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Chapter 1

Mechanics I: Principles of Statics

Principles of Statics is a subset of Mechanics that deals with bodies at rest
despite being under the action of forces. The bodies are considered to be at
equilibrium when all the forces sum to zero. To study Statics, we first need
to understand the nature of forces, quantify them, and then understand
how forces can be applied to bodies. The relevant fundamental concepts
and mathematical tools related to forces are discussed in Chapters 2—4.
The main objective of studying Statics is to conduct correct force analysis
for mechanical or integrated systems for design, performance improvement,
or failure prevention. The standard method for force analysis, called free-
body diagram analysis, is presented in Chapters 5 and 6. In Chapter 7,
we demonstrate how proper force analysis can be conducted for various
practical applications. However, often, a system might be too complicated
to be analyzed by the free-body diagram analysis. Chapter 8 addresses
this situation. In Chapter 9, we discuss the stability of equilibrium. In
Chapter 10, we present a case study to demonstrate how to conduct proper
force analysis to design a sensor for monitoring machining forces. Finally,
in Chapter 11, we provide detailed solutions to 31 difficult problems in
Statics.

As stated, the main objective of studying Statics is to conduct
correct force analysis for mechanical or integrated systems. To this end,
we, as engineers, must approach the analysis quantitatively, with proper
knowledge about precision and uncertainties. We will discuss key concepts
and practices to ensure confidence in the calculations.
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Figure 1.1: A Cartesian coordinate with metrics defined along each axis.

Finally, in Chapter 1, we will suggest a general problem-solving protocol
to promote a systematic and creative thought process. Again, the idea is
that we can do a little thinking to solve new problems, not limited to the
problems we have studied before.

1.1 Space and Time

Space and time (or spacetime) are fundamental metrics we need for
solving problems. To quantify a space, typically, we will define a reference
coordinate. Typically, in Mechanics, we deal with a 1D, 2D, or 3D space,
defined commonly by a suitable coordinate such as the O —x —y — 2
coordinate, shown in Fig. [[LTl Each axis of the O — x — y — z coordinate is
typically fixed in direction in Statics.

We need to define metrics along each axis. In other words, how do we
define length, for example, the length of one meter, in the SI system. In the
old days, there was a “National Prototype Metre Bar No. 27, made in 1889
by the international Bureau of Weights and Measures (BIPM) and it was
given to the United States to serve as the standard for defining all units
of length in the US from 1893 to 1960.”E| “The bars were to be made of a
special alloy, 90% platinum and 10% iridium, which is significantly harder

Uhttps://en.wikipedia.org/wiki/History_of the_metre#International_prototype_metre.
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Mechanics I: Principles of Statics 3

than pure platinum, and have a special X-shaped cross section (a ‘Tresca
section’, named after French engineer Henri Tresca) to minimize the effects
of torsional strain during length comparisons.”

Today, the standard of length is no longer defined by a meter bar, but
by time, based on Einstein’s theory of special relativity, which assumes that
the speed of light in vacuum is constant. The official definition i

“The metre, symbol m, is the SI unit of length. It is defined by
taking the fixed numerical value of the speed of light in vacuum c
to be 299792458 when expressed in the unit m/s, where the second
is defined in terms of the caesium frequency AvCs.”

Therefore, length is based on time. The question now is how do
we achieve precise time-keeping? According to NISTE “since 1967, the
International System of Units (SI) has defined a second as the period
equal to 9,192,631,770 cycles of the radiation, which corresponds to the
transition between two energy levels of the ground state of the Cesium-133
atom. This definition makes the cesium oscillator (sometimes referred to
generically as an atomic clock) the primary standard for time and frequency
measurements.” In other words, we rely on counting to establish time and
thus the standard of length.

1.2 Concept of Precision

Being quantitative is one important requirement for engineers. We need to
handle numbers properly.

In Section 1.1, we talked about using counting for time-keeping, pre-
cisely, at least down to 1/9,192,631, 770 seconds, or 0.10873 nanoseconds
based on the definition of 1 second.

As we count, we could make mistakes or simply reach different counts
because the event has changed. In other words, there are errors and
uncertainties. Errors are due to mistakes. The uncertainties are due to
factors out of our control, no matter how carefully we try to avoid mistakes.
The subject of precision deals with errors and uncertainties. There are

2Nelson, R.A. (1981). “Foundations of the international system of units (SI)”. The
Physics Teacher. 19(9): 596-613.

SBIPM. (2019). SI Brochure, 9th edition, p. 131.
4https://www.nist.gov/pml/time-and-frequency-division /timekeeping- and-clocks-faqs.
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4 Difficult Engineering Concepts Better Explained

three main concepts in precision, which are accuracy, repeatability, and
resolution

For example, if we use a ruler to measure the length of a rod, the
accuracy is the deviation of the measurement from the true value of the
length. The problem is that we usually do not know the true value. When
we take measurement with a ruler, the ruler has its limit of resolution,
which is, for example, 1 mm, for a simple office ruler. We can get a 0.01 mm
resolution using a caliper.

With a simple ruler, we align one end of the rod to the zero mark of the
ruler and check where the other end ends. If the other end lands between the
marks of 11 and 12mm, we can only guess that the true length is, judging
where it lands between the marks, 11.4 mm, for example. In fact, we are not
sure if it is 11.3, 11.4, or 11.5 mm, and different people might guess it differ-
ently. As a result, we have an uncertainty, which is at least 0.2 mm, in this
case. This uncertainty affects how repeatable the measurement could be.

One practical way of achieving a higher precision is to make multiple
measurements. For example, if we want to estimate the value of an antique
piece, we can ask many experts to estimate its value. Because we cannot
trust one expert more than others, the best practice is to calculate the
average of all the estimates. The average, thus, is the best estimate to
incorporate all the inputs from all the experts. To determine the accuracy,
we should use the best estimate (the average) and calculate its deviation
from the true value (if we know it). The variation among the estimates from
different experts represents repeatability. The resolution is related to the
smallest money unit used in the estimates for this case.

1.2.1 Significance of figures

When we make a measurement or present a number, we often do not
explicitly state its precision in terms of accuracy, repeatability, and
resolution. Instead, we use the concept of significant figures to indicate
the precision of a measurement. This is the subject of arithmetic precision.
“A significant figure is any one of the digits 1 to 9; zero is a significant
figure except when it is used to fix the decimal point or to fill the places
of unknown or discarded digits.”ﬁ “Thus in the number 0.000532, the

5Slocum, A. (1992). Precision Machine Design. Society of Manufacturing Engineers,
Dearborn, Michigan. ISBN-13: 978-0872634923.

5Doebelin, E.O. (1990). Measurement Systems Application and Design. McGraw-Hill
Publishing Company, New York, NY. ISBN 0-07-017338-9.
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Mechanics I: Principles of Statics 5

significant figures are 5, 3, and 2, while in the number 2,076, all the digits,
including the zero, are significant. For a number such as 2,300, the zeros
may or may not be significant. To convey which figures are significant, we
write this as 2.3 x 10 if two significant figures are intended, 2.30 x 103 if
three, 2.300 x 103 if four, and so forth (see footnote 6).”

We often have to compute by using many measurements with different
significant figures. When we are doing hand calculation, it is preferred to
round the number with more significant figures to be the same as the one
with less significant figures. There are practical reasons for this rounding
practice such as (1) the final results cannot have a higher number of
significant figures and (2) handling a long string of digits can incur more
mistakes. However, in today’s computing practice using computers, the
second concern is no longer an issue. We should still round the number
of the final result to recognize its limited significant figures and to enable
easy reading.

A widely used rounding practice is as follows (see footnote 6):

“To round a number to n significant figures, discard all digits to
the right of the nth place. If the discarded number is less than one-
half a unit in the nth place, leave the nth digit unchanged. If the
discarded number is greater than one-half a unit in the nth place,
increase the nth digit by 1. If the discarded number is exactly one-
half a unit in the nth place, leave the nth digit unchanged if it is
an even number and add 1 to it if it is odd.”

Therefore, if we are given a number, 12.35, we should know that the
actual number could range from 12.346 to 12.355, or 12.3570:90%. The
uncertainty range could be larger than 0.009 because most people may
not follow the rounding rule consistently.

In some applications, we need to emphasize the number of decimal
places (the number of significant figures following the decimal point). For
example, in your bank statement, the balance of your checking account is
rounded to two places after the decimal point. This is of course for practical
reasons because we do not have a coin smaller than one cent.

In general, when one is performing addition and/or subtraction, it is
better to round the result to the same number of decimal places as the
number with the lowest number of decimal places. When the computation
involves multiplication and/or division, it is better to round the result to
be the same as the one with the lowest significant figures.
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6 Difficult Engineering Concepts Better Explained

In this book, armed with modern computing power, all numbers of final
results will be rounded to two decimal places unless a higher precision is
required. If a number is very small, such as 0.0017345, it would be rounded
to 0.00173, to contain three significant figures, unless a higher precision is
required.

1.2.2 Statistical nature of uncertainty

In the above discussion, we specified the range of uncertainty of a
measurement using the plus and minus expression. If a number is expressed
as 12.35700%%  we only specify that all the measurements would be
between 12.346 and 12.355. To understand this uncertainty more, we should
also define the probability distribution within the range of uncertainty.
Essentially, there are no fundamental laws to help us decide how often a
number would appear within the range of uncertainty.

To answer this question, a basic discussion on statistics is in order. If we
measure the blood pressure of a person several times, it is highly unlikely
we will get the same reading. Let us say that we take the measurement
100 times, consecutively (hypothetically, not advised to do so), and obtained
the measurements of the systolic pressure as shown in Fig. (this figure
is denoted as a histogram).

The measurements are grouped into 26 bins and each bin covers
2mmHg. From Fig. [.2] we found that, for example, there are 15 readings
between 106 and 108 mmHg, only 2 readings over 130 mmHg, 10 readings
between 120 and 130 mmHg, and 5 readings below 90 mmHg. Therefore, is
the blood pressure of the person normal? There are 83 readings within the

Histogram of Systolic Pressure Measurements
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Figure 1.2: Histogram of 100 measurements of systolic pressure.
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Mechanics I: Principles of Statics 7

normal range between 90 and 120 mmHg, but 12 times when the pressure is
in the pre—high blood pressure range. What is causing all these variations?
The actual blood pressure could fluctuate, and the measurement device
could have measurement errors. The question is still “Is it normal?” The
same scenario can be related to the strength of a structure or the quality
of a part after we obtain multiple measurements.

One common statistical practice is to assume that the probability
distribution of the reading is a normal distribution. We can fit a normal
distribution curve to the histogram, as shown in Fig. This assumption
is typically valid due to the Central Limit Theorem, or we just assume that
it is for convenience. There are, of course, many exceptions. Based on the
fitted normal distribution, we assume that if we repeat the measurement
an almost infinite number of times, the histogram will approach a normal
distribution curve (not necessary the same as the fitted one in Fig. [[2)).
Based on the fitted curve, we estimate the average of the reading, m, is
108.0 mmHg, and the standard deviation, o, is 10.2 mmHg. From the
normal distribution curve, we know that 68.27% of the readings will fall
in the range of 108.0 4+ 10.2 mmHg (97.8—118.2 mmHg), 95.45% in the
range of 108.0 + 2 x 10.2 mmHg (87.6—128.4 mmHg), and 99.73% in the
range of 108.0 = 3 x 10.2 mmHg (77.4—138.6 mmHg).

From these values, we are pretty confident that the person is not
suffering from high blood pressure because there is only 0.14% chance for
it to be so.

The average of 108.0 mmHg provides us with the best guess of the true
blood pressure, while we are 99.73% confident that the true blood pressure
is between 77.4 and 138.6 mmHg, which represents the repeatability or the
range of the uncertainty. Unfortunately, we can never know what the true
blood pressure is; we can only give our best guess and then decide based
on how confident we are with our guess.

When we have additional information about a measurement, the
implied uncertainty of using the significant figures and number of decimal
places is no longer adequate. We should represent the measurement
in the format of plus and minus, such as 108.0 + 30.6 mmHg. If not
specifically stated, we will assume that this is defined with 99.73%
confidence. In many cases, a 95.45% confidence is sufficient; therefore, the
measurement should be expressed as 108.0 4= 20.4 mmHg with 95.45% or
simply 95% confidence. The confidence should be explicitly stated if it is
not 99.73%.
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1.2.3 Computation with uncertainties

We will use an excellent example and discussion from Doeblin (1990ﬂ
to demonstrate how to handle uncertainties in computation. Let a
variable y = f(z1, @2, 3,...,2,), where z;’s denote the measured vari-
ables with the uncertainties Axq, Aws, Axs, ..., Az,,. What will be the
uncertainty Ay?

Using the Taylor series, we expand function f as,

y=1yo+ Ay = f(z1+ Az, z2 + Azy, x5 + Azs, ..., xy + Azy)

0 0 0
= f (210, ®20, T30, ., Tno) + Axla—jl + Aﬂ?za—;; + Ax3a—ci
af
—— + H.O.T. 1.1
+ +Awnaxn + H.O (1.1)

where all the partial derivatives are to be evaluated at the known values of
x;o’s and the values of Ax;’s could be positive or negative. The variable yq
is the nominal value of f with respect to x;0’s. We can ignore the Higher
Order Terms (H.O.T.) if the values of Ax;’s are small.

To determine Ay, we usually consider the worst-case and the best-case
scenarios. The real case most likely falls somewhere in between.

For the worst-case scenario, we define the range of Ax; as RAx;;
therefore,

—%RA,TZ' <Az, < %RAwi and the range of Ay becomes,

RAy = RA:zclﬁ + RA:JCQﬁ + RAgcgﬁ + ...+ RAgcnﬁ
8171 8952 8x3 8£Cn
(1.2)
We should express y as
1
y=yo+ S RAY (1.3)

"Doebelin, E.O. (1990). Measurement Systems Application and Design. McGraw-Hill
Publishing Company, New York, NY. pp. 58-67., ISBN 0-07-017338-9.
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Mechanics I: Principles of Statics 9

If we consider Az;’s as random variables with normal distributions, then
we can compute the standard deviation of Ay as

af \? af \? af \? af \*
oar = (030 2) (o l) + (ra L) o (02 1)

(1.4)

From Equation (4], if we present the uncertainty of y with 99.73%
confidence, we have

Y="Yo+ Ay =1yoE30ay (1.5)

Equation (LX) represents the best-case scenario.

What if the uncertainties are not in normal distribution? In that case,
there is no easy analytical way to determine Ay. However, with today’s
computing power, we can use the Monte Carlo simulation to determine
the probability distribution of Ay and plot a histogram similar to that in
Fig.

Let us consider an example from Doeblin (1990) regarding the measure-
ment obtained from a dynamometer. The output power of a dynamometer
can be written as

2TRF (L 2 RFL
p REG) 2w (1.6)
550 ¢ 550 x 12t

where P is the power in hp, R is the revolution of the shaft per second, F
is the measured force in 1bf at the end of the torque arm, L is the length
of the torque arm in inches, and t is time in second, s.

For a specific run, if the data are

F = 10.12 £ 0.040 Ibf (1.7)
R = 1202+ 1.0rev/s (1.8)
L =15.63+0.050in (1.9)
t =60.0+0.50s (1.10)

the uncertainties of these measurements are determined from the sensors’
calibration. Note that all the uncertainty terms are expressed with one extra
decimal place than the nominal value.
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10 Difficult Engineering Concepts Better Explained

The nominal value of P is computed based on Equation (II). We then
have

27 1202.0 x 10.12 x 15.63
550 x 12 60.0

Py = 3.01668 = 3.02 (1.11)
We round the above value to two decimal places.

Now, we compute the partial derivatives in Equation (L) to three
significant figures as

63_51 0~ g_zlzb - 55%12?'0 - 5502: 12 15.6?&0%01202 = 0298 hp/Ibf

(1.12)
5_;; . g—;b _ 55027:12%|0 — 0.00251 hp/r (1.13)
g_gi o = g_];|0 - 55027:12¥|0 =0.193hp/in (1.14)
a(”_i 0= 2 = T~ 0.0500 hp b (1.15)

For the worst-case scenario, the ranges of uncertainties are based on

Equations (LZHLIQ)
RAF = 0.080 Ibf (1.16)
RAR = 2.01ev/s (1.17)
RAL = 0.100in (1.18)
RAt = 1.00s (1.19)

From Equation ([2]), we have

opP opP opP opP
RAy = (’RAFa—F + 'RARﬁ + ’RALa—L + ’RAtE ) = 0.098 hp

(1.20)
From Equation (L3]), we have

1
P =Py £ 3RAy = 3.0240.049 (hp) = 3.02£0.05(hp) (121

For the best-case scenario, we first assume that the expressions of
Equations (LZHLIO) are based on 99.73% confidence level of normal
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Mechanics I: Principles of Statics 11

distributions. Therefore, we have

1

oar = 5(0.040)Ibf (1.22)
1

OAR = 5(1.0)rev/s (1.23)
1 .

oar = 5(0.050)in (1.24)
1

oar = 5(0.50)s (1.25)

From Equation (L)), the standard deviation of AP is

B (9_P 2+ 6_P 2+ 6_P 2+ (9_P 2
OAP — UAFaF UARaR UALaL OAt ot

= 0.00977 hp (1.26)

Finally,
P =Py+30ap =3.017+3(0.00977) = 3.017 & 0.029 (hp) (1.27)

In other words, we are confident (99.73% sure) that the actual value of P
will lie between 2.988 and 3.046 hp. With a lower confidence of 95.45%, the
true value of P will lie between 2.997 and 3.036 hp. There is only a 4.28%
chance that the true value lies between 3.036 and 3.046 hp or between 2.988
and 2.997 hp. We use three decimal places for the best-case scenario.

1.2.4 Precision consideration in differential quantities

As shown in Equation (IIJ), the higher order terms can be neglected if the
values of Ax;’s are small. This is the case when we discuss the differential
terms. For example, the Taylor expansion of sinf is

) 63 o
For a differential angle df, it becomes
ae®  do°
sind@zd@—?—f—?—...%’de (129)

when the H.O.T are neglected. What is the error if we neglect the high
order terms? In this case, the error ratio, ¢, defined as the error to the true
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(a) (b) &"_ _"E
-U_erlx

48 dy [ y—dl
& ‘9 dy x + dx

R X+ dx

n (c)

Figure 1.3:  (a) Volume calculation of a straight cone; (b) An infinitesimal conical layer;
(¢) An infinitesimal cylindrical layer.

value, is

3 5 7 3 3
_lsindo—db| _ S-S+ gr—.._ G G d0° (130
sindf sindf sindd ~ df 3! '

which is infinitesimal. Similarly, we found that cosdf = 1 and tandf = df.

In Statics, there will be cases where integration will need to be done
over different geometric shapes to determine the surface area, volume, and
moments of inertia. Often, we have to decide on the inclusion or exclusion
of differential terms. We will present a few cases for illustration.

As shown in Fig.[[.3] we want to determine the volume of a straight cone
with a height h and a base radius . We can slice the cone into infinitesimally
thin disks and add up the volume of all the disks. The top surface of the thin
disk in Fig.[[L3|(b) has a radius 2 and the bottom surface has a radius x + dz.
Let us say that we do not know how to determine the differential volume,
dV, of the thin disk of (b), but we know it will be between those of two cylin-
ders with a radius « and x + dx, respectively, as shown in (c¢). Therefore,
we have

ratdy < dV < m(z + dz)’dy (1.31)
If we decide to set dV = ma?dy, the error ratio, &, will be

- 7(x + dx)’dy — Ta2dy _ 2dw dz?
c rr2dy a2 2

(1.32)

which is still negligible.



Difficult Engineering Concepts Better Explained Downloaded from www.worldscientific.com

by 2603:6010:853d: 2fe8:9998:262h:c837:ad6e on 08/03/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Mechanics I: Principles of Statics 13

Now, integrating dV over y, we have the well-known result,

1% h ho 2 .
/ dv :/ a2 dy :/ wﬁdey = §r2h (1.33)
0 0 0

For the same straight cone, if we would like to determine the exterior cone
surface, can we use the exterior surface of the thin cylindrical disk and carry
out similar integration?

If we do so, then the exterior cone surface becomes

) s h ho
S :/ ds :/ 2rady :/ 2 —ydy = 7rh (1.34)
0 0 0 h

which is incorrect. So what went wrong?
The actual exterior surface of the thin disk in Fig. [[3[(b) should be

21 2
dS = 2nadl = 2rx\/dz? + dy* = 271'%\/ %y dy (1.35)

The error ratio between dS and dS is

dS—dS VrZ+hI—h 1—h (136)
E = = = .
as Vr2 + h? l
where | = v/r2 + h?, which is the length along the cone exterior surface.
As shown in Equation (L36]), the error ratio is finite, not negligible. As a
result, the error will accumulate, leading to mistakes. The correct answer is

S h h 2 h2
S:/ dS:/ 27T:vdl:/ o L gy — el (137)
0 0 0 h h2

Between S and S, we have the same error ratio as in Equation (L36).
A similar consideration should be applied when calculating the exterior

surface of a paraboloid disk, as discussed in Problem 11.19 of Chapter 11.

1.3 Problem-Solving Protocol in Statics

To solve a problem in Statics, we should follow a set of systematic steps as
follows:

(a
(b

) Problem statements;

)
(¢) Governing equations;

)

Force analysis;

(d) Solving equations;
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(e) Answer verifications;
(f) Extensions.

In the problem statements, one should make proper sketches and define
proper reference coordinates. List all the given conditions and the unknowns
to be found.

For force analysis, we will present a systematic method in Chapters
5 and 6 so that the force analysis can be conducted correctly every time.

As regards governing equations, we typically construct force equilib-
rium equations based on the force analysis (Chapters 7 and 8). Additional
governing equations can be found in Chapters 9 and 10.

As regards solving equations, after we have established relevant gov-
erning equations, we should always count the number of the unknowns
associated with the governing equations. If the number of unknowns is
greater than the number of the governing equations, we are not able to
solve for all the unknowns. When this occurs, we should carry out the
following steps to overcome this problem. First, we should check if there
is an equation involving only one unknown. If so, this particular unknown
can be solved. As a result, the number of unknowns is reduced by one,
but the number of equations is also reduced by one. We should also check
if there is a subset of the governing equations involving the same number
of unknowns. If so, we can solve for those unknowns. Once we exhaust
all the equations that can be solved, we still need to find additional
equations.

To find additional equations, we should examine the unknowns and
consider if they have specific relationships among them so that we can
establish additional equations.

If we cannot find additional equations, then we have to make assump-
tions to define the values of some unknowns. For example, in the case of a
smooth surface the friction can be assumed to be zero.

Finally, as engineers, we should know that we can conduct measure-
ments using sensors to determine the values of some unknowns. Once we
reduce the number of unknowns to be the same as that of the governing
equations, we can proceed to solve for all the unknowns.

In solving equations, we can use computing aids for help. Today, there
are equation solvers useful for solving complicated equations, numerically
or symbolically. We provide a few programming examples in this book.

After we have solved the equations and obtained the values
of unknowns, we should conduct answer verifications. Do they look
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reasonable? We could have made some mistakes along the way. Do they
violate the assumptions? Do they violate basic laws?

Finally, we should think about the implication of the results for
extensions.

1.4 Concluding Remarks

Practice makes perfect. It applies to both honing the problem-solving
skill and deepening the understanding of the concept. In Chapter 11, we
provided detailed solutions to 31 difficult problems based on Appendix A
of the classic Statics textbook by Meriamﬁ These problems, along with
the examples presented in Chapters 1-10 are useful to learn how to think
properly to solve difficult Statics problems through proper understanding
of difficult concepts in Statics.

8Meriam, J.L. (1975). Statics, 2nd Edition. John Wiley & Sons, Inc., Hoboken, NJ.



