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3.5.3 Poincaré-Santilli Isosymmetry and its Isodual 286
3.5.4 Isorelativity and Its Isodual 292
3.5.5 Isorelativistic Hadronic Mechanics and its Isoduals 295
3.5.6 Isogravitation and its Isodual 297

Appendices 303
3.A Universal Enveloping Isoassociative Algebras 303
3.B Recent Advances in the TSSFN Isotopology 305
3.C Recent Advances on the Lie-Santilli Isotheory 309
3.D Lorentz versus Galileo-Roman Relativistic Symmetry 315
References 323

4. LIE-ADMISSIBLE BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL 327
4.1 INTRODUCTION 327

4.1.1 The Scientific Imbalance Caused by Irreversibility 327
4.1.2 The Forgotten Legacy of Newton, Lagrange and Hamilton 329
4.1.3 Early Representations of Irreversible Systems 331

4.2 ELEMENTS OF SANTILLI GENOMATHEMATICS AND ITS
ISODUAL 335
4.2.1 Genounits, Genoproducts and their Isoduals 335
4.2.2 Genonumbers, Genofunctional Analysis and Their Isoduals 337
4.2.3 Genogeometries and Their Isoduals 339
4.2.4 Santilli Lie-Admissible Theory and Its Isodual 340
4.2.5 Genosymmetries and Nonconservation Laws 341

4.3 LIE-ADMISSIBLE CLASSICAL MECHANICS FOR MATTER
AND ITS ISODUAL FOR ANTIMATTER 342
4.3.1 Fundamental Ordering Assumption on Irreversibility 342
4.3.2 Newton-Santilli Genoequations and Their Isoduals 343
4.3.3 Hamilton-Santilli Genomechanics and Its Isodual 346

4.4 LIE-ADMISSIBLE OPERATOR MECHANICS FOR MATTER
AND ITS ISODUAL FOR ANTIMATTER 349
4.4.1 Basic Dynamical Equations 349
4.4.2 Simple Construction of Lie-Admissible Theories 352
4.4.3 Invariance of Lie-Admissible Theories 354

4.5 APPLICATIONS 355
4.5.1 Lie-admissible Treatment of Particles with Dissipative

Forces 355



x RUGGERO MARIA SANTILLI

4.5.2 Direct Universality of Lie-Admissible Representations for
Nonconservative Systems 358

4.5.3 Pauli-Santilli Lie-Admissible Matrices 360
4.5.4 Minkowski-Santilli Irreversible Genospacetime 363
4.5.5 Dirac-Santilli Irreversible Genoequation 364
4.5.6 Dunning-Davies Lie-Admissible Thermodynamics 365
4.5.7 Ongoing Applications to New Clean Energies 367

References 369

5. HYPERSTRUCTURAL BRANCH OF HADRONIC MECHANICS
AND ITS ISODUAL 371
5.1 The Scientific Imbalance in Biology 371
5.2 The Need in Biology of Irreversible Multi-Valued Formulations 371
5.3 Rudiments of Santilli Hyper-Mathematics and Hypermechanics 373
5.4 Rudiments of Santilli Isodual Hypermathematics 376
5.5 Santilli Hyperrelativity and Its Isodual 377
Appendices 381
5.A Eric Trell’s Hyperbiological Structures TO BE COMPLETED

AND EDITED. 381
References 382

Postscript 383

Index 389



Foreword

Mathematics is a subject which possibly finds itself in a unique position in
academia in that it is viewed as both an Art and a Science. Indeed, in different
universities, graduates in mathematics may receive Bachelor Degrees in Arts or
Sciences. This probably reflects the dual nature of the subject. On the one hand,
it may be studied as a subject in its own right. In this sense, its own beauty is
there for all to behold; some as serene as da Vinci’s “Madonna of the Rocks”,
other as powerful and majestic as Michelangelo’s glorious ceiling of the Sistine
Chapel, yet more bringing to mind the impressionist brilliance of Monet’s Water
Lily series. It is this latter example, with the impressionists interest in light,
that links up with the alternative view of mathematics; that view which sees
mathematics as the language of science, of physics in particular since physics is
that area of science at the very hub of all scientific endeavour, all other branches
being dependent on it to some degree. In this guise, however, mathematics is
really a tool and any results obtained are of interest only if they relate to what
is found in the real world; if results predict some effect, that prediction must be
verified by observation and/or experiment. Again, it may be remembered that
physics is really a collection of related theories. These theories are all manmade
and, as such, are incomplete and imperfect. This is where the work of Ruggero
Santilli enters the scientific arena.

Although “conventional wisdom” dictates otherwise, both the widely accepted
theories of relativity and quantum mechanics, particularly quantum mechanics,
are incomplete. The qualms surrounding both have been muted but possibly more
has emerged concerning the inadequacies of quantum mechanics because of the
people raising them. Notably, although it is not publicly stated too frequently,
Einstein had grave doubts about various aspects of quantum mechanics. Much of
the worry has revolved around the role of the observer and over the question of
whether quantum mechanics is an objective theory or not. One notable contrib-
utor to the debate has been that eminent philosopher of science, Karl Popper.
As discussed in my book, “Exploding a Myth”, Popper preferred to refer to the
experimentalist rather than observer, and expressed the view that that person
played the same role in quantum mechanics as in classical mechanics. He felt,
therefore, that such a person was there to test the theory. This is totally opposed
to the Copenhagen Interpretation which claims that “objective reality has evap-
orated” and “quantum mechanics does not represent particles, but rather our
knowledge, our observations, or our consciousness, of particles”. Popper points



xii RUGGERO MARIA SANTILLI

out that, over the years, many eminent physicists have switched allegiance from
the pro-Copenhagen view. In some ways, the most important of these people
was David Bohm, a greatly respected thinker on scientific matters who wrote a
book presenting the Copenhagen view of quantum mechanics in minute detail.
However, later, apparently under Einstein’s influence, he reached the conclusion
that his previous view had been in error and also declared the total falsity of
the constantly repeated dogma that the quantum theory is complete. It was,
of course, this very question of whether or not quantum mechanics is complete
which formed the basis of the disagreement between Einstein and Bohr; Einstein
stating “No”, Bohr “Yes”.

However, where does Popper fit into anything to do with Hadronic Mechanics?
Quite simply, it was Karl Popper who first drew public attention to the thoughts
and ideas of Ruggero Santilli. Popper reflected on, amongst other things, Chad-
wick’s neutron. He noted that it could be viewed, and indeed was interpreted
originally, as being composed of a proton and an electron. However, again as
he notes, orthodox quantum mechanics offered no viable explanation for such a
structure. Hence, in time, it became accepted as a new particle. Popper then
noted that, around his (Popper’s) time of writing, Santilli had produced an arti-
cle in which the “first structure model of the neutron” was revived by “resolving
the technical difficulties which had led, historically, to the abandonment of the
model”. It is noted that Santilli felt the difficulties were all associated with the
assumption that quantum mechanics applied within the neutron and disappeared
when a generalised mechanics is used. Later, Popper goes on to claim Santilli
to belong to a new generation of scientists which seemed to him to move on a
different path. Popper identifies quite clearly how, in his approach, Santilli dis-
tinguishes the region of the arena of incontrovertible applicability of quantum
mechanics from nuclear mechanics and hadronics. He notes also his most fas-
cinating arguments in support of the view that quantum mechanics should not,
without new tests, be regarded as valid in nuclear and hadronic mechanics.

Ruggero Santilli has devoted his life to examining the possibility of extending
the theories of quantum mechanics and relativity so that the new more general
theories will apply in situations previously excluded from them. To do this, he
has had to go back to the very foundations and develop new mathematics and
new mathematical techniques. Only after these new tools were developed was
he able to realistically examine the physical situations which originally provoked
this lifetime’s work. The actual science is his, and his alone, but, as with the
realization of all great endeavours, he has not been alone. The support and
encouragement he has received from his wife Carla cannot be exaggerated. In
truth, the scientific achievements of Ruggero Santiili may be seen, in one light,
as the results of a team effort; a team composed of Ruggero himself and Carla
Gandiglio in Santilli. The theoretical foundations of the entire work are contained
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in this volume; a volume which should be studied rigorously and with a truly
open mind by the scientific community at large. This volume contains work
which might be thought almost artistic in nature and is that part of the whole
possessing the beauty so beloved of mathematicians and great artists. However,
the scientific community should reserve its final judgement until it has had a
chance to view the experimental and practical evidence which may be produced
later in support of this elegant new theoretical framework.

Jeremy Dunning-Davies,
Physics Department,
University of Hull,
England.
September 8, 2007



Preface

Our planet is afflicted by increasingly cataclysmic climactic changes. The only
possibility for their containment is the development of new, clean, energies and
fuels. But, all possible energies and fuels that could be conceived with quantum
mechanics, quantum chemistry, special relativity, and other conventional theories,
had been discovered by the middle of the 20-th century, and they all resulted in
being environmentally unacceptable either because of an excessive production of
atmospheric pollutants, or because of the release of dangerous waste.

Hence, the scientific community of the 21-st century is faced with the quite
complex duties of, firstly, broadening conventional theories into forms permit-
ting the prediction and quantitative study of new clean energies and fuels and,
secondly, developing them up to the needed industrial maturity. These volumes
outline the efforts conducted by the author and a number of other scientists, as
well as industrialists, toward these pressing needs of the human society.

To begin, we shall say that a theory is: 1) exactly valid for given physical
conditions when it allows a numerically exact representation of all experimental
data from unadulterated first axioms; 2) approximately valid for different physical
conditions when requiring the use of unknown parameters to fit the experimental
data; and 3) basically inapplicable for yet different conditions when unable to
provide any quantitative treatment even with the use of arbitrary parameters.
Note that quantum mechanics, quantum chemistry, special relativity and other
theories of the 20-th century, cannot be claimed to be “violated” for conditions
2) and 3) since, as we shall see, they were not conceived for the latter conditions.

There is no doubt that quantum mechanics permitted in the 20-th century
the achievement of historical advances in various fields. These successes caused a
widespread belief that quantum mechanics is exactly valid for all possible condi-
tions of particles existing in the universe. Such a belief is ascientific, particularly
when ventured by experts. As established by history, science will never admit
final theories. No matter how valid any theory may appear at a given time, its
structural generalization for a representation of previously unknown conditions
is only a matter of time.

Needless to say, quantum mechanics is exactly valid for the physical condi-
tions of its original conception, point-like particles and electromagnetic waves
propagating in vacuum, as occurring in the structure of the hydrogen atom, the
structure of crystals, the motion of particles in an accelerator, and numerous
other conditions.
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Contrary to a rather popular belief, quantum mechanics is only approximately
valid for a number of particle conditions at short mutual distances. A clear ex-
ample is the Bose-Einstein correlation in which protons and antiprotons collide
at very high energy, annihilate each other, and result in the production of a large
number of mesons that remain correlated at large mutual distances. On strict
scientific grounds, a theory constructed for the orbiting of point-like electrons in
vacuum around atomic nuclei is not expected to be exactly valid for the dramat-
ically different conditions occurring in the mutual penetration of the hyperdense
protons and antiprotons.

In fact, the fit of experimental data by the two point function of the Bose-
Einstein correlation requires four arbitrary parameters of unknown physical or
mathematical origin (significantly called the “chaoticity parameters”). But the
Hamiltonian is Hermitian and two-dimensional, thus allowing only two parame-
ters for the diagonal elements 11 and 22. Additionally, the remaining two param-
eters interconnect off-diagonal elements 12 and 21, a feature absolutely prohib-
ited by the quantum axiom of expectation values for a Hermitian, thus diagonal
Hamiltonian. These and other features establish beyond scientific or otherwise
credible doubt that the four parameters needed to fit experimental data are a
direct measure of the approximate character of quantum mechanics for the Bose-
Einstein correlation.

During the course of our analysis we shall identify numerous additional cases of
approximate validity of quantum mechanics because of irreconcilable incompati-
bilities with the ultimate axioms of the theory, such as: the approximate character
of quantum mechanics in nuclear physics (due to the incompatibility of the spin 1
of the deuteron with quantum axioms requiring spin 0 for the ground state of two
particles with spin 1/2 and numerous other reasons); the approximate character
of the conventional “potential scattering theory” for deep inelastic scatterings of
extended and hyperdense hadrons (due to the need for contact, non-Hamiltonian,
thus nonunitary contributions outside the class of equivalence of quantum me-
chanics); the approximate character of superconductivity (because of structural
problems in the Cooper pair); and other cases.

Finally, quantum mechanics is basically inapplicable for a number of parti-
cle events, such as the synthesis of the neutron from protons and electrons as
occurring in stars, or, more generally, the synthesis of strongly interacting par-
ticles (called hadrons), such as the synthesis of the πo meson from electrons
and positrons. All consistent quantum bound states (such as nuclei, atoms and
molecules) require a negative binding energy for which the rest energy (or mass)
of the final state is smaller than the sum of the rest energies (or masses) of the
constituents.

However, experimental data establish that the synthesis of the neutron via the
familiar reaction p+ + e− → n+ ν requires a positive binding energy because the
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rest energy of the neutron is 0.78 MeV bigger than the sum of the rest energies
of the proton and the electron. Under these conditions, quantum mechanics is
unable to provide any meaningful treatment at all because, as we shall see in
details in this and in the subsequent volume, Schrödinger’s equation admits no
physical solution for positive binding energies, as the skeptic reader is encour-
aged to verify. The attempt of salvaging quantum mechanics via the conjugate
reaction p+ + e− + ν̄ → n, namely, the dream of using the hypothetical antineu-
trino to provide the missing energy, has no credibility because the hypothetical
antineutrino has an absolutely null cross section with protons and electrons. A
similar basic inapplicability of quantum mechanics occurs for numerous other
cases whose treatment is generally ignored or claimed as not needed, such as
the synthesis of the πo via the known reaction e+ + e− → πo, as well as for the
synthesis of all unstable particles.

The author has dedicated his research life to the study of the limitations of
conventional theories, the construction of suitable generalization, and their appli-
cation to the industrial development of new clean energies and fuels. The studies
initiated with paper [1] of 1956 (written when the author was an undergraduate
student of physics at the University of Napoli, Italy), on the conception of space,
or vacuum as a universal medium (or substratum) of high density and energy.
The paper was written for the resolution of the controversy on the “ethereal
wind” raging at that time via the reduction of all particles constituting matter,
such as the electron, to “pure oscillations of space,” namely, oscillations of the
space itself without any oscillating conventional mass.

Under these conditions, when masses are moved, there cannot be any ethereal
wind since we merely move oscillations of space from given points to others [1].
According to this view and in dramatic contrast with our sensory perception,
matter is completely empty in the sense that it can be entirely reduced to pure
oscillations of space without any oscillation of conventional masses, as apparently
necessary for the structure of the electron. Consequently, the view requires that
space is completely full of a medium of extremely high density (from the very large
value of the speed of light). Also, space was conceived in Ref. [1] as possessing a
feature approximating our notion of rigidity from the purely transversal character
of light.

The study of space as a universal medium is significant for the main objectives
of these volumes, including the search for new clean energies. In cosmology, we
have the long standing hypothesis of the continuous creation of matter in our
universe. In the event this hypothesis is correct, the most plausible origin of
the creation of matter is precisely the synthesis of the neutron from protons and
electrons in the core of stars, because the minimum missing energy of 0.78 MeV
in the reaction p+ + e− → n + ν could originate precisely from space and, in
any case, the hypothesis is so fundamental for our entire scientific knowledge
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to mandate quantitative studies, of course, jointly with other hypotheses (such
as the drawing of the missing energy from the star environment). As we shall
see in this and in the following volume, a first meaning of the novel hadronic
mechanics is that of providing the first known methods for quantitative studies
of the possible interplay between matter and its underlying universal substratum.
The understanding is that space is the final frontier of human knowledge, with
potential outcome beyond the most vivid science fiction of today, whose study
will likely require the entire third millennium.

During graduate studies in physics at the University of Torino, Italy, the author
learned that Lie algebras with product [A,B] = AB − BA (where A,B are
matrices, operators, etc.) are the ultimate foundations of classical and quantum
mechanics, special relativity and other quantitative sciences. Hence, the author
dedicated his graduate studies for the Ph.D. thesis to the search of a structural
generalization of Lie’s algebras. These studies resulted in the first publication in
a physics journals [2] of 1967 (see also the more general study [3] of 1968) of the
covering Lie-admissible algebras with product (A,B) = pAB− qBA, where p
and q are non-null parameters. Some twenty years later these algebras produced
a large number of papers under the name of “q-deformations” with the simplified
product (A,B) = AB − qBA. Lie-admissible algebras were selected not only
because of their covering character over Lie algebras, but also for their capability
of representing irreversible processes, a crucial feature for the main objectives of
these studies.

Following a decade of papers in conventional fields, the construction of a Lie-
admissible covering of quantum mechanics under the name of hadronic mechan-
ics was proposed by the author in two memoirs [4,5] of 1978 when at Har-
vard University under support from the U. S. Department of Energy. The
proposal was based on the Lie-admissible generalization of Heisenberg equation
idA/dt = (A,H) = APH −HPA [5] (today known as Heisenberg-Santilli genoe-
quations), where P and Q are nonsingular matrices or operators. The equations
were proposed for the treatment of open irreversible events (such as energy re-
leasing particle processes).

The original proposal [5] also presented the Lie-isotopic particularization idA/dt =
[A,H]∗ = ATH−HTA (today known as Heisenberg-Santilli isoequations) for the
representation of closed–isolated systems of particles at small mutual distances
(such as the structure of hadrons, nuclei and stars). The latter systems are
expected to have conventional potential interactions represented by the Hamilto-
nian H(r, p) and the most general possible nonlinear, nonlocal and nonpotential
interactions represented by the operator T (t, r, p, ψ, ...).

Hadronic mechanics was proposed in memoirs [4,5], specifically, for the achieve-
ment of a quantitative representation of the synthesis of the neutron as well as
of composite hadrons at large, for which scope the name “hadronic mechanics”
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was suggested. An evident necessary condition to achieve a quantitative repre-
sentation of the neutron synthesis was (and remains) that the covering mechanics
had to exit from the class of unitary equivalence of quantum mechanics, namely,
hadronic mechanics had to have a nonunitary structure (when referred to a con-
ventional Hilbert space over a conventional field). Since unitary transformations
are a trivial particular case of nonunitary ones, the basic nonunitarity condition,
particularly when realized via the Lie-admissible covering of Lie algebras, assured
the covering character of hadronic over quantum mechanics ab initio [4,5].

Via the use of Heisenberg-Santilli isoequation, the validity of hadronic me-
chanics was proved since the original proposal [4,5] with the achievement of a
numerically exact representation of all the characteristics of the πo meson in the
reaction e− + e+ → πo, including a numerically exact representation of features
that are beyond the representational capabilities of the standard model, such as
the size (charge radius) and meanlife (see Section 5 of memoir [5]). Following
the necessary construction of a nonunitary covering of the Lorentz and Poincaré
symmetries (today known as the Lorentz- and Poincaré-Santilli isosymmetries)
[6,7] and of the special relativity [8] (today known as Santilli isorelativity), a nu-
merically exact representation of all characteristics of the neutron in the reaction
p+ + e− → n+ ν was reached in paper [9] of 1990 at the nonrelativistic level and
in paper [10] of 1993 at the relativistic level.

As clearly stated in the original proposal [4,5], the construction of hadronic
mechanics was specifically recommended for the conception and development of
new clean energies. The neutron is one of the biggest reservoirs of clean energy
available to mankind because it is naturally unstable (when isolated or part of
unstable isotopes) and decays via the release of a highly energetic electron easily
stopped with a metal shield, plus the innocuous and hypothetical neutrino. In
fact, hadronic mechanics has permitted the conception of fundamentally new
energies, today known as hadronic energies [11] because originating in the
structure of hadrons, rather than in the structure of nuclei, atoms or molecules.
These new energies are now seeing large industrial investments and developments
reported in the subsequent volume. A quantitative representation of the neutron
synthesis is an evident pre-requisite for the stimulated decay of the neutron, one
of the possible forms of hadronic energies, and this explains the relentless decades
of efforts in the study of the synthesis of the neutron from protons and electrons
as occurring in stars.

As indicated earlier, quantum mechanics admits conditions of exact validity.
By comparison, quantum chemistry admits no conditions of exact validity,
and it is either approximately valid for chemical structures and processes or
basically inapplicable in its conventional formulation. In fact, quantum chemistry
failed to achieve an exact representation from unadulterated primitive axioms
of the binding energy of the simplest possible molecule, the hydrogen molecule
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H2 = H −H, in view of the historical 2% missing following one century of failed
attempts, with bigger deviations for the water molecule H2O = H −O−H, and
rather embarrassing deviations for complex molecules. Consequently, on rigorous
scientific grounds, quantum chemistry can only be claimed to be approximately
valid for molecular structures.

In view of the above well known insufficiency, chemists introduced in the
last part of the 20-th century the “screening of the Coulomb law,” namely, the
Coulomb law V (r) = q1q2/r was multiplied by an arbitrary function f(r) whose
explicit value was fit from the experimental data. This mechanism did indeed
improve the representational capability of molecular binding energies although,
regrettably for science, the resulting discipline was still called “quantum chem-
istry.” It is well known that quantized orbits can only be formulated for the
unadulterated Coulomb law V (r) = q1q2/r while the notion of quantum does not
exist for the screened law V ∗(r) = f(r)(q1q2/r). Also, it is well known to experts
to qualify as such that the Coulomb law is a fundamental invariant of quan-
tum mechanics and chemistry. Consequently, the transition from the Coulomb
law to its screened version requires a nonunitary transform, namely, the neces-
sary exiting from the class of equivalence of quantum chemistry. At any rate,
the representation of the binding energy via the screened Coulomb law is merely
approximate. Hence, on serious scientific grounds, quantum chemistry is only ap-
proximately valid and cannot be credibly claimed to be exactly valid for molecular
structures even after the screening of the Coulomb law.

Additionally, quantum chemistry is basically inapplicable for fundamental chem-
ical features, such as the notion of valence. A “scientific treatment” of the valence
requires: i) the precise identification of the origin of the bonding force; ii) the
proof that such a force is indeed attractive; and iii) the achievement, with such
an attractive force, of an exact representation of the binding energies and other
feature. By comparison, despite its widespread use generally without a serious
inspection, the quantum chemical notion of valence used throughout the 20-th
century is a pure nomenclature deprived of quantitative content.

Following one century of studies, quantum chemistry has failed to identify
the origin of the force responsible for valence bonds and, consequently, cannot
even address its needed attractive character, let alone provide a quantitative
representation of the bond itself. To render the scientific scene embarrassing,
the two identical electrons in a valence bond should repel, rather than attract
each other according to quantum chemistry, evidently in view of their identical
charge. Additionally, quantum chemistry is basically inapplicable for irreversible
chemical reactions, particularly those producing energy, because its axioms are
structurally reversible in time (that is, reversible for any possible Hamiltonian),
while said reactions are not.
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Yet another embarrassing insufficiency of quantum chemistry is the prediction
that all substances are paramagnetic contrary to reality. This is due to the lack
of a sufficiently strong attractive force between valence electrons, as a result of
which electron orbitals are essentially independent from each other, thus being
orientable under an external magnetic field, with resulting paramagnetic charac-
ter for all substances that is in dramatic disagreement with reality.

The construction of hadronic mechanics was additionally submitted for the
purpose of achieving a covering of quantum chemistry, today known as hadro-
nic chemistry [12] that is capable of resolving the above limitations. In view of
numerous reasons studied in these volumes, quantum mechanics can be exactly
valid only for conditions permitting an effective point-like abstraction of particles.
These conditions are verified for one hydrogen atom. However, the same condi-
tions fail to be verified for two hydrogen atoms bonded into the hydrogen molecule
H−H because in the latter case we have the deep mutual penetration of the two
valence electrons (in singlet coupling) resulting in contact, nonpotential interac-
tions over the finite volume of overlapping. Under these conditions, quantum
mechanics and chemistry simply cannot be exactly valid for numerous techni-
cal reasons, beginning with the inapplicability of the underlying local-differential
topology that can only represent a finite number of isolated points.

The contact nonpotential character of the deep mutual penetration of the
wavepackets of identical electrons in singlet valence bond clearly identifies its non-
Hamiltonian character, namely, the impossibility for the Hamiltonian to provide
a complete description of the valence bond. In turn, the non-Hamiltonian char-
acter demands that a covering chemistry be necessarily nonunitary, as confirmed
by the need for a nonunitary map of the Coulomb law into a screened form. A
nonunitary transform UU † 6= I of Heisenberg’s equation then yields precisely the
Heisenberg-Santilli isoequation U(idA/dt)U † = idA′/dt = U(AH − HA)U † =
A′TH ′ −H ′TA′, A′ = UAU †, H ′ = UHU †, T = 1/(UU †) [5]. In this case the
Hamiltonian represents all conventional interactions of the 20-th century and T
represent the new non-Hamiltonian interactions and effects.

Such a nonunitary structure allowed hadronic chemistry to [12]: admit as par-
ticular cases all infinitely possible screenings of the Coulomb laws, not as unknown
adulterations, but derived from first axiomatic principles; achieve the first known
quantitative theory of the valence in all the three main requirements i), ii) and
iii) identified above; reach the first known numerically exact representation of the
binding energies of the hydrogen, water and other molecules; and resolve other
insufficiencies of quantum chemistry, such as the prediction that all substances
are paramagnetic. Moreover, hadronic chemistry has indeed achieved the main
scope for which it was proposed, the conception and development of new clean
fuels with complete combustions, today known as magnegases, that is, gaseous
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fuels possessing the new chemical structure of Santilli magnecules [12,13] studied
in the second volume, now seeing rather large industrial investments.

One of the biggest scientific imbalances of the sciences of the 20-th century has
been the quantum treatment of biological structures via quantum mechanics
without the identification of the limitation of the studies. We teach in first year
graduate schools that quantum mechanics is incompatible with the deformation
theory because the latter causes the breaking of the central pillar of quantum
mechanics, the rotational symmetry. This is the reason for the great effectiveness
of quantum mechanics for the treatment of crystals. But then, any use of quan-
tum mechanics in biology implies that biological structures are perfectly rigid,
something beyond the boundary of science. Additionally, we also teach in first
year graduate school that the very axioms of quantum mechanics are irreversible
in time. This is the reason for the great effectiveness of quantum mechanics
to represent irreversible atomic orbitals, as well as provide an explanation for
their eternal character. But then, quantum mechanical studies in biology imply
that biological structures are eternal, something truly beyond any minimum of
scientific ethics and accountability. The complexities of biological structures, be-
ginning with a simple cell, are such to be beyond our most vivid imagination.
any attempt of treating these complexities with a theory conceived for the atomic
structure should be dismissed as non-scientific.

The author has stated several times in his papers that special relativity has
a “majestic axiomatic structure and validity” for the original conditions of appli-
cability limpidly stated by Einstein, namely, for point-like particles and electro-
magnetic waves propagating in vacuum, such as for the structure of the hydrogen
atom, particles moving in accelerators, etc. However, for numerous different con-
ditions, special relativity is either approximately valid or basically inapplicable.

There are numerous conditions for which special relativity is basically inappli-
cable (rather than violated, because not conceived for the conditions at hand).
For instance, special relativity is inapplicable for the classical treatment of anti-
matter, as clearly established by the absence of any differentiation between neu-
tral matter and antimatter. Special relativity is also inapplicable for the classical
representation of charged antiparticles because, in view of the existence of only
one quantization channel, the operator image of a classical antiparticle is that
of a “particle” (rather than a charged conjugated antiparticle) with the wrong
sign of the charge. At any rate, antimatter had not yet been conceived, let alone
detected, at the time of the inception of special relativity. Hence, the current
widespread use of special relativity for the classical description of antimatter is
a scientific manipulation by Einstein’s followers, and definitely not a scientific
blunder by Albert Einstein.

Similarly, special relativity is inapplicable for a quantitative treatment of the
chemical valence or, along much similar lines, for the contact, nonlocal and non-
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potential conditions of deep inelastic scatterings of particles, because its math-
ematical structure simply cannot represent forces not admitting a Hamiltonian
representation by. When passing to the main scope of these volumes, energy
releasing processes, their study via special relativity is outside the boundaries of
science. This is due to the fact that all energy releasing processes are structurally
irreversible in time, in the sense of being irreversible for all possible Hamiltoni-
ans, while special relativity is known to be structurally reversible in time (since
all known Hamiltonians are reversible in time). It is evident that a theory proved
to be valid for the representation of the time reversal invariant orbits of atomic
electrons, cannot permit a serious scientific study of irreversible energy releasing
processes. As an example, special relativity predicts that, following the combus-
tion of petroleum, the produced smoke, ashes and thermal energy spontaneously
reproduce the original petroleum.

In the author’s view, the above physical insufficiencies are due to insufficient
mathematics because the mathematics that proves to be so effective for the treat-
ment of a given physical problem does not necessarily apply for basically differ-
ent physical conditions. As a matter of fact, major physical insufficiencies are
generally created by the insistence in treating new physical conditions via old
mathematics. At any rate, the author has stated several times in his works that
there cannot be truly new physical theories without truly new mathematics, and
there cannot be truly new mathematics without new numbers. For this reason, as
a theoretical physicist, the author had to dedicate the majority of his research
time to the search and development of basically new mathematics specifically
constructed for the quantitative treatment of the physical conditions at hand.

By far, the biggest efforts were devoted to the search of new numbers, that is,
numbers verifying the conventional axioms of a field without which no physical
application is possible. The search appeared impossible prima facie, because the
mathematical literature emphatically indicated that all fields had been classified
since Hamilton’s time and were given by the real, complex, and quaternionic
numbers (Octonions are not ”numbers” as conventionally understood because
their multiplication is nonassociative). The solution came from the fact that
pure mathematics is afflicted by a number of beliefs essentially originated from
protracted use without a rigorous scrutiny. An inspection revealed that the ax-
ioms of a field are insensitive to the numerical value as well as the sign of the
(multiplicative) unit, provided that the product is modified in such a way to
preserve all axioms. The author discovered in this way that contemporary treat-
ments of the number theory are not mathematically accurate because statements,
for instance, ”2× 3 = 6” or that ”4 is not a prime number” should be completed
with the statement to be solely valid under the assumption of the unit 1 dating
back to biblical times. In fact, as we shall see, the assumption of the value 1/3
as unit implies that 2× 3 = 18 and ”4 is a prime number”.
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These studies lead to new numbers (that is, rings verifying all conventional ax-
ioms of a field) characterized by a unit with an arbitrary (nonsingular) value today
called Santilli isonumbers, genonumbers and hypernumbers for the treatment of
matter and their anti-Hermitian versions known as Santilli isodual isonum-
bers, isodual genonumbers and isodual hypernumbers for the treatment
of antimatter. The new numbers were presented for the first time in paper [14] of
1993. The author considers this paper his most important mathematical contri-
bution because the novel iso-, geno- and hyper-mathematics for matter and their
isoduals for antimatter were constructed via simple compatibility conditions with
the new basic numbers.

The first clear illustration of he need for new mathematics is given by the
classical treatment of antimatter. As recalled above, special relativity has no
means whatsoever to differentiate between neutral matter and antimatter, thus
leaving the only possible solution to a new appropriate mathematics. A search in
the mathematical libraries of the Cantabridgean area in the early 1980s revealed
that a mathematics for the classical treatment of antimatter did not exist and
had to be built. Recall that charge conjugation is anti-automorphic, although
solely applicable on a Hilbert space over the field of complex numbers. Hence,
a mathematics suitable for the corresponding classical treatment has to be anti-
homomorphic or, more generally, anti-isomorphic to conventional mathematics
as an evident necessary condition to achieve compatibility with the operator
treatment. This identifies the need for numbers, spaces, differential calculus,
topology, algebras, symmetries, etc., that are anti-isomorphic to conventional
formulations.

Following laborious trials and errors, the author had to construct the needed
new mathematics beginning with the original proposal to construct hadronic
mechanics that is known today as Santilli isodual mathematics and related
isodual special relativity for the classical and operator treatment of antimat-
ter, which new formulations resulted to have far reaching implications, such as:
the prediction of antigravity experienced by antimatter in the field of matter or
vice versa [15]; the consequential prediction of a non-Newtonian, spacetime geo-
metric locomotion with unlimited speeds without any violation of causality laws,
although only for certain states called “isoselfdual” [16]; the prediction that light
emitted by antimatter is delectably different than that emitted by matter, thus
offering for the first time in history the possibility in due time of ascertaining
whether a far away galaxy or quasar is made up of matter or of antimatter; and
other advances [16,17] (see monograph [18] for a review).

The second illustration of the need for new mathematics is given by the rela-
tivistic description of deep mutual penetrations of the wavepackets and/or charge
distributions of particles as occurring in the synthesis of hadrons, deep inelastic
scatterings, electrons valence bonds, etc. The very foundations of conventional
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mathematics, its local-differential topology, identifies quite clearly its inappli-
cability to the problem considered due to its nonlocal-integral character. An
additional time consuming search in the mathematical libraries of the Cambridge-
Boston area was conducted in the late 1970s with no result. More specifically,
the search did identify a number of new topologies, some of which of integral
type, but they violated the central physical conditions of being a covering of the
conventional local-differential topology so as to allow the new physical theories
to be coverings of the old ones. Hence, the mathematics needed for the quanti-
tative treatment of the indicated nonlocal-integral conditions of particles had to
be built.

Following additional trials and errors, the new mathematics was constructed
beginning with the original memoirs of 1978 to construct hadronic mechanics [4,5]
and then continuing in numerous works (see the mathematical presentation [19] of
1996. The new mathematics carries today the name of Santilli isomathematics
and permits a classical and operator treatment of extended, nonspherical and
deformable particles under linear and nonlinear, local and nonlocal and potential
as well as nonpotential interactions. Santilli isodual isomathematics then
holds for the corresponding conditions of antiparticles [18].

In turn, the new mathematics permitted the structural generalization of special
relativity into a covering today known as Santilli isorelativity [4-8] for closed
isolated systems with conventional potential interactions, as well as the most
possible nonlinear, nonlocal and nonpotential forces as needed for true advances
in the structure of hadrons, nuclei and stars. Santilli isodual isorelativity [18]
then represent the corresponding antimatter systems.

All the above efforts turned out to be merely preliminaries for the central
objective of these studies, the search for new clean energies and fuels, because
the latter are characterized by irreversible processes recalled earlier, while all the
preceding four mathematics (conventional and isotopic mathematics for matter
and their isoduals for antimatter) are structurally reversible. Hence, the author
had to initiate an additional laborious search and construction of yet another
new mathematics, this time with an ordering in its very axiomatic structure and
an inequivalent dual that could be physically used to represent motion forward
and backward in time. This additional new mathematics was eventually built
and it is today known as Santilli’s genomathematics for the treatment of
extended, nonspherical and deformable particles under unrestricted irreversible
conditions [4,8,18]. Santilli isodual genomathematics then applies to an-
tiparticles in corresponding irreversible conditions. The original proposal [4,5]
to construct hadronic mechanics was formulated precisely via genomathematics,
isomathematics being a particular case. Genomathematics was then studied in
various works (see memoirs [19,20]).
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The most complex efforts dealt with an irreversible generalization of special
relativity into a form, today known as Santilli genorelativity admitting isorel-
ativity as well as the conventional special relativity as particular cases, with
corresponding isodual for antimatter. A main difficulty was given by the need to
achieve structurally irreversible symmetries characterizing time rates of variation
of physical quantities, as occurring in nature. The solution was permitted by the
Lie-admissible covering of Lie theory along studies initiated in 1967 [2] (see also
[19,20]).

The indicated lack of final theories in science was confirmed by the fact that
all the preceding six different mathematics (conventional, isotopic and genotopic,
and their isoduals) resulted in being insufficient for serious studies in biology
since, for reasons we shall see, the latter require multi-valued methods. This
occurrence can be intuitively seen from the fact that, e.g., a few atoms in a
DNA can generate a complex organ with a huge number of cells. A multi-valued
mathematics did exist in the literature, the so-called hyperstructures, but they
had no possibility of applications to biological structures due to the absence of a
left and right unit (evidently crucial to permit measurements), the use of rather
abstract operations not compatible with experiments, and other reasons.

These limitations led the author to the construction of a final form of math-
ematics, today known as Santilli hyper-mathematics that is irreversible, multi-
valued and possesses a left and right unit at all levels. Santilli isodual hyperma-
thematics is then the corresponding form for antimatter [21].

After the above laborious research, including the construction of the above
new mathematics and related broadening (called lifting) of quantum mechanics,
quantum chemistry, special and general relativities, the author had still failed to
achieve by the early 1990s a property truly crucial for serious physical value, the
invariance of the numerical predictions under the time evolution of the theory,
namely, the prediction of the same numerical values under the same conditions
at different times. The indicated new mathematics did indeed provide a sequence
of generalizations of Hamilton’s classical equations, Heisenberg’s operator equa-
tions, Einstein’s axioms for the special relativity, etc., but their numerical pre-
dictions under the same physical conditions turned out to change over time, a
catastrophic inconsistency that delayed the applications of hadronic mechanics
for decades because the author simply refused to publish papers he considered
catastrophically inconsistent.

Again, major physical problems generally originate from insufficient mathe-
matical, and the solution emerged from the identification and dismissal of an-
other popular belief in pure mathematics, the belief that the differential calculus
does not depend on the basic field. It turned out that this mathematical belief
is correct only for constant units, since said belief is no longer valid whenever
the generalized units depend on the local coordinates. This occurrence permit-
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ted the discovery of basically new differential calculi, today known as Santilli
iso-, geno- and hyper-differential calculi and their isoduals published for
the first time in memoir [19] of 1996. These new calculi finally permitted the
achievement of the invariance of numerical predictions over time so much needed
for physical applications.

In summary, the studies presented in these two volumes deal with eight different
mathematics: the conventional, iso-, geno- and hyper-mathematics for treatment
of matter in conditions of progressively increasing complexity, and their isoduals
for the treatment of antimatter. The strict understanding with the world ”new
mathematics” is that each of them requires the appropriate new formulation of
the totality of the mathematics used in the physics of the 20-th century, including
numbers, fields, spaces, differential calculus, functional analysis, algebras, geome-
tries, topologies, etc. The absence of only one proper formulation, for instance,
the treatment of isomechanics with the conventional functional analysis, leads to
catastrophic inconsistencies.

While special relativity does indeed admit physical conditions of exact validity,
general relativity at large, and Einstein’s formulation of gravitation via the
hypothetical curvature, have been known for decades to verify several theorems
of catastrophic inconsistencies [22] reviewed in Chapter 1 of this volume. To avoid
technical issues in these introductory lines, we merely mention that it is impossible
to represent via curvature a most basic gravitational event, the free fall of masses
in a gravitational field along a straight radial line. Similarly, the “bending of light”
when passing near a star (that was used by Einstein’s supporters to promote the
acceptance of general relativity) is known to be due to Newtonian attraction and,
when used as “evidence” of curvature of space, it leads to known inconsistencies,
such as either the incompatibility of Einstein’s views with Newtonian gravitation,
or the prediction of a value of light bending double that experimentally measured,
one for the Newtonian attraction and another for curvature.

Besides the indicated catastrophic inconsistencies, a most unreassuring impli-
cation of Einstein’s gravitation is that its central formulation via curvature has
prohibited basic advances for about one century, such as: the failed attempts
of achieving quantum gravity; the impossibility of achieving a consistent grand
unification cosmological theories of pure theological character; and other ascien-
tific conditions. It should be admitted by serious scholars that gravitation on a
Riemannian space is a noncanonical theory with consequential nonunitary oper-
ator image that, as such, see unavoidable collapse of quantum axioms, violation
of causality, and other irreconcilable problems. Similarly, serious scholars should
admit that any attempt at grand unification of electroweak theories and Ein-
stein’s gravitation faces catastrophic inconsistencies for electroweak interactions
originating from the lack of any symmetry by Einstein gravitation.
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Following numerous years of research, a resolution of these inconsistencies was
reached via a geometric unification of special and general relativities beginning
with a geometric unification of the Minkowskian and Riemannian geometries [23]
via the abstract Minkowskian axioms thanks to the power of isomathematics.
According to this view, any Riemannian metric g(x) is decomposed into the
Minkowskian metric η = Diag.(1, 1, 1,−1) multiplied by a positive-definite four-
dimensional matrix T̂ (x) carrying the entire gravitational content, g(x) = T̂ (x)×
η. Gravity is then reformulated on the Minkowski-Santilli isospace M̂(x, η̂, Û)
with isometric η̂(x) ≡ g(x) but formulated on an isofield with isounit given by the
inverse of the gravitational matrix, Î(x) = 1/T̂ (x). This procedure eliminates
the origin of all problems of Einstein’s gravitation, curvature, since M̂ is flat
(this formulation of gravity was presented by the author at the Marcel Grossman
Meeting in Gravitation of 1994 [24]).

The new conception of gravitation without curvature permitted, apparently for
the first time, the resolution of one century old controversies on Einstein’s grav-
itation as well as to: achieve a universal symmetry for all possible gravitational
elements, the Poincaré-Santilli isosymmetry [7]; the achievement of a fully con-
sistent operator formulation of gravity, including a fully valid PCT theorem, via
the embedding of gravitation in the unit of relativistic quantum mechanics; and
an axiomatically consistent grand unifications of electroweak and gravitational
interactions including, for the first time, matter and antimatter, and based on
the universal Poincaré-Santilli isosymmetry (unification presented at the Marcel
Grossmann meeting in gravitation of 1998 [25].

As we shall see, all the above studies, the most crucial one being the representa-
tion of gravity without curvature, suggest rather radical new vistas in cosmology,
such as:

1) The possibility of experimental resolution in due time whether far away
galaxies and quasars are made of matter or antimatter via the predicted grav-
itational repulsion caused by matter on light emitted by antimatter and other
experimental means;

2) The most logical interpretation of the expansion of the universe permitted
by matter and antimatter galaxies and quasars, since their gravitational repulsion
allows a quantitative representation not only of the expansion of the universe but
also of its increase in time;

3) Dramatic revisions in the notion of time that becomes local, i.e.. varying
from an astrophysical body to another and with opposite signs for matter and
antimatter, with a possible ”null total time of the universe” that would avoid
immense discontinuities at creation, such as those implied by the ’big bang”;

4) The first known cosmology with a universal symmetries, the Poincaré-
Santilli isosymmetry for matter multiplied by its isodual for antimatter; and
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5) The first ”cosmology” in the Greek sense of the word, thus including bio-
logical structures.

We cannot close these introductory words without a few comments on the most
fundamental equations of physics, Newton’s equations from which all physical
formulations can be derived via compatibility conditions. Due to extended use
over three centuries, Newton’s equations have been believed to be “universal”,
namely, applicable for all possible classical conditions of particles in the universe.
This popular belief turned out to be untrue. Newton’s equation have no mean-
ingful feature to represent antiparticles, whether charged or neutral, and lack the
mathematics needed for the representation of the actual, extended, nonspherical
and deformable shape of particles, their irreversible conditions when the force
is time independent while the system is nonconservative, thus irreversible, and
other insufficiencies. At any rate, no broadening of quantum mechanics, spe-
cial relativity and other discipline can have any serious scientific value without a
broadening of their ultimate foundations, Newton’s equations.

The studies on the generalization of Newton’s equations were conducted by
following Newton’s teaching, and not the teaching of Newton’s followers. Recall
that, as a necessary condition to achieve his historical equations, Newton had to
discover first the differential calculus (jointly with Leibnitz). Hence, the discovery
of new numbers for the generalization of the mass in the celebrated equations was
basically insufficient. Newton’s teaching then became instrumental in achieving
the new iso-, geno-, and hyperdifferential calculi for matter and their isoduals
for antimatter which led to the sequence of generalized equations, today called
Newton-Santilli iso-, geno-, hyper-equations for matter and their isoduals for
antimatter presented for the first time in memoir [19] of 1996 the author considers
his most important physics paper.

In this volume, we report the mathematical and theoretical contributions that
initiated the various aspects as outlined in this Preface, plus subsequent con-
tributions by colleagues too numerous to be mentioned here (see the General
Bibliography). This first volume is intended as an upgrade of the two volumes of
Elements of Hadronic Mechanics [26] published by the author in the early 1990.
Nevertheless, the study of these volumes is recommended for a serious knowledge
of the new theories since numerous detailed treatments presented in volumes [26]
are not reproduced in this volume for brevity. In Volume II, we report experi-
mental verifications, theoretical advances and industrial applications.

Ruggero Maria Santilli
Carignano (Torino), Italy
July 4, 2007
Revised
Hermosillo, Mexico
August 14, 2007
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Ethnic Note

The author has repeatedly stated in his works that Albert Einstein is, un-
questionably, the greatest scientist of the 20-th century, but he is also the most
exploited scientist in history to date, because a large number of researchers have
exploited Einstein’s name for personal gains in money, prestige, and power .

In these two volumes, we shall honor Einstein’s name as much as scientifically
possible, but we shall jointly express the strongest possible criticisms of some of
Einstein’s followers ,by presenting a plethora of cases in which Einstein’s name
has been abused for conditions dramatically beyond those conceived by Einstein,
under which conditions his theories are inapplicable (rather than violated) be-
cause not intended for.

In so doing, Einstein’s followers have created one of the biggest scientific ob-
scurantism in history, superior to that caused by the Vatican during Galileo’s
time. This obscurantism has to be contained, initiating with open denunciations,
and then resolved via advances beyond Einstein’s theories, for the very survival
of our society since, as technically shown in these volumes, the resolution of our
current environmental problems requires new scientific vistas.

As known by all, Albert Einstein was Jewish. The countless denunciations
of Einstein’s followers presented and technically motivated in these volumes will
likely spark debates to keep historians occupied for generations. It is my pleasant
duty to indicated that Jewish scientists have been among the best supporters of
the authors’ research, as established by the following facts:

1) The author had the privilege of participating to the Marcel Grossmann
Meeting on General Relativity held at the Hebrew University, Jerusalem, in June
1997, with a contribution showing various inconsistencies of Einstein gravitation
and proposing an alternative theory with gravitation embedded in a general-
ized treatment of the unit. Unfortunately, the author had to cancel his trip
to Jerusalem at the last moment. Nevertheless, the organizers of the meeting
had the chairman of the session read the author’s transparencies and did indeed
publish his paper in the proceedings.

2) One of the first formal meetings ”beyond Einstein” was organized in Israel
at Ben Gurion University, in 1998, under the gentle title of ”Modern Modified
Theories of Gravitation and Cosmology,” in which the author had the privilege
of participating with a contributed paper criticizing and going beyond Einstein’s
theories.
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3) Numerous Jewish mathematicians, theoreticians and experimentalists have
collaborated with and/or supported the author in the development of hadronic
mechanics, as we see in many of the papers reviewed throughout the presentation.

As a matter of fact, the author has received to date more support from Jewish
scientists than that from Italian colleagues, the author being a U. S. citizen of
Italian birth and education. Such a statement should not be surprising to readers
who know the Italian culture as being based on the most virulent possible mutual
criticisms that are perhaps a reason for the greatness of Italian contributions to
society.

Needless to say, the denial of a Jewish component in the scientific controversies
raging on Einstein followers would be a damaging hypocrisy, but we are referring
to a very small segment of the Jewish scientific community as established by 1), 2),
3) and additional vast evidence. At any rate, we have similar ethnic components:
in Italy, for Galileo’s initiation of quantitative science; in England, for Newton’s
historical discoveries; in Germany, for Heisenberg’s quantum studies; in Japan, for
Yukawa’s advances in strong interactions; in France, for de Broglie’s pioneering
research; in Russia, for Bogoliubov’s advances; in India, for Bose’s pioneering
discoveries; and so on.

The point the author wants to stress with clarity, and document with his
personal experience, is that, in no way, this variety of small ethnic components
may affect scientific advances because, unlike politics, science belongs to all of
mankind, positively without any ethnic or other barrier.

Ruggero Maria Santilli
Palm Harbor, Florida, October 27, 2007
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The underwriter Ruggero Maria Santilli states the following:
1) To be the sole person responsible for the content of Hadronic Mathemat-

ics, Mechanics and Chemistry, Volumes I and II; to be the sole owner of the
Copyrights on these two volumes; and to have recorded, beginning with 1992,
the copyright ownership of a number of his main contributions in the field.

2) The undersigned hereby authorizes anybody to copy, and/or use, and/or
study, and/or criticize and /or develop, and/or apply any desired part of these
volumes without any advance authorization by the Copyrights owner under the
sole condition of implementing known rules of scientific ethics, namely: 2A) The
originating papers are clearly quoted in the initial parts; 2B) Scientific paternity
are clearly identified and documented; and 2C) Any desired additional papers are
additionally quoted at will, provided that they are directly relevant and quoted
in chronological order. Violators of these known ethical rules will be notified with
a request of immediate corrections essentially consisting publishing missed basic
references. In the event of delays or undocumented excuses, authors who violate
the above standard rules of scientific ethics will be prosecuted in the U. S. Federal
Court jointly with their affiliations and funding sources.

3) There are insisting rumors that organized interests in science are waiting or
the author’s death to initiate premeditated and organized actions for paternity
fraud via the known scheme, often used in the past, based on new papers in
the field without the identification of the author’s paternity, which papers are
then quickly quoted as originating papers by pre-set accomplices and the fraud is
then accepted by often naive or ignorant followers merely blinded by the academic
credibility of the schemers. Members of these rumored rings should be aware that
the industrial applications of hadronic mathematics, mechanics and chemistry
have already provided sufficient wealth to set up a Paternity Protection Trust
solely funded to file lawsuits against immoral academicians attempting paternity
fraud, their affiliations and their funding agencies.

This legal notice has been made necessary because, as shown in Section 1.5,
the author has been dubbed ”the most plagiarized scientist of the 20-th century,”
as it is the case of the thousands of papers in deformations published without any
quotation of their origination by the author in 1967. These, and other attempted
paternity frauds, have forced the author to initiate legal action reported in web
site [1].
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In summary, honest scientists are encouraged to copy, and/or study, and/or
criticize, and/or develop, and/or apply the formulations presented in these vol-
umes in any way desired without any need of advance authorization by the copy-
rights owner, under the sole conditions of implementing standard ethical rules 2A,
2B, 2C. Dishonest academicians, paternity fraud dreamers, and other schemers
are warned that legal actions to enforce scientific ethics are already under way
[1], and will be continued after the author’s death.

In faith
Ruggero Maria Santilli
U. S. Citizen acting under the protection of the First Amendment of the U. S.

Constitution guaranteeing freedom of expression particularly when used to con-
tain asocial misconducts.

Tarpon Springs, Florida, U. S. A.
October 11, 2007

[1] International Committee on Scientific Ethics and Accountability
http://www.scientificethics.org
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Chapter 1

SCIENTIFIC IMBALANCES OF THE
TWENTIETH CENTURY

1.1 THE SCIENTIFIC IMBALANCE CAUSED BY
ANTIMATTER

1.1.1 Needs for a Classical Theory of Antimatter
The first large scientific imbalances of the 20-th century studied in this mono-

graph is that caused by the treatment of matter at all possible levels, from New-
tonian to quantum mechanics, while antimatter was solely treated at the level of
second quantization [1].

Besides an evident lack of scientific democracy in the treatment of matter and
antimatter, the lack of a consistent classical treatment of antimatter left open a
number of fundamental problems, such as the inability to study whether a faraway
galaxy or quasar is made up of matter or of antimatter, because such a study
requires first a classical representation of the gravitational field of antimatter, as
an evident pre-requisite for the quantum treatment (see Figure 1.1).

It should be indicated that classical studies of antimatter simply cannot be
done by merely reversing the sign of the charge, because of inconsistencies due
to the existence of only one quantization channel. In fact, the quantization of a
classical antiparticle solely characterized by the reversed sign of the charge leads
to a particle (rather than a charge conjugated antiparticle) with the wrong sign
of the charge.

It then follows that the treatment of the gravitational field of suspected an-
timatter galaxies or quasars cannot be consistently done via the Riemannian
geometry in which there is a simple change of the sign of the charge, as rather
popularly done in the 20-th century, because such a treatment would be struc-
turally inconsistent with the quantum formulation.

At any rate, the most interesting astrophysical bodies that can be made up of
antimatter are neutral. In this case general relativity and its underlying Rieman-
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Figure 1.1. An illustration of the first major scientific imbalance of the 20-th century studied
in this monograph, the inability to conduct classical quantitative studies as to whether faraway
galaxies and quasars are made-up of matter or of antimatter. In-depth studies have indicated
that the imbalance was not due to insufficient physical information, but instead it was due to
the lack of a mathematics permitting the classical treatment of antimatter in a form compatible
with charge conjugation at the quantum level.

nian geometry can provide no difference at all between matter and antimatter
stars due to the null total charge. The need for a suitable new theory of antimat-
ter then becomes beyond credible doubt.

As we shall see in Chapter 14, besides all the above insufficiencies, the biggest
imbalance in the current treatment of antimatter occurs at the level of grand
unifications, since all pre-existing attempts to achieve a grand unification of elec-
tromagnetic, weak and gravitational interactions are easily proved to be incon-
sistent under the request that the unification should hold not only for matter,
as universally done until now, but also for antimatter. Hence, prior to venturing
judgments on the need for a new theory of antimatter, serious scholars are sug-
gested to inspect the entire scientific journey including the iso-grand-unification
of Chapter 14.
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1.1.2 The Mathematical Origin of the Imbalance
The origin of this scientific imbalance was not of physical nature, because it was
due to the lack of a mathematics suitable for the classical treatment of antimatter
in such a way as to be compatible with charge conjugation at the quantum level.

Charge conjugation is an anti-homomorphism. Therefore, a necessary condi-
tion for a mathematics to be suitable for the classical treatment of antimatter
is that of being anti-homomorphic, or, better, anti-isomorphic to conventional
mathematics.

Therefore, the classical treatment of antimatter requires numbers, fields, func-
tional analysis, differential calculus, topology, geometries, algebras, groups, sym-
metries, etc. that are anti-isomorphic to their conventional formulations for mat-
ter.

The absence in the 20-th century of such a mathematics is soon established
by the lack of a formulation of trigonometric, differential and other elementary
functions, let alone complex topological structures, that are anti-isomorphic to
the conventional ones.

In the early 1980s, due to the absence of the needed mathematics, the au-
thor was left with no other alternative than its construction along the general
guidelines of hadronic mechanics, namely, the construction of the needed math-
ematics from the physical reality of antimatter, rather than adapting antimatter
to pre-existing insufficient mathematics.1

After considerable search, the needed new mathematics for antimatter resulted
in being characterized by the most elementary and, therefore, most fundamental
possible assumption, that of a negative unit,

−1, (1.1.1)

and then the reconstruction of the entire mathematics and physical theories of
matter in such a way as to admit −1 as the correct left and right unit at all levels.

In fact, such a mathematics resulted in being anti-isomorphic to that repre-
senting matter, applicable at all levels of study, and resulting in being equivalent
to charge conjugation after quantization.2

1In the early 1980s, when the absence of a mathematics suitable for the classical treatment of antimatter
was identified, the author was (as a theoretical physicist) a member of the Department of Mathematics at
Harvard University. When seeing the skepticism of colleagues toward such an absence, the author used to
suggest that colleagues should go to Harvard’s advanced mathematics library, select any desired volume,
and open any desired page at random. The author then predicted that the mathematics presented in
that page resulted in being fundamentally inapplicable to the classical treatment of antimatter, as it did
indeed result to be the case without exceptions. In reality, the entire content of advanced mathematical
libraries of the early 1980s did not contain the mathematics needed for a consistent classical treatment
of antimatter.
2In 1996, the author was invited to make a 20 minutes presentation at a mathematics meeting held in
Sicily. The presentation initiated with a transparency solely containing the number −1 and the statement
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1.1.3 Outline of the Studies on Antimatter
Recall that “science” requires a mathematical treatment producing numerical
values that can be confirmed by experiments. Along these lines, Chapter 2 is
devoted, first, to the presentation of the new mathematics suggested by the author
for the classical treatment of antimatter under the name of isodual mathematics
with Eq. (1.1.1) as its fundamental isodual left and right unit.

The first comprehensive presentation was made by the author in monograph
[94]. The first is, however, in continuous evolution, thus warranting an update.

Our study of antimatter initiates in Chapter 2 where we present the classical
formalism, proposed under the name of isodual classical mechanics that begins
with a necessary reformulation of Newton’s equations and then passes to the
needed analytic theory.

The operator formulation turned out to be equivalent, but not identical, to
the quantum treatment of antiparticles, and was submitted under the name of
isodual quantum mechanics.

Following these necessary foundational studies, Chapter 2 includes the detailed
verification that the new isodual theory of antimatter does indeed verify all clas-
sical and particle experimental evidence.

In subsequent chapters we shall then study some of the predictions of the new
isodual theory of antimatter, such as antigravity, a causal time machine, the
isodual cosmology in which the universe has null total characteristics, and other
predictions that are so far reaching as to be at the true edge of imagination.

All these aspects deal with point-like antiparticles. The study of extended,
nonspherical and deformable antiparticles (such as the antiproton and the an-
tineutron) initiates in Chapter 3 for reversible conditions and continues in the
subsequent chapters for broader irreversible and multi-valued conditions.

1.2 THE SCIENTIFIC IMBALANCE CAUSED BY
NONLOCAL-INTEGRAL INTERACTIONS

1.2.1 Foundations of the Imbalance
The second large scientific imbalance of the 20-th century studied in this mono-

graph is that caused by the reduction of contact nonlocal-integral interactions

that such a number was assumed as the basic left and right unit of the mathematics to be presented.
Unfortunately, this first transparency created quite a reaction by most participants who bombarded
the author with questions advancing his presentation, questions often repeated with evident waste of
precious time without the author having an opportunity to provide a technical answer. This behavior
continued for the remaining of the time scheduled for the talk to such an extent that the author could
not present the subsequent transparencies proving that numbers with a negative unit verify all axioms
of a field (see Chapter 2). The case illustrates that the conviction of absolute generality is so engraved
among most mathematicians to prevent their minds from admitting the existence of new mathematics.
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Figure 1.2. A first illustration of the second major scientific imbalance of the 20-th century
studied in this monograph, the abstraction of extended hyperdense particles, such as protons
and neutrons, to points, with consequential ignorance of the nonlocal and nonpotential effects
caused by the deep overlapping of the hyperdense media in the interior of said particles. As
we shall see, besides having major scientific implications, such as a necessary reformulation of
Feynman’s diagrams, the quantitative treatment of the nonlocal and nonpotential effects of this
figure permits truly momentous advances, such as the conversion of divergent perturbative series
into convergent forms, as well as the prediction and industrial development of basically new,
clean energies and fuels.

among extended particles to pre-existing action-at-a-distance local-differential in-
teractions among point-like particles (see Figure 1.2).

It should be indicated that there exist numerous definitions of “nonlocality”
in the literature, a number of which have been adapted to be compatible with
pre-existing doctrines. The notion of nonlocality studied by hadronic mechanics
is that specifically referred to interactions of contact type not derivable from
a potential and occurring in a surface, as for the case of resistive forces, or
in a volume, as for the case of deep mutual penetration and overlapping of the
wavepackets and/or charge distributions of particles.

The imbalance was mandated by the fact (well known to experts to qualify as
such) that nonlocal-integral and nonpotential interactions are structurally incom-
patible with quantum mechanics and special relativity, beginning with its local-
differential topology, because the interactions here considered cause the catas-
trophic collapse of the mathematics underlying special relativity, let alone the
irreconcilable inapplicability of the physical laws.
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In fact, the local-differential topology, calculus, geometries, symmetries, and
other mathematical methods underlying special relativity permit the sole con-
sistent description of a finite number of point-like particles moving in vacuum
(empty space). Since points have no dimension and, consequently, cannot experi-
ence collisions or contact effects, the only possible interactions are at-a-distance,
thus being derivable from a potential. The entire machinery of special relativity
then follows. For systems of particles at large mutual distances for which the
above setting is valid, such as for the structure of the hydrogen atom, special
relativity is then exactly valid.

However, classical point-like particles do not exist; hadrons are notoriously
extended; and even particles with point-like charge, such as the electron, do not
have “point-like wavepackets”. As we shall see, the representation of particles
and/or their wavepackets as they really are in nature, that is, extended, generally
nonspherical and deformable, cause the existence of contact effects of nonlocal-
integral as well as zero-range nonpotential type that are beyond any hope of
quantitative treatment via special relativity.

This is the case for all systems of particles at short mutual distances, such as the
structure of hadrons, nuclei and stars, for which special relativity is inapplicable
(rather than “violated”) because not conceived or intended for the latter systems.
The understanding is that the approximate character remains beyond scientific
doubt.

Well known organized academic interests on Einsteinian doctrines then man-
dated the abstraction of nonlocal-integral systems to point-like, local-differential
forms as a necessary condition for the validity of special relativity. This occur-
rence caused a scientific distortion of simply historical proportions because, while
the existence of systems for which special relativity is fully valid is beyond doubt,
the assumption that all conditions in the universe verify Einsteinian doctrines is
a scientific deception for personal gains.

In Section 1.1 and in Chapter 2, we show the structural inability of special
relativity to permit a classical representation of antimatter in a form compatible
with charge conjugation. In this section and in Chapter 3, we show the inability
of special relativity to represent extended, nonspherical and deformable particles
or antiparticles and/or their wavepackets under nonlocal-integral interactions at
short distances.

In Section 1.3 and in Chapter 4, we show the irreconcilable inapplicability of
special relativity for all possible, classical and operator irreversible systems of
particles and antiparticles. The widely ignored theorems of catastrophic incon-
sistencies of Einstein’s gravitation are studied in Section 1.4 and in Chapter 3.

A primary purpose of this monograph is to show that the political adaptation
of everything existing in nature to special relativity, rather than constructing
new relativities to properly represent nature, prevents the prediction and quan-
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titative treatment of new clean energies and fuels so much needed by mankind.
In fact, new clean energies are permitted precisely by contact, nonlocal-integral
and nonpotential effects in hadrons, nuclei and stars that are beyond any dream
of treatment via special relativity.

Therefore, the identification of the limits of applicability of Einsteinian doc-
trines and the construction of new relativities are nowadays necessary for scien-
tific accountability vis-a-vis society, let alone science.

Needless to say, due to the complete symbiosis of special relativity and rela-
tivistic quantum mechanics, the inapplicability of the former implies that of the
latter, and vice-versa. In fact, quantum mechanics will also emerge from our
studies as being only approximately valid for system of particles at short mutual
distances, such as for hadrons, nuclei and stars, for the same technical reasons
implying the lack of exact validity of special relativity.

The resolution of the imbalance due to nonlocal interactions is studied in Chap-
ter 3.

1.2.2 Exterior and Interior Dynamical Problems
The identification of the scientific imbalance here considered requires the knowl-

edge of the following fundamental distinction:

DEFINITION 1.2.1: Dynamical systems can be classified into:
EXTERIOR DYNAMICAL SYSTEMS, consisting of particles at sufficiently

large mutual distances to permit their point-like approximation under sole action-
at-a-distance interactions, and

INTERIOR DYNAMICAL PROBLEMS, consisting of extended and deformable
particles at mutual distances of the order of their size under action-at-a-distance
interactions as well as contact nonpotential interactions.

Interior and exterior dynamical systems of antiparticles are defined accordingly.

Typical examples of exterior dynamical systems are given by planetary and
atomic structures. Typical examples of interior dynamical systems are given by
the structure of planets at the classical level and by the structure of hadrons,
nuclei, and stars at the operator level.

The distinction of systems into exterior and interior forms dates back to New-
ton [2], but was analytically formulated by Lagrange [3], Hamilton [4], Jacobi3[5]
and others (see also Whittaker [6] and quoted references). The distinction was

3Contrary to popular belief, the celebrated Jacobi theorem was formulated precisely for the general
analytic equations with external terms, while all reviews known to this author in treatises on mechanics
of the 20-th century present the reduced version of the Jacobi theorem for the equations without external
terms. Consequently, the reading of the original work by Jacobi [5] is strongly recommended over
simplified versions.
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still assumed as fundamental at the beginning of the 20-th century, but thereafter
the distinction was ignored.

For instance, Schwarzschild wrote two papers in gravitation, one of the exte-
rior gravitational problem [7], and a second paper on the interior gravitational
problem [8]. The former paper reached historical relevance and is presented in
all subsequent treatises in gravitation of the 20-th century, but the same trea-
tises generally ignore the second paper and actually ignore the distinction into
gravitational exterior and interior problems.

The reasons for ignoring the above distinction are numerous, and have yet to
be studied by historians. A first reason is due to the widespread abstraction of
particles as being point-like, in which case all distinctions between interior and
exterior systems are lost since all systems are reduced to point-particles moving
in vacuum.

An additional reason for ignoring interior dynamical systems is due to the great
successes of the planetary and atomic structures, thus suggesting the reduction
of all structures in the universe to exterior conditions.

In the author’s view, the primary reason for ignoring interior dynamical sys-
tems is that they imply the inapplicability of the virtual totality of theories con-
structed during the 20-th century, including classical and quantum mechanics,
special and general relativities, etc., as we shall see.

The most salient distinction between exterior and interior systems is the fol-
lowing. Newton wrote his celebrated equations for a system of n point-particle
under an arbitrary force not necessarily derivable from a potential,

ma ×
dvak
dt

= Fak(t, r, v), (1.2.1)

where: k = 1, 2, 3; a = 1, 2, 3, ..., n; t is the time of the observer; r and v
represent the coordinates and velocities, respectively; and the conventional as-
sociative multiplication is denoted hereon with the symbol × to avoid confusion
with numerous additional inequivalent multiplications we shall identify during
our study.

Exterior dynamical systems occur when Newton’s force Fak is entirely derivable
from a potential, in which case the system is entirely described by the sole knowl-
edge of a Lagrangian or Hamiltonian and the truncated Lagrange and Hamilton
analytic equations, those without external terms

d

dt

∂L(t, r, v)
∂vka

− ∂L(t, r, v)
∂rka

= 0, (1.2.2a)

drka
dt

=
∂H(t, r, p)
∂pak

,
dpak
dt

= −∂H(t, r, p)
∂rka

, (1.2.2b)

L =
1
2
×ma × v2

a − V (t, r, v), (1.2.2c)
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H =
p2
a

2×ma
+ V (t, r, p), (1.2.2d)

V = U(t, r)ak × vka + Uo(t, r); (1.2.2e)

where: v and p represent three-vectors; and the convention of the sum of repeated
indices is hereon assumed.

Interior dynamical systems when Newton’s force Fak is partially derivable from
a potential and partially of contact, zero-range, nonpotential types thus admitting
additional interactions that simply cannot be represented with a Lagrangian or
a Hamiltonian. For this reason, Lagrange, Hamilton, Jacobi and other founders
of analytic dynamics presented their celebrated equations with external terms
representing precisely the contact, zero-range, nonpotential forces among extended
particles. Therefore, the treatment of interior systems requires the true Lagrange
and Hamilton analytic equations, those with external terms

d

dt

∂L(t, r, v)
∂vka

− ∂L(t, r, v)
∂rka

= Fak(t, r, v), (1.2.3a)

drka
dt

=
∂H(t, r, p)
∂pak

,
dpak
dt

= −∂H(t, r, p)
∂rka

+ Fak(t, r, p), (1.2.3b)

L =
1
2
×ma × v2

a − V (t, r, v), (1.2.3c)

H =
p2
a

2×ma
+ V (t, r, p), (1.2.3d)

V = U(t, r)ak × vka + Uo(t, r), (1.2.3e)

F (t, r, v) = F (t, r, p/m). (1.2.3f)

Comprehensive studies were conducted by Santilli in monographs [9] (including
a vast historical search) on the necessary and sufficient conditions for the exis-
tence of a Lagrangian or a Hamiltonian known as the conditions of variational
selfadjointness. These studies permitted a rigorous separation of all acting forces
into those derivable from a potential, or variationally selfadjoint (SA) forces, and
those not derivable from a potential, or variationally nonselfadjoint (NSA) forces
according to the expression

Fak = FSAak (t, r, v) + FNSAak (t, r, v, a, ...). (1.2.4)

In particular, the reader should keep in mind that, while selfadjoint forces are of
Newtonian type, nonselfadjoint forces are generally non-Newtonian, in the sense
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Figure 1.3. A reproduction of a “vignetta” presented by the author in 1978 to the colleagues at
the Lyman Laboratory of Physics of Harvard University as part of his research under his DOE
contract number DE-ACO2-80ER-10651.A001 to denounce the truncation of the external terms
in Lagrange’s and Hamilton’s equations that was dominating physical theories of the time for the
clear intent of maintaining compatibility with Einsteinian doctrines (since the latter crucially
depend on the truncation depicted in this figure). The opposition by the Lyman colleagues at
Harvard was so great that, in the evident attempt of tryinmg to discourage the author from
continuing the research on the true Lagrange’s and Hamilton’s equations, the Lyman colleagues
kept the author without salary for one entire academic year, even though the author was the
recipient of a DOE grant and he had two children in tender age to feed and shelter. Most virulent
was the opposition by the Lyman colleagues to the two technical memoirs [39,50] presented in
support of the ”vignetta” of this figure, for the evident reason that they dealt with a broadening
of Einsteinian doctrines beginning with their title, and then continuing with a broadening of
algebras, symmetries, etc.. But the author had no interest in a political chair at Harvard
University, was sole interested in pursuing new scientific knowledge, and continued the research
by dismissing the fierce opposition by his Lyman colleagues as ascientific and asocial (the episode
is reported with real names in book [93] of 1984 and in the 1,132 pages of documentation available
in Ref. [94]). As studied in details in these two volumes, the proper mathematical treatment of
the true, historical, analytic equations, those with external terms, permits indeed the advances
opposed by the Lyman colleagues, namely, the achievement of coverings of Einsteinian doctrines,
that, being invariant (as shown later on), will indeed resist the test of time, while permitting
the prediction and industrial development of new clean energies and fuels, thus confirming a
societal, let alone scientific need for their serious study.
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Figure 1.4. Another illustration of the major scientific imbalance studied in this monograph.
The top view depicts a typical Newtonian system with nonlocal and nonpotential forces, such
as a missile moving in atmosphere, while the bottom view depicts its reduction to point-like
constituents conjectured throughout the 20-th century for the evident purpose of salvaging the
validity of quantum mechanics and Einsteinian doctrines. However, the consistency of such a
reduction has now been disproved by theorems, thus confirming the necessity of nonlocal and
nonpotential interactions at the primitive elementary level of nature.

of having an unrestricted functional dependence, including that on accelerations
a and other non-Newtonian forms.4

As we shall see, nonselfadjoint forces generally have a nonlocal-integral struc-
ture that is usually reduced to a local-differential form via power series expansions
in the velocities.

For instance, the contact, zero-range, resistive force experienced by a missile
moving in our atmosphere is characterized by an integral over the surface of the
missile and it is usually approximated by a power series in the velocities, e.g.
FNSA = k1 × v + k2 × v2 + k3 × v3 + . . . (see Figure 1.3).

4There are serious rumors that a famous physicist from a leading institution visited NASA in 1998 to
propose a treatment of the trajectory of the space shuttle during re-entry via (the truncated) Hamiltonian
mechanics, and that NASA engineers kindly pushed that physicist through the door.
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Moreover, the studies of monographs [9] established that, for the general case in
three dimensions, Lagrange’s and Hamilton’s equations without external terms can
only represent in the coordinates of the experimenter exterior dynamical systems,
while the representation of interior dynamical systems in the given coordinates
(t, r) of the experimenter require the necessary use of the true analytic equations
with external terms.

Whenever exposed to dynamical systems not entirely representable via the sole
knowledge of a Lagrangian or a Hamiltonian, a rather general attitude is that
of transforming them into an equivalent purely Lagrangian or Hamiltonian form.
these transformations are indeed mathematically possible, but they are physically
insidious.

It is known that, under sufficient continuity and regularity conditions and
under the necessary reduction of nonlocal external terms to local approximations
such as that in Eq. (1.2.4), the Darboux’s theorem of the symplectic geometry or,
equivalently, the Lie-Koening theorem of analytic mechanics assure the existence
of coordinate transformations

{r, p} → {r′(r, p), p′(r, p)}, (1.2.5)

under which nonselfadjoint systems (1.2.2) can be turned into a selfadjoint form
(1.2.1), thus eliminating the external terms.

However, coordinate transforms (1.2.5) are necessarily nonlinear. Consequently,
the new reference frames are necessarily noninertial. Therefore, the elimination
of the external nonselfadjoint forces via coordinate transforms cause the necessary
loss of Galileo’s and Einstein’s relativities.

Moreover, it is evidently impossible to place measuring apparata in new coordi-
nate systems of the type r′ = exp(k×p), where k is a constant. For these reasons,
the use of Darboux’s theorem or of the Lie-Koening theorem was strictly prohib-
ited in monographs [9,10,11]. Thus, to avoid misrepresentations, the following
basic assumption is hereon adopted:

ASSUMPTION 1.2.1: The sole admitted analytic representations are those
in the fixed references frame of the experimenter without the use of integrating
factors, called direct analytic representations.

Only after direct representations have been identified, the use of the transfor-
mation theory may have physical relevance. Due to its importance, the above
assumption will also be adopted throughout this monograph.

As an illustration, the admission of integrating factors within the fixed co-
ordinates of the experimenter does indeed allow the achievement of an analytic
representation without external terms of a restricted class of nonconservative
systems, resulting in Hamiltonians of the type H = ef(t,r,...) × p2/2 × m. This
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Hamiltonian has a fully valid canonical meaning of representing the time evolu-
tion. However, this Hamiltonian loses its meaning as representing the energy of
the system. The quantization of such a Hamiltonian then leads to a plethora of
illusions, such as the belief that the uncertainty principle for energy and time
is still valid while, for the example here considered, such a belief has no sense
because H does not represent the energy (see Refs. [9b] for more details).

Under the strict adoption of Assumption 1.2.1, all these ambiguities are absent
because H will always represent the energy, irrespective of whether conserved or
nonconserved, thus setting up solid foundations for correct physical interpreta-
tions.

1.2.3 General Inapplicability of Conventional
Mathematical and Physical Methods for Interior
Dynamical Systems

The impossibility of reducing interior dynamical systems to an exterior form
within the fixed reference frame of the observer causes the loss for interior dy-
namical systems of all conventional mathematical and physical methods of the
20-th century.

To begin, the presence of irreducible nonselfadjoint external terms in the an-
alytic equations causes the loss of their derivability from a variational principle.
In turn, the lack of an action principle and related Hamilton-Jacobi equations
causes the lack of any possible quantization, thus illustrating the reasons why
the voluminous literature in quantum mechanics of the 20-th century carefully
avoids the treatment of analytic equations with external terms.

By contrast, one of the central objectives of this monograph is to review the
studies that have permitted the achievement of a reformulation of Eqs. (1.2.3)
fully derivable from a variational principle in conformity with Assumption 1.2.1,
thus permitting a consistent operator version of Eqs. (1.2.3) as a covering of
conventional quantum formulations.

Recall that Lie algebras are at the foundations of all classical and quantum
theories of the 20-th century. This is due to the fact that the brackets of the time
evolution as characterized by Hamilton’s equations,

dA

dt
=
∂A

∂rka
× drka

dt
+

∂A

∂pak
× dpak

dt
=

=
∂A

∂rka
× ∂H

∂pak
− ∂H

∂rka
× ∂A

∂pak
= [A,H], (1.2.6)

firstly, verify the conditions to characterize an algebra as currently understood
in mathematics, that is, the brackets [A,H] verify the right and left scalar and
distributive laws,

[n×A,H] = n× [A,H], (1.2.7a)
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[A,n×H] = [A,H]× n, (1.2.7b)

[A×B,H] = A× [B,H] + [A,H]×B, (1.2.7c)

[A,H × Z] = [A,H]× Z +H × [A,Z], (1.2.7d)

and, secondly, the brackets [A,H] verify the Lie algebra axioms

[A,B] = −[B,A], (1.2.8a)

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0. (1.2.8b)

The above properties then persist following quantization into the operator brack-
ets [A,B] = A×B −B ×A, as well known.

When adding external terms, the resulting new brackets,

dA

dt
=
∂A

∂rka
× drka

dt
+

∂A

∂pak
× dpak

dt
=

=
∂A

∂rka
× ∂H

∂pak
− ∂H

∂rka
× ∂A

∂pak
+
∂A

∂rka
× F ka =

= (A,H,F ) = [A,H] +
∂A

∂rka
× F ka , (1.2.9)

violate the right scalar law (1.2.7b) and the right distributive law (1.2.7d) and,
therefore, the brackets (A,H,F ) do not constitute any algebra at all, let alone
violate the basic axioms of the Lie algebras [9b].

The loss of the Lie algebras in the brackets of the time evolution of interior
dynamical systems in their historical treatment by Lagrange, Hamilton, Jacobi
and other founders of analytic dynamics, causes the loss of all mathematical and
physical formulations built in the 20-th century.

The loss of basic methods constitutes the main reason for the abandonment
of the study of interior dynamical systems. In fact, external terms in the ana-
lytic equations were essentially ignored through the 20-th century, by therefore
adapting the universe to analytic equations (1.2.2) today known as the truncated
analytic equations.

By contrast, another central objective of this monograph is to review the studies
that have permitted the achievement of a reformulation of the historical analytic
equations with external terms,that is not only derivable from an action principle
as indicated earlier, but also characterizes brackets in the time evolution that,
firstly, constitute an algebra and, secondly, that algebra results in being a covering
of Lie algebras.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 15

1.2.4 Inapplicability of Special Relativity for Dynamical
Systems with Resistive Forces

The scientific imbalance caused by the reduction of interior dynamical systems
to systems of point-like particles moving in vacuum, is indeed of historical pro-
portion because it implied the belief of the exact applicability of special relativity
and quantum mechanics for all conditions of particles existing in the universe,
thus implying their applicability under conditions for which these theories were
not intended for.

A central scope of this monograph is to show that the imposition of said theories
to interior dynamical systems causes the suppression of new clean energies and
fuels already in industrial, let alone scientific, development, thus raising serious
problems of scientific ethics and accountability.

At the classical level, the “inapplicability” (rather then the “violation”) of (the
Galilean and) special relativities for the description of an interior system such as
a missile in atmosphere (as depicted in Figure 1.4) is beyond credible doubt,
as any expert should know to qualify as such, because said relativities can only
describe systems with action-at-a-distance potential forces, while the force acting
on a missile in atmosphere are of contact-zero-range nonpotential type.

Despite this clear evidence, the resiliency by organized academic interests on
conventional relativities knows no boundaries. As indicated earlier, when faced
with the above evidence, a rather general posture is, that the resistive forces are
“illusory” because, when the missile in atmosphere is reduced to its elementary
point-like constituents all resistive forces “disappear.”

Such a belief is easily proved to be nonscientific by the following property that
can be proved by a first year graduate student in physics:

THEOREM 1.2.1 [9b]: A classical dissipative system cannot be consistently
reduced to a finite number of quantum particles under sole potential forces and,
vice-versa, no ensemble of a finite number of quantum particles with only potential
forces can reproduce a dissipative classical system under the correspondence or
other principles.

Note that the above property causes the inapplicability of conventional rel-
ativities for the description of the individual constituents of interior dynamical
systems, let alone their description as a whole.

Rather than adapting nature to pre-existing organized interests on Einsteinian
doctrines, the scope of this monograph is that of adapting the theories to nature,
as requested by scientific ethics and accountability.
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1.2.5 Inapplicability of Special Relativity for the
Propagation of Light within Physical Media

Another case of manipulation of scientific evidence to serve organized academic
interests on conventional relativities is the propagation of light within physical
media, such as water.

As it is well known, light propagates in water at a speed C much smaller than
the speed c in vacuum and approximately given by the value

C =
c

n
=

2
3
× c << c, n =

3
2
>> 1. (1.2.10)

It is well known that electrons can propagate in water at speeds bigger than the
local speed of light, and actually approaching the speed of light in vacuum. In
fact, the propagation of electrons faster than the local speed of light is responsible
for the blueish light, called Cerenkov light, that can be seen in the pools of nuclear
reactors.

It is well known that special relativity was built to describe the propagation of
light IN VACUUM, and certainly not within physical media. In fact, the setting
of a massive particle traveling faster than the local speed of light is in violation
of the basic axioms of special relativity.

To salvage the principle of causality it is then often assumed that the speed of
light “in vacuum” is the maximal causal speed “within water”. However, in this
case there is the violation of the axiom of relativistic addition of speeds, because
the sum of two speeds of light in water does not yield the speed of light, as required
by a fundamental axiom of special relativity,

Vtot =
C + C

1 + C2

c2

=
12
13
× c 6= C. (1.2.11)

Vice-versa, if one assumes that the speed of light “in water” C is the maximal
causal speed “in water”, the axiom of relativistic compositions of speeds is verified,

Vtot =
C + C

1 + C2

C2

= C, (1.2.12)

but there is the violation of the principle of causality evidently due to the fact that
ordinary massive particles such as the electron (and not hypothetical tachyons)
can travel faster than the local causal speed.

Again, the resiliency by organized interests on established relativities has no
boundaries. When faced with the above evidence, a general posture is that, when
light propagating in water is reduced to photons scattering among the atoms con-
stituting water, all axioms of special relativities are recovered in full. In fact,
according to this belief, photons propagate in vacuum, thus recovering the con-
ventional maximal causal speed c, while the reduction of the speed of light is due
to the scattering of light among the atoms constituting water.
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Figure 1.5. A further visual evidence of the lack of applicability of Einstein’s doctrines within
physical media, the refraction of light in water, due to the decrease of its speed contrary to
the axiom of the “universal constancy of the speed of light”. Organized academic interests
on Einsteinian doctrines have claimed throughout the 20-th century that this effect is “illu-
sory” because Einsteinian doctrines are recovered by reducing light to the scattering of photons
among atoms. The political nature of the argument, particularly when proffered by experts, is
established by numerous experimental evidence reviewed in the this section.

The nonscientific character of the above view is established by the following
evidence known to experts to qualify as such:

1) Photons are neutral, thus having a high capability of penetration within elec-
trons clouds, or, more technically, the scattering of photons on atomic electron
clouds (called Compton scattering) is rather small. Explicit calculations (that
can be done by a first year graduate student in physics via quantum electrody-
namics) show that, in the most optimistic of the assumptions and corrections,
said scattering can account for only 3% of the reduction of the speed of light in
water, thus leaving about 30% of the reduction quantitatively unexplained. Note
that the deviation from physical reality is of such a magnitude that it cannot be
”resolved” via the usual arbitrary parameters “to make things fit.”

2) The reduction of speed occurs also for radio waves with one meter wave-
length propagating within physical media, in which case the reduction to pho-
tons has no credibility due to the very large value of the wavelength compared
to the size of atoms. The impossibility of a general reduction of electromagnetic
waves to photon propagating within physical media is independently confirmed
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by the existence of vast experimental evidence on non-Doppler’s effects reviewed
in Chapter 9 indicating the existence of contributions outside the Doppler’s law
even when adjusted to the local speed.

3) There exist today a large volume of experimental evidence reviewed in Chap-
ter 5 establishing that light propagates within hyperdense media, such as those
in the interior of hadrons, nuclei and stars, at speed much bigger than the speed
in vacuum,

C =
c

n
>> c, n << 1. (1.2.13)

in which case the reduction of light to photons scattering among atoms loses any
physical sense (because such propagation can never reach the speed c, let alone
speeds bigger than c).

In conclusion, experimental evidence beyond credible doubt has established
that the speed of light C is a local quantity dependent on the characteristics in
which the propagation occurs, with speed C = c in vacuum, speeds C << c within
physical media of low density and speeds C >> c within media of very high
density.

The variable character of the speed of light then seals the lack of universal
applicability of Einsteinian doctrines, since the latter are notoriously based on
the philosophical assumption of “universal constancy of the speed of light”.

1.2.6 Inapplicability of the Galilean and Poincaré
symmetries for Interior Dynamical Systems

By remaining at the classical level, the inapplicability of Einsteinian doctrines
within physical media is additionally established by the dramatic dynamical dif-
ferences between the structure of a planetary system such as our Solar system,
and the structure of a planet such as Jupiter.

The planetary system is a Keplerian system, that is, a system in which the
heaviest component is at the center (actually in one of the two foci of elliptical
orbits) and the other constituents orbit around it without collisions. By contrast,
planets absolutely do not constitute a Keplerian system, because they do not have
a Keplerian center with lighter constituents orbiting around it (see Figure 1.6).

Moreover, for a planetary system isolated from the rest of the universe, the
total conservation laws for the energy, linear momentum and angular momentum
are verified for each individual constituent. For instance, the conservation of the
intrinsic and orbital angular momentum of Jupiter is crucial for its stability. On
the contrary, for the interior dynamical problem of Jupiter, conservation laws
hold only globally, while no conservation law can be formulated for individual
constituents.

For instance, in Jupiter’s structure we can see in a telescope the existence in
Jupiter’s atmosphere of interior vortices with variable angular momentum, yet
always in such a way to verify total conservation laws. We merely have internal
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Figure 1.6. Another illustration of the second major scientific imbalance studied in this mono-
graph, the dramatic structural differences between exterior and interior dynamical systems, here
represented with the Solar system (top view) and the structure of Jupiter (bottom view). Plan-
etary systems have a Keplerian structure with the exact validity of the Galilean and Poincaré
symmetries. By contrast, interior systems such as planets (as well as hadrons, nuclei and stars)
do not have a Keplerian structure because of the lack of the Keplerian center. Consequently,
the Galilean and Poincaré symmetries cannot possibly be exact for interior systems in favor of
covering symmetries and relativities studied in this monograph.

exchanges of energy, linear and angular momentum but always in such a way that
they cancel out globally resulting in total conservation laws.

In the transition to particles the situation remains the same as that at the
classical level. For instance, nuclei do not have nuclei and, therefore, nuclei are
not Keplerian systems.

Similarly, the Solar system is a Keplerian system, but the Sun is not. At any
rate, any reduction of the structure of the Sun to a Keplerian system directly
implies the belief in the perpetual motion within a physical medium, because
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electrons and protons could move in the hyperdense medium in the core of a
star with conserved angular momenta, namely, a belief exiting all boundaries of
credibility, let alone of science.

The above evidence establishes beyond credible doubt the following:

THEOREM 1.2.2 [10b]: Galileo’s and Poincaré symmetries are inapplicable
for classical and operator interior dynamical systems due to the lack of Keplerian
structure, the presence of contact, zero-range, non-potential interactions, and
other reasons.

Note the use of the word “inapplicable”, rather than “violated” or “broken”.
This is due to the fact that, as clearly stated by the originators of the basic
spacetime symmetries (rather than their followers of the 20-th century), Galileo’s
and Poincaré symmetries were not built for interior dynamical conditions.

Perhaps the biggest scientific imbalance of the 20-th century has been the ab-
straction of hadronic constituents to point-like particles as a necessary condition
to use conventional spacetime symmetries, relativities and quantum mechanics
for interior conditions. In fact, such an abstraction is at the very origin of the
conjecture that the undetectable quarks are the physical constituents of hadrons
(see Section 1.2.7 for details)..

Irrespective of whether we consider quarks or other more credible particles, all
particles have a wavepacket of the order of 1 F = 10−13 cm, that is, a wavepacket
of the order of the size of all hadrons. Therefore, the hyperdense medium in
the interior of hadrons is composed of particles with extended wavepackets in
conditions of total mutual penetration. Under these conditions, the belief that
Galileo’s and Poincaré symmetries are exactly valid in the interior of hadrons
implies the exiting from all boundaries of credibility, let alone of science.

The inapplicability of the fundamental spacetime symmetries then implies the
inapplicability of Galilean and special relativities as well as of quantum nonrela-
tivistic and relativistic mechanics. We can therefore conclude with the following:

COROLLARY 1.2.2A [10b]: Classical Hamiltonian mechanics and related Ga-
lilean and special relativities are not exactly valid for the treatment of interior
classical systems such as the structure of Jupiter, while nonrelativistic and rel-
ativistic quantum mechanics and related Galilean and special relativities are not
exactly valid for interior particle systems, such as the structure of hadrons, nuclei
and stars.

Another important scope of this monograph is to show that the problem of
the exact spacetime symmetries applicable to interior dynamical systems is not
a mere academic issue, because it carries a direct societal relevance. In fact,
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we shall show that broader spacetime symmetries specifically built for interior
systems predict the existence of new clean energies and fuels that are prohibited
by the spacetime symmetries of the exterior systems.

As we shall see in Section 1.2.7, Chapter 6 and Chapter 12, the assumption that
the undetectable quarks are physical constituents of hadrons prohibits possible
new energy based on processes occurring in the interior of hadrons (rather than
in the interior of their ensembles such as nuclei). On the contrary, the assumption
of hadronic constituents that can be fully defined in our spacetime and can be
produced free under suitable conditions, directly implies new clean energies.

1.2.7 The Scientific Imbalance Caused by Quark
Conjectures

One of the most important objectives of this monograph, culminating in the
presentation of Chapter 12, is to show that the conjecture that quarks are phys-
ical particles existing in our spacetime constitutes one of the biggest threats to
mankind because it prevents the orderly scientific process of resolving increasingly
cataclysmic environmental problems.

It should be clarified in this respect, as repeatedly stated by the author in his
writings that the unitary, Mendeleev-type, SU(3)-color classification of hadron
into families can be reasonably considered as having a final character (see e.g.,
Ref. [99] and papers quoted therein), in view of the historical capability of said
classification to predict several new particles whose existence was subsequently
verified experimentally. All doubts herein considered solely refer to the joint use
of the same classification models as providing the structure of each individual
element of a given hadronic family (for more details, see memoirs [100,101] and
preprint [102] and Chapter 6).

Far from being alone, this author has repeatedly expressed the view that quarks
cannot be physical constituents of hadrons existing in our spacetime for numerous
independent reasons.

On historical grounds, the study of nuclei, atoms and molecules required two
different models, one for the classification and a separate one for the structure
of the individual elements of a given SU(3)-color family. Quark theories depart
from this historical teaching because of their conception to represent with one
single theory both the classification and the structure of hadrons.

As an example, the idea that the Mendeleev classification of atoms could jointly
provide the structure of each individual atom of a given valence family is outside
the boundary of science. The Mendeleev classification was essentially achieved
via classical theories, while the understanding of the atomic structure required
the construction of a new theory, quantum mechanics.

Independently from the above dichotomy classification vs structure, it is well
known by specialists, but rarely admitted, that quarks are purely mathematical
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quantities, being purely mathematical representations of a purely mathematical
unitary symmetry defined in a purely mathematical complex-valued unitary space
without any possibility, whether direct or implied, of being defined in our spacetime
(representation technically prohibited by the O’Rafearthaigh theorem).

It should be stressed that, as purely mathematical objects, quarks are necessary
for the consistency of SU(3)-color theories. Again, quarks are the fundamental
representations of said Lie symmetry and, as such, their existence is beyond
doubt. All problems emerge when said mathematical representation of a mathe-
matical symmetry in the mathematical unitary space is assumed as characterizing
physical particles existing in our spacetime.

It follows that the conjecture that quarks are physical particles is afflicted by
a plethora of major problematic aspects today known to experts as catastrophic
inconsistencies of quark conjectures, such as:

1) No particle possessing the peculiar features of quark conjectures (fraction
charge, etc.), has ever been detected to date in any high energy physical labora-
tory around the world. Consequently, a main consistency requirement of quark
conjectures is that quarks cannot be produced free and, consequently, they must
be “permanently confined” in the interior of hadrons. However, it is well known to
experts that, despite half a century of attempts, no truly convincing “quark con-
finement” inside protons and neutrons has been achieved, nor can it be expected
on serious scientific grounds by assuming (as it is the case of quark conjectures)
that quantum mechanics is identically valid inside and outside hadrons. This is
due to a pillar of quantum mechanics, Heisenberg’s uncertainty principle, accord-
ing to which, given any manipulated theory appearing to show confinement for
a given quark, a graduate student in physics can always prove the existence of a
finite probability for the same quark to be free outside the hadron, in catastrophic
disagreement with physical reality. Hence, the conjecture that quarks are physical
particles is afflicted by catastrophic inconsistencies in its very conception [100].

2) It is equally well known by experts to qualify as such that quarks can-
not experience gravity because quarks cannot be defined in our spacetime, while
gravity can only be formulated in our spacetime and does not exist in mathemat-
ical complex-unitary spaces. Consequently, if protons and neutrons were indeed
formed of quarks, we would have the catastrophic inconsistency that all quark
believers should float in space due to the absence of gravity [101].

3) It is also well known by experts that “quark masses” cannot possess any
inertia since they are purely mathematical parameters that cannot be defined in
our spacetime. A condition for any mass to be physical, that is, to have inertia, is
that it has to be the eigenvalue of a Casimir invariant of the Poincaré symmetry,
while quarks cannot be defined via said symmetry because of their hypothetical
fractional charges and other esoteric assumptions. This aspect alone implies
numerous catastrophic inconsistencies, such as the impossibility of having the
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energy equivalence E = mc2 for any particle composed of quarks, against vast
experimental evidence to the contrary.

4) Even assuming that, because of some twist of scientific manipulation, the
above inconsistencies are resolved, it is known by experts that quark theories have
failed to achieve a representation of all characteristics of protons and neutron,
with catastrophic inconsistencies in the representation of spin, magnetic moment,
means lives, charge radii and other basic features [102].

5) It is also known by experts that the application of quark conjectures to
the structure of nuclei has multiplied the controversies in nuclear physics, while
resolving none of them. As an example, the assumption that quarks are the con-
stituents of the protons and the neutrons constituting nuclei has failed to achieve
a representation of the main characteristics of the simplest possible nucleus, the
deuteron. In fact, quark conjectures are afflicted by the catastrophic inconsisten-
cies of being unable to represent the spin 1 of the deuteron (since they predict
spin zero in the ground state while the deuteron has spin 1), they are unable to
represent the anomalous magnetic moment of the deuteron, they are unable to
represent the deuteron stability, they are unable to represent the charge radius
of the deuteron, and when passing to larger nuclei, such as the zirconium, the
catastrophic inconsistencies of quark conjectures can only be defined as being
embarrassing [102].

In summary, while the final character of the SU(3)-color classification of hadrons
into families has reached a value beyond scientific doubt, the conjecture that
quarks are the actual physical constituents of hadrons existing in our spacetime is
afflicted by so many and so problematic aspects to raise serious issues of scientific
ethics and accountability, particularly in view of the ongoing large expenditures
of public funds in the field.

On a personal note the author remembers some of the seminars delivered by
the inventor of quarks, Murray Gell Mann, at Harvard University in the early
1980s, at the end of which there was the inevitable question whether Gell Mann
believed or not that quarks are physical particles. Gell Mann’s scientific caution
(denoting a real scientific stature) is still impressed in the author’s mind because
he routinely responded with essentially the viewpoint outlined here, namely, Gell
Mann stressed the mathematical necessity of quarks, while avoiding a firm posture
on their physical reality. It is unfortunate that such a serious scientific position
by Murray Gell-Manns was replaced by his followers with nonscientific positions
mainly motivated by money, power and prestige.

Subsequently, quark conjectures have become a real “scientific business”, as
established by claim proffered by large high energy physics laboratories to have
“discovered that and that quark”. while in reality they had discovered a new
particle predicted by SU(3)-color classification.
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The decay of scientific ethics in the field is so serious, and the implications for
mankind so potentially catastrophic (due to the suppression by quark conjectures
as physical particles of possible new clean energies studied in Volume II) that, in
the author’s view, quark conjectures have been instrumental in the creation of
the current scientific obscurantism of potentially historical proportions (see the
Open Denunciation of the Nobel Foundation for Heading an Organized Scientific
Obscurantism available in the web site http://www.scientificethics.org/Nobel-
Foundation.htm).

1.2.8 The Scientific Imbalance Caused by Neutrino
Conjectures

Another central objective of this monograph is to show that neutrino conjec-
tures constitute a political obstacle of potentially historical proportions against the
orderly prediction and development of much needed new clean energies of ”hadro-
nic type”, that is, new energies originating in the structure of individual hadrons,
rather than in their collection as occurring in nuclei.

Moreover, we shall show that neutrino conjectures constitute an additional
political obstacle also of potentially historical proportions against the study of
one of the most important scientific problems in history, the interplay between
matter and the universal substratum needed for the existence and propagation of
electromagnetic waves and elementary particles.

To prevent misrepresentations by vociferous (yet self-destructing) organized
interests in the field, it should be stressed up-front that, as it is the case for quark
conjectures, neutrino conjectures of are necessary for the ”current” treatment of
weak interactions. Therefore, a large scientific imbalance emerges only for the
political use and interpretation of neutrino conjectures that has been dominant
in the 20-th century and remains dominant to this day, namely, the use and
interpretation of neutrino conjectures conceived and implemented in a capillary
way for the continuation of the dominance of Einsteinian doctrines for all of
physics.

Most distressing are contemporary claims of ”neutrino detections” (denounced
technically in Volume II) when the originator of neutrinos, Enrico Fermi, is on
record by stressing that ”neutrinos cannot be detected.” Hence, the scientifically
correct steatment would be the ”detection of physical particles predicted by neu-
trino conjectures.” As it was the case for Murray Gell-M ann, it is unfortunate
that the scientific caution by Enrico Fermi was replaced by his followers with
political postures essentially aiming at money, prestige and power.

In this subsections we shall show the political character of neutrino conjec-
tures via a review the historical objections against the belief that the current
plethora of neutrinos constitute actual physical particles in our spacetime. Al-
ternative theoretical interpretations can be presented only in Chapter 6 with
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Figure 1.7. A view of the historical “bell shaped” curve representing the variation of the energy
of the electron in nuclear beta decays (see, e.g., Ref. [13]). As soon as the apparent “missing
energy” by the electron was detected in the early part of the 20-th century, it was claimed to be
experimental evidence on the existence of a new particle with spin 1/2, charge zero and mass
zero called by Fermi the “little neutron” or “neutrino”.

industrial applications in Chapter 12 following the prior study and verification of
new mathematics that is notoriously needed for true new vistas in science.

As it is well known, Rutherford [104] submitted in 1920 the conjecture that
hydrogen atoms in the core of stars are compressed into a new particle he called
the neutron according to the synthesis (p+, e−)→ n.

The existence of the neutron was subsequently confirmed experimentally in
1932 by Chadwick [105]. However, numerous objections were raised by the leading
physicists of the time against Rutherford’s conception of the neutron as a bound
state of one proton p+ and one electron e−.

Pauli [106] first noted that Rutherford’s synthesis violates the angular momen-
tum conservation law because, according to quantum mechanics, a bound state
of two particles with spin 1/2 (the proton and the electron) must yield a particle
with integer spin and cannot yield a particle with spin 1/2 and charge zero such
as the neutron. Consequently, Pauli conjectured the existence of a new neutral
particle with spin 1/2 that is emitted in synthesis (p+, e−) → n. or in similar
radioactive processes so as to verify the angular momentum conservation law.

Fermi [107] adopted Pauli’s conjecture, coined the name neutrino (meaning
in Italian a “little neutron”) and presented the first comprehensive theory of the
underlying interactions (called “weak”), according to which the neutron synthesis
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should be written (p+, e−) → n + ν, where ν is the neutrino, in which case the
inverse reaction (the spontaneous decay of the neutron) reads n→ p+ + e− + ν̄,
where ν̄ is the antineutrino.

Despite the scientific authority of historical figures such as Pauli and Fermi, the
conjecture on the existence of the neutrino and antineutrino as physical particles
was never universally accepted by the entire scientific community because of: the
impossibility for the neutrinos to be directly detected in laboratory; the neutrinos
inability to interact with matter in any appreciable way; and the existence of
alternative theories that do not need the neutrino conjecture (see Refs. [108-110]
and literature quoted therein, plus the alternative theory presented in Chapter 6).

By the middle of the 20-th century there was no clear experimental evidence
acceptable by the scientific community at large confirming the neutrino conjecture
beyond doubt, except for experimental claims in 1959 that are known today to
be basically flawed on various grounds, as we shall see below and in Chapter 6.

In the last part of the 20-th century, there was the advent of the so-called
unitary SU(3) theories and related quark conjectures studied in the preceding
subsection. In this way, neutrino conjectures became deeply linked to and their
prediction intrinsically based on quark conjectures.

This event provided the first fatal blow to the credibility of the neutrino con-
jectures because serious physics cannot be done via the use of conjectures based
on other conjectures.

In fact, the marriage of neutrino and quark conjectures within the standard
model has requested the multiplication of neutrinos, from the neutrino and an-
tineutrino conjectures of the early studies, to six different hypothetical particles,
the so called electron, muon and tau neutrinos and their antiparticles. In the
absence of these particles the standard model would maintain its meaning as
classification of hadrons, but would lose in an irreconcilable way the joint capa-
bility of providing also the structure of each particle in a hadronic multiplet.

In turn, the multiplication of the neutrino conjectures has requested the ad-
ditional conjecture that the electron, muon and tau neutrinos have masses and,
since the latter conjecture resulted in being insufficient, there was the need for
the additional conjecture that neutrinos have different masses, as necessary to
salvage the structural features of the standard model. Still in turn, the lack of
resolution of the preceding conjectures has requested the yet additional conjec-
ture that neutrinos oscillate, namely, that “they change flavor” (transform among
themselves back and forth).

In addition to this rather incredible litany of sequential conjectures, each con-
jecture being voiced in support of a preceding unverified conjecture, all conjec-
tures being crucially dependent on the existence of quarks as physical particles
despite their proved lack of gravity and physical masses, by far the biggest con-
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Figure 1.8. A schematic illustration of the fact that the electron in beta decays can be emitted
in different directions. When the energy in the beta decay is computed with the inclusion of
the Coulomb interactions between the expelled (negatively charged) electron and the (positively
charged) nucleus at different expulsion directions, the nucleus acquires the “missing energy,”
without any energy left for the hypothetical neutrino. As we shall see in Chapter 6, rather than
being a disaster, the occurrence is at the foundation of a possible basically new scientific horizon
with implications sufficient to require studies over the entire third millennium.

troversies have occurred in regard to experimental claims of neutrino detection
voiced by large collaborations.

To begin, both neutrinos and quarks cannot be directly detected as physical
particles in our spacetime. Consequently, all claims on their existence are indi-
rect, that is, based on the detection of actual physical particles predicted by the
indicated theories. This occurrence is, per se, controversial. For instance, contro-
versies are still raging following announcements by various laboratories to have
“discovered” one or another quark, while in reality the laboratories discovered
physical particles predicted by a Mendeleev-type classification of particles, the
same classification being admitted by theories that require no quarks at all as
physical particles, as we shall indicate in Chapter 6.

In the 1980s, a large laboratory was built deep into the Gran Sasso mountain
in Italy to detect neutrinos coming from the opposite side of Earth (since the
mountain was used as a shield against cosmic rays). Following the investment of
large public funds and five years of tests, the Gran Sasso Laboratory released no
evidence of clear detection of neutrino originated events.

Rather than passing to a scientific caution in the use of public funds, the fail-
ure of the Gran Sasso experiments to produce any neutrino evidence stimulated
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massive efforts by large collaborations involving hundred of experimentalists from
various countries for new tests requiring public funds in the range of hundred of
millions of dollars.

The increase in experimental research was evidently due to the scientific stakes,
because, as well known by experts but studiously omitted, the lack of verification
of the neutrino conjectures would imply the identification of clear limits of validity
of Einsteinian doctrines and quantum mechanics.

These more recent experiments resulted in claims that, on strict scientific
grounds, should be considered “experimental beliefs” by any serious scholars for
numerous reasons, such as:

1) The predictions are based on a litany of sequential conjectures none of which
is experimentally established on clear ground;

2) The theory contain a plethora of unrestricted parameters that can essentially
fit any pre-set data (see next subsection);

3) The “experimental results” are based on extremely few events out of hun-
dreds of millions of events over years of tests, thus being basically insufficient in
number for any serious scientific claim;

4) In various cases the “neutrino detectors” include radioactive isotopes that
can themselves account for the selected events;

5) The interpretation of the experimental data via neutrino and quark conjec-
tures is not unique, since there exist nowadays other theories representing exactly
the same events without neutrino and quark conjectures (including a basically
new scattering theory of nonlocal type indicated in Chapter 3 and, more exten-
sively, in monograph [10b]).

To understand the scientific scene, the serious scholar (that is, the scholar not
politically aligned to the preferred ”pet theories” indicated in the Preface) should
note that neutrino and quark conjectures have requested to date the expenditure
of over one billion dollars of public funds in theoretical and experimental research
with the result of increasing the controversies rather than resolving any of them.

Therefore, it is now time for a moment of reflection: scientific ethics and
accountability require that serious scholars in the field exercise caution prior
to venturing claims of actual physical existence of so controversial and directly
unverifiable conjectures.

Such a moment of reflection requires the re-inspection of the neutrino conjec-
ture at its foundation. In fact, it is important to disprove the neutrino conjecture
as originally conceived, and then disprove the flavored extension of the conjecture
as requested by quark conjectures.

As reported in nuclear physics textbooks (see, e.g., Ref. [13]), the energy
experimentally measured as being carried by the electron in beta decays is a
bell-shaped curve with a maximum value of 0.782 MeV, that is the difference in
value between the mass of the neutron and that of the resulting proton in the
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Figure 1.9. A picture of one of the “neutrino detectors” currently under construction at CERN
for use to attempt “experimental measurements” of neutrinos (which one?) at the Gran Sasso
Laboratory in Italy. The picture was sent to the author by a kind colleague at CERN and
it is presented here to have an idea of the large funds now feverishly obtained from various
governments by organized interests on Einsteinian doctrines in what can only be called their
final frantic attempts at salvage the large litany of unverified and unverifiable quark, neutrino
and other conjectures needed to preserve the dominance of Einstein doctrines in physics. For
an understanding of the potential immense damage to mankind, we suggest the reader to study
this monograph up to and including Chapter 12 on the necessity of abandoning these clearly
sterile trends to achieve new clean energies.

neutron decay. As soon as the “missing energy” was identified, it was instantly
used by organized interests in Einsteinian doctrines as evidence of the neutrino
hypothesis for the unspoken yet transparent reasons that, in the absence of the
neutrino conjectures, Einsteinian doctrines would be grossly inapplicable for the
neutron decay.

As it is equally well known, the scientific community immediately accepted
the neutrino interpretation of the “missing energy” mostly for academic gain,
as it must be the case whenever conjectures are adopted without the traditional
scientific process of critical examinations.

It is easy to see that the neutrino interpretation of the “missing energy” is
fundamentally flawed. In fact, the electron in beta decays is negatively charged,
while the nucleus is positively charged. Consequently, the electron in beta decays
experiences a Coulomb attraction from the original nucleus.
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Moreover, such an attraction is clearly dependent on the angle of emission of
the electron by a decaying peripheral neutron. The maximal value of the energy
occurs for radial emissions of the electron, the minimal value occurs for tangential
emissions, and the intermediate value occur for intermediate directions of emis-
sions, resulting in the experimentally detected bell-shaped curve of Figure 1.7.

When the calculations are done without political alignments on pre-existing
doctrines, it is easy to see that the “missing energy” in beta decays is entirely
absorbed by the nucleus via its Coulomb interaction with the emitted electron.
Consequently, in beta decays there is no energy at all available for the neutrino
conjecture, by reaching in this way a disproof of the conjecture itself at its his-
torical origination.

Supporters of the neutrino conjecture are expected to present as counter-
arguments various counter-arguments on the lack of experimental evidence for
the nucleus to acquire said “missing energy.” Before doing so, said supporters
are suggested to exercise scientific caution and study the new structure models of
the neutron without the neutrino conjecture (Chapter 6), as well as the resulting
new structure models of nuclei (Chapter 7) and the resulting new clean energies
(Chapter 12). Only then, depending on the strength of their political alignment,
they may eventually realize that, in abusing academic authority to perpetrate
unproved neutrino conjectures they may eventually be part of real crimes against
mankind.

The predictable conclusion of this study is that theoretical and experimental
research on neutrino and quark conjectures should indeed continue. However,
theoretical and experimental research on theories without neutrino and quark
conjectures and their new clean energies should be equally supported to prevent
a clear suppression of scientific democracy on fundamental needs of mankind,
evident problems of scientific accountability, and a potentially severe judgment
by posterity.

For technical details on the damage caused to mankind by the current lack of
serious scientific caution on neutrino conjectures, interested readers should study
Volume Ii and inspect the Open Denunciation of the Nobel Foundation for Head-
ing an Organized Scientific Obscurantism available in the web site http://www.-
scientificethics.org/Nobel-Foundation.htm.

1.2.9 The Scientific Imbalance in Experimental Particle
Physics

Another central objective of this monograph is to illustrate the existence at
the dawn of the third millennium of a scientific obscurantism of unprecedented
proportions, caused by the manipulation of experimental data via the use of ex-
perimentally unverified and actually unverifiable quark conjectures, neutrino con-
jectures and other conjectures complemented by a variety of ad hoc parameters
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for the unspoken, but transparent and pre-meditated intent of maintaining the
dominance of Einsteinian doctrines in physics.

At any rate, experimental data are elaborated via the conventional scattering
theory that, even though impeccable for electromagnetic interactions among point-
like particles, is fundamentally insufficient for a serious representation of the
scattering among extended, nonspherical and hyperdense hadrons (Figure 1.2 and
Chapter 3).

As a matter of fact, serious scholars and, above all, future historians, should
focus their main attention on the fact that the climax of unscientific conduct
by organized interests on Einsteinian doctrines occurs primarily in the manip-
ulation of experiments, beginning with the control of the conditions of funding,
then following with the control of the conduction of the experiments and, finally,
with the control of the theoretical elaboration of the data to make sure that the
orchestrated compliance with Einsteinian doctrines occurs at all levels.

Among an unreassuringly excessive number of cases existing in the literature,
some of which are reviewed in Chapter 6, a representative case is that of the Bose-
Einstein correlation in which protons and antiprotons collide at high energy by
annihilating each other and forming the so-called “fireball”, that, in turn, emits a
large number of unstable particles whose final product is a number of correlated
mesons (see, e.g., review [7] and Figure 1.7).

The simplest possible case is that of the two-points correlation function

C2 =
P (p1, p2)

P (p1)× P (p2)
, (1.2.14)

where p1 and p2 are the linear momenta of the two mesons and the P ’s represent
their probabilities.

By working out the calculations via unadulterated axioms of relativistic quan-
tum mechanics one obtains expressions of the type

C2 = 1 +A× e−Q12 −B × e−Q12 , (1.2.15)

where A and B are normalization parameters and Q12 is the momentum transfer.
This expression is dramatically far from representing experimental data, as shown
in Chapter 5.

To resolve the problem, supporters of the universal validity of quantum me-
chanics and special relativity then introduce four arbitrary parameters of un-
known physical origin and motivation called “chaoticity parameters” cµ, µ =
1, 2, 3, 4, and expand expression (1.2.15) into the form

C2 = 1 +A× e−Q12/c1 +B × e−Q12/c2 + C × e−Q12/c3 −D × e−Q12/c4 , (1.2.16)

which expression does indeed fit the experimental data, as we shall see. However,
the claim that quantum mechanics and special relativity are exactly valid is a
scientific deception particularly when proffered by experts.
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Figure 1.10. A schematic view of the Bose-Einstein correlation originating in proton-antiproton
annihilations, for which the predictions of relativistic quantum mechanics are dramatically far
from experimental data from unadulterated first principles. In order to salvage the theory and
its underlying Einsteinian doctrines, organized interests introduce “four” ad hoc parameters
deprived of any physical meaning or origin, and then claim the exact validity of said doctrines.
The scientific truth is that these four arbitrary parameters are in reality a direct measurement
of the deviation from the basic axioms of relativistic quantum mechanics and special relativity
in particle physics.

As we shall see in technical details in Chapter 5, the quantum axiom of ex-
pectation values (needed to compute the probabilities) solely permit expression
(1.2.15), since it deals with Hermitian, thus diagonalized operators of the type

< ψ×ψ2| × P × |ψ1 × ψ2 >= P11 + P22, (1.2.17)

while the representation of a correlation between mesons 1 and 2 necessarily re-
quires a structural generalization of the axiom of expectation value in such a form
to admit off-diagonal elements for Hermitian operators, for instance of the type

< ψ×ψ2| × T × P × T × |ψ1 × ψ2 >= P11 + P12 + P21 + P22, (1.2.18)

where T is a 2 × 2-dimensional nonsingular matrix with off-diagonal elements
(and P remains diagonal).

The scientific deception occurs because quantum mechanics and special rel-
ativity are claimed to be exactly valid for the Bose-Einstein correlation when
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experts, to qualify as such, know that the representation requires a structural
modification of the basic axiom of expectation values as well as for numerous
additional reasons, such as:

1) The Bose-Einstein correlation is necessarily due to contact, nonpotential,
nonlocal-integral effects originating in the deep overlapping of the hyperdense
charge distributions of protons and antiprotons inside the fireball;

2) The mathematical foundations of quantum mechanics (such as its topology),
let alone its physical laws, are inapplicable for a meaningful representation of said
nonlocal and nonpotential interactions as outlined in preceding sections; and

3) Special relativity is also inapplicable, e.g., because of the inapplicability of
the basic Lorentz and Poincaré symmetries due to lack of a Keplerian structure,
the approximate validity of said theories remaining beyond scientific doubt.

Admittedly, there exist a number of semiphenomenological models in the liter-
ature capable of a good agreement with the experimental data. Scientific decep-
tion occurs when these models are used to claim the exact validity of quantum
mechanics and special relativity since the representation of experimental data
requires necessary structural departures from basic quantum axioms.

Of course, the selection of the appropriate generalization of quantum mechanics
and special relativity for an exact representation of the Bose-Einstein correlation
is open to scientific debate. Scientific deception occurs when the need for such a
generalization is denied for personal gains.

As we shall see, relativistic hadronic mechanics provides an exact and invari-
ant representation of the experimental data of the Bose-Einstein correlation at
high and low energies via unadulterated basic axioms, by providing in partic-
ular a direct representation of the shape of the p − p̄ fireball and its density,
while recovering the basic invariant under a broader realization of the Poincaré
symmetry.

An in depth investigation of all applications of quantum mechanics and special
relativity at large reveals that they have provided an exact andinvariant represen-
tation from unadulterated basic axioms of all experimental data of the hydrogen
atom, as well as of physical conditions in which the mutual distances of particles
is much bigger than the size of the charge distribution (for hadrons) or of the
wavepackets of particles (for the case of the electron).

1.2.10 The Scientific Imbalance in Nuclear Physics
There is no doubt that quantum mechanics and special relativity permitted his-

torical advances in also nuclear physics during the 20-th century, as illustrated, for
instance, by nuclear power plants. However, any claim that quantum mechanics
and special relativity are exactly valid in nuclear physics is a scientific deception,
particularly when proffered by experts, because of the well known inability of
these theories to achieve an exact and invariant representation of numerous nu-
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Figure 1.11. The first historical experimental evidence on the lack of exact validity of quantum
mechanics in nuclear physics was given by data on nuclear magnetic moments that do not
follow quantum mechanical predictions, and are instead comprised between certain minimal
and maximal values, called the Schmidt Limits [13], without any possible quantum treatment.
The additional suppression of the impossibility for the Galilean and Poincaré symmetries to be
exact in nuclear physics due to the lack of a Keplerian center (see next figure), have essentially
rendered nuclear physics a religion without a serious scientific process.

clear data despite one century of attempts and the expenditure of large public
funds.

To resolve the insufficiencies, the use of arbitrary parameters of unknown phys-
ical origin and motivation was first attempted, semiphenomenological fits were
reached and quantum mechanics and special relativity were again claimed to be
exact in nuclear physics, while in the scientific reality the used parameters are a
direct representation of deviations from the basic axioms of the theories as shown
in detail in Chapter 5.

Subsequently, when the use of arbitrary parameters failed to achieve credible
representations of nuclear data (such as nuclear magnetic moments as indicated
below), organized academic interests claimed that “the deviations are resolved
by deeper theories such as quark theories”. At that point nuclear physics left the
qualification of a true science to become a scientific religion.

Besides a plethora of intrinsic problematic aspects or sheer inconsistencies
(such as the impossibility for quarks to have gravity mentioned earlier), quark
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theories failed to achieve any credible representation even of the spin of individual
nucleons, let alone achieve exact representations of experimental data for their
bound states.

Admittedly, the deviations here considered are at times small. Nevertheless, as
we shall see in Chapter 6, small deviations directly imply new clean energies that
cannot be even conceived, let alone treated, via quantum mechanics. Therefore,
we have a societal duty to conduct serious investigations on broader mechanics
specifically conceived for nuclear physics.

The first evidence on the lack of exact character of quantum mechanics in
nuclear physics dates back to the birth of nuclear physics in the 1930s where
it emerged that experimental values of nuclear magnetic moments could not be
explained with quantum mechanics, because, starting with small deviations for
small nuclei, the deviations then increased with mass, to reach deviations for large
nuclei, such as the Zirconium so big to escape any use of unknown parameters
“to fix things” (see Figure 1.8).

Subsequently, it became clear that quantum mechanics and special relativity
could not explain the simplest possible nucleus, the deuteron, despite vast efforts.
In fact, quantum mechanics missed about 1% of the deuteron magnetic moment
despite all possible relativistic corrections, as well as the questionable assumptions
that the ground state of the deuteron is a mixture of various states in a way
manifestly against experimental evidence.

Next, quantum mechanics and special relativity were unable to represent the
spin of the deuteron, an occurrence well known to experts in the field but carefully
undisclosed. The axioms of quantum mechanics require that the ground state of
two particles with spin 1/2 (such as the proton and the neutron) must have spin
zero (anti-parallel or singlet coupling), while the case with spin 1 (parallel spin or
triplet coupling) is unstable, as a first year graduate student in physics can prove.

By contrast, the deuteron has spin 1, thus remaining fundamentally unex-
plained by quantum mechanics and special relativity to this day.5 Additionally,
quantum mechanics has been unable to represent the stability of the neutron, its
charge radius, and numerous other data.

Perhaps the most distressing, yet generally undisclosed, insufficiency of quan-
tum mechanics and special relativity in nuclear physics has been the failure to
understand and represent nuclear forces. Recall that a necessary condition for
the applicability of quantum mechanics is that all interactions must be derivable
from a potential.

The original concept that nuclear forces were of central type soon resulted in
being disproved by nuclear reality, thus requiring the addition of non-central, yet

5As we shall see in Chapter 6, the correct interpretation of the spin 1 of the deuteron has implications
so deep to require a revision of the very notion of neutron.



36 RUGGERO MARIA SANTILLI

Figure 1.12. A visual evidence of the impossibility for quantum mechanics to be exactly valid
in nuclear physics: the fact that “nuclei do not have nuclei.” Consequently, the Galilean and
Poincaré symmetries, as well as nonrelativistic and relativistic quantum mechanics, cannot pos-
sibly be exact for the nuclear structure since said symmetries demand the heaviest constituent
at the center. The above occurrence establishes the validity of covering symmetries for inte-
rior systems without Keplerian centers, which symmetries are at the foundation of the covering
hadronic mechanics.

still potential forces. The insufficiency of this addition requested the introduction
of exchange, van der Waals, and numerous other potential forces. As of today,
after about one century of adding new potentials to the Hamiltonian, we have
reached the unreassuring representation of nuclear forces via some twenty or more
different potentials in the Hamiltonian [13]

H = Σk=1,2,...,n
p2
k

2×mk
+ V1 + V2 + V3 + V4 + V5 + V6+

+V7 + V8 + V9 + V10 + V11 + V12 + V13 + V14+

+V15 + V16 + V17 + V18 + V19 + V20 + ......... (1.2.19)

and we still miss a credible understanding and representation of the nuclear force!
It is evident that this process cannot be kept indefinitely without risking a ma-

jor condemnation by posterity. The time has long come to stop adding potentials
to nuclear Hamiltonians and seek fundamentally new approaches and vistas.

In the final analysis, an inspection of nuclear volumes establishes that nuclei
are generally composed of nucleons in conditions of partial mutual penetration,
as illustrated in Figure 1.9. By recalling that nucleons have the largest density
measured in laboratory until now, the belief that all nuclear forces are of action-
at-a-distance, potential type, as necessary to preserve the validity of quantum
mechanics and special relativity, is pure academic politics deprived of scientific
value.
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As we shall see in Chapter 7, a central objective of hadronic mechanics is that
of truncating the addition of potentials and re-examining instead the nuclear force
from its analytic foundations, by first separating potential nonpotential forces,
and then examining in details each of them.

In summary, the lack of exact character of quantum mechanics and special
relativity in nuclear physics is beyond scientific doubt. The open scientific issue
is the selection of the appropriate generalization, but not its need.

As we shall see in Chapter 6, the covering hadronic mechanics and isospecial
relativity resolve the fundamental open problems of nuclear physics by permitting
the industrial development of new clean energies based on light natural and stable
elements without the emission of dangerous radiations and without the release of
radioactive waste.

1.2.11 The Scientific Imbalance in Superconductivity
The condition of superconductivity in the 20-th century can be compared to

that of atomic physics prior to the representation of the structure of the atom.
Recall that individual electrons cannot achieve a superconducting state because

their magnetic fields interact with electromagnetic fields of atoms by creating in
this way what we call electric resistance. Superconductivity is instead reached
by deeply correlated-bonded pairs of electrons in singlet couplings, called Cooper
pairs. In fact, these pairs have an essentially null total magnetic field (due to
the opposite orientations of the two fields), resulting in a substantial decrease of
electric resistance.

There is no doubt that quantum mechanics and special relativity have per-
mitted the achievement of a good description of an “ensemble” of Cooper pairs,
although each Cooper pair is necessarily abstracted as a point, the latter condi-
tion being necessary from the very structure of the theories.

However, it is equally well known that quantum mechanics and special rel-
ativity have been unable to reach a final understanding and representation of
the structure of one Cooper pair, trivially, because electrons repel each other
according to the fundamental Coulomb law.

The failure of basic axioms of quantum mechanics and special relativity to
represent the attractive force between the two identical electrons of the Cooper
pairs motivated the hypothesis that the attraction is caused by the exchange of
a new particle called phonon. However, phonons certainly exist in sounds, but
they have found no verification at all in particle physics, thus remaining purely
conjectural to this day.

In reality, as we shall see in Chapter 7, the interactions underlying the Cooper
pairs are of purely contact, nonlocal and integral character due to the mutual
penetration of the wavepackets of the electrons, as depicted in Figure 1.10. As
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such, they are very similar to the interactions responsible for Pauli’s exclusion
principle in atomic structures.

Under these conditions, the granting of a potential energy, as necessary to
have phonon exchanges, is against physical evidence, as confirmed by the fact
that any representation of Pauli’s exclusion principle via potential interactions
cause sizable deviations from spectral lines.

Therefore, the belief that quantum mechanics and special relativity provide a
complete description of superconductivity is pure academic politics deprived of
scientific content.

Superconductivity is yet another field in which the exact validity of quantum
mechanics and special relativity has been stretched in the 20-th century well
beyond its limit for known political reasons. At any rate, superconductivity
has exhausted all its predictive capacities, while all advances are attempted via
empirical trials and errors without a guiding theory.

As it was the case for particle and nuclear physics, the lack of exact character of
quantum mechanics and special relativity in superconductivity is beyond doubt.
Equally beyond doubt is the need for a deeper theory.

As we shall see in Chapter 7, the covering hadronic mechanics and isospecial
relativity provide a quantitative representation of the structure of the Cooper pair
in excellent agreement with experimental data, and with basically novel predictive
capabilities, such as the industrial development of a new electric current, that is
characterized by correlated electron pairs in single coupling, rather than electrons.

1.2.12 The Scientific Imbalance in Chemistry
There is no doubt that quantum chemistry permitted the achievement of his-

torical discoveries in the 20-th century. However, there is equally no doubt that
the widespread assumption of the exact validity of quantum chemistry caused
a large scientific imbalance with vast implications, particularly for the alarming
environmental problems.

After about one century of attempts, quantum chemistry still misses a his-
torical 2% of molecular binding energies when derived from axiomatic principles
without ad hoc adulterations (see below). Also, the deviations for electric and
magnetic moments are embarrassing not only for their numerical values, but also
because they are wrong even in their sign [14], not to mention numerous other
insufficiencies outlined below.

It is easy to see that the reason preventing quantum chemistry from being
exactly valid for molecular structures is given by contact, nonlocal-integral and
nonpotential interactions due to deep wave-overlappings in valence bonds that,
as such, are beyond any realistic treatment by local-differential-potential axioms,
such as those of quantum chemistry (Figure 1.10).
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Figure 1.13. A schematic view of the fundamental conditions studied in this monograph, the
deep overlapping of the extended wavepackets of electrons in valence bonds and Cooper pairs
according to a singlet coupling as required by Pauli’s principle. Recall that, for quantum me-
chanics and special relativity, electrons are points and, therefore, the conditions of this figure
have no meaning at all. However, said point character can only be referred to the charge struc-
ture of the electron, since “point-like wavepackets” do not exist in nature. For the covering
hadronic mechanics, superconductivity and chemistry, the point-like charge structure of the
electrons remains, with the additional presence of the contact nonpotential interactions due to
the overlapping of the extended wavepackets represented via a nonunitary structure. As shown
in Chapters 8, 9 and 11, the treatment of the latter interactions via hadronic mechanics and
chemistry has permitted the achievement, for the first time in scientific history, of an “exact and
invariant” representations of molecular data from first axioms without ad hoc adulterations.

Recall that quantum mechanics achieved an exact and invariant representation
of all experimental data of one hydrogen atom. Nevertheless, quantum mechanics
and chemistry miss 2% of the binding energy of two hydrogen atoms coupled into
the hydrogen molecule (Figure 1.11).

The only possible explanation is that in the hydrogen atom all interactions
are of action-at-a-distance potential type due to the large mutual distances of
the constituents with respect to the size of their wavepackets. By contrast, in
the hydrogen molecule we have the mutual penetration of the wavepackets of
valence electrons with the indicated contact, nonlocal-integral and nonpotential
interactions at short mutual distances that are absent in the structure of the
hydrogen atom.

Alternatively and equivalently, the nuclei of the two hydrogen atoms of the H2

molecule cannot possibly be responsible for said 2% deviation. Therefore, the
deviation from basic axioms can only originate in the valence bond.
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Figure 1.14. A first clear evidence of the lack of exact validity of quantum chemistry. The
top view depicts one hydrogen atom for which quantum mechanics resulted in being exactly
valid. The bottom view depicts two hydrogen atoms coupled into the H2 molecule in which case
quantum chemistry has historically missed a 2% of the binding energy when applied without
adulteration of basic axioms “to fix things” (such as via the used of the screening of the Coulomb
law and then claim that quantum chemistry is exact). Since nuclei do not participate in the
molecular bond, the origin of the insufficiency of quantum mechanics and chemistry rests in the
valence bond.

By no means the above insufficiencies are the only ones. Quantum chemistry
is afflicted by a true litany of limitations, insufficiencies or sheer inconsistencies
that constitute the best kept secret of the chemistry of the 20-th century because
known to experts (since they have been published in refereed journals), but they
remain generally ignored evidently for personal gains.

We outline below the insufficiencies of quantum chemistry for the simplest pos-
sible class of systems, those that are isolated from the rest of the universe, thus
verifying conventional conservation laws of the total energy, total linear momen-
tum, etc., and are reversible (namely, their time reversal image is as physical as
the original system).

The most representative systems of the above class are given by molecules,
here generically defined as aggregates of atoms under a valence bond. Despite
undeniable achievements, quantum chemical models of molecular structures have
the following fundamental insufficiencies studied in detail in monograph [11]:
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Figure 1.15. A schematic view of the fact that the total Coulomb force among the atoms of
a molecular structure is identically null. As a consequence, conventional Coulomb interactions
cannot provide credible grounds for molecular bonds. At the same time, existing chemical
conjectures, such as the exchange and van der Waals forces, are weak, as known from nuclear
physics. These facts establish that the chemistry of the 20-th century is like nuclear physics
before the discovery of the strong interactions, because chemistry missed the identification of an
attractive force sufficiently strong to represent molecular structure. As we shall see in Chapter
8, hadronic chemistry will indeed provide, for the first time in scientific history, the numerical
identification of the missed “attractive strong attractive valence force” as being precisely of con-
tact, nonlocal and nonpotential type. The achievement of an exact representation of molecular
data is then consequential.

1: Quantum chemistry lacks a sufficiently strong molecular binding
force. After 150 years of research, chemistry has failed to identify to this day the
attractive force needed for a credible representation of valence bonds. In the ab-
sence of such an attractive force, names such as “valence” are pure nomenclatures
without quantitative meaning.

To begin, the average of all Coulomb forces among the atoms constituting
a molecule is identically null. As an example, the currently used Schrödinger
equation for the H2 molecule is given by the familiar expression [15],
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r12
)|ψ >= E|ψ >, (1.2.20)

which equation contains the Coulomb attraction of each electron by its own nu-
cleus, the Coulomb attraction of each electron from the nucleus of the other atom,
the Coulomb repulsion of the two electrons, and the Coulomb repulsion of the
two protons.

It is easy to see that, in semiclassical average, the two attractive forces of each
electron from the nucleus of the other atom are compensated by the average of
the two repulsive forces between the electrons themselves and those between the
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protons, under which Eq. (1.2.20) reduces to two independent neutral hydrogen
atoms without attractive interaction, as depicted in Fig. 1.2.12,[(
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|ψ〉 = E|ψ〉. (1.2.21)

In view of the above occurrence, quantum chemistry tries to represent molec-
ular bonds via exchange, van der Waals and other forces [15]. However, the
latter forces were historically introduced for nuclear structures in which they are
known to be very weak, thus being insufficient to provide a true representation
of molecular bonds.

It is now part of history that, due precisely to the insufficiencies of exchange,
van der Waals and other forces, nuclear physicists were compelled to introduce
the strong nuclear force. As an illustration, calculations show that, under the
currently assumed molecular bonds, the molecules of a three leaf should be de-
composed into individual atomic constituents by a weak wind of the order of 10
miles per hour.

To put it in a nutshell, after about one century of research, quantum chemistry
still misses in molecular structures the equivalent of the strong force in nuclear
structures.

As we shall see in Chapter 8, one of the objectives of hadronic chemistry is
precisely to introduce the missing force, today known as the strong valence force,
that is, firstly, ATTRACTIVE, secondly, sufficiently STRONG, and, thirdly, IN-
VARIANT. The exact and invariant representation of molecular data will then
be a mere consequence.

2: Quantum chemistry admits an arbitrary number of atoms in the
hydrogen, water and other molecules. This inconsistency is proved beyond
scientific doubt by the fact that the exchange, van der Waals, and other forces
used in current molecular models were conceived in nuclear physics for the pri-
mary purpose of admitting a large number of constituents.

When the same forces are used for molecular structures, they also admit an
arbitrary number of constituents. As specific examples, when applied to the
structure of the hydrogen or water molecule, any graduate student in chemistry
can prove that, under exchange, van der Waals and other forces of nuclear type,
the hydrogen, water and other molecules admit an arbitrary number of hydrogen
atoms (see Figure 1.13).

Rather than explaining the reason why nature has selected the molecules H2

and H2O as the sole possible, current molecular models admit “molecules” of
the type H5, H23, H7O, H2O121, H12O15, etc., in dramatic disagreement with
experimental evidence.
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3: Quantum chemistry has been unable to explain the correlation of
valence electrons solely into pairs. Experimental evidence clearly establishes
that the valence correlations only occur between electron pairs in singlet coupling.
By contrast, another known insufficiency of quantum chemistry is the intrinsic
inability to restrict correlations to valence pairs.

This insufficiency is then passed to orbital theories, that work well at semi-
empirical levels but remain afflicted by yet unresolved problems, eventually re-
sulting in deviations of the prediction of the theory from experimental data that
generally grow with the complexity of the molecule considered.

The inability to restrict correlations to valence pairs also provides an irrefutable
additional confirmation that quantum chemistry predicts an arbitrary number of
constituents in molecular structures.

As we shall see in Chapter 8, thanks to the advent of the new strong valence
bond, the covering quantum chemistry does indeed restrict valence bonds strictly
and solely to electron pairs. The resolution of inconsistency 2 will then be a mere
consequence.

4: The use in quantum chemistry of “screened Coulomb potentials”
violates basic quantum principles. The inability by quantum chemistry to
achieve an exact representation of binding energies stimulated the adulteration
of the basic Coulomb law into the so-called screened Coulomb law of the type

F = ±f(r)× e2

r
, (1.2.22)

that did indeed improve the representation of experimental data.
However, the Coulomb law is a fundamental invariant of quantum mechanics,

namely, the law remains invariant under all possible unitary transforms

F = ±e
2

r
→ U × (±e

2

r
)× U † = ±e

2

r
, (1.2.23a)

U × U † = I. (1.2.23b)

Therefore, any structural deviation from the Coulomb law implies deviations from
the basic quantum axioms.

It then follows that the only possibility of achieving screened Coulomb laws is
via the use of nonunitary transforms of the type

F = ±e
2

r
→W × (±e

2

r
)×W † = ±eA×r × e2

r
, (1.2.24a)

W ×W † = eA×r 6= I. (1.2.24b)

Therefore, by their very conception, the use of screened Coulomb laws implies
the exiting from the class of equivalence of quantum chemistry. Despite that,
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Figure 1.16. A schematic view of the fact that quantum chemistry predicts an arbitrary num-
ber of atoms in molecules because the exchange, van der Waals, and other bonding forces used
in chemistry were identified in nuclear physics for an arbitrary number of constituents. Conse-
quently, quantum chemistry is basically unable to explain the reasons nature has selected the
molecules H2, H2O, CO2, etc. as the sole possible molecular structures, and other structures
such as H5, H23, H7O, HO21, H12O15, etc. cannot exist. As we shall see in Chapter 8, the
“strong valence force” permitted by hadronic chemistry can only occur among “pairs” of valence
electrons, thus resolving this historical problem in a quantitative way.

organized academic interests have continued to claim that screened Coulomb
laws belong to quantum chemistry, thus exiting from the boundaries of science.

Irrespective from the above, a first year graduate student in chemistry can
prove that screened Coulomb laws cause the abandonment of the very notion
of quantum in favor of the continuous emission or absorption of energy. In
fact, quantized emissions and absorptions of photons crucially depend on the
existence of quantized orbits that, in turn, solely exist for unadulterated Coulomb
potentials, as well known.

This insufficiency establishes the need to generalize quantum chemistry into a
covering theory since the Coulomb law is indeed insufficient to represent molec-
ular data. Rather than adapting a theory to adulterated basic axioms, it is sci-
entifically more appropriate to build a new theory based on the needed broader
axioms.

As we shall see in Chapter 8, the covering hadronic chemistry has been con-
ceived to have a nonunitary structure as an evident necessary condition for nov-
elty. In so doing, quantum chemistry naturally admits all infinitely possible
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screened Coulomb laws of type (1.2.22). However, such screenings are solely ad-
mitted in the nonlocal-integral region of deep wave-overlappings of valence elec-
trons that are of the order of 1 F = 10−13 cm, while recovering the conventional
Coulomb law automatically for all distances greater that 1F.

This conception permits the achievement of an exact representation of molec-
ular binding energies while preserving in full the quantum structure of the indi-
vidual atoms.

5: Quantum chemistry cannot provide a meaningful representa-
tion of thermodynamical reactions. The missing 2% in the representa-
tion of binding energies is misleadingly small, because it corresponds to about
1,000 Kcal/mole while an ordinary thermodynamical reaction (such as that of
the water molecule) implies an average of 50 Kcal/mole. No scientific calculation
can be conducted when the error is of about twenty times the quantity to be
computed.6

As we shall see in Chapter 8, our covering hadronic chemistry does indeed
permit exact thermochemical calculations because it has achieved exact repre-
sentations of molecular characteristics.

6: Computer usage in quantum chemical calculations requires ex-
cessively long periods of time. This additional, well known insufficiency is
notoriously due to the slow convergence of conventional quantum series, an insuf-
ficiency that persists to this day despite the availability of powerful computers.

As we shall also see in Chapter 8, our covering hadronic chemistry will also
resolve this additional insufficiency because the mechanism permitting the exact
representation of molecular characteristics implies a fast convergent lifting of
conventional slowly convergent series.

7: Quantum chemistry predicts that all molecules are paramagnetic.
This inconsistency is a consequence of the most rigorous discipline of the 20-th
century, quantum electrodynamics, establishing that, under an external magnetic
field, the orbits of peripheral atomic electrons must be oriented in such a way
to offer a magnetic polarity opposite to that of the external field (a polarization
that generally occurs via the transition from a three-dimensional to a toroidal
distribution of the orbitals).

According to quantum chemistry, atoms belonging to a molecule preserve their
individuality. Consequently, quantum electrodynamics predicts that the periph-

6The author received a request from a U. S. public company to conduct paid research on certain ther-
mochemical calculations. When discovering that the calculations had to be based on quantum chemistry
due to political needs by the company to be aligned with organized academic interests, the author refused
the research contract on grounds that it would constitute a fraud of public funds, due to the excessively
large error of all thermochemical calculations when based on quantum chemistry.
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Figure 1.17. A schematic view of the prediction by quantum chemistry that water is paramag-
netic, in dramatic disagreement with experimental evidence. In fact, quantum chemistry does
not restrict the correlation of valence bonds to pairs. As a result, the individual valence electrons
of the water molecule remain essentially independent. Quantum electrodynamics then demands
the capability to polarize all valence electrons under an external magnetic field, resulting in
the net magnetic polarity of this figure, and the consequential paramagnetic character of the
water (as well as of all) molecules. As we shall see in Chapter 8, hadronic chemistry resolves
this additional historical problem because our ”strong valence force” deeply correlates valence
electron pairs, thus permitting a global polarization of a molecule only in special cases, such as
those with unbounded electrons.

eral atomic electrons of a molecule must acquire polarized orbits under an external
magnetic field.

As a result, quantum chemistry predicts that the application of an external
magnetic field, to hydrogen H −H, water H −O−H and other molecules imply
their acquisition of a net total, opposite polarity, H↑ −H↑, H↑ −O↑ −H↑, etc.,
which polarization is in dramatic disagreement with experimental evidence.

The above inconsistency can also be derived from its inability to restrict the
correlation solely to valence pairs. By contrast, the strong valence bond of the
covering hadronic chemistry eliminates the independence of individual atoms in
a molecular structure, by correctly representing the diamagnetic or paramagnetic
character of substances.

No serious advance in chemistry can occur without, firstly, the admission of
the above serious insufficiencies and/or inconsistencies, secondly, their detailed
study, and, thirdly, their resolution via a covering theory.
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Most importantly, we shall show in Chapter 10 that no resolution of the now
alarming environmental problems is possible without a resolution of the above
serious inconsistencies of quantum chemistry.

1.2.13 Inconsistencies of Quantum Mechanics,
Superconductivity and Chemistry
for Underwater Electric Arcs

Submerged electric arcs among carbon-base electrodes are known to permit the
production of cost competitive and clean burning gaseous fuels via a highly ef-
ficient process since the primary source of energy is carbon combustion by the
arc, the electric current used by the arc being a comparatively smaller energy. As
such, submerged electric arcs have particular relevance for the main objectives of
hadronic mechanics, as studied in Chapter 10 (see also monograph [11]).

An understanding of the motivations for the construction of hadronic me-
chanics, superconductivity and chemistry requires a knowledge of the fact that,
contrary to popular beliefs, submerged electric arcs provide undeniable evidence
of the following deviations from established doctrines:

1) When the liquid feedstock is distilled water and the electrodes are given
by essentially pure graphite, quantum mechanics and chemistry predict that the
produced gas is composed of 50% H2 and 50% CO. However, CO is combustible
in atmosphere and its exhaust is given by CO2. Therefore, in the event said
prediction was correct, the combustion exhaust of the gas should contain about
42% of CO2. Numerous measurements conducted by an EPA accredited automo-
tive laboratory [11] have established that the combustion exhaust contains about
4%-5% CO2 without an appreciable percentage of unburned CO. Consequently,
the error of quantum mechanics and chemistry is of about ten times the measured
value, the error being in defect.

2) For the same type of gas produced from distilled water and carbon elec-
trodes, quantum mechanics and chemistry predict that the thermochemical pro-
cesses underlying the formation of the gas release about 2,250 British Thermal
Units (BTU) per standard cubic feet (scf) (see Ref. [11]). In reality, system-
atic measurements have established that the heat produced is of the order of 250
BTU/scf. Therefore, the error of quantum mechanics and chemistry is again of
the order of ten times the measured quantity, the error being this time in excess.
Note that deviation 1) is fully compatible with deviation 2). In fact, the primary
source of heat is the production of CO. Therefore, the production of 1/10-th of
the heat predicted confirms that the CO is about 1/10-th the value predicted by
quantum mechanics and chemistry.

3) Again for the case of the gas produced from distilled water and graphite
electrodes, quantum mechanics and chemistry predict that no oxygen is present
in the combustion exhaust, since the prediction is that, under the correct stochio-
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metric ratio between atmospheric oxygen and the combustible gas, the exhaust
is composed of 50% H2O and 50% CO2. In reality, independent measurements
conducted by an EPA accredited automotive laboratory have established that, un-
der the conditions here considered, the exhaust contains about 14% of breathable
oxygen. Therefore, in this case the error of quantum mechanics and chemistry if
about fourteen times the measured value.

4) Quantum mechanics and chemistry predict that the H2 component of the
above considered gas has the conventional specific weight of 2.016 atomic mass
units (amu). Numerous measurements conducted in various independent labo-
ratories have established instead that the hydrogen content of said gas has the
specific weight of 14.56 amu, thus implying it a seven-fold deviation from the
prediction of conventional theories.

5) Numerous additional deviations from the prediction of quantum mechanics
and chemistry also exist, such as the fact that the gas has a variable energy
content, a variable specific weight, and a variable Avogadro number as shown in
Chapters 8 and 10, while conventional gases have constant energy content, specific
weight and Avogadro number, as it is well known.

Above all the most serious deviations in submerged electric arc occurs for
Maxwell’s electrodynamics, to such an extent that any industrial or governmental
research in the field based on Maxwell’s electrodynamics is a misuse of corporate
or public funds. At this introductory level we restrict ourselves to the indication
of the axial attractive force between the electrodes and other features structurally
incompatible with Maxwell’s electrodynamics.

Needless to say, structural incompatibilities with Maxwell’s electrodynamics
automatically imply structural incompatibilities with special relativity due to
the complete symbiosis of the two theories.

Note the re-emergence of the distinction between exterior and interior prob-
lems also in regard to Maxwell’s electrodynamics. In fact, an arc in vacuum
constitutes an exterior problem, while an arc within a liquid constitutes an in-
terior problem. The impossibility of conducting serious industrial research via
Maxwell’s electrodynamics for submerged electric arcs can then be derived from
the inapplicability of special relativity in the conditions considered.

The departures also extend to quantum superconductivity because the initia-
tion of submerged electric arcs causes the collapse of the electric resistance, from
very high value (as it is the case for distilled water) down to fractional Ohms.
As a consequence, a submerged electric arc has features reminiscent of supercon-
ductivity. But the arc occurs at about 10,000 times the maximal temperature
predicted by quantum superconductivity. The limitations of the theory is then
beyond credible doubt, the only open scientific issues being the selection of the
appropriate generalization.
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In summary, under the above deviations, any use of quantum mechanics, su-
perconductivity and chemistry for the study of submerged electric arcs exits the
boundaries of scientific ethics and accountability. The departures of experimen-
tal evidence from old doctrines are just too big to be removed via arbitrary
parameters “to fix things”, thus mandating the construction of suitable covering
theories.

1.3 THE SCIENTIFIC IMBALANCE CAUSED BY
IRREVERSIBILITY

1.3.1 The Scientific Imbalance in the Description of
Natural Processes

Numerous basic events in nature, including particle decays, such as

n→ p+ + e− + ν̄, (1.3.1)

nuclear transmutations, such as

C(6, 12) +H(1, 2)→ N(7, 14), (1.3.2)

chemical reactions, such as

H2 +
1
2
O2 → H2O, (1.3.3)

and other processes are called irreversible when their images under time reversal,
t → −t, are prohibited by causality and other laws. Systems are instead called
reversible when their time reversal images are as causal as the original ones, as
it is the case for planetary and atomic structures when considered isolated from
the rest of the universe.

Yet another large scientific imbalance of the 20-th century has been the treat-
ment of irreversible systems via the formulations developed for reversible systems,
such as Lagrangians and Hamiltonian mechanics, quantum mechanics and chem-
istry and special relativity. In fact, all these formulations are strictly reversible,
in the sense that all their basic axioms are fully reversible in time, by causing in
this way limitations in virtually all branches of science.

The imbalance was compounded by use of the truncated Lagrange and Hamilton
equations (see Section 1.2.2) based on conventional Lagrangians or Hamiltonians,

L = Σk=1,2,...,n
1
2
×mk × v2

k − V (r), (1.2.4a)

H = Σa=1,2,..,n
p2
a

2×ma
+ V (r), (1.3.4b)
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under the full awareness that all known potentials (such as those for electric,
magnetic, gravitational and other interactions), and therefore, all known Hamil-
tonians, are reversible.

This additional scientific imbalance was dismissed by academicians with vested
interests in reversible theories with unsubstantiated statements, such as “irre-
versibility is a macroscopic occurrence that disappears when all bodies are re-
duced to their elementary constituents”.

The underlying belief is that mathematical and physical theories that are so
effective for the study of one electron in a reversible orbit around a proton are
tacitly believed to be equally effective for the study of the same electron when in
irreversible motion in the core of a star with the local nonconservation of energy,
angular momentum, and other characteristics.

Along these lines a vast literature grew during the 20-th century on the dream
of achieving compatibility of quantum mechanics with the evident irreversibility
of nature at all levels, most of which studies were of manifestly political character
due to the strictly reversibility of all methods used for the analysis.

These academic beliefs have been disproved by the following:

THEOREM 1.3.1 [10b]: A classical irreversible system cannot be consistently
decomposed into a finite number of elementary constituents all in reversible condi-
tions and, vice-versa, a finite collection of elementary constituents all in reversible
conditions cannot yield an irreversible macroscopic ensemble.

The property established by the above theorems dismisses all nonscientific be-
liefs on irreversibility, and identify the real needs, the construction of formulations
that are structurally irreversible, that is, irreversible for all known reversible po-
tentials, Lagrangians or Hamiltonians, and are applicable at all levels of study,
from Newtonian mechanics to second quantization.

The historical origin of the above imbalance can be outlined as follows. One
of the most important teaching in the history of science is that by Lagrange [2],
Hamilton [3], and Jacobi [4] who pointed out that irreversibility originates from
contact nonpotential interactions not representable with a potential, for which
reason they formulated their equations with external terms, as in Eqs. (1.2.3).

In the planetary and atomic structures, there is no need for external terms,
since all acting forces are of potential type. In fact, these systems admit an
excellent approximation as being made-up of massive points moving in vacuum
without collisions (exterior dynamical problems). In these cases, the historical
analytic equations were “truncated” with the removal of the external terms.

In view of the successes of the planetary and atomic models, the main scientific
development of the 20-th century was restricted to the “truncated analytic equa-
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Figure 1.18. A pictorial view of the impossibility for quantum mechanics to be exactly valid
in nature: the growth of a seashell. In fact, quantum mechanics is structurally irreversible, in
the sense that all its axioms, geometries and symmetries, potentials, etc., are fully reversible
in time, while the growth of a seashell is structurally irreversible. The need for an irreversible
generalization of quantum mechanics is then beyond credible doubt, as studied in detail in
Chapter 4.

tions”, without any visible awareness that they are not the equations conceived
by the founders of analytic mechanics.

Therefore, the origin of the scientific imbalance on irreversibility is the gen-
eral dismissal by scientists of the 20-th century of the historical teaching by
Lagrange, Hamilton and Jacobi, as well as academic interests on the truncated
analytic equations, such as quantum mechanics and special relativity. In fact, as
outlined earlier, the use of external terms in the basic analytic equations cause
the inapplicability of the mathematics underlying said theories.

It then follows that no serious scientific advance on irreversible processes can
be achieved without first identifying a structurally irreversible mathematics and
then the compatible generalizations of conventional theories, a task studied in
details in Chapter 4.
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As we shall see, contrary to popular beliefs, the origin of irreversibility results
in being at the ultimate level of nature, that of elementary particles in interior
conditions. irreversibility then propagates all the way to the macroscopic level so
as to avoid the inconsistency of Theorem 1.3.1.

1.3.2 The Scientific Imbalance in Astrophysics and
Cosmology

Astrophysics and cosmology are new branches of science that saw their birth
in the 20-th century with a rapid expansion and majestic achievements. Yet,
these new fields soon fell pray to organized interests in established doctrines with
particular reference to quantum mechanics, special relativity and gravitation,
resulting in yet another scientific imbalance of large proportions.

To begin, all interior planetary or astrophysical problems are irreversible, as
shown by the very existence of entropy, and known thermodynamical laws stu-
diously ignored by supporters of Einsteinian doctrines. This feature, alone, is
sufficient to cause a scientific imbalance of historical proportions because, as
stressed above, irreversible systems cannot be credibly treated with reversible
theories.

Also, quantum mechanics has been shown in the preceding sections to be inap-
plicable to all interior astrophysical and gravitational problems for reasons other
than irreversibility. Any reader with an independent mind can then see the lim-
itations of astrophysical studies for the interior of stars, galaxies and quasars
based on a theory that is intrinsically inapplicable for the problems considered.

The imposition of special relativity as a condition for virtually all relativistic
astrophysical studies of the 20-th century caused an additional scientific imbal-
ance. To illustrate its dimensions and implications, it is sufficient to note that all
calculations of astrophysical energies have been based on the relativistic mass-
energy equivalence

E = m× c2, (1.3.5)

namely, on the philosophical belief that the speed of light c is the same for all
conditions existing in the universe (this is the well known “universal constancy
of the speed of light”).

As indicated earlier, this belief has been disproved by clear experimental evi-
dence, particularly for the case of interior astrophysical media in which the max-
imal causal speed has resulted to be C = c/n >> c, n << 1, in which case the
correct calculation of astrophysical energies is given by the equivalence principle
of the isospecial relativity (see Chapter 3)

E = m× C2 = m× c2/n2 >> m× c2, n << 1, (1.3.6)

thus invalidating current view on the “missing mass”, and others.
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A further large scientific imbalance in astrophysics and cosmology was caused
by the imposition of general relativity, namely, by one of the most controversial
theories of the 20-th century because afflicted by problematic aspects and sheer
inconsistencies so serious called catastrophic, as outlined in the next section.

It is hoped these preliminary comments are sufficient to illustrate the weakness
of the scientific foundations of astrophysical studies of the 20-th century.

1.3.3 The Scientific Imbalance in Biology
By far one of the biggest scientific imbalances of the 20-th century occurred in
biology because biological structures were treated via quantum mechanics in full
awareness that the systems described by that discipline are dramatically different
than biological structures.

To begin, quantum mechanics and chemistry are strictly reversible, while all
biological structures and events are structurally irreversible, since biological struc-
tures such as a cell or a complete organism, admit a birth, then grow and then
die.

Moreover, quantum mechanics and chemistry can only represent perfectly rigid
systems, as well known from the fundamental rotational symmetry that can only
describe “rigid bodies”.

As a consequence, the representation of biological systems via quantum me-
chanics and chemistry implies that our body should be perfectly rigid, without
any possibility of introducing deformable-elastic structures, because the latter
would cause catastrophic inconsistencies with the basic axioms.

Moreover, another pillar of quantum mechanics and chemistry is the verifica-
tion of total conservation laws, for which Heisenberg’s equation of motion became
established. In fact, the quantum time evolution of an arbitrary quantity A is
given by

i× dA

dt
= [A,H] = A×H −H ×A, (1.3.7)

under which expression we have the conservation law of the energy and other
quantities, e.g.,

i dH/dt = H ×H −H ×H ≡ 0. (1.3.8)

A basic need for a scientific representation of biological structures is instead
the representation of the time-rate-of-variations of biological characteristics, such
as size, weight, density, etc. This identifies another structural incompatibility
between quantum mechanics and biological systems.

When passing to deeper studies, the insufficiencies of quantum mechanics and
chemistry emerge even more forcefully. As an example, quantum theories can
well represent the shape of sea shells, but not their growth in time.

In fact, computer visualizations [16] have shown that, when the geometric
axioms of quantum mechanics and chemistry (those of the Euclidean geometry)
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are imposed as being exactly valid, sea shells first grow in a deformed way, and
then crack during their growth.

Finally, the ideal systems described with full accuracy by quantum mechan-
ics, such as an isolated hydrogen atom or a crystal, are eternal. Therefore, the
description via quantum theories implies that biological systems are eternal.

These occurrences should not be surprising to inquisitive minds, because the
birth and growth, e.g., of a seashell is strictly irreversible and nonconservative,
while the geometric axioms of quantum theories are perfectly reversible and con-
servative, as indicated earlier, thus resulting in a structural incompatibility, this
time, at the geometric level without any conceivable possibility of reconciliation,
e.g., via the introduction of unknown parameters “to fix things”.

Additional studies have established that the insufficiencies of quantum me-
chanics and chemistry in biology are much deeper than the above, and invest the
mathematics underlying these disciplines. In fact, Illert [16] has shown that a
minimally correct representation of the growth in time of sea shells requires the
doubling of the Euclidean axes.

However, sea shells are perceived by the human mind (via our three Eustachian
tubes) as growing in our three-dimensional Euclidean space. As we shall see in
Chapter 8, the only known resolution of such a dichotomy is that via multi-
valued irreversible mathematics, that is, mathematics in which operations such
as product, addition, etc., produce a set of values, rather than one single value
as in quantum mechanics and chemistry.

At any rate, the belief that the simplistic mathematics underlying quantum
mechanics and chemistry can explain the complexity of the DNA code, has no
scientific credibility, the only serious scientific issue being the search for broader
mathematics.

In conclusion, science will never admit “final theories”. No matter how valid
any given theory may appear at any point in time, its structural broadening for
the description of more complex conditions is only a matter of time.

This is the fate also of quantum mechanics and chemistry, as well as special
and general relativities that cannot possibility be considered as “final theories”
for all infinitely possible conditions existing in the universe.

After all, following only a few centuries of research, rather than having reached
a “final stage”, science is only at its infancy.
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1.4 THE SCIENTIFIC IMBALANCE CAUSED BY
GENERAL RELATIVITY AND QUANTUM
GRAVITY

1.4.1 Consistency and Limitations of Special Relativity
As it is well known, thanks to historical contributions by Lorentz, Poincaré,

Einstein, Minkowski, Weyl and others, special relativity achieved a majestic ax-
iomatical consistency.7

After one century of studies, we can safely identify the origins of this consis-
tency in the following crucial properties:

1) Special relativity is formulated in the Minkowski spacetime over the field of
real numbers;

2) All laws of special relativity are invariant (rather than covariant) under the
fundamental Poincaré symmetry;

3) The Poincaré transformations and, consequently, all times evolutions of
special relativity, are canonical at the classical level and unitary at the operator
level with implications crucial for physical consistency.

Consequently, since canonical or unitary transforms conserve the unit by their
very definition, special relativity admits basic units and numerical predictions
that are invariant in time. After all, the quantities characterizing the dynamical
equations are the Casimir invariants of the Poincaré symmetry.

As a result of the above features, special relativity has been and can be confi-
dently applied to experimental measurements because the units selected by the
experimenter do not change in time, and the numerical predictions of the the-
ory can be tested at any desired time under the same conditions without fear of
internal axiomatic inconsistencies.

It is well established at this writing that special relativity is indeed “compatible
with experimental evidence” for the arena of its original conception, the classi-
cal and operator treatment of “point-like” particles and electromagnetic waves
moving in vacuum. Despite historical results, it should be stressed that, as is the
fate for all theories, special relativity has numerous well defined limits of appli-
cability, whose identification is crucial for any serious study on gravitation, since

7It should be indicated that the name “Einstein’s special relativity” is political, since a scientifically
correct name should be “Lorentz-Poincaré-Einstein relativity.” Also, it is appropriate to recall (as now
reviewed in numerous books under testimonials by important eyewitnesses) that Einstein ended up
divorcing his first wife Mileva Maric because she was instrumental in writing the celebrated paper
on special relativity of 1905 and, for that reason, she had been originally listed as a co-author of that
article, co-authorship that was subsequently removed when the article appeared in print. In fact, Einstein
awarded his Nobel Prize money on that article to Mileva. Similarly, it should be recalled that Einstein
avoided quoting Poincaré in his 1905 article following his consultation, and in documented knowledge
that Poincaré had preceded him in various features of special relativity (see, e.g., the historical account
by Logunov [96] or the instructive books [97,98]).
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general relativity is known to be an extension of the special. Among the various
limitations, we quote the following:

INAPPLICABILITY # 1: Special relativity is inapplicable for the classical
treatment of antiparticles as shown in Section 1.1 and Chapter 2. This is es-
sentially due to the existence of only one quantization channel. Therefore, the
quantization of a classical antiparticle characterized by special relativity (essen-
tially via the sole change of the sign of the charge) clearly leads to a quantum
mechanical particle with the wrong sign of the charge, and definitely not to the
appropriate charge conjugated antiparticle, resulting in endless inconsistencies.

INAPPLICABILITY # 2: Special relativity has also been shown to be inappli-
cable (rather than violated) for the treatment of both, particles and antiparticles
when represented as they are in the physical reality, extended, generally non-
spherical and deformable particles (such as protons or antiprotons), particularly
when interacting at very short distances. In fact, these conditions imply the mu-
tual penetration of the wavepackets and/or the hyperdense media constituting
the particles, resulting in nonlocal, integro-differential and nonpotential interac-
tions that cannot be entirely reduced to potential interactions among point-like
constituents.

INAPPLICABILITY # 3: Special relativity is also afflicted by the historical
inability to represent irreversible processes. This inapplicability has been identi-
fied in Section 1.3 in the reversibility of the mathematical methods used by special
relativity, under which conditions the reversibility in time of its basic axioms is
a mere consequence.

INAPPLICABILITY # 4: An additional field of clear inapplicability of special
relativity is that for all biological entities, since the former can only represent
perfectly rigid and perfectly reversible, thus eternal structures, while biological
entities are notoriously deformable and irreversible, having a finite life.

INAPPLICABILITY # 5: In addition, serious scholars should keep in mind
that the biggest limitation of special relativity may well result to be the forgotten
universal medium needed for the characterization and propagation not only of
electromagnetic waves, but also of elementary particles, since truly elementary
particles such as the electron appear to be pure oscillations of said universal
medium. Rather than being forgotten, the issue of the privileged reference frame
and its relationship to reference frames of our laboratory settings appears to be
more open than ever.

1.4.2 The Scientific Imbalance Caused by General
Relativity on Antimatter, Interior Problems, and
Grand Unifications

As indicated above, special relativity has a majestic axiomatic structure with
clear verifications in the field of its original conception. By contrast, it is safe
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to state that general relativity (see, e.g., monograph [17]) has been the most
controversial theory of the 20-th century for a plethora of inconsistencies that
have grown in time, rather than being addressed and resolved.

We now address some of the inconsistencies published by numerous scholars
in refereed technical journals, yet generally ignored by organized interests on
Einsteinian doctrines, which inconsistencies are so serious to be known nowadays
as being “catastrophic”. The apparent resolution of the inconsistencies will be
presented in Chapters 3, 4, 5, 13, and 14.

Let us begin with the following basic requirement for any classical theory of
gravitation to be consistent:

REQUIREMENT 1: Any consistent classical theory of antimatter must allow
a consistent representation of the gravitational field of antimatter. General Rel-
ativity does not verify this first requirement because, in order to attempt a com-
patibility of classical and quantum formulations, antimatter requires negative-
energies, while general relativity solely admit positive-definite energies, as well
known.

Even assuming that this insufficiency is somewhat bypassed, general relativity
can only represent antimatter via the reversal of the sign of the charge. But the
most important astrophysical bodies expected to be made up of antimatter are
neutral. This confirms the structural inability of general relativity to represent
antimatter in a credible way.

REQUIREMENT 2: Any consistent classical theory of antimatter must be able
to represent interior gravitational problems. General relativity fails to verify this
second requirement for numerous reasons, such as the inability to represent the
density of the body considered, its irreversible condition, e.g., due to the increase
of entropy, the locally varying speed of light, etc.

REQUIREMENT 3: Any consistent classical theory of gravitation must permit
a grand unifications with other interactions. It is safe to state that this require-
ment too is not met by general relativity since all attempts to achieve a grand
unification have failed to date since Einstein times (see Chapter 12 for details).

REQUIREMENT 4: Any consistent classical theory of gravitation must permit
a consistent operator formulation of gravity. This requirement too has not been
met by general relativity, since its operator image, known as quantum gravity [18]
is afflicted by additional independent inconsistencies mostly originating from its
unitary structure as studied in the next section.

REQUIREMENT 5: Any consistent classical theory of gravitation must per-
mit the representation of the locally varying nature of the speed of light. This
requirement too is clearly violated by general relativity.
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The above insufficiencies are not of marginal character because they caused
serious imbalances in most branches of quantitative sciences.

As an illustration, the first insufficiency prevented any study whatever as to
whether a far-away galaxy or quasar is made up of matter or of antimatter.
The second insufficiency created a form of religion related to the so-called “black
holes”, since before claiming their existence, gravitational singularities must evi-
dently come out of interior gravitational problems and definitely not from theoret-
ical abstractions solely dealing with exterior gravitation. The third insufficiency
has been responsible for one of the longest list of failed attempts in grand uni-
fication without addressing the origin of the failures in the gravitational theory
itself. The fourth insufficiency prevented throughout the entire 20-th century
a consistent quantum formulation of gravity with large implications in particle
physics. The fifth insufficiency cause cosmological models that can only be quali-
fied as scientific beliefs, rather than quantitative theories based on sound physical
foundations.

It is hoped that even the most representative members of organized interests
on Einsteinian doctrines will admit that any additional support for said inter-
ests is now counterproductive, since it has already passed the mark for a severe
condemnation by posterity.

It is time to provide a scientific identification of the basic insufficiencies of
general relativity and initiate systematic studies for their resolution.

1.4.3 Catastrophic Inconsistencies of General Relativity
due to Lack of Sources

There exist subtle distinctions between “general relativity”, “Einstein’s Gravi-
tation”, and “Riemannian” formulation of gravity. For our needs, we here define
Einstein’s gravitation of a body with null electric and magnetic moments as the
reduction of exterior gravitation in vacuum to pure geometry, namely, gravita-
tion is solely represented via curvature in a Riemannian space R(x, g,R) with
spacetime coordinates x = {xµ}, µ = 1, 2, 3, 0 and nowhere singular real-valued
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and symmetric metric g(x) over the reals R, with field equations [19,20]8

Gµν = Rµν − gµν ×R/2 = 0, (1.4.1)

in which, as a central condition to have Einstein’s gravitation, there are no sources
for the exterior gravitational field in vacuum for a body with null total electro-
magnetic field (null total charge and magnetic moment).

For our needs, we define as general relativity any description of gravity on
a Riemannian space over the reals with Einstein-Hilbert field equations with a

8The dubbing of Eqs. (1.4.1) as “Einstein’s field equations” is political since it is known, or it should
be known by “expert” in the field to qualify as such, that Hilbert independently published the same
equations, and that Einstein consulted Hilbert without quotation his work in his gravitational paper of
1916, as done by Einstein in other cases.

It is also appropriate to recall that the publication of his 1916 paper on gravitation caused Einstein
the divorce from his second wife, Elsa Loewenstein, for essentially the same reason of his first divorce. In
fact, unlike Einstein, Elsa was a true mathematician, had trained Einstein on the Riemannian geometry
(a topic only for very few pure mathematics at that time), and was supposed to be a co-author of
Einstein’s 1916 paper, a co-authorship denied as it was the case for the suppression of co-authorship of
his first wife Mileva for his 1905 paper on special relativity (see the instructive books [97,98]).

To avoid a scandal for the 1905 paper, Einstein donate to Mileva the proceeds of his Nobel Prize.
However, he did not receive a second Nobel Prize to quite down his second wife Elsa. A scandal was then
avoided for the 1916 paper via the complicity of the Princeton community, complicity that is in full force
and effect to this day. Hence, Princeton can indeed be considered as being an academic community truly
leading in new basic advances during Einstein’s times. By contrast, Princeton is nowadays perceived as a
”scientific octopus” with kilometric tentacles reaching all parts of our globe for the studious suppression,
via the abuse of academic credibility, of any spark of advance over Einsteinian doctrines. In fact, no
truly fundamental advance came out of Princeton since Einstein’s times, thus leaving Einstein as the
sole source of money, prestige and power.

The documentation of the actions by Princeton academicians to oppose, jeopardize and disrupt re-
search beyond Einstein is vast and includes hundreds of researchers in all developed countries. It is
their ethical duty, if they really care for scientific democracy and the human society, to come out and
denounce publicly the serious misconducts by Princeton academicianns they had to suffer (for which
denunciations I am sure that the International Committee on Scientific Ethics and Accountability will
offer its website http://www.scientificethics.org).

In regard to the author’s documented experiences, it is sufficient to report here for the reader in
good faith the rejection by the Princeton academic community with offensive language of all requests
by the author (when still naive) for delivering an informal seminar on the isotopic lifting of special
relativity for the intent of receiving technical criticisms. There is also documentation that, when the
unfortunate session chairman of the second World Congress in Mathematics of the new century, the
president of the Institute for Advanced Studies in Princeton prohibited presentations on Lie-isotopic
and Lie-admissible algebras not only by the author, but also by the late Prof. Grigorios Tsagas, then
Chairman of the Mathematics Department of Aristotle University in Thessaloniki, Greece. This volume
has been dedicated to the memory of Prof. Gr. Tsagas also in view of the vexations he had to suffer for
his pioneering mathematical research from decaying U. S, academia.

The climax of putrescence in the Princeton academic community is reached by the mumbo-jambo
research in the so called ”controlled hot fusion” under more than one billion of public funds, all spent
under the condition of compatibility with Einsteinian doctrines, and under clear the technical proofs of
the impossibility of its success (see Volume II for technical details).

The author spares the reader the agony of additional documented episodes of scientific misconducts
because too demeaning, and expresses the view that, with a few exceptions, the Princeton academic
community is nowadays an enemy of mankind.
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Figure 1.19. When the “bending of light” by astrophysical bodies was first measured, organized
interests in Einsteinian doctrines immediately claimed such a bending to be an “experimental
verification” of “Einstein’s gravitation”, and the scientific community accepted that claim with-
out any critical inspection (for evident academic gains), according to an unreassuring trend that
lasts to this day by being at the foundation of the current scientific obscurantism of potentially
historical proportions. It can be seen by first year physics students that the measured bending
of light is that predicted by the NEWTONIAN attraction. The representation of the same
“bending of light” as being entirely due to curvature, as necessary in “Einstein’s gravitation”,
implies its formulation in such a way to avoid any Newtonian contribution, with catastrophic
inconsistencies in other experiments (see, e.g., next figure).

source due to the presence of electric and magnetic fields,

Gµν = Rµν − gµν ×R/2 = k × tµν , (1.4.2)

where k is a constant depending on the selected unit whose value is here irrele-
vant. For the scope of this section it is sufficient to assume that the Riemannian
description of gravity coincides with general relativity according to the above
definition.

In the following, we shall first study the inconsistencies of Einstein gravitation,
that is, the inconsistencies in the entire reduction of gravity to curvature with-
out source, and then study the inconsistency of general relativity, that is, the
inconsistencies caused by curvature itself even in the presence of sources.

It should be stressed that a technical appraisal of the content of this section
can only be reached following the study of the axiomatic inconsistencies of grand
unified theories of electroweak and gravitational interactions whenever gravity is
represented with curvature on a Riemannian space irrespective of whether with
or without sources, as studied in Chapter 12.

THEOREM 1.4.1 [21]: Einstein’s gravitation and general relativity at large
are incompatible with the electromagnetic origin of mass established by quantum
electrodynamics, thus being inconsistent with experimental evidence.
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Proof. Quantum electrodynamics has established that the mass of all elemen-
tary particles, whether charged or neutral, has a primary electromagnetic origin,
that is, all masses have a first-order origin given by the volume integral of the
00-component of the energy-momentum tensor tµν of electromagnetic origin,

m =
∫
d4x× telmoo . (1.4.3a)

tαβ =
1
4π

(FµαFµβ +
1
4
gαβFµνF

µν), (1.4.3b)

where tαβ is the electromagnetic tensor, and Fαβ is the electromagnetic field (see
Ref. [11a] for explicit forms of the latter with retarded and advanced potentials).

Therefore, quantum electrodynamics requires the presence of a first-order source
tensor in the exterior field equations in vacuum as in Eqs. (1.4.2). Such a source
tensor is absent in Einstein’s gravitation (1.4.1) by conception. Consequently,
Einstein’s gravitation is incompatible with quantum electrodynamics.

The incompatibility of general relativity with quantum electrodynamics is es-
tablished by the fact that the source tensor in Eqs. (1.4.2) is of higher order in
magnitude, thus being ignorable in first approximation with respect to the grav-
itational field, while according to quantum electrodynamics said source tensor is
of first order, thus not being ignorable in first approximation.

The inconsistency of both Einstein’s gravitation and general relativity is finally
established by the fact that, for the case when the total charge and magnetic mo-
ment of the body considered are null, Einstein’s gravitation and general relativity
allows no source at all. By contrast, as illustrated in Ref. [21], quantum elec-
trodynamics requires a first-order source tensor even when the total charge and
magnetic moments are null due to the charge structure of matter. q.e.d.

The first consequence of the above property can be expressed via the following:

COROLLARY 1.4.1A [21]: Einstein’s reduction of gravitation in vacuum to
pure curvature without source is incompatible with physical reality.

A few comments are now in order. As is well known, the mass of the electron is
entirely of electromagnetic origin, as described by Eq. (3.3), therefore requiring
a first-order source tensor in vacuum as in Eqs. (3.2). Therefore, Einstein’s
gravitation for the case of the electron is inconsistent with nature. Also, the
electron has a point charge. Consequently, the electron has no interior problem
at all, in which case the gravitational and inertial masses coincide,

mGrav.
Electron ≡ mIner

Electron. (1.4.4)

Next, Ref. [21] proved Theorem 1.4.1 for the case of a neutral particle by
showing that the πo meson also needs a first-order source tensor in the exterior
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gravitational problem in vacuum since its structure is composed of one charged
particle and one charged antiparticle in high dynamical conditions.

In particular, the said source tensor has such a large value to account for the
entire gravitational mass of the particle [21]

mGrav.
πo =

∫
d4x× tElm00 . (1.4.5)

For the case of the interior problem of the πo , we have the additional presence
of short range weak and strong interactions representable with a new tensor τµν .
We, therefore, have the following:

COROLLARY 1.4.1B [21]: In order to achieve compatibility with electromag-
netic, weak and strong interactions, any gravitational theory must admit two
source tensors, a traceless tensor for the representation of the electromagnetic ori-
gin of mass in the exterior gravitational problem, and a second tensor to represent
the contribution to interior gravitation of the short range interactions according
to the field equations

GInt.µν = Rµν − gµν ×R/2 = k × (tElmµν + τShortRangeµν ). (1.4.6)

A main difference of the two source tensors is that the electromagnetic tensor
tElmµν is notoriously traceless, while the second tensor τShortRangeµν is not. A more
rigorous definition of these two tensors will be given shortly.

It should be indicated that, for a possible solution of Eqs. (1.4.6), various
explicit forms of the electromagnetic fields as well as of the short range fields
originating the electromagnetic and short range energy momentum tensors are
given in Ref. [21].

Since both source tensors are positive-definite, Ref. [21] concluded that the
interior gravitational problem characterizes the inertial mass according to the
expression

mIner =
∫
d4x× (tElm00 + τShortRange00 ), (1.4.7)

with consequential general law

mInert. ≥ mGrav., (1.4.8)

where the equality solely applies for the electron.
Finally, Ref. [21] proved Theorem 1.4.1 for the exterior gravitational problem of

a neutral massive body, such as a star, by showing that the situation is essentially
the same as that for the πo. The sole difference is that the electromagnetic field
requires the sum of the contributions from all elementary constituents of the star,

mGrav.
Star = Σp=1,2,...

∫
d4x× tElem.p00 . (1.4.9)
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In this case, Ref. [21] provided methods for the approximate evaluation of the
sum that resulted in being of first-order also for stars with null total charge.

When studying a charged body, there is no need to alter equations (3.6) since
that particular contribution is automatically contained in the indicated field equa-
tions.

Once the incompatibility of general relativity at large with quantum electro-
dynamics has been established, the interested reader can easily prove the incom-
patibility of general relativity with quantum field theory and quantum chromo-
dynamics, as implicitly contained in Corollary 1.4.1B.

An important property apparently first reached in Ref. [11a] in 1974 is the
following:

COROLLARY 1.4.1C [21]: The exterior gravitational field of a mass originates
entirely from the total energy-momentum tensor (3.3b) of the electromagnetic field
of all elementary constituents of said mass.

In different terms, a reason for the failure to achieve a “unification” of gravi-
tational and electromagnetic interactions initiated by Einstein himself is that the
said interactions can be “identified” with each other and, as such, they cannot
be unified. In fact, in all unifications attempted until now, the gravitational and
electromagnetic fields preserve their identity, and the unification is attempted
via geometric and other means resulting in redundancies that eventually cause
inconsistencies.

Note that conventional electromagnetism is represented with the tensor Fµν
and related Maxwell’s equations. When electromagnetism is identified with ex-
terior gravitation, it is represented with the energy-momentum tensor tµν and
related equations (1.4.6).

In this way, gravitation results as a mere additional manifestation of electro-
magnetism. The important point is that, besides the transition from the field
tensor Fµν to the energy-momentum tensor Tµν , there is no need to introduce a
new interaction to represent gravity.

Note finally the irreconcilable alternatives emerging from the studies herein
considered:

ALTERNATIVE I: Einstein’s gravitation is assumed as being correct, in which
case quantum electrodynamics must be revised in such a way to avoid the elec-
tromagnetic origin of mass; or

ALTERNATIVE II: Quantum electrodynamics is assumed as being correct, in
which case Einstein’s gravitation must be irreconcilably abandoned in favor of a
more adequate theory.
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By remembering that quantum electrodynamics is one of the most solid and
experimentally verified theories in scientific history, it is evident that the rather
widespread assumption of Einstein’s gravitation as having final and universal
character is non-scientific.

THEOREM 1.3.2 [22,10b]: Einstein’s gravitation (1.4.1) is incompatible with
the Freud identity of the Riemannian geometry, thus being inconsistent on geo-
metric grounds.

Proof. The Freud identity [11b] can be written

Rαβ −
1
2
× δαβ ×R−

1
2
× δαβ ×Θ = Uαβ + ∂V αρ

β /∂xρ = k × (tαβ + ταβ ), (1.4.10)

where
Θ = gαβgγδ(ΓραβΓργβ − ΓραβΓργδ), (1.4.11a)

Uαβ = −1
2
∂Θ
∂gρα|ρ

gγβ ↑γ , (1.4.11b)

V αρ
β =

1
2
[gγδ(δαβΓραγδ − δ

ρ
βΓ

ρ
αδ)+

+(δρβg
αγ − δαβ gργ)Γδγδ + gργΓαβγ − gαγΓ

ρ
βγ ]. (1.4.11c)

Therefore, the Freud identity requires two first order source tensors for the ex-
terior gravitational problems in vacuum as in Eqs. (1.4.6) of Ref. [21]. These
terms are absent in Einstein’s gravitation (1.4.1) that, consequently, violates the
Freud identity of the Riemannian geometry. q.e.d.

By noting that trace terms can be transferred from one tensor to the other in
the r.h.s. of Eqs. (1.4.10), it is easy to prove the following:

COROLLARY 1.4.2A [10b]: Except for possible factorization of common terms,
the t- and τ -tensors of Theorem 3.2 coincide with the electromagnetic and short
range tensors, respectively, of Corollary 1.4.1B.

A few historical comments regarding the Freud identity are in order. It has
been popularly believed throughout the 20-th century that the Riemannian ge-
ometry possesses only four identities (see, e.g., Ref. [17]). In reality, Freud
[22] identified in 1939 a fifth identity that, unfortunately, was not aligned with
Einstein’s doctrines and, as such, the identity was ignored in virtually the en-
tire literature on gravitation of the 20-th century, as it was also the case for
Schwarzschild’s interior solution [8].

However, as repeatedly illustrated by scientific history, structural problems
simply do not disappear with their suppression, and actually grow in time. In
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fact, the Freud identity did not escape Pauli who quoted it in a footnote of his
celebrated book of 1958 [24]. Santilli became aware of the Freud identity via
an accurate reading of Pauli’s book (including its important footnotes) and as-
sumed the Freud identity as the geometric foundation of the gravitational studies
presented in Ref. [10b].

Subsequently, in his capacity as Editor in Chief of Algebras, Groups and Ge-
ometries, Santilli requested the mathematician Hanno Rund, a known authority
in Riemannian geometry [24], to inspect the Freud identity for the scope of as-
certaining whether the said identity was indeed a new identity. Rund kindly
accepted Santilli’s invitation and released paper [26] of 1991 (the last paper prior
to his departure) in which Rund confirmed indeed the character of Eqs. (3.10)
as a genuine, independent, fifth identity of the Riemannian geometry.

The Freud identity was also rediscovered by Yilmaz (see Ref. [27] and papers
quoted therein) who used the identity for his own broadening of Einstein’s grav-
itation via an external stress-energy tensor that is essentially equivalent to the
source tensor with non-null trace of Ref. [11a], Eqs. 1.4.6).

Despite these efforts, the presentation of the Freud identity to various meetings
and several personal mailings to colleagues in gravitation, the Freud identity
continues to remain vastly ignored to this day, with very rare exceptions (the
indication by colleagues of additional studies on the Freud identity not quoted
herein would be gratefully appreciated.)

Theorems 1.4.1 and 1.4.2 complete our presentation on the catastrophic incon-
sistencies of Einstein’s gravitation due to the lack of a first-order source in the
exterior gravitational problem in vacuum. These theorems, by no means, exhaust
all inconsistencies of Einstein’s gravitation, and numerous additional inconsisten-
cies do indeed exist.

For instance, Yilmaz [27] has proved that Einstein’s gravitation explains the
43” of the precession of Mercury, but cannot explain the basic Newtonian con-
tribution. This result can also be seen from Ref. [21] because the lack of source
implies the impossibility of importing into the theory the basic Newtonian po-
tential. Under these conditions the representation of the Newtonian contribution
is reduced to a religious belief, rather than a serious scientific statement.

For these and numerous additional inconsistencies of general relativity we refer
the reader to Yilmaz [27], Wilhelm [28-30], Santilli [31], Alfvén [32,33], Fock [34],
Nordensen [35], and large literature quoted therein.

1.4.4 Catastrophic Inconsistencies of General Relativity
due to Curvature

We now pass to the study of the structural inconsistencies of general relativity
caused by the very use of the Riemannian curvature, irrespective of the selected
field equations, including those fully compatible with the Freud identity.
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THEOREM 1.4.3 [36]: Gravitational theories on a Riemannian space over
a field of real numbers do not possess time invariant basic units and numerical
predictions, thus having serious mathematical and physical inconsistencies.

Proof. The map from Minkowski to Riemannian spaces is known to be non-
canonical,

η = Diag.(1, 1, 1,−1) → g(x) = U(x)× η × U(x)†, (1.4.12a)

U(x)× U(x)† 6= I. (1.4.12b)

Thus, the time evolution of Riemannian theories is necessarily noncanonical, with
consequential lack of invariance in time of the basic units of the theory, such as

It=0 = Diag.(1cm, 1cm, 1cm, 1sec)→ I ′t>0 = Ut × I × U †
t 6= It=0. (1.4.13)

The lack of invariance in time of numerical predictions then follows from the
known “covariance”, that is, lack of time invariance of the line element. q.e.d.

As an illustration, suppose that an experimentalist assumes at the initial time
t = 0 the units 1 cm and 1 sec. Then, all Riemannian formulations of gravitation,
including Einstein’s gravitation, predict that at the later time t > 0 said units
have a different numerical value.

Similarly, suppose that a Riemannian theory predicts a numerical value at the
initial time t = 0, such as the 43” for the precession of the perihelion of Mercury.
One can prove that the same prediction at a later time t > 0 is numerically
different precisely in view of the “covariance”, rather than invariance as intended
in special relativity, thus preventing a serious application of the theory to physical
reality. We therefore have the following:

COROLLARY 1.4.3A [36]: Riemannian theories of gravitation in general, and
Einstein’s gravitation in particular, can at best describe physical reality at a fixed
value of time, without a consistent dynamical evolution.

Interested readers can independently prove the latter occurrence from the lack
of existence of a Hamiltonian in Einstein’s gravitation. It is known in analytic
mechanics (see, e.g., Refs. [17,24]) that Lagrangian theories not admitting an
equivalent Hamiltonian counterpart, as is the case for Einstein’s gravitation, are
inconsistent under time evolution, unless there are suitable subsidiary constraints
that are absent in general relativity.

It should be indicated that the inconsistencies are much deeper than that
indicated above. For consistency, the Riemannian geometry must be defined on
the field of numbers R(n,+,×) that, in turn, is fundamentally dependent on
the basic unit I. But the Riemannian geometry does not leave time invariant the
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Figure 1.20. A conceptual rendering of the reason the author was unable to accept “Einstein’s
gravitation” as a correct theory since the time of his high school studies, the free fall of bodies
under gravity that has to occur necessarily along a straight radial line, thus without any possible
curvature. On technical terms, the free fall establishes the consistency need for any gravitational
theory not only to incorporate the NEWTONIAN attraction in a clear and unambiguous way,
but also in such a way that all contributions from curvature should disappear for the free fall in
favor of the pure Newtonian attraction. The fact that evidence so incontrovertible continues to
be denied by organized interests on Einsteinian doctrines and their vast followers, most holding
chairs of high academic fame, confirm the existence of a scientific obscurantism of potentially
historical proportions.

basic unit I due to its noncanonical character. The loss in time of the basic unit I
then implies the consequential loss in time of the base field R, with consequential
catastrophic collapse of the entire geometry [36].

In conclusion, not only is Einstein’s reduction of gravity to pure curvature in-
consistent with nature because of the lack of sources, but also the ultimate origin
of the inconsistencies rests in the curvature itself when assumed for the represen-



68 RUGGERO MARIA SANTILLI

tation of gravity, due to its inherent noncanonical character at the classical level
with consequential nonunitary structure at the operator level.

Serious mathematical and physical inconsistencies are then unavoidable under
these premises, thus establishing the impossibility of any credible use of general
relativity, for instance, as an argument against the test on antigravity predicted
for antimatter in the field of matter [5], as well as establishing the need for a
profound revision of our current views on gravitation.

THEOREM 1.4.4. Gravitational experimental measurements do not verify gen-
eral relativity uniquely.

Proof. All claimed “experimental verifications” of Einstein’s gravitation are
based on the PPN “expansion” (or linearization) of the field equations (such
as the post-Newtonian approximation), that, as such, is not unique. In fact,
Eqs. (1.4.1) admit a variety of inequivalent expansions depending on the selected
parameter, the selected expansion and the selected truncation. It is then easy to
show that the selection of an expansion of the same equations (3.1) but different
from the PPN approximation leads to dramatic departures from experimental
values. q.e.d.

THEOREM 1.4.5: General relativity is incompatible with experimental evi-
dence because it does not represent the bending of light in a consistent, unique
and invariant way.

Proof. Light carries energy, thus being subjected to a bending due to the
conventional Newtonian gravitational attraction, while, general relativity pre-
dicts that the bending of light is entirely due to curvature (see, e.g., Ref. [17],
Section 40.3). In turn, the absence of the Newtonian contribution causes other
catastrophic inconsistencies, such as the inability to represent the free fall where
curvature does not exist (Theorem 1.4.6 below). Assuming that consistency is
achieved with yet unknown manipulations, the representation of the bending of
light is not unique because bases on a nonunique PPN approximation having
different parameters for different expansions. Finally, assuming that consistency
and uniqueness are somewhat achieved, the representation is not invariant in time
due to the noncanonical structure of general relativity.

THEOREM 1.4.6: General relativity is incompatible with experimental evi-
dence because of the lack of consistent, unique and invariant representation of
the free fall of test bodies along a straight radial line.

Proof. A consistent representation of the free fall of a test body along a
straight radial line requires that the Newtonian attraction be represented by
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the field equations necessarily without curvature, thus disproving the customary
belief needed to avoid Corollary 1.4.2.A that said Newtonian attraction emerges
at the level of the post-Newtonian approximation. q.e.d.

The absence in general relativity at large, thus including Einstein’s gravitation,
of well defined contributions due to the Newtonian attraction and to the assumed
curvature of spacetime, and the general elimination of the former in favor of the
latter, causes other catastrophic inconsistencies, such as the inability to represent
the base Newtonian contribution in planetary motion as shown by Yilmaz [47],
and other inconsistencies [48-52].

A comparison between special and general relativities is here in order. Spe-
cial relativity can be safely claimed to be “verified by experiments” because the
said experiments verify numerical values uniquely and unambiguously predicted
by special relativity. By contrast, no such statement can be made for general
relativity since the latter does not uniquely and unambiguously predict given nu-
merical values due, again, to the variety of possible expansions and linearization.

The origin of such a drastic difference is due to the fact that the numerical
predictions of special relativity are rigorously controlled by the basic Poincaré
“invariance”. By contrast, one of the several drawbacks of the “covariance” of
general relativity is precisely the impossibility of predicting numerical values in
a unique and unambiguous way, thus preventing serious claims of true “experi-
mental verifications” of general relativity.

By no means the above analysis exhausts all inconsistencies of general relativ-
ity, and numerous additional ones do indeed exist, such as that expressed by the
following:

THEOREM 1.4.7 [36]: Operator images of Riemannian formulations of grav-
itation are inconsistent on mathematical and physical grounds.

Proof. As established by Theorem 1.4.3, classical formulations of Riemannian
gravitation are noncanonical. Consequently, all their operator counterparts must
be nonunitary for evident reasons of compatibility. But nonunitary theories are
known to be inconsistent on both mathematical and physical grounds [36]. In
fact, on mathematical grounds, nonunitary theories of quantum gravity (see, e.g.,
Refs. [2j,2k]) do not preserve in time the basic units, fields and spaces, while,
on physical grounds, the said theories do not possess time invariant numerical
predictions, do not possess time invariant Hermiticity (thus having no acceptable
observables), and violate causality. q.e.d

The reader should keep in mind the additional well known inconsistencies of
quantum gravity, such as the historical incompatibility with quantum mechanics,
the lack of a credible PCT theorem, etc.
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By no means, the inconsistencies expressed by Theorems 1.4.1 through 1.4.7
constitute all inconsistencies of general relativity. In the author’s opinion, addi-
tional deep inconsistencies are caused by the fact that general relativity does not
possess a well defined Minkowskian limit, while the admission of the Minkowski
space as a tangent space is basically insufficient on dynamical grounds (trivially,
because on said tangent space gravitation is absent).

As an illustration, we should recall the controversy on conservation laws that
raged during the 20-th century [11]. Special relativity has rigidly defined total
conservation laws because they are the Casimir invariants of the fundamental
Poincaré symmetry. By contrast, there exist several definitions of total conser-
vation laws in a Riemannian representation of gravity due to various ambiguities
evidently caused by the absence of a symmetry in favor of covariance.

Moreover, none of the gravitational conservation laws yields the conservation
laws of special relativity in a clear and unambiguous way, precisely because of
the lack of any limit of a Riemannian into the Minkowskian space. Under these
conditions, the compatibility of general relativity with the special reduces to
personal beliefs outside a rigorous scientific process.

1.4.5 Concluding Remarks
In the author view, the most serious inconsistencies of general relativity are

those of experimental character, such as the structural impossibility for the Rie-
mannian geometry to permit unique and unambiguous numerical predictions due
to the known large degrees of freedom in all PPN expansions; the necessary ab-
sence of curvature to represent consistently the free fall of bodies along a straight
radial line; the gravitational deflection of light measured until now being purely
Newtonian in nature; and others.

These inconsistencies are such to prevent serious attempts in salvaging general
relativity. For instance, if the deflection of the speed of light is re-interpreted as
being solely due to curvature without any Newtonian contribution, then general
relativity admits other catastrophic inconsistencies, such as the inability to repre-
sent the Newtonian contribution of planetary motions pointed out by Yilmaz [27]
and other inconsistencies such as those identified by Wilhelm [28-30] and other
researchers.

When the inconsistencies of general relativity with experimental evidence are
combined with the irreconcilable incompatibility of general relativity with unified
field theory and the catastrophic axiomatic inconsistencies due to lack of invari-
ance [11m], time has indeed arrived for the scientific community to admit the
need for fundamentally new vistas in our representation of gravitation, without
which research is turned from its intended thrilling pursue of “new” knowledge
to a sterile fanatic attachment to “past” knowledge.
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1.5 THE SCIENTIFIC IMBALANCE CAUSED BY
NONCANONICAL AND NONUNITARY
THEORIES

1.5.1 Introduction
When facing the limitations of special relativity and quantum mechanics for

the representation of extended, nonspherical, deformable and hyperdense parti-
cles and antiparticles under linear and nonlinear, local and nonlocal as well as
potential and nonpotential forces, a rather general attitude is that of attempting
their generalization via the broadening into noncanonical and nonunitary struc-
tures, while preserving the mathematics of their original formulation.

Despite the widespread publication of papers on theories with noncanonical
or nonunitary structures in refereed journals, including those of major physical
societies, it is not generally known that these broader theories are afflicted by
inconsistencies so serious to be also known as catastrophic.

Another basic objective of this monograph is the detailed identification of these
inconsistencies because their only known resolution is that presented in the next
chapters, that permitted by new mathematics specifically constructed from the
physical conditions considered.

In fact, the broadening of special relativity and quantum mechanics into non-
canonical and nonunitary forms, respectively, is necessary to exit form the class of
equivalence of the conventional formulations. The resolution of the catastrophic
inconsistencies of these broader formulations when treated via the mathematics
of canonical and unitary theories, then leaves no other possibility than that of
broadening the basic mathematics.

To complete the presentation of the foundations of the covering hadronic me-
chanics, in the next two sections we shall review the inconsistencies of noncanon-
ical and nonunitary theories. The remaining sections of this chapter are devoted
to an outline of hadronic mechanics so as to allow the reader to enter in a pro-
gressive way into the advanced formulations presented in the next chapters.

1.5.2 Catastrophic Inconsistencies of Noncanonical
Theories

As recalled in Section 1.2, the research in classical mechanics of the 20-th
century has been dominated by Hamiltonian systems, that is, systems admit-
ting their complete representation via the truncated Hamilton equations (1.2.2),
namely, the historical equations proposed by Hamilton in which the external
terms have been cut out.



72 RUGGERO MARIA SANTILLI

For the scope of this section, it is best to rewrite Eqs. (1.2.2) in the following
unified form (see monographs [9] for details)9

b = (bµ) = (r, p) = (rk, pk), (1.5.1a)

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
, (1.5.1b)

H = K(p) + V (t, r, p), (1.5.1c)

µ = 1, 2, 3, ..., 6, k = 1, 2, 3,

where H is the Hamiltonian, K is the kinetic energy, V is the potential energy,
ωµν is the canonical Lie tensor with explicit form

ωµν =
(

0 I3×3

−I3×3 0

)
(1.5.2)

and I3×3 = Diag(1, 1, 1) is the unit matrix.
In the above unified notation, the brackets of the time evolution can be written

dA

dt
= [A,H] =

∂A

∂bµ
× ωµν × ∂H

∂bν
, (1.5.3)

and they characterize a Lie algebra, as well known.
The above equations have a canonical structure, namely, their time evolution

characterizes a canonical transformation10,

bµ → b′µ(b), (1.5.4a)

ωµν → ∂b′µ

∂bρ
× ωρσ × ∂b′ν

∂bσ
≡ ωµν ; (1.5.4b)

and the theory possesses the crucial property of predicting the same numbers
under the same conditions at different times, a property generically referred to
as invariance, such as the invariance of the basic analytic equations under their
own time evolution

dbµ

dt
− ωµν × ∂H(t, b)

∂bν
= 0→

→ db′µ

dt
− ωµν × ∂H(t′, b′)

∂b′ν
= 0. (1.5.5)

9We continue to denote the conventional associative multiplication of numbers, vector fields, operators,
etc. with the notation A×B rather than the usual form AB, because the new mathematics necessary to
resolve the catastrophic inconsistencies studied in this chapter is based on various different generalizations
of the multiplication. As a consequence, the clear identification of the assumed multiplication will soon
be crucial for the understanding of the equations of this monograph.
10For several additional different but equivalent definitions of canonical transformations one may consult
Ref. [54a], pages 187-188.
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where the invariance is expressed by the preservation of the Lie tensor ωµν and
of the Hamiltonian H.

It is easy to predict that future research in classical mechanics will be dom-
inated by non-Hamiltonian systems, that is, systems that cannot be entirely
described by the Hamiltonian and require at least a second quantity for their
complete description.

Alternatively, we are referring to systems with internal forces that are partly of
potential type, represented by V , and partly of nonpotential type, thus requiring
new quantities for their representation.

We are also referring to the transition from exterior dynamical systems recalled
in Section 1.3 (systems of point-like particles moving in vacuum without colli-
sions under sole action-at-a-distance potential interactions) to interior dynamical
systems (extended, nonspherical and deformable particles moving within a resis-
tive medium with action-at-a-distance potential forces plus contact, nonpotential,
nonlocal, and integral forces).

As also recalled in Section 1.2, exterior dynamical systems can be easily rep-
resented with the truncated Hamilton equations, while the first representation of
the broader non-Hamiltonian systems is given precisely by the historical analytic
equations with external terms, Eqs. (1.3.2) that we now rewrite in the unified
form

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
+ Fµ(t, b, ḃ, ...), (1.5.6a)

Fµ = (0, Fk), µ = 1, 2, ..., 6, k = 1, 2, 3. (1.5.6b)

Nevertheless, as also recalled in Section 1.3, the addition of the external terms
creates serious structural problems since the brackets of the new time evolution

dA

dt
= (A,H,F ) =

∂A

∂bµ
× ωµν × ∂H

∂bν
+
∂A

∂bµ
× Fµ, (1.5.7)

violate the conditions to characterize an algebra (since they violate the right
distributive and scalar laws), let alone violate all possible Lie algebras, thus
prohibiting the studies of basic aspects, such as spacetime symmetries under
nonpotential forces.

As experienced by the author, when facing the latter problems, a rather natural
tendency is that of using coordinate transforms b → b′(b) to turn a systems
that is non-Hamiltonian in the b-coordinates into a Hamiltonian form in the b′-
coordinates,

dbµ

dt
− ωµν × ∂H(t, b)

∂bν
− Fµ(t, b, ḃ, ...) = 0→

→ db′µ

dt
− ωµν × ∂H ′(t, b′)

∂bν
= 0. (1.5.8)
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These transformations always exist under the necessary continuity and regu-
larity conditions, as guaranteed by Lie-Koening theorem of analytic mechanics or
the Darboux Theorem of the symplectic geometry) [9b].

This first attempt has no physical value because of excessive problems identified
in Section 1.2, such as: the lack of physical meaning of quantum formulations
in the b’-coordinates; the impossibility of placing a measuring apparatus in the
transformed coordinates; the loss of all known relativities due to the necessarily
nonlinear character of the transforms with consequential mapping of inertial into
noninertial frames; and other problems.

The above problems force the restriction of analytic representations of non-
Hamiltonian systems within the fixed coordinates of the experimenter, the so-
called direct analytic representations of Assumption 1.2.1 [9].

Under the latter restriction, the second logical attempt for quantitative treat-
ments of non-Hamiltonian systems is that of broadening conventional canonical
theories into a noncanonical form at least admitting a consistent algebra in the
brackets of the time evolution, even though the resulting time evolution of the
broader equations cannot characterize a canonical transformation.

As an illustration of these second lines of research, in 1978 the author wrote
for Springer-Verlag his first volume of Foundations of Theoretical Mechanics [9a]
devoted to the integrability conditions for the existence of a Hamiltonian rep-
resentation (the so-called Helmholtz’s conditions of variational selfadjointness).
The evident scope was that of identifying the limits of applicability of the theory
within the fixed coordinates of the experimenter.

A main result was the proof that the truncated Hamilton equations admit a
direct analytic representation in three space dimensions only of systems with po-
tential (variationally selfadjoint) forces,11 thus representing only a small part of
what are generally referred to as Newtonian systems.

In this way, monograph [9a] confirmed the need to enlarge conventional Hamil-
tonian mechanics within the fixed frame of the experimenter in such a way to ad-
mit a direct representation of all possible Newtonian systems verifying the needed
regularity and continuity conditions.

Along the latter line of research, in 1982 the author published with Springer-
Verlag his second volume of Foundations of Theoretical Mechanics [9b] for the
specifically stated objective of broadening conventional Hamiltonian mechanics in
such a way to achieve direct universality, that is, the capability of representing all
Newtonian systems (universality) in the fixed frame of the experimenter (direct
universality), while jointly preserving not only an algebra, but actually the Lie
algebra in the brackets of the time evolution.

11The truncated Hamilton equations admit analytic representations of nonconservative systems but only
in one dimension, which systems are essentially irrelevant for serious physical applications.
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These efforts gave birth to a broader mechanics called by the author Birkhoffian
mechanics in honor of the discoverer of the basic equations, G. D. Birkhoff [37],
which equations can be written in the unified form

dbµ

dt
= Ωµν(b)× ∂B(t, b)

∂bν
, (1.5.9)

where B(t, b) is called the Birkhoffian in order to distinguish it from the Hamil-
tonian (since B does not generally represent the total energy), and Ωµν is a
generalized Lie tensor, in the sense that the new brackets

dA

dt
= [A,B]∗ =

∂A

∂bµ
× Ωµν × ∂B

∂bν
, (1.5.10)

still verify the Lie algebra axioms (see Ref. [9b] for details).
Stated in different terms, the main efforts of monograph [54b] were to show

that, under the necessary continuity and regularity properties, the historical
Hamilton’s equations with external terms always admit a reformulation within
the fixed frame of the experimenter with a consistent Lie algebra in the brackets
of the time evolution,

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
+ Fµ(t, b, ...) ≡ Ωµν(b)× ∂B(t, b)

∂bν
. (1.5.11)

In this case, rather than being represented with H and F , non-Hamiltonian
systems are represented with B and Ω.

Monograph [9b] achieved in full the intended objective with the proof that
Birkhoffian mechanics is indeed directly universal for all possible well behaved
local-differential Newtonian systems, and admits the following generalized canon-
ical transformations,

Ωµν(b)→ ∂b′µ

∂bρ
× Ωρσ(b(b′))× ∂b′ν

∂bσ
≡ Ωµν(b′). (1.5.12)

Monograph [9b] concluded with the indication of the apparent full equivalence
of the Birkhoffian and Hamiltonian mechanics, since the latter is admitted as
a particular case of the former (when the generalized Lie tensor acquires the
canonical form), both theories are derivable from a variational principle, and
both theories admit similar transformation properties.

Since the generalized Lie tensor Ωµν and related brackets [A,B]∗ are antisym-
metric, we evidently have conservation laws of the type

dB

dt
= [B,B]∗ ≡ 0, (1.5.13)

Consequently, Birkhoffian mechanics was suggested in monograph [54b] for the
representation of closed-isolated non-Hamiltonian systems (such as Jupiter).
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The representation of open-nonconservative non-Hamiltonian systems required
the identification of a yet broader mechanics with a consistent algebra in the
brackets of the time evolution, yet such that the basic brackets are not anti-
symmetric. The solution was reached in monographs [38] via the Birkhoffian-
admissible mechanics with basic analytic equations

dbµ

dt
= ωµν × ∂H(t, b)

∂bν
+ Fµ(t, b, ...) ≡ Sµν(b)× ∂B(t, b)

∂bν
, (1.5.14)

where the tensor Sµν is Lie-admissible According to Santilli’s [39] realization
of Albert [40] abstract formulation, namely, in the sense that the generalized
brackets of the time evolution

dA

dt
= (A,B) =

∂A

∂bµ
× Sµν(b)× ∂B

∂bν
, (1.5.15)

verify all conditions to characterize an algebra, and their attached antisymmetric
brackets

[A,B]∗ = (A,B)− (B,A), (1.5.16)
characterize a generalized Lie algebra as occurring in Birkhoffian mechanics.

The representation of the open-nonconservative character of the equations was
then consequential, since the lack of antisymmetry of the brackets yields the
correct time rate of variation of the energy E = B

dE

dt
= (E,E) = Fk × vk, (1.5.17)

and the same occurs for all other physical quantities.
Monographs [38] then proved the direct universality of Birkhoffian-admissible

mechanics for all open-nonconservative systems, identified its transformation the-
ory and provided the following elementary, yet universal realization of the Lie-
admissible tensor S for B = H representing the total nonconserved energy

Sµν =
(

0 I
−I F/(∂H/∂p)

)
. (1.5.18)

Note that the Birkhoffian-admissible mechanics is structurally irreversible, in
the sense of being irreversible for all possible energies and Birkhoffian functions
since the basic Lie-admissible tensor is itself irreversible, S(t, b) 6= S(−t, b), thus
being particularly suited to represent irreversible systems.

However, studies conducted after the publication of monographs [9,38] revealed
the following seemingly innocuous feature:

LEMMA 1.5.1 [11b]: Birkhoffian and Birkhoffian-admissible mechanics are
noncanonical theories, i.e., the generalized canonical transformations, are non-
canonical,

ωµν → ∂b′µ

∂bρ
× ωρσ × ∂b′ν

∂bσ
≡ Ωµν(b′) 6= ωµν . (1.5.19)
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It is important to understand that Birkhoffian and Birkhoffian-admissible me-
chanics are mathematically attractive, but they are not recommended for physical
applications, both classically as well as foundations of operator theories.

The canonical Lie tensor has the well known explicit form (1.5.2). Therefore,
the diagonal matrix I3×3 is left invariant by canonical transformations. But I3×3

is the fundamental unit of the basic Euclidean geometry. As such, it represents
in an abstract and dimensionless form the basic units of measurement, such as

I3×3 = Diag.(1cm, 1cm, 1cm). (1.5.20)

By their very definition, noncanonical transformations do not preserve the basic
unit, namely, they are transformations of the representative type (with arbitrary
new values)

I3×3 = Diag.(1cm, 1cm, 1cm)→
→ U × I3×3 × U t = Diag.(3.127 cm, e−212 cm, log 45 cm), (1.5.21a)

U × U t 6= I, (1.5.21b)

where t stands for transposed. We, therefore, have the following important:

THEOREM 1.5.1 [53]: Whether Lie or lie-admissible, all classical noncanon-
ical theories are afflicted by catastrophic mathematical and physical inconsisten-
cies.

Proof. Noncanonical theories do not leave invariant under time evolution the
basic unit. This implies the loss under the time evolution of the base field on
which the theory is defined. Still in turn, the loss in time of the base field implies
catastrophic mathematical inconsistencies, such as the lack of preservation in
time of metric spaces, geometries, symmetries, etc., since the latter are defined
over the field of real numbers.

Similarly, noncanonical theories do not leave invariant under time evolution the
basic units of measurements, thus being inapplicable for consistent measurements.
The same noncanonical theories also do not possess time invariant numerical
predictions, thus suffering catastrophic physical inconsistencies. q.e.d.

In conclusion, the regaining of a consistent algebra in the brackets of the time
evolution, as it is the case for Birkhoffian and Birkhoffian-admissible mechanics,
is not sufficient for consistent physical applications because the theories remain
noncanonical. In order to achieve a physically consistent representation of non-
Hamiltonian systems, it is necessary that

1) The analytic equations must be derivable from a first-order variational prin-
ciple, as necessary for quantization;

2) The brackets of the time evolution must characterize a consistent algebra
admitting exponentiation to a transformation group, as necessary to formulate
symmetries; and
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3) The resulting theory must be invariant, that is, must admit basic units and
numerical predictions that are invariant in time, as necessary for physical value.

Despite the large work done in monographs [9,38], the achievement of all the
above conditions required the author to resume classical studies from their foun-
dations.

These third efforts finally gave rise to the new Hamilton-Santilli iso-, geno-
and hypermechanics [10b] that do verify all conditions 1), 2) and 3), thus being
suitable classical foundations of hadronic mechanics, as reviewed in Chapter 3.

However, the joint achievement of conditions 1), 2) and 3) for non-Hamilto-
nian systems required the prior construction of basically new mathematics, [10a]
today known as Santilli’s iso-, geno- and hyper-mathematics, as also reviewed in
Chapter 3.

This section would be grossly incomplete and potentially misleading without a
study of requirement 1), with particular reference to the derivability of analytic
equations from a “first-order” variational principle.

Classical studies of non-Hamiltonian systems are essential, not only to identify
the basic methods for their treatment, but above all to identify quantization
channels leading to unique and unambiguous operator formulations.

Conventional Hamiltonian mechanics provides a solid foundation of quantum
mechanics because it is derivable from the variational principle that we write in
the unified notation [9a]

δA◦ = δ

∫
[R◦µ(b)× dbµ −H × dt] =

= δ

∫
(pk × drk −H × dt), (1.5.22)

where the functions R◦µ have the canonical expression

(R◦µ) = (pk, 0), (1.5.23)

under which expression the canonical tensor assumes the realization

ωµν =
∂R◦ν
∂bµ

−
∂R◦µ
∂bν

, (1.5.24a)

(ωµν) = (ωαβ)−1. (1.5.24b)

As it is well known, the foundations for quantization are given by the Hamilton-
Jacobi equations here expressed in the unified notation of Ref. [9a]

∂A◦

∂t
= −H, ∂A◦

∂bµ
= R◦µ, (1.5.25)
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that can be written explicitly in the familiar forms

∂A◦

∂t
+H = 0, (1.4.26a)

∂A◦

∂rk
− pk = 0, (1.5.26b)

∂A◦

∂pk
= 0, (1.5.26c)

The use of the naive quantization

A◦ → −i× ~× `n ψ, (1.5.27)

yields Schrödinger’s equations in a unique and unambiguous way

∂A◦

∂t
+H = 0→ −i× h̄∂ψ

∂t
−H × ψ = 0, (1.5.28a)

∂A◦

∂rk
= pk → −i× ~× ∂ψ

∂rk
− pk × ψ = 0, (1.5.28b)

∂A◦

∂pk
= 0→ ∂ψ

∂pk
= 0. (1.4.28c)

The much more rigorous symplectic quantization yields exactly the same results
and, as such, it is not necessary for these introductory notes.

A feature crucial for quantization is Eq. (1.5.26c) from which it follows that
the canonical action A◦ is independent from the linear momentum, i.e.,

A◦ = A◦(t, r). (1.5.29)

an occurrence generally (but not universally) referred in the literature as charac-
terizing a first-order action functional.

From the naive quantization it follows that, in the configuration representation,
the wave function originating from first-order action functionals is independent
from the linear momentum (and, vice-versa, in the momentum representation it
is independent from the coordinates),

ψ = ψ(t, r), (1.5.30)

which property is crucial for the axiomatic structure of quantum mechanics, e.g.,
for the correct formulation of Heisenberg’s uncertainty principle, causality, Bell’s
inequalities, etc.

A serious knowledge of hadronic mechanics requires the understanding of the
reason Birkhoffian mechanics cannot be assumed as a suitable foundations for
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quantization. Birkhoff’s equations can indeed be derived from the variational
principle (see monograph [9b] for details)

δA = δ

∫
[Rµ(b)× dbµ −B × dt], (1.5.31)

where the new functions Rµ(b) have the general expression

(Rµ(b)) = (Ak(t, r, p), Bk(t, r, p)), (1.5.32)

subject to the regularity condition that Det. Ω 6= 0, under which Birkhoff’s tensor
assumes the realization

Ωµν(b) =
∂Rν
∂bµ

− ∂Rµ
∂bν

, (1.5.33a)

(Ωµν) = (Ω)αβ)−1, (1.5.33b)

with Birkhoffian Hamilton-Jacobi equations [9b]

∂A

∂t
= −B, ∂A

∂bµ
= Rµ. (1.5.34)

As one can see, Birkhoffian expressions (1.5.31)–(1.5.33) appear to be greatly
similar to the corresponding Hamiltonian forms (1.4.22)–(1.4.26). Nevertheless,
there is a fundamental structural difference between the two equations given by
the fact that the Birkhoffian action does indeed depend on the linear momenta,

A = A(t, r, p), (1.5.35)

a feature generally referred to as characterizing a second-order action functional.
As a consequence, the “wavefunction” resulting from any quantization of Birkhof-

fian mechanics also depends on the linear momentum,

ψ = ψ(t, r, p), (1.5.36)

by characterizing an operator mechanics that is beyond our current technical
knowledge for quantitative treatment, since such a dependence would require a
dramatic restructuring of all quantum axioms.

In fact, the use of a naive quantization,

A(t, r, p)→ −i× ~× `n ψ(t, r, p), (1.5.37)

characterizes the following maps

∂A

∂t
+B = 0→ −i× h̄∂ψ

∂t
−B × ψ = 0, (1.5.38a)

∂A

∂bµ
−Rµ = 0→ −i× ~× ∂ψ

∂bµ
−Rµ × ψ = 0. (1.5.38b)



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 81

A first problem is that the latter equations are generally nonlinear and, as
such, they cannot be generally solved in the r- and p-operators. This causes
the emergence of an operator mechanics in which it is impossible to define basic
physical quantities, such as the linear momentum or the angular momentum, with
consequential lack of currently known physical relevance at this moment.

On more technical grounds, in the lifting of Hamiltonian into Birkhoffian me-
chanics, there is the replacement of the r-coordinates with the R-functions. In
fact, the Birkhoffian action has the explicit dependence on the R-functions,
A = A[t, R(b)] = A′(t, r, p). As such, the Birkhoffian action can indeed be
interpreted as being of first-order, but in the R-functions, rather than in the
r-coordinates.

Consequently, a correct operator image of the Birkhoffian mechanics is given
by the expressions (first derived in Ref. [11b])

i× ~× ∂ψ[t, R(b)]
∂t

= B × ψ[t, R(b)], (1.5.39a)

−i× ~× ∂ψ[t, R(b)]
∂bµ

= Rµ(b)× ψ[t, R(b)]. (1.5.39b)

As we shall see in Chapter 3, the above equations characterize a covering of
hadronic (rather than quantum) mechanics, in the sense of being structurally
more general, yet admitting hadronic mechanics as a particular case.

Even though mathematically impeccable, intriguing, and deserving further
studies, the mechanics characterized by Eqs. (1.5.39) is excessively general for
our needs, and its study will be left to the interested reader.

The above difficulties identify quite precisely the first basic problem for the
achievement of a physically consistent and effective formulation of hadronic me-
chanics, consisting in the need of constructing a new mathematics capable of
representing CLOSED (that is, isolated) non-Hamiltonian systems via a first-
order variational principle (as required for consistent quantization), admitting
antisymmetric brackets in the time evolution (as required by conservation laws),
and possessing time invariant units and numerical predictions (as required for
physical value).

The need to construct a new mathematics is evident from the fact that no pre-
existing mathematics can fulfill the indicated needs. As we shall see in Chapter 3,
Santilli’s isomathematics [10a] has been constructed precisely for and does indeed
solve these specific problems.

The impossibility of assuming the Birkhoffian-admissible mechanics as the
foundation of operator formulation for OPEN (that is, nonconservative) non-
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Hamiltonian systems is clearly established by the fact that said mechanics is not
derivable from a variational principle.12

The latter occurrence identifies a much more difficult task given by the need to
construct a yet broader mathematics capable of representing open non-Hamiltonian
systems via a first-order variational principle (as required for consistent quanti-
zation), admitting non-antisymmetric brackets in the time evolution (as required
by non-conservation laws), and possessing time invariant units and numerical
predictions (as required by physical value).

The lack of any pre-existing mathematics for the fulfillment of the latter tasks
is beyond credible doubt. Rather than adapting nature to pre-existing mathe-
matics, the author has constructed a yet broader mathematics, today known as
Santilli’s genomathematics [10a], that does indeed achieve all indicated objec-
tives, as outlined in Chapter 4.

Readers interested in the depth of knowledge are suggested to meditate a
moment on the implications of the above difficulties. In fact, these difficulties have
caused the impossibility in the 20-th century to achieve a meaningful operator
formulation of contact, nonconservative and nonpotential interactions.

A consequence has been the widespread belief that nonpotential interactions
“do not exist” in the particle world, a view based on the lack of existence of their
operator representation, with negative implications at all levels of knowledge,
such as the impossibility of achieving a meaningful understanding of the origin
of irreversibility.

As a consequence, the resolution of the difficulties in the quantization of non-
potential interactions achieved by hadronic mechanics implies a rather profound
revision of most of the scientific views of the 20-th century, as we shall see in the
subsequent chapters.

1.5.3 Catastrophic Inconsistencies of Nonunitary
Theories

Once the limitations of quantum mechanics are understood (and admitted),
another natural tendency is to exit from the class of equivalence of the theory
via suitable generalizations, while keeping the mathematical methods used for
quantum mechanics.

It is important for these studies to understand that these efforts are afflicted by
catastrophic mathematical and physical inconsistencies equivalent to those suf-
fered by classical noncanonical formulations based on the mathematics of canon-
ical theories.

12Because conventional variations δ can only characterize antisymmetric tensors of type ωµν or Ωµν and
cannot characterize non-antisymmetric tensors such as the Lie-admissible tensor Sµν .



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 83

The author has dedicated his research life to the construction of axiomatically
consistent and invariant generalizations of quantum mechanics for the treatment
of nonlinear, nonlocal, and nonpotential effects because they are crucial for the
prediction and treatment of new clean energies and fuels.

In this section we review the foundations of these studies with the identifica-
tion, most importantly, of the failed attempts in the hope of assisting receptive
colleagues in avoiding the waste of their time in the study of theories that are
mathematically significant, yet cannot possibly have real physical value.

To begin, let us recall that a theory is said to be equivalent to quantum mechan-
ics when it can be derived from the latter via any possible unitary transform on a
conventional Hilbert space H over the field of complex numbers C = C(c, +, ×),

U × U † = U † × U = I, (1.5.40)

under certain conditions of topological smoothness and regularity hereon ignored
for simplicity, where “×” represents again the conventional associative product
of numbers or matrices, U × U † ≡ UU †.

As a consequence, a necessary and sufficient condition for a theory to be in-
equivalent to quantum mechanics is that it must be outside its class of unitary
equivalence, that is, the new theory is connected to quantum mechanics via a
nonunitary transform

U × U † 6= I. (1.5.41)

generally defined on a conventional Hilbert space H over C.
Therefore, true generalized theories must have a nonunitary structure, i.e.,

their time evolution must verify law (1.5.41), rather than (1.5.40).13Deformed
brackets

During his graduate studies in physics at the University of Torino, Italy, and
as part of his Ph. D. thesis, Santilli [41-43] published in 1967 the following (p,
q)-parametric deformation of the Lie product A×B−B×A, the first in scientific
records

(A,B) = p×A×B − q ×B ×A =

= m× (A×B −B ×A) + n× (A×B +B ×A) =

= m× [A,B] + n× {A,B}, (1.5.42)

where p = m+ n, q = n−m and p± q are non-null parameters.14

13The reader should be aware that there exist in the literature numerous claims of “generalizations of
quantum mechanics” although they have a unitary time evolution and, consequently, do not constitute
true generalizations. All these “generalizations” will be ignored in this monograph because they will not
resist the test of time.
14In 1985, Biedenharn [44] and MacFairlane [45] published their papers on the simpler q-deformations

A×B − q ×B ×A
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without a quotation of the origination of the broader form by the author [41] of 1967

p×A×B − q ×B ×A

Biedenharn was fully aware of origination [41] as established by the fact that Biedenharn had been
part of a DOE research grant application jointly with the author and others, precisely on the latter
deformations, application filed two years before the publication of paper [44] (see the full documentation
in Refs. [93,94]). Unfortunately for him. Biedenharn was unable to quote origination [41] in his paper
[44] for reasons explained below. Similarly, MacFairlane had been made aware of the (p, q)-deformations
by the author himself years before paper [45] (see, again, the documentation in [93,94]), but was requested
to abstein from proper quotation.

Ironically, by the time Biedenharn and MacFairlane published their papers, the author had already
abandoned the field he initiated two decades earlier because of catastrophic inconsistencies studied in
this section. the author met Biedenharn the last time prior to his departure at the Wigner Symposium
held at Oxford University, England, in 1993. During that meeting Biedenharn confessed to the author
that he had suppressed origination [41] of the q-deformations in his paper [44] because of “peer pressures
from the Cantabridgean area.” Biedenharn also confessed to the author that, following the publication
of his paper [44], he became aware of the catastrophic inconsistencies of q-deformations, and confirmed
that the “q-deformations have no physical value as treated so far.”

Following the above behavior by Biedenharn and MacFairlane, the editors in the late 1980s and
early 1990s of the American, British, Italian and other physical societies refused to quote paper [41] in
the thousands of papers in the field, despite clear documentation of prior paternity. Because of these
occurrences, the author acquired the dubbing of the most plagiarized physicist of the 20-th century. In
reality, the author expressed his appreciation to both Biedenharn and MacFairlane because he did not
want to have his name associated to thousands of papers all catastrophically inconsistent.

The author remembers Larry Biedenharn as a very brilliant scientist with a pleasant personality
and a great potential for basic discoveries. Unfortunately, he was unable to avoid being controlled by
organized interests in physics as a condition for an academic position. Consequently, he did indeed
achieve a brilliant chair in physics at Duke University, but at the prize of being mainly remembered
as an expert in the rotational, symmetry with some ethical overtone for plagiarisms. By contrast, the
author trashed out any desire for a political chair at Harvard University as a necessary condition for
freedom in basic research (see book [93] and the 1132 pages of documentation [94]).

The following episode illustrates the above lines. In the early 1980s, the author was working at the
foundation of the isotopies of the Galilei and Einstein relativities, the lifting of the rotational symmetry
to represent the transition from stationary orbits with the usual conserved angular momentum (exact
O(3) symmetry), to unstable orbits with varying angular momentum (exact O(3)-admissible symmetry),
discussed in details in Elements of Hadronic Mechanics, Volume II, with a brief review in Chapters 3 and
4 of this volume. To proceed, the author phoned the biggest U. S. expert in the rotational symmetry,
Larry Biedenharn, and asked to deliver an seminar at his department to hear his critical comments.
With his innate courtesy, Biedenharn quickly agreed, and set the date of the seminar. The author and
his family then drove for two days, from Cambridge, massachusetts, to Durham, North Carolina, for the
meeting.

At the time of the seminar, the large lecture room at Duke University was empty (an occurrence
often experienced by the author), with the sole exception of Larry Biedenharn and the chairman of
the department (the author is unable to remember names of insignificant persons). Following routine
presentations, the author’s seminar lasted only a few seconds consisting in drawing in the blackboard a
stable orbit of a satellite around Earth with exact O(3) symmetry, and then drawing a decaying orbit of
the same satellite during re-entry in Earth’s atmosphere with ”continuously decaying angular momentum
and consequential breaking of the rotational symmetry.” At the mere mention of this physical evidence,
the department chairman went into a rage of nonscientific nonsense preventing the author from proffering
any additional word for the unspoken but trivial reason that the breaking of the rotational symmetry
implies the collapse of Einsteinian doctrines with consequential ;loss of money, prestige and power. In
the middle of said rage, the author broke the chalk and left the room.

The author sensed Biedenharn’s inner tragedy for, on one side, being sincerely interested in the topic
while, on the other side, being forced to accept the control of his science to keep his academic job. For
this reason, the author and his wife accepted the kind dinner invitation by the Biedenharns, but did
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By remembering that the Lie product characterizes Heisenberg’s equations,
the above generalized product was submitted as part of the following parametric
generalization of Heisenberg’s equations in its finite and infinitesimal forms [41,42]

A(t) = U ×A(0)× U † = ei×H×q×t ×A(0)× e−i×t×p×H , (1.5.43a)

i dA/dt = (A,H) = p×A×H − q×H×A, (1.5.43b)

with classical counterpart studied in Ref. [43].
After an extensive research in European mathematics libraries (conducted prior

to the publication of Ref. [41] with the results listed in the same publication), the
brackets (A,B) = p×A×B−q×B×A resulted to be Lie-admissible according to
A. A. Albert [40], that is, the brackets are such that their attached antisymmetric
product

[A,̂B] = (A,B)− (B,A) = (p+ q)× [A,B], (1.5.44)

characterizes a Lie algebra.
Jointly, brackets (A,B) are Jordan admissible also according to Albert, in the

sense that their attached symmetric product,

{A,̂B} = (A,B) + (B,A) = (p+ q)× {A,B}, (1.5.45)

characterizes a Jordan algebra.
At that time (1967), only three articles on this subject had appeared in Lie-

and Jordan-admissibility in the sole mathematical literature (see Ref. [41]).
In 1985, Biederharn [44] and MacFairlane [45] published their papers on the

simpler q-deformations A×B− q×B×A without a quotation of the origination
of the broader form p×A×B − q ×B ×A by Santilli [41] in 1967.

Regrettably, Biedenharn and MacFairlane abstained from quoting Santilli’s
origination of twenty years earlier despite their documented knowledge of such
an origination.

For instance, Biedenharn and Santilli had applied for a DOE grant precisely
on the same deformations two years prior to Biedenharn’s paper of 1985, and
Santilli had personally informed MacFairlaine of said deformations years before
his paper of 1985.

The lack of quotation of Santilli’s origination of q-deformations resulted in a
large number of subsequent papers by numerous other authors that also abstained
from quoting said origination (see representative contributions [46-49]), for which

run away from Duke University as fast as possible early the following morning. Had Larry Biedenharn
been able to cut out the organized scientific crime at his department (where ”crime” is intended in the
latin sense of damage to society for equivocal personal gains), he would have been remembered for a
major structural advance in his field. The episode reinforced the soundedness of the author’s decision
to have trashed out Harvard University by the time of this episode as a necessary condition for freedom
of scientific inquiries.
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reason Santilli has been often referred to as the “most plagiarized physicist of the
20-th century”.

Ironically, at the time Biedenharn and MacFairlane published their paper on q-
deformations, Santilli had already abandoned them because of their catastrophic
mathematical and physical inconsistencies studied in this Section.

In 1978, when at Harvard University, Santilli proposed the following operator
deformation of the Lie product [Ref. [50], Eqs. (4.15.34) and (4.18.11)],

(A,̂B) = ACB −B BA =

= A× P ×B −B ×Q×A =

= (A×T×B −B×T×A) + (A×W×B +B×W×A) =

= [A,̂B] + {A,̂B}, (1.5.46)

where P = T +W,Q = W − T and P ±Q are, this time, fixed non-null matrices
or operators.

Evidently, product (1.5.46) remains jointly Lie-admissible and Jordan-admis-
sible because the attached antisymmetric and symmetric brackets,

[A,̂B] = (A,̂B)− (B,̂A) = A× T ×B −B × T ×A, (1.5.47a)

{A,̂B} = (A,̂B) + (B,̂A) = A×W ×B +B ×W ×A, (1.5.47b)

characterizes a Lie-Santilli and Jordan-Santilli isoalgebra (see Chapter 4 for de-
tails).

The reader should be aware that the following alternative versions of product
(1.5.46),

P ×A×B −Q×B ×A, (1.5.48a)

A×B × P −B ×A×Q, (1.5.48b)

do not constitute an algebra since the former (latter) violates the left (right)
distributive and scalar laws [50].

The above operator deformations of the Lie product was also submitted in
the original proposal [50] of 1978 as the fundamental equations of hadronic me-
chanics via the following broader operator Lie-admissible and Jordan-admissible
generalization of Heisenberg’s equations in its finite and infinitesimal forms15

A(t) = U×A(0)×U † = ei×H×Q×t×A(0)×e−i×t×P×H , (1.5.49a)

15The author would like to be buried in Florida, the land he loved most, and have Eq. (1.5.49b)
reproduced in his tombstone as follows:

Ruggero Maria Santilli
Sept. 8, 1935 - xxx, xx, xxxx

i dA/dt = ACH −H BA.
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i dA/dt = (A,̂H) = ACH −H BA =

= A× P ×H −H ×Q×A, (1.5.49b)

P = Q†, (1.5.49c)

which equations, as we shall see in Chapter 4, are the fundamental equations of
hadronic mechanics following proper mathematical treatment.

It is an instructive exercise for the reader interested in learning the foundation
of hadronic mechanics to prove that:

1) Time evolutions (1.5.43) and (1.5.49) are nonunitary, thus being outside the
class of unitary equivalence of quantum mechanics;

2) The application of a nonunitary transform R×R† 6= I to structure (1.5.43)
yields precisely the broader structure (1.5.49) by essentially transforming the
parameters p and q into the operators

P = p× (R×R†)−1, Q = q × (R×R†)−1; (1.5.50)

3) The application of additional nonunitary transforms S×S† 6= I to structure
(1.5.50) preserves its Lie-admissible and Jordan-admissible character, although
with different expressions for the P and Q operators.

The above properties prove the following:

LEMMA 1.5.2 [36]: General Lie-admissible and Jordan-admissible laws (1.5.49)
are “directly universal” in the sense of containing as particular cases all infinitely
possible nonunitary generalizations of quantum mechanical equations (“universal-
ity”) directly in the frame of the observer (“direct universality”), while admitting
a consistent algebra in their infinitesimal form.

The above property can be equally proven by noting that the product (A,̂B)
is the most general possible “product” of an “algebras” as commonly understood
in mathematics (namely, a vector space with a bilinear composition law verifying
the right and left distributive and scalar laws).

In fact, the product (A,̂B) constitutes the most general possible combination of
Lie and Jordan products, thus admitting as particular cases all known algebras,
such as associative algebras, Lie algebras, Jordan algebras, alternative algebras,
supersymmetric algebras, Kac-Moody algebras, etc.

Despite their unquestionable mathematical beauty, theories (1.5.43) and (1.5.49)
possess the following catastrophic physical and mathematical inconsistencies:

Also, the author would like his coffin to be sufficiently heavy so as to avoid floating when Florida will
be submerged by the now inevitable melting of the polar ice. The author wants Eq. (1.5.49b) in his
tombstone because, in view of its direct universality, it will take centuries to achieve a broader description
of nature equally invariant and equally based on the axioms of a field, particularly when said equation
is formulated via the multi-valued hyperstructures of Chapter 5, Eqs. (5.3).
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THEOREM 1.5.2 [36] (see also Refs. [51-58]): All theories possessing a nonuni-
tary time evolution formulated on conventional Hilbert spaces H over conventional
fields of complex numbers C(c, +, ×) do not admit consistent physical and math-
ematical applications because:

1) They do not possess invariant units of time, space, energy, etc., thus lacking
physically meaningful application to measurements;

2) They do not conserve Hermiticity in time, thus lacking physically meaningful
observables;

3) They do not possess unique and invariant numerical predictions;
4) They generally violate probability and causality laws; and
5) They violate the basic axioms of Galileo’s and Einstein’s relativities.
Nonunitary theories are also afflicted by catastrophic mathematical inconsis-

tencies.

The proof of the above theorem is essentially identical to that of Theorem 1.5,1
(see Ref. [36] for details). Again, the basic unit is not an abstract mathematical
notion, because it embodies the most fundamental quantities, such as the units
of space, energy, angular momentum, etc.

The nonunitary character of the theories here considered then causes the lack of
conservation of the numerical values of such units with consequential catastrophic
inapplicability of nonunitary theories to measurements.

Similarly, it is easy to prove that the condition of Hermiticity at the initial
time,

(〈φ| ×H†)× |ψ〉 ≡ 〈φ| × (H × |ψ〉), H = H†, (1.5.51)

is violated at subsequent times for theories with nonunitary time evolution when
formulated on H over C. This additional catastrophic inconsistency (known as
Lopez’s lemma [52,53]), can be expressed by

[〈ψ| × U † × (U × U †)−1 × U ×H × U †]× U |ψ〉 =

= 〈ψ| × U † × [(U ×H × U †)× (U × U †)−1 × U |ψ〉] =

= (〈ψ̂ × T ×H ′†)× |ψ̂〉 = 〈ψ̂| × (Ĥ × T × |ψ̂〉), (1.5.52a)

|ψ̂〉 = U×|ψ〉, T = (U×U †)−1 = T †, (1.5.52b)

H ′† = T−1×Ĥ×T 6= H. (1.5.52c)

As a result, nonunitary theories do not admit physically meaningful observables.
Assuming that the preceding inconsistencies can be by-passed with some ma-

nipulation, nonunitary theories still remain with additional catastrophic incon-
sistencies, such as the lack of invariance of numerical predictions.
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To illustrate this additional inconsistency, suppose that the considered non-
unitary theory is such that, at t = 0 sec, U×U †

[t=0] = 1, at t = 15 sec, U×U †
[t=15] =

15, and the theory predicts at time t = 0 sec, say, the eigenvalue of 2 eV,

H|t=0 × |ψ >= 2 eV × |ψ > . (1.5.53)

It is then easy to see that the same theory predicts under the same conditions
the different eigenvalue 30 eV at t = 15 sec, thus having no physical value of any
type. In fact, we have

U × U †|t=0 = I, U × U †|t=15 = 15, (1.5.54a)

U×H×|ψ〉 = (U×H×U †)×(U×U †)−1×(U×|ψ〉) =

= H ′×T×|ψ̂〉 = U×E×|ψ〉 = E×(U×|ψ〉) = E× |ψ̂〉,
H ′ = U×H×U †, T = (U×U †)−1,

(1.5.54b)

H ′ × |ψ̂〉 |t=0= 2C× |ψ̂〉 |t=0, T = 1 |t=0, (1.4.54c)

H ′ × |ψ̂〉 |t=15= 2C×(U×U †)×|ψ̂〉 |t=15=

= 30C× |ψ̂〉 |t=15 .
(1.5.54d)

Probability and causality laws are notoriously based on the unitary character
of the time evolution and the invariant decomposition of the unit.

Their violation for nonunitary theories is then evident. It is an instructive ex-
ercise for the reader interested in learning hadronic mechanics, superconductivity
and chemistry to identify a specific example of nonunitary transforms for which
the effect precedes the cause.

The violation by nonunitary theories of the basic axioms of Galileo’s and Ein-
stein’s relativities is so evident to require no comment.

An additional, most fundamental inconsistency of the theories considered is
their noninvariance, that can be best illustrated with the lack of invariance of the
general Lie-admissible and Jordan-admissible laws (1.5.49).

In fact, under nonunitary transforms, we have, e.g., the lack of invariance of
the Lie-admissible and Jordan-admissible product,

U × U † 6= I (1.5.55a)

U×(A,̂B)×U † = U×(ACB −B BA)×U † = (U×A×U †)×
×[(U×U−1)×(U×P×U †)×(U×U †)−1]×(U×B×U †)−
−(U×B×U †)×[(U×U−1)×(U×Q×U †)×(U×U †)−1]×

×(U×A×U †) = A′×P ′×B′ −B′×Q′×A′ =
= A′ C′ B′ −B′ B′ A′.

(1.5.55b)
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The above rules confirm the preservation of a Lie-admissible structure under the
most general possible transforms, thus confirming the direct universality of laws
(1.4.49) as per Theorem 1.4.2. The point is that the formulations are not invariant
because

P ′ = (U × U−1)× (U ×Q× U †)× (U × U †)−1 6= P, (1.5.56a)

Q′ = (U × U−1)× (U ×Q× U †)× (U × U †)−1 6= Q, (1.5.56b)

that is, because the product itself is not invariant.
By comparison, the invariance of quantum mechanics follows from the fact that

the associative product “×” is not changed by unitary transforms

U × U † = U † × U = I, (1.5.57a)

A×B → U × (A×B)× U † =

= (U ×A× U †)× (U × U †)−1 × (U ×B × U †) = A′ ×B′. (1.5.57b)

Therefore, generalized Lie-admissible and Jordan-admissible theories (1.5.49)
are not invariant because the generalized products “C” and “B” are changed by
nonunitary transformations, including the time evolution of the theory itself. The
same results also holds for other nonunitary theories, as the reader is encouraged
to verify.

The mathematical inconsistencies of nonunitary theories are the same as those
of noncanonical theories. Recall that mathematics is formulated over a given field
of numbers. Whenever the theory is nonunitary, the first noninvariance is that
of the basic unit of the field.

The lack of conservation of the unit then causes the loss of the basic field of
numbers on which mathematics is constructed. It then follows that the entire
axiomatic structure as formulated at the initial time, is no longer applicable at
subsequent times.

For instance, the formulation of a nonunitary theory on a conventional Hilbert
space has no mathematical sense because that space is defined over the field of
complex numbers.

The loss of the latter property under nonunitary transforms then implies the
loss of the former. The same result holds for metric spaces and other mathematics
based on a field.

In short, the lack of invariance of the fundamental unit under nonunitary time
evolutions causes the catastrophic collapse of the entire mathematical structure,
without known exception.

The reader should be aware that the above physical and mathematical inconsis-
tencies apply not only for Eqs. (1.5.49) but also for a large number of generalized
theories, as expected from the direct universality of the former.
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Figure 1.21. The reproduction of another “vignetta” presented by the author in 1978 to his
colleagues at the Lyman Laboratory of Physics at Harvard University as part of his research
under DOE (see Refs. [93,94] for details). This “vignetta” is a complement of that of Figure 1.3
on the need to maintain the external terms in the historical analytic equations because, when
properly formulated, said equations yield covering, directly universal. Lie-admissible theories
because Lie-admissible algebras contain as particular cases all algebras as defined in mathematics
(universality) without the us of any transformation (direct universality). Finally, this “vignetta”
was intended to illustrate that all theories preferred by the Lyman colleagues at the time,
including symmetry breakings, supersymmetries, etc., were mere particular cases of the universal
Lie-admissible formulations.

It is of the essence to identify in the following at least the most representative
cases of physically inconsistent theories, to prevent their possible application (see
Ref. [36] for details):

1) Dissipative nuclear theories [13] represented via an imaginary potential in
non-Hermitian Hamiltonians,

H = H0 = iV 6= H† (1.5.58)

lose all algebras in the brackets of their time evolution (requiring a bilinear prod-
uct) in favor of the triple system,

i× dA/dt = A×H −H† ×A = [A,H,H†]. (1.5.59)

This causes the loss of nuclear notions such as “protons and neutrons” as con-
ventionally understood, e.g., because the definition of their spin mandates the
presence of a consistent algebra in the brackets of the time evolution.

2) Statistical theories with an external collision term C (see Ref. [59] and
literature quoted therein) and equation of the density

i dρ/dt = ρ�H = [ρ,H] + C, H = H†, (1.5.60)



92 RUGGERO MARIA SANTILLI

violate the conditions for the product ρ�H to characterize any algebra, as well
as the existence of exponentiation to a finite transform, let alone violating the
conditions of unitarity.

3) The so-called “q-deformations” of the Lie product (see, e.g., [64,65,66–69]
and very large literature quoted therein)

A×B − q ×B ×A, (1.5.61)

where q is a non-null scalar, that are a trivial particular case of Santilli’s (p, q)-
deformations (1.4.42).

4) The so-called “k-deformations” [60-63] that are a relativistic version of the
q-deformations, thus also being a particular case of general structures (1.4.42).

5) The so-called “star deformations” [64] of the associative product

A ? B = A× T ×B, (1.5.62)

where T is fixed, and related generalized Lie product

A ? B −B ? A, (1.5.63)

are manifestly nonunitary and coincide with Santilli’s Lie-isotopic algebras [50].
6) Deformed creation-annihilation operators theories [65,66].
7) Nonunitary statistical theories [67].
8) Irreversible black holes dynamics [68] with Santilli’s Lie-admissible structure

(1.4.46) [103,104].
9) Noncanonical time theories [6971].
10) Supersymmetric theories [104] with product

(A,B) = [A,B] + {A,B} =

= (A×B −B ×A) + (A×B +B ×A), (1.5.64)

are an evident particular case of Santilli’s Lie-admissible product (1.4.46) with
T = W = I.

11) String theories (see ref. [58] and literature quoted therein) generally have a
noncanonical structure due to the inclusion of gravitation with additional catas-
trophic inconsistencies when including supersymmetries.

12) The so-called squeezed states theories [73,74] due to their manifest nonuni-
tary character.

13) All quantum groups (see, e.g., refs. [75-77]) with a nonunitary structure.
14) Kac-Moody superalgebras [78] are also nonunitary and a particular case of

Santilli’s Lie-admissible algebra (1.4.46) with T = I and W a phase factor.
Numerous additional theories are also afflicted by the catastrophic inconsis-

tencies of Theorem 1.5.2, such as quantum groups, quantum gravity, and other
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theories the reader can easily identify from the departures of their time evolution
from the unitary law.

All the above theories have a nonunitary structure formulated via conventional
mathematics and, therefore, are afflicted by the catastrophic physical and math-
ematical inconsistencies of Theorem 1.5.2.

Additional generalized theories were attempted via the relaxation of the linear
character of quantum mechanics [56]. These theories are essentially based on
eigenvalue equations with the structure

H(t, r, p, |ψ〉)× |ψ〉 = E × |ψ〉, (1.5.65)

(i.e., H depends on the wavefunction).
Even though mathematically intriguing and possessing a seemingly unitary

time evolution, these theories also possess rather serious physical drawbacks,
such as: they violate the superposition principle necessary for composite systems
such as a hadron; they violate the fundamental Mackay imprimitivity theorem
necessary for the applicability of Galileo’s and Einstein’s relativities and possess
other drawbacks [36] so serious to prevent consistent applications.

Yet another type of broader theory is Weinberg’s nonlinear theory [79] with
brackets of the type

A�B −B �A =

=
∂A

∂ψ
× ∂B

∂ψ†
− ∂B

∂ψ
× ∂A

∂ψ†
, (1.5.66)

where the product A�B is nonassociative.
This theory violates Okubo’s No-Quantization Theorem [70], prohibiting the

use of nonassociative envelopes because of catastrophic physical consequences,
such as the loss of equivalence between the Schrödinger and Heisenberg represen-
tations (the former remains associative, while the latter becomes nonassociative,
thus resulting in inequivalence).

Weinberg’s theory also suffers from the absence of any unit at all, with conse-
quential inability to apply the theory to measurements, the loss of exponentiation
to a finite transform (lack of Poincaré-Birkhoff-Witt theorem), and other incon-
sistencies studied in Ref. [55].

These inconsistencies are not resolved by the adaptation of Weinberg’s theory
proposed by Jordan [80] as readers seriously interested in avoiding the publication
of theories known to be inconsistent ab initio are encouraged to verify.

Several authors also attempted the relaxation of the local-differential character
of quantum mechanics via the addition of “integral potentials” in the Hamilto-
nian,

V =
∫
dτΓ(τ, . . . ). (1.5.67)

These theories are structurally flawed on both mathematical and physical grounds.



94 RUGGERO MARIA SANTILLI

In fact, the nonlocal extension is elaborated via the conventional mathemat-
ics of quantum mechanics which, beginning with its topology, is strictly local-
differential, thus implying fundamental mathematical inconsistencies. Nonlocal
interactions are in general of contact type, for which the notion of a potential has
no physical meaning, thus resulting in rather serious physical inconsistencies.

In conclusion, by the early 1980’s Santilli had identified classical and operator
generalized theories [103,104] that are directly universal in their fields, with a
plethora of simpler versions by various other authors.

However, all these theories subsequently resulted in being mathematically sig-
nificant, but having no physical meaning because they are noninvariant when
elaborated with conventional mathematics.

As we shall see in Chapter 3 and 4, thanks to the construction of new mathe-
matics, hadronic mechanics does indeed solve all the above inconsistencies. The
clear difficulties in the solutions then illustrate the value of the result.

1.5.4 The Birth of Isomathematics, Genomathematics
and their Isoduals

As it is well known, the basic equations of quantum mechanics, Heisenberg’s
time evolution of a (Hermitian) operator A (~ = 1),

i× dA

dt
= A×H −H ×A = [A,H], (1.5.68a)

H = p2/2×m+ V (r), (1.5.68b)
can only represent the conservation of the total energy H (and other quantities)
under action-at-a-distance interactions derivable from a potential V (r),

i× dH

dt
= [H,H] = H ×H −H ×H ≡ 0. (1.5.69)

Consequently, the above equations are basically insufficient to provide an op-
erator representation of closed non-Hamiltonian systems, namely, systems of ex-
tended particles verifying conventional total conservation laws yet possessing in-
ternal potential; and nonpotential interactions, as it is the case for all interior
problems, such as the structure of hadron, nuclei and stars.

The central requirement for a meaningful representation of closed, classical
or operator interior systems of particles with internal contact interactions is the
achievement of a generalization of Lie’s theory in such a way to admit broader
brackets, hereon denoted [A,̂B], verifying the following conditions:

1) The new brackets [A,̂B] must verify the distributive and scalars laws (3.9)
in order to characterize an algebra.

2) Besides the Hamiltonian, the new brackets should admit a new Hermitian
operator, hereon denoted with T̂ = T̂ †, and we shall write [A,̂B]T̂ , as a necessary
condition for the representation of all non-Hamiltonian forces and effects.
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3) The new brackets must be anti-symmetric in order to allow the conservation
of the total energy under contact nonpotential internal interactions

i× dH

dt
= [H,̂H]T̂ ≡ 0. (1.5.70)

For the case of open, classical or operator irreversible interior systems of par-
ticles there is the need of a second generalization of Lie’s theory characterizing
broader brackets, hereon denoted (A,̂B) verifying the following conditions:

1’) The broader brackets (A,B) must also verify the scalar and distributive
laws (3.9) to characterize an algebra;

2’) The broader brackets must include two non-Hermitian operators, hereon
denoted P̂ and Q̂, P̂ = Q̂† to represent the two directions of time, and the new
brackets, denoted P̂ (A,̂B)Q̂, must be neither antisymmetric nor symmetric to
characterize the time rate of variation of the energy and other quantities,

i× dH

dt
= P̂ (H,̂H)Q̂ 6= 0; (1.5.71)

3’) The broader brackets must admit the antisymmetric brackets [A,̂B] and
[A,B] as particular cases because conservation laws are particular cases of non-
conservation laws.

For the case of closed and open interior systems of antiparticles, it is easy to see
that the above generalizations of Lie’s theory will not apply for the same reason
that the conventional Lie theory cannot characterize exterior systems of point-
like antiparticles at classical level studied in Section 1.1 (due to the existence
of only one quantization channel, the operator image of classical treatments of
antiparticles can only yield particles with the wrong sign of the charge, and
certainly not their charge conjugate).

The above occurrence requires a third generalization of Lie’s theory specifically
conceived for the representation of closed or open interior systems of antiparticles
at all levels of study, from Newton to second quantization. As we shall see, the
latter generalization is provided by the isodual map.

In an attempt to resolve the scientific imbalances of the preceding section,
when at the Department of Mathematics of Harvard University, Santilli [39,50]
proposed in 1978 an axiom-preserving generalization of conventional mathematics
verifying conditions 1), 2) and 3), that he subsequently studied in various works
(see monographs [9,10,11,38] and quoted literature).

The new mathematics is today known as Santilli’s isotopic and genotopic math-
ematics or isomathematics and genomathematics for short [81-86], where the word
“isotopic” or the prefix “iso” are used in the Greek meaning of preserving the
original axioms, and the word “geno” is used in the sense of inducing new axioms.

Proposal [39] for the new isomathematics was centered in the generalization
(called lifting) of the conventional, N-dimensional unit, I = Diag.(1, 1, ..., 1) into
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an N×N -dimensional matrix Î that is nowhere singular, Hermitian and positive-
definite, but otherwise possesses an unrestricted functional dependence on local
coordinates r, velocities v, accelerations a, dimension d, density µ, wavefunctions
ψ, their derivatives ∂ψ and any other needed quantity,

I = Diag.(1, 1, ..., 1) > 0→ Î(r, v, a, d, µ, ψ, ∂ψ, ...) = Î† = 1/T̂ > 0 (1.5.72)

while jointly lifting the conventional associative product A × B among generic
quantities A and B (numbers, vector fields, matrices, operators, etc.) into the
form

A×B → A×̂B = A× T̂ ×B, (1.5.73)

under which Î, rather than I, is the correct left and right unit,

I ×A = A× I ≡ A→ Î×̂A = A×̂Î ≡ A, (1.5.74)

for all A of the set considered, in which case Î is called Santilli’s isounit, and T̂
is called the isotopic element.

Eqs. (1.5.72)–(1.5.74) illustrate the isotopic character of the lifting. In fact,
Î preserves all topological properties of I; the isoproduct A×̂B remains as asso-
ciative as the original product A×B; and the same holds for the preservation of
the axioms for a left and right identity.

More generally, the lifting of the basic unit required, for evident reasons of
consistency, a corresponding compatible lifting of all mathematics used by special
relativity and quantum mechanics, with no exception known to this author, thus
resulting in the new isonumbers, isospaces, isofunctional analysis, isodifferential
calculus, isotopologies, isogeometries, etc. (for mathematical works see Refs.
[10,11,38]).

Via the use of the above liftings, Santilli presented in the original proposal [39]
a step-by-step isotopic (that is, axiom-preserving) lifting of all main branches
of Lie’s theory, including the isotopic generalization of universal enveloping as-
sociative algebras, Lie algebras, Lie groups and the representation theory. The
new theory was then studied in various works and it is today known as the Lie-
Santilli isotheory [81-86]. Predictably. from Eqs. (1.5.73) one can see that the
new isobrackets have the form

[A,̂B]T̂ = A×̂B −B×̂A =

= A× T̂ ×B −B × T̂ ×A = [A,̂B], (1.5.75)

where the subscript T̂ shall be dropped hereon, whose verification of conditions
1), 2), 3) is evident.

The point important for these introductory lines is that isomathematics does
allow a consistent representation of extended, nonspherical, deformable and hy-
perdense particles under local and nonlocal, linear and nonlinear, and potential
as well as nonpotential interactions.
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In fact, all conventional linear, local and potential interactions can be rep-
resented with a conventional Hamiltonian, while the shape and density of the
particles and their nonlinear, nonlocal and nonpotential interactions can be rep-
resented with Santilli’s isounits via realizations of the type

Î = Πk=1,2,...,nDiag(n2
k1, n

2
k2, n

2
k3, n

2
k4)× eΓ(ψ,ψ†)×

R
d3rψ†(r)k×ψ(r)k , (1.5.76)

where: the n2
k1, n

2
k2, n

2
k3 allow to represent, for the first time, the actual, extended,

nonspherical and deformable shapes of the particles considered (normalized to
the values nk = 1 for the perfect sphere); n2

k4 allows to represent, also for the
first time, the density of the interior medium (normalized to the value n4 = 1
for empty space); the function Γ(ψ,ψ†) represents the nonlinear character of the
interactions; and the integral

∫
d3rψ†(r)k×ψ(r)k represents nonlocal interactions

due to the overlapping of particles or of their wave packets.
When the mutual distances of the particles are much greater than 10−13cm = 1

F, the integral in Eq. (1.5.76) is identically null, and all nonlinear and nonlocal
effects are null. When, in addition, the particles considered are reduced to points
moving in vacuum, all the n-quantities are equal to 1, generalized unit (1.3.22)
recovers the trivial unit, and isomathematics recovers conventional mathematics
identically, uniquely and unambiguously.

In the same memoir [39], in order to represent irreversibility, Santilli proposed
a broader genomathematics based on the following differentiation of the product
to the right and to the left with corresponding generalized units

A > B = A× P̂ ×B, Î> = 1/P̂ ; (1.5.77a)

A < B = A× Q̂×B, <Î = 1/Q̂, (1.5.77b)

Î> =< Î†, (1.5.77c)

where evidently the product to the right, A > B, represents motion forward in
time and that to the left, A < B, represents motion backward in time. Since
A > B 6= A < B, the latter mathematics represents irreversibility from the most
elementary possible axioms.

The latter mathematics was proposed under a broader lifting called “genotopy”
in the Greek meaning of inducing new axioms, and it is known today as Santilli
genotopic mathematics, pr genomathematics for short [81-86].

It is evident that genoliftings (1.5.77) require a step by step generalization of
all aspects of isomathematics, resulting in genonumbers, genofields, genospaces,
genoalgebras, genogeometries, genotopologies, etc. [9b,10b,11,38a].

Via the use of the latter mathematics, Santilli proposed also in the origi-
nal memoir [39] a genotopy of the main branches of Lie’s theory, including a
genotopic broadening of universal enveloping isoassociative algebras, Lie-Santilli
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isoalgebras, Lie-Santilli isogroup, isorepresentation theory, etc. and the resulting
theory is today known as the Lie-Santilli genotheory with basic brackets

P̂ (A,̂B)Q̂ = A < B −B > A =

= A× P ×B −B ×Q×A = (A,̂B), (1.5.78)

where the subscripts P̂ and Q̂ shall be dropped from now on.
It should be noted that the main proposal of memoir [39] is genomathematics,

while isomathematics is presented as a particular case for

(A,̂B)P̂=Q̂=T̂ = [A,̂B]. (1.5.79)

as we shall see in Chapters 3 and 4, the isodual isomathematics and isodual
genomathematics for the treatment of antiparticles are given by the isodual image
(1.1.6) of the above iso- and geno-mathematics, respectively.

1.5.5 Hadronic Mechanics
Thanks to the prior discovery of isomathematics and genomathematics, in

memoir [50] also of 1978 Santilli proposed a generalization of quantum mechanics
for closed and open interior systems, respectively, under the name of hadronic
mechanics, because hyperdense hadrons, such as protons and neutrons, constitute
the most representative (and most difficult) cases of interior dynamical systems.

For the case of closed interior systems of particles, hadronic mechanics is
based on the following isotopic generalization of Heisenberg’s equations (Ref. [50],
Eqs. (4.15.34) and (4.18.11))

i× dA

dt
= [A,̂H] = A×̂H −H×̂A. (1.5.80)

while for the broader case of open interior systems hadronic mechanics is based
on the following genotopic generalization of Heisenberg’s equations (Ref. [50],
Eqs. (4.18.16))

i× dA

dt
= (A,̂H) = A < H −H > A =

= A× P ×H −H ×Q×A. (1.5.81)

The isodual images of Eqs. (1.5.80) and (1.5.81) for antiparticles as well as their
multivalued hyperformulations significant for biological studies, were added more
recently [88].

A rather intense scientific activity followed the original proposal [50], includ-
ing five Workshops on Lie-admissible Formulations held at Harvard University
from 1978 to 1982, fifteen Workshops on Hadronic Mechanics, and several for-
mal conferences held in various countries, plus a rather large number of research
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papers and monographs written by various mathematicians, theoreticians and ex-
perimentalists, for an estimated total of some 15,000 pages of research published
refereed journals (see the General References on Hadronic Mechanics at the end
of this volume).

It should be indicated that, following the original proposal of 1978 [50], matu-
rity on the basic new numbers of hadronic mechanics, the iso-, geno- and hyper-
numbers and their isoduals was reached only in 1993 [87]; a correct mathematical
formulation was reached only in 1996 [88] due to problems that had remained
unsolved for years; and a fully invariant physical formulation was reached only in
1997 for invariant Lie-isotopic theories [89] and invariant Lie-admissible theories
[89] (see also memoir [91] for a recent review).

The lapse of time between the original proposal of 1978 and the achievement
of mathematical and physical maturity illustrates the difficulties to be resolved.

As a result of all these efforts, hadronic mechanics is today a rather diversified
discipline conceived and constructed for quantitative treatments of all classical
and operator systems of particles according to Definition 1.3.1 with corresponding
isodual formulations for antiparticles.

It is evident that in the following chapters we can review only the most salient
foundations of hadronic mechanics and have to defer the interested reader to the
technical literature for brevity.

As of today, hadronic mechanics has experimental verifications and appli-
cations in particle physics, nuclear physics, atomic physics, superconductivity,
chemistry, biology, astrophysics and cosmology, including numerous industrial
applications outlined in monograph [92].

Hadronic mechanics can be classified into sixteen different branches, in-
cluding: four branches of classical treatment of particles with corresponding four
branches of operator treatment also of particles, and eight corresponding (classi-
cal and operator) treatments of antiparticles.

An effective classification of hadronic mechanics is that done via the main
topological features of the assumed basic unit, since the latter characterizes all
branches according to:

I = 1 > 0:
HAMILTONIAN AND QUANTUM MECHANICS
Used for the description of closed and reversible systems of point-like particles

in exterior conditions in vacuum;

Id = −1 < 0:
ISODUAL HAMILTONIAN AND ISODUAL QUANTUM MECHANICS
Used for the description of closed and reversible systems of point-like antipar-

ticles in exterior conditions in vacuum;

Î(r, v, ...) = Î† > 0:
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Figure 1.22. The structure of hadronic mechanics.
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CLASSICAL AND OPERATOR ISOMECHANICS
Used for the description of closed and reversible systems of extended particles

in interior conditions;

Îd(rd, vd, ...) = Îd† < 0:
ISODUAL CLASSICAL AND OPERATOR ISOMECHANICS
Used for the description of closed and reversible systems of extended antipar-

ticles in interior conditions;

Î>(r>, v>, ...) = (<Î)†:
CLASSICAL AND OPERATOR GENOMECHANICS
Used for the description of open and irreversible systems of extended particles

in interior conditions;

Îd>(rd>, vd>, ...} = (<Î)d†:
ISODUAL CLASSICAL AND OPERATOR GENOMECHANICS
Used for the description of open and irreversible systems of extended antipar-

ticles in interior conditions;

Î> = (Î>1 , Î
>
2 , ...) = (<Î)†:

CLASSICAL AND OPERATOR HYPERMECHANICS
Used for the description of multivalued open and irreversible systems of ex-

tended particles in interior conditions;

Îd> = {Î>1 , Î>2 , ...} = (<Î)†:
ISODUAL CLASSICAL AND OPERATOR HYPERMECHANICS
Used for the description of multivalued open and irreversible systems of ex-

tended antiparticles in interior conditions.

In summary, a serious study of antiparticles requires its study beginning at the
classical level and then following at all subsequent levels, exactly as it is the case
for particles.

In so doing, the mathematical and physical treatments of antiparticles emerge
as being deeply linked to that of particles since, as we shall see, the former are
an anti-isomorphic image of the latter.

Above all, a serious study of antiparticles requires the admission of their ex-
istence in physical conditions of progressively increasing complexity, that conse-
quently require mathematical and physical methods with an equally increasing
complexity, resulting in the various branches depicted in Figure 5.

All in all, young minds of any age will agree that, rather than having reached
a terminal character, our knowledge of nature is still at its first infancy and so
much remains to be discovered.
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Chapter 2

ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.1 ELEMENTS OF ISODUAL MATHEMATICS
2.1.1 Isodual Unit, Isodual Numbers and

Isodual Fields
The first comprehensive study of the isodual theory for point-like antiparticles

has been presented by the author in monograph [34]. However, the field is sub-
jected to continuous developments following its first presentation in papers [1] of
1985. Hence, it is important to review the most recent formulation of the isodual
mathematics in sufficient details to render this monograph self-sufficient.

In this section, we identify only those aspects of isodual mathematics that are
essential for the understanding of the physical profiles presented in the subsequent
sections of this chapter. We begin with a study of the most fundamental elements
of all mathematical and physical formulations, units, numbers and fields, from
which all remaining formulations can be uniquely and unambiguously derived
via simple compatibility arguments. To avoid un-necessary repetitions, we as-
sume the reader has a knowledge of the basic mathematics used for the classical
and operator treatment of matter, including a knowledge of the fields of real,
complex and quaternionic numbers. The symbol † usec in this chapter denotes
conventional Hermitean conjugation, namely, transpose plus complex cojugation.

DEFINITION 2.1.1: Let F = F (a,+,×) be a field (of characteristic zero),
namely a ring with elements given by real number a = n, F = R(n,+,×), complex
numbers A = c, F = C(c,+,×), or quaternionic numbers a = q, F = Q(q,+,×),
with conventional sum a+ b verifying the commutative law

a+ b = b+ a = c ∈ F, (2.1.1)
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the associative law
(a+ b) + c = a+ (b+ c) = d ∈ F, (2.1.2)

conventional product a× b verifying the associative law

(a× b)× c = a× (b× c) = e ∈ F, (2.1.3)

(but not necessarily the commutative law, a× b 6= b×a since the latter is violated
by quaternions), and the right and left distributive laws

(a+ b)× c = a× c+ b× c = f ∈ F, (2.1.4a)

a× (b+ c) = a× b+ a× c = g ∈ F, (2.1.4b)

left and right additive unit 0,

a+ 0 = 0 + a = a ∈ F, (2.1.5)

and left and right multiplicative unit I,

a× I = I × a = a ∈ F, (2.1.6)

∀a, b, c ∈ F . Santilli’s isodual fields (first introduced in Refs. [1] and then
presented in details in Ref. [2]) are rings F d = F d(ad,+d,×d) with elements
given by isodual numbers

ad = −a†, ad ∈ F, (2.1.7)

with associative and commutative isodual sum

ad +d bd = −(a+ b)† = cd ∈ F d, (2.1.8)

associative and distributive isodual product

ad ×d bd = ad × (Id)−1 × bd = cd ∈ F d, (2.1.9)

additive isodual unit 0d = 0,

ad +d 0d = 0d +d ad = ad, (2.1.10)

and multiplicative isodual unit Id = −I†,

ad ×d Id = Id ×d ad = ad,∀ad, bd ∈ F d. (2.1.11)

The proof of the following property is elementary.

LEMMA 2.1.1 [1,2]: Isodual fields are fields, namely, if F is a field, its image
F d under the isodual map is also a field.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 111

The above lemma establishes the property (first identified in Refs. [1]) that the
axioms of a field do not require that the multiplicative unit be necessarily positive-
definite, because the same axioms are also verified by negative-definite units. The
proof of the following property is equally simple.

LEMMA 2.1.2 [1,2]: Fields F and their isodual images F d are anti-isomorphic
to each other.

Lemmas 2.1.1 and 1.2.2 illustrate the origin of the name “isodual mathemat-
ics”. In fact, to represent antimatter the needed mathematics must be a suitable
“dual” of conventional mathematics, while the prefix “iso” is used in its Greek
meaning of preserving the original axioms.

It is evident that for real numbers we have

nd = −n, (2.1.12)

while for complex numbers we have

cd = (n1 + i× n2)d = −n1 + i× n2 = −c̄, (2.1.13)

with a similar formulation for quaternions.
It is also evident that, for consistency, all operations on numbers must be

subjected to isoduality when dealing with isodual numbers. This implies: the
isodual powers

(ad)n
d

= ad ×d ad ×d ad . . . (2.1.14)

(n times, with n an integer); the isodual square root

ad
(1/2)d

= −
√
−a†

†
, ad

(1/2)d ×d ad(1/2)d
= ad, 1d

(1/2)d
= −i; (2.1.15)

the isodual quotient

ad/dbd = −(a†/b†) = cd, bd ×d cd = ad; (2.1.16)

etc.
An important property for the characterization of antimatter is the following:

LEMMA 2.1.3. [2]: isodual fields have a negative-definite norm, called isodual
norm,

|ad|d = |a†| × Id = −(aa†)1/2 < 0, (2.1.17)

where | . . . | denotes the conventional norm.

For isodual real numbers we therefore have the isodual isonorm

|nd|d = −|n| < 0, (2.1.18)
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and for isodual complex numbers we have

|cd|d = −|c̄| = −(cc̄)1/2 = −(n2
1 + n2

2)
1/2. (2.1.19)

LEMMA 2.1.4 [2]: All quantities that are positive-definite when referred to
positive units and related fields of matter (such as mass, energy, angular momen-
tum, density, temperature, time, etc.) become negative-definite when referred to
isodual units and related isodual fields of antimatter.

As recalled Chapter 1, antiparticles have been discovered in the negative-energy
solutions of Dirac’s equation and they were originally thought to evolve backward
in time (Stueckelberg, Feynman, and others, see Refs. [1,2] of Chapter 1). The
possibility of representing antiparticles via isodual methods is therefore visible
already from these introductory notions.

The main novelty is that the conventional treatment of negative-definite energy
and time was (and still is) referred to the conventional unit +1. This leads to a
number of contradictions in the physical behavior of antiparticles.

By comparison, negative-definite physical quantities of isodual theories are re-
ferred to a negative-definite unit Id < 0. This implies a mathematical and phys-
ical equivalence between positive-definite quantities referred to positive-definite
units, characterizing matter, and negative-definite quantities referred to negative-
definite units, characterizing antimatter. These foundations then permit a novel
characterization of antimatter beginning at the Newtonian level, and then per-
sisting at all subsequent levels.

DEFINITION 2.1.2 [2]: A quantity is called isoselfdual when it coincides with
its isodual.

It is easy to verify that the imaginary unit is isoselfdual because

id = −i† = −ī = −(−i) = i. (2.1.20)

This property permits a better understanding of the isoduality of complex
numbers that can be written explicitly

cd = (n1 + i× n2)d = nd1 + id ×d nd2 = −n1 + i× n2 = −c̄. (2.1.21)

The above property will be important to prove the equivalence of isoduality and
charge conjugation at the operator level.

As we shall see, isoselfduality is a new fundamental view of nature with deep
physical implications, not only in classical and quantum mechanics but also in
cosmology. For instance we shall see that Dirac’s gamma matrices are isoselfdual,
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thus implying a basically new interpretation of this equation that has remained
unidentified for about one century. We shall also see that, when applied to
cosmology, isoselfduality implies equal distribution of matter and antimatter in
the universe, with identically null total physical characteristic, such as identically
null total time, identically null total mass, etc.

We should also indicate that we have assumed the isoduality of the multiplica-
tion, × → ×d = ×(−1)× = −×, but not that of the sum, +→ +d = +(−1)+ =
−. This approach may not appear entirely motivated to the mathematically in-
clined reader because fields are invariant under the above defined isoduality of the
sum due to the invariance of the additive unit, 0 → 0d ≡ 0 (although fields are
not invariant under the isoduality of the product due to the lack of invariance of
the multiplicative unit, 1→ 1d = −1).

The above decision is motivated by pragmatic, rather than mathematical argu-
ments and, more specifically, for compatibility with the more general isofields and
genofields, studied in the following chapters. In fact, at the latter broader levels,
we have the loss of the invariance of the axioms of a field under these broader
liftings of the sum. In turn, the loss of the field axioms cause the consequential
inapplicability of the theory for physical applications as currently known, that
is, based on ”numbers” as rings verifying the axioms of a field, thus admitting a
right and left, well defined, multiplicative unit representing the selected units of
measurements.

We assume the reader is aware of the emergence here of new numbers, those
with a negative unit, that have no connection with ordinary negative numbers
and are the true foundations of the isodual theory of antimatter.

2.1.2 Isodual Functional Analysis
All conventional and special functions and transforms, as well as functional

analysis at large, must be subjected to isoduality for consistent applications,
resulting in the simple, yet unique and significant isodual functional analysis,
studied by Kadeisvili [3], Santilli [4] and others.

We here mention the isodual trigonometric functions

sind θd = − sin(−θ), cosd θd = − cos(−θ), (2.1.22)

with related basic property

cosd 2d θd +d sind 2d θd = 1d = −1, (2.1.23)

the isodual hyperbolic functions

sinhdwd = − sinh(−w), coshdwd = − cosh(−w), (2.1.24)

with related basic property

coshd 2dwd −d sinhd 2dwd = 1d = −1, (2.1.25)
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the isodual logarithm and the isodual exponentiation defined respectively by

logd nd = − log(−n), (2.1.26a)

eXd
d

= 1d +Xd/d1!d +Xd2d/d2!d + . . . = −eX , (2.1.26b)

etc. Interested readers can then easily construct the isodual image of special
functions, transforms, distributions, etc.

2.1.3 Isodual Differential and Integral Calculus
Contrary to a rather popular belief, the differential calculus is indeed depen-

dent on the assumed unit. This property is not so transparent in the conventional
formulation because the basic unit is the trivial number +1. However, the de-
pendence of the unit emerges rather forcefully under its generalization.

The isodual differential calculus, first introduced by Santilli in Ref. [5a], is
characterized by the isodual differentials

ddxk = Id × dxk = −dxk, ddxk = −dxk, (2.1.27)

with corresponding isodual derivatives

∂d/d∂dxk = −∂/∂xk, ∂d/d∂dxk = −∂/∂xk, (2.1.28)

and related isodual properties.
Note that conventional differentials are isoselfdual, i.e.,

(dxk)d = ddxkd ≡ d xk, (2.1.29)

but derivatives are not isoselfdual,

[∂f/∂xk]d = −∂dfd/d∂dxkd. (2.1.30)

The above properties explain why the isodual differential calculus remained
undiscovered for centuries.

Other notions, such as the isodual integral calculus, can be easily derived and
shall be assumed as known hereon.

2.1.4 Lie-Santilli Isodual Theory
Let L be an n-dimensional Lie algebra in its regular representation with uni-

versal enveloping associative algebra ξ(L), [ξ(L)]− ≈ L, n-dimensional unit I =
Diag.(1, 1, . . . , 1), ordered set of Hermitian generators X = X† = {Xk},
k = 1, 2 , . . . , n, conventional associative product Xi × Xj , and familiar Lie’s
Theorems over a field F (a,+,×).

The Lie-Santilli isodual theory was first submitted in Ref. [1] and then studied
in Refs. [4-7] as well as by other authors [23-31]. The isodual universal associative
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algebra [ξ(L)]d is characterized by the isodual unit Id, isodual generators Xd =
−X, and isodual associative product

Xd
i ×d Xd

j = −Xi ×Xj , (2.1.31)

with corresponding infinite-dimensional basis characterized by the Poincaré-Birkhoff-
Witt-Santilli isodual theorem

Id, Xd
i ×d Xd

j , i ≤ j; Xd
i ×d Xd

j ×Xd
k , i ≤ j ≤ k, . . . (2.1.32)

and related isodual exponentiation of a generic quantity Ad

ed
Ad

= Id +Ad/d1!d +Ad ×d Ad/d2!d + . . . = −eA† , (2.1.33)

where e is the conventional exponentiation.
The attached Lie-Santilli isodual algebra Ld ≈ (ξd)− over the isodual field

F d(ad,+d,×d) is characterized by the isodual commutators [1]

[Xd
i ,
dXd

j ] = −[Xi, Xj ] = Ck
d

ij ×d Xd
k . (2.1.34)

with classical realizations given in Section 2.2.6.
Let G be a conventional, connected, n-dimensional Lie transformation group

on a metric (or pseudo-metric) space S(x, g, F ) admitting L as the Lie algebra in
the neighborhood of the identity, with generators Xk and parameters w = {wk}.

The Lie-Santilli isodual transformation group Gd admitting the isodual Lie
algebra Ld in the neighborhood of the isodual identity Id is the n-dimensional
group with generatorsXd = {−Xk} and parameters wd = {−wk} over the isodual
field F d with generic element [1]

Ud(wd) = ed
id×dwd×dXd

= −ei×(−w)×X = −U(−w). (2.1.35)

The isodual symmetries are then defined accordingly via the use of the isod-
ual groups Gd and they are anti-isomorphic to the corresponding conventional
symmetries, as desired. For additional details, one may consult Ref. [4,5b].

In this chapter we shall therefore use the conventional Poincaré, internal and
other symmetries for the characterization of matter, and the Poincaré-Santilli,
internal and other isodual symmetries for the characterization of antimatter.

2.1.5 Isodual Euclidean Geometry
Conventional (vector and) metric spaces are defined over conventional fields.

It is evident that the isoduality of fields requires, for consistency, a corresponding
isoduality of (vector and) metric spaces. The need for the isodualities of all
quantities acting on a metric space (e.g., conventional and special functions and
transforms, differential calculus, etc.) becomes then evident.
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DEFINITION 2.1.3: Let S = S(x, g,R) be a conventional N -dimensional met-
ric or pseudo-metric space with local coordinates x = {xk}, k = 1, 2 , . . . , N ,
nowhere degenerate, sufficiently smooth, real-valued and symmetric metric g(x, . . .)
and related invariant

x2 = (xi × gij × xj)× I, (2.1.36)

over the reals R. The isodual spaces, first introduced in Ref. [1] (see also Refs. [4,5]
and, for a more recent account, Ref. [22]), are the spaces Sd(xd, gd, Rd) with
isodual coordinates xd = xd = −xt (where t stands for transposed), isodual metric

gd(xd, . . .) = −g†(−x†, . . .) = −g(−xt, . . .), (2.1.37)

and isodual interval

(x− y)d2 d
= [(x− y)id ×d gdij ×d (x− y)jd]× Id =

= [(x− y)i × gdij × (x− y)j ]× Id, (2.1.38)

defined over the isodual field Rd = Rd(nd,+d,×d) with the same isodual isounit
Id.

The basic nonrelativistic space of our analysis is the three-dimensional isodual
Euclidean space [1,9],

Ed(rd, δd, Rd) : rd = {rkd} = {−rk} = {−x,−y,−z}, (2.1.39a)

δd = −δ = Diag.(−1,−1,−1),

Id = −I = Diag.(−1,−1,−1). (2.1.39b)

The isodual Euclidean geometry is the geometry of the isodual space Ed over
Rd and it is given by a step-by-step isoduality of all the various aspects of the
conventional geometry (see monograph [5a] for details).

By recalling that the norm on Rd is negative-definite, the isodual distance
among two points on an isodual line is also negative definite and it is given by

Dd = D × Id = −D, (2.1.40)

where D is the conventional distance. Similar isodualities apply to all remain-
ing notions, including the notions of parallel and intersecting isodual lines, the
Euclidean axioms, etc.

The isodual sphere with radius Rd = −R is the perfect sphere on Ed over Rd

and, as such, it has negative radius (Figure 2.1),

Rd2d = (xd2d + yd2d + zd2d)× Id =

= (x2 + y2 + z2)× I = R2. (2.1.41)
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Note that the above expression coincides with that for the conventional sphere.
This illustrates the reasons, following about one century of studies, the isodual
rotational group and symmetry where identified for the first time in Ref. [1].
Note, however, that the latter result required the prior discovery of new numbers,
those with a negative unit.

A similar characterization holds for other isodual shapes characterizing anti-
matter in our isodual theory.

LEMMA 2.1.5: The isodual Euclidean geometry on Ed over Rd is anti-iso-
morphic to the conventional geometry on E over R.

The group of isometries of Ed over Rd is the isodual Euclidean group Ed(3) =
Rd(θd) ×d T d(3) where Rd(θ) is the isodual group of rotations first introduced
in Ref. [1], and T d(3) is the isodual group of translations (see also Ref. [5a] for
details).

2.1.6 Isodual Minkowskian Geometry
LetM(x, η,R) be the conventional Minkowski spacetime with local coordinates

x = (rk, t) = (xµ), k = 1, 2, 3, µ = 1, 2, 3, 4, metric η = Diag.(1, 1, 1,−1) and
basic unit I = Diag.(1, 1, 1, 1) on the reals R = R(n, +, ×).

The Minkowski-Santilli isodual spacetime, first introduced in Ref. [7] and stud-
ied in details in Ref. [8], is given by

Md(xd, ηd, Rd) : xd = {xµd} = {xµ × Id} = {−r,−cot} × I, (2.1.42)

with isodual metric and isodual unit

ηd = −η = Diag.(−1,−1,−1,+1), (2.1.43a)

Id = Diag.(−1,−1,−1,−1). (2.1.43b)

The Minkowski-Santilli isodual geometry [8] is the geometry of isodual spaces
Md over Rd. The new geometry is also characterized by a simple isoduality of
the conventional Minkowskian geometry as studied in details in memoir.

The fundamental symmetry of this chapter is given by the group of isometries
of Md over Rd, namely, the Poincaré-Santilli isodual symmetry [7,8]

P d(3.1) = Ld(3.1)× T d(3.1), (2.1.44)

where Ld(3.1) is the Lorentz-Santilli isodual group and T d(3.1) is the isodual
group of translations.
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Figure 2.1. A schematic view of the isodual sphere on isodual Euclidean spaces over isodual
fields. The understanding of the content of this chapter requires the knowledge that the isodual
sphere and the conventional sphere coincide when inspected by an observer either in the Eu-
clidean or in the isodual Euclidean space, due to the identity of the related expressions (2.1.36)
and (2.1.38). This identity is at the foundation of the perception that antiparticles “appear” to
exist in our space, while in reality they belong to a structurally different space coexisting within
our own, thus setting the foundations of a “multidimensional universe” coexisting in the same
space of our sensory perception. The reader should keep in mind that the isodual sphere is the
idealization of the shape of an antiparticle used in this monograph.

2.1.7 Isodual Riemannian Geometry
Consider a Riemannian space <(x, g,R) in (3 + 1) dimensions [32] with basic

unit I = Diag.(1, 1, 1, 1), nowhere singular and symmetric metric g(x) and
related Riemannian geometry in local formulation (see, e.g., Ref. [27]).

The Riemannian-Santilli isodual spaces (first introduced in Ref. [11]) are given
by

<d(xd, gd, Rd) : xd = {−xµ},

gd = −g(x), g ∈ <(x, g,R),

Id = Diag.(−1,−1,−1,−1) (2.1.45)

with interval
x2d = [xdt ×d gd(xd)×d xd]× Id =

= [xt × gd(xd)× x]× Id ∈ Rd, (2.1.46)

where t stands for transposed.
The Riemannian-Santilli isodual geometry [8] is the geometry of spaces <d over

Rd, and it is also given by step-by-step isodualities of the conventional geome-
try, including, most importantly, the isoduality of the differential and exterior
calculus.
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As an example, an isodual vector field Xd(xd) on <d is given by Xd(xd) =
−Xt(−xt). The isodual exterior differential of Xd(xd) is given by

DdXkd(xd) = ddXkd(xd) + Γdi
k
j ×d Xid ×d ddxjd = DXk(−x), (2.1.47)

where the Γd’s are the components of the isodual connection. The isodual covari-
ant derivative is then given by

Xid(xd)|dk = ∂dXid(xd)/d∂dxkd + Γdijk ×d Xjd(xd) = −Xi(−x)|k . (2.1.48)

The interested reader can then easily derive the isoduality of the remaining
notions of the conventional geometry.

It is an instructive exercise for the interested reader to work out in detail the
proof of the following:

LEMMA 2.1.6 [8]: The isodual image of a Riemannian space <d(xd, gd, Rd)
is characterized by the following maps:

Basic Unit

I → Id = −I,

Metric

g → gd = −g, (2.1.49a)

Connection Coefficients

Γklh → Γdklh = −Γklh, (2.1.49b)

Curvature Tensor

Rlijk → Rdlijk = −Rlijk, (2.1.49c)

Ricci Tensor

Rµν → Rdµν = −Rµν , (2.1.49d)

Ricci Scalar

R → Rd = R, (2.1.49e)

Einstein−Hilbert Tensor

Gµν → Gdµν = −Gµν , (2.1.49f)

Electromagnetic Potentials

Aµ → Adµ = −Aµ, (2.1.49g)

Electromagnetic F ield
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Fµν → F dµν = −Fµν , (2.1.49h)

ElmEnergy −Momentum Tensor

Tµν → T dµν = −Tµν , (2.1.49i)

In summary, the geometries significant for this study are: the conventional Eu-
clidean, Minkowskian and Riemannian geometries used for the characterization
of matter; and the isodual Euclidean, Minkowskian and Riemannian geometries
used for the characterization of antimatter.

The reader can now begin to see the achievement of axiomatic compatibility
between gravitation and electroweak interactions that is permitted by the isodual
theory of antimatter. In fact, the latter is treated via negative-definite energy-
momentum tensors, thus being compatible with the negative-energy solutions
of electroweak interactions, therefore setting correct axiomatic foundations for a
true grand unification studied in the next chapter.

2.2 CLASSICAL ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.2.1 Basic Assumptions
Thanks to the preceding study of isodual mathematics, we are now sufficiently

equipped to resolve the scientific impasse caused by the absence of a classical
theory of antimatter studied in Section 1.1.

As it is well known, the contemporary treatment of matter is characterized
by conventional mathematics, here referred to ordinary numbers, fields, spaces,
etc. with positive units and norms, thus having positive characteristics of mass,
energy, time, etc.

In this chapter we study the characterization of antimatter via isodual numbers,
fields, spaces, etc., thus having negative-definite units and norms. In particular,
all characteristics of matter (and not only charge) change sign for antimatter
when represented via isoduality.

The above characterization of antimatter evidently provides the correct con-
jugation of the charge at the desired classical level. However, by no means, the
sole change of the sign of the charge is sufficient to ensure a consistent classical
representation of antimatter. To achieve consistency, the theory must resolve
the main problematic aspect of current classical treatments, the fact that their
operator image is not the correct charge conjugate state (Section 2.1).

The above problematic aspect is indeed resolved by the isodual theory. The
main reason is that, jointly with the conjugation of the charge, isoduality also
conjugates all other physical characteristics of matter. This implies two channels
of quantization, the conventional one for matter and a new isodual quantization
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for antimatter (see Section 2.3) in such a way that its operator image is indeed
the charge conjugate of that of matter.

In this section, we study the physical consistency of the theory in its classical
formulation. The novel isodual quantization, the equivalence of isoduality and
charge conjugation and related operator issues are studied in the next section.

Beginning our analysis, we note that the isodual theory of antimatter resolves
the traditional obstacles against negative energies and masses. In fact, particles
with negative energies and masses measured with negative units are fully equiva-
lent to particles with positive energies and masses measured with positive units.
This result has permitted the elimination of sole use of second quantization for
the characterization of antiparticles because antimatter becomes treatable at all
levels, including second quantization.

The isodual theory of antimatter also resolves the additional, well known,
problematic aspects of motion backward in time. In fact, time moving backward
measured with a negative unit is fully equivalent on grounds of causality to time
moving forward measured with a positive unit.

This confirms the plausibility of the first conception of antiparticles by Stueck-
elberg and others as moving backward in time (see the historical analysis in
Ref. [1] of Chapter 1), and creates new possibilities for the ongoing research on
the so-called “spacetime machine” studied in Chapter 5.

In this section, we construct the classical isodual theory of antimatter at the
Newtonian, Lagrangian, Hamiltonian, Galilean, relativistic and gravitational lev-
els; we prove its axiomatic consistency; and we verify its compatibility with avail-
able classical experimental evidence (that dealing with electromagnetic interac-
tions only). Operator formulations and their experimental verifications will be
studied in the next section.

2.2.2 Need for Isoduality to Represent All Time
Directions

It is popularly believed that time has only two directions, the celebrated Ed-
dington’s time arrows. In reality, time has four different directions depending on
whether motion is forward or backward and occurs in the future or in the past,
as illustrated in Figure 2.2. In turn, the correct use of all four different directions
of time is mandatory, for instance, in serious studies of bifurcations, as we shall
see.

It is evident that theoretical physics of the 20-th century could not explain all
four directions of time, since it possessed only one conjugation, time reversal, and
this explains the reason the two remaining directions of time were ignored.

It is equally evident that isoduality does indeed permit the representation of
the two missing directions of time, thus illustrating its need.
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Figure 2.2. A schematic view of the “four different directions of time”, depending on whether
motion is forward or backward and occurs in the future or in the past. Due to the sole existence
of one time conjugation, time reversal, the theoretical physics of the 20-th century missed two
of the four directions of time, resulting in fundamental insufficiencies ranging from the lack
of a deeper understanding of antiparticles to basic insufficiencies in biological structures and
excessively insufficient cosmological views. It is evident that isoduality can indeed represent the
two missing time arrows and this illustrates a basic need for the isodual theory.

We assume the reader is now familiar with the differences between time reversal
and isoduality. Time reversal changes the direction of time while keeping the
underlying space and units unchanged, while isoduality changes the direction of
time while mapping the underlying space and units into different forms.

Unless otherwise specified, through the rest of this volume time t will be in-
dicate motion forward in future times, −t will indicate motion backward in past
times, td will indicate motion backward from future times, and −td will indicate
motion forward from past times.

2.2.3 Experimental Verification of the Isodual Theory
of Antimatter in Classical Physics

The experimental verification of the isodual theory of antimatter at the clas-
sical level is provided by the compliance of the theory with the only available
experimental data, those on Coulomb interactions.

For that purpose, let us consider the Coulomb interactions under the custom-
ary notation that positive (negative) forces represent repulsion (attraction) when
formulated in conventional Euclidean space.

Under such an assumption, the repulsive Coulomb force among two particles
of negative charges −q1 and −q2 in Euclidean space E(r, δ, R) is given by

F = K × (−q1)× (−q2)/r × r > 0, (2.2.1)

where K is a positive constant whose explicit value (here irrelevant) depends
on the selected units, the operations of multiplication × and division / are the
conventional ones of the underlying field R(n, +, ×).
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Under isoduality to Ed(rd, δd, Rd) the above law is mapped into the form

F d = Kd ×d (−q1)d ×d (−q2)d/drd ×d rd = −F < 0, (2.2.2)

where ×d = −× and /d = −/ are the isodual operations of the underlying field
Rd(nd, +, ×d).

But the isodual force F d = −F occurs in the isodual Euclidean space and it is,
therefore, defined with respect to the unit−1. This implies that the reversal of the
sign of a repulsive force measured with a negative unit also describes repulsion.
As a result, isoduality correctly represents the repulsive character of the Coulomb
force for two antiparticles with positive charges, a result first achieved in Ref. [9].

The formulation of the cases of two particles with positive charges and their
antiparticles with negative charges is left to the interested reader.

The Coulomb force between a particle and an antiparticle can only be computed
by projecting the antiparticle in the conventional space of the particle or vice-
versa. In the former case we have

F = K × (−q1)× (−q2)d/r × r < 0, (2.2.3)

thus yielding an attractive force, as experimentally established. In the projection
of the particle in the isodual space of the antiparticle, we have

F d = Kd ×d (−q1)×d (−q2)d/drd ×d rd > 0. (2.2.4)

But this force is now measured with the unit -1, thus resulting in being again
attractive.

The study of Coulomb interactions of magnetic poles and other classical ex-
perimental data is left to the interested reader.

In conclusion, the isodual theory of antimatter correctly represents all available
classical experimental evidence in the field.

2.2.4 Isodual Newtonian Mechanics
A central objective of this section is to show that the isodual theory of antimatter
resolves the scientific imbalance of the 20-th century between matter and anti-
matter, by permitting the study of antimatter at all levels as occurring for matter.
Such an objective can only be achieved by first establishing the existence of a
Newtonian representation of antimatter subsequently proved to be compatible
with known operator formulations.

As it is well known, the Newtonian treatment of N point-like particles is based
on a 7N -dimensional representation space given by the Kronecker products of the
Euclidean spaces of time t, coordinates r and velocities v (for the conventional
case see Refs. [33,34]),

S(t, r, v) = E(t, Rt)× E(r, δ, Rr)× E(v, δ, Rv), (2.2.5)
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where
r = (rka) = (r1a, r

2
a, r

3
a) = (xa, ya, za), (2.2.6a)

v = (vka) = (v1a, v2a, v3a) = (vxa, vua, vza) = dr/dt, (2.2.6b)

δ = Diag.(1, 1, 1), k = 1, 2, 3, a = 1, 2, 3, . . . , N, (2.2.6c)

and the base fields are trivially identical, i.e., Rt = Rr = Rv, since all units are
assumed to have the trivial value +1, resulting in the trivial total unit

Itot = It × Ir × Iv = 1× 1× 1 = 1. (2.2.7)

The resulting basic equations are then given by the celebrated Newton’s equations
for point-like particles

ma × dvka/dt = Fka(t, r, v), k = 1, 2, 3, a = 1, 2, 3, . . . , N. (2.2.8)

The basic space for the treatment of n antiparticles is given by the 7N -
dimensional isodual space [9]

Sd(td, rd, vd) = Ed(td, Rdt )× Ed(rd, δd, Rd)× Ed(vd, δd, Rd), (2.2.9)

with isodual unit and isodual metric

IdTot = Idt × Idr × Idv , (2.2.10a)

Idt = −1, Idr = Idv = Diag.(−1,−1,−1), (2.2.10b)

δd = Diag.(1d, 1d, 1d) = Diag.(−1,−1,−1). (2.2.10c)

We reach in this way the basic equations of this chapter, today known as the
Newton-Santilli isodual equations for point-like antiparticles, first introduced in
Ref. [4],1

md
a ×d ddvdka/dddtd = F dka(t

d, rd, vd), (2.2.11)

k = x, y, z, a = 1, 2, . . . , n,

whose experimental verification has been provided in the preceding section.
It is easy to see that the isodual formulation is anti-isomorphic to the conven-

tional version, as desired, to such an extent that the two formulations actually
coincide at the abstract, realization-free level.

Despite this axiomatic simplicity, the physical implications of the isodual the-
ory of antimatter are rather deep. To begin their understanding, note that

1Note as necessary pre-requisites of the new Newton’s equations, the prior discovery of isodual numbers,
spaces and differential calculus.
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throughout the 20-th century it was believed that matter and antimatter ex-
ist in the same spacetime. In fact, as recalled earlier, charge conjugation is a
map of our physical spacetime into itself.

One of the first physical implications of the Newton-Santilli isodual equations
is that antimatter exists in a spacetime co-existing, yet different than our own.
In fact, the isodual Euclidean space Ed(rd, δd, Rd) co-exists within, but it is
physically distinct from our own Euclidean space E(r, δ, R), and the same occurs
for the full representation spaces Sd(td, rd, vd) and S(t, r, v).

The next physical implication of the Newton-Santilli isodual equations is the
confirmation that antimatter moves backward in time in a way as causal as the
motion of matter forward in time (again, because negative time is measured with
a negative unit). In fact, the isodual time td is necessarily negative whenever t
is our ordinary time. Alternatively, we can say that the Newton-Santilli isodual
equations provide the only known causal description of particles moving backward
in time.

Yet another physical implication is that antimatter is characterized by negative
mass, negative energy and negative magnitudes of other physical quantities. As
we shall see, these properties have the important consequence of eliminating the
necessary use of Dirac’s “hole theory.”

The rest of this chapter is dedicated to showing that the above novel features
are necessary in order to achieve a consistent representation of antimatter at all
levels of study, from Newton to second quantization.

As we shall see, the physical implications are truly at the edge of imagination,
such as: the existence of antimatter in a new spacetime different from our own
constitutes the first known evidence of multi-dimensional character of our uni-
verse despite our sensory perception to the contrary; the achievement of a fully
equivalent treatment of matter and antimatter implies the necessary existence
of antigravity for antimatter in the field of matter (and vice-versa); the motion
backward in time implies the existence of a causal spacetime machine (although
restricted for technical reasons only to isoselfdual states); and other far reaching
advances.

2.2.5 Isodual Lagrangian Mechanics
The second level of treatment of matter is that via the conventional classical

Lagrangian mechanics. It is, therefore, essential to identify the corresponding
formulation for antimatter, a task first studied in Ref. [4] (see also Ref. [9]).

A conventional (first-order) Lagrangian L(t, r, v) = 1
2×m×v

k×vk+V (t, r, v)
on configuration space (2.2.5) is mapped under isoduality into the isodual La-
grangian

Ld(td, rd, vd) = −L(−t, −r, −v), (2.2.12)

defined on isodual space (2.2.9).
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In this way we reach the basic analytic equations of this chapter, today known
as Lagrange-Santilli isodual equations, first introduced in Ref. [4]

dd

ddtd
d
∂dLd(td, rd, vd)

∂dvkd
d− ∂dLd(td, rd, vd)

∂drkd
d = 0, (2.2.13)

All various aspects of the isodual Lagrangian mechanics can then be readily
derived.

It is easy to see that isodual equations (2.3.13) provide a direct analytic repre-
sentation (i.e., a representation without integrating factors or coordinate trans-
forms) of the isodual equations (2.2.11),

dd

ddtd
d
∂dLd(td, rd, vd)

∂dvkd
d− ∂dLd(td, rd, vd)

∂dxkd
d =

= md
k ×d ddvdk/dddtd − F d

SA

k (t, r, v) = 0. (2.2.14)

The compatibility of the isodual Lagrangian mechanics with the primitive New-
tonian treatment then follows.

2.2.6 Isodual Hamiltonian Mechanics
The isodual Hamiltonian is evidently given by [4,9]

Hd = pdk ×d pdk/d2d ×d md + V d(td, rd, vd) = −H. (2.2.15)

It can be derived from (nondegenerate) isodual Lagrangians via a simple isod-
uality of the Legendre transforms and it is defined on the 7N -dimensional isodual
phase space (isocotangent bundle)

Sd(td, rd, pd) = Ed(td, Rdt )× Ed(rd, δd, Rd)× Ed(pd, δd, Rd). (2.2.16)

The isodual canonical action is given by [4,9]

A◦d =
∫ t2

t1

(pdk ×d ddrkd −Hd ×d ddtd) =

=
∫ t2

t1

[R◦dµ (bd)×d ddbµd −Hd ×d ddtd], (2.2.17a)

R◦ = {p, 0}, b = {x, p}, µ = 1, 2, . . . , 6. (2.2.17b)

Conventional variational techniques under simple isoduality then yield the fun-
damental canonical equations of this chapter, today known as Hamilton-Santilli
isodual equations [4,24-31] that can be written in the disjoint r and p notation

ddxkd

ddtd
=
∂dHd(td, xd, pd)

∂dpdk
,
ddpdk
ddtd

= −∂
dHd(td, xd, pd)

∂dxdk
, (2.2.18)
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or in the unified notation

ωdµν ×d
ddbdν

ddtd
=

∂dHd(td, bd)
∂dbdµ

, (2.2.19)

where ωdµν is the isodual canonical symplectic tensor

(ωdµν) = (∂dR◦dν /
d∂dbdµ − ∂dR◦dµ /d∂dbdν) =

(
0 I
−I 0

)
= (ωµν). (2.2.20)

Note that isoduality maps the canonical symplectic tensor into the canonical
Lie tensor, with intriguing geometric and algebraic implications.

The Hamilton-Jacobi-Santilli isodual equations are then given by [4,9]

∂dA◦d/d∂dtd +Hd = 0, (2.2.21a)

∂dA◦d/d∂dxdk − pdk = 0, ∂dA◦d/d∂dpdk ≡ 0. (2.2.21b)

The Lie-Santilli isodual brackets among two isodual functions Ad and Bd on
Sd(td, xd, pd) then become

[Ad,dBd] =
∂dAd

∂dbdµ
d ×d ωdµν ×d ∂

dBd

∂dbdν
d = −[A,B], (2.2.22)

where
ωdµν = (ωµν) (2.2.23)

is the Lie-Santilli isodual tensor (that coincides with the conventional canonical
tensor). The direct representation of isodual equations in first-order form is self-
evident.

In summary, all properties of the isodual theory at the Newtonian level carry
over at the level of isodual Hamiltonian mechanics.

2.2.7 Isodual Galilean Relativity
As it is well known, the Newtonian, Lagrangian and Hamiltonian treatment

of matter are only the pre-requisites for the characterization of physical laws via
basic relativities and their underlying symmetries. Therefore, no equivalence in
the treatment of matter and antimatter can be achieved without identifying the
relativities suitable for the classical treatment of antimatter.

To begin this study, we introduce the Galilei-Santilli isodual symmetry Gd(3.1)
[7,5,9,22-31] as the step-by-step isodual image of the conventional Galilei sym-
metry G(3.1) (herein assumed to be known2). By using conventional symbols for

2The literature on the conventional Galilei and special relativities and related symmetries is so vast as
to discourage discriminatory quotations.
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the Galilean symmetry of a Keplerian system of N point particles with non-null
masses ma, a = 1, 2, . . . , n, Gd(3.1) is characterized by isodual parameters and
generators

wd = (θdk, r
kd
o , v

kd
o , t

d
o) = −w, (2.2.24a)

Jdk =
∑

aijkr
d
ja ×d pkja = −Jk (2.2.24b)

P dk =
∑

ap
d
ka = −Pk, (2.2.24c)

Gdk =
∑

a(md
a ×d rdak − td × pdak), (2.2.24d)

Hd =
1
2

d

×d
∑

ap
d
ak ×d pkda + V d(rd) = −H, (2.2.24e)

equipped with the isodual commutator

[Ad,dBd] =
∑

a,k[(∂dAd/d∂drkda )×d (∂dBd/d∂dpdak)−

−(∂dBd/d∂drkda )×d (∂dAd/d∂dpdak)]. (2.2.25)

In accordance with rule (2.1.34), the structure constants and Casimir invariants
of the isodual algebra Gd(3.1) are negative-definite. If g(w) is an element of the
(connected component) of the Galilei group G(3.1), its isodual is characterized
by

gd(wd) = ed
−id×dwd×dXd

= −ei×(−w)×X = −g(−w) ∈ Gd(3.1). (2.2.26)

The Galilei-Santilli isodual transformations are then given by

td → t′d = td + tdo = −t′, (2.2.27a)

rd → r′d = rd + rdo = −r′ (2.2.27b)

rd → r′d = rd + vdo ×d tdo = −r′, (2.2.27c)

rd → r′d = Rd(θd)×d rd = −R(−θ)× r. (2.2.27d)

where Rd(θd) is an element of the isodual rotational symmetry first studied in the
original proposal [1].

The desired classical nonrelativistic characterization of antimatter is therefore
given by imposing the Gd(3.1) invariance to the considered isodual equations.
This implies, in particular, that the equations admit a representation via isodual
Lagrangian and Hamiltonian mechanics.

We now confirm the classical experimental verification of the above isodual
representation of antimatter already treated in Section 2.2.2. Consider a con-
ventional, classical, massive particle and its antiparticle in exterior dynamical
conditions in vacuum. Suppose that the particle and antiparticle have charge −e
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and +e, respectively (say, an electron and a positron), and that they enter into
the gap of a magnet with constant magnetic field B.

As it is well known, visual experimental observation establishes that particles
and antiparticles under the same magnetic field have spiral trajectories of opposite
orientation. But this behavior occurs for the representation of both the particle
and its antiparticle in the same Euclidean space. The situation under isoduality
is different, as described by the following:

LEMMA 2.2.1 [5a]: The trajectories under the same magnetic field of a charged
particle in Euclidean space and of the corresponding antiparticle in isodual Eu-
clidean space coincide.

Proof: Suppose that the particle has negative charge −e in Euclidean space
E(r, δ, R), i.e., the value −e is defined with respect to the positive unit +1 of
the underlying field of real numbers R = R(n, +, ×). Suppose that the particle
is under the influence of the magnetic field B.

The characterization of the corresponding antiparticle via isoduality implies the
reversal of the sign of all physical quantities, thus yielding the charge (−e)d =
+e in the isodual Euclidean space Ed(rd, δd, Rd), as well as the reversal of the
magnetic field Bd = −B, although now defined with respect to the negative unit
(+1)d = −1.

It is then evident that the trajectory of a particle with charge −e in the field B
defined with respect to the unit +1 in Euclidean space and that for the antiparticle
of charge +e in the field −B defined with respect to the unit −1 in isodual
Euclidean space coincide (Figure 2.3). q.e.d.

An aspect of Lemma 2.2.1, which is particularly important for this monograph,
is given by the following:

COROLLARY 2.2.1A: Antiparticles reverse their trajectories when projected
from their own isodual space into our own space.

Lemma 2.2.1 assures that isodualities permit the representation of the correct
trajectories of antiparticles as physically observed, despite their negative energy,
thus providing the foundations for a consistent representation of antiparticles at
the level of first quantization studied in the next section. Moreover, Lemma 2.2.1
tells us that the trajectories of antiparticles appear to exist in our space while in
reality they belong to an independent space.

2.2.8 Isodual Special Relativity
We now introduce isodual special relativity for the classical relativistic treat-

ment of point-like antiparticles (for the conventional case see Ref. [32]).
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Figure 2.3. A schematic view of the trajectories of an electron and a positron with the same
kinetic energy under the same magnetic field. The trajectories “appear” to be the reverse of
each other when inspected by one observer, such as that in our spacetime (top and central
views). However, when the two trajectories are represented in their corresponding spacetimes
they coincide, as shown in the text (top and bottom views).

As it is well known, conventional special relativity is constructed on the fun-
damental 4-dimensional unit of the Minkowski space I = Diag.(1, 1, 1, 1),
representing the dimensionless units of space, e.g., (+1 cm,+1 cm, +1 cm), and
the dimensionless unit of time, e.g., +1 sec, and constituting the basic unit of the
conventional Poincarè symmetry P (3.1) (hereon assumed to be known).

It then follows that isodual special relativity is characterized by the map

I = Diag.({1, 1, 1}, 1) > 0→

rightarrowId = Diag.({−1, −1, −1}, −1) < 0. (2.2.28)

namely, the antimatter relativity is based on negative units of space and time, e.g.,
Id = Diag.(−1 cm,−1 cm,−1 cm,−1 sec). This implies the reconstruction of the
entire mathematics of the special relativity with respect to the common, isodual
unit Id, including: the isodual field Rd = Rd(nd, +d, ×d) of isodual numbers nd =
n× Id; the isodual Minkowski spacetime Md(xd, ηd, Rd) with isodual coordinates



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 131

xd = x× Id, isodual metric ηd = −η and basic invariant over Rd

(x− y)d2d
= [(xµ − yµ)× ηdµν × (xν − yν)]× Id ∈ Rd. (2.2.29)

This procedure yields the central symmetry of this chapter indicated in Section
2.2.6, today known as the Poincaré-Santilli isodual symmetry [7]

P d(3.1) = Ld(3.1)×d T d(3.1), (2.2.30)

where Ld(3.1) is the Lorentz-Santilli isodual symmetry, ×d is the isodual direct
product and T d(3.1) represents the isodual translations.

The algebra of the connected component P ↑d
+ (3.1) of P d(3.1) can be con-

structed in terms of the isodual parameters wd = {−wk} = {−θ,−v,−a} and
isodual generators Xd = −X = {−Xk} = {−Mµν ,−Pµ}. The isodual commuta-
tor rules are given by [7]

[Md
µν ,

dMαβ ]d =

= id ×d (ηdνα ×dMd
µβ − ηdµα ×dMd

νβ − ηdνβ ×dMd
µα + ηdµβ ×d M̂d

αν), (2.2.31a)

[Md
µν ,

d pdα] = id ×d (ηdµα ×d pdν − ηdνα ×d pdµ), (2.2.31b)

[pdα, p
d
β]
d = 0. (2.3.31c)

The Poincarè-Santilli isodual transformations are given by3

x1d′ = x1d = −x1, (2.2.32a)

x2d′ = x2d = −x2, (2.2.32b)

x3d′ = γd ×d (x3d − βd ×d x4d) = −x3′, (2.2.32c)

x4d′ = γd ×d (x4d − βd ×d x3d) = −x4′, (2.2.32d)

xdµ′ = xdµ + adµ = −xµ′, (2.3.32e)

where

βd = vd/dcd◦ = −β, βd2d = −β2, γd = −(1− β2)−1/2, (2.2.33)

and the use of the isodual operations (quotient, square roots, etc.) is assumed.
The isodual spinorial covering

Pd(3.1) = SLd(2.Cd)×d T d(3.1) (2.2.34)

3It should be indicated that, contrary to popular beliefs, the conventional Poincaré symmetry will be
shown in Chapter 3 to be eleven dimensional, the 11-th dimension being given by a new invariant under
change of the unit. Therefore, the isodual symmetry P d(3.1) is also 11-dimensional.
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Figure 2.4. A schematic view of the “isodual backward light cone” as seen by an observer in
our own spacetime with a time evolution reversed with respect to the “conventional forward
light cone.”

can then be constructed via the same methods.
The basic postulates of the isodual special relativity are also a simple isodual

image of the conventional postulates [7]. For instance, the maximal isodual causal
speed in vacuum is the speed of light in Md, i.e.,

V d
max = cd◦ = −c◦, (2.2.35)

with the understanding that it is measured with a negative-definite unit, thus
being fully equivalent to the conventional maximal speed co referred to a positive
unit. A similar situation occurs for all other postulates.

The isodual light cone is evidently given by (Figure 2.4)

xd
2 d

= (xµd ×d ηdµν ×d xνd)× Id =

= (−x× x− y × y − z × z + t× c2◦ × t)× (−I) = 0. (2.2.36)

As one can see, the above cone formally coincides with the conventional light
cone, although the two cones belong to different spacetimes. The isodual light
cone is used in these studies as the cone of light emitted by antimatter in empty
space (exterior problem).

Note that the two Minkowskian metrics η = Diag.(+1,+1,+1,−1) and η =
Diag.(−1,−1,−1,+1) have been popular since Minkowski’s times, although both
referred to the same unit I. We have learned here that these two popular metrics
are connected by isoduality.
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Figure 2.5. A schematic view of the “isodual cube,” here defined as a conventional cube with
two observers, an external observer in our spacetime and an internal observer in the isodual
spacetime. The first implication of the isodual theory is that the same cube coexists in the two
spacetimes and can, therefore, be detected by both observers. A most intriguing implication
of the isodual theory is that each observer sees the other becoming younger. This occurrence
is evident for the behavior of the internal observer with respect to the exterior one, since the
former evolves according to a time opposite that of the latter. The same occurrence is less
obvious for the opposite case, the behavior of the external observer with respect to the internal
one, and it is due to the fact that the projection of our positive time into the isodual spacetime
is indeed a motion backward in that spacetime.

We finally introduce the isodual electromagnetic waves and related isodual
Maxwell’s equations [9]

F dµν = ∂dAdµ/
d∂dxνd − ∂dAdν/d∂dxdµ, (2.2.37a)

∂dλF
d
µν + ∂dµF

d
νλ + ∂dνF

d
λµ = 0, (2.2.37b)

∂dµF
dµν = −Jdν . (2.2.37c)

As we shall see, the nontriviality of the isodual special relativity is illustrated
by the fact that isodual electromagnetic waves experience gravitational repulsion
when in the field of matter.

2.2.9 Inequivalence of Isodual and Spacetime Inversions
As it is well known (see, the fundamental spacetime symmetries of the 20-th

century are the continuous (connected) component of the Poincaré symmetry
plus discrete symmetries characterized by space reversal (also called parity) and
time reversal.

As noted earlier, antiparticles are assumed in the above setting to exist in
the same representation spacetime and to obey the same symmetries as those
of particles. On the contrary, according to the isodual theory, antiparticles are
represented in a spacetime and possess symmetries distinct from those of particles,
although connected to the latter by the isodual transform.
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The latter occurrence requires the introduction of the isodual spacetime inver-
sions, that is, the isodual images of space and time inversions, first identified in
Ref. [9], that can be formulated in unified coordinate form as follows

xdµ′ = πd ×d xd = −π × x =

= (−r, x4), τd ×d xd = −τ × x = −(r,−x4), (2.2.38)

with field theoretical extension (here expressed for simplicity for a scalar field)

πd ×d φd(xd)×d πd† = φd(x′d, x′d = (−rd, td) = (r,−t), (2.2.39a)

τd ×d φd(xd)×d τd† = φ̄d(x
′′d, x′′d = (rd,−td) = (−r, t), (2.2.39b)

where rd(= −r) is the isodual coordinate on space Ed(rd, δd, Rd), and td is the
isodual time on Ed(td, 1, Rdt ).

LEMMA 2.2.2 [9]: Isodual inversions and spacetime inversions are inequiva-
lent.

Proof. Spacetime inversions are characterized by the change of sign x→ −x by
always preserving the original metric measured with positive units, while isodual
inversions imply the map x→ xd = −x but now measured with an isodual metric
ηd = −η with negative units Id = −I, thus being inequivalent. q.e.d.

Despite their simplicity, isodual inversions (or isodual discrete symmetries) are
not trivial (Figure 2.6). In fact, all measurements are done in our spacetime, thus
implying the need to consider the projection of the isodual discrete symmetries
into our spacetime which are manifestly different than the conventional forms.

In particular, they imply a sort of interchange, in the sense that the conven-
tional space inversion (r, t) → (−r, t) emerges as belonging to the projection in
our spacetime of the isodual time inversion, and vice-versa.

Note that the above “interchange” of parity and time reversal of isodual parti-
cles projected in our spacetime could be used for experimental verifications, but
this aspect is left to interested readers.

In closing this subsection, we point out that the notion of isodual parity has
intriguing connections with the parity of antiparticles in the (j, 0) + (0, j) repre-
sentation space more recently studied by Ahluwalia, Johnson and Goldman [10].
In fact, the latter parity results in being opposite that of particles which is fully
in line with isodual space inversion (isodual parity).

2.2.10 Dunning-Davies Isodual Thermodynamics of
Antimatter

An important contribution to the isodual theory has been made by J. Dunning-
Davies [11] who introduced in 1999 the first, and only known consistent thermo-



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 135

Figure 2.6. A schematic view of the additional peculiar property that the projection in our
spacetime of the isodual space inversion appears as a time inversion and vice versa. In fact, a
point in the isodual spacetime is given by (xd, td) = (−x,−t). The projection in our spacetime
of the isodual space inversion (xd, td) → (−xd, td) is then given by (x,−t), thus appearing
as a time (rather than a space) inversion. Similarly, the projection in our spacetime of the
isodual time inversion (xd, td) → (xd,−td) appears as (−x, t), that is, as a space (rather than
time) inversion. Despite its simplicity, the above occurrence has rather deep implications for all
discrete symmetries in particle physics indicated later on.

dynamics for antimatter, here called Dunning-Davies antimatter thermodynamics
with intriguing results and implications.

As conventionally done in the field, let us represent heat with Q, internal
energy with U , work with W , entropy with S, and absolute temperature with T .
Dunning-Davies isodual thermodynamics of antimatter is evidently defined via
the isodual quantities

Qd = −Q, Ud = −U, W d = −W, Sd = −S, T d = −T (2.2.40)

on isodual spaces over the isodual field of real numbers Rd = Rd(nd, +d, ×d)
with isodual unit Id = −1.

Recall from Section 2.1.3 that differentials are isoselfdual (that is, invariant
under isoduality). Dunning-Davies then has the following:

THEOREM 2.2.1 [21]: Thermodynamical laws are isoselfdual.
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Proof. For the First Law of thermodynamics we have

dQ = dU − dW ≡ ddQd = ddUd − ddW d. (2.2.41)

Similarly, for the Second Law of thermodynamics we have

dQ = T × dS ≡ ddQd = T d ×d Sd, (2.2.42)

and the same occurs for the remaining laws. q.e.d.
Despite their simplicity, Dunning-Davies results [21] have rather deep impli-

cations. First, the identity of thermodynamical laws, by no means, implies the
identity of the thermodynamics of matter and antimatter. In fact, in Dunning-
Davies isodual thermodynamics the entropy must always decrease in time, since
the isodual entropy is always negative and is defined in a space with evolution
backward in time with respect to us. However, these features are fully equivalent
to the conventional increase of the entropy tacitly referred to positive units.

Also, Dunning-Davies results indicate that antimatter galaxies and quasars
cannot be distinguished from matter galaxies and quasars via the use of thermo-
dynamics, evidently because their laws coincide, in a way much similar to the
identity of the trajectories of particles and antiparticles of Lemma 2.2.1.

This result indicates that the only possibility known at this writing to deter-
mine whether far-away galaxies and quasars are made up of matter or of anti-
matter is that via the predicted gravitational repulsion of the light emitted by
antimatter called isodual light (see next section and Chapter 5).

2.2.11 Isodual General Relativity
For completeness, we now introduce the isodual general relativity for the clas-

sical gravitational representation of antimatter. A primary motivation for its
study is the incompatibility with antimatter of the positive-definite character of
the energy-momentum tensor of the conventional general relativity studied in
Chapter 1.

The resolution of this incompatibility evidently requires a structural revision of
general relativity [33] for a consistent treatment of antimatter. The only solution
known to the author is that offered by isoduality.4

It should be stressed that this study is here presented merely for complete-
ness, since the achievement of a consistent treatment of negative-energies, by no
means, resolves the serious inconsistencies of gravitation on a Riemannian space
caused by curvature, as studied in Section 1.2, thus requiring new geometric vistas
beyond those permitted by the Riemannian geometry (see Chapters 3 and 4).

4The author would be grateful to colleagues who care to bring to his attention other “classical” gravi-
tational theories of antimatter compatible with the negative-energy solutions needed by antimatter.
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As studied in Section 2.1.7, the isodual Riemannian geometry is defined on the
isodual field Rd(nd,+d,×d) for which the norm is negative-definite, Eq. (2.1.18).
As a result, all quantities that are positive in Riemannian geometry become neg-
ative under isoduality, thus including the energy-momentum tensor.

In fact, the energy-momentum tensor of isodual electromagnetic waves (2.2.37)
is negative-definite [8,9]

T dµν = (4× π)−1d ×d (F dµα ×d F dαν
+ (1/4)−1d ×d gdµν ×d F dαβ ×d F dαβ). (2.2.43)

The Einstein-Hilbert isodual equations for antimatter in the exterior conditions
in vacuum are then given by [6,9]

Gdµν = Rdµν −
1
2

d

×d gdµν ×d Rd = kd ×d T dµν . (2.2.44)

The rest of the theory is then given by the use of the isodual Riemannian geometry
of Section 2.1.7.

The explicit study of this gravitational theory of antimatter is left to the in-
terested reader due to the indicated inconsistencies of gravitational theories on
a Riemannian space for the conventional case of matter (Section 1.2). These
inconsistencies multiply when treating antimatter, as we shall see.

2.3 OPERATOR ISODUAL THEORY OF
POINT-LIKE ANTIPARTICLES

2.3.1 Basic Assumptions
In this section we study the operator image of the classical isodual theory of

the preceding section; we prove that the operator image of isoduality is equivalent
to charge conjugation; and we show that isodual mathematics resolves all known
objections against negative energies.

A main result of this section is the identification of a simple, structurally new
formulation of quantum mechanics known as isodual quantum mechanics or, more
properly, as the isodual branch of hadronic mechanics first proposed by Santilli in
Refs. [5]. Another result of this section is the fact that all numerical predictions
of operator isoduality coincide with those obtained via charge conjugation on a
Hilbert space, thus providing the experimental verification of the isodual theory
of antimatter at the operator level.

Despite that, the isodual image of quantum mechanics is not trivial because
of a number of far reaching predictions we shall study in this section and in the
next chapters, such as: the prediction that antimatter emits a new light distinct
from that of matter; antiparticles in the gravitational field of matter experience
antigravity; bound states of particles and their antiparticles can move backward
in time without violating the principle of causality; and other predictions.
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Other important results of this section are a new interpretation of the con-
ventional Dirac equation that escaped detection for about one century, as well
as the indication that the isodual theory of antimatter originated from the Dirac
equation itself, not so much from the negative-energy solutions, but more prop-
erly from their two-dimensional unit that is indeed negative-definite, I2×2 =
Diag.(−1,−1).

As we shall see, Dirac’s “hole theory”, with the consequential restriction of
the study of antimatter to the sole second quantization and resulting scientific
imbalance indicated in Section 1.1, were due to Dirac’s lack of knowledge of a
mathematics based on negative units.

Intriguingly, had Dirac identified the quantity I2×2 = Diag.(−1,−1) as the
unit of the mathematics treating the negative energy solutions of his equation, the
physics of the 20-th century would have followed a different path because, despite
its simplicity, the unit is indeed the most fundamental notion of all mathematical
and physical theories.

2.3.2 Isodual Quantization
The isodual Hamiltonian mechanics (and its underlying isodual symplectic ge-

ometry [5a] not treated in this chapter for brevity) permit the identification of a
new quantization channel, known as the naive isodual quantization [6] that can be
readily formulated via the use of the Hamilton-Jacobi-Santilli isodual equations
(2.2.21) as follows

A◦d → −id ×d ~d ×d Lndψd(td, rd), (2.3.1a)

∂dA◦d/d∂dtd +Hd = 0→ id ×d ∂dψd/d∂dtd =

= Hd ×d ψd = Ed ×d ψd, (2.3.1b)

∂dA◦d/d∂dxdk − p̂k = 0→ pdk ×d ψd = −id ×d ∂dkψd, (2.3.1c)

∂dA◦d/d∂dpdk = 0→ ∂dψd/d∂dpdk = 0. (2.3.1d)

Recall that the fundamental unit of quantum mechanics is Planck’s constant
~ = +1. It then follows that the fundamental unit of the isodual operator theory
is the new quantity

~d = −1. (2.3.2)

It is evident that the above quantization channel identifies the new mechanics
known as isodual quantum mechanics, or the isodual branch of hadronic mechan-
ics.
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2.3.3 Isodual Hilbert Spaces
Isodual quantum mechanics can be constructed via the anti-unitary transform

U × U † = ~d = Id = −1, (2.3.3)

applied, for consistency, to the totality of the mathematical and physical formula-
tions of quantum mechanics. We recover in this way the isodual real and complex
numbers

n→ nd = U × n× U † = n× (U × U †) = n× Id, (2.3.4)

isodual operators
A→ U ×A× U † = Ad, (2.3.5)

the isodual product among generic quantities A, B (numbers, operators, etc.)

A×B → U × (A×B)× U † =

= (U ×A× U †)× (U × U †)−1 × (U ×B × U †) = Ad ×d Bd, (2.3.6)

and similar properties.
Evidently, isodual quantum mechanics is formulated in the isodual Hilbert space

Hd with isodual states [6]

|ψ >d= −|ψ >†= − < ψ|, (2.3.7)

where < ψ| is a conventional dual state on H, and isodual inner product

< ψ|d × (−1)× |ψ >d ×Id, (2.3.8)

with isodual expectation values of an operator Ad

< Ad >d= (< ψ|d ×d Ad ×d |ψ >d /d < ψ|d ×d |ψ >d), (2.3.9)

and isodual normalization

< ψ|d ×d |ψ >d= −1 (2.3.10)

defined on the isodual complex field Cd with unit −1 (Section 2.1.1).
The isodual expectation values can also be reached via anti-unitary transform

(2.3.3),
< ψ| ×A× |ψ >→ U × (< ψ| ×A× |ψ >)× U † =

= (< ψ| × U †)× (U × U †)−1 × (U ×A× U †)× (U × U †)−1×

×(U × |ψ >)× (U × U †) =< ψ|d ×d Ad ×d |ψ >d ×Id. (2.3.11)

The proof of the following property is trivial.
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LEMMA 2.3.1 [5b]: The isodual image of an operator A that is Hermitian on
H over C is also Hermitian on Hd over Cd (isodual Hermiticity).

It then follows that all quantities that are observables for particles are equally
observables for antiparticles represented via isoduality.

LEMMA 2.3.2 [5b]: Let H be a Hermitian operator on a Hilbert space H over
C with positive-definite eigenvalues E,

H × |ψ >= E × |ψ >,H = H†, E => 0. (2.3.12)

Then, the eigenvalues of the isodual operator Hd on the isodual Hilbert space Hd
over Cd are negative-definite,

Hd ×d |ψ >d= Ed ×d |ψ >d,Hd = Hd†d, Ed < 0. (2.3.13)

This important property establishes an evident compatibility between the clas-
sical and operator formulations of isoduality.

We also mention the isodual unitary laws

Ud ×d Ud† = Ud
† ×d Ud = Id, (2.3.14)

the isodual trace
TrdAd = (TrAd)× Id ∈ Cd, (2.3.15a)

Trd(Ad ×d Bd) = TrdAd ×d TrdBd, (2.3.15b)

the isodual determinant

DetdAd = (DetAd)× Id ∈ Cd, (2.3.16a)

Detd(Ad ×d Bd) = Detd ×d DetdBd, (2.3.16b)

the isodual logarithm of a real number n

Logdnd = −(Log nd)× Id, (2.3.17)

and other isodual operations.
The interested reader can then work out the remaining properties of the isodual

theory of linear operators on a Hilbert space.

2.3.4 Isoselfduality of Minkowski’s Line Elements and
Hilbert’s Inner Products

A most fundamental new property of the isodual theory, with implications as
vast as the formulation of a basically new cosmology, is expressed by the following
lemma whose proof is a trivial application of transform (2.3.3).
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LEMMA 2.3.3 [23]: Minkowski’s line elements and Hilbert’s inner products are
invariant under isoduality (or they are isoselfdual according to Definition 2.1.2),

x2 = (xµ × ηµν × xν)× I ≡

≡ (xdµ ×d ηdµν ×d xdν)× Id = xd
2d

, (2.3.18a)

< ψ| × |ψ > × I ≡ < ψ|d ×d |ψ >d × Id. (2.3.18b)

As a result, all relativistic and quantum mechanical laws holding for matter
also hold for antimatter under isoduality. The equivalence of charge conjugation
and isoduality then follows, as we shall see shortly.

Lemma 2.3.3 illustrates the reason why isodual special relativity and isodual
Hilbert spaces have escaped detection for about one century. Note, however,
that invariances (2.3.18) require the prior discovery of new numbers, those with
negative unit.

2.3.5 Isodual Schrödinger and Heisenberg’s Equations
The fundamental dynamical equations of isodual quantum mechanics are the

isodual images of conventional dynamical equations. They are today known as
the Schrödinger-Santilli isodual equations [4] (where we assume hereon ~d = −1,
thus having ×d~d = 1)

id ×d ∂|ψ >d /d∂dtd = Hd ×d |ψ >d, (2.3.19a)

pdk ×d |ψ >d= −id ×d ∂d|ψ >d /d∂drd, (2.3.19b)

and the Heisenberg-Santilli isodual equations

id ×d ddAd/dddtd = Ad ×d Hd −Hd ×d Ad = [Ad,Hd]d, (2.3.20a)

[rdi , p
d
j ]
d = id ×d δdij , [rd, rdj ]d = [pdi , p

d
j ]
d = 0. (2.3.20b)

Note that, when written explicitly, Eq. (2.3.19a) is based on an associative
modular action to the left,

− < ψ| ×d Hd = (∂d < ψ|∂dtd)×d id. (2.3.21)

It is an instructive exercise for readers interested in learning the new mechanics
to prove the equivalence of the isodual Schrödinger and Heisenberg equations via
the anti-unitary transform (2.3.3).
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2.3.6 Isoselfdual Re-Interpretation of Dirac’s Equation
Isoduality has permitted a novel interpretation of the conventional Dirac equa-

tion (we shall here used the notation of Ref. [12]) in which the negative-energy
states are reinterpreted as belonging to the isodual images of positive energy
states, resulting in the first known consistent representation of antiparticles in
first quantization.

This result should be expected since the isodual theory of antimatter applies
at the Newtonian level, let alone that of first quantization. Needless to say,
the treatment via isodual first quantization does not exclude that via isodual
second quantization. The point is that the treatment of antiparticles is no longer
restricted to second quantization, as a condition to resolve the scientific imbalance
between matter and antimatter indicated earlier.

Consider the conventional Dirac equation [2]

[γµ × (pµ − e×Aµ/c) + i×m]×Ψ(x) = 0, (2.3.22)

with realization of Dirac’s celebrated gamma matrices

γk =
(

0 −σk
σk 0

)
, γ4 = i×

(
I2×2 0,

0 −I2×2

)
, (2.3.23a)

{γµ, γ̃ν} = 2×ηµν , Ψ = i×
(

Φ
−Φ†

)
. (2.3.23b)

At the level of first quantization here considered, the above equation is rather
universally interpreted as representing an electron under an external electromag-
netic field.

The above equations are generally defined in the 6-dimensional space given by
the Kronecker product of the conventional Minkowski spacetime and an internal
spin space

MTot = M(x, η,R)× Sspin, (2.3.24)

with total unit

ITot = Iorb × Ispin = Diag.(1, 1, 1, 1)×Diag.(1, 1), (2.3.25)

and total symmetry
P (3.1) = SL(2.C)× T (3.1). (2.3.26)

The proof of the following property is recommended to interested readers.
THEOREM 2.3.1 [5b]: Pauli’s sigma matrices and Dirac’s gamma matrices

are isoselfdual,
σk ≡ σdk, (2.3.27a)

γµ ≡ γdµ. (2.3.27b).
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The above properties imply an important re-interpretation of Eq. (2.3.22), first
identified in Ref. [9] and today known as the Dirac-Santilli isoselfdual equation,
that can be written

[γ̃µ × (pµ − e×Aµ/c) + i×m]× Ψ̃(x) = 0, (2.3.28)

with re-interpretation of the gamma matrices

γ̃k =
(

0 σdk
σk 0

)
, γ̃4 = i

(
I2×2 0,

0 Id2×2

)
, (2.3.29a)

{γ̃µ, γ̃ν} = 2d×dηdµν , Ψ̃ = −γ̃4 ×Ψ = i×
(

Φ
Φd

)
, (2.3.29b)

By recalling that isodual spaces coexist with, but are different from conven-
tional spaces, we have the following:

THEOREM 2.3.2 [9]: The Dirac-Santilli isoselfdual equation is defined on the
12-dimensional isoselfdual representation space

MTot = {M(x, η,R)× Sspin} × {Md(xd, ηd, Rd)×d Sdspin}, (2.3.30)

with isoselfdual total 12-dimensional unit

ITot = {Iorb × Ispin} × {Idorb ×d Idspin}, (2.3.31)

and its symmetry is given by the isoselfdual product of the Poincaré symmetry
and its isodual

STot = P(3.1)× Pd(3.1) =

= {SL(2.C)× T (3.1)} × {SLd(2.Cd)×d T d(3.1)}. (2.3.32)

A direct consequence of the isoselfdual structure can be expressed as follows.

COROLLARY 2.3.2a [9]: The Dirac-Santilli isoselfdual equation provides a
joint representation of an electron and its antiparticle (the positron) in first quan-
tization,

Dirac Equation = Electron× Positron. (2.3.33)

In fact, the two-dimensional component of the wave function with positive-
energy solution represents the electron and that with negative-energy solutions
represent the positron without any need for second quantization, due to the
physical behavior of negative energies in isodual treatment established earlier.

Note the complete democracy and equivalence in treatment of the electron and
the positron in equation (2.3.28), in the sense that the equation can be equally
used to represent an electron or its antiparticle. By comparison, according to the
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original Dirac interpretation, the equation could only be used to represent the
electron [12], since the representation of the positron required the “hole theory”.

It has been popularly believed throughout the 20-th century that Dirac’s
gamma matrices provide a “four-dimensional representation of the SU(2)-spin
symmetry”. This belief is disproved by the isodual theory, as expressed by the
following

THEOREM 2.3.3 [5b]: Dirac’s gamma matrices characterize the direct prod-
uct of an irreducible two-dimensional (regular) representation of the SU(2)-spin
symmetry and its isodual,

Dirac′s Spin Symmetry : SU(2)× SUd(2). (2.3.34)

In fact, the gamma matrices are characterized by the conventional, 2-dim-
ensional Pauli matrices σk and related identity I2×2 as well as other matrices
that have resulted in being the exact isodual images σdk with isodual unit Id2×2.

It should be recalled that the isodual theory was born precisely out of these
issues and, more particularly, from the incompatibility between the popular in-
terpretation of gamma matrices as providing a “four-dimensional” representation
of the SU(2)-spin symmetry and the lack of existence of such a representation in
Lie’s theory.

The sole possibility known to the author for the reconciliation of Lie’s theory
for the SU(2)-spin symmetry and Dirac’s gamma matrices was to assume that
−I2×2 is the unit of a dual-type representation. The entire theory studied in this
chapter then followed.

It should also be noted that, as conventionally written, Dirac’s equation is not
isoselfdual because it is not sufficiently symmetric in the two-dimensional states
and their isoduals.

In summary, Dirac’s was forced to formulate the “hole theory” for antiparti-
cles because he referred the negative energy states to the conventional positive
unit, while their reformulation with respect to negative units yields fully physical
results.

It is easy to see that the same isodual reinterpretation applies for Majorana’s
spinorial representations [13] (see also [14,15]) as well as Ahluwalia’s broader
spinorial representations (1/2, 0) + (0, 1/2) [16] (see also the subsequent paper
[17]), that are reinterpreted in the isoselfdual form (1, 2, 0) + (1, 2, 0)d, thus
extending their physical applicability to first quantization.

In the latter reinterpretation the representation (1/2, 0) is evidently done con-
ventional spaces over conventional fields with unit +1, while the isodual represen-
tation (1/2, 0)d is done on the corresponding isodual spaces defined on isodual
fields with unit −1. As a result, all quantities of the representation (1/2, 0)
change sign under isoduality.
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It should be finally indicated that Ahluwalia treatment of Majorana spinors
has a deep connection with isoduality because the underlying Class II spinors
have a negative norm [16] precisely as it is the case for isoduality. As a result, the
isodual reinterpretation under consideration here is quite natural and actually
warranted for mathematical consistency, e.g., to have the topology characterized
by a negative norm be compatible with the underlying fields.

2.3.7 Equivalence of Isoduality and charge conjugation
We come now to another fundamental point of this chapter, the proof that

isoduality is equivalent to charge conjugation. This property is crucial for the
experimental verification of isoduality at the particle level too. This equivalence
was first identified by Santilli in Ref. [6] and can be easily expressed today via
the following:

LEMMA 2.3.4 [6,5b,18]: The isodual transform is equivalent to charge conju-
gation.

Proof. Charge conjugation is characterized by the following transform of
wavefunctions (see, e.g., Ref. [12], pages 109 and 176)

Ψ(x)→ CΨ(x) = c×Ψ†(x), (2.3.35)

where
|c| = 1, (2.3.36)

thus being manifestly equivalent to the isodual transform

Ψ(x)→ Ψd(xd) = −Ψ†(−xt), (2.3.37)

where t denotes transpose.
A reason why the two transforms are equivalent, rather than identical, is the

fact that charge conjugation maps spacetime into itself, while isoduality maps
spacetime into its isodual. q.e.d.

Let us illustrate Lemma 2.3.4 with a few examples. As well known, the Klein-
Gordon equation for a free particle

∂µ∂µΨ−m2 ×Ψ = 0 (2.3.38)

is invariant under charge conjugation, in the sense that it is turned into the form

c× [Ψ̄∂µ∂µ − Ψ̄×m2] = 0, |c| = 1, (2.3.39)

where the upper bar denotes complex conjugation (since Ψ̄ is a scalar), while the
Lagrangian density

L = −(~× ~/2×m)× {∂µΨ̄− i× e×Aµ/~× c)× Ψ̄]×
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×[∂Ψ + (i× e×Aµ/~× c)×Ψ] +m×m× Ψ̄×Ψ (2.3.40)

is left invariant, and the four-current

Jµ = −(i× ~/2×m)× [ψ̄ × ∂µΨ− (∂µΨ̄)×Ψ] (2.3.41)

changes sign
Jµ → CJµ = −Jµ. (2.3.42)

By recalling the selfduality of ordinary derivatives, Eq. (2.1.30), under isodu-
ality the Klein-Gordon Equation becomes

[∂µ∂µΨ−m2 ×Ψ]d = Ψd∂dµ∂dµ −Ψd ×d md ×d md =

= −[Ψ̄∂µ∂µ − Ψ̄×m2] = 0, (2.3.43)

thus being equivalent to Eq. (2.3.39), while the Lagrangian changes sign and the
four-current changes sign too,

Jdµ = −(i× ~/2×m)× [Ψ̄× ∂µΨ− (∂µΨ̄)×Ψ]d =

= (i× ~/2×m)× [Ψ̄× ∂µΨ− (∂µΨ̄)×Ψ], (2.3.44)

(where we have used the isoselfduality of the imaginary number i).
The above results confirm Lemma 2.3.4 because of the equivalent behavior of

the equations of motion and the four-current, while the change of sign of the
Lagrangian does not affect the numerical results.

As it is also well known, the Klein-Gordon equation for a particle under an
external electromagnetic field [12]

[(∂µ + i× e×Aµ/~× c)×

×(∂µ + i× e×Aµ/~× c)−m2]×Ψ = 0, (2.3.45)

is equally invariant under charge conjugation in which either e or Aµ change sign,
in view of the known invariance

C(i× e×Aµ/~× c) = i× e×Aµ/~× c, (2.3.46)

while the four-current also changes sign. By noting that the preceding invariance
persists under isoduality,

(i× e×Aµ/~× c)d = i× e×Aµ/~× c, (2.3.47)

Eq. (2.3.45) remains invariant under isoduality, while the Lagrangian density
changes sign and the four-current, again, changes sign.

Similarly, consider Dirac equation (see also Ref. [12], pp. 176-177)

[γµ × (∂µΨ− (i× e×Aµ/~× c)×Ψ +m×Ψ = 0, (2.3.48)
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with Lagrangian density

L = (~× c/2)× {Ψ̃× γµ × [∂µΨ + (i× e×Aµ/~× c)×Ψ]−

−(∂µΨ̃− (i× e×Aµ/~× c)× Ψ̃]× γµ −m× Ψ̃×Ψ, (2.3.49a)

Ψ̃ = Ψ† × γ4, (2.3.49b)
and four-current

Jµ = i× c× Ψ̃× γµ ×Ψ = i× c×Ψ† × γ4 × γµ ×Ψ. (2.3.50)

The charge conjugation for Dirac’s equations is given by the transform [12]

Ψ→ CΨ = c× S−1
C × Ψ̃t (2.3.51)

where SC is a unitary matrix such that

γµ → −γtµ = SC × γµ × S−1
C , (2.3.52)

and there is the change of sign either of e or of Aµ, under which the equation is
transformed into the form

[∂µΨ̃− (i× e×Aµ/~× c)× Ψ̃]× γµ −m× Ψ̃ = 0, (2.3.53)

while the Lagrangian density changes sign and the four-current remains the same,

L→ CL = −L, Jµ → CJµ = Jµ. (2.3.54)

It is easy to see that isoduality provides equivalent results. In fact, we have
for Eq. (2.3.48)

{[γµ × (∂µΨ− i× e×Aµ/~× c)×Ψ +m×Ψ}d =

= [∂µΨ† − (i× e×Aµ/~× c)×Ψ†]× γµ −m×Ψ† = 0, (2.3.55)
that, when multiplied by γ4 reproduces Eq. (2.3.53) identically. Similarly, by
recalling that Dirac’ s gamma matrices are isoselfdual (Theorem 2.3.1), and by
noting that

Ψ̃d = (Ψ† × γ4)d = γ4 ×Ψ, (2.3.56)
we have

Ld = L, (2.3.57)
while for the four-current we have

Jdµ = −i× c×Ψ† × γµ × γ4 × ψ. (2.3.58)

But the γµ and γ4 anticommutate. As a consequence, the four-current does not
change sign under isoduality as in the conventional case.

Note that the lack of change of sign under isoduality of Dirac’s four-current Jµ
confirms reinterpretation (2.3.28) since, for the latter equation, the total charge
is null.

The equivalence between isoduality and charge conjugation of other equations,
such as those by Weyl, Majorana, etc., follows the same lines.
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2.3.8 Experimental Verification of the Isodual Theory
of Antimatter in Particle Physics

In Section 2.2.3. we have established the experimental verification of the isod-
ual theory of antimatter in classical physics that, in particle physics, requires no
detailed elaboration since it is established by the equivalence of charge conjuga-
tion and isoduality (Lemma 2.3.4), and we can write:

LEMMA 2.3.5 [6,5b,18], [7]: All experimental data currently available for an-
tiparticles represented via charge conjugation are equally verified by the isodual
theory of antimatter.

2.3.9 Elementary Particles and their Isoduals
We assume the reader is familiar with the conventional definition of elementary

particles as irreducible unitary representations of the spinorial covering of the
Galilei symmetry G(3.1) for nonrelativistic treatments and those of the Poincaré
symmetry P (3.1) for relativistic treatments. We therefore introduce the following:

DEFINITION 2.3.1: Elementary isodual particles (antiparticles) are given
by irreducible unitary representations of the spinorial covering of the Galilei-
Santilli’s isodual symmetry Gd(3.1) for nonrelativistic treatments and those of
the Poincaré-Santilli isodual symmetry P d(3.1) for relativistic treatments.

A few comments are now in order. Firstly, one should be aware that “isodual
particles” and “antiparticles” do not represent the same notion, evidently because
of the negative mass, energy and time of the former compared to positive mass,
energy and time of the latter. In the rest of this chapter, unless otherwise stated,
the word “antiparticle” will be referred to as the “isodual particle.”

For instance the word “positron” e+ is more appropriately intended to repre-
sent the “isodual electron” with symbol e−d. Similarly the, “antiproton” p− is
intended to represent the “isodual proton” p+d.

Secondly, the reader should note the insistence on the elementary character
of the antiparticles here admitted. The reason is that the antigravity studied in
Chapter 4 is specifically formulated for “elementary” isodual particles, such as
the isodual electron, due to a number of unsettled aspects pertaining to composite
particles.

Consider, as an illustration, the case of mesons. If the π◦ is a bound state of a
particle and its isodual, the state is isoselfdual and, as such, it cannot experience
antigravity, as illustrated in the next section. A number of ambiguities then
follow for the study of the gravity of the charged mesons π±, such as the problem
of ascertaining which of the two mesons is a particle and which is its isodual or,
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whether the selected antiparticle is indeed the isodual image of the particle as a
necessary condition for meaningful study of their gravity.

Note that essentially the same ambiguities prohibit the use of muons for a
serious theoretical and experimental studies of the gravity of antiparticles, again,
because of unsettled problems pertaining to the structure of the muons them-
selves. Since the muons are naturally unstable, they cannot be credibly believed
to be elementary. Therefore, serious theoretical and experimental studies on the
gravity of muons require the prior identification of their constituents with physical
particles.

Finally, the reader should be aware that Definition 2.3.1 excludes the use of
quark conjectures for the gravitational studies of this monograph. This is due
to the well-known basic inconsistency of quark conjecture of not admitting any
gravitation at all (see, e.g., the Appendix of Ref. [18]). In fact, gravity can only be
defined in our spacetime while quarks can only be defined in their mathematical
unitary internal space with no known connection with our spacetime due to the
O’Rafearthaigh theorem.5

Also, the only “masses” that can be credibly claimed as possessing inertia are
the eigenvalues of the second-order Casimir invariant of the Poincaré symmetry
pµ×pµ = m2. Quarks cannot be characterized via such a fundamental symmetry,
as well known. It then follows that “quark masses” are mere mathematical pa-
rameters defined in the mathematical internal complex-unitary space that cannot
possibly be used as serious basis for gravitational tests.

2.3.10 Photons and their Isoduals
As it is well known, photons have no charge and, therefore, they are invariant

under charge conjugation, as transparent from the simple plane-wave representa-
tion

Ψ(t, r) = N × ei×(k×r−E×t), N ∈ R, (2.3.59)

with familiar relativistic form

Ψ(x) = N × ei×kµ×xµ
, (2.3.60)

and familiar expression for the energy

E = h× ν. (2.3.61)

As a result, matter and antimatter have been believed throughout the 20-th
century to emit the same light. In turn, this belief has left fundamentally unset-
tled basic questions in astrophysics and cosmology, such as the lack of quantitative

5The possible connection between internal and spacetime symmetries offered by supersymmetric theories
cannot be credibly used for gravitational tests due to their highly unsettled character and the prediction
of a zoo of new particles none of which has been experimentally detected to the author’s best knowledge.
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studies as to whether far-away galaxies and quasars are made up of matter or of
antimatter.

One of the most intriguing and far reaching implications of the isodual theory is
that, while remaining evidently invariant under charge conjugation, the photon is
not invariant under isoduality, thus admitting a conjugate particle first submitted
by Santilli in Ref. [18] under the name of isodual photon. In particular, the isodual
photon emerges as having physical characteristics that can be experimentally
measured as being different from those of the photon.

Therefore, the isodual theory offers the first known possibilities of quantitative
theoretical and experimental studies as to whether a far-away galaxy or quasar
is made of matter or of antimatter due to detectable physical differences of their
emitted light.

Note that the term “antiphoton” could be misleading because the prefix “anti”
is generally assumed as referring to charge conjugation. For this reason the name
of “isodual photon” appears to be preferable, also because it represents, more
technically, the intended state.

In fact, the photon is mapped by isoduality into a new particle possessing
all negative-definite physical characteristics, with the following simple isodual
plane-wave representation

Ψd(td, rd) = Nd ×d ei
d×d(kd×drd−Ed×dtd)
d , Nd ∈ Rd, (2.3.62)

with relativistic expression on isodual Minkowski space

Ψd(xd) = Nd ×d ei
d×dkd

µ×dxdµ

d , (2.3.63)

and isodual expression for the energy

Ed = hd ×d νd, (2.3.64)

where ed is the isodual exponentiation (2.1.26b).
Note that, since i is isoselfdual, Eq. (2.1.20), the exponent of the plane-wave

representation is invariant under both charge conjugation and isoduality, as illus-
trated by the following expression

id ×d (kd ×d rd − Ed ×d td) ≡ i× (k × r − E × t), (2.3.65)

or its relativistic counterpart

id ×d kdµ ×d xdµ ≡ i× kµ × xµ, (2.3.66)

thus confirming the lack of contradiction between charge conjugation and isodu-
ality.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 151

Moreover, both the photon and the isodual photon travel in vacuum with the
same (absolute) speed |c|, for which we have the additional identity

kdµ ×d kdµ ≡ kµ × kµ = 0. (2.3.67)

Despite the above identities, energy and time are positive-definite for the pho-
ton, while they are negative-definite for the isodual photon. As we shall see, the
latter property implies that photons are attracted by the gravitational field of
matter while isodual photons are repelled, thus providing a physically detectable
difference.

Additional differences between light emitted by matter and that emitted by
antimatter, such as those pertaining to parity and other discrete symmetries,
require additional study.

All in all, the isodual theory of antimatter permits the first possibilities known
to the author for future experimental measurements as to whether far-away galax-
ies and quasars are made up of matter or of antimatter.

2.3.11 Electrons and their Isoduals
The next truly elementary particles and antiparticles are the electron e− and its

antiparticle, the positron e+ or the isodual electron e−d. The differences between
the “positron” and the “isodual electron” should be kept in mind. In fact, the
former has positive rest energy and moves forward in time, while the latter has
negative rest energy and moves backward in time.

Also, the electron is known to experience gravitational attraction in the field of
matter, as experimentally established. As conventionally defined, the positron too
is predicted to experience gravitational attraction in the field of matter (because
its energy is positive).

However, as we shall see in Chapter 4, the isodual electron is predicted to
experience antigravity when immersed in the field of matter, and this illustrates
again the rather profound physical differences between the “positron” and the
“isodual electron”.

Note that, in view of their truly elementary character, isodual electrons are the
ideal candidates for the measurement of the gravitational field of antiparticles.

2.3.12 Protons and their Isoduals
The next particles demanding comments are the proton p+, the antiproton p−

and the isodual proton p+d. In this case the differences between the “antiproton”
and the “isodual proton” should be kept in mind to avoid major inconsistencies
with the isodual theory, such as the study of the possible antigravity for antipro-
tons in the field of matter which antigravity cannot exist for the isodual theory
(due, again, to the positive mass of the antiproton).



152 RUGGERO MARIA SANTILLI

Note that these particles are not elementary and, as such, they are not admitted
by Definition 2.3.1. moreover, as stressed earlier [18], when represented in term of
quark conjectures both the proton and the antiproton cannot admit any gravity
at all, let alone antigravity. As a result, extreme scientific care should be exercised
before extending to all antimatter any possible gravitational measurements for
antiprotons.

2.3.13 The Hydrogen Atom and its Isodual
The understanding of this chapter requires the knowledge that studies con-

ducted on the antihydrogen atom (see, e.g., the various contributions in Pro-
ceedings [19]), even though evidently interesting per se, have no connection with
the isodual hydrogen atom, because the antihydrogen atom has positive mass,
for which antigravity is prohibited, and emits conventional photons. Therefore,
it is important to inspect the differences between these two formulations of the
simplest possible atom of antimatter.

We assume as exactly valid the conventional quantum mechanical theory of
bound states of point-like particles at large mutual distances,6 as available in
quantum mechanical books so numerous to discourage even a partial listing.

For the case of two particles denoted with the indices 1, 2, the total state in
the Hilbert space is the familiar tensorial product of the two states

|ψ >= |ψ1 > ×|ψ2 > . (2.3.68)

The total Hamiltonian H is the sum of the kinetic terms of each state plus the
familiar interaction term V (r) depending on the mutual distance r,

H = p1 × p1/2×m1 + p2 × p2/2×m2 + V (r). (2.3.69)

The total angular momentum is computed via the familiar expressions for
angular momenta and spins

J = J1 × I + I × J2, S = S1 × I + I × S2, (2.3.70)

where the I’s are trivial units, with the usual rules for couplings, addition, etc.
One should note that the unit for angular momenta is three-dimensional while
that for spin has a generally different dimension.

A typical example of two-body bound states of particles is the hydrogen atom
that experiences attraction in the gravitational field of matter with the well es-
tablished emission of conventional photons.

6We are here referring to the large mutual distances as occurring in the atomic structure and exclude the
short mutual distances as occurring in the structure of hadrons, nuclei and stars since a serious study
of the latter is dramatically beyond the capabilities of quantum mechanics, as shown beyond scientific
doubt in Chapter 3.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 153

The study of bound states of point-like isodual particles at large mutual dis-
tances is an important part of isodual quantum mechanics. These bound states
can be studied via an elementary isoduality of the corresponding bound states
for particles, that is, via the use of the isodual Hilbert spaces Hd studied earlier.

The total isodual state is the tensorial product of the two isodual states

|ψd(rd) >d= |ψd1(rd) >d ×d|ψd2(rd) >d= − < ψ1(−r)|× < ψ2(−r)|. (2.3.71)

The total isodual Hamiltonian is the sum of the isodual kinetic terms of each
particle plus the isodual interaction term depending on the isodual mutual dis-
tance,

Hd = pd1 ×d pd1/d2d ×d md
1 + pd2 ×d pd2/d2d ×d md

2 + V d(rd). (2.3.72)

The total isodual angular momentum is based on the expressions for isodual
angular momenta and spin

Jd = Jd1 ×d Id + Id ×d Jd2 , (2.3.73a)

Sd = Sd1 ×d Id + Id ×d Sd2 , (2.3.73b)

The remaining aspects (couplings, addition theory of angular momenta, etc.)
are then given by a simple isoduality of the conventional theory that is here
omitted for brevity.

Note that all eigenvalues that are positive for the conventional case measured
with positive units become negative under isoduality, yet measured with negative
units, thus achieving full equivalence between particle and antiparticle bound
states.

The simplest possible application of the above isodual theory is that for the
isodual hydrogen atom (first worked out in Ref. [18]). The novel predictions of
isoduality over that of the antihydrogen atom is that the isodual hydrogen atom
is predicted to experience antigravity in the field of matter and emits isodual
photons that are also repelled by the gravitational field of matter.

2.3.14 Isoselfdual Bound States
Some of the most interesting and novel bound states predicted by the isodual

theory are the isoselfdual bound states, that is, bound states that coincide with
their isodual image. The simplest case is the bound state of one elementary
particle and its isodual, such as the positronium.

The condition of isoselfduality requires that the basic symmetry must be itself
isoselfdual, e.g., for the nonrelativistic case the total symmetry must be

GTot = G(3.1)×Gd(3.1), (2.3.74)
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where × is the Kronecker product (a composition of states thus being isoselfdual),
with a simple relativistic extension here assumed as known from the preceding
sections.

The total unit must also be isoselfdual,

ITot = I × Id, (2.3.75)

where I represents the space, time and spin units.
The total Hilbert space and related states must also be isoselfdual,

HTot = H×Hd, (2.3.76a)

|ψ >Tot= |ψ > +|ψ >d= |ψ > − < ψ|, (2.3.76b)

and so on.
A main feature is that isoselfdual states exist in both the spacetime of particles

and that of antiparticles. Therefore, the computation of the total energy must
be done either in H, in which case the total energy is positive, or in Hd, in which
case the total energy is negative.

Suppose that a system of one elementary particle and its isodual is studied in
our laboratory of matter. In this case the eigenvalues for both particle and its
isodual must be computed in H, in which case we have the equation

i× ∂t|ψ >= (p× p/2×m)× |ψ > +

+(pd ×d pd/d2d ×d md)×d |ψ > +V (r)× |ψ > =

= [p× p/2×m+ V (r)]× |ψ >= E × |ψ >, (2.3.77)

under which the total energy E is evidently positive.
When the same isoselfdual state is detected in the spacetime of antimatter, it

must be computed with respect to Hd, in which case the total energy is negative,
as the reader is encouraged to verify.

The total angular momentum and other physical characteristics are computed
along similar lines and they also result in having positive values when computed
in H, as occurring for the conventional charge conjugation.

As we shall see shortly, the positive character of the total energy of bound states
of particles and their antiparticles is crucial for the removal of the inconsistencies
of theories with negative energy.

The above properties of the isoselfdual bound states have the following impli-
cations:

1) Isoselfdual bound states of elementary particles and their isoduals are pre-
dicted to be attracted in both, the gravitational field of matter and that of an-
timatter because their total energy is positive in our world and negative in the
isodual world. This renders necessary an experimental verification of the gravita-
tional behavior of isoselfdual bound states, independently from that of individual
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antiparticles. Note that the prediction holds only for bound states of truly el-
ementary particles and their isoduals, such as the positronium. No theoretical
prediction for the muonium and the pionium is today feasible because the unset-
tled nature of their constituents.

2) Isoselfdual bound states are predicted to have a null internal total time
t + td = 0 and therefore acquires the time of the matter or antimatter in which
they are immersed, although the physical time t of the observer (i.e., of the bound
state equation) is not null. This is readily understood by noting that the quantity
t of Eq. (2.3.77) is our own time, i.e., we merely study the behavior of the state
with respect to our own time. A clear understanding illustrated previously with
the “isodual cube” of Section 2.1 is that the description of a state with our own
time, by no means, implies that its intrinsic time necessarily coincides with our
own. Note that a similar situation occurs for the energy because the intrinsic
total energy of the positronium is identically null, E + Ed = 0. Yet the energy
measured by us is Epart. −Edantipart. = 2E > 0. A similar situation occurs for all
other physical quantities.

3) Isoselfdual bound states may result in being the microscopic image of the
main characteristics of the entire universe. Isoselfduality has in fact stimulated
a new cosmology, the isoselfdual cosmology [21] studied in Chapter 5, that is
patterned precisely along the structure of the positronium or of Dirac’s equation
in our isoselfdual re-interpretation. In this case the universe results in having
null total physical characteristics, such as null total energy, null total time, etc.,
thus implying no discontinuity at its creation.

2.3.15 Resolution of the Inconsistencies of Negative
Energies

The treatment of antiparticles with negative energies was rejected by Dirac
because of incompatibility with their physical behavior. Despite several attempts
made during the 20-th century, the inconsistencies either directly or indirectly
connected to negative energies have remained unresolved.

The isodual theory of antimatter resolves these inconsistencies for the reason
now familiar, namely, that the inconsistencies emerge when one refers negative
energies to conventional numbers with positive units, while the same inconsisten-
cies cannot be evenly formulated when negative energies are referred to isodual
numbers and their negative units.

A good illustration is given by the known objection according to which the
creation of a photon from the annihilation of an electron-positron pair, with
the electron having a positive energy and the positron having a negative energy,
would violate the principle of conservation of the energy.

In fact, such a pair could be moved upward in our gravitational field without
work and then annihilated in their new upward position. The resulting photon
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would then have a blueshift in our gravitational field of Earth, thus having more
energy than that of the original photon.

Presumed inconsistencies of the above type cannot be even formulated within
the context of the isodual theory of antimatter because, as shown in the preceding
section, the electron-positron state is isoselfdual, thus having a non-null positive
energy when observed in our spacetime. Consequently, the lifting upward of the
pair does indeed require work and no violation of the principle of conservation of
the energy can be expected.

A considerable search has established that all other presumed inconsistencies
of negative energy known to the author cannot even be formulated within the
context of the isodual theory of antimatter. Nevertheless, the author would be
particularly grateful to any colleague who brings to his attention inconsistencies
of negative energies that are really applicable under negative units.
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Chapter 3

LIE-ISOTOPIC BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

3.1 INTRODUCTION
3.1.1 Conceptual Foundations

As recalled in Chapter 1, the systems generally considered in the 20-th century
are the conventional exterior dynamical systems, consisting of closed-isolated and
reversible systems of constituents approximated as being point-like while mov-
ing in vacuum under sole action-at-a-distance potential interactions, as typically
represented by planetary and atomic systems.

More technically, we can say that exterior dynamical systems are characterized
by the exact invariance of the Galilean symmetry for the nonrelativistic case and
Poincaré symmetry for relativistic treatments, with the consequential verification
of the well known ten total conservation laws.

In this chapter we study the more general interior dynamical systems of ex-
tended particles and, separately, of extended antiparticles, consisting of systems
that are also closed-isolated, thus verifying the same ten total conservation laws of
the exterior systems, yet admit additional internal force of nonlocal-integral and
nonpotential type due to actual contact and/or mutual penetration of particles,
as it is the case for the structure of planets at the classical level (see Figure 3.1),
and the structure of hadrons, nuclei, stars, and other systems at the operator
level (see Figure 3.2).

To avoid excessive complexity, the systems considered in this chapter will
be assumed to be reversible, that is, invariant under time reversal. The open-
irreversible extension of the systems will be studied in the next chapter.

The most important methodological differences between exterior and interior
systems are the following:

1) Exterior systems are completely represented with the knowledge of only one
quantity, the Hamiltonian, while the representation of interior systems requires
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the knowledge of the Hamiltonian for the potential forces, plus additional quan-
tities for the representation of nonpotential forces, as done in the true Lagrange
and Hamilton equations, those with external terms,

d

dt

∂L(t, r, v)
∂vka

− ∂L(t, r, v)
∂rka

= Fak(t, r, v), (3.1.1a)

drka
dt

=
∂H(t, r, p)
∂pak

,
dpak
dt

= −∂H(t, r, p)
∂rka

+ Fak(t, r, p), (3.1.1b)

L = Σa
1
2
×ma × vak × vka − V (t, r, v), (3.1.1c)

H = Σa
pak × pak
2×ma

+ V (t, r, p), (3.1.1d)

V = ΣaU(t, r)ak × vka + Uo(t, r), (3.1.1e)

F (t, r, v) = F (t, r, p/m), (3.1.1f)

a = 1, 2, 3, . . . , N ; k = 1, 2, 3.

Consequently, by their very conception, interior systems are structurally be-
yond the representational capability of classical and quantum Hamiltonian me-
chanics, in favor of covering disciplines.

2) Exterior systems are of Keplerian type, while interior systems are not, since
they do not admit a Keplerian center (see, again, Figures 3.1 and 3.2). Conse-
quently, also by their very conception, interior systems cannot be characterized
by the Galilean and Poincaré symmetries in favor of covering symmetries.

3) Exterior systems are local-differential, that is, they describe a finite set
of isolated points, thus being fully treatable with the mathematics of the 20-th
century, beginning with conventional local-differential topologies. By contrast,
interior systems are nonlocal-integral, that is, they admit internal interactions
over finite surfaces or volumes that cannot be consistently reduced to a finite set
of isolated points. Consequently, interior systems cannot be consistently treated
via the mathematics of classical and quantum Hamiltonian mechanics in favor of
a basically new mathematics.

4) The time evolution of the Hamiltonian treatment of exterior systems char-
acterizes a canonical transformation at the classical level, and a unitary transfor-
mation at the operator level, that we shall write in the unified form

U × U † = U † × U = I, (3.1.2)

where × represents the usual (associative) multiplication.1 By contrast, the time
evolution of interior systems, being non-Hamiltonian, characterizes noncanoni-

1Since we shall use several types of multiplications, to avoid confusions, it is essential to identify the
assumed multiplication in any mathematical treatment.
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Figure 3.1. A view of Jupiter, a most representative interior dynamical system, where one can
see with a telescope the dramatic differences with exterior systems, such as internal exchanges
of linear and angular momentum always in such a way to verify total conservation laws. As
repeatedly stated in the literature on hadronic mechanics, the structure of Jupiter has been
assumed as fundamental for the construction of new structure models of hadrons, nuclei and
stars, and the development of their new clean energies and fuels.

cal transformations at the classical level and nonunitary transformations at the
operator level, that we shall jointly write

U × U † 6= I. (3.1.3)

In particular, the noncanonical-nonunitary character is necessary to exit from the
class of equivalence of classical and quantum Hamiltonian theories.

5) The invariance (rather than “covariance”) of exterior systems under the
Galilean or Poincaré symmetry has the fundamental implication of preserving
the basic units, predicting the same numerical values under the same conditions
at different times, and admitting all conditions needed for consistent applications
of the theory to experimental measurements. By comparison, the loss of the
Galilean and Poincaré invariance, combined with the necessary noncanonical-
nonunitary structure of interior systems, activates the theorems of catastrophic
mathematical and physical inconsistencies studied in Chapter 1 whenever treated
with the mathematics of canonical-unitary theories.

In this chapter we report the rather long scientific journey that lead to a
mathematically and physically consistent, classical and operator treatment of
interior dynamical systems via the isotopic branch of hadronic mechanics for
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Figure 3.2. A schematic view of nuclei as they are in the physical reality, bound states of ex-
tended particles without a Keplerian center, under which conditions quantum mechanics cannot
possibly be exact due to the breaking of the fundamental Galilean and Poincaré symmetries in
favor of covering theories. As we shall see in this chapter, even though these breakings are small
(because nucleons are in conditions of mutual penetration in nuclei of about 10−3 parts of their
volumes), said breakings permit the prediction and industrial development of new clean energies
and fuels that are prohibited by the exact validity of quantum mechanics.

matter, and the isodual isotopic branch for antimatter including the resolution of
all the above problems.

Besides a number of experimental verifications reviewed in this chapter, the
achievement of a consistent treatment of interior systems offers basically new
structure models of hadrons, nuclei, stars, Cooper pairs, molecules and other
interior structures. In turn, these new models permit quantitative studies of new
clean energies and fuels already under industrial, let alone scientific development.

Stated in a nutshell, a primary aim of this chapter is to show that the assump-
tion of a final character of quantum mechanics and special relativity beyond the
conditions of their original conception (isolated point particles in vacuum) is the
primary origin of the current alarming environmental problems.

The reader should be aware that, nowadays, the literature on hadronic me-
chanics is rather vast, having surpassed the mark of 15,000 pages of published
research. As such, to avoid a prohibitive length, the presentation in this chapter
is restricted to the outline of the origination of each topic and of the most impor-
tant developments. Scholars interested in a comprehensive list of literature are
suggested to consult the quoted references as well as those of Chapter 1.

Also to avoid a prohibitive length, the presentation of this chapter is restricted
to studies of direct relevance for hadronic mechanics, namely, research fundamen-
tally dependent on a generalization of the basic unit. The quotation of related
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studies not fundamentally dependent on the generalization of the basic unit can-
not be reviewed for brevity.

3.1.2 Closed Non-Hamiltonian Systems
The first step in the study of hadronic mechanics is the dispelling of the belief

that nonpotential forces, being nonconservative, do not permit total conservation
laws, namely, that the external terms in the analytic equations (3.1.1) solely
applies for open-nonconservative systems, such as an extended object moving
within a resistive medium considered as external.

This belief was disproved, apparently for the first time, by Santilli in mono-
graphs [1,2]. Ref. [1] presented a comprehensive treatment of the integrability
conditions for the existence of a potential or a Hamiltonian, Helmholtz’s condi-
tions of variational selfadjointness, according to which the total force is divided
into the following two components

F (t, r, p, . . .) = FSA(t, r, p) + FNSA(t, r, p, . . .), (3.1.4)

where the selfadjoint(SA) component FSA admits a potential and the nonselfad-
joint (NSA) component FNSA does not.

We should also recall for clarity that, to be Newtonian as currently understood,
a force should solely depend on time t, coordinates r and velocity v = dr/dt or
momenta p = m×v, F = F (t, r, v). Consequently, forces depending on derivatives
of the coordinates of order bigger than the first, such as forces depending on the
acceleration F = F (t, r, v, a), a = dv/dt, are not generally considered Newtonian
forces.

Ref. [2] then presented the broadest possible realization of the conditions
of variational selfadjointness via analytic equations derivable from a variational
principle, and included the first known identification of closed non-Hamiltonian
systems (Ref. [2], pages 233–236), namely, systems that violate the integrability
conditions for the existence of a Hamiltonian, yet verify all ten total conservation
laws of conventional Hamiltonian systems.

Let us begin by recalling the following well known property:

THEOREM 3.1.1: Necessary and sufficient conditions for a system of N par-
ticles to be closed, that is, isolated from the rest of the universe, are that the
following ten conservation laws are verified along an actual path

dXi(t, r, p)
dt

=
∂Xi

∂bµ
× dbµ

dt
+
∂Xi

∂t
= 0, (3.1.5a)

X1 = Etot = H = T + V, (3.1.5b)

(X2, X3, X4) = Ptot = Σapa, (3.1.5c)
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(X5, X6, X7) = Jtot = Σara ∧ pa, (3.1.5d)

(X8, X9, X10) = GTot = Σa(ma × ra − t× pa), (3.1.5e)

i = 1, 2, 3, . . . , 10; k = 1, 2, 3; a = 1, 2, 3, . . . , N.

It is also well known that Galilean or Poincaré invariant systems do verify the
above conservation laws since theXi quantities are the generators of the indicated
symmetries. However, in this case all acting forces are derivable from a potential
and the systems are Hamiltonian.

Assume now the most general possible dynamical systems, those according to
the true Lagrange’s and Hamilton equations (3.1.1) where the selfadjoint forces
are represented with the Lagrangian or the Hamiltonian and the nonselfadjoint
forces are external.

DEFINITION 3.1.1 [2]: Closed-isolated non-Hamiltonian systems of particles
are systems of N ≥ 2 particles with potential and nonpotential forces characterized
by the following equations of motion

dbµa
dt

=
(

drka/dt
dpka/dt

)
=
(

pak/ma

FSAka + FNSAka

)
, (3.1.6)

verifying all conditions (3.1.5), where the term “non-Hamiltonian” denotes the
fact that the systems cannot be entirely represented with the Hamiltonian, thus
requiring additional quantities, such as the external terms.

The case n = 2 is exceptional, yet it admits solutions, and closed non-Hamiltonian
systems with N = 1 evidently cannot exist (because a single free particle is always
Hamiltonian).

Closed non-Hamiltonian systems can be classified into:
CLASS α: systems for which Eqs. (3.1.5) are first integrals;
CLASS β: systems for which Eqs. (3.1.5) are invariant relations;
CLASS γ: systems for which Eqs. (3.1.5) are subsidiary constraints.
The case of closed non-Hamiltonian systems of antiparticles are defined ac-

cordingly.

The study of closed non-Hamiltonian systems of Classes β and γ is rather
complex. For the limited scope of this presentation it is sufficient to see that
interior systems of Class α exist.

THEOREM 3.1.2 [2]: Necessary and sufficient conditions for the existence of
a closed non-Hamiltonian systems of Class α are that the nonselfadjoint forces
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verify the following conditions: ∑
a

FNSAa ≡ 0, (3.1.7a)

∑
a

pa ⊗ FNSAa ≡ 0, (3.1.7b)

∑
a

ra ∧ FNSAa ≡ 0. (3.1.7c)

Proof. Consider first the case N > 2 and assume first for simplicity that
FSAa = 0. Then, the first nine conservation laws are verified when

∂Xi

∂pka
× FNSAka ≡ 0, (3.1.8)

in which case the 10-th conservation law, Eq. (3.1.5e), is automatically verified,
and this proves the necessity of conditions (3.1.7) for N > 2.

The sufficiency of the conditions is established by the fact that Eqs. (3.1.7)
consist of seven conditions on 3N unknown functions FNSAka . Therefore, a solution
always exists for N ≥ 3.

The case N = 2 is special inasmuch as motion occurs in a plane, in which case
Eqs. (3.1.7) reduce to five conditions on four functions FNSAka , and the system
appears to be overdetermined. Nevertheless, solutions always exist because the
verification of the first four conditions (3.1.5) automatically implies the verifica-
tion of the last one, Eqs. (3.1.5e). As shown in Ref. [2], Example 6.3, pages
272–273, a first solution is given by the non-Newtonian force

FNSA1 = −FNSA2 = K × a = K × dv

dt
, (3.1.9)

where K is a constant. Another solution is given by

FNSA1 = −FNSA2 = M × dr

dt
× φ(M × ṙ + V ), M =

m1 ×m2

m1 +m2
. (3.1.10)

Other solutions can be found by the interested reader. The addition of a non-null
selfadjoint force leaves the above proof unchanged. q.e.d.

The search for other solutions is recommended to readers interested in ac-
quiring a technical knowledge of hadronic mechanics because such solutions are
indeed useful for applications. A general solution of Eqs. (3.1.7), as well as of their
operator counterpart and of their isodual images for antimatter will be identified
later on in this chapter after the identification of the applicable mathematics.
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It should be noted that the proof of Theorem 3.1.2 is not necessary because the
existence of closed non-Hamiltonian systems is established by visual observations
(Figure 3.1). At any rate, the representation of Jupiter’s structure via one single
function, the Lagrangian or the Hamiltonian, necessarily implies the belief in
the perpetual motion within physical media, due to the necessary condition that
constituents move inside Jupiter with conserved energy, linear momentum and
angular momentum.

As recalled in Chapter 1, whenever exposed to departures from closed Hamilto-
nian systems, a widespread posture is the claim that the non-Hamiltonian char-
acter of the systems is “illusory” (sic) because, when the systems are reduced
to their elementary constituents, all nonpotential forces “disappear” (sic) and
conventional Hamiltonian disciplines are recovered in full.

The political-nonscientific character of the above posture is established by the
following property of easy proof by any graduate student in physics:

THEOREM 3.1.3 [3]: A classical non-Hamiltonian system cannot be consis-
tently reduced to a finite number of quantum mechanical point-like particles and,
vice-versa, a finite ensemble of quantum mechanical point-like particles cannot
consistently characterize a classical non-Hamiltonian system.

The above property establishes that, rather than being “illusory,” nonpotential
effect originate at the deepest and most elementary level of nature. The property
also establishes the need for the identification of methods suitable for the invariant
treatment of classical and operator non-Hamiltonian systems in such a way to
constitute a covering of conventional Hamiltonian treatments.

This chapter is devoted to the mathematical theoretical and experimental
study of classical and operator interior system of particles and antiparticles, their
experimental verifications and their novel applications.

3.1.3 Need for New Mathematics
By following the main guidelines of hadronic mechanics, we adapt the math-

ematics to nature, rather than adapting nature to preferred mathematics. For
this purpose, we shall seek a mathematics capable of representing the following
main features of interior dynamical systems:

1) Points have no dimension and, consequently can only have action-at-a-
distance potential interactions. Therefore, the first need for the new mathematics
is the representation of the actual, extended, generally nonspherical shape of the
wavepackets and/or of the charge distribution of the particles considered, that we
shall assume in this monograph for simplicity to have the shape of spheroidal
ellipsoids with diagonal form

Shapea = Diag.(n2
a1, n

2
a2, n

2
a3), a = 1, 2, 3, . . . , N, (3.1.11)
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with more general non-diagonal expressions not considered for simplicity, where
n2
a1, n

2
a2, n

2
a3 represent the semiaxes of the spheroidal ellipsoids assumed as devi-

ation from, or normalized with respect to the perfect sphericity

n2
a1 = n2

a2 = n2
a3 = 1. (3.1.12)

The n’s are called characteristic quantities of the particles considered. It should
be stressed that, contrary to a rather popular belief, the n-quantities are not
parameters because they represent the actual shape as derived from experimental
measurements.

To clarify this important point, by definition a “parameter” can assume any
value as derived form the fit of experimental data, while this is not the case for
the characteristic quantities here considered. As an example, the use for the n’s
of value of the order of 10−16 cm to represent a proton would have no physical
value because the proton charge distribution is a spheroidal ellipsoid of the order
of 10−13 cm.

2) Once particles are assumed as being extended, there is the consequential
need to represent their density. This task can be achieved via a fourth set of
quantities

Densitya = n2
a4, (3.1.13)

representing the deviation of the density of the particle considered from the den-
sity of the vacuum here assumed to be one,

n2
V acuum,4 = 1. (3.1.14)

Again, n4 is not a free parameter because its numerical value is fixed by experi-
mental data. As an example for the case of a hadron of mass m and radius r we
have the density

n2
4 =

m× c2
4
3 × π × r3

, (3.1.15)

thus establishing that na4 is not a free parameter capable of assuming.
Predictably, most nonrelativistic studies can be conducted with the sole use of

the space components characterizing the shape. Relativistic treatments require
the additional use of the density as the forth component, resulting in the general
form

(Shape−Density)a = Diag.(n2
a1, n

2
a2, n

2
a3, n

2
a4), a = 1, 2, 3, . . . , N. (3.1.16)

3) Perfectly rigid bodies exist in academic abstractions, but not in the physical
reality. Therefore, the next need is for a meaningful representation of the defor-
mation of shape as well as variation of density that are possible under interior
conditions. This is achieved via the appropriate functional dependence of the
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characteristic quantities on the energy Ea, linear momentum pa, pressure P and
other characteristics, and we shall write

nak = nak(E, p, P, . . .), k = 1, 2, 3, 4. (3.1.17)

The reader is suggested to meditate a moment on the fact that Lagrangian
or Hamiltonian theories simply cannot represent the actual shape and density
of particles. The impossibility of representing deformations of shapes and varia-
tions of density are well known, since the pillar of contemporary relativities, the
rotational symmetry, is notoriously incompatible with the theory of elasticity.

4) Once particles are represented as they are in the physical reality (extended,
nonspherical and deformable), there is the emergence of the following new class
of interactions nonexistent for point-particles (for which reason these interactions
have been generally ignored throughout the 20-th century), namely, interactions
of:

I) contact type, that is, due to the actual physical contact of extended particle;
consequently, of

II) zero range type, since all contacts are dimensionless; consequently of
III) nonpotential type, that is, not representable with any possible action-at-a-

distance potential; consequently, of
IV) non-Hamiltonian type, that is, not representable with any Hamiltonian;

consequently, of
V) noncanonical type at the classical level and nonunitary type at the operator

level; as well as of
VI) nonlinear type, that is, represented via nonlinear differential equations,

such as depending on power of the wavefunction greater than one; and, finally, of
VII) nonlocal-integral type. Interactions among point-particles are local-differ-

ential, that is, reducible to a finite set of isolated points, while contact interactions
among extended particles and/or their wavepackets are, by conception, nonlocal-
integral in the sense of being dependent on a finite surface or volume that, as
such, cannot be reduced to a finite set of isolated points (see Figure 3.3).

5) Once the above new features of interior systems have been identified, there
is the need not only of their mathematical representation, but above all of their
invariant representation in order to avoid the theorem of catastrophic inconsis-
tencies of Chapter 1.

As an illustration, Coulomb interactions have reached their towering position in
the physics of the 20-th century because the Coulomb potential is invariant under
the basic symmetries of physics, thus predicting the same numerical values under
the same conditions at different times with consequentially consistent physical
applications. The same occurs for other interactions derivable from a potential
(except gravitation represented with curvature as shown in Section 1.4).

Along the same lines, any representation of the extended, nonspherical and
deformable character of particles, their densities and their novel nonlinear, non-
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Figure 3.3. A schematic view of the fundamental interactions studied in this monograph, those
originating from deep wave-overlappings of the wavepackets of particles also for the case with
point-like charge as occurring in electron valence bonds, Cooper pairs in superconductivity,
Pauli’s exclusion principle, and other basic structures. These interactions have been ignored
throughout the 20-th century, resulting in the problematic aspects or sheer inconsistencies iden-
tified in Chapter 1. As we shall see in this chapter, the representation of the new interactions
here depicted with generalized units of type (3.1.19) permits the achievement of the first known,
exact and invariant representation of molecular data and other data that have escaped an exact
and invariant representation via quantum mechanics for about one century.

local and nonpotential interactions cannot possibly have physical value unless it
is also invariant, and not “covariant,” again, because the latter would activate
the theorems of catastrophic inconsistencies of Chapter 1.

It should be indicated that an extensive search conducted by the author in
1978–1983 in the advanced libraries of Cambridge, Massachusetts, identified nu-
merous integral geometries and other nonlocal mathematics. However, none of
them verifies all the following conditions necessary for physical consistency:

CONDITION 1: The new nonlocal-integral mathematics must admit the con-
ventional local-differential mathematics as a particular case under a well identified
limit procedure, because new physical advances must be a covering of preceding
results. This condition alone is not verified by any integral mathematics the
author could identify.

CONDITION 2: The new nonlocal-integral mathematics must permit the clear
separation of the contributions of the new nonlocal-integral interactions from those
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of local-differential interactions. This second condition too was not met by any
of the integral mathematics the author could identify.

CONDITION 3: The new nonlocal-integral mathematics must permit the in-
variant formulation of the new interactions. This latter condition was also vio-
lated by all integral mathematics the author could identify, thus ruling them out
in a final form for consistent physical applications.

After clarifying that the mathematics needed for the correct treatment of in-
terior systems was absent, the author was left with no other choice than that
of constructing the needed mathematics. After extensive search, Santilli [4,5]
suggested as the only possible or otherwise known solution, the invariant repre-
sentation of nonlinear, nonlocal and nonpotential interactions via a generalization
of the trivial unit of conventional theories. The selection was based on the fact
that, whether conventional or generalized, the unit is the basic invariant of any
theories. We reach in this way the following:

FUNDAMENTAL ASSUMPTION OF HADRONIC MECHANICS [4-10]:
The actual, extended, nonspherical and deformable shape of particles, their vari-
able densities and their nonlinear, nonlocal and nonpotential interactions can be
invariantly represented with a generalization of the basic spacetime unit of con-
ventional Hamiltonian theories

I = Diag.(1, 1, 1, 1), (3.1.18)

into nowhere singular, sufficiently smooth, most general possible integro-
differential forms, today called “Santilli isounit”, of the type here expressed for
simplicity for the case of two particles:

Î = Î† = Î1−2 = Diag.(n2
11, n

2
12, n

2
13, n

2
14)×

×Diag.(n2
21, n

2
22, n

2
23, n

2
24)×

×eΓ(t,r,ψ,ψ†,...)×
R
dr3×ψ†(r)×ψ(r) = 1/T̂ > 0, (3.1.19)

with trivial generalizations to multiparticle and nondiagonal forms, where the n2
ak

represents the semiaxes of the spheroidal shape of particle a, n2
a4 represents its

density, the expression Γ(t, r, ψ, ψ, . . .) represents the nonlinearity of the interac-
tion and

∫
dr3 ×ψ†(r)×ψ(r) provides a simple representation of its nonlocality.

The corresponding features of antiparticles are represented by Santilli’s isodual
isounit

Îd = −Î† = −Î < 0, (3.1.20)

and mixed states of particles and antiparticles are represented by the tensorial
product of the corresponding units and their isoduals.
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Explicit examples of classical (operator) systems with nonpotential forces rep-
resented via generalized units will be given in Section 2.3 (Section 2.4).

As we shall see, the entire structure of hadronic mechanics follows uniquely
and unambiguously from the assumption of the above basic unit. As a matter
of fact, some of the main features of hadronic mechanics can already be derived
from the above basic assumption.

First, the maps, called in the literature Santilli liftings

I → Î , Id → Îd; (3.1.21)

(where Id = −I is the isodual unit of Chapter 2 [8]) require two corresponding
generalizations of the totality of the mathematical and physical formulations of
conventional classical and quantum Hamiltonian theories without any exception
known to this author (to avoid catastrophic inconsistencies).

As we shall see in this chapter, even basic notions such as trigonometric func-
tions, Fourier transforms, differentials, etc. have to be lifted into two forms
admitting the new quantity Î and Îd as the correct left and right units.

In view of the assumed Hermiticity and positive-definiteness of Î, the result-
ing new mathematics is called in the literature Santilli’s isotopic mathematics
or isomathematics for short, with the corresponding isodual isomathematics for
antimatter in interior conditions. The resulting new physical formulations are
known as Santilli isotopic mechanics or isomechanics for short for the case of
particles, with the isodual isomechanics for antiparticles.

Again in view of the fact that Î is Hermitian and positive-definite, at the
abstract, realization-free level there is no topological difference between I and Î
and, for this reason Î is called Santilli isotopic unit or isounit for short.

Consequently, the new mathematical and physical formulations are expected to
be new realizations of the same axioms of conventional Hamiltonian mechanics,
and they should not be intended as characterizing “new theories” since they do
not admit new abstract axioms. This illustrates the name of isotopic mathematics
from the Greek meaning of preserving the topology.2

Finally, Santilli isounit Î identifies in full the covering nature of isomechanics
over conventional mechanics, as well as the type of resulting covering. This cover-
ing character is illustrated by the fact that at sufficiently large mutual distances
of particles the integral in the exponent of Eq. (3.1.19) is null

lim
r�1Fm

∫
dr3 × ψ†(r)× ψ(r) = 0, (3.1.22)

2When Î is no longer Hermitian, we have the more general genotopic mathematics studied in Chapter 4.
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in which case the actual shape of particles has no impact in the interactions and
the generalized unit recovers the conventional unit3

lim
r�1Fm

Î = I = Diag.(1, 1, 1, 1), (3.1.23)

under which limit hadronic mechanics recovers conventional quantum mechanics
identically and uniquely.

The above limits also identify the important feature according to which hadro-
nic mechanics coincides with quantum mechanics for all mutual distances of par-
ticles sufficiently bigger than their wavepackets, while at mutual distances below
that value hadronic mechanics provides a generally small corrections to quantum
mechanics (see Figure 3.3).

In this chapter we review the long and laborious scientific journey by mathe-
maticians, theoreticians and experimentalists (see the bibliography of Chapter 1)
for the achievement of maturity of formulation of the isotopic branch of hadronic
mechanics, its experimental verification, its novel industrial applications, and its
isodual for antimatter.

We shall begin with a review of recent developments in the construction of
isomathematics that have occurred following the publication of the second edi-
tion of Vol. I of this series in 1995 [6] since these developments have important
implications. We shall then identify the recent developments in physical theories
occurred since the second edition of Vol. II of this series [7]. We shall then re-
view the novel industrial applications developed since the appearance of Volumes
I and II.

It should be noted that in this chapter we shall merely present recent develop-
ments. As a consequence, Volumes I and II of this series [6,7] remain useful for
all detailed aspects that will not be repeated in this final volume.

A primary motivation of this volume is to present industrial applications. Con-
sequently, we have selected the simplest possible mathematical treatment acces-
sible to any experimentalists. Readers interested in utmost mathematical rigor
are suggested to consult the specialized mathematical literature in the field.

Finally, the literature on the mathematics, physics and chemistry of classical
and quantum Hamiltonian theories is so vast to discourage discriminatory quota-
tions. For this reason, unless there is a contrary need, we shall abstain from quo-
tations of works on pre-existing methods since their knowledge is a pre-requisite
for the understanding of this monograph in any case.

3When the exponent of Eq. (3.1.19) is null, that is, when the mutual distances of particles are large,
the characteristic quantities are constant and, consequently, terms such as Diag.(n−2

11 , n
−2
12 , n

−2
13 , n

−2
14 )

factor out of all equations, resulting in reduction (3.1.23).
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3.2 ELEMENTS OF SANTILLI’S ISOMATHEMATICS
AND ITS ISODUAL

3.2.1 Isounits, Isoproducts and their Isoduals
As indicated earlier, Santilli isotopic mathematics, [4–10] or isomathematics

for short, is characterized by the map, called lifting, of the trivial unit I = +1
into a generalized unit Î

N-dimensional unit

I = +1→ Î(t, r, p, ψ, ψ†, ∂ψ, ∂ψ†, . . . ), (3.2.1)

or, more generally, by the lifting of N -dimensional units

I = (Iij) = Diag.(1, 1, 1, . . .), i, j = 1, 2, . . . , N

of conventional Hamiltonian theories4 into a nowhere singular, Hermitian and
positive-definite, matrix Î of the same dimension N whose elements Îij have an
arbitrary, nonlinear and integral dependence on time t, space coordinates r, mo-
menta p, wavefunctions ψ, their derivatives ∂ψ, and any other needed quantity
[loc. cit.]

I = (Iij) = Diag.(1, 1, . . .)>0→

→ Î = (Îji ) = Î(t, r, p, ψ, ψ†, ∂ψ, ∂ψ†, . . . ) = 1/T̂ > 0. (3.2.2)

Isomathematics can then be defined as the lifting of all possible branches of
mathematics with left and right unit I into forms admitting Î as the new left and
right unit.

Recall that I is the right and left unit under the conventional associative prod-
uct A×B = AB, where A, B are generic quantities (e.g., numbers, vector-fields,
operators, etc.) for which I ×A = A× I = A for all element A of the considered
set.

It is easy to see that Î cannot be a unit under the same product because
Î × A 6= A. Therefore, for consistency, the conventional associative product
A × B must be lifted into the new form first proposed by Santilli in Ref. [5] of
1978,

A×B → A×̂B = A× T̂ ×B = A× (1/Î)×B, (3.2.3)

where T̂ is fixed for the set considered, under which product Î is indeed the
correct left and right new unit,

I ×A = A× I = A→ Î×̂A = A×̂Î = A, (3.2.4)

4For instance, Hamiltonian theories in 3-dimensional Euclidean space are based on the unit I =
Diag.(1, 1, 1) of the rotational and Euclidean symmetries, while Hamiltonian theories in Minkowski
space are based on the unit I = Diag.(1, 1, 1, 1) that is at the foundation of Lie’s theory of the Lorentz
and Poincaré symmetries.
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for all elements A of the considered set. In this case (only) Î is called Santilli’s
isotopic unit, or isounit for short, and T̂ is called Santilli’s isotopic element, or
isoelement for short.

Isomathematics was first submitted by Santilli in memoirs [loc. cit.] of 1978
and then worked out in various additional contributions by the same author,
as well as by numerous mathematicians and theoreticians (see the references of
Chapter 1 as well as of this section).

The most salient feature of Santilli’s liftings (3.2.2) and (3.2.3) is that they
are axiom preserving, from which feature they derived their name “isotopic” [loc.
cit.], recently contracted to the prefix “iso.”

In fact, Î preserves the basic topological characteristics of I. Therefore, iso-
mathematics is expected to provide new realizations of the abstract axioms of the
mathematics admitting I as left and right unit. In particular, the preservation of
the original abstract axioms is an important guiding principle in the consistent
construction of isomodels and their applications.

At this introductory stage the axiom-preserving character of generalized prod-
uct (3.2.3) is easily verified by the fact that it preserves all basic axioms of the
original product. In fact, the isoproduct verifies the right and left isoscalar laws

n×̂(A×̂B) = (n×̂A)×̂B, (3.2.5a)

(A×̂B)×̂n = A×̂(B×̂n), (3.2.5b)

the right and left isodistributive laws5

A×̂(B + C) = A×̂B +A×̂C, (3.2.6a)

(A+B)×̂C = A×̂C +B×̂C, (3.2.6b)

and the isoassociative law

A×̂(B×̂C) = (A×̂B)×̂C. (3.2.7)

A verification of the preservation of the axioms of all subsequent constructions is
crucial for a serious study and application of hadronic mechanics.

The simplest method for the construction of isomathematics as needed for
various applications is given by the use of a positive-definite N -dimensional non-
canonical transform at the classical level or a nonunitary transform at the oper-
ator level, here written in the unified form

U × U † 6= I, (3.2.8)

5The reader should keep in mind that the verification of the right and left scalar and distributive laws
are necessary for any product to characterize an algebra as commonly understood in contemporary
mathematics.
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and its identification with the basic isounit of the theory

Î = U × U † = 1/T̂ > 0, (3.2.9)

realization first introduced by Santilli in Ref. [6,7] of 1993.
In this case, the Hermiticity of Î is guaranteed because of the property,

(U × U †)† = U × U †. (3.2.10)

Therefore, realization (3.2.9) of the isounit only requires that U × U † be a
positive-definite N -dimensional matrix other than the unit matrix, from which
the nowhere singularity follows, e.g., via condition

Det(U × U †) > 0, 6= I. (3.2.11)

Once the fundamental realization (3.2.9) is assumed, the construction of iso-
mathematics follows in a simple, unique and unambiguous way. In fact, isomath-
ematics can be constructed by submitting conventional mathematics with left and
right unit I to said noncanonical-nonunitary transform, with very few exception,
such as the isodifferential calculus that escapes construction via noncanonical-
nonunitary transforms.

To begin, the isounit itself is simply given by said noncanonical-nonunitary
transform of the conventional unit,

I → U × I × U † = Î , (3.2.12)

the isoproduct too is simply given by said noncanonical-nonunitary transform of
the conventional product

A×B → U × (A×B)× U † =

= (U ×A× U †)× (U × U †)−1 × (U ×B × U †) =

= Â× T̂ × B̂ = Â×̂B̂, (3.2.13)

and the same simple transform holds for the construction of other aspects of
isomathematics, as illustrated in this section.

As a matter of fact, the use of the above transform provides a method for the
construction of isomathematics that is more rigorous than empirical liftings. For
instance, by comparing Eqs. (3.2.3) and (3.2.13), we see that the lifting of the
unit I → Î = U × I × U † implies not only the lifting of the associative product
× → ×̂ = ×(U×U †)−1×, but also the lifting of all elements of the set considered,
A→ Â = U ×A× U †.

In view of the above, the claim often expressed in the nontechnical physics
literature that “the mathematics of hadronic mechanics is too difficult to com-
prehend” is just a case of venturing judgment without any serious knowledge of
the topic.
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The reader should be aware that other generalizations of the associative prod-
uct, such as

A
⊗

B = T̂ ×A×B, (3.2.14a)

A
⊙

B = A×B × T̂ , (3.2.14b)

are unacceptable because they violate either the right or the left distributive
and scalar laws, thus being unable to characterize an algebra. As such, liftings
(3.2.14) are not isotopic in Santilli’s sense [loc. cit.].

Examples of isounits have been given in Section 3.1.3. Additional examples
will be provided in Sections 3.3 and 3.4. Note that, since they are Hermitian by
assumption, isounits can always be diagonalized into the form of type (3.1.19).

Santilli isodual isomathematics [6–10] is the image of isomathematics under
the anti-isomorphic isodual map of an arbitrary quantity

A(t, r, p, ψ, ψ†, . . .)→ Ad(td, rd, pd, ψd, ψ†d, . . .)

→ −A†(−t,−rt,−pt,−ψ†,−ψ†, . . .), (3.2.15)

(where t denotes transposed) first submitted by Santilli in Ref. [8] of 1985 (see
also Chapter 2).

The basic quantity of isodual isomathematics is then the isodual isounit

Îd = −Î†(−t,−r†,−p†,−ψ†,−∂ψ†, . . . )= 1/T̂ d. (3.2.16)

Similarly, we have the isodual isoproduct

B† × T̂ d ×A† = B†×̂dA†, (3.2.17)

under which Îd is indeed the right and left unit,

Îd×̂dA = A×̂dÎd = A, (3.2.18)

for all A of the considered set.
Note that, isodual map (3.2.15) must be applied for consistency to the totality

of quantities of isomathematics as well as of their operations. As an illustration,
the application of the isodual map only to the quantities A,B of a product A×B
and not to the product itself ×, leads to a host of inconsistencies.

For this and other reasons the conventional associative product is written in
this monograph with the explicit notation A × B rather than the conventional
notation AB. In fact, the latter would lead to gross misunderstandings and
inconsistencies under the various liftings of hadronic mechanics.

Also, the construction of isomathematics is indeed recommended for physicists
to be done via a noncanonical-nonunitary transform (3.2.9), while the construc-
tion of isodual isomathematics is recommended via the isodual map (3.2.15) and
not via the use of an anti-isomorphic transform.
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In fact, the use of anti-isomorphic transforms causes ambiguities in the very
central issue, the achievement of equivalence of the isodual operator theory with
charge conjugation due to ambiguities and other technical aspects. In turn,
this occurrence illustrates the significance and uniqueness of Santilli isodual map
(3.2.15).

Note also that isodual isomathematics preserves the axioms, not of conven-
tional mathematics, but of the isodual mathematics of Chapter 2, that with the
simplest possible isounit unit Id = −I.

Needless to say, mathematicians do not need the above elementary construc-
tion of isomathematics and its isodual since they can be formulated on abstract
realization-free grounds from basic axioms.

3.2.2 Isonumbers, Isofields and their Isoduals
The first necessary isotopic lifting following that of the basic unit and product,

is that of ordinary numbers. The resulting new numbers were first presented by
Santilli at the 1980 meeting in Clausthal, Germany, on Differential Geometric
Methods in Mathematical Physics and then published in a variety of papers, such
as Ref. [8] of 1985, Vols. [15,16] of 1991, memoir [9] of 1993 and other works.
A comprehensive presentation is available in Vol. I [6] of 1995 that also presents
industrial applications of the new numbers for cryptograms and other fields. As
a result of these contributions the new numbers are today known as Santilli’s
isonumbers.

The new numbers have also been studied by various authors. An important
contribution has been made by E. Trell [11] in 1998 consisting in a proof of Fer-
mat’s celebrated theorem that is the simplest on record and, therefore, credibly
conceivable by Fermat (as compared to other proof requiring mathematics ba-
sically unknown during Fermat’s time). Unfortunately, Fermat left no record
of the proof of his celebrated theorem and, therefore, there is no evidence that
Fermat first studied numbers with arbitrary units. Nevertheless, Trell’s proofs
of Fermat’s theorems remains the most plausible known to this author for being
conceived during Fermat’s time.

Numerous additional studies on isonumbers have been conducted by other au-
thors. For a complete bibliography we refer interested readers to the monograph
on Santilli isonumber theory by C.-X. Jiang [12] of 2002. Additional studies on
isonumbers have occurred for their use as basis of other isostructures. Related
references will be quoted in the appropriate subsequent sections.

Santilli’s isonumbers have also been subjected to a generalization called pseudo-
isonumbers identified in Ref. [9] and studies by various authors, including N.
Kamiya [13] and others. However, the latter generalization violates the axioms
of a field and, as such, it cannot be used for hadronic mechanics.
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The reader should be aware that in this section we merely present the minimal
possible properties of isonumbers sufficient for industrial applications.

Let us consider: the field R(n,+,×) of real numbers n with ordinary sum +
and product ×; the field C(c,+,×) of complex numbers c = n1 + i × n2 where
i is the imaginary unit and n1, n2 ∈ R; and the field Q(q,+,×) of quaternions
q = io + i1 × n1 + i2 × n2 + i3 × n3, where io is the 2-dimensional unit matrix,
ik, k = 1, 2, 3 are Pauli’s matrices and n1, n2, n3 ∈ R. These fields are hereon
represented with the unified notation6

F (a,+,×) : a = n, c, q, (3.2.19)

In this section we present first the simplest possible method for the lifting of
numbers via the use of a positive-definite (thus invertible) noncanonical-nonunitary
transform identified with Santilli’s isounit

I → Î = U × I × U † = 1/T̂ > 0, U × U † 6= I. (3.2.20)

We shall then pass to a mathematical presentation.
The isotopic lifting of ordinary numbers is easily achieved via the above map

resulting in Santilli isonumbers for the characterization of matter

a→ â = U × a× U † = a× (U × U †) = a× Î , (3.2.21)

and related isoproduct

a× b→ U × (a× b)× U † = â× T̂ × b̂ = â×̂b̂, (3.2.22)

under which Î is the correct right and left isounit, Eq. (3.2.4), with the element
isozero coinciding with the ordinary zero

0→ 0̂ = U × 0× U † ≡ 0, (3.2.23)

and, consequently, the isosum coinciding with the ordinary sum,

a+ b→ U × (a+ b)× U † = â +̂ b̂ ≡ â+ b̂. (3.2.24)

The above liftings result in: Santilli isofield R̂(n̂, +̂, ×̂) of isoreal isonumbers;
the isofield Ĉ(ĉ, +̂, ×̂) of isocomplex isonumbers; and the isofield Q̂(q̂, +̂, ×̂) of
isoquaternionic isonumbers; hereon represented with the unified notation

F̂ (â, +̂, ×̂), â = n̂, ĉ, q̂. (3.2.25)

6Octonions are not considered “numbers” because they violate the associativity property of the axioms
of a field.
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Needless to say, the liftings of the unit and of the product require a cor-
responding lifting of all conventional operations of numbers depending on the
multiplication. By using the above noncanonical-nonunitary map, one can easily
prove the isopowers

ân̂ = â ×̂ â ×̂ . . . ×̂ â (n times) = an × Î . (3.2.26)

An important particular case is the property that isopowers of the isounits
reproduce the isounit identically,

Î n̂ = Î×̂Î×̂ . . . ×̂Î ≡ Î . (3.2.27)

Similarly we have the isosquare isoroot

â
ˆ1/2 = a1/2 × Î1/2; (3.2.28)

the isoquotient
â/̂b̂ = (â/b̂)× Î = (a/b)× Î; (3.2.29)

and the isonorm
|̂â̂| = |a| × Î , (3.2.30)

where |a| is the conventional norm. All these properties were first introduced by
Santilli in Refs. [6–9]. The reader can now easily construct the desired isotopic
image of any other operation on numbers.

Despite their simplicity, isonumbers are nontrivial. As an illustration, the
assumption of the isounit Î = 3 implies that “2 multiplied by 3” = 18, while 4
becomes a prime number.

The best way to illustrate the nontriviality of the new numbers is to indicate
the industrial applications of Santilli’s isonumbers, that are a primary
objective of this monograph as indicated earlier.

To begin, all applications of hadronic mechanics are based on isonumbers, and
they will be presented later on in this chapter. In addition to that, Santilli’s
isonumbers have already found a direct industrial application consisting of the
isotopic lifting of cryptograms used by the industry to protect secrecy, including
banks, credit cards. etc. This industrial application was first presented by Santilli
in Appendix 2.C of the second edition of Vol. I [6] of 1995, and will be reviewed
later on in this chapter.

At this moment we merely mention that all cryptograms based on the multi-
plication depend on only one value of the unit, the quantity +1 dating back to
biblical times. A mathematical theorem establishes that a solution of any cryp-
togram can be identified in a finite period of time. As a result of this occurrence,
banks and other industries are forced to change continuously their cryptograms
to properly protect their secrecy.
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By comparison, Santilli’s isocryptograms are based on the isoproduct and, as
such, they admit an infinite number of possible isounits, such as, for instance, the
values

Î = 7.2; 0.98364; 236; 1, 293′ 576; etc. (3.2.31)

Consequently, it remains to be seen whether Santilli isocryptograms can be broken
in a finite period of time under the availability of an infinite number of possible
isounits.

Independently from that, with the use of isocryptograms banks and other
industries do not have to change the entire cryptogram for security, but can
merely change the value of the isounit to keep ahead of possible hackers, and
even that process can be computerized for frequent automatic changes of the
isounit, with clearly added safety.

Finally, another application of Santilli isocryptograms permitted by their sim-
plicity is their use to protect the access to personal computers.

It is hoped this illustrates the industrial significance of Santilli isonumbers per
se, that is, independently from their basic character for hadronic mechanics.

We now pass to a mathematical presentation of the new numbers.

DEFINITION 3.2.1 [9]: Let F = F (a,+,×) be a field of characteristic zero as
per Definition 2.1.1. Santilli’s isofields are rings F̂ = F̂ (â, +̂, ×̂) with: elements

â = a× Î , (3.2.32)

where a ∈ F , Î = 1/T̂ is a positive-definite quantity generally outside F and ×
is the ordinary product of F ; the isosum +̂ coincides with the ordinary sum +,

â +̂ b̂ ≡ â+ b̂, ∀ â, b̂ ∈ F̂ , (3.2.33)

consequently, the element 0̂ ∈ F̂ coincides with the ordinary 0 ∈ F ; and the
isoproduct ×̂ is such that Î is the right and left isounit of F̂ ,

Î×̂â = â×̂Î ≡ â, ∀ â ∈ F̂ . (3.2.34)

Santilli’s isofields verify the following properties:
1) For each element â ∈ F̂ there is an element â−1̂, called isoinverse, for which

â×̂â−1̂ = Î , ∀ â ∈ F̂ ; (3.2.35)

2) The isosum is isocommutative

â+̂b̂ = b̂+̂â, (3.2.36)

and isoassociative
(â+̂b̂) + ĉ = â+̂(b̂+̂ĉ), ∀â, b̂, ĉ ∈ F̂ ; (3.2.37)
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3) The isoproduct is not necessarily isocommutative

â×̂b 6= b̂×̂â, (3.2.38)

but isoassociative
â×̂(b̂×̂ĉ) = (â×̂b̂)×̂ĉ, ∀â, b̂, ĉ ∈ F̂ ; (3.2.39)

4) The set F̂ is closed under the isosum,

â+̂b̂ = ĉ ∈ F̂ , (3.2.40)

the isoproduct,
â×̂b̂ = ĉ ∈ F̂ , (3.2.41)

and right and left isodistributive compositions,

â×̂(b̂+̂ĉ) = d̂ ∈ F̂ , (3.2.42a)

(â+̂b̂)×̂c = d̂ ∈ F̂ , ∀â, b̂, ĉ, d̂ ∈ F̂ ; (3.2.42b)

5) The set F̂ verifies the right and left isodistributive law

â×̂(b̂+̂ĉ) = (â+̂b̂)×̂ĉ = d̂, ∀â, b̂, ĉ, d̂ ∈ F̂ . (3.2.43)

Santilli’s isofields are called of the first (second) kind when Î is (is not) an
element of F.

The basic axiom-preserving character of the isotopies of numbers is illustrated
by the following:

LEMMA 3.2.1 [9]: Isofields of first and second kind are fields (namely, they
verify all axioms of a field).

Note that the isotopic lifting does indeed change the operation of the multipli-
cation but not that of the sum because the isotopies here considered do change
the multiplicative unit I, but not the additive unit 0, Eq. (3.2.23). This is a
crucial property of hadronic mechanics best illustrated by the following property:

LEMMA 3.2. [9]: Nontrivial liftings of the additive unit 0 and related sum
violates the axioms of a field (for which reason, they are called “pseudoisofields”)

In fact, suppose that one wants to change the value of the element 0, e.g.,

0→ 0̂ = K 6= 0, K ∈ F. (3.2.44)
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Then, for 0̂ to remain the new additive unit, one must alter the sum into a new
form admitting 0̂ as left and right additive unit, e.g.,

a+̂b = a+ (−0̂) + b, (3.2.45)

under which
a+̂0̂ = 0̂+̂a ≡ a, ∀a ∈ F. (3.2.46)

However, there is no single lifting of the product such that

0̂×̂a 6= 0̂, ∀a ∈ F, (3.2.47)

under which there is the loss of the distributive axiom of a field, i.e.,

(a+̂b)× c 6= a× c +̂ b× c. (3.2.48)

In turn, the loss of the distributive law causes very serious physical inconsis-
tencies, such as preventing experimental applications of the theory. Therefore,
being axiom-preserving, hadronic mechanics is solely based on the isotopic lifting
of the multiplicative unit and related product, but not on any lifting of the additive
unit and related sum.

Santilli’s isodual isonumbers for the characterization of antimatter can be
uniquely and unambiguously characterized via the isodual map (3.2.15). They
are characterized by the additive and multiplicative isodual isounit

0̂→ 0̂d ≡ 0, (3.2.49a)

Îd = −Î < 0, (3.2.49b)

where one should recall that Î is real valued and positive-definite, thus Hermitian.
Isodual isonumbers are then explicitly given by

âd = −â† = −Î × â†. (3.2.50)

The isodual isonumbers were first introduced by Santilli in Ref. [8] of 1985,
treated mathematically in Ref. [9] of 1993 and studied extensively in Vol. I of
this series [6].

The use of the same isodual map then identifies the isodual isosum

âd+̂d
b̂d = âd + b̂d, (3.2.51)

the isodual isoproduct

(â×̂b̂)d = b̂d ×d T̂ d ×d Âd = −b̂d×̂âd = −b̂†×̂â†, (3.2.52)

and the isodual isonorm
|̂â̂|d = −|̂â̂| = −|a| × Î . (3.2.53)
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that is always negative-definite.
The above liftings result in: Santilli’s isodual isofield R̂d(n̂d, +̂d

, ×̂d) of isodual
isoreal isonumbers; the isodual isofield Ĉd(ĉd, +̂d

, ×̂d) of isodual isocomplex ison-
umbers; and the isodual isofield Q̂d(q̂d, +̂d

, ×̂d) of isodual isoquaternionic ison-
umbers; hereon represented with the unified notation

F̂ d(âd, +̂d
, ×̂d), âd = n̂d, ĉd, q̂d. (3.2.54)

DEFINITION 3.2.3 [9]: Let F̂ (â, +̂, ×̂) be an isofield as per Definition 3.2.1.
Then Santilli isodual isofields F̂ d(âd, +̂d

, ×̂d) are the image of F̂ under the isodual
map (3.2.15).

LEMMA 3.2.3 [9]: Isodual isofields are fields (that is, they verify all axioms
of a field).

LEMMA 3.2.4 [9]: Isodual isofields are anti-isomorphic to isofields.

As we shall see in this chapter, the latter property, jointly with the anti-
isomorphic character of the isodual map, will result to be crucial for a consistent
treatment of antimatter composed of extended particles with potential and non-
potential internal forces.

The above properties establish the fact (first identified in Ref. [8]) that, by
no means, the axioms of a field require that the multiplicative unit to be the
trivial unit +1, because the basic unit can be a negative-definite quantity −1 as
it occurs for the isodual mathematics of Chapter 2, an arbitrary positive-definite
quantity Î > 0 as occurring in isomathematics, or an arbitrary negative-definite
quantity Îd < 0 as it occurs for the isodual isomathematics.

The reader should be aware that an in depth knowledge of Santilli’s isonumbers
and their isoduals requires an in depth study of memoir [9] or of Chapter 2 of Vol. I
of this series, Ref. [6], and that an in depth knowledge of Santilli’s isonumbers
theory requires a study of Jiang’s monograph [12].

Finally, the reader should meditate a moment on the viewpoint expressed sev-
eral times in this writing to the effect that there cannot be really new physical
theories without new mathematics, and there cannot be really new mathematics
without new numbers. The basic novelty of hadronic mechanics can, therefore,
be reduced to the novelty of Santilli’s isonumbers.

By remembering that all “numbers” have been fully identified centuries ago, the
novelty of hadronic mechanics can be reduced to the discovery that the axioms
of conventional fields admit new realizations with nonsingular, but otherwise
arbitrary multiplicative units.
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3.2.3 Isospaces and Their Isoduals
Following the lifting of units, products and fields, the next necessary lifting

is that of N-dimensional metric or pseudo-metric spaces with local coordinates
r and Hermitian, thus diagonalized metric m over a field F , here written in the
unified notation

S(r,m, F ) : r = (rk), m = [mij(r, . . .)] = Diag.(m11,m22, . . . ,mNN ),

i, j, k = 1, 2, . . . , N,
(3.2.55)

basic invariant

r2 = (ri ×mij × rj)× I = (rt ×m× r)× I ∈ F (a,+,×), (3.2.56)

(where t stands for transposed) and fundamental N -dimensional unit7

I = Diag.(1, 1, . . . , 1). (3.2.57)

As now familiar, isotopies are based on the lifting of the above N -dimension-
al unit via a positive-definite noncanonical-nonunitary transform in the same
dimension with an otherwise unrestricted functional dependence

I = Diag.(1, 1, . . . , 1)→ Î(t, r, p, ψ, ψ†, . . .) = U × I × U † = 1/T̂ > 0, (3.2.58)

The above liftings requires that of spaces S(r,m,R) into isotopic spaces, or
isospaces for short, for the treatment of matter, hereon denoted Ŝ(r̂, M̂ , F̂ ), where
r̂ denotes the isocoordinates, and M̂ denotes the isometric defined on the isofields
F̂ = F̂ (â, +̂, ×̂) of Section 3.2.2.

Isospaces were first proposal by Santilli in Ref. [14] of 1983 for the axiom-
preserving isotopies of the Minkowskian spacetime and special relativity that are
at the foundations of hadronic mechanics. Isospaces were then used by Santilli
for the liftings of the various spacetime and internal symmetries (such as SU(2),
SO(3), SO(3.1), SL(2.C), G(3.1), P (3.1), SU(3), etc.) as studied later on in this
chapter.

A comprehensive presentation of isospaces first appeared in monographs [15,16]
of 1991 and in the first edition of Volumes I and II of this series, Ref. [6,7] of
1993 (see the second edition of 1995 for various upgradings). A mathematical
study of isospaces by Santilli was presented in memoir [10] of 1996. In view of
all these contributions, the new spaces are today known as Santilli’s isospaces.

7The basic character of the unit should be recalled here. For the case of the three-dimensional Euclidean
space, I = Diag.(1, 1, 1) is not only the basic geometric unit, but also the unit of the entire Lie theory
of the rotational and Euclidean symmetries. Similarly, for the case of the Minkowski spacetime, the
unit I = Diag.(1, 1, 1, 1) is at the foundations of the entire Lie theory for the Lorentz and Poincaré
symmetries. We begin to see in this way the far reaching implications of isotopic generalization of the
basic unit.
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Following the appearances of these contributions, isospaces have been also
studied by a number of authors for both mathematical and physical applications
to be studied in subsequent sections, including the definition of isocontinuity,
isotopology, isomanifolds, etc. The related literature will be presented in the
appropriate subsequent sections.

In this section we identify the basic notions of Santilli isospaces. Specific types
of isospaces needed for applications will be studied in subsequent sections.

The coordinates r of ordinary spaces S(r,m, F ) are defined on the base field
F = F (a,+,×), thus being real numbers for F = R, complex numbers for F = C
and quaternionic numbers for F = Q.

Consequently, the isocoordinates r̂ on isospaces Ŝ(r̂, m̂, F̂ ) must be defined on
the isofields F̂ = F̂ (â, +̂, ×̂), namely, must be isonumbers and, more particu-
larly, be isoreal isonumbers for F̂ = R̂, isocomplex isonumbers for F̂ = Ĉ, and
isoquaternionic isonumbers for F̂ = Q̂.

Since isocoordinates are isonumbers, they can be easily constructed via the
same lifting used for isonumbers, resulting in the simple definition

r → r̂ = U × r × U † = r × (U × U †) = r × Î . (3.2.59)

Similarly, the metric m on S(r,m, F ) is an ordinary matrix in N -dimension
whose elements mij are functions defined on the base field F , thus being real,
complex or quaternionic functions depending on the corresponding character of F .

As we shall see shortly, a necessary condition for Ŝ(r̂, M̂ , F̂ ) to preserve the
geometric axioms of S(r,m, F ) (that is, for Ŝ to be an isotope of S), is that,
when the unit is lifted in the amount I → Î = 1/T̂ , the metric is lifted by the
inverse amount m→ m̂ = T̂×m, thus yielding the transform (where the diagonal
character of m is taken into account)

m→ U †−1 ×m× U−1 = (U × U †)−1 ×m =

= T̂ ×m = (m̂ij) = (T̂ ki ×mkj), (3.2.60)

However, in this case the elements m̂ij are not properly defined on Ŝ because
they are not isonumbers on F̂ . For this purpose, the correct definition of the
isometric is given by

M̂ = m̂× Î = (m̂ij × Î) = (m̂ij)× Î . (3.2.61)

As we shall see in the next section, the above definition is independently confirmed
by the isotopies of matrices. We, therefore, have the following

DEFINITION 3.2.3 [14]: Let S(r,m, F ) be an N -dimensional metric or pseudo-
metric space with contravariant coordinates r = (rk), metric m = (mij) and in-
variant r2 = (rk × rk)× I = (ri×mij × rj)× I over a field F with trivial unit I.
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Then, Santilli’s isospaces are the N-dimensional isovector spaces

Ŝ(r̂, M̂ , F̂ ) : r̂ = (r̂k) = (rk)× Î ∈ F̂ , (3.2.62a)

M̂ = (T̂ ×m)× Î = (T ki ×mki)× Î ∈ F̂ , M̂ ij = [(M̂pq)−1]ij ∈ F̂ , (3.2.62b)

r̂k = M̂ki×̂r̂i = m̂ki × ri × Î , r̂k = M̂ki×̂r̂i = m̂ki × ri × Î , (3.2.62c)

r̂2̂ = r̂k×̂r̂k = r̂i×̂M̂ij×̂r̂j = (ri × m̂ij × rj)× Î ∈ F̂ , (3.2.62d)

i, j, k, p, q = 1, 2, . . . , N,

and its projection on the original space S(r,m, F ), is characterized by

Ŝ(r, m̂, F ) : r = (rk) = (rk)× I ∈ F ; (3.2.63a)

m̂ = T̂ ×m = (T̂ ki ×mkj) ∈ F, m̂ij = [(m̂ps)−1]ij ∈ F, (3.2.63b)

rk = m̂ki × ri ∈ R, rk = m̂ki × r1 ∈ F, (3.2.63c)

r2 = ri × m̂ij × rj)× I = ri × (T̂ ki ×mkj)× rj)× I ∈ F. (3.2.63d)

As one can see, expression (3.2.62) is the proper formulation of the isoinvariant
on isospaces over the base isofield, and we shall write Ŝ(r̂, M̂ , F̂ ), while expression
(3.2.63) is the “projection” of the preceding space in the original space S, and
we shall write Ŝ(r, m̂, F ), because the latter space is defined with conventional
coordinates, units and products over the conventional field F by construction.

It should be stressed that isospaces are mathematical spaces and, therefore, all
physical calculations and applications will be done in the projection of isospaces
over conventional spaces. In fact, experimental measurements and events can
only occur in our space time. Therefore, all physical applications of isospaces can
only occur in their projection in our spacetime.

A simple visual inspection of invariants (3.2.56) and (3.2.62) establish the
following

THEOREM 3.2.1 [10]: All line elements of metrics or pseudo-metric spaces
with metric m and unit I, and all their isotopes possess the following invariance
property

I → Î = n2 × I, m→ m̂ = n−2 ×m, (3.2.64)

where n is a non-null parameter.

This property too will soon acquire fundamental character, since it permits the
identification, for the first time, of the property that the Galilean and Poincaré
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symmetries are “eleven” dimensional, and not ten-dimensional as believed through-
out the 20-th century.

In particular, the 11-th invariance is “hidden” in conventional line elements
and will permit the first and perhaps only known, axiomatically consistent grand
unification of electroweak and gravitational interactions, as studied later on in
this chapter.

The nontriviality of isospaces is then expressed by the following

THEOREM 3.2.2 [14]: Even though preserving all topological properties of m
(from the positive-definiteness of Î), the projection m̂ of the isometric M̂ on
Ŝ over F̂ into the original space S over F acquires an unrestricted functional
dependence on any needed local variables or quantities,

M̂ → m̂ = m̂(t, r, p, ψ, ψ†, . . .). (3.2.65)

As we shall see, the above property has truly fundamental implications, since it
will permit the first and only known geometric unification of the Minkowskian and
Riemannian geometries with the consequential unification of special and general
relativities, and other applications of manifestly fundamental nature.

By recalling that the basic invariant r2 represents the square of the “distance”
in S, from Eqs. (3.2.56) and (3.2.62) we derive the following additional property

THEOREM 3.2.3 [6,7,10]: The basic invariant of a metric or pseudometric
space has the structure:

Invariant = [Length]2 × [Unit]2 (3.2.66)

The above property will soon have deep geometric implications, such as per-
mitting different shapes, sizes and dimension for the same object under inspection
by different observers, all in a way compatible with our sensory perception.

Note that invariant structure (3.2.66) is indeed new because identified for the
first time by the isotopies, since the multiplication of the invariant by the unit is
trivial for conventional studies and, as such, it was ignored.

It is now important to indicate the differences between Santilli isospaces
Ŝ(r̂, M̂ , F̂ ) or Ŝ(r, m̂, F ) and deformed spaces that, as well known, are given
by the sole deformations of the metric, for which we use the notation S(r, m̂, F ).

It is easy to see that deformed spaces S(r, m̂, F ) have a conventional noncanon-
ical or nonunitary structure, thus activating the theorems of catastrophic incon-
sistencies of Section 3.4. By comparison, Santilli isospaces have been constructed
precisely to resolve these catastrophic inconsistencies via the reconstruction of
canonicity or unitarity on isospaces over isofields.

Moreover, deformed metric spaces S(r, m̂, F ) necessarily break the symmetries
of the original spaces S(r,m, F ), while, as we shall soon see, isospaces Ŝ(r̂, M̂ , F̂ )
reconstruct the exact symmetries of S(r, g, F ).
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The implications of the latter property alone are far reaching because all sym-
metries believed to be broken in the 20-th century can be proved to remain exact
on suitable isospaces over isofields. In different terms, the “breakings of space-
time and internal symmetries” studies through the 20-th century are a direct
manifestation of the adaptation of new physical events to a rather limited, pre-
existent mathematics because, if the underlying mathematics is suitably lifted,
all believed breakings cease to exist, as already proved in Vol. II of this series [7]
and updated in this volume.

Santilli’s isodual isospaces for the treatment of antimatter are the anti-iso-
morphic image of isospaces under the isodual map (3.2.15) and can be written

Ŝd(r̂d, M̂d, F̂ d) : r̂d = −r̂†, M̂d = −M̂, (3.2.67a)

r̂2̂d = r̂d×̂dM̂d×̂dr̂t,d. (3.2.67b)

Isodual isospaces were introduced in Vol. I of this series [6] and then treated in
various other works (see, e.g., [10,17,18]). As we shall see, they play a crucial role
for the treatment of antimatter in interior conditions. The tensorial product of
isospaces and their isoduals appears to be significant for basic advances in biology,
e.g., to achieve a quantitative mathematical representation of bifurcations and
other biological behavior.

As we shall see, all industrial applications of hadronic mechanics are based
on isospaces to such an extent that the new isogeometries have acquired evident
relevance for new patents assuredly without prior art, evidently in view of their
novelty.

3.2.4 Isofunctional Analysis and its Isodual
The lifting of fields evidently requires a corresponding lifting of functional

analysis into a form known as Kadeisvili isofunctional analysis since it was first
studied by J. V. Kadeisvili [19,20] in 1992. Additional studies were done by
A. K. Aringazin et al. [21] in 1995 and other authors.

A detailed study of isofunctional analysis was also provided in monographs
[6,7] of 1995. A knowledge of these studies is necessary for any application of
hadronic mechanics because all conventional functions and transforms have to
be properly lifted for consistent applications, while the use of conventional (or
improperly lifted) functions and transforms leads to catastrophic inconsistencies.

In essence, the consistent formulation of isofunctional analysis requires not
only the preservation of the original axioms, but also the preservation of the
original numerical values when formulated on isospaces over isofields, under which
conditions the broadening of conventional formulations emerge in the projection
of the isotopic treatment in the original space.

The latter mathematical requirement has deep physical implications, such as
the preservation of the speed of light in vacuum as the universal invariant on
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isospaces over isofield, with consequential preservation under isotopies of all ax-
ioms of special relativity, while locally varying speeds of light within physical
media emerge in the projection of the isospace in our spacetime, as we shall see
in subsequent sections.

The scope of this section is essentially that of providing the guidelines for
the updating of Refs. [19,20,16,6,7] along the above requirements to achieve
compatibility with the main lines of this presentation.

DEFINITION 3.2.4 [19,20,21, 6,7] Let f(x) be an ordinary (sufficiently smoo-
th) function on a vector space S with local variable x (such as a coordinate) over
the reals R. The isotopic image of f(x), called isofunctions, can be constructed
via the use of a noncanonical-nonunitary transform

U × f(x)× U † = f(x)× Î ∈ F̂ , (3.2.68)

reformulated on isospace Ŝ(x̂, F̂ ) over the isofield F̂

f(x)× Î = f(T̂ × x̂)× Î = f̂(x̂) ∈ F̂ , (3.2.69)

with projection in the original space S(x, F )

f(T̂ × x) ∈ F. (3.2.70)

As one can see, expression (3.2.68) coincides with the definition of isofunction in
the quoted references. A feature identified since that time is the re-interpretation
in such a way that the function f(x) preserves its numerical value when for-
mulated as f̂(x̂) on the isospace Ŝ over the isofield F̂ because the variable x̂ is
multiplied by T̂ while the unit to which such a variable is referred to is multi-
plied by the inverse amount Î = 1/T̂ . All numerical differences emerge in the
projection of f̂(x̂) in the original space.

This is essentially the definition of isofunctions that will allow us to preserve the
basic axioms of special relativity on isospaces over isofields and actually expand
their applicability from motion in empty space to motion within physical media.

For the case of the simple function f(x) = x we have the lifting

x̂ = U × x× U † = x× (U × U †) = x× Î = T̂ × x̂× Î ∈ F̂ , (3.2.71)

with the projection in the original space S being simply given in this case by
T̂ × x.

More instructive is the lifting of the exponentiation into the isoexponentiation
given by

ex → U × ex × U † =
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= U × (I + x/1! + x× x/2! + . . .)× U † =

= Î + x̂/̂1̂! + x̂×̂x̂/̂2̂! + . . .) =

= êx̂ = (ex̂×T̂ )× Î = Î × (eT̂×x̂) ∈ F̂ , (3.2.72)

with projection in the original space S given by

êx = (ex × T̂ )× I = I × (eT̂×x) ∈ F, (3.2.73)

where one should note that the function in isospace is computed over F̂ while its
projection in the original space is computed in the original field F .

The above lifting is nontrivial because of the appearance of the nonlinear
integro-differential quantity T̂ (t, x, ψ, ∂ψ, . . .) in the exponent. As we shall see
shortly, this feature permits the first known extension of the linear and local Lie
theory to nonlinear and nonlocal formulations.

Let M(x) = (Mij(x)) be an N -dimensional matrix with elements Mij(x) on a
conventional space S(x, F ) with local coordinates x over a conventional field F
with unit I. Then, the isotopic image of M(x) or it isomatrix, is defined by

M̂(x̂) = (M̂ij(x̂)) = M(T̂ × x̂)× Î , M̂ij ∈ F̂ , (3.2.74)

Similarly, the isodeterminant of M̂ is defined by

D̂etM̂ = [Det(T̂ ×M)]× Î (3.2.75)

where Det represents the conventional determinant, with the preservation of the
conventional axioms, e.g.,

D̂et(M̂1×̂M̂2) = D̂et(M̂1)×̂D̂et(M̂2); (3.2.76a)

D̂et(M̂−Î) = (D̂etM̂)−Î , (3.2.76b)

Note that, by construction, isomatrices and isodeterminant preserve the orig-
inal values on isospaces over isofields, although show deviations when the same
quantities are observed from the original space, that is, referred to the original
unit.

Similarly, the isotrace of M̂ is defined by8

T̂ rM̂ = [Tr(T̂ ×M)]× Î , (3.2.77)

8The isodeterminant introduced in Ref. [6], Eq. (6.3.19) is the correct form as in Eq. (3.2.77) above.
However, the isotrace introduced in Eq. (6.3.20a) of Ref. [6] preserves the axioms of a trace, but not its
value, as a consequence of which it is not fully invariant, the correct definition of isotrace being given
by Eq. (3.2.77) above.
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where Tr is the conventional trace, and it also verifies the conventional axioms,
such as

T̂ r(M̂1×̂M̂2) = T̂ rM̂1×̂T̂ rM̂2, (3.2.78a)

T̂ r(M̂−Î) = (T̂ rM̂)−Î . (3.2.78b)

The isologarithm is hereon defined by9

ˆlogêâ = loge a× Î , (3.2.79)

and admit the unique solution

ˆlogêâ = loge(T̂ × a)× Î , (3.2.80)

under which the conventional axioms are preserved,

ê
ˆlogêâ = â, (3.2.81a)

ˆlogêê = Î , ˆlogêÎ = 0, (3.2.81b)

ˆlogê(â×̂b̂) = ˆlogêâ+ ˆlogêb̂, (3.2.81c)

ˆlogê(â/̂b̂) = ˆlogêâ− ˆlogêb̂, (3.2.81d)

ˆlogê(â
−Î) = − ˆlogêâ, (3.2.81e)

b̂×̂ ˆlogêâ = ˆlogê(â
b̂). (3.2.81f)

The lifting of trigonometric functions is intriguing and instructive (see Chap-
ter 6 of Ref. [6] and Chapter 5 of Ref. [7] whose results in this case require no
upgrading). Let E(r, δ, R) be a conventional two-dimensional Euclidean space
with coordinates r = (x, y) on the reals R and polar representation x = r× cos θ
and y = r × sin θ, x2 + y2 = r2 × (cos2 θ + sin2 θ) = r2. Consider now the
iso-Euclidean space in two dimension

Ê(r̂, δ̂, R̂) : δ̂ = Diag.(n−2
1 , n−2

2 ), Î = Diag.(n2
1, n

2
2), (3.2.82a)

r̂2̂ = (x2/n2
1 + y2/n2

2)× Î ∈ R̂. (3.2.82b)

Then, the isopolar coordinates and related isotrigonometric functions on Ê are
defined by

x̂ = r̂×̂ ˆcosφ̂, (3.2.83a)

ˆcosφ̂ = n1 × cos(φ/n1 × n2), (3.2.83b)

9Note, again, that a different definition of isologarithm was assumed in Eq. (6.7.5) of Ref. [6].
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Figure 3.4. A schematic view of the conventional sinus function in Euclidean and iso-Euclidean
spaces (top view) and of the projection of a possible example of the isosinus function in the
conventional space.

ŷ = r̂×̂ ˆsinφ̂, (3.2.83c)

ˆsinφ̂ = n2 × sin(φ/n1 × n2), (3.2.83d)

and they preserve the axioms of conventional trigonometric functions, such as,

r̂2̂ = (x2/n2
1 + y2/n2

2)× Î = r2 × Î ∈ R̂. (3.2.84)

The isotopy of spherical coordinates are treated in detail in Section 5.5 of
Ref. [7]. For self-sufficiency of this volume we recall that their definition requires
a three-dimensional iso-Euclidean space

Ê(r̂, δ̂, R̂) : δ̂ = Diag.(n−2
1 , n−2

2 , n−2
3 ), Î = Diag.(n2

1, n
2
2, n

2
3), (3.2.85a)

r̂2̂ = (x2/n2
1 + y2/n2

2 + z2/n2
3)× Î ∈ R̂. (3.2.85b)

The isotopies of the conventional spherical coordinates in E(r, δ, R) then yields
the following isospherical coordinates here presented in the projected form on
Ê(r, δ̂, R)

x = r × n1 × sin(θ/n3)× sin(φ/n1 × n2), (3.2.86a)

y = r × n2 × sin(θ/n3)× cos(φ/n1 × n2), (3.2.86b)

z = r × n3 × cos(θ/n3). (3.2.86c)

Via the use of the above general rules, the reader can now construct all needed
isofunctions.
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Figure 3.5. An intriguing application of isotrigonometric functions, the generalization of the
conventional Pythagorean Theorem (left view) to triangles with curvilinear sides (right view).
This is due to the fact that conventional triangles and the Pythagorean theorem are preserved
identically on isospaces over isofields, but the projection on conventional Euclidean spaces of
straight lines in isospaces over isofields are curves. Therefore in isospace we have expressions
such as Â = D̂×̂isosinus(γ̂) with projections in the conventional space for curvilinear sides
A = D × isosinus(γ), where A and D are now the lengths of the curvilinear sides.

The reader should meditate a moment on the isotrigonometric functions. In
fact, they provide a generalization of the Pythagorean theorem to curvilinear tri-
angles. This is due to the fact that the projection of Ê(r̂, δ̂, R̂) into the original
space E(r, δ, R) characterizes indeed curvilinear triangles, trivially, because the
n-characteristic quantities are functions.

However, the reader is suggested to verify that the isotriangle, that is, the
image on Ê of an ordinary triangle on E coincides with the latter because the
changes caused by the lifting are compensated by the inverse changes of the unit.

By noting that their value must be isonumbers, the isointegral can be defined
by (here expressed for the simple case of isounits independent form the integration
variable) ∫̂

d̂r̂ = Î ×
∫
T̂ × d(r × Î) = Î ×

∫
dr, (3.2.87)

whose extension to the case of isounits with an explicit functional dependence on
the integration variables has a complexity that goes beyond the elementary level
of this presentation.

Isointegrals and isoexponentiations then permit the introduction of the follow-
ing Fourier-Kadeisvili isotransforms, first studied in Ref. [19,20] (also represented
here to avoid excessive mathematical complexities for the simpler case of isounits
without an explicit dependence on the integration variables)10

f̂(x̂) = (1̂/̂2̂π)×̂
∫̂ +∞

−∞
ĝ(k̂)×̂êî×̂x̂d̂k̂, (3.2.88a)

10The reader should be aware that in most applications of hadronic mechanics the isounits can be
effectively approximated into constants, thus avoiding the complex mathematics needed for isointegrals
and isotransforms with an explicit functional dependence on the integration variables.
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ĝ(x̂) = (1̂/̂2̂π)×̂
∫̂ +∞

−∞
f̂(k̂)×̂êî×̂x̂d̂x̂, (3.2.88b)

with similar liftings for Laplace transforms, etc. Other transforms can be defined
accordingly [6].

We confirm in this way a major feature of isomathematics, the fact that Hamil-
tonian quantities preserve not only their axioms, but also their numerical value
under isotopic lifting when defined on isospaces over isofields, and all deviations
occur in the projection of the lifting into the original space.

The explicit construction of the isodual isofunctional analysis is also instruc-
tive and intriguing because they reveal properties that have essentially remained
unknown until recently, such as the fact that the isofourier transforms are iso-
selfdual (see also Refs. [6,7]).

3.2.5 Isodifferential Calculus and its Isodual
As indicated in Chapter 1, the delay to complete the construction of hadronic

mechanics since its proposal in 1978 [5] was due to difficulties in identifying
the origin of the non-invariance of its initial formulation, that is, the lack of
prediction of the same numerical values for the same quantities under the same
conditions, but at different times, a fundamental invariance property fully verified
by quantum mechanics.

These difficulties were related to the lack of a consistent isotopic lifting of the
familiar quantum mechanical momentum. More particular, all aspects of quan-
tum mechanics could be consistently and easily lifted via a nonunitary transforms,
except the eigenvalue equation for the linear momentum, as shown by the follow-
ing lifting

p× ψ(t, r) = −i× ~× ∂

∂r
ψ(t, r) = K × ψ(t, r)→

→ U × [p× ψ(t, r)] = (U × p× U †)× (U × U †)−1 × [U × ψ(t, r)] =

= p̂× T̂ × ψ̂(t̂, r̂) = p̂×̂ψ̂(t̂, r̂) =

= −i× ~× U [
∂

∂r
ψ(t, r)] = K × U × ψ(t, r) = K̂×̂ψ̂(t̂, r̂), (3.2.89)

where K̂ = K × Î is an isonumber.
As one can see, the initial and final parts of the lifting are elementary. The

problem rested in the impossibility of achieving a consisting lifting of the inter-
mediate step, that based on the partial derivative.

In the absence of a consistent isotopy of the linear momentum, the early stud-
ies of hadronic mechanics lacked consistent formulations of physical quantities
depending on the isomomentum, such as the isotopies of angular momentum,
kinetic energy, etc.
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The origin of the above problem resulted in being where expected the least, in
the ordinary differential calculus, and this explains the delay in the resolution of
the impasse.

The above problem was finally resolved by Santilli in the second edition of
Refs. [6,7] of 1995 (see Section 5.4.B of Vol. I and Section 8.4.A of Vol. II) with
a mathematical presentation in memoir [10] of 1996. The resulting generalization
of the ordinary differential calculus, today known as Santilli’s isodifferential cal-
culus, plays a fundamental role for these studies beginning with the first known
structural generalization of Newton’s equations in Newtonian mechanics, and
then passing to the correct invariant formulation of all dynamical equations of
hadronic mechanics.

For centuries, since its discovery by Newton and Leibnitz in the mid 1600,
the ordinary differential calculus had been assumed to be independent from the
basic unit and field, and the same assumption was kept in the earlier studies on
hadronic mechanics, resulting in the lack of full invariance, inability to formulate
physical models and other insufficiencies.

After exhausting all other possibilities, an inspection of the differential calculus
soon revealed that, contrary to an erroneous belief kept in mathematics for about
four centuries, the ordinary differential calculus is indeed dependent on the basic
unit and related field.

In this section we review Santilli’s isodifferential calculus in its version needed
for applications and verifications of hadronic mechanics. This update is recom-
mendable because of various presentations in which the role of Î and T̂ were
interchanged, resulting in possible ambiguities that could cause loss of invariance
even under the lifting of the differential calculus.

A main feature is that, unlike all other aspects of hadronic mechanics, the
isotopies of the differential calculus cannot be reached via the use of a noncanon-
ical or nonunitary transform, and have to be built via different, yet compatible
methods.

Let S(r,m,R) an N -dimensional metric or pseudo-metric space with con-
travariant coordinates R = (rk), metric m = (mij), i, j, k = 1, 2, . . . , N , and
conventional unit I = Diag.(1, 1, . . . , 1) on the reals R. Let f(r) be an ordi-
nary (sufficiently smooth) function on S, let drk be the differential in the local
coordinates, and let ∂f(r)/∂rk be its partial derivative.

As it is well known, the connection between covariant and contravariant coor-
dinates is characterized by the familiar rules

rk = mkj × rj , ri = mik × rk, (3.2.90a)

mij = [(mqw)−1]ij . (3.2.90b)



196 RUGGERO MARIA SANTILLI

Let Ŝ(r̂, M̂ , R̂) be an isotope of S with N -dimensional isounit Î = (Îij), con-
travariant isocoordinates r̂ = (rk)× Î and isometric M̂ = (M̂ij) = (T̂ si ×msj)× Î
on the isoreals R̂.

The connection between covariant and contravariant isocoordinates is then
given by

r̂k = M̂kj×̂r̂j , r̂i = M̂ik×̂r̂k, (3.2.91a)

M̂ ij = [(M̂qw)−1]ij . (3.2.91b)

Therefore, on grounds of compatibility with the metric and subject to verifications
later on geometric grounds, we have the following:

LEMMA 3.2.5 [10]: Whenever the isounit of contravariant coordinates r̂k on
an isospace Ŝ(r̂, M̂ , R̂) is given by

Î = (Îij(t, r, . . .)) = 1/T̂ = (T̂ ji )
−1, (3.2.92)

the isounit for the related covariant coordinates r̂k is given by its inverse

T̂ = (T̂ ij (t, r, . . .)) = 1/Î = (Îij)
−1, (3.2.93)

and viceversa.

The ordinary differential of the contravariant isocoordinates is given by dr̂k

with covariant counterpart dr̂k and they clearly do not constitute an isotopy.
The condition for the preservation of the original axioms and value for constant
isounits then leads to the following

DEFINITION 3.2.5 [6,7,10]: The isodifferentials of contravariant and covari-
ant coordinates are given respectively by11

d̂r̂k = d̂(rk × Î) = T̂ ki × d(ri × Î), (3.2.94a)

d̂r̂k = d̂(rk × T̂ ) = Îik × d(ri × T̂ ). (3.2.94b)

LEMMA 3.2.6 [loc. cit.]: For one-dimensional isounits independent from the
local variables, isodifferentials coincide with conventional differentials,

d̂r̂k ≡ drk, d̂r̂k ≡ drk. (3.2.95)

11It should be noted that the role of Î and T̂ in this definition and that of Ref. [10] are inverted. Also,
the reader should keep in mind that, since they are assumed to be Hermitian, isounits can always be
diagonalized. In fact, diagonal isounits are sufficient for the verifications and applications of hadronic
mechanics, while leaving to the interested reader the formulation of hadronic mechanics according to the
broader isodifferential calculus of Refs. [6,7,10].
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Note that the above property constitutes a new invariance of the differential
calculus. Its trivial character explains the reason isodifferential calculus escaped
detection for centuries. Needless to say, the above triviality is lost for isounit
with nontrivial functional dependence from the local variables as it is generally
the case for hadronic mechanics.

The ordinary derivative of an isofunction of contravariant coordinates is evi-
dently given by

∂f̂(r̂k)
∂r̂k

= lim
d̂r̂k→0

f̂(r̂k + d̂r̂k)− f̂(r̂k)

d̂r̂k
(3.2.96)

with covariant version

∂f̂(r̂k)
∂r̂k

= lim
d̂r̂k→0

f̂(r̂k + d̂r̂k)− f̂(r̂k)

d̂r̂k
. (3.2.97)

It is then simple to reach the following

DEFINITION 3.2.4 [loc. cit.]: The isoderivative of isofunctions on contravari-
ant and covariant isocoordinates are given respectively by

∂̂f̂(r̂k)

∂̂r̂k
= Îik ×

∂f̂(r̂i)
∂r̂k

, (3.2.98a)

∂̂f̂(r̂k)

∂̂r̂k
= T̂ ki ×

∂f̂(r̂i)
∂r̂k

, (3.2.98b)

where the isoquotient is tacitly assumed.12

A few examples are now in order to illustrate the axiom-preserving character
of the isodifferential calculus. Assume that the isounit is not dependent on r.
Then, for f̂(r̂k) = r̂k we have

d̂r̂i

d̂r̂j
= δ̂ij = δij × Î . (3.2.99)

Similarly we have
d̂(r̂i)n̂

d̂r̂j
= δ̂ij × (̂ri)n̂−1̂. (3.2.100)

12Note that the isofunction in the numerator contains an additional isounit, f̂ = f × Î, that, however,

cancels out with the isounit of the isoquotient, /̂ = /× Î, resulting in expressions (3.2.98). Note also the
lack of presence of a factorized isounit in the definition of the isodifferentials and isoderivatives, and this
explains why the isodifferential calculus cannot be derived via noncanonical or nonunitary transforms.
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It is instructive for the reader interested in learning Santilli isodifferential cal-
culus to prove that isoderivatives in different variables “isocommute” on isospace
over isofields,

∂̂

∂̂r̂i
∂̂

∂̂r̂j
=

∂̂

∂̂r̂j
∂̂

∂̂r̂i
, (3.2.101)

but their projections on ordinary spaces over ordinary fields do not necessarily
“commute”.

We are now sufficiently equipped to point out the completion of the construc-
tion of hadronic mechanics. First, let us verify the axiom-preserving character of
the isoderivative of the isoexponent in a contravariant coordinate for the simple
case in which the isounit does not depend on the local variables. In fact, we have
the expression

∂̂

∂̂r̂
êr̂ = Î × ∂

∂r̂
[Î × eT̂×r̂] = Î × T̂ × [Î × eT̂×r̂] = êr̂. (3.2.102)

Consider now the isoplanewave as a simply isotopy of the conventional planewave
solution (again for the case in which the isounit does not depend explicitly on
the local coordinates),

êî×̂r̂×̂K̂ = Î × ei×T̂×K×r̂, (3.2.103)

for which we have the isoderivatives

∂̂

∂̂r̂
êî×̂r̂×̂K̂ = Î × ∂

∂r̂
[Î × ei×T̂×K×r̂] =

= −i×K × Î × ei×T̂×K×r̂ = î×̂K̂×̂êî×̂r̂×̂K̂ . (3.2.104)

We reach in this way the following fundamental definition of isomomentum,
first achieved by Santilli in Refs. [6,7] of 1995, that completed the construction
of hadronic mechanics (its invariance will be proved later on in Section 3.5).

DEFINITION 3.2.7 [6,7,10]: The isolinear momentum on an iso-Hilbert space
over the isofield of isocomplex numbers Ĉ (see Section 3.5 for details) is charac-
terized by

p̂k×̂ψ̂(t̂, r̂) = −î×̂ ∂̂

∂̂r̂k
ψ̂(t̂, r̂) = −i×̂Îik ×

∂

∂r̂i
ψ̂(t̂, r̂) = K̂×̂ψ̂(t̂, r̂). (3.2.105)

Comparing the above formulation with Eq. (3.2.89), and in view of invariance
(3.2.95),we reach the following
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THEOREM 3.2.4 [6,7,10]: Planck’s constant ~ is the fundamental unit of
the differential calculus underlying quantum mechanics, i.e., quantum mechanical
eigenvalue equations can be identically reformulated in terms of the isodifferential
calculus with basic isounit ~,

p× ψ(t, r) = −i× ~× ∂

∂r
ψ(t, r) ≡ −i× ∂̂

∂̂r
ψ(t, r). (3.2.106)

In conclusion, Santilli’s isodifferential calculus establishes that the isounit not
only is the algebraic unit of hadronic mechanics, but also replaces Planck’s con-
stant with an integro-differential operator Î, as needed to represent contact, non-
linear, nonlocal and nonpotential effects.

More specifically, Santilli’s isodifferential calculus establishes that, while in
exterior dynamical systems such as atomic structures, we have the conventional
quantization of energy, in interior dynamical systems such as in the structure of
hadrons, nuclei and stars, we have a superposition of quantized energy level at
atomic distances plus continuous energy exchanges at hadronic distances.

Needless to say, all models of hadronic mechanics will be restricted by the
condition

lim
r→∞

Î ≡ ~, (3.2.107)

under which hadronic mechanics recovers quantum mechanics uniquely and iden-
tically.

DEFINITION 3.2.8 [6,7,17]: The isodual isodifferentials are defined by

d̂dr̂d = (−d̂†)(−r̂†) = d̂r̂, (3.2.108)

while isodual isoderivatives are given by

∂̂df̂d(r̂d)/̂dd̂dr̂d = −∂̂f̂(r̂)/̂d̂r̂. (3.2.109)

THEOREM 3.2.5 [6,7,17]: Isodifferentials are isoselfduals.

The latter new invariance constitutes an additional, reason why the isodual
theory of antimatter escaped attention during the 20-th century.

3.2.6 Kadeisvili’s Isocontinuity and its Isodual
The notion of continuity on an isospace was first studied by Kadeisvili [19] in

1992 and it is today known as Kadeisvili’s isocontinuity. A review up to 1995 was
presented in monographs [6,7]. Rigorous mathematical study of isocontinuity has
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been done by Tsagas and Sourlas [22–23], R. M. Falcón Ganfornina and J. Núñez
Valdés [24–26] and others. For mathematical studies we refer the interested reader
to the latter papers. For the limited scope of this volume we shall present the
notion of isocontinuity in its most elementary possible form.

Let f̂(r̂) = f(T̂ × r̂)× Î be an isofunction on an isospace Ŝ over the isofield R̂.
The isomodulus of said isofunction is defined by [19]

|̂f̂(r̂)̂| = |f(T̂ × r̂)| × Î . (3.2.110)

DEFINITION 3.2.9 [19,20]: An infinite sequence of isofunctions f̂1(r̂), f̂2(r̂), . . .
is said to be “strongly isoconvergent” to the isofunction f̂(r̂) when

lim
k→∞

|̂f̂k(r̂)− f̂(r̂)̂| =̂ 0̂. (3.2.111)

while the “iso-Cauchy condition” can be defined by

|̂f̂m(r̂)− f̂n(r̂)̂| < δ̂ = δ × Î , (3.2.112)

where δ is a sufficiently small real number, and m and n are integers greater than
a suitably chosen neighborhood of δ.

The isotopies of other notions of continuity, limits, series, etc. can be easily
constructed (see Refs. [6,7] for physical treatments and Refs. [22–26] for mathe-
matical treatments).

Note that functions that are conventionally continuous are also isocontinuous.
Similarly, a series that is strongly convergent is also strongly isoconvergent. How-
ever, a series that is strongly isoconvergent is not necessarily strongly convergent.
We reach in this way the following important

THEOREM 3.2.6 [6,7]: Under the necessary continuity and regularity con-
ditions, a series that is conventionally divergent can always be turned into a
convergent isoform under a suitable selection of the isounit.

This mathematically trivial property has far reaching implications, e.g., the
achievement, for the first time in physics, of convergent perturbative series for
strong interactions, which perturbative treatments are conventionally divergent
(see Section 3.4).

Similarly, the reader may be interested in knowing that, given a function which
is not square-integrable in a given interval, there always exists an isotopy which
turns the function into a square-integrable form [6,7]. The novelty is due to the
fact that the underlying mechanism is not that of a weight function, but that of
altering the underlying field.
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The isodual isocontinuity is a simple isodual image of the preceding notions of
continuity and will be hereon assumed.

3.2.7 TSSFN Isotopology and its Isodual
Topology is the ultimate foundation of quantitative sciences because it identi-

fies on rigorous mathematical grounds the limitations of the ensuing description.
Throughout the 20-th century, all quantitative sciences, including particle

physics, nuclear physics, astrophysics, superconductivity, chemistry, biology, etc.,
have been restricted to the use of mathematics based on the conventional local-
differential topology, with the consequence that the sole admitted representations
are those dealing with a finite number of isolated point-like particles.

Since points are dimensionless, they cannot have contact interactions. There-
fore, an additional consequence is that the sole possible interactions are those of
action-at-a-distance type representable with a potential.

In conclusion, the very assumption of the conventional local-differential topol-
ogy, such as the conventional topology for the Euclidean space, or the Zeeman
topology for the Minkowski space, uniquely and unambiguously restrict the ad-
mitted systems to be local, differential and Hamiltonian.

This provided an approximation of systems that proved to be excellent when-
ever the mutual distances of particles are much greater than their size as it is the
case for planetary and atomic systems.

However, the above conditions are the exception and not the rule in nature,
because all particles have a well defined extended wavepacket and/or charge dis-
tribution of the order of 10−13 cm. It is well known in pure and applied mathe-
matics that the representation of the actual shape of particles is impossible with
a local-differential topology.

Moreover, once particles are admitted as being extended, there is the emergence
of the additional contact, zero-range nonpotential interactions that are nonlocal
in the sense of occurring in a finite surface or volume that cannot be consistently
reduced to a finite number of isolated points.

Consequently, it is equally know by experts that conventional local-differen-
tial topologies cannot represent extended particles at short distances and their
nonlocal-nonpotential interactions, as expected in the structure of planets, strongly
interacting particles, nuclei, molecules, stars and other interior dynamical sys-
tems.

The need to build a new topology, specifically conceived and constructed for
hadronic mechanics was suggested since the original proposal [5] of 1978. It was
not only until 1995 that the Greek mathematicians Gr. Tsagas and D. S. Sourlas
[22,23] proposed the first isotopology on scientific record formulated on isospaces
over ordinary fields. In 1996, the Italian-American physicist R. M. Santilli [10]
extended the formulation to isospaces over isofields. Finally, comprehensive stud-
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ies on isotopology were conducted by the Spanish Mathematicians R. M. Falcón
Ganfornina and J. Núñez Valdés [24,25]. As a result, the new topology is hereon
called the Tsagas-Sourlas-Santilli-Falcón-Núñez isotopology (or TSSFN Isotopol-
ogy for short).

The author has no words to emphasize the far reaching implications of the new
TSSFN isotopology because, for the first time in the history of science, math-
ematics can consistently represent the actual extended, generally nonspherical
and deformable shape particles, their densities as well as their nonpotential and
nonlocal interactions.

As an example, Newton’s equations have remained unchanged in Newtonian
mechanics since the time of their conception to represent point-particles. No con-
sistent generalization was possible due to the underlying local-differential topol-
ogy and related differential calculus. As we shall see in the next section, the
isodifferential calculus and underlying isotopology will permit the first known
structural generalization of Newton’s equations in Newtonian mechanics for the
representation of extended particles.

New coverings of quantum mechanics, quantum chemistry, special relativity,
and other quantitative sciences are then a mere consequence. Perhaps more
importantly, the new clean energies and fuels permitted by hadronic mechanics
can see their origin precisely in the TSSFN isotopology, as we shall see later on
in this chapter.

In their most elementary possible form accessible to experimental physicists,
the main lines of the new isotopology can be summarized as follows. Being
nowhere singular, Hermitian and positive-definite, N -dimensional isounits can
always be diagonalized into the form

Î = Diag.(n2
1, n

2
2, . . . , n

2
N ), nk = nk(t, r, v, . . .) > 0, k = 1, 2, . . . , N. (3.2.113)

Consider N isoreal isofields R̂k(n̂, +̂, ×̂) each characterized by the isounit Îk = n2
k

with (ordered) Cartesian product

R̂N = R̂1 × R̂2 × . . .× R̂N . (3.2.114)

Since each isofield R̂k is isomorphic to the conventional field of real numbers
R(n,+,×), it is evident that R̂N is isomorphic to the Cartesian product of N
ordinary fields

RN = R×R× . . .×R. (3.2.115)

Let
τ = {RN ,Ki} (3.2.116)

be the conventional topology onRN (whose knowledge is here assumed for brevity),
where Ki represents the subset of RN defined by

Ki = {P = (a1, a2, . . . , aN )/ni < a1, a2, . . . , aN < m; ni,mi, ai ∈ R}. (3.2.117)
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We therefore have the following:

DEFINITION 3.2.8 [10,22-25]: The isotopology can be defined as the simple
lifting on R̂N of the conventional topology on RN , and we shall simply write

τ̂ = {R̂N , K̂i}, (3.2.118a)

K̂i = {P̂ = (â1, â2, . . . , âN )/̂n̂i < â1, â2, . . . , âN < m̂; n̂i, m̂i, âi ∈ R̂}. (3.2.118b)

As one can see, the above isotopology coincides everywhere with the conven-
tional topology of RN except at the isounit Î. In particular, τ̂ is everywhere
local-differential, except at Î which can incorporate nonlocal integral terms.

It is evident that isotopology can characterize for the first time in scientific
history, extended, nonspherical and deformable particles. In fact, for the case
of three-dimensions in diagonal representation (3.2.113), we have the character-
ization of deformable spheroidal ellipsoids with variable semiaxes n2

1, n
2
2, n

2
3 de-

pending on local quantities, such as energy, density, pressure, etc. For the case of
four-dimension the quantity n2

4 represents, for the first time in scientific record,
the density of the particle considered13.

The reader should be aware that the above formulation of the isotopology is the
simplest possible one, being restricted to the description of one isolated isoparti-
cle, that is, an extended and nonspherical particle on isospace over isofields that,
as such, has no interactions.

Consequently, numerous generalizations of the above formulations are possible
and actually needed for hadronic mechanics. The first broadening is given by
the case of two or more isoparticles in which case the basic isounit is given by
the Cartesian product of two isounits of type (3.2.113). The second broadening
is given by exponential factors incorporating nonlinear integral terms as in the
general isounit (3.1.19). In the preceding formulation, these exponential factors
have been incorporated in the n’s since they are common factors.

A lesser trivial broadening of the above formulation of isotopology is given by
nondiagonal isounits that are capable of representing nonspheroidal shapes and
other complex geometric occurrences (see in Ref. [6], page 213 the case of a nondi-
agonal isotopy contracting the dimensions from three to one, also reviewed in the
next section). The study of the latter more general formulations of isotopology
is left to the interested reader.

DEFINITION 3.2.11 [22-25]: An isotopological isospace τ̂(R̂N ) is the isospace
R̂N equipped with the isotopology τ̂ . An isocartesian isomanifold M̂(R̂N ) is the

13The reader is encouraged to inspect any desired textbook in particle physics and verify the complete
lack of representation of the density of the particle considered.
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Figure 3.6. A schematic view of the “isosphere”, namely, the perfect sphere on isospace over
isofield represented by isoinvariant (3.2.121), that is assumed as the geometric representation of
hadrons used in this monograph. The actual nonspherical and deformable shape of hadrons is
obtained by projecting the isosphere in our Euclidean space, as illustrated in the last identify
of Eq. (3.2.122).

isotopological isospace M̂(R̂N ) equipped with a isovector structure, an isoaffine
structure and the mapping

F̂ : R̂N → R̂N ; â→ f̂(â), ∀â ∈ R̂N . (3.2.119)

An iso-Euclidean isomanifold M̂(Ê(r̂, δ̂, R̂)) occurs when the N -dimensional iso-
space Ê is realized as the Cartesian product (3.2.106) and equipped with isotopol-
ogy (3.2.118) with basic isounit (3.2.113).

The isodual isotopology and related notions can be easily constructed with the
isodual map (3.2.15) and its explicit study is left as an instructive exercise for
the interested reader.

3.2.8 Iso-Euclidean Geometry and its Isodual
The isotopies of the Euclidean space and geometry were introduced for the first

time by Santilli in Ref. [14] of 1983 as a particular case of the broader isotopies
of the Minkowski space and geometry treated in the next section.

The same isotopies were then studied in various works by the same author
and a comprehensive treatment was presented in Chapter 5 of Vol. I [6]. These
isotopies are today known as the Euclid-Santilli isospace and isogeometry. The
presentation of Vol. I will not be repeated here for brevity. We merely limit our-
selves to outline the main aspects for minimal self-sufficiency of this monograph.

Consider the fundamental isospace for nonrelativistic hadronic mechanics, the
three-dimensional Euclid-Santilli isospace with contravariant isocoordinates r̂,
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isometric δ̂ over the isoreals R̂ = R̂(n̂, +̂, ×̂) (see Section 3.3)

Ê(r̂, δ̂, R̂) : r̂ = (r̂k) = (x̂, ŷ, ẑ) = (rk)×Î = (x, y, z)×Î , k = 1, 2, 3; (3.2.120a)

Î = Diag.(n2
1, n

2
2, n

2
3) = 1/T̂ > 0, nk = nk(t, r, v, a, µ, τ, . . .) > 0, (3.2.120b)

∆̂ = δ̂ × Î; δ̂ = T̂ × δ = Diag.(n−2
1 , n−2

2 , n−2
3 ), (3.2.120c)

with basic isoinvariant on Ê

r̂2̂ = r̂i×̂∆̂ij×̂r̂j = r̂i × δ̂ij × r̂j = r̂i × (T̂ ki × δkj)× r̂j =

= x̂2̂ + ŷ2̂ + ẑ2̂ =
x̂2

n2
1

+
ŷ2

n2
2

+
ẑ2

n2
3

∈ R̂. (3.2.121)

and projection on the conventional Euclidean space

r2 =
x2

n2
1

+
y2

n2
2

+
z2

n2
3

∈ R. (3.2.122)

where the scalar functions nk, besides being sufficiently smooth and positive-
definite, have an unrestricted functional dependence on time t, coordinates r,
velocities v, acceleration a, density µ, temperature τ , and any needed local vari-
able.

The Euclid-Santilli isogeometry is the geometry of the above isospaces. A
knowledge of the following main features is essential for an understanding of
nonrelativistic hadronic mechanics.

Since the isospaces Ê are all locally isomorphic to the conventional Euclidean
space E(r, δ, R), it is evident that the Euclid-Santilli isogeometry verifies all ax-
ioms of the conventional geometry, as proved in detail in Section 5.2 of Vol. I
[6]. In fact, the conventional and isotopic geometries coincide at the abstract,
realization free level to such an extent that they can be expressed with the same
abstract symbols, the differences between the conventional and the isotopic ge-
ometries emerging only in the selected realizations of said abstract axioms.

Note that, while the Euclidean space and geometry are unique, there exist
an infinite family of different yet isomorphic Euclid-Santilli isospaces and isoge-
ometries, evidently characterized by different isometrics in three dimension and
signature (+,+,+).

Recall from Section 3.2.3 that the structure of the basic invariant is given by
Eq. (3.2.66). Therefore, the isosphere, namely, the image on Ê of the perfect
sphere on E remains a perfect sphere. However, the projection of the isosphere
on the original space E is a spheroidal ellipsoid, as clearly indicated by invariant
(3.2.121). Therefore, the isosphere on isospace over isofields unifies all possible
spheroidal ellipsoids on ordinary spaces over ordinary fields. These features are
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Figure 3.7. A schematic view of the “space isocube”, namely, an ordinary cube inspected
by two observers, an exterior observer in Euclidean space with basic units of measurements
I = Diag.(1 cm, 1 cm, 1 cm) and an interior observer on isospace with basic isounits Î =
Diag.(n2

x cm, n2
y cm, n2

z cm). It it then evident that, if the exterior observer measures, for
instance, the sides of the cube to be 3m, the interior observers measures different length that can
be bigger or smaller than 3m depending on whether the isounit is smaller or bigger, respectively,
than the original unit. Also, for the case of the Euclidean observer, the units in the three space
directions are the same, while the corresponding isounits have different values for different
directions. Therefore, the same object appears as a cube of a given size to the external observer,
while having a completely different shape and size for the internal observer.

crucial to understand later on the reconstruction of the exact rotational symmetry
for deformed spheres (see Fig. 3.6).

Since the functional dependence of the isometric is unrestricted except verify-
ing the condition of positive-definiteness, it is easy to see that the Euclid-Santilli
isogeometry unifies all possible three-dimensional geometries with the signature)
(+,+,+), thus including as particular cases the Riemannian, Finslerian, non-
Desarguesian and other geometries. As an example, the Riemannian metric
gij(r) = gt is a trivial particular case of Santilli’s isometric δ̂ij(t, r, . . .). This
occurrence has profound physical implications that will be pointed out in Sec-
tion 3.5.

Yet another structural difference between conventional and isotopic geome-
tries is that the former has the same unit for all three reference axes. In fact,
the geometric unit I = Diag.(1, 1, 1) is a dimensionless representation of the
selected units, for instance, I = diag.(1 cm, 1 cm, 1 cm). In the transition to
the isospace, the units are different for different axes and we have, for instance,
Î = Diag.(n2

1 cm, n2
2 cm, n2

3 cm). It then follows that shapes detected by our sen-
sory perception are not necessarily absolute, in the sense that they may appear
basically different for an isotopic observer (see Fig. 3.7).
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Figure 3.8. A schematic view of the geometric propulsion studied in greater details in Chapter
12, here illustrated via the contraction of distances in the transition from our coordinmates to
the isotopiuc ones.

Note that in the conventional space E(r, δ, R) there are two trivially different
trivial units, namely, the unit I = +1 of the base field R and the unit I =
Diag.(1, 1, 1) of the space, related geometry and symmetries. The isotopies have
identified for the first time the fact that the unit of the space must coincide with
the unit of the base field.

In fact, the isounit of isospace Ê(r̂, δ̂, R̂) must coincide with the isounit of the
isofield R̂. It is then evident that, at the limit Î → I = Diag.(1, 1, 1) the unit
matrix I = Diag.(1, 1, 1) must be the unit of both the Euclidean space and of
the basic field. This implies a trivial reformulation of R that is ignored hereon.

Another important notion is that of isodistance between two points P1 and P2

on Ê that can be defined by the expression

D̂2
1−2 = (x̂1 − x̂2)2/n2

1 + (ŷ1 − ŷ2)2/n2
2 + (ẑ1 − ẑ2)2/n2

3. (3.2.123)

It then follows that local alterations of the space geometry cause a change in the
distance, an occurrence first identified in Ref. [6] as originating from a lifting of
the units, and today known as isogeometric locomotion studied in Chapter 13.
We are here referring to a new form of non-Newtonian locomotion in which ob-
jects can move without the application of a force or, equivalently, without any
application of the principle of action and reaction (see Figure 3.8).

Finally, it is important to point out that the dimensionality of the original Eu-
clidean space is not necessarily preserved under isotopies. This occurrence con-
stitutes another intriguing epistemological feature because isotopies are axiom-
preserving. Therefore, our senses based on the three Eustachian lobes perceive
no difference in dimension between a conventional and an isotopic shape.

The epistemological question raised by the isotopies is then whether our per-
ception of space as three-dimensional is real, in the sense of being intrinsic, or it
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is a mere consequence of our particular sensory perception, with different dimen-
sions occurring for other observers.14

The occurrence was discovered by Santilli in Ref. [6], page 213, via the follow-
ing isotopic element

T̂ =

 1 0 0
0 0 1
0 −1 0

 (3.2.124)

that is positive definite since Det T̂ = 1, thus being a fully acceptable isotopic
element.

It is easy to see that the isoinvariant of the Euclid-Santilli isospace character-
ized by the above non-diagonal isotopy is given by

r̂2̂ = r̂i × T̂ ki × δkj × r̂j =

= x̂× ẑ + ŷ × ẑ − ẑ × ŷ = x̂× x̂, (3.2.125)

namely, in this case the isotopic image of the three-dimensional Euclidean space
is one dimensional.

This occurrence provides another illustration of the fact that, despite their
simplicity, the geometric implications of the isotopies are rather deep indeed.

The isodual Euclid-Santilli isospace in three dimension can be represented by
the expressions

Êd(r̂d, ∆̂d, R̂d) : r̂d = (−x̂,−ŷ,−ẑ); (3.2.126a)

Îd = Diag.(−n2
1,−n2

2,−n2
3) = −1/T̂ > 0, nk = nk(t, r, . . .) > 0,

∆̂d = δ̂d × Î , δ̂d = T̂ d ×d δd = Diag.(−n−2
1 ,−n−2

2 ,−n−2
3 ), (3.2.126b)

with isodual isoinvariant on R̂d

r̂d
2̂d

= r̂di×̂d∆̂d
ij×̂

d
r̂dj =

= −x̂d2̂
d

− ŷd2̂
d

− ẑd2̂
d

∈ R̂d. (3.2.127)

and projection on the isodual Euclidean space

rd
2

= (−x2/n2
1 − y2/n2

2 − z2/n2
3)× Î ∈ Rd. (3.2.128)

A study of the isodual Euclid-Santilli isogeometry from Vol. I [6] is essential
for a study of antimatter in interior conditions.

14As we shall see in Chapter 4, an even deeper epistemological issue emerges from our hyper-isotopies
in which the unit is characterized by a set of values. In this case, space can be “three-dimensional” yet
be “hyper-dimensional”, in the sense that each dimension can be multi-valued.
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3.2.9 Minkowski-Santilli Isogeometry and its Isodual
3.2.9A. Conceptual Foundations. The isotopies of the Minkowski space and
geometry are the main mathematical methods of relativistic hadronic mechanics,
because they are at the foundations of the Poincaré-Santilli isosymmetry, and
related broadening of special relativity for relativistic interior dynamical systems.

The isotopies of the Minkowski space and geometry were first proposed by
Santilli in Ref. [14] of 1983 and then studied in numerous papers (see monographs
[6,7,14,15] and papers quoted therein) and are today known as Minkowski-Santilli
isospace and isogeometry.

Due to their fundamental character, the new spaces and geometry were treated
in great details in Refs. [6,7], particularly in the second edition of 1995, and that
presentation is here assumed as known for brevity.

The primary purpose of this section is to identify the most salient advances
occurred since the second edition of Refs. [6,7] with particular reference to the
geometric treatment of gravitation.

In essence, the original efforts in the construction of relativistic hadronic me-
chanics were based on two different isotopies, the isotopies of the Minkowskian
geometry for nongravitational profiles, and the isotopies of the Riemannian ge-
ometry for gravitational aspects. The presentation of Refs. [6,7] was based on
this dual approach.

Subsequently, it became known that the isotopies of the Riemannian geome-
try could not resolve the catastrophic inconsistencies of gravitation identified in
Chapter 1 because they are inherent in the background Riemannian treatment
itself, thus persisting under isotopies.

The resolution of these catastrophic inconsistencies was finally reached by San-
tilli in Ref. [26] of 1998 via the unification of the Minkowskian and Riemannian
geometries into Minkowski-Santilli isogeometry. In fact, the isometric of the lat-
ter geometry admits, as a particular cases, all possible Riemannian metrics.

Consequently, it became clear that the various methods used for the Rieman-
nian geometry (such as covariant derivative, Christoffel symbols, etc.) are inap-
plicable to the conventional Minkowski space evidently because flat, but the same
methods are fully applicable to the Minkowski-Santilli isogeometry.

The achievement of a geometric unification of the Minkowskian and Rieman-
nian geometries reached in memoir [26] permitted truly momentous advances,
such as the geometric unification of the special and general relativities, an ax-
iomatically consistent grand unification of electroweak and gravitational interac-
tions, the first known axiomatically consistent operator form of gravity, and other
basic advances reviewed in Section 3.5.



210 RUGGERO MARIA SANTILLI

Figure 3.9. A view of the three Eustachian lobes allowing us to perceive three-dimensional
shapes. The intriguing epistemological issue raised by the Euclid-Santilli isogeometry is whether
living organisms with different senses perceive the same object with different shape and size than
ours. As illustrated with the isobox of Figure 3.7, the same object can appear with dramatically
different shapes and sizes to a conventional and an isotopic observer, as well as in dimension
different than the original ones, as illustrated in the text. Another illustration of the meaning and
importance of isotopies is that being axiom-preserving, different shapes, sizes and dimensions
on isospaces are rendered compatible with our sensory perception.

3.2.9B. Minkowski-Santilli Isospaces. We now review in this subsection the
foundations of the Minkowski-Santilli isospaces by referring interested readers to
volumes [6,7] for details.

DEFINITION 3.2.12 [26]: Consider the conventional Minkowski space

M = M(x, η,R) : x = (xµ) = (r, cot), (3.2.129a)

xµ = ηµν × xν , xµ = ηµν × xν , (3.2.129b)

where co is the speed of light in vacuum, metric

η = (ηµν)Diag.(+1,+1,+1,−1), ηµν = [(ηα,β)−1]µν , (3.2.130)

basic unit
I = Diag.(+1,+1,+1,+1), (3.2.131)

and invariant on the reals

x2 = xµ × xµ = (xµ × ηµν × xν)× I ∈ R = R(n,+,×), (3.2.132)
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µ, ν, α, β = 1, 2, 3, 4.

Then, the Minkowski-Santilli isospaces can be defined by isotopies

M̂ = M̂(x̂, Ĝ, R̂) : x̂ = (x̂µ) = (r, cot)× Î , (3.2.133a)

x̂µ = Ĝµν×̂x̂ν , x̂µ = Ĝµν×̂x̂ν , (3.2.133b)

with isometric on isospaces over isofields

Ĝ = η̂ × Î = (T̂ ρµ × ηρν)× Î =

= Diag.(T̂11, T̂22, T̂33, T̂44)× Î ∈ R̂ = R̂(n̂, +̂, ×̂), (3.2.134a)

Ĝµν = [(Ĝα,β)−1]µν , (3.2.134b)

and isounit
Î = Diag.(T̂−1

11 , T̂
−1
22 , T̂

−1
33 , T̂

−1
44 ), (3.2.135)

where T̂µν are positive-definite functions of spacetime coordinates x, velocities v,
accelerations a, densities µ, temperature τ , wavefunctions, their derivatives and
their conjugates and any other needed quantity

T̂µν = T̂µν(x, v, a, µ, τ, ψ, ψ†, ∂ψ, ∂ψ†, . . .) > 0 (3.2.136)

isoinvariant on isospaces over the isofield of isoreal numbers

x̂2̂ = x̂µ×̂x̂µ = (x̂µ×̂Ĝµν×̂x̂ν)× I ∈ R̂ = R(n̂, +̂, ×̂) (3.2.137)

with projection in our spacetime

M̂(x, η̂, R) : x = (xµ)× I, (3.2.138a)

xµ = η̂µν × xν , xµ = η̂µν × xν , (3.2.138b)

metric over the field of real numbers

η̂ = (η̂µν) = (T̂ ρµ × ηρν) = Diag.(T̂11, T̂22, T̂33, T̂44) ∈ R = R(n,+,×), (3.2.139a)

η̂µν = [(η̂α,β)−1]µν , (3.2.139b)

and invariant in our spacetime over the reals

x2 = xµ × xν = xµ × η̂µν(x, v, a, µ, τ, ψ, ψ†, ∂ψ, ∂ψ†, . . .)× xν =

= T11 × x2
1 + T̂22 × x2

2 + T̂33 × x2
3 − T̂44 × x2

4 ∈ R. (3.2.140)

Note that all scalars on M must be lifted into isoscalars to have meaning for
M̂ , i.e., they must have the structure of the isonumbers n̂ = n× Î. This condition
requires the re-definition x → x̂ = x× Î, ηµν → Ĝµν = η̂µν × Î, x2 → x̂2̂, etc.
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The reader interested in learning in depth the new isogeometry should also
study from the preceding sections the different realizations of the isometry whether
realized in the original Minkowskian coordinates or in the isocoordinates, since
the functional dependence is different in these two cases.

Note however the redundancy in practice for using the forms x̂ = x × Î and
Ĝ = η̂ × Î because of the identity x̂2̂ = x̂µ×̂Ĝµν×̂x̂ν ≡ (xµ × η̂ν × xν) × Î. For
simplicity we shall often use the conventional coordinates x and the isometric will
be referred to η̂ = T̂ ×η. The understanding is that the full isotopic formulations
are needed for mathematical consistency.

A fundamental property of the infinite family of generalized spaces (3.2.133)
is the lifting of the basic unit I → Î while the metric is lifted of the inverse
amount, η → η̂ = T̂ × η, Î = T̂−1. This implies the preservation of all original
axioms, and we have the following:

THEOREM 3.2.7 [26]: All infinitely possible isominkowski spaces M̂(x̂, η̂, R̂)
over the isofields R̂(n̂, +̂, ×̂) with a common positive-definite isounit Î preserve
all original axioms of the Minkowski space M(x, η,R) over the reals R(n,+,×).

The nontriviality of the lifting is that the Minkowskian axioms are preserved
under an arbitrary functional dependence of the metric η̂ = η̂(x, v, a, µ, τ, . . .)
for which the sole x-dependence of the Riemannian metric g(x) is only a simple
particular case. As a matter of fact, we have the following

THEOREM 3.2.8 [26]: Minkowski-Santilli isospaces are “directly universal” in
spacetime, that is, they represent all infinitely possible spacetimes with signature
(+,+,+,−) (“universality”), directly with the isometric and without any use of
the transformation theory (“direct universality”).

Note that all possible “deformations” of the Minkowski space are also particular
cases of the above isospaces. However, the former are still referred to the old unit
I, thus losing the isomorphic between deformed and Minkowski spaces, while the
isotopies preserve the original axioms by construction.

A fundamental physical characteristic of the Minkowski-Santilli isospaces is
that it alters the units of space and time. Recall that the unit

I = Diag.({1, 1, 1}, 1)

of the Minkowski space represents in a dimensionless form the units of the three
Cartesian axes and time, e.g., I = (+1 cm,+1 cm,+1 cm,+1 sec). Recall also
that the Cartesian space-units are equal for all axes.

Consider now the isospaces, and recall that Î is positive-definite. Consequently,
we have the following lifting of the units in which the T̂µµ quantities are reinter-
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Figure 3.10. A view of the “spacetime isocube” characterized by the “space isocube” of Figure
3.7 now inspected in two spacetimes, the conventional Minkowski spacetime in the exterior and
Santilli isospacetime in the interior. In addition to the variations of shape, size and dimensions
indicated in Figure 3.7, the same object can be in different times for the two observers, all in
a way fully compatible with our sensory perception. Consequently, seeing in a telescope a far
away quasar or galaxy it does not mean that astrophysical structure is necessarily in our time,
since it could be evolving far away in the future or in the past.

preted as constants

I = (+1 cm,+1 cm,+1 cm,+1 sec)→

→ Î = Diag.(n2
1, n

2
2, n

2
3, n

2
4) = 1/T̂ , Îµµ = n2

µ, nµ > 0. (3.2.141)
This means that, not only the original units are now lifted into arbitrary pos-

itive values, but the units of different space axes generally have different values.
Jointly, the components of the metric are lifted by the inverse amounts n−2

µ . This
implies the preservation on M̂ over R̂ of the original numerical values on M over
R, including the crucial preservation of the maximal causal speed co, as we shall
see in Section 3.5.

Note also the necessary condition that the isospace and isofield have the same
isounit Î. This condition is absent in the conventional Minkowski space where
the unit of the space is the unit matrix I = Diag.(1, 1, 1, 1), while that of the
underlying field is the number I = +1. Nevertheless, the latter can be trivially
reformulated with the common unit matrix I, by achieving in this way the form
admitted as a particular case by the covering isospaces

M(x, η,R) : x = {xµ × I}, x2 = (xµ × ηµν × xν)× I ∈ R. (3.2.142)

The structure of both the conventional and isotopic invariants is therefore given
by Theorem 3.2.66, namely

Basic Invariant = (Length)2 × (Unit)2, (3.2.143)
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which illustrates more clearly the preservation under the dual lifting η → η̂ =
T̂ × η and I → Î = 1/T̂ of the original axioms as well as numerical values.

THEOREM 3.2.9 [6,7,26]: Conventional and isotopic symmetries of spacetime
are 11-dimensional.

Proof. In addition to the 10-dimensionality of the Poincaré symmetry, there
is an additional 11-th dimensionality characterized by the isotransform

η → η̂ = η/n2, I → Î = n2 × I, (3.2.144)

where n is a non-null constant. q.e.d.
Note the crucial role of Santilli’s isonumbers in the above property. This

explains why the 11-th dimensionality remained undiscovered throughout the
20-th century.

A significant difference between the conventional space M and its isotopes M̂
is that the former admit only one formulation, the conventional one, while the
latter admit two formulations: that on isospace itself (i.e., expressed with respect
to the isounit Î) and its projection in the original space M (i.e., expressed with
respect to the conventional unit I).

Note that the projection of M̂(x̂, M̂ , R̂) intoM(x, η,R) is not a conformal map,
but an inverse isotopic map because it implies the transition from generalized
units and fields to conventional units and fields.

The axiomatic motivation for constructing the isotopies of the Minkowskian
geometry is that any modification of the Minkowski metric requires the use of
noncanonical transforms x → x′(x),

ηµν → η̂µν =
∂x′α

∂xµ
ηαβ

∂x′β

∂xν
6= ηµν , (3.2.145)

and this includes the case of the transition from the Minkowskian metric η to the
Riemannian metric g(x).

In turn, all noncanonical theories, thus including the Riemannian geometry,
do not possess invariant units of space and time, thus having the catastrophic
inconsistencies studied in Chapter 1. A primary axiomatic function of the iso-
space is that of restoring the invariance of the basic units, as established by the
Poincaré-Santilli isosymmetry.

This is achieved by embedding all noncanonical content in the generalization
of the unit. Invariance for noncanonical structures such as Riemannian met-
rics is then assured by the fact indicated earlier that, whether conventional or
generalized, the unit is the basic invariant of any theory.

Stated in different terms, a primary axiomatic difference between the special
and general relativities is that the time evolution of the former is a canonical
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transform, thus implying the majestic mathematical and physical consistency of
special relativity recalled in Chapter 1, while the time evolution of the latter
is a noncanonical transform, thus implying a number of unresolved problematic
aspects that have been lingering throughout this century.

The reformulation of the Riemannian geometry in terms of the Minkowskian
axioms is the sole possibility known to this author for achieving axiomatic con-
sistency under a nontrivial functional dependence of the metric.

In summary, Minkowski-Santilli isospaces have the following primary applica-
tions. First, they are used for a re-interpretation of the Riemannian metrics g(x)
for the particular case

η̂ = η̂(x) = g(x) (3.2.146)

characterizing exterior gravitational problems in vacuum. Second, the same iso-
spaces are used for the characterization of interior gravitational problems with
isometrics of unrestricted functional dependence

η̂ = η̂(x, v, a, µ, τ, . . .) = g(x, v, a, µ, τ, . . .) (3.2.147)

while preserving the original Minkowskian axioms.
Since the explicit functional dependence is inessential under isotopies, our stud-

ies will be generally referred to the interior gravitational problem. Unless oth-
erwise stated, only diagonal realizations of the isounits will be used hereon for
simplicity. An example of nondiagonal isounits inherent in a structure proposed
by Dirac is indicated in Section 3.5. More general liftings of the Minkowski space
of the so-called genotopic and multivalued-hyperstructural type will be indicated
in Chapter 4.

3.2.9C. Isoderivative, Isoconnection, and Isoflatness. In the preceding
subsections we have presented the Minkowskian aspects of the new isogeometry.
We are now sufficiently equipped to present the novel part of the Minkowski-
Santilli isogeometry, its Riemannian character as first derived in Ref. [26].

Our study is strictly in local coordinates representing the fixed frame of the
observer without any un-necessary use of the transformation theory or abstract
treatments. Our presentation will be as elementary as possible without reference
to advanced topological requirements, such as Kadeisvili’s isocontinuity (Section
3.2.6), isomanifolds and related TSSFN isotopology (Section 3.2.7) .

Also, our presentation is made, specifically, for the (3+1)-dimensional iso-
spacetime, with the understanding that the extension to arbitrary dimensions
and signatures or signatures different than the conventional one (+,+,+,−) is
elementary, and will be left to interested readers.

Let M̂(x̂, Ĝ, R̂) be a Minkowski-Santilli isospace and let M̂(x, η̂, R) be its pro-
jection in our spacetime as per Definition 3.2.12. To illustrate the transition
from isocoordinates x̂ to conventional spacetime coordinates x, we shall denote
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the projection M̂ = M̂(x̂, η̂, R). This notation emphasizes that the referral of the
isospace to the conventional units and field causes the reduction of the isometric
from the general form Ĝ = η̂ × Î to η̂ = T̂ × η, where, as now familiar, Î = 1/T̂
and η = Diag.(1, 1, 1,−1) is the familiar Minkowskian metric.

According to this notation the Riemannian content of the Minkowski-Santilli
isogeometry can be unified in both its isospace formulation properly speaking
and its projection in our spacetime. All differences in the interpretations whether
occurring in isospace or in our spacetime are then deferred to the selection of the
basic unit.

Consider now the infinitesimal version of isoinvariant (3.2.137) permitted by
the isodifferential calculus

d̂ŝ2̂ = d̂x̂µ×̂d̂x̂µ ∈ R̂. (3.2.148)

The isonormal coordinates occur when the isometric η̂ is reduced to the Minkowski
metric η as in conventional Riemannian geometry. Consequently, isonormal co-
ordinates coincide with the conventional normal coordinates, and the Minkowski-
Santilli isogeometry verifies the principle of equivalence as for the conventional
Riemannian geometry.

By using the isodifferential calculus, we now introduce the isodifferential of a
contravariant isovector field on M̂ over R̂ 15

d̂X̂β = (∂̂µX̂β)×̂d̂x̂µ = Îρµ × (∂ρX̂β)×̂T̂µσ × dx̂σ ≡

≡ (∂µXβ)× dx̂µ = (∂ρXβ)× η̂ρσ × dx̂σ, (3.2.149)

where the last expression is introduce to recall that the contractions are in iso-
space. The preceding expression then shows that isodifferentials of isovector fields
coincide at the abstract level with conventional differentials for all isotopies of the
class here admitted (that with Î > 0).

DEFINITION 3.2.13 [26]: The isocovariant isodifferential are defined by

D̂X̂β = d̂X̂β + Γ̂βαγ×̂X̂α×̂d̂x̂γ , (3.2.150)

with corresponding isocovariant derivative

X̂β

|̂µ
= ∂̂µX̂

β + Γ̂βαµ×̂X̂ α̂, (3.2.151)

where the iso-Christoffel’s symbols are given by

Γ̂βαγ(x, v, a, µ, τ, . . .) =
1̂
2̂
×̂(∂̂αη̂βγ + ∂̂γ η̂αβ − ∂̂β η̂αγ)× Î = Γ̂γβα, (3.2.152a)

15We should note that the role of the isounit and of the isoelement in this presentation and in that of
Ref. [26] are interchanged for general compatibility with the various applications and developments.
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Γ̂βαγ = η̂βρ × Γ̂αργ = Γ̂βγα. (3.2.152b)

Note the unrestricted functional dependence of the connection which is noto-
riously absent in conventional treatments. Note also the abstract identity of the
conventional and isotopic connections. Note finally that local numerical values
of the conventional and isotopic connections coincide when computed in their re-
spective spaces. This is due to the fact that in Eq.s (3.2.152) η̂ ≡ g(x) for exterior
problems, while the value of derivatives ∂µ and isoderivatives ∂̂µ coincide when
computed in their respective spaces.

Note however that, when projected in the conventional spacetime, the conven-
tional and isotopic connections are different even in the exterior problem in which
η̂ = g(x),

Γ̂αβγ =
1
2
× (Îµα × ∂µgβγ + Îργ × ∂ρη̂αβ − Îσβ × ∂σgαγ)× Î 6= Γαβγ × Î . (3.2.153)

The extension to covariant isovector fields and covariant or contravariant isoten-
sor fields is consequential.

Without proof we quote the following important result from Ref. [26]:

LEMMA 3.2.7 (Iso-Ricci Lemma) [26]: Under the assumed conditions, the
isocovariant derivatives of all isometrics on Minkowski-Santilli isospaces spaces
are identically null,

η̂
αβ |̂γ ≡ 0, α, β, γ = 1, 2, 3, 4. (3.2.154)

The novelty of the isogeometry is then illustrated by the fact that the Ricci
property persists under an arbitrary dependence of the metric, as well as under
Minkowskian, rather than Riemannian axioms.

The isotorsion on M̂ is defined by

τ̂βα γ = Γ̂βαγ − Γ̂βγα, (3.2.155)

and coincides again with the conventional torsion at the abstract level, although
the two torsions have significant differences in their explicit forms when both
projected in our space-time.

DEFINITION 3.2.14 [26]: The Minkowski-Santilli isogeometry is characterized
by the following isotensor: the isoflatness isotensor

R̂βαγδ = ∂̂δΓ̂βαγ − ∂̂γΓ̂βαδ + Γ̂βρ δ×̂Γ̂ραγ − Γ̂βργ×̂Γ̂ραδ; (3.2.156)

the iso-Ricci isotensor
R̂µν = R̂βµνβ; (3.2.157)
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the isoflatness isoscalar
R̂ = η̂αβ × R̂αβ ; (3.2.158)

the iso-Einstein isotensor

Ĝµν = R̂µν −
1̂
2
×̂N̂µν×̂R̂, N̂µν = η̂µν × Î; (3.2.159)

and the isotopic isoscalar

Θ̂ = N̂αβ×̂N̂γδ×̂(Γ̂ραδ×̂Γ̂ργβ − Γραβ×̂Γ̂ργδ) =

= Γ̂ραβ×̂Γ̂ργδ×̂(N̂αδ×̂N̂γβ − N̂αβ×̂N̂γδ); (3.2.160)

the latter being new for the Minkowski-Santilli isogeometry.

Note the lack of use of the term “isocurvature” and the use instead of the
term “isoflatness”. This is due to the fact that the prefix “iso-” represents the
preservation of the original axioms. The term “isocurvature” would then be
inappropriate because the basic axioms of the geometry are flat.

In any case, the main problem underlying the studies herein reported is, as
indicated in Chapter 1, that curvature is the ultimate origin of the catastrophic
inconsistencies of general relativity. Consequently, all geometric efforts are here
aimed at the replacement of the notion of curvature with a covering notion re-
solving the indicated catastrophic inconsistencies.

As we shall see better in Section 3.5, the notion of “isoflatness” does indeed
achieve the desired objectives because flatness and its related invariance of gravi-
tation under the Poincaré-Santilli isosymmetry is reconstructed on isospaces over
isofields, while the ordinary curvature emerge as a mere projection in our space-
time.

3.2.9D. The Five Identities of the Minkowski-Santilli Isogeometry. By
continuing our review of memoir [26], tedious but simple calculations yield the
following five basic identities of the Minkowski-Santilli isogeometry:

Identity 1: Antisymmetry of the last two indices of the isoflatness isotensor

R̂βαγδ = −R̂βαδγ ; (3.2.161)

Identity 2: Symmetry of the first two indices of the isoflatness isotensor

R̂αβγδ ≡ R̂βαγδ; (3.2.162)

Identity 3: Vanishing of the totally antisymmetric part of the isoflatness isoten-
sor

R̂βαγδ + R̂βγ δα + R̂βδ αγ ≡ 0; (3.2.163)
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Figure 3.11. Primary objectives of the Minkowski-Santilli isogeometry are the resolution of the
catastrophic inconsistencies of the Riemannian formulation of exterior gravitation (Section 1.4)
and a representation of interior gravitation as occurring for the Sun depicted in this figure and
any other massive object. These objectives are achieved via the isotopies of the Minkowskian
geometry since they are flat in isospace, thus admitting a well defined invariance for all possible
gravitation, by adding sources requested by the Freud identity and other reasons, and by unifying
exterior and interior gravitational problem in a single formulation in isospace that formally
coincides with that for the exterior problem, the interior effects being incorporated in the isounit
(see Section 3.5).

Identity 4: Iso-Bianchi identity

R̂βαγδ̂|ρ + R̂βαργ |̂δ + R̂βαδρ̂|γ ≡ 0; (3.2.164)

Identity 5: Iso-Freud identity

R̂αβ −
1̂
2
×̂δ̂αβ ×̂R̂−

1̂
2
×̂δ̂αβ ×̂Θ̂ = Ûαβ + ∂̂ρV̂

αρ
β , (3.2.165)

where Θ̂ is the isotopic isoscalar and

Ûαβ = −1
2
∂̂Θ̂

∂̂η̂αβ
|̂α

η̂αβ
|̂β
, (3.2.166a)

V̂ αρ
β =

1
2
[η̂γδ(δαβ Γ̂ραδ − δ

ρ
βΓ̂

ρ
γδ)+ (3.2.166b)

+(δρβ η̂
αγ − δαβ η̂ργ)Γ̂δγδ + η̂ργΓ̂αβγ − η̂αγΓ̂

ρ
βγ ], (3.2.166c)
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Note that the conventional Riemannian geometry is generally thought to pos-
sess only four identities. In fact, the fifth identity (3.2.165) is generally unknown
in the contemporary literature in gravitation as the reader is encouraged to ver-
ify in the specialized literature in the Riemannian geometry (that is so vast to
discourage discriminatory listings).

The latter identity was introduced by Freud [27] in 1939, treated in detail by
Pauli in his celebrated book [28] of 1958 and then generally forgotten for a half
a century, apparently because of its evident incompatibility between Einstein’s
conception of exterior gravitation in vacuum as pure curvature without source
(see Section 3.4)

Gαβ = Rαβ −
1
2
δαβR = 0, (3.2.167)

and the need for a source term also in exterior gravitation in vacuum mandated
by the Freud identity and other reasons

Rαβ −
1
2
δαβR−

1
2
δαβΘ = Uαβ + ∂̂ρV

αρ
β . (3.2.168)

Freud’s identity was rediscovered by the author during his accurate study of
Pauli’s historical book and studied in detail in Refs. [6,7] of 1992. Additional
studies of the Freud identity were done by Yilmaz [30]. Following a suggestion
by the author, the late mathematician Hanno Rund [29] studied the identity in
one of his last papers and proved that:

LEMMA 3.2.8 (Rund’s Lemma) [29]: Freud’s identity is a bona fide identity
for all Riemannian spaces irrespective of dimension and signature.

In this way, Rund confirmed the general need of a source also in vacuum (see
Sections 1.4 and 3.5).

Following Ref. [26], in this paper we have presented the isotopies of the Freud
identity on Minkowski-Santilli isospaces, as characterized by the isodifferential
calculus. Its primary functions for this monograph is to identify the geometric
structure of the interior gravitational problem. The persistence of the source
in vacuum as per the Freud identity, electrodynamics and other needs will then
be consequential, thus confirming the inconsistency of Einstein’s conception of
gravity in vacuum as pure curvature without source.

Note that all conventional and isotopic identities coincide at the abstract level.

3.2.9E. Isoparallel Transport and Isogeodesics. An isovector field X̂β on
M̂ = M̂(x̂, M̂ , R̂) is said to be transported by isoparallel displacement from a
point m̂(x̂) on a curve Ĉ on M̂ to a neighboring point m̂′(x̂+ d̂x̂) on Ĉ if

D̂X̂β = d̂X̂β + Γ̂βαγ×̂X̂α×̂d̂x̂γ ≡ 0, (3.2.169)
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or in integrated form

X̂β(m̂′)− X̂β(m) =
∫̂ m̂′

m̂

∂̂X̂β

∂̂x̂α
d̂x̂α

d̂ŝ
×̂d̂ŝ, (3.2.170)

where one should note the isotopic character of the integration. The isotopy of
the conventional case then yields the following:

LEMMA 3.2.9 [26]: Necessary and sufficient condition for the existence of an
isoparallel transport along a curve Ĉ on a (3+1)-dimensional Minkowski-Santilli
isospace is that all the following equations are identically verified along Ĉ

R̂βαγδ×̂X̂α = 0, α, β, γ, δ = 1, 2, 3, 4. (3.2.171)

Note, again, the abstract identity of the conventional and isotopic parallel trans-
port. However, it is easy to see that the projection of the isoparallel transport in
ordinary spacetime is structurally different than the conventional parallel trans-
port.

Consider, as an example, an extended object in gravitational fall in atmo-
sphere (see Figure 3.12). Its trajectory is evidently irregular and depends on the
actual shape of the object, as well as its weight. The understanding of the new
Minkowski-Santilli isogeometry requires the knowledge of the fact that said tra-
jectory is represented on isospace over isofields as a straight line, that is, via the
trajectory in the absence of the resistive medium. The actual, irregular trajectory
appears only in the projection of said isotrajectory in our spacetime.

If the latter treatment is represented by a rocket, one would note a twist-
ing action as occurring in the reality of motion within physical media, which is
evidently absent in the exterior case.

Along similar lines, we say that a smooth isopath x̂α on M̂ with isotangent
v̂α = d̂x̂α/d̂ŝ is an isogeodesic when it is solution of the isodifferential equations

D̂v̂β

D̂ŝ
=
d̂v̂

d̂ŝ
+ Γ̂αβγ×̂

d̂x̂α

d̂ŝ
×̂ d̂x̂

γ

d̂ŝ
= 0. (3.2.172)

It is easy to prove the following:

LEMMA 3.2.10 [26]: The isogeodesics of a Minkowski-Santilli isospace M̂ are
the isocurves verifying the isovariational principle

δ̂

∫̂
[Ĝαβ(x̂, v̂, â, µ, τ, . . .)×̂d̂x̂α×̂d̂x̂β ]

ˆ1/2 = 0, (3.2.173)

where again isointegration is understood.
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Figure 3.12. A schematic view of two objects released from the Pisa tower. The vertical trajec-
tory represents the approximate geodesic considered by Galileo, used by Einstein and adopted
until the end of the 20-th century, namely, the approximation under the lack of resistance due to
our atmosphere. The Minkowski-Santilli isogeometry has been built to represent as isogeodesics
actual trajectories within physical media.

Finally, we point out the property inherent in the notion of isotopies according
to which

COROLLARY 3.2.10A: [26]: Trajectories in an ordinary Riemannian space
coincide with the corresponding isogeodesic trajectories in Minkowski-Santilli iso-
space, but not with the projection of the latter in the original space.

For instance, if a circle is originally a geodesic, its image under isotopy in
isospace remains the perfect circle, the isocircle (Section 3.2.9), even though its
projection in the original space can be an ellipse. The same preservation in
isospace occurs for all other curves.

The differences between a geodesic and an isogeodesic therefore emerge only
when projecting the latter in the space of the former.

An empirical but conceptually effective rule is that interior physical media
“disappear” under their isogeometrization, in the sense that actual trajectories
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under resistive forces due to physical media (which are not geodesics of a Min-
kowski space) are turned into isogeodesics in isospace having the shape of the
geodesics in the absence of resistive forces.

The simplest possible example is given by the iso-Euclidean representation of
a straight stick partially immersed in water. In conventional representations the
stick penetrating in water with an angle α appears as bended at the point of
immersion in water with an angle γ = α + β, where β is the angle of refraction.
In iso-Euclidean representation the stick remains straight also in its immersion
because the isoangle γ̂ = γ× Îγ recovers the original angle α with Îγ = α/(α+β).

The situation is essentially the same for our representation of interior gravita-
tion because the latter is represented in isospace over isofield via field equations
(this time necessarily with sources) that formally coincide with conventional equa-
tions on a conventional Riemannian spacetime. Being noncanonical, all interior
features are invariantly represented via generalized units.

3.2.9F. Isodual Minkowski-Santilli isospaces and isogeometry. The iso-
dual Minkowski-Santilli isospaces were introduced for the first time by Santilli in
Ref. [8] of 1985 and then studied in various works (see the references of Chap-
ter 1), and can be written

M̂d = M̂d(x̂d, η̂d, R̂d) :

x̂d = {xµd}×dÎd = {xµ} × (−Î) = {rd, cdo ×d td}×dÎd, (3.2.174a)

η̂d = −η̂. (3.2.174b)

The isodual Minkowski-Santilli isogeometry is the geometry of isodual isospaces
Md over Rd and was studied for the first time by Santilli in Ref. [26] of 1998.

The physically and mathematically most salient property of the latter geometry
is that it is characterized by negative units of space, time, etc., and negative
norms. Therefore, in addition to a change in the sign of the charge, we also
have change of sign of masses, energies, and other quantities normally positive
for matter. Similarly, we have the isodual isospace and isotime coordinates

x̂d = x̂d ×d Î = −x̂, t̂d = td ×d Îd = −t̂. (3.2.175)

Thus, motion under isoduality is in a time direction opposite to the conventional
motion. These features are necessary so as to have a classical representation of
antimatter in interior conditions whose operator image yields indeed antiparticles
(rather than particles with the wrong sign of the charge).

We also have the following important

LEMMA 3.2.12 [17]: Isodualities are independent from spacetime inversions

r′ = π × r = −r, t′ = τ × t = −t. (3.2.176)
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Proof. Inversions occur within the same original space and keep the unit
fixed, while isodualities require a map to a different space, and change the sign
of the unit. Therefore, in addition to maps in different spaces, isodualities have
numerical value different than the inversions. q.e.d.

These are the conceptual roots for the isodual theory of antimatter to predict
a new photon, the isodual photon emitted by antimatter [17]. When applied
to the photon, charge conjugation and, more generally, the PCT theorem, do
not yield a new photon, as well known. This is not the case under isoduality
because all physical characteristics change in sign and numerical value. As a
result, the isodual photon is indistinguishable from the ordinary photon under all
interactions except gravitation. In fact, as indicated in Chapter 1, the isodual
photon is predicted to experience antigravity in the field of matter, thus offering,
apparently for the first time, a possibility for the future study whether far away
galaxies and quasars are made up of matter or of antimatter.

Another important property of isoduality is expressed by the following:

LEMMA 3.2.13 [26]: The intervals of conventional and isotopic Minkowskian
spaces are invariant under the joint isodual maps Îd → Îd and η̂ → η̂d,

x̂2 = (xµ × η̂µν × xν)× Î ≡ [xµ × (−η̂µν)× xν ]× (−Î). (3.2.177)

As a result, all physical laws applying in conventional Minkowskian geometry
for the characterization of matter also apply to its isodual image for the charac-
terization of antimatter.

Note that, strictly speaking, the intervals are not isoselfdual because

x̂2̂ = x̂µ×̂M̂µν×̂x̂µ → x̂d2̂d = x̂µd ×d M̂d
µν ×d x̂µd = x̂d2̂d = −x̂2̂. (3.2.178)

To outline the Riemannian characteristics of the isodual Minkowski-Santilli
isogeometry, we consider an isodual isovector isofield X̂d(x̂d) on M̂d which is
explicitly given by X̂d(x̂d) = −Xt(−xt×Î)×Î. The isodual exterior isodifferential
of X̂d(x̂d) is given by

D̂dX̂µd(x̂d) = d̂dX̂µd(x̂d)+̂dΓ̂dα
µ
β×̂

d
X̂αd×̂dd̂dx̂βd = D̂X̂tµ(−x̂t), (3.2.179)

where the Γ̂d’s are the components of the isodual isoconnection. The isodual
isocovariant isoderivative is then given by

X̂µd(x̂d)̂|dν = ∂̂dX̂µd(x̂d)/̂d∂̂dx̂νd+̂Γ̂dα
µ
ν ×̂

d
X̂αd(x̂d) = −X̂tµ(−x̂t)̂|k. (3.2.180)

The interested reader can then easily derive the remaining notions of the new
geometry. It is an instructive exercise for the interested reader to prove the
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following isodualities:

Isodual isounit Î → Îd = −Î ,
Isodual isometric η̂ → η̂d = −η,

Isodual isoconnection coefficients Γ̂αβγ → Γ̂dαβγ = Γ̂αβγ ,
Isoflatness isotensor Rαβγδ → Rdαβγδ = −Rαβγδ,

Isodual iso-Ricci isotensor R̂µν → R̂dµν = R̂µν ,

Isodual iso-Ricci isoscalar R̂ → R̂d = R̂,

Isodual iso-Freud isoscalar Θ̂ → Θ̂d = −Θ̂,
Isodual Iso-Einstein isotensor Ĝµν → Ĝdµν = −Ĝµν ,

Isodual electromagnetic potentials Aµ → Adµ = −Aµ,
Isodual electromagnetic field Fµν → F dµν = −Fµν ,

Isodual elm energy-mom. isotensor Tµν → T dµν = −Tµν .

(3.2.181)

More detailed isogeometric studies are left to interested readers. Specific ap-
plications to gravitational treatments of matter and antimatter are presented in
Section 3.5.

3.2.10 Isosymplectic Geometry and its Isodual
As it is well known, the symplectic geometry had an important role in the

construction of quantum mechanics because it permitted the mathematically rig-
orous verification, known as symplectic quantization, that original quantization
procedures, known also as naive quantization, were correct.

No broadening of quantum mechanics can be considered mature unless it ad-
mits fully equivalent procedures in the map from classical to operator forms
known as isoquantization also called hadronization (rather than quantization).

For this purpose. Santilli [31] presented in 1988 the first known isotopies of
the symplectic geometry, subsequently studied in various works, with a general
presentation available in Vols. I, II of this series (see in particular Chapter 5
of Vol. I [6]). The new geometry is today known as Santilli’s isosymplectic
geometry.

We cannot possibly review here the isosymplectic geometry in detail and have
to suggest interested readers to study Refs. [6,7]. Nevertheless, an indication of
the basic lines is important for the self-sufficiency of this monograph.

Let us ignore the global (also called abstract) formulation of the symplectic
geometry and consider for clarity and simplicity only its realization in a local chart
(or coordinates).16 A topological manifold M(R) on the reals R admits the local
realization as an Euclidean space E(r, δR) with local contravariant coordinates

16Again, the literature on the conventional symplectic geometry is so vast to discourage discriminatory
quotations.
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r = (ri), i = i, 2, . . . , N . The cotangent bundle T ∗M then becomes the ordinary
phase space with local coordinates (r, p) = (ri, pi), where pi represents the tangent
vectors (physically the linear momentum). The canonical one-form then admits
the local realization

θ = pi × dri. (3.2.182)

The fundamental (canonical) symplectic form is then given by the exterior deriva-
tive of the preceding one form

ω = dθ = pi ∧ dri, (3.2.183)

and one can easily prove that it is closed, namely, that dω ≡ 0.
Consider now the isotopological isomanifold (introduced earlier) M̂(R̂) on the

isoreals R̂ with basic isounit Î. Its realization on local coordinates is given by
the Euclid-Santilli isospace Ê(r̂, ∆̂, R̂) with local contravariant isocoordinates
r̂ = (ri) × Î. Then, the isocotangent isobundle T̂ ∗M̂ admits as local realization
the isophase isospace with local coordinates (r̂i, p̂i), where p̂ is again a tangent
isovector. The novelty is given by the fact that the unit of p̂ is the inverse of that
of r̂ and we shall write

r̂ = r × Î , p̂ = p× T̂ , Î = 1/T̂ . (3.2.184)

This property was identified for the first time by Santilli [31] (for a mathemat-
ical treatment see also Ref. [10]) because not identifiable in the conventional
symplectic geometry due to the use of the trivial unit for which I−1 ≡ I = +1.

Consequently, we have the isodifferentials

d̂r̂ = T̂ × d(r × I), d̂p̂ = Î × d(p× T̂ ). (3.2.185)

The isocanonical one-isoform is then given by

θ̂ = p̂×̂d̂r̂ = (p× T̂ )× Î × d̂(r̂) = p× T̂ × d(r × Î). (3.2.186)

The fundamental isocanonical two-isoform is then given by

ω̂ = d̂θ̂ = p̂∧̂d̂r̂ = dpi ∧ dri ≡ ω, (3.2.187)

from which the preservation of closure under isotopy, d̂ω̂ ≡ 0̂ = 0 trivially follows.

LEMMA 3.2.14 [31,10]: The fundamental symplectic and isosymplectic two-
forms coincide.

The identity of the fundamental isocanonical and canonical two-forms explains
why isosymplectic geometry escaped detection by mathematicians for centuries.
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It is evident that, in view of the positive-definiteness of the isounit, the symplec-
tic and isosymplectic geometries coincide at the global (abstract) realization-free
level to such an extent that there is not even the need of changing formulae in
the literature of the symplectic geometry because the isosymplectic geometry can
be expressed with the pre-existing formalism and merely subject it to a broader
realization.

Despite this simplicity, the physical implications are by far non-trivial. In
fact, unlike the conventional two-form, and thanks to the background TSSFN
isotopology, the fundamental isocanonical two-form is universal for all possi-
ble (sufficiently smooth and regular but otherwise arbitrary) nonlocal and non-
Hamiltonian systems. To illustrate this feature, let us consider a vector field of
the cotangent bundle that must be strictly local-differential to avoid catastrophic
inconsistencies with the underlying local-differential Euclidean topology, T ∗M

X(r, p) = Ai(r, p)×
∂

∂ri
+Bi(r, p)× ∂

∂pi
, (3.2.188)

or in unified notations

b = (bµ) = (ri, pj), µ = 1, 2, . . . , 2N, (3.2.189)

X(b) = Xµ(b)×
∂

∂bµ
, (3.2.190)

is said to be a Hamiltonian vector field when there exists a function H(r, p) =
H(b) on T ∗M , called the Hamiltonian, verifying the identity

Ai × dri +Bi × dpi = −dH(r, p) (3.2.191)

or in unified notation
Xcω = dH, (3.2.192)

that is
ωµν ×Xµ × dbν = −dH, (3.2.193)

where the fundamental symplectic form has the components

ω = dpi ∧ dri =
1
2
× ωµν × dbµ ∧ dbν , (3.2.194)

(ωµν) =
(
ON×N −IN×N
IN×N ON×N

)
. (3.2.195)

Eq. (3.2.192) can hold if and only if

ωµν ×
dbν

dt
=
∂H

∂bµ
, (3.2.196)
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from which one recovers the familiar truncated Hamilton’s equations

dri

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂ri

. (3.2.197)

The main physical limitations is that the condition for a vector field to be
Hamiltonian constitutes a major restrictions because vector fields in the physical
reality are generally non-Hamiltonian, besides existing from the limitations of the
topology underlying the symplectic geometry.

As we shall see in Section 3.3, the above restrictions is removed for Santilli
isosymplectic geometry that acquire the character of direct universality, that is,
the capability of representing all sufficiently smooth and regular but otherwise
arbitrary vector fields (universality) in the local chart of the experimenter (direct
universality).

In fact, expression (3.2.192) is lifted into the form

ω̂µν×̂
d̂b̂ν

d̂t̂
=
∂̂Ĥ

∂̂b̂µ
, (3.2.198)

that, under the assumption for simplicity that t̂ = t, and by removing common
factors, reduces to

dri

dt
=
∂̂H

∂̂pi
= T̂ ij (r, p)×

∂H

∂pj
; (3.2.199)

dpi
dt

= − ∂̂H
∂̂ri

= −Îji ×
∂H

∂rj
. (3.2.200)

As we shall see better in Section 3.3, direct universality then follows from the
number of free functions T̂ ji as well as the arbitrariness of their functional depen-
dence.

We shall also show that the achievement of a direct isogeometric representa-
tion of nonlocal and non-Hamiltonian vector fields representing interior dynamical
problems permits their consistent map into an operator form, by therefore reach-
ing hadronic mechanics in a mathematically rigorous, unique and unambiguous
way.17

The construction of the isodual isosymplectic geometry [6] is an instructive ex-
ercise for readers interested in serious studies of antimatter in interior dynamical
conditions.

17Note the crucial role of the isodifferential calculus for the isosymplectic geometry and its implications.
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3.2.11 Isolinearity, Isolocality, Isocanonicity and Their
Isodualities

In Section 3.1 we pointed out that the primary physical characteristics of par-
ticles and antiparticles in interior conditions (such as a neutron in the core of
a neutron star) are nonlinear, nonlocality and noncanonicity due to the mu-
tual penetration-overlapping of their wavepackets with those of the surrounding
medium.

In the preceding subsections we have identified isotopic means for mapping
linear, local and canonical systems into their most general possible nonlinear,
nonlocal and noncanonical form. In this section we show how the isotopies permit
the reconstruction of linearity, locality and canonicity on isospaces over isofields,
called isolinearity, isolocality and isocanonicity for the case of particles, with their
isodual counterpart for antiparticles.

The understanding of this seemingly impossible task requires the knowledge
that conventional methods have only one formulation. By contrast, all isotopic
methods have a dual formulation, the first in isospace over isofields, and the
second when projected in ordinary spaces over ordinary fields. Deviations from
conventional properties can only occur in the latter formulation because in the
former all original axiomatic properties are preserved by construction.

Let S(r,R) be a conventional real vector space with local coordinates r over
the reals R = R(n,+,×), and let

r′ = A(w)× r, r′t = rt ×At(w), w ∈ R. (3.2.201)

be a conventional right and left linear, local and canonical transformation on S,
where t denotes transpose.

The isotopic lifting S(r,R) → Ŝ(r̂, R̂) requires a corresponding necessary iso-
topy of the transformation theory. In fact, it is instructive for the interested
reader to verify that the application of conventional linear transformations to the
isospace Ŝ(r̂, R̂) causes the loss of linearity, transitivity and other basic proper-
ties.

For these and other reasons, Santilli submitted in the original proposals [4,5] of
1978 (see monographs [6,7] for comprehensive treatments and applications) the
isotopy of the transformation theory, called isotransformation theory, which is
characterized by isotransforms (where we make use of the notion of isofunction
of Section 3.2.4)

r̂′ = Â(ŵ)×̂r̂ = Â(ŵ)× T̂ × r̂ = [A(T̂ × w)× Î]× T̂ × (r × Î) =

= A[T̂ (r, . . .)× w]× r̂, (3.2.202a)

r̂′t̂ = r̂t̂×̂Ât̂ŵ = r̂t̂ ×At[T̂ (r)× w]. (3.2.202b)
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The most dominant aspect in the transition from the conventional to the iso-
topic transforms is that, while the former are linear, local and canonical, the latter
are nonlinear in the coordinates as well as other quantities and their derivatives
of arbitrary order, nonlocal-integral in all needed quantities, and noncanonical
when projected in the original spaces S(r,R). This is due to the unrestricted
nature of the functional dependence of the isotopic element T̂ = T̂ (r, . . .).

But the conventional and isotopic transforms coincide at the abstract level
where we have no distinction between the modular action A(w)× r and Â(ŵ)×̂r̂.
Therefore, isotransforms (3.2.202) are isolinear when formulated on isospace Ŝ
over the isofield R̂, because they verify the conditions

Â×̂(n̂×̂r̂ + m̂×̂p̂) = n̂×̂Â×̂r̂ + m̂×̂Â×̂p̂, r̂, p̂ ∈ Ŝ, n̂, m̂ ∈ R̂. (3.2.203)

Note that conventional transforms are characterized by a right modular asso-
ciative action A×r. Isotransforms are then characterized by the right isomodular
isoassociative action Â×̂r̂. Therefore, we do have the preservation of the origi-
nal axiomatic structure and isotransforms are indeed an isotopy of conventional
transforms.

The situation for locality and canonicity follows the same lines [4,5,6,7]. Con-
ventional methods are local in the sense that they are defined at a finite set of
isolated points. The isotopic methods are isolocal in the sense that they verify
the condition of locality in isospaces over isofields. However, their projection on
conventional space is nonlocal-integral, because that is the general characteristic
of the isotopic element T̂ , as illustrated, e.g., in Eq. (3.1.202).

Similarly, conventional methods are canonical in the sense that they can be
characterized via a first-order canonical action in phase space (or cotangent bun-
dle). The isotopic methods are isocanonical in the sense that, as we shall see in
Section 3.3, they are derivable from an isoaction that is first-order and canoni-
cal on isospaces over isofields, although, when projected on ordinary spaces over
ordinary fields, such an isoaction is of arbitrary order.

LEMMA 3.2.15 [6,7]: All possible nonlinear, nonlocal and noncanonical trans-
forms on a vector space S(r,R)

r′ = B(w, r, . . .)× r, r ∈ S, w ∈ R, (3.2.204)

can always be rewritten in an identical isolinear, isolocal and isocanonical form,
that is, there always exists at least one isotopy of the base field, R → R̂, and a
corresponding isotopy of the space S(r,R)→ Ŝ(r̂, R̂), such as

B(w, r, . . .) ≡ A(T̂ × w), (3.2.205)

under which

r′ = B(w, r, . . .)× r ≡ A(T̂ × w)× r ≡ Â(ŵ)×̂r, (3.2.206)
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from which the isolinear form (3.2.202) follows.

COROLLARY 3.2.15A [6,7]: Under sufficient continuity and regularity con-
ditions, all possible ordinary differential equations that are nonlinear in ordinary
spaces over ordinary fields can always be turned into an identical form that is
isolinear on isospaces over isofields,18

ṙ − E(ṙ, w, . . .)→ ˆ̇r −A[T̂ (ṙ, w, . . .)× ṙ −B[T̂ (ṙ, w, . . .] ≡

≡ ˆ̇r − Â(ŵ)×̂ˆ̇r − B̂(w) = 0. (3.2.207)

The above properties are at the foundation of the direct universality of isotopic
methods, that is, their applicability to all possible (sufficiently smooth and regu-
lar) nonlinear, nonlocal and noncanonical systems (universality) in the frame of
the experimenter (direct universality).

In order to apply isotopic methods to a nonlinear, nonlocal and noncanoni-
cal system, one has merely to identity one of its possible isolinear, isolocal and
isocanonical identical reformulations in the same system of coordinates. The
applicability of the methods studied in this monograph then follows.

The isodual isotransforms are given by the image of isotransforms (3.2.202)
under isoduality, and, as such, are defined on the isodual isospace Ŝd(r̂d, R̂d) over
the isodual isofield R̂d with isodual isounit Îd = 1/T̂ d = −Î†. [6,7] with evident
properties

Âd×̂d(n̂d×̂dr̂d + m̂d×̂dp̂d) =

= n̂d×̂dÂd×̂dr̂d + m̂d×̂dÂd×̂dp̂d, r̂d, p̂d ∈ Ŝd, n̂d, m̂d ∈ R̂d. (3.2.208)

The definition of isodual isolinearity, isolocality and isocanonicity then follows.
From now on, we shall use isotransforms for the study of interior dynamical

systems of particles and their isodual for interior systems of antiparticles.

3.2.12 Lie-Santilli Isotheory and its Isodual
3.2.12A. Statement of the Problem. As it is well known, Lie’s theory has
permitted outstanding achievements in various disciplines throughout the 20-th
century. Nevertheless, in its current conception and realization, Lie’s theory is
linear, local-differential and canonical-Hamiltonian.19

18The author has proposed for over a decade that mathematicians use the property of this Corollary
3.2.15A to identify simpler methods for the solution of nonlinear differential equations, but the request
has not been met as yet, to our best knowledge.
19The literature on Lie’s theory is also vast to discourage discriminatory listings. In any case, its
knowledge is a necessary pre-requisite for the understanding of this section.
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As such, Lie’s theory is exactly valid for exterior dynamical systems, but pos-
sesses clear limitations for interior dynamical systems since the latter are non-
linear, nonlocal and noncanonical. This occurrence mandates a suitable revision
of Lie’s theory such to be exactly valid for interior dynamical systems without
approximations.

Independently from that, Lie’s theory in its current formulation is solely ap-
plicable to matter, evidently because there exists no antiautomorphic version of
the conventional Lie’s theory as necessary for the correct treatment of antimatter
beginning at the classical level, as shown in Chapters 1 and 2.

Another central problem addressed in these studies is the construction of the
universal symmetry (and not “covariance”) of gravitation for matter and, in-
dependently, for antimatter, that is, a symmetry for all possible exterior and
interior gravitational line elements of matter and, under antiautomorphic image,
of antimatter.

Yet another need in physics is the identification of the exact symmetry that can
effectively replace broken Lie symmetries, which exact symmetry cannot possibly
be a conventional Lie symmetry due to the need of preserving the original di-
mensions so as to avoid the prediction on nonphysical effects and/or hypothetical
new particles.

It is evident that Lie’s theory in its current formulation is unable to solve the
above identified problems. In a memoir of 1978, Santilli [4] proposed a step-
by-step generalization of the conventional Lie theory specifically conceived for
nonlinear, nonlocal-integral and nonpotential-noncanonical systems.

The generalized theory was subsequently studied by Santilli in a variety of
papers (see monographs [1,2,6,7,14,15] and references quoted therein). The theory
was also studied by a number of mathematicians and theoreticians, and it is today
called the Lie-Santilli isotheory (see, e.g., monographs [32–37] and references
quoted therein, as well as specialized papers [38–43]).

A main characteristic of the Lie-Santilli isotheory, that distinguishes it from
other possible generalizations, is its isotopic character, that is, the preservation
of the original Lie axioms when formulated on isospaces over isofields, despite
its nonlinear, nonlocal and noncanonical structure when projected in ordinary
spaces. This basic feature is evidently permitted by the reconstruction of linearity,
locality and canonicity on isospaces over isofields studied in the preceding section.

To begin, let us recall that Lie’s theory is centrally dependent on the basic
N -dimensional unit I = Diag.(1, 1, . . . , 1) of the enveloping algebra. The main
idea of the Lie-Santilli isotheory [4] is the reformulation of the entire conventional
theory with respect to the most general possible isounit Î(x, ẋ, ẍ, . . .).

One can therefore see from the very outset the richness and novelty of the
isotopic theory since isounits with different topological features (such as Her-
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miticity, non-Hermiticity, positive-definiteness, negative-definiteness, etc.) char-
acterize different generalized theories.

In this section we outline the rudiments of the Lie-Santilli isotheory properly
speaking, that with positive-definite isounits and its isodual with negative-definite
isounits. A knowledge of Lie’s theory is assumed as a pre-requisite. A true
technical knowledge of the Lie-Santilli isotheory can only be acquired from the
study of mathematical works such as monographs [2,6,14,36,37].

In inspecting the literature, the reader should be aware that Santilli [4] con-
structed the isotopies of Lie’s theory as a particular case of the broader Lie-
admissible theory studied in Chapter 4 occurring for non-Hermitian generalized
units, and known as Lie-Santilli genotheory. As a matter of fact, a number of
aspects of the isotheory can be better identified within the context of the broader
genotheory.

The extension to non-Hermitian isounits (that was the main object of the
original proposal [4]) requires the exiting of Lie’s theory in favor of the covering
Lie-admissible theory, and will be studied in Chapter 4.

The isotopies of Lie’s theory were proposed by Santilli from first axiomatic
principles without the use of any map or transform. It is today known that
the isotheory cannot be entirely derived via the use of noncanonical-nonunitary
transforms since some of the basic structures (such as the isodifferential calculus)
are not entirely derivable via noncanonical-nonunitary transforms.

3.2.12B. Universal Enveloping Isoassociative Algebras. Let ξ be an as-
sociative algebra over a field F = F (a,+,×) of characteristic zero with generic
elements A,B,C, . . . , trivial associative product A×B and unit I. The infinitely
possible isotopes ξ̂ of ξ were first introduced in Ref. [4] under the name of isoas-
sociative algebras. In the original proposal ξ̂ coincides with ξ as vector spaces but
is equipped with Santilli’s isoproduct so as to admit the isounit as the correct
left and right unit

Î(x, ẋ, ẍ, . . .) = 1/T̂ > 0, (3.2.209a)

Â×̂B̂ = Â× T̂ × B̂, Â×̂(B̂×̂Ĉ) = (Â×̂B̂)×̂Ĉ, (3.2.209b)

Î×̂Â = Â×̂Î ≡ Â, ∀Â ∈ ξ̂, (3.2.209c)

where Â, B̂, . . . denote the original elements A,B, . . . formulated on isospace over
isofields.

Let ξ = ξ(L) be the universal enveloping associative algebra of an N -dim-
ensional Lie algebra L with ordered basis Xk, k = 1, 2, . . . , N , and attached
antisymmetric algebra isomorphic to the Lie algebras, [ξ(L)]− ≈ L over F , and let
the infinite-dimensional basis I,Xk, Xi ×Xj , i ≤ j, . . . of ξ(L) be characterized
by the Poincaré-Birkhoff-Witt theorem.
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A fundamental property submitted in the original proposal [4] (see also [2],
pp. 154–163) is the following

THEOREM 3.2.11 (Poincaré-Birkhoff-Witt-Santilli isotheorem): Isocosets of
the isounit and the standard, isomonomials

Î , Xk, X̂i×̂X̂j , i ≤ j, X̂i×̂X̂j×̂X̂k, i ≤ j ≤ k, . . . , (3.2.210)

form a basis of universal enveloping isoassociative algebra ξ̂(L) of a Lie algebra
L (also called isoenvelope for short).

The first application of the above infinite-dimensional basis is a rigorous char-
acterization of the isoexponentiation, Eq. (3.2.72), i.e.,

êî×̂ŵ×̂X̂ = êi×w×X̂ =

= Î + î×̂ŵ×̂X̂/̂1̂! + (̂i×̂ŵ×̂X̂)×̂(̂i×̂ŵ×̂X̂)/̂2̂! + . . . =

= Î × (ei×w×T̂×X̂) = (ei×w×X̂×T̂ )× Î , î = i× Î , ŵ = w × Î ∈ F̂ . (3.2.211)

The nontriviality of the Lie-Santilli isotheory is illustrated by the emergence
of the nonlinear, nonlocal and noncanonical isotopic element T̂ directly in the
exponent, thus ensuring the desired generalization.

The implications of Theorem 3.2.11 also emerge at the level of isofunctional
analysis because all structures defined via the conventional exponentiation must
be suitably lifted into a form compatible with Theorem 3.2.11, as illustrated by
the iso-Fourier transforms, Eq. (3.2.88).

It is today known that the main lines of isoenvelopes can indeed be derived
via the use of noncanonical-nonunitary transforms, such as

U × U † 6= I, (3.2.212a)

I → Î = U × I × U †, (3.2.212b)

Xi ×Xj → U × (Xi ×Xj)× U † = X̂i×̂X̂j , (3.2.212c)

Xi ×Xj ×Xk → U × (Xi ×Xj ×Xk)× U † = X̂i×̂X̂j×̂X̂k, etc. (3.2.212d)

Nevertheless, the uncontrolled use of the above transforms may lead to misrep-
resentations. In fact, a primary objective of the Lie-Santilli isotheory is that of
preserving the original generators and parameters and change instead the associa-
tive and Lie products in an axiom-preserving way to accommodate the treatment
of nonlinear, nonlocal and noncanonical interactions.

The preservation of the generators is, in particular, necessary for physical con-
sistency because they represent conserved total quantities (such as the total en-
ergy, total angular momentum, etc.). These total quantities remain unchanged in
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the transition from closed Hamiltonian and non-Hamiltonian systems (see Sec-
tion 3.1.2). Equivalently, the generators of Lie’s theory cannot be altered by
non-Hamiltonian effects.

This physical requirement can only be achieved by preserving conventional
generators Xk and lifting instead their product Xi×Xj → Xi×̂Xj = Xi×T̂×Xj ,
which is the original formulation of the Lie-Santilli isotheory [4] and remain the
formulation needed for applications to this day. It is essentially given by the
projection of the isotopic formulation on conventional spaces over conventional
fields.

3.2.12C. Lie-Santilli Isoalgebras. As it is well known, Lie algebras are the
antisymmetric algebras L ≈ [ξ(L)]− attached to the universal enveloping algebras
ξ(L). This main characteristic is preserved although enlarged under isotopies (see
[4,2] for details). We therefore have the following

DEFINITION 3.2.15 [4]: A finite-dimensional isospace L̂ with generic ele-
ments Â, B̂, . . . , over the isofield F̂ with isounit Î = 1/T̂ > 0 is called a “Lie-
Santilli isoalgebra” over F̂ when there is a composition [Â,̂B̂] in L̂, called “iso-
commutator”, that is isolinear as an isovector space and such that all the following
axioms are satisfied

[Â,̂B̂] = −[B̂,̂Â], (3.2.213a)

[Â,̂[B̂,̂Ĉ]] + [B̂,̂[Ĉ,̂Â]] + [Ĉ,̂[Â,̂B̂]] ≡ 0, (3.2.213b)

[Â×̂B̂,̂Ĉ] = Â×̂[B̂,̂Ĉ] + [Â,̂Ĉ]×̂B̂, ∀Â, B̂, Ĉ ∈ L̂. (3.2.213c)

The isoalgebras are said to be: isoreal, isocomplex or isoquaternionic depending
on the assumed isofield and isoabelian when [Â,̂B̂] ≡ ∀Â, B̂ ∈ L̂. A subset L̂o of
L̂ is said to be an isosubalgebra of L̂ when [L̂ô,L̂o] ⊆ L̂o. L̂o is called an isoideal
of L̂ when [L̂ô,L̂] ⊆ L̂o. A maximal isoideal verifying the property [L̂ô,L̂o] = 0 is
called the isocenter of L̂.

For the isotopies of additional conventional notions, theorems and properties
of Lie algebras, one may see monograph [2,6,36,37].

We merely recall the isotopic generalizations of the celebrated Lie’s First, Sec-
ond and Third Theorems introduced in the original proposal [4], but which we
do not review here for brevity. For instance, the Lie-Santilli Second Isotheorem
reads

[X̂î,X̂j ] = X̂i×̂X̂j − X̂j×̂X̂i = (3.2.214a)

= X̂i × T̂ (x, ẋ, ẍ, . . .)× X̂j − X̂j × T̂ (x, ẋ, ẍ, . . .)× X̂i = Ĉkij(x, ẋ, ẍ, . . .)×̂X̂k,
(3.2.214b)
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where the C’s, called the structure isofunctions, generally have an explicit de-
pendence on the underlying isovariable (see the examples later on), and verify
certain restrictions from the Isotopic Third Theorem.

It is today known that Lie-Santilli isoalgebras can be reached via a nonca-
nonical-nonunitary transform of conventional Lie algebras. In fact, we have

[Xi, Xj ] = Ckij ×Xk →

U × [Xi, Xj ]× U † = [X̂î,X̂j ] =

U × (Ckij ×Xk)× U † = Ĉkij(x, ẋ, ẍ, . . .)×̂X̂k. (3.2.215)

However, again, this type of derivation of the isotheory may be misleading in phys-
ical applications due to the need to preserve the original generators unchanged,
in accordance with the original formulation [4] of 1978. In this case we shall use
the following projection of the isoalgebras on the original space over the original
field

[Xî, Xj ] = Xi × T̂ ×Xj −Xj × T̂ ×Xi = Ckij(x, ẋ, . . .)×Xk. (3.2.216)

It has been proved (see, e.g., [2,4,6] for details) that Lie-Santilli isoalgebras L̂
are isomorphic to the original algebra L. In other words, the isotopies with Î > 0
cannot characterize any new algebra because all possible Lie algebras are known
from Cartan classification. Therefore, Lie-Santilli isoalgebras merely provide new
nonlinear, nonlocal and noncanonical realizations of existing algebras. It should
be stresses that the above isomorphism is lost for more general liftings as shown
in the next chapter.

3.2.12D. Lie-Santilli Isogroups. Under certain integrability conditions hereon
assumed, Lie algebras L can be “exponentiated” to their corresponding Lie trans-
formation groups G and, vice-versa, Lie transformation groups G admit their cor-
responding Lie algebra L when computed in the neighborhood of the identity I.

These basic properties are preserved under isotopies although broadened to
the most general possible nonlinear, nonlocal and noncanonical transformations
groups.

DEFINITION 3.2.16 [4]: A right isomodular Lie-Santilli isotransformation
group Ĝ on an isospace Ŝ(x̂, F̂ ) over an isofield F̂ with common isounit Î =
1/T̂ > 0 is a group mapping each element x̂ ∈ Ŝ into a new element x̂′ ∈ Ŝ via
the isotransformations

x̂′ = ĝ(ŵ)×̂x̂, x̂, x̂′ ∈ Ŝ, ŵ ∈ F̂ , (3.2.217)

such that:
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1) The map ĝ×̂Ŝ into Ŝ is isodifferentiable ∀ĝ ∈ Ĝ;
2) Î is the left and right unit

Î×̂ĝ = ĝ×̂Î ≡ ĝ, ∀ĝ ∈ Ĝ; (3.2.218)

3) the isomodular action is isoassociative, i.e.,

ĝ1×̂(ĝ2×̂x̂) = (ĝ1×̂ĝ2)×̂x̂, ∀ĝ1, ĝ2 ∈ Ĝ; (3.2.219)

4) in correspondence with every element ĝ(ŵ) ∈ Ĝ there is the inverse element
ĝ−Î = ĝ(−ŵ) such that

ĝ(0̂) = ĝ(ŵ)×̂ĝ(−ŵ) = Î; (3.2.220)

5) following composition laws are verified

ĝ(ŵ)×̂ĝ(ŵ′) = ĝ(ŵ′)×̂ĝ(ŵ) = ĝ(ŵ + ŵ′),∀ĝ ∈ Ĝ, ŵ ∈ F̂ . (3.2.221)

The I left isotransformation group is defined accordingly.

The notions of connected or simply connected transformation groups carry over
to the isogroups in their entirety.

The most direct realization of the (connected) isotransformation groups is that
via isoexponentiation,

ĝ(w) =
∏
k

êî×̂ŵkX̂k =
(∏

k

ei×wk×Xk×T̂ (x,ẋ,ẍ,...)
)
× Î , (3.2.222)

where the X’s and w’s are the infinitesimal generators and parameters, respec-
tively, of the original algebra L, with corresponding connected isotransformations

x̂′ = ĝ(ŵ)×̂x̂ =
(∏

k

êî×̂ŵkX̂k

)
× Î × T̂ × x× Î =

=
(∏

k

ei×wk×Xk×T̂ (x,ẋ,ẍ,...)
)
× x× Î . (3.2.223)

Equations (3.2.223) hold in some open neighborhood N of the isoorigin of
L̂ and, in this way, characterize some open neighborhood of the isounit of Ĝ.
Consequently, under the assumed continuity and connectivity properties, Lie-
Santilli isoalgebras can be obtained as infinitesimal versions of finite Lie-Santilli
isogroups, as illustrated by the following finite isotransform

Â(ŵ) = (êî×̂ŵ×̂X̂)×̂Â(0̂)×̂(ê−î×̂ŵ×̂X̂) =

= (ei×w×X̂×T̂ )× Â(0̂)× (e−i×w×T̂×X̂) (3.2.224)
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with infinitesimal version in the neighborhood of Î

Â(d̂ŵ) = (Î + î×̂d̂ŵ×̂X̂ + . . .)×̂Â(0)×̂(Î − î×̂d̂ŵ×̂X̂ + . . .) =

= Â(0̂) + î×̂d̂ŵ×̂X̂×̂Â(0̂)− î×̂d̂ŵ×̂Â(0̂)×̂X̂, (3.2.225)

that can be written

î×̂ d̂Â(ŵ)

d̂ŵ
= Â×̂X̂ − X̂×̂Â = [Â,̂X̂]. (3.2.226)

Note the crucial appearance of the isotopic element T̂ (x, ẋ, ẍ, . . .) in the expo-
nent of the isogroup. This ensures a structural generalization of Lie’s theory of
the desired nonlinear, nonlocal and noncanonical form.

Still another important property is that conventional group composition laws
admit a consistent isotopic lifting, resulting in the following Baker-Campbell-
Hausdorff-Santilli Isotheorem [4]

(êX̂1)×̂(êX2) = êX̂3 , (3.2.227a)

X̂3 = X̂1 + X̂2 + [X̂1̂,X̂2]/̂2̂ + [(X̂1 − X̂2)̂,[X̂1̂,X̂2]]/̂1̂2 + . . . . (3.2.227b)

Let Ĝ1 and Ĝ2 be two isogroups with respective isounits Î1 and Î2. The direct
isoproduct Ĝ1×̂Ĝ2 is the isogroup of all ordered pairs

(ĝ1, ĝ2), ĝ1 ∈ Ĝ1, ĝ2 ∈ Ĝ2, (3.2.228)

with isomultiplication

(ĝ1, ĝ2)×̂(ĝ′1, ĝ
′
2) = (ĝ1×̂ĝ′1, ĝ2×̂ĝ′2), (3.2.229)

total isounit (Î1, Î2) and inverse (ĝ−Î11 , ĝ−Î22 ).
The following particular case is important for the isotopies of inhomogeneous

groups. Let Ĝ be an isogroup and Ĝâ the isogroup of all its inner isoautomor-
phisms. Let Ĝoâ be a subgroup of Ĝâ, and let Λ(ĝ) be the image of ĝ ∈ Ĝ under
Ĝâ. The semidirect isoproduct Ĝ×̂Ĝoâ is the isogroup of all ordered pairs

(ĝ, Λ̂)×̂(ĝo, Λ̂o) = (ĝ, Λ̂(ĝo), (Λ̂, Λ̂o), (3.2.230)

with total isounit given by Îtot = Î × Îo.
The studies of the isotopies of the remaining aspects of the structure theory of

Lie groups is then consequential.
It is hoped that the reader can see from the above elements that the entire

conventional Lie theory does indeed admit a consistent and nontrivial lifting into
the covering Lie-Santilli formulation.
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3.2.12E. Isorepresentations of Lie-Santilli Isoalgebras. Despite consider-
able research on the Lie-Santilli isotheory over the past 26 years, the study of the
isorepresentations of the Lie-Santilli isoalgebras remains vastly unknown at this
writing (summer 2004), with the sole exception of the fundamental (or regular)
isorepresentations that were also identified by Santilli in the original proposal [4].

In this monograph we shall primarily use in the applications of hadronic me-
chanics the fundamental isorepresentations or other isorepresentations reducible
to the latter.

Let L be an N -dimensional Lie algebra with N -dimensional unit I =
Diag.(1, 1, . . . , 1). Let R be the fundamental, N -dimensional matrix representa-
tion of L. Let L̂ be the isotope of L characterized by the N -dimensional isounit
Î = U × U † > 0. It is then evident that the fundamental isorepresentation of L̂
is given by

R̂ = U ×R× U †, U × U † = Î 6= I, Î > 0. (3.2.231)

Interested colleagues are encouraged to study the isorepresentation theory be-
cause, as we shall see in the next sections, the fundamental notion of hadronic
mechanics, that of isoparticles, is characterized by an irreducible isorepresenta-
tion of the Poincaré-Santilli isosymmetry.

3.2.12F. Isodual Lie-Santilli Isotheory. As indicated Chapters 1 and 2, the
contemporary formulation of Lie’s theory is one of the most serious obstacles
for a consistent classical representation of antimatter, because it lacks an appro-
priate conjugate formulation that, after quantization, is compatible with charge
conjugation.20

It is easy to verify that the isotheory presented above admits a consistent
antiautomorphic image under isoduality, thus permitting the treatment of anti-
matter under nonlinearity, nonlocality and noncanonicity as occurring in interior
conditions, such as for the structure of an antimatter star.

In fact, we have the isodual universal enveloping isoassociative isoalgebra ξ̂d

characterized by the isodual Poincaré-Birkhoff-Witt-Santilli isotheorem with in-
finite dimensional basis

Îd, Xd
k , X̂d

i ×̂
d
X̂d
j , i ≤ j, X̂d

i ×̂
d
X̂d
j ×̂

d
X̂d
k , i ≤ j ≤ k, . . . . (3.2.232)

The isodual Lie-Santilli isoalgebra L̂d ≈ (ξ̂d)− attached to ξ̂d is characterized
by the isodual Lie-Santilli Second Isotheorem

[X̂d
i ,̂X̂

d
j ] = X̂d

i ×̂
d
X̂d
j − X̂d

j ×̂
d
X̂d
i = Ĉdij

k
×̂dX̂d

k . (3.2.233)

20The reader is urged to verify that the classical treatment of antimatter via the so-called dual Lie
algebras does not achieve antiparticles under quantization, trivially, because of the uniqueness of the
quantization channel for both particles and antiparticles.
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Under the needed continuity and connectivity property, the isodual exponentia-
tion of L̂d characterizes the connected isodual Lie-Santilli transformation isogroup

x̂′d = (ĝd(ŵd) =
∏̂

k
êd

îd×̂dŵd
kX̂d

k )×̂dx̂d. (3.2.234)

Interested readers can then easily derive any additional needed isodual prop-
erty.

3.2.13 Unification of All Simple Lie Algebras into
Lie-Santilli Isoalgebras

The original proposal [4] of 1978 included the conjecture that all simple Lie
algebras of dimension N can be unified into a single Lie-Santilli isoalgebra of the
same dimension, and gave an explicit example. The conjecture was subsequently
proved by the late mathematicians Gr. Tsagas [42] in 1996 for all simple Lie
algebras of type A, B, C and D. The premature departure of Prof. Tsagas while
working at the problem prevented him to complete the proof of the conjecture
for the case of all exceptional Lie algebras. As a result, the proof of the indicated
conjecture remain incomplete at this writing.

For the unification here considered it is important to eliminate the restriction
that the isounits are necessarily positive definite, while preserving all other char-
acteristics, such as nowhere singularity and Hermiticity. As a result, in its simple
possible form, the isounit can be diagonalized into the form whose elements can
be either positive or negative,

Î = Diag.(±n2
1,±n2

2, . . . ,±n2
N ) = 1/T̂ , nk ∈ R, nk 6= 0, k = 1, 2, . . . , N.

(3.2.235)
The example provided in the original proposal [4], subsequently studied in

detail in Refs. [8], consisted in the classification of all possible simple Lie algebra
of dimension 3. In this case, Cartan’s classification produces two non-isomorphic
Lie algebras, the compact rotational algebra in three dimension SO(3) and the
noncompact algebra SO(2.1).

The distinction between compact and noncompact algebras is lost under the
class of isotopies here considered. In fact, the classification of all possible, simple,
three-dimensional Lie-Santilli isoalgebras L̂3 for the case of diagonal isounits is
characterized by the isounit itself and can be written

Î = Diag.(+1,+1,+1), L̂3 ≈ SO(3), (3.2.236a)

Î = Diag.(+1,+1,−1), L̂3 ≈ SO(2.1), (3.2.236b)

Î = Diag.(+1,−1,+1), L̂3 ≈ SO(2.1), (3.2.236c)

Î = Diag.(−1,+1,+1), L̂3 ≈ SOI(2.1), (3.2.236d)
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Î = Diag.(−1,−1,−1), L̂3 ≈ SO(3)d, (3.2.236e)

Î = Diag.(−1,−1,+1), L̂3 ≈ SO(2.1)d, (3.2.236f)

Î = Diag.(−1,+1,−1), L̂3 ≈ SO(2.1), (3.2.236g)

Î = Diag.(+1,−1,−1), L̂3 ≈ SO(2.1)d, (3.2.236h)

Î = Diag.(+n2
1,+n

2
2,+n

2
3), L̂3 ≈ SO(3), (3.2.236i)

Î = Diag.(+n2
1,+n

2
2,−n2

3), L̂3 ≈ SO(2.1), (3.2.236j)

Î = Diag.(+n2
1,−n2

2,+n
2
3), L̂3 ≈ SO(2.1), (3.2.236k)

Î = Diag.(−n2
1,+n

2
2,+n

2
3), L̂3 ≈ SOI(2.1), (3.2.236l)

Î = Diag.(−n2
1,−n2

2,−n2
3), L̂3 ≈ SO(3)d, (3.2.236m)

Î = Diag.(−n2
1,−n2

2,+n
2
3), L̂3 ≈ SO(2.1)d, (3.2.236n)

Î = Diag.(−n2
1,+n

2
2,−n2

3), L̂3 ≈ SO(2.1), (3.2.236o)

Î = Diag.(+n2
1,−n2

2,−n2
3), L̂3 ≈ SO(2.1)d, (3.2.236p)

In conclusion, when studying simple algebras from the viewpoint of the cover-
ing Lie-Santilli isoalgebras, there exist only one single isoalgebra in three dimen-
sions, L̂3 without any distinction between compact and noncompact algebras.

The realization of the simple isoalgebra L̂3 with diagonal isounits consists of 21
different Lie-Santilli isoalgebras in three dimension that can be reduced to 4 topo-
logically different Lie algebras, namely SO(3), SO(2.1), SO(3)d and SO(2.1)d.

All distinctions between these 21 different realizations are lost at the level of
abstract Lie-Santilli isoalgebra L̂3.

It should be stressed that, by no means, the 21 realizations (3.2.236) exhaust
all possible forms of Lie-Santilli simple isoalgebras in three dimensions because in
realizations (3.2.236) we have excluded nondiagonal realizations of the isounit, as
well as imposed additional restrictions on the isounit, such as single valuedness
and Hermiticity.

Essentially the same results hold for the unification of the Lie Algebras of type
A, B, C, and D studied by Tsagas [42].

It is hoped that interested mathematicians can complete the proof of Santilli’s
conjecture for the remaining exceptional algebras. In considering the problem,
mathematicians are suggested to keep in mind that Hermitian and diagonal real-
izations of the isounit (3.2.135) are expected to be insufficient, thus implying the
possible use of nowhere singular, Hermitian, nondiagonal isounits, or nowhere
singular, Hermitian, nondiagonal and multivalued isounits, or nowhere singular,
non-Hermitian, nondiagonal and multivalued isounits.
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3.2.14 The Fundamental Theorem for Isosymmetries
and Their Isoduals

The fundamental symmetries of the 20-th century physics deal with point-like
abstractions of particles in vacuum under linear, local and potential interactions,
and are the Galilei symmetry G(3.1) for nonrelativistic treatment or the Poincaré
symmetry for relativistic formulations.

A central objective of hadronic mechanics is the broadening of these funda-
mental spacetime symmetries to represent extended, nonspherical and deformable
particles under linear and nonlinear, local and nonlocal and potential as well as
nonpotential interactions.

In fact, as we shall see, all novel industrial applications of hadronic mechanics
are crucially dependent on the admission of the extended character of particles
or of their wavepackets in conditions of deep mutual penetration. In turn, the
latter conditions imply new effects permitting basically new energies and fuels
that are completely absent for conventional spacetime and other symmetries.

Alternatively and equivalently a central problem of hadronic mechanics is the
construction in an explicit form of the symmetries of all possible nonsingular, but
otherwise arbitrary deformations of conventional spacetime and internal invari-
ants.

All these problems and others are resolved by the following important:

THEOREM 3.2.12 [6]: Let G be an N-dimensional Lie symmetry group of a
K-dimensional metric or pseudo-metric space S(x,m,F ) over a field F ,

G : x′ = Λ(w)× x, y′ = Λ(w)× y, x, y ∈ Ŝ, (3.2.237a)

(x′ − y′)† × Λ† ×m× Λ× (x− y) ≡ (x− y)† ×m× (x− y), (3.2.237b)

Λ†(w)×m× Λ(w) ≡ m. (3.2.237c)

Then, all infinitely possible isotopies Ĝ of G acting on the isospace Ŝ(x̂, M̂ , F̂ ),
M̂ = m̂× Î = (T̂ ki ×mkj)× Î characterized by the same generators and parameters
of G and new isounits Î = 1/T̂ > 0 leave invariant the isocomposition on the
projection Ŝ(x, m̂, F ) of Ŝ(x̂, M̂ , F̂ ) on the original space S(x,m,F )

Ĝ : x′ = Λ̂(w)× x, y′ = Λ̂(w)× y, x, y ∈ Ŝ, (3.2.238a)

(x′ − y′)† × Λ̂† × m̂× Λ̂× (x− y) ≡ (x− y)† × m̂× (x− y), (3.2.238b)

Λ̂†(ŵ)× m̂× Λ̂(ŵ) ≡ m̂. (3.2.238c)

Similarly,all infinitely possible isodual isotopies Ĝd of Ĝ acting on the isodual
isospace Ŝd(x̂d, M̂d, F̂ d), M̂d = (T̂ d ×md)× Îd characterized by the isodual gen-
erators X̂d

k parameters ŵd and isodual isounit Îd = 1/T̂ d < 0 leave invariant the
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isodual isocomposition on the projection Ŝd(xd, m̂d, F d)

Ĝd : x′d = Λ̂d ×d xd, y′d = Λ̂d ×d yd, xd, yd ∈ Ŝd, (3.2.239a)

(x′−y′)†
d

×d Λ̂†d×d m̂d×d Λ̂d×d (x−y)d ≡ (x−y)†
d

×d m̂d×d (x−y)d, (3.2.239b)

Λ̂†d ×d m̂d ×d Λ̂d ≡ m̂d. (3.2.239c)

Proof. Assume that N = K and the representation Λ is the fundamental one.
Recall that metrics, isometrics and isounits are diagonal. Then on Ŝ(x, m̂, F ) we
have the identities

Î = U × U † 6= I, T̂ = (U × U †)−1, (3.2.240a)

U × (Λ×m× Λ)× U † =

= (U × Λ× U †)× (U †−1

×m× U−1)× (U × Λ× U †) =

= Λ̂× (T̂ ×m)× Λ̂ = Λ̂× m̂× Λ̂ = m̂. (3.2.240b)

The proof of the remaining cases are equally trivial. q.e.d.
Note that the isotopic symmetries and their isoduals can be uniquely and

explicitly constructed with the methods summarized in this section via the sole
use of the original symmetry and the isounit characterizing the deformation of
the original metric m.

Under our assumptions, the isosymmetries can be constructed in the needed,
explicit, nonlinear, nonlocal and noncanonical forms. In fact, the existence of
the original symmetry transformations plus the condition Î > 0 ensure the con-
vergence of the infinite isoseries of the isoexponentiation, resulting in the needed
explicit form, as we shall see in various examples in the next sections.

3.3 CLASSICAL LIE-ISOTOPIC MECHANICS FOR
MATTER AND ITS ISODUAL FOR
ANTIMATTER

3.3.1 Introduction
One of the reasons for the majestic consistency of quantum mechanics is the

existence of axiomatically consistent and invariant classical foundations, given by
classical Lagrangian and Hamiltonian mechanics, namely, the discipline based on
the truncated analytic equations

d

dt

∂L(t, r, v)
∂vka

− ∂L(t, r, v)
∂rka

= 0, (3.3.1a)
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drka
dt

=
∂H(t, r, p)
∂pak

,
dpak
dt

= −∂H(t, r, p)
∂rka

, (3.3.1b)

k = 1, 2, 3; a = 1, 2, 3, . . . , N,

with a unique and unambiguous map into operator forms.
Following the original proposal [5] of 1978 to build hadronic mechanics, this

author did not consider the new discipline sufficiently mature for experimen-
tal verifications and industrial applications until the new discipline had equally
consistent and invariant classical foundations with an equally unique and unam-
biguous map into operator formulations.

Intriguingly, the operator foundations of hadronic mechanics were sufficiently
identified in the original proposal [5], as we shall see in the next section. However,
the identification of the classical counterpart turned out to be a rather complex
task that required decades of research.

The objective, fully identified in 1978, was the construction of a covering of clas-
sical Lagrangian and Hamiltonian mechanics, namely, a covering of Eqs. (3.3.1),
admitting a unique and unambiguous map into the already known Lie-isotopic
equations of hadronic mechanics.

The mandatory starting point was the consideration of the true Lagrange and
Hamilton equations, those with external terms

d

dt

∂L(t, r, v)
∂vka

− ∂L(t, r, v)
∂rka

= Fak(t, r, v), (3.3.2a)

drka
dt

=
∂H(t, r, p)
∂pak

,
dpak
dt

= −∂H(t, r, p)
∂rka

+ Fak(t, r, p), (3.3.2b)

since they were conceived, specifically, for the interior dynamical systems treated
by hadronic mechanics.

In fact, the legacy of Lagrange and Hamilton is that classical systems cannot
be entirely represented with one single function today called a Lagrangian or a
Hamiltonian used for the representation of forces derivable from a potential, but
require additional quantities for the representation of contact nonpotential forced
represented precisely by the external terms.

As such, the true Lagrange and Hamilton equations constitute excellent can-
didates for the classical origin of hadronic mechanics.

3.3.2 Insufficiencies of Analytic Equations with
External Terms

It was indicated by Santilli [4] also in 1978 (see the review in Chapter 1 for more
details) that the true analytic equations cannot be used for the construction of a
consistent covering of conventional analytic equations because the new algebraic
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brackets of the time evolution of a generic quantity A(r, p) in phase space

dA

dt
= (A,H,F ) = [A,H] +

∂A

∂rk
× Fk =

=
∂A

∂rk
× ∂H

∂pk
− ∂H

∂rk
× ∂A

∂pk
+
∂A

∂rk
× Fk, (3.3.3)

violate the right distributive and scalar laws, Eqs. (3.2.5) and (3.2.6). Conse-
quently, the true analytic equations in their original formulation lose “all” possible
algebras, let alone all possible Lie algebras. No axiomatically consistent covering
can then be build under these premises.21

The above insufficiency essentially established the need of rewriting the true
analytic equations into a form admitting a consistent algebra in the brackets of
the time evolution laws and, in addition, achieves the same invariance possessed
by the truncated analytic equations.

Even though its main lines were fully identified in 1978, the achievement of the
new covering mechanics resulted to require a rather long and laborious scientific
journey.

This section is intended to outline the final formulation of the classical mechan-
ics underlying hadronic mechanics in order to distinguish it from the numerous
attempts that were published with the passing of time.

As a brief guide to the literature, the reader should be aware that the true
analytic equations (3.3.2) are generally set for open nonconservative systems.
These systems require the broader Lie-admissible branch of hadronic mechanics
that will be studied in the next chapter.

Therefore, the reader should be aware that several advances in Lie-isotopies
have been obtained and can be originally identified as particular cases of the
broader Lie-admissible theories.

This chapter is dedicated to the study of classical and operator closed-isolated
systems verifying conventional total conservation laws while having linear and
nonlinear, local and nonlocal as well as potential and nonpotential internal forces.

The verification of conventional total conservation law requires classical brack-
ets that, firstly, verify the right and left distributive and scalar laws (as a con-
dition to characterize an algebra), and, secondly, the brackets are necessarily
antisymmetric.

The brackets of conventional Hamiltonian mechanics are Lie. Therefore, a
necessary condition to build a true covering of Hamiltonian mechanics is the
search of brackets that are of the broader Lie-isotopic type. As a matter of

21For additional problematic aspects of the true analytic equations, one may consult Ref. [4] or the
review in Chapter 1.
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fact, this feature, fully identified in 1978 [4,5], was the very motivation for the
construction of the isotopies of the Lie theory reviewed in Section 3.2.12.

In summary, the construction of a covering of the conventional Hamiltonian
mechanics as the classical foundations of the Lie-isotopic branch of hadronic me-
chanics must be restricted to a reformulation of the true analytic equations (3.3.2)
in such a way that the underlying brackets are Lie-isotopic, and the resulting me-
chanics is invariant.

3.3.3 Insufficiencies of Birkhoffian Mechanics
Santilli dedicated the second volume of Foundations of Theoretical Mechanics

published by Springer-Verlag [2] in 1982 to the construction of a covering of
classical Hamiltonian mechanics along the above indicated requirement. The
resulting new mechanics was released under the name of Birkhoffian mechanics
to honor G. D. Birkhoff who first discovered the underlying analytic equations in
1927.22

Conventional Hamiltonian mechanics is based on the canonical action principle

δAo = δ

∫
(pk × drk −H × dt) = 0, (3.3.4)

and, via the use of the unified notation

b = (bµ) = (ri, pj), (3.3.5a)

Ro = (Roµ) = (pk, 0), µ = 1, 2, . . . , 6, (3.3.5b)

can be written
δAo = δ

∫
(Roµ × dbµ −H × dt) ≡

≡ δ
∫

(pk × drk −H × dt) = 0. (3.3.6)

from which the conventional Hamilton’s equations (3.3.1b) acquire the unified
form

ωµν ×
dbν

dt
=
∂H

∂bµ
, (3.3.7)

where

ωµν =
∂Roν
∂bµ

−
∂Roµ
∂bν

(3.3.8)

is the fundamental (canonical) symplectic tensor (3.2.187).

22Interested readers should consult, for brevity, the historical notes of Ref. [2].
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The fundamental (conventional Poisson) brackets of the time evolution then
acquire the unified form

dA

dt
= [A,H] =

∂A

∂bµ
× ωµν × ∂H

∂bν
, (3.3.9)

where
ωµν = [(ωαβ)−1]µν (3.3.10)

is the fundamental (canonical) Lie tensor.
Santilli [2] based the construction of a covering isotopic (that is, axiom-pre-

serving) mechanics on the most general possible Pfaffian action principle

δA = δ

∫
(Rµ × dbµ −B × dt) = 0, (3.3.11)

where the Rµ(b) functions are now arbitrary functions in phase space, e.g., of the
type

R(b) = (Rµ) = (Ei(r, p), Dj(r, p)), (3.3.12)

verifying certain regularity conditions [2].
It is easy to see that principle (3.3.11) characterizes the following analytic

equations23

Ωµν ×
dbν

dt
=
∂B

∂bµ
, (3.3.13a)

Ωµν =
∂Rν
∂bµ

− ∂Rµ
∂bν

(3.3.13b)

is the most general possible symplectic tensor in local coordinates. Eqs. (3.3.12)
were called Birkhoff’s equations because, following a considerable research, they
resulted to have been first identified by D. G. Birkhoff in 1927. The function
B was called the Birkhoffian in order to distinguish it from the conventional
Hamiltonian, since the latter represent the total energy, while the former does
not.

The fundamental brackets of the time evolution then acquire the unified form

dA

dt
=
∂A

∂bµ
× Ωµν × ∂B

∂bν
, (3.3.14a)

Ωµν = [(Ωαβ)−1]µν . (3.3.14b)

The covering nature of Eqs. (3.3.11)–(3.3.14) over the conventional Eqs.
(3.3.4)–(3.3.10) is evident. In particular, brackets (3.3.14) are antisymmetric
and verify the Lie axioms, although in the generalized Lie-Santilli isotopic form.

23The equations are called “analytic” in the sense of being derivable from a variational principle.



248 RUGGERO MARIA SANTILLI

Moreover, Birkhoffian mechanics was proved in Ref. [2] to be “directly uni-
versal”, that is, capable of representing “all” possible (sufficiently smooth and
regular) Newtonian systems directly in the “frame of the observer” without any
need for the transformation theory.

Therefore, at the time of releasing monograph [2] in 1982, the Birkhoffian
mechanics appeared to have all the necessary pre-requisites to be the classical
foundation of hadronic mechanics.

Unfortunately, subsequent studies established that Birkhoffian mechanics can-
not be used for consistent physical applications because it is afflicted by the catas-
trophic inconsistencies studied in Section 1.4.1, with particular reference to the
lack of invariance, namely, the inability to predict the same numbers for the same
physical conditions at different times owing to the noncanonical character of the
time evolution.

Moreover, canonical action (3.3.4) is independent from the momenta, Ao =
Ao(r), while this is not the case for the Pfaffian action (3.3.11) for which we
have A = A(r, p). Consequently, any map into an operator form implies “wave-
functions” dependent on both coordinates and momenta, ψ(r, p). Therefore, the
operator image of Birkhoffian mechanics is beyond our current knowledge, and
its study is deferred to future generations.

The above problems requested the resumption of the search for the consistent
classical counterpart of hadronic mechanics from its beginning.

Numerous additional generalized classical mechanics were identified but they
still missed the achievement of the crucial invariance (for brevity, see monographs
[15,16] of 1991 and the first edition of monograph [6,7] of 1993).

By looking in retrospect, the origin of all the above difficulties resulted to be
where one would expect them the least, in the use of the ordinary differential
calculus.

Following the discovery in 1995 (see the second edition of monographs [6,7]
and Ref. [10]) of the isodifferential calculus, the identification of the final, ax-
iomatically consistent and invariant form of the classical foundations of hadronic
mechanics emerged quite rapidly.

3.3.4 Newton-Santilli Isomechanics for Matter and its
Isodual for Antimatter

The fundamental character of Newtonian Mechanics for all scientific inquiries is
due to the preservation at all subsequent levels of treatment (such as Hamiltonian
mechanics, Galileo’s relativity, special relativity, quantum mechanics, quantum
chemistry, quantum field theory, etc.) of its main structural features, such as:

1) The underlying local-differential Euclidean topology;
2) The ordinary differential calculus; and
3) The consequential point-like approximation of particles.
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Nevertheless, Newton’s equations have well known notable limitations to main-
tain such a fundamental character for the entirely of scientific knowledge without
due generalization for so many centuries.

As indicated in Chapter 1, the point-like approximation is indeed valid for very
large mutual distances among particles compared to their size, as occurring for
planetary and atomic systems (exterior dynamical systems). However, the same
approximation is excessive for systems of particles at short mutual distances, as
occurring for the structure of planets, hadrons, nuclei and stars (interior dynam-
ical systems).

Also, dimensionless particles cannot experience any contact or resistive in-
teractions. Consequently, dissipative or, more generally, nonconservative forces
used for centuries in Newtonian mechanics are a mere approximation of contact
nonpotential nonlocal-integral interactions among extended constituents, the ap-
proximation being generally achieved via power series expansion in the velocities.

It should be finally recalled on historical grounds that Newton had to construct
the differential calculus as a pre-requisite for the formulation of his celebrated
equations.

No genuine structural broadening of the disciplines of the 20-th century is pos-
sible without a consistent structural generalization of their foundations, Newton’s
equations in Newtonian mechanics.

Santilli’s isomathematics has been constructed to permit the first axiomatically
consistent structural generalization of Newton’s equations in Newtonian mechan-
ics since Newton’s time, for the representation of extended, nonspherical and
deformable particles under linear and nonlinear, local and nonlocal and potential
as well as nonpotential interactions as occurring in the physical reality of interior
dynamical systems.

By following Newton’s teaching, the author has dedicated primary efforts to the
isotopic lifting of the conventional differential calculus, topology and geometries
[6,10] as a pre-requisite for the indicated structural generalization of Newton’s
equations.

To outline the needed isotopies, let us recall that Newtonian mechanics is
formulated on a 7-dimensional representation space characterized by the following
Kronecker products of Euclidean spaces

Stot = E(t, Rt)× E(r, δ, Rr)× E(v, δ, Rv), (3.3.15)

of the one dimensional space E(t, Rt) representing time t, the tree dimensional
Euclidean space E(r, δ, Rr) of the coordinates r = (rka) (where k = 1, 2, 3 are the
Euclidean axes and a = 1, 2, . . . , N represents the number of particles), and the
velocity space E(v, δ, Rv), v = dr/dt.

It is generally assumed that all variables t, r, and v are defined on the same
field of real numbers R. However, the unit of time is the scalar I = +1, while the
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unit of the Euclidean space is the matrix, and the same happens for the velocities,
Ir = Iv = Diag.(1, 1, 1).

Therefore, on rigorous grounds, the representation space of Newtonian me-
chanics must be defined on the Kronecker product of the corresponding fields

Rtot = Rt ×Rr ×Rv (3.3.16)

with total unit

ITot = 1t ×Diag.(1, 1, 1)r ×Diag.(1, 1, 1)v. (3.3.17)

The above total unit can be factorized into the production of seven individual
units for time and the two sets of individual Euclidean axes a, y, a with corre-
sponding factorization of the fields

Itot = 1t × 1rx × 1ry × 1rz × 1vx × 1vy × 1vz, (3.3.18a)

Rtot = Rt ×Rrx ×Rry ×Rrz ×Rvx ×Rvy ×Rvz, (3.3.18b)

that constitute the foundations of the conventional Euclidean topology here as-
sumed as known.

Via the use of Eqs. (3.1.5), Newton’s equations for closed-non-Hamiltonian
systems can then be written

ma × aka = ma ×
dvka
dt

= Fka(t, r, v) = FSAka + FNSAka , (3.3.19a)∑
a

FNSAa = 0, (3.3.19b)

∑
a

ra
⊙

FNSAa = 0, (3.3.19c)

∑
a

ra
∧

FNSAa = 0, (3.3.19d)

where SA (NSA) stands for variational selfadjointness (variational nonselfad-
jointness), namely, the verification (violation) of the integrability conditions for
the existence of a potential [1], and conditions (3.3.xx), (3.3.xx) and (3.3.xx)
assure the verification of conventional total conservation laws.

The isotopies of Newtonian mechanics, today known Newton-Santilli isome-
chanics, were first submitted in the second edition of monograph [5] and in the
mathematical treatment [10].

They require the use of: the isotime t̂ = t× Ît with isounit Ît = 1/T̂t > 0 and
related isofield R̂t; the isocoordinates r̂ = (r̂ka) = r×Îr, with isounit Îr = 1/T̂r > 0
and related isofield R̂r; and the isovelocities v̂ = (vka) = v × Îv with isounit
Îv = 1/T̂v > 0 and related isofield R̂v.
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The Newton-Santilli isomechanics is then formulated on the 7-dimensional iso-
space

Ŝtot = Ê(t̂, R̂t̂)× Ê(r̂, δ̂r, R̂r̂)× Ê(v̂, δ̂v, R̂v̂), (3.3.20)

with isometrics

δ̂r = T̂r × δ = (T̂ kir × δkj), δ̂v = T̂v × δ = (T̂ kiv × δkj), (3.3.21)

over the Kronecker product of isofields

R̂tot = R̂t × R̂r × R̂v, (3.3.22)

with total isounit
Îtot = Ît × Îr × Îv =

= n2
t ×Diag.(n2

rx, n
2
ry, n

2
rz)×Diag.(n2

vx, n
2
vy, n

2
vz). (3.3.23)

Consequently, the isounit can also be factorized into the product of the follow-
ing seven distinct isounits, with related product of seven distinct isofields

Îtot = n2
t × n2

rx × n2
ry × n2

rz × n2
vx × n2

vy × n2
vz, (3.3.24a)

R̂tot = R̂t × R̂rx × R̂ry × R̂rz × R̂vx × R̂vy × R̂vz, (3.3.24b)

and consequential applicability of the fundamental Tsagas-Sourlas-Santilli-Fal-
cón-Núñez isotopology (or TSSFN Isotopology) that allows, for the first time to
the author’s best knowledge, a consistent representation of extended, nonspherical
and deformable shapes of particles in newtonian mechanics, here represented via
the semiaxes n2

α = n2
α(t, r, v, . . .), α = t, r, v.

Note that the isospeed is the given by

v̂ =
d̂r̂

d̂t̂
= Ît ×

d(r × Îr)
dt

= v × Ît × Îr + r × Ît ×
dÎr
dt

= v × Îv, (3.3.25)

thus illustrating that the isounit of the isospeed cannot be the same as that for
the isocoordinates, having in particular the value

Îv = Ît × Îr ×

(
1 +

r

v
× 1
Îr
× dÎr

dt

)
. (3.3.26)

The Newton-Santilli isoequation [6,10] can be written

m̂a×̂
d̂v̂ka

d̂t̂
= − ∂̂V̂ (r̂)

∂̂r̂ka
, (3.3.27)

namely, the equations are conceived in such a way to formally coincide with the
conventional equations for selfadjoint forces when formulated on isospace over
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isofields, while all nonpotential forces are represented by the isounits or, equiva-
lently, by the isodifferential calculus.

Such a conception is the only one known permitting the representation of
extended particles with contact interactions that is invariant, thus avoiding the
catastrophic inconsistencies of Section 1.4.1 and, in addition, achieves closure,
namely, the verification of all conventional total conservation laws.

An inspection of Eqs. (3.3.27) is sufficient to see that the Newton-Santilli
isomechanics reconstructs linearity, locality and canonicity on isospaces over isofields,
as studied in Section 3.2.11. Note that this would not be the case if nonselfadjoint
forces appear in the right hand side of Eqs. (3.3.27) as in Eqs. (3.3.2).

Note the truly crucial role of the isodifferential calculus for the above structural
generalization of Newtonian mechanics (as well as of the subsequent mechanics),
that justifies a posteriori its construction.

The verification of conventional total conservation laws is established by a
visual inspection of Eqs. (3.3.27) since their symmetry is the Galileo-Santilli
isosymmetry [14,15] that is isomorphic to the conventional Galilean symmetry,
only formulated on isospace over isofields. By recalling that conservation laws
are represented by the generators of the underlying symmetry, conventional total
conservation laws then follow from the indicated invariance.

When projected in the conventional representation space Stot, Eqs. (3.3.27)
can be explicitly written

m̂×̂ d̂v̂
d̂t̂

= m× Ît ×
d(v × Îv)

dt
=

= m× dv

dt
× Ît × Îv +m× v × Ît ×

dÎv
dt

= − ∂̂V̂ (r̂)

∂̂r̂
= −Îr ×

∂V

∂r
, (3.3.28)

that is

m× dv

dt
= −T̂t × T̂v × Îr ×

∂V

∂r
−m× v × T̂v ×

dÎv
dt
. (3.3.29)

The necessary and sufficient conditions for the representation of all possible
SA and NSA forces are given by

Îr = T̂t × T̂r, (3.3.30a)

m× v × T̂v ×
dÎv
dt

= FNSA, (3.3.30b)

and they always admit a solution, since they constitute a system of 6n algebraic
(rather than differential) equations in the 6N + 1 unknowns given by Ît, and the
diagonal 3N -dimensional matrices Îr and Îv.
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Note that for T̂t = 1 we recover from a dynamical viewpoint the condition
Îr = 1/Îv obtained in Section 3.2.4 and 3.2.10 on geometric grounds.

As a simple illustration among unlimited possibilities, we have the following
equations of motion of an extended particle with the ellipsoidal shape experiencing
a resistive force FNSA = −γ × v because moving within a physical medium

m× dv

dt
=
∫
dσ Γ(σ, r, p, . . . ) ≈ −γ × v, (3.3.31a)

Îv = Diag.(n2
1, n

2
2, n

2
3)× eγ×t/m, (3.3.31b)

where the nonlocal-integral character with respect to a kernel Γ is emphasized.
Interested readers can then construct the representation of any desired non-
Hamiltonian Newtonian system (see also memoir [10] for other examples).

Note the natural appearance in the NSA forces of the velocity dependence,
as typical of resistive forces. Note also that the representation of the extended
character of particles occurs only in isospace because, when Eqs. (3.3.xx) are
projected in the conventional Newtonian space, factorized isounits cancel out
and the point characterization of particles is recovered.

Note finally the direct universality of the Newton-Santilli isoequations, namely,
their capability of representing all infinitely possible Newton’s equations in the
frame of the observer.

As now familiar earlier, Eqs. (3.3.27) can only describe a system of parti-
cles. The isodual Newton-Santilli isoequations for the treatment of a system of
antiparticles are given by [6,10]

m̂d
a×̂

d d̂dv̂dka
d̂dt̂d

= − ∂̂
dV̂ d(r̂d)

∂̂dr̂kda
. (3.3.32)

The explicit construction of the remaining isodualities of the above isomechanics
are instructive for the reader seriously interested in a classical study of antimatter
under interior dynamical conditions.

3.3.5 Hamilton-Santilli Isomechanics for Matter and its
Isodual for Antimatter

3.3.5A. Isoaction Principle and its Isodual. The isotopies of classical
Hamiltonian mechanics were first introduced by Santilli in various works (see
monographs [6,7] and references quoted therein), and are today known as the
Hamilton-Santilli isomechanics.

To identify its representation space, recall that the conventional Hamiltonian
mechanics is represented in a 7-dimensional space of time, coordinates and mo-
menta (rather than velocity), the latter characterizing phase space (or cotangent
bundle of the symplectic geometry).
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Correspondingly, the new isomechanics is formulated in the 7-dimensional iso-
space of isotime t̂, isocoordinates r̂ and isomomenta p̂

Ŝtot = Ê(t̂, R̂t̂)× Ê(r̂, δ̂r, R̂r̂)× Ê(p̂, δ̂p, R̂p̂), (3.3.33)

with isometrics

δ̂r̂ = T̂r̂ × δ = (T̂ kir × δkj), δ̂p̂ = T̂p̂ × δ = (T̂ kip × δkj), (3.3.34)

over the Kronecker product of isofields and related isounits

R̂tot = R̂t × R̂r × R̂p, (3.3.35a)

Îtot = Ît̂ × Îr̂ × Îp̂ =

= n2
t ×Diag.(n2

rx, n
2
ry, n

2
rz)×Diag.(n2

px, n
2
py, n

2
pz). (3.3.35b)

The following new feature now appears. The isophasespace, or, more tech-
nically, the isocotangent bundle of the isosymplectic geometry in local isochart
(r̂, p̂) requires that the isounits of the variables r̂ and p̂ are inverse of each others
(Section 3.2.3 and 3.2.10)

Îr̂ = 1/T̂r̂ = Î−1
p̂ = T̂p̂ > 0. (3.3.36)

Consequently, by ignoring hereon for notational simplicity the indices for the
N particles, the total isounit of the isophase space can be written

Îtot = Ît̂ × Îr̂ × T̂r̂ = Ît̂ × Î6, (3.3.37a)

Î6 = (Îνµ) = Îr̂ × T̂r̂. (3.3.37b)

The fundamental isoaction principle for the classical treatment of matter in
interior conditions can be written in the explicit form in the r̂ and p̂ isovariables

δ̂Âo = δ̂

t2∫
t1

(p̂k×̂d̂r̂k − Ĥ×̂d̂t̂) = δ̂

t2∫
t1

[pk × T̂
ki(t,r,p,...)
r̂ × d̂r̂i − Ĥ × T̂t̂ × dt̂] = 0,

(3.3.38)
where

Ĥ = p̂2̂/̂2̂×̂m̂− V̂ (r̂), (3.3.39)

is the isohamiltonian or simple the Hamiltonian because its projection on con-
ventional spaces represents the orginary total energy except an inessential multi-
plicative factor.

By using the unified notation

b̂ = (b̂µ) = (r̂i, p̂j) = (ri, pj)× Î6 = b× Î6, (3.3.40)
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and the isotopic image of the canonical Ro functions, Eqs. (3.3.xx),

R̂o = (R̂oµ) = (r̂, 0̂), (3.3.41)

the fundamental isoaction principle can be written in unified notation

δ̂Âo = δ̂

t2∫
t1

(p̂k×̂d̂r̂k − Ĥ×̂d̂t̂) ≡ δ̂
t2∫
t1

(R̂oµ×̂d̂b̂µ − Ĥ×̂d̂t̂) =

= δ̂

t2∫
t1

(Roµ × T̂
µ
6ν × db̂

ν −H × T̂t̂ × dt̂) = 0. (3.3.42)

A visual inspection of principle (3.3.38) establishes the isocanonicity of Hamilton-
Santilli isomechanics (Section 3.2.11), namely, the reconstruction of canonicity on
isospaces over isofield that is crucial for the consistency of hadronic mechanics.

In fact, the conventional action principle (3.3.4) and isoprinciple (3.3.38) coin-
cide at the abstract, realization-free level by conception and construction.

The direct universality of classical isomechanics can be seen from the arbitrari-
ness of the integrand of isoaction functional (3.3.38) once projected on conven-
tional spaces over conventional fields.

An important property of the isoaction is that its functional dependence on
isospaces over isofields is restricted to that on isocoordinates only, i.e., Â = Â(r̂).
However, when projected on conventional spaces, the functional dependence is
arbitrary, i.e., Â(r̂) = Â(r × Î) = Â(t, r, p, . . .). This feature will soon have a
crucial role for the operator image of the classical isomechanics.

It should finally be noted that isoprinciple (3.3.38) essentially eliminates the
entire field of Lagrangian and action principles of orders higher than the first,
e.g., L = L(t, r, ṙ, r̈, . . .) because of these higher order formulations can be easily
reduced to the isotopic first-order form (3.3.38).

Recall that the action principle has the important application via the use of
the optimal control theory of optimizing dynamical systems, However, the latter
can have only been Hamiltonian until now due to the lack of a universal action
functional for non-Hamiltonian systems (that constitute, by far, the system most
significant for optimization). Recall also that the optimal control theory can only
be applied for local-differential systems due to the underlying Euclidean topology,
thus secluding from the optimization process the most important systems, those
of extended, and, therefore, of nonlocal type.

Note that isoaction principle (3.3.38) occurs for all possible non-Hamiltonian
as well as nonlocal-integral systems, thanks also to the underlying TSSFN iso-
topology (Section 3.2.7). We, therefore, have the following important:
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THEOREM 3.3.1 [6,10]: Isoaction principle (3.3.38) permits the (first known)
optimization of all possible nonpotential/non-Hamiltonian and nonlocal-integral
systems.

The isodual isoaction principle [10] for the classical treatment of antimatter in
interior conditions is given by

δ̂dÂd = δ̂d

t2∫ d

t1

(p̂dk×̂
d
d̂r̂

kd − Ĥd×̂dd̂dt̂d) =

= δ̂d

t2∫ d

t1

(R̂odµ ×̂
d
d̂db̂µ − Ĥd×̂d̂dt̂d) = 0. (3.3.43)

Additional isodual treatments are left to the interested reader.

3.3.5B. Hamilton-Santilli Isoequations and their Isoduals. The discovery
of the isodifferential calculus in 1995 permitted Santilli [6,10] the identification
of the following classical dynamical equations for the treatment of matter at
the foundations of hadronic mechanics, today known as the Hamilton-Santilli
isoequations. They are easily derived via the isovariational principle and can be
written from isoprinciple (3.3.38) in disjoint notation

d̂r̂k

d̂t̂
=
∂̂Ĥ

∂̂p̂k
,

∂̂p̂k

d̂t̂
= − ∂̂Ĥ

∂̂r̂k
. (3.3.44)

The same equations can be written in unified notation from principle (3.3.40)

ω̂µν×̂
d̂b̂µ

d̂t̂
=
∂̂Ĥ

∂̂b̂µ
, (3.3.45)

where
ω̂µν = ωµν × Î6 (3.3.46)

is the isocanonical isosymplectic tensor that coincides with the conventional canon-
ical symplectic tensor ωµν except for the factorization of the isounit (Section
3.2.10).

To verify the latter property from an analytic viewpoint, it is instructive for
the reader to verify the following identify under isounits (3.3.37)

ω̂µν =
∂̂R̂oν

∂̂b̂µ
−
∂̂R̂oµ

∂̂b̂ν
= ωµν × Î6. (3.3.47)
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A simple comparison of the above isoanalytic equations with the isotopic and
conventional Newton’s equations established the following:

THEOREM 3.3.2: Hamilton-Santilli isoequations (3.3.5) are “directly univer-
sal” in Newtonian mechanics, that is, capable of representing all possible, conven-
tional or isotopic, hamiltonian and non-Hamiltonian Newtonian systems directly
in the fixed coordinates of the experimenter.

It is now important to show that Eqs. (3.3.45) provide an identical reformu-
lation of the true analytic equations (3.3.2). For this purpose, we assume the
simple case in which isotime coincide with the conventional time, that is, t̂ = t,
Ît = +1 and we write isoequations (3.3.45) in the explicit form

(ω)×
(
drk/dt
dpk/dt

)
=
(

03×3 −I3×3

I3×3 03×3

)
×
(
drk/dt
dpk/dt

)
=(

−dpk/dt
drk/dt

)
=
(
∂̂Ĥ/∂̂rk

∂̂Ĥ/∂̂pk

)
=
(

Îik × ∂Ĥ/∂ri
T̂ ki × ∂Ĥ/∂pi

)
.

(3.3.48)

It is easy to see that Eqs. (3.3.xx) coincide with the true analytic equations
(3.3.2) under the trivial algebraic identification

Îr̂ = Diag.[I − F/(∂H/∂r)]. (3.3.49)

As one can see, the main mechanism of Eqs. (3.3.45) is that of transforming
the external terms F = FNSA into an explicit realization of the isounit Î3. As a
consequence, reformulation (3.3.45) constitutes direct evidence on the capability
to represent non-Hamiltonian forces and effects with a generalization of the unit
of the theory.

Note in particular that the external terms are embedded in the isoderivatives.
However, when written down explicitly, Eqs. (3.3.2) and (3.3.45) coincide. Note
that Î3 as in rule (3.3.49) is fully symmetric, thus acceptable as the isounit of
isomathematics. Note also that all nonlocal and nonhamiltonian effects are em-
bedded in Î.

The reader should note the extreme simplicity in the construction of a rep-
resentation of given non-Hamiltonian equations of motion, due to the algebraic
character of identifications (3.3.49).

Recall that Hamilton’s equations with external terms are not derivable from a
variational principle. In turn, such an occurrence has precluded the identification
of the operator counterpart of Eqs. (3.3.2) throughout the 20-th century.

We now learn that the identical reformulation (3.3.45) of Eqs. (3.3.2) becomes
fully derivable from a variational principle. In turn, this will soon permit the
identification of the unique and unambiguous operator counterpart.
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It should be noted that the Hamilton-Santilli isoequations are generally irre-
versible due to the general irreversibility of the external forces,

F (t, . . .) 6= F (−t, . . .), or (3.3.50a)

Î(t, . . .) = Diag.[I − F (t, . . .)/(∂H/∂t)] 6= Î(−t, . . .). (3.3.50b)

In particular, we have irreversibility under the conservation of the total energy
(see next chapter for full treatment). This feature is important to achieve com-
patibility with thermodynamics, e.g., to have credible analytic methods for the
representation of the internal increase of the entropy for closed-isolated systems
such as Jupiter.

The study of these thermodynamical aspects is left to the interested reader. In
this chapter we shall solely consider reversible closed-isolated systems that occur
for external forces not explicitly dependent on time and verify other restrictions.

An important aspect is that the Hamilton-Santilli isoequations coincide with
the Hamilton equations without external terms at the abstract level. In fact, all
differences between I and Î, × and ×̂, ∂ and ∂̂, etc., disappear at the abstract
level. This proves the achievement of a central objective of isomechanics, the
property that the analytic equations with external terms can indeed be identically
rewritten in a form equivalent to the analytic equations without external terms,
provided, however, that the reformulation occurs via the broader isomathematics.

The isodual Hamilton-Santilli isoequations for the classical treatment of anti-
matter, also identified soon after the discovery of the isodifferential calculus, are
given by

ω̂dµν×̂
d d̂db̂dµ

d̂dt̂d
=
∂̂dĤd

∂̂db̂dµ
, (3.3.51)

where
ω̂dµν = ωdµν × Î6 (3.3.52)

is the isodual isocanonical isosymplectic tensor. The derivation of other isodual
properties is instructed for the interested reader.

3.3.5C. Classical Lie-Santilli Brackets and their Isoduals. It is important
to verify that Eqs. (3.3.44) or (3.3.45) resolve the problematic aspects of external
terms indicated in Section 3.3.2 [4]. In fact, the isobrackets of the time evolution
of matter are given by

dÂ

d̂t̂
= [Â,̂Ĥ] =

∂̂Â

∂̂r̂k
×̂ ∂̂Ĥ
∂̂p̂k
− ∂̂Ĥ

∂̂r̂k
×̂ ∂̂Â
∂̂p̂k

, (3.3.53)

and they verify the left and right distributive and scalar laws, thus characterizing
a consistent algebra. Moreover, that algebra results to be Lie-isotopic, for which
reasons the above brackets are known as the Lie-Santilli isobrackets.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 259

When explicitly written in our spacetime, brackets (3.3.53) recover the brackets
(3.3.3) of the true analytic equations (3.3.2)

dH

dt
=
∂H

∂rk
× ∂H

∂pk
− ∂H

∂pk
× ∂H

∂rk
+
∂H

∂pk
× F k =

∂H

∂pk
× F k ≡ 0, (3.3.54)

where the last identity holds in view of Eqs. (3.3.49). Therefore, the Hamilton-
Jacobi isoequations do indeed constitute a reformulation of the true analytic
equations with a consistent Lie-isotopic algebraic brackets, as needed (Section
3.3.3).

Note that, in which of their anti-isomorphic character, isobrackets (3.3.53)
represent the conservation of the Hamiltonian,

dĤ

dt
= [Ĥ,̂Ĥ] =

∂̂Ĥ

∂̂rk
×̂ ∂̂Ĥ
∂̂p̂k
− ∂̂Ĥ

∂̂rk
×̂ ∂̂Ĥ
∂̂p̂k
≡ 0. (3.3.55)

This illustrates the reason for assuming closed-isolated Newtonian systems (3.3.19)
at the foundations of this chapter.

Basic isobrackets (3.3.53) can be written in unified notation

[Â,̂B̂] =
∂̂Â

∂̂b̂µ
×̂ω̂µν×̂ ∂̂B̂

∂̂b̂ν
, (3.3.56)

where ω̂µν is the Lie-Santilli isotensor. By using the notation ∂̂µ = ∂̂/∂̂b̂µ, the
isobrackets can be written

[Â,̂B̂] = ∂̂µÂ× T̂µρ × ωρν ∂̂ν ∂̂νB̂, (3.3.57)

and, when projected in our spacetime, the isobrackets can be written

[A,̂B] = ∂µA× ωµρ × Îνρ × ∂νB, (3.3.58)

where ωµν is the canonical Lie tensor.
The isodual Lie-Santilli isobrackets for the characterization of antimatter can

be written
[Âd ,̂B̂d] = ∂̂dµÂ

d×̂dω̂dρν ∂̂dν ∂̂dν B̂, (3.3.59)

where ω̂dµν is the isodual Lie-Santilli isotensor. Other algebraic properties can
be easily derived by the interested reader.

3.3.5D. Hamilton-Jacobi-Santilli Isoequations and their isoduals. An-
other important consequence of isoaction principle (3.3.38) is the characterization
of the following Hamilton-Jacobi-Santilli isoequations for matter [6,10]

∂̂Âo

∂̂t̂
+ Ĥ = 0, (3.3.60a)
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∂̂Âo

∂̂r̂k
− p̂k = 0, (3.3.60b)

∂̂Âo

∂̂p̂k
≡ 0, (3.3.60c)

which will soon have basic relevance for isoquantization.
Note the independence of the isoaction Âo from the isomomenta that will soon

be crucial for consistent isoquantization.
The isodual equations for antimatter are then given by

∂̂dÂod

∂̂dt̂d
+ Ĥd = 0, (3.3.61a)

∂̂dÂod

∂̂dr̂kd
− p̂dk = 0, (3.3.61b)

∂̂dÂod

∂̂dp̂dk
≡ 0. (3.3.61c)

The latter equations will soon result to be essential for the achievement of
a consistent operator image of the classical treatment of antimatter in interior
conditions.

3.3.5E. Connection Between Isotopic and Birkhoffian Mechanics. Since
the Hamilton-Santilli isoequations are directly universal, they can also represent
Birkhoff’s equations (3.3.13) in the fixed b-coordinates. In fact, by assuming for
simplicity that the isotime is the ordinary time, we can write the identities

dbµ

dt
= Ωµµ(b)× ∂H(b)

∂bν
≡ ωµν × ∂̂H(b)

∂̂bν
= ωµρ × Îν6ρ ×

∂H

∂bν
. (3.3.62)

Consequently, we reach the following decomposition of the Birkhoffian tensor

Ωµν(b) = ωµρ × Îν6ρ(b). (3.3.63)

Consequently, Birkhoff’s equations can indeed be identically rewritten in the
isotopic form, as expected. In the process, the reformulation provides additional
insight in the isounit.

The reformulation also carries intriguing geometric implications since it con-
firms the direct universality in symplectic geometry of the canonical two-form,
since a general symplectic two-form can always be identically rewritten in the
isocanonical form via decomposition of type (3.3.xx) and then the embedding of
the isounit in the isodifferential of the exterior calculus.
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As an incidental note, the reader should be aware that the construction of
an analytic representation via Birkhoff’s equations is rather complex, inasmuch
as it requires the solution of nonlinear partial differential equations or integral
equations [2].

By comparison, the construction of the same analytic equations via Hamilton-
Santilli isoequations (3.3.44) or (3.3.45) is truly elementary, and merely requires
the identification of the isounit according to algebraic rule (3.3.49) for arbitrarily
given external forces Fk(t, r, p).

3.3.6 Simple Construction of Classical Isomechanics
The above classical isomechanics can be constructed via a simple method which

does not need any advanced mathematics, yet it is sufficient and effective for
practical applications.

In fact, the Hamilton-Santilli isomechanics can be constructed via the system-
atic application of the following noncanonical transform to all quantities and
operations of the conventional Hamiltonian mechanics

U =

(
Î

1/2
3 0
0 T̂

1/2
3

)
, (3.3.64a)

U × U t = Î6 6= I, (3.3.64b)

Î3 = I − F

∂H/∂p
= I − F

p/m
. (3.3.64c)

The success of the construction depends on the application of the above non-
canonical transform to the totality of Hamiltonian mechanics, with no exceptions.
We have in this way the lifting of: the 6-dimensional unit of the conventional
phase space into the isounit

I6 → Î6 = U × I6 × U t; (3.3.65)

numbers into the isonumbers,

n→ n̂ = U × n× U t = n× (U × U t) = n× Î6; (3.3.66)

associative product A×B among generic quantities A, B into the isoassociative
product with the correct expression and property for the isotopic element,

A×B → A×̂B = U × (A×B)× U t = A′ × T̂ ×B′, (3.3.67a)

A′ = U ×A× U t, B′ = U ×B × U t, T̂ = (U × U t)−1 = T t; (3.3.67b)
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Euclidean into iso-Euclidean spaces (where we use only the space component of
the transform)

x2 = xt × δ × x→ x̂2̂ = U × x2 × U t =
= (xt × U t)× (U t−1 × δ × U−1)× (U × x)× (U × U t) =

= [x′t × (T̂ × δ)× x′]× Î;
(3.3.68)

and, finally, we have the following isotopic lifting of Hamilton’s into Hamilton-
Santilli isoequations (here derived for simplicity for the case in which the trans-
form does not depend explicitly on the local coordinates),

db/dt− ω × ∂H/∂b = 0→

→ U × db/dt× U t − U × ω × ∂H/∂b× U t =

= db/dt× (U × U t)− (U × ω × U t)× (U t −1 × U−1)×

×(U × ∂H/∂b× U t)× (U × U t) =

= db/dt× Î − ω × (∂̂H/∂̂b̂)× Î = 0, (3.3.69)

where we have used the important property the reader is urged to verify

U × ω × U t ≡ ω. (3.3.70)

As one can see, the seemingly complex isomathematics and isomechanics are
reduced to a truly elementary construction. e its universality.

3.3.7 Invariance of Classical Isomechanics
A final requirement is necessary for a physical consistency, and that is, the

invariance of isomechanics under its own time evolution, as it occurs for conven-
tional Hamiltonian mechanics.

Recall that a transformation b → b′(b) is called a canonical transformation
when all the following identities hold

∂bµ

∂b′α
× ωµν ×

∂bν

∂b′β
= ωαβ . (3.3.71)

The invariance of Hamiltonian mechanics follows from the property that its time
evolution constitutes a canonical transformation, as well known.

The proof of the invariant of isomechanics is elementary. In fact, an isotransfor-
mation b̂→ b̂′(b̂) constituted an isocanonical isotransform when all the following
identities old

∂̂b̂µ

∂̂b̂′α
×̂ω̂µν×̂

∂̂b̂ν

∂̂b̂′β
= ω̂αβ = ωαβ × Î6. (3.3.72)
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But the above expression can be written

(Îµρ

6 ×
∂b̂ρ

∂b̂α
× ωµν × Îξν6 ×

∂b̂ξ

∂b̂′β
)× Î6 = ωµν × Î6, (3.3.73)

and they coincide with conditions (3.3.xx) in view of the identities

Î
µρ

6 × ωµν × Î
νξ

6 = ωρξ. (3.3.74)

Consequently, we have the following important

THEOREM 3.3.3 [6,10]: Following factorization of the isounit, isocanonical
transformations are canonical.

The desired invariance of the Hamilton-Santilli isomechanics then follows.
It is an instructive exercise for the reader interested in learning isomechanics

to verify that all catastrophic mathematical and physical inconsistencies of non-
canonical theories pointed out in Chapter 1 (see Section 1.4.1 in particular) are
indeed resolved by isomechanics as presented in this section.

3.4 OPERATOR LIE-ISOTOPIC MECHANICS FOR
MATTER AND ITS ISODUAL FOR
ANTIMATTER

3.4.1 Introduction
We are finally equipped to present the foundations of the Lie-isotopic branch

of nonrelativistic hadronic mechanics for matter and its isodual for antimatter,
more simply referred to as operator isomechanics, and its isodual for antimatter
referred to as isodual operator isomechanics. The new mechanics will then be
used in subsequent sections for various developments, experimental verifications
and industrial applications.

The extension of the results of this section to relativistic operator isomechanics
is elementary and will be done in the following sections whenever needed for
specific applications. the case of operator genomechanics with a Lie-admissible,
rather than the Lie-isotopic structure, will be studied in the next chapter.

A knowledge of Section 3.2 is necessary for a technical understanding of op-
erator isomechanics. For the mathematically non-inclined readers, we present in
Section 3.4.8 a very elementary construction of operator isomechanics via nonuni-
tary transforms.

Unless otherwise specified, all quantities and operations represented with con-
ventional symbols A, H, ×, etc., denote quantities and operations on conventional
Hilbert spaces over conventional fields. All quantities and symbols of the type Â,
Ĥ, ×̂, etc., are instead defined on isohilbert spaces over isofields.
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Note the use of the terms “operator” isomechanics, rather than “quantum”
isomechanics, because, as indicated in Chapter 1, the notion of quantum is fully
established within the arena of its conception, the transition of electrons between
different stable orbits of atomic structure (exterior problem), while the assump-
tion of the same quantum structure for the same electrons when in the core of
a star (interior problems) is a scientific religion at this writing deprived of solid
experimental evidence.

3.4.2 Naive Isoquantization and its Isodual
An effective way to derive the basic dynamical equations of operator isome-

chanics is that via the isotopies of the conventional map of the classical Hamilton-
Jacobi equations into their operator counterpart, known as naive quantization..
More rigorous methods, such as the isotopies of symplectic quantization, essen-
tially yields the same operator equations and will not be treated in this section
for brevity (see monograph [7] for a presentation).

Recall that the naive quantization can be expressed via the following map of
the canonical action functional

Ao =

t2∫
t1

(pk × drk −H × dt)→ −i× ~× ln |ψ〉, (3.4.1)

under which the conventional Hamilton-Jacobi equations are mapped into the
Schrödinger equations,

−∂tAo = H → i× ~× ∂t|ψ〉 = H × |ψ〉, (3.4.2a)

pk = ∂kA
o → pk × |ψ〉 = −i× ~× ∂k|ψ〉, (3.4.2b)

where |ψ〉 is the wavefunction, or, more technically, a state in a Hilbert space H.
Isocanonical action (3.3.38) is evidently different than the conventional canon-

ical action, e.g., because it is of higher order derivatives. As such, the above naive
quantization does not apply.

In its place we have the following naive isoquantization first introduced by An-
imalu and Santilli [44] of 1990, and here extended to the use of the isodifferential
calculus

Âo =

t2∫
t1

(p̂k×̂d̂x̂k − Ĥ×̂d̂t̂)→ −i× Î × ln |ψ̂〉, (3.4.3)

where î = i × Î, |ψ̂〉 is the ospwavefunction, or, more precisely, a state of the
iso-Hilbert space Ĥ outlined in the next section, and we should note that î×̂Î ×
ln |ψ̂〉 = i× isoln|ψ̂〉.
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The use of Hamilton-Jacobi-Santilli isoequations (3.3.60) yields the following
operator equations (here written for the simpler case in which T̂ has no depen-
dence on r, but admits a dependence on velocities and higher derivatives)

−∂̂tÂo = Ĥ → i× ∂̂t|ψ̂〉 = Ĥ × T̂ × |ψ̂〉 = Ĥ×̂|ψ̂〉, (3.4.4a)

p̂k = ∂̂kÂ
o → p̂k × T̂ × |ψ̂〉 = p̂k×̂|ψ̂〉 = −î×̂∂̂k|ψ̂〉, (3.4.4b)

that constitutes the fundamental equations of operator isomechanics, as we shall
see in the next section.

As it is well known, Planck’s constant ~ is the basic unit of quantum mechanics.
By comparing Eqs. (3.4.xx) and (3.4.xx) it is easy to see that Î is the basic unit of
operator isomechanics. Recall also that the isounits are defined at short distances
as in Eqs. (3.1.xxx). We therefore have the following important

POSTULATE 3.4.1 [5]: In the transition from quantum mechanics to operator
isomechanics Planck’s unit ~ is replaced by the integrodifferential unit Î under
the condition of recovering the former at sufficiently large mutual distances,

lim
r→∞

Î = ~ = 1. (3.4.5)

Consequently, in the conditions of deep mutual penetration of the wavepackets
and/or charge distributions of particles as studied by operator isomechanics there
is the superposition of quantized and continuous exchanges of energy.

3.4.3 Isohilbert Spaces and their Isoduals
As it is well known, the Hilbert space H used in quantum mechanics is ex-

pressed in terms of states |ψ〉, |φ〉, . . ., with normalization

〈ψ| × |ψ〉 = 1, (3.4.6)

and inner product

〈φ| × |ψ〉 =
∫
dr3φ†(r)× ψ(r), (3.4.7)

defined over the field of complex numbers C = C(c,+,×).
The lifting C(c,+,×)→ Ĉ(ĉ, +̂, ×̂), requires a compatible lifting of H into the

isohilbert space Ĥ with isostates |ψ̂〉, |φ̂〉, . . ., isoinner product and isonormaliza-
tion

〈ψ̂|×̂|ψ̂〉 × Î =

 ∧∫
d̂r̂3 ψ̂†(r̂)× T̂ × ψ̂(r̂)

× Î ∈ Ĉ, (3.4.8a)

〈ψ̂|×̂|ψ̂〉 = 1, (3.4.8b)
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first introduced by Myung and Santilli in 1982 [45] (see also monographs [6,7] for
a comprehensive study).

It is easy to see that the isoinner product is still inner (because T̂ > 0). Thus,
Ĥ is still Hilbert and the lifting H → Ĥ is an isotopy. Also, it is possible to prove
that iso-Hermiticity coincides with conventional Hermiticity,

〈ψ̂|×̂(Ĥ×̂|ψ̂〉) ≡ (〈ψ̂|×̂Ĥ †̂)×̂|ψ̂〉, (3.4.9a)

Ĥ †̂ ≡ Ĥ† = Ĥ. (3.4.9b)

As a result, all quantities that are observable for quantum mechanics remain
so for hadronic mechanics.

For consistency, the conventional eigenvalue equation H × |ψ〉 = E × |ψ〉 must
also be lifted into the isoeigenvalue form [7]

Ĥ×̂|ψ̂〉 = Ĥ × T̂ × |ψ̂〉 = Ê×̂|ψ̂〉 = (E × Î)× T̂ × |ψ̂〉 = E × |ψ̂〉, (3.4.10)

where, as one can see, the final results are ordinary numbers.
Note the necessity of the isotopic action Ĥ×̂|ψ̂〉, rather than Ĥ × |ψ̂〉. In fact,

only the former admits Î as the correct unit,

Î×̂|ψ̂〉 = T̂−1 × T̂ × |ψ̂〉 ≡ |ψ̂〉. (3.4.11)

It is possible to prove that the isoeigenvalues of isohermitian operators are
isoreal, i.e., they have the structure Ê = E × Î , E ∈ R(n,+,×). As a result all
real eigenvalues of quantum mechanics remain real for hadronic mechanics.

We also recall the notion of isounitary operators as the isooperators Û on Ĥ
over Ĉ satisfying the isolaws

Û×̂Û †̂ = Û †̂×̂Û = Î , (3.4.12)

where we have used the identity Û †̂ ≡ Û †.
We finally indicate the notion of isoexpectation value of an isooperators Ĥ on

Ĥ over Ĉ

〈Ĥ〉 =
〈ψ̂|×̂Ĥ×̂|ψ̂〉
〈ψ̂|×̂|ψ̂〉

. (3.4.131)

It is easy to see that the isoexpectation values of isohermitian operators coincide
with the isoeigenvalues, as in the conventional case.

Note also that the isoexpectation value of the isounit is the isounit,

〈Î〉 = Î , (3.4.14)

provided, of course, that one uses the isoquotient (otherwise 〈Î〉 = I).
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The isotopies of quantum mechanics studied in the next sections are based on
the following novel invariance property of the conventional Hilbert space [xxx],
here expressed in term of a non-null scalar n independent from the integration
variables,

〈φ̂| × |ψ̂〉 × I ≡ 〈φ̂| × n−2 × |ψ̂〉 × (n2 × I) = 〈φ|×̂|ψ〉 × Î . (3.4.15)

Note that new invariances (3.4.15) remained undetected throughout the 20-th
century because they required the prior discovery of new numbers, those with
arbitrary units.

3.4.4 Structure of Operator Isomechanics and its
Isodual

The structure of operator isomechanics is essentially given by the following
main steps [47]:

1) The description of closed-isolated systems is done via two quantities, the
Hamiltonian representing all action-at-a-distance potential interactions, plus the
isounit representing all nonlinear, nonlocal and non-Hamiltonian effects,

H(t, r, p) = p2/2m+ V (r), (3.4.16a)

Î = Î(t, r, p, ψ,∇ψ, . . .). (3.4.16b)

The explicit form of the Hamiltonian is that conventionally used in quantum
mechanics although written on isospaces over isofields,

Ĥ = p̂×̂p̂/̂2̂×̂m̂+ V̂ (r̂). (3.4.17)

A generic expression of the isounit for the representation of two spinning particles
with point-like change (such as the electrons) in conditions of deep penetration of
their wavepackets (as occurring in chemical valence bonds and many other cases)
is given by

Î = exp
[
Γ(ψ,ψ†)×

∫
dv ψ†↓(r)ψ↑(r)

]
, (3.4.18)

where the nonlinearity is expressed by Γ(ψ,ψ†) and the nonlocality is expressed by
the volume integral of the deep wave-overlappings

∫
dv ψ†↓(r)ψ↑(r). All isounits

will be restricted by the conditions of being positive-definite (thus everywhere
invertible) as well as of recovering the trivial unit of quantum mechanics for
sufficiently big mutual distances r,

lim
r→∞

∫
dv ψ†↓(r)ψ↑(r) = 0. (3.4.19)

2) The lifting of the multiplicative unit I > 0 → Î = 1/T̂ > 0 requires the
reconstruction of the entire formalism of quantum mechanics into such a form to
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admit Î as the correct left and right unit at all levels of study, including numbers
and angles, conventional and special functions, differential and integral calcu-
lus, metric and Hilbert spaces, algebras and groups, etc., without any exception
known to the authors. This reconstruction is “isotopic” in the sense of being
axiom-preserving. Particularly important is the preservation of all conventional
quantum laws as shown below.

3) The mathematical structure of nonrelativistic hadronic mechanics is char-
acterized by [6]:

3a) The isofield Ĉ = Ĉ(ĉ,+, ×̂) with isounit Î = 1/T̂ > 0, isocomplex numbers
and related isoproduct

ĉ = c× Î = (n1 + i× n2)× Î , ĉ×̂d̂ = (c× d)× Î , ĉ, d̂ ∈ Ĉ, c, d ∈ C, (3.4.20)

the isofield R̂(n̂,+, ×̂) of isoreal numbers n̂ = n × Î , n ∈ R, being a particular
case;

3b) The iso-Hilbert space Ĥ with isostates |ψ̂〉, |φ̂〉, . . . , isoinner product and
isonormalization

〈φ̂|×̂|ψ̂〉 × Î ∈ Ŝ, 〈ψ̂|×̂|ψ̂〉 = 1, (3.4.21)

and related theory of isounitary operators;
3c) The Euclid-Santilli isospace Ê(r̂, δ̂, R̂) with isocoordinates, isometric and

isoinvariant respectively given by

r̂ = {rk} × Î , (3.4.22a)

δ̂ = T̂ (t, r, p, ψ,∇ψ, . . .)× δ, (3.4.22b)

δ = Diag.(1, 1, 1), (3.4.22c)

r̂2̂ = (ri × δ̂ij × rj)× Î ∈ R̂; (3.4.22d)

3d) The isodifferential calculus and the isofunctional analysis (see Section 3.2);
3e) The Lie-Santilli isotheory with enveloping isoassociative algebra ξ̂ of op-

erators Â, B̂, . . . , with isounit Î, isoassociative product Â×̂B̂ = Â × T̂ × B̂,
Lie-Santilli isoalgebra with brackets and isoexponentiation

[Â,̂B̂] = Â×̂B̂ − B̂×̂Â, (3.4.23a)

Û = êX = (eX×T̂ )× Î = Î × (eT̂×X), X = X†, (3.4.13b)

and related isosymmetries characterizing groups of isounitary transforms on Ĥ
over Ĉ,

Û×̂Û † = Û †×̂Û = Î . (3.4.24)

As we shall see in Sections 3.4.8 and 3.4.9, the above entire mathematical
structure can be achieved in a truly elementary way via nonunitary transforms
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of quantum formalisms. Their isotopic reformulations then proves the invariance
of hadronic mechanics, namely, its capability of predicting the same numbers for
the same conditions at different times.

Under the above outlined structure we have the following main features:
I) Hadronic mechanics is a covering of quantum mechanics, because the latter

theory is admitted uniquely and unambiguously at the limit when the isounit
recovers the conventional unit, Î → I;

II) Said covering is further characterized by the fact that hadronic mechanics
coincides with quantum mechanics everywhere except for (as we shall see, gen-
erally small) non-Hamiltonian corrections at short mutual distances of particles
caused by deep mutual overlapping of the wavepackets and/or charge distribu-
tions of particles;

III) Said covering is finally characterized by the fact that the indicated non-
Hamiltonian corrections are restricted to verify all abstract axioms of quan-
tum mechanics, with consequential preservation of is basic laws for closed non-
Hamiltonian systems as a whole, as we shall see shortly.

Note that composite hadronic systems, such as hadrons, nuclei, isomolecules,
etc., are represented via the tensorial product of the above structures. This can
be best done via the identification first of the total isounit, total isofields, total
isohilbert spaces, etc.,

Îtot = Î1 × Î2 × . . . , Ĉtot = Ĉ1 × Ĉ2 × . . . , Ĥtot = Ĥ1 × Ĥ2 × . . . . (3.4.25)

Note also that some of the units, fields and Hilbert spaces in the above ten-
sorial products can be conventional, namely, the composite structure may imply
local-potential long range interactions (e.g., those of Coulomb type), which re-
quire the necessary treatment via conventional quantum mechanics, and nonlocal-
nonpotential short range interactions (e.g., those in deep wave-overlappings),
which require the use of operator isomechanics.

3.4.5 Dynamical Equations of Operator Isomechanics
and their Isoduals

The formulations of the preceding sections permit the identification of the
following fundamental dynamical equations of the Lie-isotopic branch of hadronic
mechanics, known under the name of iso-Heisenberg equations or Heisenberg-
Santilli isoequetionsthat were identified in the original proposal of 1978 to build
hadronic mechanics [5], are can be presented in their finite and infinitesimal forms,

Â(t̂) = Û×̂Â(0̂)×̂Û †̂ = {êî×̂Ĥ×̂t̂}×̂Â(0̂)×̂{ê−î×̂t̂×̂Ĥ}, (3.4.26a)

î×̂d̂Â/̂d̂t̂ = [Â,̂Ĥ] = A×̂Ĥ − Ĥ×̂Â = Â× T̂ × Ĥ − Ĥ × T̂ × Â, (3.4.26b)
with the corresponding fundamental hadronic isocommutation rules

[b̂µ ,̂b̂ν ] = î×̂ω̂µν = i× ωµν × Î6, b̂ = (r̂k, p̂k), (3.4.27)
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with corresponding iso-Schrödinger equations for the energy, also known as
Schrödinger-Santilli isoequations identified by Myung and Santilli [45] and
Mignani [48] in 1982 over conventional fields and first formulated in an invariant
way by Santilli in monograph [7] of 1995

î×̂∂̂t̂|ψ̂〉 = Ĥ×̂|ψ̂〉 = Ĥ × T̂ × |ψ̂〉 = Ê×̂|ψ̂〉 = E × |ψ̂〉, (3.4.28a)

|ψ̂(t̂)〉 = Û×̂|ψ̂(0̂)〉 = {êiĤ×̂t̂}×̂|ψ̂(0̂)〉, (3.4.28b)

and isolinear momentum first identified by Santilli in Ref. [7] of 1995 thanks to
the discovery of the isodifferential calculus

p̂k×̂|ψ̂〉 = p̂k × T̂ × |ψ̂〉 − î×̂∂̂k|ψ̂〉 = −i× Îik × ∂i|ψ̂〉, (3.4.29)

It is evident that the iso-Heisenberg equations in their infinitesimal and expo-
nentiated forms are a realization of the Lie-Santilli isotheory of Section 3.2, which
is therefore the algebraic and group theoretical structure of the isotopic branch
of hadronic mechanics.

Note that Eqs. (3.4.26) and (3.4.28) automatically bring into focus the general
need for a time isounit and related characterization of the time isodifferential and
isoderivative

Ît(t, r, ψ, . . .) = T̂t > 0, (3.4.30a)

d̂t̂ = Ît × dt̂, ∂̂t̂ = Ît × ∂t. (3.4.30b)

Note also that ωµν in Eqs. (3.4.xxx) is the conventional Lie tensor, namely, the
same tensor appearing in the conventional canonical commutation rules, thus
confirming the axiom-preserving character of isomechanics.

The limited descriptive capabilities of quantum models should be kept in mind,
purely Hamiltonian and, as such, they can only represent systems which are
linear, local and potential. By comparison, we can write Eq. (3.4.28a) in its
explicit form

î×̂∂̂t̂ψ̂ = i× Ît × ∂t̂|ψ̂〉 = Ĥ×̂|ψ̂〉 = Ĥ × T̂ × |ψ̂〉 =

= {p̂k × p̂k/2̂×̂m̂+ Ûk(t̂, r̂)×̂v̂k+

+Û0(t̂, r̂)} × T̂ (t̂, r̂, p̂, ψ̂,∇ψ, . . .)× |ψ̂(t̂, r̂)〉 =

= Ê×̂|ψ̂(t, x̂)〉 = E × |ψ̂(t̂, x̂)〉,

(3.4.31)

thus proving the following

THEOREM 3.4.1 [7]: Hadronic mechanics id “directly universal” for all in-
finitely possible, sufficiently smooth and regular, closed non-Hamiltonian systems,
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namely, it can represent in the fixed coordinates of the experimenter all infinitely
possible closed-isolated systems with linear and nonlinear, local and nonlocal, and
potential as well as nonpotential internal forces verifying the conservation of the
total energy.

A consistent formulation of the isolinear momentum (3.4.29) escaped identifica-
tion for two decades, thus delaying the completion of the construction of hadronic
mechanics, as well as its practical applications. The consistent and invariant form
(3.4.29) with consequential isocanonical commutation rules were first identified
by Santilli in the second edition of Vol. II of this series, Ref. [7] of 1995 and
memoir [10], following the discovery of the isodifferential calculus.

3.4.6 Preservation of Quantum Physical Laws
As one can see, the fundamental assumption of isoquantization is the lifting of

the basic unit of quantum mechanics, Planck’s constant ~, into a matrix Î with
nonlinear, integro-differential elements which also depend on the wavefunction
and its derivatives

~ = I > 0→ Î = Î(t, r, p, ψ, ψ̂, . . .) = Î† > 0. (3.4.32)

It should be indicated that the above generalization is only internal in closed
non-Hamiltonian because, when measured from the outside, the isoexpectation
values and isoeigenvalues of the isounit recover Planck’s constant identically [46],

〈Î〉 =
〈ψ̂|×̂Î×̂|ψ̂〉
〈ψ̂|×̂|ψ̂〉

= 1 = ~, (3.4.33a)

Î×̂|ψ̂〉 = T̂−1 × T̂ × |ψ̂〉 = 1× |ψ̂〉 = |ψ̂〉. (3.4.33b)

Moreover, the isounit is the fundamental invariant of isomechanics, thus preserv-
ing all axioms of the conventional unit I = ~, e.g.,

Î n̂ = Î×̂Î×̂ . . . ×̂Î ≡ Î , (3.4.34a)

Î
1
2 ≡ Î , (3.4.34b)

î×̂d̂Î /̂d̂t = [Î ,̂Ĥ] = Î×̂Ĥ − Ĥ×̂Î ≡ 0. (3.4.34c)

Despite their generalized structure, Eqs. (3.4.26) and (3.4.28) preserve con-
ventional quantum mechanical laws under nonlinear, nonlocal and nonpotential
interactions [7].

To begin an outline, the preservation of Heisenberg’s uncertainties can be easily
derived from isocommutation rules (3.4.27):

∆xk ×∆pk ≥
1
2
× 〈[x̂k ,̂p̂k]〉 =

1
2
. (3.4.35)
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To see the preservation of Pauli’s exclusion principle, recall that the regular
(two-dimensional) representation of SU(2) is characterized by the conventional
Pauli matrices σk with familiar commutation rules and eigenvalues on H over C,

[σi, σj ] = σi × σj − σj × σi = 2× iεijk × σk, (3.4.36a)

σ2 × |ψ〉 = σk × σk × |ψ〉 = 3× |ψ〉, (3.4.36b)

σ3 × |ψ〉 = ±1× |ψ〉. (3.4.36c)

The isotopic branch of hadronic mechanics requires the construction of nonuni-
tary images of Pauli’s matrices first constructed in Ref. [49] that, for diagonal
nonunitary transforms and isounits, can be written (see also Section 3.3.6)

σ̂k = U × σk × U †, U × U † = Î 6= I, (3.4.37a)

U =
(
i×n1 0

0 i×n2

)
, U † =

(
−i×n1 0

0 −i×n2

)
,

Î =
(
n2

1 0
0 n2

2

)
, T̂ =

(
n−2

1 0
0 n−2

2

)
,

(3.4.37b)

where the n’s are well behaved nowhere null functions, resulting in the regular
Pauli-Santilli isomatrices [49]

σ̂1 =
(

0 n2
1

n2
2 0

)
, σ̂2 =

(
0 −i×n2

1

i×n2
2 0

)
, σ̂3 =

(
n2

1 0
0 n2

2

)
. (3.4.38)

Another realization is given by nondiagonal unitary transforms [loc. cit.],

U =
(

0 n1

n2 0

)
, U † =

(
0 n2

n1 0

)
,

Î =
(
n2

1 0
0 n2

2

)
, T̂ =

(
n−2

1 0
0 n−2

2

)
,

(3.4.39)

with corresponding regular Pauli-Santilli isomatrices,

σ̂1 =
(

0 n1×n2

n1×n2 0

)
, σ̂2 =

(
0 −i×n1×n2

i×n1×n2 0

)
,

σ̂3 =
(
n2

1 0
0 n2

2

)
, (3.4.40)

or by more general realizations with Hermitian nondiagonal isounits Î [15].
All Pauli-Santilli isomatrices of the above regular class verify the following

isocommutation rules and isoeigenvalue equations on Ĥ over Ĉ

[σ̂î,σ̂j ] = σ̂i × T̂ × σ̂j − σ̂j × T̂ × σ̂i = 2× i× εijk × σ̂k, (3.4.41a)
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σ̂2̂×̂|ψ̂〉 = (σ̂1×̂σ̂1 + σ̂2×̂σ̂2 + σ̂3×̂σ̂3)×̂|ψ̂〉 = 3× |ψ̂〉, (3.4.41b)

σ̂3×̂|ψ̂〉 = ±1× |ψ̂〉, (3.4.41c)

thus preserving conventional spin 1/2, and establishing the preservation in iso-
chemistry of the Fermi-Dirac statistics and Pauli’s exclusion principle.

It should be indicated for completeness that the representation of the isotopic
SÛ(2) also admit irregular isorepresentations, that no longer preserve conven-
tional values of spin [49]. The latter structures are under study for the char-
acterization of spin under the most extreme conditions, such as for protons and
electrons in the core of collapsing stars and, as such, they have no known relevance
for isomechanics.

The preservation of the superposition principle under nonlinear interactions
occurs because of the reconstruction of linearity on isospace over isofields, thus
regaining the applicability of the theory to composite systems.

Recall in this latter respect that conventionally nonlinear models,

H(t, x, p, ψ, . . .)× |ψ〉 = E × |ψ〉, (3.4.42)

violate the superposition principle and have other shortcomings (see Section 1.5).
As such, they cannot be applied to the study of composite systems such as
molecules. All these models can be identically reformulated in terms of the iso-
topic techniques via the embedding of all nonlinear terms in the isotopic element,

H(t, x, p, ψ, . . .)× |ψ〉 ≡ H0(t, x, p)× T̂ (ψ, . . .)× |ψ〉 = E × |ψ〉, (3.4.43)

by regaining the full validity of the superposition principle in isospaces over
isofields with consequential applicability to composite systems.

The preservation of causality follows from the one-dimensional isounitary group
structure of the time evolution (3.4.28) (which is isomorphic to the conventional
one); the preservation of probability laws follows from the preservation of the ax-
ioms of the unit and its invariant decomposition as indicated earlier; the preser-
vation of other quantum laws then follows.

The same results can be also seen from the fact that operator isomechanics
coincides at the abstract level with quantum mechanics by conception and con-
struction. As a result, hadronic and quantum versions are different realizations
of the same abstract axioms and physical laws.

Note that the preservation of conventional quantum laws under nonlinear, non-
local and nonpotential interactions is crucially dependent on the capability of
isomathematics to reconstruct linearity, locality and canonicity-unitarity on iso-
spaces over isofields.

The preservation of conventional physical laws by the isotopic branch of had-
ronic mechanics was first identified by Santilli in report [47]. It should be indi-
cated that the same quantum laws are not generally preserved by the broader
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genomechanics, evidently because the latter must represent by assumption non-
conservation laws and other departures from conventional quantum settings.

With the understanding that the theory does not receive the classical deter-
minism, it is evident that isomechanics provides a variety of “completions” of
quantum mechanics according to the celebrated E-P-R argument [50], such as:

1) Isomechanics “completes” quantum mechanics via the addition of nonpo-
tential-nonhamiltonian interactions represented by nonunitary transforms.

2) Isomechanics “completes” quantum mechanics via the broadest possible
(non-oriented) realization of the associative product into the isoassociative form.

3) Isomechanics “completes” quantum mechanics in its classical image.
In fact, as proved by well known procedures based on Bell’s inequalities, quan-

tum mechanics does not admit direct classical images on a number of counts. On
the contrary, as studied in details in Refs. [51], the nonunitary images of Bell’s
inequalities permit indeed direct and meaningful classical limits which do not
exist for the conventional formulations.

Similarly, it is evident that isomechanics constitutes a specific and concrete
realization of “hidden variables” [52] λ which are explicitly realized by the isotopic
element, λ = T̂ , and actually turned into an operator hidden variables. The
“hidden” character of the realization is expressed by the fact that hidden variables
are embedded in the unit and product of the theory.

In fact, we can write the iso-Schrödinger equation Ĥ×̂|ψ̂〉 = Ĥ × λ × |ψ̂〉 =
E × |ψ̂〉, λ = T̂ . As a result, the “variable” λ (now generalized into the opera-
tor T̂ ) is “hidden” in the modular associative product of the Hamiltonian Ĥ and
the state |ψ̂〉.

Alternatively, we can say that hadronic mechanics provides an explicit and
concrete realization of hidden variables because all distinctions between Ĥ×̂|ψ̂〉
and H × |ψ〉 cease to exist at the abstract realization-free level.

For studies on the above and related issues, we refer the interested reader to
Refs. [51] and quoted literature.

3.4.7 Isoperturbation Theory and its Isodual
We are now sufficiently equipped to illustrate the computational advantages

in the use of isotopies.

THEOREM 3.4.2 [7]: Under sufficient continuity conditions, all perturbative
and other series that are conventionally divergent (weakly convergent) can be
turned into convergent (strongly convergent) forms via the use of isotopies with
sufficiently small isotopic element (sufficiently large isounit),

|T̂ | � 1, |Î| � 1. (3.4.44)
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The emerging perturbation theory was first studied by Jannussis and Mignani
[53], and then studied in more detail in monograph [7] under the name of isoper-
turbation theory.

Consider a Hermitian operator on H over C of the type

H(k) = H0 + k × V, H0 × |ψ〉 = E0 × |ψ〉, (3.4.45a)

H(k)× |ψ(k)〉 = E(k)× |ψ(k)〉, k � 1. (3.4.45b)

Assume that H0 has a nondegenerate discrete spectrum. Then, conventional
perturbative series are divergent, as well known. In fact, the eigenvalue E(k) of
H(k) up to second order is given by

E(k) = E0 + k × E1 + k2 × E2 =

= E0 + k × 〈ψ| × V × |ψ〉+ k2 ×
∑
p6=n

|〈ψp| × V × |ψn〉|2

E0n − E0p
.

(3.4.46)

But under isotopies we have

H(k) = H0 + k × V, H0 × T̂ × |ψ̃〉 = Ẽ0 × |ψ̃〉, Ẽ0 6= E0, (3.4.47a)

H(k)× T̂ × |ψ̂(k)〉 = Ẽ(k)× |ψ̂(k)〉, Ẽ 6= E, k > 1. (3.4.47b)

A simple lifting of the conventional perturbation expansion then yields

Ẽ(k) = Ẽ0 + k × Ẽ1 + k2 × Ẽ2 + Ô(k2) =

= Ẽ0 + k × 〈ψ̃| × T̂ × V × T̂ × |ψ̃〉+ (3.4.48a)

+k2 ×
∑
p6=n

|〈ψ̂p| × T̂ × V × T̂ × |ψ̂n〉|2̂

Ẽ0n − Ẽ0p

, (3.4.48b)

whose convergence can be evidently reached via a suitable selection of the isotopic
element, e.g., such that |T̂ | � k.

As an example, for a positive-definite constant T̂ � k−1, expression (3.4.46)
becomes

Ẽ(k) = Ẽ0 + k × T̂ 2 × 〈ψ̂| × V × |ψ∗〉+ k2 × T 5×

×
∑
p6=n

|〈ψp| × V × |ψn〉|2

Ẽ0n − Ẽ0p

.
(3.4.49)

This shows that the original divergent coefficients 1, k, k2, . . . are now turned
into the manifestly convergent coefficients 1, k × T 2, k2 × T 5, . . ., with k > 1 and
T̂ � 1/k, thus ensuring isoconvergence for a suitable selection of T̂ for each given
k and V .
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A more effective reconstruction of convergence can be seen in the algebraic
approach. At this introductory stage, we consider a divergent canonical series,

A(k) = A(0) + k× [A,H]/1! + +k2 × [[A,H],H]/2! + . . .→∞, k > 1, (3.4.50)

where [A,H] = A×H −H ×A is the familiar Lie product, and the operators A
and H are Hermitian and sufficiently bounded. Then, under the isotopic lifting
the preceding series becomes [7]

Â(k) = Â(0) + k × [A,̂H]/1! + k2 × [[A,̂H ]̂,H]/2! + · · · ≤ |N | <∞, (3.4.51a)

[A,̂H] = A× T̂ ×H −H × T̂ ×A, (3.4.51b)

which holds, e.g., for the case T = ε×k−1, where ε is a sufficiently small positive-
definite constant.

In summary, the studies on the construction of hadronic mechanics have indi-
cated that the apparent origin of divergences (or slow convergence) in quantum
mechanics and chemistry is their lack of representation of nonlinear, nonlocal,
and nonpotential effects because when the latter are represented via the isounit,
full convergence (much faster convergence) can be obtained.

As we shall see, all known applications of hadronic mechanics verify the cru-
cial condition |Î| � 1, |T̂ | � 1, by permitting convergence of perturbative series.
For instance, in the case of chemical bonds, hadronic chemistry allows computa-
tions at least one thousand times faster than those of quantum chemistry, with
evident advantages, e.g., a drastic reduction of computer time (see Chapter 9).
Essentially the same results are expected for hadronic mechanics and hadronic
superconductivity.

The reader should meditate a moment on the evident possibility that hadronic
mechanics offers realistic possibilities of constructing a convergent perturbative
theory for strong interactions. As a matter of fact, the divergencies that have
afflicted strong interactions through the 20-th century originates precisely from
the excessive approximation of hadrons as points, with the consequential sole
potential interactions and related divergencies.

In fact, whenever hadrons are represented as they actually are in reality, ex-
tended and hyperdense particles, with consequential potential as well as nonpo-
tential interactions, all divergencies are removed by the isounit.

3.4.8 Simple Construction of Operator Isomechanics
and its Isodual

Despite their mathematical equivalence, it should be indicated that quantum
and hadronic mechanics are physically inequivalent, or, alternatively, hadronic
mechanics is outside the classes of equivalence of quantum mechanics because
the former is a nonunitary image of the latter.
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As we shall see in the next chapters, the above property provides means for
the explicit construction of the new model of isomechanics bonds from the con-
ventional model. The main requirement is that of identifying the nonhamiltonian
effects one desires to represent, which as such, are necessarily nonunitary. The
resulting nonunitary transform is then assumed as the fundamental space isounit
of the new isomechanics [46]

U × U † = Î 6= I, (3.4.52)

under which transform we have the liftings of: the quantum unit into the isounit,

I → Î = U × I × U †; (3.4.53)

numbers into isonumbers,

a→ â = U × a× U † = a× (U × U †) = a× Î; a = n, c; (3.4.54)

associative products A×B into the isoassociative form with the correct isotopic
element,

A×B → Â×̂B̂ = Â× T̂ × B̂, (3.4.55a)

Â = U ×A× U †, B̂ = U ×B × U †, T̂ = (U × U †)−1 = T †; (3.4.55b)
Schrödinger’s equation into the isoschrödinger’s equations

H × |ψ〉 = E × |ψ〉 → U(H × |ψ〉) =

= (U ×H × U †)× (U × U †)−1 × (U × |ψ〉) =

= Ĥ × T̂ × |ψ̂〉 = Ĥ×̂|ψ̂〉;

(3.4.56)

Heisenberg’s equations into their isoheisenberg generalization

i× dA/dt−A×H −H ×A = 0→

→ U × (i× dA/dt)× U † − U(A×H −H ×A)× U † =

= î×̂dÂ/dt− Â×̂Ĥ − Ĥ×̂Â = 0;

(3.4.57)

the Hilbert product into its isoinner form

〈ψ|×|ψ〉 → U×〈ψ|×|ψ〉×U † =

= (〈ψ|×U †)×(U×U)−1×(U×|ψ〉)×(U×U)−1 = 〈ψ̂|×̂|ψ̂〉×Î;
(3.4.58)

canonical power series expansions into their isotopic form

A(k) = A(0) + k×[A,H] + k2×[[A,H, ],H] + . . .→ U×A(k)× U † =

= U ×
[
A(0) + k × [A,H] + k2 × [[A,H],H] + . . .

]
× U † =

= Â(k̂) = Â(0) + k̂×̂[Â,̂ Ĥ] + k̂2̂×̂[[Â,̂ Ĥ ]̂, Ĥ] + . . . ,

k > 1, |T̂ | � 1;

(3.4.59)
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Schrödinger’s perturbation expansion into its isotopic covering (where the usual
summation over states p 6= n is assumed)

E(k) = E(0) + k × 〈ψ| × V × |ψ〉+ k2 |〈ψ|×V ×|ψ〉|2

E0n − E0p
+ . . .→

→ U×E(k)×U † = U×
[
E(0) + k×〈ψ|×V ×|ψ〉+ . . .

]
×U † =

= Ê(k̂) = Ê(0) + k̂×̂〈ψ̂| × T̂ × V̂ × T̂ × |ψ̂〉+ . . . ,

k > 1, |T̂ | � 1;

(3.4.60)

etc. All remaining aspects of operator isomechanics can then be derived accord-
ingly, including the isoexponent, isologarithm, isodeterminant, isotrace, isospecial
functions and transforms, etc. The isodual isomechanics can then be constructed
via the now famil,kiar isodual map.

Note that the above construction via a nonunitary transform is the correct
operator image of the derivability of the classical isohamiltonian mechanics from
the conventional form via noncanonical transforms (Section 3.2.12).

The construction of hadronic mechanics via nonunitary transforms of quantum
mechanics was first identified by Santilli in the original proposal [5e], and then
worked out in subsequent contributions (see [12] for the latest presentation).

3.4.9 Invariance of Operator Isomechanics and of its
Isodual

It is important to see that, in a way fully parallel to the classical case (Sec-
tion 3.3.7), operator isomechanics is indeed invariant under the most general
possible nonlinear, nonlocal and nonhamiltonian-nonunitary transforms, provided
that, again, the invariance is treated via the isomathematics. In fact, any given
nonunitary transform U × U † 6= I can always be decomposed into the form [12]

U = Û × T̂ 1/2,

under which nonunitary transforms on H over C are identically reformulated as
isounitary transforms on the isohilbert space Ĥ over the isofield ,̂

U × U † ≡ Û×̂Û † = Û †×̂Û = Î . (3.4.61)

The form-invariance of operator isomechanics under isounitary transforms then
follows,

Î → Î ′ = Û×̂Î×̂Û † ≡ Î , Â×̂B̂ → Û×̂(Â×̂B̂)×̂Û † = Â′×̂B̂′, etc., (3.4.62a)

Ĥ×̂|ψ̂〉 = Ê×̂|ψ̂〉 → Û × Ĥ×̂|ψ̂〉 =

= (Û × Ĥ × Û †)×̂(Û×̂|ψ̂〉) = Ĥ ′×̂|ψ̂′〉 =

= Û×̂Ê×̂|ψ̂〉 = Ê×̂Û×̂|ψ̂〉 = Ê×̂|ψ̂′〉,

(3.4.62b)
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where one should note the preservation of the numerical values of the isounit,
isoproducts and isoeigenvalues, as necessary for consistent applications. The
invariance of isodual isomechanics then follows rather trivially.

Note that the invariance in quantum mechanics holds only for transformations
U × U † = I with fixed I. Similarly, the invariance of isomechanics holds only for
all nonunitary transforms such Û×̂Û †̂ = Î with fixed Î, and not for a transform
Ŵ ×̂Ŵ †̂ = Î ′ 6= Î because the change of the isounit Î implies the transition to a
different physical system.

The form-invariance of hadronic mechanics under isounitary transforms was
first studied by Santilli in memoir [46].

3.5 SANTILLI ISORELATIVITY AND ITS ISODUAL
3.5.1 Limitations of Special and General Relativities

Special and general relativities are generally presented in contemporary
academia as providing final descriptions of all infinitely possible conditions exist-
ing in the universe.

The scientific reality is basically different than the above academic posture. In
Section 1.1 and Chapter 2, we have shown that special and general relativities
cannot provide a consistent classical description of antiparticles because they
admit no distinction between neutral matter and antimatter and, when used for
charged antiparticles, they lead to inconsistent quantum images consisting of
particles (rather than charge conjugated antiparticles) with the wrong sign of the
charge. Hence, the entire antimatter content of the universe cannot be credibly
treated via special and/or general relativity.24

A widespread academic posture, studiously conceived for adapting nature to
preferred doctrines, is the belief that the university can be effectively reduced
to point-particles solely under action-at-a-distance, potential interactions. This
posture is dictated by the facts that: the mathematics underlying special and
general relativities, beginning with their local-differential topology, can only rep-
resent (dimensionless) point-like particles; special and genera;l relativity are no-
toriously incompatible with the deformation theory (that is activated whenever
extended particles are admitted); and said relativities are strictly Lagrangian or
Hamiltonian, thus being only able to represent potential interactions.

However, in Section 1.3 and in this chapter, we have established the ”No Reduc-
tion Theorems,” according to which a macroscopic extended system in noncon-

24Particularly political is the academic posture that ”antigravity does not exist because not predicted
by Einstein’s gravitation,” when such a gravitational theory has no means for a credible representation
of antimatter. As we shall see in Chapter 14, Volume II, when a credible quantitative representation of
antimatter is included, antigravity (defined as gravitational repulsion) between matter and antimatter
is unavoidable.
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servative conditions (such as a satellite during re-entry in our atmosphere) cannot
be consistently reduced to a finite number of point-particles all under potential
forces and, vice versa, a finite number of quantum (that is, point-like) particles all
under potential interactions cannot consistently recover a macroscopic noncon-
servative system. Hence, all macroscopic systems under nonconservative forces,
thus including all classical interior problems, cannot be consistently treated with
special or general relativity.25

Another posture in academia, also intended for adapting nature to a preferred
doctrine, is that irreversibility is a macroscopic event that ”disappears” (sic)
when systems are reduced to their elementary constituents. This widespread
academic belief is necessary because special and general relativities are struc-
turally reversible, namely, their mathematical and physical axioms, as well as all
known Hamiltonians are invariant under time reversal. This posture is comple-
mented with manipulations of scientific evidence, such as the presentation of the
probability of the synthesis of two nuclei into a third one, n1 + n2 → n3 while
studiously suppressing the time reversal event that is simply unavoidable for a
reversible theory, namely, the finite probability of the spontaneous decomposition
n3 → n1n2 following the synthesis. The latter probability is suppressed evidently
because it would prove the inconsistency of the assumed basic doctrine. 26

Unfortunately for mankind, the above academic postures are also used for all
energy releasing processes despite the fact that they are irreversible. The vast
majority of the research on energies releasing processes such as the ”cold” and
”hot” fusions, and the use of the vast majority of public fund,s are restricted
to verify quantum mechanics and special relativity under the knowledge by ex-
perts that reversible theories cannot be exactly valid for irreversible processes/
In any case, the ”No reduction theorems” prevent the consistent reduction of an

25Another political posture in academia is the treatment of the entire universe, thus including interior
problems of stars, quasars and black-hole, with Einstein gravitation when it is well known that such
a doctrine is purely ”external,” namely, can only represent point-like masses moving in vacuum in the
gravitational field of a massive body. One can then understand the political backing needed for the
credibility, e.g., of studies on black holes derived via a purely exterior theory.
26Serious physicists should not even redo the calculations for the probability of the spontaneous decay
following the synthesis, because it is unavoidable under the assumption of the same Hilbert space for
all initial and final nuclei and Heisenberg’s uncertainty principle. In fact these assumptions imply
that the nucleus n1 or n2 has a finite [probability of being outside of n3 due to the coherence of the
interior and interior Hilbert spaces. At this point, numerous additional manipulations of science are
attempted to salvage preferred doctrines when inapplicable, rather than admitting their inapplicability
and seeking covering theories. One of these manipulations is based on the ”argument” that n3 is
extended, when extended sizes cannot be represented by quantum mechanics. Other manipulations are
not worth reporting here. The only scientific case of a rigorously proved, identically null probability
of spontaneous disintegrations of a stable nucleus following its synthesis occurs when the initial and
final Hilbert spaces are incoherent. This mandates the use of the conventional Hilbert space (quantum
mechanics) for the initial states and the use of an incoherent iso-Hilbert space (hadronic mechanics)
for the final state. This is the only possibility known to this author following half a century of studies
of the problem.
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irreversible macroscopic event to an ideal ensemble of point-like abstractions of
particles all in reversible conditions. Hence, special and general relativities are
inapplicable for any and all irreversible processes existing in the universe.27

When restricting the arena applicability to those of the original conception
(propagation of point particles and electromagnetic waves in vacuum), special
relativity remains afflicted by still unresolved basic problems, such as the pos-
sibility that the relativity verifying one-way experiments on the propagation of
light could be Galilean, rather than Lorentzian; the known incompatibility of
special relativity with space conceived as a universal medium; and other unset-
tled aspects. Independently from that, we have shown in Section 1.4 that general
relativity has no case of unequivocal applicability for numerous reasons, such as:
curvature cannot possibly represent the free fall of a body along a straight radial
line; the ”bending of light” is due to Newtonian gravitation (and if curvature is
assumed one gets double the bending experimentally measured); gravitation is a
noncanonical theory, thus suffering of the Theorems of Catastrophic Inconsisten-
cies of Section 1.5; etc.

In summary, on serious scientific grounds, and contrary to vastly
popular political beliefs, special and general relativities have no un-
contested arena of exact valid.

Far from pretending final knowledge, in this section we primarily claim the
scientific honesty to have identified the above open problems and initiated quan-
titative studies for their resolution. Our position in regard to special relativity is
pragmatic, in the sense that, under the conditions limpidly identified by Einstein,
such as particles in accelerators, etc., special relativity works well. Additionally,
special relativity has a majestic axiomatic structure emphasized various times by
the author.

Hence, we shall assume special relativity at the foundation of this section and
seek its isotopic liftings, namely, the most general possible formulations verifying
at the abstract level the original axioms conceived by Lorentz, Poincaré, Einstein,
Minkowski, Weyl and other founders. The first, and perhaps basic understanding
of this section is the knowledge that special relativity and isorelativity coincide at
the abstract, realization-free level, to such an extent that we could use the same
formulae and identify the special or isotopic relativity via different meanings
of the same symbols. Alternatively, to honor the memory of the founders, it
is necessary to identify the widest possible applicability of their axioms before
abandoning them for broader vistas.

27To honor the memory of Albert Einstein and other founders of our knowledge, it should be stressed that
the use of the word ”violation” would be nonscientific, since quantum mechanics and special relativity
were not conceived for irreversible processes. Said disciplines have been applied to irreversible processes
by Einstein’s followers seeking money, prestige and power via the abuse of Einstein’s name.
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An additional, century-old, unresolved issue is the incompatibility of special
relativity with the absolute reference frame at rest with the universal substratum
(also called ether) that appears to be needed for the very characterization of all
visible events in the Universe [54,55[. This latter aspect is fundamental for the
studies of Volume II and are treated there to avoid unnecessary repetitions.

In regard to general relativity, our position is rather rigid: no research on gen-
eral relativity can be considered scientifically serious unless the nine theorems s of
catastrophic inconsistencies of Ref. [75] are disproved, not in academic corridors,
but in refereed technical publications. Since this task appears to be hopeless, we
assume the position that general relativity is catastrophically inconsistent and
seek an alternative formulation.

As we shall see, when the memory of the founders is honored in the above
sense, the broadest possible realization of their axioms include gravitation and
there is no need for general relativity as a separate theory. Thus, another basic
understanding of this section is the knowledge that we shall seek a unification of
special and general relativity into one single formulation based on the axioms of
special relativity, known as Santilli isorelativity. Needless to say, such a unifica-
tion required several decades of research since it required the construction of the
needed new mathematics, the achievement of the unification of the Minkowskian
and Riemannian geometries, and the achievement of a universal invariance for all
possible spacetime line elements prior to addressing the unification itself.

A further aspect important for the understanding of this section is that, by no
means isorelativity should be believed to be the final relativity of the universe be-
cause it is structurally reversible due to the Hermiticity of the isounit and isotopic
element.28

This creates the need for a yet broader relativity studied in the next chapte,
and known under the name of Santilli genorelativity, this time, based on geno-
topic liftings of special relativity or isorelativity, namely, broadening requiring a
necessary departure from the abstract axioms of special relativity into a form that
is structurally irreversible, in the sense of possessing mathematical and physical
axioms that are irreversible under all possible reversible Lagrangians or Hamil-
tonians.

The resolution of the above indicated problems for antimatter is achieved by
the isodual image of the studies of this section.

28As we shall see in the next chapter, despite its Hermiticity, the isounit can depend on time in such
a way that Î(t, ...) = Î†(t, ...) 6= Î(−t, ...). In this case isotopic theories represent systems verifying
total conservation laws when isolated (because of the antisymmetry of the Lie-Santilli isobrackets), yet
being structurally irreversible in their interior processes, as it is the case for all interior problems when
considered isolated from the rest of the universe.
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3.5.2 Minkowski-Santilli Isospaces and their Isoduals
As studied in Section 1.2, the “universal constancy of the speed of light” is

a philosophical abstraction, particularly when proffered by experts without the
additional crucial words ”in vacuum”, because the constancy of the speed of light
has been solely proved in vacuum while, in general, experimental evidence estab-
lishes that the speed of light is a local variable depending on the characteristics of
the medium in which it propagates, with well known expression

c = c◦/n, (3.5.1)

where the familiar index of refraction n is a function of a variety of time t,
coordinates r, density µ, temperature τ , frequency ω, etc., n = n(t, r, µ, τ, ω, . . .).

In particular, the speed of light is generally smaller than that in vacuum when
propagating within media of low density, such as atmospheres or liquids,

c� c◦, n� 1, (3.5.2)

while the speed of light is generally bigger than that in vacuum when propagating
within special guides, or within media of very high density, such as the interior
of stars and quasars,

c� c◦, n� 1. (3.5.3)

Academic claims of recovering the speed of light in water via photons scattering
among the water molecules are afflicted by numerous inconsistencies studied in
Section 1.2, and the same holds for other aspects.

Assuming that via some unknown manipulation special relativity is shown
to represent consistently the propagation of light within physical media, such a
representation would activate the catastrophic inconsistencies of Theorem 1.5.1.

This is due to the fact that the transition from the speed of light in vacuum to
that within physical media requires a noncanonical or nonunitary transform.

This point can be best illustrated by using the metric originally proposed by
Minkowski, which can be written

η = Diag.(1, 1, 1,−c2◦). (3.5.4)

Then, the transition from c◦ to c = c◦/n in the metric can only be achieved via
a noncanonical or nonunitary transform

η = Diag.(1, 1, 1,−c2◦)→ η̂ =

= Diag.(1, 1, 1,−c◦/n2) = U × η × U †, (3.5.5a)

U × U † = Diag.(1, 1, 1, 1/n2) 6= I. (3.5.5b)

An invariant resolution of the limitations of special relativity for closed and
reversible systems of extended and deformable particles under Hamiltonian and
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non-Hamiltonian interactions has been provided by the lifting of special rela-
tivity into a new formulation today known as Santilli isorelativity, where: the
prefix “iso” stands to indicate that relativity principles apply on isospacetime
over isofields; and the characterization of “special” or “general” is inapplicable
because, as shown below, isorelativity achieves a geometric unification of special
and general relativities.

Isorelativity was first proposed by R. M. Santilli in Ref. [58] of 1983 via
the first invariant formulation of iso-Minkowskian spaces and related iso-Lorentz
symmetry. The studies were then continued in: Ref. [59] of 1985 with the first
isotopies of the rotational symmetry; Ref. [49] of 1993 with the first isotopies
of the SU(2)-spin symmetry; Ref. [60] of 1993 with the first isotopies of the
Poincaré symmetry; Ref. [51] of 1998 with the first isotopies of the SU(2)-isospin
symmetries, Bell’s inequalities and local realism; and Refs. [61,62] on the first
isotopies of the spinorial covering of the Poincaré symmetry.

The studies were then completed with memoir [26] of 1998 presenting a com-
prehensive formulation of the iso-Minkowskian geometry and its capability to
unify the Minkowskian and Riemannian geometries, including its formulation via
the mathematics of the Riemannian geometry (such iso-Christoffel’s symbols, iso-
covariant derivatives, etc.). The author then dedicated various monographs to
the field through the years.

Numerous independent studies on Santilli isorelativity are available in the lit-
erature, one can inspect in this respect Refs. [32–43] and papers quoted therein;
Aringazin’s proof [63] of the direct universality of the Lorentz-Poincaré-Santilli
isosymmetry for all infinitely possible spacetimes with signature (+, +, +, −);
Mignani’s exact representation [64] of the large difference in cosmological red-
shifts between quasars and galaxies when physically connected; the exact repre-
sentation of the anomalous behavior of the meanlives of unstable particles with
speed by Cardone et al. [65–66]; the exact representation of the experimental
data on the Bose-Einstein correlation by Santilli [67] and Cardone and Mignani
[68]; the invariant and exact validity of the iso-Minkowskian geometry within the
hyperdense medium in the interior of hadrons by Arestov et al. [69]; the first
known exact representation of molecular features by Santilli and Shillady [70,71];
and numerous other contributions.

Evidently we cannot review isorelativity in the necessary details to avoid a pro-
hibitive length. Nevertheless, to achieve minimal self-sufficiency of this presenta-
tion, it is important to outline at least its main structural lines (see monograph
[55] for detailed studies).

The central notion of isorelativity is the lifting of the basic unit of the Min-
kowski space and of the Poincaré symmetry, I = Diag.(1, 1, 1, 1), into a 4 × 4-
dimensional, nowhere singular and positive-definite matrix Î = Î4×4 with an
unrestricted functional dependence on local spacetime coordinates x, speeds v,
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accelerations a, frequencies ω, wavefunctions ψ, their derivative ∂ψ, and/or any
other needed variables,

I = Diag.(1, 1, 1)→ Î(x, v, a, ω, ψ, ∂ψ, . . .) =

= 1/T̂ (x, v, ω, ψ, ∂ψ, . . .) > 0. (3.5.6)

Isorelativity can then be constructed via the method of Section 3.4.6, namely,
by assuming that the basic noncanonical or nonunitary transform coincides with
the above isounit

U × U † = Î = Diag.(g11, g22, g33, g44),

gµµ = gµµ(x, v, ω, ψ, ∂ψ, . . .) > 0, µ = 1, 2, 3, 4, (3.5.7)

and then subjecting the totality of quantities and their operation of special rela-
tivity to the above transform.

This construction is, however, selected here only for simplicity in pragmatic
applications, since the rigorous approach is the construction of isorelativity from
its abstract axioms, a task we have to leave to interested readers for brevity (see
the original derivations [7]).

This is due to the fact that the former approach evidently preserves the original
eigenvalue spectra and does not allow the identification of anomalous eigenval-
ues emerging from the second approach, such as those of the SU(2) and SU(3)
isosymmetries [51].

Let M(x, η,R) be the Minkowski space with local coordinates x = (xµ), metric
η = Diag.(1, 1, 1,−1) and invariant

x2 = (xµ × ηµν × xν)× I ∈ R. (3.5.8)

The fundamental space of isorelativity is the Minkowski-Santilli isospace [58] and
related topology [10,22–25], M̂(x̂, η̂, R̂) characterized by the liftings

I = Diag.(1, 1, 1, 1)→ U × I × U † = Î = 1/T̂ , (3.5.9a)

η = Diag.(1, 1, 1,−1)× I → (U †−1 × η × U−1)× Î = η̂ =

= T̂ × η = Diag.(g11, g22, g33,−g44)× Î , (3.5.9b)

with consequential isotopy of the basic invariant

x2 = (xµ × ηµν × xν)× I ∈ R→

→ U × x2 × U † = x̂2̂ = (x̂µ×̂m̂µν × xν)× I ∈ R, (3.5.10)

whose projection in conventional spacetime can be written

x̂2̂ = [xµ × η̂µν(x, v, a, ω, ψ, ∂ψ, . . .)× xν ]× Î . (3.5.11)
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The nontriviality of the above lifting is illustrated by the following:29

THEOREM 3.5.1: The Minkowski-Santilli isospaces are directly universal, in
the sense of admitting as particular cases all possible spaces with the same signa-
ture (+,+,+,−), such as the Minkowskian, Riemannian, Finslerian and other
spaces (universality), directly in terms of the isometric within fixed local variables
(direct universality).

Therefore, the correct formulation of the Minkowski-Santilli isogeometry re-
quires the isotopy of all tools of the Riemannian geometry, such as the iso-
Christoffel symbols, isocovariant derivative, etc. (see for brevity Ref. [15]).

Despite that, one should keep in mind that, in view of the positive-definiteness
of the isounit [34,79], the Minkowski-Santilli isogeometry coincides at the ab-
stract level with the conventional Minkowski geometry, thus having a null isocur-
vature (because of the basic mechanism of deforming the metric η by the amount
T̂ (x, . . .) while deforming the basic unit of the inverse amount Î = 1/T̂ ).

The geometric unification of the Minkowskian and Riemannian geometries
achieved by the Minkowski-Santilli isogeometry constitutes the evident geometric
foundation for the unification of special and general relativities studied below.

It should be also noted that, following the publication in 1983 of Ref. [58],
numerous papers on “deformed Minkowski spaces” have appeared in the physical
and mathematical literature (generally without a quotation of their origination
in Ref. [58]).

These “deformations” are ignored in these studies because they are formulated
via conventional mathematics and, consequently, they all suffer of the catas-
trophic inconsistencies of Theorem 1.5.1.

By comparison, isospaces are formulated via isomathematics and, therefore,
they resolve the inconsistencies of Theorem 1.5.1, as shown in Section 3.5.9. This
illustrates again the necessity of lifting the basic unit and related field jointly
with all remaining conventional mathematical methods.

3.5.3 Poincaré-Santilli Isosymmetry and its Isodual
Let P (3.1) be the conventional Poincaré symmetry with the well known ten

generators Jµν , Pµ and related commutation rules hereon assumed to be known.
The second basic tool of isorelativity is the Poincaré-Santilli isosymmetry

P̂ (3.1) studied in detail in monograph [55] that can be constructed via the isothe-

29Fabio Cardone, Roberto Mignani and Alessio Marrani have uploaded a number of papers in the section
hep-th of Cornell University arXiv copying ad litteram the results of paper [83], including the use of the
same symbols, without any quotation at all of Santilli’s preceding vast literature in the field. Educators,
colleagues and editors of scientific journals are warned of the existence on ongoing legal proceedings one
can inspect in the web site http://www.scientificethics.org/
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ory of Section 3.2, resulting in the isocommutation rules [58,60]

[Jµν ,̂Jαβ ] = i× (η̂να × Jβµ − η̂µα × Jβν − η̂νβ × Jαµ + η̂µβ × Jαν), (3.5.12a)

[Jµν ,̂Pα] = i× (η̂µα × Pν − η̂να × Pµ), (3.5.12b)

[Pµ ,̂Pν ] = 0, (3.5.12c)

where we have followed the general rule of the Lie-Santilli isotheory according
to which isotopies leave observables unchanged (since Hermiticity coincides with
iso-Hermiticity) and merely change the operations among them.

The iso-Casimir invariants of P̂ (3.1) are given by

P 2̂ = Pµ×̂Pµ = Pµ × η̂µν × P ν = Pk × gkk × Pk − p4 × g44 × P4, (3.5.13a)

W 2̂ = Wµ×̂Wµ, Wµ = ε̂µαβρ×̂Jαβ×̂P ρ, (3.5.13b)

and they are at the foundation of classical and operator isorelativistic kinematics.
Since Î > 0, it is easy to prove that the Poincaré-Santilli isosymmetry is iso-

morphic to the conventional symmetry. It then follows that the isotopies increase
dramatically the arena of applicability of the Poincaré symmetry, from the sole
Minkowskian spacetime to all infinitely possible spacetimes.

Next, the reader should be aware that the Poincaré-Santilli isosymmetry char-
acterizes “isoparticles” (and not particles) via its irreducible isorepresentations.

A mere inspection of the isounit shows that the Poincaré-Santilli isosymme-
try characterizes actual nonspherical and deformable shapes as well as internal
densities and the most general possible nonlinear, nonlocal and nonpotential in-
teractions.

Since any interaction implies a renormalization of physical characteristics, it is
evident that the transition from particles to isoparticles, that is, from motion in
vacuum to motion within physical media, causes an alteration (called isorenormal-
ization), in general, of all intrinsic characteristics, such as rest energy, magnetic
moment, charge, etc.

As we shall see later on, the said isorenormalization has permitted the first
exact numerical representation of nuclear magnetic moments, molecular binding
energies and other data whose exact representation resulted to be impossible for
nonrelativistic and relativistic quantum mechanics despite all possible corrections
conducted over 75 years of attempts.

The explicit form of the Poincaré-Santilli isotransforms leaving invariant line
element (3.5.11) can be easily constructed via the Lie-Santilli isotheory and are
given:

(1) The isorotations [11]

Ô(3) : x̂′ = <̂(θ̂)×̂x̂, θ̂ = θ × Îθ ∈ R̂θ, (3.5.14)
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that, for isotransforms in the (1, 2)-isoplane, are given by

x1′ = x1×cos[θ×(g11×g22)1/2]−x2×g22×g−1
11 ×sin[θ×(g11×g22)1/2], (3.5.15a)

x2′ = x1×g11×g−1
22 ×sin[θ×(g11×g22)1/2]+x2×cos[θ×(g11×g22)1/2]. (3.5.15b)

For the general expression in three dimensions interested reader can inspect
Ref. [7] for brevity.

Note that, since Ô(3) is isomorphic to O(3), Ref. [59] proved, contrary to a
popular belief throughout the 20-th century, that

LEMMA 3.5.1: The rotational symmetry remains exact for all possible signa-
ture-preserving (+,+,+) deformations of the sphere.

The rotational symmetry was believed to be “broken” for ellipsoidal and other
deformations of the sphere merely due to insufficient mathematics for the case
considered because, when the appropriate mathematics is used, the rotational
symmetry returns to be exact, and the same holds for virtually all “broken”
symmetries.

The above reconstruction of the exact rotational symmetry can be geometri-
cally visualized by the fact that all possible signature-preserving deformations of
the sphere are perfect spheres in isospace called isosphere.

This is due to the fact that ellipsoidal deformations of the semiaxes of the per-
fect sphere are compensated on isospaces over isofields by the inverse deformation
of the related unit

Radius 1k → 1/n2
k, (3.5.16a)

Unit 1k → n2
k. (3.5.16b)

We recover in this way the perfect sphere on isospaces over isofields

r̂2̂ = r̂21 + r̂22 + r̂23 (3.5.17)

with exact Ô(3) symmetry, while its projection on the conventional Euclidean
space is the ellipsoid

r21/n
2
1 + r22/n

2
2 + r23/n

2
3, (3.5.18)

with broken O(3) symmetry.

(2) The Lorentz-Santilli isotransforms [26,29]

Ô(3.1) : x̂′ = Λ̂(v̂, . . .)×̂x̂, v̂ = v × Îv ∈ R̂v, (3.5.19)

that, for isotransforms in the (3,4)-isoplane, can be written

x1′ = x1, (3.5.20a)
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x2′ = x2, (3.5.20b)

x3′ = x3 × cosh[v × (g33 × g44)1/2]−

−x4 × g44 × (g33 × g44)−1/2 × sinh[v × (g33 × g44)1/2] =

= γ̂ × (x3 − β × x4), (3.5.20c)

x4′ = −x3 × g33 × (g33 × g44)−1/2 × sinh[v(g33 × g44)1/2]+

+x4 × cosh[v × (g33 × g44)1/2] =

= γ̂ × (x4 − β̂ × x3), (3.5.20b)

where
β̂2 =

vk × gkk × vk
co × g44 × co

, γ̂ =
1

(1− β̂2)1/2
. (3.5.21)

For the general expression interested readers can inspect Ref. [7].
Contrary to another popular belief throughout the 20-th century, Ref. [58]

proved that

LEMMA 3.5.2: The Lorentz symmetry remains exact for all possible signature
preserving (+,+,+,−) deformations of the Minkowski space.

Again, the symmetry remains exact under the use of the appropriate mathe-
matics.

The above reconstruction of the exact Lorentz symmetry can be geometrically
visualized by noting that the light cone

x2
2 + x2

3 − c2o × t2 = 0, (3.5.22)

can only be formulated in vacuum, while within physical media we have the light
isocone

x2
2

n2
2

+
x2

3

n2
3

− c2o × t2

n2(ω, . . .)
= 0, (3.5.23)

that, when formulated on isospaces over isofield, is also a perfect cone, as it is the
case for the isosphere. This property then explains how the Lorentz symmetry is
reconstructed as exact according to Lemma 3.5.2 or, equivalently, that Ô(3.1) is
isomorphic to O(3.1).

(3) The isotranslations [29]

T̂ (4) : x̂′ = T̂ (â, . . .)̂]× x = x̂+ Â(â, x, . . .), â = a× Îa ∈ R̂a, (3.5.24)

that can be written
xµ

′
= xµ +Aµ(a, . . .), (3.5.25a)
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Aµ = aµ(gµµ + aα × [giµ ,̂Pα]/1! + . . .), (3.5.25b)

and there is no summation on the µ indices.
We reach in this way the following important result:

LEMMA 3.5.3 [55]: Isorelativity permits an axiomatically correct extension of
relativity laws to noninertial frames.

In fact, noninertial frames are transformed into frames that are inertial on iso-
spaces over isofields, called isoinertial, as established by the fact that isotransla-
tions (3.5.25) are manifestly nonlinear and, therefore, noninertial on conventional
spaces while they are isolinear on isospaces, according to a process similar to the
reconstruction of locality, linearity and canonicity.

The isoinertial character of the frames can also be seen from the isocommu-
tativity of the linear momenta, Eqs. (3.5.12c), while such a commutativity is
generally lost in the projection of Eqs. (3.5.12c) on ordinary spaces over ordi-
nary fields, thus confirming the lifting of conventional noninertial frames into an
isoinertial form.

This property illustrates again the origin of the name “isorelativity” to indicate
that conventional relativity axioms are solely applicable in isospacetime.

(4) The novel isotopic transformations [60]

Î(1) : x̂′ = ŵ−1̂×̂ x̂ = w−1 × x̂, Î ′ = w−2 × Î , (3.5.26)

where w is a constant,

Î → Î ′ = ŵ−2×̂Î = w−2 × Î = 1/T̂ ′, (3.5.27a)

x̂2̂ = (xµ × η̂µν × xν)× Î ≡ x̂′2̂ =

= [xµ × (w2 × η̂µν)× xν ]× (w2 × Î). (3.5.27b)

Contrary to another popular belief throughout the 20-th century, we therefore
have the following

THEOREM 3.5.2: The Poincaré-Santilli isosymmetry, hereon denoted with

P̂ (3.1) = Ô(3.1)×̂T̂ (4)×̂Î(1), (3.5.28)

and, therefore, the conventional Poincaré symmetry, are eleven dimensional.

The increase of dimensionality of the fundamental spacetime symmetry as, pre-
dictably, far reaching implications, including a basically novel and axiomatically
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consistent grand unification of electroweak and gravitational interactions studied
in Chapter 5.

The simplest possible realization of the above formalism for isorelativistic kine-
matics can be outlined as follows. The first application of isorelativity is that of
providing an invariant description of locally varying speeds of light propagating
within physical media. For this purpose a realization of isorelativity requires the
knowledge of the density of the medium in which motion occurs.

The simplest possible realization of the fourth component of the isometric is
then given by the function

g44 = n2
4(x, ω, . . .), (3.5.29)

normalized to the value n4 = 1 for the vacuum (note that the density of the
medium in which motion occurs cannot be described by special relativity). The
above representation then follows with invariance under P̂ (3.1).

In this case the quantities nk, k = 1, 2, 3, represent the inhomogeneity and
anisotropy of the medium considered. For instance, if the medium is homogeneous
and isotropic (such as water), all metric elements coincide, in which case

Î = Diag.(g11, g22, g33, g44) = n2
4 ×Diag.(1, 1, 1, 1), (3.5.30a)

x̂2̂ =
x2

n2
4

× n2
4 × I ≡ x2, (3.5.30b)

thus confirming that isotopies are hidden in the Minkowskian axioms, and this
may be a reason why they were not been discovered until recently.

Next, isorelativity has been constructed for the invariant description of systems
of extended, nonspherical and deformable particles under Hamiltonian and non-
Hamiltonian interactions.

Practical applications then require the knowledge of the actual shape of the
particles considered, here assumed for simplicity as being spheroidal ellipsoids
with semiaxes n2

1, n
2
2, n

2
3.

Note that the minimum number of constituents of a closed non-Hamiltonian
system is two. In this case we have shapes represented with nαk, α = 1, 2, , . . . , n.

Specific applications finally require the identification of the nonlocal interac-
tions, e.g., whether occurring on an extended surface or volume. As an illustra-
tion, two spinning particles denoted 1 and 2 in condition of deep mutual pene-
tration and overlapping of their wavepackets (as it is the case for valence bonds),
can be described by the following Hamiltonian and total isounit

H =
p1 × p1

2×m1
+
p2 × p2

2×m2
+ V (r), (3.5.31a)

ÎTot = Diag.(n2
11, n

2
12, n

2
13, n

2
14)×Diag.(n2

21, n
2
22, n

2
23, n

2
24)×
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×eN×(ψ̂1/ψ1+ψ̂2/ψ2)×
R
ψ̂1↑(r)

†×ψ̂2↓(r)×dr3 , (3.5.31b)

where N is a positive constant.
The above realization of the isounit has permitted the first known invariant

and numerically exact representation of the binding energy and other features
of the hydrogen, water and other molecules [71,72] (see Chapter 9) for which a
historical 2% has been missing for about one century. The above isounit has also
been instrumental for a number of additional data on two-body systems whose
representation had been impossible with quantum mechanics, such as the origin
of the spin 1 of the ground state of the deuteron that, according to quantum
axioms, should be zero.

Note in isounit (3.5.31) the nonlinearity in the wave functions, the nonlocal-
integral character and the impossibility of representing any of the above features
with a Hamiltonian.

From the above examples interested readers can then represent any other closed
non-Hamiltonian systems.

3.5.4 Isorelativity and Its Isodual
The third important part of the new isorelativity is given by the following

isotopies of conventional relativistic axioms that, for the case of motion along the
third axis, can be written [29] as follows [60]:

ISOAXIOM I. The projection in our spacetime of the maximal causal invariant
isospeed is given by:

VMax = c◦ ×
g
1/2
44

g
1/2
33

= c◦
n3

n4
= c× n3. (3.5.32)

This isoaxiom resolves the inconsistencies of special relativity recalled earlier for
particles and electromagnetic waves propagating within physical media such as
water.

In fact, water is homogeneous and isotropic, thus requiring that

g11 = g22 = g33 = g44 = 1/n2, (3.5.33)

where n is the index of refraction.
In this case the maximal causal speed for a massive particle is c◦ as experi-

mentally established, e.g., for electrons, while the local speed of electromagnetic
waves is c = c◦/n, as also experimentally established.

Note that such a resolution requires the abandonment of the speed of light as
the maximal causal speed for motion within physical media, and its replacement
with the maximal causal speed of particles.
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It happens that in vacuum these two maximal causal speeds coincide. However,
even in vacuum the correct maximal causal speed remains that of particles and
not that of light, as generally believed.

At any rate, physical media are generally opaque to light but not to particles.
Therefore, the assumption of the speed of light as the maximal causal speed
within media in which light cannot propagate would be evidently vacuous.

It is an instructive exercise for interested readers to prove that

LEMMA 3.5.4: The maximal causal isospeed of particles on isominkowski space
over an isofield remains c◦.

In fact, on isospaces over isofields c2◦ is deformed by the index of refraction
into the form c2◦/n

2
4, but the corresponding unit cm2/sec2 is deformed by the

inverse amount, n2
4× cm2/sec2, thus preserving the numerical value c2◦ due to the

structure of the isoinvariant studied earlier.
The understanding of isorelativity requires the knowledge that, when formu-

lated on the Minkowski-Santilli isospace over the isoreals, Isoaxiom I coincides
with the conventional axiom that is, the maximal causal speed returns to be c.
The same happens for all remaining isoaxioms.

ISOAXIOM II. The projection in our spacetime of the isorelativistic addition
of isospeeds within physical media is given by:

vTot =
v1 + v2

1 +
v1 × g33 × v2
c◦ × g44 × c◦

=
v1 + v2

1 +
v1 × n2

4 × v2
c◦ × n2

3 × c◦

. (3.5.34)

We have again the correct result that the sum of two maximal causal speeds in
water,

Vmax = c◦ × (n3/n4), (3.5.35)

yields the maximal causal speed in water, as the reader is encouraged to verify.
Note that such a result is impossible for special relativity. Note also that the

“relativistic” sum of two speeds of lights in water, c = c◦/n, does not yield the
speed of light in water, thus confirming that the speed of light within physical me-
dia, assuming that they are transparent to light, is not the fundamental maximal
causal speed.

ISOAXIOM III. The projection in our spacetime of the isorelativistic laws of
dilation of time t◦ and contraction of length `◦ and the variation of mass m◦ with
speed are given respectively by:

t = γ̂ × t◦, (3.5.36a)
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` = γ̂−1 × `◦, (3.5.36b)

m = γ̂ ×m◦. (3.5.36c)

β̂ =
vk × gkk
co × g44

=
vk

VMax
, γ̂ =

1

(1− β̂2)1/2
, (3.5.d)

where one should npote that, since the speed is always smaller than the maximal
possible speed, γ̂ cannot assume imaginary values.

Note that in water these values coincide with the relativistic ones as it should
be since particles such as the electrons have in water the maximal causal speed
c◦.

Note again the necessity of avoiding the interpretation of the local speed of
light as the maximal local causal speed. Note also that the mass diverges at the
maximal local causal speed, but not at the local speed of light.

ISOAXIOM IV. The projection in our spacetime of the iso-Doppler law is given
by the isolaw (here formulated for simplicity for 90◦ angle of aberration):

ω = γ̂ × ω◦. (3.5.37)

This isorelativistic axioms permits an exact, numerical and invariant representa-
tion of the large differences in cosmological redshifts between quasars and galaxies
when physically connected.

In this case light simply exits the huge quasar chromospheres already redshifted
due to the decrease of the speed of light, while the speed of the quasars can remain
the same as that of the associated galaxy. Note again as this result is impossible
for special relativity.

Isoaxiom IV also permits a numerical interpretation of the internal blue- and
redshift of quasars due to the dependence of the local speed of light on its fre-
quency.

Finally, Isoaxiom IV predicts that a component of the predominance toward
the red of sunlight at sunset is of iso-Doppler nature. This prediction is based on
the different travel within atmosphere of light at sunset as compared to the zenith
(evidently because of the travel within a comparatively denser atmosphere).

By contrast, the popular representation of the apparent redshift of sunlight
at sunset is that via the scattering of light among the molecules composing our
atmosphere. Had this interpretation be correct, the sky at the zenith should be
red, while it is blue.

At any rate, the claim of representation of the apparent redshift via the scat-
tering of light is political because of the impossibility of reaching the needed
numerical value of the redshift, as serious scholars are suggested to verify.
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ISOAXIOM V. The projection in our spacetime of the isorelativistic law of
equivalence of mass and energy is given by:

E = m× V 2
Max = m× c2◦ ×

g44
g33

= m× c2◦ ×
n2

3

n2
4

= c× n3 (3.5.38)

Note a crucial axiomatic difference between the conventional axiom E =
m × ccirc

2 and isoaxiom V. They coincide in vacuum, water and other media
transparent to light, but are otherwise structurally different. We should note
that, in early references, the conventional axiom E = m× ccirc2, where c◦ is the
speed of light in vacuum, was lifted into the form E = m× c2 where c is the local
speed of light within physical media. However, the latter form lead to inconsis-
tencies in applications studied in Volume II (e.g., when the medium considered
is opaque to light in which case both c◦ and c are meaningless) and had to be
further lifted into Isoaxiom V.

Among various applications, Isoaxiom V removes any need for the “missing
mass” in the universe. This is due to the fact that all isotopic fits of experimental
data agree on values g44 � 1 within the hyperdense media in the interior of
hadrons, nuclei and stars [7].

As a result, Isoaxiom V yields a value of the total energy of the universe
dramatically bigger than that believed until now under the assumption of the
universal validity of the speed of light in vacuum.

For other intriguing applications of Isoaxioms V, e.g., for the rest energy of
hadronic constituents, we refer the interested reader to monographs [55,61].

The isodual isorelativity for the characterization of antimatter can be easily
constructed via the isodual map of Chapter 2, and its explicit study is left to the
interested reader for- brevity.

3.5.5 Isorelativistic Hadronic Mechanics and its Isoduals
The isorelativistic extension of relativistic hadronic mechanics is readily per-

mitted by the Poincaré-Santilli isosymmetry. In fact, iso-invariant (3.5.13a) char-
acterizes the following iso-Gordon equation on Ĥ over Ĉ [55]

p̂µ×̂|ψ̂〉 = −î×̂∂̂µ|ψ̂〉 = −i× Îνµ × ∂ν |ψ̂〉, (3.5.39a)

(p̂µ×̂p̂µ + m̂2
◦×̂ĉ4)×̂|ψ̂〉 = (η̂αβ × ∂α × ∂β +m2

◦ × c4)× |ψ̂〉 = 0. (3.5.39b)
The linearization of the above second-order equations into the Dirac-Santilli

isoequation has been first studied in Refs. [60–62] and then by other authors (al-
though generally without the use of isomathematics, thus losing the invariance).

By recalling the structure of Dirac’s equation as the Kronecker product of a
spin 1/2 massive particle and its antiparticle of Chapter 2, the Dirac-Santilli isoe-
quation is formulated on the total isoselfadjoint isospace and related isosymmetry

M̂ tot = [M̂orb(x̂, η̂, R̂)× Ŝspin(2)]×
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×[M̂d orb(x̂d, η̂d, R̂d)× Ŝd spin(2)] = M̂d tot, (3.5.40a)

Ŝtot = P̂ (3.1)× P̂ d(3.1) = Ŝd tot, (3.5.40b)

and can be written [29]

[γ̂µ×̂(p̂µ − ê×̂Âµ) + î×̂m̂]×̂ |φ(x)〉 = 0, (3.5.41a)

γ̂µ = gµµ × γµ × Î , (3.5.41b)

where the γ’s are the conventional Dirac matrices.
Note the appearance of the isometric elements directly in the structure of the

isogamma matrices and their presence also when the equation is projected in the
conventional spacetime.

The following generators

Jµν = (Sk, Lk4), Pµ, (3.5.42a)

Sk = (ε̂kij ×̂ γ̂i ×̂ γ̂j)/2, Lk4 = γ̂k×̂γ̂4/2, Pµ = p̂µ, (3.5.42b)

characterize the isospinorial covering of the Poincaré-Santilli isosymmetry.
The notion of “isoparticle” can be best illustrated with the above realization

because it implies that, in the transition from motion in vacuum (as particles
have been solely detected and studied until now) to motion within physical media,
particles generally experience the alteration, called “mutation”, of all intrinsic
characteristics, as illustrated by the following isoeigenvalues,

Ŝ2̂×̂|ψ̂〉 =
g11 × g22 + g22 × g33 + g33 × g11

4
× |ψ̂〉, (3.5.43a)

Ŝ3×̂|ψ̂〉 =
(g11 × g22)1/2

2
× |ψ̂〉. (3.5.43b)

The mutation of spin then characterizes a necessary mutation of the intrinsic
magnetic moment given by [29]

µ̃ =
(g33
g44

)1/2
× µ, (3.5.44)

where µ is the conventional magnetic moment for the same particle when in
vacuum. The mutation of the rest energy and of the remaining characteristics
has been identified before via the isoaxioms.

Note that the invariance under isorotations allows the rescaling of the radius
of an isosphere. Therefore, for the case of the perfect sphere we can always have
g11 = g22 = g33 = g44 in which case the magnetic moment is not mutated. These
results recover conventional classical knowledge according to which the alteration
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of the shape of a charged and spinning body implies the necessary alteration of its
magnetic moment.

The construction of the isodual isorelativistic hadronic mechanics is left to the
interested reader by keeping in mind that the iso-Dirac equation is isoselfdual as
the conventional equation.

To properly understand the above results, one should keep in mind that the
mutation of the intrinsic characteristics of particles is solely referred to the con-
stituents of a hadronic bound state under conditions of mutual penetration of their
wave packets (such as one hadronic constituent) under the condition of recovering
conventional characteristics for the hadronic bound state as a whole (the hadron
considered), much along Newtonian subsidiary constrains on non-Hamiltonian
forces, Eqs. (3.1.6).

It should be also stressed that the above indicated mutations violate the uni-
tary condition when formulated on conventional Hilbert spaces, with consequential
catastrophic inconsistencies, Theorem 1.5.2.

As an illustration, the violation of causality and probability law has been
established for all eigenvalues of the angular momentum M different than the
quantum spectrum

M2 × |ψ〉 = `(`+ 1)× |ψ〉, ` = 0, 1, 2, 3, . . . . (3.5.45)

As a matter of fact, these inconsistencies are the very reason why the mutations
of internal characteristics of particles for bound states at short distances could
not be admitted within the framework of quantum mechanics.

By comparison, hadronic mechanics has been constructed to recover unitarity
on iso-Hilbert spaces over isofields, thus permitting an invariant description of
internal mutations of the characteristics of the constituents of hadronic bound
states, while recovering conventional features for states as a whole.

Far from being mere mathematical curiosities, the above mutations permit
basically new structure models of hadrons, nuclei and stars, with consequential,
new clean energies and fuels (see Chapters 11, 12).

These new advances are prohibited by quantum mechanics precisely because of
the preservation of the intrinsic characteristics of the constituents in the transi-
tion from bound states at large mutual distance, for which no mutation is possible,
to the bound state of the same constituents in condition of mutual penetration,
in which case mutations have to be admitted in order to avoid the replacement
of a scientific process with unsubstantiated personal beliefs one way or the other
(see Chapter 12 for details).

3.5.6 Isogravitation and its Isodual
As indicated in Section 1.4, there is no doubt that the classical and operator

formulations of gravitation on a curved space have been the most controversial
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theory of the 20-th century because of an ever increasing plethora of problematic
aspects remained vastly ignored. By contrast, as also reviewed in Section 1.4,
special relativity in vacuum has a majestic axiomatic consistence in its invariance
under the Poincaré symmetry.

Recent studies have shown that the formulation of gravitation on a curved
space or, equivalently, the formulation of gravitation based on “covariance”, is
necessarily noncanonical at the classical level and nonunitary at the operator
level, thus suffering of all catastrophic inconsistencies of Theorems 1.4.1 and 1.4.2.

These catastrophic inconsistencies can only be resolved via a new conception
of gravity based on a universal invariance, rather than covariance.

Additional studies have identified profound axiomatic incompatibilities be-
tween gravitation on a curved space and electroweak interactions. These in-
compatibilities have resulted to be responsible for the lack of achievement of an
axiomatically consistent grand unification since Einstein’s times (see Chapter 14).

No knowledge of isotopies can be claimed without a knowledge that isorelativity
has been constructed to resolve at least some of the controversies on gravitation.
The fundamental requirement is the abandonment of the formulation of gravity
via curvature on a Riemannian space and its formulation instead on an iso-
Minkowskian space via the following steps characterizing exterior isogravitation
in vacuum, first presented in Refs. [73,74]:

I) Factorization of any given Riemannian metric representing exterior gravita-
tion gext(x) into a nowhere singular and positive-definite 4×4-matrix T̂ (x) times
the Minkowski metric η,

gext(x) = T̂ extgrav(x)× η; (3.5.47)

II) Assumption of the inverse of T̂grav as the fundamental unit of the theory,

Îextgrav(x) = 1/T̂ extgrav(x); (3.5.48)

III) Submission of the totality of the Minkowski space and relative symmetries
to the noncanonical/nonunitary transform

U(x)× I†(x) = Îextgrav. (3.5.49)

The above procedure yields the isominkowskian spaces and related geometry
M̂(x̂, η̂, R̂), resulting in a new conception of gravitation, exterior isogravity, with
the following main features [26]:

i) Isogravity is characterized by a universal symmetry (and not a covariance),
the Poincaré-Santilli isosymmetry P̂ (3.1) for the gravity of matter with isounit
Îextgrav(x), the isodual isosymmetry P̂ d(3.1) for the gravity of antimatter, and the
isoselfdual symmetry P̂ (3.1) × P̂ d(3.1) for the gravity of matter-antimatter sys-
tems;
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ii) All conventional field equations, such as the Einstein-Hilbert and other field
equations, can be formulated via the Minkowski-Santilli isogeometry since the
latter preserves all the tools of the conventional Riemannian geometry, such as
the Christoffel’s symbols, covariant derivative, etc. [15];

iii) Isogravitation is isocanonical at the classical level and isounitarity at the
operator level, thus resolving the catastrophic inconsistencies of Theorems 1.5.1
and 1.5.2;

iv) An axiomatically consistent operator version of gravity always existed and
merely crept in unnoticed through the 20-th century because gravity is imbedded
where nobody looked for, in the unit of relativistic quantum mechanics, and it is
given by isorelativistic hadronic mechanics outlined in the next section.

v) The basic feature permitting the above advances is the abandonment of
curvature for the characterization of gravity (namely, curvature characterized
by metric gext(x) referred to the unit I) and its replacement with isoflatness,
namely, the verification of the axioms of flatness in isospacetime, while pre-
serving conventional curvature in its projection on conventional spacetime (or,
equivalently, curvature characterized by the g(x) = T̂ extgrav(x) × η referred to the
isounit Îgrav(x) in which case curvature becomes null due to the inter-relation
Îextgrav(x) = 1/T̂ extgrav(x)) [26].

A resolution of numerous controversies on classical formulations of gravity then
follows from the above main features, such as:

a) The resolution of the century old controversy on the lack of existence of
consistent total conservation laws for gravitation on a Riemannian space, which
controversy is resolved under the universal P̂ (3.1) symmetry by mere visual ver-
ification that the generators of the conventional and isotopic Poincaré symmetry
are the same (since they represent conserved quantities in the absence and in the
presence of gravity);

b) The controversy on the fact that gravity on a Riemannian space admits
a well defined “Euclidean”, but not “Minkowskian” limit, which controversy is
trivially resolved by isogravity via the limit

Îextgrav(x)→ I; (3.5.50)

c) The resolution of the controversy that Einstein’s gravitation predicts a value
of the bending of light that is twice the experimental value, one for curvature
and one for newtonian attraction, which controversy is evidently resolved by the
elimination of curvature as the origin of the bending, as necessary in any case for
the free fall of a body along a straight radial line in which no curvature of any
type is conceivably possible or credible; and other controversies.

A resolution of the controversies on quantum gravity can be seen from the prop-
erty that relativistic hadronic mechanics of the preceding section is a quantum
formulation of gravity whenever T̂ = T̂grav.
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Such a form of operator gravity is as axiomatically consistent as conventional
relativistic quantum mechanics because the two formulations coincide, by con-
struction, at the abstract, realization-free level.

As an illustration, whenever

T̂ extgrav = Diag.(gext11 , g
ext
22 , g

ext
33 , g

ext
44 ), gµµ > 0, (3.5.51)

the Dirac-Santilli isoequation (3.5.41) provides a direct representation of the con-
ventional electromagnetic interactions experienced by an electron, represented
by the vector potential Aµ, plus gravitational interactions represented by the
isogamma matrices.

Once curvature is abandoned in favor of the broader isoflatness, the axiomatic
incompatibilities existing between gravity and electroweak interactions are re-
solved because:

i) isogravity possesses, at the abstract level, the same Poincaré invariance of
electroweak interactions;

ii) isogravity can be formulated on the same flat isospace of electroweak theo-
ries; and

iii) isogravity admits positive and negative energies in the same way as it occurs
for electroweak theories.

An axiomatically consistent iso-grand-unification then follows, as studied in
Chapter 14.

Note that the above grand-unification requires the prior geometric unification
of the special and general relativities, that is achieved precisely by isorelativity
and its underlying iso-Minkowskian geometry.

In fact, special and general relativities are merely differentiated in isospecial
relativity by the explicit realization of the unit. In particular, black holes are now
characterized by the zeros of the isounit [7]

Îextgrav(x) = 0. (3.5.52)

The above formulation recovers all conventional results on gravitational singu-
larities, such as the singularities of the Schwarzschild’s metric, since they are all
described by the gravitational content T̂grav(x) of g(x) = T̂grav(x)× η, since η is
flat.

This illustrates again that all conventional results of gravitation, including
experimental verifications, can be reformulated in invariant form via isorelativity.

Moreover, the problematic aspects of general relativity mentioned earlier refer
to the exterior gravitational problem. Perhaps greater problematic aspects exist
in gravitation on a Riemannian space for interior gravitational problems, e.g.,
because of the lack of characterization of basic features, such as the density of
the interior problem, the locally varying speed of light, etc.

These additional problematic aspects are also resolved by isorelativity due to
the unrestricted character of the functional dependence of the isometric that,
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therefore, permits a direct geometrization of the density, local variation of the
speed of light, etc.

The above lines constitute only the initial aspects of isogravitation since its
most important branch is interior isogravitation as characterized by isounit and
isotopic elements of the illustrative type

Îintgrav = 1/T̂ intgrav > 0, (3.5.53a)

T̂ intgrav = Diag.(gint11 /n
2
1, g

int
22 /n

2
2, g

int
33 /n

2
3, g

int
44 /n

2
4), (3.5.53b)

permitting a geometric representation directly via the isometric of the actual shape
of the body considered, in the above case an ellipsoid with semiaxes n2

1, n
2
2, n

2
3, as

well as the (average) interior density n2
4 with consequential representation of the

(average value of the) interior speed of light C = c/n4.
A most important point is that the invariance of interior isogravitation under

the Poincaré-Santilli isosymmetry persists in its totality since the latter symme-
try is completely independent from the explicit value of the isounit or isotopic
element, and solely depends on their positive-definite character.

Needless to say, isounit (3.4.53) is merely illustrative because a more accurate
interior isounit has a much more complex functional dependence with a locally
varying density, light speed and other characteristics as they occur in reality.

Explicit forms of these more adequate models depends on the astrophysical
body considered, e.g., whether gaseous, solid or a mixture of both, and their
study is left to the interested reader.

It should also be noted that gravitational singularities should be solely referred
to interior models evidently because exterior descriptions of type (3.5.52) are a
mere approximation or a geometric abstraction.

In fact, gravitational singularities existing for exterior models are not neces-
sarily confirmed by the corresponding interior formulations. Consequently, the
current views on black holes could well result to be pseudo-scientific beliefs be-
cause the only scientific statement that can be proffered at this time without
raising issue of scientific ethics is that the gravitational features of large and hy-
perdense aggregations of matter, whether characterizing a “black” or “brown”
hole, are basically unresolved at this time.

Needless to say, exterior isogravitation is a particular case of the interior for-
mulation. Consequently, from now on, unless otherwise specified isogravitation
will be referred to the interior form.

The cosmological implications are also intriguing and will be studied in Chap-
ter 6. It should be indicated that numerous formulations of gravitation in flat
Minkowski space exist in the literature, such as Ref. [79] and papers quoted
therein. However, these formulations have no connection with isogravity since
the background space of the former is conventional, while that of the latter is a
geometric unification of the Minkowskian and Riemannian spaces.
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It is hoped that readers with young minds of any age admit the incontrovertible
character of the limitations of special and general relativities and participate in
the laborious efforts toward new vistas because any lack of participation in new
frontiers of science, whether for personal academic interest or other reason, is a
gift of scientific priorities to others.
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Appendix 3.A
Universal Enveloping Isoassociative Algebras

The main structural component of Lie’s theory is its universal enveloping as-
sociative algebra ξ(L) of a Lie algebra L. In fact, Lie algebras can be obtained
as the attached antisymmetric part [ξ(L)]− ≈ L; the infinite dimensional basis
of ξ(l) permit the exponentiation to a finite transformation group G; and the
representation theory is crucially dependent on the right and/or left modular
associative action originally defined on G.

In Section 3.2.9B we have reviewed the rudiments of the universal enveloping
isoassociative algebras ξ̂(L) of a Lie-Santilli isoalgebra L̂. It is easy to see that
all features occurring for ξ(L) carry over to the covering isoform ξ̂(L).30

In this appendix we would like to outline a more technical definition of uni-
versal enveloping isoassociative algebras since they are at the foundations of the
unification of simple Lie algebras of dimension N into a single Lie-Santilli isoal-
gebra of the same dimension (Section 3.2.13).

With reference to Figure ??, the envelop ξ(L) can be defined as the (ξ, τ) where
ξ is an associative algebra and τ is a homomorphism of L into the antisymmetric
algebra ξ− attached to ξ such that: if ξ′ is another associative algebra and τ ′ is
another homomorphism of L into ξ′−, a unique isomorphism γ exists between ξ
and ξ′ in such a way that the diagram in the l.h.s of Figure ?? is commutative.
The above definition evidently expresses the uniqueness of the Lie algebra L up to
local isomorphism, and illustrates the origin of the name “universal” enveloping
algebra of L.

With reference to the r.h.s. diagram of Figure ??, the universal enveloping
isoassociative algebra ξ̂(L) of a Lie algebra L was introduced in Ref. [4] as the
set {(ξ, τ), i, ξ̂, τ̂} where: (ξ, τ) is a conventional envelope of L; i is an isotopic
mapping L→ i(L) = L̂ ∼ L; ξ̂ is an associative algebra generally nonisomorphic
to ξ; τ̂ is a homomorphism of L̂ into ξ̂−; such that: if ξ̂′ is another associative
algebra and τ̂ ′ is another homomorphism of L̂ into ξ̂′−, there exists a unique

30We use the denomination ξ̂(L) rather than ξ̂(L̂) to stress the fact that the generators of ξ are those of

L and not of L̂, a requirement that is essential for consistent physical applications because the generators
of L represent ordinary physical quantities (such as total energy, total linear momentum, etc.) that, as
such, cannot be changed by isotopies.
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Figure 3.A.1. A schematic view of the universal enveloping associative algebra of a Lie algebra
L and its lifting for the Lie-Santilli isoalgebra L̂ according to the original proposal [4] of 1978.

isomorphism γ̂ of ξ̂ into ξ̂′ with τ̂ ′ = γ(τ̂) and two unique isotopies i(ξ) = ξ̂ and
i(ξ̂) = ξ̂′.

A primary objective of the above definition of isoenvelope is the lack of unique-
ness of the Lie algebra characterized by the isoenvelope or, equivalently, the char-
acterization of a family of generally nonisomorphic Lie algebras via the use of
only one basis. The above definition of isoenvelope also explains in more de-
tails the variety of realization of the simple 3-dimensional Lie-Santilli isoalgebra
L̂3 provided in Eq. (3.2.236), and may be of assistance in extending the same
classification to other isoalgebras.

The above notion of isoenvelope represents the essential mathematical struc-
ture of hadronic mechanics, namely, the preservation of the conventional basis,
i.e., the set of observables of quantum mechanics, and the generalization of the
operations on them via an infinite number of isotopies so as to admit a new class
of interactions structurally beyond the possibilities of quantum mechanics.
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Appendix 3.B
Recent Advances in the TSSFN Isotopology

In Section 3.2.7 we introduced the elements of the Tsagas-Sourlas-Santilli-
Falcón-Núñez isotopology (or TSSFN Isotopology for short). In this appendix
we outline recent advances on the isotopology by the Spanish mathematicians
R. M. Falcón Ganfornina and J. Núñez Valdés [24,25].

PROPOSITION 3.2.B1: Consider a mathematical structure

(E,+,×, ◦, •, . . .),

if we construct an isotopic lifting such that:

a) Both primaries ∗, Î and secondaries ?, Ŝ isotopic elements are used.

b) (E, ?, ∗, . . . ) is a structure of the same type as the initial, which is endowed
with isounits S, I, . . . , with respect to ?, ∗ , . . . , respectively.

c) I is an unit with respect to ∗ in the corresponding general set V , being T =
Î−I ∈ V the associated isotopic element.

Then, by defining in the isotopic level the operations:

â+̂b̂ = â ? b; â×̂b̂ = â ∗ b; . . . (3.B.1)

And being defined in the projection level:

â = a ∗ Î; α+̂β = ((α ∗ T ) ? (β ∗ T )) ∗ Î; α×̂β = α ∗ T ∗ β; . . . (3.B.2)

It is obtained that the isostructure (Ê, +̂, ×̂, . . .) is of the same type as the initial
one.

The study in Refs. [24,25] is made by taking into consideration both isotopic
and projection levels. Equivalent results related to injective isotopies are also
obtained. In the first place, Proposition 3.2.A1 is verified for topological spaces
and for their elements and basic properties: isotopologies, isoclosed sets, isoopen
sets, T2, etc:
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A topological isospace is every isospace endowed with a topological space struc-
ture. If, besides, such an isospace is an isotopic projection of a topological space,
it is called isotopological isospace.

Similarly, they are defined concepts of (iso)boundary isopoint, closure of a set,
closed set, isointerior isopoint, interior of a set, open set, (iso)Hausdorff isospace
and second countable isospace, among others.

PROPOSITION 3.2.B2: The space from which any topological isospace in the
isotopic level is obtained can be endowed with the final topology relative to the
mapping I.

The isotopic projection of a topological space is an isotopological isospace in the
projection level. If such a projection is injective, then every topological isospace
in such a level is, in fact, isotopological.

Similar results are obtained for the concepts of (iso)boundary isopoint, isoint-
erior isopoint and (iso)Hausdorff isospace.

Next, Refs. [24,25] generalize Kadeisvili’s isocontinuity [19]. Particularly, the
basic isofield can be endowed with an isoorder, according to the following proce-
dure.

Let K̂ be an isofield associated with a field K, endowed with an order ≤,
by using an isotopology which preserves the inverse element with respect to the
addition. We define the isoorder ≤̂ as â≤̂b̂ if and only if a ≤ b. If the isotopy is
injective, the isoorder ≤̂ en K̂ is defined in the same way.

PROPOSITION 3.2.B3: The isoorders ≤̂ and ≤̂ are orders over K̂ and K̂, of
the same type as ≤.

Let Û be a R̂ isovectorspace with isonorm |̂|.|̂| ≡ |̂|.|| and isoorder ≤̂, obtained
from an isotopy compatible with respect to each one of the initial operations. It
will be said that an isoreal isofunction f̂ of Û is isocontinuous in X̂ ∈ Û , if for all
ε̂>̂Ŝ, there exists δ̂>̂Ŝ such that for all Ŷ ∈ Û with |̂|X̂− Ŷ |̂|<̂δ̂, it is verified that
|̂f̂(X̂)− f̂(Ŷ )̂|<̂ε̂. We will say that f̂ is isocontinuous in Û if it is isocontinuous in
X̂, for all X̂ ∈ Û . Finally, when dealing with injective isotopies, the isocontinuity
in the projection level is defined in a similar way.

PROPOSITION 3.2.B4: The isocontinuity in Û is equivalent to the continuity
in U . In the case of injective isotopies, both ones are equivalent to the one in Û .

The isocontinuity on isotopological isospaces is also analyzed:
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An isocontinuous isomapping in the isotopic level between two topological iso-
spaces M̂ and N̂ is every isomapping f̂ : M̂ → N̂ preserving closures. The
definition in the projection level is given in a similar way.

PROPOSITION 3.2.B5: They are verified that:

a) f̂ is isocontinuous if and only if the mapping f from which comes from is
continuous. That result is similar in the projection level by using injective
isotopies.

b) Every isoconstant isomapping is isocontinuous.

c) Isocontinuity is preserved by both topological composition and product.

Finally, the analysis of (iso)(pseudo)metric isospaces is also concreted:

PROPOSITION 3.2.B6: Let M̂ be a K̂ isovectorspace, isotopic lifting of a
vectorspace M , endowed with a (pseudo)metric d defined on an ordered field K, by
using an isotopy which preserves the inverse element and compatible with respect
to the addition in K. Then, the isofunction d̂ is an iso(pseudo)metric.

Let (M̂, d′) be an (iso)(pseudo)metric K̂ isovectorspace, endowed with an iso-
order ≤̂. Bd′(X̂0, ε̂) = {X̂ ∈ M̂ : d′(X̂, X̂0)<̂ε̂} is called metric ball with center
X̂0 ∈ M̂ and radius ε̂>̂Ŝ. If M is endowed with a (pseudo)metric d, with d̂ = d′,
then every metric ball Bd′ = Bbd = B̂d in M̂, which is isotopic lifting of a metric
ball Bd in M , is called metric isoball in M̂ .

PROPOSITION 3.2.B7: Under conditions of Proposition XXX, if Bd(X0, ε)
is a metric ball in M , then ̂Bd(X0, ε) = Bbd(X̂0, ε̂) is a metric ball in M̂ .

A metric neighborhood of an isopoint X̂ ∈ M̂ is a subset Â ⊆ M̂ containing a
metric ball centered in X̂. The set of metric neighborhoods of X̂ is denoted by
ℵ̂d′bX . Finally, if d′ is the iso-Euclidean isodistance over R̂n, the associated metric
neighborhoods are called iso-Euclidean neighborhoods.

PROPOSITION 3.2.B8: Let d′ and d′′ two (iso)(pseudo)metrics over an
isovectorspace M̂ . It is verified that ℵ̂d′bX = ℵ̂d′′bX if and only if every metric

ball Bd′(X̂, ε̂) contains a ball Bd′′(X̂, ρ̂) and every ball Bd′′(X̂, δ̂) contains a ball
Bd′(X̂, µ̂).



308 RUGGERO MARIA SANTILLI

PROPOSITION 3.2.B9: Every isospace endowed with an (iso)(pseudo)metric
is an isotopological isospace.

PROPOSITION 3.2.B10: Let f̂ : (M̂, d′)→ (N̂ , d′′) be an isomapping between
K̂-isospaces endowed with (iso)(pseudo)metric and let us consider X̂ ∈ M̂ . Then,
f̂ is isocontinuous in X̂ if and only if for all ε̂>̂Ŝ there exists δ̂ ∈ K̂ such that
δ̂>̂Ŝ, and if Ŷ ∈ Bd′(X̂, δ̂), then it is verified that f̂(Ŷ ) ∈ Bd′′(f̂(X̂), ε̂).

PROPOSITION 3.2.B11: Let f̂ : M̂ → N̂ be an isomapping between two
isotopological isospaces M̂ and N̂ . If conditions of the definition of isocontinuity
are satisfied, then f̂ is isocontinuous if and only if f̂−1(Û) is an isoopen of M̂ ,
for all isoopen Û of N̂ .
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Appendix 3.C
Recent Advances on the Lie-Santilli Isotheory

In Section 3.2.9 we have outlined the rudiments of the Lie-Santilli isotheory.
It may be useful for the mathematically oriented reader to outline recent devel-
opments achieved by the Spanish mathematicians R. M. Falcón Ganfornina and
J. Núñez Valdés [24,25,43] in the field beyond those presented in monographs
[2,6,36,37].

Falcón and Núñez introduced in 2001 [37] a new construction model of iso-
topies which was similar to the one proposed by Santilli in 1978 although in its
multivalued version presented by the same author later on [6] (see Chapter 4)
because based on the use of several isolaws and isounits as operations existing
in the initial mathematical structure. Such a model, which from now on will
be called MCIM (isoproduct construction model based on the multiplication), was
later generalized in Refs. [24,25,43]. In a schematic way, Santilli’s isotopies can
be described with the following diagram:

Conventional Level −−−−−−−−−−−−−−−−−→
General Level
(V, ∗, ?, . . .)

∪
(E,+,×, . . .) (E, ?, ∗, . . .)

↓ ] ↓ I

Projection Level π←−−−−−−−−−−−−−−−−−− Isotopic level

(Ê, +̂, ×̂, . . .) (Ê, +̂, ×̂, . . .)

where, by construction:

a) The mapping I : (E, ?, ∗, . . .)→ (Ê, +̂, ×̂, . . .) : X → X̂ is an isomorphism.

b) The isotopic projection is onto:
π : (Ê, +̂, ×̂, . . .)→ (Ê, +̂, ×̂, . . .) : â→ π(â) = â = a ∗ Î.

c) â+̂b̂ = â ? b; â×̂b̂ = â ∗ b; . . . .

d) â = a ∗ Î; α+̂β = ((α ∗ T ) ? (β ∗ T )) ∗ Î; α×̂β = α ∗ T ∗ β; . . . .

PROPOSITION 3.2.C1: The following properties are verified:
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a) The isotopic projection associated with each injective isotopic lifting is an
isomorphism.

b) If the isotopic lifting used is compatible with respect to all of initial operations,
then the isostructure Ê is isomorphic to the initial E.

c) The relation of being isotopically equivalents is of equivalence.

d) Every isotopy π ◦ I : (E,+,×, ◦, •, . . .)→ (Ê, +̂, ×̂, ◦̂, •̂, . . .) can be considered
as an isotopic lifting which follows the MCIM, that is, every mathematical
isostructure is an isostructure with respect to the multiplication.

Then, it has a perfect sense to considerer each one of the isostructures which
result of applying the MCIM to conventional structures. Particularly, we can
consider the construction of Santilli’s isoalgebras (as the isotopic lifting of each
algebra, which is endowed with a structure of algebra).

PROPOSITION 3.2.C2: Let U be a K-algebra and let Û be a K̂-isovector-
space. If a K(a, ?, ∗)-algebra (U, �,�, ·) is used in the general level, then the
isotopic lifting Û corresponding to the isotopy of primary elements Î and � and
secondary ones Ŝ and �, when MCIM is used, has a structure of isoalgebra on K̂,
and it preserves the initial type of the algebra.

A particular type of isoalgebra is the Lie-Santilli isoalgebra [4]. Particularly,
if Û is the isotopic projection of a Lie-Santilli isoalgebra,

Î = Î(x, dx, d2x, t, T, µ, τ, . . .)

is an isounit and a basis Û , {ê1, . . . , ên} is fixed, where êi ·̂ êj =
∑
ĉhij •̂ êh,

∀ 1 ≤ i, j ≤ n, then coefficients ĉhij ∈ K̂ are the Maurer-Cartan coefficients of the
isoalgebra, which constitute a generalization of the conventional case, since they
are not constants in general, but functions dependent of the factors of Î.

Another interesting isoalgebra is the Santilli’s Lie-admissible algebra [4], that
is, the isoalgebra Û such that with the commutator bracket [., .]bU : [X̂, Ŷ ]bU =
(X̂ ·̂Ŷ )− (Ŷ ·̂X̂) is an isotopic Lie isoalgebra. The following result is satisfied:

PROPOSITION 3.2.C3: Under conditions of Proposition XXX, let us suppose
that the law ◦̂ of the isoalgebra Û is defined according X̂ ◦̂Ŷ = (X ◦ Y )�Î , for
all X,Y ∈ U . If U is a Lie (admissible) algebra, then Û is a Lie isoadmissible
isoalgebra.
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In this way, Santilli’s Lie-admissible isoalgebras inherit the usual properties of
conventional (admissible) Lie algebras. In the same way, usual structures related
with such algebras have also their analogue ones when isotopies are used.

For instance, an isoideal of a Lie isoalgebra Û is every isotopic lifting of an ideal
= of U, which is by itself an ideal. In particular, the center of a Lie isoalgebra Û ,{
X̂ ∈ Û such that X̂ ·̂Ŷ = Ŝ, ∀Ŷ ∈ Û

}
, is an isoideal of Û . In fact, it is verified

the following result:

PROPOSITION 3.2.C4: Let Û be a Lie isoalgebra associated with a Lie algebra
U and let = be an ideal of U. Then, the corresponding isotopic lifting =̂ is an
isoideal of Û .

An isoideal =̂ of a Lie isoalgebra (Û , ◦̂, •̂, ·̂), is called isocommutative if X̂ ·̂Ŷ =
Ŝ, for all X̂ ∈ =̂ and for all Ŷ ∈ Û , being Û isocommutative if it is so as an
isoideal.

PROPOSITION 3.2.C5: Û is isocommutative if and only if U is commutative.

Lie-Santilli isoalgebras can also be introduced as follows. Given an K̂-isoassoci-
ative isoalgebra (Û , ◦̂, •̂, ·̂), the commutator in Û associated with ·̂: [X̂, Ŷ ]S =
(X̂ ·̂Ŷ ) − (Ŷ ·̂X̂), for all X̂, Ŷ ∈ Û is denominated Lie-Santilli bracket product
[., .]S with respect to ·̂. The isoalgebra (Û , ◦̂, •̂, [., .]S) is then denominated Lie-
Santilli algebra.

DEFINITION 3.2.C6: Let Û be an K̂-isoassociative isoalgebra associated with
a K-algebra U , under conditions of Proposition XXX. Then, the Lie-Santilli
algebra associated with Û is a Lie isoalgebra if the algebra U is either associative
or Lie admissible.

Apart from that, a Lie-Santilli isoalgebra Û is said to be isosimple if, being an
isotopy of a simple Lie algebra, it is not isocommutative and the only isoideals
which contains are trivial. In an analogous way, Û is called isosemisimple if, being
an isotopy of a semisimple Lie algebra, it does not contain non trivial isocommu-
tative isoideals. Note that, this definition involves that every isosemisimple Lie
isoalgebra is also isosimple. Moreover, it is verified:

PROPOSITION 3.2.C7: Under conditions of Proposition XXX, the isotopic
lifting of a (semi)simple Lie algebra is an iso(semi)simple Lie isoalgebra. Partic-
ularly, every isosemisimple Lie isoalgebra is a direct sum of isosimple Lie isoal-
gebras.



312 RUGGERO MARIA SANTILLI

A lie-Santilli isoalgebra (Û , ◦̂, •̂, ·̂) is said to be isosolvable if, being an isotopy
of a solvable Lie algebra, in the isosolvability series

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û2̂·Û2, . . . , Ûi = Ûi−1̂·Ûi−1, . . .

there exists a natural integer n such that Ûn = {Ŝ}. The minor of such integers
is called isosolvability index of the isoalgebra.

PROPOSITION 3.2.C8: Under conditions of Proposition XXX, the isotopic
lifting of a solvable Lie algebra is an isosolvable Lie isoalgebra.

An easy example of isosolvable Lie isoalgebras are the isocommutative iso-
topic Lie isoalgebras, since they verify, by definition, that Û ·̂Û = Û2 = {Ŝ}. It
implies that every nonzero isocommutative Lie isoalgebra has an isosolvability
index equals 2, being 1 the corresponding to the trivial isoalgebra {Ŝ}.

PROPOSITION 3.2.C9: Let Û be a Lie isoalgebra associated with a Lie algebra
U . Under conditions of Proposition XXX, they are verified:

1) Ûi is an isoideal of Û and of Ûi−1, for all i ∈ N .

2) If Û is isosolvable and U is solvable, then every isosubalgebra of Û is isosolv-
able.

3) The intersection and the product of a finite number of isosolvable isoideals of Û
are isosolvable isoideals. Moreover, under conditions of Proposition XXX, the
sum of a finite number of isosolvable isoideals is also an isosolvable isoideal.

By using this last result it can be deduced that the sum of all isosolvable
isoideals of Û is another isosolvable isoideal, which is called isoradical of Û . Note
that it is different from the radical of Û , which would be the sum of all solvable
ideals of Û . The isoradical is denoted by isorad Û , not to be confused with rad
Û , and it will always contain {Ŝ}, because this last one is a trivial isosolvable
isoideal of every isoalgebra. Note also that as every isosolvable isoideal of Û
is a solvable ideal of Û , then isorad Û ⊂ rad Û . So, if Û is isosolvable, then
Û = isorad Û = rad Û , due to Û is solvable in particular.

PROPOSITION 3.2.C10: If Û is a semisimple Lie isoalgebra over a field of
zero characteristic, then isorad Û = {Ŝ}.
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A Lie-Santilli isoalgebra (Û , ◦̂, •̂, ·̂) is called isonilpotent if, being an isotopy of
a nilpotent Lie algebra, in the series

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û2 ·̂Û , . . . , Û i = Û i−1 ·̂Û , . . .

(which is called isonilpotency series), there exists a natural integer n such that
Ûn = {Ŝ}. The minor of such integers is denominated nilpotency index of the
isoalgebra.

As an immediate consequence of this definition it is deduced that every
isonilpotent Lie isoalgebra is isosolvable and that every nonzero isocommuta-
tive Lie isoalgebra has an isonilpotency index equals 2, being 1 the corresponding
of the isoalgebra {Ŝ}. Moreover, they are verified:

PROPOSITION 3.2.C11: Under conditions of Proposition XXX, the isotopic
lifting of a nilpotent Lie algebra is an isonilpotent isotopic Lie isoalgebra.

PROPOSITION 3.2.C12: Let Û be a Lie isoalgebra associated with a Lie al-
gebra U . They are verified:

1) Under conditions of Proposition XXX, the sum of a finite number of isonilpo-
tent isoideals of Û is another isonilpotent isoideal.

2) If Û is also isonilpotent and U is nilpotent, then

(a) Every isosubalgebra of Û is isonilpotent.

(b) Under conditions of Proposition XXX, if Û is nonzero isonilpotent, then
its center is non null.

In a similar way as the case isosolvable, the result (1) involves that the sum of
all isonilpotent isoideals of Û is another isonilpotent isoideal, which is denoted by
isonihil-radical of Û , to be distinguished from the nihil-radical of Û , which is the
sum of the radicals ideals. It will be represented by isonil-rad Û , which allows
to distinguish it from the nil-rad Û . It is immediate that isonil-rad Û ⊂ nil-rad
Û ∩ isorad Û ⊂ nil-rad Û ⊂ rad Û .

Apart from that, it is possible to relate an isosolvable isotopic Lie isoalgebra
with its derived Lie isoalgebra, by using the following:

PROPOSITION 3.2.C13: Under conditions of Proposition XXX, a Lie isotopic
isoalgebra is isosolvable if and only if its derived Lie isoalgebra is isonilpotent.
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Finally, an isonilpotent Lie isoalgebra (Û , ◦̂, •̂, ·̂) is called isofiliform if, being
an isotopy of a filiform Lie algebra, it is verified that

dim Û2 = n− 2, . . . , dim Û i = n− i, . . . , dim Ûn = 0,

where dim Û = n.
Note that the theory related with a filiform Lie algebra U is based on the use

of a basis of such an algebra. So, starting from a basis {e1, . . . , en} of U , which
is preferably an adapted basis, we can deal with lots of concepts of it, such as
dimensions of U and of elements of the nilpotency series, invariants i and j of
U and, in general, the resting properties, starting from its structure coefficients,
which are, in fact, responsible for the complete study of filiform Lie algebras.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 315

Appendix 3.D
Lorentz versus Galileo-Roman Relativistic Symme-
try

As indicated in Section 3.5.1, special relativity has remained unsettled after one
century of studies, even in the arena of its original conception, namely, point–
particles and electromagnetic waves propagating in vacuum. A reason of the
ongoing debates is connected to the alternative of Lorentz invariance for the two-
ways light experiments conducted to date, and the Galilean invariance expected
for one-way light experiments.

The alternative of Lorentzian vs Galilean treatments is obscured by the fact
that the former applies for relativistic speeds while the latter is not perceived
as such. This limitation was resolved in the early 1970s by the relativistic for-
mulation of the Galilean symmetry and relativity proposed by P. Roman, J. J.
Aghassi and R. M. Santilli [76-78], and hereon called Galileo-Roman symmetry
and relativity.31

In short, the alternative as to whether the ultimate relativity is of Lorentzian
or Galilean type is far from being resolved. It is an easy prediction that such an
alternative will not be resolved in these volumes. Consequently, in this appendix
we can merely review the main ideas of the Galileo-Roman symmetry, and leave
the resolution of the alternative to future generations.

By assuming an in depth knowledge of the Galileo symmetry and its scalar
extension (that we cannot possibly review here), the Galileo-Roman symmetry is
based on the following assumptions:

1) The carrier space is given by the Kronecker product of the conventional
Minkowski space M(x, η,R) times a one-dimensional space U(u) where u repre-
sents the proper time normalized to the dimension of length for reason clarified
below,

Stot = M(3.1)× U(u) (3.D1)

31The name of ”Galileo-Roman symmetry and relativity” is suggested because all basic concepts were
originated by Paul Roman. In Refs. [75-77] and other papers, the author merely assisted Paul Roman
in the technical elaboration of his views.
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2) The Galileo-Roman symmetry is characterized by the following transforma-
tions

SOo(3.1) : xµ → x′µ ′ = Λµν × xν , ΛBα eta× Λρβ = ηalpha
rho, (3.D2a)

T a4 : : xµ → x′µ = xµ + aµ, (3.D2b)

T b4 : xµ → x′µ = xµ + bµ × u (3.D2c)

T σ1 : u→ u′ = u+ σ, (3.D2d)

where: Eqs. (3.D2a) are the (connected) conventional Lorentz transformations;
Eqs. (3.D2b) are the conventional translations (with aµ constants); Eqs. (3.D2c)
and (3.D2d) are the new transformations with bµ and σ non-null parameters,
bµ being dimensionless and σ having the dimension of length. Eqs. (3.D2c)
were originally called relativistic Galilean boosts, [76] and here called Galileo-
Roman boosts, since they are indeed a relativistic extension of the conventional
nonrelativistic boosts. Eq. (3.D2d) was originally called the relativistic Galilean
time translation [76],and it is here called the Galileo-Roman time translation.

3) The Galileo-Roman symmetry is then fifteen-dimensional and its connected
component is written

GR = {SOo(3.1)× T b4} × {T a4 × T σ1 }, (3.D3)

where one should note: the presence of the Poincaré group as a subgroup; the
presence of the conventional Galileo group as a subgroup; and the separation of
conventional translations from the Lorentz symmetry and their association to the
new variable u.

Group (3.D3) admits as an invariant subgroup the group T a4 ×T b4 ×T σ1 . Hence,
the Galileo-Roman group (3.D3) is an extension of the restricted Lorentz group,
but not of the Poincaré group, even though the latter is also an extension of the
Lorentz group. These are central features for the understanding of the differences
between the Galileo symmetry, the Poincaré symmetry and the Galileo-Roman
symmetry.

The conventional Galileo group requires a scalar extension for its dynamical
application, and the same occurs for the Galileo-Roman group, thus leading to
the covering

G̃R = T θ1 × {SL(2.C)× T b4} × {T a4 × T σ1 }, (3.D4)

where θ is the usual phase factor.
By denoting the generators of SL(2.C) with Jµν , the generators of T a4 with

Pmu, the generators of T b4 with Qµ, and the generators of T σ1 with S, we have
the following Lie algebra

[Jµν , Jρσ] = i× (ηνρ × Jµσ − ηmuρ × Jνσ − ηµσ × Jρν + ηνσ × Jρµ), (3.D5a)
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[Pµ, Jρσ] = i× (ηµρ × Pσ − ηµσ × Pρ), (3.D5b)

[Qρ, Jµν ] = i× (ηµρ ×Qν − ηνρ ×Qµ), (3.D5c)

[Pµ, Qν ] = i× ηµν × `−1, (3.D5d)

[S,Qν ] = i× Pν , (3.D5e)

[Pµ, Pν ] = [Qµ.Qν ] = [Jµν , S] = [Pµ, S] = 0, (3.D5f)

where ` is the parameter originating from the scalar extension.
The physical interpretation is based on the following main aspects. Dynamics

is assumed to verify the Galileo-Roman symmetry, with the Poincaré symmetry
characterizing kinematics. Under such an assumption, the Galileo-Roman sym-
metry allows the introduction of a fully consistent relativistic spacetime position
operator that is absent in relativistic quantum mechanics, with explicit expression

Xµ = −`×Qµ. (3.D6)

In fact, the above interpretation is fully supported by commutation rules (3.D5).
Eq. (3.D6) introduces quite automatically a universal length, with the signif-

icant feature that systems with different fundamental lengths are independent of
each other. The main dynamical invariant is no longer the familiar expression
Pµ × Pµ = m2, but it is given instead by the following relativistic extension of
the Galilean invariant

Pµ × Pµ + 2× `−1× S = inv. (3.D7)

By assuming the value

Pµ × Pµ + 2× `−1× S = 0, (3.D8)

the Galileo-Roman symmetry allows the introduction of the relativistic mass op-
erator

M∈ = ∈ × `−∞ × S. (3.D9)

Note that the above definition is confirmed by commutation rules [3.D5) as well
as from the fact that the above mass operator is invariant and a Lorentz scalar,
as it should be. In particular, the eigenvalue of the above mass operator is the
conventional scalar m2 (see Ref. [76] for details). For a number of additional
intriguing features of the Galileo-Roman symmetry, such as the nonlocality of
the position operator ”spread over” an area of radius `, we have to refer the
interested reader to paper [76] for brevity.

In closing with personal comments and recollections of these studies conducted
some 37 years ago, there is no doubt that the Galileo-Roman group has dramat-
ically more dynamical capabilities than the conventional Poincaré group. Also,
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to my best recollection, we could find no experimental data contradicting the
Galileo-=Roman symmetry.

Yet, the novelty of the symmetry caused a real opposition furor among col-
leagues, namely, a reaction that has to be distinguished from proper scientific
scrutiny. Part of the opposition was due to the political attachment to Ein-
steinian doctrines, but part was also due to the fact that the Galileo-Roman
group required technical knowledge above the average of theoretical physicists of
the time. 32

32The author would like to have a record of the following fully documented events.
The author initiated his Ph. D. research in the late 1960s at the Department of Physics of the

University of Turin, Italy, with the Lie-admissible generalization of Lie’s theory, A topic wastly unknown
at thaty time in mathematics, let alone physics. Followeing the publication of his first paper in the field
at il Nuovo Cimento of 1967, ref. [1] below, Tullio Regge, then head of that Physics Department and a
self-qualified expert of Lie algebras, told in the author’s face ”you will never get an academic position
in Italy.” The author was subsequenrtly nominated by the Estonia Academy of Sciences for that paper
amonmg the most illusttious applied mathematicians of all times (the only name of Italian origin in
that list), but Regge’s threat turned out to be true, and the author was forced to leave Italy after the
publication of paper [1] for an academic job in the USA.

Being of Italian origin, the author filed his candidacy for the last session of the Italian ”Libera Docenza”
(Professorship in Physics) issued by the Italian Government, and did indeed participate in late 1974
jointly with a few other colleagues at this final session held at the University of ”La Sapienza”, Rome,
Italy, and headed by V. De Alfaro of the University of Turin, Italy, P. Budini (now Budinovich) of the
ICTP, Trieste, Italy, R. Gatto, of CERN and the University of Geneva, Switzerland (see other actions
by Gatto quoted in Volume II), and others.

Even though the author constituted no threat for an academic job to their pupils in Italy (since at that
time the author was Associate Professor of Physics at Boston University), and even though the author
attempted to qualify himself as a scientists, thus requiring presentation of research jointly with a severe
self-criticism for its limitations, the hostility by De Alfaro. Budini/Budinovich and Gatto against the
research presented by the author, beginning with the relativistic extension of the Galilei group developed
under the leadership of Paul Roman and with the collaboration of Jack J. Aghassi, was so furious that
it turned into a rage rather inappropriate for heads of a governmental session.

In fact, De Alfaro, Budini/Budinovich and Gatto granted the ”Libera Docenza” to all other partici-
pants except to the author, even though the author was the only one to held at that time an Associate
Professorship in Physics at a major University in the U.S.A. and had a large record of publications, with
no comparison by the other candidates, that are visible in the CV http://www.i-b-r.org/Ruggero-Maria-
Santilli.htm and partly reproduced below. Additionally, by 1974 the author had received invitations for
lectures at primary meetings in physics and mathematics; was teaching not only to a Graduate School
in Physics in the U.S.A., but was also conducting post Ph. D. seminar courses for the colleagues in the
Boston area in very advanced topics; was supervising Ph. D. students in the U.S.A. and had activity
none of the other candidates could partially share. Among the publications available by 1974, we quote
in chronological order:

1) The first formulation in 1967 of deformations of Lie algebras and first presentation in physics of Lie-
admissible structures that subsequently lead to the construction of hadronic mechanics, Refs. [1,5,6,710]
(note the publication by the Italian Physics Society and other major physics journals);

2) The relativistic extension of the Galilei group, with Paul Roman and Jack J. Aghassi, Refs. [14,-19]
(note papers published by the American and Italian Physical Societies, among others);

3) The extension of the PCT Theorem to all discrete spacetime symmetries in quantum field theories,
with Christos Ktorides, Refs. [22,23,25,27] (see the publication by the American Physical Society).

4) A severe, but gently written criticism of Einstein’s gravitation showing in particular its incompati-
bility with quantum electrodynamics [24]

5) Various publications in in various fields with colleagues.
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The author used to go (and continues to go) to Turin once or twice a year because of family ties.
However, following the reception of (the equivalent at that time of today’s) Ph. D. in physics in early
1967, the author never went back to the Department of Physics of the University of Turin, Italy, and he
will never visit that department again for the rest of his life.

Another episode worth reporting is the following. The author had the privilege of frequent contacts
with Nobel Laureate Abdus Salam, both personally and in his capacity as Director of the International
Center for Theoretical Physics (ICTP) in Trieste, Italy. The author wants to honor his memory here
with the view that Abdus Salam was one of the few ”true scientists” of the 20-th century because of
the dimension of his scientific vision combined with a serious commitment to scientific democracy for
qualified inquiries.

In 1967, when the author had completed his Ph. D. studies and was about to leave Italy for the U.S.A.,
Abdus Salam invited him for a talk at the ICTP on paper [1] below dealing with the first presentation in
physics of Lie-admissible covering (or deformations) of Lie algebras. At the end of the talk, Abdus Salam
suggested the author to use the Lie-admissible algebras for possible advances in the hadronic structure,
a suggestion that turned out to be prophetic.

The author kept periodically in contact with Abdus Salam and visited him at the ICTP through the
years. In 1992 Abdus Salam was in the final stage of his unfortunate illness. Yet, he still managed the
strength to invite the author for a series of joint mathematical and physical seminars entitled Isotopic
lifting of Galilei’s relativity, invitation that followed the appearance in 1991 of the two volumes by the
author in the field. At the time of the first and and of the following seminars, the usually crowded lecture
room at the ICTP was deserted, except for Abdus Salam, a scientist just arrived from Russia and two
of the author friends (of the time). Subsequent investigations revealed that P. Budini/Budinovitch had
requested the members of the ICTP and of the local university not to attend the author’s seminars. The
human and scientific difference in stature between Abdus Salam and the local crowd is set by the fact
that the former, then unable to speak and at the edge of death, still had the scientific fire to listen to the
last seminar of his life, while the local crowd abstained for fear of being muddied by new mathematics
and physics.

Additional episodes have confirmed the existence in the Italian physics community of an unprecedented
decay of scientific ethics that the author, being of Italian origin and education, feels obliged to denounce
because occurring: without any visible denunciation by the Italian press; without the awareness of most
Italian people; and without any visible containment whatsoever by responsible academic and political
authorities, thanks to the complicity by the Italian press.

As indicated in Footnote 14 of Chapter 1, the author’s works have been plagiarized so many times to
generate the dubbing of the author as the ”most plagiarized physicist of the 20-th century.” Whether
the occurrences were intentional or not, plagiarizing colleagues have been cooperative for corrections,
essentially consisting in adding missed references of direct relevance in chronological order, with the
exception of Italian physicists who have rejected the author’s requests for simple quotation of prior
works even when plagiarized identically including the symbols.

The lack of cooperation for corrections following plagiarisms, copyright infringements and pater-
nity frauds was so incredible to force the author to file lawsuits in both the U. S. A. and Italy (see
http://www.scientificethics.org). At any rate, evidence established that, among all scientists the world
over, the author was forced to file lawsuits ONLY against Italian physicists and their backers.

The legal problems are escalating at this writing (November 7, 2007) because presidents and/or direc-
tors of the academic and governmental institutions involved in the lawsuits have refused any interven-
tion in support of scientific ethics and accountability under public financial support, thus activating the
Statute of Respondeat Superior for both, individual as well as institutions.

Additional serious shadows in the Italian physics community were caused by the take over in the early
1980s of the Italian Physical Society by Renato Angelo Ricci who systematically rejected hundreds of
papers by the author and several independent colleagues in the various aspects presented herein. These
systematic rejections lasted for over two decades, namely, from 1983 until the replacement of Renato
Angelo Ricci as president at the turn of the century. The problems for the Italian physics community
were not caused by the rejections per se, but by their motivation carrying Ricci’s signature, such as ”Your
paper is rejected because the research is not accepted by Harvard University as your former affiliation.”
This established that Ricci was obeying orders from Harvard University and, in turn provided additional
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documentation, this time from Italy, of the scientific misconduct by Harvard University denounced and
documented in Refs. [93,94].

As a result of all these extremely unpleasant experiences, the author is now reluctant to have any
scientific exchange with Italian colleagues for fear that, following additional release of technical informa-
tion, suggestions and material, there are additional plagiarisms, copyright infringements and paternity
frauds forcing the filing of additional lawsuit, since the reported behavior appears to be normal in the
current Italian physics community and, in any case, it is not denounced by the Italian press or opposed
by Italian authorities, as documented in court beyond credible doubt.

Despite all the above, negative judgments are a priori wrong unless expressed with due exceptions,
and this is particularly true for Italy due to the complexity and diversification of its culture. In fact,
the author is sincerely pleased to report that his most important physics papers were published by the
Italian Physical Society up to 1983 and then, again, new basic publications after the removal of Renato
Angelo Ricci as president in the early 2000s. Similarly, the author is sincerely pleased to report that his
most important mathematical papers were published by the Rendiconti Circolo Matematico di Palermo.
If scientific ethics is implemented with the quotation of the original contributions in chronological order,
other physical and mathematical societies have to follow the above identified leadership of the Italian
societies.

*0.30cm
PUBLICATIONS BY R. M. SANTILLI AS OF 11974:
[1] R. M. Santilli, Embedding of Lie algebras in nonassociative structures, Nuovo Cimento 51, 570-576
(l967) Seminar given at the ICTP, Trieste, Italy. Paper nominated by the Estonian Academy of Sciences
(l989) as signaling the birth of Lie-admissible algebras in physics.
[2] R. M. Santilli, Causality groups of the S-matrix, Nuovo Cimento 55B, 578-586 (l968) Seminar delivered
at the University of S. Carolina, Columbia
[3] R. M. Santilli, Phase space symmetries of a relativistic plasma, Nuovo Cimento Vol. 56B, 323-326
(l968)
[4] R. M. Santilli, Causality and relativistic plasma, contributed paper to a Coral Gable Conference,
printed in Relativistic Plasma, O. Buneman and W. B. Pardo, Editors, Benjamin, New York pp. 33-40
(l968)
[4] R. M. Santilli, Some remarks on causality, Contributed paper to Coral Gables Conference on Rela-
tivistic Plasma, Benjamin, New York (l968)
[5] R. M. Santilli, An Introduction to Lie-admissible Algebras, Supplemento al Nuovo Cimento Vol. 6,
1225-1249 (l968)
[6] R. M. Santilli, Dissipativity and Lie-admissible algebras, Meccanica Vol. 1, 3-11 (l969)
[7] R. M. Santilli, A Lie-admissible model for dissipative plasma, with P. Roman, Lettere Nuovo Cimento
Vol. 2, 449-455 (l969)
[8] R. M. Santilli, Causality restrictions on relativistic extensions of particle symmetries, with P. Roman
Int. J. Theor. Phys. Vol. 2, 201-211 (l969)
[9] R. M. Santilli, Causality restrictions and O’Rafeartaigh theorem, with P. Roman, Bull. Amer. Phys.
Soc. Vol. 14, 502 (1969)
[10] R. M. Santilli, ] Haag theorem and Lie-admissible algebras, Contributed paper to the l969 Conference
at Indiana Univ., Bloomington, published in Analytic Methods in Mathematical Physics R.P. Gilbert
and R.G.Newton, Editors, Gordon Breach, New York, 511-529 (l970)
[11] R. M. Santilli, Derivation of the Poincarćovariance from causality requirements in field theory, with
P. Roman, Int. J. Theor. Phys. Vol. 3, 233-241 (l970)
[12] R. M. Santilli, Relativistic quantum mechanical Galilei group, with J.J. .Aghassi and P. Roman,
Bull. Amer. Phys. Soc. Vol. 15, 49 (l970)
[13] R. M. Santilli, IU(3.1)-invariant N-point functions, with P. Roman, Bull. Amer. Phys. Soc. Vol.
15, 92 (l970)
[14] R. M. Santilli, New dynamical group for the relativistic quantum mechanics of elementary particles,
with J.J. Aghassi and P. Roman Phys. Rev. D Vol. 1, 2753-2765 (l970)
[15] R. M. Santilli, Relation of the inhomogeneous de Sitter group to the quantum mechanics of elemen-
tary particles, with J.J. Aghassi and P. Roman, J. Math. Phys. Vol. 11, 2297-2301 (l970)
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Such huge an opposition essentially forced the author to abandon the studies
in the field, a decision that he regretted later, but could not change at that time
due to the need in the 1970s for the author to secure an academic position so as
to feed and shelter two children in tender age and his wife.

During the 37 years that have passed since that time, the author discovered nu-
merous theories published in the best technical journals that, in reality, did verify
the Galileo-Roman symmetry, but were published as verifying the conventional
Poincaré symmetry. All attempts by the author for editorial corrections turned
out to be useless. That was unfortunate for the fully deserved continuation of
Paul Romans name in science.

In this way, the author was exposed for to the academic rage caused by novelty
and, in so doing, he acquired the necessary strength to resist academic disrup-
tions when he proposed the construction of hadronic mechanics in 1978 [4]. In
this way, the human experience gained by the author during his studies of the
Galileo-Roman symmetry and relativity proved to be crucial for the proposal and
continuation of the studies on hadronic mechanics again hardly credible obstruc-
tions, oppositions and disruptions.

Yet, the author hopes that studies on the Galileo-Roman symmetry and rel-
ativity are indeed continued by new generations of physicists, not only because
of the dramatic richness of content compared to the Poincaré sub-symmetry, but
also because the Galileo-Roman symmetry and its easily derivable isotopic exten-
sion appear to possess the necessary ingredients for a solution of the numerous

[16] R. M. Santilli, A new relativistic dynamical group for elementary particles, Particles and Nuclei Vol.
1, 81-99 (l970)
[17] R. M. Santilli, Dynamical extensions of the Poincare group: A critical analysis, Contributed paper
to the Fourth Topical Conference on Resonant Particles, Univ. of Athens, Ohio (l970)
[18] R. M. Santilli, Representation theory of a new relativistic dynamical group, with J.J. Aghassi and
P. Roman, Nuovo Cimento A Vol. 5, 551-590 (l971)
[19] R. M. Santilli, Inhomogeneous U(3.1)-invariant extension of vacuum expectation values, with P.
Roman, Nuovo Cimento A Vol. 2, 965-1015 (l971)
[20] R. M. Santilli, Remarks on the Hermitean extension of the scattering amplitude, with P. Roman,
Bull. Amer. Phys. Soc. Vol. 15, 1409 (l971)
[21] R. M. Santilli, Nonrelativistic composite elementary particles and the conformal Galilei group, with
J.J. Aghassi, P. Roman and P.L. Huddleston, Nuovo Cimento A Vol. 12, 185-204 (l972)
[22] R. M. Santilli, Some examples of IU(3.1)-invariant analytic extension of N-point functions, with P.
Roman and C.N. Ktorides, Particles and Nuclei Vol./ 3, 332-350 (l972)
[23] R. M. Santilli, Can the generalized Haag theorem be further generalized? with C.N. Ktorides, Phys.
Rev. D Vol. 7, 2447-2456 (l973)
[24] R. M. Santilli, Partons and Gravitations, some puzzling questions, Annals of Physics Vol. 83,
108-157 (l974)
[25] R. M. Santilli, Generalization of the PCT theorem to all discrete space-time symmetries in quantum
field theories, with C.N. Ktorides, Phys. Rev. D Vol. 10, 3396-3406 (l974)
[27] R. M. Santilli, Analytic approach to discrete symmetries, invited paper for the l975 Coral Gables
Conference Orbis Scientiae II (1974) )
[28] R. M. Santilli, Necessary and sufficient conditions for the existence of a Lagrangian in field the-
ory, Center for Theoretical Physics, MIT, Cambridge, MA, subsequently published in a monograph by
Springer-Verlag, Heidelberg, Germany.
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unresolved problems of special relativity, including compatibility with the ulti-
mate frontier of knowledge: space.33

33In the author’s view, this may happen only when society will one future day understand the importance
of scientific democracy for qualified inquiries.
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Chapter 4

LIE-ADMISSIBLE BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

NOTE; THIS CHAPTER MUST BE COMPLETED AND EDITED

4.1 INTRODUCTION
4.1.1 The Scientific Imbalance Caused by Irreversibility

As recalled in Chapter 1, physical, chemical or biological systems are called
irreversible when their images under time reversal t → −t are prohibited by
causality and/or other laws, as it is generally the case for nuclear transmutations,
chemical reactions and organism growth.

Systems are called reversible when their time reversal images are as causal as
the original ones, as it is the case for planetary and atomic structures when con-
sidered isolated from the rest of the universe, the structure of crystals, and other
structures (see reprint volume [1] on irreversibility and vast literature quoted
therein).

Another large scientific imbalance of the 20-th century studied in these mono-
graphs is the treatment of irreversible systems via the mathematical and physical
formulations developed for reversible systems, since these formulations are them-
selves reversible, thus resulting in serious limitations in virtually all branches of
science.

The problem is compounded by the fact that all used formulations are of
Hamiltonian type, under the awareness that all known Hamiltonians are reversible
over time (since all known potentials, such as the Coulomb potential V (r), etc.,
are reversible).

This scientific imbalance was generally dismissed in the 20-th century with
unsubstantiated statements, such as “irreversibility is a macroscopic occurrence
that disappears when all bodies are reduced to their elementary constituents”.
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Figure 4.1. All energy releasing processes are irreversible over time. By contrast, all formula-
tions of the 20th century are fully reversible over time, a limitation that is apparently responsible
for the lack of industrial development of any really new form of energy for over half a century,
as well as the lack of resolution of the environmental problems caused by fossil fuels combustion
depicted in this figure. A primary objective of hadronic mechanics is, firstly, identify formula-
tions that are structurally irreversible (a task addressed in this chapter), as a necessary premise
for their quantitative treatment of irreversible process and the search of basically new energies
(a task address in Volume II).

These academic beliefs have been disproved by Theorem 1.3.3 according to
which a classical irreversible system cannot be consistently decomposed into a
finite number of elementary constituents all in reversible conditions and, vice-
versa, a finite collection of elementary constituents all in reversible conditions
cannot yield an irreversible macroscopic ensemble.

The implications of the above theorem are quite profound because it establishes
that, contrary to popular beliefs, irreversibility originates at the most primitive
levels of nature, that of elementary particles, and then propagates all the way to
our macroscopic environment.

In this chapter we study the contribution by the author that originated the
field, as well as contributions by a number of independent authors. The presen-
tation will mainly follow the recently published memoir [32]. Nevertheless, an in
depth knowledge of the topic requires the study of (at least some of) the author’s
monographs [18–23,29] and those by independent authors [33–39].

The author would like to express his sincere appreciation to the Italian Physical
Society for publishing memoir [32] in Il Nuovo Cimento B as a final presentation
of studies in the field initiated by the author in the same Journal in paper [7]
forty years earlier.
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4.1.2 The Forgotten Legacy of Newton, Lagrange and
Hamilton

The scientific imbalance on irreversibility was created in the early part of the
20-th century when, to achieve compatibility with quantum mechanics and special
relativity, the entire universe was reduced to potential forces. Jointly, the analytic
equations were “truncated” with the removal of the external terms.

In reality, Newton [2] did not propose his celebrated equations restricted to
forces derivable from a potential F = ∂V/∂r, but proposed them for the most
general possible forces,

ma ×
dvka
dt

= Fka(t, r, v), k = 1, 2, 3; a = 1, 2, . . . , N, (4.1.1)

where the conventional associative product of numbers, matrices, operators, etc.
is continued to be denoted hereon with the symbol × so as to distinguish it from
numerous other products needed later on.

Similarly, to be compatible with Newton’s equations, Lagrange [3] and Hamil-
ton [4] decomposed Newton’s force into a potential and a nonpotential com-
ponent,they represented all potential forces with functions today known as the
Lagrangian and the Hamiltonian, and proposed their celebrated equations with
external terms,

d

dt

∂L(t, r, v)
∂vka

− ∂L(t, r, v)
∂rka

= Fak(t, r, v), (4.1.2a)

drka
dt

=
∂H(t, r, p)
∂pak

,
dpak
dt

= −∂H(t, r, p)
∂rka

+ Fak(t, r, p), (4.1.2b)

L = Σa
1
2
×ma × v2

a − V (t, r, v), H = Σa
p2
a

2×ma
+ V (t, r, p), (4.1.2c)

V = U(t, r)ak × vka + Uo(t, r), F (t, r, v) = F (t, r, p/m). (4.1.2d)

More recently, Santilli [5] conducted comprehensive studies on the integrabil-
ity conditions for the existence of a potential or a Lagrangian or a hamiltonian,
called conditions of variational selfadjointness. These study permit the rigor-
ous decomposition of Newtonian forces into a component that is variationally
selfadjoint (SA) and a component that is not (NSA),

ma ×
dvka
dt

= FSAka (t, r, v) + FNSAka (t, r, v). (4.1.3)

Consequently, the true Lagrange and Hamilton equations can be more techni-
cally written [ d

dt

∂L(t, r, v)
∂vka

− ∂L(t, r, v)
∂rka

]SA
= FNSAak (t, r, v), (4.1.4a)
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[drka
dt
− ∂H(t, r, p)

∂pak

]SA
= 0,

[dpak
dt

+
∂H(t, r, p)

∂rka

]SA
= FNSAak (t, r, p). (4.1.4b)

The forgotten legacy of Newton, Lagrange and Hamilton is that irreversibility
originates precisely in the truncated NSA terms, because all known potential-SA
forces are reversible. The scientific imbalance of Section 1.3 is then due to the fact
that no serious scientific study on irreversibility can be done with the truncated
analytic equations and their operator counterpart, since these equations can only
represent reversible systems.

Being born and educated in Italy, during his graduate studies at the University
of Torino, the author had the opportunity of studying in the late 1960s the original
works by Lagrange that were written precisely in Torino and most of them in
Italian.

In this way, the author had the opportunity of verifying Lagrange’s analytic
vision of representing irreversibility precisely via the external terms, due to the
impossibility of representing all possible physical events via the sole use of the La-
grangian, since the latter was solely conceived for the representation of reversible
and potential events. As the reader can verify, Hamilton had, independently, the
same vision.

Consequently, the truncation of the basic analytic equations caused the impos-
sibility of a credible treatment of irreversibility at the purely classical level. The
lack of a credible treatment of irreversibility then propagated at the subsequent
operator level.

It then follows that quantum mechanics cannot possibly be used for serious
studies on irreversibility because the discipline was constructed for the description
of reversible quantized atomic orbits and not for irreversible systems.

In plain terms, while the validity of quantum mechanics for the arena of its
original conception and verification is beyond scientific doubt, the assumption of
quantum mechanics as the final operator theory for all conditions existing in the
universe is outside the boundaries of serious science.

This establishes the need for the construction of a broadening (or generalization
here called lifting) of quantum mechanics specifically conceived for quantitative
studies of irreversibility. Since reversible systems are a particular case of irre-
versible ones, the broader mechanics must be a covering of quantum mechanics,
that is, admitting the latter under a unique and unambiguous limit.

It is easy to see that the needed broader mechanics must also be a covering
of the isotopic branch of hadronic mechanics studied in the preceding chapter,
thus being a new branch of hadronic mechanics. In fact, isomechanics is itself
structurally reversible due to the Hermiticity of both the Hamiltonian, Ĥ =
Ĥ †̂, and of the isotopic element, T̂ = T̂ †, while a serious study of irreversible
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processes requires a structurally irreversible mechanics, that is, a mechanics that
is irreversible for all possible reversible Hamiltonians.1

4.1.3 Early Representations of Irreversible Systems
As reviewed in Section 1.5.2, the brackets of the time evolution of an observable

A(r, p) in phase space according to the analytic equations with external terms,

dA

dt
= (A,H,F ) =

∂A

∂rka
× ∂H

∂pka
− ∂H

∂rka
× ∂A

∂pka
+
∂A

∂rka
× Fka, (4.1.5)

violate the right associative and scalar laws.
Therefore, the presence of external terms in the analytic equations causes not

only the loss of all Lie algebras in the study of irreversibility, but actually causes
the loss of all possible algebras as commonly understood in mathematics.

To resolve this problem, the author initiated a long scientific journey beginning
with his graduate studies at the University of Torino, Italy, following the reading
of Lagrange’s papers.

The original argument [7–9], still valid today, is to select analytic equations
characterizing brackets in the time evolution verifying the following conditions:

(1) The brackets of the time evolution must verify the right and left associative
and scalar laws to characterize an algebra;

(2) Said brackets must not be invariant under time reversal as a necessary
condition to represent irreversibility ab initio;

(3) Said algebra must be a covering of Lie algebras as a necessary condition to
have a covering of the truncated analytic equations, namely, as a condition for
the selected representation of irreversibility to admit reversibility as a particular
case.

Condition (1) requires that said brackets must be bilinear, e.g., of the form
(A,B) with properties

(n×A,B) = n× (A,B), (A,m×B) = m× (A,B); n,m ∈ C, (4.1.6a)

(A×B,C) = A× (B,C), (A,B × C) = (A,B)× C. (4.1.6b)

Condition (2) requires that brackets (A,B) should not be totally antisymmetric
as the conventional Poisson brackets,

(A,B) 6= −(B,A), (4.1.7)

because time reversal is realized via the use of Hermitian conjugation.

1An exception to this general rule we shall study later on occurs when the isotopic elements is indeed
Hermitian, but explicitly dependent on time and such that T̂ (t, . . .) 6= T̂ (−t, . . .).
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Condition (3) then implies that brackets (A,B) characterize Lie-admissible
algebras in the sense of Albert [10], namely, the brackets are such that the attached
antisymmetric algebra is Lie.2

[A,B]∗ = (A,B)− (B,A) = Lie. (4.1.8)

In particular, the latter condition implies that the new brackets are formed by
the superposition of totally antisymmetric and totally symmetric brackets,

(A,B) = [A,B]∗ + {A,B}∗. (4.1.9)

It should be noted that the operator realization of brackets (A,B) is also
Jordan-admissible in the sense of Albert [10], namely, the attached symmetric
brackets {A,B}∗ characterize a Jordan algebra. Consequently, hadronic mechan-
ics provides a realization of Jordan’s dream, that of seeing his algebra applied to
physics.

However, the reader should be aware that, for certain technical reasons beyond
the scope of this monograph, the classical realizations of brackets (A,B) are Lie-
admissible but not Jordan-admissible. Therefore, Jordan-admissibility appears
to emerge exclusively for operator theories.3

After identifying the above lines, Santilli [9] proposed in 1967 the following
generalized analytic equations

drka
dt

= α× ∂H(t, r, p)
∂pak

,
dpak
dt

= −β × ∂H(t, r, p)
∂rka

, (4.1.10)

(where α and β are real non-null parameters) that are manifestly irreversible.
The brackets of the time evolution are then given by

i× dA

dt
= (A,H) =

2More technically, a generally nonassociative algebra U with elements a, b, c, . . . and abstract product
ab is said to be Lie-admissible when the attached algebra U− characterized by the product [a, b] = ab−ba
verifies the Lie axioms

[a, b] = −[b, a],

[[a, b], c] + [[b, c], a] + [[c, b], a] = 0.

3More technically, a generally nonassociative algebra U with elements a, b, c, . . . and abstract product
ab is said to be Jordan-admissible when the attached algebra U+ characterized by the product {a, b} =
ab+ ba verifies the Jordan axioms

{a, b} = {b, a},
{{a, b}, a2} = {a, {b, a2}}.

In classical realizations of the algebra U the first axiom of Jordan-admissibility is generally verified but
the second is generally violated, while in operator realizations both axioms are generally verified.
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= α× ∂A

∂rka
× ∂H

∂pka
− β × ∂H

∂rka
× ∂A

∂pka
, (4.1.11)

whose brackets are manifestly Lie-admissible, but not Jordan-admissible as the
interested reader is encouraged to verify.

The above analytic equations characterize the time-rate of variation of the
energy

dH

dt
= (α− β)× ∂H

∂rka
× ∂H

∂pka
. (4.1.12)

Also in 1967, Santilli [7,8] proposed an operator counterpart of the preceding
classical setting consisting in the first known Lie-admissible parametric general-
ization of Heisenberg’s equation, also called deformed Heisenberg equations,4 in
the following infinitesimal form

i× dA

dt
= (A,B) = p×A×H − q ×H ×A =

= m× (A×B −B ×A) + n× (A×B +B ×A), (4.1.13a)

m = p+ q, n = q − p, (4.1.13b)

where p, q, p± q are non-null parameters, with finite counterpart

A(t) = ei×H×q ×A(0)× e−i×p×H . (4.1.14)

Brackets (A,B) are manifestly Lie-admissible with attached antisymmetric
part

[A,B]∗ = (A,B)− (B,A) = (p− q)× [A,B]. (4.1.15)

The same brackets are also Jordan-admissible in view of the property

{A,B}∗ = (A,B) + (B,A) = (p+ q)× {A,B}, (4.1.16)

The resulting time evolution is then manifestly irreversible (for p 6= q) with
nonconservation of the energy

i× dH

dt
= (H,H) = (p− q)×H ×H 6= 0, (4.1.17)

as necessary for an open system.
Subsequently, Santilli realized that the above formulations are not invariant

under their own time evolution (4.1.14) because Eqs. (4.1.11) are manifestly
nonunitary.

4As we shall soon see, the term “deformed” is used for formulations that are catastrophically inconsistent
because dreaming to treat new theories with the mathematics of the old ones.
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The application of nonunitary transforms to brackets (4.1.12) then led to the
proposal in memoir [11,12] of 1978 of the following Lie-admissible operator gen-
eralization of Heisenberg equations in their infinitesimal form

i× dA

dt
= A× P ×H −H ×Q×A = (A,H)∗, (4.1.18)

with finite counterpart

A(t) = ei×H×Q ×A(0)× e−i×P×H , (4.1.19)

under the subsidiary conditions needed for consistency, as we shall see,

P = Q†, (4.1.20)

where P , Q and P ± Q are now nonsingular operators (or matrices), and
Eq. (4.1.16b) is a basic consistency condition explained later in this section.

Eqs. (4.1.18)–(4.1.19) are the fundamental equations of hadronic mechanics.
Their basic brackets are manifestly Lie-admissible and Jordan admissible with
structure

(A,B)∗ = A× P ×B −B ×Q×A =

= (A× T ×B −B × T ×A) + (A×R×B +B ×R×A), (4.1.21a)

T = P +Q, R = Q− P. (4.1.21b)

As indicated in Section 1.5.2, it is easy to see that the application of a nonuni-
tary transform to the parametric brackets of Eqs. (4.1.11) leads precisely to the
operator brackets of Eqs. (4.1.17),

U × (p×A×B − q ×B ×A)× U † = Â× P × B̂ − B̂ ×Q× Â, (4.1.22a)

U×U † 6= I, P = p×(U×(U †)−1, Q = q×(U×U †)−1, Â = U×A×U †. (4.1.22b)

In particular, the application of any (nonsingular) nonunitary transforms pre-
serves the Lie-admissible and Jordan-admissible characters. Consequently, funda-
mental equations (4.1.18), (4.1.19) are “directly universal” in the sense of Lemma
1.5.2.

However, the above equations are not invariant under their own (nonunitary)
time evolution,

U × (Â× P × B̂ − B̂ ×Q× Â, )× U † = Â′ × P ′ × B̂′ − B̂′ ×Q′ × Â′, (4.1.23)

where the lack of invariance is expressed by the lack of preservation of the numer-
ical values of the P, Q operators because, as we shall see shortly, these operators
characterize new multiplications.
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By comparison, quantum mechanical brackets are indeed invariant under the
class of admitted transformations, the unitary transforms

W ×A×B −B ×A)×W † = A′ ×B′ −B′ ×A′, (4.1.24a)

W ×W † = W † ×W = I, A′ = W ×A×W †, B′ = W ×B ×W †, (4.1.24b)

where the invariance we are here referring to is expressed by the preservation of
the associative product, namely, A × B is not mapped into a different product,
say A′ ∗B′.

As known to experts of quantum mechanics (to qualify as such), simple in-
variance (4.1.24) is at the foundations of the majestic axiomatic consistency of
quantum mechanics, including: the prediction of the same numerical values un-
der the same conditions at different times; the preservation of Hermiticity and,
thus, of observables over time; and other basic features.

Consequently, Lie-admissible and Jordan admissible equations (4.1.18)–
(4.1.19) are afflicted by the catastrophic inconsistencies of Theorem 1.5.2, as
it is the fate for all nonunitary theories some of which are listed in Section 1.5. In
particular, said equations do not preserve numerical predictions under the same
conditions but at different times, do not preserve Hermiticity, thus do not ad-
mit observables, and have other catastrophic inconsistencies studied in detail in
Section 1.5.

Moreover, in the form presented above, the dynamical equations are not deriv-
able from a variational principle. Consequently, they admit no known unique
map from classical into operator formulations.

In view of these insufficiencies, said equations cannot be assumed in the above
given form as the basic equations of any consistent physical theory.

4.2 ELEMENTS OF SANTILLI
GENOMATHEMATICS AND ITS ISODUAL

4.2.1 Genounits, Genoproducts and their Isoduals
The “direct universality” of Eqs. (4.1.18), (4.1.19) voids any attempt at seeking

further generalizations in the hope of achieving invariance, since any nontrivial
generalization would suffer the loss of any algebra in the brackets of the time
evolution, with consequential inability to achieve any physically meaningful the-
ory, e.g., because of the inability to treat the spin of a proton under irreversible
conditions.

This occurrence leaves no alternative other than that of seeking a yet new
mathematics permitting Eqs. (4.1.18), (4.1.19) to achieve the needed invariance.
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After numerous attempts and a futile search in the mathematical literature
of the Cantabrigian area,5 Santilli proposed in Refs. [11,12] of 1978 the con-
struction of a new mathematics specifically conceived for the indicated task, that
eventually reached mathematical maturity for numbers only in paper [13] of 1993,
mathematical maturity for the new differential calculus only in memoir [14] of
1996, and, finally, an invariant formulation of Lie-admissible equations only in
paper [15] of 1997.

The new Lie-admissible mathematics is today known as Santilli genomathe-
matics, where the prefix “geno” suggested in the original proposal [11,12] is used
in the Greek meaning of “inducting” new axioms (as compared to the prefix “iso”
of the preceding chapter denoting the preservation of the axioms).

The basic idea is to lift the isounits of the preceding chapter into a form that
is still nowhere singular, but non-Hermitian, thus implying the existence of two
different generalized units, today called Santilli genounits for the description of
matter, that are generally written [13]

Î> = 1/T̂>, <Î = 1/<T̂ , (4.2.1a)

Î> 6=< Î , Î> = (<Î)†, (4.2.1b)

with two additional isodual genounits for the description of antimatter [14]

(Î>)d = −(Î>)
†

= −<Î = −1/<T̂ , (<Î)d = −Î> = −1/T̂>. (4.2.2)

Jointly, all conventional and/or isotopic products A×̂B among generic quan-
tities (numbers, vector fields, operators, etc.) are lifted in such a form admitting
the genounits as the correct left and right units at all levels, i.e.,

A > B = A× T̂> ×B, A > Î> = Î> > A = A, (4.2.3a)

A < B = A×< T̂ ×B, A << Î =< Î < A = A, (4.2.3b)

A >d B = A× T̂>d ×B, A >d Î>d = Î>d >d A = A, (4.2.3c)

A <d B = A×< T̂ d ×B, A <d <Îd = <Îd <d A = A, (4.2.3d)

for all elements A, B of the set considered.
As we shall see in Section 4.3, the above basic assumptions permit the repre-

sentation of irreversibility with the most primitive possible quantities, the basic
units and related products.

In particular, as we shall see in Section 4.3 and 4.4, genounits permit an
invariant representation of the external forces in Lagrange’s and Hamilton’s

5Conducted in the period 1977–1978.
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equations (4.1.2). As such, genounits are generally dependent on time, coor-
dinates, momenta, wavefunctions and any other needed variable, e.g., Î> =
Î>(t>, r>, p>, ψ>, . . .).

In fact, the assumption of all ordered product to the right > represents matter
systems moving forward in time, the assumption of all ordered products to the
left < represents matter systems moving backward in time, with the irreversibil-
ity being represented ab initio by the inequality A > B 6= A < B. Similar
representation of irreversible antimatter systems occurs via isodualities.

4.2.2 Genonumbers, Genofunctional Analysis and Their
Isoduals

Genomathematics began to reach maturity with the discovery made, appar-
ently for the first time in paper [13] of 1993, that the axioms of a field still hold
under the ordering of all products to the right or, independently, to the left.

This unexpected property permitted the formulation of new numbers, that can
be best introduced as a generalization of the isonumbers [18], although they can
also be independently presented as follows:

DEFINITION 4.2.1 [13]: Let F = F (a,+,×) be a field of characteristic
zero as per Definitions 2.1.1 and 3.2.1. Santilli’s forward genofields are rings
F̂> = F̂ (â>, +̂>

, ×̂>) with elements

â> = a× Î>, (4.2.4)

where a ∈ F , Î> = 1/T̂> is a non singular non-Hermitian quantity (number,
matrix or operator) generally outside F and × is the ordinary product of F ; the
genosum +̂> coincides with the ordinary sum +,

â>+̂>
b̂> ≡ â> + b̂>, ∀â>, b̂> ∈ F̂>, (4.2.5)

consequently, the additive forward genounit 0̂> ∈ F̂ coincides with the ordinary
0 ∈ F ; and the forward genoproduct > is such that Î> is the right and left isounit
of F̂>,

Î>×̂â> = â> > Î> ≡ â>, ∀â> ∈ F̂>. (4.2.6)

Santilli’s forward genofields verify the following properties:
1) For each element â> ∈ F̂> there is an element â>−1̂>

, called forward genoin-
verse, for which

â> > â>−Î
>

= Î>, ∀â> ∈ F̂>; (4.2.7)

2) The genosum is commutative

â>+̂>
b̂> = b̂>+̂>

â>, (4.2.8)
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and associative

(â>+̂>
b̂>) +> ĉ> = â>+̂>(b̂>+̂>

ĉ>), ∀â, b̂, ĉ ∈ F̂ ; (4.2.9)

3) The forward genoproduct is associative

â> > (b̂> > ĉ>) = (â> > b̂>) > ĉ>, ∀â>, b̂>, ĉ> ∈ F̂>, (4.2.10)

but not necessarily commutative

â> > b̂> 6= b̂> > â>; (4.2.11)

4) The set F̂> is closed under the genosum,

â>+̂>
b̂> = ĉ> ∈ F̂>, (4.2.12)

the forward genoproduct,
â> > b̂> = ĉ> ∈ F̂>, (4.2.13)

and right and left genodistributive compositions,

â> > (b̂>+̂>
ĉ>) = d̂> ∈ F̂>, (4.2.14a)

(â>+̂>
b̂>) > ĉ> = d̂> ∈ F̂> ∀â>, b̂>, ĉ>, d̂> ∈ F̂>; (4.2.14b)

5) The set F̂> verifies the right and left genodistributive law

â> > (b̂>+̂>
ĉ>) = (â>+̂>

b̂>) > ĉ> = d̂>, ∀â>, b̂>, ĉ>,∈ F̂>. (4.2.15)

In this way we have the forward genoreal numbers R̂>, the forward genocom-
plex numbers Ĉ> and the forward genoquaternionic numbers Q̂C> while the for-
ward genooctonions Ô> can indeed be formulated but they do not constitute geno-
fields [14].

The backward genofields and the isodual forward and backward genofields are
defined accordingly. Santilli’s genofields are called of the first (second) kind when
the genounit is (is not) an element of F .

The basic axiom-preserving character of genofields is illustrated by the follow-
ing:

LEMMA 4.2.1 [13]: Genofields of first and second kind are fields (namely, they
verify all axioms of a field).

Note that the conventional product “2 multiplied by 3” is not necessarily equal
to 6 because, for isodual numbers with unit −1 it is given by −6 [13].



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 339

The same product “2 multiplied by 3” is not necessarily equal to +6 or −6
because, for the case of isonumbers, it can also be equal to an arbitrary number, or
a matrix or an integrodifferential operator depending on the assumed isounit [13].

In this section we point out that “2 multiplied by 3” can be ordered to the
right or to the left, and the result is not only arbitrary, but yielding different
numerical results for different orderings, 2 > 3 6= 2 < 3, all this by continuing to
verify the axioms of a field per each order [13].

Once the forward and backward genofields have been identified, the various
branches of genomathematics can be constructed via simple compatibility argu-
ments.

For specific applications to irreversible processes there is first the need to con-
struct the genofunctional analysis, studied in Refs. [6,18] that we cannot review
here for brevity. The reader is however warned that any elaboration of irreversible
processes via Lie-admissible formulations based on conventional or isotopic func-
tional analysis leads to catastrophic inconsistencies because it would be the same
as elaborating quantum mechanical calculations with genomathematics.

As an illustration, Theorems 1.5.1 and 1.5.2 of catastrophic inconsistencies
are activated unless one uses the ordinary differential calculus lifted, for ordi-
nary motion in time of matter, into the following forward genodifferentials and
genoderivatives

d̂>x = T̂>x × dx,
∂̂>

∂̂>x
= Î>x ×

∂

∂x
, etc, (4.2.16)

with corresponding backward and isodual expressions here ignored.
Similarly, all conventional functions and isofunctions, such as isosinus, isocos-

inus, isolog, etc., have to be lifted in the genoform

f̂>(x>) = f(x̂>)× Î>, (4.2.17)

where one should note the necessity of the multiplication by the genounit as a
condition for the result to be in R̂>, Ĉ>, or Ô>.

4.2.3 Genogeometries and Their Isoduals
Particularly intriguing are the genogeometries [16] (see also monographs [18]

for detailed treatments). They are best characterized by a simple genotopy of
the isogeometries, although they can be independently defined.

As an illustration, the Minkowski-Santilli forward genospace M̂>(x̂>, η̂>, R̂>)
over the genoreal R̂> is characterized by the following spacetime, genocoordinates,
genometric and genoinvariant

x̂> = xÎ> = {xµ} × Î>, η̂> = T̂> × η, η = Diag.(1, 1, 1,−1), (4.2.18a)

x̂>2>
= x̂>µ×̂>η̂>µν×̂

>
x̂>ν = (xµ × η̂>µν × xν)× Î>, (4.2.18b)
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where the first expression of the genoinvariant is on genospaces while the second
is its projection in our spacetime.

Note that the Minkowski-Santilli genospace has, in general, an explicit depen-
dence on spacetime coordinates. Consequently, it is equipped with the entire
formalism of the conventional Riemannian spaces covariant derivative, Christof-
fel’s symbols, Bianchi identity, etc. only lifted from the isotopic form of the
preceding chapter into the genotopic form.

A most important feature is that genospaces permit, apparently for the first
time in scientific history, the representation of irreversibility directly via the ba-
sic genometric. This is due to the fact that genometrics are nonsymmetric by
conception, e.g.,

η̂>µν 6= η̂>νµ. (4.2.19)

Consequently, genotopies permit the lifting of conventional symmetric metrics
into nonsymmetric forms,

ηMinkow.
Symm → η̂>Minkow.−Sant.

NonSymm . (4.2.20)

Remarkably, nonsymmetric metrics are indeed permitted by the axioms of con-
ventional spaces as illustrated by the invariance

(xµ × ηµν × xν)× I ≡ [xµ × (T̂> × ηµν)× xν ]× T>−1 ≡

≡ (xµ × η̂>µν × xν)× Î>, (4.2.21)

where T̂> is assumed in this simple illustration to be a complex number.
Interested readers can then work out backward genogeometries and the isod-

ual forward and backward genogeometries with their underlying genofunctional
analysis.

This basic geometric feature was not discovered until recently because hid-
den where nobody looked for, in the basic unit. However, this basic geometric
advance in the representation of irreversibility required the prior discovery of ba-
sically new numbers, Santilli’s genonumbers with nonsymmetric unit and ordered
multiplication [14].

4.2.4 Santilli Lie-Admissible Theory and Its Isodual
Particularly important for irreversibility is the lifting of Lie’s theory and Lie-

Santilli’s isotheories permitted by genomathematics, first identified by Ref. [11]
of 1978 (and then studied in various works, e.g., [6,18–22]) via the following
genotopies:

(1) The forward and backward universal enveloping genoassociative algebra
ξ̂>, <ξ̂, with infinite-dimensional basis characterizing the Poincaré-Birkhoff-
Witt-Santilli genotheorem

ξ̂> : Î>, X̂i, X̂i > X̂j , X̂i > X̂j > X̂k, . . . , i ≤ j ≤ k, (4.2.22a)
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<ξ̂ : Î , <X̂i, X̂i < X̂j , X̂i < X̂j < X̂k, . . . , i ≤ j ≤ k; (4.2.22b)

where the “hat” on the generators denotes their formulation on genospaces over
genofields and their Hermiticity implies that X̂> =< X̂ = X̂;

(2) The Lie-Santilli genoalgebras characterized by the universal, jointly Lie-
and Jordan-admissible brackets,

<L̂> : (X̂î,X̂j) = X̂i < X̂j − X̂j > X̂i = Ckij × X̂k, (4.2.23)

here formulated in an invariant form (see below);
(3) The Lie-Santilli genotransformation groups

<Ĝ> : Â(ŵ) = (êî×̂X̂×̂ŵ)> > Â(0̂) << (ê−î×̂ŵ×̂X̂) =

= (ei×X̂×T̂
>×w)×A(0)× (e−i×w×

<T̂×X̂), (4.2.24)

where ŵ> ∈ R̂> are the genoparameters; the genorepresentation theory, etc.

4.2.5 Genosymmetries and Nonconservation Laws
The implications of the Santilli Lie-admissible theory are significant mathemat-

ically and physically. On mathematical grounds, the Lie-Santilli genoalgebras are
“directly universal” and include as particular cases all known algebras, such as
Lie, Jordan, Flexible algebras, power associative algebras, quantum, algebras,
supersymmetric algebras, Kac-Moody algebras, etc. (Section 1.5).

Moreover, when computed on the genobimodule

<B̂> =< ξ̂ × ξ̂>, (4.2.25)

Lie-admissible algebras verify all Lie axioms, while deviations from Lie algebras
emerge only in their projection on the conventional bimodule

<B> =< ξ × ξ> (4.2.26)

of Lie’s theory (see Ref. [17] for the initiation of the genorepresentation theory
of Lie-admissible algebras on bimodules).

This is due to the fact that the computation of the left action A < B =
A×< T̂ ×B on <ξ̂ (that is, with respect to the genounit <Î = 1/<T̂ ) yields the
save value as the computation of the conventional product A×B on <ξ (that is,
with respect to the trivial unit I), and the same occurs for the value of A > B

on ξ̂>.
The above occurrences explain the reason the structure constant and the prod-

uct in the r.h.s. of Eq. (4.2.23) are those of a conventional Lie algebra.
In this way, thanks to genomathematics, Lie algebras acquire a towering sig-

nificance in view of the possibility of reducing all possible irreversible systems to
primitive Lie axioms.
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The physical implications of the Lie-Santilli genotheory are equally far reach-
ing. In fact, Noether’s theorem on the reduction of reversible conservation laws to
primitive Lie symmetries can be lifted to the reduction, this time, of irreversible
nonconservation laws to primitive Lie-Santilli genosymmetries.

As a matter of fact, this reduction was the very first motivation for the con-
struction of the genotheory in memoir [12] (see also monographs [6,18,19,20]).
The reader can then foresee similar liftings of all remaining physical aspects
treated via Lie algebras.

The construction of the isodual Lie-Santilli genotheory is an instructive exercise
for readers interested in learning the new methods.

4.3 LIE-ADMISSIBLE CLASSICAL MECHANICS
FOR MATTER AND ITS ISODUAL FOR
ANTIMATTER

4.3.1 Fundamental Ordering Assumption on
Irreversibility

Another reason for the inability during the 20-th century for in depth studies
of irreversibility is the general belief that motion in time has only two directions,
forward and backward (Eddington historical time arrows). In reality, motion in
time admits four different forms, all essential for serious studies in irreversibility,
given by: 1) motion forward to future time characterized by the forward genotime
t̂>; 2) motion backward to past time characterized by the backward genotime
<t̂; 3) motion backward from future time characterized by the isodual forward
genotime t̂>d; and 4) motion forward from past time characterized by the isodual
backward genotime <t̂d.

It is at this point where the necessity of both time reversal and isoduality ap-
pears in its full light. In fact, time reversal is only applicable to matter and, being
represented with Hermitian conjugation, permits the transition from motion for-
ward to motion backward in time, t̂> →< t̂ = (t̂>)†. If used alone, time reversal
cannot identify all four directions of motions. The only additional conjugation
known to this author that is applicable at all levels of study and is equivalent to
charge conjugation, is isoduality [22].

The additional discovery of two complementary orderings of the product and
related units, with corresponding isoduals versions, individually preserving the
abstract axioms of a field has truly fundamental implications for irreversibility,
since it permits the axiomatically consistent and invariant representation of irre-
versibility via the most ultimate and primitive axioms, those on the product and
related unit. We, therefore, have the following:

FUNDAMENTAL ORDERING ASSUMPTION ON IRREVERSIBILITY
[15]: Dynamical equations for motion forward in time of matter (antimatter) sys-
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tems are characterized by genoproducts to the right and related genounits (their
isoduals), while dynamical equations for the motion backward in time of matter
(antimatter) are characterized by genoproducts to the left and related genounits
(their isoduals) under the condition that said genoproducts and genounits are
interconnected by time reversal expressible for generic quantities A, B with the
relation,

(A > B)† = (A > T̂> ×B)† = B† × (T̂>)† ×A†, (4.3.1)

namely,
T̂> = (<T̂ )† (4.3.2)

thus recovering the fundamental complementary conditions (4.1.17) or (4.2.2).
Unless otherwise specified, from now on physical and chemical expression for

irreversible processes will have no meaning without the selection of one of the
indicated two possible orderings.

4.3.2 Newton-Santilli Genoequations and Their Isoduals
Recall that, for the case of isotopies, the basic Newtonian systems are given by

those admitting nonconservative internal forces restricted by certain constraints
to verify total conservation laws called closed non-Hamiltonian systems [6b,18].

For the case of the genotopies under consideration here, the basic Newtonian
systems are the conventional nonconservative systems without subsidiary con-
straints, known asopen non-Hamiltonian systems, with generic expression (1.3),
in which case irreversibility is entirely characterized by nonselfadjoint forces, since
all conservative forces are reversible.

As it is well known, the above equations are not derivable from any variational
principle in the fixed frame of the observer [6], and this is the reason all con-
ventional attempts for consistently quantizing nonconservative forces have failed
for about one century. In turn, the lack of achievement of a consistent operator
counterpart of nonconservative forces lead to the belief that they are “illusory”
because they “disappear” at the particle level.

The studies presented in this paper have achieved the first and only physically
consistent operator formulation of nonconservative forces known to the author.
This goal was achieved by rewriting Newton’s equations (1.3) into an identical
form derivable from a variational principle. Still in turn, the latter objective was
solely permitted by the novel genomathematics.

It is appropriate to recall that Newton was forced to discover new mathe-
matics, the differential calculus, prior to being able to formulated his celebrated
equations. Therefore, readers should not be surprised at the need for the new
genodifferential calculus as a condition to represent all nonconservative Newton’s
systems from a variational principle.

Recall also from Section 3.1 that, contrary to popular beliefs, there exist four
inequivalent directions of time. Consequently, time reversal alone cannot rep-
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resent all these possible motions, and isoduality results to be the only known
additional conjugation that, when combined with time reversal, can represent all
possible time evolutions of both matter and antimatter.

The above setting implies the existence of four different new mechanics first
formulated by Santilli in memoir [14] of 1996, and today known as Newton-Santilli
genomechanics, namely:

A) Forward genomechanics for the representation of forward motion of matter
systems;

B) Backward genomechanics for the representation of the time reversal image
of matter systems;

C) Isodual backward genomechanics for the representation of motion backward
in time of antimatter systems, and

D) Isodual forward genomechanics for the representation of time reversal anti-
matter systems.

These new mechanics are characterized by:
1) Four different times, forward and backward genotimes for matter systems

and the backward and forward isodual genotimes for antimatter systems

t̂> = t× Î>t , −t̂>, t̂>d, −t̂>d, (4.3.3)

with (nowhere singular and non-Hermitian) forward and backward time genounits
and their isoduals (Note that, to verify the condition of non-Hermiticity, the time
genounits can be complex valued.),

Î>t = 1/T̂>t , −Î>t , Î>dt , −Î>dt ; (4.3.4)

2) The forward and backward genocoordinates and their isoduals

x̂> = x× Î>x , −x̂>, x̂>d, −x̂>d, (4.3.5)

with (nowhere singular non-Hermitian) coordinate genounit

Î>x = 1/T̂>x , −Î>x , Î>dx, −Î>dx, (4.3.6)

with forward and backward coordinate genospace and their isoduals Ŝ>x , etc., and
related forward coordinate genofield and their isoduals R̂>x , etc.;

3) The forward and backward genospeeds and their isoduals

v̂> = d̂>x̂>/d̂>t̂>, −v̂>, v̂>d, −v̂>d, (4.3.7)

with (nowhere singular and non-Hermitian) speed genounit

Î>v = 1/T̂>v , −Î>v , Î>dv, −Î>dv, (4.3.8)

with related forward speed backward genospaces and their isoduals Ŝ>v , etc., over
forward and backward speed genofields R̂>v , etc.
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The above formalism then leads to the forward genospace for matter systems

Ŝ>tot = Ŝ>t × Ŝ>x × Ŝ>v , (4.3.9)

defined over the forward genofield

R̂>tot = R̂>t × R̂>x × R̂>v , (4.3.10)

with total forward genounit

Î>tot = Î>t × Î>x × Î>v , (4.3.11)

and corresponding expressions for the remaining three spaces obtained via time
reversal and isoduality.

The basic equations are given by:
I) The forward Newton-Santilli genoequations for matter systems [14], formu-

lated via the genodifferential calculus,

m̂>
a >

d̂>v̂>ka
d̂>t̂>

= − ∂̂
>V̂ >

∂̂>x̂>ka
; (4.3.12)

II) The backward genoequations for matter systems that are characterized by
time reversal of the preceding ones;

III) the backward isodual genoequations for antimatter systems that are char-
acterized by the isodual map of the backward genoequations,

<m̂d
a <

<d̂d<v̂dka
<d̂d<t̂d

= −
<∂̂d<V̂ d

<∂̂d<x̂dka
; (4.3.13)

IV) the forward isodual genoequations for antimatter systems characterized by
time reversal of the preceding isodual equations.

Newton-Santilli genoequations (4.3.12) are “directly universal” for the repre-
sentation of all possible (well behaved) Eqs. (1.3) in the frame of the observer
because they admit a multiple infinity of solution for any given nonselfadjoint
force.

A simple representation occurs under the conditions assumed for simplicity,

N = Î>t = Î>v = 1, (4.3.14)

for which Eqs. (3.12) can be explicitly written

m̂> >
d̂>v̂>

d̂>t
= m× dv̂>

dt
=

= m× d

dt

d(x× Î>x )
dt

= m× dv

dt
× Î>x +m× x× dÎ>

dt
= Î>x ×

∂V

∂x
, (4.3.15)
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from which we obtain the genorepresentation

FNSA = −m× x× 1
Î>x
× dÎ>x

dt
, (4.3.16)

that always admit solutions here left to the interested reader since in the next
section we shall show a much simpler, universal, algebraic solution.

As one can see, in Newton’s equations the nonpotential forces are part of the
applied force, while in the Newton-Santilli genoequations nonpotential forces are
represented by the genounits, or, equivalently, by the genodifferential calculus, in
a way essentially similar to the case of isotopies.

The main difference between iso- and geno-equations is that isounits are Her-
mitian, thus implying the equivalence of forward and backward motions, while
genounits are non-Hermitian, thus implying irreversibility.

Note also that the topology underlying Newton’s equations is the conventional,
Euclidean, local-differential topology which, as such, can only represent point
particles.

By contrast, the topology underlying the Newton-Santilli genoequations is
given by a genotopy of the isotopology studied in the preceding chapter, thus
permitting the representation of extended, nonspherical and deformable particles
via forward genounits, e.g., of the type

Î> = Diag.(n2
1, n

2
2, n

2
3, n

2
4)× Γ>(t, r, v, . . .), (4.3.17)

where n2
k, k = 1, 2, 3 represents the semiaxes of an ellipsoid, n2

4 represents the
density of the medium in which motion occurs (with more general nondiagonal
realizations here omitted for simplicity), and Γ> constitutes a nonsymmetric
matrix representing nonselfadjoint forces, namely, the contact interactions among
extended constituents occurring for the motion forward in time.

4.3.3 Hamilton-Santilli Genomechanics and Its Isodual
In this section we show that, once rewritten in their identical genoform (4.3.12),

Newton’s equations for nonconservative systems are indeed derivable from a vari-
ational principle, with analytic equations possessing a Lie-admissible structure
and Hamilton-Jacobi equations suitable for the first known consistent and unique
operator map studied in the next section.

The most effective setting to introduce real-valued non-symmetric genounits
is in the 6N -dimensional forward genospace (genocotangent bundle) with local
genocoordinates and their conjugates

â>µ = aρ × Î>µ1 ρ , (â>µ) =
(
x̂>kα
p̂>kα

)
(4.3.18)

and
R̂>µ = Rρ × Î>ρ2 µ , (R̂>µ ) = (p̂kα, 0̂), (4.3.19a)
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Î>1 = 1/T̂>1 = (Î>2 )T = (1/T̂>2 )T , (4.3.19b)

k = 1, 2, 3; α = 1, 2, . . . , N ; µ, ρ = 1, 2, . . . 6N,

where the superscript T stands for transposed, and nowhere singular, real-valued
and non-symmetric genometric and related invariant

δ̂> = T̂>1 6N×6N δ6N×6N × δ6N×6N , (4.3.20a)

â>µ > R̂>µ = â>ρ × T̂>β1 ρ × R̂
>
β = aρ × Î>β2 ρ ×Rβ. (4.3.20b)

In this case we have the following genoaction principle [14]

δ̂>Â> = δ̂>
∫̂ >

[R̂>µ >a d̂
>â>µ − Ĥ> >t d̂

>t̂>] =

= δ

∫
[Rµ × T̂>µ1 ν (t, x, p, . . .)× d(aβ × Î>ν1 β )−H × dt] = 0, (4.3.21)

where the second expression is the projection on conventional spaces over con-
ventional fields and we have assumed for simplicity that the time genounit is 1.

It is easy to prove that the above genoprinciple characterizes the following
forward Hamilton-Santilli genoequations, (originally proposed in Ref. [11] of 1978
with conventional mathematics and in Ref. [14] of 1996 with genomathematics
(see also Refs. [18,19,20])

ω̂>µν >
d̂>âν>

d̂>t̂>
− ∂̂>Ĥ>(â>)

∂̂>âµ>
=

=
(

0 −1
1 0

)
×
(
dr/dt
dp/dt

)
−
(

1 K
0 1

)
×
(
∂H/∂r
∂H/∂p

)
= 0, (4.3.22a)

ω̂> =
( ∂̂>R>ν
∂̂>âµ>

−
∂̂>R̂>µ

∂̂>âν>

)
× Î> =

(
0 −1
1 0

)
× Î>, (4.3.22b)

K = FNSA/(∂H/∂p), (4.3.22c)

where one should note the “direct universality” of the simple algebraic solution
(3.22c).

The time evolution of a quantity Â>(â>) on the forward geno-phase-space can
be written in terms of the following brackets

d̂>Â>

d̂>t>
= (Â>, Ĥ>) =

∂̂>Â>

∂̂>â>µ
> ω̂µν> >

∂̂>Ĥ>

∂̂â>ν
=

=
∂Â>

∂â>µ
× S µν × ∂Ĥ>

∂â>ν
=
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=
( ∂Â>
∂r̂>kα

× ∂Ĥ>

∂p̂>ka
− ∂Â>

∂p̂>ka
× ∂Ĥ>

∂r̂>ka

)
+
∂Â>

∂p̂>ka
× FNSAka , (4.3.23a)

S>µν = ωµρ × Î2µ
ρ , ωµν = (||ωαβ ||−1)µν , (4.3.23b)

where ωµν is the conventional Lie tensor and, consequently, Sµν is Lie-admissible
in the sense of Albert [7].

As one can see, the important consequence of genomathematics and its genod-
ifferential calculus is that of turning the triple system (A,H,FNSA) of Eqs. (1.5)
in the bilinear form (A,̂B), thus characterizing a consistent algebra in the brackets
of the time evolution.

This is the central purpose for which genomathematics was built (note that
the multiplicative factors represented by K are fixed for each given system). The
invariance of such a formulation will be proved shortly.

It is an instructive exercise for interested readers to prove that the brackets
(A,̂B) are Lie-admissible, although not Jordan-admissible.

It is easy to verify that the above identical reformulation of Hamilton’s his-
torical time evolution correctly recovers the time rate of variations of physical
quantities in general, and that of the energy in particular,

dA>

dt
= (A>,H>) = [Â>, Ĥ>] +

∂Â>

∂p̂>kα
× FNSAkα , (4.3.24a)

dH

dt
= [Ĥ>, Ĥ>] +

∂Ĥ>

∂p̂>kα
× FNSAka = vkα × FNSAka . (4.3.24b)

It is easy to show that genoaction principle (4.3.21) characterizes the following
Hamilton-Jacobi-Santilli genoequations [14]

∂̂>A>

∂̂>t̂>
+ Ĥ> = 0, (4.3.25a)

( ∂̂>A>
∂̂>â>µ

)
=
( ∂̂>A>
∂̂>x>ka

,
∂̂>A>

∂̂>p>ka

)
= (R̂>µ ) = (p̂>ka, 0̂), (4.3.25b)

which confirm the property (crucial for genoquantization as shown below) that
the genoaction is indeed independent of the linear momentum.

Note the direct universality of the Lie-admissible equations for the representa-
tion of all infinitely possible Newton equations (1.3) (universality) directly in the
fixed frame of the experimenter (direct universality).

Note also that, at the abstract, realization-free level, Hamilton-Santilli genoe-
quations coincide with Hamilton’s equations without external terms, yet represent
those with external terms.
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The latter are reformulated via genomathematics as the only known way to
achieve invariance and derivability from a variational principle while admitting a
consistent algebra in the brackets of the time evolution [38].

Therefore, Hamilton-Santilli genoequations (3.6.66) are indeed irreversible for
all possible reversible Hamiltonians, as desired. The origin of irreversibility rests
in the contact nonpotential forces FNSA according to Lagrange’s and Hamilton’s
teaching that is merely reformulated in an invariant way.

The above Lie-admissible mechanics requires, for completeness, three addi-
tional formulations, the backward genomechanics for the description of matter
moving backward in time, and the isoduals of both the forward and backward
mechanics for the description of antimatter.

The construction of these additional mechanics is left to the interested reader
for brevity.

4.4 LIE-ADMISSIBLE OPERATOR MECHANICS
FOR MATTER AND ITS ISODUAL FOR
ANTIMATTER

4.4.1 Basic Dynamical Equations
A simple genotopy of the naive or symplectic quantization applied to Eqs.

(3.24) yields the Lie-admissible branch of hadronic mechanics [18] comprising
four different formulations, the forward and backward genomechanics for mat-
ter and their isoduals for antimatter. The forward genomechanics for matter is
characterized by the following main topics:

1) The nowhere singular (thus everywhere invertible) non-Hermitian forward
genounit for the representation of all effects causing irreversibility, such as contact
nonpotential interactions among extended particles, etc. (see the subsequent
chapters for various realizations)

Î> = 1/T̂> 6= (Î>)†, (4.4.1)

with corresponding ordered product and genoreal R̂> and genocomplex Ĉ> geno-
fields;

2) The forward genotopic Hilbert space Ĥ> with forward genostates |ψ̂> > and
forward genoinner product

<< ψ̂| > |ψ̂> > ×Î> =<< ψ̂| × T̂> × |ψ̂> > ×Î> ∈ Ĉ>, (4.4.2)

and fundamental property

Î> > |ψ̂> >= |ψ̂> >, (4.4.3)

holding under the condition that Î> is indeed the correct unit for motion forward
in time, and forward genounitary transforms

Û> > (<Û)†> = (<Û)†> > Û> = Î>; (4.4.4)
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3) The fundamental Lie-admissible equations, first proposed in Ref. [12] of 1974
(p. 783, Eqs. (4.18.16)) as the foundations of hadronic mechanics, formulated on
conventional spaces over conventional fields, and first formulated in Refs. [14,18]
of 1996 on genospaces and genodifferential calculus on genofields, today’s known
as Heisenberg-Santilli genoequations, that can be written in the finite form

Â(t̂) = Û> > Â(0) << Û = (êî×̂Ĥ×̂t̂> ) > Â(0̂) < (<ê−î×̂t̂×̂Ĥ) =

= (ei×Ĥ×T̂
>×t)×A(0)× (e−i×t×

<T̂×Ĥ), (4.4.5)

with corresponding infinitesimal version

î×̂ d̂Â
d̂t̂

= (Â,̂Ĥ) = Â < Ĥ − Ĥ > Â =

= Â×< T̂ (t̂, r̂, p̂, ψ̂, . . . .)× Ĥ − Ĥ × T̂>(t̂, r̂, p̂, ψ̂, . . .)× Â, (4.4.6)

where there is no time arrow, since Heisenberg’s equations are computed at a
fixed time;

4) The equivalent Schrödinger-Santilli genoequations, first suggested in the
original proposal [12] to build hadronic mechanics (see also Refs. [17,23,24]), for-
mulated via conventional mathematics and in Refs. [14,18] via genomathematics,
that can be written

î> >
∂̂>

∂̂>t̂>
|ψ̂> >= Ĥ> > |ψ̂> >=

= Ĥ(r̂, v̂)× T̂>(t̂, r̂, p̂, ψ̂, ∂̂ψ̂ . . .)× |ψ̂> >= E> > |ψ> >, (4.4.7)

where the time orderings in the second term are ignored for simplicity of notation;
5) The forward genomomentum that escaped identification for two decades and

was finally identified thanks to the genodifferential calculus in Ref. [14] of 1996

p̂>k > |ψ̂
> >= −î> > ∂̂>k |ψ̂

> >= −i× Î>ik × ∂i|ψ̂
> >; (4.4.8)

6) The fundamental genocommutation rules also first identified in Ref. [14],

(r̂i ,̂ p̂j) = i× δij × Î>, (r̂i ,̂ r̂j) = (p̂i ,̂ p̂j) = 0; (4.4.9)

7) The genoexpectation values of an observable for the forward motion Â>

[14,19]
<< ψ̂| > Â> > |ψ̂> >

<< ψ̂| > |ψ̂> >
× Î> ∈ Ĉ>, (4.4.10)
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under which the genoexpectation values of the genounit recovers the conventional
Planck’s unit as in the isotopic case,

< ψ̂| > Î> > |ψ̂ >
< ψ̂| > |ψ̂ >

= I. (4.4.11)

The following comments are now in order. Note first in the genoaction prin-
ciple the crucial independence of isoaction Â> in form the linear momentum, as
expressed by the Hamilton-Jacobi-Santilli genoequations (4.3.25). Such indepen-
dence assures that genoquantization yields a genowavefunction solely dependent
on time and coordinates, ψ̂> = ψ̂>(t, r).

Other geno-Hamiltonian mechanics studied previously [7] do not verify such a
condition, thus implying genowavefunctions with an explicit dependence also on
linear momenta, ψ̂> = ψ̂>(t, r, p) that violate the abstract identity of quantum
and hadronic mechanics whose treatment in any case is beyond our operator
knowledge at this writing.

Note that forward geno-Hermiticity coincides with conventional Hermiticity.
As a result, all quantities that are observables for quantum mechanics remain
observables for the above genomechanics.

However, unlike quantum mechanics, physical quantities are generally noncon-
served, as it must be the case for the energy,

î> >
d̂>Ĥ>

d̂>t̂>
= Ĥ × (<T̂ − T̂>)× Ĥ 6= 0. (4.4.12)

Therefore, the genotopic branch of hadronic mechanics is the only known opera-
tor formulation permitting nonconserved quantities to be Hermitian as a necessary
condition to be observable.

Other formulation attempt to represent nonconservation, e.g., by adding an
“imaginary potential” to the Hamiltonian, as it is often done in nuclear physics
[25]. In this case the Hamiltonian is non-Hermitian and, consequently, the non-
conservation of the energy cannot be an observable.

Besides, said “nonconservative models” with non-Hermitian Hamiltonians are
nonunitary and are formulated on conventional spaces over conventional fields,
thus suffering all the catastrophic inconsistencies of Theorem 1.3.

We should stress the representation of irreversibility and nonconservation be-
ginning with the most primitive quantity, the unit and related product. Closed
irreversible systems are characterized by the Lie-isotopic subcase in which

î×̂ d̂Â
d̂t̂

= [Â,̂Ĥ] = Â× T̂ (t, . . .)× Ĥ − Ĥ × T̂ (t, . . .)× Â, (4.4.13a)

<T̂ (t, . . .) = T̂>(t, . . .) = T̂ (t, . . .) = T̂ †(t, . . .) 6= T̂ (−t, . . .), (4.4.13b)
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for which the Hamiltonian is manifestly conserved. Nevertheless the system is
manifestly irreversible. Note also the first and only known observability of the
Hamiltonian (due to its iso-Hermiticity) under irreversibility.

As one can see, brackets (A,B) of Eqs. (4.6) are jointly Lie- and Jordan-
admissible.

Note also that finite genotransforms (4.4.5) verify the condition of genoher-
miticity, Eq. (4.4).

We should finally mention that, as it was the case for isotheories, genotheories
are also admitted by the abstract axioms of quantum mechanics, thus providing a
broader realization. This can be seen, e.g., from the invariance under a complex
number C

< ψ|x|ψ > ×I =< ψ|xC−1 × |ψ > ×(C × I) =< ψ| > |ψ > ×I>. (4.4.14)

Consequently, genomechanics provide another explicit and concrete realization
of “hidden variables” [26], thus constituting another “completion” of quantum
mechanics in the E-P-R sense [27]. For the studies of these aspects we refer the
interested reader to Ref. [28].

The above formulation must be completed with three additional Lie-admissible
formulations, the backward formulation for matter under time reversal and the
two additional isodual formulations for antimatter. Their study is left to the
interested reader for brevity.

4.4.2 Simple Construction of Lie-Admissible Theories
As it was the case for the isotopies, a simple method has been identified in

Ref. [44] for the construction of Lie-admissible (geno-) theories from any given
conventional, classical or quantum formulation. It consists in identifying the
genounits as the product of two different nonunitary transforms,

Î> = (<Î)† = U ×W †, <Î = W × U †, (4.4.15a)

U × U † 6= 1, W ×W † 6= 1, U ×W † = Î>, (4.4.15b)

and subjecting the totality of quantities and their operations of conventional
models to said dual transforms,

I → Î> = U × I ×W †, I →< Î = W × I × U †, (4.4.16a)

a→ â> = U × a×W † = a× Î>, (4.4.16b)

a→< â = W × a× U † =< Î × a, (4.4.16c)

a× b→ â> > b̂> = U × (a× b)×W> =

= (U × a×W †)× (U ×W †)−1 × (U × b×W †), (4.4.16d)
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∂/∂x→ ∂̂>/∂̂>x̂> = U × (∂/∂x)×W † = Î> × (∂/∂x), (4.4.16e)

< ψ| × |ψ >→<< ψ| > |ψ> >= U × (< ψ| × |ψ >)×W †, (4.4.16f)

H × |ψ >→ Ĥ> > |ψ> >=

= (U ×H ×W †)× (U ×W †)−1 × (U × ψ > W †), etc. (4.4.16g)

As a result, any given conventional, classical or quantum model can be easily
lifted into the genotopic form.

Note that the above construction implies that all conventional physical quan-
tities acquire a well defined direction of time. For instance, the correct genotopic
formulation of energy, linear momentum, etc., is given by

Ĥ> = U ×H ×W †, p̂> = U × p×W>, etc. (4.4.17)

In fact, under irreversibility, the value of a nonconserved energy at a given time
t for motion forward in time is generally different than the corresponding value
of the energy for −t for motion backward in past times.

This explains the reason for having represented in this section energy, mo-
mentum and other quantities with their arrow of time >. Such an arrow can
indeed be omitted for notational simplicity, but only after the understanding of
its existence.

Note finally that a conventional, one dimensional, unitary Lie transformation
group with Hermitian generator X and parameter w can be transformed into a
covering Lie-admissible group via the following nonunitary transform

Q(w)×Q†(w) = Q†(w)×Q(w) = I, w ∈ R, (4.4.18a)

U × U † 6= I, W ×W † 6= 1, (4.4.18b)

A(w) = Q(w)×A(0)×Q†(w) = eX×w×i ×A(0)× e−i×w×X →

→ U × (eX×w×i ×A(0)× e−i×w×X)× U † =

≡ [U × (eX×w×i)×W † × (U ×W †)−1 ×A×A(0)×

×U † × (W × U †)−1 × [W × (e−i×w×X)× U †] =

= (ei×X×X)> > A(0) << (e−1×w×X) = Û> > A(0) << Û , (4.4.18c)

which confirm the property of Section 4.2, namely, that under the necessary math-
ematics the Lie-admissible theory is indeed admitted by the abstract Lie axioms,
and it is a realization of the latter broader than the isotopic form.
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4.4.3 Invariance of Lie-Admissible Theories
Recall that a fundamental axiomatic feature of quantum mechanics is the in-

variance under time evolution of all numerical predictions and physical laws,
which invariance is due to the unitary structure of the theory.

However, quantum mechanics is reversible and can only represent in a scientific
way beyond academic beliefs reversible systems verifying total conservation laws
due to the antisymmetric character of the brackets of the time evolution.

As indicated earlier, the representation of irreversibility and nonconservation
requires theories with a nonunitary structure. However, the latter are afflicted
by the catastrophic inconsistencies of Theorem 1.3.

The only resolution of such a basic impasse known to the author has been the
achievement of invariance under nonunitarity and irreversibility via the use of
genomathematics, provided that such genomathematics is applied to the total-
ity of the formalism to avoid evident inconsistencies caused by mixing different
mathematics for the selected physical problem.

Let us note that, due to decades of protracted use it is easy to predict that
physicists and mathematicians may be tempted to treat the Lie-admissible branch
of hadronic mechanics with conventional mathematics, whether in part or in full.
Such a posture would be equivalent, for instance, to the elaboration of the spectral
emission of the hydrogen atom with the genodifferential calculus, resulting in an
evident nonscientific setting.

Such an invariance was first achieved by Santilli in Ref. [15] of 1997 and can be
illustrated by reformulating any given nonunitary transform in the genounitary
form

U = Û × T̂>1/2,W = Ŵ × T̂>1/2, (4.4.19a)

U ×W † = Û > Ŵ † = Ŵ † > Û = Î> = 1/T̂>, (4.4.19b)

and then showing that genounits, genoproducts, genoexponentiation, etc., are
indeed invariant under the above genounitary transform in exactly the same way
as conventional units, products, exponentiations, etc. are invariant under unitary
transforms,

Î> → Î>
′
= Û > Î> > Ŵ † = Î>, (4.4.20a)

Â > B̂ → Û > (A > B) > Ŵ † =

= (Û × T̂> ×A× T> × Ŵ †)× (T̂> ×W †)−1 × T̂>×

×(Û × T̂>)−1 × (Û × T> × Â× T> × Ŵ>) =

= Â′ × (Û × Ŵ †)−1 × B̂ = Â′ × T̂> ×B′ = Â′ > B̂′, etc., (4.4.20b)

from which all remaining invariances follow, thus resolving the catastrophic in-
consistencies of Theorem 1.3.
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Note the numerical invariances of the genounit Î> → Î>
′ ≡ Î>, of the geno-

topic element T̂> → T̂>
′ ≡ T̂>, and of the genoproduct >→>′≡> that are

necessary to have invariant numerical predictions.

4.5 APPLICATIONS
4.5.1 Lie-admissible Treatment of Particles with

Dissipative Forces
In this section we present a variety of classical and operator representations of

nonconservative systems by omitting hereon for simplicity of notation all ”hats”
on quantities (denoting isotopies not considered in this section), omitting the
symbol × to denote the conventional (associative) multiplication, but preserving
the forward (backward) symbols > (<) denoting forward (backward) motion in
time for quantities and products. The content of this section was presented for
the first time by the author in memoir [32].

Let us begin with a classical and operator representation of the simplest possi-
ble dissipative system, a massive particle moving within a physical medium, and
being subjected to a linear, velocity-dependent resistive force

m
dv

dt
= FNSA = −kv, (4.5.1)

for which we have the familiar variation (dissipation) of the energy

d

dt
(
1
2
mv2) = −kv2. (4.5.2)

Progressively more complex examples will be considered below.
The representations of system (5.1) via the Newton-Santilli genoequations

(3.12) is given by

m> >
d>v>

d>t>
= 0. (4.5.3)

As indicated in Section 3, the representation requires the selection of three gen-
erally different genounits, I>t , I

>
r , I

>
v . Due to the simplicity of the case and the

velocity dependence of the applied force, the simplest possible solution is given
by

I>t = I>r = 1, I>v (t) = e
k×t
m = 1/T>v (t) > 0, (4.5.4a)

m> >
d>v>

d>t>
= m

d(vI>v )
dt

= m
dv

dt
I> + kv

dI>v
dt

= 0. (4.5.4b)

The representation with Hamilton-Santilli genoequations (3.22) is also straight-
forward and can be written in disjoint r> and p> notations

H> =
p>2>

2> > m>
=

p2

2m
I>p , (4.5.5a)
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v> =
∂>H>

∂>p>
=
p>

m
,

d>p>

d>t>
= −∂

>H>

∂>r>
= 0. (4.5.5b)

The last equation then reproduces equation of motion (5.1) identically under
assumptions (5.4a).

The above case is instructive because the representation is achieved via the
genoderivatives (Section 2.2). However, the representation exhibits no algebra in
the time evolution. Therefore, we seek an alternative representation in which the
dissipation is characterized by the Lie-admissible algebra, rather by the differen-
tial calculus.

This alternative representation is provided by the Hamilton-Santilli genoequa-
tions (3.22) in the unified notation a> = (r>k, p>k ) that become for the case at
hand

da>µ

dt
=
(
dr>/dt
dp>/dt

)
= S>µν

∂>H>

∂>a>ν
=
(

0 −1
1 −kv

(∂H/∂p)

)(
∂>H>/∂>r>

∂>H>/∂>p>

)
,

(4.5.6)
under which we have the genoequations

dr>

dt
=
∂>H>

∂>p>
=
p>

m
,

dp>

dt
= −kv, (4.5.7)

where one should note that the derivative can be assumed to be conventional,
since the system is represented by the mutation of the Lie structure.

To achieve a representation of system (5.1) suitable for operator image, we
need the following classical, finite, Lie-admissible transformation genogroup

A(t) = (e−t
∂H
∂aµ S

>µν ∂
∂aν )A(0)(e

∂
∂aν

<
Sνµ ∂H

∂aµ t), (4.5.8)

defined in the 12−dimensional bimodular genophasespace <T ∗M × T ∗M>, with
infinitesimal Lie-admissible time evolution

dA

dt
=

∂A

∂aµ
(<Sµν − S>µν)∂H

∂aν
=

= (
∂A

∂rk
∂H

∂pk
− ∂H

∂rk
∂A

∂pk
)− (

kv

(∂H/∂p)
)
∂H

∂p

∂A

∂p
) =

= [A,H]− kv∂A
∂p

, (4.5.9)

where we have dropped the forward arrow for notational convenience, and ωµν

is the canonical Lie tensor, thus proving the Lie-admissibility of the S-tensors.
In fact, the attached antisymmetric brackets [A,H] are the conventional Pois-
son brackets, while {A,H} are indeed symmetric brackets (as requested by Lie-
admissibility), but they do not characterize a Jordan algebra (Section 4.1.3).
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It is easy to see that the time evolution of the Hamiltonian is given by

dH

dt
= −kv∂H

∂p
= −kv2, (4.5.10)

thus correctly reproducing behavior (5.2).
The operator image of the above dissipative system is straightforward. Phys-

ically, we are also referring to a first approximation of a massive and stable ele-
mentary particle, such as an electron, penetrating within hadronic matter (such
as a nucleus). Being stable, the particle is not expected to “disappear” at the
initiation of the dissipative force and be converted into “virtual states” due to
the inability of represent such a force, but more realistically the particle is ex-
pected to experience a rapid dissipation of its kinetic energy and perhaps after
that participate in conventional processes.

Alternatively, we can say that an electron orbiting in an atomic structure does
indeed evolve in time with conserved energy, and the system is indeed Hamilto-
nian. By the idea that the same electron when in the core of a star also evolves
with conserved energy is repugnant to reason. Rather than adapting nature to
manifestly limited Hamiltonian theories, we seek their covering for the treatment
of systems for which said theories were not intended for.

The problem is to identify forward and backward genounits and related geno-
topic elements I> = 1/T>,< I = 1/<T for which the following operator Lie-
admissible genogroup now defined on a genomodule <H×H>

A(t) = (eiHT
>t)A(0)(e−it

<TH), (4.5.11)

and related infinitesimal form, the Heisenberg-Santilli genoequations

i
dA

dt
= A < H −H > A = A<TH −HT>A, (4.5.12)

correctly represent the considered dissipative system.
By noting that the Lie-brackets in Eqs. (4.5.9) are conventional, we seek a

realization of the genotopic elements for which the Lie brackets attached to the
Lie-admissible brackets (5.12) are conventional and the symmetric brackets are
Jordan-isotopic. A solution is then given by [32]

T> = 1− Γ, <T = 1 + Γ, (4.5.13)

for which Eq. (5.12) becomes

i
dA

dt
= (AH −HA)− (AΓH +HΓA) =

= [A,H]− {A,̂H}, (4.5.14)
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where [A,H] are a conventional Lie brackets as desired, and {A,̂H} are Jordan-
isotopic brackets. The desired representation then occurs for

I> = e(k/m)H−1
= 1/T>, <I = e−H

−1(k/m) = 1/<T, (4.5.15a)

i
dH

dt
= −kp

2

m2
= −kv2. (4.5.15b)

Note that the achievement of the above operator form of system (5.1) without
the Lie-admissible structure would have been impossible, to our knowledge.

Despite its elementary character, the above illustration has deep implications.
In fact, the above example constitutes the only known operator formulation of a
dissipative system in which the nonconserved energy is represented by a Hermitian
operator H, thus being an observable despite its nonconservative character. In all
other cases existing in the literature the Hamiltonian is generally non-Hermitian,
thus non-observable.

The latter occurrence may illustrate the reason for the absence of a consistent
operator formulation of nonconservative systems throughout the 20-th century
until the advent of the Lie-admissible formulations.

4.5.2 Direct Universality of Lie-Admissible
Representations for Nonconservative Systems

We now show that the Lie-admissible formulations are “directly universal,”
namely, they provide a classical and operator representation of all infinitely pos-
sible (well behaved) nonconservative systems of N particles (universality)

mn
dvnk
dt

+
∂V

∂rkn
= FNSAnk (t, r, p, ṗ, ...), n = 1, 2, 3, ..., N, k = 1, 2, 3, (4.5.16)

directly in the frame of the observer, i.e., without transformations of the coordi-
nates of the experimenter to mathematical frames (direct universality).

An illustration is given by a massive object moving at high speed within a
resistive medium, such as a missile moving in our atmosphere. In this case the
resistive force is approximated by a power series expansion in the velocity trun-
cated up to the 10-th power for the high speeds of contemporary missiles

m
dv

dt
= Σα=1,2,...,10kαv

α, (4.5.17)

for which any dream of conventional Hamiltonian representation is beyond the
boundary of science.

The direct universality of the Hamilton-Santilli genomechanics was proved in
Section 3.3. The representation in geno-phase-space is characterized by the con-
ventional Hamiltonian representing the physical total energy, and the genounit for
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forward motion in time representing the NSA forces, according to the equations

H = Σn,k
p2
nk

2mn
+ V (r), I> =

(
1 FNSA

(∂H/∂p)

1 0

)
(4.5.18)

under which we have the equations of motion (for µ, ν = 1, 2, 3, ...6N) [32]

da>µ

dt
=
(
dr>kn /dt
dp>nk/dt

)
= S>µν

∂>H>

∂>a>ν
=

(
0 −1
1 FNSA

(∂H/∂p)

)(
∂>H>/∂>r>kn
∂>H>/∂>p>nk

)
,

(4.5.19)
the classical, finite, Lie-admissible genosgenogroup

A(t) = exp
(
−t ∂H
∂aµ

S>µν
∂

∂aν

)
A(0) exp

(
∂

∂aν

<

Sνµ
∂H

∂aµ
t

)
, (4.5.20)

with infinitesimal time evolution

dA

dt
=

∂A

∂aµ
(<Sµν − S>µν)∂H

∂aν
=

= (
∂A

∂rkn

∂H

∂pnk
− ∂H

∂rkn

∂A

∂pnk
)− (

km

(∂H/∂p)
)nk

∂A

∂pnk

∂H

∂pnk
) =

= [A,H] + {A,H}, (4.5.21)

yielding the correct nonconservation of the energy

dH

dt
= vkFNSAk . (4.5.22)

The operator image can be characterized by the genounits and related geno-
topic elements

I> = eΓ = 1/T>, <I = e−Γ = 1/<T, Γ = H−1(vknF
NSA
nk )H−1, (4.5.23)

with finite Lie-admissible time evolution

A(t) = exp(iHe−Γt)A(0) exp(−ite+ΓH) (4.5.24)

and related Heisenberg-Santilli genoequations

i
dA

dt
= A < H −H > A = [A,H] + {A,̂H} =

= (AH −HA) + (AΓH +HΓA), (4.5.25)

that correctly represent the time rate of variation of the nonconserved energy,

i
dH

dt
= vknF

NSA
nk . (4.5.26)
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The uninitiated reader should be incidentally aware that generally different ge-
nounits may be requested for different generators, as identified since Ref. [11].

In the latter operator case we are referring to an extended, massive and stable
particle, such as a proton, penetrating at high energy within a nucleus, in which
case the rapid decay of the kinetic energy is caused by contact, resistive, inte-
grodifferential forces of nonlocal type, e.g., because occurring over the volume of
the particle.

The advantages of the Lie-admissible formulations over pre-existing representa-
tion of nonconservative systems should be pointed out. Again, a primary advan-
tage of the Lie-admissible treatment is the characterization of the nonconserved
Hamiltonian with a Hermitian, thus observable quantity, a feature generally ab-
sent in other treatments.

Moreover, the “direct universality” of Lie-admissible representations requires
the following comments. Recall that coordinates transformations have indeed
been used in the representation of nonconservative systems because, under suffi-
cient continuity and regularity, the Lie-Koening theorem assures the existence of
coordinate transformations (r, p)→ (r′(r, p), p′(r, p)) under which a system that
is non-Hamiltonian in the original coordinates becomes Hamiltonian in the new
coordinates (see Ref. [6] for details). However, the needed transformations are
necessarily nonlinear with serious physical consequences, such as:

1) Quantities with direct physical meaning in the coordinates of the exper-
imenter, such as the Hamiltonian H(r, p) = p2

2m + V (r), are transformed into
quantities that, in the new coordinates, have a purely mathematical meaning,
such as H ′(r′, p′) = Nexp(Mr′2/p′3), N,M ∈ R, thus preventing any physically
meaningful operator treatment;

2) There is the loss of any meaningful experimental verifications, since it is
impossible to place any measurement apparatus in mathematical coordinates such
as r′ = KlogLr3, p′ = Pexp(Qrp),K, L, P,Q ∈ R;

3) There is the loss of Galileo’s and Einstein’s special relativity, trivially, be-
cause the new coordinates (r′, p′) characterize a highly noninertial image of the
original inertial system of the experimenter.

All the above, and other insufficiencies are resolved by the Lie-admissible treat-
ment of nonconservative systems.

4.5.3 Pauli-Santilli Lie-Admissible Matrices
Following the study of the nonconservation of the energy, the next important

topic is to study the behavior of the conventional quantum spin under contact
nonconservative forces, a topic studied for the first time in memoir [32]. For
this objective, it is most convenience to use the method of Suctions 4.4.2 and
4.4.3, namely, subject the conventional Pauli’s matrices to two different nonuni-
tary transforms. To avoid un-necessary complexity, we select the following two
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matrices

A =
(

1 0
a 1

)
, B =

(
1 0
b 1

)
, AA† 6= I, ] BB† 6= I, (4.6.1)

where a and b are non-null real numbers, under which we have the following
forward and backward genounits and related genotopic elements

I> = AB† =
(

1 b
a 1

)
, T> =

1
(1− ab)

(
1 −b
−a 1

)
, (4.6.2a)

<I = BA† =
(

1 a
b 1

)
, <T =

1
(1− ab

(
1 −a
−b 1

)
. (4.6.2b)

The forward and backward Pauli-Santilli genomatrices are then given respec-
tively by

σ>1 = Aσ1B
† =

(
0 1
1 (a+ b)

)
, σ>2 = Aσ2B

† =
(

0 −i
i (a+ b)

)
, (4.6.3a)

σ>3 = Aσ3B
† =

(
1 b
a −1

)
, <σ1 = Bσ1A

† =
(

0 1
1 (a+ b)

)
, (4.6.3b)

<σ2 = Bσ2A
† =

(
0 −i
i (a+ b)

)
, <σ3 = Aσ3B

† =
(

1 a
b −1

)
, (4.6.3c)

in which the direction of time is embedded in the structure of the matrices.
It is an instructive exercise for the interested reader to verify that conven-

tional commutation rules and eigenvalues of Pauli’s matrices are preserved under
forward and backward genotopies,

σ>i > σ>j − σ
>
j > σ>i = 2iεijkσ>k , (4.6.4a)

σ>3 > | >= ±1| >, σ>
2>

> | >= 2(2 + 1)| >, (4.6.4b)
<σi >

< σj −< σj >< σi = 2iε<ijkσk, (4.6.4c)

< | << σ3 =< | ± 1, ;< | << σ2> =< |(2(2 + 1). (4.6.4d)

We can, therefore, conclude by stating that Pauli’s matrices can indeed be
lifted in such an irreversible form to represent the direction of time in their very
structure. However, in so doing the conventional notion of spin is lost in favor of a
covering notion in which the spin becomes a locally varying quantity, as expected
to a proton in the core of a star.

Consequently, the Lie-admissible formulation of Pauli matrices confirms the
very title of memoir [12] proposing the construction of hadronic mechanics.
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R.M. Santilli Need for subjecting to an experimental verification the validity
within a hadron of Einstein’s Special Relativity and Pauli’s Exclusion Principle,
Hadronic J. 1, 574–902 (l978)

The argument is that, while special relativity and Pauli exclusion principe
are unquestionably valid for the conditions of their original conception, particles
at large mutual distances under action-at-a-distance interactions (such as for
a point-like proton in a particle accelerator under long range electromagnetic
interactions), by no means the same doctrines have to be necessarily valid for
one hadronic constituent when considering all other constituents as external.6

The above analysis focuses the attention in an apparent fundamental struc-
tural difference between electromagnetic and strong interactions. Irrespective of
whether considered part of the system (closed system) or external (open system),
electromagnetic interactions do verify Pauli principle, as well known. The best
example is given by Dirac’s equation for the hydrogen atom that, as known to
experts to qualify as such, represents one electron under the external electromag-
netic field of the proton. The origin of the preservation of Pauli principle is that,
whether electromagnetic interactions are closed or open, they are Hamiltonian.
Lie’s theory then applies with the conventional notion of spin, and Pauli principle
follows.

By comparison, strong interactions are non-Hamiltonian for the numerous rea-
sons indicated during tour analysis. Consequently, the conventional notion of
spin cannot be preserved, and Pauli principle is inapplicable in favor of broader
vistas. It is intriguing to note that the representation of a proton via isomechan-
ics allows indeed a representation of its extended, nonspherical and deformable
shape. Nevertheless, Pauli’s principle is preserved under isotopies, as indicated
in Chapter 3. Hence, the inapplicability of Pauli’s principle is here referred to,
specifically and solely, for open irreversible conditions at short mutual distances,
exactly according to the original proposal to build hadronic mechanics [12].

The above distinction between electromagnetic and strong interactions is the
conceptual foundation of monographs [40,41] suggesting the characterization of
the hadronic constituents via Lie-admissible, rather than Lie or Lie-isotopic al-
gebras, with the consequential inapplicability of the conventional. notion of spin.
These basic issues will be studied in detail in Volume II in connection with ex-
plicit structure models of hadrons with physical constituents, that is, constituents
that can be produced free in spontaneous decays while being compatible with the
SU(3)-color Mendeleev-type classification of hadrons.

To conclude, not only special relativity, but also Pauli principle is inapplicable
(rather than violated) for a hadron under external strong interactions. Needless to

6The reader should always keep in mind that, even though not stated in the technical literature for
evident political reasons, quantum mechanics can only represent the proton as a dimensionless point.
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say, when a particle with the open nonconservative spin under consideration here
is “completed” with the inclusion of all remaining strong interacting particles here
considered as external, Pauli principle is recovered in full for the center of mass
of the ensemble as a whole because the “completion” is treated via isomechanics.

4.5.4 Minkowski-Santilli Irreversible Genospacetime
One of the fundamental axiomatic principles of hadronic mechanics is that

irreversibility can be directly represented with the background geometry and,
more specifically, with the metric of the selected geometry. This requires the
necessary transition from the conventional symmetric metrics used in the 20-th
century to covering nonsymmetric genometric.

To show this structure, we study in this section the genotopy of the con-
ventional Minkowskian spacetime and related geometry with the conventional
metric η = Diag.(1, 1, 1,−1) and related spacetime elements x2 = xµηµνx

ν , x =
(x1, x2, x3, x4), x4 = ct, c = 1. For this purpose, we introduce the following four-
dimensional non-Hermitian, nonsingular and real-valued forward and backward
genounits

I> = CD† = 1/T>, <I = DC† = 1/<T, CC† 6= I, DD† 6= I, (4.6.5)

C =


1 0 0 0
0 1 0 0
0 0 1 0
p 0 0 1

 , D =


1 0 0 0
0 1 0 0
q 0 1 0
0 0 0 1

 , (4.6.6)

where p 6= q are non-null real numbers, under which we have the following forward
and backward genotopy of the Minkowskian line element

x2 → x>
2> = Cx2D† = C(xtηx)D† =

= (CtxtDt†)(CD†)−1(CηD†)(CD†)−1(CxD†) =

= (xtI>)T>η>T>(I>x) = xµη>µνx
ν =

= (x1x1 + x1qx3 + x2x2 + x3x3 + x1px4 − x4x4), (4.6.7a)

Dx2C† = D(xtηx)C† =

= (xt<I)<T<η<T (<Ix) = xµ<ηµνx
ν =

= (x1x1 + x1px3 + x2x2 + x3x3 + x1qx4 − x4x4), (4.6.7b)

resulting in the forward and backward nonsymmetric genometrics

η> =


1 0 q 0
0 1 0 0
0 0 1 0
q 0 0 1

 , <η =


1 0 0 p
0 1 0 0
q 0 1 0
0 0 0 1

 , (4.6.8)
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exactly as desired.
Note that irreversibility selects a mutation of the line elements along a pre-

selected direction of space and time.
Note also that the quantities p and q can be functions of the local spacetime

variables, in which case the resulting Minkowskian genogeometry can be equipped
by a suitable lifting of the machinery of the Riemannian geometry (see Ref. [16]
for the isotopic case and Chapter 3).

Note finally that the above genospacetime includes, as particular case, an ir-
reversible formulation of the Riemannian geometry, where irreversibility is rep-
resented at the ultimate geometric foundations, the basic unit and the metric.

It should be indicated that the above irreversible formulation of spacetime has
intriguing implications for the mathematical model known as geometric locomo-
tion studied in detail in monograph [73] via the isotopies of the Minkowskian
geometry. In fact, a main unresolved problems is the directional deformation of
the geometry as needed to permit the geometric locomotion in one preferred di-
rection of space. An inspection of the mutated line elements (4.6.7) clearly shows
that the genotopies are preferable over the isotopies for the geometric locomo-
tion, as well as, more generally, for a more realistic geometric characterization of
irreversible processes.

The construction of the Lorentz-Santilli genotransformations is elementary,
due to their formal identify with the isotopic case of Chapter 3, and its explicit
construction left as an instructive exercise for the interested reader.

4.5.5 Dirac-Santilli Irreversible Genoequation
To complete the illustrations in particle physics, we now outline the simplest

possible genotopy of Dirac’s equation via the genotopies of the preceding two
suctions, one for the spin content of Dirac’s equation and the other for its space-
time structure. Also, we shall use Dirac’s equation in its isodual re-interpretation
representing a direct product of one electron and one positron, the latter without
any need of second quantization (see monograph [73] for detail). In turn, the
latter re-interpretation requires the use of the isodual transform A→ Ad = −A†)
as being distinct from Hermitian conjugation. Under the above clarifications, the
forward Dirac genoequation here referred to can be written

η>µνγ>µ T
>p>ν − im)T>|ψ> >= 0 (4.6.9a)

p>ν T
>|ψ> >= −i ∂>

∂>x>ν
|ψ> >= −iI> ∂

∂x>
|ψ> >, (4.6.9b)

with forward genogamma matrices

γ>4 =
(
A 0
0 Bd

)(
I2×2 0

0 −I2×2

)(
Ad 0
0 B

)
=
(
AAd 0

0 −BdB

)
,

(4.6.10a)
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γ>k =
(
A 0
0 Bd

)(
0 σk
σdk 0

)(
Ad 0
0 B

)
= (4.6.10b)

=
(

0 AσkB
†

BσdkA
d 0

)(
0 σk
σdk 0

)
=
(

0 σ>k
<σdk 0

)
, (4.6.10c)

{γ>µ ,̂γ>ν } = γ>µ T
>γ>ν + γ>ν T

>γ>µ = 2η>µν , (4.6.10d)

where η>µν is given by the same genotopy of Eqs. (4.6.10a).
Interested readers can then construct the backward genoequation. They will

discover in this way a new fundamental symmetry of Dirac’s equation that re-
mained undiscovered throughout the 20-th century, its isoselfduality (invariance
under isoduality.) This new symmetry is now playing an increasing role for re-
alistic cosmologies, those inclusive of antimatter, or for serious unified theories
that must also include antimatter to avoid catastrophic inconsistencies [73] (see
Volume II).

It is an instructive exercise for the interested reader to verify a feature indicated
earlier, the inapplicability of the conventional notion of spin and, consequently,
of Pauli principle for the Dirac-Santilli genoequation. As we shall see in Volume
II, the conventional Dirac equation represents the electron in the structure of the
hydrogen atom. By comparison, the Dirac-Santilli genoequation represents the
same electron when totally immersed in the hyperdense medium inside a proton,
thus characterizing the structure of the neutron according to hadronic mechanics..

Note that, while the electron is moving forward, the positron is moving back-
ward in time although referred to a negative unit of time, as a necessary condition
to avoid the inconsistencies for negative energies that requested the conjecture of
the “hole theory” (see monograph xxx for brevity).

4.5.6 Dunning-Davies Lie-Admissible Thermodynamics
A scientific imbalance of the 20-th century has been the lack of interconnections

between thermodynamics, on one side, and classical and quantum mechanics, on
the other side. This is due to the fact that the very notion of entropy,
indexEntropy let alone all thermodynamical laws, are centrally dependent on ir-
reversibility, while classical and quantum Hamiltonian mechanics are structurally
reversible (since all known potentials are reversible in time).

As recalled in Section 4.1, said lack of interconnection was justified in the 20-th
century on the belief that the nonconservative forces responsible for irreversibility
according to Lagrange and Hamilton, are “fictitious” in the sense that they only
exist at the classical level and they “disappear” when passing to elementary
particles, since the latter were believed to be completely reversible. In this way,
thermodynamics itself was turned into a sort of ”fictitious” discipline.

This imbalance has been resolved by hadronic mechanics beginning from its
inception. In fact, Theorems 1.3.3 has established that, far from being “ficti-
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tious,” nonconservative forces originate at the ultimate level of nature, that of
elementary particles in conditions of mutual penetration causing contact nonpo-
tential (NSA) interactions. The insufficiency rested in the inability by quantum
mechanics to represent nonconservative forces, rather than in nature. In fact,
hadronic mechanics was proposed and developed precisely to reach an operator
representation of the nonconservative forces originating irreversibility along the
legacy of Lagrange and Hamilton.

As a result of the efforts presented in this chapter, we now possess not only
classical and operator theories, but more particularly we have a new mathematics,
the genomathematics, whose basic axioms are not invariant under time reversal
beginning from the basic units, numbers and differentials.

Consequently, hadronic mechanics does indeed permit quantitative studies of
the expected interplay between thermodynamics and classical as well as oper-
ator mechanics. These studies were pioneered by J. Dunning Davies [30] who
introduced the first known study of thermodynamics via methods as structurally
irreversible as their basic laws, resulting in a formulation we hereon call Dunning-
Davies Lie-admissible thermodynamics. This section is dedicated to a review of
Dunning-Davies studies.

Let us use conventional thermodynamical symbols, a classical form of thermo-
dynamics, and the simple construction of irreversible formulations via two differ-
ent complex valued quantities A and B. Then, the first law of thermodynamics
can be lifted from its conventional formulation, that via reversible mathematics,
into the form permitted by genomathematics

Q→ Q> = AQB† = QI>, U → U> = AUB† = UI>, etc., (4.6.11a)

dQ = dU + pdV → d>Q> = d>U> + p> > d>V >, (4.6.11b)

where, in the absence of operator forms, Hermitian conjugation is complex con-
jugation. For the second law we have

dQ = TdS → d>Q> = T> > d>S>, (4.6.12)

thus implying that

TdS = dU + pdV → T> > d>S> = d>U> + p> > d>V >. (4.6.13)

As one can see, genomathematics permits the first known formulation of entropy
with a time arrow, the only causal form being that forward in time. When
the genounit does not depend on the local variables, the above genoformulation
reduces to the conventional one identically, e.g.,

T> > d>S> = (TI>)I>−1[I>−1d(SI>) = TdS =

= I>−1d(V I>) + (pI>)I>−1d(V I>) = dU + pdV. (4.6.14)
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This confirms that genomathematics is indeed compatible with thermodynamical
laws.

However, new vistas in thermodynamics are permitted when the genounit is
dependent on local variables, in which case reduction (4.6.13) is no longer possi-
ble. An important case occurs when the genounit is explicitly dependent on the
entropy. In this case the l.h.s. of Eq. (4.6.13) becomes

TdS + TS(I>−1dI>) = dU + pdV. (4.6.15)

We then have new thermodynamical models of the type

I> = ef(S), T> > d>S> = T

(
1 + S

∂f(S)
∂S

)
dS = dU + pdV, (4.6.16)

permitting thermodynamical formulations of the behavior of anomalous gases
(such as magnegases [21]) via a suitable selection of the f(S) function and its fit
to experimental data. Needless to say, equivalent models can be constructed for
an explicit dependence of the genounit from the other variables. For these and
other aspects we have to refer the interested reader to Volume II.

4.5.7 Ongoing Applications to New Clean Energies
A primary objective of Volume II is to study industrial applications of hadro-

nic mechanics to new clean energies that are under development at the time of
writing this first volume (2002). Hence, we close this chapter with the following
preliminary remarks.

The societal, let alone scientific implications of the proper treatment of irre-
versibility are rather serious. Our planet is afflicted by increasingly catastrophic
climactic events mandating the search for basically new, environmentally accept-
able energies, for which scope the studies reported in these monographs were
initiated.

All known energy sources, from the combustion of carbon dating to prehistoric
times to the nuclear energy, are based on irreversible processes. By comparison,
all established doctrines of the 20-th century, such as quantum mechanics and
special relativity, are reversible, as recalled in Section 4.1.

It is then easy to see that the serious search for basically new energies requires
basically new theories that are as structurally irreversible as the process they are
expected to describe. At any rate, all possible energies and fuels that could be
predicted by quantum mechanics and special relativity were discovered by the
middle of the 20-th century. Hence, the insistence in continuing to restrict new
energies to verify preferred reversible doctrines may cause a condemnation by
posterity due to the environmental implications.

An effective way to illustrate the need for new irreversible theories is given
by nuclear fusions. All efforts to date in the field, whether for the “cold fusion”
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or the “hot fusion,” have been mainly restricted to verify quantum mechanics
and special relativity. However, whether “hot” or “cold,” all fusion processes are
irreversible, while quantum mechanics and special relativity are reversible.

It has been shown in Ref. [31] that the failure to date by both the “cold” and
the “hot” fusions to achieve industrial value is primarily due to the treatment of
irreversible nuclear fusions with reversible mathematical and physical methods.

In the event of residual doubt due to protracted use of preferred theories, it
is sufficient to compute the quantum mechanical probability for two nuclei to
“fuse” into a third one, and then compute its time reversal image. In this way
the serious scholar will see that special relativity and quantum mechanics may
predict a fully causal spontaneous disintegration of nuclei following their fusion,
namely, a prediction outside the boundary of science.

The inclusion of irreversibility in quantitative studies of new energies suggests
the development, already partially achieved at the industrial level (see Chapter 8
of Ref. [20]), of the new, controlled “intermediate fusion” of light nuclei [31],
that is, a fusion occurring at minimal threshold energies needed: 1) To verify
conservation laws; 2) To expose nuclei as a pre-requisite for their fusion (a fea-
ture absent in the “cold fusion” due to insufficient energies), and 3) To prevent
uncontrollable instabilities (as occurring at the very high energies of the “hot
fusion”).

It is hoped that serious scholars will participate with independent studies on
the irreversible treatment of new energies, as well as on numerous other open
problems, because in the final analysis lack of participation in basic advances is
a gift of scientific priorities to others.
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Chapter 5

HYPERSTRUCTURAL BRANCH OF
HADRONIC MECHANICS AND ITS ISODUAL

5.1 The Scientific Imbalance in Biology
In our view, the biggest scientific imbalance of the 20-th century has been

the treatment of biological systems (herein denoting DNA, cells, organisms, etc.)
via conventional mathematics, physics and chemistry because of various reasons
studied in detail in Chapter 1.1.

We here limit ourselves to recall that biological events, such as the growth
of an organism, are irreversible over time, while the mathematics of the 20-th
century and related formulations are structurally reversible, that is, reversible
for all possible Hamiltonians. Therefore, any treatment of biological systems via
reversible mathematics, physical and chemical formulations can indeed receive
temporary academic acceptance, but cannot pass the test of time.

Quantum mechanics is ideally suited for the treatment of the structure of the
hydrogen atom or of crystals, namely, systems that are fully reversible. These
systems are represented by quantum mechanics as being ageless. Recall also that
quantum mechanics is unable to treat deformations because of incompatibilities
with basic axioms, such as that of the rotational symmetry.

Therefore, the strict application to biological systems of the mathematics un-
derlying quantum mechanics and chemistry implies that all organisms from cells
to humans are perfectly reversible, totally rigid and fully eternal.

5.2 The Need in Biology of Irreversible Multi-Valued
Formulations

It is possible to see that, despite their generality, the invariant irreversible
genoformulations studied in the preceding chapter are insufficient for in depth
treatments of biological systems.
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In fact, recent studies conducted by Illert [1] have pointed out that the shape
of sea shells can certainly be represented via conventional mathematics, such as
the Euclidean geometry.

However, the latter conventional geometries are inapplicable for a represen-
tation of the growth over time of sea shells. Computer simulations have shown
that the imposition to sea shell growth of conventional geometric axioms causes
the lack of proper growth, such as deformations and cracks, as expected, because
said geometries are strictly reversible over time, while the growth of sea shells is
strictly irreversible.

The same studies by Illert [1] have indicated the need of a mathematics that
is not only structurally irreversible, but also multi-dimensional. As an example,
Illert achieved a satisfactory representation of sea shells growth via the doubling
of the Euclidean reference axes, namely, via a geometry appearing to be six-
dimensional.

A basic problem in accepting such a view is the lack of compatibility with
our sensory perception. When holding sea shells in our hands, we can fully
perceive their shape as well as their growth with our three Eustachian tubes.
Hence, any representation of sea shells growth with more than three dimensions
is incompatible with our perception of reality.

Similarly, our sensory perception can indeed detect curvature. Thus, any rep-
resentation of sea shell growth with the Riemannian geometry would equally be
incompatible with our sensory perception. At any rate, any attempt at the use
of the Riemannian geometry for sea shell growth would be faced with fatal incon-
sistencies, such as the inability to represent bifurcations and other aspects since
such representations would be prohibited by curvature.

These occurrences pose a rather challenging problem, the construction of yet
another new mathematics that is

(1) Structurally irreversible over time (as that of the preceding section);
(2) Capable to represent deformations;
(3) Invariant under the time evolution in the sense of predicting the same

number under the same conditions but at different times;
(4) Multi-dimensional; and, last but not least,
(5) Compatible with our sensory perception.
The only solution known to the author is that of building an irreversible multi-

valued (rather than multi-dimensional) new mathematics, in the sense that the
basic axioms of the space representation can remain three-dimensional to achieve
compatibility with our sensory perception, but each axis can have more than one
value, thus being multi-valued.

A search in the mathematical literature soon revealed that a mathematics
verifying all the above requirements did not exist and had to be constructed.
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Figure 5.1. A schematic view of Illert [1] has shown that a representation of the growth over
time of a seashell can be effectively done by doubling the number of reference axes. However,
seashell growth is perceived by our sensory perception as occurring in three-dimensional space.
The multi-valued hyperstructural branch of hadronic mechanics studied in this chapter provides
a solution of these seemingly discordant requirements because, on side, it is as multi-valued as
desired while, on the other side, remains three-dimensional at the abstract, realization-free level.

As an example, in their current formulations, hyperstructures (see, e.g., Ref. [2])
lack a well defined left and right unit thus lacking the applicability to the measure-
ments; they do not have conventional operations, but rather the so-called weak
operations, thus lacking applicability to experiments; they are not structurally ir-
reversible; and they lack invariance. Consequently, conventional hyperstructures
are not suitable for applications in biology.

5.3 Rudiments of Santilli Hyper-Mathematics and
Hypermechanics

After a number of trials and errors, a yet broader mathematics verifying the
above five conditions was identified by R. M. Santilli in monographs [3] of 1995
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and in works [4,5], and subsequently studied by R. M. Santilli and the mathemati-
cian T. Vougiouklis in paper [6] of 1996 (see also mathematical study [7]). These
studies resulted in a formulation today known as Santilli hypermathematics.

For an in depth study, including the all crucial Lie-Santilli hypertheory, we
refer the reader to the mathematical treatments [4–7]. By assuming an in depth
knowledge of genomathematics of the preceding chapter, we here limit ourselves to
indicate that the selected hypermathematics is based on the assumption that the
single-valued forward and backward genounits of the preceding chapter although
replaced with the following multi-valued hyperunits

Î>(t, x, v, ψ, ∂xψ, ...) = Diag.(Î>1 , Î
>
2 , Î

>
3 ) =

= Diag.
[
(Î>11, Î

>
12, ..., Î

>
1m), (Î>21, Î

>
22, ..., Î

>
2m), (Î>31, Î

>
32, ..., Î

>
3m)
]
, (5.1a)

<Î(t, x, v, ψ, ...) = Diag.(<Î1,< Î2,< Î3) =

= Diag.
[
(<Î11,

< Î12, ...,
< Î1m), (<Î21,< Î22, ...,< Î2m),

(<Î31,< Î32, ...,< Î3m)
]
, (5.1b)

with corresponding ordered hyperproducts to the right and to the left

A > B = A× T̂> ×B,A < B = A×< T̂ ×B, (5.2a)

Î> > A = A > Î> = A, <Î < AA << Î = A, (5.2b)

Î> = (<Î)† = 1/T̂>. (5.2c)

Following the hyperlifting of the methods of the preceding chapter, we reach the
following basic equations of the multi-valued hyperstructural branch of hadronic
mechanics, first proposed by Santilli in monographs [3] of 1995 (see also the
mathematical works [4–6], here written in the finite and infinitesimal forms

i dA/dt = ACH −H BA, (5.3a)

A(t) = êi×H×tCA(0)Bê−i×t×H , (5.3b)

quoted in Footnote 15 of Chapter 1, where the multivalued character of all quan-
tities and their operations is assumed.

In the above expressions the reader should recognize the diagonal elements
of the genounits of the preceding chapter and then identify the multi-valued
character for each diagonal element. Consequently, the above mathematics is not
3m-dimensional, but rather it is 3-dimensional and m-multi-valued, namely, each
axis in three-dimensional space can assume m different values.
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Such a feature permits the increase of the reference axes, e.g., for m = 2 we
have six axes as used by Illert [1], while achieving compatibility with our sen-
sory perception because at the abstract, realization-free level hypermathematics
characterized by hyperunit is indeed 3-dimensional.

It is instructive for readers interested in learning the new mathematics to prove
the following

LEMMA 5.1 [3]: All rings of elements a× Î> (<Î×a), where a is an ordinary
(real, complex or quaternionic) number and Î> (<Î) is the forward (backward)
multivalued hyperunit, when equipped with the forward (backward) hyperproduct,
verify all axioms of a field.

A good understanding of the above property can be reached by comparison
with the preceding studies. The discovery of isofields [8] studied in Chapter 3
was made possible by the observation that the axioms of a field are insensitive
to the value of the unit. As a result of which we have isoproducts of the type

Î = 1/3 = 1/T̂ , 2×̂3 = 2× T̂ × 3 = 18. (5.4)

The discovery of genofields also in Ref. [8] was due to the observation that
the axioms of a field are additionally insensitive to the ordering of a product to
the right or to the left, provided that all operations are restricted to one selected
order. This lead to two inequivalent multiplications, one to the right and one to
the left, as necessary to represent irreversibility, such as

Î> = 1/3 = T̂ , 2 > 3 = 18,<Î = 3, 2 < 3 = 2. (5.5)

Lemma 5.1 essentially reflects the additional property according to which the
axioms of a field are also insensitive as to whether, in addition to the selection of
an ordering as per genofields, the units and (ordered) products are multivalued,
e.g.,

Î> = {1/3, 1/5}, 2>̂3 = {18, 30}, <Î = {3, 2}, 2<̂3 = {2, 3}, (5.6)

where the results of the hypermultiplications should be interpreted as an ordered
set.

Once the notion of hyperfield is understood, the construction of all remaining
aspects of hypermathematics can be conducted via simple compatibility argu-
ments, thus leading in this way to hyperspaces, hyperfunctional analysis, hyper-
differential calculus, hyperalgebras, etc.

Note that the resulting hyperformulations are invariant as it is the case for
genomathematics. The proof of such an invariance is here omitted for brevity,
but recommended to readers interested in a serious study of the field.

The above features serve to indicate that the biological world has a complexity
simply beyond our imagination, and that studies of biological problems conducted
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in the 20-th century, such as attempting an understanding the DNA code via
numbers dating back to biblical times, are manifestly insufficient.

The above features appear to be necessary for the representation of biologi-
cal systems. As an example, consider the association of two atoms in a DNA
producing an organ composed by a very large number of atoms, such as a liver.
A quantitative treatment of this complex event is given by representing the two
atoms with α and β and by representing their association in a DNA with the
hyperproduct. The resulting large number of atoms γk in the organ is then rep-
resented by the ordered multi-valued character of the hyperproduct, such as

α>̂β = {γ1, γ2, γ3, γ4, . . . , γn, }. (5.7)

The above attempt at decybrings the DNA code is another illustration of our
view that the complexity of biological systems is simply beyond our comprehen-
sion at this time. A mathematical representation will eventually be achieved in
due time. However, any attempt at its “understanding” would face the same diffi-
culties of attempting to understand infinite-dimensional Hilbert space in quantum
mechanics, only the difficulties are exponentially increased for biological struc-
tures.

5.4 Rudiments of Santilli Isodual Hypermathematics
The isodual hypermathematics can be constructed via the isodual map of Chap-

ter 2 here expressed for an arbitrary operator Â,

Â(t̂, r̂, p̂, ψ̂, . . .)→ −Â†(−t̂†,−r̂†,−p̂†,−ψ̂†, . . .) = Âd(t̂d, r̂d, p̂d, ψ̂d, . . .), (5.8)

applied to the totality of hypermathematics, including its operations, with no
exception (to avoid inconsistencies), thus yielding isodual hyperunits, isodual hy-
pernumbers, isodual hyperspaces, etc.

Consequently, the formulations here considered have four different hyperunits,
the forward and backward hyperunits and their isoduals,

Î>, <Î , Î>d, <dÎ , (5.9)

that, in turn, have to be specialized into forward and backward space and time
hyperunits and their isoduals.

Consequently, the formulations herein considered have four different hyperco-
ordinates

x̂>, <x̂, x̂>d, <x̂d, (5.10)

and four different hypertimes,

t̂>, <t̂, t̂>d, <t̂d. (5.11)

In chapter 2 (see also Figure 2.2) we have studied the need for four different
times. We now have the four different hypertimes for: 1) Motion forward to
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future times characterized by t̂>; 2) Motion backward to past time characterized
by <t̂; 3) Motion backward from future times characterized by t̂>d, and 4) motion
forward from past times characterized by <dt̂. The main difference between the
four times of Chapter 2 and the four hypertimes of this chapter is that the former
are single-valued while the latter are multi-valued.

Note again the necessity of the isodual map to represent all four possible time
evolutions. In fact, the conventional mathematics, such as that underlying spe-
cial relativity, can only represent two our four possible time evolutions, motion
forward to future time and motion backward to past time, the latter reached via
the conventional time reversal operation.

The following intriguing and far reaching aspect emerges in biology. Until now
we have strictly used isodual theories for the sole representation of antimatter.
However, Illert [1] has shown that the representation of the bifurcations in sea
shells requires the use of all four directions of time.

The latter aspect is an additional illustration of the complexity of biological
system. In fact, the occurrence implies that the “intrinsic time” of a seashell,
that is, the time perceived by a sea shells as a living organism, is so complex
to be beyond our comprehension at this writing. Alternatively, we can say that
the complexity of hypertimes is intended to reflect the complexity of biological
systems.

In conclusion, the achievement of invariant representations of biological struc-
tures and their behavior can be one of the most productive frontiers of science,
with far reaching implications for other branches, including mathematics, physics
and chemistry.

As an illustration, a mathematically consistent representation of the non-
Newtonian propulsion of sap in trees, all the way up to big heights, automatically
provides a model of geometric propulsion studied in Volume II, namely propulsion
caused by the alteration of the local geometry without any external applied force.

5.5 Santilli Hyperrelativity and Its Isodual
All preceding formulations can be embodied into one single axiomatic structure

submitted in monographs [3,5] and today known as Santilli hyperrelativity and
its isodual, that are characterized by:

1) The irreversible, multi-valued, forward and backward, Minkowski-Santilli
hyperspace with the following forward and backward spacetime hypercoordinates
and forward and backward hyperintervals over forward and backward hyperfields,
and their isoduals

M̂>(x̂>, η̂>, R̂>), x̂>2 = x̂>µ>̂η̂>µν>̂x̂
>ν ∈ R̂>, (5, 12a)

<M̂(<x̂,< η̂,< R̂),<x̂2 =< x̂>µ<̂
<
η̂µν<̂<̂x

ν ∈< R̂, (5.12b)

m̂>d(x̂>d, η̂>d, R̂>d,<m̂d(<x̂d,< η̂d,< R̂d; (5.12c)
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2) The corresponding irreversible, multi-valued, forward and backward
Poincaré-Santilli hypersymmetry and their isoduals here written via the Kro-
necker product

P̂>(3, 1)time<P̂ (3.1)× P̂>d(3, 1)time<P̂ d(3.1), (5.13)

essentially given by the Poincaré-Santilli genosymmetry of the preceding chapter
under a multi-valued realization of the local coordinates and their operations;

3) The corresponding forward and backward hyperaxioms and their isoduals:

FORWARD HYPERAXIOM I. The projection in our spacetime of the max-
imal causal invariant speed on forward Minkowski-Santilli hyperspace in (3, 4)-
dimensions is given by:

V̂Max = co ×
b>4
b>3

= co ×
n>3
n>4

= ĉ>/b̂>3 , ĉ> = co × b>4 =
co
n̂>4

, (5.14)

FORWARD HYPERAXIOM II. The projection in our spacetime of the hyper-
relativistic addition of speeds within MULTI-VALUED physical media represented
by the forward Minkowski-Santilli hyperspace is given by:

V̂ >
tot =

v̂>1 + v̂>2

1̂> + v̂>
1 ×b

>
3

2×v̂>
2

co×b>4
2×co

=
v̂>1 + v̂>2

1̂> + v̂>
1 ×n̂

>
4

2
×v̂>

2

co×n̂>
3

2
×co

. (5.15)

FORWARD HYPERAXIOM III. The projection in our spacetime of the for-
ward hyperdilation of forward hypertime, forward hypercontraction of forward hy-
perlength and the variation of forward hypermass with the forward hyperspeed are
given respectively by

t̂> = γ̂> × t̂>◦ , (5.16a)

ˆ̀>
◦ = γ̂> × ˆ̀, (5.16b)

m̂> = γ̂> × m̂>
◦ . (5.16c)

FORWARD HYPERAXIOM IV. The projection in our spacetime of the Dopp-
ler-Santilli forward hyperlaw is given by the expression (here formulated for sim-
plicity for 90◦ angle of aberration):

ω̂> = γ̂ ×> ω̂>◦ . (5.17)

ISOAXIOM V. The projection in our spacetime of the hyperrelativistic law of
equivalence of forward hypermass and the forward hyperenergy is given by:

Ê> = m̂> × V̂ 2>
max = m̂> × c2o ×

b̂>4
2

b̂>3
2

= m̂> × c2o ×
n̂>3

2

n̂>4
2
. (5.18)
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Figure 5.2. Samples of sliced seashells showing the complexity of their structure. Illert [1]
has shown that a mathematical representation of their four-lobes bifurcations requires all four
directions of times, namely, the knowledge by the seashell of motions forward in future and
past times as well as motions backward from future and in past times. The need for multi-
valued methods, plus these four different time arrows then identify our hyperstructures and
their isoduals quite uniquely. Whatever the appropriate theory, it can be safely stated that
the complexity of the “intrinsic time” of biological structure (that perceived by said structures
rather than by us) can be safely stated to be beyond our comprehension at this writing.

In the above expressions we have used the following notations: hypergamma
and hyperbeta are given by

γ̂> = (1− β̂2>)−1/2, β̂> = v̂2>× n̂>4 2/c2o× n̂>3 2 = v̂2>× b̂>3 2/c2o× b̂>4 2; (5.19)

the upper symbol > denotes motion forward to future times; the upper symbol
x̂, etc., denotes multivalued character; and all multiplications are conventional
(rather than being hyperproducts) since the hyperaxioms are expressed in their
projection in our spacetime to avoid excessive complexity.

The study of the backward and isodual hyperaxioms is left to the interested
reader.

A few comments are now inn order:
i) Hyperrelativity and its isodual are the most general forms of relativities

known at this writing that can be formulated on numbers verifying the axioms
of a field, thus admitting a well defined left and right unit with consequential
applicability to measurements;

ii) Hyperrelativity and its isodual are invariant under their respective time
hyperevolutions, thus predicting the same numerical results at different time,
and being applicable to experiments;

iii) Hyperrelativity and its isodual are multi-valued rather than multi-dimen-
sional, namely, they permit the representation of multi-universes in a form com-
patible with our sensory perception of spacetime;
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iv) The speed of light in vacuum co has been assumed to remain unchanged
under hyperlifting, thus meaning that the speed of light is the same for all vacuum
foliations of spacetime.

v) Like all other quantities, hyperspeeds in general and, in particular, the
hyperspeed of light must necessarily be multi-valued for consistency, namely,
assume different values for different foliations of spacetime.

Note the covering character of hyperrelativity in the sense of admitting as
particular cases the genorelativity of Chapter 4, the isorelativity of Chapter 3
and the conventional special relativity whenever all units return to have the value
1 dating back to biblical times.

As we shall see in Volume II, hyperrelativity and its isodual, with particular
reference to the 44-multi-valued hyperdimensional hypersymmetry (5.13)1, will
allow the formulation of the most general known, thus the most complex known,
cosmology that includes, for the first time, biological structure as a condition for
the appropriate use of the word “cosmology” in its Greek sense.

1The reader should recall that the Poincaré symmetry is eleven-dimensional and not ten dimensional
as popularly believed because of the discovery permitted by isomathematics of the additional, 11-th
dimensional isoscalar isoinvariance studied in Section 3.5.
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Appendix 5.A
Eric Trell’s Hyperbiological Structures TO BE
COMPLETED AND EDITED.

A new conception of biological systems providing a true advance over rather
primitive prior conceptions, has been recently proposed by Erik Trell (see Ref.
(164) and contributions quoted therein). It is based on representative blocks
which appear in our space to be next to each other, thus forming a cell or an or-
ganism, while having in reality hypercorrelations, thus having the structure of hy-
pernumbers, hypermathematics and hyperrelativity, with consequential descrip-
tive capacities immensely beyond those of pre-existing, generally single-valued
and reversible biological models. Regrettably, we cannot review Trell’s new hy-
perbiological model to avoid an excessive length, and refer interested readers to
the original literature (164).



382 RUGGERO MARIA SANTILLI

References

[1] C. R. Illert and R. M. Santilli, Foundations of Theoretical Conchology, Hadronic Press,
Palm Harbor, Florida (1995).

[2] T. Vougiouklis, Editor, New Frontiers in Hyperstructures, Hadronic Press, (1996).

[3] R. M. Santilli, Elements of Hadronic Mechanics, Volumes I and II, Ukrainian Academy of
Sciences, Kiev, Second Edition (1995).

[4] R. M. Santilli, Rendiconti Circolo Matematico di Palermo, Supplemento 42, 7 (1996).

[5] R. M. Santilli Isotopic, Genotopic and Hyperstructural Methods in Theoretical Biology,
Ukrainian Academy of Sciences, Kiev (1996).

[6] R. M. Santilli and T. Vougiouklis, contributed paper in New Frontiers in Hyperstructures,
T. Vougiouklis, Editor, Hadronic Press, p. 1 (1996).

[7] R. M. Santilli, Algebras, Groups and Geometries 15, 473 (1998).

[8] R. M. Santilli Algebras, Groups and Geometries 10, 273 (1993).

[9] E. Trell, Tessellation of Diophantine Equation Block Universe, contributed paper to Phys-
ical Interpretations of Relativity Theory, 6-9 September 2002, Imperial College, London.
British Society for the Philosophy of Science, in print, (2002).



Postscript

In the history of science some basic advances in physics have been preceded by
basic advances in mathematics, such as Newtons invention of calculus and general
relativity relying on Riemannian geometry. In the case of quantum mechanics
the scientific revolution presupposed the earlier invention of complex numbers.
With new numbers and more powerful mathematics to its disposition, physics
could be lifted to explain broader and more complex domains of physical reality.

The recent and ongoing revolution of physics, initiated by Prof. Ruggero Maria
Santilli, lifting the discipline from quantum mechanics to hadronic mechanics, is
consistent with this pattern, but in a more far-reaching and radical way than
earlier liftings of physics made possible from extensions of mathematics.

Santilli realized at an early stage that basic advances in physics required in-
vention of new classes of numbers and more adequate and powerful mathemat-
ics stemming from this. His efforts to develop such expansions of mathematics
started already in 1967, and this enterprise went on for four decades. Its basic
novelties, architecture and fruits are presented in the present volume. During this
period a few dozen professional mathematicians world wide have made more or
less significant contributions to fill in the new Santilli fields of mathematics, but
the honor of discovering these vast new continents and work out their basic topol-
ogy is Santillis and his alone. These new fields initiated by Santilli made possible
realization of so-called Lie-admissible physics. For this achievement Santilli in
1990 received the honor from Estonia Academy of Science of being appointed as
mathematician number seven after world war two considered a landmark in the
history of algebra.

With regard to Sophus Lie it may be of some interest to note that the Nor-
wegian examiners of his groundbreaking doctoral thesis in 1871 were not able to
grasp his work, due to its high degree of novelty and unfamiliarity. However,
due to Lie already being highly esteemed among influential contemporary math-
ematicians at the continent, it was not an option to dismiss his thesis. As in
other disciplines, highly acknowledged after Thomas Kuhns publication of The
structure of scientific revolutions in 1962, sufficiently novel mathematics implies
some paradigmatic challenge. Therefore, it is not strange that some mathemati-
cians and physicists have experienced difficulties taking the paradigmatic leap
necessary to grasp the basics of hadronic mathematics or to acknowledge its far-
reaching implications. Such a challenge is more demanding when scientific novelty
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implies a reconfiguration of conventional basic notions in the discipline. This is,
as Kuhn noted, typically easier for younger and more emergent scientific minds.

Until Santilli the number 1 was silently taken for granted as the primary unit
of mathematics. However, as noted by mathematical physicist Peter Rowlands at
University of Liverpool, the number 1 is already loaded with assumptions, that
can be worked out from a lifted and broader mathematical framework. A partial
and rough analogy might be linguistics where it is obvious that a universal science
of language must be worked out from a level of abstraction that is higher than
having to assume the word for mother to be the first word.

Santilli detrivialized the choice of the unit, and invented isomathematics where
the crux was the lifting of the conventional multiplicative unit (i.e. conservation of
its topological properties) to a matrix isounit with additional arbitrary functional
dependence on other needed variables. Then the conventional unit could be
described as a projection and deformation from the isounit by the link provided
by the so-called isotopic element inverse of the isounit. This represented the
creation of a new branch of mathematics sophisticated and flexible enough to treat
systems entailing sub-systems with different units, i.e. more complex systems of
nature.

Isomathematics proved necessary for the lifting of quantum mechanics to had-
ronic mechanics. With this new mathematics it was possible to describe extended
particles and abandon the point particle simplification of quantum mechanics.
This proved highly successful in explaining the strong force by leaving behind
the non-linear complexities involved in quantum mechanics struggle to describe
the relation between the three baryon quarks in the proton. Isomathematics also
provided the mathematical means to explain the neutron as a bound state of
a proton and an electron as suggested by Rutherford. By means of isomathe-
matics Santilli was also able to discover the fifth force of nature (in cooperation
with Professor Animalu), the contact force inducing total overlap between the
wave packets of the two touching electrons constituting the isoelectron. This
was the key to understanding hadronic superconductivity which also can take
place in fluids and gases, i.e. at really high temperatures. These advances from
hadronic mechanics led to a corresponding lifting of quantum chemistry to hadro-
nic chemistry and the discovery of the new chemical species of magnecules with
non-valence bounds. Powerful industrial-ecological technology exploiting these
theoretical insights was invented by Santilli himself from 1998 on.

Thus, the development of hadronic mathematics by Santilli was not only mo-
tivated by making advances in mathematics per se, but also of its potential to
facilitate basic advances in physics and beyond. These advances have been shown
to be highly successful already. Without the preceding advances in mathematics,
the new hadronic technology would not have been around. The mere existence
of this technology is sufficient to demonstrate the significance of hadronic math-
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ematics. It is interesting to note that the directing of creative mathematics into
this path was initiated by a mathematical physicist, not by a pure mathematician.
In general this may indicate the particular potential for mathematical advances
by relating the mathematics to unsolved basic problems in other disciplines, as
well as to real life challenges.

In the history of mathematics it is not so easy to find parallels to the achieve-
ments made by Santilli, due to hadronic mathematics representing a radical and
general lifting, relegating the previous mathematics to a subclass of isomathe-
matics, in some analogy to taking the step from the Earth to the solar system.
However, the universe also includes other solar systems as well as galaxies.

In addition to isonumbers Santilli invented the new and broader class of genon-
umbers with the possibility of asymmetric genounits for forward vs. backward
genofields, and designed to describe and explain irreversibility, characteristic for
more complex systems of nature. Quantum mechanical approaches to biological
systems never achieved appreciable success, mainly due to being restricted by
a basic symmetry and hence reversibility in connected mathematical axioms. It
represented an outstanding achievement of theoretical biology when Chris Illert in
the mid-1990s was able to find the universal algorithm for growth of sea shells by
applying hadronic geometry. Such an achievement was argued not to be possible
for more restricted hyperdimensional geometries as for example the Riemannian.
This specialist study in conchology was the first striking illustration of the po-
tency as well as necessity of iso- and genomathematics to explain irreversible
systems in biology.

Following the lifting from isomathematics to genomathematics, Santilli also
established one further lifting, by inventing the new and broader class of hyper-
structural numbers or Santilli hypernumbers. Such hypernumbers are multival-
ued and suitable to describe and explain even more complex systems of nature
than possible with genonumbers. Due to its irreversible multivalued structure
hypermathematics seems highly promising for specialist advances in fields such
as genetics, memetics and communication theory. By the lifting to hypermathe-
matics hadronic mathematics as a whole may be interpreted as a remarkable step
forward in the history of mathematics, in the sense of providing the essential and
sufficiently advanced and adequate tools for mathematics to expand into disci-
plines such as anthropology, psychology and sociology. In this way it is possible
to imagine some significant bridging between the two cultures of science: the hard
and the soft disciplines, and thus amplifying a tendency already represented to
some extent by complexity science.

The conventional view of natural scientists has been to regard mathematics as
a convenient bag of tools to be applied for their specific purposes. Considering
the architecture of hadronic mathematics, this appears more as only half of the
truth or one side of the coin. Besides representing powerful new tools to study
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nature, hadronic mathematics also manifests with a more intimate and inherent
connection to physics (and other disciplines), as well as to Nature itself. In this
regard hadronic geometry may be of special interest as an illustration:

Isogeometry provided the new notions of a supra-Euclidean isospace as well
as its anti-isomorphic isodual space, and the mathematics to describe projec-
tions and deformations of geometrical relations from isospace and its isodual into
Euclidean space. However, these appear as more than mere mathematical con-
structs. Illert showed that the universal growth pattern of sea shells could be
found only by looking for it as a trajectory in a hidden isospace, a trajectory
which is projected into Euclidean space and thereby manifest as the deformed
growth patterns humans observe by their senses. Further, the growth pattern of
a certain class of sea shells (with bifurcations) could only be understood from the
addition and recognition of four new, non-trivial time categories (predicted to be
discovered by hadronic mechanics) which manifest as information jumps back and
forth in Euclidean space. With regard to sea shell growth, one of this non-trivial
time flows could only be explained as a projection from isodual spacetime. This
result was consistent with the physics of hadronic mechanics, analyzing masses
at both operator and classical level from considering matter and anti-matter (as
well as positive and negative energy) to exist on an equal footing in our universe
as a whole and hence with total mass (as well as energy and time) cancelling
out as zero for the total universe. To establish a basic physical comprehension of
Euclidean space constituted as a balanced combination of matter and antimatter,
it was required to develop new mathematics with isonumbers and isodual num-
bers basically mirroring each other. Later, corresponding anti-isomorphies were
achieved for genonumbers and hypernumbers with their respective isoduals.

Thus, there is a striking and intimate correspondence between the isodual
architecture of hadronic mathematics and the isodual architecture of hadronic
mechanics (as well as of hadronic chemistry and hadronic biology). Considering
this, one might claim that the Santilli inventions of new number fields in math-
ematics represent more than mere inventions or constructs, namely discoveries
and reconstructions of an ontological architecture being for real also outside the
formal landscapes created by the imagination of mathematics and logic. This
opens new horizons for treating profound issues in cosmology and ontology.

One might say that with the rise of hadronic mathematics the line between
mathematics and other disciplines has turned more blurred or dotted. In some
respect this represents a revisit to the Pythagorean and Platonic foundations
of mathematics in the birth of western civilization. Hadronic mathematics has
provided much new food for thought and further explorations for philosophers of
science and mathematics.

If our civilization is to survive despite its current problems, it seems reasonable
to expect Santilli to be honored in future history books not only as a giant in
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the general history of science, but also in the specific history of mathematics.
Hadronic mathematics provided the necessary fuel for rising scientific revolutions
in other hadronic sciences. This is mathematics that matters for the future of
our world, and hopefully Santillis extraordinary contributions to mathematics
will catch fire among talented and ambitious young mathematicians for further
advances to be made. The present mellowed volume ought to serve as an excellent
appetizer in this regard.

Professor Stein E. Johansen
PhD philosophy, DSc economics Institute for Basic Research, USA,
Division of Physics
Norwegian University of Science and Technology
Department of Social Anthropology
October 8, 2007
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