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Preface 

This volume presents new English translations of all of the documents in Volume 3 of 
The Collected Papers of Albert Einstein, with the exception of the “Scratch Notebook, 
1909-1914,” which is published as Appendix A in the documentary edition. The 
documentary edition presents twenty-four of these documents in German versions, the 
remaining three appearing in their published French versions. The translation volume 
does not reproduce the annotations or editorial apparatus of the documentary edition, 
which the reader should consult. We have, however, included in this volume the editorial 

footnote numbers that correspond to the footnotes in the documentary edition; they are 
placed within square brackets. Bracketed numbers in the margins that are preceded by 
a “p.” refer to pages in Einstein’s notebooks. Angle brackets indicate crossed-out 
material. For the most part, misprints and errors in the original documents have not 

been corrected, except for the occasional correction of misspelled names. 
The purpose of the translation project, in accordance with the agreement between 

Princeton University Press and the National Science Foundation, is to provide “a careful, 
accurate translation that is as close to the German original as possible while still 

producing readable English.” Therefore, our aim has not been to produce a “literary 
translation,” so style has been sacrificed to literalness in some places to enable readers 
who are not fluent in German to make a scholarly evaluation of the content of the 

documents. We hope, nevertheless, that the quality of the original German prose shines 

through. 

Some of the technical vocabulary found in the original documents is peculiar to 

the time and place of their composition. We have tried, whenever possible, to provide 
not modern translations but English equivalents commonly employed in the contemporary 
physics literature; otherwise we supply literal translations. Perhaps the most significant 

exception to this rule is our translation of “Spannung” as “voltage” or as “potential 
difference” (depending on the context), there being no one standard English equivalent 
in common use in the first two decades of this century. Similarly, we have reproduced 
all notations and equations in a form as close as possible to the original. 

Three documents in this volume presented a special challenge—the three sets of 

lecture notes (Docs. 1, 4, and 11). As might be expected, the style of these notes is often 
fragmentary and telegraphic. To the greatest extent possible, we have sought to 

reproduce Einstein’s abbreviations, repetitions, and errors of grammar and spelling, so 
as to preserve the feel of the original notes, except in the few cases where such literalness 

would have produced an impossibly unclear translation. 

We would like to thank the staff at the Einstein offices in Boston for their help at various 
stages in the preparation of this translation. We owe a debt to Walter Lippincott, 
director of Princeton University Press, for his support and encouragement of this project. 
Alice Calaprice, senior editor at Princeton University Press, has provided invaluable 
assistance, for which we thank her. Our thanks go as well to Michael Perlman for his 

technical assistance in the preparation of the final camera-ready copy of the volume, and 

to Charles Creesy and Michael Volk for seeing to our computer needs. 

ANNA BECK, TRANSLATOR 

DON HOWARD, CONSULTANT
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DOC. 1 MECHANICS LECTURE NOTES 1 

Doc. 1 

Lecture Notes for Introductory 

Course on Mechanics at the University of Zurich, 

Winter Semester 1909/1910 

[18 October 1909-5 March 1910]"! 

Mechanics is the science of motion of ponderable matter. It establishes the conditions {[p. 1] 

under which the motion of matter ceases (statics). It seeks to reduce the manifold 
phenomena of motion to the smallest possible number of elementary laws of the simplest 

possible form, from which it seeks to reconstruct the more complicated phenomena. 

I. Mechanics of the Material Point 

We shall first discuss the motion of a body whose dimensions are of no importance in the 

motions we will discuss, that is, can be regarded as © small. While in motion, such a body 

will, in general, carry out rotations and change its shape. But we disregard these 

circumstances, that is, treat it as if it were pointlike; we designate it as a “material point.” 

Before we investigate the motion of a m. p."! as a function of the motive causes, we 
must discuss the means and the auxiliary quantities that we use in order to describe the 

motion of an m. point. 

A. Kinematics of the M. P. 

One cannot speak of the motion of a body (and hence also of am. p.) in and for itself, [p. 2] 

but only of a relative motion of bodies with respect to each other. If we wish to describe 

the motion of an m. p., we must describe its motion with respect to a second body. For 

the latter we choose a system of 3 mutually perpendicular rigid rods. (Coordinate 

system). We conceive of times as being measured by an arbitrary clock, in that we 

assume that means are available for ascertaining the readings of the clock that are 

simultaneous with particular individual positions that the m. p. assumes during its motion. 

Obviously, the motion of the <body> m. p. is given if the coordinates x, y, z are 

given with respect to the c.s.!" as a function of time. Equations of the following type 

obtain here: 
ax 

x=o() y= z=x) . 
Ma uM! 

Rectilinear motion —* > 

4x W 

(a) uniform
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x=a+bt 

x + Ac=a + b(t + At) 

Ax =bAt —=6 

(b) non-uniform 

(p. 3] Arbitrary Curvilinear Motion 

(Definition of mean and instantaneous velocities) 

6) 

ym M' W 

/—\ tea? 

Velocity is a vector (structure defined by magnitude, direction, and orientation). 

Graphically represented by an arrow of a given direction & magnitude. Usually denoted 

by German letters (e.g., A). Components &, 4, &.. 

Two vectors & = (1, A, 4) 
and ® = (B®, B,, B,) 

One speaks of the sum @ + B of these vectors. By this one means the vector 

(+B, A+B, +B) 
Geometrically 

The commutative law applies. 

In the case of several vectors, 

the associative and distributive 
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laws apply." 

Acceleration [p. 4] 

If one divides these by At by wt 

and passes to the limit, L&E 

one obtains _ gt se 2 
dx dy d&z ) 

d? dt dt A‘, wh? 

‘a ot 

ST Aether 
“ i y) seach hevantpm 

a ! 

begs 1 TES 
& 4+— 

Hodograph”™ eet [mean acceleration 

passage to the limit 

4 acceleration at the time] 

0 +20
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[p. 5] Tangential and Normal Acceleration 

There exists a particularly noteworthy way of resolving the acceleration vector into 

components, namely, the resolution into a tangential and into a normal component. 

10 4+470 
ve” aa i ee dt AN 

7” \ 
Pp 

Direction cos of N: a B y 

Direction cos of tangt a’ B’ y 4 

(3) 

d*x dv v? epee ee ‘ds 
dt? dt ew -- UHay 

7 0 < & 
aa ------- sy ih 

+a av e 

[p. 6] B. Dynamics of the Material P."! 

1. <Galileo’s> principle of inertia a m.p. that is <present alone in space> not acted 
upon by other bodies! moves without acceleration. 
(a) In a certain sense, this law is an empirical law; (billiard ball, railway car). Strictly 

speaking, however, it has the character of a definition. For we say that other bodies do 

not act on a body if this body moves uniformly in a straight line. But for all practical 

purposes the law can be designated as empirical, because experience happens to be such 

that the law can be carried out or maintained without any artificial-looking assump- 

tions."4)
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(b) But this law does not hold for an arbitrary state of motion of the c.s. But it holds to 

acertain degree of approximation for systems at rest relative to the earth, and to an even 

closer approximation for a system whose origin is at rest relative to the center of gravity 

of the solar system, and whose axes are directed permanently toward 3 fixed stars. 

er bodies act upon a material point, the acceleration vector Ee dy z is 
d? dP df 

generally different from zero. The acceleration of a m.p. is called a force. 

We have a certain direct representation of force, and thi T ing of exertion or 

pressure that we experience when, for example, we use our hand to set into mot 

body that was originally at rest. 

2. The accelerations imparted by A to B, & and by B to A are directed along the 

connecting line and are oppositely oriented. 

[p.7] 

73. 

3. The ratio of accelerations of two mat. p. defines the ratio of masses. Explanation of 

the empirical laws involved. 

One mass can be chosen arbitrarily. The rest of the masses can be derived from it by 

experiment. 

4. The addition theorem for accelerations. 

If one introduces a vector (x, y, z) that is equal to the acceleration of the point 

multiplied by m, that is, if one sets 

then, for two masses interacting with each other, this vector has the property of being 

equal for the two, and of opposite direction. We call this vector the force acting on the 

mass point. Thus, this force always fulfills the condition of equivalence of action and [p. 8] 

reaction.



[p. 9} 

{p. 10] 
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The equations of motion given above have the character of definitional equations for 

the force, thus they can be neither confirmed nor refuted by experience. Nonetheless, 

we could find ourselves compelled by experience to abandon them, this would happen 

if the description of facts by means of the equations m S = X -- would lead to our 
t 

having to assume expressions for the force components X - - - in a very complicated 

manner. One would then reject the equations of motion as unsuitable. 

Example: identical springs, stretched in the same way, act in the same direction upon 

a free body. If the acceleration were not proportional to the number of springs acting, 

then it would follow from the equations that the force would also not be proportional to 

the number of springs. This does not represent a logical contradiction, but it would 

result in our presuming that we could arrive at a simpler, ie., preferable theory of 

motion, if we based ourselves on other equations of motion. 

General Remarks on the Motion of the Material Point 

For our equations of motion to be useful, the expressions for the force components Xx 

etc. may not contain higher than first-order time derivatives of the coordinates. Because 

the second derivative can be eliminated by solving the equations. However, the 

occurrence of higher derivatives would make a solution for the second derivative seem 

unjustified. Hence, for a general theory we have to consider X etc. as functions of 

xy ... and? alone. We have then 3 simultaneous equations of the second order. 

The general integrals of these eq. contain 6 arbitrary constants. For the motion is 

completely determined only if, for a time t,,x-- and xyz are given. If X -- are 

unique functions, then the solution is thereby uniquely det. For we can write 

— = — X(x..%...0) ee dx=X( )dt dx=xdt 
m at 

Thus, if x --% -- are given for a time t, they can be calculated for the time 1 + dt etc. 

i es it proves possible to integrate the equations of motion once (first 

integrals), so that one arrives at firs i 

(1) The eq. of mot. can be written
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If the right-hand side can be directly integrated with respect to time, if X<YZ> vanishes 

or <are> is at least independent of x --x -- etc. 
Example. The force is everywhere parallel to a given direction. We choose the one 

parallel to the direction Z. Th 

From this, x =a’t+c, y=b't+c, 

The motion takes place on a plane, because a dy - bdx = 0, ay - bx ® 

Remark: the above equation contains the vector (mx, my, mz), the v 

multiplied by mass. It plays a role in many derivations. We call it b = (6, 
We have 

db, = Xdt_—b, = [Xat 

Fhe momentum is equal to the time integral of the force acting on the body (material 

[p. 11] 



[p. 12] 

[p. 13} 
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Analogous equations hold for the other axes. 

<Free Fall. Force of Gravity> 

Practical and CGS-Unit of Mass 

We measure time in <average> seconds, of the aver. solar day, and 1 

24 -60 -60 

lengths in cm. 1 cm is the hundredth part of the distance between two marks of a 

specific meter-stick kept in Sévres near Paris. 

Besides the quantities that depend only on length and time Ee | , our equation 
t 

of motion contains two additional quantities, namely m and X-- It suffices to establish 

a unit for one of these quantities, because the equations of motion make it possible then 

to establish the second one. 

For if we have defined a unit for m, then we can define 

mB =K 

as the unit of force that force which imparts to the unit of mass the acceleration 1. 

Conversely, if we have established a unit for the force, than the unit mass is that 

mass to which the force 1 imparts the acceleration 1. 

From the theoretical point of view it does not matter for which of the quantities we 

will establish a unit, but from a pragmatic point of view it does. 

<Earlier (before Gauss) one could>"! A unit for the force can be defined in the 

following way in Paris the earth exerts a quite specific force on 1 cc water at 4°. I call 

this unit of force 1 gram. (In addition, the kg is also used.) 

This definition suffers (for precise investigations) from the following drawback. If 

people who are not in Paris wish to measure a force accurately, they must compare the 

force to be measured with the force that terrestrial gravitation exerts on 1 cc water in 

Paris. To this extent the application of the definition is cumbersome. 

But the situation is different if the unit of mass (also called “gram”) as the mass of 

one cc water at 4°. In this definition, <which now in physical investigations> no 

particular location on the earth plays a role. The mass 1 gr can be realized at once at
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any location at which a cm-measuring rod and water are available. For this reason, this 

system of measures seems now generally to be used in physics. 

The advantage over the other system is only a formal one. 

x 
Free Fall 

At a place close to the earth’s surface we imagine a coord. 

sys. whose Z-axis is directed vertically upwards. We inquire 

into the motion of a material point with respect to this 

system. In order to solve this problem, we must know the 

~y Magnitude of the force exerted by the earth on the <materi- 

| al> body. 

One would expect a priori that this force 

1) is proportional to the <mass of the> m. p. 

2) depends on the physical quality of the point 

2 3) The force could also depend on the velocity.!"“! 

<For reasons of symmetry> From the choice of the position of the coordinate system 

it follows that [p- 14] 

X=0 Y=0 

Further, one arrives at a correct description of the phenomena if one assumes that 

gravity does not depend either on the quality or the velocity of the m.p. In this way one 

obtains 

fl 0 
df 

dy 9 
d? 

az 

avi 
From the two first equations one obtains
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a" dy 

dy nn? dx 

ady —bdx =0 

ay—bx=c 

The motion takes place in the vertical plane. We choose this to be the x-Z-plane. In 

that case, we have permanently y = 0, and we obtain by direct integration of our 

equations 

x= ct + Cc, dx ot Cc, 

dat 

z - 3¢ +o,t +e, é =c¢, + gt 

[p. 15] We shall now assume that fort = 0, x =z =0 and a. e = 0; in that case all 

c = 0, and we obtain 

The familiar formula for free fall. By calculating the constants c from the conditions 

of the problem, we can solve each problem concerned with free fall. 

Example: On a hill of height A is a cannon whose elev. is «. The initial velocity of the 

shell is vo. Where will it strike? The most favorable elevation angle? (Air resistance 

neglected).
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Example 2: Water pipe 

Equation of the curve. 

<For> The fact that the gravitational force is independent of the material <we have 

no explanation. > shows a close relationship between inertial mass, on the one hand, and 

the effect of gravitation, on the other hand.!*! 

Let us now find the law of interaction between <masses> the sun & the planets [p. 16] 

through <gravity> gravitation, the way Newton found it from Kepler’s laws. 

These laws of Kepler are as follows: 

(1) The radius vector sun-planet 

sweeps out equal areas in equal times. es 

(2) The planet travels in an ellipse, in Be 

which the sun occupies one focus. . 

(3) The squares of the planets’ peri- “ t 

ods of orbit vary as the third power of the Mer 

major axes of the ellipses. 

The nature of the present problem re a 

makes it seem expedient to use polar 

coordinates for the description of plane- 

tary motion. In order to apply these, we 

will seek to express the acceleration vector in polar coordinates. 

First, we have 

xX =rcos »
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eps dy _ «dr , do 
y=rsin @ a sin oF, r cos FF 

. d?x dr . arde do\? 
17 —sin 0: — = —— maripueae aaa [p. 17] 9g COs ~ dt = SP a2 2sing a. dt reoso(“?) 

2 

—rsing Ge 

. d*y | dr dr dp do\? 
co: +> = —- — — —fsi ae Sp sing a SIN 9 2 + 2008 97 dt rsing (22) 

2 

+ reosp 

d? d’y . 
B, = 2 O89 + “7sing 

d*x . d? 
B, = — Fring + G3 c0s@ 

d?r do 2 Ap 

ner ed r dt : 

drdg _ dp 1d(,dg Fi 
B, = == —- = 205 \ 

dt dt" dt? rat\" 4) 
a 

From (1) it follows that r-rdp=cdt & rae =¢ x 

From this it follows first that B, = 0. Thus, the acceleration vector of planetary 

motion lies in the direction sun-planet. 

We now calculate B, by means of (1) and (2) 

Because of (2) we have
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_ P dr p cee AP 2. do 

1—ecose dt (1—ecosg) esin Oa > nar’ 

ad csin 
dt ? 

Gat ccos 
dt? a) 

_r—p | d’r_c?r—p4 

80 er | dep 
dp _ c do ? iG 

tor? Na) ~B 

ec 1 fe r p re 

const. [p. 18] 
The acceleration imparted to a planet = There is still the question whether 

r 

this constant has the same value for all planets. To find this out, we must introduce the 

period of orbit. We have 

The area of the ellipse = hef = abn cel 

But since us =p 
a



[p. 19] 

[p. 20] 
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3 

But since according to Kepler’s 3d law @ “has the same value for all planets, we can 

“3 

Force with which the sun attracts set the acceleration] caused by the sun = 5 Ad 

a planet = mass-accel. = uf , where f a factor that is independent of the planet. For 
Pr 

reasons of symmetry, the numerator must depend on the mass of the sun M just as it 

depends on the mass of the planet, hence f = Mx, where «x does not depend either on 

the sun or on the planet. Hence we have 

Mm _M 
force = K:__ or from accel. = k— 

P Pr 

There is still the question: What is the value of constant x? In order to find it, we must 

know for one case both masses, the force, and the distance. In order to determine x, we 

must know the magnitude of the acting mass. This is only possible for relatively small 

masses. (Example of this. Earth as gravitating center mass of the earth) 

Tt has been found that « = 6.70 - 10°°. 

More about the methods later on."® 

4 20° B=67-10°*--7- 10°85 555 13.6 

7 6.7-1078-8- 10! - 13.6- 3.14 

3 

_ : i =7,6-104¢ — ® m weniger als i000 ™™- 

. 10-7 der Schwere 

‘ 6-19* 2,5-20 
QO "20 6-108 

RdRdg- Rsin p<dy)2n 
p cos y/!191
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. 2nR? si 
Anz[iehung] a cos 

bd i d 

{ = Kmp2nR? (*s P cosy 
a u 

u? = R? +r? + 2Rrcosg?™ 

udu = Rrsingdg 

d 
sing dg = “a 

r? + uy? — R? 
cosy = . an 

1 [du 
ae (Se a R? + u’) 

__! J2_ pry | a! 
= ape Re) [Sa dub = oe 

1 1 

{ (r? — R?) 
7 u 

— —(p2 — R2 _— 
fr ryt r—R 

= —(2R) + 2R 

+ut konst} 

- > ba@ Rr Re



{p. 21] 
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Integrating the equations of motion between two time limits 1, and 4, one obtains 

etc. 

determined change of m Lind " 
dt? 

components of the momentum (mv) of the m. p. Conversely, we see that the total effect 

that a force lasting for a certain time has on the state of motion of the m. p. is 

General Remarks on the Motion of the M. P. 

1) mi =X 
dt® 

mo? =Y 
dt? 

moe =Z 
dt 

Thus, the time integral of the force acting on a m. p. 

determined only by [Xdt etc. (impulse. 

2) The momentum <motion in a plane> 

dx 
mi =X = 

dt 4 

mit? - yt 
dt’ dt 

Fee! =Y | tx 
dt 

But since x—= dy ye d dy _ yds 
de “de dt\dt ~ dt} ’ 

causes a completely 

of the material point. These quantities are called the 

=xY -yX .
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one obtains 

d dy dx 
= — -y—|b =x¥ - p¥ 
dt { E dt yo calli 

d ge po) =yZ -zY 
dt dt dt 

d m Pci ~x% = 2X -xZ 
dt dt dt 

d dy 
al — -~y—b =xY - yX 
dt {m ie "a I aire 

If the right-hand side of one of these equations vanishes, i.e., if - = ,ie., if the 

force intersects the Z-axis, one obtains an integral. 

We have then xf - ye = const. 
dt dt 

foe , alia dx) 
2 xt+dx ytdy 2 u 2 

ds 1f dy dx 
dt = 5(x2 ond yo) = konst. 

The areal velocity of the rad. 
vect. of the x-y projection is const. 
The reverse also holds. 

a 
y 

If central force, then 3 integrals, because all three right sides are then = 0. Then 

y& _, =A 
dt dt 

Phas agt =B 

[p. 22]



Ip. 23) 

{p. 24] 
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Mult by x y z and add. Ax + By + Cz = 0. Equation of a plane passing through [sic] 

through the O-point. 

Geometrical Interpretation of the Law of Areas 

Given are two vectors @ and ®, with the components &, 

@, @, and $B, B,, B, In addition to these two vectors 

we can construct a third vector » in the following way: 

1. v is perpendicular to the plane laid through @ and 

B 
2. The quantity, or (as it is called) the tensor”?! of 

the vector is twice the area of the triangle that is to 

be constructed from A & B 

3. The direction of » is such that a rotary motion of 

@ toward B, together with a translational motion in i 

the direction of the arrow of » leads to a right-hand coil 

This vector v is called the vector product of @ and B. 

Components of the vector product. The plane (43) is 1 to t. Hence the angle between 

b and the Z-axis is equal to the angle between the plane @® and the plane XY 

jo] = A 

, = Acos b, = A,,, where A,, denotes the area of the proj[ection] of A on the xy plane. 

b, a A,B, 7 AB. Ne f 

Analogously for the other two components of. ’ [EA = 

We consider the special case where one of the 

vectors is the radius vector drawn from O to the point 

of application of the other vector. The vector product 

of the radius vector and the given vector B is called 

the moment of the vector % with respect to the point 

oO. 

It is perpendicular to the plane OB, and its tensor 

is equal to twice A, and thus to the product of the 

magnitude [%| of the vector and the latter’s distance 

d from O. 
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According to the aforesaid, the components are 

yB, - zB, 

In the equation developed above, components of moments appear on both sides. On the 

left, the moment of the momentum, on the right, the moment of the forces acting on the 

mp. Ina central motion, the moment of momentum, and thus also that of the velocity, 

is a spatially and temporally constant vector. 

The Law of Kinetic Energy 

d2x iS where dx is the projection of the element of the 

me a ant = dx, trajectory. 

dy dy 

d?z dz 

dx d?x  dyd*y  dzd?z 

o-(2) +) dt dt dt 

dxd*x | ; 

a ae tt 
dv?) = 24 

From this A | = Xdx + Ydy + Zdz 

m™ is called kinetic energy. The right-hand side is the product, resultant force - 

path element - cos of the angle between the two. Because one can write it as 

[p. 25}
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R-ds ER LID, Zk = Rds cos @ , 
Rds Rds R ds 

where the bracketed fractions are direction cos. of R & ds. 

ote 

This is the work that the force X Y Z transmits to the mat. p. during time dt. 

The law can also be derived directly, by resolving the acceleration into a tangential 

& 1 component, B, and B.. 

dv 
. 26 B= [p. 26] 7 

F ds = mv at -a{m 
‘ dt 

Integrating the equation obtained, one gets 

2 
mv MV —— = [' Xdx + Ydy + Zdz . road, 7 

In the special case where X¥ Y Z depend only on x y z, it is possible to calculate the 

integral on the right-hand side if the trajectory is given. 

But in an even more special case, namely if X Y Z are of the form 

+U wy 
ox 

X=
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Yontaee 
dy 

Zu +U | 
oz 

it is not even necessary to know the trajectory in order to carry out that integration. 

<Such forces we call forces derivable from a potential> 

For in this case we have 

[Xax + Yay + Zaz = (Fe + Wy . a yy +fau 

+(U - U,) 

2 
My, 

aE > + v] = const., where U is, thus, a function of the In this case [rm + 
2 

coordinates alone. If the m. p. turns up twice at the same spatial point, then P, and thus 

also v, will have the same value if P is single-valued.! The temporally constant [p. 27] 
quantity that we found here for the case when a m. p. is under the influence of temp. 

const. forces that are derivable from a <potential> force function, we will call the 

“energy” of the system considered. —P is called the potential energy. The law we found 

can then be formulated thus: 

“The sum... . remains constant.” 

As the condition for the work [ to be independent of the integration path, we found 

the equations 

This condition can also be expressed in another form. If one differentiates the third d. 

eq. with respect to y, and the second with respect to z, one obtains 

eZ _ a _9 

ro a 4 

analog. ax _ 92 | 0
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An example of multivalued UU = arctg ¥ 
x 

17% # 

xdy - ydx 

r+y 

xX + yY = 0, thus the force is perpendicular to the radius. Its 

Y= = magnitude is Z . 
Pr r 

“TA { K 

NV >’ 

[p. 28] Equilibrium of the Material Point 

If force function present 

aU _ aU _ wu | 
a dy a 

X=Y=Z= 

The law of kinetic energy reveals a case in which it is certain that the equilibrium is 

stable. 

. v+P= oY +P, —_ Equilibrium at P,(X% yo 20)
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=P, +e 

my +P-P=e 
2 

P-P,se 

Central Forces That Depend Only on the Distance 

We have seen that motion takes place in a plane. 

1. Law of areas 

dy dx | 
x2 -y— =e 

dt dt 

do 
or also P= =c 1 ; (1) 

2. The energy law. ; 7 om] g [ae + Ydy + <a] 
r 

=Fdr (2) 

These two equations determine completely r & @ as funct of time. 

We have 

y? a dr + rd¢- 

dt 

From this we obtain by means of the law of areas 

v= (Z] BS 3) 

Ip. 29]
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1¥ 

vec | +3 4) 

By substituting 2 IF dr for v*, one obtains dt and dq as funct of r. 
m 

Now we write (2) in the form 

ldmv? _ ,dr 
2 dt a 

d|m|\ (dry ~COl pt 

dt\2\\at) PF dt 

Differentiating, 

migdr _ Cd _p 
2| ¢@t dt P gt t 

& mit Clap 
d’ Pf 

& dr =T ee oo (5)?! 
dt Pr 

2 

[p. 30] From ldmv* pdr 
2 do do 

one obtains, by inserting v’ from 4
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a! 
d imC Hr 1V\$ _ par 

—— |} ] + fe =F 

dp | 2 \lde) (7 dp 

al 
mC) 2 7 _ 297 _- 

2 Pig ag reo ) 

1 
ee 

pe-m@) rile 8 6 
P log r 

We now determiner & as funct. ofr. We set 2 fF dr = p(r) +h =v’ according 
m 

to eq. 2 

Then eq. 3 becomes 

e dr Wo =o) -Fth]es 

dt = dr 

tyr) 

Suppose we know the sign of a for t =f, 

The sign of the square root is thereby determined up to the moment when =a 
f 

becomes 0 again. Then a usu. changes sign (at r,). This is generally easy to detect 

in the special case under discussion. It can be determined unambiguously from the sign 
2 

of met apg ME 
dt’ 

From this it is easy to derive dq, since, according to the law of areas, [p. 31]
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Insert (should come before “Central Forces.”)™! 

Let us discuss the case of two mat. points acting on each other by central forces that 

depend only on the distance. 

x, ~ %, dx. 
m, = FO) 

v 

-- aot (ee ryt 

These equations do not change 

their form with the introduction of a 

uniformly moving coordinate system 

Second derivat. & differ[ence] x, - x, 

‘ 
' 

' 

' 

i 
! 
' 
' 

! 

i] 
4 

1 
1 

1 = t _ e 
1%, =X +art+B, x, =x,’ tar + B, 
‘ 

' 

' 

\ 
‘ 

; do not change under transformation. 
\ 

“
—
 

Neel ere 
‘de * dP 

gam + m2X2 

7 m, + m2 

/ mx, +m x, = at +B n= 

é= 

In order to interpret, we define
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the so-called center of gravity of both masses 

— =(m, + m,) (at + B) moves uniformly 

New coordin. syst. that mov. unif., hence is at rest relative to the cen. of grav. O placed 

at the center of gravity. Then 

m,x, + m,x, = 0 

or mx, = —m,xX, My ty 2y My Vy + 2 

my, = “My, sq. & add 

pas mr = Mr, 

m 1 r= —r 2 1 
my 

m, +m, 
rerntrne= r, 

m, 

This is the same equation as the equation of motion with a fixed center of force. 

Application to the Solar System. Sun & Planet 

Force F(r) =« = K—_ 
r 

mm, mM 

re
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3rd Kepler’s law not strictly valid. Neither is the second law. 

Example with regard to central forces Force law between two identical gas molecules 

F = 3 Collision law"! 

B 
a 1 

Tila) = G55 = F 

Problem reduced to a central-force problem. 

ee ee ee gr) +h = faa ap atk v
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If v, denotes the velocity at distance, then fh = v,” 

wn =e +h -f = -28.1 fy [p33] 
Pr m5 fA Pf 

dt = f dr 

tv 
Here c = +bv, 

dp = ef dr 

Pv Wr) 

dr 
@ = 2a = 2c? _ 

“Py Wr) 

Example. Mass penetrates into the solar system, branch of hyperbola. What 

direction does it have afterwards?! 

‘Ss 
|4 

From the last equation (6) it is very easy to derive the force law from Kepler’s 2nd law. 

gel 
me4 or 1 

a a 

2 |dg@ r 

1_l-ecsg 

r P 
1 

wl P 
ft Secale 
o¢ P 
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[p. 34] The Motion of a Point That Must Stay on a <Plane> Surface 

mo* =X +X, 
dt’ a f 

me =¥ +Y, 
dp * Ff 

mez =Z +Z 
df? = Z 

surface exerts on the point a 

the components (X; : Y; : Z)) v: 

nterpressure that is normal to the former. In that case 

as the direction cosines of the normal to the surface. 

Se, 28: 28 , hence x,-a2e 

@ (x, y, Zz, t) = 

Together, these equations determine the four variables x, y, z\and A. 

If surface at rest & forces derivable from a potential, then the\gonservation of energy 

holds. 

Examples: 

Simple Pendulum 

Z-axis downwards 

Equation of the surface 

{p. 35] 89, 99. 99 _
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ence equations 

& substituting 2a instead of A 
m 

oie A string tension 2A’ = mal 

ae gta. 

We need two relations for a complete solution. 
1) Energy principle. Because xdx + ydy + zdz = 0 

(8 (a -m 
& ade + dy’ + dz = (Qgz + hd? 

xdy - ydx = edt 

Because the distance from the coordinate origin is const., it is advantageo' 

polar coordinates. 

to introduce 

x =lsin0 cosw dx = I{cos? coswd?d - sind sinw dy 

y=lsindOsinw dy = l{cosd sinwdd + sind cosw du} 

z =I cosd dz = l{-sind-dd}
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32 
poc. 1 

de +dy +de=Ft 

xdy - ydx = Psin’d dod 

Inserting this into our equation, we obtain 

Pid? + sin’ddei} = (2gl cos® + hyd’ 

Psin? dds” = cdt. 

Motion of a Point Along a Given Fixed Curve 

§ 1. 

Thus far we have been addressing the problem of 

finding the force when the motion was given, OF 

finding the motion when the force was given. But 

there are problems in which conditions for the motion 

are given. Imagine, for example, a small perforated 

body pulled along a rigid wire and acted upon by given 

external forces. Besides the given external force, 4 

reactive force of the wire, to be viewed as unknown 

for the time being, also acts upon the point. Aji that 

we assume for the time being about this reactive force 

& is that it is perpendicular to the tangent on the wire, 

so that we will have 

R dx + Rdy + dz = 

%.. 

vw 

\F
 

0. 

This implies that the reactive force does not perform any work. 

To find the mot. of the p., we can replace the wire by the re 

it. Formally, this reduces the case of the point pulled 

freely moving point. We can therefore set 

ax 
mor =X + &, 

dt 

mo =Y+ 
dt® 

y 

a&z 
mo =Z + &, 

dt’ 

along the wire 

: 

active force exerted by 

to the case of the
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We can evaluate the condition assumed for & by multiplying these equations by dx dy dz [p. 37] 

& summing, & we obtain 

2 

d me| = Xdx + Ydy +Zdz (1) 

Thus, the equation for the kinetic energy is here valid and is sufficient for the solution 

of any problem of motion, as can be seen from the following. A single variable (q)""! 
suffices for the descrip. of the motion of the point. x, y, & z are to be considered the 

2. 

given functions of this single variable s. First, we have v* = (Z] 

a , f ds? 

ey ae 

Further, we have 

dx dy dz ds 
Xx 1, Z, —, —, —, F], th ae : rt bd x2 EE us al 5,¥—y2". (s =] 

Further, we have to set (as known, 

x=@s) y=xs) z= Ks) 
Further, 

ds? 
v= (g!2 + "2 2 as" (pe +x? ey’) 7 

X dep.on xyz, & . . andt, Hence, since one has to set x = »(q).. (known func. 

of s), “ =q’ @. Thus, X a known func. of g and da Thus, the above 
dt 

equation yield diff. eq. for s. We can write above equation as 

2 
aye? + x? +? (Z) = (XQ + Vy’ + ZW }ds = Qds. (1’)
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where X, Y, Z are to be thought of as expressed in the new variables. If X, Y, Z 

depend only on the coordinates, then { } of the right-hand side (Q) depends only on s. 

The equation can then be integrated right away. <If we set [Q ds = f> one obtains 

Mya yh = Joao or (solved for v* = Sf, (Z] = fg) (1")) 

<From this, f - 1, = f dq > 

+ fl? 

[p. 38] §2 
Geometric Derivation of the Fundamental Equation 

We resolved the acceleration into normal and a tang. components.™! We resolve the 
total force R acting on the point in an analogous way. 

_ a = K<@> B,- = R, = Kr _— 
analogously, total force R.,,, = Ke aN 

B-zkt We 

a R,=0=K,+N'.,. 
— 

| From the tangential components 

| mB, = K, ....08 (2a) 

K, is gen. known as a func of sf & t. Mult both sides by ds = vdt, we obtain 

dv 
ee 1) Ki ne (ds 

& d (5 = Kds_ integrable if K, dep[{ends] only on s. 

The total force K is composed of the external force K” and the reactive force of the 

curve of magnitude N this is perpendicular to the curve & 

just like K, is taken as positive with respect to the center of the curvature. 

After the solution of the motion problem, the normal components yield the reaction of 

the curve. We have
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jue = Ke@? +N (2b) 
Pp 

& N= ve - K® (2b) If’ is found as a funct of s, then this eq. yields norm. 
p 

reaction. 

§ 3 [p. 39] 
There Exists a Single-valued Force Function. Physical Meaning. 

We return to equation (1) 

a5" = Xdx + Ydy + Zdz 

We have already seen that this eq. is integrable if X, Y, Z depend only on s. We now 

further assume that there exists a force function for X, Y, Z that only depends on x y z, 

so that 

<Since v= é , therefore> The solution of the problem is obtained from eq. (3) by 

a single integration. 

Let us add here a general remark. Suppose the force X Y Z derives from a system 

of bodies that does not experience any spatial or other kind of change during the motion 

of them p. <If <force U> dep. only on the position of the m. p., then> What does the 

existence of a single-valued force function mean in this case? Suppose the point moves, 

perchance, along an endless wire without changing the sign me o 

of its vel. Then ” is always of the same magnitude at the < 
same location otherwise mechanism for the construction 6 

of perpetuum mobile Forces exerted by unchang. sys., 

which must depend only on the position 

eo 

—_
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[p. 41] 
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<5> Gravitation 

z-axis upwards 

a 

Then Xdx + Ydy + Zdz = - mg dz U = - mgz 
v2 v2 

I = -mg +h' a = gz +h’ 

If we write A =a 

v’ = 2g (a - z) 

Vv,” = 2g (a - z,) thus a can be made 
arbitrarily large. 

4% 
Suppose we lay on a plane z =a, then this plane either cuts the curve or lies above 

it. 

1) @ -z cannot become negative, hence, in the first case, the curve cannot cross the 

plane z =a. The material point turns around at z = a, but at no other point, because 

at no other point can we have v = 0. 

2) If z= a lies above the curve, then a - z is positive for all points of the curve. 

Then the point travels without turning around. 

Ist Case thus shuttling to & fro between A and A’, with the velocity being the same at 

each point of the curve. We calculate the time the mobile needs from M, to P. 

vw _ ds = 2g(a - 2z) [32} 
dt? 

P 

1 f ds 

2B i, ty a-z 

In the integralz & s are related by the equation of the curve. 

dt =
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§ (5). Example. Circle in a Vertical Plane (Simple Pendulum)" 

v = 2g (a - z) 

Constant from velocity at the lowest point 

vo =2ga+D a=-l+ — 

Ist Case. z =a intersects the circle 

2 

isos! v < 2ylg 

We set z=-lcos? a=-lcosea 

ya _ 1 

dt ot 
(1 — cosa) — (1 — cos 9) 

2 

P (4) = 2gl(cos 9 — cos a) 

dg\? o A) 
or patel = in? _ — ein2 (22) 4g {sin 37 sin 4 

(5) 9 a2 

ie : if | : 
dt = 7t= 

| sin?S — eee Pd fine® — sin? 9 
2 2 2 2 

. . a _ oO 3 
sin, = usin, a/ =sing/1l—u
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. oO . oO . a 
3 sin; : sin du sin 5 du 

5 = 

_ a 
where * = 

ff = { . du if K infinitely small 
Po Jo S(t — u?)(1 — xu?) 

ae = arcsinu 

sin — 

[p. 421 7-2 stitn( 41) 

sin = sin’stita( /2e) 

cos = ./1—x’s[i]n( ) = au( |e) 

The duration of a simple oscillation
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[ez du -K 
4 ova — wa - ee) 

We develop T as a funct of x. 

1 _ 2,,2\-1/2 _ 1 22 ae =i+3ku 

1:3----2n—1 
2 pty Ft a ce eee 2n,,2n +5 are + 240-9, * 

i 1? 4a (1-3\? 4a 
=m [lr +() sin “+ (73) sin 2 

2 

2nd approx[imation] 1 + Fins 
16 

2nd Case 
v 

==> I 
2g 

2 
2 =) = 29(a + Icos 9) = 2a(a +1-— 2isin*?) 

= a. 48 
= 2g(a+ n(1 ra jain 4 

XY
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a. 

a +1 _ __iel _ 

du 
At = , Ja u?)(1 — x?u?) 

ir=2["=xfi+(5)e (3 ye 

(p.43] 3rd Case. Limiting case 

d§\? $ 
2 — — — 2 = l ( i) 2g(! + lcos 3) = 4glcos 5 

3 
2 

g 
d in>d = 7 7 One <sin)> 5 

I cos 3, I 3 

g,_ © 2x 
fie togto($ +7) 

String tension R, = K, +N 

mM 

N= TT + mg cos $ = "92a — 3z} 
we 

2g(a—z) ~ to discuss! 



DOC. 1 MECHANICS LECTURE NOTES 41 

§ 3. Approxmative Treatment of the Pendulum Problem 

i me ALD, =) —regh0 7 

ad 
in_ = -gt 

dt? 8 h 
A 

or, if we introduce the abscissa x, d/ = x - 

MES 
dt? l 

Solution A sin fe + B cos fs , as differentiation shows at once This can be 

reformulated VA’ + B’ aa d+ 3 cos p = W sin |e - ; 

~~ ” 

T = aft 
8g 

This is also the form of the general solution. 

Graphic representation 

Rotating vector. X, Amplitude. |e +8 

Phase angle. 8 = phase A for t = 0. 

This graphic representation corresponds to calculation 

with complex numbers." 
[p. 44]
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If G(x) = 0 is a homogeneous linear diff. eq. in the variable ¢ with real, constant 
coefficients, which is solved by means of the complex numbers a(t) + jP(t), where a & 

6 are real, then we can write symbolically 

G(« +jP) =0 

Now, the real funct. remains real when it is diff, and the im function remains likewise im 

when diff. It is therefore easy to prove that 

G(a + jB) = G(a) + jG (B) 

Thus, the equation G(a + jB) = 0 is equivalent to 

G(a) + jG(B) =0 & to the two equations 

G(a) = 0 and G(f) =0 

Thus, if we found the complex function a +7 that satisfies the eq. G = 0, then its real 

component also satisfies the equation. 

Application to the prev examp 

ax 
dt? 

We seek the solution of the form e” Inserted 

I t 1 

, 
Solution e? Real part cos {e 

+ Sx = 0 is linear eq. 

Since the starting point of ¢ is arbitrary, we thus arrive at the previous solution. 

[p. 45) 2nd Example. Infinitely small pendular oscillation with friction 

moe = més x Re 
dt l dt 

ax Ra& 8. _9
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2 e™ solution a? + 

RR, 

Re“) =e ™cos¥ t =e“ cos ae 

« determines damping 

me ley = fe fe -2ey Leb -dtg) 
vee]! b 205] 

The effect of friction on oscillation is of the second order. 

Brachystochrone 

ds\? a x 
(4 = 2gz + (h) h=0 

Ve) 

B 

./ 2g dt = | <, Minimum 
A/Z 

< 

Motion of a M P. Relative to a Fixed or Movable Plane [p. 46] 

fx y, 2, t) =0 

Reaction 1 to the plane, hence proportion to
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FS of 
ax’ ay’ az 

f 

- of a Bi ee 

These 4 eq. determine x, y, z & A completely. 

Example Plane rotates with const. angular velocity w about the z-axis. How does a point 

move on it? 

sin wt 

COs wt 

y 
Ee g 

f=xsinwt — ycoswt = 0 

: 2 1 : D4 : 
cos : mz = Asinwt 

: d? t 
sin : mo 7 = —Acoswt 

nome =0 
z linear function of time. Assume special case where z = 0. dt’ J 

Z cos wt + dy sinat = 0 
dt? dt? 

dx dp . 
x = pcos¢e = pcosat A gee 

. . dy dp. 
y= psing = psinot sin + wp cos 

at dt
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d*x dp dp 
qe = yr 8 — 2o7, sin — w’pcos | cos | sin 

d*y dp. dp 2acin | sj qe az in + 7a es —w*psin | sin | —cos 

T t 

d*p 

qe oP =0 

e=e", Thene? =? a=+0 [p. 47] 
p = Ae™ + Be“ @ = wl. 

It remains for us to find A. 

From the two equations 

dp a A= FE _ cos es 2D = -208P = -208 {Ae - Be“ m|sin af cos op SF {4e' e } 

If B = 0 logarithmic spiral. 

Special case: curve at rest. dx dy dz is then a line element on the plane, so that also 

S x +.4+.=0 
ox 

ne a . 
Multiplying the eq. by dx = a etc., & summing, one gets 

4 ‘| = Xdx + Ydy + Zdz



[p. 48] 
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Further, in the special case when X Y Z are derivable from a potential, then integrable. 

2 

m_=U+h 
2 

ie., <there exists> one can give an integral equation (law of the kinetic energy.) 

Example. Spherical Pendulum 

Point remains on the sphere f = 1? - x? + y? +z? =0 

mek = -2Axr > 
dt 

may =-2dy 5 
dt? 

mz = -2Az +mg — 

or, if we introduce on =p, 
m 

Px _ 
a BX 

ay __ 
rT = —py 

az 
Pry = “yz +8 

e small oscillations z =7/ #2 = 
dr 

Thus, from the last equation yp = g 

The other two equations become: 

dx _ 8, 
dt’ 1 

dy _ 8 
we oP 

x & y components behave totally independently of each other. We obtain
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x ~A cos | sin F _ sin + BY cos 

y =A'cos + B’ sin = -av sin +BY cos 

There will exist points of time at which velocity is perpendicular to radius vector. We 

count the time from such a point on, and choose the X-axis such that the ZX plane passes 

through this point. 

Then for t=0 y =O and & =0 —___t 4 

A’=0 B=0. thus 

x=A cos | 

y=B wn | 

2 2 

Thus, (3) + (5) =1 Ellipse 

Oscillation period = a |b 
& 

Oscillations of Arbitrary Amplitudes [p. 49] 

We have <U> = mgz | mx = mgz + const. , hence 

Vi=Ige th (1) 

ax uy i -y 
drt* : 

d’y : 
—2 =-py i x 
dv? % : 

Since neither the external force nor the reaction have a momentum with respect to the 

Z-axis, the law of areas is valid with respect to the xy-plane. In fact; if one mult. the 

second eq by x and the first by -y, & adds them up, one obtains
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x) - yt* 0 
dt dt 

ga ae c_ (law of areas) 

or also 

re =c; if one setsx? +y’? =7? & fis the A between the x axis & r 

We choose r, 0, and z as coordinates. v is to be expressed in them. We have 

at 
yp ed? _ dP + Pdt? + dz 

2 2 , ee dt dt a tPA 

so that equation (1) becomes 

Grr ate th —_ (’) 

We have further 7 +z? = @--- -(3) 
By eliminating ® and r with the aid of (2) and (3), we obtain an equation between z and 

ft. 

rdr +zdz =0; dr = tind 
12 — z 

dt cdt do =- = _ = 
— r? [@-2z 

[p. 50] Inserting this in (1‘), we obtain: 

P dz? = [(2gz + h\(? — 22) — C?] dt? 

ye) 
Idz aaee (1") 

+y Wz) 

never changes its sign & never becomes zero. In contrast, — 

dt = 

Because of (2), — 

becomes zero if p(z) = 0. Only values between -/ and +/ come under consideration.
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Positive values of (z) are certain to exist between them, because otherwise (1”) could 

not be satisfied. Thus, there are at least two zero- 

points between them, and no more than two because 

is of the third order. We call them a and §. Thus, 

the m. p. moves always to and fro between two 

<points> planesz=a & z=. To traverse the 

space between two specific horizontal planes, it always 

requires the same time. 

From 2) dd = ee ee 

7 Pp -2Wu@) 

The A descr[ibed] between two planes is thus also always the same. 

6 & 3 for the case where « 

« © -2) Ww - am Vuz) & B are positive 

Laws of Motion Relative to the Earth!” (p. 51) 

d*x . 
—sin | cos | m 7 - =X, X, etc. shall be indep. 

of earth’s rotation 

es a xX, * d’y, y, 
cos 7 

- 2 
OX m -_ Z; 

4 dt 

transferred to the comoving system We have here the equations 

X, = X, COS wf +y, sin of X, = X; cos wf + Y, sin wt 

y, = -X, Sin wt + y, COs of --- 

22 = 24
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This shows us the factors with which one must mult. the original eq. in order to obtain 

new ones. 

X, = X2cos wt — y,sinwt Y, = X2Sin wt + y, cos wt 

dx, dx, dy2. dy, dx dy 
—! = —¢cos — —? —x, sin — t=? —=? si FF de at sin + w(—x, sin — y, cos) 7 dt cos + dt sin 

+ w(x, cos — y, sin) 

d’x, dx d*y, . dx,. d 
WE Fe OS + ae sin + 20 asin = 20s) + w?(—x, cos + y2sin) | cos | —sin 

dy, : : . aC cos cos —sin —sin — cos sin cos. 

d’x, dy 2 ' ph re 2 yz 2 . Ke Fuze, 

dt? dt *26 = Xe 

d*y, dx, 
m} dt + 20 at SF wy, = Y, 

dz, 

mae 2 , 

d?x, ’ dy, : dx 

d’y, 1 dx, : dy 

dre 2 MO at 

d*z, : de 
m de = £2 +0 5 A 

Interpret supplementary forces <> In the xY plane, thus 1 to w. 1 to velocit.
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—2m 0,8 0,8 oO, = —Wcos@ Ly Ferotnns ogh, 

dz dy 
O75, — Oxa, a, =0 

2 @, = +wsin 
at Ode OF y 

d?x dy 
pir = 0+ 2posing? x 

d’y . dx dz 
pid =0- 2p (sino + cos 0%) +ev. Y 

pe = spa + Ypeocos 94? Z 

Foucault’s pendulum. If motion takes place in the x-y plane, then a = 0. Then the 

first two equat., in conjunction with the eq., set up earlier for x, etc., show that the system 

behaves as a system rotating with velocity w sin g. Thus, apparent rotation of the plane 

of the pendulum. The 3rd equation shows that, due to the rotation of the earth, reaction 

dy 
dt 

We consider a free-falling m p. 

force = -2mwucosp— 

dx 
ae at wsiney =a + 2wsin g(d + ct) 

© = b— gt + 2wcosy = b — gt + 2wcos g(d + ct) 

Ip. 52]
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d’y . 
az ~ 2w {asin g + (b — gt)cos g} 

dy . 
7 a 2w{asing + bcos g}t + wg cos gt 

. 1 
y =ct — w(asing + bcosg)t? + 32g cos ot? 

72 

x = (a+ 2wsin gd)t + coc sin p> 

2 

z =(b + 2wcosd)t —(g + eve 608 9) 5 

Iffor ¢=0 #¥yz=0, a=0, b=0 c=0, and d=0 

Then Reich’s experiments in Freiburg”! 

x=0 

1 1585m gy =ca.51°/ 
y= 329 cos pt? 

y = 27.5 mm Reich fand 28.4.4 
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Be} (4) Elementary Consideration 
[p. 53] 

op — p')t=y 

p—p =zcos@ 

Factor ; missing. 

Foucault's Pendulum 

d? 

Gi = 9x + 2osing? dx -y 

d?y g . ax 
—-y-—2 ~ 2 jy — 2asing = dy x 

d dy dx tes d 2 
4(x2 - ye) = w'<sin p> ae ) 

G =) =—o'r? +C. 

Set 8 + w’t = 6’. Then the ordinary pendulum law. 

Dynamics of the Systems ay [p. 54] 

For any of these points L yy, 
m& = EY, + IX. 

d? i a “S te, 

Law of the momentum.
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Law of the Center of Gravity 

Dnt = EEX + LEX 
dt’ 

for <m a we can then set 
t 

{ } = E¥ components of the momenta of all points of the system = momentum of the 

system. 

A different mode of expression We define the center of gravity Enf of a system of 

masses 

ME=Um 
etc. 

[p. 55] thus ome - Me 
dt dt 

Thus, ve = , 
dt 

etc. 

The center of gravity of a syst moves like a mat p. of mass M that is acted upon by the 

resultant of all external forces of the system. 

Such a law is necessary because the dynamics of the mat. point can otherwise not be 

maintained. 

Examp. Heavy body falling freely in empty space. 

Examp. Masses attracted by the center proportionally to their distance & mass. 

Force, = - mx , ii wa 
Resultant = - x Dmx = - MEx 5 4 

LE i. 
ae ES 
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Identical with the equation of motion of a single mat. point. Central force, thus in the 

plane, motion in ellipse as with spherical pendulum with small amplitude. 

Examp. Recoil of firearms. MV + mv = 0 

Examp. Vibration of the ground caused by the operation of a machine with reciprocating 

parts. 
Examp. Light pressure. Mass of energy.“! 

Law of Moments of Momenta [p. 56] 

Repetition of the law of areas for the mat point. Here 

Im be -yG) = DDeY, -yX) + EEGY, - yX,) 
xY, - yX, 

Can also be conceived vectorially h 

The sum of the moments of internal forces vanishes. What remains is. 

d dy _ dr) _ 7 5m ie v5) ¥Y YY, - yX,.



[p. 57] 
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If system is closed, then sum of areal velocities const with respect to every plane. 

ym bs = v5] is then const. As regards rotation, analogous to the law of 
t 

mot. of the mom of momentum. Difference. 

Law of Areas for Isolated Systems 

<Graphic> Geometr. depiction. 

If #4 = 0, then u is a constant. If the X - Y plane is chosen 1 to py, then only one 
component of the resultant momentum, and this permanently. 

The moment of momentum of a solid body rotating about an axis.!! 

2m ea -»9) - TGY, - yX) =0 
dt dt at 

Iw + Mo’ = 0 

1D + MRoE =0 R A 
—- —~ 

Angle person traverses AIL — ) $ 

relative to the body is 0 - 0’ 

At the stat? =0 & 0’=0 

At the end 0’ - 0 = 2x Now, 

Id + MO‘ = const = 0 (because for ¢ = 0) 



Doc. 1 MECHANICS 
LECTURE NOTES 

57 

The story of the cat.“ 

. 58) Complete the discussion about reaction of machines on foundation. 

The moment of the momentum
 must also be constant over time 

ym bF - :2\ = const. 

aot 

extended over all moving masses of the machine. Otherwise torques & thus vibration of 

the foundation. 

The law of <areas> moments of mom. with respect to the center of gravity. 

Derivation. 

If the moments 
vanish. 

Heavy rigid body in homog- gravitational field. 

Moments vanish (mov), thus the law of areas. 

Special case of rod. 

de! ord 
I 

xy =ra — = r Ai ra 

hee 

dy’ : 
tare Den 
y= “i 

dz! 

zg =9e =r 
dt 

Thus, the law of areas (ab - bay}, (mr) = ¢ etc. 

Deformable bodies in gravitational
 field. The law of areas holds as regards the center 

of gravity. The cat again. 

>. 59) 
The Law of Kinetic Energy”! 

x 

SS
S 

| 
g(r) eae 

, 
r 

Derivation .-.++°"" 

Work by internal forces 

Sum over all combinati
ons 



[p. 60] 
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on
 FS x oy 

k 

<0>d® 
- ae od hence X;=—,— 

= F, (x -x')d& - x’) = F.-dr or 

; i 
We assume that the F depend on the distance alone. 

F iad ak T = Tdr —— d = —= hen work (9,) 

fi 0 tal Wor k d(X@,) ail 

From this the energy principle holds in pure mechanics. 

A part of the external & internal forces of the system may consist in binding forces 

(threads stationary surfaces etc.), especially important the special force where binding 

forces do not perform work. In that case the energy principle holds without these bind. 

forces appearing in it. 

Systems with one degree of freedom can be solved compl. with the aid of the =o of 

kinetic energy. 

Example. Gliding chain. 

z = @ (bend) ¢ = 

Work = -p da dz = -pgdd qi(o + A)do ee 

Integrated over A: -pgdo[g(o +1) - g(a - /)] Yee 4 

kin. ener, pl doy ‘ 6 , gy a 

d(kin. energy) = work. When is motion independent of /? 

Konig’s theorem. The law of kin energy with regard to the center of gravity.
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° 

Work mg dz = - mgi sin 6 dt 

mS id 

4) 

Simple Pendulum from the Energy Principle 

z=lcost 

a( 7? =) ) 
"OF dt ™“} 

2.9147) 

—78 in 3 = a3 Pot Energ — mgz 

d3 
—mglcos 9 + Le mney = konst. 

2 

Ss cos 9 + (3) = konst. 



BOC. 1 MECHANICS LECTURE NOTES 60 

Moments of Inertia! 

1) Moment of inertia w. resp. to plane L2n8* DD rad 
2) Moment of inertia w. resp. to axis Ln” Dan? + y’) 

Un? + y? +27) 3) Moment of inertia w. resp. to point 

[p. 61] Example: moment of inertia of a sphere w. resp. to the center. 

¥ mr first over shell of the sphere = 7? © m for the shell 

4xdr-o = }>m_ over the shell 

PY Sm = Anp “dr 

Integrated. over sphere yields amok 

With respect to a plane arr 

. A 8 2 | 2 
With respect" "axis — S= “RM k=R}2 ith resp 75 7PR r r 

Example: Homog ellipsoid > mz* n 

ao]
 a N
,
 

W me
 

Se
 

x = 

R
I
 

—_- 

Then boundaries unit sphere 

di =do 2 =c%? 
abc 

3_1 hence I. = p abc? fao'z” = 4 pabe =Mc? 
x 15 5 

Example. Body of rotation bounded by two planes. 

R 

pdz f2nar P= aria 
0
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For the whole body of rotation 

I, = FJ Redz R = fz) 

Examp cylinder. OR -mMe k= R 

a ee 

General Theorems on Moments of Inertia 

1) Known 7 for axis through center of gravity. 

Sought for arbitrary axis. 

I= Yim(x? + y?) = Ym{(x' + a)? + (y’ + 5} |; 

<! 

+ x 

= Di m(x’? + y?)+ Sahar max! + Som mby’ 

+ (a? + b?)}m 

From that the theorem. [p. 62] 

analogous theorems for the other two kinds of moments of inertia. 

2) Moment of inertia dependent on direction. 

= 2 7) , 4 I=) m& = Y mr’ sin? 9 «fy yecap 

=} m(r? — (rcos g)*) as 
‘ 

rcos@ = ax + By + yz : wnat 

r? — r* cos? e 7 

= (x? + y? + 2?)(a? + B? + y?) 

— (ax + By + yz)? 

m|x?(B? + 7) +- +> — 2Byyz —-—-
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In sum 

a? {Di m(y? + 27)} + BED (2? + x?)} +»? mlx? + y?) — 2By yz +- + 
I = Ac? + BB? + Cy? — 2DBy — 2Eya — 2F af. 

a B y 

Ait 
a=X,/I etc. 

1 = AX? + BY?....—2FXY 

If the axes of this ellipsoid are chosen as coordinate axes, 

then D, E, F vanish. The axes are called major axes of inertia 

with respect to the point. Condition for the major axis of 

inertia z to be symmetrical to the xy plane, thus, for it not to 

change when the sign of y changes. So, D = E = 0. 

Each of the major axes of inertia with respect to the center 

of gravity is also the major axis of inertia with respect to any 

other of its points. 

D=Syz=0 E=Yu=0 za +z 

D =Y ye +2’) =0 

Yay =-0 

hence D = D’ = 0.
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Systems of Forces Acting on a Rigid Body 

The position of a rigid body is determined by 6 variables (6 degrees of freedom). We 

need therefore 6 equations for the complete determination of its motions. These 6 

necessary and also sufficient equations are furnished by the momentum law and the law 

of moments. 

5 L(G} crx SF fOomps --ZI- Doz -% 

Since these equations must completely suffice for the calculation of the motion of the 

motion of the rigid body, two systems of forces acting on a rigid body are equivalent if 

they have the same geometric sum of forces and moments. Such systems of forces can 

be substituted for one another. 

From this follows the elementary law of displaceability of the point of application of 

a force vector along the straight line in which the force vector lies. 

X=X"=Ka 

Proof also vectorially 

2 vectors are called equal if they have equal components 

(XYZ) = (XYZ 

[p. 63] 

[p. 64]
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yZ -zY =L 

zX -xZ =M (L MN) can be represented by a vector that is constructed as follows 

xY -yX =N 

This construction shows immediately that the force can be displaced along its straight line 

without changing the moment. 

From this the law that two forces acting along the same line in opposite directions 

cancel each other. 

We put (XX, =X ----PyZ,-2¥,= HNN. 

The effect of the system of forces on rigid body is completely determined by X* Y* Z* -- - - 

N*, X* Y* Z* resultant force. L*M* N* resultant moment. In general, it is impossible to 

indicate one force that is equivalent to a system of forces. We seek simplest possible 

[p. 65] representation of a system of forces. To this end pairs of forces introduced. Two forces 

of equal magnitude and opposite direction. 

We investigate this system of forces 

and obtain
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* = @Y - yX) + @' (-y) - ¥(-®) 

=@ -x)¥ -% -y)X 

The force couple has no resultant force vector but only a moment of rotation. This is 

a vector product of the point-connecting vector and the force vector. 

1) <Direction of ve> absolute position of the system without effect on the moment 

2) Magnitude = 2 A = force - distance 

3) Direction and sense of the vector 1 to the plane of force couple ({r ?], force, 

mom.) = right-hand system Force couple determined by vector with a totally 

arbitrary point of application. Each moment vector can be replaced by a force 

couple. 

From what has been said, it follows that 

1) arbitrary system of forces acting on a rigid body can be replaced by 

the system X*Y*Z* L* M* N* 

thus also by x*y*z* 000 

and 000 L*MN 

That is, by a force through the coordinate origin and force couple. [p. 66]
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Geometric derivation. 

K’ and M separately added geometrically and each combined to a resultant. 

43 
/ 

x’ id Aa/A Ain, Ph, 
5 aad 

XM =Y*=....... N* =0 

Special case. All forces lie in a plane. 

Analytically 

X* =X =0 

y* = Yy=0 

N* = Ex¥ -yX = 0 

Graphically 

Here replaceability by resultant force. 

[p. 67] Even more special, all forces [] X-axis 

Then 2X =0 -pX =0 
Example. Reaction of beam resting at 2 places"!
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A+B=ZP Bl = =P8 

If forces |, then treated graphically as follows 

At {i--£F 
ot 

e
e
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[p. 68] 
= th 

c XN a; 
‘yj “N -7 7 

f X a u 

f a a u 

Ap Ae 4 1 Sy 
’ aa l 

aC 

|G 
e X J 

2. Special case, all points have the same direction, but points of application 

X, =P a; Y,P.B; Z, = Py 

Seeking resultant system 

* = ay P, L* = ¥ 0,2, a z,Y,) = ydyP, ~ BY zP, 

¥* = BYP, Me RR 

Z*=yyP, N* = 

Now we choose the coordinate origin such that Lx, P, = Ly, P, = Lz,P, = 0. Is 

always possible unless EP, = 0. Then moment vanishes for all «By. Thus, if one also 

changes directions, one can always replace the forces by resultants passing through the 

coordinate origin. Center of gravity of the force system Case of gravity special case. 

Here the magnitude of the force acting on the individual point is P, = m,g. Thus =P, x, 

[p. 69] =gXm,x, = 0. Le., resultant passes through the point that we have designated in the 

general dynamics of systems as the center of gravity of the system.
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Motion of a Rigid Body about an Axis 

(40) = )(Xdx + Ydy + Zdz) 

x =rcos¢ dx = —rsin 9d9 + cos9dr = —yodt 

0 
y=rsin8 dy = rcos9$d9 + sin 9dr = xwdt 

z=2 dz=0 

I 2 d 50 = wdt)(xY — yX) 

da 
a Y — yX on yx y. 

We now insert the reaction of the axis (X¥5Y4Z) & (X",Y4Z” & treat the body as free. 

We obtain®” 

ax o.oo, d*x r 
Lm ae XX + EX Em( vi Ya “3)- LyZ —z¥)— hy 

a? 

ae 
Lmaz=V+y'+yyY Em(242 qe - x4) - ¥ (2X — xZ) + hx” 

Lng eZ +Z"4+PZ 

dx _ d?x _ dy _ do ory — dw 2 - 

a ae at a vat Hey? 

dy d’y dx dw A dw 
ae ae Oa tae OT ae ? 

dz dz _o . 
a ae? ~ , 



{p. 71] 
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—w? ¥ mx — 2S my =X'+X"+ PX 

— 0 Smy + PY mx = Y+Y'+yY 

O=Z'4Z"4+FZ 

2) —@? } mxz — “OS my = hX” + )\(2X — xZ) 

dw is 
1) +a?) myz — Fe as = —hY" + )(yZ — 2X) 

dw 
a = YY — yX) 

We seek to reformulate equations in such a way that shall be the only variable 

occurring. To this end we introduce a co-rotating system 

x =x’ cosy — y'sing 

y=x'sing + y'cos@ / 

zZ=2 

Yi myz = sing > x'z' + cose) y'z’ 

Yi mxz = cose}. x'z' — sing > y’z’ @ 
a 

We consider the special case where the given external forces are not 

present. {?] In that case the sum on the right-hand side vanishes. fe 

When does P” experience no reaction? or when does one need no X”, 

Y’ to maintain the rotation about the axis? We must have Linx = Lnyz = > 

0. The Z-axis, i.e., the axis of rotation, must be a major axis of inertia with 

respect to P". 

In addition to that, when does P’ experience no reaction? We must 4 

have Ex = my = 0. Thus, the axis of rotation must pass through the 
center of gravity, and one of the major axes of inertia must be through the center of 

gravity. So that none of the two bearings would experience a reaction. No reactions will 

then take place even if the body is accelerated by a torque N. 

Example of rigid bodies on elastic axis
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1) Disc perpendicular to the Z-axis. Symmetric with respect to the x - Y plane. Exz 

= Dyz = 0. X" = Y" =0 The first two equations yield®" 

-FTi mx = (X' +X") - SME =X’ +X" 

& 

-3Y my = (+ ¥") -GMn = y' +yY" 

GMA = K, ws 
Let us have an elastic axis 

that is mounted somewhat “4. LA 

eccentrically. Rotation is 

accompanied by a sag &' 

- 

A=A,+€ : 

On the other hand, we will have 

K, = E& The above reads accordingly es 

wM(A,+ E) = Ek 

Critical Angular Velocity for Vanishing Denominator [p. 72] 

We have here considered the case in which the axis does not 

pass through the center of gravity. Now let the axis pass through 

the center of gravity but not be a major axis of inertia. Let the 

center of gravity coincide with P’. No external forces may exist. 

From equations 4 & 5 we then obtain 

~ wo” Lym = hx" 
~ wo? Dnyz = hY" 

axis is the major axis of inertia, then the right-hand side 

vanishes. But if the maj i inertia does not coincide with 

the axis of rotation, but about Y-axis 

The sign and the magnitude of the reaction are here 

determined by the centrifugal moments. 
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Physical Pendulum 

{53] 

128 = Say - yX = -M gl sind 

& ifone sets J = Mk 

ad = 8! sin 0 
dt 

[p. 73] This determines the motion. Synchronous with simple pendulum of length L, 

2 

#0 2-8 sind if L = ©. 
df L l 

We now introduce the radius of inertia (radius of gyration) for the center of gravity. 

We have 

ke 

1=1+M? eg 1-2-0 
; al P 

or Mk? = Mk? + MI? l=k 

Lain = 2k, 
& Rak? +P 

Substituted in the above relation 

ke 

v , 

We now imagine that the pendulum is suspended at O’ and that the L* of the 

accompanying seconds pendulum has been determined. For this we can apply the relation 

just obtained and insert the quantity J’ instead of /: 

Kk kK 
Lt =I’ + = or, because Ul’ = = 

l i] 

2 

L* = 5 +1, hence = L :
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The relation between the points 0 and 0’ is thus reciprocal. Therefore, by observing 

the oscillation of any rigid pendulum one can find out the length of a mathematical 

pendulum of the same oscillation period. 

The above formula makes it possible to determine the minimum oscillation period 

on the axis. 

Further discussion of above formula. Minimal oscillation period that can be attained 

with the body about the axis of the minor moment of inertia. 

Experimental Determination of Moments of Inertia & Torsional Forces by [p. 74] 

Means of Oscillations of a Suspended Rigid Body 

d29 fiye-- a= ~ 9 

. {oO 2n (2) 
9= Asin [2 [9 

r=2 [2 

It is not possible to determine both quantites @ & J from such measurements, but this 

can be done using a second experiment in which the moment of inertia is increased by 

adding two cylinders.™ For each such cylinder 

IT = m{k + 87} where k = a 
2 

I= mfr + a 
2 

1, = miR® + 28°} 
tot



[p. 75] 
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1 = a9| Fm ~ 20 
r) 

The two equations yield R and 8. Modification of the method, in case torsion not 

independent of the added weights. 

General Principles of Mechanics 

Principle of virtual moments (statics). 

Equilibrium of the point 

Equilibrium condition of a point 

X=Y=Z-=0 5 
We think of the point as infinit. displaced 8x dy 8z “Teby Se 
Work of the force 8A = Xdx + Ydy + Z,z = 0. 

No joke. Happens only when a part of the forces is not given but determined by 

conditions (connections). These forces have the characteristic property that their work 

vanishes in its entirety. Let this always be assumed. 

Example Point is forced to stay on a stationary surface (f(xy,z,<!>) = 0 

Force of the surface on the point af af af, 
a ay a 

Total force when, in addition, another force X, Y, Z acts on the point. 

xead 
ax 

yrad 
oy 

zea 
oz
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Equilibrium condition. Vanishing of those J components. 

Can again be replaced by 

X+aD lax + yraD ay + Z+aZ lee =0. 
ax. oy oz 

This holds for every arbitrary system 6x, dy, 5z. But for those displacements in which 

the point does not leave the surface, we have the relation 

ater ee 4-=0. 
ax 

(Special case of the law that the connective forces do not perform work.) If we confine 

ourselves to the consideration of such displacements, then the connective forces make no 

contribution to the virtual work. Thus, for such displacements, which do not violate the 

conditions, we have the equation 

X 8x + ¥ by + Z bz = 0 

if 8x 8y & 8z are connected by the relation 

Fax + Fay + Ff 52 =0 
ox oy az 

These equations are really sufficient for the calculation of the coordinates of the 

equilibrium position. Because if one eliminates 8x from the first equation by means of 

the second one, one obtains an equation of the form B ay + C 8z = 0. This is satisfied 

for an arbitrary choice of 5y & 8z only if one chooses B =0 and C =0. To these 

two equations is added as the third eq. f = 0. 

Generalization. Let there be a system of n material points P, P, ---P, We seek the 

general condition for the equilibrium of this system of points. Let each point be acted 

upon by connective forces X, Y, Z, and explicitly considered forces X Y Z --- Then we 

have for each point 

X+X,=0 

cece hence also (¥ + X,)éx +-+- =0 

thus also © (X + X,)8x +: +-=0 
This equation holds for any arbitrary displacement of the points (even for one incom- 

patible with the given conditions). But if the displacements are chosen such that the 

[p. 76] 

[p. 77]
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conditions are not violated by them, then the connective forces do not perform any work 

during displacement, i.e., we have (X,8x + - +-) = 0. Thus, we also have LY¥8x + - + 

- = 0. The sum of the virtual works vanishes for every virtual displacement compatible 

with the conditions of the system. Proof that sufficient restrictive eq. for the solution of 

the problem. 

The advantage of this principle consists in the fact that the connective forces do not 

have to be investigated & that the virtual work can often be calculated without using a 

Cartesian coordinate system. 

Example. Epicyclic wheel. Consider 

infinitely small rotation of the outer 

wheel. Infinitely small rotation of the 

outer wheel a@,, the epicentric wheel a,, 

the epicentric arm ap, 

There are two conditions between these displacements because 0-1 & 1-2 do not slide, 

i.e., they experience identical displacements with their places of contact. Hence, we must 

have
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(r, + 7,)a, — re, = 0 

eliminate a, 

(Fy + FO — 8, = ye, 

2(r, + F)O,= rye, 

According to the principle of virtual moments 

M,,¢,, + M,a, = 0 

27, +7) 

of 
M,, + M, =0 

Special case of the principle when the forces are derivable from a potential 

If ® is the potential energy, then we have for each point 

ox, dy, 

— a@ _ rinciple then takes the form >| 8x, + - + -| = 0 
x, 

or 8(®) = 0 for every displacement compatible with the conditions. 

Further, if only a part of the explicitly considered forces (e.g., all apart from the external [p. 79] 
forces) are derivable from a potential, and we call them residual (e.g., external) forces 

X Y Z, then we can write 

yy Xo + Ydy + Z8z - 8B=0 

D’Alembert’s Principle 

Considerations that are analogous to those regarding the eqilibrium of the material point. 

Equations of motion of the mat point (freely movable)
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-X=0] & 

m#¥ -y =0 by [rite afr +-+ 20 

- eee ee bz 

Triviality 

Secondly, we assume that the point is subjected to two kinds of forces, namely explicitly 

considered forces and connective forces. Purely formally, as above, the following eq. will 

then be valid: 

mi* ox -x lex + mf? -y ~y lay +-=0 
dt’ dt?’ 

The quantities 8x 8y 8z determine for each moment a position infinitely close to 

the real position of the material point. We will now choose these infinitely close 

positions in such a way that at any moment the point could be displaced from x y z to 

x + 8x, y + dy, z + bz without violating the conditions of the system. 

[p. 80} If we are dealing, for example, with the motion of a m. p. on an arbitrarily moving 

surface, then let 8x Sy 8z for time ¢ be chosen such that f(x + 8x, :, 2) = 0 The law to 

the effect that the work of the connective forces vanishes holds for such displacements. 

Thus, for example, for the mat. p. on a surface, because connective force i to the plane, 

but displacement in the surface. We will have, therefore, for such a displacement X,8x 

+ Y,8y + Z,8z = 0 Since the above equation is valid for every virtual displacement, and 

thus also for such ones that do not violate the conditions of the system, we also have for 

virtual displacements of the last-mentioned kind the equations 

mo® -xlax+-+-=0 
dt? 

where 8x dy 8z are connected by those relations to which the connective forces are to 

be traced. 

Analogous argument for systems of material p. If we again introduce connective 

forces and other forces, we get
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es xox} essed 
in 

for every system of 8x Sy ’z. If &x - - are specially chosen such that the conditions 

of the system are not violated, then 

WK sx +-+)=0, 
len 

so that subtraction yields [p. 81] 

dx ax 
p> "ap - } a0, tet =0 

' q k 

dx 
Y | |m— - X Jax, +- +: [= 0 
lton dt? 

This is D’Alembert’s principle. Next we have to show that this equation gives the 

solution of every problem of motion. 

Let a virtual displacement that does not violate the conditions of the system be 

determined by k mutually independent quantities 5g, ---- 8g, (k degrees of 

freedom) 

6x Beans; 4% 5 1 Ft 5g, dy, °° 6Z, 
sq, 6q2 "> 4 , 

tf) Ox, 
ox, = *" 5a, ~ — eee x Od, ee 
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ax ox a 
If one sets Ym =-OQ EX m =R, 

> ©’ «Og, > (Og, 

dx, ox, ax 
— —= Y—=R 

re og, Q, Y "aq, 2 
v v 

then the above system of equations assumes the form 

(Q, - R,)8q, + (Q, - R\)8q,-- °° - (Q, - R,)8q, = 9 

Since all q, are independent of each other, we have 

Q,=R, Q=R,--°°: Q, = R, 

These k equations are just sufficient for the solution of the problem.— 
If the conditions between the 8x - - - - can be represented as equations between 

the x, ----z, & ¢, that is, in the form f(x, -- - -2z,f) = 0, then the system is said 
to be holonomic. 

The equations of motion for such a system can be found in the following fashion, which 

was first presented by Lagrange. We have 

dx 
fe ea as +++ | =O and f.(@, --z,,0 =0 

me from 1 toh 

For such displacements, which are compatible with these conditions, we have 

of; a : A variations can be 
Ar » (# Lae ) =0 : expressed from the rest 

: 3n - h = k equations from the 

X y 5x +:4:=0 : first 

? 7 Ox, : 

An Y phox, +-+-=0 

Restrictive equations mult. by factors A & add.
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TK aa Fe a Th ax ++ 20 
v . dr ox, ox, ax, . 

3n such {} are present. We can choose h of those = 0 by choosing A in the 

appropriate way. These terms of the sum will then vanish. The 8x dy 8z of the rest are 

then arbitrary, since of the 8 3n - h =k can be chosen arbitrarily. From this it follows 

that the remaining {} must also vanish. Thus, one also obtains the equations of motion 

of a system of points in the form 

dx, =X at a Dt ga 
” de v i 1 ax, ax, 

4 a v from | ton movey ea Dig 
de v ax, 

Equations of Motion of Lagrange 

Of historical interest only." 

<Principle of Least Action> 

Hamilton’s Principle. Lagrange’s Eq. of Motion 

We start out from d’Alembert’s principle 

dx 
by [x 7 m, Ph, ca am = 0 

v 

for all virtual displacements compatible with the cond. of the syst. We can put 

[p. 83]
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v 
dx dr d(&. dx. dx, | dx djs, | ede) dtd Z| . 

“a” ala | dod. ala’) a la 

The second term can be written in another form. We shall show that it is equal to the 

variation of velocity 

dt dt dt dt 

dx, d Sdx, 1 dx? 

ae? ° -3% ax} -o{} =} 

d_ dx, m, (dx,\? _ EAI Tgp ens + DOG (Gr) =0 
\ , \ - } vu ~—’ 

6A 0 6L 

Integr. over time limits. All 8 shall vanish at time limits. 

J G, + dL)d = 0 
b 

[p. 84] We shall rewrite the work A, according to the follow. principle we choose indep. 

variables p, ----p,, Whose number is equal to the number of degrees of freedom. A, 

will then have the form P,3p, + P,8p, ------ 

We now specialize the problem a little. Let the forces be derivable in part from a 

force function. Let II be the potential energy. The part of the virtual work A, derived 

v 

from themis -}* [2s tee | = -8II
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In addition, forces might be present that are either given or sought as functions of 

time. If X{ Y’ Z% are components of these forces for 1 point, then the corresponding 

term of A’ is 

Y Max, ++ +) 

ax, a 
If we set 8x, = }> 5 

P, rm 
bp, 

then we recognize that the part of work considered can be expressed in the form 

> Pp, . If the P,, are to be viewed as functions of time only, then we can set 
B 

YP,dp, = 8 YP, P,- 

Substituting both terms for A, into the above formula, one obtains [p. 85] 

5 

3 fa -L-Y@, pat = 0 
% 

This is <the least action principle > Hamilton’s principle. If all forces can be derived 
from a potential (Il), the latter assumes the simple & familiar form 

3 { r= Dat =0. 
% 

In this principle the Cartesian coordinates of mass points no longer occur. It is valid 

no matter what coordinates we choose to determine the position of the points of the 

system. 

Now we start out from the general form of Hamilton’s principle 

4 

(8L +A,)dt = 0 f : 
Ly
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We use general coordinates, which determine completely the state of the system 

(P: --*"P,). Then we can set 

= YP.op, 

Further, we have to examine how L depends on the p,. 

m,\ dey 

We have L = pe = le x, = @.0,°" P,) 

dx, — 09,, 4p, 

a ba 

d, 
Thus, L, is afunctionof p, & - ae p. 

{p. 86} For that reason we have to set 

aL = r= 8, +> oF ay). 
op. 

Replacing A, and 8Z with their values, one obtains 

fire, +p Hop! + DPapsa = 0 
ap. op, 

v 

The factors of 8p, & 8p’, do not have to vanish individually! 

But we have 

OF gp! = SE dap = 4) ay) - ap dob 
ap! ap, at at| ap! at| ap’ 

But since the 8p, must vanish at the limits, it follows that
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Since the 8p, can be chosen totally arbitrarily, as long as they are continuously variable, 

one obtains 

oL sed 
— ee ~P =0 
ap, dt v 

SE) Pp -0. 
ap, 

“(= am -L 
aS + 

at} ap! ap, 

These are the important equat. of motion of Lagrange. 

In the special case in which part of the forces can be derived from a potential, part of the 

_ on 

op, 
forces has the form 

Example. {p. 87] 

Two identical rods are linked to each other at their ends by means of threads. One 

of the rods is situated so as to pivot around its middle. 

2 M L = 2M? + i707 

Mee + 5 ie | 
/ 

-M Zl? 4 Jl J Mi takeg? + P04 aa 

Il = - Mgloost 

From this at once equations of motion
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dal | AM-L) _g 
at ag 39 

dal , a-L) 9 
dt at’ oo 

The equations yield: 

d 2a) = = po ?) =0 q@ = const. 

£ (MPP) +Mgl sin =O 0” =& sind. 

2nd Example. y | 

=Icos9 + ‘= —Isin 99 — asingg’ l &€ =Icos acos@ é 9e A , 

yn =Isin$ + asing n’ = Icos 99’ + acos gq’ A 4 2 
= Oo 

Tl = + Mg{i(i — cos 9) + a(1 — cos ¢) | Ln 5 

Calculation of the kin. energy 

1) If the mass were concentrated 

at the center of gravity x 

(58) 

Mee + nit) = Cero? + ag + 2al cos( ~ @) 

2) Kin. energ. with respect to the center of gravity eMa' 

M 
’ L=— {p. 88] 5) lo? + sag? + 2ald’¢! cos(t - 9)
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For infinitely small oscillations only the smallest terms are retained 

= Sue + ag) 

L= Fae" _ sa + ald’) 

The Lagrange eq. without P, @ ee + ig -L)=0 
dt op’ op, 

(MV’0" + Malo”) + Mgld =0 Pe’ +alg’ = -gld 

4 2 nlf ft Ul 4 2 ff aoe ” 6+ Mald" | + mgag = 0 alt” + aa = -gap 

Linear homogeneous equations that can be solved trigonometrically. Set 

0 = A, cos(wt + 8) (-w? + gla, - alw’A, = 0 

@ = A, cos(wt + 8) -alw’ i, - sad + gad? =0 

(wl - g) (Fe0" = s} -alw' =0 

Biquadratic equation for frequency (w) From this wo, & @, 

A 
The equations also yield z 

1 

As the general solution, one finds 

b= Aoi, cos(w,t + 8,) + aw5p, (COS wf + 8) 

p = (g ~ Lwi)p, cos(wt + 3) +@ - 1y)u,(cos w,t + 8,)
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Superposition of two mutually completely independent oscillations of different periods. 

[p. 89} Rigid Body 

Kinematics 

Representation of rotation by vector w velocity of a mat. point 

at distance 1 from the axis of rotation. Can be represented by vector whose 

point of application is of no importance. Length w sense that rot with vector 

right-hand screw. 

We denote the projections of the rotation vector on the coordinate axes 

by p, g,r. We consider an arbitrary point of the body. 

Seeking vector V. It is perpendicular to vector (w), perpendicular to vector 

(X - Xp, ¥Y ~ Yo, Z ~ 2) = (r). Is equal to the product of the magnitudes of the 

two vectors mult by the sine of the enclosed angle. Sequence . . v, v, v, is 

the vector product of the vectors () and (r), hence 

5 x 

aa < 47 Je, 2%-% 

ws
 

v, = G(Z ~ 2) — ry - Yo) 

v, = r(x - Xp) - pz - 2) P q r 

¥, = PY ~ Yo) ~ F&-%) X-% YY Z-% 
Important formulas. 

[p. 90] Composition of Angular Velocities 

Body with rotation (p qr) about a given point (coordinate origin) describes with its point 

xyz the path
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< 2 ul RN
 & N \ Es § 

the second vector (p%,, ¢; >) considered rot vector (:,,) imparts during time 

dt 

vidt = q*dtz - r'dty 

Adding the two motions Sum of the displacements 

(v + Yat = (q + g*)dtz - (r + P*)dty 

The result is, thus, rotation with the vector (p + p*,g +q*,r+1r*) Thus, the 

rotational vectors are to be added according to the law of parallelograms if the two axes 

of rotation intersect one another. 

Description of the Most General Motion of a Rigid Body 

The motion is referred to the coordinate system at rest X’Y’Z’ In addition, we 

introduce a second coordinate system that is rigidly connected with the body (X,Y,Z). 

Determined by coordinates of 0 with resp. to 0’, Xo, yo, 2, and by the direction cosines [p. 91] 

of the coordinate axes. 

AL9¥|] = 

XK! | OG [Ha] % 

,\ | 4 

2! || hl Os 
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Relation between the direc. cos. How does point of / 
a the body move in space? 

4o% 

' di d 

y= Yo + Bix + Bry + B3z da ap hy 

= (lee i) re 
Z' = Zo + 1X + Voy + Y3z («Gt + aS + 1) 7 

Yipee 2 Sho, ate gain ada -_ 
x dt dt” at dty~ dt’ “1 

,_ ay’ dyo , dB, dp. ap. W=-2= 2 3 

Ye Wl a” ae ape |b 

dz’ dz, dy dy d yu 2 _ Mo an a) | ais 
7 at det dt at a? "1 

From this we calculate the velocity with respect to X Y Z Now we seek the same 

velocity with respect to a system that coincides with X¥ Y Z. We 

V, = Via, + VB, +My, =v + gz -y x 

nn de
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Velocity of a point with respect to a 
Vi = vy; vie pe coord. syst. momentarily coinciding 

with x y z, but 

Superposition of a translation and a rotation. 

The derived formula is fundamental. 

The Kinetic Energy of a Rigid Body 

<1) Kinetic Energy> 

v? = v2 + v2 + v2 = v0? + v0? + v0? + p(y? + 27) + g?(z? + x?) 

+ 1?(x? + y?) + 2yzgr + 2zxrp + 2xypq 

A B c 

m mv? 1 of eS a le ae 
Ya” 7 or + 5P L(y? +27)+ 57 Le? + x7) + a Le? + y’) 

— qr) yz — rpy zx — pq). xy 
WH Oe 

D E F 

2L = Mv + Ap? + Bq? + Cr? — 2Dgr — 2Erp — 2F pq 

In the special case where the principal axes of inertia of the body with respect to 0’ 

the axes are chosen as xyz, we have 2L= Mv™ + Ap? + Bg? +Cr . 

<2)> Moment of Momentum of a Rigid Body 

Moving About a Point. 

Moment of the momenta o, = }\m bS - 7 = imi, - 2) 

0, = i m{y(y - gx) - 2x - pz)} = pm’ +2) - GY my - Yxz
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Special case where x y z are the principal axes 

of inertia 

0, = Ap - Fg - Er = & 0 = Ap 

@, = Bq ~ Dr - Bp = & 0, = Bg 

0, = Cr - Ep ~ Dg = & o,= (Cr 

note that the moment of momentum does not coincide with the axis of rotation. 
We obtain the equations of motion by applying the law of moments with respect to 

the axes x y z, or, to be more exact, with respect to a system that coincides with x yz 

at the moment in question, but does not participate in the motion of the body. We 

i 

denote the time derivative with respect to this system by (5 . We obtain then as the 

expression of the law of the conservation of the momentum the 

BE =] 2 
at x 

d i 

aloe g 
/ (se 

We compose the change experienced by o from two parts. 
1) from the change experienced by o due to the fact that this vector also changes 

relative to the moving system. This yields for the X component in dt the change 

do 
x 

at 

2) the change experienced by the vector, even if it does not change relative to the 
moving system X Y Z, because this system is moving.®" It changes absolutely in space 
as the components g, o, a, of a material point of a rigid body connected with xyz. This 

Ip. 94] yields the contribution go, - ra, Thus, one obtains the equation



DOC. 1 MECHANICS LECTURE NOTES 93 

x +q0, - ro, = L etc. 

We now replace a,, o,, 0, by Ap, Bq, Cr in that we assume that the axes X, Y, Z 

coincide with the principal axes of inertia, and then we obtain 

dp A= +(C - B)qr =L a qr 

Ba +A-Op-M 

dr Ce + (B-A)pq=N + ¢ pq 

These are Euler’s equations of motion. 

Euler’s equations: 

Ip. 95} 
Aa’p’ + B + Ca’gr = 0 P(t), g(t), r(@) 

a(p (at) .. 
Baa +(4-Onm=M also solution 

2 Ae’p’ + B - Ca’gr=0 

ue thus, a times faster 

barr + (B - A)pq =N 

Motion of the rigid body not acted upon by any forces. 

Leads to elliptical, that is, periodical functions for p q r as funct of t. Simplest special 

case rotation about principal axis of inertia g = 0,r =0. The second & third equation 

are then identically satisfied, while the first one yields p = const. Rotation is not stable 

about every principal axis of inertia. As a proof, consider motion deviating slightly from 

rotation about the principal axis of inertia gq and r ~ small to first order. © small 

second-order terms neglected. The first equation yields then A a =0 p =const. the 
t 

second and third yield 
a 

dq C-A 

at SB 
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dr A-B q=0 

dt C 

. aq _ 
One obtains for g the eq. —<+ - afiq = 

ap >O0 

Solutions ev«p s eVep ¢ 

Leads to exponential function. 

Ae’ep 1 + Beeps 

For positive & negative ~ large t, 

q (& r?) becomes finite;'*! 

the larger the p, the faster this process 

(C -A)(A -B)>0 (A-C)(4A-B) <0 

Axis mean principal moment 

of inertia 

second analysis 

Oo. 

af <0 (C-A)(A-B)<0 (A-C)(A-B)>0 

A largest or smallest mom. of inertia 

qz=A sinf-aBt + B cosy-aPt 

p= -149 - -4)-8 cos - 28 sino 
a at a a 

Rotation stable 

Axis of rotation describes 

ellipse relative to body 

Ap? + Bq? + CP =h 

Ay’ + By +CrP =e 

Pp qr considered as rectangular coordinates. 

intersection of two ellipsoids, with main axes 

Sum of the possible p gr _ line of 

o 6 6 
and —, —, — 

ABC 
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One sees in this way as well the types of possible motion, especially the stability of the 

extreme principal axes of inertia, and the lability of the middle ones. 

Relation to System at Rest. Euler Angle. [p. 97] 

With regard to the system (x, y, Z,), @, .... ¥, can be determined as functions of time by 

means of additional integrations if p, g, r have already been determined as funct. of time 

by means of Euler’s equations. Because we have 

which equations together with the 6 independent relations between the « to y determine 

all « to y as functions of time. But generally one makes use of the so-called Euler angle 

to determine the position of the body.
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Pp q r 

gy’ sin Bsina g’ sin Bcos a a’ 

B' cosa — B' sina gy’ cos B 

p=’ sinBsina + Bp’ cosa 

q=¢'sinBcosa — Bp’ sina 

r=a'+ o’cosf. 

‘+m we 

three differential equations in order to determine a, B, & » if p, g & r are given. Special 

case 6 is infinitely small, then r = «'= const. a = wt
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d derivation of Euler’s equations 

oq + cro 
ag 

= Apsinf sina + BqsinB cose + Crcos 

Geometrical Solution of the Problem of a Body 

Moving in the Absence of Forces 
[p. 98] 

yo we 
Ue 

If OP. is the ellipsoid of inertia. Co” 

2) Ellipsoid of inertia Ae + By + C2? =1 

Tangent plane in x yz 

Ax! + By’ + Cz’ -1 =0 

Direction cos. as Ax: By: Cz 

thus also as Ap : Bq: Cr 

Thus, normal parailel to the moment vector o. 

3) Distance of the tangent plane from 0. One brings the tangent plane into the normal 

form 

3 = 1 = V2L ez 

an By + (cr Vay + Bg + CP 7 
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Neither direction cos nor distance of the tangent plane changes. Thus, the plane stays 

is plane because P, as the point of the momentary fixed in space. 

elocity of rotation is found from 1) to be The ellipsoid of inertia rolls on th 

[p. 99] axis of rotation, does not move. The v 

w = J2L - OP. 

Motion of a Body with Two Identical Principal Moments of Inertia 

2. pie + B?{g’? sin? B + (a’ + @’ cos B)*} 

2L = A?p? +B a’? + 2a’' cos B} 
“% 

p set, by turns, equal a, B y 2 

0-09" 

2L = A(a’ + pcos B)? + B(B’? + gy? sin”B) Boo «6 

oo 
d {éL d 

0= 5 (3) = 5, 2A(a + 9’ cos) 

“(8 — yg’ sinBcosB = 0 

d 
7 iA + 9'cos B)cosB + Bsin? Bg’} = 0
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2L = A(a’ + o' cos B)? + B(B’? + gy’ sin? B) 
[p. 109] 

= se aL 
Fai = Ala’ + y' cos 8) 55 = 0 

iF =e 
a = —A(«’ + ¢'cos B)g’ sin B 

Bo’ si 
2 = A(a’ + ¢'cos B)cos B + Bo’ sin B cos B 

dp 
ob 9 

+ Bg’ sin? B ap 

when external forces 

P,a' + Pep + Po 

d , , 

a A + g’cos B) =0 SA 

4 tata’ + ’ cos B) cos B + By’ sin? B} = 0 
dt Q cos p' sin = = 4P, : 

A(a’ + yg’ cos B)q’ sin B 

— Bo’ sin B cos B + 4 Bp’ -0 
9 dt “a = P,+ CsinB 

Consider the case when external forces do not act. 

A(a’ + @ cosB) =R, 

A(a’ + gcosB)cosB + By sin’'B = R, & R,cosh + By'sin’B = R, 

The general case can be treated by calculating »’ & «’ from these two equations and 

substituting them in the third equation. But we confine ourselves to the case of constant 

6 The last term of the third equation will then vanish; the equation assumes the form 

Aa’ @sinB + (A - B)g’sin®B cosB = 0
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We divide by (4 - B) sinB cosB under the assumption that none of these quantities 

vanishes. Then it turns into 

Aa’ 

¥ 1* * GB oss ~° 

4 a , {®-L) _p [p. 101] We exclude the trivial case @’= 0 ‘ 
dt ap’ op, 

@ changes in the opposite direction from a, if A is the axis of the greatest moment of 

inertia, otherwise the opposite. In the case of nearly spherical shape or small B,™! 

A 

(A - B)sinB cosB 

fraction if B is not very large. In that case the two rotations in the same direction. 

rotates <always> faster than a, since ] ig an improper 

Special case when 6 is very small. Then the rotational velocity of the spinning top 

Dew rg eng [1-47 8)- 90 

Axis describes conical shell with angular velocity 9’. 

How must «@' B’ & @’ be chosen for such a motion to take place? Answer 

‘ 

pf’ =0 & d= a because then we have in the first moment B”= 0 
(A - B) cosB 

Argument then repeated.
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Motion of the spinning top. ; 

Cc 

P3= + (Mga) sin B & 

ye 

The differential equations are {p. 102] 

d lag! a sae ¢ cosB)} = 0 

S (Aa! + gcosB)cosB + Bey sin’?B} = 0 

-C sinB + A(a’ + q'cosB)q'sinB - B¢’sinB cosp + BB” =0 

We examine again the case of constant {. The third equation yields 

-C sin® + Aa’q'sin® + (A - B)@’sinB cosB =0 

We divide by (4 - B) sin B cos B, assuming again that none of these factors vanishes. 

From this results the eq. 

Aa’ Cc 2 = 0 

°° * (—BycosB” ~— (A — B)cosB 

, Aa’ 1 A*a’? Cc o = 37 SRT pare 7 2(A — B)cos B 4(A — B)’cos*B (A — B)cosB 

_ 1 Aa’ _ 4(A — B)cos BC 

= gg eft A2q? } 

—
 

a 2C(A - Res] 
If a’ is sufficiently large, then {} =1 ¥ | 1 

Aa 

As above, we obtain two solutions for the body moving in the absence of force
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g = @ a Aa’ _ C 

Aa’ (A - B)cosB Aa’ 

The second one corresponds to the fast rotation of the axis of the top about the vertical, 

[p. 103] also if C = 0. But the first goes over into invariant position of axis A for c =0 yields 

slower rotation about the vertical the greater the moment of rotation. Is, further, 

independent of B, because C is independent of f. 

We shall derive this solution, in which we are specially interested, in yet another way. 

o nearly coincides with the axis of rotation 

do, do, do, 
au aM aa 8 

0, = osinBcos@ L=—Csin Bsing 

Lamfs o,=osinBsing M=CsinBcos@ 

{ o, = ocosp N=0 
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Precession of the earth. 

-§ 

Bulge on the equator terrestrial radius r. Sun—earth R (p. 104}



104 DOC. 1 MECHANICS LECTURE NOTES 

rdda = mass element 

R* =R - 8 = distance from the sun 

= R - r cosa cosB 

38 =rcosacosBh 38’ =rcose sinf 

k’Mra da 
<Potential with respect to the sun> Force = ———————__ 

(R - rcosa cosp) 

Moment of this force with respect to the axis of the vernal equinox 

do. 1 2 2 

Mriin — rcosacos So ail ale — FCOS ACOs ) 

1 1 2 4, Teosacos B r” cos? a cos? ’) 

J cos? adi =}{a + cos 2a) do 

N
i
 

a r? cos? B 

i — (OM ale +0 oR: }) 
ait 

_! r sin cos B _ a,y,mr 2 sin Bcos B 

We can estimate m to be ar +rr’) np = aren-p (CG 

r'=r(1 +e)



DOC. 1 MECHANICS LECTURE NOTES 105 

Here we assume; that the mass acts as if it were concentrated on the bulge, p is mean 

density. The mean annual torque approximately one-half of the one calculated in this 
way. One thus arrives at a value of »’ that is of the same order of magnitude as the one 

observed. 

{66} 
M = SKM prsinB cosB hence @f = a 

T can be calculated. 

Foucault's Gyroscope 

We investigate general motion of a rigid body at a fixed point with respect to a 

coordinate system which itself rotates but is not rigidly connected with the body under 

consideration. The analysis is wholly analogous to that applied in establishing Euler’s 

equations. The system X* ¥ Z is introduced, which momentarily coincides with the 

system X Y Z but does not rotate together with it. Then the law of moments will apply 

I€ we denote by p qpr_ the instantaneous rotation of X Y Z, then we have 

sje + qo, - ro,, so that the law of moments reads 

do, 
+ qo, —roy=L 

dt iN z 

Fix yong 

y = d + r6,,— po, = M Pre 

do, V = ey ainy, 
a = + po, —qo,=N 

Specifically for a point on the surface of the earth'®? 

{p. 105]
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do. ; 
a wsinga, = L 
‘ + 

do, . 
—, + wsin go, + wcos go, = M ° 
at x 

d > x 
= — wcos po, = N67! 

[p. 106] N = 0 because reaction of the guide normal 

a, 00 klein L=-—Msina M 

0, = Ty COSA M = +Mcosa 

Oo, = op sina N=0 4 

do, . as & —* = WCOS oz sin « } 
dt 

da 
o, = 1, — a? 

2 7 dt 

2 

[, Gz ~ 2008 GO sin 

We also introduce B = x - @ 

WCOS 
HB _ ee ocin B o, = 1a’ 
de T a 

This is the pendulum equation. If the initial rotation about the Z-axis is small, then 

oscillation of the pendulum about the northerly direction with oscillation period 

1 I 
T =2n | =—____ 

TI, cos an! 

Example =I, g=0 o' =2n-100 T=29.4. 

For the calculation of the moment of reaction we use the first or the second equation of 

motion.
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x 

dt 
<+ qo, -ro, >-wsing o, = L 

. da : . . 
9, Sine a wsing sine o, = -M sine 

t 

@ is small compared with a Hence M = 0, can be considerable. 

Introduction of the Kinetic Potential! [p. 107] 

p,- 4 (aL) , aqr-1) 
” dt ap’ op, 

We set IT - L =H. Because II is independent of p’,, we can then write the equation 

in the following way 

p+ 4 (at) _ at _ 
dt | ap'| op, 

Thus, the knowledge of a single function is all that is needed to determine the 

motion of a system. One calls H the kinetic potential. If the function H is introduced 

into Hamilton’s principle, the latter assumes the form 

Lt 

J (8H - P,8p,)dt = 0 

This equation is a direct consequence of the one just given. If we denote by P, the force 

applied by the system to the environment rather than the force applied by the 

environment to the system, then P, has to be replaced by - P,, so that one has to set 

p - 24 |9| , oH 29 
"dt | ap! op,
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Helmholtz found that these general equations are suitable for representing the 

dynamical properties of physical systems far beyond the domain of mechanics.'" 

However, it can happen that we know not to conceive of H as II - L, & also do not 

want to be so constrained. 

[p. 108] We ask therefore whether the energy principle is maintained if H takes an arbitrary 

form. 

To this end we multiply the generalized Lagrange equation by dp = pdt and sum 

over all coordinates 

d 0H oH 
+ _ _p’ _ — =0 

US 

sc jae ; 

oH oH oH ) = t _ —d UG —_qd ib =0 

an 

dH 

Xu 

thus 

From this we see that the generalized Lagrange equations (Hamilton’s principle) involve 

the energy principle. We also show that in the special case of ordinary mechanics one 

arrives back at the customary expression for the energy. Here H = > - L 

2 

2L = Ayp; + 2A pip; + 2A,pipy 777° => ¥Y 4,7 2, 
BL v 

+ A,ph + 2A piph ove 

where A,, = A,,. We obtain
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oL ’ ’ ‘ éL G 
tog — PAu Pi + 2A,2p2 + Pi 6L = UL = Ya ep, [p. 109] 

éL , , q 
oP; = Az P + Az2P2 +" P2 

2 

OL , ' 
From this Lap = Aypy + 2Ayp7 °° = 2L 

Euler’s law 

Hence E=H-Y Sop = 0-L +2 = O+L. 
Py, 

Application to Electrodynamics 

Two circuits 

vanish 

“oN - 

_d aH) _ oH ’ xz 

¥ ~~ dt\@pi/ ap, 

i= d {0H _ 6H 

v dt \ni an, Ls 

vanish ad ne he oo 

Pi PiP2 P2 

H= ~ 5 (Lin? + 2Mnjn, + Ln?) 

We assume that the L M are independent of the p’
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_ 1dL aM __d _4ing 
Py = 2 ap, i+ 5) mm n,= — lh) at! 72) 

OM 1 0L, _ _d@ _@ 
f2= 35,1" 2 opr ¢ Il, ae) qe 2%2) 

rz = (2H) 28 
aia + dt \opi) Os 

1) A circuit 

We apply this to a circuit. Let its configuration be determined by one coordinate p 

and one coordinate nm =i. We assume that H is homogeneous to second order in 1’. 

H= ~5Le ? Lis here a function of p. The above equations then yield 

Pl = Eimer = + lpdal 
2 Op 2 Op 

-_ dlr’) d,. I; = - =--“0 
, dt ae! 

In agreement with the familiar laws of electrodynamics. 

2) moving magnet & solid conductor 

We set H=-W-n’. 

peg OW aw 
—-_ «x= i 

dp op 
P-dp = idW = illdt 

>
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Ir = _ work delivered = work of the electromotive force. 

The previous page follows {p. 111] 

canonical equations 
_d (2.3 

dt\ép,/ Op, 

P,= +4(%)+ 4-0 

op, 
qd 

aL aL, 

aL ; 
= b ap,oP + y q.OP, 

5(L — ¥ ayP.) 

T dq, _ oT P- T=0+L 
dt ” Op, 

OL , 
=2 op, Sp. — ¥. Pia. dp, oT in case of 

dt dq, ponderable mechanics = E. 

if 7 is viewed, secondly, as function of p, & q,, then 

ap, 24, 

Hence, we have 

OL _ oT -p! = oT 

op, op " @q, 
Therefore, 

dp,_ _ ar 



[p. 112] 
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44,_,p _%_y 
dt ¥ op, 

Energy Principle 

dp, _0E dq, 
dt 6q, dt Ea d 

a ed ar dq, _ _ OE _dp, qy at Py 

dt = op,” dt 

The chief value of these equations for physics consists in the fact that they are the most 

convenient basis for the equations of statistical mechanics.” 

More on the physical applications of the principle of least action and the Lagrange 

equations. 

ne = 2| 07 
edt On’ 

We apply the equations to reversible changes of state of the unit mass of a substance 

p =v P= pressure. Heat is a cyclic process, characterized by a velocity x’, which we 

identify with temperature.) Then we have
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113 

From the oe 
-f4 = a = -S | 

[p. 113] 

p=-~ : —dv 
ov : 

_ pdvV—SdT 
= dH 

oH 
= am —dT S aT d 

_pdV + TdS= 
dH + a(TS) = dE 

eee, 

dE dH = aE — TS) 

General conclusions from the equations for cyclic motion. 

1) If one considers only processes in which the <coordinates> cyclic velocities m’ are 

constant (currents, temperatures), then the forces can be derived from a potential. 

2) The same is also true if forces do not act upon the cyclic coordinates. In that case 

we have m equations we = const., by means of which one can eliminate the nT’ 

ri 
» 

from H. (Interaction between magnets & resistance-free short closed circuits. Adiabatic 

processes. 

33. We write down two cyclical eq. 

™~. os. 

eH 

So far as one can disregard an independence o
ftheterms =a

 57 from the quantities 

ie OT "7 a
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The Reciprocity Laws 

- OH dfoeH 

Fo = ~ ap, 45 (%) 

a 67H 

p, *  Sp,ap,?* . +g "op iP 

a) 
éP, 67H _ OP, 

Op," Op, Op, Op," 

Examples 

1) Po=e Pi,=e, de, _ de, 

mi pms OR Oh 

Equality of mutual induction of two circuits also with algebraic sign 

2) Conductor in magnetic field 

OF Gai Q That one equals zero has the consequence that the other one a "3p 
also equals zero. 

[p. 115) b) Reciprocity laws that concern velocities. 

ap. a?H aa = , 2 (fe) ” 
i y +P aalacann7 | Py 

+ a * ap, op, Op,’ 0 fi 2X Op, OP, op, 5 Op, 6p.0Py. - 

d{ 0H ) 

dt 6p.’ OP, 

If one constructs the corresponding equation and adds, one obtains 

oP, OP, d| @&H 
—— + —— = | —__ 

op’, op’, dt\d’ ap’, 
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If the system is cyclical, only states with constant p are considered, and H is a second- 

order function of the p’ (= x’), the right hand side vanishes. The same is true if 

derived for a cyclical & a noncycl. 

Examples. 1) e = 5 a 

Lenz’s law 

ds q 
d| — d| — in_‘(ér)_4(7) i 

2) aT aN i P,=p B= —-] 

d (“) dt 

,_ dv ; 
not correct Pa = a Py = T 

. Ge aq, 1 _ _ ad qi 
Peltier 25 = 3 P,=e P, a cr: 

dp, _? dp, _ 

a! od 
Another Derivation of the Fundamental Equations [p. 116] 

of the Material Point 

At some place on the surface of the earth a aaaaad aod 

let there be a number of identical weights as well as a spring. 

We suspend from the spring 0 1 2 ... of the weights 

in succession, & thus obtain the lengths 

l, 4, &,-... of the spring. 

We set the force exerted by the weights upon the spring equal to the number of the 

suspended weights and thus obtain a relative'™! measure of the force exerted upon the 

spring. We postulate that the force exerted by the spring upon the weights is of the same
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magnitude. Now we can use the spring to apply forces of specified magnitude to a given 

mass. 

We know that a mat. p. that is not acted upon by external causes moves without 

acceleration. For it, S etc. equal zero. Imagine that the question as to how the 
tf 

acceleration is related to the force for a freely suspended body is investigated with the 

help of our spring. If we assume that, in the case of some arbitrary, already present 

motion of the point and an arbitrarily large force,'! the acceleration is always propor- 

tional to the acting force and is directed in the same way, then we obtain 

[p. 117} m@* aX my =¥ ma? =Z 
dt’ df ad? 

<if we assume that the force acts in the direction X> 

Because these equations state that 

1) acceleration and force have the same direction 

2) If is taken as constant, then the magnitude of the acceleration 

2] -(e] -g) 
is proportional to the magnitude of the force yX? + Y? + Z? 

If the acting force is not that of our gauge-spring but some other force, then it will be 

replaced by that force of the gauge-spring that produces the same motion. Then what 

was said above will hold for arbitrary forces.
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Doc. 2 

The Principle of Relativity 
and Its Consequences 

in Modern Physics 

by A. Einstein 

[Archives des sciences physiques et naturelles 

29 (1910): 5-28; 125-144] 

$1. The Ether 

When it was realized that a profound analogy exists between the elastic vibrations of 

ponderable matter and the phenomena of interference and diffraction of light, it could 

not be doubted that light must be considered as a vibratory state of a special kind of 

matter. Since, moreover, light can propagate in places devoid of ponderable matter, one 

was forced to assume for the propagation of light a special kind of matter that is different 

from ponderable matter, and that was given the name “ether.” Since the velocity of light 

propagation in bodies of low density, such as gases, is more or less the same as in a 

vacuum, it had to be assumed that the ether is the principal carrier of light phenomena 

in these bodies as well. Finally, the hypothesis of the presence of ether in the interior 

of liquids and solids was also necessary in order to make it possible to understand the 

propagation of light in these bodies, since it was impossible to explain the great velocity 

of propagation by the elastic properties of ponderable matter alone. For all these 

reasons, the existence of a special medium permeating all matter seemed beyond dispute, 

and the ether hypothesis formed an essential part of the picture of the universe which 

presented itself to the physicists of the last century. 

The introduction of the electromagnetic theory of light brought about a certain 

modification of the ether hypothesis. At first the physicists did not doubt that the 

electromagnetic phenomena must be reduced to the modes of motion of this medium. 

But as they gradually became convinced that none of the mechanical theories of ether 

provided a particularly impressive picture of electromagnetic phenomena, they got 

accustomed to considering the electric and magnetic fields as entities whose mechanical 

interpretation is superfluous. Thus, they have come to view these fields in the vacuum 

as special states of the ether that do not require an analysis in greater depth. 

What the mechanical interpretation of optical and electromagnetic phenomena has 

in common with the purely electromagnetic interpretation is the fact that both view the 

electromagnetic field as a special state of a hypothetical medium filling the whole of 

space. This is where these two interpretations differ fundamentally from the emission 

theory proposed by Newton, according to which light consists of particles in motion. 

According to the latter theory, a space containing neither ponderable matter nor light



1) 

(2) 

(3) 
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rays should be considered totally empty, while according to the mechanical and 

electromagnetic theories such a space should be considered as filled by ether. 

$2. The Optics of Moving Bodies and the Ether 

Once one accepts the ether hypothesis, one faces the question as to the kind of 

mechanical bonds that link ether to matter. When matter is in motion, does the ether 

participate in this motion completely, or is it only partly carried along, or else, is the 

ether completely stationary? These questions are fundamental for the optics and 

electrodynamics of moving bodies. 

The simplest hypothesis is to assume that moving bodies carry along completely the 

ether they contain. It is on the basis of this hypothesis that Hertz developed an 

electrodynamics of moving bodies that is free of contradictions. However, it follows from 

a famous experiment by Fizeau that this hypothesis is not acceptable. This experiment, 

which can be considered an experimentum crucis, is based on the following consider- 

ations: Let u’ be the velocity of propagation of light in a transparent and immobile 

medium. Suppose we impart to this medium a uniform translational motion of velocity 

v. If the medium completely carries along the ether it contains, then the light will 

propagate with respect to the medium in the same way as if the medium were at rest. In 

other words, u’ will also be the velocity of propagation of the light with respect to the 

moving medium. To find the velocity with respect to an observer not taking part in the 

motion of the medium, it suffices, according to the rule of addition of velocities, to add 

vectorially the velocity v to the velocity u’. In the special case when u’ and v have 

the same direction, one obtains either u’ +v or u’-v_ for the desired sum, 

depending on whether wu’ and v are in the same or the opposite direction. But even 

the greatest velocities that could be imparted to a body are very small compared with the 

velocity of light; a very sensitive method is therefore needed in order to demonstrate the 

effect of the motion of the medium on this velocity. Fizeau devised the following 

experiment: We consider two light rays capable of interfering with each other, and two 

tubes filled with the same liquid. We pass one of the rays axially through each tube in 

such a way that each ray will interfere with the other after both exit from the tubes: the 

position of the fringes will be changed if the liquid moves axially in the tube. 

From the different positions of the fringes when the velocity of the flow is varied, one 

can determine the propagation velocity of the light’ in the moving liquid, i.e., in the 

medium, with respect to the walls of the tube. Proceeding in this way, Fizeau did not 

obtain the value u’ + v, as had to be expected from what we have said above, but the 

value u’ + av, where « is a number between 0 and 1 that depends on the refractive 

index n: 

'More exactly, the propagation velocity of the planes of equal phase of the light beam.
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1, 
nr 

a@=l]- 

Thus, the light is indeed carried along by the moving liquid, but only partially. 

This experiment showed the hypothesis of the complete carrying along of the ether 

to be unacceptable, so that only two possibilities remained: 

1. The ether is completely immobile, i-e., it does not take part in the motion of the 

matter at all. 

2. The ether inside the moving matter is movable, but it moves with a velocity 

different from that of the matter. 

One cannot go very far in developing the second hypothesis without introducing 

arbitrary assumptions about the relationship between the ether and matter in motion. 

In contrast, the first hypothesis is perfectly simple, and its development with the aid of 

Maxwell’s theory does not necessitate any arbitrary assumption that might complicate the 

foundations of the theory. 

Assuming that ether is completely immobile, H. A. Lorentz conceived in 1895 a very 

satisfactory theory of electromagnetic phenomena,’ a theory which not only permitted 

a quantitative prediction of Fizeau’s experiment, but also provided a simple explanation 

of almost all the experiments that one can imagine in this sphere. 

According to Lorentz, matter consists of elementary particles at least part of which 
are provided with electrical charges. A charged particle moving with respect to the ether 

may be compared to an element of current. The actions of the electromagnetic field on 

the particle, and the reactions of the particle on the field, are the only bonds that bind 

matter to the ether. In the regions of ether where the space is not already occupied by 

a particle, the magnetic and electric field strengths are expressed by Maxwell’s equations 

for the free ether, if one assumes that the equations refer to a coordinate system that is 

at rest with respect to the ether. The fecundity of Lorentz’s theory is due to the fact that 

the states of matter that play a role in optics and electromagnetism are explained 

unambiguously by the relative positions and the motions of the charged particles. 

$3. Experiments and Consequences 

Not Reconcilable with the Theory 

From Fizeau’s experiment one had to conclude that the ether is not carried along 

completely by matter in motion but that, instead, there occurs a relative displacement of 

the one with respect to the other. The earth being a body that rotates around its axis 

and revolves around the sun with velocities that change their directions in the course of 

*This expression neglects the effects of dispersion. 
7HLA. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten 
Korpern. Leiden, 1895. New edition, Leipzig, 1906. 5)
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the year, one was bound to believe that, in our laboratories, the ether would take a slight 

part in the motion of the earth the way it did in the motion of the liquid in Fizeau’s 

investigations. From this it would seem to follow that the relative velocity of the ether 

with respect to our equipment must vary with time, and that one therefore should expect 

that an apparent spatial anisotropy be observed in optical phenomena, i.e., that these 

phenomena should depend on the orientation of the equipment. Thus, in vacuum or in 

the atmosphere, light should propagate faster in the direction of the earth’s motion than 

in the opposite direction. Experimental verification of this consequence of the theory was 

unthinkable, because the order of magnitude of the term considered is that of the ratio 

of the velocity of the earth to the velocity of light, i.e., of the order of 10%, and one 

could not hope to attain such precision in the direct determination of the velocity of light. 

Also—and this is a most important point—all terrestrial methods for measuring the 

velocity of light employ light rays that travel along a closed (back and forth) rather than 

a simple path, this due to the fact that the times of departure and arrival of the rays must 

be determined with the help of one and the same device, as for example a notched wheel. 

Many optical phenomena are known in which variations in the velocity of light of the 

order of 10°* become capable of being detected, and when observing these phenomena 

one should have expected to find, according to the theory, that the results vary with the 

orientation of the apparatus with respect to the motion of the earth. Without dwelling 

on these experiments, let me only say that all of them gave negative results. Thus, 

Fizeau’s experiment led to the hypothesis of the relative motion of the ether with respect 

to moving bodies. None of the other experiments confirmed this hypothesis. The theory 

of Lorentz‘ provided, at least partly, a key to the solution of this puzzle. A uniform 

translation of velocity v of the apparatus with respect to the ether does have an 

influence on the phenomena, but this influence on the distribution of visible light 

intensities can only be detected starting with the terms of the order of (J in the 

Lorentz equations that give this distribution, c being the velocity of light in a vacuum. 

This seemed, therefore, to explain the negative results of the experiments aimed at 

showing the relative motion of the earth with respect to the ether. Still, the negative 

result of one of these experiments presented a real headache for the theoreticians: I am 

speaking of the famous investigations by Michelson and Morley.> These physicists based 

themselves on the following observation: Let M and N be two points of a solid body; 

suppose a ray begins at M and travels toward N, where it is reflected, and then returns 

to M. In this case, if the body undergoes a uniform translation with respect to the ether, 

‘It should be added, for the sake of completeness, that Mr. Lorentz did not consider bodies 

capable of rotating the plane of polarization when they are not in a magnetic field (naturally active 
bodies). 

5A. A. Michelson and E. W. Morley, Amer. Jour. of Science 34 (1887): 333-345.
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the theory predicts that the time ¢ needed for the light to travel the closed path MNM 

will vary depending on whether the body is moving in the direction MN or perpendicu- 

v 
2 

lar to it. True, the difference is very small, being of the order of ) , that is to say, of 
c 

the order of magnitude 10° if v is taken as the velocity of the earth. But Michelson 

and Morley were able to devise an interference experiment in which this slight difference 

would have to become detectable. The essential features of their arrangement were as 

follows: Light rays coming from the source S (Fig. 1) are split into two beams by means 

ne ee 3B 

1A 
fernnnnn f a 

I 
I 

1S 
Fig. 1. 

of a transparent mirror at A. One of the beams is then reflected at B and returns to 

A, where it splits and yields a ray traveling to 7. The other crosses the mirror and travels 

to B’, where it is reflected toward A; there it splits, yielding, too, a ray that goes to 

I, where the two rays interfere. The position of the fringes depends on the difference 

between the routes ABA and AB‘ taken by the two rays during their travels. This 

difference between the routes should have depended on the orientation of the equipment; 

one should have observed a displacement of the fringes the moment AB’, instead of AB, 

coincided with the direction of the earth’s motion. However, nothing of the kind was 

observed, and as a result the foundation of Lorentz’s theory seemed extremely shaky. To 

save the theory, Lorentz and FitzGerald resorted to a strange hypothesis: they assumed 

that each body in motion with respect to the ether contracts in the direction of motion 

2. 

by a fraction equal to A) , or—which amounts to the same if only terms of second 
c 

(8)
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order are considered—that the length of the body is diminished in that direction in the 

ratio 1: |1 - z zi 
€ 

This hypothesis succeeded, in effect, in eliminating the disagreement between theory 

and experiment. But the theory did not offer an intellectually very satisfying whole. It 

was based on the existence of an ether that one had to conceive as being in motion with 

respect to the earth, with the consequences of this motion forever unverifiable by 

experiment; this peculiarity could only be explained by introducing a priori implausible 

hypotheses into the theory. Could one really believe that, by a curious accident, the laws 

of nature present themselves to us in such a highly unusual way that none of them allows 

us to know about the fast motion of our planet through the ether? Is it not more 

plausible to assume that some wrong or defective argument had led us to this impasse? 

Before explaining how these difficulties were overcome, we will show that even in 

particular cases, the theory based on the existence of the ether does not always offer an 

intellectually satisfying explanation of the phenomena, even though that representation 

is not in direct conflict with experiment. 

Let us consider, for example, a magnetic pole moving with respect to a closed circuit. 

If the number of lines of force that cross the surface enclosed by the circuit changes with 

time, a current will be generated in the conductor. As we know, the generated current 

depends only on the rate of change of the flux that crosses the circuit. This rate depends 

only on the relative motion of the pole with respect to the circuit; in other words, from 

the point of view of the result produced, it does not make any difference whether it is the 

circuit that moves, while the pole is at rest, or whether the opposite is the case. But to 

understand this phenomenon from the point of view of the ether theory, one must 

attribute fundamentally differing states to the ether, depending on whether it is the pole 

or the circuit that is moving with respect to the ether. In the first case one must consider 

that the motion of the pole has the effect of changing the strength of the magnetic field 

at the various points of the ether at each instant of time. The change thus engendered 

produces an electric field with closed lines of force, the existence of which is independent 

of the presence of the circuit. This field, like every field of electrical force, possesses a 

certain energy; it is this field that produces the electric current in the circuit. If, in 

contrast, it is the circuit that is in motion while the pole remains at rest, then no electric 

field will be generated. In that case, the electrons present in the conductor are subjected 

to ponderomotive forces arising from the motion of the electrons in the magnetic field, 

forces that make the electrons travel, thus producing the induced electric current. 

Thus, in order for them to be understood with the aid of the ether theory, two 

experiments that are not essentially different in themselves require that substantively 

different states be attributed to the ether. Moreover, such a split, alien to the nature of
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facts, is introduced every time one resorts to the presence of the ether to explain 

phenomena caused by relative motions of two bodies. 

$4. The Principle of Relativity and the Ether 

What is the source of the difficulties we have just seen? 

Lorentz’s theory contradicts the purely mechanical models to which physicists hoped 

to reduce all the phenomena of the universe. For while mechanics in effect admits of no 

absolute motion, but only the motions of bodies relative to each other, there is a 

particular state in Lorentz’s theory that corresponds physically to the state of absolute 

rest: that is the state of a body which is not in motion with respect to the ether. 

If the fundamental equations of Newtonian mechanics, referred to a coordinate 

system that is not undergoing accelerated motion, are referred by means of the relations 

oct 

x’ =x -vt 

(1) 
y =y 

[2° =z 

to a new coordinate system which is in uniform translational motion with respect to the 

first, one obtains equations in t4, x‘, y’, z’ that are identical to the original equations 

in t,x, y,z. In other words, the Newtonian laws of motion transform to laws of the same 

form when one passes from one coordinate system to another one that is in uniform 

translational motion with respect to the first. This is the property we express when we 

say that the principle of relativity is satisfied in classical mechanics. 
More generally, we will state the principle of relativity in the following way: 

The laws governing natural phenomena are independent of the state of motion of the 

coordinate system with respect to which the phenomena are observed, provided that this 

system is not in accelerated motion.® 

If one transforms the fundamental equations of Lorentz’s theory by means of the 

transformation equations (1), one obtains equations of another form, in which the 

quantities x’, y’,z’ no longer occur symmetrically. Thus, the theory of Lorentz, based 

on the ether hypothesis, does not admit of the principle of relativity. The difficulties 

“In all this we assume that the notion of acceleration has an objective meaning, or in other words, 
that an observer attached to a coordinate system is able to determine by experiment whether the 
system is or is not in accelerated motion. From now on we will consider only coordinate systems in 
nonaccelerated motion. [10]
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encountered so far are mainly due to this fact; the deeper reasons will become apparent 

later on. Be that it as it may, it is so much the more improper to accept a theory that 

is not consistent with the principle of relativity, the more so because this principle has not 

been contradicted by a single experimental fact. 

§5. On Two Arbitrary Hypotheses Contained 

Implicitly in the Customary Notions of Time and Space 

We have seen that, assuming the existence of the ether, we were led by experiment to 

view this medium as stationary. Further, we have seen that the theory so founded 

permits us to predict the main experimental facts but leaves something to be desired in 

one respect: It does not admit of the principle of relativity, contrary to everything that 

experimental investigations have taught us. The question arises: Is it really impossible to 

reconcile the essential foundations of Lorentz’s theory with the principle of relativity? 

If we wish to attempt such a reconciliation, the first step we must take is to give up 
the ether. For, on the one hand, we have been obliged to admit that the ether is 

stationary, whereas, on the other hand, the principle of relativity demands that the laws 

of natural phenomena referred to a uniformly moving coordinate system S’ be identical 

with the laws of these same phenomena referred to a system S at rest with respect to 

the ether. But there is no reason to assume the immobility of ether, which is demanded 

by theory and experiment, any more with respect to the system S’ than with respect to 

the system S; these two systems cannot be distinguished from each other, and it is 

therefore improper to make one of them play a special role by saying that it is at rest 

with respect to the ether. From this it follows that the only way to arrive at a satisfactory 

theory is to give up the notion of a medium filling all of space. 

This is the first step to be taken. 

To go a step further, we must reconcile the principle of relativity with an essential 

consequence of Lorentz’s theory, because giving up this consequence would amount to 

giving up the most fundamental formal properties of the theory. And here is the 

consequence in question: 

A ray of light in vacuum always propagates with the same velocity c, which velocity is 

independent of the motion of the body that emits the ray. 

We will see in section 6 that we are raising this consequence to the the status of a 

principle. For the sake of brevity, we will from now on call it the principle of the 

constancy of the velocity of light. 

Jn Lorentz’s theory this principle holds only for a system in a special state of motion: 

In effect, the system must be at rest relative to the ether. If we want to preserve the 

principle of relativity, we must assume that the principle of the constancy of the velocity 

of light holds for any arbitrary system not in accelerated motion. At first glance this 

seems impossible. For let us consider a light ray that propagates with velocity c with 

respect to the system S$, and suppose that we seek to determine the velocity of



DOC. 2 RELATIVITY AND ITS CONSEQUENCES 125 

propagation relative to a system S’ that is in uniform translational motion with respect 

to the first system. Applying the rule of addition of velocities (the rule of the 

parallelogram of velocities), we will generally find a velocity different from c; in other 

words, the principle of the constancy of the velocity of light that is valid with respect to 

S is not valid with respect to S’. 

So that the theory based on these two principles should not lead to contradictory 

results, one must renounce the customary rule of addition of velocities or, better, replace 

it with another rule. Well founded as this rule may seem to be at first glance, it conceals 

no less than two arbitrary hypotheses, which consequently, as we shall see, hold sway over 

all of kinematics. It is these hypotheses that made us think that, with the aid of the 

transformation equations (1), the incompatibility of Lorentz’s theory with the principle 

of relativity can be demonstrated. 

The first hypothesis we wish to discuss concerns the physical notion of time 

measurement. To measure time, we use clocks. What is a clock? By a clock we 

understand any thing characterized by a phenomenon passing periodically through 

identical phases so that we must assume, by virtue of the principle of sufficient reason, 

that all that happens in a given period is identical with all that happens in any arbitrary 

period.’ If the clock comes in the form of a mechanism that is provided with clock 

hands, then to mark the positions of the clock’s hands is tantamount to counting the 

number of moments elapsed. By definition, to measure the time interval during which 

an event takes place means to count the number of time periods indicated by the clock 

from the beginning till the end of the event in question. 

The meaning of this definition is perfectly clear as long as the clock is sufficiently 

close to the place at which the event occurs, so that the clock and the event can be 

observed simultaneously. If, on the contrary, the event is taking place in some corner far 

away from the clock, then it will no longer be possible to establish immediately a 

correspondence between the different phases of the event, and the different positions of 

the clock’s hands. The definition is therefore deficient and needs to be completed. Until 

now one has completed it unawares. 

To determine the time at each point in space, we can imagine it populated with a 

very great number of clocks of identical construction. Let us consider the points A, B, C, 

..., each of which is furnished with a clock and is referred to a system in nonaccelerated 

motion with the aid of time-independent coordinates. We will now be able to know the 

time at any of the locations at which we choose to put a clock. If we choose a sufficiently 

large number of clocks, so that we can ascribe to each of them a sufficiently small 

domain, we will be able to fix any instant whatsoever, at any location in space, to any 

*Thus, we postulate that two identical phenomena are of the same duration. The perfect clock 
thus defined plays a role in the measurement of time that is analogous to the role played by the 
perfect solid body in the measurement of lengths. 

(11)
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degree of accuracy desired. But we cannot obtain in this manner a definition of time 

useful to a physicist, because we did not say what the position of the clock hands should 

be at a given instant of time at different spatial points. We forgot to synchronize our 

clocks, and it is clear that the intervals of time elapsed during some event have a certain 

extension that will vary considerably as the event occupies this or that point in space. 

Suppose, for example, that we are studying the motion of a material point whose 

trajectory passes through the points A, B,C .... At the moment when the point passes 

through A, we will note the instant ¢,, indicated by the clock located at this point. In 

the same way we will register the instants fs, f:,... Of the passage through the points 

B,C.... Since the coordinates of the points A, B, C,... on the axes of the system S 

can be obtained directly—by performing measurements with a graduated measuring rod, 

for example—then, by relating the coordinates x, y,, z,.-.. of the points A, B, C, 

. to the instants t,, t,, ft¢..., we can obtain the coordinates x, y, z... of the 

moving material point as a function of a variable 1, which we will call time. It is clear 
that the form of this function will depend essentially on the way the clocks had been set 

before they were placed at their respective locations. 

To get a complete physical definition of time, we have to take an additional step: 

We have to say in what manner all of the clocks have been set at the start of the 

experiment. We will proceed as follows: First, we furnish ourselves with a means of 

sending signals, be it from A to B, or from B to A. This means should be such that 

we have no reason whatsoever to believe that the phenomena of signal transmission in 

the direction AB will differ in any way whatsoever from the phenomena of signal 

transmission in the direction BA. In that case there is, obviously, only one way of 

regulating the clock at B against the clock at A in such a manner that the signal 

traveling from A to B would take the same amount of time—measured with the clocks 

described above—as the signal traveling from B to A. If we denote by 

1, the reading of the clock at A at the moment signal AB leaves A 

ty " B " AB arr. at B 

ty’ " B " BA leaves B 

t,’ A ie AB arr. at A 

For these signals we can use, for example, sound waves that propagate between A 

and B through a medium that is at rest with respect to these points. We can just as 

®*The medium must be at rest—or at the very least must not have any velocity component in the 
direction AB—<o that the paths AB and BA can be equivalent.
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well use light rays propagating through the vacuum or through a homogeneous medium 

at rest with respect to A and B. It does not make any difference whether we choose 

this or that kind of signals. If two kinds of signals were to produce discrepant results, we 

would have to conclude that, for at least one of the two kinds of signals, the condition 

of equivalence of the paths AB and BA was not satisfied. 

Still, of all the signals that can be used, we are going to prefer those that make use 

of light rays propagating in the vacuum, because the synchronization requires that the 

path out and the path back be equivalent, and in our case this equivalence is satisfied by 

definition, since, by virtue of the principle of the constancy of the velocity of light, light 

in the vacuum always propagates with the velocity c. 

Hence we will have to synchronize our clocks in such a way that the time spent by 

a signal traveling from A to B be equal to the time spent by an identical signal 

traveling from B to A. 

Now we possess a well-defined method by which to synchronize two clocks with 

respect to each other. Once the synchronization has been done, we will say that the two 

clocks are in phase. If, step by step, we regulate clock B against clock A, clock C 

against clock B..., we obtain a series of clocks such that any of them is in phase with 

the preceding one. Moreover, any two nonconsecutive clocks in the series must also be 

in phase by virtue of the principle of the constancy of the velocity of light. 

The totality of the readings of all of these clocks in phase with one another is what 

we will call the physical time. 

By an elementary event we will understand an event that is supposed to be 

concentrated in one point and is of infinitely short duration. By the time coordinate of 

an elementary event we will understand the indication, at the instant of the event’s 

occurrence, of a clock that is situated infinitely close to the point at which the event takes 

place. An elementary event is thus defined by four coordinates, namely the time 

coordinate and the three coordinates that define the spatial position of the point in which 

the event is supposed to be concentrated. 

Thanks to our physical definition of time, we can give a perfectly defined meaning 

to the concepts of simultaneity and nonsimultaneity of two events occurring at locations 

removed from one another. In the same way, the introduction of the coordinates x, y, 

z of a spatial point gives a completely defined meaning to the concept of position. Thus, 

for example, to say that the abscissa of a point P situated on the axis is x, is the same 

as saying that we must hit upon the point P if, starting from the origin, we apply, with 

a ruler, a unit length x times along the axis. We proceed in the same way to fix the 

position of a point if all three coordinates x, y,z are different from zero, except that the 

operations are a little more complicated. Be it as it may, the specification of the
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particular coordinates always involves the idea of a well-defined experiment concerned 

with the position of solid bodies.’ 
Let us now make an important remark: In order to define the physical time with 

respect to a coordinate system, we used a group of clocks in a state of rest relative to that 

system. According to this definition, the time readings or the establishment of the 

simultaneity of two events have meaning only if the motion of the group of clocks or that 

of the coordinate system is known. 

Consider two nonaccelerated coordinate systems S$ and S’ in uniform translational 

motion with respect to one another. Suppose that each of these systems is provided with 

a group of clocks invariably attached to it, and that all clocks belonging to the same 

system are in phase. Under these conditions, the readings of the group attached to S$ 

will define the physical time with respect to S; analogously, the readings of the group 

attached to §’ define the physical time with respect to 5S’. Each elementary event will 

have a time coordinate ¢ with respect to 5S, and a time coordinate ¢ with respect to 

S'. But, we have no right to assume a priori that the clocks of the two groups can be set 

in such a manner that the two time coordinates of the elementary event would be the same, 

or in other words, in such a way that t would be equal to t'. To assume this would mean 

to introduce an arbitrary hypothesis. This hypothesis has been introduced into kinematics 

up to the present time. 

The second arbitrary hypothesis introduced in kinematics concerns the configuration 

of a body in motion. Consider a bar AB moving in the direction of its axis with velocity 

v with respect to a coordinate system S not in accelerated motion. What should we 

understand by the “length of the bar’? One is at first inclined to believe that this 

concept does not require any special definition. However, we will immediately see that 

nothing of the sort is true if we consider the following two methods of determining the 

length of the rod: 

1. One accelerates the motion of an observer furnished with a measuring rod until 

he attains the velocity v, i-e., until he is at relative rest with respect to the bar. The 

observer then measures the length AB by successively applying the measuring rod along 

the bar. 

2. Using a group of clocks in phase with each other and at rest with respect to the 

system S, one determines the two points P, and P, of S where one finds the two ends 

of the bar at the instant 7; after that, one determines the length of the straight line 

°We do not claim that the time and space coordinates must necessarily be defined in such a way 
that their definitions could serve as the basis of measurement methods that permit the 
experimental determination of these coordinates—the way it has been done above. But whenever 
the quantities 1,x,y,z are introduced in the capacity of purely mathematical variables, equations 
in physics will have meaning only if they allow the elimination of these quantities.
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connecting the two points P, and P, by successively applying the measuring rod along 

the line P,P,, which is assumed to be a material line. 

As one can see, it is with some justification that the results obtained in the first and 

in the second case are designated as the “length of the bar.” But in no way does this 

mean a priori that these two operations must necessarily lead to the same numerical value 

for the length of the bar. All that one can deduce from the principle of relativity—and 

this is easy to demonstrate—is that the two methods lead to the same numerical value 

for the length only when the bar AB is at rest relative to the system S. But in no way 

is it possible to assert that the second method yields a numerical value for the length 

independently of the velocity v of the bar. 

More generally, if the configuration of a body in uniform translational motion with 

respect to S is determined by ordinary geometric methods, by means of measuring rods 

or other solid bodies moving in exactly the same way the results of measurement turn out 

to be independent of the velocity v of the translation: these results give us what we will 

call the geometric configuration of the body. By contrast, if one marks in the system S$ 

the positions of various points of the body at a given instant, and determines the 

configuration formed by these points by geometric measurements using measuring rods 

at rest with respect to S, one obtains as a result what we will call the kinematic 

configuration of the body with respect to S. 

The second hypothesis used unconsciously in kinematics can thus be expressed as 

follows: The kinematic configuration and the geometric configuration are identical. 

[Continued in the 15 February issue of Archives, pp. 125-144] 

§6. The New Transformation Equations (the Lorentz Transformation) 

and Their Physical Meaning 

To emphasize the considerations discussed in the preceding section, it is easy to see that 

the rule of the parallelogram of velocities, which made one think that Lorentz’s theory 

cannot be reconciled with the theory of relativity, is based on unacceptable arbitrary 

hypotheses. In fact, this rule leads to the following transformation equations, 

t=t, x! =x -vt, y =y, 2 =2, 

or more generally, 

U ’ fo=t, x" =x-vi, y’ =y vi, Zz) =z ~ vit. 

The first of these equations expresses, as we have seen, an ill-founded hypothesis 

about the time coordinates of an elementary event taken with respect to two systems S 

and S’ that are in uniform translational motion with respect to each other. The other 

three equations express the hypothesis that the kinematic configuration of the system S’ 

[13] 

{14]
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with respect to the system S is identical with the geometric configuration of the system 

Ss’. 

If one abandons the ordinary kinematics and builds a new kinematics based on the 

new foundations, one arrives at transformation equations different from those given 

above. And now, we are going to show’® that based on 

1. The principle of relativity and 

2. The principle of the constancy of the velocity of light, we arrive at transformation 

equations that allow us to see that Lorentz’s theory is compatible with the principle of 

relativity. 

The theory based on these principles we shall call the theory of relativity. 

Let S and S’ be two equivalent coordinate systems, i.e., systems in which lengths 

are measured in the same unit, and each of which possesses a group of clocks that run 

in synchrony when the two systems are at relative rest with respect to each other." 

According to the principle of relativity, physical laws must be identical for the two 

systems regardless of whether the systems are at relative rest or in uniform translational 

motion with respect to each other. Thus, in particular, the velocity of light in a vacuum 

must be expressed by the same number in the two systems. Let ¢, x, y, z be the 

coordinates of an elementary event with respect to S, and ¢’, x’, y’, 2’ the 

coordinates of the same event with respect to S’. We seek to find the relations that link 

these two groups of coordinates. It can be shown that these relations must be linear 

because of the homogeneity of time and space,” and time ¢ is therefore linked with 

time t’ by a formula of the form 

(2) t’ = At + Bx + Cy + Dz. 

Furthermore, for an observer linked to S it follows from this, in particular, that the 

three coordinate planes of S’ are planes in uniform motion; but, in general, these three 

planes will not form a rectangular triad even though we assume that the system S”’ is 

rectangular for an observer connected with this system. However, if, referring to the 

system S, we have chosen the position of the x’-axis parallel to the direction of the 

motion of S’, it will follow for reasons of symmetry that the system S’ will appear as 

rectangular. In particular, we may choose the relative position of the two coordinate 

systems in such a way that the x-axis will permanently coincide with the x-axis, and the 

A. Einstein, Ann. der Phys. 17 (1905): 891-921, and Jahrbuch der Radioaktivitét und Elektronik 
4 (1907): 411-462. 
"Jt should be noted that we will always implicitly assume that the fact of a measuring rod or a 
clock being set in motion or brought to rest does not change the length of the rod or the rate of 
the clock. 
2Cf. footnote 15.
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y ’-axis will remain parallel to the y-axis, and that, in addition, the same-named axes have 

the same orientation for the observer connected with S. We will count the time from 

the instant when the origins of the two systems coincide. Under these conditions, the 

relations sought are homogeneous, and the following equations 

x’ = 0 and x-w=0 

y’ = Oand y=0 
z’ = 0 and z=0 

are equivalent, or, in other words, the coordinates x, y, z% x4 y4 z’ are linked by 

relations of the form 

x’ = EQ - vt) 

(3) y =F 

z’ =Gz 

To determine the constants A, B, C, D, E, F, G entering equations (2) and (3), we 

assert that, according to the principle of the constancy of the velocity of light, the velocity 

of propagation has the same value c with respect to the two systems, or, in other words, 

that the two equations 

e+ry+z ac? 
(4) 

x’? +y"? + 7°? = ¢7? 

are equivalent. Replacing in the second of these equations t4 x4 y4 z’ by their values 

obtained from (2) and (3), and equating it with the first equation, one can easily find that 

the transformation equations sought are of the form 

t= 00-6 - x, 

(5) \x' = o(v).B.@ - v4),, 

y’ = ofv).y 

2’ = (v).z 

where 

[16]



132 DOC. 2 RELATIVITY AND ITS CONSEQUENCES 

and »(v) is a function of v that is to be determined. We can easily find @(v) by 

introducing a third coordinate system S* which is equivalent to the first two systems, 

is moving relatively to S’ with a uniform velocity -v, and is oriented with respect to S’ 

as S’is oriented with respect to S. Then, applying equation (5) twice, we obtain 

t” = ov). p(-v).t 
x” = ofv). p(-v).x 

y” = (v). p(-v).y 
2° = ov). (-v).z 

Since the origins of S and S$” are permanently coincident, the axes have the same 

orientation, and the systems are equivalent, we must necessarily have 

o(v).@(-v) = 1. 

Since, moreover, the relation between y and y’ (as also that between z and z’) 

does not depend on the sign of v, we have 

ev) = o(-v). 

From this it follows that 

ov) = 1 

(9(¥) = -1 is here inappropriate), and that the transformation equations are 

t' = a - »,| 

09) jx’ = Ba -w), 

y' =y 

z’ =z 

where 

B = 1 

ia
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These transformation equations have been introduced into electrodynamics in a very 

felicitous manner by Mr. Lorentz. We will call them Lorentz transformations. 

If we solve these equations with respect to 4, x, y, z we obtain equations of the 

same form, except that the primed letters are replaced by nonprimed ones, and v is 

replaced by -v. Moreover, this result is an obvious consequence of the principle of 

relativity: relative to S’, S is moving with velocity -v parallel to the x and x’ axes. 

By combining the transformation equations with the equations expressing the rotation 

of one system with respect to another one, we can obtain the most general transforma- 

tions of coordinates. 

§7. Physical Interpretations of the Transformation Equations 

1. Consider a body attached to S*% Let x’, y’ pz, and x’,,y’,,z’, be 

coordinates of two points of the body. At any instant ¢ of the system S$ we will have 

the following relations between these coordinates: 

(6) 

This shows us that the kinematic configuration of a body in uniform translational 

motion with respect to a coordinate system depends on the velocity v of the translation. 

Furthermore, the kinematic configuration differs from the geometric configuration solely 

by a contraction in the direction of the motion, a contraction which is in the ratio 

2 

1: Jl - + . A relative motion of two reference systems with a velocity v that exceeds 
| c 

the velocity of light in vacuum is incompatible with the principle here assumed. 

One recognizes at once in these equations the hypothesis of Messrs. Lorentz and 

FitzGerald (§3). This is the hypothesis that looked so strange to us and that had to be 

introduced to explain the negative results of the experiment of Michelson and Morley. 

Here this hypothesis appears naturally as an immediate consequence of the principles 

assumed. 

2. Let us consider a clock H’ which is at rest at the origin of S’, and which runs 

Po times faster than one of the clocks used for the determination of physical time in the 

systems S or S* In other words, when the two clocks are compared while at relative 

rest, clock H’ will indicate p, periods during the unit time indicated by the other clock. 

[17]
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How many periods will clock H’ indicate during unit time if observed from the system 

S? 

Clock H’ will indicate the end of a period at the times 

Since we seek the time with respect to 5S, the first of the transformation equations 

(I) will have to be written 

Vv 
r= Br - —x' 

and since clock H’ is at rest at the origin of S’, we must always have 

x’ =0, 

which yields 

t, = Br’ = Le 
Po 

Observed from S, clock H’ thus indicates 

= Po _ - v2 

p= B = Po 1 o 

periods in a unit time. In other words, a clock moving uniformly with velocity v with 

2 

respect to a reference system runs, as observed from this system, 1 : | 1 = times 
c 

slower than an identical clock that is at rest with respect to this system. 

And here is an interesting application of the preceding formula. In 1907, Mr. J. 

Stark” remarked that canal ray ions emit spectral lines that give rise to a sort of 

Doppler phenomenon, namely, a displacement of spectral lines proceeding from the 

motion of the source. Since the oscillatory phenomena that produce a spectral line must 

be viewed as intra-atomic phenomena whose frequencies are uniquely determined by the 

nature of the ions, we can use these ions as clocks. The frequency p, of the oscillatory 

motion of the ions provides us with a means to measure time. This frequency is found 

by observing the spectrum produced by ions of the same kind but at rest with respect to 

99. Stark, Ann. der Phys. 21 (1906): 401-456.
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the observer. The preceding formula thus shows that besides the phenomenon known 

as the Doppler phenomenon, there exists an effect of motion on the source that 

diminishes the apparent frequency of the ion. 

3. Let us consider the equations of motion of a point moving in uniform translation 

with velocity u’ with respect to S*% 

rol ayt 
x = ult 

7 oy 
y ut 

z’ = ult’ 

z 

If one replaces x‘, y’4,z4 t’ by their values as functions of x, y,z,1 by means of 

equation (I), one obtains x, y,z as functions of ¢ and, hence, the components u, u, 

u, of the velocity u of the point with respect to the system S. In this way it is possible 

to obtain the formula that expresses the theorem of the addition of velocities in its 

general form, and one can immediately see that the law of the parallelogram of velocities 

is valid only in first approximation. In the special case when the velocity u’ has the 

same direction as the velocity v of the translation of S’ with respect to S, one easily 

obtains 

(1) ust 

This equation shows that if one adds two velocities, each smaller than the velocity 

of light in a vacuum, one always obtains a resultant velocity that is smaller than the 

velocity of light. For if one sets v=c- A, u’=c - yw, where A and p are positive and 

smaller than c, one gets 

ua pe <c. 

2c -A-pr x 

From this it also follows that when one adds the velocity of light c and a velocity 

smaller than c, one always obtains the velocity of light. Now we can understand why 

Fizeau could not find u +v for the sum of the velocity u’ of the light in a liquid and 

the velocity v of the liquid in the tube (§2). For if higher than first-order terms are 

[19]



[20] 
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neglected, and the ratio ce is replaced by the refractive index n of the liquid,” 
u 

vew efi} 
n 

This equation is identical to the one found experimentally by Fizeau. 

Yet another consequence, as strange as it is interesting, follows immediately from the 

addition theorem. It can be shown that no means exist by which to send signals that 

would travel faster than light in a vacuum. Let us consider a bar that is moving uniformly 

along the x-axis of S with velocity -v(|v]|<c), and by means of which one can send 

signals propagated with velocity u‘ with respect to the bar. Suppose that an observer 

A is located at the point x = 0 of the x-axis and an observer B at the point x =x of 

the same axis, and that both are at rest in S. If the observer A sends a signal to B 

equation (7) can be written: 

by means of the bar, the signal will be transmitted with velocity ane with respect 
1 - ve 

c 

to these observers. The time needed for this transmission will thus be 

where v can take any value smaller than c. Now, if we assume that u’ is larger than 

c, then one can always choose v in such a way that T would be negative. There would 

have to exist a transmission phenomenon such that the signal would arrive at its goal 
before having been emitted: The effect would precede the cause. Even though such a 

result is not inadmissible from the logical point of view, it so contradicts all of our 

empirical knowledge that we can consider that the impossibility of having u’ >c has 

been demonstrated. 

4. The theory of relativity based on the principles assumed here permits us also to 

obtain the formulas expressing the Doppler and aberration phenomena in their general 

form. All we have to do is to compare the vector proportional to 

“Strictly speaking, the index n does not correspond to the refractive index of the liquid for the 
frequency of the source used in the experiment, but to the index of the liquid for the frequency 
an observer moving with the liquid would ascertain.
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sino[t Ee Fs =| 
c 

which is the vector of a planar light wave propagated in a vacuum with respect to S, with 

the vector proportional to 

. ’x' + m' ’ + n’ Ud 

sings [’ - cd z 7 
c 

which is the vector of the same wave with respect to S“% By replacing ¢/, x’, y’, z’ 

in the last expression by their values obtained from the transformation equations (I), and 

equating it with the first expression, we find the relation connecting w’, 1’, m‘,n’ with 

w, 1, m,n. By means of these relations it is easy to establish the formulas for aberration 

and the Doppler phenomenon. 

The fundamental importance of the transformation equations (I) is first of all due 

to the fact that they provide a criterion that permits us to check the correctness of a 

physical theory. In effect, it is necessary for any equation that expresses a physical law 

to transform to an equation of identical form if the variables t’, x‘, y’4, z’ are 

substituted for the variables #, x, y,z by means of the transformation equations. In the 

second place, the transformation equations provide a means for finding the laws 

applicable to a body in rapid motion if one already knows the laws applicable to the same 

body when at rest or in infinitely slow motion.” 

$8. Remarks about Some Formal Properties of 

the Transformation Equations 

Let us consider two coordinate systems Z and %’ the origins of which coincide and 

which have the same orientation. 

There are two kinds of coordinate transformations in Newtonian mechanics that do 

not alter the laws of motion. These are 

1. A change in orientation of the system ’ with respect to the system = about 

the common origin. This first transformation is characterized by equations linear in x’, 

y’,z' and x, y, z, between the coefficients of which there exist relations such that the 

condition 

‘SNow it is easy to understand what we meant by the homogeneity of time and space in §6, or, in 
other words, why we assumed a priori that the transformation equations must be linear. For if a 
tate of a clock at rest with respect to S' is observed from S, this rate does not have to depend 
on the location of the clock in S' nor on the value of the time of S' in the vicinity of the clock. 
An analogous remark applies to the orientation and length of a bar linked with S' and observed 
from S. Only when the transformation equations are linear are these conditions satisfied.
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(1) x? +y"? +7'2 = x? +y? + 22 

is identically satisfied. 

2. Uniform motion (translation) of the system 4’ with respect to the system Z. This 

second transformation is characterized by the equations 

x’=x+ at 

(2) yoy + Br 
z’=Zz+ ¥t, 

where a, B, y are constants. 

For these two kinds of transformation, the condition 

(3) =t 

must be satisfied. In other words, time is an invariant under these two transformations. 

Combining the transformations (1) and (2), we obtain the most general transforma- 

tion by means of which one can transform the equations of mechanics without altering 

them. This transformation is characterized by the equation (3) and by three equations 

that express x’, y’,z’ as linear functions of x, y, z, 2. The coefficients of these three 

equations are connected with each other by relations that, for ¢ = 0, satisfy condition (1) 

identically. 

Let us now consider the most general coordinate transformation compatible with the 

theory of relativity. From what we have seen, this transformation is characterized by the 

fact that x5 y‘ z4 t’ must be linear functions of x y, z 4, such that the condition 

(a) xi? sy? 4279? cP aay tz? - cP 

will be satisfied identically. It should be noted that the transformations compatible with 

Newtonian mechanics can be obtained at once by setting c = © in condition (a). Thus, 

if we take the same route as before, we arrive at the equations of ordinary kinematics if, 

instead of the principle of the constancy of the velocity of light, we assume the existence 

of signals whose propagation does not require any time. 

The group characterized by equation (a) contains the transformations that correspond 

to a change in the orientation of the system. These are the transformations compatible 

with the condition 

t=t’ 

The simplest transformations compatible with condition (a) are those for which two 

of the four coordinates of an elementary event remain invariant. Let us consider, for
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example, the transformations under which x and f do not change. Instead of the 

general condition (a), we will have the special condition 

(a) x= 

To this condition corresponds a rotation of the system about the x-axis. 

If, on the other hand, we consider transformations under which two of the spatial 
coordinates, for example y and z, remain invariant, we will have instead of the general 

condition (a) the special condition 

y' =y 
(a,) z' =z 

x? cP =x - 

These are the transformations we have encountered in the preceding section while 

investigating a system in uniform motion parallel to the x-axis of an identically oriented 

system at rest. 

The formal analogy between the transformations (a,) and (a,) is immediately evident. 

The two systems of equations differ only by a change of sign in the third condition. But 

even this difference can be made to disappear if one chooses, with Minkowski, to take 

ict instead of t as a variable, where i is the imaginary unit. In that case this 

imaginary temporal coordinate plays the same role in the transformation equations as the 

spatial coordinates. If we set 

xX =X, 

y =X 
Z=X; 

ict = X,4 

and consider x,, x2, X;,X, as the coordinates of a point in a four-dimensional space such 

that to each elementary event there corresponds a point in this space, we reduce 

everything that happens in the physical world to something static in the four-dimensional 

space. In that case the condition (a) will be written as 

72 2 72 r2_ 2 2 2 2 
xy ty, tx, +X, SX, +X, + Xy + Xy, 

‘6H. Minkowski, Rau und Zeit. Leipzig, 1909. [21]
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This is the condition that corresponds to a rotation without relative translation of a 

four-dimensional coordinate system. 

The principle of relativity demands that the laws of physics not be altered by the 

rotation of the four-dimensional coordinate system to which they are referred. The four 

coordinates x,, x,,X;,%, must appear in the laws symmetrically. To express the different 

physical states, one can use four-dimensional vectors which behave in the calculations in 

a manner analogous to ordinary vectors in three-dimensional space. 

$9. Some Applications of the Theory of Relativity 

Let us apply the transformation equations (I) to the Maxvwell-Lorentz equations 

representing the magnetic field. Let E,, E,, E, be the vector components of the electric 

field , and M,, M,, M, the components of the magnetic field, with respect to the system 

S. Calculation shows that the transformed equations will be of the same form as the 

original ones if one sets 

E’ x = E, M’ x a M, 

(1) JE’, = BE, -vieM) = M’, = B(M, + vie BE) 

E’, = B(E,+vleM) ~=-M’, = B(M, - vic BE) 

The vectors (E,, E,, E,) and (Mi, Mj, M2) play the same role in the equations 

referred to S’ as the vectors (E,, E,, E,) and (M,, M,, M,) play in the equations 

referred to S. Hence the important result: 

The existence of the electric field, as well as that of the magnetic field, depends on the 

state of motion of the coordinate system. 

The transformed equations permit us to know an electromagnetic field with respect 

to any arbitrary system in nonaccelerated motion S’ if the field is known relative to 

another system S of the same type. 

These transformations would be impossible if the state of motion of the coordinate 

system played no role in the definition of the vectors. This we will recognize at once if 

we consider the definition of the electric field strength: the magnitude, direction, and 
orientation of the field strength at a given point are determined by the ponderomotive 

force exerted by the field on the unit quantity of electricity, which is assumed to be 

concentrated in the point considered and at rest with respect to the system of axes. 

The transformation equations demonstrate that the difficulties we have encountered 

(§3) regarding the phenomena caused by the relative motions of a closed circuit and a 

magnetic pole have been completely averted in the new theory. 

For let us consider an electric charge moving uniformly with respect to a magnetic 

pole. We may observe this phenomenon either from a system of axes S linked with the 

magnet, or from a system of axes S‘ linked with the electric charge. With respect to
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S there exists only a magnetic field (M,, M,, M,), but not any electric field. In contrast, 

with respect to S’ there exists—as can be seen from the expression for E’, and 

E’ —an electric field that acts on the electric charge at rest relative to S* Thus, the 

manner of considering the phenomena varies with the state of motion of the reference 

system: all depends on the point of view, but in this case these changes in the point of 

view play no essential role and do not correspond to anything that one could objectify, 

which was not the case when these changes were being attributed to changes of state of 

a medium filling all of space. 

As we have already noted, we can find at once the laws applying to a body in rapid 

motion if we know the laws applying to a body at rest. In this way we can obtain, for 

example, the equations of motion for a material point of mass m carrying a charge e 

(an electron, for example) and subjected to the action of an electromagnetic field. We 

know, in fact, the equations of motion of a material point at the instant when its velocity 

is zero. According to Newton’s equations and the definition of the electric field strength, 

we have 

(2) mae = eF, 
dt’ 

and two other, similar equations with respect to the coordinates y and z. Applying the 

transformation equations (I) and the equations (1) given above, we find then for a point 

in any motion whatever 

dx 

d| "a 
3 = =F, 3) a 7 

u 

a 
2 2. 2 

where u= ak + dy + dz 
dt dt dt 

and F =ejE + (2m - Em] 
* * cldt 7 dt * 

and two, other, similar equations for the other two axes. These equations make it 

possible to follow the path of cathode rays and $-rays in an electromagnetic field. Their 

accuracy is almost beyond doubt, more so than the experiments of Bucherer and Hupka. 

If one wants to retain the relation between the force, mechanical work, and the 

theorem of the conservation of momentum, then the vectors F,, F,, F, entering these 

equations have to be viewed as the vector components of the ponderomotive force acting 

on the material point in motion. Under these conditions, equations (3) have to be 

[22]



(23} 

[24] 
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considered as the most general equations of motion of a material point compatible with the 

principles here assumed, whatever the nature of the force (F,, F,, F,) might be. 

If one expresses mathematically, first with respect to the system S, and then with 

respect to the system S’, the fact that the principles of conservation of energy and 

momentum retain their validity in the emission and absorption of radiant energy by a 

body, one is led to the important conclusion that the mass of any arbitrary body depends 

on the quantity of energy it contains. If m denotes the mass for a certain quantity of 

energy contained in a body, then the mass of the body will become m + La if one 
c 

increases the energy of the body by W (ce always represents the velocity of light in 

vacuum). Thus, the principle of the conservation of mass assumed in Newtonian 

mechanics is valid only for a system whose energy remains constant. Mass and energy 

become equivalent quantities like heat and mechanical work, for example, and it takes 

only one additional step to consider mass as an enormous concentration of energy. 

Unfortunately, the change of mass Ld is so slight that one cannot hope for its detection 
c 

by experiment for the time being.
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Doc. 3 

Response to Manuscript of Planck 1910a 

[Before 18 January 1910} 

On page 6 of your manuscript you say: “If, therefore, the oscillations of the emitting 

particles are subjected to certain fluctuations, these fluctuations will also manifest 

themselves in the intensity of the emitting light.” Here you refer to the very point that 

first and foremost makes it seem to me that an explanation of the fluctuations of the 

radiation by the quantum character of the emission alone is out of the question. For, 

obviously, there must not exist any dependence of the statistical properties of radiation 

on the distance of the emitting wall. Let us compare the two cases: 

A receives radiation one time from the surface f and another time from F. Suppose 

that f and F are made of the same material and are at the 

same temperature. If the radiation is produced in quanta of 

the same finite magnitude at f and F, but is distributed over 

the space in spherical waves, then the fluctuations will be 

smaller in the second case than in the first, because a greater 

number of quantum-like acts of emission, with a smaller percentage of the energy for 

each individual act, will work together. One candle produces at a distance of 1 ma 

strongly flickering light; 100 candles of the same kind produce at a distance of 10 m light 

of the same intensity but with less flicker. Further, I did not introduce the constant A 

in the dimensional argument that was to yield the fluctuation of the radiation pressure, 

because this constant just does not belong in the pure undulatory theory of radiation. 

As far as I see it, even at an arbitrary distance from the emitting wall, the latter theory 

does not allow for any fluctuations other than the fluctuations due to interference. One 

of these days I will recommend a more exact investigation of this problem to a doctoral 

candidate. 

Further, you consider it a weakness of the quantum conception that one cannot see 

how to conceive of static and stationary fields. In this matter I am definitively of the 

opinion that the development of relativistic electrodynamics will lead to a localization of 

energy different from the one we are now accustomed to assume without any good 

reason. Without an ether, energy continuously distributed in space seems to me an 

absurdity. It can also easily be shown that the localization of energy as the old action-at- 

a-distance theory had it is compatible with Maxwell’s theory; one of these days I will 

publish this in connection with some other material. Though Faraday’s intuitive 

representation rendered important services in the development of electrodynamics, one 

cannot conclude from this, in my opinion, that it must be retained in all its details. 
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Doc. 4 

Lecture Notes for Course 

on the Kinetic Theory of Heat 

at the University of Zurich, Summer Semester 1910 

[19 April-5 August 1910]! 

Uy uy Us uy uy ouge- 1 chy-teaty 

du 2k 6S ee 
mat 2 a 

— 
r 

1 1 

x|mxX, = X, . , { pat = | > —kdt 

0 0 

YVimxk =) Xx 

x¥ = 4 3) — x? 
dt 

= 2) nyuymu, 

S (Smt) —2L=)Xx+-4+- 
[i dt = m(u, — u,) = —2mu, 

I 
0 

= 25, mymit = |“ ae 
av 3}-1 3V 

pdscosa-r = p3 — 
road 2 

jp* pV==L 
2 3 

pVv= 3L- = 

applied to one gram-molecule 

2 

a ..3RT 
ml 9 N 

pV=RT gas eq.
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test Ze =¢ =3R le, - <e> =C, +R = R ®%23 
a” 2 3 

) 
2 ¢, 

v 

The law pV = zl also holds if several different kinds of molecules 

If r, gram.-molecules of the first gas, r, of the second gas 

pV = Hae + Rr} = RI(r, + r,) Dalton’s law."! 

Virial theorem 

d*x d?x 
x|m52 =X Eee t+ = Em(xGr ++) 

L= ZL ++) 

dsrcosnr = (3) 3d 

3 
L==pV 

aP 

Pressure of an ideal gas. Analysis as in Boltzmann. Also using the virial theorem, (p- 1] 

3 L ==pv 1 5P (1) 

On the other hand, according to the equation of state 

pV = RT, if one gram-molecule is present"! 

From this, RT = 2



{p. 2] 
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(5} 
ew 

or me =L£ .3Ry7 Ve = a 

Thus, according to the equation of state, the mean kinetic energy of a monatomic gas 

depends on the temperature but not on the constitution (mass) of the molecule and not 

on the density of the molecules. We shall see later that it is also possible to prove this 

law on the basis of purely molecular-theoretical considerations without resorting to the 

equation of state, that is to say, the equation of state can be deduced entirely by means 

of the molecular theory." 

<From the constant of the equation of state> We can use (1) to calculate the mean 

velocities of the gas molecules,” & this calculation obviously applies in the case of 

polyatomic molecules as well. Here L denotes then the kin. energy of translational 

motion. 

Le 3 pv<applied to a unit volume> ae 35 = nme = 82 
2 V 2 2 2 

yes “107 - 
@ = BP or also beaiepv =n = Mme oe 

p 2 2 2 2 

18 -10° 
ed (8) aaT = ME =RT 18-10" 

2 2 = 1.3-10° cm. 

For JT = 273, one obtains in this way about 1840 m/sec for hydrogen, etc. 

<Our analysis leads further to Avogadro’s rule.> The rule that at the same temperature 

and pressure a given space always contains the same number of molecules can be 

presented as a consequence of the theory only after it has been proved by purely 

molecular-theoretical considerations that the mean kinetic energy of the translational 

motion of a molecule depends only on the temperature. ©
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The Specific Heat of a Monatomic Molecule 

L= 3 OV for a gram-molecule dp 
2 Vd ip 

L=2RT SPs (RP 
2 3p V3M 

dL 3 3. sR {10} V=RT 
—_—= en *=~- ~4 pr= 
ar QR = 347197 *3 

5 -M=V 

C=C +R=5R 

OR 
= => = 1.66- 
Co 3p 

2 

E=L+6,=5RT+E, 

. c= BR + Fa SR +c 

C= oR +e 

cy STOR 

& 3462
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€ 
Since c; obviously increases with increasing molecular size, —£ is here <? and 

c 

approaches unity with increasing c,. 

Approximate Theory of Heat Conduction, Viscosity, and Diffusion 

To simplify the calculation, we shall assume that at the same location all molec, have the 

same velocity \e . We designate by 7 the mean path length of a molecule on which the 

quantities to be calculated depend. 

Transport of Any Molecular Quantity through the Gas‘! 

a 
mn number of molecules in unit volume. 

ndx number " . "  " "of spec. k 
> 

. : naxc costdt 
During time di, v = =< 

7 

fly from top to bottom 

dx _ sintdtdw a 

4n 4n 

Each molecule carries along a certain quantity of something, with this 

amount depending only on where the molecule’s last collision took 

place. traveled freely the distance 4 up to the layer comes from the 

0G, 
layer z =z, - A cos % There the value G(z, - Acost) =G, “z heosd obtains 

Zz 

permanently. Thus, the v molecules carry along during dt the quantity 

aG, 
yG, - ——Acosd}. 

oz 

In the same way, we find that the amount delivered in the opposite direction, charac- 

terized by the opposite cone, is 

f aG, -v|G, + ——Acosd}. 
oz 

Here v = v’, so that we have in all (for x + x’)
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dc ,, 0G 
-2v2OxXc0s0 = -2n ——dt—— Acos®* 

oz 4x az 

dF = -2 ncdtx — cost’sintdddde 
4n az 

This we have to integrate:"*! w from Q-2n, and 6 from 0 to 1/2. 

F_ aG sind? 1. 8G 
— =-nmcA—- = -LncA—— 
dt a | 3 3 

Fe= Wien 8E : 
3 oz 

Free Path 

Assume again that all molecules of a given kind have the same velocity. 

Collisions of a moving molecule (radius R,) with stationary 

molecules (radius R,) 

Collision as soon as the distance between centers R, + R, = o 

Volume covered in unit time 

mco" 

second kind 

Zi, = NyhC,0" 

_t eu Number of collisions of mol. of kind 1 with mol. of kind 1 

_ 2 
Zyy = My NC,Sy’, 

where s is the diameter of the molecule of kind 1. 

Number of col. of a molecule of kind 1 with molecules of the 

We now calculate more precisely by taking into account the fact that the molecules that 

are hit are set in motion. First, collisions with molecules of the kind previously 

emphasized (dx)! 

[p. 4]
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c2 = c}? + c2 — 2c,c,cos9 
- 

dZ,. = n,n0c, dx % 

re dw d$ 

4x 

n no? [* 
Z12= 4 

Te 9=0 Jw=0-2n 

x /(c? + c3 — 2c,c, cos 9) sin 9dew d3 

2 rn nyo 1 2 
=? l(c? + 2 — 2c,c, cos 9)?” 

0 
} 

2 ‘2exe; 3 
yw 

(ce, +¢)*—(e, —c2)* 
vr 

6cic, +2c3 

13 
Z12 =n 2x0" (c, + =—* 12 2 1 3c, 

4 

Z,, =n,7s? {fa 

We obtain the mean free path by dividing the velocity c, of the molecule by the number Ip. 5] 
of collisions per second. 

Cy 1 ch my 
Ay = Z = 2 c 7 m, Zat+Zi 4 2 1c3z 1 2 

gms +n,Ko +32 

1m, 
a 

( 3 =) 
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Thermal Conductivity 

v 
Heat conduction from the fact that, on average, each molecule the amount of heat 

with it. Hence the heat conduction will be 

: nf . 
Since W is concentration n, we have 

1 la= Oncae 
lead 

1 
= _pcdAc 
3h 

For monatomic gas C, = aR 

Further, if one inserts the value for A into the first equ. for k, one obtains 

1 cC, 
kel 

4as°'N 

It turns out that the thermal conductivity is independent of the density of the gas. 

(Limit of validity of this law.!) 
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[p. 6] Viscosity 

We compare this with our expression 

so that we get E =¢ 
R 

v 

Accurate to an order of magnitude"®! 

| | RK « observed 

ou _ 1 Ou Ou 

daxsz 0 we 

x calculated | quotient 

H, | 2 |1850-10¢ | 035-10 

O, | 32 | 1.880-10* | 0.056 -10° 

0.21 -10° 1.6 

0.029 -10° 1.9.
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We can set p = nm 

From this one sees that k should be independent of the density, which has been 

amply proved by experiment.°7 Further, we have c « /T , which should thus hold 

for k as well. But it does not hold, because s decreases for higher temperatures (the 

elastic spheres model not completely applicable.""*! 

Diffusion of Molecules of Kind 1 in Molecules of Kind 2"°! [p. 7] 

dx 
A edt cos p- 7 my (2o — Acos @) 

‘colt 

edtcos 9 (> — ot Joos °) 

—céteos 0 ( + ot Aeos 2) 

sing dwdgp 1 On, 
dZ = —2cdt ——— batt cdt cos 9 dn COS p— 

On, 
Z=—- at cos? gsing dy = ja az 

cos*y|"? 1 

3 | 3 

If » denotes the concentration of the gas in a, one obtains by dividing by N 
cm 

Diffusion gram-molecule = JN ene -pon 
3° & oz 

p-1a 15-10! -10°5 = 0.16% 
3 3 
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We found earlier 

Comparison yields 5 =p. 

This relation also proves to be correct to an order of magnitude”! 

| R | Mean | Dorserved | Daroaates 

“10-4 of tsi! | mao | or | on 
b : 

ip. 8] Path Length and Actual Size of Molecules! 

i- 
R= per 3 PS 

p = density 

Approximately c = se 

1 also yields s’n, and thus s’N = sin = on 
n 

N 

If molecules are packed perfectly tightly, then molecule occupies roughly the space 

s*. The value for all molecules of a gram-molecule therefore s°V. Hence we have 

s’N = A (from path length) 
s°N = V (approximate molecular volume in the solid or liquid state.) 

n
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One obtains s= i 
A 

3 

N = 
py 

The determination of N very unreliable because of the powers of A (path length) One 

obtains values between 10” & 10%, s = 10°? mm.) 

Direct Influence of Path Length on the Phenomena 

We had considered\the flow of the molecular function G in a stationary state. Must be 

equal to this flow when infinitely close to the wall. 

For the molecules lying off of the wall the value of the quantity G is on the average 

G,. For those going up\ards from below the value is 

Ay v 

When the molecule returns, it has G,. Hence the molecule transports [p. 9] 

G, -|G, <+> - ° Acos<g>t 
pa 

There are n = such (dx) molecules in a unit volume. 
19 

hence nXe dt cos act in the time element dt 
T 

Hence total flow through surface
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, 0G, i 
if (G, - G,!)<+> - x sod «ng Oe cos <> ™ 

T IZ 

But F must be of the — as for the middle cross section, where its value 

is Bo as . Hence, 

dG _18G 3 
o~ sliltte< ~—(G,-G! 
az az : ay Ce °) 

10G __ 3 Ww = -~G’ 
2 a aq 0) 

(25) G, - Gy = 2488 
ra 

As we see, there is a jump corresponding to 3h. Has been proved by Kundt and 

Warburg for viscosity, and by Smoluchowsky for thermal conduction. 

[p. 10] Phenomena at Walls Owing to Finiteness of Path Length 

———_——_—_—_— We assume that G changes linearly down to the lower wall. 

There, but in the gas, G,’ For the molecules flying off of 

the wall G, In the terminal cross-section as well we must 

have 

F.= 3 oz 

On the other hand, G-flow calculated”



Doc. 4 KINETIC THEORY LECTURE NOTES 157 

dk 7 0Go 
na (« - Ac0s9°S°) cos 

dk = sin $d9 dw 

, (7? sin $d9 daw 8G, [ sin 8cos? 9d8 dw 
Integrated F, = ncGo { — A > ny 

i , 1 ,dG> 
rT, = qreSo _ gra 

On the other hand, assuming that all molecules coming from the wall have G,. 

f= 5nGo 

1 , 1,06, __1. aG 
F=F, -—f_ = gnclGo Go) 6” Ae = =nca ae 

1 , 1 (dG 
Thus glo _ Go) = ~ eed aa 

; 2,0G 
Go el Go — 343, ; 

Is a positive quantity. Right side shows how much G changes over the distance 5 A in 

the gas. The space occupied by the gas would have to be increased downwards by oa 

in order for G to assume the value G,. 

For viscosity, one must set 

or u 34-2 
az 

CT 
For heat conduction G = i 

[p. 11}
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Both consequences have been confirmed to an order-of-magnitude.! 

Gases in Narrow Channels (Knudsen)! 

Flow. If tube wide compared with cross section,” 

quantity of flow-through = i Rte . 

per unit time 

We now investigate the flow under the assumption that the diameter of the tube is small 

compared with the path length._— 

nic cos® dt = number of incident molecules in time dt 
Te 

Thus, in unit time from all angles together yA ‘ 

~@) ne | SaBdoas oe 1 
a = 4” 

The ones that impinge during dr from the cone dx will each bring along the momentum 

2mc cos § each. hence molec dx in unit time 

afk Qnc’cos’d . 
4x 

z aw 
All together = 2nmc’ f cos Pointed? = znme = p. 

id 
0



Doc. 4 KINETIC THEORY LECTURE NOTES 159 

Now consider narrow tubes. Velocity u in a cross 

section. Regarded as constant over the [p. 12] 

cross section. On the average, each impinging mole- _*. 
=> eer, 

cule brings to the wall the momentum mu!"!; 7 ne 

molecules impinge per unit time. Bring along the momentum ; ne -mu (per unit 

1 . 
surface area. hence a nmcuP per unit length.) 

This momentum is supplied by pressure forces at the beginning & the end of the layer. 

If the cross section is g, then the above quantity is equal to 

qP, - 9p, =q4 

Hence gA = jrmeuP 

Now we have ( = imme’) nm =pc= | 

so that (u “(em) (Ba) x ad). 

Hence quantity per unit time = — | — Ta 

Found & confirmed by Knudsen.™! 

in Capillary Spaces®4 

Consider two surface elements. ca Ps 2 

Pressure Differences Produced by Temperature Differences “4 

First, case of the thermal equilibrium. it wet 7 7 
Pa . Re 7 <Of the molecules impinging at 1, the fraction> ;
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dk eo : ; 8 
n ae cosé impinge on unit surface area in unit time in the angle dx. hence from 

719 

fhonf, 

Kio . f.cosb, 
far nee cos®,, or, since x, = —— 

™ 

is 
gee cost, cost, 

Symmetrical with regard to indices 1 & 2, as it must be. 

[p. 13] If we assume that f, & f, are part of the wall of the tube, and that n & c are functions 

of the abscissa, then the number of molecules sent from f, to f, will be determined by the 

values of n & c at f,. Hence number of molecules sent per sec from f, to f; 

Number of molecules sent per sec from f, to f,: 

wre, 

Let us now assume that no flow takes place. Then the two quantities will be equal on 

the average. Hence, 

ne, = HL, 

2 2 
1 Cc 1 Cy 

or — =— 

or Po VT 
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In such spaces, the pressures behave like the temperatures. 

Brief Discussion of the “Light Mill”?! 

we 

Molecular Processes and Probability! 

Let a paint move on a plane according to a law of the form 

These equations determine the Kotion completely if only the initial position of the point 

is given. If we follow the point, then a variety of cases can occur.!"71 

1) The point describes a totally closed curve. In that case we have an integral 

of these equations such that y(xy)\< const, such that to each x there corre- 

sponds a finite number of y values. shall exclude this case for the time 

being. One can reduce it to the opposit&case by decreasing the number of 

variables by 1. 

2) The point describes a curve that does not clos 

Here again we can distinguish two cases. 

a) The moving point never returns to the immediate vicinity 

plane it has already passed. I.e., xgy. is such a point. We can 

a circle with a very small radius R around x,y, such that once th 

left the circle, it never returns into it again. 

b) The moving point returns to the immediate vicinity of each point 

plane that it has passed before. No matter how small R around xy,Ns 

a point on the 

{p. 14]



162 DOc. 4 KINETIC THEORY LECTURE NOTES 

Ne assumed to be. The moving point enters again into the interior of the small 

circle. 

ExampleVor case 1): 

x— +y-2 = const. 7 = const. 

39] {p. 16] Second proof 

N 
repeated — _ times. 

n 

Hence, c_an This relation is also val if ds 
T NV jconsists of several parts. 

The concept of probability as defined can also be extended to the case where the 

point moves according to such a law that it does not describe a closed curve.“ We 

have in mind a cylinder & a point moving with constant speed on it along a spiral hne.
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4 
——-_~ 

L : MS 
‘ 

ye. \ 
\ \ 

— a 

We think of the cylinder as being bent together into a circular ring 

(torus). If the ratio of ! to s is rational, then the line will close after . re 

a finite number of turns, so that the case reduces to the one consid- 

ered above. But if the ratio is irrational, then a new case. Line 

does not close. But statistical consideration possible in this case 

too. We choose surface o on the torus and observe point for a 

long time 7. A fraction t of this time is distinguished by the fact 

that point lies within o. We consider 

li ‘) 
( m T T=0 

A limit will exist for this fraction. We have to think of this limit as the probability W, [p. 17] 

of a, or also as the probability of encountering this point in o at an arbitrarily chosen 

instant. Here too the probability can be visualized by means of a stationary point flow 

as = , which can be proved as above. That is to say that, to any approximation 

desired, one can replace a very large number of non-closed turns with a closed one. 

We now generalize the examples considered in that we leave unspecified the law 

according to which the point moves. We set 

dx 
a 9, (9) 

dy 7 
aH 7 097) 

@ . #, ( )



[p. 18] 
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These equations determine the position of the point at time ¢ + df if it is given at time 

t. Thus, path completely determined. Obviously, there can be statistical laws for the 

motion only in the case where the point later on returns arbitrarily close to a point it had 

already occupied once before. But in correspondence with the previous examples, we 

must also demand that, based on the assumed law, it be possible to construct a stationary 

flow from infinitely many (N) points.” In this flow there will be ndt points in the 

volume element dr, and n <will> should vary continuously with the location. 

Let the flow be a continuous one. From this we obtain an important formal relation. 

|ndt], = [ndt], , ,- 

Since a change in the number of points present in dt can occur only by points entering 

or leaving the space, we can also say: The sum of the points entering a volume d+ during 

time dt is zero. 

Get 
n [oe Ga = number of points entering through dy dz during df 

= dy dz dt -(n@,) 

In the same way, one finds that the number of points leaving 

through the opposite surface is 

dy dz dt(n'9,’) 

_ A(n@,) 
Since ng, - n’@! = re dx, one finds that the excess of entering over exiting points 

is 

_ Ang) 
x 

dxdydzdt 

The other two pairs of lateral surfaces yield . . so that the total excess of the entering 

over the exiting points is 

[are) | ne,) | A(n9,) 
dxdydzdt. 

ox oy oz 
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This must vanish for every volume element. Hence we must have in the entire space 

fs) 8 ont, Ones, Ong 
ax oy az 

This is the mathematical formulation of our condition. We want to write it in another 

form. We have 

am 2, On) (inde...) ag 
Ox ey az Ox dt 

The second term can be written as 

on ay + On ay + Ona 
Ox oy dz 

dt 

where dxdy,dz are the paths described by a point in the time element dt. The 

numerator is thus the increase in point density in case one passes from a point xyz to 

a point that the point present inx y z reaches in time df. We can always use the symbol 

“d” for these increases & write more concisely 

om. aig n) 
r ae) 1 

7 ox dt. a 

Let us now consider a special case to which the general case can be reduced, as will be 

shown later on. That is, we assume that the functions @ that determine the law of motion 

of our points satisfy the condition 

C7) ay. & 
ox 

In this special case our law becomes 

++ =0: 

[p. 19]
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dign =0.::: a (1’) 

This says: No matter how long we follow a point on its trajectory; the point density n 

is everywhere the same.') 

<Two cases are possible> In what follows, we will assume 

<1)> In its motion the point covers a three-dimensional space. We will confine our 

statistical analysis to this space. In all of this space, then, n = const. The point density 

is constant. Probability of a spatial region a = lim =. 

2) The law of motion is such that, in its motion, the point remains constantly on a 

surface. In that case, all that follows from equation (1’) is that n has the same value for 

all points of the surface. Let this be y(x y z) = EZ, where the value of E can be chosen 

arbitrarily. E is then determined by the initial conditions. In this case we can conclude 

that depends on E alone. n = y(E). In this case as well, the statistical properties are 

thus established to the extent that the conditions of the problem permit it. 

In fact, the problem in this case is a two-dimensional one, since the position of the 

point on the surface E = const. could be completely determined by two coordinates. (Cf. 

example of the motion on the torus.)'! Thus, <the statistical laws for an individual 
system cannot here be deduced immediately> from the statistical laws for a stationary 

spatial flow. 

fs] 
[p. 20] If we do not assume that > = = 0, then equation 1) needs further interpretation. 

The right-hand side is a time derivative of a spatial function. The left-hand side of 1) is 

then integrable, & one obtains an equation of the form: 

dn = Nw(xyz)dx dy dz. 

or also dW = a = w(xyz) dx dy de. 

Introducing new variables —n in the place of xyz, we can obtain 

dW = W(E,n,0)D d&dndq
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If we choose the substitution such that y‘D = 1, we have again dW = const. d& dy df, 

that is, the same kind of law as above. But in the following we will confine ourselves to 

fe] 
the case where > = =0. For this case it has been shown in the foregoing that 

already for the initial choice of coordinates, the probability of a volume element is equal 

to a constant multiplied by the size of the element. 

Generalization of the theorem to a structure that is completely defined by x 

quantities p,----p,, and the change of which is completely determined by n equations 

lp Ot = ey B) 

ap, 
va a eP, P,,) 

dp, 
+ %,, P,) 

. . . a og, . 
n is an arbtrarily large but finite number.“ If } — = 0, then we have again 

dn = N-const dp,..... dp, 

dW = const dp,...... dp, 

Consideration of a Special Case of Particular Importance 

We consider again point moving in the space according to an arbitrary law. But we no 

longer assume that the point sweeps the entire space in the course of its motion, and that 

after a sufficiently long time it comes arbitrarily close to every point of the space under 

consideration; instead, the point will always remain on a finite closed surface. One could 

reduce this case to the more general case considered before insofar as one could 

completely determine the position of the point on its surface by two coordinates. 

However, this would lead to great difficulties in applications. 

So as to be able to apply three coordinates in this case as well, we consider again 

not one point, but © many points. Each point moves on a finite surface e(xyz) = const. 

In this case as well we can ask ourselves about the condition that must be satisfied for 

[p. 21]



[p. 22] 
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a stationary point flow. However, we can now no longer infer from the number dn of the 

points of an elementary volume dt the probability of the region for any arbitrary one of 

the points, precisely because the trajectory of a point does not fill up all surfaces 

e = const., but, instead, only one of these surfaces but “ is a probability in this case as 

well, to wit, the probability that a point picked out at random from among all N points 

will be found in the region dt. 

Treating n again as a continuous spatial function we obtain again as the condition for 

stationary flow the condition 

ax ax dt. 

ong, 0 0g, _ _dlgn 

For the individual moving point we will again have n = const. if ¥ = 0. That is to 

say, the spatial point density is the same for all points of a surface y =e. But it can be 

an arbitrary funct. of e. Hence, we have 

dn = const - (e)dx dy dz. 

Generalization of the theorem to m dimensions. 

The simple expedient of considering « many systems instead of a single one puts us in 

a position to treat systems whose p, lie permanently on an n-dimensional surface in a 

statistical manner, in the same way as those without this property. However, the 

statistical distribution is here not yet unique by the equations of <motion> change.!! 

We can still freely choose (2); this is based on the fact that we can still freely choose 

the number of systems whose e lies between given limits. 

The simplest case that we can choose is that of setting (e) constant for values of ¢ 

that lie between e & e + Se, but equal to zero for values outside these limits. For a re- 

gion lying entirely between the energy shells e & © + de, we will then have 

dn = const -dp, ..... dp,, 

dW = const dp,...... dp,, 

if, as we will always assume in what follows, 

yr 2% <0. 
ap, 7 

Gibbs calls such a phase distribution a microcanonical one.'“! The smaller the 8e, the 

less the paths described by the various n-dimensional points differ from each other, and
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the more the statistical properties of an individual system are similar to those of the total 

system. 

Let there again be one, and only one, integral equation «(p, .. 

individual system.) We call e “energy.” Let the system stay on energy shell. Then 

Canonical Ensemble”! 

the total system is again governed by the equation 

5 e 

where w can be chosen arbitrarily. We choose ye = e ®.'*" so that 

In this case it is not immediately obvious that all systems have practically the same 

energy. For our exponential factor does become infinitesimally small for large e but not 

for small e. We will demonstrate this right away, however, for the special case where 

dn = const -p(e)dp, --- 

dn = const e Sap, ee 

the individual system is an ideal gas. 

The state variables p, p, --- 

The equations of change become 

x7, 

Bnd, 

dx, 

at 

Xr 

Enh, 

sere XYZ; 

dy, _ dz, 
dt 1 at 

1 oh) 

m ox, 

Ideal Gas 

-p, are given by 

-- dp,, 

Py 

.. P,) = & for each 

{p. 23]
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te] 
The condition }> — = = 0 is here satisfied, since the quantities 

v 

vanish one by one.!* 

Thus, if we consider a system of many (n) gases," then the fundamental statistical 

equation here takes the form 

dn = const.p(E)dx, «dx, +--+ dzd&, +--+ df 
v 1 

For the canonical composite system we will then have the equation 

E 

dn = const.e ®dx, «+++ dzdk, -- dl, 

Now we want to investigate how many systems have an energy lying between E & E + dE. 

Since in the case of an ideal gas the potential energy <for all points in the interior> is 

very small compared with the kinetic energy in all generally realizable states, we can 

neglect ®, and we obtain 

_E 
dn,, = const: if e ®dx,+--dzdt,---- dl, 

E&E*dE 

e ® can be taken out. The integration over dx, - - - dz, yields V’, (thus a constant). 

All that remains is to carry out the integration 

J dE vreee di, E= leit i) 

This integration can be performed by means of the following argument 

€or + ¢? = const. is the analog of the spherical surface in / dimensions. The 
radius of the two bounding spheres is
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2E | ME + dE) 
m m 
R 

a difference of radii up to constant VE ag ae 
m E jE 

2 1dE 
— yE ji + 2 
m vE [ 2E 

L-dimensional spherical surface to be multipled by the difference of the radii. 

f-1 

spherical surface = R’- 7? = E = ves 
product E? dE 

1 

difference of radii = dE E? 

Thus, we obtain 

Ell, 
dn,, = const. E ®E? dE 

We form the logarithm of this function (5 os 1}iece) = 2 

(p. 25]
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<lg> t , E,(1 + e)e small 
2 

E-6° =(eny 

ere is E, where exponent is maximum. If / is 

BS rge <& @ smali, however>, this differential 

quotientchanges very rapidly with £. Thus, canon- 

ical distributien has in this case as well the re- 

quired charactefx_Due to the fact that n is very 

large number. One say in general. If an <ca- 

nonical> individual sys consists of many ele- 

mentary structures, then, fotsa_ canonical distribu- 

small, an individual system is thereby retyced for 

all statistical questions to the corresponding cahgqni- 

cal ensemble. 

<Properties of Canonical Composite Systems> 

We set E = E, (1 + €) 

7} 

2 E,+e wE ~ © ....f “0 7 “5 
te | 7) 

IgE = IgE, + 

Exponent = [5 7 i 

Because E, is the maximum value, the terms with e vanish, so that we also have
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l e 
Exponent = -(5 _ We Bi ) 

drigg = konst e~ ¥2)-1 M2 2)-).---) dE 

The quantity in the exponent vanishes for e that are smaller the greater the /, i.e., 

the number of molecules. Hence, the greater the number of molecules, the less the 

energy values of gaseous systems deviate percentagewise from each other. All of the gas 

systems in our canonical ensemble have approximately the same energy. The same is true 

for each system in the molecular model that consists of very many molecules. 

Practically all of the systems of a canonical ensemble possess the same energy. 

Instead of investigating the statistical properties of the individual system, we investigate 

the statistical properties of the canonical ensemble. 

Temperature™! 

We consider a microcanonical ensemble whose statistical propertics are completely 

given’! by the eq. 

dn = nCe ®dp, s+++ dp, 

According to the aforesaid, the greater the /, the more the statistical properties of 

this ensemble resemble those of an individual system of the kind in question. Besides 

being determined by the <equation of state> functions g,(& e), the behavior of the 

ensemble is completely determined by the constants C & @. But the latter two constants 

are not mutually independent, because we must have 

fan =n = total number of systems, hence 1 = Che *ap, s+: dp, 

Thus, the reciprocal value of C is equal to this integral. The statistical behavior of the 

ensemble (hence also of the individual system) is therefore determined by ®. For a 
given composite system, @ will determine the energy of the system, and vice versa. 

We want to show that, up to a factor, @ has the meaning of the temperature. 

If we imagine that the system under consideration consists of two parts and that, up 

to the negligible, e = H + n, where H depends only on the II, and y only on the 7,°7 
then 

{p. 26]
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(Hen) 

dn =conste © dil,---- dU: dn,--- dn, 

[p. 27] We now inquire into the statistical properties of the system of the 7, leaving aside the 

statistical properties of the systems I. I.e., we ask how many systems dv of the 7 are to 

be found at an arbitrary instant in a state that is characterized by the region dn, .... dt,,? 

The number of systems for which not only the n lie in the region dn, --dn,, but 

also the II lie in a specific elementary region, is 

a) LH 

dn = const -e ®dn,-:-- dae *d0,--- dU. 

If one omits the latter condition, then one has to sum over all regions of the II while 

keeping the elementary region of the x fixed. Hence, 

ua _H 
dv = const e Sdn,----dn, fe Sal ---- dO, 

The fast integral does not contain the 2. Hence the result of the integration is also 

independent of 7, so that we have 

a" 

dv = const e ®dx,---- dr 
2 

where “const” denotes a different constant. Thus, the ensemble of the subsystems 7 

again forms a canonical <system> ensemble with the same constant @ as the ensemble 

of the original systems. 

The same holds of course for the <system> ensemble of the II, if it is considered by 

itself. This is also a canonical ensemble with the characteristic constant @. 

If we ascribe the constant @ to the individual system rather than to the canonical 

ensemble, then we can say: Systems that touch each other (for an infinitely long 

time)! have the same ®. Thus we see that @ plays the role of the temperature or of 

a function of the temperature. To be sure, this way of thinking is permissible only if the 

susbsystems also consist of so many molecules that their canonical distribution is almost 

without energy fluctuation.
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Maxwell's Distribution Law 

The law derived for a subsystem of a canonical ensemble 

4 

dn = const-e Sdn-+-+ dx 
1 a 

is always correct if the energy of each composite system is composed in the way indicated 

of the energy of the subsystem and that of the rest of the system, even if the subsystem 

consists of a single molecule We will consider the latter case, starting with a monatomic 

ideal gas. 

Let the rest of the system be a monatomic molecule of an ideal gas the molecules of 

which are not acted upon by any external forces.! We have then 

Be + +e) 

dn = const. e 5 dx dy dz dé dy dt. 

If we seek the probability for the region dEdyndZ, then we have to integrate with respect 

to xyz, and we obtain 

_@+nr+0) a 
-—8 

dn, = const e 2 dtdydl 

or also 

_(@+n?+&) —j 

dW=conste ™ dEdndt 

This formula contains the simplest case of Maxwell’s distribution law. To be sure, as 

regards its derivation, it has so far been proved only for a randomly chosen system! 

of a canonical ensemble. But since that probability must be identical, up to the 

vanishingly small, for the individual systems of the canonical ensemble, because of the 

nearly identical energy of the composite systems, the formula also holds for the individual 

system, and the greater the number of the molecules constituting the composite system, 

the better the approximation to which the formula holds. 

[p. 28}
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Ip. 29] € multiplicative constant can easily be determined from the condition dW = 1 

+00 

1 = Konst- | € adn dt = cost| | 
—o 

3 
e P/2ime ae| 

J(2ime 

—? dar dr = | e*4dx = n° 1160 
i] 

e i 

“3 = 
—8 | 

We have dW = conste ” dE -e m dy “= dW,dW dw, 

The probabilities that { lies between specific limits are always the same, no matter 

what values — & » may have. (Probability of mutually independent events.) 

e 

2 

dW, = const e am We wish to determine the const. 

fam=1 konst [2e:feeiane Pe 
=} 

20 
m 

2. ft konst- Ze dy =| _ fm (2 a © x konst oe} 

use-—_—/’ ee 

«2),/n
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This is the constant of Maxwell’s law. If the law is written in three variables, then the 

constant is to be raised to the third power. 

Now we seek to calculate the mean square of the velocity. n systems constitute 

canonical composite system. 1 specific gas molecule in each system singled out.) 
In dn, & is between E + dE 

We have 

yz _ Dé’ of the selected molecules of all systems _ fe’dn, 
number of systems (1) Sdn, 

Hence [p. 30] 

I xt) __ | —x2 ied LS ie x? ~} [xe )= 5 xe . +3{ ed 

uy 

0 

2 
{" PF onste ezimeg 5 
-2 26 2 {~ 2-2 

oa —@ x’e* dx 
2 = m_ oo © 

_ é m +0 ; m 
konsf e 3 I2im\@ J ee’ dx 

26 mS 
m 

We obtain 

8 #-2 
m 

We obtain the important theorem that the kinetic energy of a monatomic gas molecule 

depends only on 8, and is independent of the mass of the molecule. The mean kinetic 

energy of a monatomic molecule depends only on the temperature.')
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We will show that we have thereby proved Avogadro’s law for monatomic gases, i.e., 

that at a given pressure & a given temperature a unit volume always contains the same 

number of molecules independently of the nature of the gas. 

If we have an ideal gas of arbitrary volume, then the virial theorem implies that 

3 
L=LpvVv a? 

If V = 1, we have 

Dp- (Ge => 
2 2 

mec 
If, in accordance with analysis given above, we set a 30 , we thus obtain 

Z = 6 where ® depends on the temperature alone, which proves Avogadro’s law for 

monatomic gases. 

[p. 31] Beyond this, we investigate to what extent the equation of state for ideal gases can 

be deduced from the investigations carried out thus far. We derived from the virial 
theorem 

3 
L=ipv aP 

If one gram-molecule is present, then V is the molecular volume. We have then, in 

addition, 

Hence, by substituting into the above formula, 

pV = N@ 

Thus, pV depends linearly on the temperature function @ that we introduced, and 

depends only on it. 

We have thus shown that according to the kinetics of monatomic gases, pV is a 

function of temperature alone. One can also deduce from kinetics alone that this 

function must be equal to



Doc. 4 KINETIC THEORY LECTURE NOTES 179 

universal constant - absolute temperature. 

We will delve into this later on, when discussing the second law. At the present we will 

proceed in the following way.'] We will conceive of the absolute temperature as 
defined with the aid of ideal gases by the equation of state 

pV = RT 

We have just found from kinetics that 

pV = N® 

By comparing the right-hand sides 

e- 7 

Thus, © is equal to the absolute temperature multiplied by a (numerically very small) 

constant (about 1.4 -10°"). 
We can also calculate the most common mean values of the velocity of gas molecules [p. 32] 

a ee) 

dW =conste ™ dEdndt 

How large is the probability of c being betweenc & c + dc? Integrate over the spherical 

shell 

_é 
Ze 

dW, = conse ™ c’dc 

we thus obtain
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1 x3-2xdx 

{ e CM 2ImGe4 de = [erste 
@ = se 2e2s =o 

m 2 

[eveae Je x? dx 

feed fe x73 dy 1 x? d(e-*”) 

= 2 2 @-+___ = |£e@ J 
feveae a [ered 1f _. 1 1 i a3 2) x = 2 e* d(x*) fe dx 5 

1 F 
= |~e2. -v8 je i xate")=5 [Pax 

m Ja N m 2 2 
aa w+ 

4 vn 
z_ [S*4) Je ah 

_ RT 
c= vi 16 

(3/2) fo 3/2 
[ame 1= (26) i e**x? dx (2) 

m (7) 2m 

1 5» If Jn 

se 
Jn 

2. 

[p33] 

xyztdo dt 

En € t o derivatives. 
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Equations 

molecule | molecule 2 

de d 
i aN é = @OY:2,9,0 °°) 

2. Al, 

dy _ a" 

dtd 
— =T 

dt 

\ 

dw _ dw _ 

at a 

09, 
It follows at once that > = 0. \So our statistical laws are also valid here. 

v 

_E 

dW = conste dx, GBpooco do (10 variables). & depends only on the derivatives 

E = ™(e2 + 9? + 0) + IR ’shdo? + R’r] © (Ren ) +s ] 

Probability 

lm - (Pegs - 1” Ried + 2 
dW = const. dedydzdbdwe ®? "" "87 dé dC dtdo. 

<dW,,, as if the gas were monatomic.> 

Mean kinetic energy of all such atoms 

ul 

fraw ; ne ty? t+ 0) + mR (O'si?d + tle 3 Vigan 

jaw fe® ‘ae -do
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A, A," - A, 

L=(Q+hoo+ ef), 
we introduce new variables so that we obtain 

=—-n_ In our case or) 
2 2 

But we always have for a gram-mollfe 

: 7 
c, =¢, +R, hence in our case c, = —R 

ae 2 

Is correct for gases that the chemists regard as diatomit!®! 
Generalization of the analysis. 

Let p, :--: p, be coordinates, and q, ..... q, velocities 
Energy can be written in the form (for an appropriate choice of the q) 

E=+TAgq 

P & the A, depend <for an appropriate choice of the variables> ‘gnly on the p. 

Canonical distribution. 

dW = const @ 8 BAG dp -- ++ dp.dg,++ ++ dq, 

Suppose region dp, --- - dp, given once and for all. Let us compare the vel 

distributions that pertain to this configuration of the p,. If we take out everything th 

does not depend on q,, we arrive at
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Mean value\of one of the terms (e.g., A,q,”) 

Ag 

foonst A gie~ ‘dq, dq, _ fade * yA, dq, 

foonst e~ ‘dq, dq, fer A dq, 

Thus, mean value of the kinetic energy associated with this configuration me. Is 

independent of the specific configuratign. Mean kinetic energy of the system depends 

in a simple fashion on the number of mojecules. 

The simplest case for the representation of a solid body 

E=)A,py + 
oneal 

In this case FE =n. 

Magnetic Molecule in a Magnetic Field. (Langevin, Weigs)'l 

We think of a molecule that is rigidly connected with an elementary magnet. For the 

sake of simplicity, we will consider perchance the molecule discussed abdye (diatomic) 

dVK= konst e7(/Oien/2Ne2 +n?+£2) + omR2/2)sin? 902 +e2)]|+(1/8)MH cos 9 dx----dwd&----do' 

This formula is valid if no magnetic field is present If magnetic field present, additio 

term. 

[p. 35]
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k for probability that molecule js contained in do 

(direction 
_ Integrated over variables x YZ En f gives 

z 

constant 

7 
-™ ~f 

M { 

z* len 

_1 mR sino 42 Hi 

aw = constddde fe a a do 

LyHoos® _ 1 mR! (sin?00") IMR? 

= const.dd
du® fe or 

dof eT dt i)
 

{p. 36) For a molecule of a monatomic 
solid substance simplest assumption” 

attraction ar —ax, ay, a2 

p= mere sO * A a ll 

A 

aw-ke® de dy az de an ac ™ 

2 

Mean kinetic energy me 

_ \ m ere tienm dxs- aC 

mJ 2° a 

\e 
dx-77° dl 

m 42 

jae
 ae 

gn 
m 

2,-"* 

30 
BE | xe ax © 

_@ 
N= -0 2 

[- a [ere 

= e 
=6-—-= 

© 
E 65 3 

for gram-mote
cule E -3RT in calories 3 - 1.97-T = 59 T
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Dulong & Petit law. 

Effect of external influences on the relative probability of state regions. 

_E 

dW = const e *dp,---- dp, 

Let us consider two equally probable regions g, & g, of the state variables. We have then 

E 

e *dp.--+- d D ‘Ww, J Ip,---- dp, _ y 

aw, |= 7 
C) eres 

fe dp, dp, 20 

8 

If we now consider the same system, except that an additional term, which we shall 

denote by y,'! is added to E, then we will have 

-_E+® 
dW =conste ° dp,---- dp, Ip. 37] 

Then 

-E+® 
f, e dp,---: dp, a 

an & =e © dW=~ 
dw -E*® 

1 fe * dp,-- dp, 

Examples later.!! 

Canonical distribution yields characteristic properties also in the case when not simple 

mass points but complicated systems—compound molecules in particular—are involved. 

It is best to apply canonical equations. 

L function of p, & #, , in the latter quadratic 

We set = =4q, 
v 

L also funct. of the p, & q,, in the latter quadratic 



{p. 38] 
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dp, _ 8E 
dt aq, 

for closed system 

dq, _ _oE 
a &, 

39, VE WE 
a = ee = 0 

» op, » ES Aa 

Thus, for this choice of variables the canonical distribution is universally valid 

(oGerer) 
dW = const e 8 dp,***** dp,dq,--: aq, 

Kinetic energy essentially positive. Hence expression replaceable by > By, , where the 

r are linear functions of the g. We have then also 

(+-()o%2) 
dW=ke  ° _ dp,-- dp.dr,---- dr, 

where the constant can certainly now depend on the p,. 

For specific p, we have 

-sr8P) 
dW =conste © dr,----dr, 

From this we obtain mean value of 3B. qi= s 

1 2 8 tt n nw a B r =n 

5 wig 2 

Thus, the mean kinetic energy is equal to: : -number of degrees of freedom. This 

holds for every configuration of the p, and thus, generally, as long as L is homogeneously 

quadratic in the q. 

diatomic gas n = 5 

Heat content 3 @-N per gram-molec.
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RT 

N 

or equal to 2RT 

c, aR 

cea] =i4 
c 

c =2R+R) 
Pp 2 

Correct for hydrogen, oxygen, nitrogen, etc.!™! 
For molecules in which the atoms form a rigid body <without symmetry> with at least 
3 atoms, n = 6 

% = 8 - 133. 
c, 6 

Application to Magnet. Molecule 

Magnetic molecule without forces All positions of the magnetic axis equally probable 

wy = -MH cost 

While without field all positions of the axis ; 
would be equally probable isF 

dW = const: dx 

we obtain with field. 

_ MH cost 

dW =const.e ° dx 

| 
sin6d w®@ 

Mean momentum: {p. 39] 
a 

om 
MH cos _ : MH +MH/8 
——_ e MF 0s 51/8 gin 9 day dG- | + xd(e™* of J e @ Jeune * “> i 

=> 

| { eo (MH cos 91/9 sin 9 deydd = | + d(e~*)
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{ We set; mol. weight; Curie for small; Thus; Molec[ular] field (Weiss); derivable as funct of the 
temperature ] 

ta +a 

xe*) — { e *dx 
. MH cos a = 

Setzen wir -—~—— = x = 
© 

fe dx 

NM - 7 
Mol. gew Io (ae~* + ae*) — (e* —e *) 

] e*—e? 

1 1— 1 
Curie!’®! fiir/ki[eine] a ete = >) _9 acosha i 

Ur nag- i — a) e HU sinha 

I 1M | 12 _=_ Hj =_—°H = cosha_ 1 
I, 30 3 RT = m (sont i} 

Langevin!’ 

Also 8821 0. NMH 
I, sinha a RT 

Molek{ular] Feld 

H,, = N-I 

I 

(3) ro) © °h 

MN. I DX 
an 7) lor 

MH, _MN,_ MN, 

pS als Funkt der 
Ig 
Temp[eratur] ableitbar 
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Dependence of saturation magnetization on the temperature. 

Variability of the specific heat. 

jumpwise change of magnetization in crystals. (Hysteresis).!”! 

Application to Stspensions (Brownian Motion)! 

Easisonn = VP - Po)8 @ « ; 

_ Me - pe Nun - 

dW = constdze © = conste 7” az 

Perrin determined with suspensions of resin granules in water. N obtained.* One can 

conclude that Brownian motion takes place. Simpler in the following way 

ii 
dW =conste dx 

Mean value for 5 Or x 

az lg 1kr 
2 2N i)

 

e many such systems treated. 

x instantaneous value. Observed after short time t |path due to force 

|path due to thermal motion A 

Xt, = X — KX, +A=(1 — xt)x, +A 

XA, = (1 — Qxt)x? + 2(1 — xz)x,A + A? 

_ I 7 — 

Xtte a x? 0 

[p. 40]
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From this a ‘RT _z 

3nnP Na 

—, RT 1 
A? = —_- 

N 3anP 

This formula determines Brownian motion. Rotational motion can be obtained in an 

analogous way. 

Magnetism 

1. Gases z 
4 

7, cosha_lpa@) gq = Ht 
I, sinha a e 

a 

For all attainable fields a is so small that one can set F(a) = 7 Thus, practically 

1 1(M\2<DH 
I= P| | eee 

3 loa 3 (%) T 

-M_M _NuH MH 
oY RT? °° RT” RT 

2. Solids. Ferromagnetism. 

To explain the magnetic properties of solids, Weiss assumes that magnetization acts like 

a magnetizing force parallel to them.™! (We shall confine ourselves to one dimension.) 
H,, = NI. 
We then have two equations 

I aMaarte Man, ~ =F) a= 5 (H +H) = (H+ WD) 
0 

First we consider the case where no external force is present; we have then
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I pA 
i F@) , 

0 

I RT 
oe a 
I, MW, 4 

fis 
ANT, _t 

I 7 7 
In this way we obtain relation between i. and T. fp. 42] 

We seek temperature at which ferromag- 

netism vanishes. We obtain 

na 
RT, 1 7 2 LMM _ 1bMW 

MWI, 3 ™ 3 R 3 6R 

Hence, the above equations for the deter- 

mination of the curve can also be written as 

o
a
d
 

o
n
l
 

T 
—.a 

T,, Bl
] 

=
 

= F(a) (remains) 

T 
By eliminating a, one obtains a relation between — and a that is independent of the 

m 0 

nature of the substance. Shows satisfactory agreement with experiment.®! 

Contribution to Specific Heat 

If a molecular magnet changes its position under the influence of the field H, then the 
work is 

H 2mdz = H 2md(Acosd) = H d(ucosd) 

If many elementary magnets are present, then the work 

H “dy pucosd, or Hdl per unit volume will be performed.
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2 
Thus, when the magnetization changes by d/, the energy 

content of the system increases by L 

- Hdl. ? ( 

This formula is also applicable when H is the molecular field. In that w4 

case H = W, so that 

dl 
Contribut to th fic heat -—] ntribution to the specific hea’ 5! a 

[p. 43) Jump at T = 7,, confirmed experimentally. 

Proof that in seemingly not unmagnetized ferromagnetic substances saturation 

magnetization is really present.® 

Hysteresis qualitatively explained. 

Paramagnetism, with Weiss’s Force Taken into Account 

I _ HH _ IoM — = F(a) a= ~— = orT Et WI) 

7 to 
wo” 

a | 

vA aa V,=M 
A | 

M IgV __IpM 
N WN pN 

If only infinitely small fields are admitted, then a = af. If this is inserted into the 
0 

b
a
d
 

second equation, one obtains
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1 CERY e+ wn 
(1 —aW) =a 

oa 
=———_.H 

s 1—aWw 

a and W can be determined from the paramagnetic state. Everything in « is known 

except for the molecular weight M, hence possible to determine this. Magnetic molecules 

of iron diatomic for ordinary iron.™! 

Brownian Motion of Rotation! [p. 44] 

A parameter., in the absence of an effective cause, let all A 

7 “ip 
be equally probable. If force -ad, then energy-a * 

Then 
ai 

dW = const-e 2®da 

From this a2 = 

a
l
®
 

We imagine system, value A, 2 changes during time t 

1) -aA -Bt (B = motility) 

2) Change +A due to irregularity of thermal processes. 
Arey = A, — OBA, + A=A,(1 — aBr) +A 

22,, = 22 = 22(1 — 2aBr) + 27,A — 2aBrd,A + A? 
YW \Y N24 

vanishes vanishes 

A? = 2aBrd2 = 2BOr 

If we are dealing with the rotation of a sphere, then we have to set A = angle of rotation 

B= 
8rnP* 

mw -— RT, 
4mmP? N
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{p. 45] Canonical Distribution & Entropy 

E Ee 
dW= Ce ®dp,-- dp, =e *dp,--- dp 

E dependent on p, --p,, and in addition on A, --- 4,2 

After « small change of state, canonical distribution obtains again. E has now 

parameter A + dA We call this function E + dE. = E + Da oe ah 

The temperature is @ + d@. c then has the value c + dc. 

Before and after the change we have J dW = 1. 

7 (ex aa) E 

fe rds dp,---: dp, - fe Sap, Cone dp, =0 

The first exponent can be developed 

yeaa 
oe) Albee =o 

8 e 8 

Thus, the above equation becomes 

ie + ate - Eitalet “Sdp,--- dp, = [( dW = 0 

This can also be written as 

This equation holds for every ~ small change of state 

We omit bars & prove that }> = = A (the work added to the system)
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<Now we have> 

oE OE 
—_—d —di 
a L, Py i > OA 

aE re Lat Lad 

de + Fae - HH =2 =0 Q - de rae) =4f5 - 4] 

eo 8 6) “lé 

Thus, 2 is a total differential 

[p. 46] 

Thus, quantity on right is equal to the entropy. We can rewrite this 

= 

fe 8dp,--- 
dp, = 3 

Igf =O ct tafe Pap,-- dp, =9 

Since all systems practically the same energy, E can be replaced in this equation by the 

mean value E, 

Thus also 

Q R E+bE 
R 

s = De = we J ap, pe Pa tor given A) = wate 

feb 

Entropy = const - magnitude of the region of the elementary variables that belongs to 

E& AOC dy



[p. 47] 
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If one considers once and for all a system with a given energy value, but assumes that 

the 4 can assume all possible values (piston does not exist), then 

dW = const dp, ----- dp, 

If one designates W as the probability of an arbitrary region G,, characterized by 

specific values of A, we will have 

W = const -G,. 

Probability of a A-state at given energy equals the magnitude of the region in question. 

Hence, up to an inconsequential constant, we can set 

R 
S = we 

This is Boltzmann’s principle. 

<Proof that an » small> 

Microcanonical and Canonical Ensemble 

aN = Adn,-:-- dn, 

= Ad¥j,---- dil,dn,---- dn, 

Energy of the whole between E and E +A 

dN’ =Adm,----dp, [ dO\----dIy 
ee 

, ar 

xtA x x 

We set far = A-y(x) far = Px) = fv@ax 

dN =Adn,:::dn, A-W(E - y) 

Function yp is sought. 

1. Reservoir is ideal gas. 

[ const const const ]
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dT = WM (dx) Th dé -m* 

Len/2)2? L2 (ye 

fer = vient | (dé) = V'8mt- (2) \ ndé* = konst H"? 
ry 0 

fonts 

W(x) = konst- H4?7 
He? 

WE — n)? , 

Igy = konst + (5 _ i)lex 

L 
Igw(E — n)= 5 — 1e(E — 0) = - if ieen + le(1 7 2) 

1 pom 

WE - n) = eW CNEL +(n/2E)+ + Y(L/2)-1) _ 9/601 +(/2E)--*) 

Thus, the larger the E, the more closely [p- 48} 

_E 

dN’ = conste %dx,---- dx, (Canonical distribution) 

2. Reservoir consists of a large number of identical things 
H- Hawn. 

H H=H,+H2----H, 
o-| ar=| dT, dT, ----dT, Ky ....0,) 

o konst. 

H 
= | w, dH,w,dH,:--w, 4H, 

| aN
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We calculate this integral for the argument H + e. 

In place of every dH, we have an + :| 
1 

1 y « " H, " " nf in, s| 

1 

? = [roy + e)Md H, (1 + i). where e is « smaller 
: 1 

= | MoH), + o(H,)-e} (1+ \maH,) 
A, 

oH 1 
Ta(H g —_ oo n(r ren oe) 1+e5 pf )man, 

[nour ya) +e) (2a + 7) 
1 1 

[p. 49] 3G The Electron Theory of Mfetals]"! 1 
1 2 

F = —,nca—— R(T)__,oT 3 Oz = — SS nea 
BN oz 

2 

j oH 7 aT 3RT 5 i n¢c)Ac 
soe ee KC = 2 <nyN 
2 OT oz uN 

A 
ae 

et? I 1_ea 
-€-—--= . = —--E--=C a 7 mean veloc 2 nC 

—nCe= +o€ = + 

1 sR 
K ==> Mc 

2 «HN K Ru , R? _ R? 

perma [oeNeES ~ ORR T= Best 
°"2ne | _ 

3RT 

<EON



DOC. 4 KINETIC THEORY LECTURE NOTES 199 

Thermoelectr. Forces! 

dx 
f ccos $- na 

dx 
(cn),—A.cos g COS 3 4n 

((c )— “(07 dc0s ) <3) cos 99 

ih {cos asin 8d8di—>w =0 
4n 

1 _ = _cos?d _i 
, [os Ssin 349 do = 5 3 3 

Electron flow = _1 one, 
3 dz 

4 . lean 
Electron flow under the influence of a field €: Cn = oe 

we 

a9 _ _2mc A(nc) 

oz Ben oz ip. 50} 

Peltier force & Thomson force separately. 

Suspended Particles 

dp 
-(» + +P) 

Vip — N pees) (9 — po)gNn 
_i7 : dn 

a RTT = —V(p — po)gNn 

N= Noe 

n=No e Vie—poleNz/RT _ f(z)
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Kinetic analysis for equilibrium 

B = motility 

u=V(p - eg -B 
F' gy) =~ UAT 

Vertical displacement due to irregular motion A 

1 1 1 
(5,12) gh Mae 9 AN +a 

<fier?I > ae’ A? TS 

aBrt +> — yaa 

sadn 
— nh _(, 4a 

dz 2 dz 2 

dn d 

dz leas ze tee 
| dn, dn 
A?n? dn ap 

i 
N d 2 “ — qat 
RT =i dz. 

A? = 2a Br 

/ 
1 

6nxoP 

/ 
Viscosity coefficient. 

{p. 51] Holds also in absence of gravitational force. Law of Brownian motion. 

Explanation A 

{a? = ae 
- + A, paths independent. 

n, dn 
n dz
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fe) probability of the position of the particle as funct. of z- 

No 

{ ’ 

’ 

After this irreversible 
processes explained.” 

f.Correction™"” 

tp. 5 

For collision 

# 

of 
x\m qe 

=X 

a 

re 

; maa 
* m2-at =-X 

- ae 

t 

lt 2 
+" +-|- y xx + 1981 (\ t_&)

f -2 xt) 

L=-3 Ly fot 9 3 ov | 

~ Bathe
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[99] 

(Dey — x) PE) 4-4 ) | S()rdt = 2m 

= 2m(tv,) 

[p. 53] Y T,, = gf 100} 

nc COS gk Go(z — Acos 9) 
4n 

Go — 2 jeos 8 

n/2 n/2 

iin [& | cos $sin §9d9 dw — 1% | cos? §sin 40do| 
ty) a Jo 

—cos? 3 

4n 

cf, 2 aG { —cos? 9 

"3{%|9 La (sf 
ne} + 456+) — sa | 

1 
{+> — ne7 Go 

a 1,0G]_, 1.86 
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1, am 1,86 
g(Go — Go) = —EAae 

, oe 2,086 
> CO aGos 

‘Simplest assumption Gz = G, 

More complicated assumption 

( G5 Gy = \ Golz — adcos 9) — Go 

Go / 

é 
G-— Go = (65 - 20 adcoss — Go) 

Gp — (1 — p)Gy + pS adcos 8 

Go = =_ _ <P> ? 

, = 1 0G 
(6 —-G= (1 - VG + <p> aA cos 9) 

" - !)\ Ax 1 0G 
Go = GF (1 ) Gg + (1 ‘) Go + az ad cos $ 

4 5 o 7 6G 
(6 —G= (1 = ees — G§?)+ Caicos9) 

G 

Ordinary viscosity flow toi] 

= - wa 

ap Ou — 20 a m<p>r 59 + 2n<p>rn 5, 0 

Ip. 54]



204 DOC. 4 KINETIC THEORY LECTURE NOTES 

u = — — <r? + konst>(R? — r?)"! y 
4n 

ta) Bar 4 ode 
27 

14 

Fro. Yo! = 2 n 

Fyorot = rr pe(} - ;) =7V Rs 103) 
2n\2 4) 4n 

n= 5pck 

_™Y pa _ 37 pa_ (9 pa \ on | O08 
Frit = 4 R= 4 a ® =(3 Ry) x ch 

p 

a-_! 
am 
3 

4g? An?R* = 20 R3 
qu = Fyy = — 

4q? 
Fimassel —_ <p>cP 

[ again ] masse vot = 4 

Ip. 55] (2t),.,5: Z Vanishes in infinity.
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Application of Probabilistic Analysis to Processes of Motion."! 

1) Point moving with constant velocity along a closed curve 

Two elements chosen, ds, & ds,, where ds, = ds,. We 

Say: it is equally probable that we will find the point in 

ds, & ds, 

2) The same case considered, but v = (A). Now it is no longer equally probable that 

we will find the point in ds, as in ds,. What is meant by this? 

ds 
In order to traverse ds,, it requires the time —1, and to traverse ds.,, it requires the 

Ys 

. ds, ds, ds, : : ds, ds, : 
time — It turns out that —-+_* We will consider —- & —~ as a relative measure 

V, vy, Vv, v, Vy 

for the probability of finding the point on ds,. We divide in the following way 

ds ds 
—=t =t, 
vy, V, 

ty T2 

t +——+4 ; : ; 

v T = duration of i 
Probability for region ds, = 7 Snekosbit 

t " " n ds, = 7 

Thus, by the probability associated with the region ds we understand the fraction of 

time during which a point is found in ds,, divided by the time of a whole orbit. 

W = length of time the condition applies 

total time. 

This definition can also be understood in another way. We imagine that very many 

(@ many)" points are traversing our curve in the same direction and according to the 

same law. Can they be distributed in such a way that every region ds always contains the 

same number of points, i-e., that for a specific region this number does not change with
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time? Let nds be the number of points in the element ds; n is to be conceived as a 

function of s. We calculate the change of nds in the very short time df 

Increase in n = vn dt - v‘n‘dt 

O(vn) 
. . =— dt | as ds 

US 

v'dt vat 

n n 

but now according to our assumption this number must remain constant, hence 

v -m independent of s = const 

_ const. 

v 

nds = const = const: t 
v 

But up to a constant common to all line elements, the right-hand side, and thus also 

the left-hand side, is nothing else but the statistical probability of the element ds. Thus, 

the point density n is proportional to the probability of the element in question. Since 

¥, W = 1 for the whole orbit, 

nas if 71,,., denotes the total number of the points distributed over the curve. 
n 

W = 

tot
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On the Theory of Light Quanta 
and the Question of the Localization 

of Electromagnetic Energy 

by A. Einstein 

[Archives des sciences physiques et 
naturelles 29 (1910): 525-528] 

What we understand by the “theory of light quanta” may be formulated in the following 
fashion: a radiation of frequency v can be emitted or absorbed only in a well-defined 
quantum of magnitude Av’ (and not in a smaller quantum). With the aid of this 
theory, several groups of hitherto unexplained phenomena can be considered from one 

and the same point of view. This is true of Stokes’s law of phosphorescence and the 
principal laws for the emission of cathode radiation produced by visible and ultraviolet 

light (as well as by X rays). As a matter of fact, the kinetic energy L of photoelectri- 
cally produced cathode radiation increases proportionally—or at least approximately 
proportionally—to the frequency of the exciting light according to the formula 
L =c + hv, where c is a negative constant that depends on the nature of the body under 

consideration. In general, it can be said that the theory of light quanta is the quantitative 
expression of the experimental fact that the energy of the molecular phenomena 
produced by light increases with the refrangibility of the light employed. 

It is now generally accepted that molecular mechanics, with the aid of the 
Maxwell-Lorentz equations, leads to the radiation formula p = Kv’T, as it has been 

demonstrated in particular by Mssrs. Jeans and H. A. Lorentz. This formula is 
contradicted by experiment and does not contain the constant A: this leads to the 
conclusion that the foundations of the theory must be modified in such a way that the 
constant A will play a role in it. Only in this way will it be possible to establish a theory 

of radiation and to understand the fundamental laws of radiation cited above. This 
modification of the foundations has not yet been possible to accomplish. The 
theoreticians have not yet even come to an agreement in regard to the following 
question: Can the light quanta be accounted for entirely by a characteristic of the 
emitting or absorbing substance, or should the electromagnetic radiation itself be 

assigned, besides a wave structure, a second kind of structure, such that the energy of the 

radiation itself is already divided in definite quanta? I believe that 1 have proven that 

_ hv 

‘h is a universal constant that enters the radiation equations of Wien (, = hve m| and Planck 

04) 

[3] 

[4] 

5} 

(1)
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this latter view should be adopted.’ The considerations on which J based myself rest on 

a principle of Boltzmann’s, according to which the entropy S and the statistical 
probability W of a state of an isolated system are connected by the relation 

R 
AY wes W, 

where R is the gas constant for a perfect gas and N the number of molecules in one 
gram-molecule. If a complete molecular picture of the system considered is given, one 

can calculate the statistical probability W for each state of the system, and from this one 
can calculate S with the aid of the formula. Jf, conversely, the system is known 
thermodynamically, then one will know S, and from this one will be able to derive the 
statistical probability of each state of the system. To be sure, one cannot establish an 
elementary theory (e.g., a molecular theory) of the system from W in a unique and 
well-defined fashion; but, still, any theory giving the wrong values of W for any of the 
states can be considered unacceptable. One can then find the entropy of radiation in 
empty space by means of thermodynamics, using the law of black-body radiation, and 

solve the following problem: consider two spaces enclosed within impermeable walls and 
connected by a tube that can be closed; let V be the volume of one of the spaces and 
V, the total volume; assume that these spaces are filled with a radiation whose frequency 

lies between v and v + dv, and whose total energy is E,. We seek to calculate the 
entropy S of the system for every possible distribution of the energy E, between the 
two spaces. From the entropy S of each of these possible distributions, one can deduce 
the statistical probability corresponding to each of them. In this way one finds for a 
sufficiently dilute radiation the following expression for the probability that at a given 
moment all of the energy E, is contained in the volume V: 

eo 

xa 

0 

It can easily be shown that this expression is not compatible with the principle of 
superposition. As regards the distribution between the two spaces, the radiation behaves 
as if its energy were localized in E,/hyv points moving independently of each other. 

From this it follows—unless one wants to admit that the use of impermeable walls in 
these considerations is inadmissible—that, regarding the localization of its energy, the 

radiation must itself have a structure not given by the ordinary theory. 
In conclusion, let me say that the commonly accepted localization of energy (just like 

the momentum in the electromagnetic field) is by no means a necessary consequence of 
the Maxwell-Lorentz equations. Furthermore, one can give, for example, a distribution 

compatible with the mentioned equations that, for static and stationary states, coincides 

completely with the one given by the old theory of action at a distance. 

2A. Einstcin, Ann. d. Phys., 4, 17 (1905): 139ff.
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On the Ponderomotive Forces 
Acting on Ferromagnetic Conductors 

Carrying a Current in a Magnetic Field 

by A. Einstein 

[Archives des sciences physiques et 
naturelles 30 (1910): 323-324] 

Acurrent-carrying conductor in a magnetic field H is subjected to a ponderomotive force, 

the formula for which is 

F = [iH], (1) 

where i is the vector of the current density, and the expression in the brackets is the 
vector product. 

This formula is applicable, in particular, in the case where the body conducting the 

current is not magnetizable, i.c., where the magnetic induction B_ is equal to the 

intensity of the magnetic field H. If the conductor of the current is magnetizable and 
its magnetic state is consequently characterized by two vectors H and B that are 

different from each other, then one has to ask oneself which of these two vectors gives 

rise to the ponderomotive force sought. 
Till now this role has been attributed to B, and it has been accepted that 

F = [iB]. (2) 

But we will show in a simple special case that, even in the case of a magnetic 
conductor, formula (1) is the correct one. 

Let D bea metal disk through which a current flows from its center to its periphery. 

This current is provided by a battery P; the other lines in the diagram complete the 
circuit. 

By virtue of the principle of equality of action and reaction, regardless of the material 

of which the disk is made, the resultant of all the electrodynamic forces acting on the 
different parts of the system is zero. This must be especially so if the disk D is made of 
a nonmagnetic substance (B = H). 
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Let us examine, in the second place, the case when the disk is made of a hard 

magnetic metal, e.g., steel, and constitutes a permanent magnet, with circular lines of 

force distributed around its center. In this case, the magnetic field produced by the 
passage of the current through the disk superposes on the magnetic field resulting from 
this magnetization of the disk. If we let H,, denote the strength of the latter field, and 

B,, its induction, then reasons of symmetry permit us to conclude from Maxwell’s 

equations that 

H,, = 0, 

but obviously B,, is not equal to zero. 
On the other hand, the additional magnetization we have considered cannot give rise 

to a corresponding additional ponderomotive force, for the latter would be the only 

ponderomotive force that would appear, and the system would violate the law of equality 
of action and reaction. 

Thus, the additional ponderomotive force vanishes together with H,,, even if B,, is 
different from zero. It follows that it is formula (1), and not formula (2), that satisfies 

the principle of equality of action and reaction.
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On a Theorem of the Probability Calculus 
and Its Application in the Theory of Radiation 

by A. Einstein and L. Hopf 

[Annalen der Physik 33 (1910): 1096-1104} 

$1. The Physical Problem as the Point of Departure 

If one wants to calculate any effect of radiation in the theory of radiation, say the force 
acting on an oscillator, then one always uses Fourier series of the general form 

; t t 
» 1A,sin 2m— + B cos 2m— > (4,sin m=. + B, m2) 

as the analytical expression for the electric or the magnetic force. The problem is here 
immediately specialized to a given spatial point, which is of no importance to what 
follows; £ denotes the variable time, and TJ the very long time period for which the 
series applies. When calculating any average values—and, in general, only such values 

occur in the theory of radiation—one takes the individual coefficients A,, B, to be 

independent of each other, one assumes that each coefficient follows the Gaussian error 
law independently of the numerical values of the other coefficients, so that the 
probability’ dW of a combination of values A,, B, must simply be the product of the 
probabilities of the individual coefficients. 

(1) dW = W,.W,...W,.W,...dA,...dB,... 

Since the theory of radiation, in the form in which it follows exactly from the 
generally accepted foundations of the theory of electricity and statistical mechanics leads, 
as we know, to irresolvable conflicts with experience, it is natural to mistrust this simple 
assumption of independence and to blame it for the failures of the theory of radiation. 

We shall show in what follows that this way out is impossible, and that, on the 
contrary, the physical problem can be reduced to a purely mathematical problem that 
leads to the statistical law (1). 

That is to say that if we consider a radiation arriving from a certain direction,’ then 
this radiation is certain to have a higher degree of order than the total radiation acting 
at a point. But the radiation arriving from a specific direction can always be conceived 
as arising from a great number of emission centers, ie., the surface that emits the 

radiation can be subdivided into very many surface elements that emit radiation 

' By “probability of a coefficient” we obviously have to understand the following: We imagine that 
the electrical force is expanded in Fourier series for very many moments of time. That fraction 
of these expansions in which a coefficient lies within a specified range of values is the probability 
of this range of values for the coefficient considered. 
* More accurately: “corresponding to a certain elementary angle dx.” 

(1) 

(2) 

(4]
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independently of each other; for since there is no limit to the distance of this surface 
from the test point, there is no limit to its total extension either. Into these radiation 

elements arising from the individual surface elements we again introduce a higher 

principle of order in that we conceive of all of these radiation elements as having the 

same form and differing only in their temporal phases; or, in mathematical terms: The 

coefficients of the Fourier series that represent the radiation of the individual surface 
elements shall be the same for all the surface elements, and only the initial times shall 
differ from element to element. If equation (1) can be proven on the basis of these 

principles of order, then it will hold a fortiori in the case where these principles have 
been dropped. If the index s denotes the individual surface element, then the radiation 
emitted there will be of the form 

t-t 
3 Ye a, sin 2nn 

Hence, the total radiation we are considering will be represented by the double sums 

. t t t. t 
2 s Sh a |sin 2xnn—cos 2nn= - cos 2mm —sin 2nn =]. 
2 yuuea T T T T. 

Comparison of (2) and (1) leads thus to the expressions 

t 
A, = 4,33 cos ans 

(3) 
t 

-B, =a, }> sin annz., 

where n is a very large number, and f, can assume any value between 0 and T, so 

that the individual summands 

t t 
cos 2nn = and sin 2nn = 

T T 

are randomly distributed between -1 and +1, and are as likely to be positive as negative. 

If we can prove the general validity of our equation (1) for a combination of sums of 
such quantities, we will also have proved thereby the impossibility of introducing any 
order principle into the radiation propagated in empty space. 

§2. Formulation of the General Mathematical Problem 

We thus set ourselves the following mathematical problem: We are given a very large 

number of elements whose numerical values a (corresponding to 1,) follow a known 
statistical law. From each of these numerical values we build certain functions
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t t 
f,(a),f.(a) ... (corresponding to sin 2an = ,008 dan 7). We must subject these 

functions to an additional restriction: namely, from the probability that one of the 

quantities @ lies between a + da_ there follows a statistical law for the f; let the 
probability p(f)df that f has a numerical value between f and f + df be always such 
a function that the average value 

f = [fe(af = 0. 

(It can easily be seen that our functions sin and cos indeed fulfill this assumption, 
because if every value of t, between 0 and T is equally probable, the average values 

t 
sin 2nn 2 

T 

and 

t 
cos 2xn = 

T 

vanish.) 

We now assemble a (very large) number Z of such elements @ into one system. 
To such a system belong certain sums 

Doh, Do fle)--- 

(corresponding to the coefficients A,/a,, B,/a,). We set ourselves the task of finding 
the statistical law that a combination of these sums obeys. 

First we must be clear about a fundamental point. 
The statistical law obeyed by the sums © themselves will not at all be independent 

of the number Z of the elements. This we can easily see in the simple special case 
when f(a) can assume only the values +1 and -1. Then we evidently have 

es * Yo + 1 

aa = a el. 
Thus, the mean square value of the sum increases proportionally to the number of ele- 

ments. Hence, if we wish to arrive at a statistical law that is independent of Z, we must 

not consider the © but rather, since £7/Z stays constant, the quantities 

s ==. 
yZ 

and
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§ 3. The Statistical Law of the Individual S 

Before investigating a combination of all quantities 

5) = Yofla) 

ZZ 
we will formulate the probability law for one single such quantity. 

We consider a manifold of N-systems of the kind defined above. To each system 
belongs a numerical value S. Because of the statistical distribution of the a, these 
quantities obey a specific probability law, so that the number of systems whose numerical 
values lies between S and S+dS: 

(4) dN = F(S)dS. 

If we now add one more element to each system consisting of Z elements, i.e., if we 

pass from S, to Sj,,,, the individual members of our manifold will change their 
numerical values and will enter into another region dS. If it is to be possible, 
nevertheless, to arrive at a statistical law that is independent of Z, then the number dN 

must not change in this transition. Thus, the number of systems entering a given (in our 
simplest case, one-dimensional) region dS must be the same as the number of systems 
leaving it. If ® denotes the number of systems passing through a given numerical value 
S, in their transition from Z to Z + J elements, both as regards magnitude and 
direction, then we must have 

(5) div @ = 0, 

hence de = 
dS 

and, since, indeed, © must always be zero for S = ~, we will also have 

(6) ® =0. 

Now we have 

5. = Zanfl®) _ | Z f(a) 
ey Yet ONZ HL aT 

or, since Z is to be a very large number, 

RY 
7) Sea = Sia ~ oe 7 -_
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Thus, the number ® is composed of two parts: a ©,, which comes from the summand 

-$/2Z, and a ®,, which comes from f(«)/yZ. 

®, contains all those S that have been at a positive distance <S,/2Z from the value 

S,; and, to be sure, these members cross S, in the negative direction. Since S,/2Z is 
a very small number, the number of these members is, up to infinitely small quantities 

of higher order, 

8 @ - SKS (8) 1 57* Go). 

Contributions to the number , come from every arbitrary positive and negative 

distance A from S,; indeed, the contributions are positive or negative, depending on 

whether A is negative or positive. The number dN at the distance A is given by 

F(S, + A)dS = F(S, + A)dA, 

or, since only small values of A are, after all, of importance, by 

FS) + (5 dA 
oO. da A . 

Of this number, all those cross the value 5S, in the positive direction which, coming from 

anegative A, have a f(a) so large that 

fe) > |Al, 
\Z 

and thus the number will be 

+o 

f one. 
Ay Z 

Analogously, the number going in the negative direction will be 

AvZ 

J ef. 

We will then have
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= Jan trisy + a(t f ee 

“Ay Z 

- faa F(S,) + a(5r) J o(haf 

Integrated by parts, this becomes 

0 

- faap.r(s, + & * (S) o-ayZ). yZ 
— So 

- faa sy + SG] { laa) 2 

Now, since by the assumption, 

frefaf = 0, 

we get, if we introduce AVZ = f as a variable, 

f 

*-- ola} [rewnar 

__ I fdF\) az 

wlan), F 
(8) and (9) inserted in (6) yield the differential equation 

SF +P = 

(9) 

the solution of which, 

st 

(10) F =const.e 7, 

expresses the Gaussian law of errors.
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$4. The Statistical Law for a Combination of Alt. S” 

Let us now extend the considerations of the preceding section from the one-dimensional 

case to the case of arbitrarily many dimensions. This time we have to consider a 
combination of many quantities S$’. Let the number of systems in an infinitesimally 
small region 

(11) dSdS® ... be dN = F(S®, S®...)dSPdS. .. 

We require again that the dN shall not change when we pass from S\7, to SE .ys and 

this leads again to the differential equation (5), 

div @ = 0. 

In the present case, however, the number has components in every direction 

S®, §®..., and we will denote them by &, ®®... Hence, (5) assumes the form 

> ae” _9 

as”) 

Rye) and Ks are related by equation (7) as before, and the arguments of the preceding 

section are therefore fully applicable to the calculation of the individual #”’. Consequent- 
ly, we have 

o” = SOF + poe 
* 95@ 

We can simplify this expression further by assuming that all f are equal. All that this 

obviously amounts to is thinking of the individual functions f, as multiplied by 

appropriate constants. (In the special case of our sin and cos this simplification is 

automatically satisfied.) 
In this way we finally obtain the following differential equation for the function F: 

(12) yo ave 2 [ser +f? Ese 0. 

We arrive at the solution of this differential equation by considering the following 
integral extended over the whole space:
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2 

Lys, )} sm oF O. Ager Jed s F 7] dS... aS 

(13) 

. wor . 7 OF Woo . wOlogF = Jo [s YF FZ] »poeet| dS... (n,). 

But 

[OE | |S0F + FE |smtasm...as 
ry 3s” 

ny _ ny OF 

=| |F Ys so n SS bdS®,,.ds™, J]F ese FY ca 

or, if we integrate by parts the second summand and take into account that at infinity we 
must have F = 0, 

=[F 3, go - a 

However, this expression vanishes because 

fFsmase...as” 

is nothing else but the average value S@”, which we derived in the last section, for the 
case when only a single S is being considered; for the latter it follows from equation 
(10) that 

F=f. 
On the other hand, integration by parts yields
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oF dlogF (7 (7) (1) By ip) f iF + te a Co) dS™...dS 

in (7,) = { PlogF Y | 2s \F + PS a dS... dS 

which, according to (12), also vanishes. 

This proves that integral (13) vanishes; however, because of the quadratic character 

of the integrand, this is possible only if we have everywhere for every n 

(14) SF + fe 
a 

Thus, we arrive at a Statistical law for F that is identical with Gauss’s law of errors with 
(n). respect to every S”: st get 

(15) F = conste V.e 7. 

The probability of a combination of values S is thus simply the product of the 
probabilities of the individual S. 

It is clear that, if equation (15) holds for S®, S® ..., then the same equation is 
satisfied for a combination of quantities 

SY = a S™, 

In that case, instead of f?, we have the quantities af? in the exponents. But the 
coefficients A,, B, in our physical problem are of the type S®”; and, indeed, we have 
to set 

s® = A, ; 

and hence a,yZ 

a, =a,VZ. 
Therewith is also proved the validity of equation (1) and the impossibility of 

constructing a probability-theoretical relation between the coefficients of the Fourier 

series that describes the thermal radiation. 

(Received on 29 August 1910) 
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Doc. 8 

Statistical Investigation of a Resonator’s 
Motion in a Radiation Field 

by A. Einstein and L. Hopf 

[Annalen der Physik 33 (1910): 1105-1115] 

$1. Train of Thought 

It has already been shown in a variety of ways and it is now generally accepted that, when 
correctly applied in the theory of radiation, our current views on the distribution and 
propagation of electromagnetic energy on the one hand, and on the statistical distribution 
of energy on the other hand, can lead to no other but the so-called Rayleigh (Jeans) 
radiation law. Since this law is in complete contradiction with experiment, it is necessary 

to undertake a modification of the foundations of the theories used for its derivation; and 

it has often been suspected that the application of the statistical energy distribution laws 
to radiation or to rapidly oscillating motions (resonators) is not flawless. The following 

investigation shall now show that such a dubious application is not required at all, and 
that it suffices to apply the equipartition theorem for energy solely to the translational 
motion of the molecules and oscillators in order to arrive at the Rayleigh radiation law. 

The applicability of the law to translatory motion has been adequately proved by the 
successes of the kinetic theory of gases; we may therefore conclude that only a more 
radical and more profound change in our fundamental conceptions can lead to a law of 
radiation that is in better agreement with experiment. 

We consider a mobile electromagnetic oscillator’ that is, on the one hand, subjected 
to the effects of a radiation field and, on the other hand, possesses a mass m and enters 

into interaction with the molecules present in the radiation-filled space. If the above 
interaction were the only one present, then the mean square value of the momentum 
associated with the oscillator’s translatory motion would be completely determined by 

Statistical mechanics. In our case there also exists the interaction of the oscillator with 
the radiation field. For a statistical equilibrium to be possible, this latter interaction must 
not produce any change in that mean value. In other words: The mean square value of 
the momentum associated with the translatory motion that the oscillator assumes under 
the influence of the radiation alone must be the same as that which it would assume, in 

accordance with statistical mechanics, under the mechanical influence of the molecules 

alone. This reduces the problem to the task of determining the mean square value (mv)” 
of the momentum assumed by the oscillator under the sole influence of the radiation 
field. 

This mean value must be the same at time ft = 0 as at time z = t, so that we have 

! For the sake of simplicity we will assume that the oscillator oscillates only in the z-direction and 
moves only in the x-direction.
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(MV), = (mv);--- 

For what follows, it is expedient to distinguish two kinds of dynamical effects through 

which the radiation field influences the oscillator, namely 
1. The resistive force K, with which the radiation pressure opposes the rectilinear 

motion of the oscillator. Neglecting the terms of the order of magnitude of (v/c)? 
(c = velocity of light), this is proportional to the velocity v, and we can therefore write: 
K = - Pv. If we further assume that the velocity v does not change markedly during 
time t, then the momentum deriving from this force = - Pvt. 

2. The fluctuations A_ of the electromagnetic momentum that arise in the 

disordered radiation field owing to the motion of the electric masses. These can be 
positive just as well as negative, and are independent—in first approximation—of the 
circumstance that the oscillator is in motion. 

These momenta superpose themselves on the momentum (mv), during time +, 
and our equation becomes 

(1) (mv), = (mv, + A - Prt)’. 

By increasing the mass m, we can always bring it about that the term multiplied by 

t’, which appears on the right-hand side of equation (1), can be neglected. Further, the 
term multiplied by vA vanishes because v and A can become positive or negative quite 

independently of each other. If, in addition, we replace mv* by the temperature © 
using the equation known from the theory of gases 

—;_R 7 = 69 mv N 

(R = the absolute gas constant, N = Loschmidt’s number), then equation (1) assumes 

the form 

(2) w= 2B per. 

Thus, we only have to find A? and P (or K ) by means of electromagnetic arguments, 
and equation (2) will yield the radiation law. 

§2. Calculation of the Force K.” 

To calculate the force with which the radiation opposes a moving oscillator, we calculate 

first the force on an oscillator at rest, and then transform this force by means of the 
formulas that follow from the theory of relativity. 

Let the oscillator with proper frequency v, freely oscillate in the z-direction of an 

orthogonal coordinate system x, y,z. If € and % denote the electric and the magnetic 

2 Cf. M. Abraham, Ann. d. Phys. 14 (1904): 273 ff. 15)
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force of the external field, then, according to Planck,> the momentum f of the 

oscillator obeys the differential equation 

(3) l6n'vof + 49v,f - 2of = 300°@,. 

Here o denotes a constant characteristic of the damping of the oscillator through 
radiation emission. 

Now let a plane wave impinge on the oscillator; let the ray form the angle » with 
the z-axis, and its projection on the xy-plane the angle w with the x-axis. If we 
decompose this wave into two waves polarized perpendicularly to each other, with the 
electric force of the first lying in the ray-oscillator plane, and that of the second 
perpendicular to the first, then it is obvious that only the first one imparts a certain 
momentum to the oscillator. If we write down the electric force of this first wave as a 
Fourier series 

(4) €- > A,cos Prt —_ “¥) . a, 

where T denotes a very long time period, then the direction cosines «, 8B, y of the ray 

are expressed through @ and w in the following way: 

@=singcosw, BP =singsinw, y = cos g, 

and the components of the electric and magnetic forces that are of relevance to our 

further calculations are 

E = €cose cosy 

(5) € =- €sing 

B = Ecos@ sina 

The ponderomotive force exerted on the oscillator is 

af, k : WE ala 
For this equation as well as equation _ to be valid, it must be assumed that the 
dimensions of the oscillator are always small compared with the relevant wavelengths of 
the radiation. The x-component k, of the ponderomotive force is 

_ 9, 1 xf (6) k= =f - Re. 

3M. Planck, Vorl. iiber die Theorie der Warmestrahlung, p. 113.
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If we solve (3)* and take into account (4) and (5), we obtain 

3c} 46. siny, 
=-2_Psing}> A “cos(t. - y.), 

f 167° >» n ( a n rw 

p 3c) 44_- siny, . 
= “TP sing}: A “sin(t. - y.), f= <{Psing)> A,—-sin(s, - y,) 

where 

tT = nn L -¢, 
am T na 

has been assumed for the sake of brevity, and y, is given by the equation 

2 VAN — a 

cotg ¥, = ; 
n 

oOo 

Since, further, 

o€ 
Te = eos pcosay) nA sin’t,,” 
oz ct 

k, appears as the double sum 

siny 
n A,, mcos(t, — y,)sint,, 

x 

2 

k=- =< Teos"osingcossS) y~ A, 
™ nr 

siny, 
7 A_sin(t, - ¥,)cost,,. 

3c? 72 . = singcosuy» Sm A, 

Because the phase angles ® are independent of each other, only the terms nm =m need 
be considered in forming the average value,° and we get’ 

“M. Planck, loc. cit., p. 114. 
5 In fact, this expression for @¢/2, as well as the one for %,, would have to be supplemented 
by the components of the wave that is polarized perpendicularly to the wave that excites the 
oscillator; however, it is obvious that these expressions do not contribute anything to the mean 

value of the force because their phases are independent of those of the oscillator. 
® This independence follows from the result of the preceding paper. 
7M. Planck, L.c., p. 122. 

[11] 

{12] 

{10} 

[13] 
[5]
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3c2 , siny 
= —_T’sinrecosw} A, Z 

~ 169 ° » n? 

pa) (7) 
32 

16x vt 

o 
AZ. T— sin’ pcos. 

2v, 

This is the mean value of the x-component of the force that a wave incident in the 9,w 

direction exerts on the oscillator at rest. 

If the oscillator is moving in the x-direction with the velocity v, then it is more 
practical to replace the angles ,w with the angle @, between the ray and the x-axis, 
and the angle w, between the projection of the ray on the yz-plane and the y-axis. The 
following relations then hold: 

COS , 

siN 9, COS, 

SiN g, SiN w, 

We are led to the value of the force K” 

Sin PCOS w, 

= sin gsinw, 

= COS. 

acting on the moving oscillator by the 

transformation formulas of the theory of relativity* 

A’ =f! - “cose,} 
c 

T' = 71 + “cos} 
c 

v’ =vl1 - Ycos q [- Zee) 
v 

cose, - = 

cos@, = , & =o, 
v 

1 - -cosg, 
c 

We then get 

TT 3G ara, o Go ~ einzan! cint ey / / k, = = om aa sin’ g,' sin’w,')cos@,’. 
0 

Neglecting the terms with (v/c)?, we get 

[16] A. Einstein, Ann. d. Phys. 17 (1905): 914.
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BR = Avy ! - 2" cose} 

or, since we have to relate everything to the proper frequency v,’ of the moving 
oscillator 

42 — ge 

A v1 A - ¥ 
ve {1 2oh T 

1 2 [i - zene] 
= Az 

=) Avr * 1 oone| 2 (! - 2% cosa. 
Vol 

Furthermore, we express the quantity AT in terms of the mean radiation density p. We 
set the mean energy of a plane wave coming from a given direction equal to the energy 

density in a cone with a solid angle dk. If, in addition, we also keep in mind that the 
magnetic and the electric forces are equal, and take into account the two planes of 

polarization, we arrive at the relation 

(8) } 
sin’9, 

1 - sin’ w, {dx . 
1-2” osm 

. 

Finally, integrating also over all solid angles, we obtain the total force that we were 

seeking: 

(9) K - -% (2) 
10m, | 3 (av),) 

§3. Calculation of the Fluctuations of Momentum &* 

The calculation of the momentum fluctuations can be made considerably more simple 
than the calculation of the force because a transformation according to the theory of
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relativity is not necessary.° It suffices to expand the electric and magnetic forces at the 
origin in a Fourier series, dependent on time alone, as long as one can prove that the 

individual components of force appearing in this expression are independent of each 
other. 

The momentum that the oscillator experiences in the x-direction during time t is 

1 peta. 
ce ‘dt 

Integration by parts yields 

fr hae = py - {Fe 
The first summand vanishes if t is appropriately chosen, i.e., if t is large enough. If, 
in accordance with Maxwell’s equation, one also puts 

1 aR o€ 0€ 

c of Ox az” 
one arrives at the simple expression 

(10) J= 3 fae 

Now only the component E, and its derivative o€/d appear in our expression. 

However, their independence can easily be proved. For if we just consider two wave 

trains (with identical solid angles) approaching each other, we can write 

E,.=->> {e,sin on (: - oh) 

les 2m (, , ox + By + vz 
T c 

c 
+ bcos om ( + | 

and 

Because the momenta with variable signs, which result from the irregularities of the radiation 
process, can be determined for a resonator at rest.
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0€ 
= Lfe|- a,cos "1 (. 1) + b,sin2H(. ) 

+ aycos 7...) - by sin 2. aI} 

But the quantities @, + a, a, ~ a... are mutually independent and of the same type 
as the quantities denoted by S$ in the preceding paper; for such quantities it has been [17} 
shown that the probability for a combination is represented as the product of the 

Gaussian error functions of the individual quantities. It is easy to see from what has 
been said that no probability relation of any kind can exist between the coefficients of 
the expansions of €, and 0€/dx. Now we write down @, and o¢€,/dr in the form of 

Fourier series: 

€, = } B,cos aes - ®,} 

x €-y> C,,C0s uae = E, 118) 

We then get 

303 siny t 
=—_7T}Y>B "cos |2nn— - 0. - f= ae 77 v,] 

and 

Sr [aD Src 7 fos [extn + m= -&,-0 - ve} [19] 

- cos{2n(n - my +E, - 8, - 1) 

Integration over t yields two summands with the factors 7/n+m and I/n-m; since n 
and m are very large numbers, the first summand is very small and can be neglected. 

Thus one arrives at the expression 

(11) J= 
siny, 1 ; a 

c- ae yo Ye CB, - — 0088, sint(n - m) = 

where, for brevity, 

8 =nin-mi +E -0 -¥. ne —m)a +8, - 9-7, mn
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J then appears as the fourfold sum over n,m and two further variables n’ and m’. 
If we calculate the mean value J*, we must take into account the fact that the angles 
8,,, and 8,,,,- are totally independent of each other, and, thus, that only those terms in 

which this independence does not occur are to be considered in the averaging. 
Obviously, this is only the case if 

mem and n=n’, 

and we arrive at the desired mean value: 

2. 

= 3e°T" 2] SIN, 1 : t 
20 Jt = ——___-sin’ n(n - m)—. 
ea Exp ya cori i ( F 

Since 

_— t_lp do 2. rt 
m ———_sin’r(n - mj). = —] ——~—— sin*(v - pp) at-du = — > OEE: ( ua Woo ( ~ wat edu = — 

and 

sin’y 1 ;sin’y loo 
(21 n re "dv =, 

y né ra vé T 2v3 

J* becomes 
v4 

a _| 30 | ot 12 P=) | BCT. 02 Z|ame 
Now 

— : 
p-(¥+a) -7+U0+R 

and since the mean values J and & vanish, expression (12) itself gives the value of the 

momentum fluctuations A”. It only remains to express the mean values of the 
amplitudes B 7 and Cc r through the radiation density p,.. 

To that end we must again consider the radiation coming from different directions 
and, as above, relate the amplitude of the radiation coming from a specific direction to 

the energy density by means of the equation 

AT = p,de. 

The amplitude 

7 PA. sing
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over all angles of incidence, hence 

(13) B,.T = AL,.TY sin’g = Sp, 

In the same way we get 
2. wv. 

(14) GyT = [=] BATE sint ocosto = S7 Mo, 
o° Cc 0 c ry 

By inserting (13) and (14) into (12) we finally obtain 

4 

(15) w = St 6. 
40 xv, 

§5. The Radiation Law 

Now we only have to insert the values (9) and (15) found above into our equation (2), 
and we arrive at the differential equation containing the radiation law: 

_ oN Pp =p- vdp 
24nROv* 3dv 

which yields by integration 

2 (16) -_ Sahay 

oN 

This is the well-known Rayleigh radiation law, which is in the most glaring contradiction 
with experiment. The foundations of our derivation must therefore contain an assertion 
that does not agree with what really takes place in thermal radiation. 

Let us therefore place these foundations under closer critical scrutiny. 

One has wanted to find the reason why all exact statistical analyses in the field of 
radiation theory lead to Rayleigh’s law in the application of this approach to the radiation 
itself. With some justification, Planck’® brings up this argument against Jeans’s 
derivation. However, in the above derivation there is no question whatsoever of a 
somehow arbitrary transference of statistical considerations to radiation; the energy 
equipartition theorem was applied only to the translatory motion of oscillators. But the 

successes of the kinetic theory of gases demonstrate that this law can be considered as 
thoroughly proved for translatory motion. 

The theoretical foundation we used in our derivation, which is certain to contain an 

unfounded assumption, is thus nothing else but that underlying the theory of light 
dispersion in completely transparent bodies. The actual phenomena differ from the 

results deducible from this foundation owing to the fact that additional kinds of 

10 M. Planck, L.c., p. 178. (22]
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momentum fluctuations are discernible in the former, which, in the case of short-wave 

radiation of low density, enormously overwhelm those obtained from the theory.” 

Zurich, August 1910. (Received on 29 August 1910) 

“Cf. A. Einstein, Phys. Zeitschr. 10 (1909): 135 ff. What is essentially new in the present paper 
is the circumstance that the momentum fluctuations have been exactly calculated for the first time.
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The Theory of the Opalescence 
of Homogeneous Fluids and Liquid 
Mixtures near the Critical State 

by A. Einstein. 

[Annalen der Physik 33 (1910): 1275-1298] 

In an important theoretical paper,’ Smoluchowski has shown that the opalescence of 
fluids near the critical state as well as the opalescence of liquid mixtures near the critical 
mixing ratio and the critical temperature can be explained in a simple way from the point 
of view of the molecular theory of heat. This explanation is based on the following 
general implication of Boltzmann’s entropy-probability principle: In the course of an 

infinitely long period of time, an externally closed system passes through all the states 

that are compatible with the (constant) value of its energy. However, the statistical 
probability of a state is noticeably different from zero only when the work that would 
have to be expended according to thermodynamics to produce the state in question from 
the state of ideal thermodynamic equilibrium is of the same order of magnitude as the 
kinetic energy of a monatomic gas molecule at the temperature under consideration. 

If such a small amount of work suffices to bring about, in volumes of fluid of the 
order of magnitude of the cube of a wavelength, a density that deviates markedly from 

the average density of the fluid or a mixing ratio that deviates markedly from the average, 

then, obviously, the phenomenon of opalescence (the Tyndall phenomenon) must take 

place. Smoluchowski has shown that this condition is actually fulfilled near the critical 
state; however, he did not provide an exact calculation of the quantity of light given off 
laterally through opalescence. This gap shall be filled in the following. 

$1. General Remarks about the Boltzmann Principle 

Boltzmann’s principle can be expressed by the equation 

(1) S= Re W + const., 
N 

where 

R is the gas constant, 

N is the number of molecules in one gram-molecule, 
S is the entropy, 
W is the quantity customarily designated as the “probability” 

of the state with which the entropy value S is associated. 

' M. v. Smoluchowski, Ann. d. Phys. 25 (1908): 205-226. 

[2] 

(3) 

[4] 

[5] 

fi)
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W is commonly equated with the number of different possible ways (complexions) in 

which the state considered—which is incompletely defined in the sense of a molecular 
theory by observable parameters of a system—can conceivably be realized. In order to 
be able to calculate W, one needs a complete theory (perhaps a complete 
molecular-mechanical theory) of the system under consideration. Given this kind of 
approach, it therefore seems questionable whether Boltzmann’s principle by itself has any 
meaning whatsoever, i.e., without a complete molecular-mechanical or other theory that 
completely represents the elementary processes (elementarytheory). If not supplemented 

by an elementary theory or—to put it differently—considered from a phenomenological 
point of view, equation (1) appears devoid of content. 

However, Boltzmann’s principle does acquire some content independent of any 
elementary theory if one assumes and generalizes from molecular kinetics the proposition 

that the irreversibility of physical processes is only apparent. 
For let the state of a system be determined in the phenomenological sense by the 

variables 4,...4, that are observable in principle. To each state Z there corresponds 

a combination of values of these variables. If the system is externally closed, then the 
energy—and, indeed, in general, no other function of the variables—is constant. Let us 

think of ali the states of the system that are compatible with the energy value of the 
system, and let us denote them by Z,...Z,. If the irreversibility of the process is not one 

of principle, then, in the course of time, the system will pass through these states Z, ... 

Z, again and again. On this assumption, one can speak of the probability of the 
individual states in the following sense: Suppose we observe the system for an immensely 

long period of time 6 and determine the fraction +t, of the time @ during which the 
system is in the state Z,; then t,/8 represents the probability of the state Z,. The 
same holds for the probability of the other states Z. According to Boltzmann, the 
apparent irreversibility must be attributed to the fact that the states differ in their 

probabilities, and that the system is probably going to assume states of higher probability, 
if it happens to find itself in a state of relatively low probability. That which appears to 
be completely law governed in irreversible processes is to be attributed to the fact that 
the probabilities of the individual states Z are of different orders of magnitude, so that 
a given state Z will practically always be followed by one state, from among all the 
states bordering on Z, hecause of this one state’s enormous probability as compared with 
the probabilities of the other states. 

It is this probability we have just described, for the definition of which no elementary 
theory is needed, which is related to the entropy in the way expressed by equation (1). 

It can easily be recognized that equation (1) must really be valid for the probability so 
defined. For entropy is a function that does not decrease in any process in which the 
system is isolated (within the range of validity of thermodynamics). There are other 
functions, too, that have this property; however, if the energy E is the only function of 
the system that does not vary with time, then all of these functions are of the form 
@(S, E), where d@/dS is always positive. Since the probability W is, as well, a function 

that does not decrease in any process, then W is also a function of S and E alone, 

or—if only states of the same energy are being compared—a function of S alone. That 
the relation between S and W given in equation (1) is the only possible one can be
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deduced, as we know, from the theorem that the entropy of a total system that is 
composed of subsystems equals the sum of the entropies of the subsystems. Equation (1) 

can thus be proved for all of the states Z that belong to the same value of energy. 
The following objection can be raised against this interpretation of Boltzmann’s 

principle: one cannot speak of the statistical probability of a state, but only of that of a 

state region. The latter is defined by a portion g of the “energy surface” E(A,...4,) = 
0. Obviously, W tends toward zero along with the size of the chosen portion of the 
energy surface. For this reason, equation (1) would be totally meaningless if the relation 

between S and W were not of a quite special kind. That is to say, lg W appears in 
the equation (1) multiplied by the very small factor R/N. If one imagines that W has 
been obtained for a region G,, just large enough that its dimensions lie on the border 
of the perceptible, then lg W will have a certain value. If the region is reduced perhaps 
e” times, then the right-hand side will only be diminished by the vanishingly small 
quantity 10(R/N) on account of the reduction in the size of the region. Thus, if the 
dimensions of the region are indeed chosen small compared with perceptible dimensions, 
but nevertheless large enough for R/N lg G,/G to be a numerically negligible quantity, 

then equation (1) will have a sufficiently exact meaning. 
We have assumed so far that A,..., determinescompletely, in the phenomenological 

sense, the state of the system in question. However, equation (1) also retains its meaning 

undiminished if we seek the probability of a state that is incompletely determined in the 

phenomenological sense. For let us seek the probability of a state that is defined by 
specific values of 4,...A, (where v <7), while the values of A,...A, are left 
indeterminate. Among all the states with the values 4,...A,, those values of A,...A, 

will be far and away the most frequent which make the entropy of the system at constant 
A,...4, a maximum. In that case, equation (1) will hold between this maximum value 
of the energy and the probability of this state. 

§ 2. On the Deviations from a State of Thermodynamic Equilibrium 

Let us now draw conclusions from equation (1) regarding the relation between the 
thermodynamic and statistical properties of a system. Equation (1) yields immediately 
the probability of a state if its entropy is given. We have seen, though, that this relation 
is not exact; instead, only the order of magnitude of the probability W of the state in 
question can be determined from a known S. Nevertheless, it is possible to derive exact 
relationships concerning the statistical behavior of a system from equation (1) in cases 
where the range of the state variables for which W has values for the kind under 
consideration can be regarded as infinitely small. 

It follows from equation (1) that 
N 

& 

W = const. e” . 

This equation is valid to an order of magnitude if each state Z is assigned a small region 
of the order of magnitude of perceptible regions. The order of magnitude of the 

constant is determined by taking into account that for the state of maximum entropy 

7] 

[10]
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(entropy S,) W is of the order of magnitude one, so that we then have, with order-of- 

magnitude accuracy, 

From this we can conclude that the probability dW that the quantities A,...A, lie 
between A, and A,+dA,...,A, and A, +dA, is given, in order of magnitude, by the 

equation” 

Nig) 

dW =eR 
in the case when the system is determined only incompletely (in the phenomenological 
sense) by 4,...4,°. To be exact, dW still differs from the given expression by a factor 
f, so that we must set 

di,...dh 

N =) 

dW=eR ° f.da,...dh,, 

where f will be a function of A,...A,, and its order of magnitude will be such that it 

does not affect the order of magnitude of the factor on the right-hand side.* 
We now form dW for the immediate vicinity of an entropy maximum. If the Taylor 

expansion converges in the region considered, we may put 

S=5,- SED ah te 

(s 

=f + of + frfh, E42] tees 

if, for the state of maximum entropy, A, = A, = ...A, = 0. Since we are dealing with an 
entropy maximum, the double sum in the expression for S is essentially positive. One 
can therefore introduce new variables in place of the A’s, so that the above double sum 
is transformed into a simple sum in which only squares of the new variables, which are 
again denoted by A, will appear. We get 

N 2 “ap SALT of 

dW = const. o —A |ida,...dr. const. e ™ h +y [2 | , 
1 

? We will assume that regions with extensions of observable size have a finite extension in A. 
> The manifold of possible states would otherwise be only (n - 1)-dimensional on account of the 
energy principle. 

“ We do not know anything about the order of magnitude of the derivatives of the function f with 
respect to 4. But we will assume in what follows that the derivatives of f are of the same order 

of magnitude as the function f itself.
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The terms entering in the exponent appear multiplied by the very large number N/R. 
For that reason the exponential factor will, in general, practically vanish already for such 

values of A which, because of their smaliness, do not correspond to states of the system 
that deviate significantly from the state of thermodynamic equilibrium. For such small 

values of A, the factor f can always be replaced by the value f, that it has in the state 
of thermodynamic equilibrium. Hence, in all those cases in which the variables deviate 
only slightly from their values at the ideal thermal equilibrium, the last formula can be 
replaced by 

-is-s) 
(2) dW =const.e ® “da,...da,. 

For deviations from the thermodynamic equilibrium as small as those considered in 
our case, the quantity § - S, has an intuitive meaning. If we imagine that the states of 
interest to us in the vicinity of thermodynamic equilibrium are produced in a reversible 
manner by external influences, then, according to thermodynamics, every elementary 

process obeys the energy equation 

dU = dA + TdS, 

if one denotes by U the energy of the system, and by d4_ the elementary work applied 
to it. We are interested only in those states that an externally closed system can assume, 
namely states belonging to the same energy value. For the transition of such a state to 
a neighboring state, we will have dU = 0. Further, we will cause only a negligible error 
if we substitute the temperature 7, of the thermodynamic equilibrium for 7 in the 
above equation. The latter will then have the form 

dA + TrdS = 0 

or 

oe Ll (3) fas =s So= pA, 

where A denotes the work that has to be expended, according to thermodynamics, in 

order to transfer the system from the state of thermodynamic equilibrium to the state 
under consideration. We can therefore write equation (2) in the form 

N A 

(2a) dW = const.e™ di,...da,. 
Let us now imagine that the parameters A are chosen so that they vanish just at 

thermodynamic equilibrium. In a certain region it will then be possible to expand A in 
terms of A according to the Taylor theorem, and, given an appropriate choice of A’s, this 
expansion will have the form 

A + %Ea, 4 + terms of higher than the second power in the A, 
where all of the a, are positive. Further, since the quantity A enters the exponent of 
equation (2a) multiplied by the very large factor N/RT,, the exponential factor will, in 

(11) 

{12]
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general, deviate markedly from zero only at very small values of A, and hence also at very 

small values of A. For such small values of 4, the terms of higher than the first power 
in the expression for A will generally make a negligible contribution as compared with 
that of the second-power terms. If that is the case, we can substitute for equation (2a) 

N 2 
~ aR eA 

(2b) dW = const.e "da... 

which has the form of the Gaussian error law. 
In this paper we shall confine ourselves to this most important special case. It 

follows directly from (2b) that the mean value of the fluctuation work A, allotted to the 
parameter A, is 

(4) A, v 2N 

Thus, this average work is equal to one-third of the mean kinetic energy of a monatomic 
gas molecule. 

I 2 RT, = afk = 

§ 3. On Deviations in the Spatial Distribution of Fluids and 
Liquid Mixtures from a Uniform Distribution 

We denote by p, the mean density of a homogeneous substance or the mean density of 

one component of a binary liquid mixture. Because of the irregularity of the thermal 
motion, the density p at a point in the fluid will generally differ from po. If the liquid is 

enclosed in a cube characterized, with respect to a coordinate system, by 

O<x<L 

O<y<L 
and 0<z<L, 

we can put, for the interior of this cube, 

P=p,+A 

(5) x a y z A= L Y ) B, cos 2mp-—_cos 2mo cos 2nt —. 

The quantities p, o, t denote positive integers. However, the following needs to be 
noted. 

Strictly speaking, we cannot speak of the density of a fluid at a spatial point, but only 
of the mean density in a volume whose dimensions are large compared with the mean 

distance between neighboring molecules. For this reason, the terms of the series in which 
one of the quantities p, o, t exceeds certain limits will have no physical meaning. 
However, we will see from the following that this circumstance is of no importance to us. 

The quantities B,,, will change over time such that on the average they will be zero. 
Let us now seek the statistical laws that underlie the quantities B. The latter play the
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part of the parameters 4 in the preceding section, which determine the state of our 

system in the phenomenological sense. 
In accordance with the preceding section, we obtain these statistical laws by 

determining the work A as a function of the quantities B. This can be done in the 

following way. If @(p) denotes the work one must do to bring a unit mass isothermally 
from the mean density p, to the density p, then this work has the value 

podt 

for the mass pdt contained in the volume element dt, and hence the value 

A= fe.o.de 

for the whole fluid cube. We will have to assume that the deviations A of the density 
from the mean value are very small, and will set 

P = Por A, 

© = 9(p, 89) a + LOO) a. 

ap), 2\ 8p"), 

=|o8), 1, ee [4°ac, 

where the index “0” has been omitted for the sake of simplicity. The fourth-order and 
higher terms have been omitted from the integrand, which is obviously only permitted if 

2. 

oe 1,2 
dp 2 dp’ 

is not too small, and the terms multiplied by A‘etc. are not too large. But according to 

(5) we have 

fad -Ey ye. 
P o t 

because the volume integrals of the double products of the Fourier summation terms 
vanish. Hence we have 

[2 +e oahu LLL Gn. 
If the work per unit mass that needs to be done to attain a state with acertain p from 
the state of thermodynamic equilibrium is expressed as a function of the specific volume 
I/p = v, Le., if we thus put
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p(p) = Hv), 

we obtain the even simpler ae 

= £3 & oy 

where one has to substitute the values of the _— vand oy/a for the state of 

ideal thermodynamic equilibrium. We note that the coefficients B appear only as 
squares in the expression for A, and not as double products. Thus, the quantities B 
are parameters of the system of the same kind as those seen in equations (2b) and (4) 
in the preceding section. The quantities B obey therefore (independently of each other) 
the Gaussian error law, and equation (4) yields directly 

L’ oy RT = RT, 

ar ns 
The statistical properties of our system are thus completely determined, or reduced 

to the thermodynamically ascertainable function w. 
It should be noted that the omission of the terms with A’ etc. is permissible only if 

#/dv’ for the ideal thermodynamic equilibrium is not too small or even vanishes. The 
latter occurs in the case of fluids or liquid mixtures that are exactly in the critical state. 
Within a certain (very small) region about the critical state, the formulas (6) and (7) 

become invalid. However, there is no difficulty, in principle, in completing the theory by 
taking into consideration the terms of higher order in the coefficients. 

(7) 

§ 4. A Calculation of the Deflection of Light from an 
Infinitely Slightly Inhomogeneous, Absorption-free Medium 

Now that we have obtained from Boltzmann’s principle the statistical law according to 
which the density of a uniform substance or the mixing ratio of a mixture varies with 
position, we will investigate the influence of the medium on a ray of light traveling 

through it. 
Again let p = p,+ A denote the density at some point of the medium, or, if we are 

dealing with a mixture, the spatial density of one of the components. Let the light ray 
under consideration be monochromatic. As regards this ray, the medium can be 

characterized by the refractive index g or by the apparent dielectric constant e that 
corresponds to the frequency involved, and which is connected with the refractive index 

by the relation g =e. We put 

de 8 2 Sa = , (8) e=e,+ (= e+ 

where both 1 and A should be treated as infinitesimally small quantities. 

5 Cf. M. v. Smoluchowski, L.c., p. 215.
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Maxwell’s equations hold at every point of the medium, and since we can neglect the 
influence that the rate of the change of e over time has on the light, they take the form 

£0€_ cul ® div ® = 0, 
c ot 

10B_ ~ curl €, div e€ = 0. 
c ot 

Here € denotes the electric, and % the magnetic field strength, while ¢ is the vacuum 

velocity of light. By eliminating %, we get 

ve . 
9) EoC_ ae = ad div ¢, 

: ce? of 7 

(10) div (e€) = 0. 

Now let €, be the electric field of a light wave, as it would behave if e did not vary 
with position. We shall call it “the field of the excitory light wave.” The actual field 
(total field) @ will differ infinitesimally from @, by the opalescence field e, so that we 

can write 

(11) €=E,+¢. 

Substituting the expressions for e and @ from (8) and (11) in (9) and (10), we 

obtain, if we neglect the inifinitesimally small second-order terms and take into account 
the fact that €, satisfies Maxwell’s equations with constant dielectric constant e,, 

(9a) e Fe nem — 1 FE _ grad dive, 

(10a) div (« €,) + div(e,e) = 0. 

If we expand (10a) and take into consideration that div €, = 0 and grad eo = 0, we get 

Substituting this into (9a), we obtain 

& Oe 1. && 1 
(9b) oan — S¢=— at gp + [ered [G, grad =a, 

where the right-hand side is a vector that is to be regarded as known, which we denote 
for brevity by “a.” Thus, between the opalescence field e and the vector a there is 
a relationship of the same form as that between the vector potential and the electric 
current. As we know, the solution reads
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1 os 7 °P 

(12) ak { rde’ 
where r denotes the distance of dt from the test point, and V = c/Je, is the 
propagation velocity of the light waves. The volume integral has to be extended over the 
entire volume in which the exciting light field €, is different from zero. If the integral 
is extended only over a part of this volume, one obtains that part of the opalescence field 

that the exciting light wave produces by traversing the partial volume in question. 
We now set ourselves the task of finding the part of the opalescence field that is 

produced by a plane, monochromatic excitory light wave inside the cube 

O<x<i1, 

O<y<], 
O<z<b 

where the edge length / of this cube shall be small compared with the edge length L 
of the cube considered earlier. 

The exciting plane light wave shall be given by 

r n 

(13) €, = Ucos 2rn(t >} 

where n denotes the unit vector of the wave normal (components a, B, y) and c the 

radius vector (components x, y, z) drawn from the coordinate origin. For the sake of 

simplicity, we choose a point of incidence on the X-axis of our coordinate system at a 
distance D that is infinitely great in comparison with /. For such a point of incidence, 
the equation (12) takes the form 

_ 1 (12a) t= aap! hd 

For we have to set 

r D-x 

a i na 
where, for brevity, we have set 

D h-~ Gly 

and one can replace the factor 1/r in the integrand by the constant factor 1/D, which 

equals I/r to within a relatively infinitely small amount. 
Now we have to calculate the volume integral occurring in (12a), which extends over 

our cube of edge length /, by inserting the expression for a from (9b). We make this 
calculation easier for ourselves by introducing the following symbol: If @ is a scalar or 
a vector that is a function of x, y, z with 1, we set
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of: y, 2,1, + 7 = OF, 

so that »” depends, therefore, solely on x,y,z. For ascalar g we immediately obtain 
from this the equation 

1 (dey dg = (grad go) + i— |] az, grad g = (grad g)* + (3) t 

from which it follows that 

f(grad g)*dt = ferad gdt ~ gl 

where i denotes the unit vector in the direction of the X-axis. The first integral on the 

right side can be transformed through integration by parts. If # denotes the outer unit 

normal to the surface of the integration volume, and ds the surface element, then 

[grad pdt = fo Bas. 

Thus we have 

(14) f grad gydt = for ads - tole) 

If » is a function of undulatory character, then the surface integral on the right side 
of our equation will not make any contribution proportional to the volume of the 
integration space, or any contribution whatsoever of interest to us. Thus, in this case, an 
integral of the form 

f(grad oye 

can make a contribution only to the X-component. 
If we form the two integrals produced by the substitution of a (equation (9b)) in the 

integral 

fear 

occurring in (12a), then we see that the second of these integrals has the form of the left 
side of (14), wherein p = @, grad. Since this is really a function of undulatory 
character, which, moreover, vanishes if grad 1 vanishes on the surface, therefore, 

according to (14), this second integral can make a significant contribution only to the 

X-component of e. A more exact calculation shows that this second integral exactly 
compensates the X-component of the first integral. We do not need to prove this 
expressly, because e, must vanish owing to the transverse nature of light. By virtue of 
what we have just said, it follows from (12a) and (9b) that 

[17]
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= 0, 

(d2b) | 9=— ape ic (“ery ee, gs 
7 1 aE, 6=— gapad’ (ast) e 

Now we calculate e¢, by substituting, in the second of these equations, 

26, = -A(2nn)’cos 2nn [. + _ ox + By + | 
ar? 

x 

Vv V 

from equation (13). Further, we replace 1 by means of equations (8) and (5). 

Interchanging the summation and integration signs, we thus obtain 

@(2nn) de , GU - a)x - Py - vz t= ae ae >> Boa. ff foos 2nn [: ) 

.cos |2np ~_| .cos [2x0 2_| .cos [2x S| dxdydz, 
2L 2L 2L 

where the volume integral has to be extended over the cube of the length of the edge J. 
The volume integral is of the form 

= ff feoscax + py + vz)cos A’x cos yy cos w'z dxdydz, 

where one should bear in mind that A, yu, v, A’, u’, v’ are to be regarded as very large 

numbers.® In that case one has to put 

sin(A - wd sin(s - Bs sin(y - v3 
I. = (3) Pp 

2 a -ayl (qu - w)l (v - v)l 
(15) 2 2 2 

ca ~A-AD, &-H)EL Ww -v)l 
1 5 5) 5 

6 In what follows, the calculations are based on the assumption that A, y, v are positive. If this is 

not the case, then one or more signs in equation (15) will be different. But the final result is always 
the same.
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When we integrate, we neglect, besides this expression, those expressions containing one 
or more of the very large quantities (A + A’) etc. in the denominator. We see that J 
deviates appreciably from zero only for such p o t, for which the differences (A - 4‘) 
etc. are not very large. We note that we have here set 

A= Qmntt%, yr a 
V le 

4 = -?. 8 U = *O 
(15a) Bb me, BL ZL 

Vv = - 2nn~, vo = 
l V L 

If, for the sake of brevity, we set 

@, (nny ae _ A 

4nDc? Op 

then 

(12c) §=AL YY BT yee 

In conjunction with (15) and (15a), this equation yields the instantaneous value of 
the opalescence field at the point x = D, y = z = 0 for every instant f, =t,+ D/V. We 
are especially interested in the mean intensity of the opalescence light, where the mean 
is to be taken both with respect to time and with respect to the opalescence-producing 
density fluctuations that may appear. As the measure of this mean intensity we can use 
the mean value of ¢’ = ¢,’ + ¢,. We have 

where the sum is to be extended over all combinations of the indices p, o, t, p’, 0’, 

t'—always for the same value of t,. We now form the mean value of this quantity with 
respect to the different distributions of density. We see from (15) that the quantities J,,, 

do not depend on the density distribution, and neither does the quantity A. Hence, if 
we indicate the mean value of a quantity by a bar set over it, we get 

§ POL LTV L LBB edpee: 
However, since according to §3 the quantities B satisfy the Gaussian error law (at 

least in the approximation we are using) independently of each other, we will have, if it 
is not the case that p = p’, o = 0’ and t = t, 

Bo Byge = 9- 

Our expression for “° reduces therefore to
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ae > Sp D> De ee 
However, this is not yet the average value we seek. We must also take the average value 

with respect to ime. This appears only in the last factor of the expression for J,,,. If 
we take into account that the time average of this factor has the value 2, and put for 
brevity 

(A - 4)1 7 

“2 ‘ 

J@-p')l _ (16) = n, 

(v - vi _ 
l >) oe ‘I 

we obtain the following expression for the final average value of ®: 

or aes sin” sin'a sin’Z g- 345) DDLE. wt 
nv ¢ 

Further, according to (7), B. is independent of p o t, and can therefore be placed 
before the summation signs. Also, according to (16) and (15a), the — belonging to 

consecutive values of p differ from each other by ae and, thus, by an infinitesimally 

small quantity. The triple sum that appears can therefore be turned into a triple integral. 
Since, according to the aforesaid, the interval AE between two consecutive &-values in the 

triple sum is described by the relation 

AEE . 
nl 

we have 

> > > o sin’y sin’l 

wv & 

_(2L sin’é sin’ sin’Z 

ey ere ste ge AbAnAL, 
where the last sum can immediately be written as a triple integral. From (16) and (15a) 
we can conclude that for all practical purposes this integral can be taken between the 

limits - © and + ©, so that it decomposes into a product of three integrals, each of which 

has the value 1. With this taken into account, we finally obtain for 5, with the help 

of (7) and substituting the expression for A,
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de 

= GAs J > ay gi ap) ( en) l aan [18] 

N awl ¢ ) (axDy 2 
ov 

or, if we consistently introduce the specific volume v and replace c/n by the wavelength 
A of the excitory light, 

(17) g- 7 “ Flas (4nDy zy 

Here ® denotes the eee volume traversed by the light, the shape of 
which volume is of no consequence. An analogous formula holds for the z-component, 

while the x-component of e vanishes. From this we see that, for determining the intensity 
and the polarization state of the opalescence light emitted in a given direction, the 
decisive factor is the projection of the electric vector on the plane normal to the 

opalescence ray, no matter in what direction the exciting light may propagate.’ If J, 

denotes the intensity of the exciting light, J, the intensity of the opalescent light at a 
distance D in a specified direction from the place of excitation, and the angle 

between the electric vector of the exciting light and the plane normal to the opalescence 
ray under consideration, then we will have, according to (17), 

de 
vj— 

(17a) Jo _ RT, 5] 2] © cose. 
7, Nay (i) Gaye 

a 
In addition, we will calculate the apparent absorption due to opalescence by integrating 
the opalescent light over all directions. If the thickness of the layer traversed by the light 
is denoted by 8 and the absorption constant by « (¢°° = intensity attenuation factor), 
we get 

f “[F) 
RT, 

(18) a= (7): 
6x N- Op A 

av? 

7 It is not surprising that our opalescence light shares this property with the opalescent light 
produced by suspended particles that are small compared with the wavelength of the light. 
After all, both cases involve irregular disturbances of the homogeneity of the irradiated 
substance, the locations of which are rapidly changing.



[19] 
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It is significant that the main result of our investigation, given by the formula (17a), 
permits the exact determination of the constant N, i-e., the absolute size of molecules. 

In what follows, this result will be applied to the special case of a homogeneous 

substance, as well as to binary liquid mixtures in the vicinity of the critical state. 

$5. Homogeneous Substances 

In the case of a homogeneous substance we have 

y as - [pav, 

hence 

oy _ 9 
az a 

Further, according to the Clausius-Mosotti-Lorentz relation, 

e-1 
v = const., 

e+2 

hence 

(J _ (e - 1%(e + 2) 
av ov 

Substituting these values in (17a), we get 

(17b) Jo, Rlo(e - 1(e + 27 (7) ©  coste. 
4) (4nDy mae: ov 

In this formula, which gives the ratio of the intensity of the opalescent light to that of the 
excitory light, in case the latter is measured at distance D from the volume ® originally 

traversed by the light, we use the following notation: 

R is the gas constant, 
T is the absolute temperature, 

N is the number of molecules in one gram-molecule, 

e is the square of the refraction exponent for wavelength A, 
v is the specific volume, 

@/ is the isothermal derivative of the pressure with respect to 
the volume, 

@ is the angle between the electric field vector of the exciting wave and the plane normal to 
the opalescence ray under consideration. 

That dp/dv is the isothermal, and not, say, the adiabatic derivative, has to do with the 
fact that of all the states belonging to a given density distribution, the state of constant
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temperature is the state of greatest entropy, and thus the greatest statistical probability, 

at a given total energy. 
If the substance in question is an ideal gas, then we can set e + 2 = 3. For this case 

we obtain 

(17c) Jo = RT (e - if (=) 2 cos’ 
J N Pp (4nD)’ p r 

As a rough calculation shows, this formula might very well explain why the light given off 
by the irradiated atmosphere is predominantly blue.’ In this connection it is worth 
noting that our theory does not make any direct use of the assumption of the discrete 

distribution of matter. 

$6. Liquid Mixtures 

The derivation according to equation (17a) is also valid in the case of a liquid mixture 

if one sets 

v = specific volume of the unit mass of the first component, 
= work needed to bring the unit mass of the first component along a reversible path from 

the specific volume it has in thermal equilibrium to some other given specific volume 
along a reversible path at constant temperature. 

If the vapor coexisting with the liquid mixture under consideration can be regarded 
as a mixture of ideal gases, and the mixture can be regarded as incompressible, then the 
quantity y can be replaced by quantities accessible to experience. We then find yw by 

the following elementary argument. 
Let the mass k of the second component be mixed with the unit mass of the first 

component. In that case, k is a measure of the composition of the mixture, the total 

mass of which is 1 + k. Let this mixture have a vapor phase, and let p” be the partial 
pressure, and v” the specific volume of the second component in the vapor phase. Let 
this system be enclosed in a container with a semipermeable section of wall through 

which the second, but not the first component can be taken in and out in gaseous form. 
Let a second, relatively infinitely large container enclose a relatively infinitely large 
amount of the mixture with that composition (characterized by k,) for which we wish to 

calculate the opalescence. This second mixture shall also occupy a vapor space with a 
semipermeable wall, and the partial pressure and specific volume of the second 

component in the vapor space shall be denoted by p,” and v,”, respectively. Let the 

temperature inside both containers be 7,. We shall now calculate the work dy that is 

necessary to increase the concentration measure & in the first container by dk by 

transporting, in gaseous form and in a reversible way, the mass dk of the second 

8 Equation (17c) can also be obtained by summing the radiations of the individual gas molecules, 
which are considered to be completely randomly distributed. (Cf. Rayleigh, Phil. Mag. 47 [1899]: 
375, and Papers 4, p. 400.) 

(21) 

[20}
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component from the second to the first container. This work is composed of the 
following three parts: 

P,"Y," (work of removal from the second container) oe 

dk Pp”. . . . . 
ee lg (isothermal compression to the partial pressure in the first container) 

Py” 

+ s pv" (work of input into the first container). 

The volume of the liquid is neglected here compared with the volume of the gas. M” is 

the molecular weight of the second component in the vapor phase. Since the first and 

the third terms cancel out according to Mariotte’s law, we get 

RT, 
dy = qr tt ie. 

Po 

The function y can thus be calculated directly from the concentrations and partial 

pressures. Now we have to find &/a” for the state we denoted by the index “0.” We 
have 

Ig) P| =ig hi) +? 79 | =p (1 +) = x - 
Po Po 

where 1 is the relative pressure change of the second component with respect to the 

original state. From the last two equations there follows 

|
 

4
,
 

| ™ + 
ay _ RT, 2° 

a Mo 
ok 

Differentiating one more time with respect to v, and considering that 

é 

a _ ok 
av a 

Ok 

we obtain, if we set nm = 0 in the result, 

on i op" 

29 _ RT, ak _ RT, p” dk 

a}, MM = MM" avy ; 

ok ok 

Taking this into account, along with the fact that 
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de 

de _ ok 

er: 
Ok 

we can rewrite the formula (17a) in the form 

7 (5 2 

J, _ M* a 2] ® 5 
= “ cos’ @. 
J, N O(log p") (4) (andy 

ok 

This formula, which now contains only quantities accessible to experiment, completely 
determines the opalescent properties of binary liquid mixtures—to the extent that their 
saturated vapors can be treated as ideal gases—up to a small region in the immediate 

vicinity of the critical point. But because of the strong absorption of light and its great 
dependence on the temperature, a quantitative investigation might well be ruled out here 

anyhow. Let us repeat here the meanings of the symbols that appear in this formula 
insofar as they have not been explained along with formula (17b): 

(17d) 

M” is the molecular weight of the second component in the vapor phase, 
vis the volume of the liquid mixture in which the unit mass of the first component is 

contained, 

k is the mass of the second component which falls to the share of the unit mass of the first 

component, 
p” is the vapor pressure of the second component. 

Lest it not look peculiar that the two components play different roles in (17d), let me 
mention the well-known thermodynamic relation 

1 dp” __ 1 | 1dp' 

Mop M kp 
From this relation one can conclude that it does not matter which component is treated 
as the first, and which as the second. 

A quantitative experimental investigation of the phenomena here considered would 
be of great interest: on the one hand, it would be valuable to know whether Boltzmann’s 

principle gives indeed a correct account of the phenomena here considered, and on the 
other hand, such investigations could lead to accurate values for the number N. 

Zurich, October 1910. (Received on 8 October 1910)
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Doc. 10 

Comments on P. Hertz’s Papers: 
“On the Mechanical Foundations 

of Thermodynamics”! 

by A. Einstein. 

[Annalen der Physik 34 (1911): 175-176) 

In his superb papers titled as above, Mr. Hertz has criticized two passages in my papers 
on the same topic. In the following, I will briefly comment on these criticisms, noting 
that what is said here is the result of an oral discussion with Mr. Hertz, in which we came 

to a perfect agreement regarding both points in question. 
1. In the penultimate section of §13 of his second paper, Hertz criticizes a derivation 

that I gave of the entropy law for irreversible processes. I consider this criticism totally 
valid. I was not satisfied with my derivation even then, which is why I soon thereafter 
produced a second derivation, also cited by Mr. Hertz. 

2. The comments contained in §4 of his first paper that are directed against an 
argument about thermal equilibrium contained in my first paper in question’ are based 
on a misunderstanding caused by an all-too terse and insufficiently careful formulation 
of that argument. 

However, since the topic has been adequately elucidated in works by other authors, 
and since, moreover, a detailed discussion of this specific point is not likely to claim much 
interest, I do not wish to elaborate on it here. I only wish to add that the road taken by 
Gibbs in his book, which consists in one’s starting directly from the canonical ensemble, 

is in my opinion preferable to the road ] took. Had I been familiar with Gibbs’s book 
at that time, I] would not have published those papers at all, but would have limited 

myself to the discussion of just a few points. 

Zurich, October 1910. (Received on 30 November 1910) 

' A. Einstein, Ann. d. Phys. 9 (1902): 425 and 11 (1903): 176. 

2p. Hertz, Ann. d. Phys. 33 (1910): 225 and 537.
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Doc. 11 

Lecture Notes 

for Course on Electricity and Magnetism 

at the University of Zurich, 

Winter Semester 1910/11" 

Electrostatics 

If one rubs glass, sealing wax, or other bodies with other bodies, then after this procedure 

they will (temporarily) exert forces on each other that were not observable before, 

without their having been otherwise influenced in a perceptible manner. One says that 

they are “electrified,” where by this word one does not denote anything but what has 

been said. Metals & many other bodies can be electrified only if affixed to a prop of 

glass or sealing wax etc., or suspended by a silk thread. A body can be electrified not 

only by rubbing but also by bringing it into contact with an electrified body. 

Let us examine the laws according to which electrified bodies act upon one another, 

assuming for the sake of simplicity that the bodies are small compared with the distances 

between them. The forces exerted by these bodies on each other act in the direction of 

the connecting lines (equality of action & reaction, we can measure them absolutely by 

the methods of mechanics, for example in the following way: 

_6 > ‘ - 

zs ANG aux E prong 

Consider now many bodies, say small metal balls suspended by silk threads, and let 

us suppose that we have determined that the forces that any two of them exert on each 

other, and assume, for the time being, that they are at a distance R that always stays the 
same. We designate attractive forces as negative, repulsive as positive. 

If we combine the bodies 1 2 3 .. with the body a of our group, we obtain the forces 

Fy Fay Fy, + -- If we combine the same bodies 1 23 .. with the body b, we obtain 

the forces 

Fy, Fa, Fy 

[p. 1] 

[p. 2]
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Experience shows that F,, : F,, : F,,.. = F,, : F,, : F,,.. Thus, the effects of the bodies 

123 .. another body always stand in the same ratio no matter how that other body has 

been chosen. Hence we can characterize the electrical influence of one el. body by 

means of a number, if we have assigned an arbitrarily chosen number, for example the 

number 1, to the influence of one of the bodies.“ This number is called the quantity 

of electricity. It follows from this definition that the force f exerted by two bodies on each 

other is directly proportional to their quantities of electricity. 

F =k-eg,. 

However, k also depends on the distance. 

Further, it follows from experiments that this force is inversely proportional to the 

square of the distance, so that we have, with another interpretation of the constant k, 

F=ko2 
Pr 

where k no longer depends on the distance but only on our choice of the body in our 

group to which we have assigned the quantity of electricity 1. 

The sign of k is determined by our earlier stipulation in conjunction with experience. 

That is to say, it has been found that quantities of electricity that are alike according to 

the above definition repel each other. Thus, k is a positive constant. Its value depends 

on what we stipulate as the unit of the quantity of electricity. However, we may also 

freely choose k and thereby define the unit of the quantity of electricity. We do that by 

setting k = 1. We have then 

F = 
Pr 

Tn order to measure a quantity of electricity absolutely after according to this <kind of> 

definition,” one has to measure, in principle, a force and a length, which quantities 
occur in the form 

e = force - length = M’L°T? 

This is the “dimension” of the electrostatically measured quantity of electricity. 

We must mention a few more facts that are of fundamental importance for the 

foundations of the theory. 

If a quantity of electricity e, is subjected to the action of two quantities of electricity 

e, & e,, one finds the force acting on e, from the law of the parallelogram of forces. In 

the special case where e, & e, are very close to each other, their effects on e, will add up
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algebraically; in other words: the quantity of electricity of a system of bodies is equal to 

the sum of the quantities of electricity of the system’s individual bodies. 

This principle can be further extended, given the character of our experience with 

electrified bodies. If bodies with quantities of electricity e, & e, are brought into contact 

with one another, then, in general, their electric state will change. But their action at a 

distance on a third e. q. e, will not change upon the contact, and so the sum of the 

electrical quantities will not change either. (Important law of the constancy of the sum 

of quantities of electricity, an exception to which has never been found.) 

We endow these two laws with a tangible, physical meaning by imagining that the 

substrate for the quantity of electricity is some sort of indestructible matter, which, 

however, must be thought of as being present in a positive and a negative modification, 

because the experiments alluded to above show the existence of positive as well as 

negative electrical quantities (in the case of attractive forces). 

One more thing has to be added to complete what has been said so far, for there is 

no way to decide which sign to ascribe to a specific given electrical quantity, because the 

interaction between two e. q. only makes it possible to decide whether the two have to 

be assigned like or opposite signs. But all that is needed, therefore, is to fix the sign in 

a specific case (glass rubbed with wool is positive), in order to fix signs for all other 

quantities of electricity. 

In completing what has been said about the auxiliary representation of positive and 

negative electricity, it should be added that one imagines that the interactive forces act 

between the electricities and are transferred from them to the carriers of electricity 

(bodies) to which they are bound. We further complete the picture by the assumption 

that not only the algebraic sum of the electrical quantities, but also the sum of the 

electricities of each of the signs is constant—a proposition that is part of the picture and 

that cannot be either directly confirmed or directly discomfirmed by experiment. 

The action of a system of electric masses (e, e, ....) on a pointlike quantity of 

electricity (e). 

An electrical quantity e,(x y z) exerts the force K on a quantity of electricity 

e(a, b,c). We have e 

K-°° h ae _ py by _p\2 Li 
ie) “hee = (x-ay + (y-b)y’ + (z-c). by TF 

ad ¥¥e 
' _ 7 _4 

The direction cosines of this force are ~_“, y-b) inl a 
r r r 

so that its components are 

[p. 5]
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ee x-a@, K, =— 
2, +r ry 1 

ee y-b 
K-27" «| 

yl 2 ( ) 
ry 4 

ee z-c 
K,=— — 

Aon 

If several masses e, e, .... act simultaneously on mass e, we get! 

ee x-a ee X-a mn. €, x-a 
- si 1 2 2 —_ 1 1 K, = XK, = = —- + > ——.-. =e-YO 

ry y A rn tor y 

For a given distribution of the masses e, etc., and a given position for e, these force 

components are proportional to the e.g. e. But the sums appearing on the right-hand 

side depend only on e, e, ... & the test point. These sums 

my €, X-a 
> = —— = X (other components Y Z) 
1A 

are called the X-component of the electric force or field strength. It is equal to the force 

exerted on the unit of electricity. X Y Z is a vector which is related to the vector of the 

force acting upon the e quantity e in the following way: 

K,=eX K,=eY K,=eZ..... (2) 

If one draws from every spatial point a directed straight line in the direction of the field 

intensity, one gets a picture of the course of the field intensity, of the vector field X Y Z 
that brings about the (possible) actions of forces deriving from the quantities e, e, etc. 

This field is determined chiefly by 3 spatial functions (X Y and Z). However, these can 

be reduced to a single spatial function. For we have
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since because 7, = (x -a,p +++  rdr, =(e-a,)de +-+- Hence, if we set 

e > — = 9, we get 
5 

1 

y=-* 9=y" oy 

Z = -99 
az 

Thus, X YZ can be described as derivatives of one spatial function @. We call » the 

potential of the masses in question. 

The Physical Meaning of the Potential 

We consider the electrical unit mass in the field of 

the e. q. €,, €,, e,.... We move the unit m. from the point 2 

P, to the point P,. For an infinitesimally small portion of % 2. J 

the path with projections dx dy dz, the work performedby —_x¢ 
the forces of electric origin equals Xdx + Ydy + ZdZ. 

The total work is therefore A = i Xdx + Ydy + Zdz 

With the help of (3), this work can be given the form 

SS)
 

3g 39 ap A = -| —dx + —dy + —dz = -|\dgq, 
Sz ae Wee Jae 

where d@ denotes the total change of » when the element dx dy dz is traversed. Hence 

we obtain 

A=, - @.... (4) 

Thus, the work done on the unit electr. mass between two points is equal to the potential [p. 8] 

drop between these two points » is independent of the choice of the coordinate system. 
This quantity is totally independent of the shape of the path. Hence, if the unit pole



[p. 9] 
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describes a closed curve, i.e., if P, & P, coincide, @, = @,, and hence the work A = 0. This 

fact contains the more profound interpretation of the reason why the vector X YZ of the 

el. field strength is derivable from a potential. If the integral were not to vanish for a 

closed curve, it would be possible to produce work from nothing, without limit, by means 

of electrical quantities. 

The Theorems of Laplace and Gauss. Lines of Force 

<Here give a little kiss to his poor!>"! 
The funct » provides a graphic overview of the course fon, 

of the el. field. If one thinks of a surface » = const., then WY wae 

the field vector X YZ will be perpendicular to the surface /, 

@ = const. Because every derivative - = taken in the Pd 
Is 

direction of a line element in the surface vanishes. If we wo 

think of two adjacent surfaces » = y, & m = @ - &, we 

will have - = = > and since e is everywhere constant along the two surfaces, : is 
La 

a relative measure for - aa ie., for the el. field strength, or—as we will call it in brief 

for the el. force. An additional aid for intuitive visual 

representation is provided by the concept of lines of 

force, i.e., of lines that at each point have the same 

direction as the electric force. According to what we 

have said, these lines of force everywhere intersect the 

surfaces of equal potential perpendicularly. Beyond this, 

we will see that the density of these lines of force is 

proportional to the field intensity. But in order to do 

this, we must first derive a few laws. 

The Theorems of Laplace & Gauss 

If only one charge is pres., then o = ©, where 
r 

r=+ Vr-ay? +(y-by + @-c). 

Diff, we obt. 

=-luws= ~£ (x-a) 
ox Por P



DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 257 

ap _ _e , 3e(x-a)’ 

a? mrt Wr 

From this, Ag = go + ie + ae = 0.... (5) also holds for an arbitrary number 
Ox ay? Bz? 

of masses (Laplace’s theorem) 

We can express this theorem in still another form if we use the field intensity instead of 

the derivatives of o. 

ox . aY . AZ 
—+ouo+t+io—=0 
ox ad ow 

We can give this theorem a new form by integrating over a volume bounded by a closed 

surface that contains no electric masses. 

.. (5a) 

f 92 aedydz 
az 

Portion of an element 

VA dxdy = dedy[ S & = dedy(Z,-Z,) 

if m, and n, are the inwardly oriented normals, 

then! 

dxdy = - df, cos (nz) = df, cos (nz) 

We can set - LZ cos nz df over the two elements 

Every other element dx dy has the same form, so 

that when one finally replaces the sum with the 

integral, one obtains"! 

92 4, = -{Z cos mz ds 
oz 

Applying this theorem three times, one obtains 

0 (X-¥-% 
ex oo oe 

Considering that the expression in the brackets is in fact the field component N in the 

direction of the inward normals, we obtain 

Jes = [x cosmx + Y cosny + Z cosnz)ds. 

[p. 10]
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[Nds = 0. (6) 

which we can also write in the form J 2 ds =0 

This theorem yields us a further property of 

the field of electric lines of force. Define tube of 

force & write down above theorem for it. Integral 

vanishes on the surface. On the initial and termi- 

nal cross section we have 

Nf = Na fe 

—_- N, of . 
This vanishes. .— = —. Thus, the field strengths vary inversely as the surfaces of the 

1 2 

tubes of force. If one draws a number of lines of force through f, and continues them 

up to f,, then the density of these lines of force will likewise be inversely proportional to 

the surface areas, and thus directly proportional to the field intensities N. Thus, one can 

draw unending lines of force in the field, so that line density = field strength. This is why 

the lines of force afford a quite complete & direct intuitive visual representation of a 

field. 

Equation (6) expresses the one special case of the so-called Gauss’s theorem." 

This equation can easily be extended to the case where the closed surface encloses 

electric masses €, €,.... 

We extend the surface integral to the volume bound- 

ed by the giv. surface F and the auxiliary spherical surf. 

K, K, ete. 

fNas + [Nas +{ Nas... = 0. 
F K, K, 

We seek integral extended over sphere K, We divide the total field into 1. X, Y, Z, N,, 

which derives from e,, & second, the rest X’Y’Z‘N’ 

€ 

The surface integral f (_N’ ds vanishes, f Nias = -4nr? ~ 4ne, We thus obtain 
‘7 r
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[Nas = -4nx)>e, (General form of Gauss’s theorem.) 

Continuously Distributed Electricity 

So far we have assumed that electricity is unalterably bound to small bodies (treated as 

points). But the character of experience favors the assumption that electricity is spatially 

distributed. We must generalize our investigations in this sense. To begin with, we think 

of electricity as continuously distributed, pdt being the quantity of electricity in the space 

element dt. p is the difference between the densities of positive and negative electricity 

at one locus, as we imagine it. We assume that the electricities are movable relative to 

ponderable matter, and that they cannot undergo any other changes except those of 

position. This model is suggested by the earlier-mentioned empirical law of the constancy 

of the quantity of electricity in the electrical balance between two small bodies. 

The following should be noted here. We have seen how experience led to the introd. 

of the concept of the quantity of electricity. it was defined by means of the forces that 

small electrified bodies exert on each other. But now we extend the application of the 

concept to cases in which this definition cannot be applied directly as soon as we 

conceive the el. forces as forces exerted on electricity rather than on material particles. 

We set up a conceptual system the individual parts of which do not correspond directly 

to empirical facts. Only a certain totality of theoretical material corresponds again to a 

certain totality of experimental facts." 
We find that such an el. continuum is always applicable only for the representation 

of el. states of affairs in the interior of ponderable bodies. Here too we define the vector 

of el. field strength as the vector of the mech. force exerted on the unit of pos. electr. 

quantity inside a body. But the force so defined is no longer directly accessible to exp. 

It is one part of a theoretical construction that can be correct or false, i.e., consistent or 

not consistent with experience, only as a whole. The laws that we found empirically for 

small electrified bodies we now apply to the fictional electricity itself. 

We invest. the pot. of cont. distribution 

g= f pag R small radius sphere about the test point region decomposed polar rp 

coordinates introduced 

c-z=rcost 

a-x=rsin®?cos@ volume elrsinddrdwd? 

b-y=rsin @ sino 

In small sphere pe replaceable by /p,rsinddrdwd? always finite. Thus, the integral 
r 

is not infinite. 

[p. 12] 

Ip. 13]



[p. 14] 

(p. 15] 

260 DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 

Op _ ¢pdtc-z _ : 
ft” — = I, + J poosd sint dr dwd?t. 

The second int. is finite.) Hence field strength always finite. One proves that when 
p with all derivatives is continuous, the same must be true of 9. 

The equation Ag = 0 is not valid here. We find the corresponding theorem by 

applying Gauss’s theorem to an arb. closed surface inside the continuum. 

fé,do = ~[4npde ; 

where €, denotes the component of the el. field strength along the inward normal. First 

we apply the theorem to the special case where the surface is the boundary of an 

elementary parallelepiped. The right side becomes -4np dt. The left side 

9 ac, 
ae fe + Bide ©, dydz + -(e,+ eS ax) ade 

x 

_(, , G , H,) 
or ox” by oz) 

If the two sides are set equal, one obtains 

0€ c€& 
+2 + 

ox dy Iz 

If one replaces €, etc. by the derivatives of the potential, one obtains 

+A = -4np 

This is Poisson’s theorem. 

Distribution of the Electricity on Conductors 

A conductor is a substance in which the electricity is freely movable. Equilibrium 

possible only if no forces act on el. in the interior. €, etc. vanish. Poisson’s theorem 

applied to a point in the interior of the conductor yields p = 0. Thus, the electric masses 

sit only on the surface, & in the interior of the conductor = const. 

Since the electricity is distributed two-dimensionally on the surface, we must consider 

a two-dimensionally distributed potential.
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1) Potential is uniform over surface. A little piece of 

the surface is cut out by a cylinder around the spot under 

investigation. That which derives from the external part of 

the covering is uniform. That which derives from the 

internal part vanishes for small radius; for!”! 

R 

on [tde en, | EH oa 
0 

which decreases with decreasing R. 

From the constancy of @ it follows that the tangential components of € on the two sides 

of the layer are equal. 

Pi = G2 

i = G2 
be 91-0 — 9% 4 

el 

~i-%i _ G2— $2 
é _ 5 or €,, = €,, 

From this it follows €, vanishes on the external surface of a conductor, i.e., that the lines 

of force must intersect the surface of the conductor perpendicularly. 

2) How does the normal component behave on the two sides? 

This follows at once from Gauss’s theorem."! 

4no df = €,df — €,df & 

or te hd 

€,; — E,. = —4no. SP€cial €,=0 €, =4nx0 
case 

or (3) - (=| = 4nxo, if both normals are taken toward the external side. 
in J, in), 

Force on piece of the conductor surf. [p. 16]
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wpe Ps 
aan 

_%; 
+ amp = 3, 

1 
Graft = an 

4n | esd = [epee = (Ge — ©) 

The problem of finding the distribution of electricity on a conductor is now easy to 

formulate mathematically if we further stipulate that the potential should be constant at 

o. If all effective el. masses are at a finite distance, its value there is zero. For @ can be 

determined from the following conditions: 

1) @ = const = P, inside the body 

2) A » =0 outside the body. 

3) @ constant on the surface of the 7 we 

body. » together with the derivatives in Yi 

the external region. 
‘ 

4) @ vanishes at ~. 

We prove later that these conditions are = 

sufficient. 

a e difference @, of two solutions 9, ( 

must vanis ide on the surface. <Thus, tame 

if there existed a closé 

the external region> 

We now choose a closed surface in the 

fees 
If » is determined in accordance with these conditions, one obtains the surface density 

‘ace anywhere in 

n by means of the relation4ny = €, = -<f, where the normal is directed toward the 

in 

outer side of the conductor. One obtains the total charge by integrating n over the 

surface. 

Example. Let the given body be a sphere. We show that the solution 9 = © in the 
r 

external region and = P in the internal region satisfies all the conditions. 

1) satisfied
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2) satisfied, because a(=) =0 
r 

3) satisfied, if © = P 
R 

4) satisfied. 

We determine the charge e. 

1 (d@ lea 
e = [ndo = (_“_R’dx =a = “4 = + 

Jn Sara 4 

Thus, we obtain 

é 
Qo= - 

r 

e = RP 

This shows that e is proportional to the potential difference P. This holds not only for 

a sphere but quite generally. For let the problem be solved for a specific P. One then 

finds the solution for a P* = A,,,,P by using the function »* = A@ instead of ». Thus, a 
P 

depends only on the shape of the conductor and is called the capacity of the latter. The 

capacity of the sphere is equal to its radius. 

Instead of a single conductor, let us think of one surrounded by a conducting casing. 

1) =P, in the interior » = P, in casing 

2) Ag =0 bet. body & casing 

3) constancy req. 

Then AP,AP,A@ solution Ae el. quantity 

on body as well as on casing 

Charge dep. only on pot diff. 

P,-P, AP, - AP, 
e Ae 

Example parallel plate condenser!) 

= ¢ capacity, (mutual) 

Pe toe 2) sf We) = =— @= — —_— 

ax 8 4x 4nd 

[p. 18]
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Example concentric hollow spheres. 

o-2+6 

a 1 1 —+B=P, a -—|=P,-P 
R, ° : jt | ' : 

RR 
=~ +B=P, a=(P, -P) "2 
R, R,-R, 

P-P, R,-R, 
= mutual capacity 

Even simpler derivation (center) 

Example concentric cylinders, @ depends only on 8 = yx? + y? . One could set Ag = 0 

for this special case & integrate. Even simpler, apply Gauss’s theorem directly. e = el. 

charge per unit length 

4ne = 2nr€, 

2e or 
€ = — = — 

"or or 

@ = -2e Ig r + const = -2e Ig 7 
c 

Boundary conditions yield 

P, = -2e Ig — 

R, P, = -2e lg — 
c
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Capacitance = c = e oe! 
R 

2 21g 
eR 

1 

R. 
Becomes zero when R, = ~. Only slightly dependent on the ratio - —2 

1 

Electrical reflection of two spheres. 

Uniqueness of the solution. Green’s theorem. 

(2 - + -|ar = -fuxae - fUAVar 

fevae | (Far - fora (uv 5] - ju<Zae 

-—nxocosnx 

- JU (Feeos nx « “+ +) = fusfae 

The above equation is a form of Green’s theorem. If we set U = V & AU = 0 & on the 

surface U = 0, then f Es (2) ee jus = 0 Provides the proof of uniqueness. It is easy 

aU 
to calc. U in a point if one knows U & an on the boundary surface of a space. 

mn 

Electrical Energy 

We start again from system of small electrified bodies. First two bodies a & b. Mutual 

e,-é, 
force 1 =F 

r 

Components 

[p. 19}
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fx %e dx, _ Fx *e dx, 
r r 

Fy — Va dy, _FyY Ya dy, 

r r 

Fb 74 | dz, _Fp%— 7a | dz 
r r 

dA + Fie i “oN Oe = dx,) + + } = Fre = Fdr 

Can also be understood geometrically 

fol) €e, 
But F = = where ® = 25. 

ir od rs 

ae, 
dA = -~—“dr, = -d®, 

or, 

If many masses are present, one obtains the analogous expression, but one has to sum 

over all combinations. 

44 = PY ae, = -d{P La}=-d@ o-yy 
The elementary work is equal to the decrease in the function ®, which we may call the 

potential energy of the electric forces or simply potential energy. When doing the double 

sum, each combination should be counted once. 

But if one proceeds by first comb. the mass 1 with all the other masses, then mass 

2 with all the others etc., then one counts each combination twice; hence one has to set 

& 
a®, 

Top 

ée 
1 ab @=_ 
p> r 

The potential energy of a system with continuously distributed masses is to be built in the 

same way, except that the sums have to be replaced by integrals. One obtains 

= ; jpecee dt’ 

or 0-5 ree, 

1 
or @= 5 forac
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This expr. is very important, for it permits the calculation of the forces that electrified 

bodies exert on each other. 

We attach to this expression a theoretical analysis. © can be decomposed in such a 

manner that one assigns the energy 2pdt to the individual volume element. Then 

energy is to be assumed only where el. masses are present, e.g., on the surface. However, [p. 21] 

the energy can also be localized in another way. That is to say, we have 

0-1 feeds =-4 fot [28+ -+-]=-2 Jason 
ax? 

2 2 

Now, 92% = 9/998) _ (30 
a2 axl ax ox 

If we integrate & take into account that @ & its derivatives vanish at the limits of int., we 

get 

= 1 ag on _1 2 2 2 _ il 2 “5 ee +++ Je -- fe +@ + @)de = = eat 

Here a volume element contributes the term @’dt. The energy appears localized in 

space. Of course, all these expressions for the total energy are equally valid. We find 

easily the electr. energy of an electrified conductor It is 

Application of the energy law. E in the conductor experiences an infinitely small change 

1) through addition of the quantity of electricity dE, along with el. work PdE. 

2) through change of shape. mech. work taken up = dA 

The energy principle yields the equation 

PdE + dA =db= (eae + EdP) 

The mechanical work -dA done by the system is 

-dA = irae - EdP) 

lf dP = 0, then PdE is el. work supplied. Half of it is converted into mech work. But 

if dE = 0, then
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dA = SEAP = sba{Z) ae |- a{;eP | 

Some Properties of a System of Conductors 

We imagine that the conductors 1 2 3 .. are charged How do individual potentials 

depend on the charges? 

If » is a solution, then e@ is also such PR» 

a solution, with the surface densities, and thus also (7, 

the total charges, being multiplied by a. 

We start from the case 

Pr=1 P,=0...... let @, be this solution. > 

= P,@, is then also a solution. 2 

If one defines », analogously, then 

= P,p, is asolution. The 9, », etc. are determined by the conductors alone 

» =P.9, + Pg, .... is also a solution. 

Thus, » is homogeneous & linear in the P. The same holds for a hence also for the 
7 

individual FE, ... E, ; 

Thus, we get 1, Py + 2a,.P,P, + az2P? 

must not be negative!™*! 
E, =4,,P, + 4,,P,+.... 411 "4p, — 2a,, >0 

E.-=a.P +a.P.+ - sometimes another form more convenient 
. - 

i P t a,,t+a Solving for P, we ge E, =! 3 12(p 4 P,) 

P, = bE, + bE, +.... 
b 411 —~ %12(p _ p 

P, = bE, +b, E, +... z —F) 

az, +a E, = “24> "22(P, + P,) 

a. _— 4 921 5 O22 (p, ~ P,) 

The coefficients satisfy a condition that we must derive. If the coefficients are constant, 

i.e., the position of the body remains unchanged, then 2PdE must be a total differential. 

This is the case only when b, = 6,; and a,;, = a, This means........ 

One obtains the equivalent expressions
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m= ; YY PP, 

o= 5 TPL E, 

From this we get 

By O® |... where © is a funct of the P aP, 
od 

P= eee " wy « non BK. 

‘OE, 

We again investigate the work performed. The latter is accompanied by a change in the 

coefficients. Work supplied dA = - d® at constant E 

dA, = 5 (EdP, + EdP,.....) 

The quantity of work is equally large if P is constant. But one has to increase the poten- 

tial by dP, ..... In doing this el. work is supplied d4, = P,dE, + PdE,...... 
(16] 

dA,-d4,=d®  YPdE - ; DEP = SY Pade + SY EAP 

Here PdE, +.... = (Pa, _.. + EdP,.....) 

or SEP, = PE, better this way: 
Hence the supplied dA, = d® +dA,, 

el. work is!®! dA,, = UPdE - YXPdE - Y2XEdP 

dA, = ZEAP, dA,, = VS=PdE - VZEdP 
dA, = 2dA. For constant potentials 

dA,,= dA, 

4. Example Motion of a Conductor. Plate Condenser [p. 24] 

Examples. 

Two spheres whose distance from each other is large compared with their radii. We 

calculate potentials as funct. of the quantities of electricity (approximately). 

1 
R, D2” 22 Q D 

a, 
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When the second sphere was moved closer, the potential of the first sphere was increased 

if the two were similarly charged, while the reverse took place in the opposite case. 

1 1 
@= APE + PLE.) = 5k + 2b,,E,E, + bE?) 

We also calculate the constants a, which permit the evaluation of the capacities. To do 

this, we need only solve the above equations for EF, & E,. Setting A = b,,b,, - b,.’, we 

obtain 

1 
E,= a {b,P, 7 b,,P, =a,,P, +4,P, 

1 
E, = a {-b,,P, + b,,P,} =a,P, +a,,P, 

From this we obtain the quantities of electricity for given P. If, for example, P, = 0 (the 

second sphere permanently grounded or connected to a casing, we have!”*! 

1 

BE, = by = by, = R, 

P, A Be, RR, 
1-_- 1 D 

bb, 

The presence of the second sphere increases the capacity of the first.!7) 

b, RR, 
bb, D- 

One can reduce the problem of the interaction between a sphere & a conducting 

plane to the problem of the interaction between two spheres using the principle of the 

electric mirror-image, which consists in the following: One sees that the case body-plane 

can always be reduced to the case body-symmetric body.” We have 

E, = 4,,P - 4,,P = (a,, - 4,,)P D = 2D’ 
In our case we have, for example!
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The case of two wires at a distance from each other can 

be treated in a manner very similar to the case of two 

spheres at a distance from each other, even if a conduct- 

ing plane is present. All one needs for this is the poten- 

tial of the electrified line. We shall not go deeper into 

this. 

In those cases in which the field is known, another 

way of treating the problem, by means of © = = leas, 
v9 

is often more advantageous. 

Plate Condenser 

Only the field between the plates away from the edge is 

considered.! 

ot. = €, = const. 
ox 

o-le-p el 
8x 

Ag = - {Stax = [@dr = €3 

€ 
Quantity of charge E = an f.  4nn = €, 

om fen % 
Ca = J = 1 

Paty Ag and 

1 1 1 1E 
as 3 BAe 5 EP, P,)=5(Pi PLC = 5— 

We find the attractive force by constructing 

(53) Pale) ses ava re -e a). 2 dif) 2 fF 2 c& 2 8 2 and? Be 

Thus, the force per unit surface area is me 
7 

This last law can be derived quite generally. We seek the force that acts on the charge 

of unit surface. We think of the latter as being of finite thickness. 

oe 
Force = | p¢ where ~*~ = ri fe fx ax 4np
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I =p6 —>« 
= «, oy Le, 

4n = “9 -e fan 

Thus, it is as if the outer normal force acted on the whole layer. 

How does P change if one varies 6 at constant E. 

P= E =E.- > The potential difference varies as 8. Means of increasing the 
Cc 

potential difference by expenditure of work. How does the potential change in the case 

of circular plates if one increases the distance to ~ for constant quantities of electricity? 

f pi24) 1 
E=P = _ &? = 

% iG gn oon 

Cc ae ieee P, C, 2R  86R 86 55 = EP 
ae = Fa f P? | 

ur 

Application for the detection of small potential differences by electrostatic means. 

(Volta’s experiment.) 

Absolute measurement of potentials by the “guard ring” electrometer.) 

a(1E\ 1, 4n fe a(S = een” 
ore’ 5(3 =) 2° F 

f? 4n_ 1f 
Pp? = 

en (@ndy f Bn FR 
Since the force can be measured absolutely, & so too f and 6, the same is true of P. 

GIT TTT a 
p2 

Kelvin'’s Quadrant Electrometer for the Measurement of Voltages 

and Small Quantities of Electricity™! 

. Sai, ~ pa -x) AP 

+ Se(P, - pha + x)" 
Interests us only insofar as it is dependent on x 

® = x{(P, - p)’ -(P, - py tx 
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oD D = (I = x{(P, - p)’ - (P, - py} 

Most important circuits 1) p = P, D =«(P, - P,)’ Quadratic instrument 

2) Needle at auxiliary potential p.P, = P - ; P/=P+ = 

D = 2xa(p - P) 

If p large compared with P, then instrument is linear. 

0 
0. |

 "8
 

BE 
8x 

al
-s
l-
 

Maschinchen™! & Thomson's Multiplier. 
e=P,C 

a Pak z 
—S==7 > e=PC P=P,c 

€ 

Even stronger amplification if stirrup P = p© 

[p. 28] 

Repeat Maschinchen 

If one more connection, then Thomson’s multiplier’!
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Drop multiplier 

All induction machines are based on this principle. 

Dielectrics 

Experience. Voltage on condenser plates drops if a nonconductor is 

Y inserted between them. Conversely, if the voltage is constant, the 

quantity of electricity increases in a specific ratio. This ratio is 

characteristic of the (homogeneous) nonconductor in question. It is 

iy called the dielectric constant. <The theory that has been put forward 

Yj thus far can be maintained for this case if one imagines that electricity 

[p. 29] possesses limited mobility in the dielectric. Neutral molecules become 

dipoles> 

NC 

ca 

We can now distinguish two kinds of field strength 

1) Field strength between plates & dielectric or 1 lines of force in an arbitrary gap. (B) 

2) Field strength in a channel connecting the plates 1. The latter is equal to 

P. 1 P. 2. oar ae 

strength by ¢. The relation ® = e€ is generally valid everywhere in the dielectric. 

It is easy to calculate the energy of such a system. We have d® = PGE, if the plates 

are immovable. 

But according to the special form of Gauss’s law 

= if x is the direction of the axis. As before, we denote this kind of field
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B= dno = dn 5 dE = Lap 

P= -[ede=e +2 
it) 

do = Pea 
4n 

Integrating, we get ® = V .e= Ven 
8x 8x 

Accordingly, we generalize the earlier expression for the energy to 

1 © f 2 
®= — |€Rdt = —| ed 

= . Be! . 

Intuitive representation by means of dipoles which strive to bond with one another by [p. 30] 

elastic forces. 

D, = cE, 

D, = e&, > 1 In vector notation abbreviated B = e€ 

D, = e€, 

®, number of the electric lines of force (field strength) through gap perpendicular to the 

X axis etc. €, field strength in channel parallel to X-axis. What kinds of laws hold for 

the vectors B and € inside a dielectric? 

1) € derivable from the potential. 

og €,= —-5 

e 
&,= =< (2) Intuitive model. 

oy 

op 
&, Be 

or, as verified by differentiation



Ip. 31] 
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o€, » 0, = al QXVchhby; Y ae 

oy az 

oe T= 0} (2a) Om 
\ WY 

0, a, | 
oe NL. 

2) A surface containing a great number of unbroken dipoles set up in the gap. Here 

Gauss’s law holds. 

formal component of the field strength in the gap) .do = 0 

If one applies this law to a parallelepiped that is enclosed in the gap, one obtains 

aD, aD aD 
—+io2+u=0 .... Ba) 
ax oy oz 

What conditions hold on the boundary between two dielectrics? The constancy of @, and 

hence also the constancy of the tangential components of €, holds here as well 

&,, = ©, .... (2) A wn! 

4 # 

If one chooses a relatively infinitely low cylinder whose bases are separated by the 

boundary surface, and applies to its boundary the generalized form of Gauss’s law, one 

obtains 

Refraction of the lines of force at the boundary between two media
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€, a €, 

€,€,, = €:€,. e,tga, = e,tga, 

tga, _ 8, 

tga, 8, 

Case where movable electric quantities of spatial density p are also present. 

(1) and (2) are valid here too 

3) becomes [2,40 = -4n{ pdt (3) 

od, , dD, . aD, x 
eo a a =4np (3a*) 

The Meaning of Dielectric Displacement [p. 32] 

According to the Electron Theory"! 

The circumstance that the dielectric displacement and the electrical field strength are 
different in the interior of insulators has been attributed to the limited motion of 

elastically bound electricity. We investigate the meaning of ® according to this con- 

ception. Positive as well as negative el. in nonelec- 

trified state density p,. ® - € is produced by the f / ¢ Hy if 

field in the gap through the action of bound electrici- £ 

ty. If 8 is now the displacement of the positive el. in Jj ° 

the insulator, then y| / | /- | 7 ve Lf 

3p, is posit. coating below 

~8p, neg. coating on top. 

Each sends out 428, lines of force, hence, 2x8p, to one side Both together 4n8p,in 

the gap. Thus, we have 

B-€=4ndp, 

Nothing changes here if we assume that the electricity in the dielectric is distributed in 

discrete quantities +e. Then ep, = ne 

3p, = ned =n =P 
B 

Thus one obtains 

Bw - € = 4p.



[p. 33] 
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Electrostatic Energy 

ale. +€B, +-)dt = @ = sfeede | Extended over © space. 

Another form. 

of) od, 
-| (2+ 7+ ) = + | (02 +:+ :) = an | onde 

Thus, the second form of the energy expression also holds unchanged. The uniqueness 

proof for the conductor problem in the case where arbitrary uncharged dielectrics are 

present is also easy to carry out. We think of the dielectrics as being uniformly 

distributed. In that case @ & = etc. are constant in the entire space except on the 

conductor surfaces. 

fcevexr+ ++) = +f(9@,)do + fopde 
In the domain of integration p = 0. on the boundaries » = 0 for difference solution. 

Thus, the left side = 0, which is a sum of positive magn. 

Charged sphere. Generalization of Coul. law. Forces calculable from ® using the energy 

principle. 

<Energy of a> charged sphere <P> in the dielectric. 

4no = €@p, = Dace. = pk 

1 1 @=€— @%=9"- 
p Pe % as / 

1 
G=_ = 

It requires less energy to charge a sphere in the dielectric to the same quantity of 

electricity, more energy to charge it to the same voltage.
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i eh ce D,=Dd, AxR?D = Ane 

- e le e do 

te P= Surge Sama ae 
Re Rie 1 1 1 

o-[ Sart [ Sarmele eazy} 
oo R 

Plate condenser partly with air, partly with dielectric 

a ae 
B, = e€, 

<4no = B,> boundary condition™! » = ® for x = 0 
@ =0 forx = 8,+8, , f, Ze 
3B, =@, forx = 8 

Vectors spatially constant 

, * do 
® —@® = -[ axe = €, 46, 

é@ 
®? -—-O= — dx 2X = Enea 

© = €,4, + €,6, 

Dd, a €, — e€, 

o-,(6, +2) 0,(4 +4) 

le ay = y, thus, equally large. Charges 
4x 4n 

8 E é 
© = Amd, + — | = 4n“la, + 2 

fe. 2) eff. «| 

Ip. 34]
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static methods for the determination of the dielectric const. Comparison of condenser 

potentials when the charge is the same. 

Force proportional to « when voltage given. From this, the dielectric constant of 

liquids. 

[p. 35] Rising of liquids between plates. Perot, refraction of the lines of force. 

ga_e 

gp e, 

a = height of rise without field. 

a +x = height of rise with field 

Pot. energy of gravity 8 -(<a@ +> x) Pom 

<a> +xy aise? xy, @ = 

7 2 

© = Le(a(asx)e + 3(b-x)e,) 
8x 

d® = work of the el. forces 

-d® = work of the grav. forces 

Sum must be zero. 

8(<a+>x)pg - as 
8x 

absolute measurement of (e - 1). 

Better directly with force. 

€@’<8> (e - e) =0 

Volta Effect. Electric Double Layer. 

Magnetism. 

Coul.’s Law Unit of Pole Strength. Potential Laplace’s Theorem 

Intuitive meaning of the magnetization constants. Let us have a homogeneous isotropic 

material in the shape of a bar. Let it be uniformly magnetized. Displacement 8
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Density of the polarization electricity of either 
sign p, How large are H and %? Material surface 

perpendicular to the x axis. p,3 positive <electric- 

ity> magnetism has traversed unit surface area 

Coatings of density p,3. When surface slanted, 
then p,3cos@ exit per unit surface. If molecular 

model, then p,=y - 2 Density of coating 

pndcosp = @cosp @ polarization. Channel walls 

do not have magnetic covering. End surfaces can [p. 36] 

be neglecte@hus, magnetic field str. in the interior of the channel the same as in the 

channel. 

But in the gap the coverings do send out lines of force. From Gauss’s law directly 

B-% =4nx<@>. Exactly as with dielectrics. There are no true magnetic masses. From 

this it follows that 

| == 

OB. OB OB 
[B.do =0. of —* + 27+" =0 

ax oy az 

% derivable from a potential. Potential of the densities of bound magnetism. 

ap = -— ete. 
2 ox a 

These are our fundamental laws. 

Where is the density of the bound magnetism located? Surface in subst. 

an | aya = | Sedo a — | B.de 

a= -(% 4%) 
Ox Oy a 

Parallel magnetized iron bars F I —- 

Magnetic coverings of bound magnetism = fP, 

The fields % and B are here independent of each other in the magnet % and B are 

differently oriented in the magnet.
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Ges 
/ —— "7". 

_.) 
_— rf 

i 

[p. 37] Magnetic force exerted on each other by very closely neighboring surfaces. 

1 
Ng al Gn De _ $) 

coe Ge 
oO oO 

— 

a 

a 
+ [os.dx= 7 | 9.Prax = 5162 $?) 

4, (87 — $7) 

|
 

If iron, then B, larger than %,, so that approx. K = B. 
™ 

This must be eq. to the magnetic energy of the unit volume. 

Can be very large. ®; = 20,000 K ~ 2.10° = ca 20 kg per cm’. 

Energy of the Magnetic Field 

a) in vacuum SEs = see rc)
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This is g1 %? 
8 

b) If # 1, then this energy has another value. One can calculate this value by taking 

into account that work must also be expended for the displacement. 

The posit. magn. masses of the unit volume are subjected to the total force Bp, The 

work expended on the displ. d8 is %p,d3. This is equal to ¥d¥P because one can set 

Pod = BP. 

In the process, magnetic energy in the vacuum increases by ae aR. 
™ 

The two combined 

1 _1 ahah + 4nB) = wap. 

If B = pk, then this is integrable x [ude 
‘TC 

If yu = const, then 

J ar Ip. 38] 
8r 

per unit volume. As a matter of fact, one may designate this energy as “magnetic.” 

But things are different in the case where no 7) 

relat. exists between % and B. In that case, too, 

Hd® is the work supplied to unit volume. But this 

work need not represent an available store. Surface 

of the “hysteresis curve” represents the energy lost in 

a cyclic process. This energy is converted to heat. x 

The Volta Effect - Electromotive Forces 

In the arrangement shown in the accompanying sketch, one observes an el. field 

between the plates. Such a field would not to be expected according to the 

theory employed so far. Potential diff. cannot arise in the interior of metals. 

Hence they must arise on the boundary surfaces. Let us first assume that the 

potential jump occurs more or less at the contact surface of the metals—later on this will 

turn out not to be valid. Volta discovered.
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=) x Mechanics of the effect == 
ra 

Contradiction with the theory employed so far. How can the latter be extended so 

[p. 39] that in agreement with experience At the surface of separation, electricities are acted 

upon by a force that separates them. We will conceive of this as a field that has an 

external source, not originating from el. masses. 

Zs This “impressed” force seeks to move positive electr. to the right. B4] 

Equilib. can exist only if the effect of €’ is compensated by an opposite 

electrost. field. 

I
v
y
 

=
 

5 or") 
+ €+€=0 @-—=0 — yg = | €@' dx. - f in ax  — ® f 

x) z+ Thus, there is a potential jump at the surface. How is it produced? 

=e any - 28 
= x Ox. 
= + 
——? Thus, we have two opposite coverings. If €’ is constant inside the layer, 

then these coverings are planar (n)|€| = 4% Gauss’s law. 

feta = Ag = €'8 = 4nn6 [ moment of the unit surface area of the double layer 

4 

Double layer <corresponds> not an arbitr. theory but demanded directly by experience. 

Is very dependent on the constitution of the surface—especially water layer. Can be 

removed almost completely with removal of the latter. Thus, is located in the surface 

facing the air. 

[p. 40] If instead of air, water between the plates, then also field.
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But because water conductor, el. moves in water. Current arises. In accordance with the 

law of conservation of el., such a current must also flow in the metals, so that no excess 

would arise anywhere. Chem. processes on electr. Since we have already meas. the el. 

unit, the unit of the el. current is also def. (Number of electrost. units flowing through 

the conductor per second. The direction of the current is the direction in which the 

positive electricity flows. 

Magnetic Field of Currents 

Current acts on magnetic needle. What is the constitution of the magnetic field outside 

the conductor? 

Let the conductors be surrounded by vacuum (or air). For such a case we have 

found that 

dp 
9, ax 

8H, OD, , 0, _ 
ax" éy a oz e 

If the concept of magnetic field has a general meaning, then these equations must hold 

here as well. 

% derivable from a potential. In such a case we have seen until now that the line 

integral of the (magn.) field strength over a closed curve always vanished. 
But it does not take much to see that the magn. lines of force surround 

an el. current. Thus, if we form the line integral f ae + Bdy + B,dz) = 

[ras cos (%ds), we certainly do not obtain zero. 

This notwithstanding, our above formulas may be right 

[iede+ +) =-[ao- 0-4 
This quantity must vanish, then, for a closed path only if » is a single-valued 

spatial function. How must fields be constituted for @ to become multivalued? In order 

to resolve this, we investigate the closed line integral of an arbitrary vector. 

[p. 41]
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Stokes’s Theorem 

Vector 4,48, 

Line integral f Gdx + Ady + Adz 

Decomposed into so many such integrals over © small surfaces which can be regarded 

as planar. 

Over this fade 

au, Mey , Ome jen + age +3 ae 

=a, fac + Se uot nde + sae 
a€ on a 

0 —do cos nz +docosny 

Wdx = +d ~ ou cos nz e je ) cos nx ” xX = +dao at én ay a 

SS cos nz — Oy cos nx ————————— 
= og 24 

Ot cosnx — Ecos —_———————— “én COS Nn. a z y 

The integral is thereby converted into a surface integral. 

(p. 42) Elementary Derivation of the Properties of the Magnetic Field 

For a field of permanent magnets we have 

0G. , 2 , H, _ 4 
Ox oy oz
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If » is a single-valued function, this means that the line integral of % along a closed curve 

is zero. 

We now assume that the lines of force around a rectilinear current path are circles. 

How must then the field decrease with the distance? In the space that is simply 

connected & outside the circuit, the field of magn. & the field of current shall not be 

distinguishable from each other. How must then the field strength depend on the dist? 
& : 

r 

— ey, Line integral — gp 4 dr) -(r + dr)dp — S(r)rdp = 0 

FPS 
H(r')-r' = H(r)-r 

If we let r vary for constant r’, then 

we obtain ®(r) -r = const. %(r) = const. 

This law is confirmed by experience. The const. depends on the strength of the current. 

It can serve as a measure of the current strength. We stipulate const = 2i, and thereby 

obtain a definition for the current strength 

p= 2 
r 

i is then equal to 1 if the current produces field strength 2 at dist. of 1 cm. This 

dependence on r is confirmed by experience. 

If we integrate [xs along acircle around the current path, we obtain (2 ‘rd = 4ni, [p. 43] 
r 

thus independent of r. But this is valid not only for a circular path but for any arbitrary 

path. 

B,ds = %, - rd = 2 de = 2id@ 
r 

[Ras = ni. 

F fe} . 
Potential®*! ds = -[([%ds = 2i{dd a finds = fas =a 

dg = -2idd 

@ = -2i0 + const.
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Now, ¢ is not a single-valued function, because ~ many angles @ belong to one location. 

If many currents, then pot © multivalued Differential equations of the magnetic force 

derived from that. 

Arbitrarily Distributed Currents (Rigorous Analysis) 

We start off from Stokes’s theorem 

[sa + $y,dy + §,dz = es _ 1) cosm +-4+ ‘be 
ly Oz 

0G, OD, 
— etc = 0, 

oy az °° 

then the integral vanishes over every closed curve. 

But this is not at all the case if the current is 

twisted around. In that case, however, the integral 

If in all points of the plane 

over the curve shown in the sketch vanishes. [Ras 

cos %ds is independent of the integration path. In 

engineering this quantity is called the “magneto- 

motive force”. We set this quantity equal to 4ni. 

We set the current density to be ({(, then the 
electricity flowing through do per unit time is 

(L.cosnx + i,cosny + i.cosnz) do, so that we have 

. 0 0 an { (cos +°+:)do= ne a - rh cosm +°+ ‘baa 

Holds also for an infinitely small surface. 

. 99, OD, 
ani, = ay a 

[p. 44] Applications of the Integral Law 

4nt = [%, ds, if current wound once 

4nni = f%,ds " " " n times



DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 289 

2 (e — g') = 4ani 

rgi-rle 
H 

Fl y—- 

tS pz 

i 
= F-X — = 4nni 

uf 

= is called the magnetic resistance of the line-of-force tube. F J ,df = flux 

Solenoid inside & outside. Pole str. of the solenoid 

4nxni = B-l ag = number of lines of force. 

a = pole strength. 

Determination of the field when the position of the currents is given. B®, & %, two 

solutions. Difference ®. 

0, _%, 
éy oz 

Everywhere 

Then [eae + - + -+) indep. of integr path = -. Then B, = =a ... Thus, in the entire 
ye 

space » dependent on single-valued potential." f [ae ++ Je = -feAedr =0 

(at least if no iron pres) Thus, » = const. Thus, uniquely determined holds also if bodies 

with » # 1 are present.
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Magnetic Potential of a Current (Ampére) 

What is sought is the potential function, which changes by 4m: for one circle around the 
current. 

[p. 45] Double layer considered!” 

al ; 
Jdo-n-8 7 ¢ [do cos mr 

= Cdk 

For finite angle (x 

Potential changes by 4n& for one revolution, no matter at which point one starts and 

to which point one gets. Current replaceable by double layer of moment ¢. Holds only 

outside the double layer. 

Action-at-Distance of Circuits from Maxwell's Equations without Iron 

0H, ad oY, AT, 4ni, = 2? — > = —ar cal ae 
Oy a * 9. Oy dz 

dni, — 09 _ 29s a, of, a, 
»  @z = ax oz*” az = dx 

4ni, = --------- é@ $ oO, or, 

Ar, = —4ni, oe 

Rel. same as betw. pot. & el. density. Thus, 

me fee 
r 

In fact sy 0 i n fac! totes 
I= ide ax 

r . 
i, 

as consequence of —*+-+-=0 
ox
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Represented as the sum of the distant-actions of elements. 

ZG qas=dt 

G.de = dr G,ds = ds? 5 = jdsPE = ; 

ae Choose i and r as in Fig. 

Then § = aie p= ais -sin(ir) Interpretation of the vector product. 

Galvanometer with Earth Field Intensity of the Latter 

Magnetometer for the Determination of yp?" 
4 

| | | -MH sinx = Fel x=A sin2n. 
dt T 

For small oscillations dx + MH, =0 
dt I 

IN (F] -m For meas [--] 1&1 +1’ 

i M con be determined 

From this M & H separately (Gauss). 

If H is known, then current strength with tangent galvanometer. 

2a, =H, 

R a 
From this H, & thus also 1. 

K 

[139] 

[p. 46]



292 DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 

Magnetometer 

—— 7 
If infinitely thin magnetizable bar inside, then deflection owing to transverse field. 

= = 3, known. 

B = up, @ = (u - DR, 

ra rk 
—_~ 

If the little bar is of finite thickness, then demagnetization factor 

H=H(1 + tr H, =H -Fe=H - FE ly 
nm 4x 

@-=4 i li M = @-V connection more indirect. 
1 

K 
4 a= .H T=@-Vol. F= 

ip 47) 1+ KF 

Ponderomotive Force on Element of Current 

te 

System cannot start moving by itself. Action & reaction are equal to one another.
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i.2nR -m = force on magnetic pole, and thus, conversely, force on current. Thus, force 
R 

on element of current = ints = ids. 

No force in the direction of the element. General formulation. Force 1 toi 1 to H. 

If no right angle between H & ds, then only the component of H perpendicular to ds 

effective. 

H- ids: sin a 

We have to form the so-called vect. product of ds and H 

AH aK - ily, - dz) dK, = dtl, - B) 

If instead of air or vacuum subst with permeability wu, then ponderomotive force dep. on 

B. Again force = oem, but = = B. 

Deprez-D’Arsonval instruments.“ 

Total force on finite conductor by integration.” [p. 48] 

1-i-%-8 =i -AN. 

" 

Work of the ponderomotive forces = increase in the number of lines of force - current 

strength. Flexible circuit seeks maximum extension. In general, work on element of 

current = number of the lines of force intersected. Force vector! 

i(dyH,z—dzH,)° | 4, 

i(dz $, — dx §,) 5, 

i(dx $, — dy 9) 6, 

Multiplied by components of displacement 8,8,8, yields work. 

This can also be arranged in the following way



[p. 49] 
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i(3,dz - 8 dy) ®, 

This proves the theorem. 

A circuit with given i seeks to orient and deform itself in such a way that the number of 

lines of force it cuts becomes a maximum. Thus, the forces acting on circuits have 

<potential> funct. that plays role of pot. en equal to iN, where N thus directed is 

positive, like the field generated by the current. 

Magnetic energy of a circuit. 

1 Ney. Ni 
Ge BRadl =z [wdl = > 

Electrostatic & Electromagn. Measure of the Current Strength & Quantity of El. 

In electrostatics we derived an absolute measure for the quantity of el. & potential 

difference/electrostatic measure. €=4no 

f 
1 1 a3 1 Pe) 

E, = —yforce-f = M77! i, = M714? 
2n 

Acco Force = @ 2 f = Ley = ano = 2n & 
2 8x 

The quantity of electricity can also be measured electrodynamically as fit = E, 

Dimension of the magnetically measured current: | Force ]



DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 295 

=H Hig! = Force = 2m! M 
2ip 2i21 L iia 
R R qT? Mm 

~ 
{i,.} _ M'27327-1 

Deprez-D’Arsonval. a ® li -2nR = D = Gx equilibrium. 
abs. measurement of quantities of electricity 

-7m ™ pM = ae fat Hal” om ide 

RI 
dt = _ —|— 3 ji 2n M| di |, 

From here on undamped sinusoidal oscillation according to the equation 

2 

Inserted MH, = (7) I 

ad 2n 

dt) T 

if idt = p 2m 4 = RT A, where A is the maximum deflection in 
rll i T (2x) absol. angular measure. 

According to Deprez ki = J = initial period. 
t 

fiat = stat (1) 

[p. 50]
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For the process thereafter d’x = = A sin ane 
dt 

2ny _ 8 
(F) -7 @ 

xi, = @x, x*@' = susceptibility y (3) 

T fide = Pan, 12, Ta 
x T On T 2m 

/ 

Thus, when the susceptibility n for the direct current is known, then quantities of electr. 

can be measured abs. e.g., with Deprez. Damping can also be calc. 

{p. 51) Then one has 

Such lin equations with const. coefficients are most conveniently treated using imaginary 

quantities 

e/* = cos wot +jsin wt et = eei™ = e (cos wt + jsin wf) 

Instead of Acos wt and Ae“(cos of), one inserts Ae‘’, where y can be compl. The 

real part of this solution is then the solution sought. 

Now, again 

d’x + Rd + 8. =0 e* solution
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(8) -9 
mF 

© 1/R\ 
Let discriminant be negative A= mid tai 77 (*) 

x = Ae™* sin ot solution. 

Discussion of the solution. Damped oscillation | =Aw 
t=O 

Oscillation period: * =o 

x 
Damping e*” = ratio = 

Calculation of the first point of reversal 

d . . . 
er = Af{—ae’sin + we cos} = Ae". /a? + w’ sin(g — wt) sing = — 

J 
dx . g il @ a 
A 7 Ofrt =o = parctes cos = —— tgg= + 

R
l
s
 

Xmax = Ae? sin @, where tgp = G 

Xmax. = ne e sing = ix idt-e™°sin marx. o d ~ Pp ol Q 

1 any, ; ltl 
=—n || =) +0?) Ee "sin p41 arctgg = — 

ao” (7) ) ? Bo = — 

Thus, we can measure the quantity of electricity of a current impulse absolutely by [p. 52] 

electromagnetic means. We have seen earlier that the electr. quantities can be measured 

absolutely by static means. Since voltages can be measured absolutely with Thomson’s 

balance,! & the capacities calculated.
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E?2 L? 

Dimensions —=M—, E,=M'?L*°T 
i T 

5) _ M!2,-127-1 

ids tog M2 -W27-1 

RE {7 8 
i= Mi2pt27-1 

E,, = [ie = M'?L? 

ELL . . " . . 
a experiment yielded 3-10 = velocity of light = c. 
en 

E 
This result led to Maxwell’s theory of light. Remark. The fact that — is indep. of 

m 

the experimental design justifies the assumption that :,, is equal to the quantity of static 

~e i 
electricity transported per unit time. = =c 

m 

Unit for Voltage. Ohm's Law 

We consider a piece of conductor that is not acted upon by any 

pe 7» electromot. forces (Expl.) The electric energy supplied to this piece 

per second is pi - pa (electrostatically) = Ap, -i,,. 

Effekt _ mA 

erg APm ™ 

We have thus obtained a new absolute unit for the voltage. Calorimetrically, if no effect 

other than heat is produced. 

[p. 53] Practical unit constructed, which is 10° greater 

10°Ap,, = Ap, 10i,, = i, 

Effect = Ap,,:i, = Ap,, -10’ 

fi,d¢ = E,, Coul. unit E, = 108,
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It turns out that for metallic & electrolytic conductors at constant temperature p 

constant; one calls it the resist w of the conductor. 

Ap = iw. (Ohm’s law) 

w depends on geometrical conditions and on constants characteristic of the material. For 

[large] hom rod! 

w= wre spec. resist. i o conductivity of the material. 
@ 

It is possible to calculate the resist. of solid conductors if the current distr. is known. 

For a linear current we have 

Ap = vfs (wo & q are funct. of / 
Vv 

; ; 1 1 
i= Yi, = Op) —— = Py 

muatee Vv 

v @ 

The practical unit of resistance, the Ohm, is so defined that we get the equation 

Ap,, = i,,- w,,10°Ap,, = 10i,,° w,, 10°w,, = w,, 

Determ. of the current flow in solid conductors. 

de 6 f{ 0 
, = ax. 2 (0%) + +°=0 

Ps eee if homogen Ag = 0 

Ar On surface ([--]i,cosnx+-+-°=0 
=: - oa 

a 

Mathematical problem the same as in electrostatics. 

Math. Relationship between Resist. & Capacity! 

wT” ano E, 4x0 C, 4nC, 

{p. 54]
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The capacity problem and resistance problem are, thus, identical. We give the mater. 

resistance wherever electrost. cap. has been calculated. 

Ohm’s Law, if electrom. forces”! 

P,-p' =m, 1 

6 Pp"-p,=mw, 1 

we \ p"-p' =e -] 

74 A iw, +w,)-e =p, - Pp, 

iw =e +(p,- Pp.) 

Also applicable if electromot. forces are uniformly distributed. Special case starting point 

& end point coincide. Then e = iw, if w total resist. of the circuit. Resistances 

connected in parallel. 

Ap = iW, = i,w, < 

I 
i tip=imap(2 41) 4 

WW w 

1 1 1 

wow, Wy 

Kirchhoff's Laws for Current Networks 

1) In junction ¥i = 0, because otherwise incess. accumulation of charge. 

2) Any polygon considered
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P2a—- Py +e, = iW, 

P3 — Pz + €2 = i2W, 

Application to Wheatst. bridge®™ 

i= ig =I, 

i,;W, — i3W3 = 

1,W2 — 13W, = 

a 
Wz Wy W2 Ws 

Solid conductors only here. 

[p. 55]
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Electric Induction { force work on the path ds 

*$ 
oe iS = Kraft 

ilS ds = Arbeit auf dem Wege ds 

+
 ® i ‘| 

Motional Field 

If a circuit is displaced in a magn field, the system expends work that is equal to idN, 

where N is the number of the lines of force traversing the field and the lines of force 

originating from the current itself are neglected. The result holds also if magnetization 

constant p41 
[p. 56] If the field originates from magnets and the total energy of the field does not change 

in the course of the displacement, then an electromagnetic force must counteract the 

current, a force against which we must apply electrical work that is equal to the 

ponderomotive work. 

[J N dN = e'idt = - eidt CS 

de __dN 

dt 

dN 
wil If e is measured in practical units, then e,,,, = -10 

dt 
Na 

This is the induction law of Faraday. Since the origin of the magnetic field is 

obviously not important, the law is generally valid, no matter how the field might be 

produced. 

Extension to the case where the magnet is in motion and the conductor at rest. 

Provides a method for the determination of magnetic fields and their changes. 

The current field also acts on this current itself, if the current is changed. From this 

it follows that every linear current can be conceived as a bundle of linear currents. 

Insofar as one can view N as defined, one has again 

- aN 
dt
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But now one has to set N = L - i, where i is the instantaneous current strength, thus [p. 57] 

also 

or, if L is independent of the time: 

di di 
e=-Lo= 10 =-L 10° (L:10°) =L 

dt <p dt ¢ ) Gt 

L is the coefficient of self-induction. The practical unit of self-induction is the Henry = 

10° abs. The equations are then valid for pr. un. as well. 
Solenoid:"?! 

= 4nni 

N=] Sf 

Ring analogous. If permeability u, then Ly times greater 

Linear conductor through which variable current flows. 

on? 
If self-ind. the only electromot. force, then 

Ap +e=tw 

a 
dt 

. di 
Ap = b= 
- ia dt 

Conductor in zero-current state suddenly connected to potential difference. 

. . di 
How does current increase? P = iw + ose
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iw = -La diet au i = const e 
dt dt iE 

i= P(r - eon) 
w 

Time: rT; =5 T= SL Practically very short time. 
w 

Fading away of the current analogous. 

{p. 58] Sine current 

: di 
Ap = L— \p w+ at 

Ap =A cos wf given 

1 = B cos (ot - @) @ is then the phase difference between voltage & current. If 

pos, then current lags. 

L 
B(wcos(wt — ~) — @Lsin(ot — ¢)) tga = — 

WCOS & sing 

Acos wt = B./w? + w*L* cos(wt — g + a) 

Graphic Illustration with Rotating Vectors 

A cos wt 

wh 

Derivative 

-A cos wt
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Thus, rule for differentiation. 

Rule for summing parallelogram, because projection of the resultant always sum of 

projections of the components. 

tgy = on P? = i2(w? + (wL)*) 

Comes to the same as the replacement of the trigonometric funct by exp. with complex [p. $9] 

arg. A cos(wt - @) is the real portion of Ae = Ae7*e/™, = Ge’*', where A 

complex = Ae?*. Thus, phase angle & amplitude known if @ known. 

Ap = Pel" Ap = Pe*" 

i= %e i= eke 

PB = Qw + fol = Iw + jol) P = Iwe-** + joLle™!? 

° = I(w + joLje*” B _ Fe” _(w + jol) eras 
aa ee etc. 

/w2 + (@L 2 giarcts aa 

P oL 
77 /w* +(@L? 9 — Gp = arctg— 

Calculation considerably simpler than with sin & cos. Therefore almost always applied 

nowadays. 

The calculation is simplest if by variables one immediately understands corresp. compl. 

Then we get at once 

Ap = i(w + joL) 

i-vector to be multiplied by (w + jwZ) vector in order to have Ap. Coincides with theory 

of rotating vectors. Naturally, these methods are applicable only to harmonic functions. 

Earth Inductor—Measurement of Self-Induction 

Magnetic energy of a circuit 

dN. 2 tidt = -[eidt = (iat = L4. fer fei a 3
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Ip. 60] Remark about Ponderomotive Effects on Magnetizable Bodies 

in the Field of a Current 

dA =e'idt = -eidt = 2Nict 
dt 

The bodies seek to move in such a way that N becomes a maximum. This fact forms the 

basis for the measurement of small <dielectric> magnetization constants.°7 

Homogeneous field % in the body Hy 

If column rises by 8A, then the change in the energy is 

1 2 1,2 
= bh - Bq 6h. 
ant p rad ? 

Thus force on column zf _"oaea| = ghog, 
8x 

where h is the height of the rise produced by the 

magnetic force. 

Energy & Energy Principle 

Previously: For a circuit we have 

1 1 1. 
E = dt = —.| BdlidN= —iN 

8x Lid a! 2 2 

yz 

Since by definition N = Li, one obtains E = a in agreement with the above analysis. 

Application of the energy principle to current of constant intensity. 

e'idt = dE +dA 

.dN _1d(iN) , a4 
+i = ___ 

dt 2 dt
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Thus, dA = 1j4N _ Indi _ 1 ahi) _ 1), 4 
2 dt 2 dt 2 at 2 dt 

If i is const., we obtain d4 = Sid =dE [p. 61} 

Work is equal to the increase in energy. The expression differs from that for the work 

of the current in an external magnetic field by the factor E Example. Parallel currents. 

Measurement of an EMF of Short Duration. Earth Inductor™! 

Cm ¢ =i Li 
dt 

At the start 1 = 0. At the end i =0 

fede = wfidt - Liils 
0 

dN 
For the earth inductor e = aa feast = 2Nn. 

Quantity of electricity measured with ballistic instrument. Analogous method for the 

investigation of hysteresis. 

Interaction between Permanent Magnets & Current 

N,, = circuit-traversing flux that originates from the magnet 
N, = " " ooo " " "current. L self-ind. 

dA =idN,, + $dL 

oe -oNm _ aL) 
dt dt 

Ohm’s equation 

e‘+re=iw
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Energy principle i?wdt = —idN,, —idiL + e’idt 

~—dA + pial — id(iL) + e'idt 

uU—_,—__Y 

—jitae + phar 

It 

1 (59) 
—dA + e'idt + a(5u*) 

[p. 62] Interaction between Two Circuits 

J 
L, = flux that current 1 of strength 1 yields through its surface 

The circuits are immobile. 

M,= " " eo" " a "boundary of cur. 2 
M,, = n n 2 n n " " " cur. 1 

Pr e Be a " "its boundary. 

Total flux through 1): Li, + M,,1, = N, 

— " 2): Mit, + Lt, = Nz 

The equation for the two circuits is 

aN, .. 
€,- > =i, 

aN, 
e, - a = iw, 

or 

di, di, 
é, = 44, + L,- i Ma] 

. di, _ di, 
&, iw, + My i ar 

What form does the energy principle take?!
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. : djl, . . di 
evigdt = ide +E (2 Lait) + Marin a [p. 63] 

€2i, dt = izwdt + M,2i, at at + ‘ (51218) 

dA, = G + dE,,, + dE nz + M211, diz + M,2i2 di, 

dA, — G must be tot. differential. Thus M,, = M,, = M. 

E= plait + 2Mi,i, + Liz) must never be negative 

L, +2Mx+L,x?7|M+L,x=0 L,—2-—-+7—>0 

Measurement of mutual induction. 

One can also resolve the magnetic field in another way. 

® number of lines of force traversing both circuits. 
® i n tt n “ " “ only 1 ) 

® 7 " " iT " nm aL n 2) h 

Model 

ae___ygm 
mw" 

This resolution is especially advantageous when almost all lines of force traverse both 

circuits. How do we determ ©,, ®, & ©?
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® 

“ah. | 
r Tel M (2 "); (2 i) 
p= Hi t+—i,=|——-—]i,+M a 

a My 1 my Ng Mm M2 

®, 

= =) 

2 

Transformer, with Resist. & Leakage Neglected 
dd 

7 Were 

. | 

1. ; " 
® =~ (iym + ign) EX 

do 
Ap, =n, dt “ere 

ap\ 
‘ 

The phase of the current depends on what is switched on. If only resist. then | 
Ip. 64] 4, phase of Ap,. 

~
 

Two mobile circuits 
Work el. force. Energy 

; dL,i, | dMi, 
rah + + 

dMi,  dL,i, 
a+ de pz = i2W, + 

d'A,= siadiLyi) + i,d(Mi,) 

d'A, = hind(Lain) + i,d(Mi,) 

@Agy = Py, dt 

d’A,2 = pzizdt 

E,=- plaid + 2Mi,i, + Lzi3) 

d'A,=d'G + dE,, + d'A,71
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if 

d® 
| 5 LT a 

d® 
P2= "2 

. di 
P2 = hh, + LG 

1. . 
o= wii + izn2) 

Transformer with imaginary! By e,i, ... one immediately understands imaginary 

vectors.
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e; = 1,(W, + joL,) + i,-joM w, + joL,| joM 

0 =i, joM + i,(w, + joL,)| —joM —(w, + joL,) 

og aj, Ls + JOL Novy + jog) + M7] 
a (w, + joL,) 

@2M2. 7641 
= ifm + joL, —— | 

w, + joL, 

_ —(¥, + joL,)(w, + joL,) — w?M? 
&y =n 5 — 

joM 

In the absence of leakage (L,L, - M, = 0), the second equation becomes 

_ ww, + jo(Lw, + Lw,) 
e, = -i : 1 2 joM 

2 
Pane on . n 

& if, in addition, w, = 0, then e, = -i, —* = -iw,— 1 

or if w, negligible compared with jwL, 

[p. 65] 

E 

Capacity 

= C,,.Pm If this equation is to be valid in electromagnetic units, then the unit of 

capacity is fixed thereby. What is the relation between this unit and the static unit? 

hence ly = Clep, 
c 

E,= Gre) p, Cy = C.,-c? 

CG 

The static unit is c’ times smaller than the electromagnetic one 

There is also a practical unit
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Ey = prP pr. 

10Ep = Cpr 10-8Pp Em = Pm Cpr, = 10°C, 

Practical unit 10° of the absolute magnet. unit 

This is 9-10” electrostatic units 

Practical unit (farad) 9 - 10" electrostatic units In addition, microfarad 10° of the 

farad. 9 - 10° electrostatic units. 

Circuit with Capacitance and Self-Induction. Electric 

Oscillations 

te fad 

pC=E a 2Gce i a 
dt dt 

di _. -~p&s Pp i iw 

differentiated once again 

| if...then..or solution; oscillation period easily realizable ] 

d . 2; . 

pe Wenn w=0, dann Scoswt oder Ie!” 
dt dt dt Cc Lé 

6sung. 

. di di 
also Gitwo+Loz=0 1+ (joYLC] =0 o=2nn= a 

. di di 1 1 
itwOT+LC7,=0 n=p fo 

4 
oot 0} 19!*61 ors 

10° «10-!° 10-& 

Schwingungsdau 10~* Sek. wohl realisierbar, 

1+ awC + «2LC =0 

re ee an tar + or 0 



314 DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 

[p. 66] Frequency somewhat influenced (reduced) by resistance. Amplitude decreases with 

ez [W = tohm &L = T= 5 
100 50 

We shall also discuss in particular the case of sinusoidal currents. 

di 

Lw @ py —p = iwt LO 
dt 

: 1 1 
p — p= hea h [id 

A & ; 
P=P,—P2=iwtLe +h fia 

q . . et. I, i 
Solution by means of imag. i = Bye!" fide = el = 

jo jo 

Inserting this, one obtains 

=> L —_— =j ; ~ rasfermtrdai(roferg)) 
1 a= 

—j—— WL. 7 i } 
“leg, z 

<7 

If i = Icos wt 

p=I,/ cos(wt + ¢) 

P 

1 2 

w? + (ot - 4) 
ac 

Resonance when J maximum w = af proper oscillations. For the latter, 7 becomes 
yeL 

infinite when w = 0 at given voltage. Capacity compensates self-ind. But only for 

specif. perm. With very weak terminal voltage considerable current. 

Ampl. I = 
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When there is resonance, voltage on the condenser z idt = p' -p,= Fcos. (p. 67} 
w 

May become enormously large if C small & W = small. 

Energy Principle in Oscillations 

di 
p=iwt+ La idt 

pidt = i?wdt + (5?) J 

| d toh, 
Pp 

“at 

2 Pp oL 
Ifw=0 —- — + —i? 
wend ( ae) ) ec 

The to-and-fro oscillation of energy? — — j2 
c 

Pm = inn * If p= 10°? Henry 

C = 10° Farad 

Pm = 10° i, 

Comparison of capacities! 

Pr _ Wi _ 
P2 W, 

From this the relationship (independent of period). 

Rapid oscillations if L small. Not coils but simple wires. 

Back-and-forth loop™!
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Ry r 

2i 
2 

I R? r 
tari 

> 2i 
Pam 
Thus, all in all 

D2 

2+ 218 RR, 

D2 

21 
PRR 

dr = 2ilg 
i 

too large 

too small * 

2 D 
1+ 2Ig Ep 

1*\2 

D 2. 

RR, 

[p. 68] L “i + Ig 

If we introduce the total length /' = 2/, & set R, = R,, then 

L | 1 

2 
= + 2ig— 

D 

R 

We obtain the approximate value of L for a square. 

Is too large, because field calculated too large. In reality, according to rigorous 

calculation”! L = 2/' (te - 19} 

For circle the same formula but -1.5. 

Waves in a Wire (Distributed Capacity) 

c = Capacity per unit length. 

Pp pot. e el. quant. “  "" {current str.
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_ ob =¢ op (continuity equation for electricity 
ox or 

A 172} 
wt+l hid = _ 9 c d 

ao ox a 

These are differential equations for i & p. 

p eliminated 

Gi a Wi 
cw + — = 

or ae ax 

pcan then be determined from the first equation. If w neglected, then 

al ia = ci) i = f(x — Vt) is solution 
ar ar’ 

Two parallel wires whose radius is negligible compared with the distance between [p. 69] 

them”?! 

D 1=21gP 
ER 

cap = a 
a1De 2 1p? 

BR 

V = c Such electric waves propagate with the speed of light. For other c & / different 

results. 

W not neglected. ~ long wire. Sinusoidal solution. Influence of e & p.
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i= Xei" 

(jacw —w?cl)X =X" X= Ae™ 

y? = —wel + jacw (w*cl)? + (wew)? = W 

a 
The solution is 

i = Agi Ai 

= Ae Pit Alo) 3 velocity 

B = damping constant. 

A = current amplitude at start. tgp = a 
wt 

W = wclw?+ wl? aoe! W = y(wrcly +(wcw)* ( 
We va 

Oo. 

A = 

B = WW sin? 

A=W cos 

Damping coefficient B= wycl <j = w le From this, telephone transmission range. 
o 

Pupin’s system.) | Extreme w > ol. 

[p. 70] Maxwell’s Equations 

1) We have reason to assume finite propagation. Conduction with distributed capacity.
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4ni = J ® ds can then no longer be valid for arbitrary 

Za | - Dyas surfaces. The law can therefore be strictly maintained 

<i only for surface elements 

is therefore surely more exact than the above law in integral form if the currents in 

question are not constant. 

2) Open currents 

Conductor interrupted by a dielectric of arbitrary dielectric constant. 

Condenser. There also seem to be exceptions to 4ni = [ % ds for slow 

currents if one places the surface across the intervening space. This 

would apply to any intervening space, no matter how narrow. But we can 

maintain the law in general if we assume that the temporal change of the 

f dielectric associated with the current acts magnetically like a conduction 

current. 

=--D 
" 4n 

i 
E= [ndo = 4; | Pao 

__dE_ 1 [ad 
dt 4x) dt 

We assume that the right side is equivalent to a current. The X-component of this [p. 71] 
vector: 

Acts like the x-component of a current density (displacement current) Conduction 
current & displacement current can be present together. 

4x at 
If one corrects the above differential equations in this manner, one obtains 

J, + = X component of the total current).
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OD, 0$, a, 
Mths + = By Ge 

OD, 8, oF . _ dd 
Anjy + a = a By in vector not. Anj + 7, = curl § 

OD, a, a8, 
“te + Sp ax ay 

These equations are joined by a fourth one, that of Gauss’s theorem 

(_) 4nE = | B,ao +h 

oD, OD, ad, : 
= a ey 4np = divD 4np Ox + ay Bz Tp IV 

7, Ff FX 
If one bears in mind that “e = fa ah. a = -div j, then one has 4n div] + = 

(div 3) = 0. pony 
But this equation is contained in the ones above, as one can see by differentiating with 

respect to x,y,z and adding. 

As usual, it is assumed that j and 3 are determined by € . The simplest hypothesis is 

However, the relation can be a more complicated one. 

[p. 72] 3) This was the law that defined the magnetic fields determined by electric currents. We 

have also become acquainted with a law for the production of electromotive effects by 
the alteration of magnetic fields. 

_ ON 

or 

This holds first of all for closed circuits. If we think of the EMF as a line integral of an 
EMF field e, then the law takes the form 

e= 

feds = -4 na 
Because of the finite propagation velocity of electric effects, this law, too, will only 

hold for ~ small surface elements. We apply it to the following surface.



DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM 321 

Besides this electromotive field we also have an electric field €,¢,¢€,. This has been taken 

over from electrostatics. We shall therefore call it €,, etc. The following equations hold 
for it 

Electromotive & electrostatic field are both def. by the force exerted on the el. unit. We _[p. 73] 
have therefore no reason a priori to consider them as being of different nature. The 

formal laws also require that the sum ¢, + €,, ... be considered simply as the elec. field 

str. @,... For if one adds these equations, one obt. [ or ] 

_ 08, _ 0, | a, 
oto ay—s az 

DSS ooSRooeoeas or _o8 = curl €. 
ot 

Th . . 0 (6%, . . 
ese equations give Ate +-+-]=0. Thus, they are compatible with the 

condition div B = 0 (There is no real magnetism). 
Plane waves. 

z LetB=pu® & B= e€, & letp & € be indep. of the location. Then the 

equations read: 
We are looking for waves propagating in the X-direction. Everything dep. 

only onx & t. Let <F(x - vt)> be the dependence of all components
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yds, 8, cd, 05, 
eo 8606x fc at ax 

HOG, OE, 2d, _ o9, 

c Ot Ox cot ax. 

If at one location B, = €, = 0 initially, then it will also be so in the future 

Diagonal pairs mutually independent. 

¢ at Ox ox oe, a oe, _ 

€ oe, 08, Mm Ox c* at 

, = Bx ~ vt) ¥. _ a(x ~ vt) 

o
l
k
 c o—-8=8 

Jeu 

[p. 74] In the case of vacuumv =c ®, = &, 

For a dielectric ®, yu = eye, , further v = — 

ey 
Cc c 

For light waves p = 1 v = =. n= ve holds for the majority of simple gases 
ve 

and for some liquids. In general, more complicated relations because the connection 

between @ and € not so simple. On the generation of electric waves later on. 

General differential equation of wave propagation in transparent media 

HOH, 8, o€,, a 

c Oot Ox = oy oy
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¢ 

ox @éy a cét\ ay az} ax 

e c&, 

c ot 

pe 07E, _ 
2 oF AG, = 0. etc 

These are the fundamental equations of the wave theory. 

The Energy Principle and the Law of Conservation of Momentum 

_# OS, _o, _ o, —¢ 2 
c Ot ay = az an 

Hd, _e, 2, | _ 5 | & 
c Ot 0z Ox 4n 4n 

_H 0G, _ ob, _ o, _¢ an 
c Ot 6x = ay 4n an 

. , €0E, 09, 9%, g, 
Ais + oe oy az | an 
ani 4 £08 29: _ 98: | .& | %& 
y+ oot G2 ax an | 4n 

€ 0&, = a$, 09, €, _ 

4: oa ax Oy | an 4n 
(75) 

OP; : ees oy —€ +-+ : OF + c(€,j, + €,j, +')= 4n (06,5. 9) 

Is canceled by what comes from the right-hand side of the second system. 

fue 
z _—~ +e ig CoO: — €,9,) +h («2 ©, )
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[p. 75] Vector of the energy flow Gm - €,%,) 
719 

a + heat loss = [S,-do. 
dt 

Thus, the energy principle has been satisfied, with the expression for the energy being the 

same as in electrostatics. 

The law of conservation of momentum; radiation pressure. 

Law of the equality of action & reaction YX, =0 

dx. 
From this as, = 0 for complete system. als on =0 rn a const. 

t 

d dx, 
If ext I fe => is YX, external forces a m, at : 

Can the momentum of a system be increased by internal electrom. processes (Can a 

system start moving by itself?) We must calculate the sum of the ponderomotive forces 

acting on the system. Per unit volume 

. . 1 5 
jy Dz —jDy = {= *§. — at #6, 2 8n <@ + $2) 

~ nc 

1 082 
8x ox +72 (9,92) ts 5 (Ss CE 

_ 1 fa, _ a9, SG + ery —— - 2, {Be rg, _t G++ ah } 

2 

Cpt OCs 
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0 Ep +i,9.—i5, 2 (is +51) +56.) + 26.) 
éj;1 

= 3 lag. - €.5,) + 7 (- @ + e:) + 5G) is £ €6,) 

1 

+ an 
integrated over the whole system 

ds, af 
“dt. a at [AGs. a €,9,) 

If we call & the momentum of the electromagnetic field, then this tells us that the sum 

of the mechanical and the electromagnetic momentum in a complete system is constant. 

Application to a plane wave | x-axis 

Electric force in Y-direction. 

1 2 2! 
€, = 9, Ss = Bue + $2) = of 

Momentum that impinges on the surface / per unit time = uf This is equal to 
c 

radiation pressure. 

Terms that were canceled out in integration. Maxwell stresses. The momentum 

transmitted by them to a unit of volume per unit time = momentum transm. to mech. 

system + increase of momentum in the element. 

[p. 76]
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[p. 77] Hertz’s Oscillator™! 
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Behavior in immediate vicinity of the oscillator. al 

ee fil_os, 
af rr ror @ 

Gln r +€é VY 7 
€=-— g=—~ Pot.ofadipole e+ el f is the moment 

Gi ce _ o- of the dipole 
a j= 
oz el= f 

Thus, process oscillation of dipole, which is » small compared with the wave length. 
Calculation of the energy radiated outwards.!! 

XZ x _ VF 
€,= asf G.= —aph 4242 _ 

on x, zy? ee) 

€, = a3 f 9, = aps 2 

24 — 27? tre | =7(1-3)- 
x? + y? 5 -0 

&, — aa SF 9, ~ 

it) ae. 
ELH E&€HLxyz |Cl=—qfsin?9=|9!" 

er 

Rad{[iation of?] energy®” 

i fieisie an = Zs [fa [ sin? Sa 
T 2x sin 8dS 

2n [ (1 — cos? 9)sin 9d9 
0 

cos? 9|* 2 4 
=|—cos $+ =?-li=_ 

3 |o 33 

eae c 4-2nF 2 7 In unit time il 2 il 

If excitory sines f = ficos(2nnt), then f = f,(2nn)*cos( ) 

F = Ffi(2nn' 
1 

A= 3,3 (2nn)“fo 

[= 100 =3 C=30 n= 108 Prax 

fo=10* 2n=610 

1035 108 

A= 377-100 ~! 0! = 2000 cal. per sec.
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Doc. 12 

Comment on E6tvés’s Law 

by A. Einstein 

[Annalen der Physik 34 (1911): 165-169] 

Eétvés established empirically the following lawlike regularity for liquids, which, as we 

know, proves to be correct to a remarkable approximation: 

(1) yw? = k(t - T). 

Here ¥ is the surface tension, v the molecular volume, k a universal constant, 7 

the temperature, and t a temperature that deviates only slightly from the critical 

temperature. 

¥ is the free energy per unit surface area, hence 

dy =o J fctl va 
is the energy per unit surface area. Taking into account that, in comparison with y, v 

depends only slightly on the temperature, one can write in similarly good approximation: 

(Ja) r ahi = ke. 

But according to the rule of corresponding states, the boiling temperature at atmospheric 

pressure is approximately equal to a fixed fraction of the critical temperature, and on the 

other hand, the boiling temperature is proportional to the heat of evaporation (Trouton’s 

rule). 

From this it follows that equation (1a) also entails the approximate validity of the 

equation 

(1b) | = a} = k'(D, - RT). 

Since y is to a high degree of approximation a linear function of the temperature, the 

bracket on the left-hand side does not need to be calculated for the boiling temperature 

at atmospheric pressure. The left-hand side of the equation equals the energy Uf 

necessary to increase the surface of the substance by an area equal to a lateral surface 

| f of a gram-molecular cube. D, - RYT, is the internal energy U, to be 

H expended in the evaporation of one gram-molecule. Equation (1b) can 

VF therefore be written in the form 
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ata k! (le) a 

Let us now interpret the last equation. Let S (see the figure) be a cross-section of 

a gram-molecular cube parallel to a lateral face. 2U;, is then equal to the potential energy 

(taken as negative) that corresponds to the totality of the interactions between the 

molecules on the one side of S and those on the other side of S. U, is the potential 

energy (taken as negative) that corresponds to the interactions of all the molecules of the 

cube.’ 

The most obvious fundamental hypothesis concerning the molecular forces that leads 

to a simple relation between U, and U;, is the following one: 
The radius of the molecule’s sphere of action is large compared with the molecule but 

is of the same size for different kinds of molecules. At a distance r two molecules exert 

on each other a force whose negative potential energy is given by c’f(r), where c isa 

constant characteristic of the molecule, f(r) is a universal function of r, and f(«) is 

equal to zero. For this case to lead to simple relations, f(r) must be so constituted that 

the sums representing U, and U;, can be written as integrals; we will assume this as well 

(with van der Waals). We then obtain by simple calculation (8) 

_4 

U, = ON’ Ky 3 

U, = ON’Ky". [9] 

Here we have 

K, = [fde, [10] 

extended over the entire volume, and 

K,=' f yi) A, 
rr 

where 

eco 6+00 +00 

= (a ; [11] (4) faa) [nieve 
nd 

* There is a noteworthy inaccuracy here, inasmuch as certainly not all of the energy U; can be 
designated as potential energy in the sense of mechanics; this would be permissible only if the 
specific heat at constant volume would be the same in the liquid and in the gaseous state. It would 
surely be more correct to introduce the heat of evaporation extrapolated to absolute zero.
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Thus, K, and K, are universal constants that depend only on the elementary law of 

molecular forces. From this one obtains 

(2) a = yl 

in contradiction to (lc), the equation to be regarded as expressing the results of 

experience. Even without any calculation one can see that, neglecting the universal 

factors, the ratio of U; to U, must be the same as the ratio of the radius of the molecu- 

lar sphere of action to the edge of the gram-molecular cube (v'”). Thus, if the radius of 

the sphere of action is universal, one cannot arrive at equation (1c) but only at equation 

(2). 

It can easily be seen that, in case equation (2) were valid, it would be impossible to 
draw a conclusion about the molecular weight of a liquid from the capillarity constant. 

To arrive at equation (1c), one must start from the assumption that the radius of the 

molecular sphere of action is proportional to the quantity v'’ or, what amounts to the 

same, to the distance between neighboring molecules of the liquid. This assumption 

seems rather absurd at first sight, because what should the radius of the sphere of action 

of a molecule have to do with how far away the neighboring molecules are situated? The 

supposition becomes reasonable only in the case when only the neighboring molecules, but 

not those farther removed, are within the region of action of a molecule. In that case, 

in accordance to what has been said above, equation (1a) must be obtained, and we are 

even in a position to estimate the value of the constant k’. The argument to that effect, 

which I am now going to present, could probably be replaced by a more exact one; but 

I have chosen it because it makes do with a minimum of formal elements. 

Let me conceive of the molecules as being regularly distributed in a quadratic lattice. 

In this lattice I consider an elementary cube, the edges of which contain three molecules 

each, so that the entire cube contains 3° = 27 molecules. One of them is in the center. 

The other 26, and only these, J consider as neighboring the molecule in the center, and 

T make my calculation by assuming that they are equidistant from the central molecule. 

If the potential energy (taken as negative) of a molecule with respect to one of its 

neighbors is denoted by g, then its potential energy with respect to all the neighboring 

molecules is equal to 26g, and hence 

u, = 1Nn-269. 
‘2 

If we, further, imagine that our central molecule M lies immediately below the plane 

S in the figure, and that the boundary surfaces of the gram-molecular cube depicted 

there are parallel to the lateral faces of the elementary cube of the molecular lattice, then 

our molecule M is in interaction with 9 molecules of the next-upper layer. Since N”?
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such molecules M_ lie directly below the surface 5S, the potential energy, which we 

denoted above by 2U, will be given by 

QU, = 9-N*g. 
U, 

Thus, we get = oN, 
U +26 

or, if we substitute the value 7 -10” for N, 

U =f = 3-10". 
U, 

On the other hand, I calculated the constant k’—which, according to (ic), should be 

identical to the value just obtained—for mercury and benzene from experimental data 

by means of the empirical equation (1b), and qbtained the values 

5.18 -10° 
5.31 -10°. 

This order-of-magnitude agreement with the value obtained by the rough theoretical 

argument presented above is very remarkable. 

Stimulated by an oral remark by my colleague G. Bredig, I also pondered what the [16] 

order of magnitude of the theoretically obtained value of U;/U; would be if one assumed 
that the molecule interacts not only with its immediate neighbors, but also with molecules 

that are farther removed. The cube that contains the molecules in interaction with one 

molecule will then have n? rather than 3’ molecules. In that case U,/U, comes out 

nearly proportional to mn. Thus, one still obtains a value for U,/U; of the right order [17] 

of magnitude for n = 5 or n = 7. Nevertheless, it is highly probable that a molecule 

interacts only with its immediate neighbors, because it must be considered as very 

improbable that the radius of the molecular sphere of action would be proportional to 

the cubic root of the molecular volume without depending otherwise on any physical 

constant of the molecule. 

There is one more remark that comes to mind in connection with this argument. We 

know that substances with very small molecules deviate considerably from the law of 

corresponding states. Should this not be related to the fact that the radius of the 

molecular sphere of action of such substances is more than three times as large as the 

molecular radius? 

(Received on 30 November 1910)
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Doc. 13 

A Relationship between Elastic Behavior 

and Specific Heat in Solids 

with a Monatomic Molecule 

by A. Einstein 

[Annalen der Physik 34 (1911): 170-174] 

My colleague, Professor Zangger, drew my attention to an important note published 

recently by Sutherland.’ Sutherland asked himself whether the elastic forces of solids 

are forces of the same kind as the forces that drive the carriers of infrared proper 

oscillations back to their position of rest, and hence give rise to their proper frequencies. 

He found that the question should very probably be answered in the affirmative on the 

basis of the following fact: the infrared proper frequencies are of the same order of 

magnitude as the frequencies one would have to apply in order to send through the body 

elastic transverse vibrations whose half-wavelength is equal to the distance between the 

neighboring molecules of the body. 

Notwithstanding the importance of Sutherland’s analysis, it is clear that this way leads 

at best to a rough order-of-magnitude relation, particularly because it must be assumed 

that the known infrared proper frequencies are chiefly to be viewed as oscillations of 

differently charged ions of a molecule with respect to one another, while elastic 

oscillations are to be viewed as oscillations of whole molecules with respect to one 

another. It seems to me therefore that a more exact test of Sutherland’s idea is possible 

only for substances with monatomic molecules, which, according to both experience and 

the theoretical model, do not manifest optically detectable proper oscillations of the 

known kind. However, according to my theory of the specific heat of solids,’ which I 

based on Planck’s theory of radiation, it is possible to determine the proper frequencies 

of heat-carrying monatomic bodies from the dependency of the specific heat on the 

temperature. These proper frequencies can be used to test Sutherland’s conception by 

comparing them with those obtained from elasticity. One way in which this can be done 

is given below, and let me say here right away that, in this way, Sutherland’s conception 

of the essential identity of the elastic forces and those determining the proper frequency 

was satisfactorily confirmed in the case of silver. 

An exact calculation of the proper oscillation frequencies from the elasticity constants 

is out of the question for the time being. Instead, we are using here a rough method of 

'W. Sutherland, Phil. Mag. 20 (1910): 657. 
2 A. Einstein, Ann. d. Phys. 22 (1907): 180.
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calculation that is similar to the one used in the preceding paper, but that should in 

essence hit the mark. 

First we envision the molecules of the substance arranged in a quadratic spatial 

lattice. Each molecule has then 26 neighboring molecules, which, to be sure, are not 

equally distant from it. However, we will do our calculation as if these 26 neighboring 

molecules were equidistant from the molecule in question when they are at rest. 

Now we have to choose some plausible representation of the molecular forces that 

is as simple as possible. First we introduce the assumption that is fundamental for what 

follows and that has been proved correct for liquids in the preceding communication, 

namely that each molecule interacts only with its neighbor molecules, but not with those 

farther away. Let two neighboring molecules exert a central force on each other that 

vanishes when the distance between the molecules equals d. When the distance between 

the molecules is d - A, a repulsive force of the magnitude aA will be exerted. 

We now calculate the force with which the 26 neighboring molecules oppose the 

displacement of one molecule. In order to do this, we imagine that, rather than being 

distributed over the surface of a cube, the 26 neighboring molecules are distributed over 

the surface of a sphere of the same volume, the radius of which is to be chosen to be 

equal to d, so that we have 

4 _@v 
(1) qe = 8 

if v denotes the molecular volume of the substance, and N the number of molecules 

in one gram-molecule. We imagine that the molecule lying in the center of the sphere 

is displaced by a distance x in an arbitrary direction, x being small compared with d, 

and calculate the force that opposes the displacement, proceeding as if the mass of the 

26 molecules were distributed uniformly over the surface of the sphere. On the solid 

angle element dx that is drawn from the molecule with an axis that forms the angle 0 

with the direction of the displacement x, there will then lie 26. (dx/4n) molecules, which 

exert the force 

- 26a. -a-xcost-cosé 
4x 

in the direction of the displacement x. Integrating, we obtain for the force acting on the 

displaced molecule the value 

26 
AX, 

3 

From this we obtain, if we take into account that M/N is equal to the mass of one 

molecule (M = molecular weight of the substance), the proper frequency v and the 

corresponding vacuum wave length A of the molecule. We have 

7] 

[8]
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1/26 N 
(2) 1-3 [Bed 
and 

3 M 
(2a) 1 = 2ne SéaN- 

Based on the same approximative assumptions, we now calculate the coefficient of 

compressibility of the substance. To this end, we express in two different ways the work 

A that must be applied in uniform compression, and set the two expressions equal to one 

another. 

The work that must be applied to reduce the distance between two neighboring 

molecules by A is (a/2)A*. Since each molecule has 26 neighboring molecules, the work 

to be applied to reduce its distance from the neighboring molecules is 26 .(a/2)A”. Since 

there are N/v molecules in a unit volume, and each term (a/2)A’ belongs to two 

molecules, we obtain 

On the other hand, if x denotes the compressibility, and © the contraction of the 

unit volume, then A = 1/2«.8’, or, since @ = 3A/d, 

2 “ue 9A 

ond 

Equating these two values of A, we obtain 

(3) oe 
26a-d°-N 

Eliminating a and d from equations (1), (2a), and (3) we obtain 

es 25/8) SMe ol = 1.08 -10°-M pf. 
voln) Ne 

Of course, the formula assumes that no polymerization takes place. In what follows, 

I used this formula to calculate the proper wavelengths (as a measure of proper 

frequencies) of those metals for which the cubic compressibilities were determined by 

Griineisen.? These are the results:* 

3 E. Griineisen, Ann. d. Phys. 25 (1908): 848. 
‘ The temperature dependence of cubic compressibility has been neglected.
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Substance a -10° Substance 4 -10* 

Aluminum 45 Palladium 58 

Copper 53 Platinum 66 

Silver 73 Cadmium 115 

Gold 719 Tin 102 

Nickel 45 Lead 135 

Iron 46 Bismuth 168 

According to the theory of specific heats derived from Planck’s radiation theory, 

specific heat is supposed to decline as one approaches absolute zero according to the 

following law: 

ls r ) [13] 

where C denotes the specific molar heat and it has been stipulated that 

hy hic Te Naess roe 

Here ft and x are the constants of Planck’s radiation formula. Thus, one can use the [14] 

behavior of specific heats to determine 4 for a second time. Among the substances 

listed above, silver is the only one to have had its specific heat at low temperatures 

determined with adequate accuracy. Nernst’ found for silver that a = 162, which yields 

4.10* = 90, while we calculated from the constants of elasticity that 4. 10° = 73. This 

close agreement is really surprising. A still more exact test of Sutherland’s conception 

is likely to be realized only by perfecting the molecular theory of solids. 

(Received on 30 November 1910) 

5 Cf. W. Nernst, Bulletin des Séances de la Société franc. de Phys. (1910): 19-48. [15]
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Doc. 14 

Correction to My Paper: 

“A New Determination of Molecular Dimensions” 

by A. Einstein 

[Annalen der Physik 34 (1911): 591-592] 

Mr. Bacelin, who has done an experimental investigation on viscosities of suspensions at 

Mr. Perrin’s instigation, wrote me a few weeks ago that according to his results the 

coefficient of viscosity of suspensions is considerably greater than that corresponding to 

the formula I developed in §2 of my paper. I therefore asked Mr. Hopf to check my 

calculations, and he indeed found a mathematical error that considerably affects the 

result. In what follows, I will correct this error. 

The expressions for the pressure components X, and X, on p. 296 of the paper 

mentioned above are wrong because of an error in the differentiation of the velocity 

components u,v, w. These expressions should read: 

X =~ 2A + 10KP9AE | a5pps MEP 
P e’ 

X= 5xp34A_* BEN _ ppp3MEn 
y 5 7 p p 

X= skp? A+ OF _ a5ppsMeC 
. Py 9” 

where 

M =A’ + By’? + C&. 

If one then calculates the energy transmitted per unit time by the pressure forces to the 

liquid contained in the sphere of radius R, one obtains, instead of equation (7) on p. 

296, 

(7) W = 28°k(V +). 

Using this corrected formula, one obtains the equation 

k* = k(1 + 259). 

instead of the equation k* = k(1 + @), developed in §2. Thus, the viscosity coefficient 

k* of the suspension is 2.5 times more strongly influenced by the total volume @ of the 

spheres suspended in a unit volume than according to the formula found there. 

' A. Einstein. Ann. d. Phys. 19 (1906): 289 ff.
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If one takes the corrected formula as a basis, then, instead of 2.45 cm’, the value 

given in §3, one obtains for the volume of 1 g sugar dissolved in water, and thus a value [7] 

that deviates considerably less from 0.61 cm’, the volume of 1 g solid sugar. Finally, from 

the viscosity and the diffusion of dilute sugar solutions, one obtains the value 

N = 6.56 -10” for the number of molecules in one gram-molecule, instead of the value 

N = 4.15 -10%, given in the appendix of that paper. (8] 

Zurich, January 1911. (Received on 21 January 1911)
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Doc. 15 

Comment on My Paper:' 

“A Relationship between Elastic Behavior...” 

by A. Einstein. 

[Annalen der Physik 34 (1911): 590] 

In the paper cited above I mentioned Sutherland as the discoverer of the connection 

between the elastic and optical behavior of solids. It escaped my notice that 

E. Madelung was the first to draw attention to this fundamentally important connection.” 
Madelung found a quantitative relationship between the elasticity and (optical) proper 

frequency of diatomic compounds that corresponds exactly to the one that I derived for 

monatomic substances and that shows quite satisfactory agreement with experience. It 

should be especially emphasized that Madelung is able to arrive at his relation only by 

assuming that the forces acting between the atoms of a molecule are of the same order 

of magnitude as the forces acting between like atoms of adjacent molecules; in other 

words, the molecular bond does not seem to persist in the solid state of the substances 

investigated by Madelung; these substances seem to be completely dissociated. This 

agrees totally with the pictures to which the investigation of molten salts has led. 

Zurich, January 1911. (Received 30 January 1911) 

' A. Einstein, Ann. d. Phys. 34 (1911): 170 ff. 
° E. Madelung, Nachr. d. kgl. Ges. d. Wissensch. zu Gottingen. Math-phys. KI. (20 Feb. 1909 and 
29 Jan. 1910); Physik. Zeitschr. 11 (1910): 898-905.
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Doc. 16 

Comment on a Fundamental Difficulty 

in Theoretical Physics 

Zurich, 2 January 1911 

Our present physical world picture rests on the fundamental equations of point mechanics 

and on Maxwell’s equations for the electromagnetic field in a vacuum. It becomes more 

and more apparent that all those consequences of this foundation that refer to slow, i.e., 

not rapid periodical processes, are in excellent agreement with experience. We have 

succeeded in arriving at a general formulation of the limits of validity of thermodynamics 

with the help of point mechanics, and in deriving from the latter the fundamental laws 

of thermodynamics. We have succeeded in entirely different ways in determining the 

absolute sizes of atoms and molecules with undreamed-of accuracy. We have also been 

able to derive the law of thermal radiation for long wavelengths and high temperatures 

from statistical mechanics and electrodynamics. But the foundations of the theory leave 

us in the lurch when it comes to all those phenomena that involve the transformation of 

energy of rapid periodical processes. We know of no flawless derivation of the law of 

radiant heat for short wavelengths and low temperatures. We do not know the reason 

why high molecular temperatures are needed for the generation of short-wave radiation, 

and why the absorption of the latter can produce elementary processes of relatively great 

energy. We do not know why the specific heat at low temperatures is smaller than 

predicted by the Dulong-Petit law. We know just as little about why those mechanical 

degrees of freedom of matter that must be postulated in order to comprehend the optical 

properties of transparent bodies make no contribution to the specific heats of these 

bodies. 

But one thing has been done. M. Planck has shown that one arrives at a radiation 

formula that is in agreement with experience if one modifies the formulas resulting from 

our theoretical foundations as though the energy of oscillations of frequency v could only 

occur in integral multiples of the quantity Av. This modification also leads to a 

modification of the consequences of mechanics that has thus far proved useful if rapid 

oscillations are involved. A proper theory has not yet come into being, but it can be said 

with certainty: point mechanics is not valid for rapid periodic processes, and the 

customary conception of the distribution of radiant energy in space can also not be 

maintained. 

A. Einstein 

(1) 

[2] 

[3] 

[4] 
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Doc. 17 

The Theory of Relativity' 
by A. Einstein 

[Naturforschende Gesellschaft in Ziirich. 

Vierteljahrsschrift 56 (1911): 1-14] 

The one basic pillar upon which the theory designated as the “theory of relativity” rests 

is the so-called principle of relativity. First I will try to make clear what is understood 

by the principle of relativity. Picture to yourself two physicists. Let both physicists be 

equipped with every physical instrument imaginable; let each of them have a laboratory. 

Suppose that the laboratory of one of the physicists is arranged somewhere in an open 

field, and that of the second in a railroad car traveling at constant velocity in a given 

direction. The principle of relativity states the following: if, using all their equipment, 

these two physicists were to study all the laws of nature, one in his stationary laboratory 

and the other in his laboratory on the train, they would discover exactly the same laws 

of nature, provided that the train is not shaking and is traveling in uniform motion. 

Somewhat more abstractly, we can say: according to the principle of relativity, the laws 

of nature are independent of the translational motion of the reference system. 

Let us consider the role that this principle of relativity plays in classical mechanics. 

Classical mechanics is based first and foremost on Galileo’s principle, according to which 

a body not subjected to the influences of other bodies finds itself in uniform, rectilinear 

motion. If this principle holds for one of the laboratories mentioned above, then it holds 

for the other one as well. This we can deduce directly from intuition; however, we can 

also deduce this from the equations of Newtonian mechanics if we transform these 

equations to a reference system that moves uniformly relative to the original reference 

system. 

All I have been talking about is laboratories. However, in mathematical physics, it 

is customary to relate things to coordinate systems and not to a specific laboratory. What 

is essential in this relating-to-something is the following: when we state anything 

whatsoever about the location of a point, we always indicate the coincidence of this point 

with some point of a specific other physical system. If, for example, I choose myself as 

this material point, and say, “I am at this location in this hall,” then I have brought 

myself into spatial coincidence with a certain point of this hall, or rather, I have asserted 

this coincidence. This is done in mathematical physics by using three numbers, the so- 

called coordinates, to indicate with which points of the rigid system, called the coordinate 

system, the point whose location is to be described coincides. 

1 Lecture given at the meeting of the Zurich Naturforschende Gesellschaft on 16 January 1911.
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This would be the most general description of the principle of relativity. If a 

physicist of the 18th century or the first half of the 19th century would have been asked 

whether he had any doubts about this principle, he would have answered the question 

with a resolute “no.” He had no grounds for doubting it, since at that time people were 

convinced that whatever happened in nature could be reduced to the laws of classical 
mechanics. I shall now analyze how experience has led physicists to the formulation of 

physical laws that contradict this principle. In order to do so, we must briefly consider 

the gradual development of optics and thermodynamics during the last few decades from 

the standpoint of the principle of relativity. 

Light displays interference and diffraction exactly like sound waves do, so that one 

felt compelled to view light as a wave motion, or, generally, as a periodically changing 

state of some medium. This medium was named “ether.” Until recently, the existence 

of such a medium seemed absolutely certain to physicists. The theory to be outlined 

below is incompatible with the ether hypothesis, but for the time being we shall hold on 

to it. Let us now see how ideas about this medium developed, and what kind of prob- 

lems the introduction of this physical theory based on the ether hypothesis engendered. 

We already said that one thought that light consists in vibrations of a medium, i.e., that 

the medium takes over the propagation of light and heat vibrations. As long as one dealt 

solely with optical phenomena of bodies at rest, one had no reason to wonder about 

motions of this medium other than the motion presumed to constitute light. It was 

simply assumed that—except for the oscillatory motions that were supposed to constitute 

light—both this medium and the material bodies under consideration were in a state of 

rest. 

Once one started to consider the optical phenomena of moving bodies and 

simultaneously, in connection with it, the electromagnetic properties of moving bodies, 

one had to ask how the luminiferous ether behaves if we impart different velocities to the 

bodies in a physical system under our observation. Does the luminiferous ether move 

together with the bodies, so as to move at each location in the same manner as the 

matter situated there, or is this not the case? The simplest assumption is that the 

luminiferous ether moves everywhere exactly like matter. The second possible 

assumption, which is also very simple, is that the luminiferous ether does not participate 

at all in the motions of matter. And then intermediate cases would also be possible, 

these intermediate cases being characterized by a motion of ether in space that is to a 

certain degree independent of the motion of the matter. Let us now see how one tried 

to get an answer to this question. The first important clarification one obtained came 

from a very important experiment conducted by the French physicist Fizeau. This 

experiment was set up to answer the following question: 

—e 
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The front and rear ends of the tube in the accompanying sketch are closed by a glass 

plate. Pipe connections attached at the two ends make it possible for a liquid to flow 

through the tube in the direction of its axis. How does the velocity with which the liquid 

flows through the tube affect the propagation velocity of a light ray passing axially 

through the tube? If it is true that the luminiferous ether moves with the matter that 

flows through the tube, then the following picture obtains. If we assume that in water 

at rest light propagates with velocity V, V thus being the velocity of light relative to 

water, while v is the velocity of the water relative to the tube, then we must say: If the 

luminiferous ether adheres to the water, then the velocity of light relative to the water 

is always the same, regardless of whether the water is in motion or not. Accordingly, one 

should expect that the velocity of the propagation of light relative to the tube is greater 

by v if the liquid is in motion than if it is at rest. In Fizeau’s experiment, one of two 

beams of light capable of interference traversed the tube in the manner described. From 

the influence of the known velocity of motion of the liquid on the position of the 

interference fringes, it was possible to calculate the influence that the water moving with 

velocity v exerted on the velocity of the propagation of light relative to the tube at rest. 

Fizeau found that the motion of the liquid did not increase the velocity of light relative 

to the tube by v, but only by a fraction of this value (v f = 4 if n denotes the 
n 

refractive capacity of the liquid). If this refractive capacity is very close to 1, i.e., if light 

propagates almost as fast in the liquid as in empty space, then the motion of the liquid 

has practically no influence. From this it had to be concluded that the conception 

according to which light always propagates with the same velocity V relative to water 

is not compatible with experience. 

The next simplest hypothesis was that the luminiferous ether does not participate in 

the motion of the matter. From this hypothesis, as a basis, we cannot deduce in such a 

simple manner how the optical phenomena are influenced by the motion of matter. But 

in the mid-90s H. A. Lorentz succeeded in formulating a theory based on the assumption 

of a completely stationary luminiferous ether. His theory provides a completely correct 

account of almost all known phenomena in the optics and electrodynamics of moving 

bodies, including the experiment of Fizeau we have just discussed. Let me add at once 

that a theory fundamentally different from that of Lorentz, which would be based on 

simple and intuitive assumptions and would accomplish the same ends, could not be 

formulated. For that reason, the theory of the stationary luminiferous ether had to be 

accepted for the time being as the only theory compatible with the totality of experience. 

Let us now consider this theory of the stationary ether from the standpoint of the 

principle of relativity. If we designate as acceleration-free all those systems with respect 

to which material points not subjected to external forces move uniformly, the principle 

of relativity states the following: The laws of nature are identical in all acceleration-free
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systems. On the other hand, Lorentz’s fundamental hypothesis of the stationary 

luminiferous ether distinguishes from among all possible acceleration-free moving systems 

those in a state of motion, namely systems that are at rest relative to this light medium. 

Thus, even though one cannot say according to this conception that there exists an 

absolute motion in the philosophical sense—because this is completely out of the 

question, we can only conceive of relative changes of position of bodies—an absolute 

motion in the physical sense is affirmed insofar as we have privileged one state of motion, 

namely, the state of rest relative to the ether. Every body that is at rest relative to ether 

can be designated, in a certain sense, as absolutely at rest. Reference systems that are 

at rest relative to the ether are distinguished from all other acceleration-free systems. 

In that sense Lorentz’s basic concept of the stationary luminiferous ether does not satisfy 

the principle of relativity. The basic concept of the stationary luminiferous ether leads 

to the following general argument: Let a reference system k be at rest relative to the 

luminiferous ether. Let another reference system k’ be in uniform motion relative to 

the luminiferous ether. It is to be expected that the relative motion of k’ with respect 

to the ether will have an influence on the laws of nature that are valid with respect to 

k’. Hence, it was to be expected that the laws of nature with respect to k’ would differ 

from those with respect to k on account of the motion of k’ in the luminiferous ether. 

One had to tell oneself, furthermore, that the earth and its laboratories could not possibly 

be at rest relative to this luminiferous medium throughout the entire year, i.e., that the 

earth must, therefore, play the role of a reference system k’ One, therefore, had to 

assume that some phenomenon could be found in which the influence of this motion on 

the experiments in our laboratories would come to the fore. One would think that, 

because of this relative motion, our physical space in the form we find it on the earth 

would show different behavior in different directions. But there was not a single case in 

which it was possible to prove something like that. 

One was, thus, in an awkward position with regard to the ether. Fizeau’s experiment 

says: The ether does not move with matter, i.e., there does exist a motion of the light 

medium relative to matter. But all attempts to detect this relative motion yielded 

negative results. These are two results that seem to contradict one another, and 

physicists found it enormously distressing that they could not get rid of this unpleasant 

conflict. They were bound to ask themselves whether it might not be possible, after all, 

to reconcile the principle of relativity—to which no exception could be found in spite of 

all the searching—with Lorentz’s theory. Before delving into this question, we will 

extract from Lorentz’s theory of the stationary luminiferous ether the following aspects 

most essential to us. What is the physical meaning of the statement that there exists a 

stationary luminiferous ether? The most important content of this hypothesis can be 

expressed as follows: There exists a reference system (called in Lorentz’s theory “a system 

at rest relative to the ether”) with respect to which every light ray propagates in a
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vacuum with the universal velocity c. This ought to hold independently of whether the 
light-emitting body is in motion or at rest. We shall designate this proposition as the 

principle of constancy of the velocity of light. Thus, the question we have just asked can 

also be formulated as follows: Is it impossible to reconcile the principle of relativity, 

which seems to be satisfied without exception, with this principle of constancy of the 

velocity of light? 

To begin with, the following obvious consideration argues against this possibility: If 

every ray of light propagates with the velocity c relative to the reference system k, then 

the same cannot be true with respect to the reference system k’, if k’ is in motion 

relative to k. For if k’ is moving with velocity v in the direction of the propagation 

of a light ray, then the propagation velocity of the light ray relative to k’ would have 

to be set equal to c - v according to our customary views. The laws of propagation of 

light with respect to k’ would then differ from those with respect to k, which would 

mean a violation of the principle of relativity. That is a frightful dilemma. But it turned 

out that nature is not responsible for this dilemma; rather, this dilemma stems from the 

fact that we have been making tacit and arbitrary assumptions in our arguments, and thus 

also in the argument just given, and that these have to be dropped in order to arrive at 

a consistent and simple interpretation of things. 

Let me try to analyze these arbitrary assumptions, which permeated the foundations 

of our thinking in physics. The first and most important of these arbitrary assumptions 

concerned the concept of time, and I will try to explain in what this arbitrariness consists. 

To be able to do this well, I will start by discussing space, in order to draw a parallel 

between space and time. If we wish to describe the position of a point in space, i-e., the 

position of a point relative to a coordinate system k, we specify the point’s orthogonal 

coordinates x, y, z. The meaning of these coordinates is as follows: According to 

familiar rules, we construct perpendiculars to the coordinate planes, and check how many 

times a given unit measuring rod can be laid along these perpendiculars. The coordinates 

are the results of this counting. Thus, the specifying of spatial position by means of 

coordinates is the result of specific manipulations. Accordingly, the coordinates I specify 

have a completely determinate physical meaning; one can verify whether a specific, given 

point really has the indicated coordinates or not. 

Where do we stand with time in this respect? As we shall see, we are not so well 

off when it comes to time. Up to now, people always contented themselves with saying: 

Time is the independent variable of events. The measurement of the time value of an 

actually occurring event can never be based on such a definition. Hence we must try to 

define time in a way that will make it possible to measure time on the basis of this 

definition. Let us imagine a clock (a balance wheel clock, for example) at the origin of 

a coordinate system k. Using this clock we can evaluate the time of events occurring 

directly at this point or in its immediate vicinity. However, events occurring at another 

point of k cannot be evaluated directly with this clock. If an observer standing next to
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the clock at the origin of k notes the time at which he received notice of the event in 

question by means of a ray of light, this time will not be the time of the event itself, but 

a time greater than the latter by the velocity of propagation of the light ray from the 

event to the clock. If we knew the velocity of propagation of light relative to the system 

k in the direction under consideration, it would be possible to determine the time of the 

event using the above clock; but the velocity of light can be measured only if the problem 

of the determination of time, which we are now discussing, has been solved. To measure 

the velocity of light in a given direction, we would have to measure the distance between 

points A and B, between which the light ray propagates, and further, the time of the 

emission of the light at A and the time of the arrival of the light at B. Thus, time 

would have to be measured at different locations; however, this can be done only if the 

definition of time we are seeking has already been given. But if it is impossible in 

principle to measure a velocity, in particular the velocity of light, without recourse to 

arbitrary stipulations, then we are justified in making further arbitrary stipulations 

Tegarding the velocity of light. We shall now stipulate that the velocity of the 

propagation of light in vacuum from some point A to some point B is the same as that 

from B to A. By virtue of this stipulation we are indeed in a position to regulate 

identically constructed clocks that we have arranged at various points at rest relative to 

the system k. For example, we will set the clocks at the points A and B in sucha 

manner that the following will obtain: If a ray of light sent from A toward B at time 

t (measured by the clock at A) arrives at B at time ¢ +a (measured by the clock at 

B), then, conversely, a ray sent from B toward A at time ¢ (measured by the clock 

at B) must arrive at A at time ¢ + a (measured by the clock at A). This is the rule 

according to which all clocks arranged in the system k must be regulated. If we follow 

this rule, we achieve a determination of time from the standpoint of the measuring 

physicist. That is to say, the time of an event is equal to the readings of the clocks 

located at the place of the event that are regulated according to the rule we just 

described. 

Since all this sounds self-evident, one may wonder what is particularly remarkable 

about the result we have obtained. What is remarkable is the fact that, in order to obtain 

time readings with a perfectly definite meaning, this rule refers to a system of clocks that 

is at rest relative to an exactly specified coordinate system k. We have not merely 

obtained a time, but a time that refers to the coordinate system k, or to the system k 

together with the clocks set up at rest relative to k. Of course, we can carry out exactly 

the same operations if we have another system k’ that is moving uniformly relative to 
k. We can distribute throughout space a system of clocks relative to this coordinate 

system k’, but in such a way that all of them move together with k’. We can then 

regulate these clocks, which are at rest relative to k’, exactly according to the rule 

described before. If we do this, we obtain a time with respect to the system k’ as well.
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But this does not say at all a priori that, when two events are simultaneous with 

respect to the reference system k—by that ] mean the coordinate system together with 

the clocks—they are also simultaneous as understood with respect to the system k’. 

This does not say that time has an absolute meaning, i.e., a meaning independent of the 

state of motion of the reference system. This is an arbitrariness that was contained in 

our kinematics. 

And now we come to a second factor that was also arbitrary in kinematics up until 

now. We speak about the shape of a body, the length of a rod, for example, and believe 

that we know exactly what the length of the rod is, even when it is in motion with respect 

to the reference system from which we are describing the events. A brief reflection 

shows, however, that these concepts are not at all as simple as we instinctively believe 

them to be. Consider a rod moving in the direction of its axis relative to the reference 

system k. We ask: What is the length of this rod? This question can have only the 

following meaning: What experiments do we have to perform in order to learn what the 

length of the rod is? We can take a man with a measuring rod and give him such a push 

that he assumes the same velocity as the rod; in that case he will be at rest relative to the 

rod, and will be able to determine its length by repeated application of his measuring rod, 

in the same way the lengths of bodies at rest are actually determined. He will obtain a 

perfectly definite number and will be able to declare with some degree of justification 

that he has measured the length of this rod. 

However, if only such observers are available who do not move along with the rod, 

but instead all of them are at rest relative to a reference system k, we can proceed in 

the following manner: We imagine that very many clocks, with an observer assigned to 

each of them, are distributed along the route traveled by the axially moving rod. The 

clocks are regulated by means of light signals according to the procedure described 

before, such that in their totality they indicate the time associated with the reference 

system k. These observers determine the two positions with respect to the system k at 

which the beginning and the end of the rod are found at a given time 1, or, what 

amounts to the same, those two clocks that the beginning and the end of the rod just pass 

by when the clock in question indicates the time t. The distance between the two 

positions (or clocks) so obtained is then measured by repeatedly applying a measuring 

rod, which is at rest relative to the reference system k, along the connecting line. The 

results of the two procedures can justly be designated as the length of the moving rod. 

However, it should be noted that these two manipulations do not necessarily lead to the 

same result, or, in other words, the geometrical dimensions of a body do not need to be 

independent of the state of motion of the reference system with respect to which the 

dimensions are determined. 

If we do not make these two arbitrary assumptions, then we are at first no longer 

capable of solving the following problem: Given are the coordinates x, y, z and the 

time ¢ of an event with respect to the system k; find the space-time coordinates x’,
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y’, 2’, t' of the same event referred to another system k’, which is in a known, 

uniform translational motion relative to k. It turns out that the customary simple 

solution of this problem is based on the two assumptions we have just identified as 

arbitrary. 

How to put kinematics back on its feet? The answer is self-evident: the very same 

circumstances that led us into so many embarrassing difficulties in the past lead us to a 

negotiable path now that we have gained more room to maneuver by putting aside the 

arbitrary assumptions mentioned above. For it turns out that precisely those two 

seemingly incompatible axioms, which were imposed on us by experience, namely the 

principle of relativity and the principle of constancy of the velocity of light, lead us to a 

perfectly definite solution of the space-time transformation problem. One arrives at 

results that, in part, run very much counter to our customary conceptions. The 

mathematical considerations leading to these results are very simple; this is not the place 

to dwell on them.’ It will be better if I deal with the most important consequences that 

were reached in this way by a quite logical procedure, without additional assumptions. 

First, things purely kinematic. Since we defined the coordinates and the time in a 

definite way in physical terms, all relationships betwen spatial and temporal quantities will 

have a perfectly definite physical content. We obtain the following: If we have a solid 

body that is moving uniformly with respect to the coordinate system k, which we take 
as the basis for our analysis, then this body appears contracted by a perfectly definite 

ratio in the direction of its motion, as compared with the shape it has when it is in a state 

of rest with respect to this system. If we denote the velocity of motion of the body by 

v and the velocity of light by c, then each length measured in the direction of motion, 

and equal to 7 when the body is in a motionless state, will be diminished because of the 

body’s motion relative to the noncomoving observer to the length 

2 

ae . 
c 

If the body has a spherical shape in the state of rest, it will have the shape of a 

flattened ellipsoid if we move it in a certain direction. When its velocity reaches the 

"If x,y,z, 2, and x‘, y’,z’,t’ are space and time coordinates with respect to the two reference 
systems & and k’, then the two underlying principles demand that the transformation equations 
be such that each of the two equations 

Xty+z? = 7? 
xt 2 4y! 24712 = c’ 42 

have the other equation as its consequence. Since, for reasons into which I shall not enter here, 
the substitution equations must be linear, this determines the transformation law, as a brief analysis 
shows (cf., e.g., Jahrbuch der Radioaktivitat und Elektronik 4 [1907]: 418ff).
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velocity of light, it will collapse to a plane. However, as judged by a comoving observer, 

the body retains, before and after, its spherical shape; on the other hand, to the observer 

moving with the body, all noncomoving objects appear, in exactly the same way, 

contracted in the direction of the relative motion. This result loses very much of its 

oddness if one considers that this assertion about the shape of a moving body has quite 

a complicated meaning since, according to what has been said above, this shape can be 

ascertained only with the aid of determinations of time. 

The feeling that this concept, “the shape of the moving body,” has an immediately 

obvious meaning is due to the fact that in our day-to-day experience we are accustomed 

to encountering only such velocities of motion that are practically infinitely small 

compared with the velocity of light. 

And now a second purely kinematic consequence of the theory that strikes us as even 

more peculiar. We imagine that there is given a clock capable of indicating the time of 

a reference system k, provided that it is arranged at rest relative to this system. It can 

be proved that this same clock, when set into uniform motion relative to the reference 

system k, runs slower, as judged from the system k, in such a way that when the time 

reading of the clock has increased by 1, the clocks of the system k indicate that, with 

respect to the system k, there has elapsed the time 

1 

2 v 
1-— 

2 

Thus, the moving clock runs more slowly than the same clock when in state of rest with 

respect to k. One must imagine that one determines the rate of the clock in a state of 

motion by comparing, from time to time, the position of the hands of this clock with the 

positions of the hands of those clocks at rest relative to k that measure the time relative 

to k and that the moving clock under consideration is just then passing by. Were we 

to succeed in making the clock move with the velocity of light—we would be able to 

make it move with a velocity approximating the velocity of light if we had sufficient 

force—the hands of the clock, as judged from k, would move forward infinitely slowly. 

The thing is at its funniest when one imagines that the following is being done: One 

imparts to this clock a very great velocity (almost equal to c), then lets it fly on in 

uniform motion, and after the clock has covered a long stretch, one imparts to it a 

momentum in the opposite direction, so that it returns to the point from which it has 

been launched. It then turns out that the positions of the clock’s hands have hardly 

changed during the clock’s entire trip, while an identically constituted clock that remained 

at rest at the launching point during the entire time changed the setting of its hands quite 

substantially. It should be added that whatever holds for this clock, which we introduced 

as a simple representation of all physical phenomena, holds also for closed physical
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systems of any other constitution. Were we, for example, to place a living organism in 

a box and make it perform the same to-and-fro motion as the clock discussed above, it 

would be possible to have this organism return to its original starting point after an 
arbitrarily long flight having undergone an arbitrarily small change, while identically 

constituted organisms that remained at rest at the point of origin have long since given 

way to new generations. The long time spent on the trip represented only an instant for 

the moving organism if the motion occurred with approximately the velocity of light! 

This is an inevitable consequence of our fundamental principles, imposed on us by experi- 

ence. 

And now a few more words on the significance of the theory of relativity for physics. 

This theory demands that the mathematical expression of a law of nature valid for 

arbitrary velocities does not change its form if one introduces with the help of 

transformation equations new space-time coordinates into the formulas that express that 

law. This substantially narrows the manifoldness of possibilities. By means of a simple 

transformation it is possible to derive laws for bodies moving arbitrarily fast from the laws 

that are already known for bodies at rest or in slow motion. In this way one can derive, 

for example, the laws of motion for fast cathode rays. At the same time it turned out 

that Newton’s equations do not hold for material points moving with arbitrarily great 

velocity, but have to be replaced by equations of motion of a somewhat more complicated 

structure. These laws of cathode ray deflection turned out to be in quite satisfactory 

agreement with experience. 

Of the physically important consequences of the theory of relativity we ought to 

mention the following. We saw earlier that, according to the theory of relativity, a 

moving clock runs more slowly than does the same clock in the state of rest. It will 

probably never be possible to verify this by experiments with a pocket watch, because the 

velocities we can impart to the latter are vanishingly small compared with the velocity of 

light. But nature provides us with objects that have quite the same character as clocks 

and can be moved exceedingly fast. These are atoms which emit spectral lines, and to 

which we can impart velocities of several thousand kilometers per second by means of 

electric fields (canal rays). In accordance with theory, it is to be expected that the 

oscillation frequencies of these atoms should appear to be affected by their motions in 

exactly the same way in which this is to be deduced for moving clocks. Even though the 

experiments in question face great difficulties, we do hope that in the next few decades 

we will obtain an important confirmation or refutation of the theory of relativity in this 

way. 

The theory further leads to the important result that the inertial mass of a body 

depends on its energy content, though to such a small extent that a direct proof seems 

absolutely hopeless. If the energy of a body increases by E, the inertial mass increases 

E . aa ; 
by —. This theorem overturns the principle of the conservation of mass, or, rather, fuses 

c 
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it with the principle of the conservation of energy into a single principle. However odd 

this result might seem, still, in a few special cases, one can unequivocally conclude from 

empirically known facts, and even without the theory of relativity, that the inertial mass 

increases with energy content. 

And now let me say just a few words about the highly interesting mathematical 

elaboration that the theory has undergone, thanks, mainly, to the sadly so prematurely 

deceased mathematician Minkowski. The transformation equations of the theory of 

relativity are so constituted that they possess the expression 

ery +z - cP 

as an invariant. If we introduce the imaginary variable ct-/-1 = t as the time variable 

instead of the time 1, then this invariant will assume the form 

xe+ya 2 + c?. 

Here the spatial coordinates and the temporal coordinate play the same role. The 

further pursuance of this formal equivalence of the space and time coordinates in the 

theory of relativity led to a very perspicuous representation of the theory, which makes 

its application substantially easier. Physical events are represented in a 4-dimensional 

space, and the spatio-temporal relations of what results appear as geometrical theorems 

in this 4-dimensional space.
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“Discussion” Following Lecture Version of 

“The Theory of Relativity” 

[IN: Naturforschende Gesellschaft in Ziirich. Sitzungsberichte (1911): II-IX. Published in 
vol. 4 of Vierteljahrschrift der Naturforschenden Gesellschaft in Ziirich 56 (1911). Minutes 

of the meeting of 16 January 1911.] 

Discussion 

After a few warm words of regret on account of the impending departure of the 

speaker, Prof. Kleiner presents his opinion on the relativity principle in the following way: 

[Prof. Kleiner:| As far as the principle of relativity is concerned, it is being called 

revolutionary. This is being done especially with regard to those postulates that are 

uniquely Einsteinian innovations in our physical picture. This concerns most of all the 

formulation of the concept of time. Until now we were accustomed to view time as 

something that always flows, under all circumstances, in the same direction, as something 

that exists independently of our thoughts. We have become accustomed to imagine that 

somewhere in the world there exists a clock that categorizes time. At least one thought 

it permissible to imagine the thing in such a way. But according to the relativity 

principle, time turns out to be dependent on velocities, on coordinates, on spatial 

magnitudes. This is what is supposed to constitute the revolutionary character of the new 

conception of time. If we examine the issue more closely, it turns out that we are dealing 

with improvements in precision that were greatly needed, because if we recall how we 

arrive at the determinations of time, we realize that everything is very simple as long as 

we are dealing with the determination of events in our immediate vicinity. We have our 

good old clocks and can fix the instant of time at which something happens. Things are 

quite different in regard to this certainty about time when it comes to the temporal 

determination of events that are distant from us. We know that the light from certain 

fixed stars reaches us only after many years, so that we can say that by virtue of this fact 

we can look into the past. We can also quite easily imagine that we are looking into the 

future, so that this stability in the conception of time has now already been undermined 

to some extent by the facts. Let us imagine a man who is accustomed to rely on his 

hearing devices for his orientation. Such would be the case with a blind man. Let us 

assume that he suddenly regains his sight and sees a man driving in nails with a hammer. 

He will then have the peculiar experience of seeing the fall of the hammer first, and only 

thereafter hearing the blow. But he has been conditioned to regard hearing as that which 

corresponds to the phenomenon, and according to his way of thinking, he now has in his 

eyes an organ with which he looks into the future. He sees an event before it has 

actually happened. I mention this because it shows precisely how the interpretation of 

the time concept also depends on the manner in which we explain to ourselves the 

(1)
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perception of time. The difficulties start only when it comes to the fixing of temporal 

events at places removed from us. In view of this circumstance Einstein introduced and 

carried out the radical expedient of measuring and fixing times by making them 

measurable by means of light paths, because, in the end, he always comes to perceive the 

world around us by way of light signals. He makes times measurable by light paths and 

lays down the postulate, which has recently emerged from our experience, that equal 

distances must be traveled in equal times. This postulate makes it possible to compare 

clocks with each other, and this in turn makes it possible to resolve the question: How 

do clocks run if one of them is located in a system at rest, and the other in a moving 

system? Quite stringent arguments show that these clocks do not run synchronously. It 

turns out that the notion of time as something absolute in the old sense cannot be 

maintained, but that, instead, that which we designate as time depends on the states of 

motion. 

Something similar obtains for the spatial coordinates by means of which we usually 

represent spatial relations. They prove to be dependent on the state of motion. This 

also seems to be of a revolutionary character insofar as we used to think of length as 

something absolute, i.e., something independent of velocity. Upon closer examination, 

the matter of this fixity and peculiar definiteness of the spatial coordinates is not all that 

simple. 

I would say that the relativity principle brings us only a clarification and not some- 

thing that is fundamentally new. Now Mr. Einstein has shown that, based on the 

assumption of the constancy of the velocity of light and the relativity principle, some 

simple relations exist between the coordinates of space and time for systems moving 

relative to each other. If we introduce into the mathematical expressions of laws that are 

valid with respect to a coordinate system k the space and time coordinates of another 

reference system k’, which are connected with those of k by the simple equations 

peculiar to the theory of relativity, we arrive at laws of the same form. This is the 

property that, above all else, made the relativity principle creditable to the mathemati- 

cians. They recognized that this invariability for these systems involves something with 

which they are familiar, a special case of the invariance they occasionally observe in the 

structures of projective geometry. The observation that something well known in its 

mathematical formulation is already finding application in reality has helped gain credit 

for the relativity principle. 

As for the physicist, when the admissibility of such a principle is being discussed, he 

is wont to keep just to arguments of a more physical character. The consequence of the 

relativity principle that motion results in a change of shape is to us of much greater 

importance. In other words, this consequence yields the result that rigid bodies in the 

usual sense of the word do not exist. A body moving in a certain direction gets flattened, 

it becomes an ellipsoid in the direction of motion. Thus, rigid bodies do not exist, 

because all bodies are in motion. This is something that runs counter to the naive
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conception, and it is what disturbs many physicists, namely, to have to assume that rigid 

bodies do not exist. But I think that this should not be interpreted as meaning that a 

body must deviate from rigidity in all possible directions because motions take place in 

all possible directions, but, rather, that the invariance holds only when considering a 

certain direction of motion. It will be the business of the mathematicians to formulate 

more exactly the conditions of rigidity in these systems. 

As for the rest, it is difficult to decide whether all the consequences of the relativity 

principle agree with experience, because the deviation from what mechanics yields for 

systems at rest is always of the relative magnitude = This is a quantity that always 

remains small. It shows up in the discussion of the electromagnetic masses of electrons 

of longitudinal and transverse mass. These have been calculated according to the ideas 

of the relativity principle, but it must be said that this matter has not yet really been 

decided. But it is to be expected, as my colleague Mr. Einstein indicated, that, in the 

course of time, there will be experimental findings that will decide the matter. 

Perhaps only the following remains to be said in this area, something which proves 

to be a difficult matter for the physicist in discussions of this relativity principle. You 

have heard that we must give up the notion that an ether exists. Perhaps we should say 

that it is not too bad about the ether. We came to know it as an ad hoc hypothesis by 

means of which to explain all sorts of phenomena. One has saddled it with more and 

more incomprehensible properties. But the fact still remains that we are supposed to 

discuss propagations without having any idea in what these propagations consist. The 

velocity of propagation of light, wave motions that are propagated, the whole theory of 

interference, all these were hitherto based on certain conceptions that are now gone. We 

are supposed to speak about propagation in a medium which is not a medium, and about 

which we do not know a thing. I think that this is a gap that must be filled, because 

scientific, and especially physical, discussions that operate with formulas that cannot be 

linked to any mental image cannot be maintained forever. 
So, as far as the principle designated as the principle of relativity is concerned, I 

think that this is something that has been needed, that, for once, simply stipulates some 

things, some unclarities to which we have not given any thought at all, and puts them in 

certain order. Time will probably show what sort of difficulties are involved, but 

whatever they are, they will probably find their solutions. 

Prof. Einstein: First of all, ] wish to thank Prof. Kleiner for his kind words. For the 

rest, I wish to say a few things in response to the things he brought up. According to the 

theory of relativity, a rigid body cannot exist at all. Let us imagine a rod of a certain 

length. If we pull on one side, the other end will start to move at once. This would be 

a signal that moves with infinite speed and that could be used to define time, which leads 

to highly improbable consequences for reasons that cannot be explained here in greater 
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detail. The ether was of real value for the intuitive representation of optical processes 

only as long as one actually reduced these processes, with all their peculiarities, to 

mechanical processes. After the concept of fields of lines of force had been put into the 

foreground, the ether hypothesis has come in fact to play only a fictitious role. 

Fritz Miller. If there are two synchronous clocks at point A, and one of them is 

moved with a given velocity from this point to point B, then, according to the reasoning 

of the speaker, this second clock will run slower, if only by a tiny fraction. What happens 

now if this clock returns by a polygonal or circular path to point A? According to the 

reasoning given in the lecture, at the moment of its meeting with the other clock at point 

A, the second clock will not be running in synchrony again. How can this be possible, 

since, on the other hand, Prof. Einstein says that a rod of a specificlength L in a system 

at rest, which he holds in his hand, will become shorter by a definite amount when it is 

set in motion? But as soon as the rod is brought to halt by a sudden jerk, its length is 

once again = L, 1.e., the rod is no longer deformed. If this latter argument holds good 

for length, i.e., for a specific dimension, and if what the mathematician Minkowski 

asserted, which was termed acceptable by Prof. Einstein, is correct, namely, that we can 

speak of a 4-dimensional geometry, so that we can compare length with time, then how 

do things stand with the clock? Must it not then, exactly like the rod, run synchronously 

again from the moment it is brought to rest at point A? This reasoning would suit me 

better, whereas I cannot grasp the other one. 

Prof. Einstein: It is not the clock’s indication of time that is to be likened to the rod, 

but its rate. After having completed its motion and returned, the rod has the same 

length. In the same way, the clock has again the same rate. We can designate the rod 

as the carrier of the space differential, and the clock as the carrier of the time 

differential. It is impossible to assume that, after having traveled along a polygonal path 

and returned to point A, the clock will again be running synchronously with the clock that 

has been at rest at point A. The clock runs slower if it is in uniform motion, but if it 

undergoes a change in direction as a result of a jolt, then the theory of relativity does not 

tell us what happens. The sudden change of direction might produce a sudden change 

in the position of the hands of the clock. However, the longer the clock is moving 

rectilinearly and uniformly with a given speed of forward motion, i-e., the larger the 

dimensions of the polygon, the smaller must be the effect of such a hypothetical sudden 

change. 

Prof. Prasil: In his famous essay, “Space and Time,” Minkowski wrote about the 

nature of dilation, that the latter is a concomitant circumstance of the state of motion. 

He makes it absolutely independent of any physical influence. Lorentz, on the other
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hand, when he was explaining Michelson’s experiment, stated outright his conjecture that 

it may well be good to assume that such a change in length is brought about by the 

influence of the ether or of molecular forces. These are two things that I cannot 

reconcile. 

Prof. Einstein: Allow me to answer with a comparison. It has to do with the second 

law of thermodynamics, the law of the limited convertibility of thermal energy. If one 

takes the assumption of the impossibility of a perpetuum mobile of the second kind as 

the starting point of the argument, then our law appears as almost an immediate 

consequence of the basic premise of the theory. But if one bases the theory of heat on 

the equations of motion of molecules, then our law appears as the result of a long series 

of most subtle arguments. Just as here both of these routes have their undeniable 

justification, so the above-mentioned points of view of Minkowski on the one hand, and 

of H. A. Lorentz, on the other, also seem to me completely justified. 

Prof. Meissner: As far as I know, Minkowski used the theory of relativity in order to 

derive the general equations for moving bodies from the fundamental equations of the 

electrodynamics of bodies at rest. He set up a system of formulas that does not coincide 

either with the formulas of Cohn nor with those of H. A. Lorentz. Objections have been 

raised against this new system. Since I know the whole theory of relativity more from the 

mathematical point of view, I would very much like to know the reasons that prompt the 
physicists to decide against Minkowski’s equations and in favor of those of Cohn and 

Lorentz. It seems to me, from the mathematical point of view, that there must exist only 

one system of equations, namely that of Minkowksi. 

Prof. Einstein: If one starts out from the theory of bodies at rest, then one can derive 

only the laws of electrodynamics for uniformly moving bodies by means of the relativity 

transformation. Do the equations of electrodynamics for uniformly moving bodies also 

hold for bodies in spatially and temporally non-uniform motion? This is possible but not 

certain. To that extent, Minkowski’s equations are a hypothetical extension of those 

existing before. 

Regarding the theories of Cohn and Lorentz, the following should be noted. The 

theory of Lorentz deviates from that of Minkowski insofar as a small inaccuracy crept 

into it, due to the much more difficult method of derivation. In fact, there are no 

fundamental differences between Minkowski’s and Lorentz’s theory. On the other hand, 

Cohn’s electrodynamics must be viewed as fundamentally different. 

Fritz Miller. According to the explanations given in the lecture, when a clock is set 

up at the North Pole, and a synchronously running clock is located at the equator, then, 

if we consider the rotation of the earth, the clock at the North Pole is at rest, while the 
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other one is moving with the rotational velocity of the earth. If it were possible to make 

the position of the hands of the clock at the North Pole visible at the equator, the latter 

would have to run slower. Perhaps this could be used as the basis for a practical 

experiment, because a measurable amount of time might perhaps emerge from it. 

According to Prof. Einstein’s arguments, a velocity greater than the velocity of light 

is inconceivable because it contradicts our experience, since the necessary consequence 

of this would be that we could then in the future perceive the consequences of events 

before the event itself has occurred. My question is, are not these equations based on 

the fact that one simply inserts the velocity of light V and builds everything else on that. 

Suppose there are people who have an additional sense organ that enables them to 

perceive velocities greater than the velocity of light; in that case it certainly would be 

conceivable that if these people were to set up these same equations, they would arrive 

again at the theory that there does not exist a greater velocity than that which they 

perceive with their senses. Perhaps Prof. Einstein can declare himself in agreement if we 

reduce the theorem he propounded to the following: A velocity greater than the velocity 

of light is out of the question for the organs available to humans. 

Prof. Einstein: In answer to the first question, I would only like to note that time is 

avery poor multiplying factor. It is absolutely impossible to obtain a useful result within 

a practical time period, e.g., within a human lifespan, for the simple reason that a 

human’s life consists of relatively few seconds. 

I did not say that a superluminal velocity is impossible; it is not impossible from the 

logical point of view, rather one can only say: if there existed a velocity that could really 

be conceived as the velocity of propagation of a physical stimulus, then it would be 

possible to construct an arrangement that would allow us to see at some place conse- 

quences of actions before we had innervated the thing by acts of volition. This seems to 

me to be something that has to be ruled out until proven otherwise, because it does not 

seem to be in accord with our experience. Physical propagation velocities have nothing 

to do with the character of our sensory organs. 

Dr. Limmel: There is something that is even faster than light: gravitation. We 

would be faced with a great difficulty if we had to settle on the view that there can be 

no talk of velocity in the case of an attraction between two masses, that there can be only 

an instantaneous effect. Thus, gravitation too must possess a certain velocity. But it has 

not yet been possible to detect this velocity. It seems very probable that this velocity is 

much greater than that of light. If we were to subsitute gravitational signals for light 

signals, we would have a new world picture, on the basis of which we would be able to 

prophesy: There is no greater velocity than the velocity of gravitation. 

A second question that interests me is the following: Is the world picture resulting 

from the conceptions of the relativity principle an inevitable one, or are the assumptions
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arbitrary and expedient but not necessary? If we are forced to give up the ether, then 

we must consider light as a substance that possesses the velocity of light. As for several 

remarks that we heard here, I would like to point out that the analogy between the 

coordinates of space and of time is only a mathematical one, obtained by way of 

definition. For a mathematician, things can emerge that defy physical representation. 

Thus, for example, y¥-1 occurs in this formula. 

Prof. Einstein: \f we had electrostatic forces instead of gravitation, what would be the 

result? Would you find a velocity of propagation? You would only find that things go 

infinitely fast because the question has been wrongly put. The thing has been calculated 

as if the particles had been hurled out from the from the center of gravitation. It is very 

possible, and it is even to be expected, that gravitation propagates with the velocity of 

light. If there existed a universal velocity which, like the velocity of light, were so 

constituted with respect to a single system that a stimulus would propagate with a 

universal velocity independent of the velocity of the emitting body, the theory of relativity 

would be impossible. If gravitation were to propagate with a (universal) superluminal 

velocity, this would suffice to bring down the principle of relativity once and for all. If 

it propagated infinitely fast, this would provide us with a means to determine the absolute 

time. 

The comparison of light with other “stuff” is not permissible. At small velocities, 

material stuff in the usual sense of the word moves according to Newton’s equations of 

motion. This is not the case with light; the parallel is therefore not permissible. 
The principle of relativity is a principle that narrows the possibilities; it is not a 

model, just as the second law of thermodynamics is not a model. 

Dr. Lammel: The question is whether the principle is inevitable and necessary or 

merely expedient. 

Dr. Einstein: The principle is logically not necessary: it would be necessary only if 

it would be made such by experience. But it is made only probable by experience. 

Prof. Meissner. The discussion has shown what is the first thing to be done. All 

physical concepts will have to be revised, they will have to be reformulated, indeed, in 

such a way as to bring out any invariance with respect to the transformation of the 

relativity principle that may be present. Klein has in fact already pointed out in a lecture 

that one must extract from each concept that which can be maintained unchanged when 

one applies the remarkable transformation of space and time. Only then will one have 

extracted epistemologically one of the main results. Even if the whole theory of relativity 

were to prove untenable, this would represent an extraordinary advance. 

[12]
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Prof. Einstein: The main thing now is to set up the most exact experiments possible 

in order to test the foundation. In the meantime, all this brooding is not going to take 

us far. Only those consequences can be of interest that lead to results that are, in 

principle, accessible to observation. 

Prof. Meissner: You have brooded over this, and discovered the magnificent time 

concept. You found that it is not independent. This must be investigated for other 

concepts as well. You have shown that mass depends on the energy content, and you 

have made the concept of mass more precise. You did not carry out any physical 

investigations in the laboratory—you were brooding instead. 

Prof. Einstein: The observations we made created an embarrassing predicament for 

us. 

Prof. Meissner: Just think of non-Euclidean geometry. People thought they knew 

what an angle was, but they did not. 

Dr. Limmel: Regarding these speculations, the question is whether we are dealing 

with mathematical or physical considerations. Purely mathematical considerations cannot 

produce anything but premises, while physical considerations can open new paths. Hence 

I understand the statements made earlier by Prof. Einstein.
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Notes for a Lecture on Fluctuations 
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Statement on the Light Quantum Hypothesis 

by A. Einstein 

[IN: Naturforschende Gesellschaft in Ztirich. Sitzungsberichte (1911): XVI. Published in 

vol. 4 of Vierteljahrsschrift der Naturforschenden Gesellschaft in Ziirich 56 (1911). Minutes 

of the meeting of 21 February 1911] 

It turns out that when Maxwell’s theory of electricity and the molecular-kinetic approach 

are applied to some phenomena of light production and conversion, contradictions with 

observed facts, in particular those concerning “black-body radiation” and generation of 

cathode rays, come to light. These contradictions can be removed by introducing the 

working hypothesis that in the propagation of light, energy does not fill space in a 

continuous manner, but that, instead, it consists of a finite number of energy quanta 

localized at spatial points, which move without dividing and can be absorbed and 
generated only as a whole. If these energy quanta impinge on a photoluminescent 

substance, then, according to the principle of the conservation of energy, the radiant 

energy emitted in an elementary process must be equal to or smaller than the incident 

radiant energy, and from the formula for the energy of a light quantum one arrives in a 

simple manner at Stokes’ well-known frequency rule. When cathode rays are generated 

by illuminating solid bodies, the energy of the light quanta is converted into the kinetic 

energy of electrons, and only now do we realize that the quality of cathode radiation, i-e., 

the velocity of electrons, can be independent of the intensity of the exciting light, while 

the number of ejected electrons is proportional to the number of the light quanta. But 

from Planck’s radiation formula it is to be inferred that, hand in hand with this, there has 

to come about a change regarding our conception of the molecular-kinetic mechanism 

for the transfer of energy to ions or electrons capable of oscillation (resonators), in that 

their energy can change only jumpwise by an integral multiple of precisely one quantum 

of light energy. If one also carries this mechanism over to the oscillations of the material 

molecules of a solid body that are due to the body’s thermal motion, one arrives at a 

surprising elucidation of the change of specific (molecular) heats of solids with 

temperature, which until now had remained a total mystery. 

(End of the session 10:30)
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Elementary Observations 

on Thermal Molecular Motion in Solids 

by A. Einstein 

(Annalen der Physik 35 (1911): 679-694] 

1 have shown in a previous paper' that a connection must exist between the law of 

radiation and the law of specific heats of solids (deviation from the Dulong-Petit law).? 

The investigations by Nernst and his students have now shown that, on the whole, specific 

heats indeed display the behavior deduced from the law of radiation, but that the true 

law of specific heats deviates systematically from the law established by theory. One of 

the first goals of this paper is to show that these deviations are due to the fact that the 

oscillations of molecules are far from being monochromatic oscillations. The heat 

capacity of an atom of a solid is similar to that of a strongly damped oscillator in a 

radiation field and not like that of an oscillator that is only slightly damped. For that 

reason specific heat decreases less rapidly toward zero with decreasing temperatures than 

the earlier theory would have it; the body behaves similarly to a mixture of resonators 

whose proper frequencies are distributed over a certain region. Further, it will be shown 

that Lindemann’s formula, as well as my formula for the calculation of the proper 

frequencies v of atoms, can be derived by dimensional arguments, with the latter also 

yielding the order of magnitude of the numerical coefficients appearing in these formulas. 
Finally, it will be shown that the laws of heat conduction in crystallized insulators are not 

in accord with molecular mechanics, but that it is possible to derive the order of 

magnitude of the actually observable thermal conductivity by means of a dimensional 

argument, and thereby simultaneously to find out how the thermal conductivity of 

monatomic substances is probably related to their atomic weight, atomic volume, and 

proper frequency. 

$§ 1. On the Damping of Thermal Oscillations of Atoms 

I showed in a recently published paper’ that one arrives at approximately correct values 

for the proper frequencies of the thermal oscillations of atoms if one starts out from the 

following assumptions: 

1 A. Einstein, Ann. d. Phys. 22 (1907): 184. 
? Thermal motion in solids was conceived there as consisting in monochromatic oscillations of 
atoms. Cf. §2 of this paper. 
3 A. Einstein, Ann. d. Phys. 34 (1911): 170. 
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1. The forces binding the atoms to their positions of rest are essentially identical with 

the elastic forces of mechanics. 

2. The elastic forces operate only between immediately neighboring atoms. 

To be sure, the theory is not completely determined by these two assumptions, for 

the elementary laws of interaction between immediately neighboring atoms can still be 

chosen freely to some extent. Also, it is not a priori clear how many molecules are to be 

viewed as “immediately neighboring.” However, the specific choice of a pertinent 

hypothesis changes little in the results, so I will again stick with the simple assumptions 

I introduced in the above-mentioned paper. I will also use the same notation as there. 

In the paper cited I imagined that each atom has 26 neighboring atoms with which 

it interacts elastically, and that all these atoms may be viewed as mathematically 

equivalent with respect to their elastic effect on the atom under consideration. The 

proper frequency was calculated in the following way. One thinks of the 26 neighboring 

atoms as being at rest, while only the atom under consideration oscillates; the latter then 

performs an undamped pendular oscillation, whose frequency one calculates (from the 

cubic compressibility). Actually, however, the 26 neighboring molecules are not at rest, 

but oscillate about their equilibrium position in a similar way as to the atom under 

consideration. Through their elastic connections with the atom considered, they influence 

the oscillations of the latter, so that its oscillation amplitudes in the coordinate directions 

are changing all the time, or—what comes to the same thing—the oscillation deviates 

from a monochromatic oscillation. Our first task is to estimate the magnitude of this 

deviation. 

Let M_ be the molecule considered, whose oscillations in the x-direction we are 

investigating; let x be the momentary distance of the molecule from its 

rest position; if M,’ is a neighbor molecule of M_ that is in its rest 

position, but is at the moment at the distance d + E, from the rest 

position of M, then M,’ exertson M a force of the magnitude a(E, 

- X COS @,) in the direction MM,’. The X-component of this force is 
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where one has to sum over all of the 26 neighboring atoms. 

Now we calculate the energy transferred to the atom from the neighboring atoms 

during half an oscillation. We calculate as if the oscillation of the molecule considered
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as well as the neighboring molecules, proceeds sinusoidally during the half-oscillation 

period, i.e., we set 

x =A sin 2nvi, 

E, =A,’ sin (2nvt + a). 

Multiplying the above equation by (dx/dt)dt and integrating over the time indicated, 

we obtain the expression for the change of the energy, 

x x dx fa ms +¥G@ cos? @) “= =a cose, f £, dr. 

If we denote by A the total energy increase of the atom, and by n,, n,, etc., the 

amounts of energy transferred to the atom from the individual neighboring atoms during 

a half-oscillation period, we can write this equation in the form 

A = Yn,, 

where we set 

). = 4 cos®@ fe a ay, 
n n * dt 

With the above conventions for x, —,..., we obtain 

n, = 5a cos , sin a, A A,’. 

From this it follows that the individual quantities n, are as likely to be positive as 

negative, considering that the angles a, take on each value with equal frequency and, 

indeed, independently of each other. For that reason we also have A = 0. Now we 

form the mean value A? as a measure of the energy change. Due to the indicated 
statistical property of y, etc., we have 

B= Da, 
Since, as can easily be seen, 

sin’a, AA ee me 7 

we have 

and
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Ki = a ae ¥ cos’ g,. 

For an approximate calculation of this sum, we assume that two of the 26 atoms M’ 

lie on the x-axis, 16 form an angle of close to 45° (or 135°) with the x-axis, and the 

remaining eight lie in the y-z plane. We then obtain = cos’ g, = 10, so that we get 

Now we compare this mean value for the atom’s energy increase with the mean energy 

of the atom. The instantaneous value of the atom’s potential energy is 

xy A x 
= =a - 10. a= Leos’ ae 

The mean value of the potential energy is thus 

Sack = 30H. 

The mean value of the total energy E is then 

E = 5aA’. 

The comparison of ~ with yx? shows that the energy change during a_half-oscillation 
period is of the same order of magnitude as the energy self. 

Thus, in fact, not even for the time of a half-oscillation are the formulas for x, E,, 

etc., from which we started out, approximately correct. However, this does not affect our 

result that the oscillation energy changes significantly during a half-oscillation. 

§ 2. The Specific Heats of Simple Solids 

and the Theory of Radiation 

Before asking ourselves what consequences the result just obtained has for the theory of 

specific heats, we must recall the train of thought that leads from the theory of radiation 

to the theory of specific heats. Planck has shown that, in a radiation field of density u 

(udv = radiation energy of the frequency region dv per unit volume), an oscillator 

slightly damped by emission assumes the mean energy 

city 

8ay,?
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when c denotes the velocity of light in vacuum, v, the proper frequency of the oscillator, 

and u, the radiation density for the frequency vo. 

Let the oscillator considered be an ion bound to an equilibrium position by 

quasi-elastic forces. Suppose the radiation space also contains gas molecules, which are 

in statistical (thermal) equilibrium with the radiation, and which may experience collisions 

with the ion constituting our oscillator. On the average, no energy may be transferred 

to the oscillator through these collisions; for, otherwise, the oscillator would disturb the 

thermodynamic equilibrium between the gas and the radiation. Hence one must conclude 

that the mean energy that the gas molecules alone would impart to our oscillator is 

exactly equal to the mean energy imparted to the oscillator by the radiation alone, which 

is to say that it is equal to E. Further, since it is, in principle, irrelevant for the 

molecular collisions whether the structure in question carries an electric charge or not, 

the above relation holds for every structure that oscillates approximately monochromati- 

cally. Its mean energy is related to the mean density u of the radiation of the same 

frequency at the temperature considered. Hence, if one conceives of the atoms of solids 

as nearly monochromatically oscillating structures, then one obtains directly from the 

radiation formula the formula for specific heat, whose value should be N(dE/dT) per 

gram-molecule. 

We see that this argument, the result of which, as we know, does not agree with the 

results of statistical mechanics, is independent of the quantum theory, as well as of any 

particular theory of radiation whatsoever. It is based solely on 

1. the empirically established law of radiation, 

2. Planck’s analysis of resonators, which is based, in turn, on Maxwell’s electrody- 

namics and mechanics, 

3. the assumption that atomic oscillations are sinusoidal to a great degree of 

accuracy. 

Regarding (2), it should be expressly noted that the oscillation equation for the 

oscillator employed by Planck cannot be derived rigorously without mechanics. For when 

solving problems of motion, electrodynamics makes use of the assumption that the sum 
of the electrodynamic and other forces acting on the framework of an electron is always 

zero, or—if one ascribes a ponderable mass to the structure—that the sum of the 

electrodynamic and other forces equals the mass times the acceleration. Thus, one has 
a priori a good reason to doubt the correctness of the result of Planck’s analysis, seeing 

that the application of the fundamental postulates of our mechanics to rapid periodical 

processes leads to results that are in conflict with experience,’ and that, therefore, the 

application of these fundamental postulates must raise doubts here too. Nevertheless, 

* That is to say that our mechanics is not able to explain the small specific heats of solids at very 
low temperatures. 

[6] 

(7)
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(11) 
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I believe that Planck’s relation between u, and FE should be retained, if for no other 

reason than because it has led to an approximately correct description of specific heats 

at low temperatures. 

On the other hand, we have shown in the last section that assumption (3). cannot be 

supported. Atomic oscillations are not even approximately harmonic. The frequency 

region of an atom is so great that the change of the oscillation energy during a half- 

oscillation period is of the same order of magnitude as the oscillation energy. Thus, we 

must ascribe to each atom not a specific frequency, but rather a frequency range Av that 

is of the same order of magnitude as the frequency itself. To derive rigorously a formula 

for the specific heats of solids, one would have to carry out, for an atom of a solid, an 

analysis that is based on a mechanical model and is completely analogous to the analysis 

carried out by Planck for the infinitesimally damped oscillator. One would have to 

calculate the mean oscillation energy at which an atom, when provided with an electric 

charge, emits as much energy in a thermal radiation field as it absorbs. 

While I was laboring rather fruitlessly on this project, Nernst sent me the proofs of 

a paper’ that contains a surprisingly useful tentative solution of the problem. He finds 

that the expression 

(rl (a 3p IT Nei 
2 py 2 By 2 

T A oT _ A 

is an excellent representation of the temperature dependence of atomic heat. The fact 

that this expression shows a better agreement with experience than the one I chose 

originally is easy to explain in the light of what has been said above. After all, one 

obtains this expression by assuming that half of the time the atom performs quasi- 

undamped sinusoidal oscillations with the frequency v, and the other half of the time 

with the frequency v/2. This is the manner in which the considerable deviation of the 

structure from monochromatic behavior finds its most primitive expression. 

It is certainly not justified to consider v as the proper frequency of the structure; 

instead, a value between v and v/2 is to be taken as the mean proper frequency. 

Further, it should be noted that an exact coincidence between thermal and optical proper 

frequencies is out of the question, even if the proper frequencies of the different atoms 

of the compound in question closely coincide, for while the atom oscillates with respect 

to all neighboring atoms in thermal oscillations, it does so only with respect to the 

neighboring atoms with an opposite sign in optical oscillations. 

5 W. Nernst and F. A. Lindemann, Sitzungsber. d. preuss. Akad. d. Wiss. 22 (1911): 65-90.
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§ 3. Dimensional Argument Concerning Lindemann’'s Formula 

and My Formula for the Determination of the Proper Frequency 

As we all know, dimensional arguments allow us chiefly to find general functional 

relations between physical quantities if all physical quantities occurring in the relation in 

question are known. For example, if we know that the oscillation period @ of a 

mathematical pendulum can only depend on the length of the pendulum /, on the 

acceleration of free fall g, on the mass of the pendulum m, and on no other quantity, 

then a simple dimensional argument will lead us to the conclusion that the relation must 

be given by the equation 

8g 

where C is a dimensionless number. But as we know, there is still something more that 

can be inferred from the dimensional argument, even though not in a completely rigorous 

way. Namely, dimensional numerical factors (as the factor C in this instance), the 

magnitude of which can only be deduced by means of a more or less detailed mathemati- 

cal theory, are generally on the order of magnitude one. To be sure, this cannot be 

strictly required, because why should it not be possible for a numerical factor (12 2)’ to 

appear in a mathematical-physical analysis? But such cases are unquestionably rare. 

Suppose, therefore, that we had measured the oscillation period 6 and the pendulum 

length 7 of an individual mathematical pendulum and that the above formula had 

yielded us 10° as the value of the constant C; in that case we would already look upon 

our formula with justified suspicion. Conversely, our trust would grow if we found from 

our experimental data that C is, say, 6.3; our basic assumption that the relation sought 

contains only the quantities 6, /, and g, but no other quantities, would gain in 

probability in our eyes. 

Let us now seek to determine the proper frequency v of an atom of a solid by means 

of a dimensional argument. The simplest possibility would evidently be that the 

oscillation mechanism is determined by the following quantities: 

1. The mass m of an atom (dimension m); 

2. The distance d between two neighboring atoms (dimension J); 

3. The forces with which the neighboring atoms oppose a change in their distance 

from each other. These forces also manifest themselves in elastic deformations; their 

magnitude is measured by the compressibility coefficient x (dimension /’/m). 

The only expression for v that consists of these three quantities and has the right 

dimension is 

[13]
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[15] 

[16] 
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where C is again a dimensionless numerical factor. Substituting the molecular volume 
3 

v for d (d=yv/N ) and the so-called atomic weight M for m (M = Nm), one obtains 

1101 )o1 ci 

v = CN7V8M «x? = C- 1.9 -10°M 3p *x 2, 

where p denotes the density. 
The formula I found by means of a molecular-kinetic argument, 

111 

24 = 1.08 - 10M p*x?, 

or in 
w! 1 JI 

v =28-10'M 3p ®x 2, 

agrees with this formula with a factor C whose order of magnitude is one. The 

numerical factor obtained from my earlier argument is in satisfactory agreement with 
experiment.° Thus, the value for copper is 

v = 5.7 -10%, 

when calculated from the compressibility by means of my formula, and 

v = 66-10” 

when calculated from specific heat using the formula of Nernst, discussed in §2. 

However, this value of v is not to be conceived as the “true proper frequency.” We 

only know about the latter that it lies between Nernst’s v_ and half of this value. In the 

v+wi2 as the “true absence of an exact theory, the most logical thing to do is to view 

proper frequency,” from which value one obtains, for copper, according to Nernst 

v = 5.0 - 10, 

which is in close agreement with the value calculated from the compressibility. 

Let us now turn to Lindemann’s formula.’ We assume again that, above all else, the 

mass of an atom and the distance d between two adjacent atoms influence the proper 

frequency. Besides that, we assume the existence of a law of corresponding states for the 
solid state, whose degree of accuracy is sufficiently good for our present purposes. The 

° Regarding the degree of approximation with which this formula holds, cf the last paragraph of 
this section. 

[18] 7 F, Lindemann, Physik. Zeitschr. 11 (1910): 609.



DOC. 21 MOLECULAR MOTION IN SOLIDS 373 

behavior of the substance, and thus also the proper frequency, will then completely be 

determined with the addition of a further characteristic quantity of the substance that is 

not determined by the two quantities mentioned above. As this third quantity we choose 

the melting point 7,. Of course, the latter cannot immediately be applied in the 

dimensional argument, because it cannot be measured directly in the C.G.S. system. 

Instead of T,, we therefore choose the energy quantity t = RT,/N as the measure of 

temperature. t is one-third of the energy that an atom possesses at the melting point 

according to the kinetic theory of heat (R = gas constant, N = number of atoms in a 

gram-atom). The dimensional argument yields immediately 

GB 101 T T 

v=C:|—— =C-R?N7 |. =C-077-107|/—* . 
md? M4 Mv*8 

The Lindemann formula reads 

| T. 
v = 2.12 - 10” a 

Mv 

Thus, the dimensionless constant C is here also of the order of magnitude one. 

The investigations by Nernst and his students® show that, even though it is based on 

a very daring assumption, this formula yields a surprisingly good agreement with the v 

values determined from the specific heat. From this it seems to follow that the law of 

corresponding states holds in remarkably good approximation for simple bodies in the 

solid and liquid states. It even appears that Lindemann’s formula holds much better than 

my formula, which rests on a less daring assumption. This is all the more remarkable 

because my formula also, of course, can be deduced from the law of corresponding states. 

If both formulas, mine as well as Lindemann’s, are correct, then it follows from the 

division of the two formulas that M/pT,«x must be independent of the nature of the 

substance; in fact, this relation can also be deduced directly from the law of correspond- 

ing states. However, if one uses Griineisen’s values’ for the compressibility of metals, 

one obtains values for this quantity that fluctuate roughly between 6-10" and 15-10"! 

In view of the fact that the law of corresponding states holds up so well in the case of 

Lindemann’s formula, this is quite peculiar. Might it not be possible that systematic 

errors still lie hidden in all determinations of the cubic compressibility of metals? 

Compression under equal pressure from all sides has not yet been applied for the 

purpose of measurement, probably because of the considerable experimental difficulties 

® Cf. especially W. Nernst, Sitzungsber. d. preuss. Akad. d. Wiss. 13 (1911): 311. 
° E. Griineisen, Ann. d. Phys. 25 (1900): 848. 

[19] 

[21] 

[23] 

{20] 
(22]
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involved. It is possible that such measurements, with deformation without angular 

deformation, would lead to values of « significantly different from those obtained by the 

measurements conducted thus far. At least this seems highly probable from the 

theoretical point of view. 

§ 4. Remarks about the Thermal Conductivity of Insulators 

The result obtained in §1 makes it seem justified to attempt an approximate calculation 

of the thermal conductivity of nonmetallically conducting solids. If ¢ is the mean kinetic 

energy of an atom, then, according to §1, the atom releases on the 

average the quantity of energy a -e to the surrounding atoms 

during half of an oscillation period, « being a coefficient of the 

order of magnitude one, but smaller than one. If we imagine that the 

atoms are arranged in a lattice, and consider an atom A, which lies 

. =! right next to an imaginary plane that does not intersect any molecule, 

“Al. then the atom A will, on the average, send the energy 

° 9 
a-e 

26 

Fig. 2. . . sng: 
across the plane during the time of half an oscillation, and thus the 

energy 

ae A? ‘2v 
26 

in unit time. If d is the smallest distance between neighboring atoms, then there are 

(i/dy atoms per unit surface area abutting one side of the plane, and together they send 

the energy 

9.1 
a@-—_v°—e 

13. & 

per unit surface area in one direction (the direction of increasing x) across the unit 

surface area of the plane. Since the molecules on the other side of the layer are sending 

the quantity of energy 

per unit time across the unit surface area in the negative x-direction, the total flow of 

energy will be 

9. 1de 
-a- v 

13° dd
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If we make use of d = (v/N)"” and denote by W the heat content of one gram-atom 

at the temperature 7, we obtain the expression 

-a a wy BN awat 
13 aT dk 

and, hence, for the coefficient of thermal conductivity k 

k=a 2 yyy dh 
13 aT 

If W is measured in calories, one obtains k in the customary units (cal/cm - sec - deg). 

If the substance obeys the Dulong-Petit law in the temperature range considered, then, 

because 

dW _ 3R 3-83-10 
dT heat equivalent 42-10’ 

~ 6, 

we can, perhaps, set 

k=a-4N yy '?, 

We first apply this formula to KCI, which, according to Nernst, behaves with regard to 

its specific heat like a substance composed only of identical atoms. Taking for v the [25] 

value 3.5 -10", obtained by Nernst from the specific heat curve, we get [26] 

1/3 

k = @-4-(63 - 102)”-3.5 - 107- 3 = «0.0007, 7) 

whereas experiment at ordinary temperature” yields about 

k = 0.016. 

Thus, the thermal conductivity is much preater than was to be expected from our 

argument. But this is not all. According to our formula," within the validity range of 

the Dulong-Petit law k should be independent of the temperature. According to 

Eucken’s results, however, the actual behavior of crystalline nonconductors is entirely 

different; x varies approximately as 1/7. From this we must conclude that mechanics is [29] 

not capable of explaining the thermal conductivity of nonconductors.” It should be 

added that the assumption of a quantized distribution of energy also does not contribute 

anything to the explanation of Eucken’s results. (30) 

9 Cf A. Eucken, Ann. d. Phys. 34 (1911): 217. [28] 
1! Or according to a quite obvious argument by analogy. 
” It must be noted that this also makes the arguments in §§1 and 2 questionable.
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Eucken’s important result, that the thermal conductivity of crystalline insulators is 

nearly proportional to 1/7, can be used as a basis for a very interesting dimensional 

argument. We define the “thermal conductivity in natural units” k,,, by the equation 

Heat flow per unit surface area per second = kg SE, 

where heat flow should be thought of as expressed in absolute units, and + = RT/N. k,,, 

is a quantity to be measured in the C.G.S. system and its dimension is {I'r']. In the 

case of a monatomic solid insulator, this quantity can depend on the following quantities: 

d (distance between adjacent atoms; dimension J), 

m (mass of an atom; dimension m), 

v_ (frequency of the atom; dimension 1’), 

t (measure of the temperature; dimension m'l7t~’). 
If we assume that &k,,, does not depend on any additional quantities, then the 

dimensional argument shows that k,,, can be expressed by an equation of the form 

Kan =C ‘doy fre} a 

where C denotes again a constant of the order of magnitude one, and » an a priori 

arbitrary function, which, however, according to the mechanistic model, would have to 

be a constant if quasi-elastic forces between atoms are assumed. But according to 

Eucken’s results, we have to set » approximately proportional to its argument in order 

for k,,, to be inversely proportional to the measure of absolute temperature t. We thus 

obtain 

Kim = Cm d' worl, 

where C denotes another constant of the order of magnitude one. If, instead of k,,., 

we introduce k again, while using calories to measure the heat flow, and degrees 

Celsius to measure the drop in the temperature, and if we replace m, d, t by their 

expressions in M, v, T, we obtain 

RT 42-10 T 
-! RGM (YY? ys N LG NY mm’ 

42-10’ N N \N 

This equation expresses the relation between the thermal conductivity, the atomic weight, 

the atomic volume, and the proper frequency. This formula yields for KCI 

kon, = € + 0.007. 

Experiment yields k,,, = 0.0166, so that C is really of the order of magnitude one. We 

must view this as confirming the assumptions that underlie our dimensional argument.
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Experiments will have to decide whether C is independent to some extent of the nature 

of the substance; it will be the task of theory to modify molecular mechanics in such a 

way that it will yield the law of specific heats as well as the seemingly so simple law of 

thermal conductivity. 

Prague, May 1911. (Received on 4 May 1911) 

NOTE ADDED IN PROOF. 

To make clearer the last sections of §2, let me add the following. If g(v/v,) denotes 

a function that is to be conceived as the temporal frequency of the instantaneous 

frequency v, and @ (v,/T) the specific heat of the monochromatic structure of 

frequency v,, then the specific heat of the nonmonochromatic structure can be expressed 

by the formula 

t= fo locoas 

One arrives at Nernst’s formula if the function (x) is given values different from 

zero for the arguments 1 and 1/2 only.
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On the Ehrenfest Paradox. 

Comment on V. Variéak’s Paper 

by A. Einstein 

[Physikalische Zeitschrift 12 (1911): 509-510] 

Recently V. Varitak published in this journal some comments’ that should not go 

unanswered because they may cause confusion. 

The author unjustifiably perceived a difference between Lorentz’s conception and 

mine with regard to the physical facts. The question of whether the Lorentz contraction 

does or does not exist in reality is misleading. It does not exist “in reality” inasmuch as 

it does not exist for a moving observer; but it does exist “in reality,” i.e., in such a way 

that, in principle, it could be detected by physical means, for a noncomoving observer. 

This is just what Ehrenfest made clear in such an elegant way. 

We obtain the shape of a body moving relative to the system K with respect to K 

by finding the points of K with which the material points of the moving body coincide 

at a specific time t of K. Since the concept of simultaneity with respect to K that is 

being used in this determination is completely defined, i.e., is defined in such a way that, 

on the basis of this definition, the simultaneity can, in principle, be established by 

experiment, the Lorentz contraction as well is observable in principle. 

Perhaps Mr. Varitak might admit—and thus in a way retract his assertion—that the 

Lorentz contraction is a “subjective phenomenon.” But perhaps he might cling to the 

view that the Lorentz contraction has its roots solely in the arbitrary stipulations about 

the “manner of our clock regulation and length measurement.” The following thought 

experiment shows to what extent this view cannot be maintained. 

Consider two equally long rods (when compared at rest) A‘B’ and AB”, which 

can slide along the X-axis of a nonaccelerated coordinate system in the same direction 

as and parallel to the X-axis. Let A’B’ and A’B” glide past each other with an 

arbitrarily large, constant velocity, with A‘B’ moving in the positive, and A “B” in the 

negative direction of the X-axis. Let the endpoints A’ and A” meet at a point A* on 

the X-axis, while the endpoints B’ and B” meet at a point B*. According to the theory 

of relativity, the distance A*B* will then be smaller than the length of either of the two 

rods A’B’ and A’B%, which fact can be established with the aid of one of the rods, 

by laying it along the stretch A*B* while it is in the state of rest. 

Prague, May 1911. (Received on 18 May 1911) 

! This jour. 12 (1911): 169.
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On the Influence of Gravitation 

on the Propagation of Light 

by A. Einstein 

{Annalen der Physik 35 (1911): 898-908] 

In a paper published three years ago,’ I already tried to answer the question as to 

whether the propagation of light is influenced by gravitation. I now return to this topic 

because my former treatment of the subject does not satisfy me, but, even more 

importantly, because I have now come to realize that one of the most important 

consequences of that analysis is accessible to experimental test. In particular, it turns out 

that, according to the theory I am going to set forth, rays of light passing near the sun 

experience a deflection by its gravitational field, so that a fixed star appearing near the 

sun displays an apparent increase of its angular distance from the latter, which amounts 

to almost one second of arc. 

In the course of carrying through the analysis, further results regarding gravitation 

were obtained. However, since the presentation of the argument in its entirety would be 

rather difficult to follow, I shall present in what follows only a few quite elementary 

considerations on the basis of which one can easily orient himself regarding the 

assumptions and the line of reasoning of the theory. Even if their theoretical basis is 

correct, the relationships here derived are valid only in first approximation. 

§ 1. A Hypothesis Concerning the Physical Nature 

of the Gravitational Field 

In a homogeneous gravitational field (acceleration due to gravity, y) let there be a 

coordinate system at rest K, which is oriented in such a way that the lines of force of the 

gravitational field run in the direction of the negative z-axis. In a space free of 

gravitational fields, let there be another coordinate system K’ that moves with a uniform 

acceleration (acceleration y) in the direction of its positive z-axis. So as not to 

complicate the analysis unnecessarily, we will disregard the theory of relativity for the 

time being, and consider, instead, the two systems according to conventional kinematics, 

and the motions occurring in them according to customary mechanics. 

Material points not subjected to actions of other material points move relative to K 

as well as relative to K’ according to the equations 

' A. Einstein, Jahrb. f, Radioakt. u. Elektronik 1V.4. 

[2] 
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For the accelerated system K’, this follows directly from Galileo’s principle, but for the 

system K at rest in a homogeneous gravitational field, this follows from the experience 

that all bodies undergo the same, constant, acceleration in such a field. This experience 

of the identical falling of all bodies in the gravitational field is one of the most universal 

experiences that the observation of nature has yielded to us; nevertheless, this law has 

not been granted a place in the foundations of our physical edifice. 

But we arrive at a very satisfactory interpretation of the empirical law if we assume 

that the systems K and K’ are, physically, perfectly equivalent, i.e., if we assume that 

the system K could likewise be conceived as occurring in a space free of a gravitational 

field; but in that case, we must consider K as uniformly accelerated. Given this 

conception, one can no more speak of the absolute acceleration of the reference system 

than one can speak of a system’s absolute velocity in the ordinary theory of relativity.” 

With this conception, the equal falling of all bodies in a gravitational field is self-evident. 

As long as we confine ourselves to purely mechanical processes within the range of 

validity of Newton’s mechanics, we can be sure of the equivalence of the systems K and 

K’. However, for our conception to acquire deeper significance, the systems K and K’ 

must be equivalent with respect to all physical processes, i.e., the natural laws with 

respect to K must coincide completely with those with respect to K’. If we accept this 

assumption, we obtain a principle that possesses great heuristic significance, provided that 

it is really correct. For through a theoretical analysis of processes taking place relative 

to a uniformly accelerating reference system, we obtain information about the course of 

processes taking place in a homogeneous gravitational field.’ In what follows, I shall 

first show that from the point of view of the ordinary theory of relativity our hypothesis 

has considerable probability. 

§ 2. On the Gravitation of Energy 

The theory of relativity has shown that the inertial mass of a body increases with its 

energy content; if the energy increase is E, then the increase in the inertial mass is E/c’, 

where c denotes the velocity of light. But is there also an increase in gravitational mass 

corresponding to this increase in inertial mass? If not, then a body would fall with 

different accelerations in the same gravitational field, depending on its energy content. 

* Of course, one cannot replace an arbitrary gravitational field by a state of motion of the system 
without a gravitational field, just as one cannot transform to rest all the points of an arbitrarily 
moving medium by means of a relativistic transformation. 

> It will be shown in a subsequent paper that the gravitational field considered here is homoge- 
neous only to first approximation.
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The very satisfying result of the relativity theory, according to which the principle of the 

conservation of mass merges into the principle of the conservation of energy, would not 

be possible to maintain, because the old formulation of the principle of the conservation 

of mass would indeed have to be abandoned for the inertial mass, but maintained for the 

gravitational mass. 

This must be considered very unlikely. On the other hand, the ordinary theory of 

relativity does not provide us with any argument from which we could conclude that the 

weight of a body depends on its energy content. But we will show that the gravitation 

of energy is a necessary consequence of our hypothesis of the equivalence of the systems 
K and K’. 

Consider two material systems S$, and S, which are equipped with measuring 

instruments and situated on the z-axis of K at adistance h from each other,‘ in such 

a way that the gravitational potential in S$, is greater by y-h than that in S,. 

Suppose that S, has sent off a certain amount of energy E toward S, in the form of 

radiation. Let the energies in S, and S, be measured with sets of 

apparatus that are completely identical when brought to the same 

place in the system z and there compared with each other. Nothing 

can be asserted a priori about the process of this energy transfer, Se 

because we do not know how the gravitational field influences the » 

radiation and the measuring instruments in S, and S, h 

But in accordance with our assumption of equivalence of K and y 

K’, we can replace the system K, which is situated in a homogeneous Ss 

gravitational field, by the gravitation-free system K', which moves x 

with uniform acceleration in the direction of the positive z-axis, and to . 

whose z-axis the material systems S, and S, are rigidly bound. Fig. 1. 
We will evaluate the process of energy transfer by radiation from 

5S, to S$, from a nonaccelerated system K,. At the moment when the radiation energy 

E, has been emitted from S, toward S,, the velocity of K’ with respect to K, will 

be zero. The radiation will arrive at S$, after a time h/c has elapsed (to a first 

approximation). But at that moment the velocity of S, with respect to K, willbe y - 

hic = v. Hence, according to the ordinary theory of relativity, the radiation arriving in 

S, will not possess the energy E,, but the greater energy E,, which is related to E,, to 

a first approximation, by the equation’ 

(1) E, = Ef! * *) - at + 14) 
c c 

[5] 
“§, and S, are considered infinitely small compared with A. 
5 A. Einstein, Ann. d. Phys. 17 (1905): 913, 914.
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According to our assumption, exactly the same relation will hold in the case where 

this same process takes place in the system K that is not accelerated but is provided 

with a gravitational field. In that case we can replace yh by the potential ® of the 

gravitation vector in S., if the arbitrary constant of ® in S, is set equal to zero. We 

thus have 

E 
(Ja) E, = E, + a 

This equation expresses the energy principle for the process under consideration. The 

energy E, arriving in S$, is greater than the energy E, (measured by the same kinds 

of instruments), which was emitted in S,, by the potential energy of the mass E,/c’ in 

the gravitational field. Thus, for the energy principle to be satisfied, a potential energy 

of gravitation corresponding to the (gravitational) mass E/c? must be ascribed to the 

energy E before its emission at S,. Our assumption of the equivalence of K and K’ 

thus removes the difficulty mentioned at the beginning of this section, which the ordinary 

theory of relativity leaves unresolved. 

The meaning of this result becomes especially clear upon consideration of the 

following cyclic process: 

1. Energy E (measured at S;) is sent in the form of radiation from S, to S,, 

where, according to the result we have just obtained, the energy E(1 + yh/c’) is absorbed 

(as measured at S,). 

2. Abody W of mass M is lowered from S, to S,, in which process an amount 

of work Myh is released. 

3. The energy E is transferred from S, to the body W while W isin S,. This 

changes the gravitational mass M such that its new value will be M’. 

4. W is lifted back to S,, which requires the application of work M’yh. 

5. E is transferred from W back to S,. 

The only effect of this cyclic process is that S, has undergone an energy increase 

of E(yh/c’) and that the quantity of energy 

M’yh - Myh 

has been conveyed to the system in the form of mechanical work. According to the 

energy principle, we must then have 

Ev = M’ yh ~ Myh 

or
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(1b) M -M=E. 
ce 

The increase in gravitational mass is thus equal to E/c’, thus equaling the increase in 

inertial mass obtained from the theory of relativity. 

This result follows even more directly from the equivalence of the systems K and 

K’, according to which the gravitational mass with respect to K is perfectly equal to the 

inertial mass with respect to K‘; hence, energy must possess a gravitational mass that is 

equal to its inertial mass. If amass M, is suspended from a spring balance in the system 

K', the balance will indicate the apparent weight M,y because of the inertia of M,. 

If the energy quantity E is transferred to M,, the spring balance will indicate 

[m + El, in accordance with the principle of the inertia of energy. According to our 
c 

basic assumption, exactly the same thing must happen if the experiment is repeated in the 

system K, i.e., in the gravitational field. 

§ 3. Time and the Velocity of Light in the Gravitational Field 

If the radiation emitted in S, toward S, in the uniformly accelerated system K’ had 

the frequency v, with respect to a clock located at S,, then upon its arrival at S,, its 

frequency with respect to an identically constituted clock located at S, will no longer 

be v,, but a larger frequency v,, such that, to a first approximation, 

(2) v= { + x4} 

For if we again introduce the nonaccelerated reference system K,, relative to which K’ 

has no velocity at the time the light is emitted, then the velocity of S, with respect to 

K, willbe y(h/c) at the time the radiation arrives at S,, and from this we immediately 

obtain the relation given above with the help of Doppler’s principle. 

According to our assumption of the equivalence of the systems K and K’, this 

equation also holds for the coordinate system K, which is at rest and is endowed with 

a uniform gravitational field, if the radiation transfer described above takes place in it. 

Thus, it follows that a ray of light emitted at a given gravitational potential in S,, and 

possessing at its emission the frequency v,—compared with a clock located at S,—will 

possess a different frequency v, at its arrival at S,, if this frequency is measured by an 

identically constituted clock located at S,. We substitute for yh the gravitational 

potential ® of S., with respect to S, as the zero point, and assume that our relation, 

which was derived for the homogeneous gravitational field, holds for otherwise constituted 

fields as well; we have then



{6] 

7] 

{3] 
(9) 
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c 

(2a) v, = -f + eI 

This result (valid to a first approximation according to our derivation) allows, to begin 

with, the following application: Let v, be the frequency of an elementary light source, 

measured by a clock U that is read at the same location. This frequency is then 

independent of the location at which both the light source and the clock are set up. We 

shall imagine that both are set up on the surface of the sun (this is where our system S, 

is located). A part of the light there emitted reaches earth (S,), where we measure the 

frequency v of the arriving light by means of a clock U, with exactly the same constitu- 

tion as the clock mentioned above. According to (2a), we will then have 

v=yfi 3} 
oe teed 

where ® is the (negative) gravitational potential difference between the solar surface and 

the earth. Thus, according to our conception, the spectral lines of solar light must be 

shifted somewhat toward red as compared with the corresponding spectral lines of 

terrestrial light sources, which has the relative shift amounting to 

= © ~ 210°, 
Vv, ce 

If the conditions under which the solar lines are generated were known exactly, this shift 

would be accessible to measurement. However, since additional factors (pressure, 

temperature) influence the position of the center of density of the spectral lines, it is 

difficult to establish whether the influence of the gravitational potential that has been 

derived above really exists.° . 

At first glance, equations (2) and (2a) seem to assert something absurd. If the 

transmission of light from S, to S, is continuous, then how can the number of periods 

arriving per second at S, be different from that emitted at S,? But the answer is 

simple. We cannot simply consider v, and v, as frequencies (numbers of periods per 

second) because we have not yet defined a time in the system K. v, denotes the 

number of periods referred to the time unit of the clock U at S,, and v, the number 
of periods referred to the time unit of the identically constituted clock U at S,. There 

° L. F. Jewell (Journ. de phys. 6 [1897]: 84) and especially Ch. Fabry and H. Boisson (Compt. rend. 
148 [1909]: 688-690) did actually establish such shifts of fine spectral lines toward the red end of 
the spectrum of the order of magnitude calculated above, but they attributed them to an effect of 
the pressure in the absorbing layer.
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is nothing that compels us to assume that the clocks U, which are situated in different 
gravitational potentials, must be conceived as going at the same rate. On the contrary, 

we must surely define the time in K in such a manner that the number of wave crests 

and troughs between S, and S, be independent of the absolute value of the time, 

because the process under consideration is stationary by its nature. If we did not satisfy 

this condition, we would arrive at a definition of time upon whose application time would 

enter explicitly the laws of nature, which would surely be unnatural and inexpedient. 

Thus, the clocks in S, and S, do not both give the “time” correctly. If we measure the 

time at S, with the clock U, then we must measure the time at S, with a clock that runs 

1 + ®/c? times slower than the clock U when compared with the latter at one and the same 

location. Because, when measured with such a clock, the frequency of the light ray 

considered above is, at its emission at S,, 

(1 + c| 

and is thus, according to (2a), equal to the frequency v, of the same ray of light on its 

arrival at S,. 

From this follows a consequence of fundamental significance for this theory. Namely, 

if the velocity of light is measured at different places in the accelerated, gravitation-free 

system K’ by means of identically constituted clocks U, the values obtained are the 

same everywhere. According to our basic assumption, the same holds also for K. But, 

according to what has just been said, we must use clocks of unlike constitution to 

measure time at points of different gravitational potential. To measure time at a point 

whose gravitational potential is ® relative to the coordinate origin, we must employ a 

clock which, when moved to the coordinate origin, runs (1 + @/c’) times slower than the 

clock with which time is measured at the coordinate origin. If c, denotes the velocity 

of light at the coordinate origin, then the velocity of light c at a point with a 

gravitational potential © will be given by the relation 

(3) c= ft + el 
c 

The principle of the constancy of the velocity of light does not hold in this theory in the 

formulation in which it is normally used as the basis of the ordinary theory of relativity. 

§ 4. Bending of Light Rays in the Gravitational Field 

From the proposition just proved, that the velocity of light in the gravitational field is a 

function of place, one can easily deduce, via Huygens’ principle, that light rays 

propagated across a gravitational field must undergo deflection. For let e be a plane 

[10]
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of equal phase of a plane light wave at time ¢, and P, and P, two points in this plane 

a unit distance apart from each other. Let P, and P, lie in the plane of the paper, 

which is chosen in such a way that, when taken along the normal to the plane, the 

derivative of ©, and thus also of c, vanishes. We obtain the corresponding plane of 

equal phase—or, rather, its intersection with the plane of the paper—at the time r¢ + dt 

by drawing circles with radii c, dt and c,dt around the points P, and P, and plotting 

the tangent to these circles, where c, and c, denote the velocities of light at P, and 

P,, respectively. The angle of deflection of the light ray on the path cdf is then 

(c, - ¢,)dt a _ oc dt 

1 on' 

if we take the angle of deflection as positive when the ray of light bends in the direction 

of increasing n’. 

Fig. 2. 

Thus, the angle of deflection per unit path length of the light ray will then be 

1 oc 

cén’’ 

or, according to (3), 

_1 8@ 

ce on' ; 

Finally, we obtain for the deflection o which the light ray undergoes in the direction 

n’ on any arbitrary path (s) the expression: 

(4) a = -1 (9%, 
c2 2 an’ 

We could have obtained the same result by directly considering the propagation of a light 

ray in the uniformly accelerated system K’ and transferring the result to the system K, 

and from there to the case of an arbitrarily constituted gravitational field.
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According to equation (4), a ray of light traveling past a celestial body undergoes a 

deflection in the direction of decreasing gravitational potential, and thus, in the direction 

toward the celestial body, the magnitude of the deflection being 

t=+% 
3% 

w= 2 ( Moosp-ds = 2k! 
rod a r cA 

z 

where k denotes the gravitation constant, M the mass of the celestial 

body, and A the distance of the ray of light from the center of the 

celestial body. Accordingly, a ray of light traveling past the sun would 

undergo a deflection amounting to 4 -10° = 0.83 seconds of arc. This 

is the amount by which the angular distance of the star from the cen- 

s ter of the sun seems to be increased owing to the bending of the ray. 

Since the fixed stars in the portions of the sky that are adjacent to the 

sun become visible during total solar eclipses, it is possible to compare 

this consequence of the theory with experience. In the case of the 

planet Jupiter, the displacement to be expected comes to about 1/100 

of the amount indicated. It is greatly to be desired that astronomers 

take up the question broached here, even if the considerations here 

presented may appear insufficiently substantiated or even adventurous. 

Because apart from any theory, we must ask ourselves whether an influence of gravi- 

tational fields on the propagation of light can be detected with currently available instru- 

ments. 

Fig. 3. 

Prague, June 1911. (Received on 21 June 1911) 

(11) 

[12]
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Doc. 24 

Excerpts of Discussions Following Lectures Delivered at 83rd 

Meeting of the Gesellschaft Deutscher Naturforscher und Arzte, 

25 and 27 September 1911 

{Physikalische Zeitschrift 12 (1911): 978, 1068-1069, and 1084] 

Stark: The speaker said that an electron resonates without damping in response to 

incident monochromatic radiation until the time a quantum of action, or, to use the 

Planck-Einstein expression, an energy quantum has accumulated in it. I would like to ask 

whether a calculation has been performed regarding the length of time the resonance 

needs for the accumulation of a light quantum. This question comes to mind because it 

was precisely Lorentz who performed detailed calculations on this point and who pointed 

out that, even in the case of perfect undamped resonance, the lengths of time one would 

have to assume in order to explain the maximum kinetic energy in the photoelectric effect 

are so great that they cannot be reconciled to within an order of magnitude with the 

actually observed situation regarding the intensity and maximum kinetic energy of the 

emitted ions. 

Sommerfeld: Of course, the magnitudes that Lorentz found for the time length + 

are here valid for monochromatic light within the same order of magnitude. It can be 

shown that our results are not confined to moncchromatic light, and this must be shown 

because monochromatic light does not exist. If one uses natural light as the incident 

light, and the laws found for monochromatic light remain valid up to the dispersion 

mentioned, then the difficulty regarding the time length is eliminated. 

Stark: But the light that was used in spectral resolution was practically monochromat- 

ic. Ladenburg worked with the lines of the mercury arc. Their frequency range is very 

narrow. 

Have you performed the calculation for a specific frequency range? For example, 

for a spectral line with a width of 1 angstrom. 

Sommerfeld: Yes, for one spectral line. 

Stark: The consistency of such a result with Lorentz’s calculation would be amazing 

indeed. I assume that a detailed report of the calculation is to follow? 

Einstein: Would the time required for a complete act of absorption according to the 

theory presented not be long enough to be accessible to observation? In this case, the 

experimental investigation would be of enormous interest. 

Sommerfeld: 1 believe that it would be possible to compare the theoretical 

accumulation time with experiment. 

Stark: Can the resonance theory presented be extended to the emission of cathode 

rays to the Roentgen-induced rays? This would be desirable because the phenomenon 

in question is completely analogous to the photoelectric effect.
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Sommerfeld: I hope so. 

Koenigsberger: In several metallic elements, the specific heat at constant volume 

exceeds the value 6 at high temperatures. The specific heat of metals cannot be 

represented by Einstein’s original formula either, though the formula holds much better 

for an insulator such as diamond. Perhaps the free electrons in metals do have to be 
taken into account after all. It seems to me therefore that the behavior of specific heat 

supports the quantum theory more in a qualitative than in a quantitative way. 

Rubens: But Nernst’s experiments on specific heats at low temperatures can be 

completely represented by Einstein’s formula if one does not stop at a single oscillation 

but assumes many proper frequencies instead, just as Einstein’s formula also presupposes. 

eRKK EK 

Einstein: 1 would like to ask whether the speaker does not think it possible that the 

conductivity of pure metals becomes infinite as the temperature approaches the absolute 

zero. After all, Kamerlingh Onnes has found that even the slightest impurities have a 

very great effect, and that the purest metals have an extremely small resistance. Were 

there, by any chance, different samples of aluminum available, and were they tested for 

this? 

Nernst: 1 believe, too, that the high value for aluminum is due to impurities. After 

all, pure aluminum is currently very difficult to produce. Certainly, one could assume the 

value zero for the resistance of absolutely pure metals, but I believe that it will have a 

finite characteristic value for each metal. 

Sommerfeld: How does the quantum theory envision the influence of small amounts 

of impurities? 

KKK KH 

Einstein: We are indeed facing a certain difficulty, because we do not know how to 

understand luminescence radiation. The more a system deviates from the state of 

thermodynamic equilibrium, the more blurred become the differences between thermal 

radiation and luminescence radiation, because the concept of temperature loses its 

meaning. In the case of a mercury lamp, we cannot say what the temperature in the 

lamp is. Surely, there will exist a certain temperature with respect to the molecules 

undergoing translatory motion, but not so with respect to the ions. In this sense the 

radiation of the mercury lamp is surely luminescence radiation, since at the temperature 

a termometer inside the lamp would indicate, the lamp would not emit radiation without 

current. But it does not seem out of the question that such a radiation might be emitted 

without a current at a higher temperature, i.e., that the radiation of the mercury lamp is 

[1] 

2] 

[1]
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a kind of radiation that is at certain temperatures essentially identical to thermal 

radiation. 

Rubens: But, from the absorption experiments with mercury vapor one can surely 

draw the conclusion that the long-wave radiation is most likely to originate from charged 

ions rather than from neutral molecules. This would support the view advanced by Mr. 

Lindemann. If a gas can be ionized through a mere increase in the temperature, which, 

incidentally, is not yet quite certain, then it would hardly be possible to draw a sharp line 

between luminescence and thermal radiation, at least in the high temperature range, on 

the basis of the old definitions.
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Doc. 25 

Discussion Remarks Following Lectures Delivered 

at First Solvay Congress 
[30 October-3 November 1911] 

Ill. LORENTZ 

Lorentz’s lecture (Lorentz 1912) discusses several ways of studying the applicability of the law of the 

equipartition of energy to heat radiation, one of which is related to the work by Einstein and Hopf (see Einstein 

and Hopf 1910b [Doc. 8)). Following this approach, which was outlined by Einstein in 1909 (see Einstein 1909b 

[Vol. 2, Doc. 56], p. 190), Lorentz assumes a frictionlike force acting on an electron moving in the radiation 

field, and he inserts the velocity change in the time + due to this force into an expression for the fluctuations 

of the velocity of the electron (see Lorentz 1912, pp. 35-39). From his expression for these fluctuations, he 

attempts to determine the mean energy of the electron but obtains unsatisfactory results. Einstein’s first 

comment refers to an objection raised by Planck against the separability of oscillatory and linear motion 

assumed by Lorentz (see Lorentz et al. 1912, pp. 46-47, and Lorentz et al. 1914, pp. 39-40), and his second 

comment refers to two alternative proposals to Lorentz’s procedure, one suggested by Planck in his discussion 

remark, the other by Langevin (see Lorentz et al. 1912, pp. 42-44, and Lorentz et al. 1914, pp. 36-37). 

Contrary to Lorentz, Planck and Langevin in their respective comments describe the motion of the electron 

by means of ordinary differential equations instead of an expression for fluctuations. 

No. 22 (Lorentz et al. 1914, p. 40; Lorentz et al. 1912, p. 47) 

The smaller the radiation density, the more completely can the oscillatory motion of 

the electron that is caused by the momentary influence of the radiation be separated 

from its translational motion. 

No. 25 (Lorentz et al. 1914, p. 40; Loreniz et al. 1912, pp. 47-48). The last sentence in the following text reads 

in the published version: “For this reason neither the consideration of Mr. Langevin nor that of Mr. Planck 

solves the problem, in my opinion.” 

The <consideration> differential equation neglects those terms by virtue of which the 

mean translational motion of the electron (independent of the momentary radiation field) 

can change. Mathematically, this manifests itself in the circumstance that an additive 

constant in v remains undetermined. For this reason the consideration does not solve 

the problem in my opinion. 

IV. PLANCK 

In his lecture Planck examined various ways of accounting for the spectral distribution of black-body radiation. 

In one approach, which corresponds to his earlier derivation of his formula for black-body radiation by methods 

of statistical physics, he determined the probability of a given macroscopic state by counting the combinatorial 

possibilities for realizing this state in terms of microscopic configurations (Boltzmann’s “complexions”), see 

Planck 1914, pp. 86-87. In his first comment on Planck’s lecture, Einstein summarized the critique of this 

approach, which he had earlier presented in Einstein 1909b (Vol. 2, Doc. 56), pp. 187-188. In line with his
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earlier analysis and in contrast to Einstein, Planck applied the quantum hypothesis as well as statistical methods 

only to matter that interacts with radiation and oot directly to radiation itself. In the discussion this 

controversial point was first taken up by Jeans, and subsequently commented upon by Einstein in his second 

remark, referring to Lorentz’s analysis of radiation (Lorentz 1912). In his lecture, Planck also presented his 

second attempt at a theory explaining the black-body radiation formula (for a historical discussion, see Kuhn 

1978, pp. 235ff}. According to Planck’s “second theory,” the quantum hypothesis plays a role only for the 

emission of radiation, while Maxwell’s equations are supposed to be valid for absorption as well as for radiation 

in matter-free space. In his last remark during the discussion, Einstein argues that it is not possible to 

introduce any form of the quantum hypothesis for the emission by an oscillator, but he upholds classical 

electrodynamics in the space surrounding it. His reference to Planck’s original theory is probably a reference 

to Planck’s attempts at an analysis of black-body radiation prior to the introduction of the quantum hypothesis 

(see Planck 1900a). 

No. 51 (Planck et al. 1914, p. 95; Planck et al. 1912, p. 115) 

1) What I find strange about the way Mr. Planck applies Boltzmann’s equation is 

that he introduces a state probability W without giving this quantity a physical definition. 

If one proceeds in such a way, then, to begin with, Boltzmann’s equation does not have 

any physical meaning. The circumstance that W is equated to the number of 

complexions belonging to a state does not change anything here; for there is no 
indication of what is supposed to be meant by the statement that two complexions are 

equally probable. Even if it were possible to define the complexions in such a manner 

that the S obtained from Boltzmann’s equation agrees with experience, it seems to me 

that with this conception of Boltzmann’s principle it is not possible to draw <any> 

conclusions about the admissibility of any fundamental theory whatsoever on the basis 

of the empirically known thermodynamic properties of a system. 

No [53] (Planck et al. 1914a, p. 98; Planck et al. 1912, p. 119) 

2) Objections have often been raised against the application of statistical methods to 

radiation. But I do not see any reason why these methods should be excluded here (cf. 

Lorentz’s report, §6-§13). 

3) <Omit!> 

No. 100 (Planck et al. 1914a, p. 106; Planck et al. 1912, p. 129) 

4) If an oscillator is to emit radiation in a manner different from that assumed in Mr. 

Planck’s original theory, then this means a renunciation of the validity of Maxwell’s 

equations in the vicinity of the oscillator. For according to Maxwell’s equations, the 

quasi-static field of the oscillating dipole necessarily results in the release of energy in the 

form of spherical waves.
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V. KNUDSEN 

Knudsen had reviewed the available evidence in favor of the kinetic theory of gases, emphasizing the good 

agreement between theory and experiment in the limiting case that the mutual interaction between the 

molecules of a gas is small in comparison to the interaction between the gas and its container. In the first 

comment during the discussion of Knudsen’s contribution, Nernst claimed that Maxwell’s law of the distribution 

of molecular velocities might have to be changed because the quantum hypothesis implies a change of the law 

of molecular collisions. (For the implications of the quantum hypothesis for molecular collisions, see Einstein's 

lecture Einstein 1914 [Doc. 26], p.352.) In his response to Nernst’s comment, Einstein shows himself convinced 

of the validity of the Maxwell distribution and hence of the theorem of the equipartition of energy, at least for 

the linear motion of gas molecules, a conviction that also underlies his contemporary studies of radiation in 

interaction with a gas (see Einstein and Hopf 1910b [Doc. 8]). If the mean length of the path of a molecule 

is small, however, Einstein argues that the validity of the equipartition theorem is no longer assured. Einstein's 

first comment is followed by a remark by Warburg on the Krakatoa eruption of 1883, which showed that the 

motion of dust particles in the higher atmosphere deviates from Stokes’s law. The discussion thus turned to 

the problem of small spheres suspended in a medium. This problem, touched upon in Knudsen’s talk, was at 

that time particularly important because of its role in Millikan’s oil drop experiments on the value of the 

elementary charge, and quickly became the focus of the discussion (see Helton 1978 for a historical study of 

Millikan’s experiments). Perrin and Brillouin suggested possible deformations of spherical droplets in a medium 

as the cause for the deviation of their motion from Stokes’s law. In bis second remark during this discussion 

Einstein refuted the conjecture that thermodynamic fluctuations could give rise to such deformations by arguing 

that the work to produce these deformations exceeded the energy transferred to the drops by collisions; see 

Einstein 1907 (Vol. 2, Doc. 39). 

No. 114 (Knudsen et al. 1914, p. 121; Knudsen et al. 1912, p. 147) 

5) Even though it is certain that our mechanics fails with regard to the oscillatory 

thermal motions of atoms and molecules, it can<not> hardly be doubted that Maxwell’s 

distribution law is valid for the translational motion of gas molecules involving sufficiently 

large free paths. For Maxwell’s law assumes only the momentum and energy conserva- 

tion laws for individual collisions; these will certainly remain valid even if our mechanics 

does not hold during individual collisions. However, Maxwell’s law presumably does not 

hold when, at a given temperature, the free path length becomes much too small. For in 

that case the molecule describes a zigzag line, that is, a kind of oscillatory motion, for 

which, according to our present knowledge, the law of the equipartition of energy does 

not hold. 

No. 127 (Knudsen et al. 1914, p. 123; Knudsen et al. 1912, p. 150) 

6) A noteworthy deformation of small droplets owing to irregular thermal motion 

must be ruled out because of the considerable capillary forces. Only such deviations from 

thermodynamic equilibrium take place whose average value is such that the mechanical 

work necessary, according to thermodynamics, for producing the deviations is equal to 

RT. . _ . 
oN’ iLe., to a third of the average kinetic energy of a monatomic gas molecule.
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VI. PERRIN 

Perrin’s lecture (Perrin 1912) is an exhaustive review of the experimental evidence in favor of the existence of 

atoms. Although much of it concers the work of his own group on Brownian motion and related matters, 

Perrin also mentioned studies of critical opalescence by Smoluchowski, Keesom, and Einstein (see the editorial 

note, “Einstein on Critical Opalescence”), and experiments on the “atom of electricity.” Einstein’s first 

discussion remark refers to Keesom’s derivation of a formula for light scattering by critical opalescence, first 

published in a footnote to Kamerlingh Onnes and Keesom 1908b, pp. 621-622. This remark does not appear 

in the published version of the discussion, probably because Einstein changed his opinion on the significance 

of Keesom's contribution (see Einstein to W. H. Julius, 18 December 1911). Einstein’s second discussion 

remark concerns the experimental evidence for the existence of a natural unit of electric charge. In contrast 

to Millikan’s results, which seemed to demonstrate conclusively the existence of such a unit, Ehrenhaft’s 

experiments on ultramicroscopic silver particles suggested that there is no lower limit on electric charge. (See 

Holton 1978 for a historical discussion.) How to explain Ehrenhaft’s apparent “subelectronic” charges 

constituted a puzzle. In his remark, Einstein claims that the puzzle was solved by his colleague Edmund Weiss 

in Prague. Weiss found that contrary to Ehrenhaft’s claims, Stokes’s law does not apply to these small silver 

particles (see Weiss 1911, p. 631). Weiss evaluated the coefficient of mobility for each individual particle in bis 

experiments, and found that this coefficient differed from particle to particle. His conclusion, repeated here 

by Einstein, was that Ebreohaft’s charge determinations were not valid. For Einstein’s role in Weiss’s 

experiments, see Einstein to Heinrich Zangger, 7 April 1911. Einstein had communicated Weiss’s results to 

Perrin, who referred to them in bis report (see Perrin 1912, p. 234). Millikan later discussed Weiss’s 

experiments and emphasized that in the sequel of the experiments by Weiss and Przibram, the scientific world 

“ceased to concern itself with the idea of a sub-electron” (see Millikan 1917, p. 163, and also p. 153). 

No. 137 (Perrin et al 1914, p. 251). The first remark does not appear in the German or in the French printed 

versions, presumably indicating Einstein’s intervention. 

9) It should be noted that Mr. Keesom was the first to derive the opalescence 

formula for homogeneous substances, something which he did in a very elegant way. 

Further, I would like to remind you that Mr. Weiss from Prague was able to show 

why Ehrenhaft had been led to such small values of e. He investigated silver particles 

in the air, and determined their motility from their Brownian motion and their charge 

from their velocity in the electrical field, which showed good agreement with the other 

determinations of e. It turned out that no connection exists between the velocity of fall 

in the gravitational field and the motility <of different particles>, from which it follows 

that the particles must be of very irregular shape. Ehrenhaft’s determinations of © are 

thus illusory, because it will not do to draw conclusions about the mass of the particles 

from the velocity of fall. 

VII. NERNST 

Einstein’s first comment on Nernst’s lecture (Nernst 1914) refers to the difficulties of generalizing the quantum 

hypothesis to more than one dimension. Einstein confronted an objection raised by Lorentz against Nernst’s 

decomposition of a classical three-dimensional oscillation into three circular components. Nernst not only used 

this decomposition to infer the equality of kinetic and potential energy for each of the circular components, 

but also to attempt to make the different roles of kinetic and potential energy in bis understanding of the
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quantum hypothesis plausible. According to Lorentz, however, Nernst’s decomposition of an elliptic oscillation 

into three mutually perpendicular circular oscillations is “artificial” and does not correspond to a decomposition 

of the energy into three additive components. 

No. 149 (Nernst et al. 1914, pp. 235-236; Nernst et al. 1912, p. 239) 

7) It has been pointed out several times that the application of the quantum 

hypothesis to structures with more than one degree of freedom meets with difficulties of 

a <conceptual> formal kind, irrespective of whether one views the quanta as energy 

quanta or as indivisible elementary regions of the q-p-manifold. If one modifies the 

equation for the mean energy E of a three-dimensional oscillator that is yielded by 
statistical mechanics, 

z- [Be ®aE 

f Ete WE 

by introducing sums instead of integrals, which one does by giving to E in sequence the 

values 0, hv, 2hv etc., one does not thus arrive at three times of the energy of the linear 

Planck oscillator. Thus, the quantum theory in its current form leads to contradictions 

as soon as one seeks to apply it to structures with several degrees of freedom. 

To his second comment, Einstein attempted to explain the temperature independence of what he interpreted 

as the damping of ionic oscillations within a crystal, referring to observations of residual rays reported in the 

preceding comment by Rubens. Einstein’s comment is related to an extended controversy among himself, 

Rubens, and Nemst about the interpretation of the experiments on residual rays performed by Rubens and his 

group. Nernst in his lecture and Rubens in his comment argued that the results of these experiments are in 

conflict with Einstein's interpretation of the Nernst-Lindemann formula for specific heats as being the 

consequence of a strong damping of the elementary oscillators constituting the solid body (see Einstein 191 1g 

[Doc. 21], p. 679). Rubens argued that the resuits of his measurements can be interpreted by assuming two 

proper frequencies of the solid body, an interpretation that Einstein did not accept. 

No. 156 (Nernst et al. 1914, p. 238; Nernst et al. 1912, pp. 295-296) 

8) The fact that the damping of optically discernible ionic oscillations is independent 

of the temperature had to be expected based on conventional mechanics. For if one 

assumes that, in the solid state, atoms are bound to each other by elastic forces, then 

according to mechanics the equations of motion become linear homogeneous differential 

equations, so that from one solution of the latter one obtains another one by merely 

multiplying the amplitudes by a constant, without otherwise having to change the time 

functions. From this it follows that the degree to which individual oscillating structures 

deviate from monochromatic behavior does not depend on the temperature. — It is odd
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that this one inference from mechanics seems to be right, whereas thermal conduction 

seems not to be amenable to any mechanical interpretation. 

Einstein’s third comment is a response to a remark by Rutherford on Nernst’s lecture. In it Rutherford inquired 

about the possibility of explaining the decreasing specific heats of solids for lower temperatures by assuming 

that a “polymerization” takes place within the solid. In a comment preceding Einstein’s, Nernst excluded this 

possibility by arguing that chemical transformations are unlikely to take place at such temperatures. A proposal 

similar to Rutherford’s had been made earlier by Lorentz and discussed by Einstein (see H. A. Lorentz to 

Einstein, 6 May 1909, and Einstein to H. A. Lorentz, 23 May 1909). In a footnote to the published text of his 

discussion remark, Einstein added further arguments against Rutherford’s proposal: “The specific inductivity 

would have to approach unity if the temperature decreases to absolute zero. According to this hypothesis, the 

ultraviolet proper oscillations should aot, for ordinary temperatures, exert an influence on the index of 

tefraction or on the specific inductivity.” After the Solvay Congress, the polymerization hypothesis was explored 

by a number of researchers (see, e.g. Duclaux 1912b and Benedicks 1913), but eventually rejected for reasons 

such as the ones mentioned by Einstein in his comment (see Verhandlungen 1914, p.371) 

No. 171 (Nernst et al. 1914, p. 239; Nernst et al. 1912, pp. 296-297) 

10) It is absolutely impossible to explain the decrease of specific heats at low 

temperatures by assuming rigid bonds between the atoms (reduction in the degrees of 

freedom). For according to this assumption, solid bodies would have to lose their elastic 

deformability as they approach absolute zero (the compressibility would have to vanish 

for T = 0), and the infrared proper frequencies would have to become less and less 

optically discernible, neither of which is true. 

The first of the following two comments by Einstein follows a longer explanation by Kamerlingh Onnes, while 

his second comment responds to a suggestion made by Lindemann; both Kamerlingh Onnes and Lindemannn 

argued in favor of Rubens’s interpretation of the Nernst-Lindemann formula (see the editorial note to 

Einstein’s comment 8 on Nernst’s lecture). Kamerlingh Onnes agreed with Rubens that the two frequencies 

appearing in this formula correspond to two different oscillations of the solid body. But whereas Rubens 

attempted to identify these oscillations as those of the neutral molecule and the electrically charged atoms, 

repectively, Kamerlingh Onnes argued that in a molecular system longitudinal and transverse oscillations exist 

which could have diffeent frequencies because of the way in which spatially extended atoms interact via parts 

of their surfaces. Lindemann, on the other hand, attempted to explain the existence of two different 

frequencies by assuming the interatomic forces to be directed so that, for example, oscillations along the 

diagonal and oscillations along one of the sides of a cubic lattice would have different frequencies. For a 

modem discussion of the role of the modes of oscillation of a lattice, see, e.g., Born and Huang 1954. 

No. 177 (Nernst et al. 1914, p. 241; Nernst et al. 1912, p. 291) 

11) The formula of Nernst and Lindemann undoubtedly represents a significant step 

forward. But we should beware, in my opinion, of seeing in it more than an empirical 

formula. It was clear a priori that atoms of solid bodies cannot behave thermodynamically 

exactly like infinitely weakly damped radiation resonators; in my opinion, the incomplete- 

ly monochromatic character of atomic oscillations is the reason why experience deviates
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from theory. A more careful investigation must show whether this conception will hold 

up. 

The following discussion remark is transcribed from Nernst et al. 1914, p. 241. See also Nernst et al. 1912, p. 

300. A manuscript version does not exist. 

If the forces that cause the oscillations are proportional to the distance from the 

equilibrium position, then it follows from the symmetry of the cubic system that a 

material point cannot possess two frequencies, at least not as long as one adheres to the 

laws of mechanics. 

In a comment following Einstein’s previous remark, Poincaré brought the subject of the behavior of gases at 

low temperatures into the discussion. In the course of the ensuing exchange among Nernst, Poincaré, 

Rutherford, Kamerlingh Onnes, Einstein and Langevin, Nernst related this behavior to the rotational motion 

of the molecules and mentioned the difficulties of applying the “quantum theory” to this motion. In his Solvay 

lecture, Einstein criticized Nernst’s theoretical treatment of the rotational motion of molecules, and made a 

remark similar to the comment printed below; see Einstein 1914 (Doc. 26), pp. 350-351. 

No. 181 (Nernst et al. 1914, p. 242; Nernst et al. 1912, p. 301) 

12) The optical <and energetical> investigation of the optical properties of gases 

with a diatomic molecule with an electric moment is in fact of the greatest importance, 

because from the relation between the coefficient of emission and the frequency (or the 

temperature, if the frequency is given) one can obtain directly (using electrodynamics, to 

be sure) the statistical law of rotational motion. 

In §6 of his lecture, Nernst claimed that his heat theorem (the third law of thermodynamics) can be derived 

from the quantum theory of specific heats. This claim gave rise to an extended controversy between Einstein 

and Nernst on the status of the heat theorem, starting with the discussion remark printed below. The conflict 

resurfaced during the second Solvay conference where it led to a lengthy discussion following Griuneisen 1921 

(see Griineisen et al. 1921, pp. 290-301). 

No. 186 (Nernst et al 1914, p. 243; Nernst et al. 1912, p. 302) 

13) I would like to remark here that, as far as I can see, Nernst’s heat theorem 

cannot be inferred from the vanishing of the specific heat in the vicinity of absolute zero, 

even though its validity is made much more plausible by this. For the question is 

whether, in a sufficiently close proximity to abs. zero, a system can be brought reversibly 

& isothermally from a state A to a state B without the addition of heat. This could not 

be inferred from the weakness of the molecular agitation if the transition from A to B 

could only be produced by using this minimal residue of thermal agitation; in that case 

it would be absolutely impossible to transfer the system from state A to state B at 

absolute zero. Nernst’s theorem amounts to the assumption (that is quite plausible, to
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be sure) that a transition from A to B in a way that is purely static from the viewpoint of 

molecular mechanics is always possible in principle. 

In his lecture, Nernst only briefly mentioned the problem of heat conduction (on p. 231). See Einstein 1911g 

(Doc. 21), §4, and Einstein 1914 (Doc. 26), p. 341, for a more detailed account of Einstein’s contemporary 

thoughts on this problem. 

Nos. [191]-192 (Nernst et al. 1914, p. 244; Nernst et al. 1912, p. 303) 

14) The considerable thermal conductivity of insulators can neither be explained by 

the conventional mechanical theory nor with the auxiliary concept of energy quanta. 

According to both conceptions, during the time of half an oscillation, the oscillation 

energy bound to an atom should not propagate farther than up to the immediately 

neighboring atom, and consecutive energy transfers of this kind should be conceived as 

mutually independent processes. But on the basis of these assumptions one arrives at 

values for thermal conductivity that are far too small. It appears, accordingly, that at low 

temperatures thermal motion does not possess the character of complete disorder. 

VIN. SOMMERFELD 

In the introductory section of his lecture, Sommerfeld introduced his version of the quantum hypothesis, which 

he considered to be compatible with classical electrodynamics (see Sommerfeld 1914, p. 294) in the form of the 

principle that in “every purely molecular process,” p. 254, the quantity of action 

fora . Ht 
fa 

is exchanged where ¢ is the duration of the process, H the Lagrangian, and A Planck’s constant (for a historical 

study of Sommerfeld’s work, see, e.g., Hermann 1971, pp. 103-123). In the context of his talk, Sommerfeld 

testricted the notion of a purely molecular process to the interaction between an electron and an atom 

(Sommerfeld 1914, p.254), but demonstrated the relativistic invariance of the action integral for the case of a 

single mass point, which is taken up by Einstein in his comment. The function L - U mentioned by Einstein 

is the Lagrangian written in terms of the kinetic energy L and potential energy U. 

No. 197 (Sommerfeld et al. 1914, p. 301; Sommerfeld et al. 1912, p. 373) 

15) It seems to me that Sommerfeld’s interpretation of the physical meaning of 

Planck’s constant fh involves a difficulty in that the function L - U for a freely 

movable particle can hardly be set equal to zero, so that the existence of a freely movable 

mass point decomposes, so to speak, into quanta of action, which it does in a manner that 

depends on the state (of velocity) of the coordinate system. 

The following comments by Einstein refer to Sommerfeld’s analysis of X rays generated by the impact of 

electrons on an obstacle. In a letter to Besso, Einstein had earlier stressed his view that Sommerfeld had 

postulated his hypothesis on the role of collision times in this process without any theory (see Einstein to
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Michael Besso, 21 October 1911). The essential points of Einstein’s discussion remarks also appear in §4 of 

his Solvay lecture, Einstein 1914 (Doc. 26). Eiastein’s second comment is a response to the following objection 

by Lorentz: “Mr. Einstein decomposes an arbitrary motion of a particle into a Fourier series, every term of 

which has a certain frequency v. Did I understand correctly that, according to his understanding, there will 

be a radiation corresponding to some term, if the Av characterizing this term is smaller than the total quantity 

of the available energy?” (Sommerfeld et al. 1914, p. 308; Sommerfeld et al. 1912, p. 382). Einstein’s last 

comment is a response to Planck, who had suggested that the quantum hypothesis should apply only to 

monochromatic radiation and not to y- and X-rays because the measured energy of these rays exceeds the 

energy obtained by dividing the quantum of action by the impulse time of the radiation. 

No. 215 (Sommerfeld et al. 1914, pp. 307-308; Sommerfeld et al. 1912, pp. 381-382) 

16) Sommerfeld’s important result, which yields the energy emitted as X-ray energy 

during the collision of an electron with an obstacle, can also be derived in another way. 

I mention this in order that the satisfactory agreement between the theoretical formula 

and experience not be viewed as a direct confirmation of the underlying equation 

fa - yar = *. 
4n 

During a sudden collision, the electron emits energy in such a way that the quantity 

of energy 

is emitted from the frequency range dv. (e = electrostatically measured charge, c = 

velocity of light, v = velocity of the electron.) <The loss of velocity in the collision is 

neglected.> It is assumed here that the electron is at rest after the collision. In order to 

obtain the total emitted energy, one would have to integrate this expression between v 

= 0 and v = » which would lead to an infinitely large emission. But if one assumes that 

the electron cannot emit a v that is greater than the one that corresponds to its kinetic 

energy L according to the quantum conception, then the upper limit of the frequency 

of the emitted radiation is given by the equation 

L=hv, 

so that the indicated integration yields for the emitted energy 

essentially in agreement with Sommerfeld’s result.



400 DOC. 25 SOLVAY DISCUSSION REMARKS 

No. 224 (Sommerfeld et al. 1914, pp. 308-310; Sommerfeld et al. 1912, pp. 382-383) 

17) The objection touches upon a sensitive point of the conception. According to the 
quantum theory in its original formulation, the way it is applied in the consideration just 

presented, one would have to imagine that always only one quantum of a specific 

frequency at a time is emitted in a collision, so that the result of our integration would 

be correct only as an average value over many collisions. But this conception is artificial; 

rather, the consideration reveals clearly a weak point of the conception characterized by 

monochromatic energy quanta. 

19) According to Sommerfeld’s conception, the frequencies v >o are not emitted 

in a collision of an electron because the collision is not sudden. According to this 

conception, the higher terms of the Fourier expansion do not appear in the emitted field 

because they already do not appear in the Fourier expansion of the accelerations 

occurring in the collision. This conception has the great advantage that one can adhere 

to Maxwell’s equations when calculating the emitted field. Unfortunately, however, this 

conception also brings with it a serious difficulty, which must not be left unmentioned. 

If a radiation space contains a gas with electrically charged atoms, then these atoms 

emit and absorb radiation energy when they collide, and it would have to be possible to 

derive the radiation formula by a statistical investigation of such a system. The fact that 

one arrives here at Rayleigh’s formula, if one starts off from classical mechanics and 

Maxwell’s electrodynamics, can be taken as indisputably proved. To reach agreement 

with experience, one has to modify the theoretical foundations in such a way that, at a 

given temperature of the gas, the quotient SS eoetigignt for the gas becomes 
absorption coefficient 

exceedingly small for large v. Thus, for large v, the emission coefficient must become 

exceedingly small relative to the absorption coeff. Is this likely to be achieved by 

Sommerfeld’s collision law? 
Basically, the latter amounts to the assumption that the higher terms are missing in 

the Fourier expansion of the collision acceleration of the individual charged mass points. 

From this it follows directly that the corresponding terms are missing in the emission. 

But it seems that the absence of these terms in the Fourier expansion of the collision 

acceleration also excludes an absorption of those frequencies, so that in essence the above 

quotient should not be at all influenced by Sommerfeld’s hypothesis. 

No. 233 (Sommerfeld er al. 1914, p. 310; Sommerfeld et al. 1912, p. 384) 

18) It may nevertheless be difficult to maintain the view that radiation of a given 

frequency can be emitted only in quanta of magnitude hv by monochromatic oscillators, 

but in arbitrarily small portions by colliding electrons.
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In §4 of his lecture, Sommerfeld presented an explanation of the photoelectric effect which he had developed 

in collaboration with Debye and earlier sketched in a lecture (Sommerfeld 1911b), in the discussion of which 

Einstein had participated; see Sommerfeld et al. 1911 (Doc. 24). For evidence of further exchanges between 

Sommerfeld and Einstein on this topic, see Sommerfeld 1914, p. 257. Since Sommerfeld’s explanation is based 

on a resonance effect between the incident radiation and an atom, the photoelectric effect should, as he 

acknowledged in his lecture (see Sommerfeld 1914, p. 284; Sommerfeld 1912, p. 355), be more susceptible to 

material properties such as the damping of atomic oscillations than it should be according to the explanation 

given in Einstein 1905 (Vol. 2, Doc. 14), §8. For a historical overview of alternative explanations of the 

photoelectric effect, see Stuewer 1970 and Wheaton 1978. 

No. 242 (Sommerfeld et al. 1914, p. 315; Sommerfeld et al. 1912, p. 390) 

[2]0) According to Sommerfeld’s theory of the photoelectric effect, the number of 

electrons emitted per unit of time can be proportional to the intensity of light only if one 

totally rules out a damping of the oscillatory motion. 

IX. LANGEVIN 

In his lecture, Langevin reviewed the kinetic theory of magnetism and in particular the work of Pierre Weiss. 

Following a suggestion made earlier by Gans, Langevin attempted, in the last part of his lecture, to use 

Sommerfeld’s principle (see above) in a speculative construction of a molecular model of magnetization. He 

assumed that an electron circulates around a center that attracts it by a force characterized by a power law, and 

he obtained in this way a rough agreement with experiment. In the discussion following Weiss’s presentation 

of his theory on an earlier occasion, Gans mentioned that Einstein had recently suggested to him an explanation 

of the units of magnetism by quantizing rotations (see Weiss 1911; this has been noted in Kuhn 1978, p. 312, 

fn. 40). In a letter written to Lorentz soon after the Solvay meeting, Einstein remarked: “The case of electrons 

in a magnetic field already mentioned in Brussels is interesting, but not as much as I thought in Brussels. . . . 

In any case, the thing seems to show that mechanics already ceases to hold in the case of the electron moving 

in a magnetic field” (Einstein to H. A. Lorentz, 23 November 1911). 

This discussion remark is transcribed from Langevin et al. 1914, p. 328. See also Langevin et al. 1912, p. 405. 

A manuscript version does not exist. 

It would be interesting to apply the above calculation to a single electron in the 

magnetic field.
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Doc. 26 

On the Present State 

of the Problem of Specific Heats 

by A. Einstein 

[Eucken, Arnold, ed., Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer 

von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911), mit einem 

Anhange tiber die Entwicklung der Quantentheorie vom Herbst 1911 bis Sommer 1913. Halle 

a. S.: Knapp, 1914. (Abhandlungen der Deutschen Bunsen Gesellschaft fir angewandte 

physikalische Chemie, vol. 3, no. 7), pp. 330-352} 

$1. The Connection between Specific Heats 

and the Radiation Formula 

It was in the domain of specific heats that the kinetic theory of heat achieved one of its 

earliest and finest successes in that it permitted the exact calculation of the specific heat 

of a monatomic gas from the equation of state. It is now, again, in the domain of specific 

heats that the inadequacy of molecular mechanics has come to light. 

According to molecular mechanics, the mean kinetic energy of an atom not bound 

rigidly to other atoms is in general 7a if one lets R denote the gas constant, T the 

absolute temperature, and N the number of molecules in a gram-molecule. From this 

it follows directly that the specific heat of an ideal monatomic gas at constant volume is 

5k, or 2.97 calories, per gram-molecule, which is in very good agreement with 

experience. If the atom does not move freely but is bound in an equilibrium position, 

then it possesses not only the mean kinetic energy mentioned above, but, in addition, also 

a potential energy; we must assume this to be the case for solid bodies. For the 

arrangement of atoms to be stable, the potential energy corresponding to the displace- 

ment of an atom from its equilibrium position must be positive. Further, since the mean 

distance from the equilibrium position must increase with the thermal agitation, i.e., with 

the temperature, this potential energy must always correspond to a positive component 

of the specific heat. Thus, according to our molecular mechanics, the atomic heat of a 

solid body must always be greater than 2.97. As we know, in the case where the forces 

binding the atom to its equilibrium position are proportional to the displacement, the 

theory yields the value of 2 -2.97 = 5.94 for the atomic heat. It has been known for a 

long time that for most of the solid elements the atomic heats possess values that do not 

deviate substantially from 6 at ordinary temperatures (Dulong-Petit law). But it also has 

been known for a long time that there are elements with smaller atomic heats. Thus, 

already in 1875, H.F. Weber found that the value of the atomic heat of diamond at 

-50°C_ is roughly the value 0.76, far smaller than that permitted by molecular mechan-
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ics. This one result already shows that molecular mechanics cannot yield correct specific 

heats for solid bodies—at least not at low temperatures. Further, the laws of dispersion 

led to the conclusion that instead of consisting of only one material point, the atom may 
possess electrically charged material points (polarization electrons) that move indepen- 

dently of the atom as a whole and which—statistical mechanics notwithstanding—make 

no contribution to the specific heat. 

We were not in the position to relate these inconsistencies of the theory to other 

physical properties of matter until a few years ago, when Planck’s investigations on 

thermal radiation quite unexpectedly shed new light on this area.' Though we have not 

yet come to the point where we need to supplant classical mechanics with a mechanics 

that would be able to yield correct results for fast thermal oscillations as well, still we 

have found the law from which the deviations from the Dulong-Petit law follow, and we 

learned that these deviations are related by law to other physical properties of the 

substances. In what follows, I shall outline the train of reasoning in Planck’s investiga- 

tions in a manner that will bring out clearly the connection with our problem. 

It is possible to arrive at a theory of the law of cavity radiation at thermal equilibrium 

(the law of black-body radiation) by doing a theoretical analysis to determine the density 

and composition at which the radiation is in statistical equilibrium with an ideal gas, given 

the presence of structures that make an energy exchange between the radiation and the 

gas possible. One such structure is a material point bound to a point in space by forces 

proportional to its displacement from this point (oscillator); we shall assume that the 
material point of the oscillator is provided with an electric charge. Let thermal radiation, 

an ideal gas, and oscillators of the kind indicated be enclosed in a volume bounded by 

perfectly reflecting walls. By virtue of their electric charges, the oscillators must emit 

radiation and continually receive new momentum from the radiation field. On the other 

hand, the material point of the individual oscillator collides with gas molecules and in this 

way exchanges energy with the gas. The oscillators thus bring about an energy exchange 

between the gas and the radiation, and the energy distribution of the system in the state 

of statistical equilibrium is completely determined by the total energy, if we assume that 

oscillators of all frequencies are present. 

In an investigation based on Maxwell’s electrodynamics and on the mechanical 

equations for the motion of the material point of the oscillator, Planck has now shown 

that—assuming that only oscillator and radiation are present, but not the gas—the 

following relation exists between the mean kinetic energy E, of an oscillator of frequency 

v, and the radiation density u,’ 

‘M. Planck, Vorl. uber d. Theorie der Warmestrahlung, pp. 104-166. 
2 We assume here an oscillator with three degrees of freedom. 

(3) 

[4]



[5] 
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3 Y (1) E a 

On the other hand, statistical mechanics implies the following: If the volume 

contains only a gas and oscillators (without charge), there is a relation between the 

temperature 7 and the mean energy E, of the oscillator of the form 

(2) BE, = 3RT 
. N 

But if the oscillators interact simultaneously with the radiation and the gas, as we 
must assume in our analysis, then equations (1) and (2) must be satisfied simultaneously 

if they hold individually in the special cases discussed; for if one of these equations were 

not satisfied, this would have to result in a transport of energy, whether between 

radiation and resonators, or between the gas and resonators. 

Eliminating E, from both equations, we find as the condition for equilibrium 

between radiation and gas the equation 

This is the only radiation equation that is simultaneously in agreement with our 

mechanics and our electrodynamics. However, it is now generally recognized that this 

equation does not correspond to reality. For this equation allows the integral fuav to 
Li} 

become infinite, and this would make a thermal equilibrium between radiation and matter 

impossible in the case when the heat content of the latter is different from zero, whereas 

it can be considered as experimentally proven that a statistical equilibrium at finite 

radiation density does exist in reality. 

Faced with this failure of our theories to conform to reality, Planck proceeds in the 

following fashion: He rejects (2), and thereby a foundation in mechanics, but keeps (1), 

even though mechanics has been applied in the derivation of (1) as well. He obtains his 

theory of radiation by replacing (2) by a relation in whose derivation he introduced, for 

the first time, the quantum hypothesis. However, for what follows, we need neither (2) 

nor a corresponding relation, but only equation (1). The latter tells us how large the 

mean energy of an oscillator must be for it to emit on average as much radiation as it 

absorbs. Even if we abandon (2), we must adhere to the proposition that (1) is valid not 

only when the oscillator is influenced by radiation alone, but also when molecules of a 

gas having the same temperature collide with the oscillator. Because if these molecules 

were to alter the mean energy of the oscillator, then more radiation would be emitted by
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the oscillator than it absorbs, or vice versa. Equation (1) also remains valid when the 

energy variations in the resonator are preponderantly determined by the interaction 

between the oscillator and the gas; it is certainly therefore also valid in the total absence 

of an interaction with radiation, for example, when the oscillators have no charge 

whatsoever. The equation is also valid if the body interacting with the oscillator is not 

an ideal gas but any other kind of body, as long as the oscillator vibrates approximately 

monochromatically. 

Thus, if the function of v and YT obtained in the investigations of black-body 

radiation is substituted for the radiation density uw, in (1), we arrive at the mean thermal 

energy of an approximately monochromatically vibrating structure as a function of v and 

T. Starting out from Planck’s radiation formula as the formula confirmed to the highest 

degree of approximation, we obtain from equation (1) 

(3) E = 3hv 
v hv 

ef? - 4 

where k = x and _h is the second constant of Planck’s formula (6.55 - 10°’). If we 

assume that one gram-atom of a solid element consists of N such approximately 

monochromatic oscillators, we obtain its atomic heat c by differentiating with respect 

to 7 and multiplying by N, where we put h/k = B: 

(4) c =3R_S2) | 
py 7 
THY 

The accompanying Fig. 22, taken from a paper by Nernst,’ shows the extent to which 

this formula yields correct values for the specific heats of solid elements at low 

temperatures in the figure. In the figure, the experimentally obtained curves are drawn 

in thick lines, and the theoretical ones in thin lines; appended to the latter are the corre- 

sponding values of Bv. 

Even though systematic differences between the observed and the theoretical values 

do exist, the agreement is nevertheless astonishing, if one takes into account that each 

individual curve is completely determined by a single parameter v, namely, the proper 

frequency of the atom of the element in question. Thus, the retaining of equation (1), 

which, according to the foregoing, did not seem completely justified from a purely 

theoretical point of view, has been completely justified by experiment. One thing needs 

3 Zeitschr. f. Elektrochemie 17 (1911): 274. 

[6] 

|
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Fig. 22 

to be especially emphasized: Jn no way should it be inferred from the empirical confirmation 

of formula (1) that the quantum hypothesis is correct. In general, nothing about mechanics 

can be concluded from the confirmation of (1) that could not be derived from the radi- 

ation formula and equation (2). 

But what is the source of the systematic discrepancies between the observed and the 

theoretical curves? Why is it that, with decreasing temperatures, the specific heat 

approaches zero less rapidly than the theory would lead us to expect? To get what I see 

as the correct answer to this question, we must try to delve deeper into the mechanism 

of the thermal oscillations of atoms. Madelung,’ and then, independently of him, 

Sutherland’ discovered the following: In binary salts (e.g., KCl), the frequency of elastic 

waves (as calculated from elasticity constants) at which the wavelength attains the order 

of magnitude of the intermolecular distance, is of the same order of magnitude as the 

infrared frequencies of these bodies (as calculated from the residual radiation). This fact 

suggests that those atomic interaction forces that determine the infrared proper 

(8] 4E, Madelung, Nachrichten d. kénigl. Ges. d. W. z. Géttingen, Mat. -Phys. KI. 20 (1909): 100-106. 
[9] ° W. Sutherland, Phil. Mag. (6) 20 (1910): 657.
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frequencies or, more generally, the oscillations of the atoms about their equilibrium 

positions, are essentially identical to the forces opposing the deformation of solids. 

Motivated by this idea, Madelung® and I’ have tried to make an approximate calculation 

of these proper frequencies from the elastic constants, with Madelung turning his 

attention to optical proper frequencies of simple compounds, while I turned my attention 

to those proper frequencies that determine the specific heat. The following is probably 

the most primitive model on which one can base the calculation. Starting out from a 

representation in which the atoms are arranged in a cubic lattice, one comes up with a 

picture in which each atom has 26 neighboring atoms, all of which are located at 

approximately the same distance d from it. Let each change A of this distance d be 

opposed by a force aA, where the constant a determines the degree of rigidity of this 

model body. The compressibility k of this model body, as well as the proper frequency 

of the atom v, can then be expressed as a function of a. We then obtain the latter 

frequency by keeping the 26 neighboring atoms in their rest position, while the atom 

under consideration is supposed to oscillate. Eliminating the auxiliary variable a from 

these two relations, we obtain the following relation between v and k: 

11041 

(5) : =A = 1.08 - 10M? p*k?, 

where c denotes the velocity of light in vacuum, A the wavelength in vacuum that 

corresponds to v, M the gram-atomic weight, and p the density. 

Using this formula, I obtained for silver A - 10° = 73, whereas Nernst obtained 

2-10 = 90 from the specific heat. Since this good agreement in the order of 

magnitude is hardly a matter of chance, the essential identity of the forces determining 

the degree of rigidity and those determining the thermal proper frequency can be 

considered firmly established. Naturally, such a formula can give only a rough 

approximation, because it does not take into account the individual properties of the 

substance (e.g., the crystal structure), which do not occur in the formula. 

The degree of approximation with which formula (5) is able to represent the actual 

situation depends, ultimately, on the extent to which a particular body is characterized, 

if at all, by the distance d between neighboring atoms, the mass of the individual atoms, 

and the compressibility. Insofar as this is the case, then in place of the compressibility, 

for example, one can posit some other fundamental characteristic as the defining quantity 

of the substance, and derive an expression for the proper frequency by dimensional 

§ BE. Madelung, Physik. Zeitschr. 11 (1910): 898. 
7 A. Einstein, Ann. d. Phys. (4) 34 (1911): 120. 
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analysis. Lindemann® chose the melting temperature 7, as the third defining quantity 

and so obtained the formula 

T 
(6) v = 2.12 - 10” = ‘ 

Mv 

in which the numerical factor is determined empirically, and in which 7, denotes the 

melting temperature, v the atomic volume, and M the (gram) atomic weight. 

Thus far, this formula has shown an unexpectedly close agreement with the facts. The 

following table has been taken from the previously cited paper by Nernst: 

v -10°% v - 10°? 
Element from specific from 

heat Lindemann’s 

formula 

Pb ha 1.44 14 

Ag aon 3.3 3.3 

Zn a 3.6 3.3 

Cu Sood 4.93 5.1 

Al A ooe 5.96 58 

I a 1.5 14 

Now we ask again: Why does the observed temperature dependence of specific heat 

deviate from the theoretically determined dependence? In my opinion, the cause for this 

deviation must be sought in the fact that the thermal oscillations of the atoms deviate 

markedly from monochromatic oscillations, and therefore do not actually have a definite 

frequency but rather a range of frequencies.? Above we mentioned the calculation of 

v from elastic forces; in this calculation we introduced the simplifying assumption that 

the atoms surrounding the oscillating atom under consideration are kept fixed in place. 

In actual fact, however, they do oscillate as well, and continually influence the motions 

of the atom considered. I will not seek to go into a more detailed examination of the 

actual atomic motion, but will only use an intuitive special case to demonstrate that a 

definite frequency is out of the question. If we picture two adjacent atoms oscillating 

along the line connecting them, while all other atoms stay fixed, then it is obvious that 

these atoms must have a greater frequency when they oscillate in opposite directions (i.e., 

8 Physik. Zeitschr. 11 (1910): 609. 
° On this question there is no consensus whatsoever. Thus Nernst, who rescued all the results 

pertaining to this question from their theoretical limbo, does not share my opinion (cf., e.g., 
Sitzungsberichte d. Berl. Akad. (1911), part XXII).
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so that their displacements have opposite signs at all times) than when they move in the 
same direction, since elastic forces act between the two in the first, but not in the second 

case. Hence, it must be assumed that the body behaves as a mixture of oscillators of 
different frequencies. Now, Nernst and Lindemann found that one takes sufficiently 

good account of the existing experimental evidence if one assumes that the substance 
behaves as a mixture of oscillators, with half of them having the frequency v, and the 

other half the frequency v/2. To this assumption there corresponds the formula 

_3 
(4a) c a; 

However, in accordance with what I have said before, I do not believe that we are 

dealing here with a theoretical formula. The only way to obtain an exact formula from 
(4) would be to sum over infinitely many values of v. But with this formula Nernst and 

Lindemann made a very valuable advance in that they obtained a better agreement with 

experience without having to introduce a new constant characterizing the particular 

substance.”° 
Naturally, equation (4) or (4a) also makes it possible to represent the specific heat 

of compounds in the solid state. All one has to do is to set up an expression of the form 
(4a) for each kind of atom, and add up these expressions. Compounds usually display 
infrared proper frequencies that show up as optical absorption bands in the infrared 

region and as corresponding regions of metallic reflection. As Drude has shown, these 
infrared proper frequencies correspond to oscillations of charged ponderable atoms. 

These are, therefore, oscillations of the same structures and under the influence of the 

same forces as those we have just studied. The only difference is that, in contrast to the 
forces mediating thermal interactions, the forces that set the atoms in motion when the 

body is irradiated show some degree of orderliness in space, so that the oscillation phases 
of identicallly charged adjacent atoms are not independent of each other. Hence, it 

cannot be stated without reservation that the optical proper frequencies are identical with 

the thermal frequencies; but, in any case, they are not likely to deviate too much from 
the latter. 

This consequence of the theory also proves to be correct. According to Nernst, the 

molecular heats of KCI and NaCl can be satisfactorily explained based on the assumption 

that in each of these substances the metal atom and the halogen atom have the same 
proper frequency. The comparison of the proper frequency, as calculated from the 

© An exact investigation of the specific heat of solid binary compounds consisting of a very heavy 
and of a light atom might well be instructive, because the light atoms probably perform oscillations 
approximating the monochromatic oscillations assumed by the theory. 
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the specific heat, with the infrared absorption maximum proves, as the numbers taken 

from the paper by Nernst show, 

pv By 

from specific heat from residual rays 

218 203 and 232 

287 309 and 265 

that the expected agreement really exists, and that it is very good. Further theoretical 

and experimental studies of this relation between the thermal and optical behavior of 

insulators are most likely to yield very interesting results. In particular, it is to be hoped 

that we will learn something about the nature of the absorption of radiation, since in the 

area of infrared oscillations we seem to be on the verge of understanding not only the 

optical, but also the thermal aspects of the phenomenon. An understanding of the 

temperature dependence of absorbtivity process would be of especially great interest. 

The important advances described above should not by any means deceive us about 

the fact that we are completely in the dark regarding the laws of periodic atomic motions 

and, in general, regarding the mechanical laws for the case where relatively small 

velocities appear alongside large time derivatives of velocity. This becomes obvious if we 

try to apply to structures with other kinds of motion the kind of argument that led us to 

the temperature dependence of the mean energy of sinusoidally oscillating structures. 

This problem always leads us to try to find the mean energy that the structure (endowed 

with electric charges) assumes in a black-body radiation field. But it is not possible to 

solve this problem without recourse to mechanics, the same mechanics that has been 

irrefutably proved to be invalid! As things now stand, we should consider it a pure stroke 

of luck that Planck’s arguments yield correctly—or seem to do so—equation (1), on 

which the theory of specific heat is based. In fact, totally analogous reasoning yields 

erroneous results in other cases. 

Specifically, if we imagine that a resonator—say, a monatomic molecule with an 

ultraviolet proper frequency—moves freely in a radiation-filled space, we can calculate 

the mean Kinetic energy of the translatory motion acquired by this structure by 

investigating the oscillations and the forces that the radiation produces in the struc- 

ture.!’ In this case, this mean kinetic energy must be equal to that derived for a gas 

molecule from the kinetic theory of gases. However, when it is based on the empirically 

established radiation law (say, Planck’s formula), the indicated argument yields values 

that are much too small for the kinetic energy of translatory motion. We thus see that 

" A, Einstein and S. Hopf, Ann. d. Phys. (4) 33 (1910): 1105.
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we should greet with skepticism each new application of the method of deducing the 

thermal properties of matter from the radiation formula; for in each such application we 

must base ourselves on a mechanics that is most certainly lacking in general validity, and 

on an electrodynamics that probably cannot be upheld. 

This fundamental misgiving notwithstanding, one should try to apply this method to 

the rotary motion of a rigid diatomic molecule about an axis perpendicular to the line 

connecting the atoms. One would have to assume that the atoms have opposite electric 

charges, and one would have to restrict oneself to considering the rotation about an axis 

fixed in space. 

I tried to solve this problem, but did not succeed because of mathematical difficulties. 

The solution would give us a clue as to how low the temperature is at which the ratio of 

the specific heats should be expected to drop under the value 7/,.’” 

§ 2. Theoretical Remarks on the Quanturn Hypothesis 

We now turn to the highly important but, unfortunately, mainly unsolved question: How 

is mechanics to be reformulated so that it does justice to the radiation formula as well 

as the thermal properties of matter? The most important thing we know in this respect 

is already contained in Planck’s fundamental paper on the radiation formula,” and it 

consists in the following: One arrives at a formula for the mean energy of the oscillator 

as a function of temperature that is consistent with past experience if one assumes that 

the oscillator can take on only such energy values that are integer multiples of Av 

(0 -hv, 1 -hy, 2 -hy, etc.). 

According to statistical mechanics, the probability dW that the energy of a (one- 

dimensional) oscillator at temperature 7 lies between E and E + dE is given by 

_E 
dW = const.e * dE. 

According to the above hypothesis, and building heavily on this result, one would 

have to put for those values of energy FE that are multiples of hv 

E 

W = const.e *, 

but for all other energy values, W = 0. For the mean energy of the oscillator we get 

E = ZEW, or, since we must have EW = 1, 

2 Nernst followed another course in solving this problem (Z. f. Elektroch. 17 [1911]: 270). We will 
return to this in §4. 

3M. Planck, Ann. d. Phys. 1 (1900): 69. 
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_:) _hy _ dae 

= _ ZEW _0e ™ +hve ™ + 2hve ™ +... hv 
E= ow = iv 2hv iw 

eTre Pre Ms... Pe | 

This is the expression found by Planck, which according to his theory has to replace 

formula (2), and which, together with (1), leads to Planck’s radiation formula. 

Simple as this hypothesis is, and simple as it is to arrive at Planck’s formula with its 

aid, its contents strike us as counterintuitive and outlandish on closer inspection. Let us 

consider a diamond atom at 73° (abs): What can be said about the oscillation of the 

atom on the basis of Planck’s hypothesis? If, with Nernst, we set v = 27.3 - 10", we 

obtain from the oscillator formula” 

= e786 
=|
 
tI
 

However, the mean energy of the oscillator E is a vanishingly small fraction (about 

10°*) of the energy quantum Av. Only one of 10° atoms oscillates at any given moment, 
while the other atoms are completely at rest. No matter how firm one’s conviction that 

our current mechanics is not applicable to such motions, such a picture strikes one as 

extremely strange. 

I would like to make one additional remark. According to Eucken,’® at low 

temperatures diamond does not conduct heat much more poorly than copper; the 

temperature dependence of thermal conductivity is here not very large anyway. Let us 

try to picture this from the standpoint of the quantum theory. To do this, we must form 

a picture of the way the quanta move. Since they are very far apart at very low 

temperatures, they will probably move independently of one another. Further, if it is 

possible to speak of a sinusoidal motion of an atom, a quantum must be bound to the 

atom during at least half of the period of oscillation. But when the quantum transfers 

to another atom, it certainly would have to transfer to one of the neighboring atoms, and 

always do so according to the rules of chance. J am not going to carry out the simple 

calculation that can be performed on this basis, but will only note that the heat flow must 

be proportional to the spatial derivative of the quantum density, so that for low 

temperatures 

Av hv 

heat flux ~ _4( a) ~ -1,@ ar 
dx T’ dx 

For the sake of a clean theoretical interpretation, I have based my calculations on the original 
formula rather than on Nernst’s improved formula; incidentally, this is permitted since we are only 
dealing with a rough estimate. 
8 Phys. Zeitschr. 12 (1911): 1005.
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hv 

hence thermal conductivity ~ ad TA 

Thus, in contrast to Eucken’s finding, thermal conductivity would have to tend 

exponentially to zero at low temperatures.’ In order to avoid this conclusion, one must 

introduce quite implausible assumptions about the motion of quanta. One sees that it 
will be difficult to bring the quantum theory in its simplest form into conformity with 

experience in a satisfactory fashion. 

In this situation, it is a good idea to reverse direction, and to try to deduce the 

statistical properties of thermal processes from the now empirically well-known thermal 

behavior of bodies. We do so by relying upon Boltzmann’s general theorem about the 

relation between the statistical probability and the entropy of states 

S =k log W + const. 

Boltzmann’s theorem gives directly the statistical probability W of the individual 

states that an isolated system can assume, if the entropy § is known. 

We apply the theorem to a solid body of thermal capacity c that is in (thermal) 

contact with a reservoir of infinitely large heat capacity whose temperature is T. 

Suppose the body possesses the energy E when in ideal thermal equilibrium. But its 

instantaneous energy will deviate from E by a mostly very small quantity e, and so too 

its instantaneous temperature, which we will denote by TJ + t; this is an inevitable 

consequence of the disorderliness of thermal motion. The entropy corresponding to a 

specific value of e or t is obtained from the equation 

dS = oat _ ode 
T+t T 

and thus, choosing an appropriate integration constant and neglecting the terms of higher 

than second order in t, 

‘6 When I carry out the calculation indicated, I obtain for the upper limit of thermal conductivity 

The values yielded by this formula are furthermore much too small in comparison with experience; 
this result is also obtained without the quantum hypothesis. 

[34] 

[33]
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From this we obtain, with the aid of Boltzmann’s theorem, 

Pi 

"353 
W = const.e *7. 

Hence, the mean square e” of the deviation of the energy from the mean valueE 

is 

e? = kcT?. 

This equation is completely general. We now apply it to an ideal, chemically simple 
solid consisting of n gram-atoms and having the frequency v. For this solid we must put 

Substituting this expression in the preceding equation, and eliminating T with the 

aid of the relation 

we obtain the simple relation 

ey -w,1 _!1 1 

E) E"3Na ZZ 

where Z, = = denotes the average number of Planck’s “quanta” found in the body, 
Vv 

and Z, = 3nN the total number of degrees of freedom of all the atoms of the system 

taken together. 

One sees from this equation that the system’s relative energy fluctuations, which are 

produced by the irregular thermal motion, result from two completely different causes, 

corresponding to the two right-hand terms. The relative fluctuation corresponding to the
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second term, which is the only fluctuation according to our mechanics,” results from 

the fact that the number of degrees of freedom of the body is finite; it is independent of 

the magnitude of the energy content. But the relative fluctuation corresponding to the 

first term has nothing to do with how many degrees of freedom the body has. This 

fluctuation depends solely on the proper frequency and the magnitude of the mean 

energy, and vanishes when this energy is very large. The magnitude of this fluctuation 

shows an exact agreement with the quantum hypothesis, according to which energy 

consists of quanta of magnitude Av, which change their location independently of each 

other; indeed, neglecting the second term, the equation can be written in the form 

But earlier we have seen that this conception may be difficult to reconcile with the 

empirical findings on heat conduction. This formula also clearly shows that the fluctua- 

tion corresponding to this term has nothing to do with the individual atom, or at least not 

with its size. This fluctuation might arise on account of the fact that, neglecting the 

carriers of energy, the less energy there is to be distributed, the smaller the manifold of 

energy distribution possibilities will become. The degree of orderliness of molecular 

motion that obtains at low total energy must be similar to that which obtains when only 

few degrees of freedom are present. Perhaps the flaw in the current quantum theory is 

mainly to be sought in the circumstance that this restriction on the possible states has 

been conceived as a property of the individual degree of freedom. But the essence of the 

quantum theory seems to remain valid all the same; if E becomes of the order of 

magnitude of hv, the relative energy fluctuation becomes of the order of magnitude 1, 

i.e., the fluctuation of the energy is of the same order of magnitude as the energy, or, the 

total energy is alternately present and not present; it behaves, in essence, as something 

with limited divisibility. But nevertheless, bounded energy quanta of definite magnitude 

need not necessarily exist. 

The question now arises: Does the fluctuation equation just derived exhaust the 

thermodynamic content of Planck’s radiation formula or of Planck’s equation for the 

oscillator (3)? It can easily be seen that this is indeed the case. For, if in accordance 

with our inference from Boltzmann’s theorem, we substitute 

” This can easily be derived from the equation 

JE 

dW = const.e "dE ,dE,...dE,,, 
where the indices refer to the individual degrees of freedom.
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@ = keT? = RPE 
at 

for €° in the fluctuation equation, we get (3) by integration. Thus, a mechanics that 
would lead to the equation we derived for the energy fluctuations of an ideal solid would 

also have to lead to Planck’s oscillator formula. 

Let us now address the question, to what extent are we forced to ascribe a special 

quantitative structure (in a broader sense) to radiation as well? I have investigated this 

question in several different ways, and have always arrived at the same results. 
We consider again a body K of heat capacity c, which is in a state of continuous 

heat exchange with an environment U of infinite heat capacity and of temperature T. 

Due to the irregularity of elementary thermal processes, the energy of K fluctuates 

around its mean value E, so that, in general, it deviates from the latter by a variable 

difference e. As above, we deduce from Boltzmann’s principle that the mean value of 

this fluctuation is given by the equation 

@ = kcT?. 

We assume now that the heat exchange between U and K is effected solely by thermal 

radiation. Assume that the surface of K is completely reflecting except for a section of 

surface f, which absorbs completely (is black) in the frequency region dv and reflects 

completely otherwise. The surface f constantly receives radiation from U and sends 

radiation back to U. The radiation energy emitted from f during a given time will be 

greater or smaller than that absorbed by f, depending on whether the temperature of 

K is greater or smaller than 7; the temperature of K tends therefore to approach the 

value 7. The continuous fluctuations of the temperature or energy of K that follow 

directly from Boltzmann’s principle result from irregular fluctuations of the radiation 

process over time; these must be of the magnitude that results precisely in the 

temperature fluctuations of K, and thus they can be calculated. 

An important property of the fluctuation of the radiation emitted by f and of that 

absorbed by f can be deduced without calculation: namely, the property that these two 

fluctuations must, on the average, be equal. This is evident in the special case where the 

surface f stands directly opposite another surface of the envelope, f{ at a very small 

distance; for in this case it is evident that the radiation emitted by f’ fluctuates 

according to the same law as the radiation emitted by f, and that the radiation emitted 

by f’ is identical to the radiation absorbed by f. But if the envelope U is positioned 

arbitrarily, the fluctuation of the energy absorbed by f cannot be different from that in 

the case we just considered; for the radiation emitted by f fluctuates independently of 

the position of U, and the total effect of the two fluctuations (the fluctuation of the 

energy of K) is also independent of the position of U. Thus, our assertion has been 

proved. The same argument also implies that the fluctuation in the radiation crossing,
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in the manner specified, a surface located somewhere in a space containing thermal 

fadiation is equal to the fluctuation in emissions from a same-sized boundary surface of 

a black body. 

If we denote by s the radiation energy emitted or absorbed on the average during 

a specified time interval ¢ by the surface f at the temperature 7, thens is a function 

of the temperature related to u, by the equation 

1 
= —Lu, fdvt s 7 u, fdvi 

(L = velocity of light in vacuum). 

But the energy emitted or absorbed in an arbitrarily chosen time interval ¢ will 

deviate from s by o, and o,, respectively, where o, and o, take positive and negative 

values with equal probability (equally often). Let the time ¢ be chosen so large that 

o, and o, will be small compared with s, but nevertheless so small that the deviation 

t of the temperature of the body K from its mean value changes only by a small 

fraction of its value during t. 

If e is the deviation of the energy of the body K from its mean value E at an 

arbitrary instant, then in the next time interval f, e will change because of absorption 

by the quantity of energy 

S; +O, 

and because of emission by the quantity 

Thus, after the lapse of time ft, the deviation e of the energy from its mean value will 

be 
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If we take into account that 

ds¥ & 

li) 
can be neglected because it is proportional to , and that, further, 

eo, =e0 =0, 

just as 

20, = 0 

and 

0,0, = 0, 

then we get, if we also set 

Ios 
=a =o 

If we insert herein the value of e? derived from Boltzmann’s theorem, we obtain 

= ds 
o =kT?—. 

aT 

Thus, the fluctuations of thermal radiation prove to be independent of the heat 

capacity of the body K, which is how it should be. If we express s by means of u, 

using the relation given above, replace u using Planck’s radiation formula, then 

differentiate, and finally eliminate J again by reintroducing the quantity s in place of 

T, we obtain 

(2) iy, = 

Ss 2nv¥fdvt 

This equation gives the expression for the mean relative fluctuation of the radiation 

energy that crosses fin one direction during time 1, and indeed—as we have seen—both 

in the case where f is located in the immediate vicinity of a black wall and in the case 

where f is located at a great distance from the walls enclosing the volume.
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Here as well, the square of the relative fluctuation consists of two parts, indicating 

two mutually independent causes of the fluctuations. The second term can easily be 

explained and accurately calculated from the wave theory. The fluctuation of the 

radiation energy crossing a surface f during time t, which corresponds to this term, is 

caused by the fact that, among the infinite number of plane ray bundles out of which one 

can compose the radiation crossing the surface f, those with almost identical directions 

and frequencies (and states of polarization) interfere with each other, i.e., depending on 

their phase angles, either predominantly reinforce or weaken each other in the time-space 

region under consideration. Since these phase angles of the different bundles must be 

totally independent of each other if the walls of the space are infinitely distant, a 

probability analysis yields exactly the mean value of these fluctuations. I have ascertained 

through calculations that this result coincides with the second term of our formula. 

Besides, one can see even without calculation that this relative fluctuation based on 

interference must be independent of the amplitude of the whole process, i.e., of s, and 

also that this fluctuation gets smaller the smaller the wavelength (thus, the greater v) is, 

and the greater the time, space, and frequency region are over which the energy s is 

distributed. 

However, wave optics cannot possibly explain the first term of our expression for the 

fluctuation. The latter corresponds to an unevenness in the distribution of the radiation 

energy, which is the more significant the smaller the quantity of the energy s involved. 

The conception that the radiation energy is distributed in localized quanta of the 
magnitude Av does lead to a fluctuation of this kind. However, it seems absolutely 

impossible to explain the phenomena of light diffraction and interference on the basis of 

this conception. We stand here before an unsolved puzzle, just as in the study of thermal 

motion in a solid. At any rate, it seems to emerge from this analysis that our electrody- 

namics can no more be brought into agreement with the facts than can our mechanics. 

On the other hand, this disappointing result compels us to subject the foundations 

of the argument just discussed to critical scrutiny. The most natural way out would be 

to assume that Boltzmann’s theorem is in need of correction, that the formula for the 

mean energy fluctuation (2) is not correct. Such a modification would not be of any 

help. Because, for small values of v at a given temperature, the theory yields fluctua- 

tions o in agreement with the wave theory; and this agreement would disappear if the 

formula for ©” were to be changed. 

Further, one could suppose that e? may depend on the mechanism mediating the 

heat exchange between K and the environment. If this were the case, Boltzmann’s 

conception of the nature of irreversible processes would be wrong in principle, because 

the “probability of the state” would depend on things on which, according to experience,



420 DOC. 26 THE PROBLEM OF SPECIFIC HEATS 

entropy does not depend (the mode of thermal interaction between K and the 

environment). 

Further, one could surmise that the heat absorbed by K when the latter is irradiated 

is not exactly equal to the radiation incident on K, so that the fluctuations of the heat 

taken up by K are not equal to the fluctuations of the radiations in the given wavelength 

range that are incident on the surface f. Such a conception does not necessarily amount 

to an actual violation of the energy law, because it is. possible to assume that the 

hypothesized difference between the two quantities of energy is going to accumulate. Of 

course, one then faces the task of picturing the mechanism of such an accumulation, just 

as, analogously, one is faced with the task of picturing the immense disorderliness in the 

spatial distribution of the radiation energy. If we reject this accumulation hypothesis as 

well, then we must resolve to abandon the energy law in its present form, and conceive 

it as a law that can claim statistical validity only, in analogy with the conclusions from the 

second law of thermodynamics.'"* Who would have the audacity to give a categorical 

answer to these questions? I only intended to show here how fundamental and deep- 

rooted the difficulties are in which the radiation formula enmeshes us even if we view it 

as a purely empirical given. 

$3. The Quantum Hypothesis and the General Character 

of the Related Experiments 

The positive results produced by the investigations described in the last section can be 

summarized as follows: When a body absorbs or emits thermal energy by a quasi- 

periodical mechanism, the statistical properties of the mechanism are such as they would 

be if the energy were propagated in whole quanta of the magnitude hv. Though we have 

little insight into the details of the mechanism by which nature produces this property of 

these processes, we must expect all the same that the disappearance of such an energy 

of a periodic character is accompanied by the generation of packets of energy in the form 

of discrete quanta of magnitude Av, and second, that energy in discrete quanta of 

magnitude hv must be available, so that energy of a periodic character in the frequency 

region v may be produced. In particular, if a radiation in the frequency range Av is 

capable of producing a certain type of effect, e.g., a certain photochemical reaction, at 

'8 In addition to what has been said in the text, let me point out that the formula for the energy 

fluctuations e” can also be applied to a radiation-filled space that is bounded by light-scattering, 

nonabsorbing walls and that can exchange radiation of the frequency range dv with some body. 
Of course, one would again arrive at a fluctuation formula of similar construction. In this case the 
accumulation hypothesis is inconceivable, so that only the choice between the Av-structure and 
the abandoning of the strict validity of the energy principle seems to remain.
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a particular density of the acting radiation, then it must induce the same effect at any 

lesser radiation density as well, no matter how small this density may be. 

These consequences seem to be confirmed in every particular, in which regard it must 

be noted that according to our conventional theoretical conceptions we would have 

expected a totally different behavior. One would have thought that a certain minimal 

density of electromagnetic oscillatory energy is necessary to induce, for example, the 

photochemical decomposition of a molecule; the electromagnetic vibration brought about 

in a molecule at a smaller radiation density should not be capable of causing the 

molecule’s breakdown. On the other hand, our prevailing conceptions cannot explain 

why radiation of higher frequency should produce elementary processes of greater energy 

than radiation of lower frequency. In brief, we neither understand the specific effect of 
frequency nor the lack of a specific effect of intensity. Further, it has been pointed out 

in many a discussion that according to our theoretical conceptions it is inconceivable that 

light, and even more so Roentgen rays and y-rays, no matter how low their intensities, 

should be able to accelerate electrons with such violence that they would fly out from 

bodies with their well-known high velocities. In the photoelectric effect, in particular, the 

kinetic energy of the ejected electrons is of the same order of magnitude as the product 

hv of the acting radiation, and it even turns out that this kinetic energy increases 

approximately as Av and v in ranges devoid of resonance effects. In the face of this 

experience, one cannot easily close one’s mind to the conception (especially if one keeps 

in mind the great fluctuations in the conductivity of air that is irradiated with y-rays) that 

energy appears in the form of large quanta in the course of absorption of radiation, and 

also that the formation of secondary energy is in no way spatially and temporally 

somewhat uniform. These discontinuities, which we find so off-putting in Planck’s theory, 

seem really to exist in nature. 

The difficulties which stand in the way of formulating a satisfactory theory of these 

fundamental processes seem insurmountable at this time. From where does an electron 

in a piece of metal that is struck by Roentgen rays take the great kinetic energy we are 

seeing in secondary cathode rays? After all, the field of the Roentgen rays impinges on 

all of the metal; why does only a small portion of electrons attain the velocity of those 

cathode rays? How is it that the absorbed energy shows up only in relatively exceedingly 

few places? What distinguishes these places from other places? These and many other 

questions are being asked in vain. 

An interesting question is whether absorption has the character of a random event 

also when viewed from the standpoint of the absorbed radiation. This amounts to the 

question as to whether two coherent ray bundles remain completely coherent if each of 

them is weakened to the same fraction of its value by absorption. No doubt, everybody 

presumes that the coherence will be completely maintained; still, it would be nice if we 

knew this for sure. 
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And here is another question to which an experimental answer would be desirabie: 

It is generally assumed that the high velocities displayed by electrons emerging from 

bodies irradiated by ultraviolet light or Roentgen rays are produced by one single 

elementary act. But in actual fact, we do not have any proof for that. It would be 

conceivable a priori that the electrons attain these high velocities little by little, through 

collisions with many irradiated molecules. If this were the case, we would be able to 

reduce the velocity of emergence by reducing the thickness of the effectively irradiated 

layer. Also, in that case—especially in irradiation with weak Roentgen rays—there would 

have to pass some possibly measurable time from the beginning of the irradiation to the 

formation of the secondary rays. These kinds of experiments, if they were to turn out 

positive, could provide irrefutable proof that those high electron velocities are not due 

to a quantized distribution of radiation energy. 

Finally, it would be of great importance to check with the greatest possible precision 

whether the secondary effects that arise in the absorption of radiation are really 

absolutely independent of the intensity of the exciting radiation. Currently one must hold 

that the temperature of a bundle of rays of low intensity and high frequency depends only 

weakly on the intensity. Thus if the ternperature of the radiation bundle (with or without 

the influence of the phase spread in the bundle) were to determine, for example, the 
velocity distribution of the electrons in the photoelectric effect, then a slight, but still 

measurable dependence of this velocity distribution on the radiation intensity would also 

come into evidence. 

§ 4. The Rotation of Gas Molecules 

Sommerfeld’s Hypothesis.”° 

Two other important attempts to relate Planck’s constant A to mechanical properties 

of elementary structures are known. First, using an approximate argument, Nernst 

attempted to determine the rotational energy of gas molecules as a function of the 

temperature. Second, Sommerfeld calculated the electromagnetic radiation emitted in 

the stopping of cathode-ray electrons, as well as in the acceleration of B-ray particles, on 

the basis of the hypothesis Lt =h, where L denotes the kinetic energy of the particle, 

t its collision time, and A the Planck’s constant. We will show to what extent these two 

things can be derived from the radiation formula without recourse to special hypotheses. 

But we will have to content ourselves with rough approximations. 

If, with Nernst, we assume for the sake of simplicity that all molecules of the 

diatomic gas being considered have a definite angular frequency v, which is the same for 

A. Sommerfeld, “Uber die Struktur der y-Strahlen.” Sitz.-Ber. d. Konigl. Bayerischen Akad. d. 
Wiss. Phys. Klasse (1911): 1-60.



DOC. 26 THE PROBLEM OF SPECIFIC HEATS 423 

all molecules, then the relation between the rotational energy E, the frequency, and the 

temperature will not differ substantially from the corresponding relation for the linear 

oscillator. We will have approximately 

If we denote by 7 the moment of inertia with respect to an axis through the center 

of gravity of the molecule and perpendicular to the line connecting its atoms, then we 

must assume, in accordance with mechanics, 

E = SH mvy. 

These two equations contain the relation between E and T we have been looking 

for; all that remains is to eliminate v.” Nernst and Lindemann have already pointed 

out” that it would be of exceedingly great interest to investigate the infrared absorption 

of diatomic gases whose molecules, probably as in HCl, possess an electric moment. In 

such cases one could use Kirchhoff’s law to find from absorption coefficients the emission 

coefficients for the different frequencies, and from these the number of molecules 

momentarily present with a particular angular velocity—the statistical law of rotational 

motion. Of course, a part of absorption phenomena would have to be ascribed to the 

relative oscillation of the two molecules [atoms]. 

Let us now turn to Sommerfeld’s hypothesis concerning elementary collisions. 

One of the areas left unaffected by molecular mechanics is the kinetic theory of 

monatomic gases, since in this case the mechanism of collisions is immaterial. But we 

can learn something about the latter from the radiation formula, using a procedure that 

is completely analogous to that adopted for the oscillator; unfortunately, for the time 

being we must do without an exact theory in this case as well. 

As in §1, assume that thermal radiation and a monatomic gas are in thermal 

equilibrium in some enclosure. In this case, however, the possibility of thermal 

interaction between gas and radiation shall be brought about by endowing individual gas 

molecules with an electric charge. If these molecules collide with other molecules or with 

the wall, they will emit and absorb radiation. Let us assume that these collisions are so 

infrequent that each collision can be considered by itself, as an isolated event. The 

radiation emitted in a collision is easy to determine with the aid of Maxwell’s theory, if 

the velocity of the emitting atom is given as a function of time. 

2 Instead of the second of these relations, Nernst assumed the relation Bv = aT But this 

relation could only be satisfied if the specific heat were independent of the temperature. 
l Zeitschr. f. Elektroch. 17 (1911): 826. 
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According to Kirchhoff’s law, 

where e, denotes the emission coefficient and «, the absorption coefficient of a 

medium. If v is kept constant, u, will be practically zero up to a certain temperature, 

after which it will rapidly increase. Since a, remains finite, what we said about u, 

applies also to e,. According to the formula of Wien or Planck, the condition for u, 

or e, to become different from zero is 

ky ae 
kT 

where Z is some number of the order of magnitude 1. Since, up to a negligible factor, 

kT equals the mean energy E of translatory motion of the gas molecules, this condition 

can also be written in the form 

hy < ZE. 

Thus, if E is the energy of their translatory motion, charged gas molecules must collide 

in such a way that no frequencies inconsistent with this equation will be emitted. 

If the collisions were sudden, the equation would be violated, according to Maxwell’s 

theory, because even the greatest frequencies would have to occur in the radiation 

emitted in the collision. Thus, sudden collisions cannot exist; the collision must take 

place gradually, in such a way that frequencies greater than v will not be produced. It 

can easily be demonstrated that the duration + of collisions satisfying this condition is 

of the order of magnitude of 

1 

max 

Accordingly, the above relation can also be written in the form A = Et X a number of 

the order of magnitude 1. 

This is Sommerfeld’s hypothesis, which permits the correct calculation, at least in 

order of magnitude, of the fraction of the energy of the cathode radiation that is 

converted to Roentgen radiation. 

Thus, to derive Sommerfeld’s hypothesis from the radiation equation, one need only 

assume, essentially, that the electron energy determines the emission. If this line of 

reasoning corresponds to reality, then a charged elementary structure, e.g., an electron, 

loses only a very small fraction of its kinetic energy in a collision electron velocities like 

those occurring in the photoelectric effect (without resonance) or if not-too-fast cathode 

rays are involved. If one looks upon the acceleration of electrons by radiation as the
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reverse of such emission processes, one will incline to the view that acceleration of this 

kind must also proceed in many stages. As already noted, we would then expect that 

under otherwise identical conditions, e.g., in the photoelectric effect, electrons emerge 

with lower velocities from very thin irradiated effective layers than from thicker layers.
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“Discussion” Following Lecture Version of 

“The Present State of the Problem of Specific Heats” 
Einstein et al. 

[Abhandlungen der Deutschen Bunsen Gesellschaft fiir angewandte 

physikalische Chemie 3 (1914): 353-364] 

Einstein: We probably all agree that the so-called quantum theory of today is, indeed, 

a helpful tool but that it is not a theory in the usual sense of the word, at any rate not 

a theory that could be developed in a coherent form at the present time. On the other 

hand, it has also turned out that classical mechanics, which finds its expression in the 

equations of Lagrange and Hamilton, can no longer be viewed as a useful schema for the 

theorctical representation of all of physical phenomena (cf. especially the report of H. 

A. Lorentz). 

This raises the question of which general laws of physics we can still expect to be 

valid in the domain with which we are concerned. To begin with, we will all agree that 

the energy principle is to be retained. 

In my opinion, another principle whose validity we must maintain unconditionally is 

Boltzmann’s definition of entropy through probability. It is to this principle that we owe 

the faint glimmer of theoretical light we now see shed over the question of states of 

statistical equilibrium in processes of an oscillatory character. But there is still the 

greatest diversity of opinion as regards the content and domain of validity of this 

principle. J will therefore first present in brief my view about this matter. 

If we have an isolated physical system of given energy, this system can still assume 

the most diverse states, which are characterized by a number of quantities that are 

observable in principle (e.g., volumes, concentrations, energies of parts of the system, 

etc). All of these states compatible with the given energy value shall be denoted by Z,, 

Z,.... Z, According to thermodynamics, if the system is brought into one of these states 

(Z,), it will pass successively through specific states Z,, Z., tending toward a final state 

Z,, the state of thermodynamic equilibrium, in which it remains indefinitely. But we 

know from the statistical theory of heat on the one hand, and from our experience with 

Brownian motion on the other, that this conception is only a more or less rough, 

approximate description of the average behavior of a system. In reality, the character of 

irreversibility ascribed to the phenomena in this description is only apparent; nor does 

the system remain in the state of thermodynamic equilibrium. Instead, in the course of 

time the system assumes again and again, in a perpetual alternation, all the states Z, .... 

Z, without exception. 

The apparently unidirectional succession of states from a state Z, onwards, and the 

final apparent persistence in a state of thermodynamic equilibrium Z,, Boltzmann
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attributes to the fact that in the overwhelming majority of cases a state Z, is succeeded 

by a more probable state Z,. From among all the states Z, Z,., Z,. etc., to which Z, 

can pass in the very short time +, the state Z, will practically always appear, because it 

possesses an enormously greater probability than the state Z, and all of the other states 

Z,, Zp, etc. Thus, the apparently unidirectional succession of states actually consists 

in states of ever greater probability following successively upon each other. 

But such an argument gains some measure of persuasive power only when one has 

made clear what is to be understood by the “probability” of a state. If a system left to 

itself passes in an endless succession through the states Z, ... Z, (in the most varied 

sequences), each state will possess a definite temporal frequency. 

There will be a fraction t, of a very long time J, during which the system will be in 

t 
the state Z,; if, for large T, F tends toward a limiting value, then we call this the 

probability W, of the first state, etc. Thus, the probability W of a state is conceived as 

the latter’s temporal frequency in a system left to itself an infinitely long time. From this 

point of view, it is noteworthy that in the overwhelming majority of cases, if one starts 

out from a specific initial state, there will exist a neighboring state which the system—if 

left to itself an infinitely long time—assumes more often than it will do other states. But 

if we forgo such a physical definition of W, the statement that in the overwhelming 

majority of cases the system passes from one state to a state of greater probability is a 

statement devoid of meaning, or—if one has set W _ equal to an arbitrarily chosen 

mathematical expression—is an arbitrary assertion. 

If W is defined in the manner indicated, then it follows from the very definition that 

a system left to itself in an arbitrary state (and isolated from without) must assume, in 

the majority of cases, successive states of ever greater probabilities, and from this it 

follows that W and the entropy S are connected by Boltzmann’s equation 

S =k log W + const. 

This follows from the circumstance that the probability W/—insofar as the character of 

a unidirectional flow of events is maintained at all—must always grow with time, and that 

there cannot be a function independent of S that has this property at the same time as 

5S. That the connection between S and W is exactly the one given in Boltzmann’s 

equation follows from the relations 

Six = TS; Wo = 1), 

which hold for the entropy and probability of states of systems composed of a number 

of subsystems. 

If one defines W in the manner indicated, as temporal frequency, then Boltzmann’s 

equation contains right away a physical statement. The equation contains a relation 

between quantities that are observable in principle, i.e., the equation is either correct or
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incorrect. Boltzmann’s equation is usually applied in the following way: one starts out 

from a specific elementary theory (e.g., molecular mechanics), determines the probability 

of a state theoretically, and calculates the entropy from this by means of Boltzmann’s 

equation in order to learn, finally, the thermodynamic properties of the system. But one 

can also proceed in the reverse direction: from the empirically ascertained thermal 

behavior of the system, one determines the entropy values of the individual states, and 

from these one calculates the probabilities of the states by means of Boltzmann’s 

equation. 

To illustrate this way of applying Boltzmann’s principle, let me use the following 

example: Suppose a cylindrical vessel contains a liquid, in which there shall be suspended 

a particle whose weight exceeds by P the liquid displaced by it. According to 

thermodynamics, the particle should sink to the bottom and remain there. From the 

point of view of the kinetic theory of heat, in an incessant fluctuation the particle will 

change its height above the bottom in irregular succession, without ever coming to rest. 

To lift the particle to the height z above the bottom, one has to perform the work Pz. 

In order for the energy of the system not to change in this process, one must simulta- 

neously withdraw from the system an amount of heat that is equivalent to this work, so 

that the entropy of the system as a function of the height z of the particle is expressed 

by 

S = const. - Pz 
T 

Using Boltzmann’s equation, one obtains from this the probability W that the 

particle will be found at the height z at an arbitrary instant of time: 

Pz 

W = Ce™ 

This is the law that Perrin actually obtained from his observations. It is clear that 

this relation expresses the state of affairs established by Perrin only if the probability W 
has been defined in the manner indicated above. 

This simple example also provides a beautiful illustration of Boltzmann’s conception 

of an irreversible process. Namely, if P is not far too small, then the exponent ss will 

be of considerable magnitude for fairly large z because of the smaliness of the constant 

k (= 5 thus, W will be small and will decrease very rapidly with increasing z. If one 

raises the particle to a certain height above the bottom and then leaves it alone, in the 

overwhelming majority of cases the particle will sink to the bottom in an almost 

perpendicular line and with almost constant velocity (an irreversible process in the sense
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of thermodynamics). Yet, on the other hand we know that the particle can rise on its 

own, even though very rarely, to any height above the bottom of the vessel. 

Lorentz: Mr. Einstein speaks about the probability of a given height z of the 

particle. But to be strict, the probability of finding the particle between z and dz must 

be expressed by Wdz. This difference is not without significance because it brings with 

it a difficulty. Instead of z, one can just as well choose any function of these variables, 

e.g., z’ =z’ as the coordinate. Then one would have to introduce a probability W’, 

defined as follows: 
Wide! = Waz, 

or 

wr - 2 
This would lead to the value S’ = k log W’ for the entropy, which differs from 

S =k log W by a variable quantity k log 2z. But this is impermissible. 

Einstein: Strictly speaking, one cannot actually speak of the probability that the 

particle (or its center of gravity) is to be found at the height z, but only of the 

probability that it is to be found in the height interval between z and z + dz. 

But by no means does this fact imply that Boltzmann’s equation S = k log W cannot 

be strictly valid. For it is also easy to see that a remark can be made with regard to 

entropy that would correspond precisely to the remark Mr. Lorentz just made with regard 

to probability: strictly speaking, one cannot talk of the entropy of a given state, but only 

of the entropy of a state region. 

To show this in a fairly simple case, imagine a cylindrical vessel that contains a liquid 

as before; in it, a particle is suspended, and the particle’s variable height above the 

bottom is again denoted by z. To make it really simple, J also imagine that the weight 

of the particle is exactly compensated by its buoyancy. Now we seek the entropy of the 

state characterized by the fact that the center of gravity of the particle is found at a given 

height z. To find the entropy value of this state, it must be realized in a reversible way, 

which is possible to do in the following manner. We picture two sieves that are 

impermeable for the particle; the one sieve shall initially be at the height z = 0, and the 

second at z =/. We push these sieves infinitely slowly from both sides toward a specific 

height z =z,. When this process has been completed, the particle is found at z = zp. 

In this process we must perform mechanical work in order to overcome the osmotic 

pressure of the particle. If we brought the sieves to the distance 8 from each other, this 

work is equal to ad lg > For the particle to remain at the height z = z,, § must be 

brought to the value zero, that is, a logarithmically infinitely great quantity of work must 
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be performed. It can readily be seen, furthermore, that the entropy has the value 

- _ so that we have to set 

S = const. Rig 8. 
N 

Thus, S too becomes infinite with vanishing 8. The entropy belonging to the 
interval dz is therefore 

S = const. + R ip dz 
N 

On the other hand, the probability W for the interval dz is 

W = const. dz. 

Thus, independently of the choice of the interval dz, Boltzmann’s equation 

S= Rig W + const. 
N 

is, in fact, satisfied here. It follows with great probability that Boltzmann’s equation is 

strictly valid if S and W refer to the same state region. 

Poincaré; When defining probability, the choice as to which differential to employ 

as a factor is not arbitrary; one must take an element of the phase space. 

Lorentz: Mr. Einstein does not follow Gibbs’s method; he simply speaks about the 
probability of a specific value of the coordinate z. 

Einstein: What is characteristic of this standpoint is that one uses the (temporal) 

probability of a state defined purely phenomenologically. In this way one gains the 
advantage of not having to base the analysis on any specific elementary theory (e.g., 

statistical mechanics). 

Poincaré: In every theory that one introduces in the place of ordinary mechanics, 
instead of the element of the phase space one must use an mvariant element as the 
differential. 

Wien: In my opinion, one can set up a relation between entropy and probability for 
radiation only if one goes back to the emitting atoms. 

Einstein: An analysis analogous to the one just brought forth for the case of a 
suspended particle can be applied to radiation enclosed in a cavity. Imagine a chest of 
a total volume V that has perfectly reflecting or perfectly white inner walls and that 

encloses a radiation energy E, the frequency of which is close to v. A partitioning wall 

that is also perfectly reflecting or white and that has a hole in it divides the interior of 

the chest into two parts, whose volumes are V, and V,. The radiation will ordinarily 
be distributed over the volumes V, and V, in such a way that the ratio of the energy 

shares, E, of volume V, and £E, of volume V,, will be the same as the ratio of the 
two volumes. But because of the irregularities of the radiation process, all other
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distributions compatible with the given value E of the total energy will also occur. To 
each of the distributions (E,, £,) belongs a probability W. But to each of the distribu- 

tions there belongs also a definite value of the entropy S. S and W must be connected 

by Boltzmann’s equation. Since the entropy of any distribution of this kind can be found 

from the radiation law, one obtains the statistical probability W of any distribution from 
Boltzmann’s equation. If the radiation is so attenuated that it falls within the range of 

validity of Wien’s radiation law, then it turns out that the statistical distribution law is 
constituted as if the radiation consisted of pointlike structures, each of which possesses 

the energy hv. Specifically, for the probability that the total energy E will be localized 

in the subvolume V,, one obtains the expression 

This result is so interesting because it cannot be brought into agreement with the 

wave theory of radiation. This can be seen without calculation from the following 

argument by analogy. 

Let there be given a distribution of the radiation for a specific value E, of the total 
energy. If we now imagine all the electric and magnetic field components multipled by 

a constant a, we obtain a new vector field satisfying Maxwell’s equations that has the 
same frequency range and degree of randomness as the original field. All energy 

densities in the latter field are exactly «* greater than those in the original field. From 

this it follows directly that, in the latter case, the energy distribution a’E, «’E, occurs 
exactly as probably, i-e., as frequently, in the second field, as the energy distribution £,, 

E, does in the original field. From this it follows that according to the wave theory in 

its present form the frequency (probability) of a specific distribution ratio E, must be 
2 

independent of the value of the total energy E. But this contradicts the expression for 
W that we derived from the entropy of radiation by means of Boltzmann’s equation. 

The quantum hypothesis is a provisional attempt to interpret the expression for the 
statistical probability W of the radiation. By conceiving radiation as consisting of small 

complexes of energy Av, one found an intuitive interpretation of the probability law for 

low-intensity radiation. | emphasize the provisional character of this auxiliary idea, which 

does not seem compatible with the experimentally verified conclusions of the wave 

theory. But since it follows, in my opinion, from such considerations that the localiza- 

tions of energy in the radiation field implied by our current electromagnetic theory do 
not correspond to reality in the case of low-intensity radiation, we must also admit, in 
addition to Maxwell’s electrodynamics, which is indispensable to us, a hypothesis such as 

that of quanta in some form or other. 

Planck: 1 too hold firmly, and for all cases, to the relation 

S =k log W + const. 

(11)
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as the general expression of the principle that the second law of thermodynamics is 

basically a probability law. This is why the entropy of a state always immediately yields 

its probability as well. But on the other hand, I do not believe that there exists a 

completely general definition of probability that is also usable outside of classical 

dynamics and that permits the probability of a totally arbitrary state to be calculated on 

the basis of temporal (or spatial) fluctuations alone, without taking into account the 

mutually independent elementary regions of equal probability. Especially as viewed from 

the standpoint of the quantum hypothesis, there seem to exist states whose nature is too 

complicated to preserve the simple relationship between probability and fluctuations to 

which the consideration of elementary regions leads. 

As concerns, in particular, thermal radiation in a vacuum, I am of the opinion that 

its entropy (or probability) cannot really be derived from the energy fluctuations of free 

radiation alone; rather, one must either go back to the emitting substance, from which 

the radiation originates, or consider the absorption (cf. my report, p. 84). Otherwise it 

is not possible to recognize behind the complex event the equiprobable elementary events 

that are producing it. 

Lorentz: All the same, it seems to me that one can always talk of a probability that 

the energy content in one of the halves of volume considered lies in the interval between 

& and & + d&. This probability could be measured by the time interval during which this 

energy distribution is actually in existence. Now if one assumes, on the one hand, that 

a particular energy distribution deviating from the uniform energy distribution possesses 

a certain probability, and, on the other hand, that this implies a perfectly definite value 

of the entropy, then I do not see why one should not apply Boltzmann’s theorem. 

Langevin: If one can define a probability as well as an entropy for radiation, then 

it seems difficult to bypass Boltzmann’s general relation between these two quantities. 

If we consider a system consisting of matter and ether, then the probability of any 

configuration is equal to the product of the probability of the state of the matter and that 

of the ether, taken individually, the total entropy is equal to the sum of the individual 

entropies, and by virtue of an argument presented by Mr. Planck in his report, there must 

therefore exist a proportionality between the entropy and the logarithm of the proba- 

bility, the proportionality factor for the matter as well as for the ether is Boltzmann’s 

coefficient. 

Poincaré: This is exactly what the definitions of both the entropy and the probability 

are based on. 

Lorentz: The first term * in Mr. Einstein’s formula seems in fact to be totally 

incompatible with Maxwell’s equations and with the prevailing views about electro- 

magnetic processes. This can be recognized from Mr. Einstein’s manner of representa- 

tion as well as from the following reasoning: Let P denote a diathermic disk situated 

in a space filled with black-body radiation. We now consider the energy of the rays
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emanating from the disk in a given direction and contained in an instant ¢ in a limited 

volume v. This energy £ derives from the energy quantities £, and E,, which were 

present, at a somewhat earlier instant f’, in two volumes v, and v,, both of which are 

equal to v and lie on both sides of the disk, the one on the same side as _ v, the other 

on the opposite side. If one denotes the common average value of E, £,, and E, by 

£,, and the deviations from this value by «, «,, and @,, and neglects the fluctuations in 

the volume v caused by the interference of the reflected and transmitted rays, one 

obtains a = a: the same value would have to be found for «”. 

Meanwhile, we have (r denotes the coefficient of reflection) 

E=rE,+(1-ne&, 

e=ra,+(1-r) a, 

oe =[P + (1 - ra, 

where the last-mentioned value is smaller than «,’. This result derives from our having 

tacitly assumed that for a given frequency and a given angle of incidence, the fraction of 

the radiation reflected will always be the same. 

Nernst: Could one not demonstrate the temperature fluctuations by measuring the 

electrical resistance at very low temperatures? 

Wien: Perhaps it might be possible to avoid the difficulties with fluctuations by 

assuming an accumulation of energy in the atoms that does not lead to an immediate rise 

in the temperature. Such processes might also occur in thermal conduction. 

Einstein: First of all, this hypothesis is of no use whatever in explaining the law for 

the distribution of radiation between two communicating spaces that follows from 

Boltzmann’s principle. Furthermore, it is obvious that this hypothesis cannot be applied 

to ideal monatomic gases; but the body denoted by K can consist of exactly such gases, 

without changing what was essential in the last argument. 

Langevin: Like Mr. Planck, I too think that the conditions are not the same when 

a body is, at one time, very close to the wall of a cavity and when it is, another time, very 

far from it. In the latter case, the fluctuations in emission and absorption on the surface 

of the wall and on the surface of the small body are independent of each other; the 

probability of both events is therefore a product of the individual probabilities. But when 

the surfaces are very close to each other, the intervening medium cannot absorb any 
energy, the fluctuations are not independent of each other, and statistical considerations 

can no longer be applied in the customary way. 

Kamerlingh Onnes: Based on Nernst’s conception, but in another way, Mr. Einstein 

has calculated that, at 0°, the molecular heat of hydrogen at constant pressure is to be 

expected to deviate from that of a diatomic gas by 4%. In this connection, I would like 

to revert to the remark on the specific heat of hydrogen made at the lecture by Mr. 

Nernst. The calculation mentioned there showed that from 14°K and on, hydrogen would 

[14] 
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display a distinct deviation in the direction toward the value for monatomic gases, and 

this induced Mr. Keesom and me to embark upon the experimental investigation. Let 

it here be noted that this investigation looked promising, for on the basis of the same 

calculation, a deviation could be expected even at 0°C, a deviation already indicated by 

Pier’s experimental results, which were mentioned by Mr. Nernst. According to a more 

accurate calculation, which, however, faithfully followed Nernst’s way of doing it, the 

deviation would amount to about 3% of the molecular heat at constant volume. Pier’s 

result gives about 4%. 

Lorentz: Perhaps it might be of interest to mention the result at which one arrives 

if one applies the idea of the energy element to a rigid sphere able to rotate about a 

diameter. 

If v is the number of rotations per second, then the energy is equal to qv’, where 

q is aconstant. The hypothesis that this energy must be a multiple of hv leads to the 

following formulas, in which n represents an integer: 

2h? qv’ =nhv vent qv =n. 

Hence the sphere would have to be able to rotate only with definite velocities that 

form an arithmetic progression; the possible energy values would therefore have to vary 

as the squares of integer numbers. 

But then, this remark is of no great significance. When applying the hypothesis of 

energy elements, one can confine oneself to systems for which a definite frequency, 

determined by the nature of the process in question, is given in advance. 

Poincaré: Mr. Nernst cites a formula in which v_ is proportional to \T , 

Einstein: This formula contradicts the final result obtained by Nernst himself, and 

would therefore have to be changed. 

Poincaré: At a given temperature, v will be distributed according to a certain law, 

what result would one obtain for specific heat if all values of v were taken into account 

corresponding to their relative frequency? 

Hasendhrl: Nernst’s oscillator model, in which a light-weight atom revolves around 

a much heavier one at a constant distance (Zeitschr. f, Elektrochem. 17 [1911]: 825), does 

not have a definite proper oscillation; but if one calculates its energy under the 

assumption of specific elementary regions in the phase space, one obtains an expression 

of the form! 

’ This formula is easy to derive. The energy is completely kinetic and has the value 

9E = C,(6? + sin’0g’) = C hs + = P| 
sin
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in which c and c’ depend solely on the moment of inertia, and no value of the oscilla- 
tion frequency v appears. To see whether this can be brought into accord with Planck’s 

radiation formula, it would also be necessary to investigate the relation between the 

energy of the resonator and that of radiation, which is probably not so simple in this case 

as in that of Planck’s resonator. The calculation of this relation seems to meet with very 

great mathematical difficulties. 

( and » denote spheric coordinates; p, = OE P, = a C, and C are constants). If one 
od 9 

uses the mode of expression of Gibbs’s statistical mechanics, one obtains 

from which follows 

Now we introduce the phase volume 

2x x 

V = [defo] {dp,dp,, 

where p, and p, are to be taken between the limits 0 and C lr + — P| =E. 
sin 

A simple calculation gives
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Langevin: It seems to me, as Mr. Planck’s argument on the basis of his hypothesis 

regarding the elements of the phase space shows, that the introduction of energy 

elements is admissible only if the system possesses a definite frequency that is 

independent of the accumulated energy. The situation is completely different in the case 

of rotation; here the period depends just on the kinetic energy, potential energy not being 

present at all. It seems to me therefore gratuitous to apply the hypothesis of energy 

quanta to the rotation of molecules. 

Lindemann: The assumption that a diatomic gas molecule rotating with frequency 

v can take up only quanta of the magnitude Av is probably inadmissible. For if this 

were the case, a gas molecule that has been heated up from absolute zero would have to 

gain the frequency v, from the first collision it experiences. Since it could then take up 

only an integral multiple of Av,, its frequency would be viyl +n, after the second 

collision, v, yl +n, yi+n, after the third one, etc. 

It is highly improbable that this molecule will interact at some time with another 

molecule that has an angular momentum of opposite direction but exactly the same 

magnitude. Thus, the velocities of rotation would finally be so great that they could not 

be exchanged at all, i-e., the atomic heat would be SR. 

The introduction of quanta is not gratuitous at all, but absolutely necessary, and one 

must probably adhere to the formula hy = (2nv)*I, or one similar to it, for 

et 1 

According to the theory of quanta, instead of the integral one would have to write 
the sum 

2 we 216 

08 = She - i 
1 Ch 

Ea! 1 -¢ &# 

This yields 

E=- ‘lal * 42 1 
a 2° 1h de\e an ae i 

The quantity A used here is not identical with that of Mr. Planck; here it has the 
dimensions of the square of action (Hasenchrl).
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otherwise one comes into conflict with the radiation laws; but it seems hardly possible to 

derive this formula by means of the usual conceptions of the theory of quanta. 

Lorentz: 1 remember a conversation I had some time ago with Mr. Einstein. We 

were talking about a simple pendulum that can be shortened by taking hold of the thread 

with two fingers and gliding them along it. If at the beginning the pendulum possessed 

an energy element corresponding exactly to its oscillation period, then its energy at the 

end of the experiment must obviously be smaller than that of an energy element that 

corresponds to the new frequency. 

Einstein: Vf one changes the length of the pendulum infinitely slowly in a continous 

manner, then the oscillation energy remains equal to Av if it was Av in the beginning; 

the energy of oscillation varies as v. The same applies to an oscillatory electrical circuit 

without resistance and to free radiation. 

Lorentz: This result is most noteworthy and removes this difficulty. In general, the 

hypothesis of energy quanta leads to interesting problems in all those cases in which the 

frequency can be changed arbitrarily. 

Warburg: One can increase the frequency of an oscillating simple pendulum without 

expending work by letting, as in Galileo’s experiment, a point of the thread fall against 

a fixed rod when the pendulum is in the equilibrium position, and then fixing this point 

during the ascent of the pendulum bob. 

[18] 

19]


