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The persistence of original soft tissues in Mesozoic fossil bone is not explai-

ned by current chemical degradation models. We identified iron particles

(goethite-aFeO(OH)) associated with soft tissues recovered from two Meso-

zoic dinosaurs, using transmission electron microscopy, electron energy loss

spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-

edge structure. Iron chelators increased fossil tissue immunoreactivity to

multiple antibodies dramatically, suggesting a role for iron in both preserving

and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue

stability more than 200-fold, from approximately 3 days to more than two

years at room temperature (258C) in an ostrich blood vessel model developed

to test post-mortem ‘tissue fixation’ by cross-linking or peroxidation.

HB-induced solution hypoxia coupled with iron chelation enhances pre-

servation as follows: HB þ O2 . HB 2 O2 . 2O2� þO2. The well-known

O2/haeme interactions in the chemistry of life, such as respiration and bioener-

getics, are complemented by O2/haeme interactions in the preservation of

fossil soft tissues.
1. Introduction
Preservation of structures in fossils that were not originally mineralized in the

living organisms is uncommon, but is represented in microbes, plants and ani-

mals in disparate environments throughout the fossil record (e.g. [1] and

references therein). Soft tissue structures retaining some aspects of original

material, and thus not completely replaced replicas, have been described in Meso-

zoic fossil bone as early as the 1960s [2–5]. This ‘exceptional preservation’ has

been observed for decades, but is not addressed by models of fossilization pro-

cesses wherein an organism is buried and degraded, and spaces left by

degrading organics are subsequently filled by precipitation of exogenous min-

erals. Modes of preservation to explain the persistence of these secondarily

mineralized, but originally soft tissues include microbially mediated stabilization

[6,7], early diagenetic mineralization or authigenic replacement [8–10], ‘sulfuriza-

tion’ [11,12] and others (reviewed in [6,13,14]), but few of these preservation

modes have been experimentally tested.

Recently, still-soft biomaterials have been identified in bones of multiple taxa

from the Cretaceous to the Recent, with morphological and molecular character-

istics consistent with an endogenous source [15–20]. An alternative hypothesis,

that these structures result from microbial biofilms [21], is eliminated by several

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.2741&domain=pdf&date_stamp=2013-11-27
mailto:mhschwei@ncsu.edu
http://dx.doi.org/10.1098/rspb.2013.2741
http://dx.doi.org/10.1098/rspb.2013.2741
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132741

2
lines of evidence, including but not limited to: (i) immunologi-

cal reactivity (multiple antibodies binding both with chemical

extracts and in situ, independent of contributions from, and not

reactive to, biofilms [17,22,23]); (ii) peptide sequence data from

proteins not found in microbes [17,22–25]; and (iii) identifi-

cation of histones—nuclear, chromosomal proteins that are

eukaryote-specific—by both amino acid sequence and anti-

body localization [22]. Multiple lines of evidence support the

endogeneity of these recovered molecules in Cretaceous speci-

mens, despite hypothesized temporal limits on molecular

preservation of less than 1 Myr for proteins and approximately

100 000 years for DNA [26–30] (but see [31]) that are based

upon degradation proxies of heat and/or pH [28,32], theore-

tical models of breakdown kinetics [33,34], and, recently,

extrapolation from a select and time-limited set of fossils [35].

For soft tissues and the proteins comprising them to persist

beyond these limits, a mode of preservation sufficiently rapid

to outpace decay is required [6]. Here, we propose a chemi-

cal explanation for molecular and tissue ‘fixation’ over time

involving iron-catalysed free-radical reactions.

Redox-active iron, abundant in living cells and tissues, is

stabilized in haeme proteins (e.g. haemoglobin (HB), myoglo-

bin, cytochromes [36–39]), non-haeme iron proteins (e.g.

ribonucleotide reductase, fatty acid desaturase [40]) and ferri-

tin, a protein which synthesizes iron oxyhydroxide mineral

nanoparticles [41,42]. These proteins control the rapid gener-

ation of oxygen-free radicals by environmental dioxygen (O2)

[42–44]. Although approximately 85% of iron in animals

resides in HB [45], thousands of iron atoms are also sequestered

in life in a single ferritin molecule [46]. When iron–protein

binding is disrupted through death or disease [47–49], iron-

induced Fenton-type reactions occur, producing insoluble (Ks

approx. 10218 M) mineralized iron/rust and highly reactive

hydroxyl radicals [37,42,50,51]. Ferritin is a complex pro-

tein that synthesizes iron biominerals, the form of which is

environmentally dependent. In its antioxidant mode, ferritin

scavenges cytoplasmic iron (II) and sequesters it as protein-

caged, iron biomineral [41]. Nevertheless, some iron escapes,

contributing to formation of oxy radicals that amplify peroxi-

dation of membrane lipids [43,50,52,53]. Oxy radicals also

facilitate protein cross-linking [54] in a manner analogous to

the actions of tissue fixatives (e.g. formaldehyde), thus increas-

ing resistance of these ‘fixed’ biomolecules to enzymatic or

microbial digestion [55,56]. Lipid peroxidation and protein

condensation reactions are harmful to living tissues [52,54],

but could act to preserve tissues and biomolecules after death.

Here, we show data from both fossil and extant organic

material to support the hypothesis that iron contributes to

preservation of soft tissues and molecules. We present

direct evidence that iron is closely associated with still-soft

tissues (e.g. semi-transparent, pliable ‘vessels’, osteocyte-like

microstructures and associated contents) recovered from fos-

sils using our aseptic protocols [17,22]; and that treatment of

these materials with the iron chelators pyridoxal isonicotinic

hydrazide (PIH [57]), salicylaldehyde isonicotinic hydrazide

(SIH [58,59]) or polyethylene glycol 600 (PEG600 [60])

increased antibody recognition in situ, with PIH the most

efficient and least damaging to tissues.

When extant, post-mortem ostrich blood vessels were incu-

bated in a red blood cell lysate rich in solubilized HB, iron

deposits formed quickly and these materials have resisted

tissue degradation for many months at room temperature

with no further treatment (see the electronic supplementary
material). We also compared vessels in aerobic or hypoxic con-

ditions and found that tissues incubated in HB in the presence

of dioxygen displayed the greatest stability and longevity, to

date more than 2 years.
2. Material and methods
For details of actualistic experiments and additional figures (S1–S6),

see the electronic supplementary material.
3. Results
Transmission electron microscopy (TEM) shows iron intimately

associated with vessels recovered from demineralized dinosaur

tissues (figure 1). Both isolated Tyrannosaurus rex (MOR 1125)

vessels (figure 1a,c,e) and Brachylophosaurus canadensis (MOR

2598) vessels (figure 1b,d) show iron-rich nanoparticles, often

embedded in an amorphous, apparently ‘organic’ layer that is

sometimes almost completely obscured by electron-dense iron

particles (figure 1b). Figure 1c shows a structure protruding

into the lumen of the dinosaur vessel that is similar in mor-

phology to nuclei of the endothelial cells (EN) that comprise

extant ostrich vessel walls (figure 1f). Higher magnification of

the boxed region in figure 1c shows the intimate relationship

between the organic layer and iron (figure 1e). Lower magnifi-

cation of an ostrich vessel in cross section (figure 1f) shows

distinct EN-containing chromatin protruding into the lumen

of the vessel and a tight junction (TJ) uniting two cell mem-

branes. The tapering nature of the endothelial cell (EC)

cytoplasm is clearly visible, and is consistent with structures

seen under higher magnification of T. rex vessels (figure 1c).

Figure S1 in the electronic supplementary material

shows backscatter TEM images of isolated osteocytes [22]

of T. rex (electronic supplementary material, figure S1A) and

B. canadensis (electronic supplementary material, figure S1C).

Electron energy loss spectroscopy (EELS) elemental maps

show iron localized to cells and intracellular contents of both

dinosaurs (electronic supplementary material, figure S1B,D).

When these cells were treated to chelate iron, EELS shows

that iron signal is greatly decreased and more diffuse (electronic

supplementary material, figure S2). This supports the intimate

association of iron to these preserved, still-soft structures.

Synchrotron microprobe techniques were used to investi-

gate dinosaur and ostrich vessels, intravascular material

and chemical speciation of associated iron. Micro-X-ray fluor-

escence (m-XRF) distribution maps of iron at 3 mm resolution

(red pixel intensity corresponds to iron concentration) are

shown in extended regions of HB-incubated ostrich (figure 2a),

B. canadensis (figure 2b) and T. rex (figure 2c) vessel samples,

which had been air-dried on an Si3N4 window (Silson). In all

cases, iron was found in intimate association with the vessel

structures. Micro-X-ray absorption near-edge structure (m-

XANES) spectroscopy was used to determine the chemical spe-

ciation of iron at multiple locations on each sample (white

numerical labels), with representative plots of the correspond-

ing spectra shown in figure 2d–f for HB-incubated ostrich,

B. canadensis and T. rex, respectively. In each Fe m-XANES

plot, the experimental spectrum is in black, the corresponding

least-square linear combination fit is displayed in red, and

green shows the residuals. The chemical speciation of iron

in the HB-incubated ostrich tissue was a combination of oxyhae-

moglobin and a disordered Fe oxyhydroxide, which was
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Figure 1. TEM images of (a,c,e) T. rex (MOR 1125) vessels, (b,d ) B. canadensis (MOR 2598) vessels and ( f ) ostrich vessels. Tyrannosaurus rex vessels show iron
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candensis vessels are more completely infiltrated with iron (b), but in some views (d ), an organic layer is still visible. The ostrich vessel ( f ) shows nuclear membrane
(EN) within the endothelial cell (EC). Cytoplasmic extensions make up the bulk of the vessel wall, and a TJ uniting two endothelial cells. Scale bar, 2 mm for (a – d),
1 mm for (e,f ).
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represented in fits by biogenic Fe oxide [61] and which will be

referred to hereafter as ‘biogenic-like oxide’ (BLO). Both

dinosaur tissues were found to contain a combination of

goethite (a-FeO(OH)) and biogenic iron oxyhydroxide.

Optical microscopy was used to identify intravascular

material in the vessels of B. canadensis (figure 2g) and T. rex
(figure 2k). m-XRF mapping revealed high concentrations of

iron in these intravascular structures (figure 2h,l, respectively).
Micro-X-ray diffraction (m-XRD) analysis of intravascular

structures in the dinosaur vessels identified these features as

crystalline goethite (figure 2i at location 1 and figure 2m at

location 13). Iron m-XANES performed at the same locations

showed that, in addition to crystalline goethite, these loca-

tions also contained highly disordered amorphous (i.e.

poorly diffracting) iron oxyhydroxides best matching a bio-

genic iron oxyhydroxide standard. Similar accumulations
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Figure 2. (a – c)m-XRF maps of HB-incubated ostrich, B. canadensis (MOR 2598) and T. rex (MOR 1125) vessel tissues at 3 mm resolution, with locations of analysis identified
by white numerical labels, illustrating the intimate association of Fe with each vessel tissue. (d – f ) m-XANES analysis of iron chemical speciation at representative locations,
respectively, for each vessel tissue, where the experimental data are plotted in black and the least-square linear combination fits are in red. HB-incubated ostrich tissue was
found to contain iron in the form of oxy-HB and biogenic (disordered non-crystalline) iron oxyhydroxide; by contrast, dinosaur vessels contained goethite (a-FeO(OH)) in
addition to disordered biogenic-like oxide (BLO) iron oxyhydroxide. Green curves are residuals and indicate good fits for all three samples. (g,h) Optical microscopy, m-XRF
analysis of intravascular structures in B. canadensis. (i,j ) m-XRD and iron m-XANES chemical analysis of intravascular structure (location 1) in B. canadensis identifies these
features as crystalline goethite with an additional fraction of biogenic iron oxyhydroxide, which is amorphous (i.e. poorly diffracting). (k – n) Investigation of intravascular
structures in T. rex revealed similar findings (i.e. location 13 was identified as a combination of goethite and biogenic Fe oxyhydroxide). Whole pattern m-XRD insets of (i,m)
exhibit thin, continuous rings for both B. canadensis and T. rex, indicating that the goethite in both samples is nanocrystalline. Labels associated with peaks (e.g. 200, 101)
represent h, k, l Miller indices of diffracting planes. XRD was used to identify the nature of the crystalline iron oxyhydroxides and XANES spectroscopy was used to probe the
poorly crystalline or amorphous (i.e. poorly diffracting) phase(s) using least-square linear combination fitting and a set of iron standards. (Online version in colour.)
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Figure 3. Overlay and fluorescence microscopy images of dinosaur ‘osteocytes’ and vessels after exposure to polyclonal antibodies. (a – h) Cells exposed to antibodies
against actin protein; (i – p) vessels exposed to antibodies raised against elastin protein, a component of vessel walls. (a,b) Brachylophosaurus canadensis and (e,f ) T.
rex osteocytes show minimal reactivity to antibodies before treatment with PIH; treatment with the iron chelator PIH result in increase in binding to actin antibodies
in both B. canadensis (c,d ) and T. rex (g,h) isolated osteocytes. Similar increase in antibody binding is visible in dinosaur vessels. (i,j ) isolated vessel from
B. canadensis exposed to elastin antibodies without PIH; binding is greatly increased after chelation (k,l ). A similar pattern is seen for T. rex vessels before
(m,n) and after chelation (o,p). All data collection parameters are identical for each condition. Scale bar is 50 mm for each image. (Online version in colour.)
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of iron were observed in HB-treated ostrich vessels, as shown in

figure 2a, locations 1 and 2, which is in contrast to the amor-

phous pattern of the ostrich vessel tissue observed at regions

of low iron concentration (e.g. location 3 in figure 2a; electronic

supplementary material, figure S3). However, all analysed

regions of B. canadensis and T. rex vessels exhibited finely

crystalline character (thin, continuous rings in whole pattern

insets of figure 2i,m), suggesting that these vessel tissues are

associated with nanocrystalline goethite.

Iron chelation increased immunoreactivity of proteins in

osteocytes and vessels of dinosaurs [17,22,23]. Dinosaur osteo-

cytes had minimal response to anti-actin antibodies before

chelation (figure 3a,b,e,f ), but responses increased dramatically

after iron chelation (figure 3c,d,g,h). When vessels from both

dinosaurs were exposed to elastin antibodies, a highly con-

served protein found in vessel walls of all extant vertebrates

[62] (figure 3i–p), chelators also enhanced binding over

untreated tissues. Both SIH and PIH resulted in increased

signal in vessels recovered from B. canadensis (figure 3i– l )

and T. rex (figure 3m–p), but PIH was most effective, and

only data from this chelation treatment are presented.

An ostrich blood vessel model was used to determine

post-mortem conditions, possibly contributing to preservation

of tissues, as observed in the dinosaur samples. Ostrich vessels

were incubated in a concentrated solution of red blood

cell lysate (see the electronic supplementary material) to
approximate post-mortem erythrocyte lysis. Control tissues

were prepared identically, then incubated in either sterile dis-

tilled water or phosphate buffered saline (PBS). Haemoglobin

was chosen to test its preservation properties for four reasons:

(i) HB is in known to be bacteriostatic [63,64]; (ii) in the presence

of dioxygen, HB produces free radicals [65]; (iii) blood vessels

fill with large amounts of HB after death as red cells begin

to die and lyse, thus it is naturally present in large vertebra-

tes [45]; and (iv) haeme released from HB, when degraded,

will release iron, possibly accounting for the iron particles

associated with preserved soft tissues [42,66] (figure 1).

HB-treated vessels have remained intact for more than

2 years at room temperature with virtually no change, while

control tissues were significantly degraded within 3 days. Indi-

cators of tissue stability include thick vessel walls (figure 4a,b,

black arrows) and visible surface structures consistent with

endothelial nuclei (figure 4a,b, white arrowheads). In many

cases, material could be seen inside the vessel lumen, appear-

ing most often as structureless masses (figure 4a,b, asterisk).

There was no difference between tissues incubated in HB/

hypoxy and HB/oxy conditions (see the electronic supplemen-

tary material), including the presence of the intravascular

material, except that distinct red blood cells were also present

in the HB/oxy condition (figure 4c,d, asterisk). By contrast,

the absence of HB resulted in extensive tissue degradation,

indicated by bacilliform bacteria (figure 4h, asterisk), fungal
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invasion, vessel wall thinning and collapse (figure 4e), loss of

vessel contents, and complete loss of tissue integrity. Incu-

bation in water or PBS without HB resulted in rapid

degradation (approx. 3 days), but when dioxygen was

removed with an argon purge, tissue degradation was some-

what delayed. More importantly, ostrich vessels incubated

with HB in the presence of oxygen were bright red (light

microscopy) (figure 4c,d), while those in the argon-purged

(hypoxic) solution were darker (figure 4a,b), indicating that a

haeme–oxygen complex formed and coincided with enhanced

tissue stability. The range of tissue stabilities observed with dif-

fering combinations of HB and O2 were: HB þ O2 . HB –

O2 ¼ PBS – O2.. PBS þ O2, emphasizing the importance of

both HB and oxygen to tissue stabilization.

Ostrich blood vessel structure was stabilized when HB

was present, but in the presence of oxygen, degradation

was further inhibited relative to the hypoxic state. Scanning

electron microscopy (SEM) shows that HB-incubated vessels

in the absence of oxygen contain minimal areas of collapse

(electronic supplementary material, figure S4A,B, black

arrows) and degradation (electronic supplementary material,

figure S3C, white arrows) in otherwise intact vessel walls,

and endothelial nuclei (white arrowheads) were still visible

(electronic supplementary material, figure S4C). When both

HB and oxygen were present, the blood vessels were fully

inflated and there were no areas of collapse, suggesting

intact elastin proteins (electronic supplementary material,

figure S4D). At higher magnification (electronic supple-

mentary material, figure S4E,F ), no regions of breakdown

were detected, and surface texture was intact (electronic

supplementary material, figure S4F ).

However, in vessels incubated in PBS/water, tissue degra-

dation was much greater; vessel collapse was less frequently

observed in the absence of oxygen (black arrows, electronic

supplementary material, figure S4G,I) than in its presence

(electronic supplementary material, figure S4J–L). This was

further evidenced at the end of one month, where microbial

contamination was still not observed in either HB condition

(electronic supplementary material, figure S5A,B), but almost

completely consumed vessels in both control conditions (elec-

tronic supplementary material, figure S5C,D) after days to

weeks. No microbial influence is detected in either HB con-

dition even after storage at room temperature for six months

to 2 years.

When ostrich blood vessels were soaked in HB, rinsed and

exposed to antibodies against a synthetic HB peptide (NH2-

TSLWGKVNVADCGAEALAR-OH) [67] in in situ antibody

assays, with or without iron chelation, patterns similar to the

dinosaur vessels were observed. The ostrich vessels treated

with PIH to remove HB-derived iron (electronic supplementary

material, figure S6B,D) showed significantly more antibody bind-

ing than those vessels incubated in HB without PIH chelator

(electronic supplementary material, figure S6A,C).
4. Discussion
The HB–oxygen interactions investigated here explain both the

association of iron with many exceptionally preserved fossils

and the enhanced preservation of tissues, cells and molecules

over deep time. Iron and oxygen chemistry, at the centre of

bioenergetics and terrestrial life [41], are now seen to play

key roles in the preservation of biomaterials after death.
The hypothesis that iron contributes to preservation in

deep time, perhaps by both free-radical-mediated fixation and

anti-microbial activity, is supported by data presented herein.

Although the exact mechanism of microbial inhibition by HB

is not known, it has been noted in earlier works [63,64]. The

iron may be directly protecting proteins by blocking active

sites recognized by enzymes of degradation (supported by

the increase in antibody signal after treatment with iron chela-

tor), or it may be providing protection indirectly by binding

to oxygen, and thus preventing oxidative damage [68,69] or

outcompeting bacterial mechanisms, similar to ferritins [45].

Here, we observe the intimate association between iron

(goethite) particles and soft tissues recovered from dinosaurs.

In life, blood cells rich in iron-containing HB flow through

vessels, and have access to bone osteocytes through the

lacuna-canalicular network [70,71]; after death, HB could

cause localized, haeme-based radical cross-linking in dinosaur

tissues. Moreover, HB-derived haeme, previously identified in

dinosaur bone [72], has recently been identified in Miocene

mosquitoes, supporting the durability of this prosthetic unit

[73]. But are these reactions sufficient to result in long-term

preservation?

In our test model, incubation in HB increased ostrich vessel

stability more than 240-fold, or more than 24 000% over control

conditions. The greatest effect was in the presence of dioxygen,

but significant stabilization by HB also occurred when oxygen

was absent (figure 4; electronic supplementary material, figure

S5). Without HB treatment, blood vessels were more stable in

the absence of oxygen, whereas the most rapid degradation

occurred with oxygen present and HB absent. Two possible

explanations for the HB/O2 effect on stabilizing blood vessel

tissues are based on earlier observations in different environ-

ments: (i) enhanced tissue fixation by free radicals, initiated

by haeme–oxygen interactions [65]; or (ii) inhibition of

microbial growth by free radicals [63,64]. Ironically, haeme, a

molecule thought to have contributed to the formation of life

[41,74], may contribute to preservation after death.

Goethite-like iron particles similar to those observed in

these fossil soft tissues have been identified in modern tissues

and are possibly derived from HB through formation of ferritin

protein-caged iron biominerals [44,75–79] during degradation.

Ferritins are stable proteins that retain activity post-mortem.

They are capable of scavenging iron released from less stable

proteins and converting it to biominerals such as goethite,

depositing it as crystals of relatively uniform size, in surround-

ing tissues. These iron nanoparticles may have stabilized cell

architecture and may even be responsible for preserving intra-

cellular components chemically consistent with DNA [22]

through iron-mediated DNA–protein cross-links [80].

However, just as iron contributes to reduction of anti-

body reactivity (figure 3; electronic supplementary material,

figure S5), it may also confound efforts to sequence bio-

molecules, by diminishing signals in mass spectrometry via

ion suppression or by inhibiting enzymes required for DNA

sequencing [81,82]. Iron chelation in soft tissue analysis is a

technical advance in analysing biomaterials from fossil

bone because chelation reduces signal inhibition in many

fossil analyses, thus broadening the range of specimens

from which molecular data may be obtained.

Biomolecules recovered from fossils have great potential

to reveal aspects of the biology and environments of extinct

organisms by: (i) independently testing and/or resolving

evolutionary relationships determined by morphological
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characters; (ii) combining morphological and molecular data

from both fossil and extant taxa to generate more robust phy-

logenies; (iii) illuminating acquisition of physiological

strategies not discernible from morphology alone (e.g. cold-

adapted HB in Mammuthus primigenius [83]); and (iv) provid-

ing, independently, estimates on rate and direction of

molecular evolution. In addition, molecules derived from fos-

sils can elucidate molecular mechanisms for organismal

survival during prolonged periods of global climate change.

Finally, studying molecular diversity of organisms in the

fossil record before major ‘bottleneck’ events illuminates

population structures and may suggest mechanisms to miti-

gate the current decline in diversity in some extant lineages.

However, despite this potential, fossils older than

approximately 1 Ma have not been targeted for molecular

studies, because proposed limits on preservation of organic

components in bone [28,30,33,34] obscured the possibility of

molecular survival. These models/proxies predict degra-

dation of tissues on even shorter time scales. Therefore, the

apparent recovery of structures in Cretaceous bone consistent

with an endogenous origin that share identical location, tex-

ture, morphology, translucency, molecular characteristics

and immunoreactivity with extant osteocytes and blood

vessels [17,22,24,84] has remained controversial. Here, our

data support a naturally occurring mechanism that results in

stabilization of these presumably transient components over

geological time. Because we observed iron particles in associ-

ation with soft tissues in these fossils (figure 1), and earlier

studies localized iron to the vessels of bone, not the bone

matrix or surrounding sediments [72,85,86], we focused our

attention on identifying a protein source for iron after death.

Redox reactions of iron are modulated by insertion of iron

into porphyrins bound to specific proteins (HB, myoglobin

and cytochromes), by integration in iron–sulfur clusters

[47,48], or used to synthesize and sequester iron biominerals
by ferritins. Multiple cellular repair mechanisms exist to com-

pensate for free-radical-induced damage caused by errant

iron (or dioxygen) [55]. After death, iron released from

these proteins becomes available for free-radical chemistry

with oxygen, leading to protein and lipid cross-linking,

tissue fixation and resistance to enzymatic/bacterial degra-

dation [55,56], and also forms particles in situ in tissues, as

our data demonstrate. Thus, damaging reactions in life can

be preserving reactions after death. Stabilization of cellular

and vascular components by HB iron in solution and/or

anoxia in the ostrich vessel model suggests that iron observed

in extant and dinosaur tissues is derived from HB degra-

dation. However, other metals also contribute to hydroxyl

radical formation; iron may be only one of many metals play-

ing a role in exceptional fossil preservation. Whatever the

exact mechanism, iron removal by chelation may increase

the number of fossil samples amenable to molecular analyses.

(Note: during the course of review of this manuscript, a

paper was published in PNAS [73] that directly relates to

our conclusion that iron influences preservation of biomole-

cules across geological time and speaks of the longevity of

some iron-containing biomolecules.)
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