆T ) λ′

B A

Figure B.1 Classical Doppler effect; source depicted as a black dot.

Let the frequency that the source emits radiation be fe. After a time ∆T = f−1
e the source has

traveled a distance v∆T , whereupon it emits another signal. At time t, the second wave has traveled
a distance c(t − ∆T ); point B in Fig. B.1. The observed wavelength λ′ is the distance between
successive wavefronts, λ′ = ct− (v∆T + c(t−∆T )) = (c− v)∆T . The time between reception
of successive wavefronts is λ′/c, implying that the frequency of the received signal is fo = c/λ′.
The relation between the emitted frequency fe and the observed frequency fo is thus

fo = c

λ′
= c

(c− v)∆T = c

c− v
fe = 1

1− β fe , (this derivation) (B.1)

where β ≡ v/c. Equation (B.1) would be the classical expression for the Doppler shift, except for
a sign convention. In deriving Eq. (B.1) we’ve considered speed as positive for the emitter moving
toward the receiver, as in Fig. B.1. The convention, however, is the opposite: Speed is considered
positive when the receiver moves away from the source. Thus, let β → −β in Eq. (B.1). The
classical Doppler factor is

fo = 1
1 + β

fe . (β > 0 for receiver moving away from source) (B.2)

With Eq. (B.2), the pitch of the ambulance is higher when it moves toward you—in that case β < 0
for source approaching receiver. For acoustical waves, there is a “preferred reference frame.”

Relativistic Doppler effect

There’s a flaw in the above derivation. We shouldn’t use ∆T = f−1
e , which originates in the frame

of the source, to compute the distance traveled v∆T in the frame of the observer. The time ∆T is
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the time between emission of photons in the source frame, the proper time. The time measured in
the observer frame is γ∆T (time dilation). By letting ∆T → γ∆T in the above analysis, we obtain
the relativistic Doppler effect:

fo = 1
γ

1
1 + β

fe = fe

√
1− β
1 + β

. (B.3)

Equation (B.3) can be derived by drawing Fig. B.1 as a spacetime diagram, shown in Fig. B.2.
The source emits a signal, which in the frame of the receiver, travels a distance ct in time t; point A

x

t

∆T

γ∆T

vγ∆T λ′

B A

Figure B.2 Relativistic Doppler effect; source depicted as a black dot.

in Fig. B.2. After time ∆T in the frame of the source, it emits another signal. In the receiver frame,
the time for the second emission event occurs at γ∆T , and therefore the distance the source travels
is vγ∆T . In the receiver frame, the second photon has made it to point B in Fig. B.2 at time t. The
wavelength in the receiver frame is

λ′ = ct− [vγ∆T + c(t− γ∆T )] = γ∆T (c− v) . (B.4)

Repeating the same analysis as in the previous derivation,

fo = c

λ′
= c

γ∆T (c− v) = 1
γ

1
1− β fe , (B.5)

where fe = (∆T )−1 is the proper frequency. Let β → −β (sign convention) in Eq. (B.5), and we
have Eq. (B.3).

A high-precision experiment is required to distinguish the relativistic from the classical Doppler
effects. Equations (B.2) and (B.3) differ only at O(β2):

√
(1− β)(1 + β)−1 ≈ 1 − β + 1

2β
2 and

(1 + β)−1 ≈ 1 − β + β2. The Ives-Stilwell experiment (1938) confirmed to high accuracy the
Doppler shift predicted by SR.[14]
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Topics in linear algebra

T HE theory of relativity draws upon properties of linear spaces that may not be part of the
traditional mathematical preparation of physics students. In this appendix we review topics in

linear algebra that are used throughout the book. Appropriate references for this material would be
Gelfand [24] or Halmos.[28]

C.1 VECTOR SPACE
The traditional definition of vector is a quantity with direction and magnitude. Not all quantities
with direction and magnitude, however, are vectors. Rotations through finite angles have magnitude
(angle of rotation) and direction (axis of rotation), but do not constitute vectors because they do not
add like vectors. The prototype vector is the displacement vector. Anything called vector must have
the essential attributes of the prototype. Referring to Fig. C.1, vectors must combine like physical

A

B

C

A
aA ≡ B

Figure C.1 Prototype properties of vectors: Vector addition and scalar multiplication.

displacements, withC = A+B = B+A, and we should be able to multiply vectors by numbers
to get new vectors,B = aA, where a > 1.

A vector space is a set V = {φ, χ, ψ, . . .} of objects called vectors having two main properties:
The sum of vectors is a vector, ψ + φ = χ, and each vector when multiplied by a number (scalar)
a is a vector, aφ = ψ. The scalar is chosen from another set, the field F—a special use of the word
field—usually R or C, real or complex numbers.1 If a is a real (complex) number, V is referred to as
a real (complex) vector space. Vector spaces are collections of objects that abstract our experience
with elementary vectors, C = A+B andB = aA.

The full definition of vector space is that for any ψ, φ, χ ∈ V , the rules of addition are satisfied:

• ψ + φ = φ+ ψ • ψ + (φ+ χ) = (ψ + φ) + χ

• there is a unique zero vector 0 such that ψ + 0 = ψ

• for every vector ψ there is an opposite vector −ψ such that ψ + (−ψ) = 0;

1We use the special “blackboard bold” symbols: R denotes the set of real numbers and C the set of complex numbers.
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as well as that of scalar multiplication: (a, b ∈ F)

• a (ψ + φ) = aψ + aφ • (a+ b)ψ = aψ + bψ

• (abψ) = a (bψ) • 1ψ = ψ.

We use the abstract symbols φ, χ, ψ because the rules for vector-space membership apply to a
variety of mathematical objects.

C.2 EXAMPLES OF VECTOR SPACES
The concept of vector space is quite robust. As the following examples show, diverse mathematical
objects meet the requirements of a vector space.

(1) The set of all n-tuples of real numbers ψ ≡ (x1, · · · , xn) is called n-dimensional Euclidean
space, Rn. To show that n-tuples form a vector space, the operations of vector addition and
scalar multiplication must be specified. These operations are defined componentwise, with ψ +
φ ≡ (x1 + y1, · · · , xn + yn) and aψ ≡ (ax1, · · · , axn). The scalars for Rn must be real.

(2) The set of all infinite sequences of numbers ψ = (x1, · · · , xk, · · · ) having the property that∑∞
k=1 |xk|

2 is finite, with addition and scalar multiplication defined componentwise, is a se-
quence space, l2. Convergent infinite series do not naturally come to mind as “vectors,” but they
satisfy the requirements of a vector space. Minkowski’s inequality, (

∑n
k=1 |xk + yk|2)1/2 ≤

(
∑n
k=1 |xk|

2)1/2 + (
∑n
k=1 |yk|

2)1/2, guarantees that the sum of two elements of l2 is in l2.

(3) The set of all continuous functions of a real variable x, with addition and scalar multiplication
defined pointwise, (ψ + φ)(x) = ψ(x) + φ(x), and (aψ)(x) = aψ(x), a function space.

(4) The set of all square-integrable functions ψ(x) of a real variable x for which
∫
|ψ(x)|2 dx is

finite (for specified limits of integration), with addition and scalar multiplication defined as in
the previous example, is a vector space known as L2.

C.3 DIMENSION AND BASIS: LINEAR INDEPENDENCE
The definition of vector space tells us nothing about the dimension of the space. The key notion for
that purpose is linear independence. A set of vectors ψ1, · · · , ψn is said to be linearly independent
if
∑n
k=1 akψk = 0 holds only for the trivial case a1 = · · · = an = 0. Otherwise, the set is

linearly dependent. Linear independence means that every nontrivial linear combination of vectors
is different from zero. Thus, no member of a linearly independent set can be expressed as a linear
combination of the other vectors in the set. A vector space is n-dimensional if it contains n linearly
independent vectors, but not n+1. A set of vectors ψ1, · · · , ψn is said to span the space if any vector
in the space can be expressed as a linear combination,ψ =

∑n
k=1 akψk. A set of vectorsψ1, · · · , ψn

is a basis if it spans the space and is linearly independent. A vector space is n-dimensional if
and only if it has a basis of n vectors. The numbers a1, · · · , an in the linear combination ψ =∑n
k=1 akψk are the components of ψ with respect to the basis. The components are unique with

respect to a given basis; this follows from the linear independence of the basis. The expansion
coefficients change, however, if we change the basis.

C.4 INNER PRODUCT
The inner product is a mapping g : V × V → F. The notation × denotes the Cartesian product,
which for sets C and D is a new set C × D, the set of all ordered pairs (c, d) where c ∈ C and
d ∈ D. The notation g : V × V → F informs us that g associates members of the set V × V with
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elements of F. An inner product space is a vector space having the additional structure of an inner
product. The standard inner product used in quantum mechanics (for L2) has the properties:

• g(φ, ψ) = g(ψ, φ)∗, conjugate symmetry

• g(φ, aψ + bχ) = ag(φ, ψ) + bg(φ, χ), linearity in the second argument

• g(φ, φ) ≥ 0. positive definite, equality if φ = 0
The first two requirements imply g(aφ, ψ) = a∗g(φ, ψ). For Minkowski space, however, a real
space with an indefinite metric, the inner product is defined such that:

• g(φ, ψ) = g(ψ, φ), symmetric

• g(aφ+ χ, ψ) = ag(φ, ψ) + g(χ, ψ), bilinear

• if g(φ, ψ) = 0 for all ψ, then φ = 0. nondegenerate

The last requirement guarantees that the inverse of the metric tensor exists. MS is not a vector space
per se, but rather is an inner product space. MS has one timelike and three spacelike dimensions,
concepts that require the Lorentz invariance of the spacetime separation, which is what specifies the
inner product on MS. MS comes to the party equipped with an inner product; it doesn’t have to be
postulated.

C.5 DUAL VECTOR SPACE
We introduced the dual basis in Chapter 5 without first explaining the dual space for which the dual
basis is a basis. A linear transformation is a mapping f : V → W between vector spaces V , W
(having the same set of scalars), with the property f(aφ + bψ) = af(φ) + bf(ψ). For W = R,
f is referred to as a linear functional, f : V → R. The key idea is that linear functionals form a
vector space of their own: (f1 + f2)ψ ≡ f1ψ + f2ψ and (af)ψ ≡ af(ψ). The set of all linear
functionals on V is a vector space called the dual space, V ∗ (the asterisk has nothing to do with
complex conjugation). The elements of V ∗ are called dual vectors.

If V ∗ is a vector space, it must have a basis. We defined the dual basis in Chapter 5 through
the requirement that it be orthogonal to the coordinate basis, Eq. (5.10). We now make that more
precise. For vectors {ej}nj=1 of the coordinate basis for an n-dimensional vector space V , the basis
of V ∗, {ek}nk=1, is defined through the requirement

ek(ej) = δkj . (C.1)

We’re changing notation here, away from the dot product in Eq. (5.10), to one that indicates more
generally ek acting on ej ; ek, being an element of V ∗, is a linear functional that maps vectors onto
numbers (here zero or one). The dimensions of V ∗ and V are the same; V and V ∗ are isomorphic (a
one-to-one correspondence between the elements of the sets). An arbitrary linear functionalω ∈ V ∗
can be expressed as a linear combination, ω = ωje

j . For v ∈ V , with v = vkek, ω(v) =
ωjv

kej(ek) = ωjv
kδjk = ωjv

j . If v is arranged as column vector, then ω as a row vector is a linear
functional under matrix multiplication. The dual basis specified by Eq. (C.1) is unique. Because
every vector u = ujej ∈ V is uniquely determined by its components (u1, · · · , un) with respect to
the basis {ej}, there is a unique linear functional in V ∗ given by τ = τke

k, where τk ≡ uk. There
is an isomorphism between V and V ∗, denoted V ∼= V ∗.

Example. In Dirac notation, functions ψ(x), φ(x), elements of L2, are denoted |ψ〉 and |φ〉. The
inner product in L2 between |φ〉 and |ψ〉 is denoted 〈ψ|φ〉, shorthand for 〈ψ|φ〉 ≡

∫
ψ∗(x)φ(x)dx.

In a slight abuse of notation, the linear functional 〈ψ| is defined such that 〈ψ| (|φ〉) = 〈ψ|φ〉. The
linear functional associated with ψ(x) is

∫
ψ∗(x) · dx, where · denotes a placeholder.
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C.6 THE NATURAL PAIRING
The isomorphism between V and V ∗ depends on the basis. There is a basis-independent way of
associating duals with vectors, the natural pairing. To bring this out, we need to prove a result
about bilinear maps. Let b : W × V → F be a bilinear map.2 For fixed w0 ∈ W , b(w0, ·) is linear
in V , b(w0, ·) : V → F and hence b(w0, ·) ∈ V ∗, so that b determines a map W → V ∗. Similarly,
for fixed v0 ∈ V , b(·, v0) is a linear map b(·, v0) : W → F, so that b(·, v0) ∈ W ∗ and b determines
a map V → W ∗. A bilinear map b thus effects the isomorphisms W ∼= V ∗ and V ∼= W ∗. Now
consider that the process of evaluating ω(v), ω ∈ V ∗ and v ∈ V , is a function f : V ∗ × V → F
such that f(ω,v) = ω(v) is a bilinear map. For fixed ω, f : V → F, and for fixed v, f : V ∗ → F.
The space V is thus isomorphic to the dual of V ∗, V ∼= (V ∗)∗, known as the double dual space,
V ∗∗, the space of all linear mappings V ∗ → F. The natural isomorphism between V and V ∗∗ is
achieved as follows.3 For each vector v ∈ V , associate the map in V ∗∗ on ω ∈ V ∗ to have the
same value as ω(v). Note that we haven’t given a symbol to denote the mappings in V ∗∗ that map
ω ∈ V ∗ onto F. We are identifying these mappings with the vectors in V , v : V ∗ → F such that
v(ω) ≡ ω(v). The identification will be used throughout this book,

v(ω) = ω(v) . (C.2)

C.7 DERIVATIVE OF A DETERMINANT
An n× n matrix M with elements Mij has determinant m obtained from its expansion in minors,

m ≡ detM =
n∑
j=1

Mij (−1)i+j Aij (C.3)

where i labels any row and the cofactor Aij is the determinant of the matrix obtained by striking the
ith row and jth column. The inverse M−1, defined by

∑n
j=1

(
M−1)

ij
Mjk = δik, has elements(

M−1)
ij

= m−1(−1)i+jAji . (C.4)

Equation (C.3) facilitates taking the derivative ∂m/∂Mij , because the cofactor does not depend
on Mij : ∂m/∂Mij = (−1)i+jAij . From Eq. (C.4), however, Aij = (−1)i+jm

(
M−1)

ji
and thus

∂m

∂Mij
= m

(
M−1)

ji
. (C.5)

The total derivative of the determinant with respect to the matrix elements is

dm ≡
n∑
i=1

n∑
j=1

∂m

∂Mij
dMij . (C.6)

Combining Eqs. (C.5) and (C.6), we have the desired result (note the placement of indices)

1
m

dm =
n∑
i=1

n∑
j=1

(
M−1)

ji
dMij . (C.7)

Equation (C.7) is used in Chapter 14.

2Bilinearity is defined in Section 5.5.1.
3“Natural” means that the isomorphism depends only on V and V ∗ and not on the choice of bases in these spaces.
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Topics in classical
mechanics

W E review aspects of classical mechanics that are used throughout the book.

D.1 EULER-LAGRANGE EQUATION
The calculus of variations is concerned with finding the extremum of a functional, a mapping be-
tween functions and real numbers. A functional J [y] (J acts on function y(x) to produce a number)
is often given in the form of a definite integral,

J [y] ≡
∫ x2

x1

F (y(x))dx ,

where the function F and the endpoints x1, x2 are known. The task is to find the extremal function
y(x) that makes J [y] attain an extremum. Often F involves not just y(x) but also the derivative
y′ = dy/dx, in which case F is denoted F (y, y′). We show that J [y] attains an extremum when
y(x) satisfies Eq. (D.12), the Euler-Lagrange equation.

An example of how the type of problem posed by the calculus of variations could arise, con-
sider, for fixed points (a, b) in the Euclidean plane, the path of shortest distance between them. The
question can be formulated as which function y(x) extremizes the integral1

J =
∫ b

a

ds =
∫ b

a

√
(dx)2 + (dy)2 =

∫ xb

xa

dx
√

1 + (dy/dx)2 =
∫ xb

xa

dx
√

1 + (y′)2
. (D.1)

Clearly, F (y′) =
√

1 + (y′)2. Pick a function y(x), take its derivative, substitute into Eq. (D.1) and
do the integral. Which function results in the smallest value of J?

The problem sounds fantastically general, too general perhaps to make progress. Plan on suc-
cess, however: Assume an extremal function y(x) exists. Determine y(x) through the requirement
that small functional variations away from the extremal function produce even smaller changes in
the value of J . To do this, introduce a class of varied functions,

Y (x, α) ≡ y(x) + αη(x) , (D.2)

1Extremize appears not to be an official word of English. We’re using it to indicate attaining the extremum in some
quantity, its minimum or maximum.
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where α is a number and η(x) is any function that vanishes at the endpoints, η(x1) = η(x2) = 0,
but is otherwise arbitrary. The functional can then be parameterized (note the change in notation),

J(α) =
∫ x2

x1

F (Y (x, α), Y ′(x, α)) dx , (D.3)

where by assumption J(α = 0) is the extremum value. We expect that J(α) is a smooth function
of α and is such that

∂J

∂α

∣∣∣
α=0

= 0 , (D.4)

i.e., to first order in small values of α there are only second-order changes in J(α). When Eq. (D.4)
is satisfied, J is said to be stationary with respect to small values of α; Eq. (D.4) is the stationarity
condition. We show that Eq. (D.4) can be achieved for arbitrary η(x).

Differentiate Eq. (D.3) (the limits of integration are independent of α):

∂J

∂α
=
∫ x2

x1

∂

∂α
F (Y (α, x), Y ′(α, x)) dx =

∫ x2

x1

(
∂F

∂y

∂Y

∂α
+ ∂F

∂y′
∂Y ′

∂α

)
dx . (D.5)

The infinitesimal variation, δy(x), is the variation in functional form at a point x,

δy(x) ≡ Y (x,dα)− y(x) = ∂Y

∂α
dα = η(x)dα , (D.6)

where we’ve used Eq. (D.2). The infinitesimal variation of y′(x) is similarly defined

δy′(x) = δ

(
dy
dx

)
≡ Y ′(x,dα)− y′(x) = ∂Y ′

∂α
dα = η′(x)dα = d

dx (δy) . (D.7)

The variation of the derivative equals the derivative of the variation. Thus, δy′ is not independent
of δy. The change in J under the variation is δJ ≡ (∂J/∂α)dα, and thus the stationarity condition
is expressed by writing δJ = 0. Multiplying Eq. (D.5) by dα we have, using Eqs. (D.6) and (D.7):

δJ =
∫ x2

x1

(
∂F

∂y
δy(x) + ∂F

∂y′
δy′(x)

)
dx . (D.8)

Equation (D.7) allows the second term in Eq. (D.8) to be integrated by parts:∫ x2

x1

∂F

∂y′
δy′dx =

∫ x2

x1

∂F

∂y′
d

dx (δy)dx = ∂F

∂y′
δy(x)

∣∣∣x2

x1
−
∫ x2

x1

d
dx

(
∂F

∂y′

)
δy(x)dx

=−
∫ x2

x1

d
dx

(
∂F

∂y′

)
δy(x)dx , (D.9)

where the integrated part vanishes because δy(x) vanishes at the endpoints. Combining Eq. (D.9)
with Eq. (D.8), the change of J under the variation δy(x) is

δJ =
∫ x2

x1

[
∂F

∂y
− d

dx

(
∂F

∂y′

)]
δy(x)dx ≡

∫ x2

x1

δF

δy
δy(x)dx . (D.10)

The terms in square brackets are known as the functional derivative of F (y, y′) or its variational
derivative,

δF

δy(x) ≡
∂F

∂y
− d

dx

(
∂F

∂y′

)
. (D.11)
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We want Eq. (D.10) to vanish for any variation δy(x). The only way that can happen is if the
functional derivative of F vanishes identically,

δF

δy
= ∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 . (D.12)

Equation (D.12), the Euler-Lagrange equation, solves the problem of the calculus of variations by
producing a differential equation to be satisfied by the extremal function,2 y(x).

The generalization to functionals of several functions is straightforward. The goal is to find the
set of functions {yi(x)}ni=1 such that

δJ = δ

∫ x2

x1

F (y1(x), · · · , yn(x); y′1(x), · · · , y′n(x)) dx = 0 .

Following the method set out above, one obtains the generalization of Eq. (D.10)

δJ =
∫ x2

x1

n∑
i=1

δF

δyi(x)δyi(x)dx . (D.13)

If the variations δyi can be performed independently, the vanishing of Eq. (D.13) requires the van-
ishing of each of the terms in the integrand,

δF

δyi(x) = ∂F

∂yi
− d

dx

(
∂F

∂y′i

)
= 0 , (i = 1, · · · , n) (D.14)

providing a differential equation to be satisfied by each of the functions yi(x).

D.2 HAMILTON’S PRINCIPLE
The problem posed by Newtonian dynamics of finding the trajectory x(t) for given forces can be
formulated as a problem in the calculus of variations. We seek a function F = F (T, V ) such that
the condition

δ

∫ t2

t1

F (T (ẋ), V (x))dt = 0

is equivalent to the equation of motion, where a “clean” separation between x(t) and ẋ(t) has been
assumed, with T = T (ẋ) and V = V (x) the kinetic and potential energy functions of the particle.
Substitute F (T, V ) into Eq. (D.12):

∂F

∂V

∂V

∂x
− d

dt

(
∂F

∂T

∂T

∂ẋ

)
= 0 . (D.15)

Equation (D.15) reproduces Newton’s second law (ṗ = −∂V/∂x) if we identify p ≡ ∂T/∂ẋ and
if F is such that ∂F/∂T = −∂F/∂V = a nonzero constant. Take F = T − V ≡ L, where F has
been renamed L, the Lagrangian function.

The Lagrangian can be extended to a point mass having n independent degrees of freedom
described by generalized coordinates qi, i = 1, · · · , n (the use of superscripts is deliberate; see
Section 1.3). The space spanned by these coordinates is known as configuration space. The distance
between infinitesimally separated points in configuration space is expressed in terms of the metric
tensor, (ds)2 = gijdqidqj (the metric tensor is explained in Chapter 5, as well as the summation

2We’ve relied on a theorem: If
∫ x2
x1

η(x)φ(x)dx = 0 for all functions η(x) which vanish on the boundary and are

continuous together with their first two derivatives, then φ(x) = 0 identically.[83, p185]
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convention). Introducing time as a parameter,3 the kinetic energy T = 1
2m(ds/dt)2 = 1

2mgij q̇
iq̇j .

The Lagrangian function is then

L(qk, q̇k) = 1
2mgij q̇

iq̇j − V (qj) . (D.16)

The time derivatives q̇i are called generalized velocities. The point with all this generalized business
is that generalized coordinates need not have the dimension of length—they’re whatever variables
(angles, for example) it takes to describe the geometric configuration of the mass, possibly taking
into account constraints on the motion. The kinetic energy T (wherein the metric tensor appears)
is a kinematic quantity, descriptive of the geometry of motion, while the potential energy V is a
dynamic quantity, expressing the coupling of a particle to its environment.

Hamilton’s principle is that of all the paths qi(t) a point mass could take through configuration
space between fixed endpoints, the actual path is the one for which the action integral is stationary,

δS ≡ δ
∫ t2

t1

L(qk, q̇k)dt = 0 . (D.17)

The time development of each coordinate qi follows from Eq. (D.14),

δL

δqk
= ∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0 . (k = 1, · · · , n) (D.18)

Along the path of stationary action, the Lagrangian is variationally constant (δL/δqk = 0), invariant
under small functional variations δqk taken for the motion as a whole between fixed endpoints.

Now, the metric tensor can itself be a function of coordinates, gij = gij(qk), a tensor field, e.g.,
the metric tensor for the spherical coordinate system, Eq. (5.5). The kinetic energy is then more
generally a function of generalized velocities and coordinates, T = T (q̇i, qj). Using Eq. (D.16):

∂L

∂qk
= ∂T

∂qk
− ∂V

∂qk
= 1

2m
∂gij
∂qk

q̇iq̇j − ∂V

∂qk
. (D.19)

The time derivative in Eq. (D.18) must take into account the position dependence of the metric
tensor. Starting from Eq. (D.16),

d
dt

(
∂L

∂q̇k

)
= mgkj q̈

j +mq̇j q̇l
∂gkj
∂ql

= mgkj q̈
j + m

2 q̇
j q̇l
(
∂gkj
∂ql

+ ∂gkl
∂qj

)
, (D.20)

where the second step is a cosmetic operation to make the expression symmetric in the indices (j, l)
(which we’re free to do because (j, l) are dummy indices and the metric tensor is symmetric in its
indices). Combining Eqs. (D.20) and (D.19) with Eq. (D.18), we have the equation of motion

gkj q̈
j + 1

2

[
∂gkj
∂ql

+ ∂gkl
∂qj
− ∂glj
∂qk

]
q̇lq̇j = − 1

m

∂V

∂qk
. (D.21)

Equation (D.21) can be simplified with the inverse metric tensor gij , defined by glkgkj = δlj , Eq.
(5.18). Multiplying Eq. (D.21) by gik and summing over an index, the path of stationary action is
described by a set of coupled second-order differential equations:

q̈i + Γijlq̇lq̇j = − 1
m
gik

∂V

∂qk
; (i = 1, · · · , n) (D.22)

3In pre-relativistic physics it’s assumed that all paths in configuration space can be parameterized by the same time.
That assumption must be addressed in relativistic applications of the calculus of variations.



Hamiltonian equations of motion � 367

where the terms

Γijl ≡
1
2g

ik

[
∂gkj
∂ql

+ ∂gkl
∂qj
− ∂glj
∂qk

]
(D.23)

are the Christoffel symbols, which involve derivatives of the metric tensor. The Christoffel symbols
play an important role in GR.

Equation (D.22) is Newton’s second law ai = F i/m, as it appears in an arbitrary coordinate
system. It becomes for V = 0 the differential equation for a geodesic curve (Chapter 14), the
shortest distance between two points. How do we know that? Consider that the arc length can be
written4 ∫

ds =
∫ ds

dt dt =
∫ √

gij q̇iq̇jdt . (D.24)

The requirement δ
∫

ds = 0 leads to Eq. (D.22) with V = 0. The path of extremal action for a free
particle is a geodesic curve. Is it obvious we have a minimum and not a maximum? Equation (D.12)
specifies the condition for a functional to attain an extremum, not whether it’s a minimum or a max-
imum. For the extremal path to represent the minimum of a functional, the Legendre condition [83,
p214] must be satisfied that the matrix of second derivatives ∂2F/∂q̇i∂q̇j be positive definite, which
for Lagrangians in the form of Eq. (D.16) is the requirement that the metric be positive definite.

D.3 HAMILTONIAN EQUATIONS OF MOTION
Starting from Eq. (D.16), we define the canonical momentum pk associated with the coordinate qk:

pk ≡
∂L

∂q̇k
= mgkj q̇

j ≡ mq̇k , (D.25)

where the use of subscripts is deliberate (see Chapter 5 for index manipulations). For conservative
forces there is no difference between the canonical momentum and the kinetic momentum, ∂T/∂q̇k.
The distinction is useful if we allow velocity-dependent forces, V = V (qk, q̇k).

The Hamiltonian function is the Legendre transformation of the Lagrangian function:

H ≡ pkq̇k − L(qj , q̇j) . (D.26)

The Legendre transformation is an equivalent way of specifying convex functions, not in terms
of point-wise values (as usual), but in terms of its tangents at a point.5[84, p61] The Legendre
transformation shifts emphasis away from the dependence of a function on one variable, here the
generalized velocities q̇k, in favor of the slope of the function,6 here the generalized momenta, pk.
The Hamiltonian is a function of canonical momenta and generalized coordinates, H = H(pk, qk),
as can be seen from the differential of Eq. (D.26):

δH = pkδq̇
k + q̇kδpk −

∂L

∂qk
δqk − ∂L

∂q̇k
δq̇k = q̇kδpk − ṗkδqk ,

where we’ve used Eqs. (D.18) and (D.25), and that variations obey the product rule: δ(f(x)g(x)) =
f(x)δg(x)+g(x)δf(x), which follows from Eq. (D.6). By inverting Eq. (D.25), q̇l = glkpk/m, we
find from Eq. (D.26) that

H(pk, qk) = 1
2mpkp

k + V (qj) . (D.27)

4Equation (D.24) assumes that gij q̇iq̇j > 0, which is true for a positive-definite metric or for spacelike separated events.
For timelike separated events,

√
gij q̇iq̇j is replaced with

√
−gij q̇iq̇j ; Eq. (4.14).

5The Lagrangian in the form of Eq. (D.16) is a convex function of the generalized velocities if the metric tensor is
positive definite and if m > 0. A function f is concave if (−f) is convex.

6An example from thermodynamics is the shift away from the dependence of the internal energy functionU = U(S, V )
on entropy S (and volume V ), to an equivalent function, its Legendre transformation, the Helmholtz free energy F ≡
U − TS, which involves the slope of U(S, V ), ∂U/∂S = T (absolute temperature), and hence F = F (T, V ).
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Differentiate Eq. (D.26) with respect to pk,

∂H

∂pk
= q̇k , (k = 1, · · · , n) (D.28)

and again with respect to qk,

∂H

∂qk
= − ∂L

∂qk
= −ṗk , (k = 1, · · · , n) (D.29)

where the latter equality follows from Lagrange’s equations. Equations (D.28) and (D.29) are the
Hamiltonian equations of motion. They are an equivalent formulation of classical mechanics: Rather
than n second-order differential equations, as in Eq. (D.22), there are 2n first-order differential
equations to describe the motion.

The Legendre transformation is self-dual: the transformation applied twice reproduces the orig-
inal function. With that noted, the Lagrangian is the Legendre transformation of the Hamiltonian,

L = pkq̇
k −H(pk, qk) . (D.30)

By varying Eq. (D.30) with respect to pk,

δL =
(
q̇k − ∂H

∂pk

)
δpk = 0 , (D.31)

which follows from Eq. (D.28). Equation (D.31) implies that the canonical momenta are indepen-
dent of qk and q̇k. Arbitrary variations of the set of quantities {pk} have, by Eq. (D.31), no influence
on the variation of L, implying that such variations (in pk) have no influence on the action integral
of L over time. The canonical momenta {pk} are a second set of independent variables, which they
must be to have 2n first-order differential equations to describe the dynamics of the system.

The Hamiltonian is a constant of the motion, as can be shown by taking the total time derivative
of H(pk, qk):

dH
dt = ∂H

∂pk
ṗk + ∂H

∂qk
q̇k = − ∂H

∂pk

∂H

∂qk
+ ∂H

∂qk
∂H

∂pk
= 0 , (D.32)

where we have used Eqs. (D.28) and (D.29). That constant can often be identified with the energy,
but not always.

D.4 D’ALEMBERT’S PRINCIPLE
We noted in Section 1.6.3 that d’Alembert’s principle implies Hamilton’s principle; we now show
that. D’Alembert’s principle is thatF−ma = 0: An object in motion is as if it’s in static equilibrium
between applied forces F and the inertial reaction force −ma. The principle of virtual work is that
the equilibrium configuration of a mechanical system is such that the work done by all forces under
virtual displacements7 δr about that configuration vanishes. Thus, (F −ma) · δr = 0. Multiply by
dt and integrate:

0 =
∫ t2

t1

(
F − d

dt (mv)
)
· δrdt =

∫ t2

t1

F · δrdt−
∫ t2

t1

d
dt (mv) · δrdt . (D.33)

Assume that F is derivable from a scalar function V ; thus F · δr = −δV . The first integral on the
right side of Eq. (D.33) can therefore be written∫ t2

t1

F · δrdt = −
∫ t2

t1

δV dt = −δ
∫ t2

t1

V dt , (D.34)

7A virtual displacement, denoted δr, is a kind of “mathematical experiment” of possible variations in the coordinates of
a system, consistent with any constraints, at a fixed time; it’s not the actual displacement of the system dr in the time dt.
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where we’ve used that the variation of a definite integral equals the definite integral of the variation:
(referring to Eq. (D.6))∫ b

a

δy(x)dx =
∫ b

a

(Y (x,dα)− y(x)) dx =
∫ b

a

Y (x,dα)dx−
∫ b

a

y(x)dx ≡ δ
∫ b

a

y(x)dx .

The second integral on the right side of Eq. (D.33) is set up to integrate by parts:

−
∫ t2

t1

d
dt (mv)·δrdt =

∫ t2

t1

mv·δṙdt = 1
2

∫ t2

t1

δ(mv·v)dt =
∫ t2

t1

δTdt = δ

∫ t2

t1

Tdt , (D.35)

where the first equality follows from Eq. (D.9) and in the final equality we’ve used that the opera-
tions of integration and variation commute. Combining Eqs. (D.34) and (D.35) with Eq. (D.33), we
have Hamilton’s principle, δ

∫
(T −V )dt = 0. D’Alembert’s principle holds at each instant of time;

Hamilton’s principle involves the integral over time of the motion taken as a whole.

D.5 CHARGED PARTICLE
We consider a particle coupled to electric and magnetic fieldsE andB. This case is atypical in that
the Lorentz force is not conservative,8 yet—as we show—it can be derived from a scalar function
V (qk, q̇k) such that

Fk = q (E + v×B)k = − ∂V
∂qk

+ d
dt

(
∂V

∂q̇k

)
≡ − δV

δqk
, (D.36)

where q is the charge, v is the velocity, Fk is the component of the force in the system of generalized
coordinates (the generalized force). The Lagrange equations have the structure of d’Alembert’s
principle, that the applied force is balanced by the inertial force:

δL

δqk
= δT

δqk
− δV

δqk
= 0 =⇒ Fk −

(
− δT
δqk

)
= 0 ,

where the acceleration terms (reaction force) are given by

− δT
δqk

= d
dt

(
∂T

∂q̇k

)
− ∂T

∂qk
.

With T = m
2 gij q̇

iq̇j , the terms implied by δT/δqk appear on the left side of Eq. (D.22) involving
the Christoffel symbols.

The homogeneous Maxwell equations can be “solved” by introducing scalar and vector potential
functions φ and A such that B =∇×A and E = −∇φ− ∂A/∂t. An equivalent expression for
the Lorentz force is therefore

F = q

(
−∇φ− ∂A

∂t
+ v×∇×A

)
. (D.37)

Let’s massage the term in Eq. (D.37) involving v:

(v×∇×A)i = εijkv
j (∇×A)k = εijkε

klmvj∂lAm =
(
δliδ

m
j − δljδmi

)
vj∂lAm (D.38)

= vm∂iAm − vl∂lAi ≡ vm∂iAm − (v · ∇)Ai ,

8Is it true that∇× (E + v ×B) = 0?
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where we’ve used the properties of the Levi-Civita symbol (Section 5.8.2). Now, the vector potential
is a function of space and time,A = A(r, t), and thus its total time derivative can be written

dA
dt = ∂A

∂t
+ (v · ∇)A . (D.39)

Combining Eqs. (D.38) and (D.39), we have the (not particularly pretty) identity(
v×∇×A− ∂A

∂t

)
i

= vm∂iAm −
dAi
dt .

An equivalent way of writing the components of the Lorentz force is therefore

q

(
−∇φ− ∂A

∂t
+ v×∇×A

)
k

= q

(
−∂kφ+ vm∂kAm −

dAk
dt

)
. (D.40)

The virtue of this (somewhat tortured) manipulation is that Eq. (D.40) can be written in the form
of Eq. (D.36) if we take the potential energy function to be V ≡ qφ − qv · A (show this). The
Lagrangian for a particle coupled to the electromagnetic field is thus

L = T − qφ+ qv ·A . (D.41)

The canonical momentum obtained from Eq. (D.41) is p = mv+qA. The Hamiltonian function
for a charged particle follows from Eq. (D.27),

H = 1
2m (pi − qAi)

(
pi − qAi

)
+ qφ . (D.42)

D.6 INVARIANCE UNDER COORDINATE TRANSFORMATIONS
The methods of analytical mechanics afford considerable flexibility in choosing coordinates. In
particular, generalized coordinates allow constraints in the configuration of the system to be taken
into account. The number of possible systems of coordinates (with the same number of degrees of
freedom) is unlimited. Apropos of our study of relativity, to what extent are the equations of motion
preserved under changes of coordinates? As we now show, the form of the Lagrange and Hamilton
equations is invariant under coordinate transformations in configuration space.

Any set {Qk}nk=1 of n independent, analytic functions of the coordinates {qi} provides another
set of coordinates to describe the system (Section 5.1.4), a new set of numbers to attach to the same
points in configuration space,

Qk = Qk(q1, · · · , qn) . (k = 1, · · · , n) (D.43)

Time is not a coordinate in classical mechanics, as it is in the theory of relativity; we restrict our-
selves to coordinate transformations not explicitly involving the time. The transformation given by
Eq. (D.43) is by assumption invertible, with qj = qj(Q1, · · · , Qn), (j = 1, · · · , n). The generalized
velocities then transform as

q̇j = ∂qj

∂Qk
Q̇k , (D.44)

i.e., the generalized velocities in one coordinate system, q̇j , are linear combinations of those in
another, Q̇k, multiplied by functions solely of the Qi, ∂qj/∂Qk. The quantities {∂qj/∂Qk} play
the role of the Jacobian matrices in tensor analysis. Note that Eq. (D.44) implies the relation

∂q̇j

∂Q̇k
= ∂qj

∂Qk
. (D.45)
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(The reciprocal to Eq. (D.44) is Q̇k =
(
∂Qk/∂qj

)
q̇j , with ∂Q̇k/∂q̇j = ∂Qk/∂qj .) A similar

expression holds for the four-velocity in SR, Uµ = dxµ/dτ , Eq. (7.6); using its transformation
property as a contravariant four-vector, Eq. (5.35),

∂Uµ
′

∂Uν
= Aµ

′

ν = ∂xµ
′

∂xν
. (D.46)

Equation (D.46) is possible because there is an observer-independent time, the proper time dτ ; Eq.
(D.45) is possible because of the absolute time of classical mechanics, dt.

The Lagrangian function in the “old” coordinates, L(qk, q̇k), defines through Eq. (D.44) and the
inverse of Eq. (D.43) the Lagrangian L̃(Qj , Q̇j) in the new coordinate system:

L(qk, q̇k) ≡ L̃(Qj , Q̇j) . (D.47)

The value of a scalar field is invariant under coordinate transformations, but the form of the function
of the transformed coordinates may change (Section 5.1). The form invariance of the Lagrange
equations is then straightforward to demonstrate. From Eq. (D.18) and the chain rule,

0 = δL

δqk
= ∂Qj

∂qk
δL̃

δQj
, (k = 1, · · ·n) (D.48)

where we’ve used Eq. (D.47). We therefore have9

δL̃

δQj
≡ ∂L̃

∂Qj
− d

dt

(
∂L̃

∂Q̇j

)
= 0 . (j = 1, · · · , n) (D.49)

The form of the Lagrange equations is independent of the choice of coordinates so long as they are
connected by invertible coordinate transformations. The Lagrange equations (and Hamilton’s equa-
tions, as we’ll show) are thus covariant equations of motion under point transformations. Equation
(D.18) (or Eq. (D.49)) is a necessary and sufficient condition for the action integral to be stationary.
Finding the extremum of the action integral is thus independent of any special coordinate system;
we can adopt whatever coordinates are best suited to the problem. Because the Lagrangian is an
invariant of the transformation Eq. (D.47), we arrive at the important conclusion: The value of the
action integral S is invariant.

The canonical momentum in the new coordinates is defined analogously to its definition in the
original coordinates, Eq. (D.25):

Pk ≡
∂L̃

∂Q̇k
= ∂q̇j

∂Q̇k
∂L

∂q̇j
= ∂qj

∂Qk
pj , (D.50)

where we’ve used Eq. (D.47) and the chain rule in the second equality, and Eq. (D.45) in the last. The
canonical momenta Pk therefore transform as the components of a vector, just as do the velocities,
Eq. (D.44). Note the invariance of the scalar product:

pj q̇
j = Pk

∂Qk

∂qj
∂qj

∂Ql
Q̇l = PkQ̇

lδkl = PkQ̇
k , (D.51)

where we’ve used the inverse of Eq. (D.50) and Eq. (D.44).
The “old” Hamiltonian defines, through these transformation equations, its form for the new

coordinates and momenta:
H(pk, qk) ≡ H̃(Pj , Qj) . (D.52)

9Because of the linear independence of the coordinate transformations, ∂Qj/∂qk .
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(Equivalently, Eq. (D.52) follows from the Legendre transform, H̃ = PkQ̇
k − L̃(Q, Q̇), together

with Eq. (D.47) and Eq. (D.51).) The form invariance of Hamilton’s equations then follows using
the steps by which Eqs. (D.28) and (D.29) were derived:

∂H̃

∂Pk
= Q̇k

∂H̃

∂Qk
= − ∂L̃

∂Qk
= −Ṗk .

D.7 LAGRANGIAN DENSITY
We now consider the dynamics of a continuous system. To do so, we examine a system of discrete
masses connected by springs and show how it transitions to a continuous elastic medium in the
limit as the separation between masses vanishes. Figure D.1 shows a segment of a one-dimensional
array of identical masses m connected by identical springs k at equilibrium locations x = na,
where n is an integer and a is the equilibrium spring length. The figure shows a configuration of the
instantaneous displacements φn of the masses away from their equilibrium positions.

kkk mm a

φn−1 φn φn+1

Figure D.1 System of coupled masses and springs.

The Lagrangian for the system of masses and springs is

L = 1
2
∑
n

[
mφ̇2

n − k (φn − φn−1)2
]
. (D.53)

The equations of motion for the displacements {φn} are, from Eq. (D.18), a coupled set of
differential-difference equations

mφ̈n = −k (2φn − φn−1 − φn+1) . (D.54)

At this point, one could Fourier transform Eq. (D.54) to get the normal-mode frequencies. But, as
they say, that’s not important now.

Rewrite Eq. (D.53),

L = 1
2
∑
n

a

[
m

a
φ̇2
n − ka

(
φn − φn−1

a

)2
]
≡
∑
n

aLn . (D.55)

Now let a→ 0 (while the number of masses N →∞) such that there is a uniform mass per length
m/a → ρ and a string tension ka → T . We also generalize the notion of displacement, away from
its definition at discrete locations x = na, to a continuous function, φ(x = na, t) → φ(x, t) as
a→ 0. The displacement field φ(x, t) is the elastic distortion of the medium at location x at time t.
We can also think of the process a → 0 on the right side of Eq. (D.55) as replacing a with dx, and
converting the sum to an integral,

L→ 1
2

∫
dx
[
ρ

(
∂φ

∂t

)2
− T

(
∂φ

∂x

)2
]
≡
∫

L dx , (D.56)

where we’ve replaced (φn − φn−1)/a with ∂φ/∂x as a → 0 and we’ve defined the Lagrangian
density for a one-dimensional elastic medium,

L = 1
2

[
ρ

(
∂φ

∂t

)2
− T

(
∂φ

∂x

)2
]
. (D.57)
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Whenever we have a continuous system we work with a Lagrangian density, L =
∫

L dx. In three
dimensions, L =

∫
L dxdydz. The dimension of L in d dimensions is energy/(length)d.

What are the generalized coordinates for a continuous system? It’s not the position coordinate
x and it’s useful to keep in mind the process by which we arrived at the Lagrangian density. The
discrete index n “becomes” the position coordinate x in the transition from a discrete to a continuous
system. The generalized coordinates that specify the configuration of the system, the displacements
{φn} in the discrete case, become the displacement field φ(x) for the continuous system. It might
seem then that there is only one generalized coordinate for the continuous system, the field φ(x, t),
but that’s misleading: The field φ represents the displacement at a non-denumerably infinite number
of locations, those labeled by the variable x.

The Lagrangian density is a function of the field and its space and time derivatives, L =
L (φ, ∂tφ, ∂xφ, ∂yφ, ∂zφ), which we can abbreviate as L = L (φ, ∂µφ). The action integral
S =

∫
Ldt, Eq. (D.17), becomes in terms of the Lagrangian density, S =

∫
L dxdydzdt. If L is

Lorentz invariant, then so is S owing to the Lorentz invariance of the volume element in Minkowski
space (Section 5.2). Hamilton’s principle for fields is then

δS = δ

∫
L (φ, ∂µφ)dxdydzdt = 0 , (D.58)

where the variations indicated in Eq. (D.58) are with respect to the fields for fixed x, y, z, t. The
analogs of Eqs. (D.6) and (D.7) are

δφ = ∂φ

∂α
dα δ(∂µφ) = ∂

∂α

∂φ

∂xµ
dα = ∂

∂xµ
∂φ

∂α
dα = ∂µδφ . (D.59)

The analog of Eq. (D.8) is

δS =
∫ [

∂L

∂φ
δφ+ ∂L

∂(∂µφ)δ(∂µφ)
]

dxdydzdt . (D.60)

Just as in Eq. (D.9), the second term in Eq. (D.60) can be integrated by parts using Eq. (D.59),∫
∂L

∂(∂µφ) (∂µδφ)dxdydzdt =
∫

dxdzdt
[

∂L

∂(∂yφ)δφ
∣∣∣
surface

−
∫

∂

∂y

(
∂L

∂(∂yφ)

)
δφdy

]
=−

∫
∂µ

(
∂L

∂(∂µφ)

)
δφdxdydzdt , (D.61)

where we have shown explicitly the integration by parts for µ = y, but there will be similar terms
for µ = x, z, t. The variation δφ is taken to vanish at the hypersurfaces bounding the system in
spacetime. Combining Eq. (D.61) with Eq. (D.60), Eq. (D.58) is equivalent to

δS =
∫ [

∂L

∂φ
− ∂µ

(
∂L

∂(∂µφ)

)]
δφdxdydzdt = 0 . (D.62)

The integral can vanish for arbitrary δφ only if the functional derivative vanishes (the analog of Eq.
(D.12))

δL

δφ
≡ ∂L

∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 . (D.63)

Equation (D.63) is the Euler-Lagrange equation for fields.
It’s often the case that a system supports several fields {φi}ni=1 at each point in spacetime, with

L = L (φi, ∂µφi). Stationarity of the action is then expressed as in Eq. (D.13),

δS =
∫ ∑

i

δL

δφi
δφidtdxdydz = 0 . (D.64)
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As in Eq. (D.14), for independent variations δφi, stationarity requires

∂µ

(
∂L

∂(∂µφi)

)
= ∂L

∂φi
i = 1, · · · , n . (D.65)

What equation of motion is obtained from the Lagrangian density given by Eq. (D.57), which
we can write as

L = 1
2

[
ρ (∂0φ)2 − T (∂1φ)2

]
? (D.66)

Using Eq. (D.66), we have the derivatives

∂L

∂φ
= 0 ∂L

∂(∂0φ) = ρ∂0φ
∂L

∂(∂1φ) = −T∂1φ . (D.67)

From Eq. (D.63), we find, using Eq. (D.67),

∂0

(
∂L

∂(∂0φ)

)
+ ∂1

(
∂L

∂(∂1φ)

)
= ρ

∂2φ

∂t2
− T ∂

2φ

∂x2 = 0 , (D.68)

which is the wave equation for a one-dimensional elastic medium. From the equation of motion for
the discrete system, Eq. (D.54), if we let a → 0 presumably we should obtain the wave equation.
Starting from Eq. (D.54), divide by a,

m

a
φ̈n = −ka

(
2φn − φn−1 − φn+1

a2

)
. (D.69)

In the limit as a→ 0 we have

ρφ̈ = T
∂2φ

∂x2 , (D.70)

the same as Eq. (D.68), where we recognize the terms in parentheses in Eq. (D.69) as the finite-
difference approximation to the second derivative.

The Hamiltonian for continuous systems is the analog of Eq. (D.26) :

H =
∫

d3x

(
∂L

∂φ̇
φ̇−L

)
≡
∫

d3xH , (D.71)

where the Hamiltonian density

H ≡ ∂L

∂φ̇
φ̇−L = ∂0φ

∂L

∂(∂0φ) −L . (D.72)
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Photon and particle orbits

W E gather several results useful in analyzing the integrals that give the orbits of photons and
particles in Schwarzschild spacetime.

E.1 PHOTON SCATTERING ANGLE
The scattering angle ∆φ in a photon trajectory is given by Eq. (17.49), which we reproduce here

∆φ = 2
∫ u1

0
du
[

1
b2
− u2 + rSu

3
]−1/2

, (E.1)

where b is the impact parameter and u1 is the smallest positive factor of the cubic polynomial in the
integrand. The cubic can be factored: rSu3 − u2 + 1/b2 = rS(u − u1)(u − u2)(u − u3) where
u3 ≤ 0 ≤ u1 ≤ u2 are

u1 = 1
3rS

(
1− cos(θ/3) +

√
3 sin(θ/3)

)
u2 = 1

3rS
(1 + 2 cos(θ/3))

u3 = 1
3rS

(
1− cos(θ/3)−

√
3 sin(θ/3)

)
, (E.2)

with θ given by

cos θ = 1− 27
2

(rS
b

)2
. (E.3)

For b→∞ (E → 0), θ → 0, and no scattering occurs. As b decreases to the point where a circular
orbit is possible, 4b2 → 27r2

S , θ → π. For 0 ≤ θ ≤ π, 0 ≤ u1 ≤ 2/(3rS), 2/(3rS) ≤ u2 ≤ 1/rS ,
and −1/(3rS) ≤ u3 ≤ 0. The factor u3 is unphysical; it does not represent a positive distance. The
factor u1 is associated with the turning point in the orbit. As θ → π, u1 = u2 = 2/(3rS) and the
integral diverges: A circular orbit represents an infinite scattering angle.

Equation (E.1) is an elliptic integral. In the notation of Abramowitz and Stegun,[73, p597]

∆φ = 2
√
rS

2√
u2 − u3

F (ψ\α) = 4
√

3√
3 cos θ/3 +

√
3 sin θ/3

F (ψ\α),
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where F (ψ\α) is an elliptic integral of the first kind, F (ψ\α) ≡
∫ ψ

0
dλ√

(1− sin2 α sin2 λ)
, with

cos2 ψ =−u3

u2

(u2 − u1)
(u1 − u3) = sin θ/3 + sin 2θ/3−

√
3(cos θ/3− cos 2θ/3)

2 sin(θ/3)(1 + 2 cos θ/3)

sin2 α =u1 − u3

u2 − u3
= 2 tan(θ/3)√

3 + tan(θ/3)
.

As b → ∞, θ → 0; consequently α → 0 and ψ → π/4. In this limit ∆φ → π, as it should
(scattering angle ∆ = 0). As 4b2 → 27r2

S (circular orbit), θ → π, with the result that α→ π/2 and
ψ → π/2; hence in this limit ∆φ→ 4F (ψ → π/2\α→ π/2), which diverges.

In Section 17.4 a perturbative treatment of Eq. (E.1) is given for rS << b. If we let x ≡ rS/b,
then for x� 1 we find from an analysis of Eq. (E.3) that

θ = 3
√

3x
(

1 + 9
8x

2 +O(x4)
)
. (E.4)

From (E.2), expanding u1 and u3 to third order in θ, we have

u1,3 = ±
√

3
9rS

θ

(
1±
√

3
18 θ −

1
54θ

2 +O(θ3)
)
, (E.5)

where the upper (lower) sign refers to u1 (u3). Combining Eqs. (E.4) and (E.5), we find

u1,3 = ±1
b

(
1± 1

2x+ 5
8x

2 +O(x3)
)
. (E.6)

From (E.2), u2 is given by

u2 = 1
rS

(1− x2 +O(x4)) . (E.7)

E.2 BOUND ORBITS
The angle through one period of a bound orbit is given by Eq. (17.60), which we reproduce here:

∆φ = 2
∫ u2

u3

du
[

2E

l2
+ 2GM

l2
u− u2 + 2GM

c2
u3
]−1/2

. (E.8)

The quantities u3, u2 are the smaller two of the three factors of the cubic polynomial,

2E

l2
+ 2GM

l2
u− u2 + rSu

3 ≡ rS(u− u3)(u− u2)(u− u1) , (E.9)

where generally we have u3 ≤ u2 ≤ u1 and u3 < u1. They are given by

u1 = 1
3rS

(
1 + 2

√
1− 3/ξ2 cos θ/3

)
u2 = 1

3rS

(
1−

√
1− 3/ξ2(cos θ/3−

√
3 sin θ/3)

)
u3 = 1

3rS

(
1−

√
1− 3/ξ2(cos θ/3 +

√
3 sin θ/3)

)
, (E.10)
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where ξ ≡ lc/(2GM) and

cos θ = 1
(1− 3/ξ2)3/2

(
1− 9

2ξ2 −
27E

ξ2c2

)
. (E.11)

For these quantities to be real, ξ >
√

3, consistent with what we found in Section 17.2.
From (E.10), u3 ≤ u2, with equality occurring for θ = 0. The factors u3, u2 become equal for

a stable circular orbit with Esco ≡ c2[y−(y− − 6)]/(54ξ2) (Eqs. (17.17) and (17.16)), where Eq.
(E.11) indicates cos θ = 1. Thus, θ = 0 corresponds to a stable circular orbit, for any ξ >

√
3. From

(E.10), u2 ≤ u1, with equality occurring for θ = π. The factors u1, u2 coincide at the unstable
circular orbit, where Euco ≡ c2[y+(y+ − 6)]/(54ξ2) implies cos θ = −1 for any ξ >

√
3. As can

be shown, Euco ≤ 0 only for ξ ≤ 2. Thus, for
√

3 < ξ ≤ 2, 0 ≤ θ ≤ π. For ξ > 2, however,
0 ≤ θ ≤ θmax, with θmax < π given by Eq. (E.11) for E = 0.

For the purposes of a perturbative treatment of Eq. (E.8) (Section 17.5) we need to analyze the
factors of (E.9) for large ξ. And to do that, we need to characterize the angle θ in this limit. It’s
convenient to write E = Ec + δE , where Ec is the energy of the stable circular orbit, implying that
δE > 0. Because cos θ = 1 for E = Ec, we have from Eq. (E.11) that

cos θ = 1− 27
ξ2c2

δE

(1− 3/ξ2)3/2 . (E.12)

Approximating cos θ ≈ 1− 1
2θ

2,

θ2 ≈ 54
ξ2c2

δE

(1− 3/ξ2)3/2 . (E.13)

For large c, θ ≈ 1/c2. To first order in 1/c2, we have from (E.10)

u1 = 1
rS

(
1− 1

ξ2 +O(1/c4)
)

u2 + u3

u1
= 1
ξ2 +O(1/c4) . (E.14)
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aberration, 54
absolute, 15

defined, 8
time and space, 8

accretion disk, 303
action at a distance, 18
active transformation, 58
affine connection, 246
affine parameterization, 139, 256
affine space, 244
angular momentum tensor

field, 170
particle, 142

anticommutator, 120
apoapsis, 137
arcsecond, defined, 306
asymptotic flatness, 292
axial vector, 96
axis of rotation, 59, 115

balance equation, 149, 168, 177
basis, defined, 360
Bianchi identity, 264
bilinear function, 89
binding energy

nuclear, 193
Weizsäcker formula, 194

binomial coefficient, 59
Birkhoff’s theorem, 293
bivector, 96, 99, 148
black hole, 20
blackboard bold notation, 359
Bondi k-factor, 27
boost transformation, 5
bound orbits, 301

calculus of variations, 363
Cartesian product, 360
causal vectors, 67
causality in spacetime, 66
cavity radiation, 352
center of energy, 142
center of momentum frame, 143
centrifugal force, 16, 186

centrifugal potential barrier, 300
charge is a Lorentz invariant, 153
Christoffel symbol, 244, 247, 367
closed geometry, 344
co-dimension, 230
co-locality, 33
comoving coordinate system, 340
comoving frame, 190
compatible charts, 218
compatible covariant derivative, 248
Compton wavelength, 145, 161, 162
configuration space, 365
congruence, 226
connection coefficients, 244
conserved current, 166
conserved quantity, 150
constant tensor, 80, 85, 95
continuity equation, 149

covariant form, 150
continuous symmetry, 165
contraction, 81
contravariant tensor, 70, 78
contravariant, first mentioned, 10
convective derivative, 178
coordinate basis, 71, 207, 222
coordinate curve, 221
coordinate functions, 218
coordinate singularity, 292
coordinate slice, 231
coordinate surfaces, 83
coordinate transformation, 76
Coriolis force, 16, 327
cosmic microwave background (CMB), 339,

352
cosmic time, 340
cosmological constant, 20, 281
cosmological distances, 339
cosmological principle, 339
cotangent space, 222
covariant

equation, 371
tensor, 70, 80

covariant derivative, 241
covariant directional derivative, 252
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covariant equation, 84
covariant, first mentioned, 10
critical density, 20, 353
curvature

extrinsic, 241
intrinsic, 241

curvature scalar, 266

d’Alembert’s principle, 17, 368
d’Alembertian operator, 88
dark energy, 20, 351
dark matter, 20
de Sitter precession, 315
de Sitter universe, 350
diffeomorphism, 220
differential form, 233
differential of a map, 224
Dirac equation, mentioned, 1
directional derivative, 221
dual basis, 74

normal to coordinate surfaces, 83
dual tensor, 97
dual vector, 361
dummy indices, 10
dust, 286
dyadic notation, 75, 177

Eötvös parameter, 186
eccentricity, 137, 299
Ehrenfest paradox, 208
Einstein complex, 336
Einstein curvature tensor, 267
Einstein field equation, 22, 279
Einstein universe, 350
Einstein velocity addition formula

linear, 31
electromagnetic field tensor, 153
embedded submanifold, 231
energy-mass equivalence, 18
energy-momentum pseudotensor, 336
energy-momentum tensor

canonical, 167
symmetric, 171

enthalpy, 178
equation of a plane, 82, 210
equivalence of mass and energy, 133
equivalence principle, 23, 187
ether frame, 9, 331
Euler equation of fluid dynamics

general relativistic, 346
nonrelativistic, 178

special relativistic, 181
Euler-Lagrange equation, 365
Eulerian observer, 178
event horizon, 20, 200
event, defined, 5
exterior

algebra, 99
derivative, 234
product space, 99

extremal function, 363
extremize, 363
extrinsic curvature, 241

fictitious force, 15
FitzGerald-Lorentz contraction hypothesis, 39
Fizeau experiment, 31
Flamm’s parabaloid, 294
flat, defined, 258
flow of a vector field, 226
four-vector, 14, 69

energy-momentum, 133
four-acceleration, 131

curved spacetime, 257
four-current, 150
four-force, 132
four-gradient, 87
four-momentum, 129, 132
four-position, 70
four-potential, 153
four-velocity, 131
four-wavevector, 88
gravitational four-potential, 325
Lorentz force density, 174
number flux, 182
orthogonality of, 66
power-force, 132

frame dragging, 190, 277, 327
free fall, 188
free fluid, 178
free particle

defined, 3
Fresnel drag coefficient, 31
Friedmann equations, 346
Friedmann-Robertson-Walker (FRW), 20

metric, 342
function on a manifold, 220
functional derivative, 364

g-orthonormal basis, 92, 225, 239
Galilean transformation (GT), 7

invariance of acceleration, 7, 191
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Galilean velocity addition formula, 6, 31
gauge invariance, 149, 154, 159, 161, 235
gauge transformation, 149

covariant form, 154
linearized gravity, 321

general relativity (GR)
first mentioned, 1

generalized Kronecker delta, 93
geodesic

curve, 4, 23, 24, 255, 367
equation, 255

geodesic deviation equation, 261
geodetic precession, 315
geometric object, 78
global positioning system, 19, 313
gravitational

energy
not localizable, 336

four-potential, 325
frequency shift, 194
lensing, 20, 306
mass, 185, 187
Maxwell equations, 326
potential, 18
time delay, 312
waves, 331

gravitomagnetic field, 326
Gravity Probe B experiment (GPB), 190, 315
group property, 48, 63

Hamilton’s principle, 134, 281, 366
Hamiltonian function, 367
Hausdorff property, 218
Hilbert action, 282
Hodge star operator, 106, 234
homeomorphism, 217, 220
homogeneity, 45, 167, 339
homomorphism, 121, 124, 240
Hubble

constant, 20
time, 20

Hubble’s law, 339
hyperbolic angle, 60
hyperplane, 82
hyperspherical coordinates, 344
hypersurface, 8, 83, 151, 230
hypersurface orthogonal, 289

immersed submanifold, 231
impact parameter, 307
indefinite metric, 73

index convention, 10
induced metric, 151, 232
induced orientation, 236
inertial

force, 3, 16, 316
mass, 185, 187
motion, 3
observer, 2

at rest, 7, 9
reference frame (IRF), first mentioned, 2
reference frame, defined, 4

inner product
general definition, 360
space, 361

instantaneous rest frame, 129, 199
integral curve, 225
intrinsic curvature, 241
invariance vs. conservation, 140
invariant hyperbola, 60
invariant volume element, 86
inversion of coordinate axes, 96
isometry, 268
isotropy, 45, 339

Jacobian
determinant, 86
matrix, 76

Kennedy-Thorndike experiment, 43
Kepler problem

general relativity, 309
special relativity, 136

Kepler’s second law, 298
Killing vector field, 268
Kretschmann scalar, 303

Lagrangian density, 372
Lagrangian observer, 178
lattice planes, 37
Legendre condition, 367
Legendre transformation, 367
length contraction, 34
Lense-Thirring effect, 315, 328
level set, 83
Levi-Civita tensor, 95
Lie bracket, 229
Lie derivative, 228
lightline, 11
LIGO experiment, 333
line of co-locality, 33
line of simultaneity, 33, 203
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line of the apsides, 137, 309
linear functional, 361
local inertial frame, 190, 192
local thermodynamic equilibrium, 178
locally linear transformation, 77
London moment, 316
Lorentz factor, 12
Lorentz group, 63
Lorentz invariant, 57
Lorentz metric, 22, 63

constant tensor in MS, 85
Lorentz transformation, 7

active form, 60
boost generators, 116
classification, 63
decomposition into a rotation and a boost,

117
electromagnetic field vectors, 155
four-vector fields, 169
frames not in standard configuration, 51
general boost, 51
group property, 48
hyperbolic form, 60, 116, 356
improper, 64
infinitesimal, 116, 119
invariance of separation, 62
invariance of wave equation, 356
linear mapping, 46
must be a linear transformation, 5
non-colinear velocities, 53
orthochronous, 63
proper, 63
rotation in spacetime, 59
standard configuration, 45, 50
three-acceleration, 53
vector form, 52

Lorentzian manifold, 225
Lorenz condition, 149

covariant form, 153
lowering indices, 75

manifold, 217
chart, atlas, 217, 218
compatible charts, 218
connected, 225
coordinate function, 218
curve, 220
directional derivative, 221
function, 220
Hausdorff, 218
Lorentzian, 225
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open cover, 219
orientable, 236
paracompact, 219
partition of unity, 219, 238
Riemannian, 225
smooth mapping, 220
transition map, 218
with boundary, 236
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matter fields, 283
maximal symmetry, 341
maximally symmetric space, 269
Maxwell equations
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non-covariant, 147

Maxwell stress tensor, 173
metric compatibility, 248
metric signature, 92, 225
metric submanifold, 232
metric tensor

contravariant, 75
covariant, 71
mixed, 80

Michelson-Morley experiment, 3
Minkowski force, 132
Minkowski space, 69

norm of vector, 64
mixed tensor, 80
multilinear function, 90
multipole expansion, 323

natural pairing, 362
negative curvature, 345
Neumann series, 260
Newton’s first law of motion, 3
Newtonian deviation equation, 189
Newtonian gravitation

inconsistent with relativity, 17
potential, 18

Noether charges, 167
Noether’s theorem, 165
non-inertial reference frame, 2, 4
nondegenerate, 91
Nordvedt effect, 194
norm of a vector, 58
normal coordinates, 262
normal to a submanifold, 232
null basis, 127
null hypersurface, 233
null vector, 64, 92
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open geometry, 345
orbit equation, 136, 299
orbital precession, 309
ordered basis, 105, 235
orientation, 105, 235
oriented

area, 101
manifold, 236
volume, 104

orthogonal matrix, 58
outer product, 81

pair production, 143
Palatini identity, 282
paracompactness, 219, 236, 237, 243
parallel transport, 241, 252
parallelotope, 103
parity operator, 62
parsec, pc, 339
partition of spacetime, 66
passive transformation, 58
Pauli matrices, 120
perfect fluid, 177, 178, 180, 183, 286, 351
periapsis, 137
permutation

definition, 92
symbols, 94

perturbation expansion, 305
photon mass

Einstein’s second postulate, 50
gauge invariance, 161

plunge orbits, 301
plus (+) and cross (×) polarization, 332
polar vector, 96
polarization tensor, 331
positive curvature, 345
positive definite metric, 73
Pound-Rebka-Snider experiment, 194
Poynting’s theorem, 174
pre-relativistic, 1
precession of orbits, 20, 309
principle of covariance, 5, 23
principle of relativity, 2, 4, 23

requires a universal speed, 12
Proca Lagrangian, 161
product manifold, 219
program of relativity, 2
proper

acceleration, 199
density, 150
distance, 348

length, 38
time, 10, 29, 129, 201, 358

pseudoscalar, 97
pseudotensor, 86, 96, 336
pullback, pushforward operations, 223

quantity of motion, 3, 132
quantum gravity, 1
quotient theorem, 81

radar method, 12
raising indices, 75
redshift

cosmological, 349
gravitational, 194
parameter, 349

reference frame
inertial, 2
non-inertial, 2
same as coordinate system, 1

relative, defined, 9
relativistic beaming, 54
relativistic hydrodynamics, 177
relativistic kinetic energy, 133
relativistic Lagrangian, 135
relativity of simultaneity, 8
rest space, 209
retarded time, 322
Ricci

decomposition, 267
tensor, 265

Riemann curvature tensor, 258
symmetries, 263

Riemannian manifold, 225
Roche limit, 198
rotating reference frame, 207
rotation generators, 114

scalar field, 78
scale factor, cosmological, 342
scattering orbits, 301
Schouten index notation, 77
Schwarzschild radius, 20, 292
second covariant derivative, 258
second covariant directional derivative, 261
secular term, 309
semi-Euclidean, 22
Shapiro time delay, 312
shear transformation, 102, 104
simultaneity, 8

line of, 33
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relativity of, 8
smooth function, 220
spacelike hypersurface, SH, 151, 233, 340
spacelike vector, 10
spacetime, 3, 4

diagram, 11
separation, 13

spacetime is flat locally, 192
spacetime origin, 45
spacetime separation, 57
spatial metric tensor, 209
special relativity (SR)

first mentioned, 1
spin precession

geodetic, 315
Lense-Thirring, 328
Thomas, 214

standard configuration, defined, 45
static spacetime, 289
stationarity condition, 364
stationary spacetime, 289
Stokes’s theorem, 109, 237
strong equivalence principle (SEP), 191
submanifold, 230
summation convention, 70
superior conjunction, 312
Sylvester’s criterion, 73
Sylvester’s law of inertia, 128
symmetric energy-momentum tensor, 171
symmetry defined, 58
symmetry operations on tensors, 92

tangent field, 225
tangent space, 221
tangent to a submanifold, 232
tensor

absolute, 86
contraction, 81
density, 86

Gothic symbols, 87
field, 224
multilinear mapping, 90
product, 81, 89
pseudotensor, 86, 96
relative, 86
symmetry operations, 92

test particle, 191
tetrad, 69, 209
third covariant derivative, 265
Thomas precession, 214, 315
Thomas-Wigner rotation, 123

threshold energy, 144
tidal acceleration tensor, 189
tidal forces, 188
time dilation, 358

gravitational, 19, 195
special relativistic, 19, 29

time exists locally, 8
time inversion operator, 62
time-orthogonal coordinate system, 208
timelike hypersurface, 233
timelike vector, 10
torsion tensor, 246
totally symmetric, antisymmetric, 92
trace-reversed perturbation, 320
transversality condition, 332
transverse Doppler effect, 55
transverse traceless gauge (TT), 332
trivector, 100
twin paradox, 130, 205

unimodular matrix, 121

vacuum equation, 280
vector field, 225
vector space, defined, 359
velocity addition formula

Einstein, 31, 50
non-colinear velocities, 53
vector form, 53

velocity transformation, 52
virtual displacement, 368
volume change factor, 105
volume form, 234

wave-particle duality, 134
weak equivalence principle (WEP), 191
wedge product, 99
weight, 316
Weizsäcker formula, 194
Weyl tensor, 267
Weyl’s postulate, 340
Wheeler-Feynman theory, 322
worldline, 5, 10
worldtube, 38, 152
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