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Preface

This volume presents new English translations of all of the documents in Volume 3 of
The Collected Papers of Albert Einstein, with the exception of the “Scratch Notebook,
1909-1914,” which is published as Appendix A in the documentary edition. The
documentary edition presents twenty-four of these documents in German versions, the
remaining three appearing in their published French versions. The translation volume
does not reproduce the annotations or editorial apparatus of the documentary edition,
which the reader should consult. We have, however, included in this volume the editorial
footnote numbers that correspond to the footnotes in the documentary edition; they are
placed within square brackets. Bracketed numbers in the margins that are preceded by
a “p.” refer to pages in Einstein’s notebooks. Angle brackets indicate crossed-out
material. For the most part, misprints and errors in the original documents have not
been corrected, except for the occasional correction of misspelled names.

The purpose of the translation project, in accordance with the agreement between
Princeton University Press and the National Science Foundation, is to provide “a careful,
accurate translation that is as close to the German original as possible while still
producing readable English.” Therefore, our aim has not been to produce a “literary
translation,” so style has been sacrificed to literalness in some places to enable readers
who are not fluent in German to make a scholarly evaluation of the content of the
documents. We hope, nevertheless, that the quality of the original German prose shines
through.

Some of the technical vocabulary found in the original documents is peculiar to
the time and place of their composition. We have tried, whenever possible, to provide
not modern translations but English equivalents commonly employed in the contemporary
physics literature; otherwise we supply literal translations. Perhaps the most significant
exception to this rule is our translation of “Spannung” as “voltage” or as “potential
difference” (depending on the context), there being no one standard English equivalent
in common use in the first two decades of this century. Similarly, we have reproduced
all notations and equations in a form as close as possible to the original.

Three documents in this volume presented a special challenge—the three sets of
lecture notes (Docs. 1, 4, and 11). As might be expected, the style of these notes is often
fragmentary and telegraphic. To the greatest extent possible, we have sought to
reproduce Einstein’s abbreviations, repetitions, and errors of grammar and spelling, so
as to preserve the feel of the original notes, except in the few cases where such literalness
would have produced an impossibly unclear translation.

We would like to thank the staff at the Einstein offices in Boston for their help at various
stages in the preparation of this translation. We owe a debt to Walter Lippincott,
director of Princeton University Press, for his support and encouragement of this project.
Alice Calaprice, senior editor at Princeton University Press, has provided invaluable
assistance, for which we thank her. Our thanks go as well to Michael Perlman for his
technical assistance in the preparation of the final camera-ready copy of the volume, and
to Charles Creesy and Michael Volk for seeing to our computer needs.

ANNA BECK, TRANSLATOR
DoN HOWARD, CONSULTANT
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DOC. 1 MECHANICS LECTURE NOTES 1

Doc. 1

Lecture Notes for Introductory
Course on Mechanics at the University of Zurich,
Winter Semester 1909/1910
[18 October 1909-5 March 1910]"

Mechanics is the science of motion of ponderable matter. It establishes the conditions [p. 1)
under which the motion of matter ceases (statics).) It seeks to reduce the manifold
phenomena of motion to the smallest possible number of elementary laws of the simplest
possible form, from which it seeks to reconstruct the more complicated phenomena.

I. Mechanics of the Material Point

We shall first discuss the motion of a body whose dimensions are of no importance in the
motions we will discuss, that is, can be regarded as « small. While in motion, such a body
will, in general, carry out rotations and change its shape. But we disregard these
circumstances, that is, treat it as if it were pointlike; we designate it as a “material point.”

Before we investigate the motion of a m. p.I"! as a function of the motive causes, we
must discuss the means and the auxiliary quantities that we use in order to describe the
motion of an m. point.

A. Kinematics of the M. P.

One cannot speak of the motion of a body (and hence also of a m. p.) in and for itself, [p.2]

but only of a relative motion of bodies with respect to each other. If we wish to describe

the motion of an m. p., we must describe its motion with respect to a second body. For

the latter we choose a system of 3 mutually perpendicular rigid rods. (Coordinate

system). We conceive of times as being measured by an arbitrary clock, in that we

assume that means are available for ascertaining the readings of the clock that are

simultaneous with particular individual positions that the m. p. assumes during its motion.
Obviously, the motion of the <body> m. p. is given if the coordinates x, y, z are

given with respect to the c.s.”) as a function of time. Equations of the following type

obtain here:

aX®
x=9) y=%@ z=x0 '
M !
Rectilinear motion —% s
ax N

(a) uniform
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x=a+bt

x +Ax =a + b(t + A1)

Ax =bAt _—_— =b
(b) non-uniform

[p. 31 Arbitrary Curvilinear Motion
(Definition of mean and instantaneous velocities)
[3]

2y - v

Velocity is a vector (structure defined by magnitude, direction, and orientation).
Graphically represented by an arrow of a given direction & magnitude. Usually denoted
by German letters (e.g., ¥). Components @, &, &..

Two vectors & = (&, &, &)
and B = (;m ;y: ;z)

One speaks of the sum & + B of these vectors. By this one means the vector
@B, %+ B, %+ B)
Geometrically

The commutative law applies.
In the case of several vectors,
the associative and distributive
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laws apply.

Acceleration [p. 4]
If one divides these by At by W
and passes to the limit, %
one obtains i "
2
dx dy dz \ 3
di* dit di* A ww'
7_ of
37 Muhan
/ ¥4 ) 5.84Wm
. i
Wegey = P
& .}_.
Hodograph!” Zedlt [mean acceleration
passage to the limit
x acceleration at the time]

L/ 29V /,



4 DOC. 1 MECHANICS LECTURE NOTES

[p. 51 Tangential and Normal Acceleration

There exists a particularly noteworthy way of resolving the acceleration vector into
components, namely, the resolution into a tangential and into a normal component.

BW+4>

N=d—v /%}:'; ‘“‘~\'
dt A4

-2 \
p

Direction cos of N: « B ¥
Direction cos of tangt a’ B’ y

!

(8]

d*x  dv v?
Sz =0+ — A,
dr? dt »_—-Uxay

P 2 : J
____________ =ie

=Vt
Xeqd) gy g
[p. 6] B. Dynamics of the Material P.1

1. <Galileo’s> principle of inertia a m.p. that is <present alone in space> not acted
upon by other bodies"” moves without acceleration.

(a) In a certain sense, this law is an empirical law; (billiard ball, railway car). Strictly
speaking, however, it has the character of a definition. For we say that other bodies do
not act on a body if this body moves uniformly in a straight line. But for all practical
purposes the law can be designated as empirical, because experience happens to be such
that the law can be carried out or maintained without any artificial-looking assump-
tions.!")
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(b) But this law does not hold for an arbitrary state of motion of the c.s. But it holds to
a certain degree of approximation for systems at rest relative to the earth, and to an even
closer approximation for a system whose origin is at rest relative to the center of gravity
of the solar system, and whose axes are directed permanently toward 3 fixed stars.

er bodies act upon a material point, the acceleration vector [é, @, ﬁ] is
de dft dft

generally different from zero. The acceleration of a m.p. is called a force.
We have a certain direct representation of force, and thi T ing of exertion or
pressure that we experience when, for example, we use our hand to set into mOtI
body that was originally at rest.

2. The accelerations impartedby A4 to B, & andby B to A are directed along the
connecting line and are oppositely oriented.

[p-7]

73.

3. The ratio of accelerations of two mat. p. defines the ratio of masses. Explanation of
the empirical laws involved.

One mass can be chosen arbitrarily. The rest of the masses can be derived from it by
experiment.
4. The addition theorem for accelerations.

If one introduces a vector (x, y, z) that is equal to the acceleration of the point
multiplied by m, that is, if one sets

mé =X - -

dr’
then, for two masses interacting with each other, this vector has the property of being
equal for the two, and of opposite direction. We call this vector the force acting on the
mass point. Thus, this force always fulfills the condition of equivalence of action and [p. 8]
reaction.



{p. 9]

[p. 10}
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The equations of motion given above have the character of definitional equations for
the force, thus they can be neither confirmed nor refuted by experience. Nonetheless,
we could find ourselves compelled by experience to abandon them; this would happen

if the description of facts by means of the equations m ?:L: =X - - would lead to our
t

having to assume expressions for the force components X - - - in a very complicated
manner. One would then reject the equations of motion as unsuitable.

Example: identical springs, stretched in the same way, act in the same direction upon
a free body. If the acceleration were not proportional to the number of springs acting,
then it would follow from the equations that the force would also not be proportional to
the number of springs. This does not represent a logjcal contradiction, but it would
result in our presuming that we could arrive at a simpler, i.e., preferable theory of
motion, if we based ourselves on other equations of motion.

General Remarks on the Motion of the Material Point

For our equations of motion to be useful, the expressions for the force components X
etc. may not contain higher than first-order time derivatives of the coordinates. Because
the second derivative can be eliminated by solving the equations. However, the
occurrence of higher derivatives would make a solution for the second derivative seem
unjustified. Hence, for a general theory we have to consider X etc. as functions of

xyz.r‘%7 ... and 7 alone. We have then 3 simultaneous equations of the second order.

The general integrals of these eq. contain 6 arbitrary constants. For the motion is

completely determined only if, for a time t,, x - - and Xy z are given. If X - - are
unique functions, then the solution is thereby uniquely det. For we can write

= X(x..%...t) dj:i dx = X( )dt dx=xdt
m dt

Thus, if x --% -- are given for a time ¢, they can be calculated for the time 7 +dt etc.

i es it proves possible to integrate the equations of motion once (first
integrals), so that one arrives at firs i

(1) The eq. of mot. can be written
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imé =X etc
de\ dt

If the right-hand side cag be directly integrated with respect to time, if X<YZ> vanishes
or <are> is at least independentof x --x -+ etc.

Example. The force is everywhere parallel to a given direction. We choose the one
parallel to the direction Z. Th

Fromthis, x =a't +c, y=»bt +¢,
The motion takes place on a plane, because ady - bdx = 0, ay - bx 2
Remark: the above equation contains the vector (mx, my, mz), thev

multiplied by mass. It plays a role in many derivations. We call it b = (b,
We have

db, = Xdt b, = [Xdi

Fhe momentum is equal to the time integral of the force acting on the body (material
[p- 1]
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d
hence —{m |x— -y—
dt{ [ dt dr

Analogous equations hold for the other axes.

<Free Fall. Force of Gravity>
Practical and CGS-Unit of Mass

We measure time in <average> seconds, of the aver. solar day, and

1
24 -60 -60
lengths in cm. 1 cm is the hundredth part of the distance between two marks of a
specific meter-stick kept in Sévres near Paris.

Besides the quantities that depend only on length and time [‘_;x? ] , our equation
t

of motion contains two additional quantities, namely m and X -- It suffices to establish
a unit for one of these quantities, because the equations of motion make it possible then
to establish the second one.

For if we have defined a unit for m, then we can define

mB =K

as the unit of force that force which imparts to the unit of mass the acceleration 1.

Conversely, if we have established a unit for the force, than the unit mass is that
mass to which the force 1 imparts the acceleration 1.

From the theoretical point of view it does not matter for which of the quantities we
will establish a unit, but from a pragmatic point of view it does.

<Earlier (before Gauss) one could>"" A unit for the force can be defined in the
following way in Paris the earth exerts a quite specific force on 1 cc water at 4. Tcall
this unit of force 1 gram. (In addition, the kg is also used.)

This definition suffers (for precise investigations) from the following drawback. If
people who are not in Paris wish to measure a force accurately, they must compare the
force to be measured with the force that terrestrial gravitation exerts on 1 cc water in
Paris. To this extent the application of the definition is cumbersome.

But the situation is different if the unit of mass (also called “gram”) as the mass of
one cc water at 4°. In this definition, <which now in physical investigations> no
particular location on the earth plays a role. The mass 1 gr can be realized at once at
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any location at which a cm-measuring rod and water are available. For this reason, this
system of measures seems now generally to be used in physics.
The advantage over the other system is only a formal one.
x
Free Fall
At a place close to the earth’s surface we imagine a coord.
sys. whose Z-axis is directed vertically upwards. We inquire
into the motion of a material point with respect to this
system. In order to solve this problem, we must know the
~ 4 Mmagnitude of the force exerted by the earth on the <materi-
y al> body.
One would expect a priori that this force

1) is proportional to the <mass of the> m. p.
2) depends on the physical quality of the point
2 3) The force could also depend on the velocity.?!

<For reasons of symmetry> From the choice of the position of the coordinate system
it follows that [p-14]

X=0Y=0

Further, one arrives at a correct description of the phenomena if one assumes that
gravity does not depend either on the quality or the velocity of the m.p. In this way one
obtains

A% 2o
dr

4y _ 9
dr?

dz _
7

From the two first equations one obtains
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E=a dy

dy

;E—b dx

ady —bdx =0
ay—bx=c

The motion takes place in the vertical plane. We choose this to be the x-Z-plane. In

that case, we have permanently y = 0, and we obtain by direct integration of our
equations

x=ct ¥c¢ — =C
B L 1

=c3+gf

z=§tz+c3t + ¢,

B R

[p- 15] We shall now assume that forr =0, x =2z =0 and . j_: =0; in that case all
¢ = 0, and we obtain

x=0

zZ = gtz.
2

The familiar formula for free fall. By calculating the constants ¢ from the conditions
of the problem, we can solve each problem concerned with free fall.
Example: On a hill of height h is a cannon whose elev. is «. The initial velocity of the

shell is vo. Where will it strike? The most favorable elevation angle? (Air resistance
neglected).
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. we2id
s

Example 2: Water pipe
Equation of the curve.

<For> The fact that the gravitational force is independent of the material <we have
no explanation. > shows a close relationship between inertial mass, on the one hand, and
the effect of gravitation, on the other hand."

Let us now find the law of interaction between <masses> the sun & the planets [p. 16]
through <gravity> gravitation, the way Newton found it from Kepler’s laws.

These laws of Kepler are as follows:

(1) The radius vector sun-planet

sweeps out equal areas in equal times. ’l}f

(2) The planet travels in an ellipse, in B
which the sun occupies one focus. .

(3) The squares of the planets’ peri- - ¢

ods of orbit vary as the third power of the /ﬂ,
major axes of the ellipses.

The nature of the present problem e ¥
makes it seem expedient to use polar
coordinates for the description of plane-
tary motion. In order to apply these, we
will seek to express the acceleration vector in polar coordinates.

First, we have

= cOos q:_—rsinq;fiip

dar dt dt

X =rcos ¢
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. dy . dr de
=rs — =sin ¢— +r cos ¢
yorsne o g T eg T %
. d*x d*r . drde do\?
.17 —sin cos — = = e i
fp-17] ¢ @ JiZ = 0594z 2sm(pdl = rcosq)(dt)
2
- rsinq;‘—id—t‘z—p
. d*y . d* dr do do\?
cos si -5 = — — L _rsi i
@ ne iz =Sne g +2cos<pd[ ar rsmcp(dt)
2
+ rcostpdd—t(f

d*x d?y .
B, = Wcoscp + Psm(p

d?x d?y
B =% ay
A G2 Sne + o c0s0

g -4 _ (d) A
Toodr? dt :

2 2
B’=2drd§o d(p__ld(rzd(p) \ 2

ad T ar T ra\" @

From (1) it follows that r-rde = cdi & rz‘;_‘t" . 2 X

From this it follows first that B, = 0. Thus, the acceleration vector of planetary
motion lies in the direction sun-planet.

We now calculate B, by means of (1) and (2)
Because of (2) we have
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B P ar p o .de e, . do
1 —ecos¢ dt (1 —ecosg) esInQy = Er S
i csin
dt ¢
s ccos
iz~ P
_r—p | d r—pi'9
O @
d‘P_ c d(p 2_02
t 2 &) =7
¢ 1
By
r p Fi
const. [p. 18]

The acceleration imparted to a planet = There is still the question whether

r
this constant has the same value for all planets. To find this out, we must introduce the
period of orbit. We have

The area of the ellipse = %CT = abn c=2""

But since _b_ =p
a

2
hence € =4rl
p T
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[p. 20]
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3
But since according to Kepler’s 3d law 2 has the same value for all planets, we can

N

Force with which the sun attracts

set the accel[eration] caused by the sun = ,El' m

a planet = mass-accel. = “_.f , where f a factor that is independent of the planet. For
2

reasons of symmetry, the numerator must depend on the mass of the sun M just as it
depends on the mass of the planet, hence f = Mx, where x does not depend either on
the sun or on the planet. Hence we have

Mm .M
force = x-—— or from accel. = x—
< 7?

There is still the question: What is the value of constant x? In order to find it, we must
know for one case both masses, the force, and the distance. In order to determine k, we
must know the magnitude of the acting mass. This is only possible for relatively small
masses. (Example of this. Earth as gravitating center mass of the earth)

1t has been found that x = 6.70 - 1078,

More about the methods later on."®

4 20

B=67-10% 7
10783 m- 355136

N 67-1072-8-10'-13.6-3.14
3

_ . 1
=76-10"%¢ FUSEs
O' m weniger als 1000 ™M

. 10”7 der Schwere

y 6-10° 2,5-20
Q “20 6-10°

RdAR d¢- Rsin o{dy>2n
P

cos Y!1°]
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15

. 2nR?si
Anz[iehung] MBPM cosy
® H d
I = kmp2nR? J.sm(pz (ecoslll
o u
u? = R? + r? 4 2Rrcos !2%
udu = Rrsin@do
d
sinpdp = uR—:‘
r* +u? — R?
cosy = B

1 (du
ﬁ;iJ‘F(rz = Rz + uz]

_ 1 Joa_ gy |d _—
—erz{" R)fuz”"}‘ziﬁ

1 1

{ (2 — R?)
B u

— —(r? — R2 c
r R){r+R r—R

= —(2R) + 2R

+u+ konst}

-— }+(r—R)—(r+R)(“1
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Integrating the equations of motion between two time limits r, and t,, one obtains

etc.

determined change of m ix_ .-
dt?.

components of the momentum (mv) of the m. p. Conversely, we see that the total effect
that a force lasting for a certain time has on the state of motion of the m. p. is

General Remarks on the Motion of the M. P.

dx

1) m-_ =X
dr

m@ =Y
d12

md_lz =Z
dr

Thus, the time integral of the force acting on a m. p.

determined only by [Xdt etc. (impulse.

2) The momentum <motion in a plane>
dx
m-—_ =X -
dr 4
mp?Y -y 4=
dr* dr
m@ =Y | +x
dr

But since x=Z

&y dx_d (dy dx}

a7 Y ala &

causes a completely

of the material point. These quantities are called the

=xY -yX .
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one obtains

d dy dx

= Z -y |} =xY -yX

dt { [x dt ydl]} e

4 4 zﬂ =yZ - zY

dt dr dt

.‘i m zd_x —xé =zX -xZ

dt dt dt

d dy dx

! 2 -yt =xY -yX

dz{m [xdr ydt]} .
If the right-hand side of one of these equations vanishes, i.e., if ‘.;‘_: =2 | ie, if the

force intersects the Z-axis, one obtains an integral.

‘We have then xd_y - yﬁ = const.
dt dt
ds—lx ’ —l(xd dx)
2 x+dx y+dy: 2 y y
ds 1( dy dx
(il = i(xa—t- e y;f?) = konst.

The areal velocity of the rad.
vect. of the x-y projection is const.
The reverse also holds.

If central force, then 3 integrals, because all three right sides are then = 0. Then

yd_z. -zfiz =A
dt dt
zd_x —xé =B

dt dt

&
y

[p. 22]
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Mult by x, y z and add. Ax + By + Cz = 0. Equation of a plane passing through [sic]
through the O-point.

Geometrical Interpretation of the Law of Areas

Given are two vectors 4 and B, with the components &,
4,4, and B, B, B, In addition to these two vectors
we can construct a third vector v in the following way:

1. v is perpendicular to the plane laid through & and
B

2. The quantity, or (as it is called) the tensor™ of
the vector is twice the area of the triangle that is to
be constructed from A & B

3. The direction of b is such that a rotary motion of
4 toward B, together with a translational motion in
the direction of the arrow of b leads to a right-hand coil

This vector v is called the vector product of 4 and B.
Components of the vector product. The plane (@8) is + to 8. Hence the angle between
b and the Z-axis is equal to the angle between the plane @8 and the plane XY

o] = &
b, = Acosb, = A_, where A, denotes the area of the proj[ection] of A on the xy plane.
.’z - gx’y i gy’x v T

Analogously for the other two components of b. ' Iﬂ -

We consider the special case where one of the
vectors is the radius vector drawn from O to the point
of application of the other vector. The vector product
of the radius vector and the given vector B is called
the moment of the vector 8B with respect to the point
0.

It is perpendicular to the plane OB, and its tensor
is equal to twice A, and thus to the product of the
magnitude |B| of the vector and the latter’s distance
d from O.
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According to the aforesaid, the components are

yB, - 2B,

In the equation developed above, components of moments appear on both sides. On the
left, the moment of the momentum, on the right, the moment of the forces acting on the
m p. In a central motion, the moment of momentum, and thus also that of the velocity,
is a spatially and temporally constant vector.

The Law of Kinetic Energy
2 where dx is the projection of the element of the
d*x dx
moy = il =dx trajectory.
d%y dy
d?z dz
dxd*x dyd?y dzd*z
m(ﬁfﬁf EF-'—EEF dt=Xdx+ Ydy+ Zdz

()
dt dt dt

dx d*x
2N i
4w’ 2{dz e }

From this d[ ";] - Xdx + Ydy + Zdz

m_;j is called kinetic energy. The right-hand side is the product, resultant force -

path element - cos of the angle between the two. Because one can write it as

[p- 25]
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R-ds'_d_x+“_v.d_+§-£ =Rds cos ¢ ,
Rds Rds R ds

where the bracketed fractions are direction cos. of R & ds.

2

This is the work that the force X Y Z transmits to the mat. p. during time dt.
The law can also be derived directly, by resolving the acceleration into a tangential
& 1 component, B, and B,.

dv
. 26 B ="
[p- 26] s>

Fds=mvi‘.’dt=d Tf
g dr 2

Integrating the equation obtained, one gets

2
mt My

—— = [" Xdx + Ydy + Zdz .
i A 4
In the special case where X Y Z depend only on x y z, it is possible to calculate the
integral on the right-hand side if the trajectory is given.
But in an even more special case, namely if X Y Z are of the form

U =
ox

X =
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)
oy

Z=+£J,
oz

it is not even necessary to know the trajectory in order to carry out that integration.
<Such forces we call forces derivable from a potential >
For in this case we have

[Xdx + Yy + Zdz = J’[_dx LUy _dz]

% +J’dU

+(U - Uy

2
my,
[ 2° + Uo] = const., where U is, thus, a function of the

In this case [_‘f +
2

coordinates alone. If the m. p. turns up twice at the same spatial point, then P, and thus
also v, will have the same value if P is single-valued.” The temporally constant [p. 27]
quantity that we found here for the case when a m. p. is under the influence of temp.
const. forces that are derivable from a <potential> force function, we will call the
“energy” of the system considered. —P is called the potential energy. The law we found
can then be formulated thus:
“The sum . . . . remains constant.”
As the condition for the work [ to be independent of the integration path, we found
the equations

X =2l y=.® z..°P
&

a’ oy

This condition can also be expressed in another form. If one differentiates the third d.
eq. with respect to y, and the second with respect to z, one obtains

Z 3 _,
& oz
analog. X _az 0

dz Ox
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l+')iz ¥ _;1
x*

_ xdy - ydx
2 +y

N
1]
Tl

xX +yY =0, thus the force is perpendicular to the radius. Its
vy= 2 magnitude is L .
r r

ghrs

{ *
\_?/

[p- 28] Equilibrium of the Material Point

If force function present

U _aU _ aU _

& oy o

X=Y=2Z-=

The law of kinetic energy reveals a case in which it is certain that the equilibrium is
stable.

; V4P = %vf + P,  Equilibrium at Py(x, y, z,)
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=P +e

mp +P-P=e
2

P-P <e

Central Forces That Depend Only on the Distance

We have seen that motion takes place in a plane.
1. Law of areas

dy dx _
xZ -yZ =¢
dt dt
de
oralso P=Ff =¢ 1
; ey

2. The energy law. - -

d[mTvz] g F(’_‘dx + Yy + Edz]
r

=Fdr (2)

These two equations determine completely r & ¢ as funct of time.

‘We have
vz . d’l + rzdﬁ
dr

From this we obtain by means of the law of areas

Vi) [%]2 r E:_ 3)

&
v 01[5‘:]2 {G
r\de r

Ip. 29]
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el

By substituting EJ’F dr for v?, one obtains dt and de as funct of r.
m

Now we write (2) in the form

Ldm? _ pdr

2 dt dt
dim|(dr} C| _ .dr
=] « =| =F=.
del 2 |\dt r dt

Differentiating,

M|§
‘N-&L
'%t

& m|T-Cl.F
at 7
& dir =T +mg ..... O
dr* r
[p. 30) From ldmvz =I‘£
2 do do

one obtains, by inserting v* from 4
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a1
_d.. mC1 & +lz =F.‘ir.
dtp—Z__ de r de
mC 3 _ 28 -F
2 ¢a¢p2 P ¢
1
=
r=-mC1_r. 1t (e
7 log r] 7

‘We now determinet & ¢ as funct. of . We set EIF dr = o(r) + h =v* according
m

to eq. 2
Then eq. 3 becomes

Suppose we know the sign of Z_: fort =1,

The sign of the square root is thereby determined up to the moment when 3_r

t
becomes 0 again. Then .3.: usu. changes sign (at ry). This is generally easy to detect

in the special case under discussion. It can be determined unambiguously from the sign

2
of m‘_iz_r=1‘+1.

dr?

From this it is easy to derive d, since, according to the law of areas, [p.31}
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,zi? =¢, hence
dt

Insert (should come before “Central Forces.”)™!

Let us discuss the case of two mat. points acting on each other by central forces that
depend only on the distance.

x, - X, x, - X,

dx
mlF1 = F(r) mz_d72. =F(r)

r r

¢
r= e 5y v 7y

These equations do not change
their form with the introduction of a
uniformly moving coordinate system

Second derivat. & differ[ence] x, - x,

i

i

'

)

i1

!

]

1

]

]

1

1

L}

1 - ] — '

PoX =X raf+f x,=x' +ar+f

1

]

.

]

\

i do not change under transformation.
\

-

S ia
dr *de
c_mlx, + myx,
. my + m,
Vs mx, +mx, =at +f n=
C=

In order to interpret, we define



DOC. 1 MECHANICS LECTURE NOTES

the so-called center of gravity of both masses

£ =(m, +m,) (at + B) moves uniformly

New coordin. syst. that mov. unif., hence is at rest relative to the cen. of grav. O placed

at the center of gravity. Then

mx +myx, =0

or mx, = ~myx, XN 5Hm=F%51)0 5
my, = -my, sq. & add
"""" mr, = myr,
m
1

r, = —r,
2 1

m,

m, +m,
r=rotr,= r
m,

dx
e ['"lmz,l].ﬁ - RS
m r

This is the same equation as the equation of motion with a fixed center of force.

Application to the Solar System. Sun & Planet

Force F(r) =«

=K—

I

mlmz mM
I
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3rd Kepler’s law not strictly valid. Neither is the second law.

Example with regard to central forces Force law between two identical gas molecules

F = % Collision law?"

B
o 1
rx("1)=(2—n‘)—s= E

Problem reduced to a central-force problem.

. N 2N Ort2B gl
or) +h _n;f;s.dr E'_‘+h v
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If v, denotes the velocity at « distance, then k = v,
W) =) +h-C=-28.1_¢ p. 33]
r m-5 A P
df = J' dr
Eyyr
Here ¢ = +bv,
de = ch‘ dr
V)
dr
@ =2a =2 I'__
Py
Example. Mass penetrates into the solar system, branch of hyperbola. What

direction does it have afterwards?®®

L

1#

From the last equation (6) it is very easy to derive the force law from Kepler’s 2nd law.

ol
_mct{ r 1
T e |—— -
2 |log r
1_1-ecosg
r p
=1
&l P
—7 gl
¢ p
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[p. 34 The Motion of a Point That Must Stay on a <Plane> Surface

mi).x=X + X
dr a !
m® -y .y
at *
m£=Z +Z
drt 2 L

surface exerts on the point a
the components (X;: Y, : Z) v

nterpressure that is normal to the former. In that case
as the direction cosines of the normal to the surface.

a_'p:a_'p:?,hence X,=A§9

mﬁ =JL’+A,“",_‘p
dr*
Py z 0=
mQ -Y+l§?
dtl

Together, these equations determine the four variables x, y, z\and A.

If surface at rest & forces derivable from a potential, then the\conservation of energy
holds.

Examples:

Simple Pendulum
Z-axis downwards
Equation of the surface

Ip. 35} d¢ . 99 d¢ _
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ence equations

& substituting 2 instead of A
m

2 A string tension 24’ = mAl

‘f_f=g+lz.

We need two relations for a complete solution.
1) Energy principle. Because xdx + ydy + zdz = 0

EECNCR

& d +dy* + dz* = (2gz + h)dr®
xdy - ydx = cdt

Because the distance from the coordinate origin is const., it is advantageo!
polar coordinates.

to introduce

x =1sind cosw dx =1{cos® coswdd - sind sinwdw}
y =1sin® sinw dy = I{cos®d sinwdd + sind cosw dw}
z =1 cosd dz = l{-sind-d0}
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32 poC. 1

i+ dyt +d2 =
xdy - ydx = Psin*d dof

Inserting this into our equation, we obtain

p{dD? + sin?dddf} = (2gl cosd + h)dr*
Psin?ddw?> = cdt.

Motion of a Point Along a Given Fixed Curve

§1

Thus far we have been addressing the problem of
finding the force when the motion was given, of
finding the motion when the force was given. But
there are problems in which conditions for the motion
are given. Imagine, for example, a small perforated
body pulled along a rigid wire and acted upon by given
external forces. Besides the given external force, 2
reactive force of the wire, to be viewed as unknown
for the time being, also acts upon the point. All that
we assume for the time being about this reactive force
& is that it is perpendicular 1o the tangent on the wire,
so that we will have

K dx + Rdy + Rdz =

L)

v

\NJ

0.

This implies that the reactive force does not perform any work.

To find the mot. of the p., we can replace the wire by the re

it. Formally, this reduces the case of the point pulled
freely moving point. We can therefore set

dx

m&E =X + &
drt

m‘fy_ =Y+ R
dt2 ¥y
d=z

mét =2+ &
dr

along the wire

,

active force exerted by

to the case of the
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We can evaluate the condition assumed for ® by multiplying these equations by dxdy dz [p. 37
& summing, & we obtain

2
d '"TV] =Xdx +Ydy + Zdz (1)

Thus, the equation for the kinetic energy is here valid and is sufficient for the solution
of any problem of motion, as can be seen from the following. A single variable ()™
suffices for the descrip. of the motion of the point. x, y, & z are to be considered the

2
given functions of this single variable s. First, we have v* = [%}

b [l dnld
ds ds ds)de
dYZ

gl 72 ’ 2 2
=@ +y +Z):il—2

Further, we have

dc dy dz

Xix, y, z, —, =, —, t], thus a
dr dt dt

Further, we have to set (as known,

x=¢s) y=x) z=¥%s)

Further,
d_x =¢ é
dt dt

ds2
Vo= (&2 r2 2) 45~
(¢ +x +¢’)dt

X dep.on xyz, % . . andt, Hence, since one has toset x = ¢(g) . . (known func.
of s), j_: = ¢ (q)%q. Thus, X a known func. of g and % Thus, the above
equation yield diff. eq. for s. We can write above equation as

2
d%(¢'2+x'z +'y2) [‘3:_;] ={X¢p’ +Yxl +Zﬂ!’}ds =st (1’)



34 DOC. 1 MECHANICS LECTURE NOTES

where X, Y, Z are to be thought of as expressed in the new variables. If X, Y, Z
depend only on the coordinates, then { } of the right-hand side () depends only on s.
The equation can then be integrated right away. <If we set [Q ds = f> one obtains

0 2 - j:QdQ o (solved for v* = 42, [%]2 - flg) 1))

<From this, -1, = I dq >
+(lfg?]

[p- 38] §2
Geometric Derivation of the Fundamental Equation

We resolved the acceleration into normal and a tang. components.’” We resolve the
total force R acting on the point in an analogous way.

_dv

- K@>

B -2 R = K;
analogously, total force R, = K@ « N

B =1 4

T R =0=K +N'_ ."

—

|

From the tangential components

1| mB =K ... (2a)

K, is gen. known as a func of s% & t. Mult both sides by ds = vd, we obtain

dv
==K
mvdt ds

& d [%vz] = Kds integrable if K, dep[ends] only on s.

The total force K is composed of the external force K™ and the reactive force of the
curve of magnitude N this is perpendicular to the curve &
Just like K. is taken as positive with respect to the center of the curvature.

After the solution of the motion problem, the normal components yield the reaction of
the curve. We have



DOC. 1 MECHANICS LECTURE NOTES 35

mf =K + N (2b)
P

& N-= .m_.vz - K® (2b) If+*is found as a funct of s, then this eq. yields norm.
P

reaction.

§3 [p- 39]
There Exists a Single-valued Force Function. Physical Meaning.

We return to equation (1)
d[%v’] = Xdx + Ydy + Zdz
We have already seen that this eq. is integrable if X, Y, Z depend only on s. We now

further assume that there exists a force function for X, Y, Z that only dependson xy z,
so that

I G
ox dy oz
The right-hand side is then equal to dU, so that equation is integrable.
U h....(3)

<Since v = g‘tf , therefore> The solution of the problem is obtained from eq. (3) by

a single integration.

Let us add here a general remark. Suppose the force X Y Z derives from a system
of bodies that does not experience any spatial or other kind of change during the motion
of the m p. <If <force U> dep. only on the position of the m. p., then> What does the
existence of a single-valued force function mean in this case? Suppose the point moves,
perchance, along an endless wire without changing the sign e o
of its vel. Then? is always of the same magnitude at the <
same location otherwise mechanism for the construction 6
of perpetuum mobile Forces exerted by unchang. sys.,
which must depend only on the position

L]

—
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[p. 41]
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<5> Gravitation
z-axis upwards

2l
Then Xdx +Ydy + Zdz = -mgdz U= - mgz

v? v?
m_— =-mg+h' _ =gz+h
ol 7 ¢

If we write E =a
Vi=2¢(a-2)

vy = 2g (a - z,) thusa can be made
arbitrarily large.

4

Suppose we lay on a plane z = g, then this plane either cuts the curve or lies above
it.

1) @ - z cannot become negative, hence, in the first case, the curve cannot cross the
plane z = a. The material point turns around at z = g, but at no other point, because
at no other point can we have v = 0.
2) If z = a lies above the curve, then a - z is positive for all points of the curve.
Then the point travels without turning around.
1st Case thus shuttling to & fro between A and A’, with the velocity being the same at
each point of the curve. We calculate the time the mobile needs from M, to P.
WV =£ =28(a —z) [32)
dt2
P
1 J' ds
QSM, 11/ a -z

In the integral z & s are related by the equation of the curve.

dt =
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§ (5). Example. Circle in a Vertical Plane (Simple Pendulum)™
V=28 (a-2)

Constant from velocity at the lowest point

vi'=2@+l) a=-l+_

1st Case. z = a intersects the circle

2
—I+;_;<l v < 2ylg

Weset z=-Ilcos®? a=-lcosea
v—ds—ld'g
Tdt ot

(1 —cosa)— (1 —cos 9)

2
12 (3—'3) = 2gl(cos 3 — cos )

d49\? o 8
or i = in2" __ ein2_
l(dt) 4g {sm 5 —sin 2}
d(g) 9 dg
\/g : \/E I :
=dt = Jt=
: [sin?5 — g Fodo [Gn® ne®
2 2 2 2

.8 .o . 5
smi—usm5 N _smi,/l—u
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cos ~ @ = dusino—‘
2% 2
sinE sin gdu singdu
3 2 2 2
d'i = du o = 5 3
l—sinzi \/l—sinzguz \/l—xu
K= sina
where K= 2
ﬁ ) | J’ g du if K infinitely small
I o /(1 —?)(1 — x%u?)
%t = arcsinu
sing
u= it = sin \/ét
sing !
2
8 = asin ﬁt.
sin =
2 . g
[p. 42] U= g = s[l]n( 7:)
2

I - g
siny = smis[l]n(\/;t)

cosg =1 =xs[iln( ) = du(\/%t)

The duration of a simple oscillation
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==

T_ j’ du -K
Y ola - - e

We develop T as a funct of x.

l . 2..2\-1/2 __ 1 2.2
l—xzuz_(l_xu) —1+§xu
132 —1
Ry R TR T ae2ny2nm
+2'4xu + 240, K1

1 1 e (130 .«
7;—27[\/;[1"‘(5) sin §+(2—4) sin i

2
2nd approx[imation} ] + S,

16
2nd Case
v
— =2 ]
2
2
12 (%?) =2g(a + lcos 9) = Zg(a +1— ZIsinz';)

. A . ,8
= 2g(a + l)(l o lsm i)
N/

KZ
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-9

Zg(a +1 N 2 sm.9

du
At = J. f__ 2)(1_Ku)

R R O L AL

= 33

(p-43)  3rd Case. Limiting case

d9\? 3
2 e — = = 2—
i ( dt) 2g(1 + lcos 8) = 4gl cos 3

3
2

3

d i =

\/é 3 th B {sin)d >
I cos 9, I 3

cos -
2

9, _ © =
\/;r = logtg(z + Z)

String tension R, =K, + N

m
N= T mgcos§ = —g{2a— 3z}
——

2g(a—72) _§ to discuss!
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§ 3. Approximative Treatment of the Pendulum Problem

m;i_ﬁ=K,=~mgsinD=—mgh N
ey
I— = -gb
dr & h
\
or, if we introduce the abscissa x, 8 = x <
A
dr’ 1

reformulated VA4* + B*{ 2 __sin() + —B__cos()} = W sin \l—%:’ + 5]

A* + B? A? + B?
S~ ~———
cosd sind

=x, sin Jgt + 6]

x sin[z_"t + 6]
bl T

T= ZEJ?.
g

This is also the form of the general solution.
Graphic representation

Rotating vector. X;, Amplitude. Et +38

Phase angle. 8 = phase A for ¢ = 0.
This graphic representation corresponds to calculation
with complex numbers.?*

[p. 44]
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If G(x) = 0 is a homogeneous linear diff. eq. in the variable ¢ with real, constant
coefficients, which is solved by means of the complex numbers a(t) +jp(z), where a &
B are real, then we can write symbolically

G(ee +jB) =0

Now, the real funct. remains real when it is diff, and the im function remains likewise im
when diff. It is therefore easy to prove that

G(a +jB) = G(a) +jG (B)
Thus, the equation G(a +jB) = 0 is equivalent to
G(a) +jG(B) =0 & to the two equations
G(a) =0 and G(B) =0
Thus, if we found the complex function a« +jB that satisfies the eq. G = 0, then its real

component also satisfies the equation.
Application to the prev examp

dx
st
dr

We seek the solution of the form e* Inserted

I ! l

s,
Solution e! Real part cos Jgt

x =0 is linear eq.

~ 00

Since the starting point of ¢ is arbitrary, we thus arrive at the previous solution.

[p. 451 2nd Example. Infinitely small pendular oscillation with friction

mé- mE x Ré
de i dr
dx Rdx+g_x=0
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e* solution a2

2
We write ¢=—itj§—£_
2m ! 2m

-R‘
R()=eTcosY t=e"cos 2;:

« determines damping

o) - Je -ty -
vt 48]

The effect of friction on oscillation is of the second order.

Brachystochrone
ds\? A x
(E = 2gz + (h) h=0
2
B
J2gdt = J‘ % Minimum.
A/z
<
Motion of a M P. Relative to a Fixed or Movable Plane [p. 46]

f(X,y, z, t) =0

Reaction 1 to the plane, hence proportion to
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e
ax 3y oz

s/

M of 2
_X+3\_a; /

m

These 4 eq. determine x, y, z & A completely.

Example Plane rotates with const. angular velocity w about the z-axis. How does a point

move on it?

I
g

gt =

i

2

sin wt
cos wt

f = xsinwt — ycoswt =0

: X 5
cos : m—g= Asinwt
: d?
sin : m:h—g = —Acoswt
md‘22 =0
z linear function of time. Assume special case where z = 0. dr*
X coswt + d’y sinwt =0
P dr?
dx dp .
X = pcos¢@ = pcoswt I——-Icos—wpsm
. . dy dp .
y=psing = psmowt sin + wp cos

a - dt

-~

L




DOC. 1 MECHANICS LECTURE NOTES
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d*x d%p dp . 5 .
- = — 2w ——sin — w“pcos | cos | sin
P e TR
dy d*p 2 .
2w —-Ccos — w*psin | sin | —cos
P s wdtco p
L] ¥
2
p
a0
p=e’ Thene’=w’ a=%o0 [p- 47]
p =Ae™ + Be®' ¢ = ol

It remains for us to find A.
From the two equations

A =m|sin ué - cos (Jdiy = —Zuxd_p = -2{4e¥ - Be v}
dr* dr dt

If B =0 logarithmic spiral.

Special case: curve at rest. dx dy dz is then a line element on the plane, so that also
a_fdx +.+.=0
ox

Multiplying the eq. by dx = %dr etc., & summing, one gets

d[ ‘;] - Xdx + Ydy + Zdz
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Further, in the special case when X' Y Z are derivable from a potential, then integrable.

2
mY =U+h
2
i.e., <there exists> one can give an integral equation (law of the kinetic energy.)

Example. Spherical Pendulum

Point remains on the sphere f = 1> -x% +y> +22 =0

md__zf = -2Ax -
dr
mfz =-2Ay &
dr’
m% = -2z +mg —_
or, if we introduce 2 =u,
m
dx _ _
W X
dy _ _
‘F = ~Hy
dz _
pr =Mz t+g
« small oscillations z =1 d’__z =0
dr
Thus, from the last equation u = %
The other two equations become:
Ix _ g,
dr {
dy _ g
w P

x & y components behave totally independently of each other. We obtain
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x AwsJ;t+Bsxn | _t=—A\/ sin + BY cos
y =A'cos + B’ sin = —A'\/_ sin +B‘\/__ cos

There will exist points of time at which velocity is perpendicular to radius vector. We

count the time from such a point on, and choose the X-axis such that the ZX plane passes
through this point.

Thenfor =0 =0 and %=0 —_— 1t &
A’=0 B =0.thus

x=A cosJ%t
y=B sin\lgt
2

2
Thus, [;1] + [%] =1 Ellipse

Oscillation period = Zn‘l?.
g

Oscillations of Arbitrary Amplitudes [p. 49]

We have <U> =mgz | m.i = mgz + const. , hence

V=2 +h e (D)

LR
dr*
d?y
L=y i ox
de i

Since neither the external force nor the reaction have a momentum with respect to the
Z-axis, the law of areas is valid with respect to the xy-plane. In fact; if one mult. the
second eq by x and the first by -y, & adds them up, one obtains
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xﬂ - yé =0
dr dr’
xj_); = yj_: =c¢ (law of areas)

or also
F% =c; if one sets x> +y* =7/ & ¥ is the A between the x axis & r

We choose r, 0, and z as coordinates. v is to be expressed in them. We have

2

g ds _d? v b a2
2 2 ’ P
dt dt ~ ,}ﬁ*’é

so that equation (1) becomes

dfl+r';(tlzﬁ+dzz=zgz+h . (10)

We have further 2 +22 = ¢ - - - -(3)
By eliminating ® and r with the aid of (2) and (3), we obtain an equation between z and

f.
rdr +zdz =0, dr = o
lz_zz
dt cdt
do =% =
e rz I“ -z

[p. 50] Inserting this in (1), we obtain:
12dz? = [(2gz + h)(I* — 2?) — C*]dr®

V()
ldz sseae (1")
+yi(z)

never changes its sign & never becomes zero. In contrast, —

dt =

Because of (2), —
becomes zero if Y(z) = 0. Only values between -/ and + come under consideration.
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Positive values of y(z) are certain to exist between them, because otherwise (1”) could
not be satisfied. Thus, there are at least two zero-
points between them, and no more than two because
¢ is of the third order. We call them « and . Thus,
the m. p. moves always to and fro between two
<points> planes z =« & z = p. To traverse the
space between two specific horizontal planes, it always
requires the same time.

From2) db = ey clee

P -ARG

The & descr[ibed] between two planes is thus also always the same.

e A ; for the case where &

« (’2 - 22) Vi) & P are positive

Laws of Motion Relative to the Earth’” (p. 51
d?x .
—sin | cos | m o z =X, X, etc. shall be 'mdep.
of earth’s rotation

* e xz : dzyl Y

cos - h
- 2

X m d_zf =2z,
-‘; dt

transferred to the comoving system We have here the equations

X, = X, COS W +Y, sin ot X, = X, cos wt +Y, sin wt
¥y, = X, sin wt + Yy, cos wf ---
L=z
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This shows us the factors with which one must mult. the original eq. in order to obtain

new ones.
Xy = X,COSWt — y,sinwt Y1 = X,sinowt + y, coswt
dx, dx, dy, . dy, dx, dy,
W—Tcos Wsm+w(—x2sm—y,cos) 0 S os+—Esm
+ w(x, cos — y, sin)
dx, dzxz d?y, . dx, dy,
—_ = ——_ < 2 i - .
a2 = g + -5 a2 —5-sin + Zw( & sin 7t cos) + w*(—x,cos + y,sin) | cos [ —sin
d?y, . . .
gz = sin cos cos —sin —sin —cos sin COs.
dzx d 2 ] .
m dtzz - 2 i} b wzxz} L X2 X =N
d2y dx
m{ dtzz + de—: w yz} Y,
d’z,
m{——dtz =2, -
If we set X, + o’x, = X', etc., we get
d x2 dyz Dodx
d Y2 , dx, dy
mgr ~ Lo Imogs g
d2 D dz
= 0 ol [t
i r=2+ Dot

Interpret supplementary forces <[> In the xY plane, thus & to . 1 to velocit.
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—2m w,%—w,% W, = —WCoS L 5 W“"‘f*
dz dy
w,a—w,Z w,=0
wdz—wdy w, = +wsin
“q~ Pa T 4

d*x dy
%d2—0+2%wsm(pd X

d%y . dx dz
%dtz_o 2/- (sm<p;5+cos1pﬁ) +ev. Y

%d:z = %g+2/vwcoscpd z

Foucault’s pendulum. If motion takes place in the x-y plane, then % = 0. Thenthe

first two equat., in conjunction with the eq., set up earlier for x, etc., show that the system
behaves as a system rotating with velocity w sin ¢. Thus, apparent rotation of the plane
of the pendulum. The 3rd equation shows that, due to the rotation of the earth, reaction
&

dr

We consider a free-falling m p.

force = -2mwcosep=

dx

I=a+2wsm¢y =a + 2wsin ¢(d + ct)

%:b—gt+2wcos<py = b — gt + 2wcos ¢(d + ct)

Ir. 52)
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d?y .

GZ 2w{asin ¢ + (b — gt)cos ¢}

dy . 2
- i 2w{asing + bcos @}t + wgcos et

. 1
y = ct — w(asin @ + bcos @)t + §wgcos¢t3

tl
x = (a + 2wsin @d)t + wcsincpj

2
z=(b+ 2wcospd)t —(g + 2wccos<p)%

Iffor t=0 %yz=0, a=0, b=0c¢c=0, and d =0
Then Reich’s experiments in Freiburg?®®
x=0

) 1585m ¢ =ca51°
y= §a)gcoscpt3

y = 27.5 mm Reich fand 28.4.14%
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B9 190 Elementary Consideration

Ip- 53]

olp—pl=y

p—p =zcos¢

Factor % missing.

Foucault’s Pendulum

dz

d—t;=—%x+2wsin(p‘% dx —y
dy g . dx
F——Ty—husm(pz dy x

2
d(Z)=-2,
7 & df dy  dx d
et 2 (y2
az("z‘ya)—“’“’““’)m" )

ds
277 ) = - () C.
(r dt) wrt+

Set © + @'t = 8’. Then the ordinary pendulum law.

Dynamics of the Systems e, [p- 54]
For any of these points 2 /\
mZX = TX, + TX,
dr

Law of the momentum.
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Law of the Center of Gravity
on?* - T8x + TEX
dr -

i

for Xm % we can then set
1

{ } = £X components of the momenta of all points of the system = momentum of the

system.
A different mode of expression We define the center of gravity &n{ of a system of
masses
ME=Ym
etc.
[p-55] thus sm® - 4t
dt dt
Thus, ﬁ = g
dr
etc.

The center of gravity of a syst moves like a mat p. of mass M that is acted upon by the
resultant of all external forces of the system.

Such a law is necessary because the dynamics of the mat. point can otherwise not be
maintained.
Examp. Heavy body falling freely in empty space.
Examp. Masses attracted by the center proportionally to their distance & mass.

Force, = - wnx .
Resultant = - x ¥ mx = - MEx 54
&£E e g
PP £

dbor i
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Identical with the equation of motion of a single mat. point. Central force, thus in the
plane, motion in ellipse as with spherical pendulum with small amplitude.

Examp. Recoil of firearms. MV + mv = 0

Examp. Vibration of the ground caused by the operation of a machine with reciprocating

parts.
Examp. Light pressure. Mass of energy.”!

Law of Moments of Momenta [p- 56]

Repetition of the law of areas for the mat point. Here

d dy dr)l _
&l x® -y &R =
dt dt dt

4

T [xdy ‘y%] = TXGY, - yX) + IXGY, - yX,)
xY, - yX,

Can also be conceived vectorially "

The sum of the moments of internal forces vanishes. What remains is.

d dy __dx) _ N
.t.i_tzm [XE yZ] Y Y ar, -yx,.



fp. 57)
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If system is closed, then sum of areal velocities const with respect to every plane.

Em [x% = yj_r] is then const. As regards rotation, analogous to the law of
t

mot. of the mom of momentum. Difference.

Law of Areas for Isolated Systems

<Graphic> Geometr. depiction.

If @ =0, then p is a constant."” If the X - Y plane is chosen 1 to y, then only one
component of the resultant momentum, and this permanently.
The moment of momentum of a solid body rotating about an axis.[*’]

4 ym [xQ -yfi_”] =Y @Y, -yX) =0

dt dt dt
Jo + Mo’ =0
12+ MREY. -0 R p
——/\“
Angle person traverses JIT — | ’l $

relative to the body is & - ®*
Atthestart o =0 & 9’ =0

At theend ¥’ - 0 = 21 Now,

10 + M®' = const = 0 (because for ¢ = 0)
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The story of the cat™
,. 58] Complete the discussion about reaction of machines oD foundation.
The moment of the momentum must also be constant over time

zm {yid_z. - z‘i’l} = const.
4 dt
extended over all moving masses of the machine. Otherwise torques & thus vibration of
the foundation.
The law of <areas> moments of mom. with respect 10 the center of gravity-
Derivation.
If the moments vanish.
Heavy rigid body in homog: g,ravitational field.
Moments vanish (mov), thus the law of areas.

Special case of rod.
& A
o =ra — =
r =% rd (%
dy' :
tarp Z=1b
y =r -
dzl
Z =rc & =r
dt

Thus, the law of areas (ab - i)y (mr) = ¢ etc.
Deformable bodies in gravitational field. The law of areas holds as regards the center
of gravity- The cat again-

The Law of Kinetic Energy™

Derivation ...:+-**
Work by internal forces
Sum over all combinations

o




[p- 60]
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T T +! hence X;= Q;'r@
=F, =F,-dr

l r }

We assume that the F depend on the distance alone.

F il ik T = I‘d’ = d
= — ]len WOlk ((p‘)
I O tal WOI k d(Eq)Jk) dII

From this the energy principle holds in pure mechanics.

A part of the external & internal forces of the system may consist in binding forces
(threads stationary surfaces etc.), especially important the special force where binding
forces do not perform work. In that case the energy principle holds without these bind.
forces appearing in it.

Systems with one degree of freedom can be solved compl. with the aid of the law of
kinetic energy.

Example. Gliding chain.

z = ¢ (bend) Y4 as
Work = -p dA dz = -pgdA ¢/(0 + A)do 2
Integrated over A: -pgdo[e(o +1) - ¢(o - 1)] / 4
kin. ener, ol doy ‘ 6

' gy =

d(kin. energy) = work. When is motion independent of /?
Konig’s theorem."* The law of kin energy with regard to the center of gravity.
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59

-

Work mg dz = - mgl sin 0 d0

__7'

x

Simple Pendulum from the Energy Principle

z=Ilcos

r;u} ds) )
2 dt \1
2Ql47)
2g iny = d—‘—g Pot Energ — mgz

das

—pghcos 9 + L ?(Ei) = konst.

2
(2)9 “ZZcos9 + (Z‘?) = konst.
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60
Moments of Inertia*")
1) Moment of inertia w. resp. to plane Xmd? Yomx?
2) Moment of inertia w. resp. to axis Xmr* Y +y%)
I +y* + 2%)

3) Moment of inertia w. resp. to point
[p- 61] Example: moment of inertia of a sphere w. resp. to the center.

X mr* first over shell of the sphere = ©* £ m for the shell

4x’dr-o =y, m over the shell
Py, m = 4np Fdr

Integrated. over sphere yields garpRs

With respect to a plane lis-tr-p-R5

]
N
2
S
x
"
X
wl N I

With respect" " axis %npR‘ =

[}
°
8
NN
[}
~
-

Example: Homog ellipsoid  } m2?
x =

Nix

—

Then boundaries unit sphere

de! = Ldo 22 =c&?
abc
|

hence I_= p abc’ J'do’z’2 = inpabc —Mc*
i 15 5

Example. Body of rotation bounded by two planes.

R
pdz Ider P = ;R‘dz-p
0
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For the whole body of rotation

Iz=%’J'R44z R = ¢2)

Examp cylinder. lz.pRgil- =MB_2 k = R

7 &

General Theorems on Moments of Inertia

1) Known [ for axis through center of gravity.
Sought for arbitrary axis.

I=Ym(x*+y*) =Y m{(x' +a? +(y + b)*} !
o L
‘

=Y mx?+y?)+ 22 max' + 22 mby’
+ (@* + b*) Y m

From that the theorem. [p. 62]
analogous theorems for the other two kinds of moments of inertia.
2) Moment of inertia dependent on direction.

— 2___ 7 o] V4
I=3mé* =Y mr’sin’¢ /3y }Z‘rlt
=Y m(r* — (rcos ¢)?) g
~
rcos¢ = ax + Py + yz . I .
rt —r2cos? ¢ £ 4

=02+ 2+ 22)(e? + B2 + 9?)
— (ox + By + yz)?

m|x* (B2 + )+ -+ —2Byyz — - —-
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In sum

o2 m(y* + 2} + I mE® + x)} + ¥ Lmx® + y*) = 2By T yz + - + -
I = Ao® + Bf* + Cy* — 2DBy — 2Eya — 2Faf.

a B y
gt a TTa
a=X./I etc

1 =AX%+ BY?....—2FXY

If the axes of this ellipsoid are chosen as coordinate axes,
then D, E, F vanish. The axes are called major axes of inertia
with respect to the point. Condition for the major axis of
inertia z to be symmetrical to the xy plane, thus, for it not to
change when the sign of y changes. So, D = E = 0.

Each of the major axes of inertia with respect to the center
of gravity is also the major axis of inertia with respect to any
other of its points.

D=Yyz=0 E=Yznx=0 z=e+Z2
D=Yya+2)=0
Yo =0

hence D =D’ =0.
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Systems of Forces Acting on a Rigid Body

The position of a rigid body is determined by 6 variables (6 degrees of freedom). We
need therefore 6 equations for the complete determination of its motions. These 6
necessary and also sufficient equations are furnished by the momentum law and the law
of moments.

SZrS) -TEx SEAE L) -Ton-m

Since these equations must completely suffice for the calculation of the motion of the
motion of the rigid body, two systems of forces acting on a rigid body are equivalent if
they have the same geometric sum of forces and moments. Such systems of forces can
be substituted for one another.

From this follows the elementary law of displaceability of the point of application of
a force vector along the straight line in which the force vector lies.

X=X"=Ka
yZ -zY =2A
y'Z' -Z'Y =24’

Proof also vectorially
2 vectors are called equal if they have equal components
XYZ) = (XYZ)

[p. 63]

[p. 64]
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yZ -zY =L
zX -xZ =M (L M N) can be represented by a vector that is constructed as follows

xY¥ -yX =N

This construction shows immediately that the force can be displaced along its straight line
without changing the moment.

From this the law that two forces acting along the same line in opposite directions
cancel each other.

Weput Y X =X ----YyZ -2, =Y N=N.

The effect of the system of forces on rigid body is completely determined by X*Y*Z* - - - -

N*. X*Y* Z* resultant force. L*M”*N* resultant moment. In general, it is impossible to

indicate one force that is equivalent to a system of forces. We seek simplest possible
[p- 65] representation of a system of forces. To this end pairs of forces introduced. Two forces

of equal magnitude and opposite direction.

We investigate this system of forces

and obtain
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= 6Y -yX) + (& () -y (X))
=@ -xXY-(@ -y)X

The force couple has no resultant force vector but only a moment of rotation. This is
a vector product of the point-connecting vector and the force vector.
1) <Direction of ve> absolute position of the system without effect on the moment
2) Magnitude = 2 A = force - distance
3) Direction and sense of the vector 1 to the plane of force couple ([r ?], force,
mom.) = right-hand system Force couple determined by vector with a totally
arbitrary point of application. Each moment vector can be replaced by a force
couple.
From what has been said, it follows that
1) arbitrary system of forces acting on a rigid body can be replaced by
the system X*Y*Z* L*M*N*
thus also by x*y*z* 000
and 000 L*M*N*
That is, by a force through the coordinate origin and force couple.

[p. 66]
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Geometric derivation.
K’ and M separately added geometrically and each combined to a resultant.

£

/
v o -’ Y
ey, o,
y, .

X=Y=....... N=0
Special case. All forces lie in a plane.
Analytically
X=YXX=0
Y*=XY=0
N =EY-yX =0
Graphically

Here replaceability by resultant force.
[p. 67]) Even more special, all forces [ X-axis
ThenXX =0 -XyX=0
Example. Reaction of beam resting at 2 places!®®
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A+B=YXP Bl =XP§

If forces |, then treated graphically as follows

5‘::-,[3 7. R

o

il
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[p. 68]

= Il A
i ~ i3
‘] AN -7
o 4
f N -~ g
! o ) J
A7 7B RERY -
:' = i’
e
C s
® AY J
2. Special case, all points have the same direction, but points of application
X =P,a; Y P, B; Z, = Py"
Seeking resultant system
* = GEP' Lx = E(yvzv e ZVYV) = yEyVP‘ - BXZVPV
Y =Y P, M=
Z* =YY P, N* =
Now we choose the coordinate origin such that Xx, P, = Xy P, = Xz P, =0. Is
always possible unless 2P, = 0. Then moment vanishes for all «By. Thus, if one also
changes directions, one can always replace the forces by resultants passing through the
coordinate origin. Center of gravity of the force system Case of gravity special case.
Here the magnitude of the force acting on the individual point is P, = m,g. Thus XP,x,
[p.69] =g¥m,x, = 0. Le., resultant passes through the point that we have designated in the

general dynamics of systems as the center of gravity of the system.
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Motion of a Rigid Body about an Axis

d(ng) =Y (Xdx + Ydy + Zdz)

x =rcos$ dx=—rsin8d.9+cgs9dr=—ywdt

0
y=rsin$ dy = rcos 3d9 + sin 3dr = xwdt
z2=2 dz=0
1 2
d 50 =wdt) (xY — yX)

do
i Y —yX
Idt Y x y

We now insert the reaction of the axis (X;Y,Z) & (X",Y4Z” & treat the body as free.
We obtain®’

ax . d*x e
me=x +X'+)X Zm( i dt,) 2(yZ —zY)—hY

d2
*

):m Y=Y +Y +YY Zm( 37 ) Y(zX — xZ) + hX"

d?*z
ZmP =Z+Z2'+)2

dx d’x dy dw-——w’x— dw g ”
a~ " T %a Va T Y Kea?l
dy d’y dx dw A do

a = - tegtrg = ety z

dz dzz_o .

@ P Y
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—?Y mx —%‘;—)Zmy =X +X"+3X

—wZZmy+%(:—)me= Y+Y +3)Y
0=Z+Z'+YZ

2) —@*) mxz — ‘i—?Zmyz =hX" + Y (zX — xZ)
dw ,,
1) +w?Y myz — Ezmxz = —hY" + Y (yZ — zX)

do
a = Z(XY - yX)

We seek to reformulate equations in such a way that o shall be the only variable
occurring. To this end we introduce a co-rotating system

x=x'cose — y'sing

y=Xx'sing + y'cos¢ /

z=1z
Ymyz=sing) x'z' +cosp) y'z’

Y mxz=cosg) x'z' —sing) y'z' (7]

<

We consider the special case where the given external forces are not
present. {?] In that case the sum on the right-hand side vanishes. {2
When does P" experience no reaction? or when does one need no X",
Y” to maintain the rotation about the axis? We must have Ymxz = Ymyz = 3
0. The Z-axis, i.e., the axis of rotation, must be a major axis of inertia with
respect to P".
In addition to that, when does P’ experience no reaction? We must o
have Ymx = Lmy = 0. Thus, the axis of rotation must pass through the
center of gravity, and one of the major axes of inertia must be through the center of
gravity. So that none of the two bearings would experience a reaction. No reactions will
then take place even if the body is accelerated by a torque N.
Example of rigid bodies on elastic axis
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1) Disc perpendicular to the Z-axis. Symmetric with respect to the x - Y plane. ¥xz
=Xyz =0. X" = Y" = 0 The first two equations yield?®!

Iy mx = (X +X")  -IME =X + X
&
-dYmy = (Y +Y") -uMn = Y +Y"

@MA =K, /‘28”

Let us have an elastic axis
that is r_nountcd sor_new.hat ? L
eccentrically. Rotation is

accompanied by a sag £

—

A=A, +E

P

On the other hand, we will have
K, = EE The above reads accordingly L

FM(A,+ E) = EE
_ oMA,

e - M '5119&”;’ 16“41&

Critical Angular Velocity for Vanishing Denominator p 72

We have here considered the case in which the axis does not
pass through the center of gravity. Now let the axis pass through
the center of gravity but not be a major axis of inertia. Let the
center of gravity coincide with P’. No external forces may exist.
From equations 4 & 5 we then obtain

- ? 2mz = hX"
- o Dmyz = hY"

axis is the major axis of inertia, then the right-hand side
vanishes. But if the maj i ingrtia does not coincide with
the axis of rotation, but about Y-axis

The sign and the magnitude of the reaction are here
determined by the centrifugal moments.
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Physical Pendulum

53]

Id_datzip=zxY-yX=-Mglsin0

& if one sets I = Mi?

@ = _g_l sin 0
dr

p- 73) This determines the motion. Synchronous with simple pendulum of length L,

2
. EsnoifL-%
dr’ L l
We now introduce the radius of inertia (radius of gyration) for the center of gravity.
We have
k2
I=1 +M>? Lo 1-2-=0
! ol r?
or MEK? = Mk? + MI? 1=k
Lo, =2k,
& K=k>+D

Substituted in the above relation
k2
U,

We now imagine that the pendulum is suspended at O’ and that the L* of the
accompanying seconds pendulum has been determined. For this we can apply the relation
just obtained and insert the quantity [’ instead of

K K
L*=1' + 2 or, because !’ = _
I ]

2
L‘=_Ii+l,hence=L ]
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The relation between the points 0 and 0’ is thus reciprocal. Therefore, by observing
the oscillation of any rigid pendulum one can find out the length of 2 mathematical
pendulum of the same oscillation period.

The above formula makes it possible to determine the minimum oscillation period
on the axis.

Further discussion of above formula. Minimal oscillation period that can be attained
with the body about the axis of the minor moment of inertia.

Experimental Determination of Moments of Inertia & Torsional Forces by [p. 74]
Means of Oscillations of a Suspended Rigid Body

d29
7 =08

. |© 2n (0]
B—Asm\/;t 7—\/;
T=27z\/g

It is not possible to determine both quantites 8 & I from such measurements, but this
can be done using a second experiment in which the moment of inertia is increased by
adding two cylinders.®™ For each such cylinder

I =m{k* + 8%} where k = 3
7

I = m{lRz + 62}
2

1, =m{R*+28%

1ot
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7v=h|l+mm2+uﬁ
e

The two equations yield R and 6. Modification of the method, in case torsion not
independent of the added weights.

General Principles of Mechanics

Principle of virtual moments (statics).

Equilibrium of the point
Equilibrium condition of a point
X=Y=Z=0 P
We think of the point as infinit. displaced 8x 3y 8z ‘ﬁ%&

Work of the force 34 = Xdx + Y8y + Z,z = 0.
No joke. Happens only when a part of the forces is not given but determined by
conditions (connections). These forces have the characteristic property that their work
vanishes in its entirety. Let this always be assumed.

Example Point is forced to stay on a stationary surface (f(x,y,z,<t>) =0

Force of the surface on the point Aa_f, Ag, Ag.
dx dy oz

Total force when, in addition, another force X, Y, Z acts on the point.

X+lg
ox

Y+Agr
dy

Z+Ag
az
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Equilibrium condition. Vanishing of those I components.
Can again be replaced by

X+libx+ Y+l.a_6y+ Z+l.a_.éz=0.
ox oy oz

This holds for every arbitrary system 8x, 8y, 8z. But for those displacements in which
the point does not leave the surface, we have the relation

A?be+-+-=0.
ox

(Special case of the law that the connective forces do not perform work.) If we confine
ourselves to the consideration of such displacements, then the connective forces make no
contribution to the virtual work. Thus, for such displacements, which do not violate the
conditions, we have the equation

X¥Wx+Y8+Z8z=0
if 8x 8y & 8z are connected by the relation

ibx + ifby + isz =0
ox dy oz

These equations are really sufficient for the calculation of the coordinates of the

equilibrium position. Because if one eliminates 8x from the first equation by means of
the second one, one obtains an equation of the form B 8y + C 8z = 0. This is satisfied
for an arbitrary choice of 8y & 8z only if one chooses B =0 and C = 0. To these
two equations is added as the third eq. f=0.
Generalization. Let there be a system of n material points P, P, --- P, We seek the
general condition for the equilibrium of this system of points. Let each point be acted
upon by connective forces X, Y, Z, and explicitly considered forces X Y Z - - - Then we
have for each point

X+X,=0

----- hence also (X + X)8x +-+- =0
thusalso X (X +X))8x + - +- =0

This equation holds for any arbitrary displacement of the points (even for one incom-
patible with the given conditions). But if the displacements are chosen such that the

Ip. 76]

[p- 77]
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conditions are not violated by them, then the connective forces do not perform any work
during displacement, i.e., we have X(X,8x + - + ) = 0. Thus, we also have £X3x + - +
- = 0. The sum of the virtual works vanishes for every virtual displacement compatible
with the conditions of the system. Proof that sufficient restrictive eq. for the solution of
the problem.

The advantage of this principle consists in the fact that the connective forces do not
have to be investigated & that the virtual work can often be calculated without using a
Cartesian coordinate system.

Example. Epicyclic wheel. Consider
infinitely small rotation of the outer
wheel. Infinitely small rotation of the
outer wheel a,, the epicentric wheel «,,
the epicentric arm a,

There are two conditions between these displacements because 0-1 & 1-2 do not slide,
i.e., they experience identical displacements with their places of contact. Hence, we must
have
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(rp +r)e, -re, =0

eliminate a

(ry + 1)y -ra, =re,

2ry + r)ay=ra,
According to the principle of virtual moments

M,a, + M, =0
2r, + 1)

T

M, +M, =0

Special case of the principle when the forces are derivable from a potential
If @ is the potential energy, then we have for each point

&v ®V
- a0 )
rinciple then takes the form Y [Z=8x +-+ | =0
x,

or 3(®) = 0 for every displacement compatible with the conditions.

Further, if only a part of the explicitly considered forces (e.g., all apart from the external [p. 79]
forces) are derivable from a potential, and we call them residual (e.g., external) forces

XY Z, then we can write

EXGx +Y3dy + Z3z - 30 =0

D’Alembert’s Principle

Considerations that are analogous to those regarding the eqilibrium of the material point.
Equations of motion of the mat point (freely movable)
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-X=0] &

mﬂz—Y=0 3y [md_)x—X]bx+-+-=0

------ 8z
Triviality
Secondly, we assume that the point is subjected to two kinds of forces, namely explicitly
considered forces and connective forces. Purely formally, as above, the following eq. will
then be valid:

mﬁ-X—vax+ mﬂ-Y—vaym»-:O
dr’ dr

The quantities &x 8y 8z determine for each moment a position infinitely close to
the real position of the material point. We will now choose these infinitely close
positions in such a way that at any moment the point could be displaced fromxy z to
x + 8x, y + 8y, z + 8z without violating the conditions of the system.

[p- 80} If we are dealing, for example, with the motion of a m. p. on an arbitrarily moving
surface, then let 8x 3y 8z for time ¢ be chosen such that f(x + 8x, :, 7) = 0 The law to
the effect that the work of the connective forces vanishes holds for such displacements.
Thus, for example, for the mat. p. on a surface, because connective force 1 to the plane,
but displacement in the surface. We will have, therefore, for such a displacement X, 3x
+Y,8y + Z 8z =0 Since the above equation is valid for every virtual displacement, and
thus also for such ones that do not violate the conditions of the system, we also have for
virtual displacements of the last-mentioned kind the equations

md_&—Xﬁx+'+-=0
dr?

where &x 8y 3z are connected by those relations to which the connective forces are to
be traced.

Analogous argument for systems of material p. If we again introduce connective
forces and other forces, we get
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E[m% —X-Xv]6x+-+-=0

1-n

for every system of 8x 8y 8z. If 8x - - are specially chosen such that the conditions
of the system are not violated, then

lg(vax+-+-)=0,

so that subtraction yields [p. 81)

dx o
EV:E m,F - "]qu" + 4 =0
1 7 k
dx
Yijm—-X]Jdx, + -+ [=0
l1ton dfz

This is D’Alembert’s principle. Next we have to show that this equation gives the
solution of every problem of motion.
Let a virtual displacement that does not violate the conditions of the system be

determined by k& mutually independent quantities 8g, - - - - 8g, (k degrees of
freedom)
ox =a—x15q +§515q --~-%6q, dyy -0z,
' og ' 0qy ¢ Oy '
) ox,
6xn_ x"aq‘ ______ X 5‘1:; ..........
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dx ox a
If one sets Ym— =0 YX ™ =R,
> di* dq, .. ' oq,
dx, ox, ox

— = Y~ =R
Emdtz aqz QZ E vaqz 2

v v

then the above system of equations assumes the form

(Q, - R)8q, + (Q, - R)8q, -~ - - - (@ - R)8g, =0
Since all g, are independent of each other, we have

Q=R Q,=R,----- Q. =R,
These k equations are just sufficient for the solution of the problem.—

If the conditions between the &x - - - - can be represented as equations between
thex, - - - -z, & 1, thatis, in the form f(x, - - - - z,f) = 0, then the system is said

to be holonomic.

The equations of motion for such a system can be found in the following fashion, which
was first presented by Lagrange. We have

dx
ZV:[X, —mﬁ&x‘, + .+ ] =0 and f (x, =z,1) =0

mc from 1 to h

For such displacements, which are compatible with these conditions, we have

of, R : h variations can be
& };‘ ((’ixv RS ) =0 : expressed from the rest

: 3n - h = k equations from the
A Zg’ééx +-4-=0 © first
2 v ox, '

A Z%éxv+'+'=0

Restrictive equations mult. by factors A & add.
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Y -m L T a0
v v dtz axv axv axV '

3n such {} are present. We can choose k of those = 0 by choosing A in the
appropriate way. These terms of the sum will then vanish. The 3x 8y 3z of the rest are
then arbitrary, since of the 8 3n - h = k can be chosen arbitrarily. From this it follows
that the remaining {} must also vanish. Thus, one also obtains the equations of motion
of a system of points in the form

éﬁ =X +A % +12-a—fz + "'l,,a_f"
v di? Y ’ax, ox, ox,
'
) virom1lton
mPy B
vdtz v axv

Egquations of Motion of Lagrange

Of historical interest only."**!

<Principle of Least Action>
Hamilton's Principle. Lagrange’s Eq. of Motion

We start out from d’Alembert’s principle

d%
E [Xv . mV dt;]bxv iy Ty = 0

v

for all virtual displacements compatible with the cond. of the syst. We can put

(p. 83]
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[Idﬁ]
8=
2d:

dx dx, d(8 dx. dx. |dx
dids, | ded®x) alax b "6[ ]

2= T @@ T @ e ala | d &

v

The second term can be written in another form. We shall show that it is equal to the
variation of velocity

déx d(x+6x) dx 5 (dx)

dt dt dt de
d?x, d {dx, 1dx?
oz = E{Ti?‘s"} “5{5 ?}
d dx, m,(dx,\*
Zxan 3 gm g on+ 0T (G) -0
\ J 1 v J [\ Y_J
6A 0 oL

Integr. over time limits. All 3 shall vanish at time limits.
[, + 8Lyt =0
‘ﬂ

[p- 84] We shall rewrite the work A, according to the follow. principle we choose indep.
variables p, ----p,, whose number is equal to the number of degrees of freedom. 4,
will then have the form P,8p, + P,8p, ------

We now specialize the problem a little. Let the forces be derivable in part from a
force function. Let II be the potential energy. The part of the virtual work A4, derived

v

from themis -Y° [gx_uaxv +o+ ] = 31
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In addition, forces might be present that are either given or sought as functions of
time. If X Y| Z{ are components of these forces for 1 point, then the corresponding
termof A’ is

Y &Xex, + -+ )

ox, r

Ifweset 8x, =Y, 5
P,

N

3p,

then we recognize that the part of work considered can be expressed in the form

E P 8p, . If the P, are to be viewed as functions of time only, then we can set
B

YPrPdp =8 -EP“ P,

Substituting both terms for A, into the above formula, one obtains [p. 85]

n

3 J'(n -L-Y (@, p)oef =0

'0
This is <the least action principle > Hamilton’s principle. If all forces can be derived
from a potential (II), the latter assumes the simple & familiar form

3 }(H-L)dt = 0.

fo

In this principle the Cartesian coordinates of mass points no longer occur. It is valid
no matter what coordinates we choose to determine the position of the points of the
system.

Now we start out from the general form of Hamilton’s principle

n

(BL +A)dt = 0
J g

I
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We use general coordinates, which determine completely the state of the system
(p, ----p,)- Then we can set

=Y P3p,

Further, we have to examine how L depends on the p,.

dx’
Wehave L=F 2w v %, = 8,0, p,)
de a“’vxdpl
_— e e +
dt dp, dt
d
Thus, L, is a function of p, & ;: 2 Pi

fr. 86} For that reason we have to set
8L = E 6p + Yy __bp,

Replacing A, and 8L with their values, one obtains

J EaLb , +Eibp, +Y Poprdt =0
ap,

dp,

v

The factors of 8p, & 8p’, do not have to vanish individually!

But we have
OLap, = 0L dpp - 410y, | - pp 41O
ap. ap, &t dt| ap| di| ap;

But since the 8p, must vanish at the limits, it follows that
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' dfaL
- [ &p &l%% 4
'[p'dt[ ']'
1]

ap,

The above equation changes therefore into

rwlJoL  dfaL
Y= -2l piopdt =0
{ op, di|gp!

Since the 8p, can be chosen totally arbitrarily, as long as they are continuously variable,
one obtains

oL d

=-=2 -P =0
dp, dt

v

% + Pv =0.
ap,

d[aL] ol - L
— +

di| gp! ap,

These are the important equat. of motion of Lagrange.
In the special case in which part of the forces can be derived from a potential, part of the
_an

o,

forces has the form

Example. Ip. 87]
Two identical rods are linked to each other at their ends by means of threads. One
of the rods is situated so as to pivot around its middle.*”

2 M
L = Mg + 21292
M5 o

4
=M 202 4 J20y/2 /
¥ g + ron / =

O=-Mglcos?®

From this at once equations of motion
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daL L 3@-L) _,
dtag d¢

doL  am-1)
dt 3ty ad

The equations yield:
d 2gf) = -
E(ka ¢) =0 ¢ = const.

%(Mno') +Mglsino=0 o =Esino.

2nd Example. | i
=lcos 9 + "= —Isin 39 — asin ¢’ /
& =lcos acos ¢ 4 v 2 y
n=1Isin3 + asing n = lcos 8% + acos @@’ 42 { 2
= a
IT = + Mg{l(1 — cos 9) + a(l — cos @) ' e y

Calculation of the kin. energy

1) If the mass were concentrated
at the center of gravity X

(58]

Yeer ny = Yoo « g + 20t cos(o - o)
2) Kin. energ. with respect to the center of gravity %Mazd z

M
} L ==
{p. 88] 2

10 + ;azq:a’2 + 2alt'q cos(d - @)
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For infinitely small oscillations only the smallest terms are retained
o= %(102 + ag)

L= 1‘_2”(113'2 o gawz + 21V )

The Lagrange eq. without P, i % + i(H -L)=0
dt ap! op,

(M1 + Malg") + Mgld =0 10" +alg’ = -gld
4 2,0 I i’ 4 2,0 -
3Ma ¢ + Mald' | + mgap =0 alt’ + o ¢ = -gag
Linear homogeneous equations that can be solved trigonometrically. Set
0 = A, cos(wt + 3) (-*? + ghd, -ale®d, =0

@ = A, cos(wt + &) ~ale® A - %azd +gad? =0 )

Wl -g) [gam2 = g) -alo' =0
Biquadratic equation for frequency (©) From this w, & «,

A
The equations also yield .{2

1

As the general solution, one finds

0= amful cos(wt +3,) + a(ogp.z(cos ot +8,)

9 = (g - lw)p, cos(wf + 3)+(@g - Imi)p.z(cos Wt +3)
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Superposition of two mutually completely independent oscillations of different periods.

[p- 89} Rigid Body
Kinematics

Representation of rotation by vector @ velocity of a mat. point
at distance 1 from the axis of rotation. Can be represented by vector whose
point of application is of no importance. Length @ sense that rot with vector
right-hand screw.

We denote the projections of the rotation vector on the coordinate axes
by p, g, r. We consider an arbitrary point of the body.
Seeking vector V. It is perpendicular to vector (w), perpendicular to vector
(x - X5, ¥ = Yo, 2 = 2p) = (r). Is equal to the product of the magnitudes of the
two vectors mult by the sine of the enclosed angle. Sequence . .v, v, v, is
the vector product of the vectors () and (r), hence

‘1‘&

32 "_5:, ’-,QQ
%o

—Y

Y

Ve = 4(z - 2)) —r(y - yo)

Y, =r(x - xp) - p(z - zp) P q r

v, =p0 -y) ~ gl -x) x-x, y-y, z2-2
Important formulas.

[p. 901 Composition of Angular Velocities

Body with rotation (p g r) about a given point (coordinate origin) describes with its point
xyz the path
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<
&
1
-
&
N
|
-
&

the second vector (p%,, 4} r<,,) considered rot vector (w;,,) imparts during time
dt

vidt = g*dtz - rdty

Adding the two motions Sum of the displacements

(W + M = (g + g)diz - (r + r*)dty

The result is, thus, rotation with the vector (p + p* g + g% r +r*)  Thus, the

rotational vectors are to be added according to the law of parallelograms if the two axes
of rotation intersect one another.

Description of the Most General Motion of a Rigid Body

The motion is referred to the coordinate system at rest X‘Y’Z’. In addition, we
introduce a second coordinate system that is rigidly connected with the body (XY, Z).

Determined by coordinates of 0 with resp. to 0', x,, y,, z,, and by the direction cosines [p.91]
of the coordinate axes.

X|lyl 2
X! [ oG | R

A |%5] A
2N\ 1 5
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Relation between the direc. cos. How does point of /
: q
the body move in space?

LR

X' =Xo+oyx + oy + a3z ( day + B d£3 +7 ‘3;3)
YV =yo+Bix+ By + Pz da B 2
D ot § 1 1
Z' =20+ P1X + 1,5 + 732 ( thy dt s 3dz)
dx’ dx, da do do etz
L CRECLIEAPIT SN -
TxTa T et al el | »

,_dy'_d}’o dﬂl dp, dp,
Wi~ a*talta’ A

dz’  dz, dy dy d
V=" = _0 1 arz ﬁ
r” a >t art T

From this we calculate the velocity with respect to X Y Z Now we seek the same
velocity with respect to a system that coincides with X Y Z. We

V.=Via, +V,p, +Viy, =V, +qz -1y

x

dx, dy dz,
b5 e en eyt
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Velocity of a point with respect to a
v, = Vyo - pz coord. syst. momentarily coinciding
with x y z, but

Superposition of a translation and a rotation.
The derived formula is fundamental.

The Kinetic Energy of a Rigid Body
<1) Kinetic Energy>
v? =02 + 02 + 02 = 002 + 0% + 002 + p2(y* + 2%) + ¢*(2* + x?)
+ r}(x? + y*) + 2yzgr + 2zxrp + 2xypq
A B C
m m®% 1 ¢ L S e I [ e
):5”2 . 2—2 + §p22(y2 +22) + ,‘_—’qzz(z2 +x¥) + ir’Z(xz +y?)
— gr) yz — rpy zx — pqy. xy
— S
D E F

2L = Mv} + Ap® + Bq® + Cr? — 2Dgr — 2Erp — 2Fpq

In the special case where the principal axes of inertia of the body with respect to 0’

the axes are chosen as xy z, we have 2L = MV + Ap? + Bg* + CP* .

<2)> Moment of Momentum of a Rigid Body
Moving About a Point.

Moment of the momenta o, = Y m [y% - z%] =Y m@v, -v)

o, = Y mi{y(py - @) - 2(x - p2)} =pYm(? +2) - g¥.my - ¥ xx
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Special case where x y z are the principal axes

of inertia
o‘=Ap-Fq—Er=% o =Ap
oy=Bq—Dr-Fp=%’ oy=Bq
oz=Cr—Ep—Dq=%Ir_‘ o, =Cr.

note that the moment of momentum does not coincide with the axis of rotation.

We obtain the equations of motion by applying the law of moments with respect to
the axes xy z, or, to be more exact, with respect to a system that coincides with xy z
at the moment in question, but does not participate in the motion of the body. We

/
denote the time derivative with respect to this system by [g;] . We obtain then as the

expression of the law of the conservation of the momentum the

[ﬁ]’o =] 69 >

dt x

d /

)i ¢ y
/

g *

We compose the change experienced by o from two parts.
1) from the change experienced by o due to the fact that this vector also changes
relative to the moving system. This yields for the X componentin dr the change

do

x

ar

2) the change experienced by the vector, even if it does not change relative to the
moving system X Y Z, because this system is moving.® 1t changes absolutely in space
as the components o, o, o, of a material point of a rigid body connected with xy z. This

[p. 94] yields the contribution go, - ra, Thus, one obtains the equation
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x

+q0, -ro = L etc.

We now replace o, ¢, 0, by Ap, Bg, Cr in that we assume that the axes X, Y, Z
coincide with the principal axes of inertia, and then we obtain

‘ip

AZ +(C-B)gr =L
dt+( ar
BE;+(A—C)rp=M

dr
C + B -Apg =N
l +( pq

These are Euler’s equations of motion.?
Euler’s equations:

ip. 95)

Ao’p? + B + Ca’qr = 0 p@©), q(), r(z)

a(p (af) ..
Bﬂg +(A-COmp=M also solution
& Ae’p> + B - Cdgr =0
o thus, o times faster
Ca; +(B -A)pg =N

Motion of the rigid body not acted upon by any forces.

Leads to elliptical, that is, periodical functions for p g r as funct of . Simplest special
case rotation about principal axis of inertia g = 0, r = 0. The second & third equation
are then identically satisfied, while the first one yields p = const. Rotation is not stable
about every principal axis of inertia. As a proof, consider motion deviating slightly from
rotation about the principal axis of inertia g and r e small to first order. « small

second-order terms neglected. The first equation yields then A t;_p =0 p = const. the
t
second and third yield

a
dq C-A
at B
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dr A—-B g=0
dt [
. d%q _
One obtains for ¢ theeq. —L - aPfg =

aBf >0

Solutions e’'«p ¢+ eVep ¢

Leads to exponential function.

Ae’sp « + BeVap «

For positive & negative o large ¢,

g (& r?) becomes finite;*!

the larger the p, the faster this process
(C-AXA-B)>0 (A-C)A-B)<0

Axis mean principal moment
of inertia

second analysis

0.

aB <0 (C-A)(A-B)<0 (A-C)(A-B)>0

A largest or smallest mom. of inertia

g=A4 siny/-apt + B cosy-aPt

ra-1d _ 41 8 oo +BJ—E'sin()
adt o o

Rotation stable

Axis of rotation describes
ellipse relative to body

Ap* +Bg +CP =h

AP + Bg* + C7* = o

p g r considered as rectangular coordinates.

intersection of two ellipsoids, with main axes

Sum of the possible p g r line of

6 6 ¢
and —, —, —
ABC
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One sees in this way as well the types of possible motion, especially the stability of the
extreme principal axes of inertia, and the lability of the middle ones.

Relation to System at Rest. Euler Angle. [p-97]

With regard to the system (x, y, z,), &, .... ¥, can be determined as functions of time by
means of additional integrations if p, g, r have already been determined as funct. of time
by means of Euler’s equations. Because we have

Qe _Bd_][_ﬂd_ﬂ_]

which equations together with the 6 independent relations between the « to y determine
all « to ¥ as functions of time. But generally one makes use of the so-called Euler angle
to determine the position of the body.
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p q r
¢'sin fsina ¢'sin Bcosa o
B cosa —fB'sina @'cosfB

p = ¢'sinfsina + B cosa

q = ¢’'sin fcosa — f’'sina

r=a' + @'cosp.

A~ N D

three differential equations in order to determine «, B, & ¢ if p, g & r are given. Special
case B is infinitely small, then r = a'= const. & = wf
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1 derivation of Euler’s equations

_a_q— + Cr_ar_
a¢

= Apsinf sina + Bgsinp cose + Crcos

Geometrical Solution of the Problem of a Body
Moving in the Absence of Forces [p. 98]

y 2= /6

If OP is the ellipsoid of inertia. C_/

2) Ellipsoid of inertia A + By + C£ =1
Tangent plane in xyz
A’ + By +Cz' -1 =0

Direction cos. as Ax:By:Cz
thus also as Ap:Bg:Cr

Thus, normal parallel to the moment vector ©.
3) Distance of the tangent plane from 0. One brings the tangent plane into the normal
form

3 = 1 - V2L J-%”:
oy + By + ©F Va7 +Bg + CF °2
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Neither direction cos nor distance of the tangent plane changes. Thus, the plane stays
is plane because P, as the point of the momentary

fixed in space.
elocity of rotation is found from 1) to be

The ellipsoid of inertia rolls on th
[p. 99) axis of rotation, does not move. The v

w=y2L -OP.

Motion of a Body with Two Identical Principal Moments of Inertia

z.ﬁ,z +Bz{¢'25in2ﬁ+(fx'+(p’cosﬁ)z}

2L = A%f? +B a'? + 2a'e’ cos B}
-~ %
p set, by turns, equal o, B Y 2
0 15, ¢
2L = A’ + @cos B)® + B(B'? + ¢'*sin?p) B o o
0 o «'

d(oL\ d.,
0- 4 (5) = dac + oeoen

oL\ d. .
&)~ &eemy

%{ﬁ'} — ¢%sinfcosp=0

d
7 {A@ + ¢’ cosfycosf + Bsin?fg’} =0
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2L = A’ + ¢’ cos B)* + B(B? + ¢%sin? )

[p. 100]
= o oL
3w = Al + ¢’ cosp) % ="
% =TI g—z = — A’ + ¢'cos B)o’sin f
Bop'?si
a—L. = A(¢’ + ¢'cos f)cos B + Bop'“sinfcos B
op
oL _o
+ Bg'sin? g d¢
when external forces
Po' + P’ + P,o’
d , ,
E{A(a + ¢@’cosB) =0 YN
d{A(a'+ ’cos B)cos B + Bg'sin? B} = 0
dt @ cos @' sin = - 4P, i
A’ + ¢'cos B)¢'sin B
— Bo'*sinfcos f + E(Bﬂ’) -0
¢ dt g = P+ Csinp

Consider the case when external forces do not act.
A(a’ + ¢ cosp) =R,
A(a’ + ¢/cosp)cosp + B¢/sin’p =R, & R cosp + Bg'sin’p =R,
The general case can be treated by calculating ¢’ & «’ from these two equations and
substituting them in the third equation. But we confine ourselves to the case of constant

B The last term of the third equation will then vanish; the equation assumes the form

Ao’ @sinp + (4 - B)¢/*sinp cosp =0
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We divide by (4 - B) sinp cosp under the assumption that none of these quantities
vanishes. Then it turns into

Aa’
Y T By oosp] °

43 a@-1)_p

[p. 1011 We exclude the trivial case ¢’'= 0 ;
dt gp! op,

¢ changes in the opposite direction from a, if A is the axis of the greatest moment of

inertia, otherwise the opposite. In the case of nearly spherical shape or small B,
A

(A - B)sinp cosp

fraction if B is not very large. In that case the two rotations in the same direction.

¢ rotates <always> faster than a, since ) js an improper

Special case when B is very small. Then the rotational velocity of the spinning top

D=a’+q;’¢=¢([1_ATj'B]=dll_j

A
=D-_
v B

Axis describes conical shell with angular velocity ¢'.

How must a’ B’ & ¢’ be chosen for such a motion to take place? Answer

1
B’ =0 & ¢ = —_Al__, because then we have in the first moment "= 0
(A - B) cosp

Argument then repeated.
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Motion of the spinning top. i
C
Pp=+ sin B &

/6'{

The differential equations are [p. 102]

d ! v o N
E{A(a ¢'cosp)} =0

%{A(a’ + ¢cosB)cosp + B sin’B} =0

~-Csinf + A(e’ + ¢'cosP)¢sinp - Bg’sinP cosp + Bp” =0
We examine again the case of constant $. The third equation yields
-C sinf +Aa'@sinp + (A - B)@*sinP cosp =0

We divide by (4 - B) sin p cos f, assuming again that none of these factors vanishes.
From this results the eq.
Aa’ C
2 L — O
¢ A —B)oosp? ~(4—B)cosp

, Aa’ 1 A0? C
=3¢ R =it T i 7
2(A — B)cosf 4(A — B)*cos*p (A — B)cosp

1 Aa’ _ 4(A — B)cos BC
= —i(A—B)cosﬁ{1+\/l+ A%y }

p—

+ 2C(A - B)cosB]

If «’is sufficiently large, then {} =1 % [ 1
AZEIZ

As above, we obtain two solutions for the body moving in the absence of force
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¢ = ‘P: — Aa’ N C
Aa’ (A - B)cosp Aa’

The second one corresponds to the fast rotation of the axis of the top about the vertical,
[p.103] also if C =0. But the first goes over into invariant position of axis A for ¢ =0 yields
slower rotation about the vertical the greater the moment of rotation. Is, further,
independent of B, because C is independent of .
We shall derive this solution, in which we are specially interested, in yet another way.
o nearly coincides with the axis of rotation

do, do, do,
Til——L d_t_M I—N
o, = osin fcos ¢ L= —Csinfsing

‘(“"‘/s g,=0osinfsing M =Csinficosg

‘ g, =o0cosf N=0
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Precession of the earth.
-S

Bulge on the equator terrestrial radius r. Sun—earth R {p. 104}
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rAda = mass element
R* = R - 8 = distance from the sun
=R - r cosa cosf
8 =rcosa cosf &' =r cosa sinf

kKMr de

<Potential with respect to the sun> Force = ———__— "~
(R - rcosa cosp)®

Moment of this force with respect to the axis of the vernal equinox

do 1
2 2
k MM(R — I CoS 0 COs B)zrcosasmﬁ M 6ﬁ( — 7 COS 0. COS )

1 1 2 rcosacosﬂ r? cos? a cos? ﬁ)

{ cos? ad: =%I(l + cos 20) dat

[ ST

2 rtcos? g
L = 6B(k2M ’1{ +0 ks })

2si sin f cos
ITIVSL smﬁscosﬁ M ™ r?sin fcos B
R 2n R’
We can estimate m to be ;(-P +rr) n-p = gr’ en-p @

r'=r(l +e)
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Here we assume, that the mass acts as if it were concentrated on the bulge, p is mean

density. The mean annual torque approximately one-half of the one calculated in this
way. One thus arrives at a value of ¢’ that is of the same order of magnitude as the one
observed.

661
M= _kzM _M hence ¢ = ]
T Ia sinf

Lp

Foucault's Gyroscope

T can be calculated.

We investigate general motion of a rigid body at a fixed point with respect to a
coordinate system which itself rotates but is not rigidly connected with the body under
consideration. The analysis is wholly analogous to that applied in establishing Euler’s
equations. The system X* Y* Z* is introduced, which momentarily coincides with the
system X Y Z but does not rotate together with it. Then the law of moments will apply

— (8) =L

If we denote by p g r the instantaneous rotation of X Y Z, then we have

(G-

+geo, - ro,, so that the law of moments reads

do,

dt+q‘r gL N 2

do, Fre - Jong
71?+ra,—pa,—M —

do, VT aduy

@ *+po,—go, =N

Specifically for a point on the surface of the earth®”

[p-105]
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do .
—t"— wsinga, = L

4 *
da, )
—- + wsingg, + wcosgo, = M .
dt x
d = x
’Ec;_, — wcos gag, = N'¢7)
[p. 106] N = 0 because reaction of the guide normal
o, co klein L= —Msina M
0, = 6,CO8Q M = +Mcosa
6, = o,sinu N=0 . y
do, . C'ANCN
—= = WCos @o,sina °
dt
do
g,=1,— X
2z zdt

2
I, 42 = Weos 9o, sina

We also introduce p =« - a

wCos
g _ —_‘.ﬁsinﬁ o =1a

dr T O 2at

This is the pendulum equation. If the initial rotation about the Z-axis is small, then
oscillation of the pendulum about the northerly direction with oscillation period

1

1

T=2n)|f
I cosq wa’

Example =1 ¢ =0 a' =2n-100 T =294.

For the calculation of the moment of reaction we use the first or the second equation of
motion.
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x

dt

<+qo, -ro >-wsingo =L

. da . . .
-0, sina =3 wsing sine o, = -M sine
1

© is small compared with ‘fl._‘:. Hence M = oo‘id.? can be considerable.
Introduction of the Kinetic Potential®™ [p-107)

p-d(a), am-p
Yoodt ap! ap,
We set IT - L = H. Because II is independent of p’,, we can then write the equation
in the following way
p . < (aH) _aH
dr|gp!| op,

Thus, the knowledge of a single function is all that is needed to determine the
motion of a system. One calls H the kinetic potential. If the function ¥ is introduced
into Hamilton’s principle, the latter assumes the form

‘l

| ®H - Pop)ar =0

This equation is a direct consequence of the one just given. If we denote by P, the force
applied by the system to the environment rather than the force applied by the
environment to the system, then P, has to be replaced by - P,, so that one has to set

p -4 |eH| eH _,
bodie|gp! ap,
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Helmholtz found that these general equations are suitable for representing the
dynamical properties of physical systems far beyond the domain of mechanics."*]
However, it can happen that we know not to conceive of H as I - L, & also do not
want to be so constrained.

[p- 108) We ask therefore whether the energy principle is maintained if H takes an arbitrary
form.

To this end we multiply the generalized Lagrange equation by dp = pdt and sum
over all coordinates

d o0H 0H
+ — ___r - — =0
W_J

d(@ ,)_6_11 .

oH oH oH )
- r . —d ’ ___d b =0

v

dH

\

thus

.y oH
\—_v_—_J

E

From this we see that the generalized Lagrange equations (Hamilton’s principle) involve
the energy principle. We also show that in the special case of ordinary mechanics one
arrives back at the customary expression for the energy. Here H = ¢ - L

2
2L = A,p) +24,p\p; + 24,,p\p; e =Y ¥ 4.pp
M v

+ AP+ 24, pp) e

where A,, =A,,. We obtain
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aL / ; ; aL ’
za—p,l'_-zAupl + 2A,p5 + 4 6L_2éL°Za—p’v ép, [p. 109]
oL , , d
ap, =Aupy + A2+ p2
2
oL ’ ,
From this ZEEP: = Ay P+ 24,,p7 - =2L
Euler’s law
Hence E<H-Y 20y, -0-L+2L-0+L.
/.

Application to Electrodynamics

Two circuits

vanish
N o
_d 6H)_?£ ’ A
v T dt\op,)] p,
o= d (6H _6_11
Y7 dt\om, @ L a5 5
vanish 7 e /e 74
P P1P2 P2

H= —%mlnf + 2Mmm; + L) ™

We assume that the L M are independent of the p’
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. 1aL oM _d LY,
P1 = -2——~ap: §+-ap—l7tl7[2 n,= —E(Llnl) dt( 7‘2)
oM 19L, _d _d
P2 = —aETflﬂz i ‘a—’;ﬂg nz b dt(Mnl) dt(LGz)
i) doe
s ' Td\oy)  om

1) A circuit
We apply this to a circuit. Let its configuration be determined by one coordinate p

and one coordinate n =i. We assume that H is homogeneous to second order in n’.
H-= —%Ln’ ? L is here a function of p. The above equations then yield

p=-lpdl | 1,0
2 op 2 op

d(Lw)

H- =
! dt

d, .
=L
7D

In agreement with the familiar laws of electrodynamics.

2) moving magnet & solid conductor
Weset H=-W-n'.

.

oo W W

— =i— Pdp=idW =illdt - ==
ap op I3

I
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oI = —%V work delivered = work of the electromotive force.
The previous page follows [p.111)

plicability of the principle of least action

d (6H)+6i1
dt\ap,) * op,

Limit of t

canonical equations

1(6L) o —L) _ 0

op, ap,
o

v,

q'
oL oL _

T

oL
X, - aT_QHa_T_qp,
(L — Z a,p.) op, 0p,dq, il
dg oT
T *=P—— T=®+L
dt ap,
oL ,
=X ap, ép, — 3. p.da, dp, 9T in case of
dt g, ponderable mechanics = E.

If T isviewed, secondly, as function of p, & g,, then

2
8T =Ea_;6pv . Eg_:aq,

v

Hence, we have

oL _ oT P = aT
9, op, " oq,
Therefore,
dp, _ar

)
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112
44, _.p .90 _,
dr ¥ dp,
Energy Principle
dp, OE dq,
dr dq, d
g z(a_Ediv Qfa:')_ZP,d:"=0
dq, _aE _‘_i& dg, dt  Op, dt t
dt — op, dt

The chief value of these equations for physics consists in the fact that they are the most
convenient basis for the equations of statistical mechanics."™!

equations.

More on the physical applications of the principle of least action and the Lagrange

o = 4| 8H
o dt on’,

We apply the equations to reversible changes of state of the unit mass of a substance
p =v P =pressure. Heat is a cyclic process, characterized by a velocity n’, which we
identify with temperature.”” Then we have

_ _©oH

— Ddrn=HOn'dt = -q
ov
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oH
From th dea. -|1=2=-=-5 .
rom the secon a;.;l : I 7" 3T | [p-113)
P=—F% o—dv
o
: ~PdV—SdT=dH
oH :
_ 9 4T
s=-77 : ¢

_pdv+ TdS = dH + d(TS) = dE
- —

dE dH = d(E — TS)

General conclusions from the equations for cyclic motion.

1) Ifone considers only processes in which the <coordinates> cyclic velocities &' are
constant (currents, temperatures), then the forces can be derived from 2 potential.

2) The same is also true if forces do not act upon the cyclic coordinates. In that case
we have m equations ;.I_,{- = const., by means of which one can eliminate the n’

3
I3
from H. (Interaction between magnets & resistance-free short closed circuits. Adiabatic

processes.
N We write down two cyclical eq.

-

_ d(éH 9*H o*H
n =—\—]= ! e n
v = dt (an,;) amaplel Lo
H

So far as one can disregard an independence of the terms  ———=-7 from the quantities
. O%
° a
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The Reciprocity Laws
- d0H d(oH
=2, +dz(ap,)
6 d*H

Zﬁpﬁp' * zﬁp 6pyp"

a)
0P, 9*H _ @P,
opy"  0p,'opy  Op,"
Examples
1) F,=¢ P=e, de, _ Oe,
h=i  p=i O

Equality of mutual induction of two circuits also with algebraic sign
2) Conductor in magnetic field

ok e, 0 That one equals zero has the consequence that the other one

Fralal

also equals zero.
[p- 115] b) Reciprocity laws that concern velocities.

oP, o*H ( 2H) , 6(6’H) y
G C— vy Y 2=\ 55 /Pv
6p,,6q, Z 6p, ap, i Z apv apn apb B

ap,,' apnapb
-
d( 0*H )
I apa'apb'
If one constructs the corresponding equation and adds, one obtains

oP, oP, 4| &

—_— e

op', op', di|d ',
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If the system is cyclical, only states with constant p are considered, and H is a second-
order function of the p’ (= =n’), the right hand side vanishes. The same is true if
derived for a cyclical & a noncycl.

Examples. 1) ‘;_‘: - _565’ »r ¥

Lenz’s law
ds q
dl —— d| =
o) 4(7) s
Z)d’f— *’(’i;“‘— d—d: F,=p Pb——EE
d (E) dt
,_dv :
not correct Pa = da pp=T
. Oe 0gqy 1 _ a5 g1
Peluer;ﬁ_ﬁ_-? P=e P, g T
dpn — dpb .
P
Another Derivation of the Fundamental Equations [p. 116]
of the Material Point™

At some place on the surface of the earth CAMANANAN

let there be a number of identical weights as well as a spring.

We suspend from the spring 0 1 2 ... of the weights

in succession, & thus obtain the lengths

o, L, L, .. .. of the spring.

We set the force exerted by the weights upon the spring equal to the number of the
suspended weights and thus obtain a relative!’” measure of the force exerted upon the
spring. We postulate that the force exerted by the spring upon the weights is of the same
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magnitude. Now we can use the spring to apply forces of specified magnitude to a given
mass.
We know that a mat. p. that is not acted upon by external causes moves without

acceleration. For it, ‘;_Z': etc. equal zero. Imagine that the question as to how the
t

acceleration is related to the force for a freely suspended body is investigated with the
help of our spring. If we assume that, in the case of some arbitrary, already present
motion of the point and an arbitrarily large force,™! the acceleration is always propor-
tional to the acting force and is directed in the same way, then we obtain

[p. 117} mfp_x=X mQ=Y m&=2

dr? dr* ar

<if we assume that the force acts in the direction X>
Because these equations state that
1) acceleration and force have the same direction

2) If m is taken as constant, then the magnitude of the acceleration

BRI

is proportional to the magnitude of the force yX? + Y2 + Z2

If the acting force is not that of our gauge-spring but some other force, then it will be
replaced by that force of the gauge-spring that produces the same motion. Then what
was said above will hold for arbitrary forces.
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Doc. 2

The Principle of Relativity
and Its Consequences
in Modern Physics

by A. Einstein

[Archives des sciences physiques et naturelles
29 (1910): 5-28; 125-144]

$§1. The Ether

When it was realized that a profound analogy exists between the clastic vibrations of
ponderable matter and the phenomena of interference and diffraction of light, it could
not be doubted that light must be considered as a vibratory state of a special kind of
matter. Since, moreover, light can propagate in places devoid of ponderable matter, one
was forced to assume for the propagation of light a special kind of matter that is different
from ponderable matter, and that was given the name “ether.” Since the velocity of light
propagation in bodies of low density, such as gases, is more or less the same as in a
vacuum, it had to be assumed that the ether is the principal carrier of light phenomena
in these bodies as well. Finally, the hypothesis of the presence of ether in the interior
of liquids and solids was also necessary in order to make it possible to understand the
propagation of light in these bodies, since it was impossible to explain the great velocity
of propagation by the elastic properties of ponderable matter alone. For all these
reasons, the existence of a special medium permeating all matter seemed beyond dispute,
and the ether hypothesis formed an essential part of the picture of the universe which
presented itself to the physicists of the last century.

The introduction of the electromagnetic theory of light brought about a certain
modification of the ether hypothesis. At first the physicists did not doubt that the
electromagnetic phenomena must be reduced to the modes of motion of this medium.
But as they gradually became convinced that none of the mechanical theories of ether
provided a particularly impressive picture of electromagnetic phenomena, they got
accustomed to considering the electric and magnetic fields as entities whose mechanical
interpretation is superfluous. Thus, they have come to view these fields in the vacuum
as special states of the ether that do not require an analysis in greater depth.

‘What the mechanical interpretation of optical and electromagnetic phenomena has
in common with the purely electromagnetic interpretation is the fact that both view the
electromagnetic field as a special state of a hypothetical medium filling the whole of
space. This is where these two interpretations differ fundamentally from the emission
theory proposed by Newton, according to which light consists of particles in motion.
According to the latter theory, a space containing neither ponderable matter nor light
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rays should be considered totally empty, while according to the mechanical and
electromagnetic theories such a space should be considered as filled by ether.

§2. The Optics of Moving Bodies and the Ether

Once one accepts the ether hypothesis, one faces the question as to the kind of
mechanical bonds that link ether to matter. When matter is in motion, does the ether
participate in this motion completely, or is it only partly carried along, or else, is the
ether completely stationary? These questions are fundamental for the optics and
electrodynamics of moving bodies.

The simplest hypothesis is to assume that moving bodies carry along completely the
ether they contain. It is on the basis of this hypothesis that Hertz developed an
electrodynamics of moving bodies that is free of contradictions. However, it follows from
a famous experiment by Fizeau that this hypothesis is not acceptable. This experiment,
which can be considered an experimentum crucis, is based on the following consider-
ations: Let u’ be the velocity of propagation of light in a transparent and immobile
medium. Suppose we impart to this medium a uniform translational motion of velocity
v. If the medium completely carries along the ether it contains, then the light will
propagate with respect to the medium in the same way as if the medium were at rest. In
other words, u’ will also be the velocity of propagation of the light with respect to the
moving medium. To find the velocity with respect to an observer not taking part in the
motion of the medium, it suffices, according to the rule of addition of velocities, to add
vectorially the velocity v to the velocity u’. In the special case when ©’ and v have
the same direction, one obtains either u’ +v or u’ -v for the desired sum,
depending on whether ' and v are in the same or the opposite direction. But even
the greatest velocities that could be imparted to a body are very small compared with the
velocity of light; a very sensitive method is therefore needed in order to demonstrate the
effect of the motion of the medium on this velocity. Fizeau devised the following
experiment: We consider two light rays capable of interfering with each other, and two
tubes filled with the same liquid. We pass one of the rays axially through each tube in
such a way that each ray will interfere with the other after both exit from the tubes: the
position of the fringes will be changed if the liquid moves axially in the tube.

From the different positions of the fringes when the velocity of the flow is varied, one
can determine the propagation velocity of the light' in the moving liquid, i.e., in the
medium, with respect to the walls of the tube. Proceeding in this way, Fizeau did not
obtain the value u’ *+v, as had to be expected from what we have said above, but the
value u’ + av, where a is a number between O and 1 that depends on the refractive
index n:

"More exactly, the propagation velocity of the planes of equal phase of the light beam.
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1,
n2

a=1-

Thus, the light is indeed carried along by the moving liquid, but only partially.

This experiment showed the hypothesis of the complete carrying along of the ether
to be unacceptable, so that only two possibilities remained:

1. The ether is completely immobile, i.e., it does not take part in the motion of the
matter at all.

2. The ether inside the moving matter is movable, but it moves with a velocity
different from that of the matter.

One cannot go very far in developing the second hypothesis without introducing
arbitrary assumptions about the relationship between the ether and matter in motion.
In contrast, the first hypothesis is perfectly simple, and its development with the aid of
Maxwell’s theory does not necessitate any arbitrary assumption that might complicate the
foundations of the theory.

Assuming that ether is completely immobile, H. A. Lorentz conceived in 1895 a very
satisfactory theory of electromagnetic phenomena,’ a theory which not only permitted
a quantitative prediction of Fizeau’s experiment, but also provided a simple explanation
of almost all the experiments that one can imagine in this sphere.

According to Lorentz, matter consists of elementary particles at least part of which
are provided with electrical charges. A charged particle moving with respect to the ether
may be compared to an element of current. The actions of the electromagnetic field on
the particle, and the reactions of the particle on the field, are the only bonds that bind
matter to the ether. In the regions of ether where the space is not already occupied by
a particle, the magnetic and electric field strengths are expressed by Maxwell’s equations
for the free ether, if one assumes that the equations refer to a coordinate system that is
at rest with respect to the ether. The fecundity of Lorentz’s theory is due to the fact that
the states of matter that play a role in optics and electromagnetism are explained
unambiguously by the relative positions and the motions of the charged particles.

$§3. Experiments and Consequences
Nort Reconcilable with the Theory

From Fizeau’s experiment one had to conclude that the ether is not carried along
completely by matter in motion but that, instead, there occurs a relative displacement of
the one with respect to the other. The earth being a body that rotates around its axis
and revolves around the sun with velocities that change their directions in the course of

This expression neglects the effects of dispersion.
*H.A. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten
Korpern. Leiden, 1895. New edition, Leipzig, 1906.

5]
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the year, one was bound to believe that, in our laboratories, the ether would take a slight
part in the motion of the earth the way it did in the motion of the liquid in Fizeau’s
investigations. From this it would seem to follow that the relative velocity of the ether
with respect to our equipment must vary with time, and that onc therefore should expect
that an apparent spatial anisotropy be observed in optical phenomena, i.e., that these
phenomena should depend on the orientation of the equipment. Thus, in vacuum or in
the atmosphere, light should propagate faster in the direction of the earth’s motion than
in the opposite direction. Experimental verification of this consequence of the theory was
unthinkable, because the order of magnitude of the term considered is that of the ratio
of the velocity of the earth to the velocity of light, i.e., of the order of 10, and one
could not hope to attain such precision in the direct determination of the velocity of light.
Also—and this is a most important point—all terrestrial methods for measuring the
velocity of light employ light rays that travel along a closed (back and forth) rather than
a simple path, this due to the fact that the times of departure and arrival of the rays must
be determined with the help of one and the same device, as for example a notched wheel.

Many optical phenomena are known in which variations in the velocity of light of the
order of 107 become capable of being detected, and when observing these phenomena
one should have expected to find, according to the theory, that the results vary with the
orientation of the apparatus with respect to the motion of the earth. Without dwelling
on these experiments, let me only say that all of them gave negative results. Thus,
Fizeau’s experiment led to the hypothesis of the relative motion of the ether with respect
to moving bodies. None of the other experiments confirmed this hypothesis. The theory
of Lorentz® provided, at least partly, a key to the solution of this puzzle. A uniform
translation of velocity v of the apparatus with respect to the ether does have an
influence on the phenomena, but this influence on the distribution of visible light

intensities can only be detected starting with the terms of the order of [E]Z in the
Lorentz equations that give this distribution, ¢ being the velocity of light in a vacuum.
This seemed, therefore, to explain the negative results of the experiments aimed at
showing the relative motion of the earth with respect to the ether. Still, the negative
result of one of these experiments presented a real headache for the theoreticians: I am
speaking of the famous investigations by Michelson and Morley.* These physicists based
themselves on the following observation: Let M and N be two points of a solid body;
suppose a ray begins at M and travels toward N, where it is reflected, and then returns

to M. In this case, if the body undergoes a uniform translation with respect to the ether,

It should be added, for the sake of completeness, that Mr. Lorentz did not consider bodies
capable of rotating the plane of polarization when they are not in a magnetic field (naturally active
bodies).

SA. A. Michelson and E. W. Morley, Amer. Jour. of Science 34 (1887): 333-345.
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the theory predicts that the time ¢ needed for the light to travel the closed path MNM
will vary depending on whether the body is moving in the direction MN or perpendicu-
14

2
lar to it. True, the difference is very small, being of the order of [ ] , that is to say, of

(4
the order of magnitude 10 if v is taken as the velocity of the earth. But Michelson
and Morley were able to devise an interference experiment in which this slight difference
would have to become detectable. The essential features of their arrangement were as
follows: Light rays coming from the source § (Fig. 1) are split into two beams by means
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:
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Fig. 1.

of a transparent mirror at A. One of the beams is then reflected at B and returns to
A, where it splits and yields a ray travelingto I. The other crosses the mirror and travels
to B’, where it is reflected toward A; there it splits, yielding, too, a ray that goes to
I, where the two rays interfere. The position of the fringes depends on the difference
between the routes ABA and AB‘A taken by the two rays during their travels. This
difference between the routes should have depended on the orientation of the equipment;
one should have observed a displacement of the fringes the moment AB’, instead of AB,
coincided with the direction of the earth’s motion. However, nothing of the kind was
observed, and as a result the foundation of Lorentz’s theory seemed extremely shaky. To
save the theory, Lorentz and FitzGerald resorted to a strange hypothesis: they assumed
that each body in motion with respect to the ether contracts in the direction of motion

2
by a fraction equal to %[Z] , or—which amounts to the same if only terms of second
c

(8]
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order are considered—that the length of the body is diminished in that direction in the

ratio 1 : |1 - v_: .
c

This hypothesis succeeded, in effect, in eliminating the disagreement between theory
and experiment. But the theory did not offer an intellectually very satisfying whole. It
was based on the existence of an ether that one had to conceive as being in motion with
respect to the earth, with the consequences of this motion forever unverifiable by
experiment; this peculiarity could only be explained by introducing @ priori implausible
hypotheses into the theory. Could one really believe that, by a curious accident, the laws
of nature present themselves to us in such a highly unusual way that none of them allows
us to know about the fast motion of our planet through the ether? Is it not more
plausible to assume that some wrong or defective argument had led us to this impasse?

Before explaining how these difficulties were overcome, we will show that even in
particular cases, the theory based on the existence of the ether does not always offer an
intellectually satisfying explanation of the phenomena, even though that representation
is not in direct conflict with experiment.

Let us consider, for example, a magnetic pole moving with respect to a closed circuit.
If the number of lines of force that cross the surface enclosed by the circuit changes with
time, a current will be generated in the conductor. As we know, the generated current
depends only on the rate of change of the flux that crosses the circuit. This rate depends
only on the relative motion of the pole with respect to the circuit; in other words, from
the point of view of the result produced, it does not make any difference whether it is the
circuit that moves, while the pole is at rest, or whether the opposite is the case. But to
understand this phenomenon from the point of view of the ether theory, one must
attribute fundamentally differing states to the ether, depending on whether it is the pole
or the circuit that is moving with respect to the ether. In the first case one must consider
that the motion of the pole has the effect of changing the strength of the magnetic field
at the various points of the ether at each instant of time. The change thus engendered
produces an electric field with closed lines of force, the existence of which is independent
of the presence of the circuit. This field, like every field of electrical force, possesses a
certain energy, it is this field that produces the electric current in the circuit. If, in
contrast, it is the circuit that is in motion while the pole remains at rest, then no electric
field will be generated. In that case, the electrons present in the conductor are subjected
to ponderomotive forces arising from the motion of the electrons in the magnetic field,
forces that make the electrons travel, thus producing the induced electric current.

Thus, in order for them to be understood with the aid of the ether theory, two
experiments that are not essentially different in themselves require that substantively
different states be attributed to the ether. Moreover, such a split, alien to the nature of
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facts, is introduced every time one resorts to the presence of the ether to explain
phenomena caused by relative motions of two bodies.

$§4. The Principle of Relativity and the Ether

What is the source of the difficulties we have just seen?

Lorentz’s theory contradicts the purely mechanical models to which physicists hoped
to reduce all the phenomena of the universe. For while mechanics in effect admits of no
absolute motion, but only the motions of bodies relative to each other, there is a
particular state in Lorentz’s theory that corresponds physically to the state of absolute
rest: that is the state of a body which is not in motion with respect to the ether.

If the fundamental equations of Newtonian mechanics, referred to a coordinate
system that is not undergoing accelerated motion, are referred by means of the relations

t =t

x' =x-u
) ,

y =y

|12 =z

to a new coordinate system which is in uniform translational motion with respect to the
first, one obtains equations in ¢/, x, y’, z’ that are identical to the original equations
in ¢, x,y,z. Inother words, the Newtonian laws of motion transform to laws of the same
form when one passes from one coordinate system to another one that is in uniform
translational motion with respect to the first. This is the property we express when we
say that the principle of relativity is satisfied in classical mechanics.

More generally, we will state the principle of relativity in the following way:

The laws governing natural phenomena are independent of the state of motion of the
coordinate system with respect to which the phenomena are observed, provided that this
system is not in accelerated motion.®

If one transforms the fundamental equations of Lorentz’s theory by means of the
transformation equations (1), one obtains equations of another form, in which the
quantities x’, y/, z” no longer occur symmetrically. Thus, the theory of Lorentz, based
on the ether hypothesis, does not admit of the principle of relativity. The difficulties

“In all this we assume that the notion of acceleration has an objective meaning, or in other words,
that an observer attached to a coordinate system is able to determine by experiment whether the
system is or is not in accelerated motion. From now on we will consider only coordinate systems in
nonaccelerated motion.

o]
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encountered so far are mainly due to this fact; the deeper reasons will become apparent
later on. Be that it as it may, it is so much the more improper to accept a theory that
is not consistent with the principle of relativity, the more so because this principle has not
been contradicted by a single experimental fact.

§5. On Two Arbitrary Hypotheses Contained
Implicitly in the Customary Notions of Time and Space

We have seen that, assuming the existence of the ether, we were led by experiment to
view this medium as stationary. Further, we have seen that the theory so founded
permits us to predict the main experimental facts but leaves something to be desired in
one respect: It does not admit of the principle of relativity, contrary to everything that
experimental investigations have taught us. The question arises: Is it really impossible to
reconcile the essential foundations of Lorentz's theory with the principle of relativity?

If we wish to attempt such a reconciliation, the first step we must take is to give up
the ether. For, on the one hand, we have been obliged to admit that the ether is
stationary, whereas, on the other hand, the principle of relativity demands that the laws
of natural phenomena referred to a uniformly moving coordinate system S’ be identical
with the laws of these same phenomena referred to a system S at rest with respect to
the ether. But there is no reason to assume the immobility of ether, which is demanded
by theory and experiment, any more with respect to the system S’ than with respect to
the system S; these two systems cannot be distinguished from each other, and it is
therefore improper to make one of them play a special role by saying that it is at rest
with respect to the ether. From this it follows that the only way to arrive at a satisfactory
theory is to give up the notion of a medium filling all of space.

This is the first step to be taken.

To go a step further, we must reconcile the principle of relativity with an essential
consequence of Lorentz’s theory, because giving up this consequence would amount to
giving up the most fundamental formal properties of the theory. And here is the
consequence in question:

A ray of light in vacuum always propagates with the same velocity ¢, which velocity is
independent of the motion of the body that emits the ray.

We will see in section 6 that we are raising this consequence to the the status of a
principle. For the sake of brevity, we will from now on call it the principle of the
constancy of the velocity of light.

In Lorentz’s theory this principle holds only for a system in a special state of motion:
In effect, the system must be at rest relative to the ether. If we want to preserve the
principle of relativity, we must assume that the principle of the constancy of the velocity
of light holds for any arbitrary system not in accelerated motion. At first glance this
seems impossible. For let us consider a light ray that propagates with velocity ¢ with
respect to the system S, and suppose that we seek to determine the velocity of
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propagation relative to a system S’ that is in uniform translational motion with respect
to the first system. Applying the rule of addition of velocities (the rule of the
parallelogram of velocities), we will generally find a velocity different from c¢; in other
words, the principle of the constancy of the velocity of light that is valid with respect to
$ is not valid with respect to S".

So that the theory based on these two principles should not lead to contradictory
results, one must renounce the customary rule of addition of velocities or, better, replace
it with another rule. Well founded as this rule may seem to be at first glance, it conceals
no less than two arbitrary hypotheses, which consequently, as we shall see, hold sway over
all of kinematics. It is these hypotheses that made us think that, with the aid of the
transformation equations (1), the incompatibility of Lorentz’s theory with the principle
of relativity can be demonstrated.

The first hypothesis we wish to discuss concerns the physical notion of time
measurement. To measure time, we use clocks. What is a clock? By a clock we
understand any thing characterized by a phenomenon passing periodically through
identical phases so that we must assume, by virtue of the principle of sufficient reason,
that all that happens in a given period is identical with all that happens in any arbitrary
period.” If the clock comes in the form of a mechanism that is provided with clock
hands, then to mark the positions of the clock’s hands is tantamount to counting the
number of moments elapsed. By definition, to measure the time interval during which
an event takes place means to count the number of time periods indicated by the clock
from the beginning till the end of the event in question.

The meaning of this definition is perfectly clear as long as the clock is sufficiently
close to the place at which the event occurs, so that the clock and the event can be
observed simultaneously. If, on the contrary, the event is taking place in some corner far
away from the clock, then it will no longer be possible to establish immediately a
correspondence between the different phases of the event, and the different positions of
the clock’s hands. The definition is therefore deficient and needs to be completed. Until
now one has completed it unawares.

To determine the time at each point in space, we can imagine it populated with a
very great number of clocks of identical construction. Let us consider the points 4, B, C,
..., each of which is furnished with a clock and is referred to a system in nonaccelerated
motion with the aid of time-independent coordinates. We will now be able to know the
time at any of the locations at which we choose to put a clock. If we choose a sufficiently
large number of clocks, so that we can ascribe to each of them a sufficiently small
domain, we will be able to fix any instant whatsoever, at any location in space, to any

"Thus, we postulate that two identical phenomena are of the same duration. The perfect clock
thus defined plays a role in the measurement of time that is analogous to the role played by the
perfect solid body in the measurement of lengths.

{11}
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degree of accuracy desired. But we cannot obtain in this manner a definition of time
useful to a physicist, because we did not say what the position of the clock hands should
be at a given instant of time at different spatial points. We forgot to synchronize our
clocks, and it is clear that the intervals of time elapsed during some event have a certain
extension that will vary considerably as the event occupies this or that point in space.
Suppose, for example, that we are studying the motion of a material point whose
trajectory passes through the points A4, B, C.... At the moment when the point passes
through A, we will note the instant ¢,, indicated by the clock located at this point. In
the same way we will register the instants 5, ¢, ... of the passage through the points
B, C.... Since the coordinates of the points A, B, C,... on the axes of the system §
can be obtained directly—by performing measurements with a graduated measuring rod,
for example—then, by relating the coordinates x, y,, z,... of the points A4, B, C,

. to the instants t,, f;, ..., we can obtain the coordinates x, y, z... of the
moving material point as a function of a variable ¢, which we will call time. It is clear
that the form of this function will depend essentially on the way the clocks had been set
before they were placed at their respective locations.

To get a complete physical definition of time, we have to take an additional step:
We have to say in what manner all of the clocks have been set at the start of the
experiment. We will proceed as follows: First, we furnish ourselves with a means of
sending signals, be it from A to B, or from B to A. This means should be such that
we have no reason whatsoever to believe that the phenomena of signal transmission in
the direction AB will differ in any way whatsoever from the phenomena of signal
transmission in the direction BA. In that case there is, obviously, only one way of
regulating the clock at B against the clock at A in such a manner that the signal
traveling from A4 to B would take the same amount of time—measured with the clocks
described above—as the signal traveling from B to A. If we denote by

1, the reading of the clock at A at the moment signal AB leaves A

ty " B " AB arr. at B
ty " B ! BA leaves B
L . A b AB arr. at A

then we have to set the clock at B against that at A4 in such a way that

-t =t! -t¥
s —w=ing - .

For these signals we can use, for example, sound waves that propagate between A
and B through a medium that is at rest with respect to these points.® We can just as

®*The medium must be at rest—or at the very least must not have any velocity component in the
direction AB—so that the paths AB and BA can be equivalent.
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well use light rays propagating through the vacuum or through a homogeneous medium
at rest with respectto A and B. It does not make any difference whether we choose
this or that kind of signals. If two kinds of signals were to produce discrepant results, we
would have to conclude that, for at least one of the two kinds of signals, the condition
of equivalence of the paths AB and BA was not satisfied.

Still, of all the signals that can be used, we are going to prefer those that make use
of light rays propagating in the vacuum, because the synchronization requires that the
path out and the path back be equivalent, and in our case this equivalence is satisfied by
definition, since, by virtue of the principle of the constancy of the velocity of light, light
in the vacuum always propagates with the velocity c.

Hence we will have to synchronize our clocks in such a way that the time spent by
a signal traveling from A to B be equal to the time spent by an identical signal
traveling from B to A.

Now we possess a well-defined method by which to synchronize two clocks with
respect to each other. Once the synchronization has been done, we will say that the two
clocks are in phase. If, step by step, we regulate clock B against clock A4, clock C
against clock B..., we obtain a series of clocks such that any of them is in phase with
the preceding one. Moreover, any two nonconsecutive clocks in the series must also be
in phase by virtue of the principle of the constancy of the velocity of light.

The totality of the readings of all of these clocks in phase with one another is what
we will call the physical time.

By an elementary event we will understand an event that is supposed to be
concentrated in one point and is of infinitely short duration. By the time coordinate of
an elementary event we will understand the indication, at the instant of the event’s
occurrence, of a clock that is situated infinitely close to the point at which the event takes
place. An elementary event is thus defined by four coordinates, namely the time
coordinate and the three coordinates that define the spatial position of the point in which
the event is supposed to be concentrated.

Thanks to our physical definition of time, we can give a perfectly defined meaning
to the concepts of simultaneity and nonsimultaneity of two events occurring at locations
removed from one another. In the same way, the introduction of the coordinates x, y,
z of a spatial point gives a completely defined meaning to the concept of position. Thus,
for example, to say that the abscissa of a point P situated on the axis is x, is the same
as saying that we must hit upon the point P if, starting from the origin, we apply, with
a ruler, a unit length x times along the axis. We proceed in the same way to fix the
position of a point if all three coordinates x, y, z are different from zero, except that the
operations are a little more complicated. Be it as it may, the specification of the
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particular coordinates always involves the idea of a well-defined experiment concerned
with the position of solid bodies.’

Let us now make an important remark: In order to define the physical time with
respect to a coordinate system, we used a group of clocks in a state of rest relative to that
system. According to this definition, the time rcadings or the establishment of the
simultaneity of two events have meaning only if the motion of the group of clocks or that
of the coordinate system is known.

Consider two nonaccelerated coordinate systems S and S* in uniform translational
motion with respect to one another. Suppose that each of these systems is provided with
a group of clocks invariably attached to it, and that all clocks belonging to the same
system are in phase. Under these conditions, the readings of the group attached to §
will define the physical time with respect to S; analogously, the readings of the group
attached to §’ define the physical time with respect to S’. Each elementary event will
have a time coordinate ¢ with respectto S, and a time coordinate ¢ with respect to
S’. But, we have no right to assume a priori that the clocks of the two groups can be set
in such a manner that the two time coordinates of the elementary event would be the same,
or in other words, in such a way that t would be equal to t'. To assume this would mean
to introduce an arbitrary hypothesis. This hypothesis has been introduced into kinematics
up to the present time.

The second arbitrary hypothesis introduced in kinematics concerns the configuration
of a body in motion. Consider a bar AB moving in the direction of its axis with velocity
v with respect to a coordinate system S not in accelerated motion. What should we
understand by the “length of the bar”? One is at first inclined to believe that this
concept does not require any special definition. However, we will immediately see that
nothing of the sort is true if we consider the following two methods of determining the
length of the rod:

1. One accelerates the motion of an observer furnished with a measuring rod until
he attains the velocity v, i.e., until he is at relative rest with respect to the bar. The
observer then measures the length AB by successively applying the measuring rod along
the bar.

2. Using a group of clocks in phase with each other and at rest with respect to the
system S, one determines the two points P, and P, of S where one finds the two ends
of the bar at the instant ¢ after that, one determines the length of the straight line

We do not claim that the time and space coordinates must necessarily be defined in such a way
that their definitions could serve as the basis of measurement methods that permit the
experimental determination of these coordinates—the way it has been done above. But whenever
the quantities 1,x,y,z are introduced in the capacity of purely mathematical variables, equations
in physics will have meaning only if they allow the elimination of these quantities.
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connecting the two points P, and P, by successively applying the measuring rod along
the line P,P,, which is assumed to be a material line.

As one can see, it is with some justification that the results obtained in the first and
in the second case are designated as the “length of the bar.” But in no way does this
mean a priori that these two operations must necessarily lead to the same numerical value
for the length of the bar. All that one can deduce from the principle of relativity—and
this is easy to demonstrate—is that the two methods lead to the same numerical value
for the length only when the bar AB is at rest relative to the system S. But in no way
is it possible to assert that the second method yields a numerical value for the length
independently of the velocity v of the bar.

More generally, if the configuration of a body in uniform translational motion with
respectto § is determined by ordinary geometric methods, by means of measuring rods
or other solid bodies moving in exactly the same way the results of measurement turn out
to be independent of the velocity v of the translation: these results give us what we will
call the geometric configuration of the body. By contrast, if one marks in the system §
the positions of various points of the body at a given instant, and determines the
configuration formed by these points by geometric measurements using measuring rods
at rest with respect to §, one obtains as a result what we will call the kinematic
configuration of the body with respect to §.

The second hypothesis used unconsciously in kinematics can thus be expressed as
follows: The kinematic configuration and the geometric configuration are identical.

[Continued in the 15 February issue of Archives, pp. 125-144]

§6. The New Transformation Equations (the Lorentz Transformation)
and Their Physical Meaning

To emphasize the considerations discussed in the preceding section, it is easy to see that
the rule of the parallelogram of velocities, which made one think that Lorentz’s theory
cannot be reconciled with the theory of relativity, is based on unacceptable arbitrary
hypotheses. In fact, this rule leads to the following transformation equations,

t =t x' =x-vt, y =y 2z =2z,

or more generally,

’ ’

o=t x =x-vt, y =y vt z' =z -vt

The first of these equations expresses, as we have seen, an ill-founded hypothesis
about the time coordinates of an elementary event taken with respect to two systems S
and S’ that are in uniform translational motion with respect to each other. The other
three equations express the hypothesis that the kinematic configuration of the system §’

[13]

[14]



(3]

130 DOC. 2 RELATIVITY AND ITS CONSEQUENCES

with respect to the system § is identical with the geometric configuration of the system
S

If one abandons the ordinary kinematics and builds a new kinematics based on the
new foundations, cne arrives at transformation equations different from those given
above. And now, we are going to show' that based on

1. The principle of relativity and

2. The principle of the constancy of the velocity of light, we arrive at transformation
equations that allow us to see that Lorentz’s theory is compatible with the principle of
relativity.

The theory based on these principles we shall call the theory of relativity.

Let § and S’ be two equivalent coordinate systems, i.e., systems in which lengths
are measured in the same unit, and each of which possesses a group of clocks that run
in synchrony when the two systems are at relative rest with respect to each other."
According to the principle of relativity, physical laws must be identical for the two
systems regardless of whether the systems are at relative rest or in uniform translational
motion with respect to each other. Thus, in particular, the velocity of light in a vacuum
must be expressed by the same number in the two systems. Let ¢, x, y, z be the
coordinates of an elementary event with respect to S, and ¢, x’, y’, 2z’ the
coordinates of the same event with respect to §’. We seek to find the relations that link
these two groups of coordinates. It can be shown that these relations must be linear
because of the homogeneity of time and space,”? and time ¢ is therefore linked with
time ¢’ by a formula of the form

V)] t’ =At +Bx +Cy + Dz

Furthermore, for an observer linked to S it follows from this, in particular, that the
three coordinate planes of §’ are planes in uniform motion; but, in general, these three
planes will not form a rectangular triad even though we assume that the system §’ is
rectangular for an observer connected with this system. However, if, referring to the
system S, we have chosen the position of the x'-axis parallel to the direction of the
motion of §’, it will follow for reasons of symmetry that the system S will appear as
rectangular. In particular, we may choose the relative position of the two coordinate
systems in such a way that the x-axis will permanently coincide with the x"-axis, and the

'°A. Einstein, Ann. der Phys. 17 (1905): 891-921, and Jahrbuch der Radioaktivitiit und Elektronik
4 (1907): 411-462.

Tt should be noted that we will always implicitly assume that the fact of a measuring rod or a
clock being set in motion or brought to rest does not change the length of the rod or the rate of
the clock.

2Cf. footnote 15.
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y“-axis will remain parallel to the y-axis, and that, in addition, the same-named axes have
the same orientation for the observer connected with S. We will count the time from
the instant when the origins of the two systems coincide. Under these conditions, the
relations sought are homogeneous, and the following equations

x' =0 and x-vt=0
y' =0 and y=0
z' =0 and z2=0

are equivalent, or, in other words, the coordinates x, y, z x% y; z’ are linked by
relations of the form

x' =E@x - w)
3 y =F
2 =Gz

To determine the constants A, B, C, D, E, F, G entering equations (2) and (3), we
assert that, according to the principle of the constancy of the velocity of light, the velocity
of propagation has the same value ¢ with respect to the two systems, or, in other words,
that the two equations

Xyt et =c%
4

x'?, +y12 +zrz =Cztz

are equivalent. Replacing in the second of these equations ¢t/ x y; z* by their values
obtained from (2) and (3), and equating it with the first equation, one can easily find that
the transformation equations sought are of the form

t = cp(v).B.[t - Cizx]
&) 1 =o().B.(x - w),,

Yy =)y

Lz’ = ¢(v).z

where

6]
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and ¢(v) is a function of v that is to be determined. We can easily find ¢(v) by
introducing a third coordinate system S* which is equivalent to the first two systems,
is moving relatively to S’ with a uniform velocity -v, and is oriented with respect to §*
as S’is oricnted with respect to S. Then, applying equation (5) twice, we obtain

1" = p(v). (—v).1
x7 = @v). p(-v).x
Y =o(v). o(-v).y
2= g(v). p(v).z

Since the origins of § and S§“ are permanently coincident, the axes have the same
orientation, and the systems are equivalent, we must necessarily have

¢(v)-¢(-v) = L.

Since, moreover, the relation between y and y’ (as also that between z and z')
does not depend on the sign of v, we have

o(v) = @(-v).
From this it follows that

o(v) =1

(¢(v) = -1 is here inappropriate), and that the transformation equations are

' = ﬁ[t - éx]

() 1 =Bk -w),
yo=y
z' =z
where
B = 1
1
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These transformation equations have been introduced into electrodynamics in a very
felicitous manner by Mr. Lorentz. We will call them Lorentz transformations.

If we solve these equations with respect to f, x, y, z we obtain equations of the
same form, except that the primed letters arc replaced by nonprimed ones, and v is
replaced by -v. Moreover, this result is an obvious consequence of the principle of
relativity: relative to S, § is moving with velocity -v parallel to the x and x’ axes.

By combining the transformation equations with the equations expressing the rotation
of one system with respect to another one, we can obtain the most general transforma-
tions of coordinates.

§7. Physical Interpretations of the Transformation Equations

1. Consider a body attached to S’ Let x',y’ p2,and x'y' 2z, be

coordinates of two points of the body. At any instant ¢ of the system § we will have
the following relations between these coordinates:

6

This shows us that the kinematic configuration of a body in uniform translational
motion with respect to a coordinate system depends on the velocity v of the translation.
Furthermore, the kinematic configuration differs from the geometric configuration solely
by a contraction in the direction of the motion, a contraction which is in the ratio

2
1:]1- v_z . A relative motion of two reference systems with a velocity v that exceeds
\I c

the velocity of light in vacuum is incompatible with the principle here assumed.

One recognizes at once in these equations the hypothesis of Messrs. Lorentz and
FitzGerald (§3). This is the hypothesis that looked so strange to us and that had to be
introduced to explain the negative results of the experiment of Michelson and Morley.
Here this hypothesis appears naturally as an immediate consequence of the principles
assumed.

2. Let us consider a clock H’ which is at rest at the origin of S, and which runs
Po times faster than one of the clocks used for the determination of physical time in the
systems § or S’ In other words, when the two clocks are compared while at relative
rest, clock H’ will indicate p, periods during the unit time indicated by the other clock.

[17]
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How many periods will clock H’ indicate during unit time if observed from the system
§?
Clock H’ will indicate the end of a period at the times

=—];., t"‘2 t'_3 """ | = —.
Py

t' = -
2 ’
Py

1

Since we seek the time with respect to S, the first of the transformation equations
(I) will have to be written
v
t=p | - _x'

and since clock H’ is at rest at the origin of §’, we must always have

x’=0,
which yields
t, =pt = P_n.
Py
Observed from §, clock H’ thus indicates
i Po _ . V2
p= T}' =P, 1 'c_i

periods in a unit time. In other words, a clock moving uniformly with velocity v with

2
respect to a reference system runs, as observed from this system, 1 : l 1 __v_z times
[

slower than an identical clock that is at rest with respect to this system.

And here is an interesting application of the preceding formula. In 1907, Mr. J.
Stark™ remarked that canal ray ions emit spectral lines that give rise to a sort of
Doppler phenomenon, namely, a displacement of spectral lines proceeding from the
motion of the source. Since the oscillatory phenomena that produce a spectral line must
be viewed as intra-atomic phenomena whose frequencies are uniquely determined by the
nature of the ions, we can use these ions as clocks. The frequency p, of the oscillatory
motion of the ions provides us with a means to measure time. This frequency is found
by observing the spectrum produced by ions of the same kind but at rest with respect to

). Stark, Ann. der Phys. 21 (1906): 401-456.
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the observer. The preceding formula thus shows that besides the phenomenon known
as the Doppler phenomenon, there exists an effect of motion on the source that
diminishes the apparent frequency of the ion.

3. Let us consider the equations of motion of a point moving in uniform translation
with velocity u’ with respectto S~

o _ 142

X = uxt

o 1 gt

y u,t

Zl = u’t’
T

If one replaces x’, ¥,z t’ by their values as functions of x, y, z, ¢ by means of
equation (I), one obtains x, y,z as functions of ¢ and, hence, the components u, u,
u, of the velocity u of the point with respect to the system S. In this way it is possible
to obtain the formula that expresses the theorem of the addition of velocities in its
general form, and one can immediately see that the law of the parallelogram of velocities
is valid only in first approximation. In the special case when the velocity «“ has the
same direction as the velocity v of the translation of S’ with respect to S, one easily

obtains

0] u=2IY¥
vu
1+ —
=2
This equation shows that if one adds two velocities, each smaller than the velocity
of light in a vacuum, one always obtains a resultant velocity that is smaller than the
velocity of light. For if one sets v =c¢ - A, #”=c - u, where A and u are positive and
smaller than c, one gets
u = C_ZC_'*‘_MA <ec
2 -A-u+ R
c

From this it also follows that when one adds the velocity of light ¢ and a velocity
smaller than ¢, one always obtains the velocity of light. Now we can understand why
Fizeau could not find « + v for the sum of the velocity u” of the light in a liquid and
the velocity v of the liquid in the tube (§2). For if higher than first-order terms are

(19]
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neglected, and the ratio i, is replaced by the refractive index n of the liquid,*
u

u=u’+v[l-l].
nl

This equation is identical to the one found experimentally by Fizeau.

Yet another consequence, as strange as it is interesting, follows immediately from the
addition theorem. It can be shown that no means exist by which to send signals that
would travel faster than light in a vacuum. Let us consider a bar that is moving uniformly
along the x-axis of § with velocity -v(|v]<c), and by means of which one can send
signals propagated with velocity 1’ with respect to the bar. Suppose that an observer
A is located at the point x = 0 of the x-axis and an observer B at the point x =x of
the same axis, and that both are at rest in S. If the observer A sends a signal to B

equation (7) can be written:

by means of the bar, the signal will be transmitted with velocity v——u’ with respect
| - v
CZ
to these observers. The time needed for this transmission will thus be

where v can take any value smaller than ¢. Now, if we assume that u”is larger than
¢, then one can always choose v in such a way that 7 would be negative. There would
have to exist a transmission phenomenon such that the signal would arrive at its goal
before having been emitted: The effect would precede the cause. Even though such a
result is not inadmissible from the logical point of view, it so contradicts all of our
empirical knowledge that we can consider that the impossibility of having u’ > ¢ has
been demonstrated.

4. The theory of relativity based on the principles assumed here permits us also to
obtain the formulas expressing the Doppler and aberration phenomena in their general
form. All we have to do is to compare the vector proportional to

MStrictly speaking, the index n does not correspond to the refractive index of the liquid for the
frequency of the source used in the experiment, but to the index of the liquid for the frequency
an observer moving with the liquid would ascertain.
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sinm[t £ D anyal nz]’

c

which is the vector of a planar light wave propagated in a vacuum with respect to S, with
the vector proportional to

. llxl + ml ’ + nr ’
sinaf [t' - 4 z )
c

which is the vector of the same wave with respect to S° By replacing ¢/, x’, y/, z’
in the last expression by their values obtained from the transformation equations (I), and
equating it with the first expression, we find the relation connecting »’,!’, m’, n’ with
w, I, m, n. By means of these relations it is easy to establish the formulas for aberration
and the Doppler phenomenon.

The fundamental importance of the transformation equations (I) is first of all due
to the fact that they provide a criterion that permits us to check the correctness of a
physical theory. In effect, it is necessary for any equation that expresses a physical law
to transform to an equation of identical form if the variables 17, x’, y, z* are
substituted for the variables ¢, x, y, z by means of the transformation equations. In the
second place, the transformation equations provide a means for finding the laws
applicable to a body in rapid motion if one already knows the laws applicable to the same
body when at rest or in infinitely slow motion.”

§8. Remarks about Some Formal Properties of
the Transformation Equations

Let us consider two coordinate systems £ and X’ the origins of which coincide and
which have the same orientation.

There are two kinds of coordinate transformations in Newtonian mechanics that do
not alter the laws of motion. These are

1. A change in orientation of the system X’ with respect to the system I about
the common origin. This first transformation is characterized by equations linear in x’,
y’, z' and x, y, z, between the coefficients of which there exist relations such that the
condition

“Now it is easy to understand what we meant by the homogeneity of time and space in §6, or, in
other words, why we assumed a priori that the transformation equations must be linear. For if a
rate of a clock at rest with respect to §' is observed from S, this rate does not have to depend
on the location of the clock in §' nor on the value of the time of S' in the vicinity of the clock.
An analogous remark applies to the orientation and length of a bar linked with §' and observed
from S. Only when the transformation equations are linear are these conditions satisfied.
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(1) xl2 +y12 +2'2 = x? +y2 + 22

is identically satisfied.
2. Uniform motion (translation) of the system X’ with respect to the system Z. This
second transformation is characterized by the equations

x'=x+at
@ y =y +Bt
z'=z + 4t

where a, B, y are constants.
For these two kinds of transformation, the condition

€)) t=t

must be satisfied. In other words, time is an invariant under these two transformations.

Combining the transformations (1) and (2), we obtain the most general transforma-
tion by means of which one can transform the equations of mechanics without altering
them. This transformation is characterized by the equation (3) and by three equations
that express x’, y’, z’ as linear functions of x,y, z, 7. The coefficients of these three
equations are connected with each other by relations that, for ¢ = 0, satisfy condition (1)
identically.

Let us now consider the most general coordinate transformation compatible with the
theory of relativity. From what we have seen, this transformation is characterized by the
fact that x’ y* z t’ must be linear functions of x, y, z f, such that the condition

(a) X2y 4zt =2 vyt + 2P -

will be satisfied identically. It should be noted that the transformations compatible with
Newtonian mechanics can be obtained at once by setting ¢ = « in condition (a). Thus,
if we take the same route as before, we arrive at the equations of ordinary kinematics if,
instead of the principle of the constancy of the velocity of light, we assume the existence
of signals whose propagation does not require any time.

The group characterized by equation (a) contains the transformations that correspond
to a change in the orientation of the system. These are the transformations compatible
with the condition

t=t"

The simplest transformations compatible with condition (a) are those for which two
of the four coordinates of an elementary event remain invariant. Let us consider, for
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example, the transformations under which x and ¢ do not change. Instead of the
general condition (a), we will have the special condition

' =1
(a) x' =x
yIZ +212 :yz +21_

To this condition corresponds a rotation of the system about the x-axis.

If, on the other hand, we consider transformations under which two of the spatial
coordinates, for example y and z, remain invariant, we will have instead of the general
condition (a) the special condition

y =y
(2) zZ' =z
X2 -t =2 -

These are the transformations we have encountered in the preceding section while
investigating a system in uniform motion parallel to the x-axis of an identically oriented
system at rest.

The formal analogy between the transformations (a,) and (a,) is immediately evident.
The two systems of equations differ only by a change of sign in the third condition. But
even this difference can be made to disappear if one chooses, with Minkowski, to take
ict instead of ¢ as a variable, where i is the imaginary unit.’® In that case this
imaginary temporal coordinate plays the same role in the transformation equations as the
spatial coordinates. If we set

X =X
Yy =X
z=x
ict =Xx,

and consider x,, x,, x;, x, as the coordinates of a point in a four-dimensional space such
that to each elementary event there corresponds a point in this space, we reduce
everything that happens in the physical world to something static in the four-dimensional
space. In that case the condition (a) will be written as

r 2 ' 2 2 r 2 _ 2 2 2 2
II +y2 "‘.X?3 +X‘ =X tXx, +tXx; +Xx,.

1H. Minkowski, Raum und Zeit. Leipzig, 1909.

[21]
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This is the condition that corresponds to a rotation without relative translation of a
four-dimensional coordinate system.

The principle of relativity demands that the laws of physics not be altered by the
rotation of the four-dimensional coordinate system to which they are referred. The four
coordinates x;, x,, X3, X, must appear in the laws symmetrically. To express the different
physical states, one can use four-dimensional vectors which behave in the calculations in
a manner analogous to ordinary vectors in three-dimensional space.

§9. Some Applications of the Theory of Relativity

Let us apply the transformation equations (I) to the Maxwell-Lorentz equations
representing the magnetic field. Let E, E, E, be the vector components of the electric
field , and M,, M,, M, the components of the magnetic field, with respect to the system
§. Calculation shows that the transformed equations will be of the same form as the
original ones if one sets

E, x = EX M' x m Ml
(1) 1E, =B(E, -ve M) M =pM, +vic E)
E', =B, +vc M) M, =BM, -viE)

The vectors (E,, E;, E;) and (M;, M;, M) play the same role in the equations
referred to S as the vectors (E,, E,, E,) and (M,, M,, M,) play in the equations
referred to S§. Hence the important result:

The existence of the electric field, as well as that of the magnetic field, depends on the
state of motion of the coordinate system.

The transformed equations permit us to know an electromagnetic field with respect
to any arbitrary system in nonaccelerated motion S if the field is known relative to
another system § of the same type.

These transformations would be impossible if the state of motion of the coordinate
system played no role in the definition of the vectors. This we will recognize at once if
we consider the definition of the electric field strength: the magnitude, direction, and
orientation of the field strength at a given point are determined by the ponderomotive
force exerted by the field on the unit quantity of electricity, which is assumed to be
concentrated in the point considered and at rest with respect to the system of axes.

The transformation equations demonstrate that the difficulties we have encountered
(§3) regarding the phenomena caused by the relative motions of a closed circuit and a
magnetic pole have been completely averted in the new theory.

For let us consider an electric charge moving uniformly with respect to a magnetic
pole. We may observe this phenomenon either from a system of axes S linked with the
magnet, or from a system of axes S linked with the electric charge. With respect to
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S there exists only a magnetic field (M,, M,, M,), but not any electric field. In contrast,
with respect to S’ there exists—as can be seen from the expression for E’, and
E’,—an electric field that acts on the electric charge at rest relative to S”. Thus, the
manner of considering the phenomena varies with the state of motion of the reference
system: all depends on the point of view, but in this case these changes in the point of
view play no essential role and do not correspond to anything that one could objectify,
which was not the case when these changes were being attributed to changes of state of
a medium filling all of space.

As we have already noted, we can find at once the laws applying to a body in rapid
motion if we know the laws applying to a body at rest. In this way we can obtain, for
example, the equations of motion for a material point of mass m carrying a charge e
(an electron, for example) and subjected to the action of an electromagnetic field. We
know, in fact, the equations of motion of a material point at the instant when its velocity
is zero. According to Newton’s equations and the definition of the electric field strength,
we have

2) md_?;t = ¢E,

dr’
and two other, similar equations with respect to the coordinates y and z. Applying the
transformation equations (I) and the equations (1) given above, we find then for a point
in any motion whatever

dx
dl "a@
3 —— -F1
3) == =
u
Iz
2 2 2
where u= é + Q + d_z
dt dt dt
and F =¢|E +1[d_yM -EM]
x *oelde t odt Y

and two, other, similar equations for the other two axes. These equations make it
possible to follow the path of cathode rays and f-rays in an electromagnetic field. Their
accuracy is almost beyond doubt, more so than the experiments of Bucherer and Hupka.

If one wants to retain the relation between the force, mechanical work, and the
theorem of the conservation of momentum, then the vectors F,, F,, F, entering these
equations have to be viewed as the vector components of the ponderomotive force acting
on the material point in motion. Under these conditions, equations (3) have to be

(22]
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considered as the most general equations of motion of a material point compatible with the
principles here assumed, whatever the nature of the force (F,, F,, F,) might be.

If one expresses mathematically, first with respect to the system S, and then with
respect to the system S‘, the fact that the principles of conservation of energy and
momentum retain their validity in the emission and absorption of radiant energy by a
body, one is led to the important conclusion that the mass of any arbitrary body depends
on the quantity of energy it contains. If m denotes the mass for a certain quantity of

energy contained in a body, then the mass of the body will become m + E: if one
c

increases the energy of the body by W (c always represents the velocity of light in
vacuum). Thus, the principle of the conservation of mass assumed in Newtonian
mechanics is valid only for a system whose energy remains constant. Mass and energy
become equivalent quantities like heat and mechanical work, for example, and it takes
only one additional step to consider mass as an enormous concentration of energy.

Unfortunately, the change of mass I/_l: is so slight that one cannot hope for its detection
C

by experiment for the time being.
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Doc. 3
Response to Manuscript of Planck 1910a
[Before 18 January 1910}

On page 6 of your manuscript you say: “If, therefore, the oscillations of the emitting
particles are subjected to certain fluctuations, these fluctuations will also manifest
themselves in the intensity of the emitting light.” Here you refer to the very point that
first and foremost makes it seem to me that an explanation of the fluctuations of the
radiation by the quantum character of the emission alone is out of the question. For,
obviously, there must not exist any dependence of the statistical properties of radiation
on the distance of the emitting wall. Let us compare the two cases:

A receives radiation one time from the surface f and another time from F. Suppose
that f and F are made of the same material and are at the
same temperature. If the radiation is produced in quanta of
the same finite magnitude at f and F, but is distributed over
the space in spherical waves, then the fluctuations will be
smaller in the second case than in the first, because a greater
number of quantum-like acts of emission, with a smaller percentage of the energy for
each individual act, will work together. One candle produces at a distance of 1 m a
strongly flickering light; 100 candles of the same kind produce at a distance of 10 m light
of the same intensity but with less flicker. Further, I did not introduce the constant A
in the dimensional argument that was to yield the fluctuation of the radiation pressure,
because this constant just does not belong in the pure undulatory theory of radiation.
As far as I see it, even at an arbitrary distance from the emitting wall, the latter theory
does not allow for any fluctuations other than the fluctuations due to interference. One
of these days I will recommend a more exact investigation of this problem to a doctoral
candidate.

Further, you consider it a weakness of the quantum conception that one cannot see
how to conceive of static and stationary fields. In this matter I am definitively of the
opinion that the development of relativistic electrodynamics will lead to a localization of
energy different from the one we are now accustomed to assume without any good
reason. Without an ether, energy continuously distributed in space seems to me an
absurdity. It can also easily be shown that the localization of energy as the old action-at-
a-distance theory had it is compatible with Maxwell’s theory; one of these days I will
publish this in connection with some other material. Though Faraday’s intuitive
representation rendered important services in the development of electrodynamics, one
cannot conclude from this, in my opinion, that it must be retained in all its details.
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Doc. 4

Lecture Notes for Course
on the Kinetic Theory of Heat
at the University of Zurich, Summer Semester 1910

[19 April-5 August 1910}

up u; uy-c-uy ouy uyeoes Bl fiydear)
du
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M > .
—_—
X
1 1
xlmil=X1 ’ » J. pdt=J Z—kd[
V] 1]

Y mxx =) Xx

=-3 J: kdt = 2) mu,

x% = i(x)'c) — %2
dt

=23 nyu,mu,

%(me;‘c) —2L=YXx+ +-

Jk dt = m{u, — u;) = —2mu,
I

0
=22n,mu§=2|£‘—1 =ZE
dv 3(-1 3V
pdscosa-r = p3—
s 2
ﬁ pV=—L
2 3
pV = 3L. P
applied to one gram-molecule
2
=g [ _3RT
mol_2 N

pV =RT gaseq.
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o

Test L - ¢ = 3R fe, - <¢>=C,+R =

R %-3
ar B 3

c

v

Nl L

The law pV = %L also holds if several different kinds of molecules

If r, gram.-molecules of the first gas, r, of the second gas

pv = %{%(RTrl + RTrz)} = RT(r, + r,) Dalton’s law.”

Virial theorem
d? 2
x|mr£=X Z(Xx+-+-)=2m(ij:+-+-)

d dx

. =3;Zm(ng+-+-)—2mv’
L= —%Z(Xx+-+-)

dsrcosnr = <§> 3do

3
L=_pV
2p

Pressure of an ideal gas. Analysis as in Boltzmann. Also using the virial theorem, [p- 1]

3
L=2pV 1
5P ¢}

On the other hand, according to the equation of state
pV = RT, if one gram-molecule is present!

From this, RT = %L
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]

T o 3R o |Rr
o ST N3N ’ M

Thus, according to the equation of state, the mean kinetic energy of a monatomic gas
depends on the temperature but not on the constitution (mass) of the molecule and not
on the density of the molecules. We shall see later that it is also possible to prove this
law on the basis of purely molecular-theoretical considerations without resorting to the
equation of state, that is to say, the equation of state can be deduced entirely by means
of the molecular theory."

<From the constant of the equation of state> We can use (1) to calculate the mean
velocities of the gas molecules,”! & this calculation obviously applies in the case of
polyatomic molecules as well. Here L denotes then the kin. energy of translational
motion.

L= .3_pV<applicd to a unit volume> iy gp = nﬁz_! =Pz
2 Vv 2 2 2
=7 A0V -
&= oralso L=§pV=n£= B et
P 2 2 2 2
18-10°
2 8)

Srr-MS @=3%7 1.8-10°

2 @ 13-10° cm.

For T = 273, one obtains in this way about 1840 m/sec for hydrogen, etc.

<Our analysis leads further to Avogadro’s rule.> The rule that at the same temperature
and pressure a given space always contains the same number of molecules can be
presented as a consequence of the theory only after it has been proved by purely
molecular-theoretical considerations that the mean kinetic energy of the translational
motion of a molecule depends only on the temperature. ©)
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The Specific Heat of a Monatomic Molecule

L= :}pV for a gram-molecule dp
2 Vd
p
L=2rT Siple (SIRT
2 3p V3 M
dL 3 3 R 1ol V = RT
_— = — X = _ - =~ pv =
TR w39 ™3
5 -M=V
CP=CU+R=§R
>R
et =2 =166
Co §R
2

E=L+E,=%RT+E,-

:—f, cu=%R+%}—z—‘=%R+c,
C,= ;R+c,
C—p_5+ci%

c"_3+cz
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c
Since ¢; obviously increases with increasing molecular size, -£ is here <§ and
c
approaches unity with increasing c,.
Approximate Theory of Heat Conduction, Viscosity, and Diffusion
To simplify the calculation, we shall assume that at the same location all molec. have the

same velocity Q/cE . We designate by 1 the mean path length of a molecule on which the
quantities to be calculated depend.

Transport of Any Molecular Quantity through the Gas™

4
n  number of molecules in unit volume.
ndx number " " """ of spec. x
>
. A ndxc cosddt
During time dt, v = :—Z—
4

fly from top to bottom

dx _ sinddddw i
4n 4n
Each molecule carries along a certain quantity of something, with this
amount depending only on where the molecule’s last collision took
place. traveled freely the distance A up to the layer comes from the

oG
layer z =2z, - A cos & There the value G(z, - Acos®) = G, —a_"Acoso obtains
74
permanently. Thus, the v molecules carry along during dt the quantity
aG,
viG, - ——Acosd|.
0z

In the same way, we find that the amount delivered in the opposite direction, charac-
terized by the opposite cone, is

' aGD
V|G, + —AcosDd|.
oz

Here v = v’, so that we have in all (for x + x)



DOC. 4 KINETIC THEORY LECTURE NOTES

149

dxc , 0G

—2\»£Icos0 = -2nZ2dt—— dcosO?
oz 4n 0z
dF = -2 ncde1 %6 cos 0sinbddde
4n oz

This we have to integrate:"™ @ from 0-2n, and ® from 0 to n/2.

F _ 8G Isin’d> _ 1_ . 8G
— =-ncA— = -_nch_—
dt z |3 3 3z

F = lnclzg .
3 oz
Free Path

Assume again that all molecules of a given kind have the same velocity.

Collisions of a moving molecule (radius R)) with stationary

molecules (radius R,)

Collision as soon as the distance between centers R, + R, = ¢

Volume covered in unit time

nco’

second kind

Z,, = n,nc, 6’

,__J Py Number of collisions of mol. of kind 1 with mol. of kind 1

- 2
Z,, = nymessy’,

where s is the diameter of the molecule of kind 1.

Number of col. of a molecule of kind 1 with molecules of the

We now calculate more precisely by taking into account the fact that the molecules that

are hit are set in motion. First, collisions with molecules of the kind previously

emphasized (dx)™

ip- 4]
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c2=c} +c%—2cc,c089

Ld
dZ,, = nyno’c,dx

€
inn Sdwd$

| R

47
n,na? (™
zlz= 4
T 9=0 Jo=0-2x

x /e + ¢2 — 2c, ¢, cos §)sin $dw d3

2 n

n,no 1 2

=2 Z|(c? + €2 — 2c,c;,c05 92
0

J

2 .Zc,cz 3

Y
(cr+c)*—(ey—cy)®

Y
6cicy+2c3
12
Z,, =nymot|e, + 52
12 2 1 3C|

4
Z,, = n,ns? {301}

We obtain the mean free path by dividing the velocity ¢, of the molecule by the number

lp- 3]
of collisions per second.

< 1 c_m
Al = 7 = 2 Ei 3 m—
Zia+2Z,, 4 5 2 1c; 1 2

3MTSH + nyno l+§a

1m,

gL L

( 3 mz)
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Thermal Conductivity

v

Heat conduction from the fact that, on average, each molecule the amount of heat

with it. Hence the heat conduction will be

C C
F = —lnc).__’_a.z' = —kaT 1 =

3 " Noz 3z 3N

. n s .
Since N is concentration n, we have

1
= e
e

1
= _pcAc
3P

For monatomic gas C, = %R

Further, if one inserts the value for A into the first equ. for k, one obtains

1 <C,
k=__"
4 ~’N

It turns out that the thermal conductivity is independent of the density of the gas.
(Limit of validity of this law.!"")
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lp- 6] Viscosity

We compare this with our expression

so that we get E =c
R

v

Accurate to an order of magnitude*

I | R x observed

o _ 1 Jou du

oz I =

x calculated | quotient

H, | 2|1850-10¢ [035-10°
0, | 32 |1880-10¢ |0056-10°

0.21-107 1.6
0.029-10° 1.9.
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We can set p = nm

Bl R =1me
y g y g

From this one sees that k& should be independent of the density, which has been

amply proved by experiment."”) Further, we have ¢ « ﬁ , which should thus hold
for k as well. But it does not hold, because s decreases for higher temperatures (the

elastic spheres model not completely applicable.!"®

Diffusion of Molecules of Kind 1 in Molecules of Kind 2! [p. 7
dx
/ cdtcosqr-a;nl(zo — Acos @)
ol

cdtcoscpz—: (n, — %lcos (0)

—cdtcosqoj—';(n, + %lcos qp)

sin p dwde 1 on,

dZ = —2cdt — s bt
cdtcos @ n cosg -
ony
zZ=— l— cos? psingdp = ——cl 32
_cos*g[? 1
3 |, 3

If n denotes the concentration of the gas in _gim%ol:’ one obtains by dividing by N

cm
Diffusion gram-molecule = —lE e —Da_'rl
3 oz oz

)
>

%-5 10° 1075 = 0161

W =
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We found earlier

Comparison yields _g = p.

This relation also proves to be correct to an order of magnitude™)

| = I Mean l D goservea I I L
1n-4
o | 1w imo | o | on
8 !
ip. 8) Path Length and Actual Size of Molecules'™

1 -

R=_pcA
3PC

p = density.

Approximately ¢ = 'M#T

A can be calculated. e.g., oxygen atmospheric pressure 10 mm. Since now A =

A also yields s’n, and thus s°N = ﬁ . Sn
n

N
If molecules are packed perfectly tightly, then molecule occupies roughly the space
s*. The value for all molecules of a gram-molecule therefore s’N. Hence we have

s’N = A (from path length)
s’N = V (approximate molecular volume in the solid or liquid state.)

n



DOC. 4 KINETIC THEORY LECTURE NOTES 155

One obtains

A~ Y
I
BN

A3
7z

N

The determination of N very unreliable because of the powers of A (path length) One
obtains values between 10”2 & 10%; s = 10”7 mm.>)

Direct Influence of Path Length on the Phenomena

We had considered\the flow of the molecular function G in a stationary state. Must be
equal to this flow when infinitely close to the wall.

For the moleculesYlying off of the wall the value of the quantity G is on the average
G,. For those going upwards from below the value is

N X
When the molecule returns, it has G, Hence the molecule transports [p. 91
G, - |G, <+> - 0 Acos<g>0

>

There are n ? such (dx) molecules in a unit volume.
119

hence n?c dt cos¢ act in the time element dt
3

Hence total flow through surface
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aG ’ .
I (G, - G/ )<+> - S J.cosb] -ncs_“m"cosqpolul
oz 4

But F must be of the same‘ﬁnitude as for the middle cross section, where its value

is —lnc}.g(_; . Hence,
3 o)

4

_2,3G™

Go-G' =3te

As we see, there is a jump corresponding to gl. Has been proved by Kundt and

Warburg for viscosity, and by Smoluchowsky for thermal conducti&}.‘“l

Phenomena at Walls Owing to Finiteness of Path Length

[p. 10]
————— We assume that G changes linearly down to the lower wall.
There, but in the gas, G, For the molecules flying off of
the wall G, In the terminal cross-section as well we must
have
2EE ’
: F.= . neA—=2

3 0z

On the other hand, G-flow calculated®”
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dx 7 aGo
ng (G0 — }.cosqaﬁ)ccosrp
dk = sin $d%dw
, [ sin $d%dw dG, [ sin8cos? 9dI3dw
Integrated F, = ncG L —  oSP— A 7 I =
1 , 1 3G,
F+ = chGo - 8"(:1?2—
On the other hand, assuming that all molecules coming from the wall have G,.
F_ = %HCGO
1 , 1 ., 0G, _ 1 .G
F=F+_r_ =ZnC(Go_G0)‘—‘6nCAE = §"Cl az
1 , 1 .06
]‘hus an(Go et Go) = —Gncl 5
) 2,0G
Go — GO - —51‘6—2 2
Is a positive quantity. Right side shows how much G changes over the distance 3 A in

the gas. The space occupied by the gas would have to be increased downwards by gl

in order for G to assume the value G,.
For viscosity, one must set

G =mu

m(u; - 0) = —%a%

or uf =§A[—%‘f
z

CT
For heat conduction G = I:/

[p. 11}
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I T, 21 F.) ch]]
N N 3|~V

T - T, = 3;.[—‘31]

3 oz

Both consequences have been confirmed to an order-of-magnitude.®!

Gases in Narrow Channels (Knudsen)™!

Flow. If tube wide compared with cross section,”™

quantity of flow-through = ; _;.IR‘p .
per unit time

We now investigate the flow under the assumption that the diameter of the tube is small
compared with the path length.—

n?c cos® dr = number of incident molecules in time dt
719

Thus, in unit time from all angles together [?‘c/ o
7 Q)

ncJ‘sindedS 9o 1
T‘COS = ch

The ones that impinge during dr from the cone dx will each bring along the momentum
2mc cos ¥ each. hence molec dx in unit time

nd_K 2mcicos’d .
4n

Z
S
All together  2nmc? f M = :_linm‘;2 = p.
T
0
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Now consider narrow tubes. Velocity u in a cross
section. Regarded as constant over the [P 12]
cross section. On the average, each impinging mole- .

* e ———

cule brings to the wall the momentum ru*"; 4 ne

molecules impinge per unit time. Bring along the momentum % nc - mu (per unit

1 .
surface area. hence i nmcuP per unit length %%

This momentum is supplied by pressure forces at the beginning & the end of the layer.
If the cross section is g, then the above quantity is equal to

qp, - qp, =qA

Hence gA = %nmcuP

Now we have (p = %nmc’) nm =pc = | =

so that (u =<ﬁl> (%A)_%% % A%}

2
Hence quantity per unit time = & M A

‘/_jR_TP

Found & confirmed by Knudsen.®”

in Capillary Spaces®™

Consider two surface elements. SS 2

Pressure Differences Produced by Temperature Differences ,:2

First, case of the thermal equilibrium. ;.t R )
e . . . ™.
<Of the molecules impinging at 1, the fraction> :
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dx i z : o T
n Z_c cos® impinge on unit surface area in unit time in the angle dx. hence from
219

fronf,

X, i fcos0,
T ne cosd, or, since x, == =
n

W

Z;nrs cos®, cosd,

Symmetrical with regard to indices 1 & 2, as it must be.

[p- 13] If we assume that f, & f, are part of the wall of the tube, and that n & c are functions
of the abscissa, then the number of molecules sent from £, to f, will be determined by the
values of n & c at f,, Hence number of molecules sent per sec from f, to f;:

272

[f.n

cos®, cosbz] -nc
4nr?

K

Number of molecules sent per sec from f, to f:
Krt,Cy

Let us now assume that no flow takes place. Then the two quantities will be equal on
the average. Hence,

ne, =nc,
2 2
1 G _1 C;

o — = =

o PG VT
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In such spaces, the pressures behave like the temperatures.

Brief Discussion of the “Light Mill”™!

b\

Molecular Processes and Probability"™®

Let a pqint move on a plane according to a law of the form

These equations determine the yotion completely if only the initial position of the point

is given. If we follow the point, then a variety of cases can occur.”

1) The point describes a totally clos¢d curve. In that case we have an integral
of these equations such that (xy)N\¢ const, such that to each x there corre-
sponds a finite number of y values. shall exclude this case for the time
being. One can reduce it to the oppositézcase by decreasing the number of
variables by 1.

2) The point describes a curve that does not clos

Here again we can distinguish two cases.

a) The moving point never returns to the immediate vicinity
plane it has already passed. L.e., xy, is such a point. We can
a circle with a very small radius R around xpy, such that once th
left the circle, it never returns into it again.

b) The moving point returns to the immediate vicinity of each point
plane that it has passed before. No matter how small R around xgy,Ns

a point on the

{p. 14]
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\ assumed to be. The moving point enters again into the interior of the small
circle.

Example\for case 1):

xd_x +yQ = const. 7 = const.
dt dt

{p. 15} Point travels along a closed\gircle.
of Archimedes at constant velocity.”

{p. 16] Second proof®”

To traverse ds, a pyint needs the time é =T .

r 1
Rans g During this time, n poihts <run> are replaced by n
cancian / other points. But during the time a point traverses the
“, /
A I/ whole trajectory — this process is also

N .
repeated — times.
n

) . o, by
Hence, * =" Thls_relatlon is also va
T N |consists of several parts.

The concept of probability as defined can also be extended to the case where the
point moves according to such a law that it does not describe a closed curve.™ We
have in mind a cylinder & a point moving with constant speed on it along a spiral k
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4

——————

D : DS

A

ey \
\ \

W

We think of the cylinder as being bent together into a circular ring

(torus). If the ratio of ! to s is rational, then the line will close after . Y
a finite number of turns, so that the case reduces to the one consid-

ered above. But if the ratio is irrational, then a new case. Line

does not close. But statistical consideration possible in this case

too. We choose surface o on the torus and observe point for a

long time 7. A fraction <t of this time is distinguished by the fact

that point lies within 0. We consider

Ii 1)
( lm T T=w

A limit will exist for this fraction. We have to think of this limit as the probability W, [p. 17)
of o, or also as the probability of encountering this point in ¢ at an arbitrarily chosen
instant. Here too the probability can be visnalized by means of a stationary point flow

as % , which can be proved as above. That is to say that, to any approximation

desired, one can replace a very large number of non-closed turns with a closed one.
We now generalize the examples considered in that we leave unspecified the law
according to which the point moves. We set

dx

i @ (02)
dy N

5 - @®)
z . @ )

dr



[p. 18]
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These equations determine the position of the point at time ¢ + dt if it is given at time
t. Thus, path completely determined. Obviously, there can be statistical laws for the
motion only in the case where the point later on returns arbitrarily close to a point it had
already occupied once before. But in correspondence with the previous examples, we
must also demand that, based on the assumed law, it be possible to construct a stationary
flow from infinitely many (N) points.“"? In this flow there will be ndt points in the
volume element dt, and n <will> should vary continuously with the location.

Let the flow be a continuous one. From this we obtain an important formal relation.

[ndz), = [ndx], , -
Since a change in the number of points present in dt can occur only by points entering
or leaving the space, we can also say: The sum of the points entering a volume d+ during

time dt is zero.
Zer

n [dydz %dt] = number of points entering through dy dz during dt
=dy dz dt - (ng,)

In the same way, one finds that the number of points leaving
through the opposite surface is

dy dz dt(n’¢,")

_d(ng)

Since ng, - n' @' = =

dx, one finds that the excess of entering over exiting points

is

_d(ne)
X

drdydzdt

The other two pairs of lateral surfaces yield . . so that the total excess of the entering
over the exiting points is

_|3ne) O(ne,) 8l(ne,)

dxdydzdt.
ox dy 0z
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This must vanish for every volume element. Hence we must have in the entire space
0 d
i O W J
ox oy oz

This is the mathematical formulation of our condition. We want to write it in another
form. We have

a_%+%+%]+[§f_£+-+-]=0
ox dy oz ox dt
The second term can be written as

_af.dz + @dy + _aﬁdz
ox dy oz
dt

where dxdydz are the paths described by a point in the time element di. The
numerator is thus the increase in point density in case one passes from a point xy z to
a point that the point present inx y z reaches in time dr. We can always use the symbol
“d” for these increases & write more concisely

h f’_‘ﬁ]é_
ox dt

o9, .. _ _d(gn)

r i 1
B ox dt. M

Let us now consider a special case to which the general case can be reduced, as will be
shown later on. That is, we assume that the functions ¢ that determine the law of motion
of our points satisfy the condition

0
ahy.
ox

In this special case our law becomes

+ =0

[p. 19]
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dlgn =0, ---

= (1)

This says: No matter how long we follow a point on its trajectory; the point density n
is everywhere the same.[*l

<Two cases are possible> In what follows, we will assume

<1)> In its motion the point covers a three-dimensional space. We will confine our
statistical analysis to this space. In all of this space, then, n = const. The point density

is constant. Probability of a spatial region ndTo = lim;‘-

2) The law of motion is such that, in its motion, the point remains constantly on a
surface. In that case, all that follows from equation (1°) is that n has the same value for
all points of the surface. Let this be ¥(x y z) = E, where the value of E can be chosen
arbitrarily. E is then determined by the initial conditions. In this case we can conclude
that n depends on E alone. n = Yy(E). In this case as well, the statistical properties are
thus established to the extent that the conditions of the problem permit it.

In fact, the problem in this case is a two-dimensional one, since the position of the
point on the surface E = const. could be completely determined by two coordinates. (Cf.
example of the motion on the torus.)® Thus, <the statistical laws for an individual
system cannot here be deduced immediately> from the statistical laws for a stationary
spatial flow.

2]
[p. 20] If we do not assume that 2 % = 0, then equation 1) needs further interpretation.

The right-hand side is a time derivative of a spatial function. The left-hand side of 1) is
then integrable, & one obtains an equation of the form:

dn = NY(xyz)dx dy dz.
or also dW = ‘7’:]1 = Wxyz) dx dy d=.

Introducing new variables £n{ in the place of xyz, we can obtain

dW = ¥(&,n,0)D d&dnd{
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If we choose the substitution such that ‘D = 1, we have again dW = const. d€ dn d{,
that is, the same kind of law as above. But in the following we will confine ourselves to

a
the case where E E‘P] = 0. For this case it has been shown in the foregoing that

already for the initial choice of coordinates, the probability of a volume element is equal
to a constant multiplied by the size of the element.

Generalization of the theorem to a structure that is completely defined by n
quantities p,---- p,, and the change of which is completely determined by n equations

P

_aTl = 'Pl(pl””pn)
dp, N

% = ‘&(P] P,,)
Po e

- e, P

. . . "” dq, .
n is an arbtrarily large but finite number.*) If }° _—* = 0, then we have again

dn = N-constdp,..... dp,

dW =constdp, ...... dp,

Consideration of a Special Case of Particular Importance

We consider again point moving in the space according to an arbitrary law. But we no
longer assume that the point sweeps the entire space in the course of its motion, and that
after a sufficiently long time it comes arbitrarily close to every point of the space under
consideration; instead, the point will always remain on a finite closed surface. One could
reduce this case to the more general case considered before insofar as one could
completely determine the position of the point on its surface by two coordinates.
However, this would lead to great difficulties in applications.

So as to be able to apply three coordinates in this case as well, we consider again
not one point, but « many points. Each point moves on a finite surface e{xyz) = const.
In this case as well we can ask ourselves about the condition that must be satisfied for

[p. 21)
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a stationary point flow. However, we can now no longer infer from the number dn of the
points of an elementary volume d+ the probability of the region for any arbitrary one of
the points, precisely because the trajectory of a point does not fill up all surfaces

e = const., but, instead, only one of these surfaces but d_; is a probability in this case as

well, to wit, the probability that a point picked out at random from among all N points
will be found in the region dx.

Treating n again as a continuous spatial function we obtain again as the condition for
stationary flow the condition

ox dx dr.

an¢| o aq)] _ _dlgn

For the individual moving point we will again have n = const. if ¥, = 0. That is to
say, the spatial point density is the same for all points of a surface § = €. But it can be
an arbitrary funct. of e. Hence, we have

dn = const -y(e)dx dy dz.

Generalization of the theorem to n» dimensions.
The simple expedient of considering « many systems instead of a single one puts us in
a position to treat systems whose p, lie permanently on an n-dimensional surface in a
statistical manner, in the same way as those without this property. However, the
statistical distribution is here not yet unique by the equations of <motion> change.|*”)
We can still freely choose §(e); this is based on the fact that we can still freely choose
the number of systems whose e lies between given limits.

The simplest case that we can choose is that of setting y(&) constant for values of €
that lie between € & ¢ + 3¢, but equal to zero for values outside these limits. For a re-
gion lying entirely between the energy shells ¢ & ¢ + 8e, we will then have

dn =const-dp, ..... dp,
dW = constdp, ...... dp,,

if, as we will always assume in what follows,

y 2% g

ap, -

Gibbs calls such a phase distribution a microcanonical one.*! The smaller the 8e, the
less the paths described by the various n-dimensional points differ from each other, and
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the more the statistical properties of an individual system are similar to those of the total

system.

Canonical Ensemble®”)

Let there again be one, and only one, integral equation e(p, .... p,) = e for each
individual system.* We call ¢ “energy.” Let the system stay on energy shell. Then
the total system is again governed by the equation

dn = const - y(e)dp, ----- dp,,

where § can be chosen arbitrarily. We choose e = e 8.1 5o that fp. 23]

dn = const e_zsdpI ..... .ap,,

In this case it is not immediately obvious that all systems have practically the same
energy. For our exponential factor does become infinitesimally small for large e but not
for small e. We will demonstrate this right away, however, for the special case where
the individual system is an ideal gas.

Ideal Gas

The state variables p,p, ----p, are given by
XVZ XY T XYE

End, Eng, - Eni,

The equations of change become

dx, dy, dz,

— = = — = o
dt & 7 i W &

4@, __120 !
dt mox, o



[p. 24]
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0
The condition } a'p' =

= 0 is here satisfied, since the quantities

v

= %, & -1219% o
o, m 9k | ax, )

vanish one by one.*”
Thus, if we consider a system of « many (n) gases,”" then the fundamental statistical
equation here takes the form

dn = const.y(E)dx, -dx, -~ dzdE, -~ d{

! 1

For the canonical composite system we will then have the equation

E

dn = const.e 3dx, -+ dzdE, -~ di,.

Now we want to investigate how many systems have an energy lying between E & E + dE.
Since in the case of an ideal gas the potential energy <for all points in the interior> is
very small compared with the kinetic energy in all generally realizable states, we can
neglect ®, and we obtain

E
dn, = const- I e Odx - dzdE ----di,
E&E+dE

s
e ® can be taken out. The integration over dx, - - - dz, yields V', (thus a constant).
All that remains is to carry out the integration

J' dE -+ dg, E = %(Ef* C‘Z)

EIE+dE
This integration can be performed by means of the following argument

£, e + {2 = const. is the analog of the spherical surface in / dimensions. The
radius of the two bounding spheres is
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2E itterence of radii up to constant YEAE = 4E
m E \/E
2 1dE
ZWE + 222
m E [ 2 E ]

I-dimensional spherical surface to be multipled by the difference of the radii.

1-1
spherical surface = R~ = % I
product E2 dE
1

difference of radii = dE E-i

Thus, we obtain

E o1,
dn,, = const. E ®E* dE

We form the logarithm of this function [% - l]lg(E) 3 g

[p. 25]
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dg>! 1 Eo(1 + &) small
2

E e ° _(i_l)i

ere is E, where exponent is maximum. If [ is
‘vl:e%"l rge <& O smali, however>, this differential
quotientchanges very rapidly with E. Thus, canon-
ical distributign has in this case as well the re-
quired charactei\ Due to the fact that n is very
large number. One say in general. If an <ca-
nonical> individual sys consists of many ele-
mentary structures, then, forq canonical distribu-

small, an individual system is thereby retiyced for
all statistical questions to the corresponding canQni-
cal ensemble.

<Properties of Canonical Composite Systems>

WesetE =E; (1 +¢)
2

2 E +e
leE L SN |
AR ) ] e

IgE = gE +

Exponent = [é = 1]

Because E, is the maximum value, the terms with e vanish, so that we also have
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! e g
Exponent = —(2 — l)(—z~ ~5 )

dngp = konst e @A~ E2-@R)..) JE

The quantity in the exponent vanishes for e that are smaller the greater the /, ie.,
the number of molecules. Hence, the greater the number of molecules, the less the
energy values of gaseous systems deviate percentagewise from each other. All of the gas
systems in our canonical ensemble have approximately the same energy. The same is true
for each system in the molecular model that consists of very many molecules.

Practically all of the systems of a canonical ensemble possess the same energy.
Instead of investigating the statistical properties of the individual system, we investigate
the statistical properties of the canonical ensemble.

Temperature™

We consider a microcanonical ensemble whose statistical propertics are completely
given™ by the eq.

dn = nCe-sdpl .-+~ dp,

According to the aforesaid, the greater the /, the more the statistical properties of
this ensemble resemble those of an individual system of the kind in question. Besides
being determined by the <equation of state> functions ¢ (& e), the behavior of the
ensemble is completely determined by the constants C & 6. But the latter two constants
are not mutually independent, because we must have

Idn = n = total number of systems, hence 1 = Cfe-§¢] -+ dp,

Thus, the reciprocal value of C is equal to this integral. The statistical behavior of the
ensemble (hence also of the individual system) is therefore determined by ©. For a
given composite system, ® will determine the energy of the system, and vice versa.*®
We want to show that, up to a factor, ® has the meaning of the temperature.

If we imagine that the system under consideration consists of two parts and that, up
to the negligible, ¢ = H + n, where H depends only on the II, and v only on the =,*?
then

{p. 26)
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_(Hem)

dn = conste © dIl----dI-dm - -dm,

[p- 271 We now inquire into the statistical properties of the system of the =, leaving aside the
statistical properties of the systems II. 1.e., we ask how many systems dv of the & are to
be found at an arbitrary instant in a state that is characterized by the regiondr, .... dn,?

The number of systems for which not only the = lie in the region d=, --dn, but
also the II lie in a specific elementary region, is

n H
dn = const - e ®dm - - dme ®dIL - dIJ,.

If one omits the latter condition, then one has to sum over all regions of the I while
keeping the elementary region of the = fixed. Hence,

.m H
dv = const e ‘d"n""dﬂ,‘[e 841 ---- dIL

The last integral does not contain the . Hence the result of the integration is also
independent of =, so that we have

-m
dv = const e 8dm,---- dx

A

where “const” denotes a different constant. Thus, the ensemble of the subsystems =«
again forms a canonical <system> ensemble with the same constant @ as the ensemble
of the original systems.

The same holds of course for the <system> ensemble of the II, if it is considered by
itself. This is also a canonical ensemble with the characteristic constant .

If we ascribe the constant 8 to the individual system rather than to the canonical
ensemble, then we can say: Systems that touch each other (for an infinitely long
time)® have the same ©. Thus we see that @ plays the role of the temperature or of
a function of the temperature. To be sure, this way of thinking is permissible only if the
susbsystems also consist of so many molecules that their canonical distribution is almost
without energy fluctuation.
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Maxwell’s Distribution Law

The law derived for a subsystem of a canonical ensemble

_-n
dn = const-e ®dx - dn

1 A
is always correct if the energy of each composite system is composed in the way indicated
of the energy of the subsystem and that of the rest of the system, even if the subsystem
consists of a single molecule We will consider the latter case, starting with a monatomic
ideal gas.
Let the rest of the system be a monatomic molecule of an ideal gas the molecules of
which are not acted upon by any external forces.”” We have then

e w . 0)
dn = const. e s dx dy dz dE dn d{.

If we seek the probability for the region dédnd{, then we have to integrate with respect
to xyz, and we obtain

(eews0)
B

=8
dn, = const e ”‘ dEdndl{
or also
(Eenie)
LA ALY,

dW = conste ™  dEdnd¢

This formula contains the simplest case of Maxwell’s distribution law. To be sure, as
regards its derivation, it has so far been proved only for a randomly chosen system!®”
of a canonical ensemble. But since that probability must be identical, up to the
vanishingly small, for the individual systems of the canonical ensemble, because of the
nearly identical energy of the composite systems, the formula also holds for the individual
system, and the greater the number of the molecules constituting the composite system,
the better the approximation to which the formula holds.

[p. 28}
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[p- 29]

¢ multiplicative constant can easily be determined from the condition [dW =1

+o0

1= konst-j‘e'"dédndc = cost[J.

—ao

3
e %2ime df]
J(2me

L]

T nrdr = ﬂj e *4dx = n- 1161
[1]

32
1 = konst- (%) -(4m)¥? konst =

El 2
ST T
We have dW = conste ™ dE e ™ dn-- = dWEdW“dWc
The probabilities that { lies between specific limits are always the same, no matter
what values £ & m may have. (Probability of mutually independent events.)
!2

2
th = const e ng We wish to determine the const.

fd%=1 konst \/%;-Ie—cznz/m)e \/d_f_ ~1

2o
m

7 [+
konst- »-ef ey _ [
\/m _me x konst ey
H__J -

2\/n
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This is the constant of Maxwell’s law. If the law is written in three variables, then the
constant is to be raised to the third power.
Now we seek to calculate the mean square of the velocity. n systems constitute
canonical composite system. 1 specific gas molecule in each system singled out.*?
Indn_E is between £ + dE

We have
52 _ LE of the selected molecules of all systems _ [g%dn,
number of systems (n) ldn,
Hence [p. 30]
1 . 1 +o +oo R
—3 J-xd(e_' )= " xe ™|+ %J e dx
@ -0
0
e 2 . 4
—-kensfe"‘ /(Z/m)ed
- 2® 2 J‘+ao R
— /——@ x*e * dx
2= m_ _2gdwe _©
5 m +o . ;
j konst e~ame g 5 f < dx
Z@ e
m
‘We obtain
e
-9
m

R RN L R RN AL

Z 40

2

~3
©| 3

We obtain the important theorem that the kinetic energy of a monatomic gas molecule
depends only on 8, and is independent of the mass of the molecule. The mean kinetic
energy of a monatomic molecule depends only on the temperature.'*”
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‘We will show that we have thereby proved Avogadro’s law for monatomic gases, i.e.,
that at a given pressure & a given temperature a unit volume always contains the same
number of molecules independently of the nature of the gas.

If we have an ideal gas of arbitrary volume, then the virial theorem implies that

3
L =_pV
2P
If V =1, we have
D=7 2
2 2

MC!

If, in accordance with analysis given above, we set i %9 , we thus obtain

Z = %, where 8 depends on the temperature alone, which proves Avogadro’s law for

monatomic gases.

[p. 31] Beyond this, we investigate to what extent the equation of state for ideal gases can
be deduced from the investigations carried out thus far. We derived from the virial
theorem

3
L =_pV
5P

If one gram-molecule is present, then V is the molecular volume. We have then, in
addition,

Hence, by substituting into the above formula,
pV = N

Thus, pV depends linearly on the temperature function @ that we introduced, and
depends only on it.

We have thus shown that according to the kinetics of monatomic gases, pV is a
function of temperature alone. One can also deduce from kinetics alone that this
function must be equal to
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universal constant - absolute temperature.

We will delve into this later on, when discussing the second law. At the present we will
proceed in the following way.®! We will conceive of the absolute temperature as
defined with the aid of ideal gases by the equation of state

pV =RT
We have just found from kinetics that

pV =N6
By comparing the right-hand sides

9=§T

Thus, 8 is equal to the absolute temperature multiplied by a (numerically very small)
constant (about 1.4 -107'),
‘We can also calculate the most common mean values of the velocity of gas molecules [p. 32]

_E e’ )

dW = conste ™  dEdndl

How large is the probability of ¢ being betweenc & ¢ + dc? Integrate over the spherical
shell

e
Za
dW, =conse ™ cdc

we thus obtain



180 DOC. 4 KINETIC THEORY LECTURE NOTES
1 x3-2xdx
J' e 2Im8cs 4o = je"zx‘dx
= @@ _ 3@2_____ =0
m 2
J.e"“czdc fe"‘ x2dx
je—cs de J'e—xzxs dx 1 xz d(e_xz)
N 2 2
i=4 - [fe .
je"'czdc m fe"zxzdx 1{ _. 1 1
s 3 2y _ -x -
3 ) e * d(x*) zje dx 3
1 5
- [2e 2 =£\/§ L xd(e“’)=lje“2dx
m ﬁ T m 2 J 2
LV i H_J
4 Jr
2 [Ty
Je 173
_ RT
c= 7 1.6
(312) fo 32
Jam=1=(20)™ [" emtea=1(2)
m ° 2\2m
oy 1[ .
ifx/d( )—ZJ‘C dx—T
< S
Jn
2
. 3]

£ n { t o derivatives.
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Equations
molecule 1 molecule 2

dx }\ dE
— =8 = = @by z 0ok, )
dt d e n.
dy _
I )|
4o
—_— =T
dt
\
dw do _
_— =0 — =
dr dt

a9,

It follows at once that 2 = 0. \So our statistical laws are also valid here.

v

_E
dW = conste 5dxx ------- do (10 variables). B depends only on the derivatives

E =TZ@® + n2 + 1) + DIRSI00? + R2<Y
> (& +n ) + 5l ]

Probability

1m 1m 5
. [GRE B o R Ripin'dd + %)
z dE

dW = const. drdydzdddwe ® 57 dZ dr do.

<dWy,, as if the gas were monatomic.>
Mean kinetic energy of all such atoms

_1
fEdW i -%(Ez +n?+ %)+ mTRz(OZSInzb + e @ ’d(-n-

.[dW J-e—%( ldE -do
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Al /12...l¢1s

L= +r-+n),

we introduce new variables so that we obtain

= _ -n Inour case 29
2 2

But we always have for a gram-mol[e

. 7
¢, =¢, + R, hence in our case ¢, = _R
LA 7]

Is correct for gases that the chemists regard as diatomid*
Generalization of the analysis.

Let p, ' -+ p, be coordinates, and ¢, - ... g, velocities®
Energy can be written in the form (for an appropriate choice &f the g)

E=0+XAgq

P & the A, depend <for an appropriate choice of the variables> \qnly on the p.
Canonical distribution.

dW = const e'm’mﬂﬁdpl....dpldql....dq’

Suppose region dp, - - - - dp, given once and for all. Let us compare the vel
distributions that pertain to this configuration of the p,. If we take out everything th
does not depend on g,, we arrive at
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Mean value\of one of the terms (e.g., A,g,%)

Aaq

J’constAqu.«z-“'dq1 ~dq, J'Aque T‘//? dq,
Ioonst e~dq, ~dq, Ie‘ ‘/Z dg,

Thus, mean value of the kinetic engrgy associated with this configuration m‘_; Is

independent of the specific configuratisn. Mean kinetic energy of the system depends
in a simple fashion on the number of moigcules.
The simplest case for the representation of a solid body

E=YAp +
L_Y_.J

Inthiscase FE =n® .

Magnetic Molecule in a Magnetic Field. (Langevin, Weigs)"™®

We think of a molecule that is rigidly connected with an elementary tagnet. For the
sake of simplicity, we will consider perchance the molecule discussed aboye (diatomic)

dWo= konst e~ (VONOW2HE +52+{2)+(mR¥2)(sin? Jo2+e)]|+(1/@)MH cos § dx----dwdE---- do

This formula is valid if no magnetic field is present If magnetic field present, additio
term.

[p. 35)
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k for probability that molecule is contained in do
(direction _ Integrated over variables XY Z £ n L gives 2

oonstant : - f;
.ﬂ {4
ERS o)

ik @ (s‘m’Oo’ ) %MstOdo

dw = constddde Ie dt

1 pfHoos® _1mRY (ir200%) _IMR .
= const.dbdmeISM Ie T doj 877 dx

o

(p.36) Fora molecule of 2 monatomic solid substance simplest assumptionf""
attraction ar -ax, ay, 62

g w07 L0t + 7

1
W ke & dcdydzdian ag ™

2
Mean kinetic energy —;—

. S m C"‘e"“"’“‘“ dx=--dl

me_J2
i
Se“' dx----dl
m,;:
SLe—ule)(mmc’ g
_T- m 2,-x*
20 ’29 Sxe dx ®
=//=®/=i
[ I [
= ()]
=0-= ()
E 62 3

for gram-mo\ecule E =3RT in calories 3 1.97-T =59 T
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Dulong & Petit law.
Effect of external influences on the relative probability of state regions.

_E
dW = conste ®dp,---- dp,

Let us consider two equally probable regions g, & g, of the state variables. We have then

E
e 3dp - d D
aw, ! p, -~ dp, N P
aw, E -
[]
Ie dpl dpn ZD

&

If we now consider the same system, except that an additional term, which we shall
denote by y,™ is added to E, then we will have

_E+9

dW =conste ©° dp,----dp, [p- 37]
Then
Exw
W [e dpy:cdp, Ly
Wy & =e ©  dW=~
dw. E-w

1 J‘e—l_dpl...dpn

&

Examples later.™!

Canonical distribution yields characteristic properties also in the case when not simple
mass points but complicated systems—compound molecules in particular—are involved.
It is best to apply canonical equations.

L functionof p, & p, , in the latter quadratic

We set aaL =q,

v

L also funct. of the p, & g,, in the latter quadratic
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dp, _ dE
di 3,
for closed system
dg, __oE
@ ",

o¢, &E &E
__' = — T - 0
X op, X [aqvap. apﬁq.]

Thus, for this choice of variables the canonical distribution is universally valid

{+{izass)

dW = const e s dp - dp dg,--- dg,

Kinetic energy essentially positive. Hence expression replaceable by 2 Bvrf , where the
r are linear functions of the g. We have then also

)
dW=ke  °  dp,--dpdr,----dr,

where the constant can certainly now depend on the p,.
For specific p, we have

L1
dw, = const e ¢ dr,----dr,

]
2

[ " n %E vii = ng

From this we obtain mean value of %Bvrf =

Thus, the mean kinetic energy is equal to: g -number of degrees of freedom. This

holds for every configuration of the p, and thus, generally, as long as L is homogeneously
quadratic in the g.
diatomic gas n = 5

Heat content % 6 -N per gram-molec.
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RT
N
or equal to %RT
c = gR
§=%=14
c
c =2R+R|
P2

Correct for hydrogen, oxygen, nitrogen, etc."!
For molecules in which the atoms form a rigid body <without symmetry> with at least
3 atoms, n =6

% -8 .13
c, 6
Application to Magnet. Molecule

Magnetic molecule without forces All positions of the magnetic axis equally probable

Y = -MH cosd

While without field all positions of the axis ;

would be equally probable L’r
dW = const- dx

we obtain with field.

_MHcos®
dW =const.e  ©° dx

I

sinbd wd @
Mean momentum: [p- 39]
a
N
MHcos 8 _ ) MH +MH/8
g MHcos O gin 9 d5dG-— J‘ + xd(e™*
9I I ® ® _)ome T

H =
I J. e (MHcos 910 iy 0 J05dQ %’1 J + d(e™)
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[ We set; mol. weight; Curie for small; Thus; Molec[ular] field (Weiss); derivable as funct of the

temperature |
+a +a
xe | — J e *dx
. MHcos 3 —a -
Setzen Wit ————— = x =
©
J-e"" dx
NM ) )
Volesl I, (ae™® + ae®) — (e — &%)
[ e —e°
1 1-—- 1
Curie!”! fiir/ki[eine] a __+q(l—¢z) = _> _® acosha |
(il+ag-(1-a a H | sinha
I 1M | 12
- HlI=-"°H B cosha 1
I, 30 3RT = M(—_sinha a}

Langevin.!”¢!

I cosha 1 __NMH

NSk ~lzmha ah ' R

Molek[ular] Feld I /

H,=N-1

I

2) [2) @ °f
MN I 2\

a, ) I°I;

MH, MN,& MN,

i als Funkt der
Iy
Temp[eratur] ableitbar
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Dependence of saturation magnetization on the temperature.
Variability of the specific heat.
jumpwise change of magnetization in crystals. (Hysteresis).™

Application to Suspensions (Brownian Motion)™

E jisonn = V(P - P8 ® = R
_Vip - p ez N
dW = constdze ~ ®  =conste © © "%d;

Perrin determined with suspensions of resin granules in water. N obtained.®*® One can
conclude that Brownian motion takes place. Simpler in the following way
4z
dW =conste ©dx

Mean value for %xz %\‘ x

az _lg _ IRy
2 2N

[ ")

« many such systems treated.
x instantaneous value. Observed after short time t |path due to force
_force Ty
6mn P

|path due to thermal motion A
Xepe =X — KX, + A= (1 — k1)x, + A
X2 = (1 — 2k1)x2 + 2(1 — x)x A + A?

- I
5 =
xl'h' e xtz 0

2ktx? = A?

- 40)
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From this a _RT _w
3apP Na
— RT 1
A="_-
N 3nyP

This formula determines Brownian motion. Rotational motion can be obtained in an
analogous way 2

Magnetism
1. Gases I
Z
T cosha 1_puy o=
I, sinha a e
(-]
For all attainable fields a is so small that one can set F(a) = %a.["l Thus, practically
1 1{ M\ {DH
I=—- o | —== o A
308 3 (RT) T
LM_M _ NuH MH
°=y =R’ T RT " RT

2. Solids. Ferromagnetism.

To explain the magnetic properties of solids, Weiss assumes that magnetization acts like
a magnetizing force parallel to them.™ (We shall confine ourselves to one dimension.)
H, = NI

We then have two equations

I Mo e Mo
- =F@ a= o (H «Hy = o (H « WD)

0
First we consider the case where no external force is present; we have then
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I A
I F(a) z
0
1 RT
== a
I, MW, 1
ar
ANT, 1
I 7 5
In this way we obtain relation between I_o and 7. Ip. 42]

We seek temperature at which ferromag-
netism vanishes. We obtain

1M
P
RT, | MWL, (MW

= _ T — e —_——
mMwr, 3 ™ 3 R 3 pR

Hence, the above equations for the deter-
mination of the curve can also be written as

o~ o~ o~ i~

T
—.a
Tm

W =

= F(a) (remains)

T

By eliminating a, one obtains a relation between .— and Il that is independent of the

m 0

nature of the substance. Shows satisfactory agreement with experiment.*!

Contnibution to

Specific Heat

If a molecular magnet changes its position under the influence of the field H, then the

work is

H 2mdz = H 2md(Acosd) = H d(ucos®)

If many elementary magnets are present,

then the work

H -dE rcosd, or Hdl per unit volume will be performed.
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2

Thus, when the magnetization changes by dI, the energy

content of the system increases by E
- HdlL ‘? T

This formula is also applicable when H is the molecular field. In that /
case H = W], so that

di

Contribut to th fic heat ——7
ntribution to the specific hea 5 7

[p.43]) Jump at T =T, confirmed experimentally.®
Proof that in seemingly not unmagnetized ferromagnetic substances saturation

magnetization is really present.’*”
Hysteresis qualitatively explained.

Paramagnetism, with Weiss’s Force Taken into Account

I _pHu_ 1M
— = F(a) a——é——pRT(H+ wi)

r/”’lo
e
,” |
i %T V,=M
4 |
M I,V M
N N pN

If only infinitely small fields are admitted, then a = 371.. If this is inserted into the
0

——-

second equation, one obtains
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- '(H+W1)

I1 —aW)=caH
o
=— _—H
. 1 —aW

« and W can be determined from the paramagnetic state. Everything in « is known
except for the molecular weight M, hence possible to determine this. Magnetic molecules
of iron diatomic for ordinary iron.*

Brownian Motion of Rotation®® (p- 44)
A parameter., in the absence of an effective cause, let all A

A ‘i
be equally probable. If force -aA, then energy-a 5

Then

aA?

dW = const-e 294

From thisAZ =

2l®

We imagine system, value A, 2 changes during time ©
1) -aX -Bz (B = motility)
2) Change *A due to irregularity of thermal processes.
Ae=A—aBlt+A=2(1—aB1)+ A
72, =22 = J%(1 — 2aBt) + 2A.A — 2aBtA A + A?
-/ o N~ S
vanishes vanishes
A? = 2aBti? = 2BO1

If we are dealing with the rotation of a sphere, then we have to set A = angle of rotation

B=_1 ra
8mmP*

az-_1 RT,
4mP* N
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[p. 45) Canonical Distribution & Entropy

E .E
dW=Ce ®dp,---dp, =e ®dp,----dp

E dependenton p, - p,, and in addition on &, --- A,/
After « small change of state, canonical distribution obtains again. E has now

parameter A + dA We call this function E +dE. = E + E aE
The temperature is ® + dO. c then has the value ¢ + dc.
Before and after the change we have [dW = 1.
y -(EOE .g.;:dl) E
J’e 828 dp -+ dp, - J'e Edpl ...... dp, =0
The first exponent can be developed
Y Ean
=B Albse E e S1E
e & e

The exponential function is
¢ [1 +de + £d8 ):lﬁdx]
Thus, the above equation becomes

j[dc . gde ):lf’ﬁd;.] Fp,--dp, = [( )W =0

This can also be written as

This equation holds for every = small change of state

We omit bars & prove that " 'Z—Ei = A (the work added to the system)
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<Now we have>
oE oE
—d —dA
a L pV i E al

3E
vEH.TTE=
Tt Ly a

e+ Em-E-2-0 g:-dc+d{§}=d§—c)
& e 8 “le

Thus,% is a total differential

[p. 46]

oI
i
ol M
W
"
~3| by
'
Z|™
()

)

Thus, quantity on right is equal to the entropy. We can rewrite this

..E
J’e zdpl...dpﬂ=1

lgj' =0 ¢+ ng‘e-gdp"-- dp, =0

Since all systems practically the same energy, E can be replaced in this equation by the

mean value E;

Thus also
Q R E+8E R
S = E‘T‘ = ng ’.5[ dp‘ .... dp"((or gven A} = ng(GA)
131
Entropy = const - magnitude of the region of the elementary variables that belongs to

E&A - A
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If one considers once and for all a system with a given energy value, but assumes that
the A can assume all possible values (piston does not exist), then

dW = constdp, ----- dp,

If one designates W as the probability of an arbitrary region G,, characterized by
specific values of A, we will have

W = const -G,.

Probability of a A -state at given energy equals the magnitude of the region in question.
Hence, up to an inconsequential constant, we can set

R
S = ngWA

[p- 47] This is Boltzmann’s principle.
<Proof that an « small>

Microcanonical and Canonical Ensemble

dN = Adm,----dx,

= Adl,---- dli dm, -~ - dm,

Energy of the whole between E and E + A

E-n+a

dN' =Adn - dp, J' do----dn
=
T
x+A x x

We set de =A-yix) J’dT = P) = f Yx)dx

0 o

dN' =Adn---dn, A-W(E -n)

Function ¢ is sought.
1. Reservoir is ideal gas.
[ const constconst ]
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dT = I1(dx) M d¢-m*

Y. (m/2)e? L2 [y
de = VL”m"J T(dE) = ViBmt- (;i—) f ndé* = konst HY?
°

o
&k

¥(x) = konst - HL21
HLIZ
Y(E —n)? !

Igy = konst + (g — l)lgH

IgY(E —n) = £2‘ —11g(E —n) = %’ - l[lg(E) ot lg(l - ;’—z)]

. _E_Ji.... (92
E 2E?

w(E - ﬂ) = @~ EXL+(m2E)+ - )(L/2)~1) __ —n/®(1+(n/2E)-")

Thus, the larger the E, the more closely [p- 48}

E
dN' = conste %dm - dm, (Canonical distribution)

2. Reservoir consists of a large number of identical things
H- Ko,

H H=H,+Hy---H,
o=j dT=I dT,dT; - dT{w, ....0,)

[ konst.

H
= j‘ w,dH,w,dH, - w,dH,

| N\
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We calculate this integral for the argument H + e.

In place of every dH, we have dHl[l + Hi]

1

" " w " 111 " " Hl[l L, Hi]

1

Q= fl'lw,(H, + e)[Id H, (1 + I;), where & is « smaller
J 1

= | N{o(H), + o'(H,)¢} 101+ -2 )n@n,)
H,

w'H 1
New(H g i
o ’)(l+eZwH,) 1+82H1)ndH1

_[Hw(H, )l'I(dHl){l +ey (Z((:')) + Hi)}
1 1

[p. 49] 26 The Electron Theory of M[etals]™ 1
1 2
F=—-ncd~ R(TY .oT
3 0z = N LA
uN 0z
2
i % Ei oT 3RT = 4l ndcHic
s et =—r 2{wN
2 oT oz uN
i
;=t
et 1 1 _¢e4
- —= . = —-E-—-=C
E# 7% mean veloc ZEpc
—nCe= +0€ = +
1 R
K=z -—=nic
2N K Ry , R R’
om0 FReC =BT =PET
“Tiuc | -
3RT

<N
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Thermoelectr. Forces®™

dx

f ccos 9- nﬁ
dx
(cn)z—lcos 5€0s 8 4-1:

((c ) — ‘2(——)Acos 9) (.‘))c:os“)li—:ct

4 jcos&sin 3d9d{p>w =0
4n

1 - _ 1| cos®$| 1
‘ﬁj.cos Ssdede—z 3 3
Electron flow = -.l__aﬁl
3 oz
4 . lein
Electron flow under the influence of a field €: Cn = 5__—@
pc
6_(p _.2m m ¢ d(nc) d(nc)
oz 3en oz tp- 50}
Peltier force & Thomson force separately.
Suspended Particles
dp
—(p + Edz)
Vip — N
fredpda) (p — po)gNn
¥ " RTY Z _V(p ~ po)aN
# B P — PolgiNn
n=rnee"

n=ng e~ V(p—po)aNz/RT _ f(2)
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Kinetic analysis for equilibrium

1, ,dn dn,
Figierny: — 2A2 0 'Z A} B n,=oa,n
| dn, dn
A%n? dn dz Mg T
= AZ -0 vh, an z dz
unt = Z e
Ya
1 N —dz
B — 5 A% - A%
aBt(+) AT A %
A? —ZR—;BI
/
1
6noP
/

B = motility
u=Vp-e)g ‘B
F'igur = - unt

Vertical displacement due to irregular motion A

1 1 1
<i(f")z—.s/z> EA'nz—AIZ —iAnz+All

L n_dnA_(n+dnA
2 dz 2 dz 2

Viscosity coefficient.

[p- 511 Holds also in absence of gravitational force. Law of Brownian motion.

Explanation

V&% =/t

,* " + A, paths independent.

1
Al =IA?

A, =84

-

n, dn
n dz
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f&) probability of the position of the particle 28 funct. of z-

nO
t 1]
"
After this irreversible processes explained.“”‘
f Correction' 5610} 0. 521
For collision
o
a>_-X
x|\ m gl dzx‘ d%x, __x
- . my dtz =X my dtz N
- cosScosd/ - cosSsmujf sin @

_.me( ) 4 +’X T xx Ak F 1981 <\m %—%‘)\252§th>

L="3 ly g+ 2pv \

. S
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[99]

J.f(r)rdt 2m|([x, — xz]dﬁ‘n__) F )

= 2m(rv,)

p. 53] z T, = 11001

J

G G
Go

nc cos Sd—x Go(z — Acos 9)
4n

Go — %(z—;/lcoss

n/2 x/2
. [G{,J cos 9sin $d9dw — }.%gf cos? §sin Sdew]
) o

an
2 3G ( —cos* 3
=T - ()

nc{+le,<+) ‘15 %G}

—cos2 8
2

1
{(+> —ncZGS

(L B 1,06] . 1 .46
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203

1., ..  1.9G
(G =GO = —¢i5
. e 2,06
SR

‘Simplest assumption G = G,
More complicated assumption
< G5 Gp =\ Gylz —alcos9) — G,
G /

0
G5 — G, = p(G{, — a—falcoss — Gg)

G5 — (1 —p)G, + p%—fa;lcoss

G, = - _
< ’

, = 1 G
<Go -G= (1 — b)Go +<{p PR oA cos 8>
. x ., 1 G
Gy =G} (l E) G5 + (l p) G, + a2 alcos &

7 r x - oG
<Go -Gy = (1 = 5)((?0 -Gy + Ea}_cos;9>
G

Ordinary viscosity flow 1oi1]

— - )l

dp Ju
— 2°F hladu
nlp)r 37 + 2np>ry 5 0

u vy
<Y—2>$—'2—”"

Ip. 54]
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u=--— {r? + konst)(R? — 21041

Y
4n

u="2r3dr + ardr
21

n
Flol. VYol = i ;}

2nrdru = S Y(R? — rP)rdr
27

FVonm e nyR‘(-l— . 1) = f XR4 [103)

2n \2 4/ 4y
rz=§-pcl
Ve _3mY pu /9 pa\ p0'm |0
leo:_4nR - 4C/‘,R _<16 R'Y>1E F
P
a= 1
‘-‘nazn
3
u=F _4g*  _#PR* 2R?
qu=Fo.= BV R =
= 4q2 : [105)
‘Fimasse] = Z;SZ_‘PY Quotient
. n R* §n 811 _ 81
Lagain 1 Fmasserven =75 Rpc~ Ppc 3P4~ 3p

[p- 551 (dt)on, 2 vanishes in infinity.
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Application of Probabilistic Analysis to Processes of Motion."™

1) Point moving with constant velocity along a closed curve
Two elements chosen, ds, & ds,, where ds, = ds,. We
say: it is equally probable that we will find the point in
ds, & ds,

2) The same case considered, but v = ¢(1). Now it is no longer equally probable that
we will find the point in ds, as in ds,. What is meant by this?

ds
In order to traverse ds,, it requires the time —!, and to traverse ds,, it requires the

L4

- d‘yz d“1 dsz . . d‘yl dsz P
time —Z It turns out that —»__= We will consider — & —Z as a relative measure

v, v, v, v, v,
for the probability of finding the point on ds,. We divide in the following way
ds ds
—L =1 Z=g
v, v,
T T2
o ——t ; - )
T T = duration of i
Probability for region ds, = _T_' Griclogbit
T
" " n dsz - _Tz

Thus, by the probability associated with the region ds we understand the fraction of
time during which a point is found in ds,, divided by the time of a whole orbit.

W = length of time the condition applies
total time.

This definition can also be understood in another way. We imagine that very many
(e many)""”” points are traversing our curve in the same direction and according to the
same law. Can they be distributed in such a way that every region ds always contains the
same number of points, i.e., that for a specific region this number does not change with
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time? Let nds be the number of points in the element ds; n is to be conceived as a
function of s. We calculate the change of nds in the very short time dt

Increase inn =vndr - vndt

d(vn)
...... = — de
————@ 3 ds
H,_J
v'dt vdt
n’ n

but now according to our assumption this number must remain constant, hence

v -n independent of s = const

_ const.
v

nds = oonsté = const- ©
v

But up to a constant common to all line elements, the right-hand side, and thus also
the left-hand side, is nothing else but the statistical probability of the element ds. Thus,
the point density n is proportional to the probability of the element in question. Since

Y. W =1 for the whole orbit,

1‘13, if n,.,,, denotes the total number of the points distributed over the curve.
n

W:

ot
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Doc. 5

On the Theory of Light Quanta
and the Question of the Localization
of Electromagnetic Energy

by A. Einstein

[Archives des sciences physigues et
naturelles 29 (1910): 525-528]

‘What we understand by the “theory of light quanta” may be formulated in the following
fashion: a radiation of frequency v can be emitted or absorbed only in a well-defined
quantum of magnitude hv' (and not in a smaller quantum). With the aid of this
theory, several groups of hitherto unexplained phenomena can be considered from one
and the same point of view. This is true of Stokes’s law of phosphorescence and the
principal laws for the emission of cathode radiation produced by visible and ultraviolet
light (as well as by X rays). As a matter of fact, the kinetic energy L of photoelectri-
cally produced cathode radiation increases proportionally—or at least approximately
proportionally—to the frequency of the exciting light according to the formula
L =c + hv, where c is a negative constant that depends on the nature of the body under
consideration. In general, it can be said that the theory of light quanta is the quantitative
expression of the experimental fact that the energy of the molecular phenomena
produced by light increases with the refrangibility of the light employed.

It is now generally accepted that molecular mechanics, with the aid of the
Mazxwell-Lorentz equations, leads to the radiation formula p = Kv’T, as it has been
demonstrated in particular by Mssrs. Jeans and H. A. Lorentz. This formula is
contradicted by experiment and does not contain the constant A: this leads to the
conclusion that the foundations of the theory must be modified in such a way that the
constant A will play a role in it. Only in this way will it be possible to establish a theory
of radiation and to understand the fundamental laws of radiation cited above. This
modification of the foundations has not yet been possible to accomplish. The
theoreticians have not yet even come to an agreement in regard to the following
question: Can the light quanta be accounted for entirely by a characteristic of the
emitting or absorbing substance, or should the electromagnetic radiation itself be
assigned, besides a wave structure, a second kind of structure, such that the energy of the
radiation itself is already divided in definite quanta? I believe that 1 have proven that

_hv
'h is a universal constant that enters the radiation equations of Wien (p = hv’e NT) and Planck

2]

3]

4

[5}
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this latter view should be adopted.” The considerations on which I based myself rest on
a principle of Boltzmann’s, according to which the entropy § and the statistical
probability W of a state of an isolated system are connected by the relation
R
S Nlog w,

where R is the gas constant for a perfect gas and N the number of molecules in one
gram-molecule. If a complete molecular picture of the system considered is given, one
can calculate the statistical probability W for each state of the system, and from this one
can calculate S with the aid of the formula. If, conversely, the system is known
thermodynamically, then one will know S, and from this one will be able to derive the
statistical probability of each state of the system. To be sure, one cannot establish an
elementary theory (e.g., a molecular theory) of the system from W in a unique and
well-defined fashion; but, still, any theory giving the wrong values of W for any of the
states can be considered unacceptable. One can then find the entropy of radiation in
empty space by means of thermodynamics, using the law of black-body radiation, and
solve the following problem: consider two spaces enclosed within impermeable walls and
connected by a tube that can be closed; let V' be the volume of one of the spaces and
V, the total volume; assume that these spaces are filled with a radiation whose frequency
lies between v and v +dv, and whose total energy is E,. We seek to calculate the
entropy § of the system for every possible distribution of the energy E, between the
two spaces. From the entropy S of each of these possible distributions, one can deduce
the statistical probability corresponding to each of them. In this way one finds for a
sufficiently dilute radiation the following expression for the probability that at a given
moment all of the energy E; is contained in the volume V:

‘o

Vi

)

W =

It can easily be shown that this expression is not compatible with the principle of
superposition. As regards the distribution between the two spaces, the radiation behaves
as if its energy were localized in E/hv points moving independently of each other.
From this it follows—unless one wants to admit that the use of impermeable walls in
these considerations is inadmissible—that, regarding the localization of its energy, the
radiation must itself have a structure not given by the ordinary theory.

In conclusion, let me say that the commonly accepted localization of energy (just like
the momentum in the electromagnetic field) is by no means a necessary consequence of
the Maxwell-Lorentz equations. Furthermore, one can give, for example, a distribution
compatible with the mentioned equations that, for static and stationary states, coincides
completely with the one given by the old theory of action at a distance.

’A. Einstcin, Ann. d. Phys., 4, 17 (1905): 139ff.
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Doc. 6

On the Ponderomotive Forces
Acting on Ferromagnetic Conductors
Carrying a Current in a Magnetic Field

by A. Einstein

[Archives des sciences physiques et
naturelles 30 (1910): 323-324]

A current-carrying conductor in a magnetic field /1 is subjected to a ponderomotive force,
the formula for which is

F = [it], (1

where i is the vector of the current density, and the expression in the brackets is the
vector product.

This formula is applicable, in particular, in the case where the body conducting the
current is not magnetizable, i.e., where the magnetic induction B is equal to the
intensity of the magnetic field H. If the conductor of the current is magnetizable and
its magnetic state is consequently characterized by two vectors H and B that are
different from each other, then one has to ask oneself which of these two vectors gives
rise to the ponderomotive force sought.

Till now this role has been attributed to B, and it has been accepted that

F = [iB]. (2)

But we will show in a simple special case that, even in the case of a magnetic
conductor, formula (1) is the correct one.

Let D be a metal disk through which a current flows from its center to its periphery.
This current is provided by a battery P; the other lines in the diagram complete the
circuit.

By virtue of the principle of equality of action and reaction, regardless of the material
of which the disk is made, the resultant of all the electrodynamic forces acting on the
different parts of the system is zero. This must be especially so if the disk D is made of
a nonmagnetic substance (B = H).
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Let us examine, in the second place, the case when the disk is made of a hard
magnetic metal, e.g., steel, and constitutes a permanent magnet, with circular lines of
force distributed around its center. In this case, the magnetic field produced by the
passage of the current through the disk superposes on the magnetic field resulting from
this magnetization of the disk. If we let H,, denote the strength of the latter field, and
B_ its induction, then reasons of symmetry permit us to conclude from Maxwell’s
equations that

H, =0,
but obviously B,, is not equal to zero.

On the other hand, the additional magnetization we have considered cannot give rise
to a corresponding additional ponderomotive force, for the latter would be the only
ponderomotive force that would appear, and the system would violate the law of equality
of action and reaction.

Thus, the additional ponderomotive force vanishes together with H_, even if B, is
different from zero. It follows that it is formula (1), and not formula (2), that satisfies
the principle of equality of action and reaction.
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Doc. 7

On a Theorem of the Probability Calculus
and Its Application in the Theory of Radiation

by A. Einstein and L. Hopf
[Annalen der Physik 33 (1910): 1096-1104]

§1. The Physical Problem as the Point of Departure

If one wants to calculate any effect of radiation in the theory of radiation, say the force
acting on an oscillator, then one always uses Fourier series of the general form

. t t
n |A sin 2 _ + B cos 2mn_
Yy [nsm m - + B, mT]

as the analytical expression for the electric or the magnetic force. The problem is here
immediately specialized to a given spatial point, which is of no importance to what
follows; ¢ denotes the variable time, and T the very long time period for which the
series applies. When calculating any average values—and, in general, only such values
occur in the theory of radiation—one takes the individual coefficients 4,, B, to be
independent of each other, one assumes that each coefficient follows the Gaussian error
law independently of the numerical values of the other coefficients, so that the
probability' dW of a combination of values A,, B, must simply be the product of the
probabilities of the individual coefficients.

(1) aw =W, W,..W,.W,...dA,..dB,...

Since the theory of radiation, in the form in which it follows exactly from the
generally accepted foundations of the theory of electricity and statistical mechanics leads,
as we know, to irresolvable conflicts with experience, it is natural to mistrust this simple
assumption of independence and to blame it for the failures of the theory of radiation.

We shall show in what follows that this way out is impossible, and that, on the
contrary, the physical problem can be reduced to a purely mathematical problem that
leads to the statistical law (1).

That is to say that if we consider a radiation arriving from a certain direction,” then
this radiation is certain to have a higher degree of order than the total radiation acting
at a point. But the radiation arriving from a specific direction can always be conceived
as arising from a great number of emission centers, i.e., the surface that emits the
radiation can be subdivided into very many surface elements that emit radiation

! By “probability of a coefficient” we obviously have to understand the following: We imagine that
the electrical force is expanded in Fourier series for very many moments of time. That fraction
of these expansions in which a coefficient lies within a specified range of values is the probability
of this range of values for the coefficient considered.

2 More accurately: “corresponding to a certain elementary angle dx.”

By

2l

]
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independently of each other; for since there is no limit to the distance of this surface
from the test point, there is no limit to its total extension either. Into these radiation
elements arising from the individual surface elements we again introduce a higher
principle of order in that we conceive of all of these radiation elements as having the
same form and differing only in their temporal phases; or, in mathematical terms: The
coefficients of the Fourier series that represent the radiation of the individual surface
elements shall be the same for all the surface elements, and only the initial times shall
differ from element to element. If equation (1) can be proven on the basis of these
principles of order, then it will hold a fortiori in the case where these principles have
been dropped. If the index s denotes the individual surface element, then the radiation
emitted there will be of the form
T -1

£

Y= a, sin 2nn

Hence, the total radiation we are considering will be represented by the double sums
. t H 7. 1
2 s Y& a_ |sin 2nn_cos 2nn_. - cos 2nn _sin 2nn 2.
@ XY, T T T T
Comparison of (2) and (1) leads thus to the expressions

{
A, =aY} cos 21m%,
3
!
-B, =a¥r sin 21m7’~,

where » is a very large number, and ¢, can assume any value between 0 and 7, so
that the individual summands

t r
cos 2nn2 and sin 2nn
T T

are randomly distributed between -1 and +1, and are as likely to be positive as negative.
If we can prove the general validity of our equation (1) for a combination of sums of
such quantities, we will also have proved thereby the impossibility of introducing any
order principle into the radiation propagated in empty space.

§2. Formulation of the General Mathematical Problem

We thus set ourselves the following mathematical problem: We are given a very large
number of elements whose numerical values « (corresponding to 1,) follow a known
statistical law. From each of these numerical values we build certain functions
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t t
file).fo(e) ... (corresponding to sin ZﬂnT‘,cos 21tn_;). We must subject these

functions to an additional restriction: namely, from the probability that one of the
quantities & lies between a + da there follows a statistical law for the f; let the
probability @(f)df that f has a numerical value between f and f +df be always such
a function that the average value

f = [fe(rf = 0.

(It can easily be seen that our functions sin and cos indeed fulfill this assumption,
because if every value of 7, between 0 and T is equally probable, the average values

[3
sin 2nn 2
T
and

7
cos 2nn 2
T

vanish.)
We now assemble a (very large) number Z of such elements « into one system.
To such a system belong certain sums

E(z)-fl(a)’ E(z)fz(u)...

(corresponding to the coefficients A, /a,, B,/a,). We set ourselves the task of finding
the statistical law that a combination of these sums obeys.

First we must be clear about a fundamental point.

The statistical law obeyed by the sums X themselves will not at all be independent
of the number Z of the elements. This we can easily see in the simple special case
when f(a) can assume only the values +1 and -1. Then we evidently have

E(Z'l) = E(z) * 1
2(zu) = T<Z) #1.

Thus, the mean square value of the sum increases proportionally to the number of ele-
ments. Hence, if we wish to arrive at a statistical law that is independent of Z, we must

not consider the X but rather, since £%/Z stays constant, the quantities

s=Z.

VZ

and
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§ 3. The Statistical Law of the Individual S

Before investigating a combination of all quantities

S = z(l)f;l(a),
Z

we will formulate the probability law for one single such quantity.

We consider a manifold of N-systems of the kind defined above. To each system
belongs a numerical value S. Because of the statistical distribution of the «, these
quantities obey a specific probability law, so that the number of systems whose numerical
values lies between § and §+dS:

&) dN = F(S)dS.

If we now add one more element to each system consisting of Z elements, i.e., if we
pass from S, to §,,,, the individual members of our manifold will change their
numerical values and will enter into another region dS. If it is to be possible,
nevertheless, to arrive at a statistical law that is independent of Z, then the number dN
must not change in this transition. Thus, the number of systems entering a given (in our
simplest case, one-dimensional) region 45 must be the same as the number of systems
leaving it. If ® denotes the number of systems passing through a given numerical value
S, in their transition from Z to Z + I elements, both as regards magnitude and
direction, then we must have

() divd =0,
hence fiip =0
ds

and, since, indeed, ® must always be zero for § = «, we will also have
(6) ® =0

Now we have

s = Zef® l zZ | fl®
oZer NZH1 7t

or, since Z is to be a very large number,

S
™ Sew =S - '2(—22) N %‘%—)
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Thus, the number @ is composed of two parts: a @,, which comes from the summand
-$/2Z, and a ®,, which comes from f(e)/{Z.

®, contains all those S that have been at a positive distance <S5,/2Z from the value
S,; and, to be sure, these members cross §, in the negative direction. Since S/2Z is
a very small number, the number of these members is, up to infinitely small quantities
of higher order,

8 Q——SOFS
() 1 - Ez(u)'

Contributions to the number @, come from every arbitrary positive and negative
distance A from §; indeed, the contributions are positive or negative, depending on
whether A is negative or positive. The number dN at the distance A is given by

F(S, + A)S = F(S, + AMA,

or, since only small values of A are, after all, of importance, by

F(S) + A[ﬂ] dA
o dA s -

Of this number, all those cross the value S, in the positive direction which, coming from
a negative A, have a f(a) so large that
fi) > |A|,
VZ
and thus the number will be

e

[ ehdr.

-AvZ

Analogously, the number going in the negative direction will be

-AvZ

[ ethr.

‘We will then have
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- [aniFs) + a(5F [ ot

-AyZ

dary | 7
jdA F(S,) +A[d ] j. o(Mdf
Integrated by parts, this becomes
0
- jdA[A FSy + & —] ol-avZ). VZ

- faa {AF(S.,) S(E@) [ a2 V2

Now, since by the assumption,
[rehaf =0,

we get, if we introduce A‘/E = f as a variable,

r

% - - (%) If’wmdf

__ 1({dF\ . &
), 7
(8) and (9) inserted in (6) yield the differential equation

SF+f_?dE§=

®

the solution of which,

5

(10) F = const.e 7,
expresses the Gaussian law of errors.
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§ 4. The Statistical Law for a Combination of All S™

Let us now extend the considerations of the preceding section from the one-dimensional
case to the case of arbitrarily many dimensions. This time we have to consider a
combination of many quantities S$™. Let the number of systems in an infinitesimally
small region

(11) dSVdS® ... be dN = F(§V, $§@...)dS"dS?. ..

We require again that the dN shall not change when we pass from S to S}?,,), and
this leads again to the differential equation (5),

div @ = 0.
In the present case, however, the number @ has components in every direction
S®, §@_ . and we will denote them by @, ®® ... Hence, (5) assumes the form

En a_ﬁ.’B:O

as®™

Sg and S(z,,) are related by equation (7) as before, and the arguments of the preceding
section are therefore fully applicable to the calculation of the individual ™. Consequent-
ly, we have

o = soF + 7 98
" as™

We can simplify this expression further by assuming that all f,,: are equal. All that this
obviously amounts to is thinking of the individual functions f, as multiplied by
appropriate constants. (In the specnal case of our sin and cos this simplification is
automatically satisfied.)

In this way we finally obtain the following differential equation for the function F:

(12) Yy o [S(n)p +f s<">] 0.

We arrive at the solution of this differential equation by considering the following
integral extended over the whole space:



218 DOC. 7 PROBABILITY CALCULUS

’Il

2
ey s oF M g5
IT:E (s F +f5m] ds®...ds

0

(13)

< wp . 5 OF || . = 0logF
= IZO:,. [S( F +ﬁm][sﬂ ”nT‘%’] ds®... ().

But

[3 |[sF + 72 fgolaso...as*
0 as(")
Il‘ _ ". aF
=[|F ¥n 850 + h S® _—__|dS®...dS™,
3 s er i 2]

or, if we integrate by parts the second summand and take into account that at infinity we
must have F =0,

=[F [ )0: §@ - F-n,]ds<l>...ds‘"x>.

However, this expression vanishes because
[Fserds®...as®

is nothing else but the average value $®7?, which we derived in the last section, for the

case when only a single § is being considered; for the latter it follows from equation
(10) that

z-7

On the other hand, integration by parts yields
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oF dlogF n
(n) (1) b
IE [S F + f’a (n)] 50 ds®...dSs

n (n,)
= [ flogF Y [ S(")[S( F + fz ] ds™...ds

which, according to (12), also vanishes.
This proves that integral (13) vanishes; however, because of the quadratic character
of the integrand, this is possible only if we have everywhere for every »

(14) SOF + F

as(n)

Thus, we arrive at a statistical law for F that is identical with Gauss’s law of errors with

(n).
respect to every $™: s

(15) F =conste T.e 7.
The probability of a combination of values S® is thus simply the product of the
probabilities of the individual $®.
It is clear that, if equation (15) holds for §@, §@ ..., then the same equation is

satisfied for a combination of quantities

SO = g S
In that case, instead of f7, we have the quantities a’f2 in the exponents. But the
coefficients A,, B, in our physical problem are of the type S™'; and, indeed, we have
to set

§M = 4, ,
and hence anﬁ

a, = ayZ.

Therewith is also proved the validity of equation (1) and the impossibility of
constructing a probability-theoretical relation between the coefficients of the Fourier
series that describes the thermal radiation.

(Received on 29 August 1910)
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Doc. 8

Statistical Investigation of a Resonator’s
Motion in a Radiation Field

by A. Einstein and L. Hopf
[Annalen der Physik 33 (1910): 1105-1115]

§1. Train of Thought

It has already been shown in a variety of ways and it is now generally accepted that, when
correctly applied in the theory of radiation, our current views on the distribution and
propagation of electromagnetic energy on the one hand, and on the statistical distribution
of energy on the other hand, can lead to no other but the so-called Rayleigh (Jeans)
radiation law. Since this law is in complete contradiction with experiment, it is necessary
to undertake a modification of the foundations of the theories used for its derivation; and
it has often been suspected that the application of the statistical energy distribution laws
to radiation or to rapidly oscillating motions (resonators) is not flawless. The following
investigation shall now show that such a dubious application is not required at all, and
that it suffices to apply the equipartition theorem for energy solely to the translational
motion of the molecules and oscillators in order to arrive at the Rayleigh radiation law.
The applicability of the law to translatory motion has been adequately proved by the
successes of the kinetic theory of gases; we may therefore conclude that only a more
radical and more profound change in our fundamental conceptions can lead to a law of
radiation that is in better agreement with experiment.

We consider a mobile electromagnetic oscillator' that is, on the one hand, subjected
to the effects of a radiation field and, on the other hand, possesses a mass m and enters
into interaction with the molecules present in the radiation-filled space. If the above
interaction were the only one present, then the mean square value of the momentum
associated with the oscillator’s translatory motion would be completely determined by
statistical mechanics. In our case there also exists the interaction of the oscillator with
the radiation field. For a statistical equilibrium to be possible, this latter interaction must
not produce any change in that mean value. In other words: The mean square value of
the momentum associated with the translatory motion that the oscillator assumes under
the influence of the radiation alone must be the same as that which it would assume, in
accordance with statistical mechanics, under the mechanical influence of the molecules
alone. This reduces the problem to the task of determining the mean square value (mv)?

of the momentum assumed by the oscillator under the sole influence of the radiation
field.

This mean value must be the same at time ¢ = 0 as at time ¢ = 1, so that we have

! For the sake of simplicity we will assume that the oscillator oscillates only in the z-direction and
moves only in the x-direction.
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(nv)eo = (mv),-..

For what follows, it is expedient to distinguish two kinds of dynamical effects through
which the radiation field influences the oscillator, namely

1. The resistive force K, with which the radiation pressure opposes the rectilinear
motion of the oscillator. Neglecting the terms of the order of magnitude of (v/c)?
(c = velocity of light), this is proportional to the velocity v, and we can therefore write:
K = - Pv. If we further assume that the velocity v does not change markedly during
time t, then the momentum deriving from this force = - Pvt.

2. The fluctuations A of the electromagnetic momentum that arise in the
disordered radiation field owing to the motion of the electric masses. These can be
positive just as well as negative, and are independent—in first approximation—of the
circumstance that the oscillator is in motion.

These momenta superpose themselves on the momentum (mv),, during time <,
and our equation becomes

(¢)) (mv) = (mv_, + A - Pvt).

By increasing the mass m, we can always bring it about that the term multiplied by
%, which appears on the right-hand side of equation (1), can be neglected. Further, the
term multiplied by vA vanishes because v and A can become positive or negative quite
independently of each other. If, in addition, we replace mv* by the temperature 8
using the equation known from the theory of gases

— R
7-2@
my N

(R = the absolute gas constant, N = Loschmidt’s number), then equation (1) assumes
the form

@ - z%pet.

Thus, we only have to find A? and P (or K ) by means of electromagnetic arguments,
and equation (2) will yield the radiation law.

$2. Calculation of the Force K.*

To calculate the force with which the radiation opposes a moving oscillator, we calculate
first the force on an oscillator at rest, and then transform this force by means of the
formulas that follow from the theory of relativity.

Let the oscillator with proper frequency v, freely oscillate in the z-direction of an
orthogonal coordinate system x, y, 2. If € and % denote the electric and the magnetic

2 Cf. M. Abraham, Ann. d. Phys. 14 (1904): 273 ff.

(8]



8

&

16}

222 DOC. 8 ANALYSIS OF A RESONATOR’S MOTION

force of the external field, then, according to Planck,’> the momentum f of the
oscillator obeys the differential equation

3) 167 vof + amevf - 2of = 3ec’e,.

Here o denotes a constant characteristic of the damping of the oscillator through
radiation emission.

Now let a plane wave impinge on the oscillator; let the ray form the angle ¢ with
the z-axis, and its projection on the xy-plane the angle « with the x-axis. If we
decompose this wave into two waves polarized perpendicularly to each other, with the
electric force of the first lying in the ray-oscillator plane, and that of the second
perpendicular to the first, then it is obvious that only the first one imparts a certain
momentum to the oscillator. If we write down the electric force of this first wave as a
Fourier series

@ €= Y A4 cos {2’;’(t e *’7] X o"},

where T denotes a very long time period, then the direction cosines a, B, y of the ray
are expressed through ¢ and @ in the following way:

a=sin@cos w, P =sine¢sinw, y=cosep,

and the components of the electric and magnetic forces that are of relevance to our
further calculations are

€ = & cosp cosw
4) € = - €sing
B - €cose sina

The ponderomotive force exerted on the oscillator is
af g,

k I

15 i)

For this equation as well as equation (3) to be valid, it must be assumed that the
dimensions of the oscillator are always small compared with the relevant wavelengths of
the radiation. The x-component k, of the ponderomotive force is

_0€  1ypdf
(6) k = ==f ;%’5

3 M. Planck, Vorl. iiber die Theorie der Wiirmestrahlung, p. 113.
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If we solve (3)* and take into account (4) and (5) we obtain

C()S(‘l: -v,),

where

has been assumed for the sake of brevity, and y, is given by the equation

2 n?
11:\:\;0-F

cotg v, = -
n
C—
Since, further,
€ 2n ., s
= Z_cos’pcosw) » nA sin’t ,
& o
k. appears as the double sum
smy

“A, mcos(t, - y,)sint,

x

2
k = - %C—T’ooszq)sinq:cosmzn Y- 4
n

Tlsmcpoosmz Y~ A

- ¥,)cosT, .

Because the phase angles ¥ are independent of each other, only the terms n = m need
be considered in forming the average value,® and we get’

4 M. Planck, loc. cit., p. 114.

* In fact, this expression for 0€/3, as well as the one for %, would have to be supplemented
by the components of the wave that is polarized perpendicularly to the wave that excites the
oscillator; however, it is obvious that these expressions do not contribute anything to the mean
value of the force because their phases are independent of those of the oscillator.

¢ This independence follows from the result of the preceding paper.

? M. Planck, lc., p. 122.

[11]

{12)

{10}

[13]
[15}
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3c? i , siny,
= _— _T’sin‘pcoswy » A, £
To1em M 03 n?
m (M

302
16w

vl

(4]

A2 T_—sin’ pcosw.

2v,

This is the mean value of the x-component of the force that a wave incident in the ¢,

direction exerts on the oscillator at rest.

If the oscillator is moving in the x-direction with the velocity v, then it is more
practical to replace the angles ¢, with the angle ¢, between the ray and the x-axis,
and the angle «,; between the projection of the ray on the yz-plane and the y-axis. The

following relations then hold:

cos ¢
sin @, cos @,

sin g, sinw,

We are led to the value of the force k.

Sing@cosw,

= singsinw,
= CcosQ.

acting on the moving oscillator by the

transformation formulas of the theory of relativity®

A =A[l - .v.oosq}
c
T = T[l + fcoscpl],
c
v =v[1 - Ycos i
1~ fese)
v
cos@, - 3
cosg, = , &=,
v
1 - Zcosg,
c
We then get
7_362—2—, o — cinZen ! <inZ ey / !
k, = = Lk 2_\,7(1 sin’ @, sin*w,") cosg,’.

0
Neglecting the terms with (v/c)®, we get

[16]  ® A Einstein, Ann. d. Phys. 17 (1905): 914.
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A,\zr.'r =E [l - 22cos¢pl],

or, since we have to relate everything to the proper frequency v,” of the moving
oscillator

12 — Al
A v,/T A p v
v/{1 ¢ P T

1 5k
[1 - 2eore)

—_— 47
=14, + vc’gcosq[%] -[1 - 2;cosqal].
Vol

Furthermore, we express the quantity AT in terms of the mean radiation density p. We
set the mean energy of a plane wave coming from a given direction equal to the energy
density in a cone with a solid angle dx. If, in addition, we also keep in mind that the
magnetic and the electric forces are equal, and take into account the two planes of
polarization, we arrive at the relation

pdx o 1LAT,
4  8rm 2
Our expression for the force becomes

@® 1

sin’g,

1 - sin’ o, |dx .

1 -2Y
CCOS(pl

\

Finally, integrating also over all solid angles, we obtain the total force that we were
seeking:

© ¥ - o o —"_*"[d"]

10nmv, [ 3 \av),)|
$3. Calculation of the Fluctuations of Momentum A*

The calculation of the momentum fluctuations can be made considerably more simple
than the calculation of the force because a transformation according to the theory of
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relativity is not necessary.® It suffices to expand the electric and magnetic forces at the
origin in a Fourier series, dependent on time alone, as long as one can prove that the
individual components of force appearing in this expression are independent of each
other.

The momentum that the oscillator experiences in the x-direction during time <t is

- Tpdfly.
c Ydt

Integration by parts yields
o s -y - [ o

The first summand vanishes if t is appropriately chosen, i.e., if t is large enough. If,
in accordance with Maxwell’s equation, one also puts

1 653 _ 0€ o€

ca & &
one arrives at the simple expression
(10 J = j ‘fdt
Now only the component E, and its derivative 0€/& appear in our expression.

However, their independence can easily be proved. For if we just consider two wave
trains (with identical solid angles) approaching each other, we can write

E =Y {ansin 2; [t - M_LY.E]

[+

+bcoszm[t—.“_x:_puf]
T c

+“m2""[,+9_r;}1y_:_v_z)
T c

c

+ b 'cos g% (! + E_M]}

and

® Because the momenta with variable signs, which result from the irregularities of the radiation
process, can be determined for a resonator at rest.
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o€
§’=E{2’;Zu[ aoos?‘%( )+bsm2i;t_( )

+a,’,cosz%(...) bsm_( )]}

But the quantities a, + a,, a - a,...are mutually independent and of the same type

as the quantities denoted by § in the preceding paper; for such quantities it has been [17]
shown that the probability for a combination is represented as the product of the
Gaussian error functions of the individual quantities. It is easy to see from what has
been said that no probability relation of any kind can exist between the coefficients of

the expansions of €, and d¢€/ax. Now we write down €, and 9€/dr in the form of
Fourier series:

€ =Y~ B cos (Znn% - 0"],

ax —2 C, cos [Zme - Em]. 18)

We then get

= _3£_T’ - B Y cos 2mnf - 0 - Y
n n; T n n

and

PId’E"'E_

[cos {21r(n + m)_ -, -0 - 'vn} [19]

-cosf2m(n -my +§, -0, - 1"}].
Integration over ¢ yields two summands with the factors I/n+m and I/n-m; since n
and m are very large numbers, the first summand is very small and can be neglected.

Thus one arrives at the expression

(11) J=

siny, | ] -
= 4T4 Y- Y- C B, - _mcosamsmn:(n - m)T,

where, for brevity,

8 =n(n-m)E+E -0 -vy.
mn —m)z + &, -0, -7,

mn
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J* then appears as the fourfold sum over n, m and two further variables n”and m’.
If we calculate the mean value J?, we must take into account the fact that the angles
3,. and 8,.,. are totally independent of each other, and, thus, that only those terms in
which this independence does not occur are to be considered in the averaging.
Obviously, this is only the case if

’

m=m' and n=n’,

and we arrive at the desired mean value:

2
= _ | 3T 2| siny, I s o
77 = [ ] E 2 [ = ] msm n(n m)T.

327 -
Since
1k b t _1¢ 1 ., ot
m o sin‘n(n - — = _| —"  _sin¥(v - uw)nt-du = —
Yy P n - m)= TJ;(V-,L)Z v -pmeedp =
and
sin’y < sin’y 1 o
n it "d .
E n® T‘JO- SF‘ 3
J% becomes
v4
+= _| 3¢ ot T oo
12 F=|l—|ZB, T
( ) [32173] 4\:‘5J o v
Now

I i
F-Jea -FTEE

and since the mean values J and & vanish, expression (12) itself gives the value of the
momentum ﬂuctuatlons A%, It only remains to express the mean values of the
amplitudes B r and C2 r through the radiation density p,..

To that end we must again consider the radiation coming from different directions
and, as above, relate the amplitude of the radiation coming from a specific direction to
the energy density by means of the equation

AT = p,dx.
The amplitude
=Y A, sing
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over all angles of incidence, hence

(13) B, .T =4, .TY sing = gﬂpv..
In the same way we get
2 TI.JVZ
(14) T - [22] AT sintecoso - St
of c o ¢ A

By inserting (13) and (14) into (12) we finally obtain

4
(15) A7 =97 g
4072 v,

$§5. The Radiation Law

Now we only have to insert the values (9) and (15) found above into our equation (2),
and we arrive at the differential equation containing the radiation law:
3
_oN pPP=p - Xd_p,
24ROV’ 3dv
which yields by integration

v
(16) - 81:156\’ ]
¢’N
This is the well-known Rayleigh radiation law, which is in the most glaring contradiction
with experiment. The foundations of our derivation must therefore contain an assertion
that does not agree with what really takes place in thermal radiation.

Let us therefore place these foundations under closer critical scrutiny.

One has wanted to find the reason why all exact statistical analyses in the field of
radiation theory lead to Rayleigh’s law in the application of this approach to the radiation
itself. With some justification, Planck'® brings up this argument against Jeans’s
derivation. However, in the above derivation there is no question whatsoever of a
somehow arbitrary transference of statistical considerations to radiation; the energy
equipartition theorem was applied only to the translatory motion of oscillators. But the
successes of the kinetic theory of gases demonstrate that this law can be considered as
thoroughly proved for translatory motion.

The theoretical foundation we used in our derivation, which is certain to contain an
unfounded assumption, is thus nothing else but that underlying the theory of light
dispersion in completely transparent bodies. The actual phenomena differ from the
results deducible from this foundation owing to the fact that additional kinds of

19 M. Planck, Lc., p. 178.

[22]
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momentum fluctuations are discernible in the former, which, in the case of short-wave
radiation of low density, enormously overwhelm those obtained from the theory."

Zurich, August 1910.  (Received on 29 August 1910)

" Cf. A. Einstein, Phys. Zeitschr. 10 (1909): 135 ff. What is essentially new in the present paper
is the circumstance that the momentum fluctuations have been exactly calculated for the first time.
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The Theory of the Opalescence
of Homogeneous Fluids and Liquid
Mixtures near the Critical State

by A. Einstein.

[Annalen der Physik 33 (1910): 1275-1298]

In an important theoretical paper,’ Smoluchowski has shown that the opalescence of
fluids near the critical state as well as the opalescence of liquid mixtures near the critical
mixing ratio and the critical temperature can be explained in a simple way from the point
of view of the molecular theory of heat. This explanation is based on the following
general implication of Boltzmann’s entropy-probability principle: In the course of an
infinitely long period of time, an externally closed system passes through all the states
that are compatible with the (constant) value of its energy. However, the statistical
probability of a state is noticeably different from zero only when the work that would
have to be expended according to thermodynamics to produce the state in question from
the state of ideal thermodynamic equilibrium is of the same order of magnitude as the
kinetic energy of a monatomic gas molecule at the temperature under consideration.

If such a small amount of work suffices to bring about, in volumes of fluid of the
order of magnitude of the cube of a wavelength, a density that deviates markedly from
the average density of the fluid or a mixing ratio that deviates markedly from the average,
then, obviously, the phenomenon of opalescence (the Tyndall phenomenon) must take
place. Smoluchowski has shown that this condition is actually fulfilled near the critical
state; however, he did not provide an exact calculation of the quantity of light given off
laterally through opalescence. This gap shall be filled in the following.

$1. General Remarks about the Boltzmann Principle

Boltzmann’s principle can be expressed by the equation

(§)) S = Blg W + const.,
N

where

R is the gas constant,

N is the number of molecules in one gram-molecule,

§ is the entropy,

W is the quantity customarily designated as the “probability”
of the state with which the entropy value S is associated.

! M. v. Smoluchowski, Ann. d. Phys. 25 (1908): 205-226.

12

Bl

[4]

5]

iy
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W is commonly equated with the number of different possible ways (complexions) in
which the state considered—which is incompletely defined in the sense of a molecular
theory by observable parameters of a system-—can conceivably be realized. In order to
be able to calculate W, one needs a complete theory (perhaps a complete
molecular-mechanical theory) of the system under consideration. Given this kind of
approach, it therefore seems questionable whether Boltzmann’s principle by itself has any
meaning whatsoever, i.e., without a complete molecular-mechanical or other theory that
completely represents the elementary processes (elementary theory). If not supplemented
by an elementary theory or—to put it differently—considered from a phenomenological
point of view, equation (1) appears devoid of content.

However, Boltzmann’s principle does acquire some content independent of any
elementary theory if one assumes and generalizes from molecular kinetics the proposition
that the irreversibility of physical processes is only apparent.

For let the state of a system be determined in the phenomenological sense by the
variables A,...4, that are observable in principle. To each state Z there corresponds
a combination of values of these variables. If the system is externally closed, then the
energy—and, indeed, in general, no other function of the variables—is constant. Let us
think of all the states of the system that are compatible with the energy value of the
system, and let us denote themby Z,...Z,. If the irreversibility of the process is not one
of principle, then, in the course of time, the system will pass through these states Z, . ..
Z, again and again. On this assumption, one can speak of the probability of the
individual states in the following sense: Suppose we observe the system for an immensely
long period of time @ and determine the fraction t; of the time @ during which the
system is in the state Z;; then t,/6 represents the probability of the state Z,. The
same holds for the probability of the other states Z. According to Boltzmann, the
apparent irreversibility must be attributed to the fact that the states differ in their
probabilities, and that the system is probably going to assume states of higher probability,
if it happens to find itself in a state of relatively low probability. That which appears to
be completely law governed in irreversible processes is to be attributed to the fact that
the probabilities of the individual states Z are of different orders of magnitude, so that
a given state Z will practically always be followed by one state, from among all the
states borderingon Z, becaunse of this one state’s enormous probability as compared with
the probabilities of the other states.

It is this probability we have just described, for the definition of which no elementary
theory is needed, which is related to the entropy in the way expressed by equation (1).
It can easily be recognized that equation (1) must really be valid for the probability so
defined. For entropy is a function that does not decrease in any process in which the
system is isolated (within the range of validity of thermodynamics). There are other
functions, too, that have this property; however, if the energy E is the only function of
the system that does not vary with time, then all of these functions are of the form
o(S, E), where 9¢/aS is always positive. Since the probability W is, as well, a function
that does not decrease in any process, then W is also a function of § and E alone,
or—if only states of the same energy are being compared—a function of § alone. That
the relation between S and W given in equation (1) is the only possible one can be
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deduced, as we know, from the theorem that the entropy of a total system that is
composed of subsystems equals the sum of the entropies of the subsystems. Equation (1)
can thus be proved for all of the states Z that belong to the same value of energy.

The following objection can be raised against this interpretation of Boltzmann’s
principle: one cannot speak of the statistical probability of a szate, But only of that of a
state region. The latter is defined by a portion g of the “energy surface” E(A,..A,) =
0. Obviously, W tends toward zero along with the size of the chosen portion of the
energy surface. For this reason, equation (1) would be totally meaningless if the relation
between § and W were not of a quite special kind. That is to say, I|g W appears in
the equation (1) multiplied by the very small factor R/N. If one imagincs that W has
been obtained for a region G, just large enough that its dimensions lie on the border
of the perceptible, then g I will have a certain value. If the region is reduced perhaps
e" times, then the right-hand side will only be diminished by the vanishingly small
quantity 10(R/N) on account of the reduction in the size of the region. Thus, if the
dimensions of the region are indeed chosen small compared with perceptible dimensions,
but nevertheless large enough for R/N Ig G,/G to be a numerically negligible quantity,
then equation (1) will have a sufficiently exact meaning.

We have assumed so far that A,...l, determinescompletely, in the phenomenological
sense, the state of the system in question. However, equation (1) also retains its meaning
undiminished if we seek the probability of a state that is incompletely determined in the
phenomenological sense. For let us seek the probability of a state that is defined by
specific values of A;... A, (where v < n), while the values of A,... A, are left
indeterminate. Among all the states with the values ;... A, those valuesof A,...4,
will be far and away the most frequent which make the entropy of the system at constant
A,...A, a maximum. In that case, equation (1) will hold between this maximum value
of the energy and the probability of this state.

§ 2. On the Deviations from a State of Thermodynamic Equilibrium

Let us now draw conclusions from equation (1) regarding the relation between the
thermodynamic and statistical properties of a system. Equation (1) yields immediately
the probability of a state if its entropy is given. We have seen, though, that this relation
is not exact; instead, only the order of magnitude of the probability W of the state in
question can be determined from a known §. Nevertheless, it is possible to derive exact
relationships concerning the statistical behavior of a system from equation (1) in cases
where the range of the state variables for which W has values for the kind under
consideration can be regarded as infinitely small.

It follows from equation (1) that
N

8
W = const. e® .

This equation is valid to an order of magnitude if each state Z is assigned a small region
of the order of magnitude of perceptible regions. The order of magnitude of the
constant is determined by taking into account thar for the state of maximum entropy

7]

]

(1]
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(entropy S;) W is of the order of magnitude one, so that we then have, with order-of-
magnitude accuracy,

N -5y

W = eR .
From this we can conclude that the probability dW that the quantities A,... A, lie
between A, and A, +dA,...,A and A, +dA, is given, in order of magnitude, by the

equation®

N s
aw = e
in the case when the system is determined only incompletely (in the phenomenological

sense) by A,...4,% To be exact, dW still differs from the given expression by a factor
£, so that we must set

di,...dA

N ST
dW =eX " f.dA,...dA,

where fwill be a function of A,...4, and its order of magnitude will be such that it
does not affect the order of magnitude of the factor on the right-hand side.*

We now form dW for the immediate vicinity of an entropy maximum. If the Taylor
expansion converges in the region considered, we may put

R -2) LR N NS

s

=f + of +
f=f Elv[—az]

if, for the state of maximum entropy, A, = A, = ...A, = 0. Since we are dealing with an
entropy maximum, the double sum in the expression for § is essentially positive. One
can therefore introduce new variables in place of the A’s, so that the above double sum
is transformed into a simple sum in which only squares of the new variables, which are
again denoted by A, will appear. We get

N 2
L, 3 O af
dW = const. o — A ||dA....dA .
const. ¢ lfo +) [axv v] 3

1

% We will assume that regions with extensions of observable size have a finite extension in A.

* The manifold of possible states would otherwise be only (n - 1)-dimensional on account of the
energy principle.

¢ We do not know anything about the order of magnitude of the derivatives of the function f with
respect to A. But we will assume in what follows that the derivatives of f are of the same order
of magnitude as the function f itself.
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The terms entering in the exponent appear multiplied by the very large number N/R.
For that reason the exponential factor will, in general, practically vanish already for such
values of A which, because of their smallness, do not correspond to states of the system
that deviate significantly from the state of thermodynamic equilibrium. For such small
values of A, the factor f can always be replaced by the value f; that it has in the state
of thermodynamic equilibrium. Hence, in all those cases in which the variables deviate
only slightly from their values at the ideal thermal equilibrium, the last formula can be
replaced by

Mis-s)
) dW =conste ¥ “dA...dA .

For deviations from the thermodynamic equilibrium as small as those considered in
our case, the quantity S - S, has an intuitive meaning. If we imagine that the states of
interest to us in the vicinity of thermodynamic equilibrium are produced in a reversible
manner by external influences, then, according to thermodynamics, every elementary
process obeys the energy equation

dU =dA + 71dS,

if one denotes by U the energy of the system, and by d4 the elementary work applied
to it. We are interested only in those states that an externally closed system can assume,
namely states belonging to the same energy value. For the transition of such a state to
a neighboring state, we will have dU = 0. Further, we will cause only a negligible error
if we substitute the temperature 7, of the thermodynamic equilibrium for 7 in the
above equation. The latter will then have the form

dA + T,dS =0
or

PR
3 fds_s SD-TOA,

where A denotes the work that has to be expended, according to thermodynamics, in
order to transfer the system from the state of thermodynamic equilibrium to the state
under consideration. We can therefore write equation (2) in the form

N A
(2a) dW = const. €™ d ...dA .

Let us now imagine that the parameters A are chosen so that they vanish just at
thermodynamic equilibrium. In a certain region it will then be possible to expand A4 in
terms of A according to the Taylor theorem, and, given an appropriate choice of A’s, this
expansion will have the form

A + ¥:Za, A} + terms of higher than the second power in the A,
where all of the a, are positive. Further, since the quantity A enters the exponent of
equation (2a) multiplied by the very large factor N/RT,, the exponential factor will, in

(11]

{12]
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general, deviate markedly from zero only at very small values of A, and hence also at very
small values of A. For such small values of A, the terms of higher than the first power
in the expression for A4 will generally make a negligible contribution as compared with
that of the second-power terms. If that is the case, we can substitute for equation (2a)
N 2

s L Ak

(2b) dW = const.e X« dh...dA,

1 n

which has the form of the Gaussian error law.

In this paper we shall confine ourselves to this most important special case. It
follows directly from (2b) that the mean value of the fluctuation work A, allotted to the
parameter A, is

@ A,

v

2N

Thus, this average work is equal to one-third of the mean kinetic energy of a monatomic
gas molecule.

I 2 RTO
= i’avl\' =

§ 3. On Deviations in the Spatial Distribution of Fluids and
Liquid Mixtures from a Uniform Distribution

We denote by p, the mean density of a homogeneous substance or the mean density of
one component of a binary liquid mixture. Because of the irregularity of the thermal
motion, the density p at a point in the fluid will generally differ from p,. If the liquid is
enclosed in a cube characterized, with respect to a coordinate system, by

O0<x<L
O<y<lL
and 0<z<[L,

we can put, for the interior of this cube,

P=p +A

(5) X
r y z
A= 2,: za 2‘ BP oS 27p —-COS 270 Z.COS 27T — .

The quantities p, o, t denote positive integers. However, the following needs to be
noted.

Strictly speaking, we cannot speak of the density of a fluid at a spatial point, but only
of the mean density in a volume whose dimensions are large compared with the mean
distance between neighboring molecules. For this reason, the terms of the series in which
one of the quantities p, o, T exceeds certain limits will have no physical meaning.
However, we will see from the following that this circumstance is of no importance to us.

The quantities B,,, will change over time such that on the average they will be zero.
Let us now seek the statistical laws that underlie the quantities B. The latter play the
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part of the parameters A in the preceding section, which determine the state of our
system in the phenomenological sense.

In accordance with the preceding section, we obtain these statistical laws by
determining the work A as a function of thc quantities B. This can be done in the
following way. If ¢(p) denotes the work one must do to bring a unit mass isothermally
from the mean density p, to the density p, then this work has the value

pypde
for the mass pdt contained in the volume element dt, and hence the value

A= J-p.(p.dt

for the whole fluid cube. We will have to assume that the deviations A of the density
from the mean value are very small, and will set

P = Pot 4,
de 11 %@l 2
0= olp) + [ ]A+-—A
° apo Z\apzo

From this it follows that, because ¢(p,) =0 and fAdt =0,

a‘P l iJ‘Azdt
3p ap’)

where the index “0” has been omitted for the sake of simplicity. The fourth-order and
higher terms have been omitted from the integrand, which is obviously only permitted if
2
%, 1,%%
9p 2 3p’
is not too small, and the terms multiplied by A‘etc. are not too large. But according to
(5) we have

[ous - Ly yyEL
P L] €

because the volume integrals of the double products of the Fourier summation terms
vanish. Hence we have

8<p 1 3 P
B
[ 3 3739 ] LYYB,
If the work per unit mass that needs to be done to attain a state with a certain p from
the state of thermodynamic equilibrium is expressed as a function of the specific volume
1/p = v, ie., if we thus put
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o(p) = ¥(v),

we obtain the even simpler expression

=L & ay
where one has to substitute the values of the quamities vand &Y/a* for the state of
ideal thermodynamic equilibrium. We note that the coefficients B appear only as
squares in the expression for A, and not as double products. Thus, the quantities B
are parameters of the system of the same kind as those seen in equations (2b) and (4)
in the preceding section. The quantities B obey therefore (independently of each other)
the Gaussian error law, and equation (4) yields directly

le’ aZWET' - RTo

EMiratally
The statistical properties of our system are thus completely determined, or reduced
to the thermodynamically ascertainable function .

1t should be noted that the omission of the terms with A’ etc. is permissible only if

&Y/ov* for the ideal thermodynamic equilibrium is not too small or even vanishes. The
latter occurs in the case of fluids or liquid mixtures that are exactly in the critical state.
Within a certain (very small) region about the critical state, the formulas (6) and (7)
become invalid. However, there is no difficulty, in principle, in completing the theory by
taking into consideration the terms of higher order in the coefficients.’

)

§ 4. A Calculation of the Deflection of Light from an
Infinitely Slightly Inhomogeneous, Absorption-free Medium

Now that we have obtained from Boltzmann’s principle the statistical law according to
which the density of a uniform substance or the mixing ratio of a mixture varies with
position, we will investigate the influence of the medium on a ray of light traveling
through it.

Againlet p = p,+ A denote the density at some point of the medium, or, if we are
dealing with a mixture, the spatial density of one of the components. Let the light ray
under consideration be monochromatic. As regards this ray, the medium can be
characterized by the refractive index g or by the apparent dielectric constant ¢ that
corresponds to the frequency involved, and which is connected with the refractive index

by the relation g = e. We put

de
8 - %|a - )
(8) e =g + (ap]o g, *+ 1

where both 1 and A should be treated as infinitesimally small quantities.

*Cf. M. v. Smoluchowski, l.c., p. 215.
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Maxwell’s equations hold at every point of the medium, and since we can neglect the
influence that the rate of the change of & over time has on the light, they take the form

f§_c= curl® dive =0,
c ot
12_19= - curl &, div e€ = 0.
c ot

Here @ denotes the electric, and % the magnetic field strength, while ¢ is the vacuum
velocity of light. By eliminating %, we get
'€ .
9) to % pe- ad div ¢,
. c? o B
(10) div (e€) = 0.

Now let €, be the electric field of a light wave, as it would behave if ¢ did not vary
with position. We shall call it “the field of the excitory light wave.” The actual field
(total field) € will differ infinitesimally from @, by the opalescence field e, so that we
can write

(11) e=¢,+e¢

Substituting the expressions for ¢ and & from (8) and (11) in (9) and (10), we
obtain, if we neglect the inifinitesimally small second-order terms and take into account
the fact that €, satisfies Maxwell’s equations with constant dielectric constant e,

ote 1 8'G, )
(9a) .:%W_Ae=__l—at, — graddive,

cl

(102) div(¢ €,) + div(e,e) = 0.

If we expand (10a) and take into consideration that div €, = 0 and grad o = 0, we get
dive = - _l_eograd 8
e()

Substituting this into (9a), we obtain

8, 0% 1 3G 1
(9b) ;%37—Ae=—ﬁz\at—,‘!+;grad{(&,‘ogmd,}=a,
where the right-hand side is a vector that is to be regarded as known, which we denote
for brevity by “a.” Thus, between the opalescence field ¢ and the vector a there is
a relationship of the same form as that between the vector potential and the electric
current. As we know, the solution reads
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1 N
. °P
12 i f vde

where r denotes the distance of dt from the test point, and V = c/jfe, is the

propagation velocity of the light waves. The volume integral has to be extended over the
entire volume in which the exciting light field &, is different from zero. If the integral

is extended only over a part of this volume, one obtains that part of the opalescence field
that the exciting light wave produces by traversing the partial volume in question.

We now set ourselves the task of finding the part of the opalescence field that is
produced by a plane, monochromatic excitory light wave inside the cube

0<x<l|
0<y«<]|
0<z<|

where the edge length [ of this cube shall be small compared with the edge length L
of the cube considered earlier.
The exciting plane light wave shall be given by

4

n
(13) €, = ¥cos 21rn(r 7]'

where n denotes the unit vector of the wave normal (components @, B, y) and t the
radius vector (components x, y, z) drawn from the coordinate origin. For the sake of
simplicity, we choose a point of incidence on the X-axis of our coordinate system at a
distance D that is infinitely great in comparison with L. For such a point of incidence,
the equation (12) takes the form

_ 1

(12a) e = HD.j{a},,.;dr.
For we have to set

r D -x

T
where, for brevity, we have set
D
g =

and one can replace the factor 1/r in the integrand by the constant factor 1/D, which
equals 1/r to within a relatively infinitely small amount.

Now we have to calculate the volume integral occurring in (12a), which extends over
our cube of edge length /, by inserting the expression for a from (9b). We make this
calculation easier for ourselves by introducing the following symbol: If ¢ is a scalar or
a vector that is a function of x, y, z with 1, we set
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(P(X, »nzt o+ _l;'] = @,

so that @* depends, therefore, solelyon x,y, z. For a scalar ¢ we immediately obtain
from this the equation

1 (o)
d ¢ = (grad ¢)* + i— [Z®] dx,
grad ¢ = (grad ¢)* + V[ar] T

from which it follows that

I(grad p)'dt = _[grad @'dt ~ l_:;-[[%?].dt,

where { denotes the unit vector in the direction of the X-axis. The first integral on the
right side can be transformed through integration by parts. If # denotes the outer unit
normal to the surface of the integration volume, and ds the surface element, then

J’grad p'dt = I(p‘ﬁds.

Thus we have

(14) I(grad @)dt = I(p’.ﬁds - i%/f[%"]'dr.

If ¢ is a function of undulatory character, then the surface integral on the right side
of our equation will not make any contribution proportional to the volume of the
integration space, or any contribution whatsoever of interest to us. Thus, in this case, an
integral of the form

[ (grad gyds

can make a contribution only to the X-component.

If we form the two integrals produced by the substitution of a (equation (9b)) in the
integral

Ia'dt

occurring in (12a), then we see that the second of these integrals has the form of the left
side of (14), wherein ¢ = & grad v. Since this is really a function of undulatory
character, which, moreover, vanishes if grad 1 vanishes on the surface, therefore,
according to (14), this second integral can make a significant contribution only to the
X-component of e. A more exact calculation shows that this second integral exactly
compensates the X-component of the first integral. We do not need to prove this

expressly, because ¢, must vanish owing to the transverse nature of light. By virtue of
what we have just said, it follows from (12a) and (9b) that

7]
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e, = 0,
zv) { 4== =DF f (aa%') g

. 1 3.,
& == ampa J (o) @

Now we calculate ¢, by substituting, in the second of these equations,

i??_] = -@(2mn)’cos 2nn [tl +

_ax + Py + YZ]
o

X
1% vV

from equation (13). Further, we replace 1 by means of equations (8) and (5).
Interchanging the summation and integration signs, we thus obtain

Q (2nn) 3¢ L -a)x-By -y
¢ = T EEE B, I_”oos 2nn [t v ]

.cos |2np Z | .cos [2n0 2| .cos [2nc _z-] dxdydz,
2L 2L 2L

where the volume integral has to be extended over the cube of the length of the edge L.
The volume integral is of the form

= _]'J'J'cos(b: +uy + vz)cos A'x cos u'y cos v’z dxdydz,

where one should bear in mind that A, u, v, &', &', v’ are to be regarded as very large
numbers.® In that case one has to put

. sin(h - ) sin - ! sin - vk
: =[_] P 2 2 2
* 2 A - (u-uw) v - vl
(15) 2 2 2

COS[Z‘.I‘I:HI LA @) (v - V) _
1 3 3 5

¢ In what follows, the calculations are based on the assumption that A, u, v are positive. If this is
not the case, then one or more signs in equation (15) will be different. But the final result is always
the same.
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When we integrate, we neglect, besides this expression, those expressions containing one
or more of the very large quantities (A + A) etc. in the denominator. We see that J
deviates appreciably from zero only for such p o t, for which the differences (A - 1‘)
efc. are not very large. We note that we have here set

A= 2l @ TP

| 4 /i

4 = -2 E’ / =3T_0’

(15a) u TmV 15 T
v =-21m!, v =X

| |1 %4 L

If, for the sake of brevity, we set
a4 (2nn)* de _ A
4nDc* dp
then

(12¢) =AY Y ¥ B, J,.

In conjunction with (15) and (15a), this equation yields the instantaneous value of
the opalescence field at the point x = D,y =z = 0 for every instant £, = ¢, + D/V. We
are especially interested in the mean intensity of the opalescence light, where the mean
is to be taken both with respect to time and with respect to the opalescence-producing
density fluctuations that may appear. As the measure of this mean intensity we can use
the mean value of ¢ =¢” +¢’. We have

where the sum is to be extended over all combinations of the indices p, o, 1, p’, 0/,
t'—always for the same value of t,. We now form the mean value of this quantity with
respect to the different distributions of density. We see from (15) that the quantities J,,,
do not depend on the density distribution, and neither does the quantity A. Hence, if
we indicate the mean value of a quantity by a bar set over it, we get

§=ALYYYYYB B, udyue

However, since according to §3 the quantities B satisfy the Gaussian error law (at
least in the approximation we are using) independently of each other, we will have, if it
is not the case that p = p’, 06 =6’ and © = 1,

B, B, =0.

Our expression for t;’ reduces therefore to
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=AY Y Y B .

However, this is not yet the average value we seek. We must also take the average value
with respect to fime. This appears only in the last factor of the expression for J . If
we take into account that the time average of this factor has the value ', and put for
brevity

(x - ANl i

2 s
J(w-p)l_

(16) _2_ n,
(v -v)l _

[ ———2 t:

we obtain the following expression for the final average value of ?:
5 _ Tsmzﬁ sin? q sin®{
g- 4} CTTEL =t
n
Further, according to (7), Ez: is independent of p ¢ t, and can therefore be placed
before the summation signs. Also, according to (16) and (15a), the £ belonging to
consecutive values of p differ from each other by ;% and, thus, by an infinitesimally

small quantity. The triple sum that appears can therefore be turned into a triple integral.
Since, according to the aforesaid, the interval A between two consecutive £-values in the
triple sum is described by the relation

AE__

w
we have

2 E ) smzﬁ sin’n sin*{

n

(2L sin’E sinn sin®
&JEEE?rm 7 AEAnac

where the last sum can immediately be written as a triple integral. From (16) and (15a)
we can conclude that for all practical purposes this integral can be taken between the

limits - o and + o9, so that it decomposes into a product of three integrals, each of which

has the value n. With this taken into account, we finally obtain for ;i, with the help
of (7) and substituting the expression for A4,
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de

= RT[ ] ;o

g - ap) ( 21m] 1 29 (18]
N oyl ¢ ) @xDy 2
X

or, if we consistently introduce the specific volume v and replace ¢/n by the wavelength
A of the excitory light,

an §- 51; glw] [2“] (@=Dy. 2,

Here ® denotes the opalescence-producmg volume traversed by the light, the shape of
which volume is of no consequence. An analogous formula holds for the z-component,
while the x-component of ¢ vanishes. From this we see that, for determining the intensity
and the polarization state of the opalescence light emitted in a given direction, the
decisive factor is the projection of the electric vector on the plane normal to the
opalescence ray, no matter in what direction the exciting light may propagate.” If J,
denotes the intensity of the exciting light, J, the intensity of the opalescent light at a
distance D in a specified direction from the place of excitation, and ¢ the angle
between the electric vector of the exciting light and the plane normal to the opalescence
ray under consideration, then we will have, according to (17),

de
V|—
(173) T RT [a"] [?l‘]‘ & coe.
7"V &y (%) Gy
2

In addition, we will calculate the apparent absorption due to opalescence by integrating
the opalescent light over all directions. If the thickness of the layer traversed by the light
is denoted by 8 and the absorption constant by & (¢*® = intensity attenuation factor),
we get

o [ae]
RT,
(18) @ =1 [2_"]
6n N azqg A
a?

7 It is not surprising that our opalescence light shares this property with the opalescent light
produced by suspended particles that are small compared with the wavelength of the light.
After all, both cases involve irregular disturbances of the homogeneity of the irradiated
substance, the locations of which are rapidly changing.
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It is significant that the main result of our investigation, given by the formula (17a),
permits the exact determination of the constant N, i.e., the absolute size of molecules.
In what follows, this result will be applied to the special case of a homogeneous
substance, as well as to binary liquid mixtures in the vicinity of the critical state.

§ 5. Homogeneous Substances

In the case of a homogeneous substance we have

\l‘ =l 'IPdV:
hence
Iy _ _op
o? dv
Further, according to the Clausius-Mosotti-Lorentz relation,
e -1
Vv = const.,
g +
hence
[6:]2 _ (e - 1)’(e + 2y
v ¥ )
Substituting these values in (17a), we get
(17b) 1o ElyE e [2—ﬂ]4 ®_ costo.
A ) (4=D)?

e
ov
In this formula, which gives the ratio of the intensity of the opalescent light to that of the
excitory light, in case the latter is measured at distance D from the volume & originally
traversed by the light, we use the following notation:

R is the gas constant,

T is the absolute temperature,

N is the number of molecules in one gram-molecule,

e is the square of the refraction exponent for wavelength A,

v is the specific volume,

@/ is the isothermal derivative of the pressure with respect to
the volume,

¢ is the angle between the electric field vector of the exciting wave and the plane normal to
the opalescence ray under consideration.

That gp/ov is the isothermal, and not, say, the adiabatic derivative, has to do with the
fact that of all the states belonging to a given density distribution, the state of constant
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temperature is the state of greatest entropy, and thus the greatest statistical probability,
at a given total energy.

If the substance in question is an ideal gas, then we can set ¢ + 2 = 3. For this case
we obtain

(17¢) i’ = R_T‘_’(e -y {2_“]‘ L cos’q
J N y4 (4nD)*

A A
As a rough calculation shows, this formula might very well explain why the light given off
by the irradiated atmosphere is predominantly blue® In this connection it is worth
noting that our theory does not make any direct use of the assumption of the discrete
distribution of matter.

§ 6. Liguid Mixtures

The derivation according to equation (17a) is also valid in the case of a liquid mixture
if one sets

v = specific volume of the unit mass of the first component,

¥ = work needed to bring the unit mass of the first component along a reversible path from
the specific volume it has in thermal equilibrium to some other given specific volume
along a reversible path at constant temperature.

If the vapor coexisting with the liquid mixture under consideration can be regarded
as a mixture of ideal gases, and the mixture can be regarded as incompressible, then the
quantity ¥ can be replaced by quantities accessible to experience. We then find ¢ by
the following elementary argument.

Let the mass k of the second component be mixed with the unit mass of the first
component. In that case, k is a measure of the composition of the mixture, the total
mass of which is 1 + k. Let this mixture have a vapor phase, and let p” be the partial
pressure, and v* the specific volume of the second component in the vapor phase. Let
this system be enclosed in a container with a semipermeable section of wall through
which the second, but not the first component can be taken in and out in gaseous form.
Let a second, relatively infinitely large container enclose a relatively infinitely large
amount of the mixture with that composition (characterized by k) for which we wish to
calculate the opalescence. This second mixture shall also occupy a vapor space with a
semipermeable wall, and the partial pressure and specific volume of the second
component in the vapor space shall be denoted by p,” and v,”, respectively. Let the
temperature inside both containers be 7,. We shall now calculate the work dy that is
necessary to increase the concentration measure k in the first container by dk by
transporting, in gaseous form and in a reversible way, the mass dk of the second

# Equation (17c) can also be obtained by summing the radiations of the individual gas molecules,
which are considered to be completely randomly distributed. (Cf. Rayleigh, Phil. Mag. 47 [1899):
375, and Papers 4, p. 400.)

[21]

[20]
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component from the second to the first container. This work is composed of the
following three parts:

- ;;’i p,"v,"  (work of removal from the second container)

dk . . . . .

.__RT lg —' (isothermal compression to the partial pressure in the first container)
M' pv (work of input into the first container).

The volume of the liquid is neglected here compared with the volume of the gas. M” is
the molecular weight of the second component in the vapor phase. Since the first and
the third terms cancel out according to Mariotte’s law, we get

RT,
dy = odk lg_
0

The function ¢ can thus be calculated directly from the concentrations and partial
pressures. Now we have to find &¢/dv* for the state we denoted by the index “0.” We

have
Ig p—"” =g}l +p—-"p° =lg(l +m) == -
Py P,

where = is the relative pressure change of the second component with respect to the
original state. From the last two equations there follows

l\>| =l.,

T - = +
ov _ RT, o
ET A T
o7:
Differentiating one more time with respect to v, and considering that
2
o _ ok
T
ok

we obtain, if we set n = 0 in the result,

on 1 ap
[azw] _RT, 3 _RT, p" 3k

550 M aV]2 M" Y )
k ok

Taking this into account, along with the fact that
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de
8e=ﬁ
v o

ok

we can rewrite the formula (17a) in the form

" [ae ?
I, M 512] [21:]‘ @ )
o= £ cos’@.
7, N 30ogp) (%) @Dy
ok

This formula, which now contains only quantities accessible to experiment, completely
determines the opalescent properties of binary liquid mixtures—to the extent that their
saturated vapors can be treated as ideal gases—up to a small region in the immediate
vicinity of the critical point. But because of the strong absorption of light and its great
dependence on the temperature, a quantitative investigation might well be ruled out here
anyhow. Let us repeat here the meanings of the symbols that appear in this formula
insofar as they have not been explained along with formula (17b):

(17d)

M?" is the molecular weight of the second component in the vapor phase,

v is the volume of the liquid mixture in which the unit mass of the first component is
contained,

k  is the mass of the second component which falls to the share of the unit mass of the first
component,

p" is the vapor pressure of the second component.

Lest it not look peculiar that the two components play different roles in (17d), let me
mention the well-known thermodynamic relation

1 dp” _ 1 1dp’
M p W kp
From this relation one can conclude that it does not matter which component is treated
as the first, and which as the second.

A quantitative experimental investigation of the phenomena here considered would
be of great interest: on the one hand, it would be valuable to know whether Boltzmann’s
principle gives indeed a correct account of the phenomena here considered, and on the
other hand, such investigations could lead to accurate values for the number N.

Zurich, October 1910. (Received on 8 October 1910)
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Doc. 10

Comments on P. Hertz’s Papers:
“On the Mechanical Foundations
of Thermodynamics™

by A. Einstein.

[Annalen der Physik 34 (1911): 175-176)

In his superb papers titled as above, Mr. Hertz has criticized two passages in my papers
on the same topic. In the following, I will briefly comment on these criticisms, noting
that what is said here is the result of an oral discussion with Mr. Hertz, in which we came
to a perfect agreement regarding both points in question.

1. In the penultimate section of §13 of his second paper, Hertz criticizes a derivation
that I gave of the entropy law for irreversible processes. I consider this criticism totally
valid. I was not satisfied with my derivation even then, which is why I soon thereafter
produced a second derivation, also cited by Mr. Hertz.

2. The comments contained in §4 of his first paper that are directed against an
argument about thermal equilibrium contained in my first paper in question® are based
on a misunderstanding caused by an all-too terse and insufficiently careful formulation
of that argument.

However, since the topic has been adequately elucidated in works by other authors,
and since, moreover, a detailed discussion of this specific point is not likely to claim much
interest, I do not wish to elaborate on it here. 1 only wish to add that the road taken by
Gibbs in his book, which consists in one’s starting directly from the canonical ensemble,
is in my opinion preferable to the road I took. Had I been familiar with Gibbs’s book
at that time, 1 would not have published those papers at all, but would have limited
myself to the discussion of just a few points.

Zurich, October 1910.  (Reccived on 30 November 1910)

! A. Einstein, Ann. d. Phys. 9 (1902): 425 and 11 (1903): 176.
2 P. Hertz, Ann. d. Phys. 33 (1910): 225 and 537.
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Doc. 11
Lecture Notes
for Course on Electricity and Magnetism
at the University of Zurich,
Winter Semester 1910/11"

Electrostatics

If one rubs glass, sealing wax, or other bodies with other bodies, then after this procedure
they will (temporarily) exert forces on each other that were not observable before,
without their having been otherwise influenced in a perceptible manner. One says that
they are “electrified,” where by this word one does not denote anything but what has
been said. Metals & many other bodies can be electrified only if affixed to a prop of
glass or sealing wax etc., or suspended by a silk thread. A body can be electrified not
only by rubbing but also by bringing it into contact with an electrified body.

Let us examine the laws according to which electrified bodies act upon one another,
assuming for the sake of simplicity that the bodies are small compared with the distances
between them. The forces exerted by these bodies on each other act in the direction of
the connecting lines (equality of action & reaction, we can measure them absolutely by
the methods of mechanics, for example in the following way:

n‘ » 'y -
S MG X
z 3 =mg

Consider now many bodies, say small metal balls suspended by silk threads, and let
us suppose that we have determined that the forces that any two of them exert on each
other, and assume, for the time being, that they are at a distance R that always stays the
same. We designate attractive forces as negative, repulsive as positive.

If we combine the bodies 1 2 3 .. with the body a of our group, we obtain the forces
F,F,, F, .... .. If we combine the same bodies 1 2 3 .. with the body b, we obtain
the forces

FyFy Fy

[p- 1]

[r- 2



[p.3]
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Experienceshows that F,  : F, : F,.. = F,, : F,, : F,, .. Thus, the effects of the bodies
123 .. another body always stand in the same ratio no matter how that other body has
been chosen. Hence we can characterize the electrical influence of one el. body by
means of a number, if we have assigned an arbitrarily chosen number, for example the
number 1, to the influence of one of the bodies.” This number is called the quantity
of electricity. It follows from this definition that the force f exerted by two bodies on each
other is directly proportional to their quantities of electricity.

F =k-ege,

However, k also depends on the distance.
Further, it follows from experiments that this force is inversely proportional to the
square of the distance, so that we have, with another interpretation of the constant k,

F = ki
’.2

where k no longer depends on the distance but only on our choice of the body in our
group to which we have assigned the quantity of electricity 1.

The sign of k is determined by our earlier stipulation in conjunction with experience.
That is to say, it has been found that quantities of electricity that are alike according to
the above definition repel each other. Thus, k is a positive constant. Its value depends
on what we stipulate as the unit of the quantity of electricity. However, we may also
freely choose k and thereby define the unit of the quantity of electricity. We do that by
setting k = 1. We have then

F =55
7
In order to measure a quantity of electricity absolutely after according to this <kind of >

definition,” one has to measure, in principle, a force and a length, which quantities
occur in the form

e = force - length = ML T

This is the “dimension” of the electrostatically measured quantity of electricity.

We must mention a few more facts that are of fundamental importance for the
foundations of the theory.

If a quantity of electricity e, is subjected to the action of two quantities of electricity
e, & e,, one finds the force acting on e, from the law of the parallelogram of forces. In
the special case where e, & e, are very close to each other, their effects on e, will add up
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algebraically; in other words: the quantity of electricity of a system of bodies is equal to
the sum of the quantities of electricity of the system’s individual bodies.

This principle can be further extended, given the character of our experience with
electrified bodies. If bodies with quantities of electricity e, & e, are brought into contact
with one another, then, in general, their electric state will change. But their action at a
distance on a third e. q. ¢, will not change upon the contact, and so the sum of the
electrical quantities will not change either. (Important law of the constancy of the sum
of quantities of electricity, an exception to which has never been found.)

We endow these two laws with a tangible, physical meaning by imagining that the
substrate for the quantity of electricity is some sort of indestructible matter, which,
however, must be thought of as being present in a positive and a negative modification,
because the experiments alluded to above show the existence of positive as well as
negative electrical quantities (in the case of attractive forces).

One more thing has to be added to complete what has been said so far, for there is
no way to decide which sign to ascribe to a specific given electrical quantity, because the
interaction between two e. q. only makes it possible to decide whether the two have to
be assigned like or opposite signs. But all that is needed, therefore, is to fix the sign in
a specific case (glass rubbed with wool is positive), in order to fix signs for all other
quantities of electricity.

In completing what has been said about the auxiliary representation of positive and
negative electricity, it should be added that one imagines that the interactive forces act
between the electricities and are transferred from them to the carriers of electricity
(bodies) to which they are bound. We further complete the picture by the assumption
that not only the algebraic sum of the electrical quantities, but also the sum of the
electricities of each of the signs is constant—a proposition that is part of the picture and
that cannot be either directly confirmed or directly discomfirmed by experiment.

The action of a system of electric masses (e, e, ....) on a pointlike quantity of
electricity (e).

An electrical quantity e,(x y z) exerts the force K on a quantity of electricity

e(a,b,c) We have e
K_ele h rz_ N2 bz a2 e'/l:!‘c
-?,were = (x-a)* + (y-b)* + (z-c)*. oo T
it il
X B - _ 4
The direction cosines of this force are X2, y_lz’ il 5
r r r

so that its components are

lp- 51



[p. 6]

[p-7]

254 DOC. 11 LECTURE ON ELECTRICITY & MAGNETISM

ele x—al
K, =X
2
r 1
ee y-b
K =671
v 2 ( )
£ r]
ee z-¢
K,== _r_l
ron
If several masses e, e, . ... act simultaneously on mass e, we get®”)
ee x—a ee x-a " e x-a
- el 1 2 2 — 1 1
K =XK, =5 —+ = —Z.. =e-y 2
r n r; r LI £ n

For a given distribution of the masses e, etc., and a given position for e, these force
components are proportional to the e.q. e. But the sums appearing on the right-hand
side depend only on e, e, ... & the test point. These sums

o, €, xa
Y _; —! =X (other components Y Z)
15 N

are called the X-component of the electric force or field strength. It is equal to the force
exerted on the unit of electricity. X Y Z is a vector which is related to the vector of the
force acting upon the e quantity e in the following way:

K =eX K =¢Y K =¢Z..... 2

If one draws from every spatial point a directed straight line in the direction of the field
intensity, one gets a picture of the course of the field intensity, of the vector field X Y Z
that brings about the (possible) actions of forces deriving from the quantities e, e, etc.
This field is determined chiefly by 3 spatial functions (X Y and Z). However, these can
be reduced to a single spatial function. For we have
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XEexa E—%='%E[ﬁ],

r

since because 7 = (x -a) +-+- rdr =(x-a)dc+-+- Hence, if we set

el
Yy — = ¢, weget
=

1

v=-22 -y @

z = -2
oz

Thus, X Y Z can be described as derivatives of one spatial function ¢. We call ¢ the
potential of the masses in question.

The Physical Meaning of the Potential

‘We consider the electrical unit mass in the field of

the e. q. ¢, €,, €5.... We move the unit m. from the point 2
P, to the point P,. For an infinitesimally small portion of % r\}
the path with projections dx dy dz, the work performedby .
the forces of electric origin equals Xdx + Ydy + ZdZ.

The total work is therefore A = J:’ Xdx + Ydy + Zdz
With the help of (3), this work c;an be given the form

N

¢ d¢ de
A=~ Zde + Zdy + dz = -|dg,
Iz e W e

where dg denotes the total change of ¢ when the element dx dy dz is traversed. Hence
we obtain

A=¢,-¢,.... (4
Thus, the work done on the unit electr. mass between two points is equal to the potential [p. 8]
drop between these two points ¢ is independent of the choice of the coordinate system.
This quantity is totally independent of the shape of the path. Hence, if the unit pole
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describes a closed curve, i.e., if P, & P, coincide, ¢, = ¢,, and hence the work 4 = 0. This
fact contains the more profound interpretation of the reason why the vector XYZ of the
el. field strength is derivable from a potential. If the integral were not to vanish for a
closed curve, it would be possible to produce work from nothing, without limit, by means
of electrical quantities.

The Theorems of Laplace and Gauss. Lines of Force

<Here give a little kiss to his poor!>

The funct ¢ provides a graphic overview of the course ”"'w’
of the el. field. If one thinks of a surface ¢ = const., then 7// i
the field vector XY Z will be perpendicular to the surface /,

¢ = const. Because every derivative - 3_'0 taken in the J/
s

direction of a line element in the surface vanishes. If we //
think of two adjacent surfaces ¢ = ¢, & ¢ = ¢ - &, we

will have - g_‘p = %’ and since e is everywhere constant along the two surfaces, % is
n

a relative measure for - %p, i.e., for the el. field strength, or—as we will call it in brief
for the el. force. An additional aid for intuitive visual
representation is provided by the concept of lines of
force, ie., of lines that at each point have the same
direction as the electric force. According to what we
have said, these lines of force everywhere intersect the
surfaces of equal potential perpendicularly. Beyond this,
we will see that the density of these lines of force is
proportional to the field intensity. But in order to do
this, we must first derive a few laws.

The Theorems of Laplace & Gauss

If only one charge is pres., then ¢ = €, where
r

r=+ \/(Jc—a)2 + (y-b)* + (z-c)*.
Diff, we obt.

=-___ " = ~£(x—a)

ox 2 r P
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de _ _e  3e(x-a)
ax? 2t W

From this, Ag = a_z‘f + .az_‘p + izf = 0....(5) also holds for an arbitrary number
. oyt ot
of masses (Laplace’s theorem)
We can express this theorem in still another form if we use the field intensity instead of
the derivatives of ¢.

X dY  dZ

— +_+ =0
& 9y oz

We can give this theorem a new form by integrating over a volume bounded by a closed

surface that contains no electric masses.

.. (5a)

I 9Z 4 tyd:
dz
Portion of an element
oz
drdy = dxdy [ S & = dudy(Z,-2)

if n, and n, are the inwardly oriented normals,
then!”

dxdy = - df, cos (ngz) = df, cos (nz)

We can set - X7 cos nz df over the two elements
Every other element dx dy has the same form, so
that when one finally replaces the sum with the
integral, one obtains!®

%dt = —IZ cos nz ds
oz

Applying this theorem three times, one obtains

0- (T L. Z

ox oy oz

Considering that the expression in the brackets is in fact the ficld component N in the
direction of the inward normals, we obtain

]dt = —I(X cosnx + Y cosny + Z cosnz)ds.

[p. 10]
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[Nds = 0. ()

which we can also write in the form f %’ ds =0

This theorem yields us a further property of
the field of electric lines of force. Define tube of
force & write down above theorem for it. Integral
vanishes on the surface. On the initial and termi-
nal cross section we have

N.fi=Nf>
Bl N, h .
This vanishes. = = . Thus, the field strengths vary inversely as the surfaces of the
1 2

tubes of force. If one draws a number of lines of force through f, and continues them
up to f,, then the density of these lines of force will likewise be inversely proportional to
the surface areas, and thus directly proportional to the field intensities N. Thus, one can
draw unending lines of force in the field, so that line density = field strength. This is why
the lines of force afford a quite complete & direct intuitive visual representation of a
field.

Equation (6) expresses the one special case of the so-called Gauss’s theorem.”
This equation can easily be extended to the case where the closed surface encloses
electric masses e e, ....

We extend the surface integral to the volume bound-
ed by the giv. surface F and the auxiliary spherical surf.

K K, etc.

J’Nds +J’Nd.s +_[Nds... = 0.
F K, K,

We seek integral extended over sphere K; We divide the total field into 1. X, Y, Z, N,
which derives from e,, & second, the rest X'Y’Z'N”’

(4
The surface integral j ' ds vanishes, f K‘Nlds = _4wr? - 4me, We thus obtain
‘] r
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INds = -4nY e, (General form of Gauss’s theorem.)

Continuously Distributed FElectricity

So far we have assumed that electricity is unalterably bound to small bodies (treated as
points). But the character of experience favors the assumption that electricity is spatially
distributed. We must generalize our investigations in this sense. To begin with, we think
of electricity as continuously distributed, pdt being the quantity of electricity in the space
elementdt. p is the difference between the densities of positive and negative electricity
at one locus, as we imagine it. We assume that the electricities are movable relative to
ponderable matter, and that they cannot undergo any other changes except those of
position. This model is suggested by the earlier-mentioned empirical law of the constancy
of the quantity of electricity in the electrical balance between two small bodies.

The following should be noted here. We have seen how experience led to the introd.
of the concept of the quantity of electricity. it was defined by means of the forces that
small electrified bodies exert on each other. But now we extend the application of the
concept to cases in which this definition cannot be applied directly as soon as we
conceive the el. forces as forces exerted on electricity rather than on material particles.
We set up a conceptual system the individual parts of which do not correspond directly
to empirical facts. Only a certain totality of theoretical material corresponds again to a
certain totality of experimental facts.!"]

We find that such an el. continuum is always applicable only for the representation
of el. states of affairs in the interior of ponderable bodies. Here too we define the vector
of el. field strength as the vector of the mech. force exerted on the unit of pos. electr.
quantity inside a body. But the force so defined is no longer directly accessible to exp.
It is one part of a theoretical construction that can be correct or false, i.e., consistent or
not consistent with experience, only as a whole. The laws that we found empirically for
small electrified bodies we now apply to the fictional electricity itself.

We invest. the pot. of cont. distribution

¢ = j pﬂ R small radius sphere about the test point region decomposed polar
=
coordinates introduced
c-z=rcost®

a-x=rsin 0 cos @ volume el-?sinddrdwd?
b-y=rsin®sin w

In small sphere Ixﬂ replaceable by /prsinddrdwd? always finite. Thus, the integral
r

is not infinite.

Ip. 12]

Ip- 13]
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d¢ _(pdtc-z _ c
= ITT = IR + proosb sind dr dwd?.

The second int. is finite."!! Hence field strength always finite. One proves that when
p with all derivatives is continuous, the same must be true of ¢.

The equation A¢ = 0 is not valid here. We find the corresponding theorem by
applying Gauss’s theorem to an arb. closed surface inside the continuum.

fﬁnda = —I4ﬂpdt X

where €, denotes the component of the el. field strength along the inward normal. First
we apply the theorem to the special case where the surface is the boundary of an
elementary parallelepiped. The right side becomes -4np dt. The left side

‘ ? €,
14/‘@-‘ Fe +;§1< G dydz + —(ts,,+ = dx)dydz
x

NCA I AY
or ox Toy a2 )"

If the two sides are set equal, one obtains

o€, o€ oe
+ +

z —

4 4x
x o oz 7

If one replaces &, etc. by the derivatives of the potential, one obtains

+Ap = -47p

This is Poisson’s theorem.

Distribution of the Electricity on Conductors

A conductor is a substance in which the electricity is freely movable. Equilibrium
possible only if no forces act on el. in the interior. €, etc. vanish. Poisson’s theorem
applied to a point in the interior of the conductor yields p = 0. Thus, the electric masses
sit only on the surface, & in the interior of the conductor ¢ = const.

Since the electricity is distributed two-dimensionally on the surface, we must consider
a two-dimensionally distributed potential.
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1) Potential is uniform over surface. A little piece of
the surface is cut out by a cylinder around the spot under
investigation. That which derives from the external part of
the covering is uniform. That which derives from the
internal part vanishes for small radius; for''?

R
R
0

which decreases with decreasing R.
From the constancy of ¢ it follows that the tangential components of € on the two sides
of the layer are equal.

01 = @2
Q=9

}¢r—¢i=¢z-¢é 5

z;én

P — Q1 _ 92— P
6 e 6 or

ze = (Etl

From this it follows €, vanishes on the external surface of a conductor, i.e., that the lines
of force must intersect the surface of the conductor perpendicularly.

2) How does the normal component behave on the two sides?

This follows at once from Gauss’s theorem.!

dnodf = G df — G, df %
or ’.}" il

€, — E,, = —4no. SPecial G€.=0 G, =4no
case

or [Z_‘p] - [?] = 4mno, if both normals are taken toward the external side.
n ), n ),

Force on piece of the conductor surf.

[p. 16]
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2’},@ /J.a—;ifdz=62,—625=4njpdz=4no
0E,

+47tp=g.

1
Kraft = g;r(gg

4 jp@ldz = J.(Eza—g;—zdz = %(“35.. - &%)

The problem of finding the distribution of electricity on a conductor is now easy to
formulate mathematically if we further stipulate that the potential should be constant at
. If all effective el. masses are at a finite distance, its value there is zero. For ¢ can be
determined from the following conditions:

1) ¢ =const = P, inside the body

2) A ¢ =0 outside the body.

3) ¢ constant on the surface of the N WA\
body. ¢ together with the derivatives in /
the external region. N

4) ¢ vanishes at =.

We prove later that these conditions are ~
sufficient.
r

e difference @, of two solutions @, /

must vanis ide on the surface. <Thus, Tt

if there existed a clos€

the external region>
We now choose a closed surface in the

CRCRC

If ¢ is determined in accordance with these conditions, one obtains the surface density

ace anywhere in

n by means of the relation4nn =€, = —%‘f, where the normal is directed toward the
n

outer side of the conductor. One obtains the total charge by integrating n over the
surface.

Example. Let the given body be 2 sphere. We show that the solution ¢ = 2 in the
r

external region and ¢ = P in the internal region satisfies all the conditions.

1) satisfied
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2) satisfied, because A[f.] =0
r

3) satisfied, if < = P
R
4) satisfied.

We determine the charge e.

1 (¢ le
= [ndo = [-&_Redx = =-1[%) - .,1
N I“ = '[4nR2 V. n 41:[6r]R 4n

Nl

Thus, we obtain

€
¢®= -
r

e = RP

This shows that e is proportional to the potential difference P. This holds not only for
a sphere but quite generally. For let the problem be solved for a specific P. One then

finds the solution for a P* = AP by using the function ¢* = A¢ instead of ¢. Thus, -
p

depends only on the shape of the conductor and is called the capacity of the latter. The
capacity of the sphere is equal to its radius.
Instead of a single conductor, let us think of one surrounded by a conducting casing.

1) ¢ =P, in the interior ¢ = P, in casing
2) A¢ =0 bet. body & casing
3) constancy req.

Then AP,AP,A¢ solution Ae el. quantity

on body as well as on casing
Charge dep. only on pot diff.

P,-P, AP, - )P,
e Ae
Example parallel plate condenser'!

= ¢ capacity, (mutual)

L TR o L N I

=_— €= —_— —_

ox 8 4nd 4nd

[p. 18]
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Example concentric hollow spheres.

o=2.p

a 1 1

—+Bp=P o_-_|=P -P

R1+B l a[Rl 2] ' b
RR

= +B=P, a=(P -P)_ "2

R, R,- R,

B does not interest us.

e-jnda=_J’ a"’d - iR =

172

P,-P, R, R,

= mutual capacity

Even simpler derivation (center)

Example concentric cylinders, ¢ dependsonlyon 8 = yx* + y* . One could set Ag =0

for this special case & integrate. Even simpler, apply Gauss’s theorem directly. e = el.
charge per unit length

4ne = 2nre,
2e d¢

t = o = -
" or or

qp=~2elgr+const=—2elgf
c

Boundary conditions yield
P =-2lg —
P,=-2lg =
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Capacitance = ¢ = i !

R
2 21t
ER

1

R
Becomes zero when R, = «. Only slightly dependent on the ratio - _2
1

Electrical reflection of two spheres.
Uniqueness of the solution. Green’s theorem.

I[gilgi/ - ] IU__do - fuavde
Iddzj(aUanx J’ddz[U V] J-U_d‘t
-@ocosnx

J'U[_cosnx+ C 4 ']=_[Ugl—:d°

The above equation is a form of Green’s theorem. If we set U =V & AU = 0 & on the

surface U = 0, then I [%p % 2+ ]d: = 0 Provides the proof of uniqueness. It is easy

au

to calc. U in a point if one knows U & = on the boundary surface of a space.

n

Electrical Energy

We start again from system of small electrified bodies. First two bodies @ & b. Mutual

e e,
force 2 2 =F
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