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The present paper treats rigorously the dynamo equations describing the
effects of the internal motion of a bounded volume of incompressible fluid with
nonzero ohmic resistivity on the magnetic field produced by electric currents
in that fluid. The procedure involves representing an arbitrary solenoidal
vector field in terms of two scalars, analogous to the representation of an ar-
bitrary irrotational field as the gradient of a single scalar. The dynamo equa-
tions are reduced to scalar heat equations for the two field scalars, the coupling
between them taking the form of a heat source term. Precise results about the
magnetic field can be obtained from these heat equations with the help of
several variational inequalities analogous to Rayleigh’s variational estimate
for the fundamental frequency of a vibrating system.

The main result is the explicit construction of a large class of continuously
differentiable fluid velocities capable of indefinitely maintaining or amplify-
ing the dipole moment of the external magnetic field. These motions all involve
periods of stasis in the fluid, and cannot, therefore, be expected to oceur in the
earth’s core. It is believed that it will be possible eventually to obtain more
exact bounds than those presented here for the magnetic field components
with high wave number, thus eliminating the need for such periods of stasis.
The fluid motions shown capable of dynamo maintenance are of this sort: a
toroidal shear symmetric about the Z axis proceeds long enough to produce
from Py, , the lowest poloidal free-decay mode symmetric about that axis, a
very large energy in Ti,1 , the lowest toroidal free-decay mode with such sym-
metry. During a period of stasis, everything else almost dies out, leaving a
field which is largely Ti,1 . Then almost any velocity which has a radial com-
ponent and is not axisymmetric about the £ axis will regenerate Pi.: and the
external dipole moment.

A critique of some previous attempts to produce dissipative self-regenerative
spherical dynamos is included.

The techniques which lead to the existence of self-sustaining dynamos pro-
duce other results about the dynamo equations, most of which are to the au-
thor's knowledge either new or not previously precisely formulated. These
results are listed below.

(i) Fluid motions in a sphere can be regarded as bounded linear operators on
the Hilbert space of magnetic fields with finite total energy.

(ii) The free-decay modes in the rigid sphere are complete in that space.

(iii) The magnetic effect of a given fluid motion on a given initial field de-
pends continuously on the resistivity p of the fluid even at p = 0.

(iv) The magnetic effect of any motion can be approximated with arbi-
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trary accuracy by replacing it by a series of rapid jerks interpersed with
periods of rest.

(v) The effect of a rigid rotation of the fluid is to rotate the magnetic field
while that field decays as if the fluid were motionless. This effect can be approxi-
mated with arbitrary accuracy by rotating all but a sufficiently thin shell a1
the surface, even if every point on the surface remains fixed and a large shear
develops in the shell.

(vi) If the fluid velocity has no radial component, the poloidal magnetic
field decays as rapidly as if the fluid were at rest. If, further, no poloidal field
ix initially present, the toroidal field decays as rapidly as if the fluid were at
rest.

(vii) Dynamo maintenance is impossible if the local strain-rate of the Huid
is always and everywhere less than the decay rate of Py.; when the velocity of
the fluid is zero.

1. STATEMENT OF THE PROBLEM
(A) Tur OrigiNn oF THE GEOMAGNETIC FIELD

The present paper is addressed to one part of the question of the origin of the
earth’s magnetic field. Gauss (1) in 1838 used what was then known about the
earth’s surface magnetic field to conclude that the electric currents (or other
sources) which produced it were inside the earth. Recent geomagnetic survevs
indicate that no more than 2% of the earth’s surface field can be aseribed to
external electric currents (2). As Elsasser (3) has pointed out, if the currents
nside a sphere of radius B and uniform electrical conductivity ¢ are not driven
by any source of electromotive force, the external dipole moment of the magnetic
field produced by those currents will decay exponentially with a mean life of no
more than = “uee R’ seconds, where uo is the magnetic permeability of free space.
IFor a sphere the size of the sun with a conduectivity as large ax copper’s at room
temperature, this mean life is 10" years; thus it is not out of the question that
the present =olar dipole field (4) was produced at the birth of the sun and has
had no time to decay. If, as Elsasser (5) has suggested, turbulent convection
destroys stellar magnetic fields, then the sun would need some sort of regencra-
tive mechanism. The earth certainly needs such a mechanism, since for it 7 o i
ix of the order of 15000 years (3), while the paleomagnetic evidence (6) indicates
that the earth’s surface field has never been orders of magnitude stronger than
it 1s now. Therefore, a source of electromotive foree must be sought, capuble of
driving the internal currents which maintain the earth’s external dipole field.

There i considerable evidence (7) that the fluid in the earth’s core is moving
relative to the mantle, so that as Larmor (8) proposed, one source of electromotive
force might be the Lorentz electric field u x B seen by the fluid in the core ax
its velocity u carries it across the lines of force of the magnetic field B. I'or a
finite volume of fluid whose electrical conductivity is finite, it is still unknown
whether there can exist such a “self-regenerative dynamo’’, u source-free fluid
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motion capable of maintaining a magnetic field indefinitely against ohmic losses.
It is the purpose of the present paper to answer this question rigorously in the
affirmative. There is a large class of solenoidal velocity fields inside a sphere
which leave all points on the surface of that sphere fixed, are periodic in time
(except for short intervals), are bounded and continuously differentiable in space
and time, and are capable of maintaining or amplifying indefinitely the external
dipole moment of the magnetic field produced by electric currents in the sphere.

(B) TuE EQUATIONS TO BE SOLVED

Although the magnetic dynamo equation giving the effects of a fluid velocity
u on a magnetic field B is well known, the complete system of equations for the
electromagnetic field in the presence of fluid motion is widely scattered in the
literature, and some question has been raised about whether the magnetic dy-
namo equation alone is all that need be considered (3). For completeness, a
derivation is given below of the formal procedure for obtaining the whole elec-
tromagnetic field once the magnetic dynamo equation has been solved.

Let V be a bounded volume of fluid with surface S outside of which is vacuum.
Denote all of three dimensional space by &. Suppose the fluid has finite isotropic
ohmic electrical conductivity ¢ and is incompressible. Suppose it moves with
velocity u(y, ¢) and that the outward normal component n-u vanishes on S so
that the fluid always remains inside the fixed volume V. Then Ohm’s law is
j=o¢(E 4+ u x B)inside V,j = 0 outside V. Neglecting displacement current,
Maxwell’s equations are V. x E = —9B/dt, V x B = uyj, ¢V-E = p, V-B =0.
At first sight these equations, which imply V-j = 0, appear to contradict the
continuity equation dp/dt + V-j = 0. However, the term dp/dt is of order u/c
times the term V-j, where ¢ is the velocity of light. If w/¢ is small enough to
justify the neglect of the displacement current it is small enough to justify the
neglect of dp/d¢ in the continuity equation. As Bullard and Gellman (9) point
out, the fact that p can be neglected in the continuity equation does not mean
that its effect on E can be neglected. The usual argument that inside a metallic
conductor p dies very rapidly [like ¢ "% to zero fails here because of the extra
term ¥ x B in Ohm’s law. Volume and surface charges will accumulate during
the motion and will influence E. But Elsasser (10) has shown that the extra
current produced by the motion of these charges is small of order u/c compared
with the current computed from Ohm’s law and the Maxwell equations deprived
of the displacement current.

The boundary conditions on the electromagnetic field are that B be continuous
across S (no surface current), that n x E be continuous across S, that n-j = 0
on S (with an error of order u/c), and that »’B and °E be bounded at infinity.
If the conductivity ¢ is infinite, then surface currents must be allowed, and only
n- B need be continuous across S, while n-j need not vanish there since currents
flowing into S from V can flow away as surface currents. If ¢ is finite, so that
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B is continuous across S, then n-V x B is continuous across S, and, since it
vanishes just outside S, it does so just inside S as well; therefore the condition
n-j = 0 on N is a consequence of the boundary conditions on B and can be
omitted from the statement of the problem.

Lliminating E and j from Maxwell’s equations and Ohm’s law, one obtains
the so-called dynamo equations (9):

%l;:VX(u xB)—-;:;VxAxB nV; {ta)
0=V x B mé&—1; (1hy
V-B=90 in &; (e
B is bounded in &; (1d)
B 1s continuous across S if ¢ < = (le)
n- B is continuous across Sif ¢ = =. (1)

It is now necessary to show that if a solution B of Eqgs. (1) has been obtained
for some prescribed velocity field u then that solution generates a unique =olution
of the whole system of Maxwell’s equations.

Since B is known everywhere, a unique vector potential 4 can be found such
that B = Vv x 4, V-4 = 0,74 is bounded, and 4 is continuous. The equation

E=0¢'j—uxB (2)

uniquely specifies E in V" and in consequence of the first of the dynamo equations
(1) there is a secalar ¢ such that in 1’

E=— o = Ve (3)
In & — 1 let ¢ be defined by the demands that »*g be bounded, V¢ = 0, and
that ¢ be continuous across S. If ¢ is any solution of equation (3) in 1", ¢ +
is another, where € 18 any constant. Then from equations (2) and (3 in T,
¢ = f(r) + (" on S, where f is 2 known function and € ix an unspecified constant.
If ¢ is the unique harmonic function in & — ¥ which takes the value f(+) on S
and vanishes at infinity, and if ¥ is the unique harmonic function in & — 1
which takes the value 1 on 8§ and vanishes at infinity, thenin § — V, ¢ = ¢ +
Cy. If the constant € were known, Eq. (3) would give E in & — V. This constant
can be determined from the total electric charge @ on the body V, since

Q= -« [(n-vg)ds = ~a [ (940 dS — aC [ (-v9) a8,
S S N

and it is easy to show that [¢ (n-Vvy¢) dS cannot vanish.



376 BACKUS

The value of E being now determined in all of &, the volume charge density p
can be found from p = &V-E in V and the surface charge density on S
is en-(E" — E7), the superscripts + and — referring to values, respectively, just
outside and inside S.

These considerations indicate that any solution of the dynamo equations (1)
generates a consistent solution of the whole set of Maxwell’s equations with dis-
placement current neglected, Ohm’s law, and the continuity equation with
dp/dt neglected, assuming that the total electrostatic charge @ on the fluid
volume V is known. Of course Q is a constant of the motion.

The general dynamo problem can now be formulated thus: solve equations (1)
in conjunction with the equations of motion and continuity for the fluid. The
restricted dynamo problem, the subject of the present paper, ignores the source
of the fluid’s motion and asks simply for the solution B(y, {) of Egs. (1) when
B(y, 0) and u(y, ¢) are given. In particular, are there “physically reasonable”
fluid motions for which B(y, t) does not decay with time? By a “physically rea-
sonable” motion is meant a velocity field u continuously differentiable at all
times at all places in V, for which a bounded positive scalar p exists such that
dp/dt + V-pu = 0. This paper will make the more restrictive demand v-u = 0,
or that the fluid is incompressible. The volume V' will be assumed to be a sphere
of radius 1.

In the preceding section, the symbol p has been used first for the charge
density, and then, in the paragraph above, for the matter density. Both these
meanings will be dropped, and henceforth p will mean (ueo) ™, which differs from
the fluid’s resistivity by the factor uo ", but for brevity will be called the resistivity
throughout this paper.

2. PREVIOUS WORK ON THE DYNAMO PROBLEM

The present author has given a short survey of previous attempts to construct
self-sustaining dynamos (11). This discussion will not be repeated here. However,
further remarks are warranted about three dynamo attempts.

First, Cowling (12) writes that he is convinced of the existence of self-sustain-
ing dynamos by the numerical computations carried out by Bullard and Gellman
(9) in an attempt to solve the eigenvalue problem V x vV x B = WV x (u x B)
for the eigenvalue W and the eigenfunction B, given u. Such a solution would
represent a steady dynamo. The Bullard and Gellman scheme was to expand B
as a sum of fields f;" (r)B,"(9, $) where the angular part B, is a vector spherical
harmonic of the form Vv x rY," or V x Vv x rY,™, Y,” being a scalar spherical
harmonic of order 1. The partial differential equation Vx ¥ x B = WV x (u x B)
gives rise to an infinite system of coupled ordinary differential equations for the
f."(r). Bullard and Gellman approximated this system by the sequence of finite
systerms obtained by setting all ;™ equal to zero above a certain value of I. They
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took [ = 1, 2, 3, and obtained successive approximations ¥, to the true eigen-
wlue W, Typical values for the W, they obtained for various velocity fields u
are Wy = 47.5, W2 = 63.9, W; not computed; IV, = 22.06, W, not computed,
Wy = 67.4. These sequences are supposed to converge -to the true values of 1,
perhaps what Cowling finds convincing about them is that at least they are real.
But as Chandrasekhar (13) has pointed out the steady increase of these ap-
proximate values of W as I increases and the approximation improves may indi-
cate that in the exact solution an infinite value of T is required, or in other
words that the particular velocities u chosen for the caleulation cannot maintain
a steady dynamo.

Parker’s paper (14) 1s an attempt to exploit explicitly the suggestion made and
rejected by Llsasser (10) and further examined by Bullard (7) that the muin
poloidal magnetic field may be generated from a much larger toroidal field by
means of w poloidal fluid motion (poloidal and toroidal are here used in the
sense of Elsasser (3)). The toroidal field itself would be generated by an axisym-
metric toroidal shearing motion in the fluid (10). Parker gives a detailed caleula-
tion of the effect of a cyclonic vortex motion in an infinite perfectly conducting
fluid on a magnetic field which was originally uniform. He tries to show that the
resistivity of the fluid can in fact be neglected, but his method, 2 perturbation
calculation in the small parameter p, the resistivity, is not adequate to the
problem unless & convergence proof can be supplied, probably « troublesome task
and one he does not attempt.

A minor difficulty in Parker’s work is his failure to fit his velocity fields ex-
plicitly into o sphere. This would cause no misgivings were it not well known
that singular velocity fields, velocities with point sources for example, can main-
tain dynamos. The difficulty is minor because Parker’s cyelonic vortices ean
eusily be fitted into a sphere.

The principal difficulty the present author sees in Parker’s approach is that the
real question at issue is the long-term behavior of the magnetic field. Since «
successtul dynamo cannot be axisymmetric (15, 11), the poloidal flow will gen-
erate other fields besides the desired axisymmetric poloidal field, and the toroidal
shear low will transform these in a fashion which may eventually destroy the
whole process, and whose understanding constitutes the real difficulty in an
attempt to u=e Elsasser’s and Bullard’s suggestion. Parker ignores all these strav
fields.

Bullard and Gellman (9) point out a less specific objection to Parker’s attempt
to construet u dynamo: in the absence of corroborative experimental evidence,
no such qualitative argument can carry conviction on the dynamo question.
What is needed is either a proof or a numerical caleulation with every appearance
of convergence.

Batchelor (76) has argued that there is in fact experimental evidence on the
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dynamo question. He points out that the equations for the vorticity @ = V x u
in a fluid of kinematic viscosity » moving with velocity u are dw/0t = V x
(U xw —rv xV xwand V-0 = 0. If o isidentified with the magnetic field
B and u with the vector potential A these equations are identical with the
dynamo equations (1). The experimental observation that there are fluid motions
in which o does not decay is then to be taken to show that velocity fields u exist
for which the dynamo equations (1) have a nondecaying solution.

 Batchelor advanced this argument only for fluids of infinite extent, and used
it to conclude that turbulent generation of magnetic fields was possible. Bullard
and Gellman (9) tried to extend it to finite fluids. For a fluid of finite extent,
however, the analogy between w and B and between u and A fails because of
differences in the boundary conditions at the surface of the fluid. These differ-
ences are presumably irrelevant, as Batchelor has assumed, for times of the
order of a few mean lives of a turbulent magnetic disturbance whose spatial
extent is much less than that of the whole fluid [although Cowling (Ref. 12, p. 96)
disputes even this], but that the boundary conditions can be ignored for times
longer than the slowest magnetic free decay time for the whole fluid is not so
clear.

3. A HEURISTIC DESCRIPTION OF A DYNAMO

In the published attempts to show that velocity fields u exist for which the
dynamo equations (1) have nondecaying solutions B their authors have usually
demanded that u be a velocity which might at least qualitatively resemble the
actual motion in the earth’s core (10, 17, 9, 14). Since none of these attempts
was successful, and since the motion of the core is very imperfectly known, it
would appear expedient to relax this restriction for the time being. In the present
paper any solenoidal velocity u will be admitted which is bounded and continu-
ously differentiable everywhere for all time, and which vanishes on S, the surface
of the fluid.

With such a wide class of velocities available it turns out to be possible to
carry out in detail Elsasser’s (10) and Bullard’s (7) suggestion: using an axisym-
metric toroidal shear flow to produce a large axisymmetric toroidal from a small
axisymmetric poloidal magnetic field, and then using a poloidal flow to transfer
some of the energy of the toroidal field back into the poloidal field. Specifically,
suppose that initially the magnetic field has the form P, + R where P is an
axisymmetric poloidal free decay mode with longest mean life in a rigid sphere
(3). The field P; is taken to have unit energy, and the energy in the remaining
field R is much less than 1. A rapid axisymmetric shear flow with Py’s axis of
symmetry will produce from P, a very large axisymmetric toroidal field T,
along with some unwanted fields produced from R. It will be shown that by
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stopping the fluid motion after the shear has been completed, these unwanted
fields can be made to decay to a much smaller energy than that of T, , either
because they have shorter free decay times or because they were not produced in
such large amounts as T, . What remains is a still large and almost pure axisym-
metrice toroidal field T;. A nonaxisymmetric flow applied for a short time will
transfer some of the energy of this Ty back into Py . If the fluid motion is stopped
again for a time P; will decay more slowly than any other fields present, and
eventually the field will be «(P; + R’) where the energy of R’ is no greater than
that of the original stray field R and the constant « can be made arbitrarily large
by using a sufficiently rapid and protracted shear flow at the stage of the motion
where T, is produced from P, . If all these assertions can be proved, then it ix
clear that repetition of the motion described above will mdefinitely maintain or
amplify the external dipole field, since P; is a pure dipole field in the vacuum out-
side the fluid.

When the argument is presented in detail it will be clear that the axisymmetric
toroidal field T, need not be regarded ax contamination; the argument will
work even if the second rigid decay time is =0 short that a large T, ix always
present throughout the whole motion, as long as this second decay time s long
enough to remove all the stray fields except T; and P; .

The particular motion used in this dynamo is clearly indefensible ax o reua-
sonable imitation of the actual motion in the earth’s core. However, the methods
used to prove that this motion does maintain B are of sufficient generality that
the author believes they can be applied to any fluid motion, and he expects to
return to this problem in a future publication. The simple dynamo presented
here will be useful primarily because of the clarity with which it reprexents at
least one physical mechanism for maintaining an external magnetic field by
means of fluid motions.

4. THE REPRESENTATION OF SOLENOIDAL FIELDS

Previous authors (3, 9) have represented solenoidal fields as infimte series of
products of radial function and vector spherical harmonies ¥ x r},” and
v x Vv x r¥,”, where V',"” is a sealar spherieal harmonic. Elsasser (3) has already
observed that every vector field of the form —¥V x ¥ x rp — ¥ x rg, where
p and ¢ are any scalars, is solenoidal. In this section, the converse will be proved.
It will be shown that if v-B = 01in &, then for every choice of origin there exist
unique scalars p and ¢ such that B = —V x (V x rp) — V¥ x rq while p and ¢
average to zero on every spherical surface concentric with the origin.

Choose a fixed origin in & and let r denote the position vector in & while 7 is
the unit vector in the direction of r. Let A denote the operator r x ¥. Then
—1A is the usual quantum mechanical angular momentum operator. The follow-
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ing properties of A follow easily from its representation in Cartesian coordinates:

v =1 a +— (4a)

AN = AA; AV = VQA; VA* = A'V (4b)
VA=AV=rA=A(VxXA)=(VxA)A=V(V xA) 40
4c

VXV XA=—AV. (4d)

If r, 8, ¢ are the radius, polar angle, and azimuthal angle in a system of spherical
polar coordinates whose origin is that already chosen, and if 7, 6, (/f) denote unit
vectors in the local directions of increase of r, 8, and ¢, then

Az—és;ot%-{—&)(%; (5a)
VxA=k%A2—é%%%r—&)$%%%r; (5b)
A2=s"ﬁ1{79%sm2 :0+SII11“03(2:°’ (50)

silmic%m BA® —Asmﬁt% (5d)

V-A= le(%r?fl, + T—S}?’(;—g sin 049 + ¢) (5e)
AA=1V xA=§:l—0%sin0A¢—§i—068A;;; (5f)

AV x A= ——AzA +7°6r (mao n 64 mtm%“’)' (5g)

here A = A7 + Asd + A¢<{> is an arbitrary vector field. Let Y;” be a normalized
spherical harmonic,

1/2 1/2
v ) - (- (P5) (4 +m;,) Pl(cos 6)¢™,  (6a)

where P;" is an associated Legendre function,

(1 _ x2)m/2 dl+m . L.
r — > <
S p (zx nif =0, |lm|l L (6b)

=0 if I <0 or m< —L

P™2) =
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Then, as is well known from the theory of Laplace’s equation,
A\erl"l — "‘Z(Z + ]))vl'/:. (‘—)

If S, denotes the spherical surface of radius r concentric with the origin, and it 4
ix any vector field defined on S, , f any scalar field defined on N, , then

[ aapas=- [ ia-aas (%)

The representation of the arbitrary solenoidal field B which is to be obtained
in the present section can now be written

B=V x Ap + Aq. (4

If such a representation is possible for a given field B, E¢s. (4¢) and (5b) <how
that the sealars p and ¢ satisfy, respectively,

A*p = r-B; (10a)

A¢g=A-B=r1V x B (10b)
To find these sealars, it will be necessary to invert the operator A%, that i, to
find f when g is known and f satisfies

Af =g (1

Since A’ is independent of » there is no loss of generality in assuming f and ¢
to be defined on S, , the surface of the unit sphere concentric with the origin. An
arbitrary point on this surface will be denoted by w. It 13 a vector of length 1 and
is determined by 6 and ¢. Elements of area on S; will be denoted by d'w.

Equation (8) shows that if Eq. (11) is to have a solution f then ¢ must satisfy

f gd'w = 0.
8r

It 30, is the Hilbert space of square integrable functions on Sy, with inner
product.

(91, 92) =f g1*g~z dzw,

the asterisk denoting complex conjugation, then the functions Y,” of Eq. (ta)
form a complete orthonormal set in 3¢; . The set G; of functions in 3¢; orthogonal
to ¥ is a closed linear subspace of 3¢; , and, as has just been remarked, u neces-
sary condition for the solubility of Eq. (11) is that ¢ lie in this subspace G; . Then,
always assuming that ¢ is square integrable on Sy, it can be written in the form

g8, 0) = 2 2 ¢."V/"(6, ¢), (12)

i

o0 4

1 m=—1
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the series being convergent in the mean square. By Eq. (7), there is a unique f
in G; satisfying Kq. (11), and this f is

56,9) = ;m_Z_l R (13)
a series which is also convergent in the mean square. To be quite precise, an
operator A~* can be defined on the linear space G;: if g is given by Eq. (12), then
A7% is defined to be the f of Eq. (13). This operator A~ is linear, and if g is
sufficiently smooth, A’A™%g = g and A™°A%g = ¢.

Although the above argument shows how Eq. (11) can be solved in principle,
it is a somewhat clumsy way of investigating the smoothness of f. Fortunately,
the generalized Green’s function for Eq. (11) can easily be determined [see, for
example, Courant and Hilbert (18), pp. 327-328], and gives the following ex-
plicit formula for f in terms of g:

1 ! r ’
fo) = Erfs i) (1 — 0-o) o (14)
If w is fixed, then
f Inf (1l — 0-0)d = A
81

where k = [(In2)’ — 21n2 + 2]'% = 1.04603 - - - . An application of Schwarz’s
inequality to Eq. (14) then gives

1 ne e |
g 1< x| 2 [ o P | 15)
T Js;
In particular, if ¢ is bounded on S;, then
| f(w) | < «xsup {]g(e') |1’ on Si}. (16)

Suppose now that g(r, 8, ¢) is defined in all of space & and that on each spherical
surface S, concentric with the origin g averages to zero. Then, for each fixed r, g
regarded as a function of 6 and ¢ is a member of G;, and consequently a func-
tion f(r, 6, ¢) can be found satisfying Eq. (11) and given explicitly in terms of ¢
by Eq. (14). This function f(r, 8, ¢) is defined for every r and hence in all of
space; it averages to zero on every S,. Equation (14) immediately implies that
if g is continuous (continuously differentiable) inside any S, then except possibly
at the single point r = 0 the same is true of f. The exceptional point » = 0 must
be examined separately and in some detail, since the smoothness of the solutions
of Eq. (11) is critical in later arguments.

First, if g is continuous at » = 0, since it averages to zero on each S, , it must
actually vanish at » = 0. Then inequality (16) implies that lim,.o f(r, 6, ¢) = 0,
while Eq. (14) gives f(0, 8, ¢) = 0. Thus f is continuous at r = 0.
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Second, if when expressed in rectangular coordinates x, y, z, g is differentiable
at 7 = 0, then ¢ = ax + By + vz + R(r, @) where 1 'h(r, ) approaches zero
uniformly in @ as r approaches zero. Then f = A = —Vylar + By + vz) +
A%h, and r 'A*h = A7 'h approaches zero uniformly in @ as r approaches zero,
again in consequence of inequality (16). Thus f is differentiable at » = 0.

Finally, suppose ¢ is continuously differentiable at » = 0. Differentiation of
Eq. (14) gives

of f ey |~ oo
\111055—— Iw(. 2(0\00>111(51n051n0>

% fd"ag n (1 — )
af 1

9 ,ag
- In (1 —
or  4r sld or n ( @ w)’

where g’ means g(r, ', ¢'). From these facts there must be » constant M such
that for all sufﬁ(‘iently small »

4
‘ }f +\11105—é_M(sup]gl—i—suing}).
Since this inequality is true at all points in all coordinate systems with the same
origin, o can be fixed on S; and a coordinate system chosen in which this fixed
o has polar angle 8 = x/2, Therefore, at the given o, which is un arbitrary point
on S,

| Vf| < M(sup g | + sup [ Vg |). (17

If ¢ is continuously differentiable at r = 0, ¢ = ax + By + vz + h(r, ), where
rh(r, ®) and VA(r, ) approach zero umformly in @ as r approaches zero. Then
f=AT7g = —lg(ar + By + v2) + A%k and by inequality (16) r "A™"h ap-
proaches zero uniformly in o as r approaches zero, while by nequality (17),
VA °h does likewise. Therefore f is continuously differentiable at r = 0 if ¢ ix so.

The method just developed for solving Eq. (11) can now be applied to l5gs.
(10a) and (10b). Given an arbitrary solenoidal field B, unique scalars p and ¢
can always be found to satisfy Eqs. (10a) and (10b) and average to zero on every
S, . Furthermore, inside any S,, p will be at least as smooth as r-B and ¢ at
least s smooth as r-V x B. There remains the question whether B is given in
terms of p and ¢ by Eq. (9). The following theorem settles this guestion:

Theorem 1: If a vector field A is defined on every S, in some range 7, < r < ry
and in that range 4, = 0 while 45(r, 6, ¢) and Ae(r, 6, ¢) are bounded for each
fixed r and are continuously differentiable except possibly at 8 = 0 and § =
and if further A-4 = v-4 = 0, then 4 =

The proof of this theorem is straightforward. Let £ = —In {ese 8 4 eot 8) =0
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that the mapping (6, ¢) — (£, ¢) is the Mercator projection of the surface of the
sphere 8; onto a plane. Then sin 8(3/38) = 0/9¢, so since 4, = 0, V-4 = 0 is
equivalent to d(sin 84,)/98 + d(sin 04,)/3¢ = 0, while A-4 = 0 is equivalent
to d(sin 0A4,)/98 — d(sin 045)/9¢ = 0. In the plane of the complex variable
z = § + i¢ these are the Cauchy-Riemann equations for the function f(z) =
sin (A4 + 744), which must therefore be an entire function of z. Since f is
bounded, by the Liouville theorem it is constant, and since as ¢ — + =, f — 0,
that constant must be zero. Hence 4, = 44 = 0.

Applying theorem 1 to the vector field A = B — V x Ap — Ag, if the scalars
p and q are defined by Eqs. (10a) and (10b), Eq. (9) follows immediately. Follow-
ing Elsasser (3) we call a field T toroidal if it has the foorm T = Aq and a field
P poloidal if it has the form P = V x Ap. The theory of A~ shows that if ¢
and p are required to average to zero on every S, they are uniquely determined
by their fields T and P. Theorem 1 and Eq. (10b) show that a field T is toroidal
if and only if V-T = 7-T = 0, while theorem 1 and Eq. (10a) show that a field P
is poloidal if and only if V- P = AP = 0. The representation (9) can be sum-
marized by saying that every solenoidal field is uniquely expressible as the sum
of a poloidal and a toroidal field.

5. THE SPACE ® OF REALIZABLE MAGNETIC FIELDS

(a) Frump MorioNs as LiNngar OPERATORS

Suppose that the Lagrangian description of a certain fluid motion is given:
that is, the position y(x, #) at time ¢ of the fluid element which was at position x
at time zero is given for all x in V and all ¢ in some finite interval 0 < ¢ < {,.
If the resistivity p of the fluid is zero and the initial magnetic field B(x, 0) in the
fluid is given, the final field B(y, ;) produced by the fluid motion is completely
determined by the function y(x, &) and is independent of y(x, ¢) for 0 < ¢ < f
(19). If p differs from zero, B(y, t) depends on the whole fluid motion. A useful
way of visualizing this situation is as follows: let © denote the space of all con-
tinuously differentiable volume-preserving transformations y(x) of the region V
onto itself [the fluid point x is moved to the point y(x)]. Then the fluid motion
y(x,t),0 < ¢ < 1y, is a continuous path in O whose endpoints are the transfor-
mations y(x, 0) = x and y(x, &). In a fluid of zero resistivity p the effect of such
a motion on magnetic fields depends only on the endpoints of the path in D; if
p is positive, that effect depends on the whole path.

If B(x, 0) is an initial magnetic field, the final magnetic field B(y, ;) produced
from it by the fluid motion y(x, t), 0 < t < {, is obtained by solving the dynamo
equations (1) for B(y, t) using

u(y, ) = %0 (18)
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as the velocity in those equations. The spatial differential operators in the dynamo
equations refer to y, the instantaneous position of a fluid element, rather than to
x, its initial position. Since the final field B(y, ) depends only on the initial
field B(x, 0), the resistivity p of the fluid, and the motion y(x, ), 0 < ¢t < 4.
that fluid motion can be regarded as an operator M, which transforms the
initial field into the final one. This operator is defined by the equation

M,B(0) = B(ly). (1)

Sinee the dvhamo equations are linear in B when the motion y(x, 1), 0 < ¢ < 4,
is given a priori, the operator 9%, corresponding to that motion is linear. Regard-
ing the motion as a path in ©, 9, depends only on the endpoints while W,
depends on the whole path.

Closer attention must now he given to the space on which 917, operates. This
space will be denoted by & and will consist of all magnetice fields which are allow-
able initial fields for the dynamo equations (1). A field B(x) will be in the space
if it satisfies all the following conditions:

B is bounded in &; (20:0)
B is continuous in & and eontinuously differentiable in
& — 1 and 1" separately; (20
vYxB=0 ing—1; (20¢)
Vv-B=0 1mé. (20d)

If B, and B, are any two such fields in &, an inner product
(By, By) = f B*-B. (21
&

can be defined since the integral is finite. The asterisk denotes complex conjuga-
tion, it being expedient to admit complex-valued B’s. In terms of this inner
product, the usual norm may be defined:

|B| = (B, B)"™. (22)

For obvious reasons, || B ||* will be called the “energy” of the field B, even though
it differs from the usual energy by a factor 2u, . This norm has the expected
properties of a length:

1B| >0 and [|B|| =0 ifandonlyif B = 0; (23
laB| = |a|| B forany complex scalar «; (23b)

|By+ Bl < |IB ] + || B.|

(the triangle inequality). (23¢)
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Finally, the inner product and norm are related by the usual Schwarz inequality
(Ref. 18, p. 2):

| (B, Ba) | < || By || Be|. (23d)

By means of the inner product (21) the space & can be completed to a Hilbert
space, a fact which will be used only to invoke much of the elementary terminol-
ogy of Hilbert space theory (20). In particular, throughout the present paper
two fields B(x) and By(x) will be called orthogonal when (B;, By) = 0, rather
than when B;(x) - By(x) = 0 at every point x of space.

(8) Tue TurEE SpackEs UsED IN THE PRESENT PAPER

To avoid confusion it is necessary to list the three different spaces of functions
which will be used in what follows, and to make clear the relations among them.
First there is the space G, defined in Section 4, consisting of all square-integrable
scalar functions g(w) defined and averaging to zero on the surface of the unit
sphere S; . Second there is the space G of all scalar functions ¢g(r) defined and
square integrable in the interior V of S; and averaging to zero on every S, for
which 0 < » < 1. Finally there is the space ® of vector functions defined in
Section 5a. In each of these spaces an inner product is defined:

(91 s ,02)1 = fs gl*gg d2w if g1 and g2 are in G
1
(91,02 = f g*g. d’r if gy and g, are in G;
v

(B, By) = f B*-B,dr it B and B;arein G.
&

The norms || ¢ || (g, 9)"'° can be defined in G, and G. In terms of these inner

products and norms, G; and G are Hilbert spaces while & can be completed to a

Hilbert space. Equations (23) apply to all three spaces.

Two elementary concepts from quantum mechanics or Hilbert space theory
will be essential in what follows, namely the bound of a linear operator and
decompositions of a space into orthogonal subspaces by means of the orthogonal
projections onto those spaces. These ideas apply to any Hilbert space, and in
particular to G, G, and ®&. Since only the definitions are required, these are
stated in a short space below for readers unacquainted with them.

(¢) Bounps oF LiNEAR OPERATORS

Let 3¢ be any linear space with complex scalars on which a norm || A | is
defined having the three properties (23a), (23b), (23c). Let 9 be any linear
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operator on 3C. The “bound” of this operator is conventionally defined ax the
smallest positive number m such that for every veector & in 3.

PR <m| A

The number m is usually denoted by || 91 {; clearly it is the least upper bound
of the values attained by || 9nh || for any vector & such that i & ] = 1. If | an !
is finite, M is called a ‘“‘bounded” linear operator.

As an immediate and well-known consequence of this definition, lgs. (23ua),
(23b), (23¢) are true if the vectors in those equations are replaced by operators.
Ifurthermore, for every A in 3

comh [ < Lo | R (24

Finally, if 9 and 9T are both linear operators on 3¢ and 9N ix their operator
product, the operator obtained by applying first 97 and then 97, it is another
well-known and easily derived consequence of the definition of the bound of an
operator that

may || <

| o |l (25)

There is a useful relation between the operators on the spaces G, and G defined
in Section 5b. If 9N is a bounded linear operator on G; it may be regarded as un
operator on G in the following sense: if g(r, 8, ¢) is any funetion in G, then for
almost every fixed r it is in G; as a function of 8 and ¢. Then for every such fixed
r the function f(r, 8, ) = Mg(r, 6, ¢) is well defined and in G, as a function
of 8 and ¢. Then

1 1
P = f = / r drf d'w | Mg(r, 0) |* = / rdr | omg |
v 0 5, 0

.1 1
< j e o] glr, @) 11 = o ngf r"‘drf dwlgl
0 0 5,
| mf Lo
v
Thus |71 = |og | < 9|1l ¢ll.- Therefore f is in G and 9 is & bounded

linear operator on G whose hound || 9 || is no greater than its bound || 9 ; on
G . As o matter of fact, it is not difficult to construct examples to show thut

o] = 1 o |y . (26)
(D) ORTHOGONAL SUBSPACES AND ORTHOGONAL PROJECTION OPERATORS

If 3C is any complex linear space on which is defined a positive-definite com-
plex-valued inner product (h;, he) which is linear in Ay and satisties (hy, hy) =
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(ha , hy)*, then two vectors h; and h, in 3¢ are called orthogonal if their inner
product vanishes. Two linear subspaces 3¢, and 3¢, of 3¢ are called orthogonal if
any vector from the first is orthogonal to every vector in the second. If 3¢,
3, , --- is a sequence of mutually orthogonal subspaces of 3C such that every
vector h in 3 can be written in the form h = hy + hy + - - where &, is in 3¢, ,
the series being convergent in the norm || & || = (h, k)", then 3¢ is called the
“direct sum” of 3, , 3y, - - -, and is written 3¢ = 3¢; @ 3¢ @ - -- . The orthog-
onality of the spaces 3¢, implies that the vectors h, are unique. The mapping
Q. of 3¢ onto 3¢, which sends the vector h into the vector h, is called the orthog-
onal projection operator of 3¢ onto 3¢, . Since clearly || A, || < | R, @, is a
bounded linear operator and || @, || < 1. Since Q.h, = h,,

[Qill = 1. (27)

The fact that every & has the form A = h; + k2 + - - can be expressed by the
equation

=+ @t - (28)
where [ is the identity operator on 3.

6. IMMEDIATE CONSEQUENCES OF THE DYNAMO EQUATIONS

Some straightforward applications of the techniques already developed will
now yield considerable information about the solutions of the dynamo equations
(1). Some of this information will be used later in the construction of a particu-
lar dynamo, and all of it illuminates the general behavior of dynamos.

(o) THE BOoUNDEDNESS OF 9,

The reason for the discussion of boundedness in Section (5¢) was that the
operators 91, corresponding to fluid motions y(x, ¢), 0 < ¢ < ¢, whose velocities
u(y, 1) are continuously differentiable functions of y which vanish on the fluid
surface S are in fact bounded linear operators on ®. The present subsection is
devoted to proving this fact.

If B(x, 0) is an initial magnetic field and B(y, ) is the field produced from it
by the fluid motion at time ¢, then there is a scalar ¢(y, ¢) defined in & — V such
that B(y, {) = V¢(y, t) there. This scalar can always be extended into V so as to
be continuously differentiable in all of &§. Of course, inside V there will be no
relation between B(y, ¢) and ¢(y, ), and V' cannot vanish everywhere in V,
since it vanishes in § — V. The argument below is for real B; the modification
required to extend it to complex B is clear. If n is the outward normal on the
fluid surface S,

d1 . f B f 4B f (aB) f ( aB)
= = = = v. )= — 22).
Gzl Bl=) Bgm=] You=), V% Lo\ 5
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Even if p = 0, n-8B/dt is continuous across S, so the last of the mtegrals above is

_fyv.<¢‘g>= _‘[Vvqb.%?: —fvv¢-v x (u x B— pV x B).

Applying the vector identity A-V x B = BV x A — V-(A x B), this laxt
integral is [sn-[Vp x (u x B — pV x B)7] where the superscript — means
that the term in parenthesis, not being continuous across S, is to be evaluated
just inside S. Since V¢ is continuous across S and u = 0 on 8, the integral is
—p [s[BT x (¥ x B)7]-n, where B" is the value of B just outside S. If p 3 0,
B" = B, und if p = 0 the whole term vanishes, so in either case

d 1 2‘-[ B .
th-'_ig_ViBl— PS[B x (Vv x B)7|-n.

In rectangular coordinates, since V-u = 0

d 1/ . f DB
i - | g2
dt2 Jy | B v Dt

where /Dt = 8/0t + u-V is the substantial derivative. Therefore

@1f|3\2=f3.(3.v)u—p]3-v x V x B
dt 2 Jy v v

The last integral on the right isf 'V x B — ] |[B™ x (V x B) |-n. Therefore
v 8

‘ilf 2_[ -(B- — ] 2 20)
(lté z,lB] N ;B(Bv)u P V|VXBI. (d'v)

This equation is valid even if p = 0. It has been derived by Bullard and Gellman
(Ref. 9, Eq. (11)), and a different proof is given above because later a generaliza-
tion of Liq. (29) will be needed which is somewhat less easy to derive by the
method of Bullard and Gellman. The above proof appears longer than that of
Bullard and Gellman because they use Poynting’s theorem without including
the justification of it when the displacement current is dropped.

Using the Einstein summation convention, B-(B-V)u = B;B;(0u;/dy;) =
VoB.B(du;/dy; + ou;/dy;). Let m(f) be the algebraically largest value that any
characteristic root of the symmetric matrix 15(8u,;/dy; + du;/0y;) ever takes
anywhere in 17 at time ¢. Then B-(B-V)u < m(?) | B [*. Therefore Eq. (29) implies

dlf 9 f 2 fv ] o
— < - v I 30
Jio FiB\ < mle) &|BI Pl x B (30)
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In Section 7d it will be shown that if V is a sphere of radius 1 and B is in ®,
Jv |V x BP> «* [, | BI". It follows that for a sphere of radius R,

2
[1vxBr> [1B] (31)
1’4 R“ &
Assuming that V is such a sphere, inequalities (30) and (31) imply
d 2 2 TP 2
ZIBIP<2m@® B[ — z I B

Recall that p = (uee) ™" and that pr; = (7°/R’ue0) is the inverse of the mean life
of the longest lived free decay mode for a rigid sphere of radius R and conduc-
tivity o. Then

| B@ |I* < | BO) ||* exp 2 ]: [m(r) — pwl dr. (32)

This inequality has been proved (subject to the verification of inequality (31)
in Section 7) only for spheres. That it is true for bounded fluids of arbitrary
shape is a consequence of a variational method for computing the slowest ex-
ponential decay rate pr; for a rigid conductor V of any shape. This method will
not be developed here, since it is a simple extension of work already published
(Ref. 11, Section VI). The result is merely to replace =°/R’ by » in inequality
(31), thus proving inequality (32) for a V of any shape.

Since B(ty) is by definition 9,B(0), Eq. (32) can be restated in the language of
bounded operators as

9%, || < exp fo m(z) — pn] dr. (33)

Wthout inequality (31), inequality (30) implies inequality (33) directly if
is omitted from the latter. The presence of »; in inequality (33) is interesting in
that it gives a necessary condition for a dynamo to be self-sustaining. The rate
L4(0u,/0y; + du;/dy.) of local streteching of the fluid (and the magnetic lines of
force) in a self-sustaining dynamo cannot be always and everywhere less than
the slowest rigid decay rate pr; . That some such result would be true was sug-
gested by Bullard and Gellman (Ref. 9, p. 217) on the basis of a dimensional
argument.

(8) THE EFFECcTS OF A SUPERPOSED RIGID RoTATION

It might appear that caution was necessary in applying the foregoing necessary
condition for field maintenance to the earth’s core, since the boundary condition
u = 0 on S is met only in a frame of reference rotating rigidly with the earth’s
mantle. In fact, no such caution is necessary. Let G(f) be a proper 3 X 3 orthog-
onal matrix whose entries ®;;(f) depend only on time. Then ®(¢) describes a
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rigid rotation with the angular velocity o({) whose instantaneous rectangular
components are w; = —L9e(d/d)Ri(t), € being the alternating tensor in
three dimensions. FFor an observer whose reference frame at time ¢ is obtained
from some fixed reference frame via the rotation G(¢), the rectangular coordinates
yi of the position vector whose coordinates are y, in the fixed frame can be com-
puted as g’ = ®7'(H)y. A fluid velocity u(y, ?) in the fixed frame is, in the rotating
frame,

Wy, ) =& uy ) — o xyl
R '@y, ) — o x By

It

1

= R U@y, ) — (R 'w) xy.

The magnetic field B(y, {) in the fixed frame of reference becomes in the rotating
frame B'(y’, ) = G~! B(®y’, 1), if all the terms in the Lorentz transformation
of the electromagnetic field which are of the order u: ¢ or smaller are neglected.
It is now a matter simply of substitution to verify that if By, t) and u(y, ¢
satisfy the dynamo equations (1) when spatial derivatives refer to y, then
B'(y', t) and u'(y’, t) satisfy those equations when spatial derivatives refer to
y'. Therefore the theory of the magnetic dynamo equations (1) is invariant to
arbitrary time-dependent rigid rotations of the frame of reference, and if on any
fluid motion y(x, ¢) an arbitrary time-dependent rigid rotation is superposed, its
effect is simply to make the magnetic field due to the original velocity rotate in
the same way.

The corresponding result for the electric field is false, and the effect on E of
a superposed rigid rotation has been worked out elsewhere (27).'

(¢) Tur Equivanexce oF Higa VELocrTy aNxp Low ResmsTiviTy

It will oceasionally be useful in what follows to shorten the time scale for a
fluid motion y(x, ¢}, 0 < t < {, by some large factor «, that is, to replace that
motion by the motion y(x, «), 0 < ¢ < x4y . The introduction of an extra
parameter to describe such scaling can be avoided by observing that the effect
of the motion y(x, xt), 0 < ¢t < « 'ty on an initial magnetic field B(0) in a fluid of
resistivity p is identical with the effect of the original motion y(x, 1), 0 <t < ¢y,
on B(0) in a fluid of resistivity x 'p. The operator 91, for the accelerated motion
is identical with the operator M,-1, for the original motion. This fact can be
seen immediately from the first of the dynamo equations (1) and the definition
u(y, ) = dy(x, t)/dt; it amounts to writing the dynamo equations in dimension-
less form.

1 A correction is necessary in that paper. The constant (' of its q. (16) cannot be deter-
mined, as there asserted, simply from the demand that the electrie potential vanish i

infinity. It must be determined from the total charge on the body, like the constant (" in
Section 1b of the present paper.
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{p) THE GENERALITY OF JERKY MOTIONS

The motion proposed in Section 3, bounded and differentiable though it is,
looks quite unphysical, since it consists of very rapid motions followed by
periods of rest. In this subsection it will be shown that such a motion is the
first step in an approximation scheme by which the magnetic effect of any mo-
tion whatever can be computed.

Suppose a fluid motion y(x, £), 0 < t < ¢, is given. Let y(x, £),0 <t < 4,
be any other motion with the property that | y/ — y: |,

’

3"y 3"y

_ asyi/ 3 a3yi
0x;0x,  0x;0Tk

axjaxkaxl ax,-axkax,

dyi _ 3y
allj 6:1:]-

, and

)

are all less than efor all xin Vand all £in 0 < ¢ < 4. If y(x, ¢) is regarded as
a path in the space D of fluid displacements, y.(x, {) is another nearby path, and
the points on the two paths at a given time ¢ are always close, even though the
velocities of those points may be widely different. The fluid velocities u(y, t) =
dy(x, t)/0t and u.(y, t) = dy.(x, t)/0t can be quite different. Then as ¢ — 0, the
operator 9,° giving the effect of the motion y.’(x, t), 0 < t < #, on magnetic
fields approaches the operator 9, which gives the effect of y on those fields.

No attempt will be made to prove this result formally, since its value in the
present paper is only the heuristic one of indicating that the dynamo of Section
3 is not as special as it seems. The essential idea of the proof is suggested by
Lundquist’s (19) integral for the resistance-free fluid.

If the initial positions x = y(x, 0) of the fluid points are used as a system of
curvilinear coordinates at time ¢, the rectangular Cartesian coordinates y° at
that time are given by the Lagrangian description of the fluid motion: y* =
y'(x, ). In Cartesian coordinates, Lundquist’s integral for an incompressible
resistance-free fluid is

i Y’ i
By, t) = %B’(x, 0).

This equation says that in the system of curvilinear coordinates x the contra-
variant components of B are constants of the motion. This suggests that the
dynamo equation be written in the curvilinear coordinates x even when p is
positive. .

Denote by B'(y, t) the Cartesian components of B at time ¢ and by b'(x, f)
the contravariant components of B at time ¢ in the curvilinear coordinates x.
Then

i oy ;
By, t) = ﬁ-j bi(x, £).
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It is a matter of ordinary tensor analysis (22) to show that in terms of the curvi-
linear coordinates x the first of the dynamo equations (1) becomes

abi(x, 0 kg i o

- = p‘ l) ik (_-)'1’)
EY, i Jik s

where ¢” is the contravariant metric tensor for the coordinates x while ', ;

denotes a covariant derivative of b". The condition ¥-B = 0 becomes, of course,

[)I.L' = 0

y (i}
The right side of Eq. (31) involves ¢", the Christoffel symbols ’IJZH of the

second kind, and their derivatives with respect to x. Thus it involves the first,
second and third derivatives of y(x, {) with respect to x. It does not involve any
derivatives of y(x, {) with respect to ¢. If ¥'(x, ¢) ix any other motion which, with
all possible x derivatives up to and including those of order three, is always close
to the motion y, then the operators on the right side of Eq. (34) will be practically
the same for the two motions. Since |y’ — y | ix xmall, the boundary conditions
on b' will be almost the same for the two motions, and in fact will be identical
it the velocities of both motions vanish on the surface of the fluid. Therefore, the
magnetic fields b'(x, t) and b''(x, t) produced by the two motions from the same
initial field #'(x, 0) will be practically identical. This is the (rather feeble) gen-
eralization of Lundquist’s integral to fluids of finite resistivity p.

Now given the motion y(x, t), 0 < ¢ < ty, define the motion y'(x, ¢) as follows:
divide the interval 0 < ¢t < { by n points 4 < & < -+ < t, . Let x be some
fixed number very much larger than 1. Then y'(x, t) = y(x, ) it 0 < 1 <« ' :
yix, ) = yix, ) if K <t <y v =yl b+t — )ity <0<+
K — 1)y (x, ) = y(x, b)) if ty + & (e — 1) < £ < by ete. Then y' approxi-
mates y hy a series of short, rapid jerks interspersed with long periods of rest.
I'rom the form of Eq. (34) it now follows in the manner remarked above that if
the number n of points of subdivision of the interval 0 < ¢ < #, approaches in-
finity in such a way that the maximum distance | ¢, —
then the magnetic field produced by y’ from an initial field '(x, 0) becomes very
close to that produced by y from the same initial field.

To make the above proof complete, it would be necessary to show that the
solution b of Eq(. (34) depends continuously on the boundary conditions and on
the coefficients in that equation. No such completeness will be attempted here.

Physically speaking, what has been proved is that smooth motions of the fluid
involve no new magnetic effects beyond a distortion of the magnetic lines of
force by the fluid as if it were a perfect conductor and the decay of the field ax
if the fluid were rigid.

approaches zero,
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{8) THE CONTINUITY OF 9, AT p = 0

A rather touchy point was skirted in the preceding subsection. It was shown
that the effect of the motion ¥'(x, ¢) on a particular initial field b*(x, 0) approached
that of the motion y as the motion y’ approached y in the sense of that subsection.
It was not shown, and the author is not sure it is true, that the rate of approach
is independent of b'(x, 0). This point will not be discussed further.

A similar difficulty, which must be examined in some detail, arises in connec-
tion with the effects of a given fluid motion y(x, ), 0 < ¢ < t, in a succession
of fluids whose resistivities p are approaching zero. As p approaches zero, does
the magnetic effect of the motion y approach its effect when p = 0, and, if so,
is the rate of approach independent of the initial magnetic field?

Let B,(y, t) be the magnetic field produced by the given fluid motion from the
initial field B(x, 0) when the fluid has resistivity p. As usual, suppose that
the fluid velomty vanishes on the surface S. Then (d/df)4 ;| By|* and
(d/dt)Ys [¢| B, |* are given by Eq. (29) while (d/dt) [ Bo-B, can be computed
in the same way as was that equation. Combining these three time derivatives
in the obvious fashion gives the following equation for the energy of the differ-
ence field 8,(y, ©) = B,(y,t) — Bo(y, 1):

dt2f|g|

= L@'(G'V)u—pfv(v x 8)-(v pr)+pfs[(Bo" — By") x (Vv x B)]'n

where the superscripts have their usual meaning. If besides the velocity u all its
first derivatives du;/dy; vanish at the surface of the fluid, and if initially By =
B,t (as must be the case if B(x, 0) is in ®) then By = = B," at all times. The
identity (Vv x 8)-(V xB,) = 1|V x|+ 1|V xB,["—1 4|V x By [*
allows the above equation to take the form

AL

~[o@wutio[ |V xBl = [ (7 x6I+]V *B.

(35)

If m(f) is defined, as in subsection 6a, to be the maximum strain rate in the fluid
at time ¢, then Eq. (35) implies

CLier<omo [ler+s[1v xB,
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an inequality which can be integrated immediately, using the initial condition

f‘\ 8(0) | = 0, to yield

t
[ |8y, O " < o™ f e ( / |V x B, |) dr, (36

where /(1) = j m(7) dr. If 91, is the operator on @& corresponding to the mo-
0

tion y(x, 1), 0 <t <, in a fluid of resistivity p, then mequality (36) shows that
for any fixed B(0)

lim || 917,B(0) — MB(0) || = 0. (37)
p—0

This is not enough to warrant the stronger conclusion that

lim || 9, — N, || = 0,

o0

and the author doubts that this stronger conclusion is true, ulthough he has been
unable either to prove it or to produce a counter-example.

(In the language of Hilbert space it has been shown that 2, is a continuous
function of p at p = 0 in the weak operator topology but nothing has been
proved about its continuity in the topology of the operator norms; the author
conjectures that it is not continuous in the latter topology.)

Ineidentally, the foregoing argument can easily be generalized to show that

lim || 97, B(0) — 9, BO) || = 0

PP
for any ps 2 0, and if py > 0 this conclusion remains true for velocities u whose
derivatives du,/dy; do not vanish at the surface of the fluid, ax long as the
velocities themselves vanish there.

7. THI: FREE DECAY OF CURRENTS IN A RIGID SPHERE

The modes of free decay of the electric currents in a rigid sphere of positive
resistivity p when the displacement current is neglected have been obtained by
Elsasser (3, 10}, who used the vector spherical harmonies first applied to the
problem of the electromagnetic behavior of & conducting sphere by Dehyve (23)
and Mie (24). In problems where they apply, these vector spherical harmonies
are usually introduced as vector fields which can be shown to satisfy the vector
Helmbholtz equation (25, 8, 26). In order to make their origin somewhat clearer,
to establish a notation, and to illustrate on a simple problem techniques luter
used in niore complicated problems, the first two subsectious below are devoted
to a discussion de novo of freely decaying currents in a rigid sphere, even though
thix problem may now be said to have been exhaustively treated in the litera-



396 BACKUS

ture. The present section contains no new results, and is included simply to
collect the many widely scattered results about the problem of free decay which
will be useful in what follows.

(o) TaE NorMaL MobEs oF FrREE Drcay

As usual, the volume V of fluid will be taken to have radius 1 and in the whole
of the present section its resistivity p will also be taken to be 1. Since the sphere
is rigid, the dynamo equations (1) with u = 0 completely describe the magnetic
field B(x, t). Let p(x, t) and g(x, t) be the scalars of Eq. (9) for this magnetic
field: B = V x Ap -+ Ag. Then, inconsequenceof Eq. (4d),V x B = —AV’p +

V xAgand V x V x B = —V x AVp — AV’. The dynamo equation (1a)
becomes
dq ap 2 .
\% -V Al— -V = . :
A (at q) x <6t p) 0 inV (38)

Since p and g average to zero on every S, for which 0 < r < 1, the same is
true of the two scalar functions dg/dt — V’q and ap/dt — V’p. Equation (38)
may be regarded as giving a representation of the solenoidal vector @ in the form
(9). The uniqueness of the scalars in equation (9) then establishes that, in .V,
dg/dt = V'q and dp/dt = V'p. A similar argument applied to Eq. (1b) estab-
lishes that, in & — V, ¢ = 0 and V’p = 0. The boundary conditions which B
must satisfy at S; and at infinity finally reduce the dynamo equations (1) for a
rigid sphere to the two following sets of scalar equations: For the poloidal scalar

b,

P Vs (392)

Vp=0 ing —V; (39b)

p and Vp are continuous in §; (39¢)

*p is bounded in &; (39d)

p averages to zero on every S, . (39e)

For the toroidal scalar g,

g? vl¢ inV; (40a)

g=0ing —V; (40b)

¢ is continuous in &; (40c)

g averages to zero on every S, . (40d)

The two problems (39) and (40) are both heat flows problems in a sphere of
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radius 1, although the boundary condition in problem (39) is not usual. Equa-
tions (39) have a system of solutions pim.(r, 6, #)e "' and Eqgs. (40) have a
system quma(r, 9, @)e ', where

: vz
pzmnz( 2 ) Jlewtan)  ymg o) i 0<r <1,

l(l + 1) al—l,njl(al—l,n) - 4N
2 \"* 1 . '
- " 1< x;
(l(l -+ 1)) TR Y/ e ¢) il Sr< o
and
2 v jl(alnr) m .
mn T T }7 0, f 0 S S 1
e (l(l + 1)) Jrrlonn) 4, ¢) i ’ 42

= () if 1 <r< =,

Here 7,(r) is the [th spherical Bessel function (7/2r) P T 1p1s(r), aun is its nth
positive zero, and Y,” is the normalized spherical harmonic (6a). The decay
constants are

Aw = a1 (43a)
and

B = o (43h)
The indices take the following values: [ = 1,2, 3, ---;m = =, --- [ [;n =
1,2,3,---.

The two sets of functions pi.. and ¢, are well-known to be each complete
in the space G of square-integrable scalar functions defined inside the unit
sphere. Consequently they can be used to solve initial value problems for the
two heat equations, (39) and (40). Because of the representation of an arbitrary
solenoidal B in terms of scalars p and ¢ this amounts to solving the initial value
problem for the dynamo equation (1) when u = 0.

The vector fields

le"(ra 0; ¢) =V x Aplmng (44“)
Tlmn(r; 07 ¢) = Aqlmn (4:-“))

are, except for normalization factors, Elsasser’s (3) poloidal and toroidal funda-
mental decay modes, or normal modes. The field P,,, satisfies V- Py,,, = 0 and
these conditions:

VxV x len = )\lnlen in Iv,
V x Py, =0 ing — 17
P,,.. and V(r-P;..) are continuous in &;

r'**P,,.. is bounded in &. (43)
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The field T}, satisfies V-7, = 0 and these conditions:
V XV %X T = pplima. inV;
Tiwn =0 In&§ — V;
Timn 18 continuous in &. (46)

(8) Tut Poroipal aAND ToroipaL NorMmaL Mobes as A CoMPLETE ORTHO-
NORMAL SET IN ®&

Suppose that Q is any continuous vector field which satisfies the equations
VXV xQ=yQ0 inV;
vVxQ=0 in&-—-7";
vV-Q=0 in§, 47)

where » is some real number. Let B be any vector field in &, the space of ad-
missible magnetic fields defined in Section 5a. Then by introducing a scalar
potential ¢ for B in the region & — V and extending ¢ into V as in the proof of
Eq. (29), it is a matter of successive integrations by parts to show that

Vfgo*.B - j (V x 0%-(V x B). 48)

The vector fields Pims and Tim, are themselves in & and Eqgs. (8) and (4c) imply
that any poloidal and any toroidal field are orthogonal in the sense of ®’s inner
product (21), while Eq. (48) implies that :

(Tlmn y Tl'm’n’) = 6ll'6mm'6nn' = (len 3 Pl’m’n’)

on account of the normalization factors chosen in Eqs. (41) and (42). Therefore
the vector fields Pjn, and Ti.. are an orthonormal set in ®. From Eq. (48) it
follows that if B is any member of & which is orthogonal to all the fields Pipn
and Tm. , then the scalars p and ¢ in B’s representation (9) are, as members of
G (Section 5b) orthogonal, respectively, to all the p;m. and the gim. . Since both
these sets of scalars are complete orthogonal sets in G, p, and ¢ vanish, so B
vanishes. Therefore the vector fields Py, and T, form a complete orthonormal
set in ®.

(¢) PROJECTIONS ONTO THE SPACES OF I'REE DEcAY

Let the exponential decay rates A;, and p;, of the normal modes P, and

Tim» be relabelled vy , in order of increasing size: »; < vy < »3 < ---. Then the
decay rate »; is A\g = 7°, and only the three poloidal modes Pim , m = —1,0, 1,
decay at this rate. The decay rate v is gy = un = an’ = 20.19 ---; to this
decay rate belong the three toroidal modes Ty, m = —1, 0, 1, and the five

poloidal modes Py, m = —2, —1, 0, 1, 2. Table I gives the first seven decay
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TABLE I
Tue First SEveEN RaTes oF Decay 1N A Rigip SrHERE

k 1 2 3 ¥ 5 o ;
v aor® an? as? aqa? asy? aqa? gt
Approximate value of v, 9.87 20.19 33.22 39.48 48.83 59.68 66.95
Poloidal modes Py, Py P P, Py P, P
Toroidal modes — T T - Tim Tinn T
Total 3 8 12 3 16 8 20)

rates v, together with the normal modes which decay at those rates, and the
total number of such modes belonging to each ». . In every case, m = —[, --- /.
Denote by ®; the subspace of ® consisting of all linear combinations of nor-
mal modes with decay rate v, . The last row of Table I gives the dimension of
®. for b =1, --- 7. If k # }', ® and &, are orthogonal subspaces of ®. The
normal modes being complete in &, every B in & can be written in the form
B = B, + B, + - with B; in ®; . Therefore, in the sense of Section (5d),
B = B @ B @ --- and the projection operators §, onto the subspaces @, are
well defined and satisfy Eq. (28). Denote by ®&,” that part of ®, consisting of
linear combinations of poloidal free decay modes, and by ;" that part of @,
consisting of linear combinations of toroidal free decay modes. Then clearly, in
the sense of Section (5d), ® = & @ B, , 0B = B @B,  ® & ® ®' ®
-. Therefore the projection operators ®; and 7 onto the spaces & and
®," are well defined, and @, = ® + J;. Note that for some hyoas at b= 1,
"= 0 =0 that 3» = 0. The projection operator @ will be defined as ®; + &, +
, while 3 = 3, + 3, + -+ -. The poloidal part of B is ®B; its toroidal part is
3B.
The meanings of all these projection operators are quite simple. Suppose an
arbitrary field B in ® is expanded in terms of the free decay modes (44):

o

B(ry 07 ¢) Z E Z aln len(’ 6 ¢) + hlanlmu(’ 0 d))] (‘H))
=1 m=—1 n=1
I'or a particular decay rate v, let [ and n be chosen so that », = a;_1,% = A\, =
mi-1n - Then » is the decay rate of all the poloidal normal modes P, , m =
=1, -+, Land of all the toroidal normal modes T\ j o, m = —( — 1), -+,
(I ~ 1). The projection operators @, @, 3 act on B as follows:

-1
UB = Z " Prum + Z b1t T it mins (H0a)
=] m=—(1—1)
®B = Z @i Piun; (H0h)
1—1
3B = Z brotn Titomn - (50¢)

m=—(1—1)
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If the initial field B(x, 0) in a rigid conducting sphere of radius 1 and resistivity
1 has the form (49), then by time ¢ the field B(x, t} will have become

o0

|1 L)
B(T, 07 ¢; t) = Z E [alnmlene_“ﬂt + blanlmne_Mnt]- (51)
1 1

=1 m=—I n=

This equation may be written succinctly as
0
B(#) = D e *'0:B(0).
k=1

If the operator D, on the space ® is defined as that which carries the initial
field B(0) into the field B(t) that it has become after a time ¢ of free decay in
the rigid sphere, then clearly

Dy = ;; e—vthk = l; 6_1'”(6)1(: + 5):). (52)

Equation (52) gives the complete solution of the initial value problem for the
dynamo equation (1) when the velocity of the fluid is zero.

Every projection operator is equal to its own square, so @ = &, ® = &,
32 = 5, results which are clear also from Egs. (50). And since ®; and ® "
are mutually orthogonal subspaces, @ = @@ = 53 = 0if k = &/, while
@3 = 3@, = 0 for any k and &’. Therefore

00

| D:B|* = 2 || Q:B [’ ™,

k=1

and

1T == Q0B = 3 ™[ @B

<™ 3 eBl* < e B
k=s+1

From this fact, for any s,
NI - — - — @)Dl < e (53)

Inequality (53) is simply another way of stating the fact that if a field is decay-
ing freely in a rigid sphere, the energy of that field contained in modes with
decay rate faster than », has a decay rate at least as fast as v.41, a result which
can also be seen immediately by comparing Egs. (49) and (51). Similar argu-
ments establish the inequalities

@ — @ — - — @)D || < e (54a)
I3 =5 — v — 3)D || < et (54b)
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Tinally, from Eq. (52) and the fact that all the projection operators ®. , 7 ,
Q: commute with one another,

POy = D,Pp = ¢ HEp s (55:)
5D, = DI = ¢ (33h)
Ql\-ﬁ)l = thQk = e“”“Q,_. . (-)v.)()

() VARIATIONAL INEQUALITIES

Several inequlaities will be needed later which are analogous to Rayleigh'’s
(Ref. 27, p. 110) inequality for the fundamental frequency of u vibrating body.
These inequalities are as follows: let W, be the space of continuous, piecewise
continuously differentiable functions ¢ defined in the unit sphere V, vanishing
on its surface Sy, and averaging to zero on every spherical surface S, for which
0 < r < 1. Thenif ¢ is in W,,

[ | Vgl > an’ f La i (56)
vV Vv

[iagE=2[ 14t (57)

If the Cartesian components A,q of Aq are in W, , as will be true, for example,
when g is continuously differentiable, twice piecewise continuously differentiable,
and constant on S;, then

f AQQVZ(I Z (1112/ } Af[ Iz. (-)8)
v v

I'urther, let W, be the space of continuous, piecewise continuously differentiable
funetions p defined in all of &, averaging to zero on every S,, and for which
r*p is bounded. Then if p is in W, ,

[IAZIETIAL.

! (59)

Fmally, if Bisin &,
f |V x BF>al [|BF. (60)
\Z &

Inequality (60) was assumed in the proof of inequality (33).
To prove inequality (56), let v'&w, denote the space of all vector funetions
Vg for which ¢ is in W, . Introduce on ‘W, the usual inner product, (q:, ¢:) =

/ qr*q2 . Introduce on VW, the inner product (Vg , Vi) = f Vot v . It
v Vv
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is well known that the functions [I(I + 1)]"*¢ims with I > 1 constitute a complete
orthonormal basis for W, . If V¢ is any vector field in V&, which is orthogonal
to all the normalized vector fields Rmn = az,  V[I(I + 1)]1/2gl,,m then ¢ is orthog-
onal to all the [I(l + 1)]"’qim. and hence vanishes. So, therefore, does Vg. Thus
the Aum. with I > 1 constitute a complete orthonormal basis for vw,. The
equation ©(Vg) = ¢ unambiguously defines a linear transformation © from
VW, to ‘W, . Its effect on the basis vectors is O = am 1T + 1] qima , 0
0 is a bounded linear operator and || © || = a;; *. This means that for any ¢ in
W, [vlg P < anfv | Vg [}, which is inequality (56).

To prove inequality (57), let AW, be the space of vector functions Ag where
g 1s In W, , and define on AW, the inner product (Aq, Ag) = [v Ag* Ag, .
Then the vectors hym, = [ + DAL + 1)]"’¢imn , by an argument like
that of the preceding paragraph, constitute a complete orthonormal basis in
AW, . A linear transformation 0 from AW, to W, can be unambiguously defined
by the equation O(Agq) = g¢; its effect on the basis vectors is

Ohimn = (UL + DI + D] gimn),

so, since I > 1, 0 is a bounded linear operator and || © || = 2%, This is inequal-
ity (7).

If in inequality (56) the function ¢ is replaced by A where A; is any of the
three Cartesian components of A, and the index 7 is summed from 1 to 3, in-
equality (58) is the result.

To prove inequality (59), let W, be the subspace of W, consisting of all func-
tions in W, which are harmonic in & — V. Let VW ,’ be the space of all vector
fields Vp where p is in W,’. On vWw,” define the inner product (Vp;, Vpy) =
fe Vpr*- Vps . The functions a1 .[I( + D] pimn with I > 1 are well known to
be a complete orthonormal set in W, with the inner product (p: , p2) = [v pi*ps -
By an argument like that used to prove inequality (56), it follows that the
functions hum. = [I(I + 1)} *YPimn are a complete orthonormal basis in v,
A linear transformation © from VW, to W, is well-defined by the equation
o(Vp) = p, and its effect on basis vectors is

OPimn) = 11 gl + 1) pima).

Since I > 1, © is bounded and || © | = ap;. This is inequality (59) when p is
in W, If p is in ‘W, but not W,’, define pyaspin V and in& — V as that har-
monic funetion which is equal to p on Sy, the boundary of V, and for which

r2p0 is bounded. Then
2 2
[1wr =11
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and

9

[1vol = [ iwp
Vv Vv

while

f (| vp

- lvml) = f Ve - Vpol“r‘lf VDo V(p = )
&= &

:f (Vp — V[P > 0.
v

Thus

fle|2>f|Vpoz"’-
8 &

But pg is in W, and hence obeys inequality (59). Therefore so does p.

Finally, to prove inequality (60), define the space V x ® to consist of all
vector fields V. x B for which B is in ®. It was shown in Section 7b that the
normal modes Py, and Ty, with I > 1 are a complete orthonormal basis for
®; therefore, by the argument used to prove inequality (56), the normalized
vector fields a1, 'V X P and ap 'V x Ty, are a complete orthonormal
basis for V. x ®&. A linear transformation 0 from V x & to ® is well-defined
by the equation 9(V x B) = B, and its effect on the basis vectors is as follows:

O(alvl.nﬁlv X len) = alAl,n-Ilen, G(aln 7]V X Tlmn) = alni]T[mn .
Hence © is a bounded linear operator and 1| @ || = ay . This is inequality (60).

8. THE EFFECTS OF FLUID MOTION ON THE POLOIDAL FIELD

If the solution B of the dynamo equations (1) is represented in the form
B = ¥V x Ap + Ag, those equations lead to equations for the two scalars p
and ¢. In the present section a discussion will be given of the equation for p or,
strictly speaking, for A*p since that turns out to be a more convenient poloidal
scalar. In particular; it will be shown that if u has no radial component then the
poloidal field dies out as rapidly as if u were zero.

(7) Tue Gexeran Ponoipan Equartion

The fluid in the sphere V is assumed to have an arbitrary solenoidal velocity
u. Let w be defined as

w=rB=ADp. (61)
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Then V x V x B= —V x AVp — AVgso
I'V xV xB==AVp=—VAD=—Vu.
From the dynamo equation (la), in V

%r-B+pr~V XV xB=7rV x (ux B).

If u and B are arbitrary solenoidal fields,
'V x (u x B) = (B-V)(r-u) — (u-v)(r-B).
Therefore

ow

o 4+ u-Vw — oV'w = (B-V)(ru,) inV. (62a)

From dynamo equation (1b), V’p = 0in & — V, so A°V’p = V'A’p = 0, or

Vw=0 in §— V. (62b)

The boundary conditions on B imply further that
"w is bounded in &; (62¢)
w and Vw are continuous in &. (62d)

Equations (62) are the poloidal part of the dynamo equations (1); if Egs.
(62) have been solved for w, the poloidal part P of B can be obtained imme-
diately as P = V x A(A “w). Equations (62) are also the equations of a cer-
tain heat transfer problem: w is regarded as a temperature, and the region
& — V has finite heat conductivity but no heat capacity, so that any tempera-
ture distribution w on the surface S immediately establishes in & — V the steady
state temperature distribution appropriate to the given temperature on S. The
region & — V is held at temperature zero at large distance. Thus Eqs. (62b),
(62c), (62d) simply describe a particular way of losing heat from the spherical
surface S of the fluid V. That fluid itself has thermometric conductivity p, is
stirred with velocity u, and contains a volume source of heat of strength
(B-V)(ru,) per unit volume. It is only through this ‘“heat source’” that the
toroidal scalar ¢ appears in Egs. (62}, so no purely toroidal velocity is able to
generate poloidal from toroidal fields.

From the temperature analogy it is clear that if v, = 0 the scalar w dies out
at least as fast as if the fluid were not stirred at all. This is a generalization of
the observation of Bullard and Gellman (Ref. 9, p. 228) that toroidal velocities
cannot, support steady dynamos. Curiously enough, the dynamo presented in
Section 11 of the present paper depends for its success primarily on a precise
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statement of how the poloidal magnetic field decays when u is purely toroidal.
This precise statement is developed in subsections 8b and 8c.

(B) A Formar, Bouxp ox THE PoLompaAL FIELD GENERATED BY A ToroInaL I'now

In the rest of Section 8 it will be assumed that u, = 0. If Eq. (62a) ix multi-
plied by w and the result integrated over V, then after an integration by parts

11 ) : 2
(;‘T.;fvlwlh = —P/V\Vwi“-i” pquan.

Since Vw = 0in § — V,
0= —p[ | v P — pf'wn-Vw.
&V X

The continuity of w and Vw across S allows these two equations to be added to

give the result
11 ’ N
%Efv)wV: —pf\Vwi'. (63)

This equation has heen proved only for real w; an obvious modification of the
proof extends it to complex w. I'rom inequality (59),

(i + 2pvl)f w <0,
dr v

and integration of this inequality from 0 to r gives
172
Lot | = ([ 1uf) " < w@ e 0
v

Inequality (64) in its full strength will not be needed. Since
1@ = [ |rBf < [10BF< [ 1o} = 10BO) I,
v v &

therefore
| w(r) | < || ®BO) I} 7. (63)

Neither of the inequalities (64) and (65) directly conveys information about
the energy in the poloidal part of the field B(r). To obtain such information,
let U, be the operator on ® which gives the effect on magnetic fields B(0) of the
persistence of the toroidal velocity u for a time r:B(s) = U,B(0). What ix
needed is a bound on || ®U,B(0) |, the energy in the poloidal part P() = ®B(7)
of the magnetic field at the end of the motion. Observe that

H P(T) “2 = IZ | [len; P(T)J 12

mn
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and that, from Eqs. (48) and (8),
[len; P(T)] - _)\ln j; plmn*w(T)-

In the notation of Section 5b, Schwarz’s inequality implies

| Prmn s P(O1] < Mo || Pima || | () I
The norm || pimx || is, from the definition (41), [I(1 + 1)A,]™, so

l >\ln
=W+ D

This inequality is not directly useful in bounding || P(r) ||, since the resulting
infinite sum diverges; || P(7) ||* could, of course, be bounded by the general ar-
gument of Section 6a, but the bound so obtained grows exponentially with =
and is not strong enough for subsequent arguments in which r becomes very
large. Whether || P(r) ||* can grow exponentially as the result of an appropri-
ately chosen toroidal velocity field is not known to the author, One way out of
this difficulty is to observe that inequalities (65) imply that such exponential
growth, if it occurs at all, must result from a gradual accumulation of energy in
normal modes with ever larger decay rates. Therefore, if, after the toroidal
motion has been completed at time =, the fluid is held motionless for a further
time 4, all this exponentially accumulated energy will disappear. That is, if
9, is the free decay operator defined in Section 7c, it should be possible to
bound || ®D,,0,B(0) ||*. Whether such a device can be avoided is not at present
known to the author, and on this question hinges the possibility of obtaining a
simple sufficient condition on arbitrary velocity fields to test whether they can
maintain dynamos. The author proposes to pursue this subject further in a sub-
sequent paper. For the moment, the device will be accepted.

At the end of the toroidal motion, the total energy in the poloidal components
of B(r) with free decay rate ». = Az is

I 0:86) I = 2 | 1P, PO < 2D

The inequality follows from inequalities (65) and (66). If the fluid is now held
motionless for a time ¢#; , the resulting field ©,,B(+) has altogether in the poloidal
components with free decay rate »; the energy

(2l + 1)
W+ 1)

The quantity which will be needed later is the total energy in poloidal modes

| [Pimn, P(7)] [ w @) | (66)

A || ®B(O) ||* exp (—2pv,7).

| ®:9:,0.B0) |* < Mn exp (—2p\,ti—2pm7) || ®B(O) |*.  (67)
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with decay rates larger than » . This is
(@ — @ — ®)D,B() [P = 2 | @9, B() I,
fo=3

50, by inequality (67), it has the bound

) ) 2[ 1

15— @1 — @)D, 0.B0) [P < [ 0BO) P X CEE Dy, exp (=200, 11— 2p07)
>\ln2“3 l(l + 1)

The sum is over all I and = for which A, > »y, or M. 2 p'

operators, this inequality implies

. In terms of

| (® — @ — @)D, |
(68)

< @+ 3)

T ezl + DI+ 2)

where the variable of summation has been changed from I to ! + 1.

2 . 2 2
ar exp (—2pa, th—2pan 1)

(¢) A NumericaL Bounp oN THE PoLoipaL I'TELD (FGENERATED BY A TOROIDAL
I'Low

The bound (68) is formal until the series on the right has been shown to con-
verge and an upper bound has been produced for its sum. Such a demonstration
of course demands information about the distribution of the roots a;, of the
spherical Bessel functions. Denote the sum on the right of inequality (68) by Y.
Define the function F(») for v > »; as

214+ 3

F(V) - vl 12 ay,<pl/2 (l + 1)([‘1‘ 2) dn s

(69)
the sum being over all values of L and n for which »;'* < a;, < »"*. The function
F(v) is constant between two successive values of v, and at each »; it jumps by
a finite amount. [Incidentally, for each v there is only one term in ¥, that ix,
only one pair [, n such that a;,” = » ; see Watson (Ref. 28, Section 15.28).]
The derivative of F is a linear combination of Dirac delta functions (v — v,
and if these are taken to be asymmetrical, that is [ 8(»)dv = 1, then

Y:ff%www

3

Integrating this result by parts,

Y=MJ@WWMW

v3
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If G(») is any function such that F(») < G(») for all » > »;, then

Y < 2pt1/ e G (v) dv.

v3

After another integration by parts,
Y <G+ [ ePE6) dn (70)
v

To allay suspicion about the use of delta functions in this argument, the terms
F'(v) dv and G’(¥) dv which arise in the integrals can be replaced by dF(») and
dG(»), those integrals being regarded as Stieltjes integrals (Ref. 29, p. 64 ff.).
Therefore the sum Y on the right of inequality (68) can be bounded if a bound
G(») can be found for the function F(») of Eq. (69).

To obtain such a bound, perform the summation (69) first over n for a fixed
1. What is needed is then

0[1,,,2
vyl l2< agpt/2

for a fixed I. The following lemma bounds this sum:

Lemma: Let y(x) be a positive, convex function of x defined in the interval
a — h/2 <z < b -+ h/2. Suppose all the n points x;, ---, z, lie between a
andbandz;y —x; > h > 0fori =1, ---,n — 1. Then

b+hs2

Z 1
>y < i y(x) dz.
i=1 a—h/2

The proof of this lemma is elementary. Because y is convex (y” > 0 if y”
exists),
x;+h/2

e < [ y@d

x;—h/2

Since y is positive and z;y, — ; and z; — 2,_; are both larger than A, it follows
that if 7 # 1, n then

(ritei+1)/2

hy(z) < y(£) di.

(x5 _14=0)/2

Adding these inequalities for7 = 1, - -+, n,

2nthi2

p ey < [ a0

1—h/2

Since y is positive and a < 2; < x, < b, the conclusion of the lemma follows
immediately.



SELF-SUSTAINING DYNAMOS 109
To apply this lemma to

alnﬂy
,,31/2Saln<,,1/2
let y(x) = 2" and h = =. Because of the fact that, for any [ and n, a4 —
ar, > w [Ref. 28, Section 15.83. In that section let w; = (' sin (v
e = x{r), wi

— ay,) and
. with €' chosen so that /() = w'(ey,)], the above lemma implies

1 pli2re 1 . 3
oy 1/2
2 ,,,_f Fde < — (M + 7).
val 2 ay, <yl i sl /2—r/2

(7
Another well-known fact (Ref. 28, Section 15.3) ix that ay > 1 + 1., Sinee

an, > ap, in the sum (69) only those I’s can occur for which 7 4+ 1, > »'*
From thix fact and inequality (71)

ST 2

, the sum (69) is bounded as follows:

AT A N 1
Fiy < — (" + % — = |.
(”)—:;w(” +2> ; [l+l 4+ 0 +2)]

fhe usual method of bounding sums by integmlq shows that
,,1/2_1/)

> <)

v3/2

pl/2. 1

— < In (11 — 1.
Consequently,

2 2 8 9
Fly) < = (ul/' + 1_r> In (1/1‘" — 1.
3T 2

Since
9 £ i 8 I 9 a9 T 8
v (vl" -+ .)) In ("7 — 1< p <V31/' + 9) In (" — 1) = 0.559
if ¥ > vy, in that range of »
F(y) < G) = 0.1194", (72)
Combining inequalities (68), (70), and (72)

.) D)

(P — @ — @)D, || < 2677 177Ps1 (1 + =+ _:__.-_>_ (73)
. 1 3] L —= ()pV;fl) (Zpll;gtl)?

For completeness, note also the following special cuses of inequality (67)

I 0,0, || < (3”1> e et

2
| ®u0,0, || < (

AN
2 —py T p¥al -
- e (73
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The whole purpose of subsections 8b and 8¢ has been to obtain inequalities
(73), (74), (75). They are valid in the following circumstances: the velocity u
which produces the magnetic operator U, is purely toroidal (u, = 0) and proceeds
for a time 7. Thereafter the fluid is held motionless for a time # . In the present
approach, this rigid decay cannot be avoided, since the bound (73) approaches
infinity as t; approaches zero. As already remarked, the author does not at pres-
ent know whether this reflects the physical situation or is a defect in the argu-
ment. Of course the energy given by inequality (73) cannot in reality be infinite,
as is shown in subsection 6a, but as ¢, approaches zero that energy may conceiv-
ably become exponentially large in 7.

9. THE EFFECTS OF AXISYMMETRIC TOROIDAL VELOCITIES
ON THE TOROIDAL FIELD

(o) TeE ToromAL FigLp EQuaTiON IN GENERAL AND IN SPECIAL CASES

Representing the solution of the dynamo equations (1) in the form B =
V x Ap + Ag, the equation for the toroidal scalar ¢ analogous to Eq. (62a)
for the poloidal scalar w = A’p can be obtained by dotting A into both sides of
Eq. (1a), that is, by equating the radial components of the curls of the two sides
of that equation. The result is

A (g? oV q) = A-V x (u x B). (76)
Let A = u x Bin Eq. (5g). Define wy , ws, and D as
= u¢ N = ___.—uo . = ;l_ 2
@ = 1 sing’ = i sing’ r ar " (77)

Several judicious applications of Eq. (5d) then permit the conclusion

6w¢ ap

AV x (u xB)=A2|: u-vq — qDu, + sin == o 39

+ wgsz — D sin 0p%’:|+ D[(Au,)-(Aq—V x Ap)

3 .3
+ gA%u, — 6—(wwa) + s1n0£A2w¢
dwe OP a%ap)]
A2 Y hidd S s it I
T (Sme >+81n06¢(606¢ 3¢ 06

Since when ¢ averages to zero on every S, so does dq/dt + u-Vg — pV'q, Eq. (76)
can be written

g%l+u~Vq —h iV, (782)



SELF-SUSTAINING DYNAMOS 411

where
2.2 i . awd, 8]) a . ( 6w¢ ]
= | —qDu, g gt — Dp — s -
h A AL qDu —’r-bmﬁar 60+wg6¢ p — sin ¢ D péﬁ
4+ A7°D [(Aur)-(Aq —V % Ap) + qA'u, — % {1wy) {78
. ap » af . dwe 2 90 (6w¢ dap Jduwy a'p }
n g 2F A Af(sin 228 ) 4 2 C (T I0_ TWe B
Fin by dwe tp <qm 69>+sm66¢ 30 3¢ 0¢ 98

As in Section 7, the boundary condition on ¢ is that it vanish in & — 17 and be
continuous everywhere. Equations (78) are the toroidal analogue of the poloidal
equations (62) and, like the latter, are applicable for any solenoidal velocity u.
It should be noted that the operator A™°A” is the identity only when it operates
on functions which average to zero on every S,. IFor an arbitrary funetion f,
ATPAY = f — f. where f, is the average of f on S, .

Clearly Eqs. (78) are the equations for the temporal behavior of the tempera-
ture ¢ in a fluid 77 with thermometric conductivity p, stirred at velocity u, whose
houndary S, is maintained at temperature zero, and which contains a source of
heat h per uunit volume. In case u, = 0 and initially p = 0, then from Iigs. (62)
p = 0 at all times, so & = 0, and equation (78a) is d¢, 9 + u- V¢ — pVy = 0.
Therefore in this special case the toroidal scalar ¢ dies out at least as rapidly as
if the velocity u were zero.

Formula (78b) becomes much simplified in the one case in which it will be
employed in the present paper, that of an axisvmmetric toroidal velocity. In
this case, 1, = ug = 0 and wy depends only on r and 8. Since w, ix the only angular
velocity remaining in A, 1t will hereafter be denoted simply by w(r, 6). For un
axisymmetric toroidal velocity, u = r sin fw(r, 9)&), formula (78h) for h hecomes

h=ATA I:-\ln 6 Fr 55 sin 0; E" (Tp —675)]
(7

9 9 2 2'
9 (sin” 0A°w) + Je Ql):l )

v 10 1
sin 8 88 sin 0 8¢ 8¢?

i g OP 42
+ A rar)!i.xmﬂggaAw-{-p

For the purposes of the present paper, it suffices to consider an even more =pecial
case, that in which w(r, 8) = f(r) cos 8 and

u = rsin 6 cos Hf(r)f;). (8O

With this further specialization, Tiq. (79) becomes

_df (A—ZA2 cos @ sin ¢ a% A“2w> + (l d r )

dr rodr

Ir

w+ fE—, (8l
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where

2
Z=A"" [A2 sin’ § — 2 <‘9— +3cos’0 —1+cososing ) [a (81b)
o¢? a0
In order to make use of this formula it is necessary to find the average over
each S, of the operand of A*A%. To this end, define

m [0+ m—m) ]”2
9“Lm+nm—n (82)
forl=1,2, ---,m= —1, ---, 1. Define
R™ = g"gus", (83a)
H™ = (g")". (83b)
Then (30)
o eym _ [ —m+ 1T —m+ 2)]“2 -1
sin fe Yl = [ (2l + 1)(21 + 3) Y1+1
(84a)

- [(l + m)(i +m — 1)]”2Y -
Q@+ nE -1 =

cos Y, = ¢,"Y, " + g1 Yoa' (84b)

@-—mA—=m— 1)]”2}, m+1
2+ @ -1 =
20+ 1)( ) (840)

_ [(l +m+ D+ m+ 2)]”2Y mt
@I+ DEL+ 3) S

where V,;" are the normalized spherical harmonics (6a). Therefore

cos’ 0Y," = Ri"Y, " + (H™ + Hina™Y," + Ria"Y ™. (85)

sin 8™V ," = l:

As is well known in the quantum theory of angular momentum, if L = —7A
and L7 = L, + iL,, L™ = L, — iL, in Cartesian coordinates, then

LY, = [0 — m{l + m + D"y,

86
LYy "=+ m{1—-m+ 1)]”2Ylm_l. (86)

Since

le Lt — ®L7],

[

i ==
a6
Eqgs. (84a), (84c), and (86) imply

- a m m m m m
Slno‘;é Yl = lg]+1 Yl —_ (l + l)gl Y1_1 . (87)
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Invoking Eq. (84b),

¢os 4 sin 6 Y "= =4+ DRV LT+ UH T — U+ DHMY (S8)
+ R Yo"
Write

0 {

p(r, 6,6, = 2 E U, DY, ¢). (849)

=1 m=

Then the operand of A™2A” in Eq. (81) has for each fixed » an expansion in
spherical harmonies ¥;™ of which the term with [ = 0 is

. aps(ry t 1d T
—1{101'00 [f(r) p_a(:—) + (;_ dlr Tf> pgo(r, t) + 3 ;]{: pg( (7‘, i)}

If this quantity is subtracted from the operand of A *A* in Eq. (81), the truth
of that equation is unaffected, while the new operand of A *A” averages to zero
on every S, . The operator A°A” has no effect on this new operand, so

U s sin g 4 sinta (192 4, Y )
h—d—,(osﬁmmﬁaa—l—aln 0<far—i— (1r+ p
0o (40a)
+ RYY [,fal” + p ( a f)] — 2 (ij +~’)A“2rp — 22T S ap
or dr r

where

I = —(1 + (3 cos 8 — 1) + cos 6 sin 0('—’

ag ST

To summarize, if the fluid velocity has the toroidal axisymmetric form (80),
then the equation for the toroidal scalar ¢ is the heat equation (78a), which, in
this simple case, is

0(1 dq 2
A oWy = h. G0t
o T e T PV (10b)
The heat source & is given by Eq. (90a) in terms of the poloidal scalar p. The
boundary condition on ¢ is that it vanish on the surface S of the fluid.

(8) Tue ErreEct oF A ToromaL FLow ox Py

The fact that from an initial poloidal field axisymmetric toroidal shearing
motions can produce large toroidal fields was pointed out by Elsasser (10).

To construct a dynamo it will be necessary to see how much of the Ty, mode
can be produced from the initial field B(0) = Py by the persistence of the fluid



414 BACKUS

velocity (80) for a time 7. If the magnetic operator corresponding to this motion
is denoted by U, , what is wanted is 3,0, Pio; .

This problem could be solved by the axisymmetric techniques introduced by
Liist and Schliiter (31) and Chandrasekhar (32), but Egs. (90), being ready to
hand, will be used instead. The poloidal field scalar at time ¢ will be simply

= pme ", and the toroidal scalar ¢ will vanish initially and will always be
axisymmetric. The solution of Eq. (90) in this situation is straightforward, and
leads to the result that if b, "(¢) are the expansion coefficients in the series (49)

then
—evit o —ppiat
blnm(t) = mOCln [(L_‘—e-_])
P(Mn - Vl)
where
on ! 9. .y . ;2
Ciwm = - f dr 7’]1(061"7') 2a01f]1 (01017') + .71(01017‘) f + - f
J2(Ol1n) 0 r

+ J4(6t:n) ( )1/2 f dr 7js(car) l:<2f ’ ) laar) — anfi (aoﬂ’):l

In particular, if
f=r—1r, 91)
then

4 e—pvlr _ —pvar
(T1o1 5 320, P11) = 5 Cu I:‘—————] Ty (92a)

p(ra — v)7

where
1 1
Jolo)Cn = — f dr (* + r)jilawr)jr(anr) + 2an fo (r* ~ Pjienr)jolanr) dr.
0
Since the integrands here are products of trigonometric function and powers of r,
the integrals can be evaluated exactly. The result is
4¢Cy, = 0.0976. (92b)

Equations (92) give the amount of T generated from Py, by the motion
u = r*(1 — %) sin 6 cos 8. A bound on the total toroidal field T' produced from
Pi, by this motion can also be obtained. Multiply Eq. (90c) by — A’q and inte-
grate over V. Since dq/9¢ = 0, the result is

2dtf\Aql -I—pquVq—quAh
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Then Schwarz’s inequality and inequality (58) imply
fTH-i—sz\IT“ I Ak 1,

where T = Ag = 3B(f). For the particular velocity under discussion, if pio(r, 6
is written as p(r) cos 6,

Py (cos 6) l:ﬁ (Z—{ f) + of _:l
T T

where P; is Ith Legendre polynomlal It is a matter of straightforward computa-

tion to show that, when f= r — ¢°,

| AR | = 0.31308 """

t
¢"Vh =

[ T

o that
—evir ovyT
F50Pw || = || T(m) || < 0313087 [i*(—~— ————— :' (92¢)

(¢) A Bouxp oN THE ToRrROIDAL FIELD ScALAR GENERATED BY A Toroinar Frow

Tilsasser (10) asserts the the effects of an axisymmetric toroidal velocity per-
sisting for any time 7 are obvious: the poloidal field decays and the toroidal com-
ponents grow at most linearly with r. However, in justifying this assertion,
Flsasser essentially assumes the result

lim || 9, — M, || =0
p—~0

discussed in Section (6e) of the present paper. Elsasser does not prove this result,
and since the present author has been unable to do so (and in fact doubts that
it Is true), a new approach must be devised.

If Eq. (78a) is multiplied by ¢ and the result integrated over T, it follows that

ol e [ 199 = (0 ).

From Schwarz’s inequality and the variational inequality (56),

d .
(&+m)iar<rnn

This last inequality can be integrated from zero to ¢ to yield

I q®) | < || q0) || e + e fo e 1 h(r) || dr. (93)
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Inequality (93) is true for any solenoidal velocity whatever. When the velocity
has the special form (80), & is given by Eq. (81) and is independent of ¢. There-
fore h can be bounded by means of inequality (64), so that Eq. (93) becomes a
bound on q.

As a first step in bounding the & of Eq. (81), a bound will be obtained for the
linear operator E. From Eqgs. (85) and (88) it is not difficult to show that if
1>1

m m m m m m m
EY)" = @Y " 4+ by Yi" + Ciye Y1+2 ’

where
a;” = __R,“ri__ b = 2[B3m* — (1 4+ 1)] o — R
CTUEDI+Y T THF @@ Y Twmoay
Now if
) !
f(ay ¢) = l=zlm=z
then

1Zfl = i m; | a"fia™ + bf" 4 "™ |

=1 —1

Since Schwarz’s inequality is no less valid in three-dimensional spaces than in
infinite dimensional ones,

1EFIE <Y 2 (i o |+ 1 D)
(|alm|2+ Iblm|2+|61m|2)
<3 sup (Ja" P4+ 10" [+ ™).

From the formulas for a;”, b;”, and ¢;”

sup [ ar™ [+ |57 o [ e [ = 130,
so | 21 < 0.6967. Then by Eq. (26)
IE ] < 0.6967. (94)
When f = r — +°, max |df/dr| = 2, max |f| = , max | rd(rf)/dr | = 2,

so from Eq. (81) and inequality (94),

I R < 21005 || w| + 02682 H H (95)
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Combining inequalities (64), (93), and (95),

Lad | < g(0) [ € + 21005 || w(0) | ["Ai - i:]
plra =~ w)

} 6’11-‘ [ dr.
ro

¢
+ 0.‘2(582(2—””tf e
0

Clearly | ow/dr | < |l vw || and from Schwarz’s inequality

9 o

at ¢ ) 1/2 H 172
/ AT Vw || dr < I:f e dr] [[ ey a’r:|
Y0 0 0
2pvat 1/2 L2
e =1 1 1 oanf k] ; e
= ——— -— i )0 ,‘! — \‘Y 4 'l )
[ - ] [ a0 = ] ,

the last equality being obtained via Kq. (63). Thus

vt __ —prar
Fg(r) | < 7 q(0) I e 4 2,10067 || w(0) || I:(j» ~i—~:|
p(V-g - V])T
) L 6)
+ 0.26827 || w(0) ! 1 (L‘ifipy_ﬁ .
" (2pr)i2 2pva1 )
Since || ¢(0) | <27 [ T(0) [, [ w(0) || < [ P(O) |, and [ B(O) [ = | P(0) " +
| T(0) |, if the right-hand side of inequality (96) is regarded as the inner product
of the two-dimensional vector || T(0) || x + || P(0) [|g with another two-dimen-
sional vector, Schwarz’s inequality gives finally

() I

—Ooper
S 2002

1
IBO) | = 2"
T T\ 02682 (1 — o P\
21 2.1005 (" ¢ ) <,,...‘h
t [ "\ o0 — w7 + (Zp7)'? 2pvor '

This inequality is true of the toroidal magnetic field scalar if the velocity u =
(1 — +%) (sin @ cos 8)¢ has been extant for a time 7. A similar inequality, with
different numerical coeflicients, could be obtained without difficulty for the
slightly more general velocity u = #f(r) sin 8 cos 6é, but any change in the
angular behavior of u will complicate the analysis considerably.

(n) A Formar Bounxp ox TtHE Toromar IIELD GENERATED BY A ToROIDAL
Vevrocrry

Just as in Section 8b the bound on || w(7) || was converted to a bound on

W ®B(r) | = | ®U.B(0) ||, so here the bound (97) on || ¢(7) ! must be converted

to a bound on || 3B(r) |l. In order to obtain such a bound, it will be necessary,

as it was in Seetion 8b, to hold the fluid stationary for a time £, after the motion
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has been in progress for a time r; this will allow the possibly large amounts of
energy which have accumulated in normal modes with high decay rates to die
out.

Clearly, if 0, is the magnetic operator of the motion produced by the per-
sistence of velocity u for time 7,

| ©:,30.B(0) ||* = | D, T(7) ||2 = t;;l [Timn , T(7)] [P 20ints

= lznk(l + 1)2((qlmn , q(T))]26—2puznt1

SN I X8+ D | o [ 70

(98)

= [l ¢(=) |’ %: 11+ 1)(2 + 1)e 2wt

In particular,
16 = 3D, 0BO) [ < [ g [ 20 U+ 1)@+ Dems,

Bin==vg
the summation being over all I and » such that ui, = a;’ > ». Therefore, if
H?(r) is defined as the quantity on the right-hand side of inequality (97),
13— 5)9,0, 1 < H () D, U+ 1) + 1)e 2ty (99)

Bin2vy

This is the formal bound on the toroidal energy analogous to the bound (68) on
the poloidal energy.

(8) A NuMEeRricaL Bounp oN THE ToRoOIDAL F1ELD GENERATED BY A TOROIDAL
FieLp

The bound (99) is useless without a bound for the sum on the right in that
inequality. Since the procedure for obtaining such a bound is formally the same
as that adopted in Section 8c, many of the details will be omitted here. If

Fo) = 20 W+ D@+,
3l < <yl 2
then

yliz—179

FO) < % 10+ D@L+ D) [2—'—‘2—53“—1) + 1]

y1/2—1/9

1/2 »l/2 1
S(V—— + 1) f/ e + D2x + 1) do — — z(z + )2z + 1) dx
™ 1/2

27 Jo

< 0.173:"° = Q).
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Therefore

> U+ D@+ DE = [ Pt

HinZ=vy

< Glyg)e 3" 4 f G (e dy
vy
2 2 5 5 5
< 0.173p% 31 [1 + 22 ¥w4]_
- i "lpV;;tl (2pV3t1)2 (2pV3t1)3

Finally, if VU, is the magnetic operator produced by the persitence for time r of
the particular velocity u = #*(1 — #%) sin 6 cos 6,

9,0 — 3T,

P

5 5 5 {100a)
< 2 ] 5/2 —2pv3t) 1 (3] ) v D j]
< H(7)(0.173)55™% [ + Tovs T @i + ol |
where
2 I ospryr | 2 e — e*pm> 0.2682 (] — 1/2:]2
=" 1 _
Hi{(r) =3¢ + 7 [2 005< o= ) T 2o\ (100b)

Equation (100a) is true for any motion U, whatever if H(r) is interpreted as
Il g(+) I/]] B(0) ||. The function H(7) can be readily computed only for axisym-
metric toroidal velocities, so for velocities outside this class inequality (100a)
will not be useful.

TFor completeness, note the following special case of inequality (98):

[ 3,0, |I° < 6H (7). (100¢)
(r) SpeciaL Cases For WoicH A Free Ricip DEcay 18 UNNECESSARY

Inequalities like (100) can be proved for the magnetic operator giving the
effect of the persistence for a time r of any axisymmetric toroidal fluid velocity,
u = rsin fu(r, 0)¢, as long as w(r, 6) is sufficiently smooth. As already remarked,
the author does not know whether, when the free decay 0., is omitted, » bound
can be obtained which, like the bound (100), grows only linearly with r or whether
in consequence of this omission nothing better than the exponential bound (33)
can bhe obtained. However, there are two special cases in which a bound linear
in 7 can be obtained even if the free decay is omitted.

For an arbitrary axisymmetric toroidal velocity field u Fq. (78a) for the
toroidal field scalar ¢ can be multiplied by — A’g and integrated over V to give

1d | 2 f&qéq dw f 2 o2 / .
¢ 94 94 9 A% = [ Ah-Aq
Zdt/VMq' T aaagan PNV = [ ARAg (o)
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If the initial field was axisymmetric, dg/d¢ = 0 at all times. In this special case
and also in the special case where dw/08 = 0 the second integral in Eq. (101)
vanishes. Then Schwarz’s inequality and inequality (58) imply that

TNT N+ T] <[ AR,
and
N T(@) || <[ TO) | ™ + ™ fo ™ || AL(t) || dt. (102)

Equation (81) for  together with the bound (64) on w = A%p gives a bound on
|| Ak || from which it follows that there are constants H and K such that

130.B0) || < || BO) || (7" + H7'"* 4 Kr). (103)

If dw/36 = 0, inequality (103) is true for any B(0), and therefore || 30, || <
e " + H'"® 4+ Kr. Furthermore, when dw/d0 = 0, the equation dp/dt -+
wdp/d¢ — pV'p = 0 for the poloidal field scalar p can be operated on by ¥ x A
to give, in V,

———I— Vanz—k pV x V x P =0.

Integrate the dot product of the left hand side of this equation and P over V.
Integrate once by parts, using the condition V. x P = @0 in & — V to evaluate
the boundary term. There results

2dtflpl+ f|pr\2

The variational inequality (60) then implies that || P(r) || < || P(0) || ¢*" or
| @0, || < e
In the other special case, when dw/38 > 0 but B(0) is axisymmetric, the poloi-
dal field behaves as if the fluid were motionless, so
| ®0.B0) | < [ BO) [[e ™. (104)

For an arbitrary w(r, 8), inequalities (103) and (104) have been proved only if
B(0) is axisymmetric; in inequality (103) H = 0 if B(0) is axisymmetric.

10. THE TRANSFER OF ENERGY FROM Tin to Pin

(o) Ture PossiBiLiTY oF SucH TRANSFER

Let the magnetic field B({) produced from the initial field B(0) by the solenoidal
velocity u be expanded as

B(t) = Z [alnm(t)len + blnm(t)Tlmn]- (105)

lmn
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It B(0) = Ty, then for what velocities u will there be times at which a;,” does
not vanish? Elsasser (10) has given some examples of such velocities. Since
ay"(0) = 0 when B(0) = T4 , any veloeity will be of the desired type if it mukes
at least one of the time derivatives of ay,™(¢) initially differ from zero. One would
expect that this class of veloeities is large; how large it is will be shown in the
present subsection.

In what follows it will be convenient to define

Piy= 2Py + Py =V x Apia, (1062)
Py = ’?'271/‘2(1’111 — Piy) =V x Apy,, (106h)
P]:I - Pm] =V x A])]gl . (106¢)

The function H(r) = sec pa(r, 8) depends only on r, and if & is any of &, y, and
2, pa = & 'P(r), so the fields Py and Py, are obtained by rotating the field
Py, untal its external dipole moment points along the % or § uxis instead of the
2 axis,
Define a", an”, an” by the equation
1

m ¥ y H
Z ayy Proa = au' Py + ay Plyl + an'Pia.

m=—1

It is not difficult to show from Egs. (1) (Ref. 9) that if £ is any of «, y, 2, then

(i + pV;) My = —f B(t)-lu x Vv x Pyl (107)
dt v

Since u is solenoidal, it hag a representation in the form
u=V x AU+ Al (108)

where f ' =V = 9U/9r = 0on S,u = 0on S,and if ' =1 = 4l’/dr =
aV/or = U /9 on S, u = 0 and Vu = 0 on S, while if U7 and T are analytic
in x, y, z then so are u, , u, , and w, . I'rom the definitions (41) and (42) of pin
and ¢, Fgs. (107) and (108) imply that when ¢ = 0

(l r *3&()1 AELY . . . .

d v —3am At sin 0 s 00:
ot n 4 (o) jo(ey) Uy < r )]1(0111"),}1(0017') Mo s ¢, (10%)
(/ 7 36{01 Ag L’Y . . . N
ot = Bam [ (AT ) sin @ cos 00t
7y Trien it dr ( r >J1(au7“)(h(aur) sin 8 cos ¢, (109h)
oy =0, (109¢)
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and

B = gt [ (KU (Y113, 20 20)
e 2mangi(en) jalon) v \ 7 d¢* ~ rar 94 i (109d)

-Jilayr) jiloor).

Any choice of the scalars U and V for which the appropriate integral (109) fails
to vanish gives a velocity (108) capable of transferring energy from Tu into
one of the modes Py,;, Py, Pia .

As an example, let V = 0 and U = f(r) sin 0 cos ¢, where f(r) = r when
0 <r £1 — ewhile in the thin shell 1 — ¢ < r < 1 the function f(r) is brought
smoothly down so that f(1) = f’(1) = 0. Then u is continuously differentiable
and vanishes on the surface of the fluid. Inside the sphere S;,_., u = —2%, and
the fluid thus translated in the negative X direction inside S;_. is returned in
the opposite direction in the outer part of the sheli 1 — ¢ < r < 1. From for-
mulas (109), [day"/dt)im0 = [dan’/dt]ims = 0 while

day” -9 1 ‘ .
[ Q11 :lt—o _ Qo1 rf(?‘)]l(aur)]l(amr) dr

dt "~ j.(an) joaur) Jo
—2an . . —2anon
% — e dr = —0.
Jiaoy) folour) Jo rlenr) ji(aar) an® — ap?

Therefore a purely poloidal flow which carries most of the interior of the fluid
in the positive % direction will initially transfer energy from the mode Ty
{which might be called Ty, by analogy with Egs. (106)] into the mode Py, but
not into Py, or Py .

As another example, let U = V = f(r) sin 0 cos ¢ where f(r) is the function
described in the preceding paragraph. Then [d’ay’/df’]i—0 # 0 if B(0) = Ty .
Inside the sphere S, ., u = —2% + 2§ — y2. Here the translation along the %
axis produces Py,; from Ty, while the rigid rotation about the % axis transforms
Py, into Py, . As is to be expected in such a second order process, [day;*/dt],—y = 0.

The foregoing remarks prove that there is a large class of fluid motions capable
of transforming the initial field B(0) = Tin into a field with energy in the Py
mode. However, Egs. (109) are not useful except for times so short that the
total energy produced in the P;; mode (and all others) is much less than the
amount initially present in Tyo . For a useful estimate of the velocity at which
a self-sustaining dynamo must be operated, it is desirable to be able to treat
larger energy transfers. Furthermore, as Eqs. (109) make clear, the initial pro-
duction of Py from Ty is accompanied by a much larger production of P,
and P, . This raises the question of whether dynamos can be constructed in
which the external dipole moment does not shift through large angles during
one decay time of Py .
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In Section 10b below, the amount of energy transferred from T4 to Py, by
a particular large fluid displacement will be estimated, and in Section 10e¢ it
will be shown that an arbitrarily large amount of this energy can be transferred
to Py 50 that each eyele of the dynamo to be constructed in Section 11 regener-
ates Py without produection of large amounts of Py, and P, .

(8) GENERATION OF Pi,; FrOM Ty, BY A Parricvvar Frump DisPLACEMENT

To simplify the notation, a new coordinate system will be chosen, in which
the new % axis is the old 2 axis and the new 2 axis 18 the old axis —%. In the rest
of Section 10b, x, y, z, r, 8, and ¢ will refer to the new coordinate system instead
of the old one. In the new system let » = (2° + »*)'" Stated in terms of the
new coordinate axes, the problem is as follows: find the matrix element (P, ,
UT,,;) where U is the magnetic operator corresponding to =onie as yet unspeci-
fied finite fluid motion and Ty, is the field B(0) at the outset of this motion. In
Cartesian components

B(r)

B{0) = - (—zf + yb), (1102)
where
3 e jl(aul‘)
B(r) = —{2) Juen’ 1101
") (47r> Jolau) (H10h)

Suppose the fluid motion y(x, ), 0 < ¢ < 1, which produces finally the dis-
placement of the fluid point x to y(x, 1) has a velocity u and velocity gradient
Vvu which vanish on the fluid surface S. If the same final displacement is effected
by the more rapid motion y(x, «t), 0 < ¢t < « ', whose magnetic operator ix
U, , then Sections 6¢ and 6e make clear that

PIE (P, WeT1z1) = (P, UT1)
where U is the magnetic operator for the motion y(x, £), 0 < ¢ < 1 in a fluid of
resistivity zero.

Suppose that u = VvV x AU -+ AV vanishes on S but Vu does not; suppose
also that (P, , UTy,) iz particularly easy to evaluate, U being the magnetic
operator of the motion resulting from the persistence of the velocity u for unit
time in a fluid of resistivity zero. The remarks of the preceding paragraph are
not directly applicable to this motion. Define the function A.(r) for small e as
follows: h(r) = 1if0 < r <1 — ¢ and h(r) drops smoothly to zeroin 1 — ¢ <
r < 1. Then if u. = Vv x A(hU) + A(hV) both u. and Vu, vanish on S, so
the preceding paragraph does apply to the magnetic operator U® of the motion
y(x, 1), 0 <t < 1, produced by the persistence of u, for unit time in a fluid of
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resistivity zero. From the expression for (Py,;, UTy,1) as a volume integral it is
clear that

Hm (P , WTe) = (Py1, UT1a).

>0

Therefore, by choosing e small enough, (Py,; , WT11) can be made very close to
the easily computed (P, , UTy.) and if the motion y.(x, ¢), 0 < ¢ < 1, is exe-
cuted rapidly enough, its magnetic operator U,° in a fluid of nonzero resistivity
p produces a matrix element (Py,; , U, T1,) which is very close to (Py; , WT).
The remarks of this and the preceding paragraph make the following clear: let
U be the magnetic operator for a fluid motion y(x, ), 0 < ¢ < 1, in a fluid of
resistivity zero whose velocity u vanishes on the surface S. Then fluid motions
y(x, 1), 0 < ¢ < 1, not very different from y(x, £), 0 < ¢ < 1, can be found
which, if sufficiently speeded up, lead to magnetic operators L, in a fluid of
fixed nonzero resistivity p whose matrix elements (P, U, T1) are arbitrarily
close to (Py,:, UT1,;). Therefore the rest of the present Section 10b, is devoted
to the evaluation of (Pyy, UT1,) for a particularly simple motion in a fluid
whose resistivity vanishes. :

The motion to be considered is that produced by the persistence for unit time
of the steady axisymmetric velocity u = & 'Vs x & whose axisymmetric stream
function s is

s = 1a'(® — )% (111a)
Then
u = #1 — A sin® 0 cos 6 — &1 — (A — 2% sin® 6. (111b)

The symmetric tensor whose Cartesian components are 15(du./dy; + du;/dy;)
becomes the covariant dyadic 14(u.; + wu;.) in spherical polar coordinates,
where now 7 and j take the values r, 8, and ¢. In spherical coordinates it is not
difficult to show that the largest characteristic root of the tensor L4(u;; + w;is)
obtained from the velocity (111b) is 1 and occurs at r = 1, § = «/2. If U is
the magnetic operator on @& produced by allowing the velocity (111b) to persist
for unit time, then inequality (33) implies

lul <e= 271828 ---, (111c)

This inequality is true a fortiori for the operators U, of the preceding paragraph.

To compute (Py,;, UTy,) it will be necessary to have an expression for the
final position r, 6, ¢ of a fluid element which at the onset of the velocity (111b)
was at the initial position 7/, §’, ¢’. To find such an expression, introduce the
new coordinates o, x, ¢ defined in terms of @, 2, ¢ by these equations:

2wz = o sin x, (112a)
2% — 1 = o cos x. (112b)
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Then ¢ = 4a°(* — 1) + 1,500 < ¢ < 1, and ¢ = 0 only at the point & = 2 ",
z = 0. Since ds/dx = 0, the level lines of o are the flow lines of the fluid veloc-
ity. The level lines of ¢ and x are shown in Fig. 1. The motion (111) simply
decreases the coordinate x of every fluid particle, without affecting ¢ or ¢. To
see the details of this decrease in x, define still another system of coordinates,

X=180°

X=180°

F16.1. Level lines of o and x in a meridian plane. The dotted lines are the initial positions
of the fluid elements whose final positions are the solid level lines of x.
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o, €, ¢: o and ¢ are as before, while ¢ is given in terms of x and ¢ by the equa-
tions

sin 3x = sn; ¢, COS 3x = eny &, (113a)
20
P=_27
T (113b)

Here sn; and en; are the Jacobian elliptic functions (33) defined by the equa-
tions sn;’6 4+ eni’6 = 1 and

_ /“"8 dy
R O L

The position at time ¢ of a particle in the fluid moving with velocity (111) is

o = o0, 40 =90, =0=e0 -1 g

Therefore the initial position 7/, 8, ¢’ and the final position 7, 8, ¢ of a fluid
particle are related by Eqgs. (112), (113), and

1-4 '
=ttt =0 ¢ =4 (115)

Now that the fluid displacement has been explicitly obtained, Lundquist’s (19)
integral of the dynamo equation (1a) can be used to compute the field UTy,; .
If B°, B*, B are the contravariant components of B in the curvilinear coordi-
nate system o, x, ¢, then

B, x,4) = B" (¢, ¥, ¢"), B, % ¢) = BX (o, X', ¢,
B%(o,x,¢) = B* (¢, X, ¢').

From Egs. (110) for the initial field B’(0) = Ty it is not difficult to find the
contravariant components of that field in the coordinates o/, x’, ¢':

4ar\'"* . o Jile 7'/) . . 1 — 47
~(5) e @) = 28 il ()

4qr vz . x'( 1 r N jl(au’l'l) . ’ (COS x’ + 20‘, + 0"2 CcOs X,)
—(—) dlan) B (o, ¢) = T one d(1+ o’ cosx) /) (a1

(4~ 12 o )B¢I(¢, ' ¢) = Mcgsdfsin ,(——{,——
3 Jelan, y X s ,,I X 14 ¢ cos x'/,

(116)

» 1+ 6" + 26" cos x’}"z
r= [ 2(1 4+ ¢ cos x') ) (118)
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Now if B = UB(0),
(Pl:yl ) CU-B(O)) = (Plyl y B) = —ao12 /‘ plyﬂ“B,.

The covariant and contravariant components B, and B™ are the same in spheri-
cal coordinates. Therefore, it follows from Eqs. (115), {116), and (117) that

4\ . ,
_4(—%[> jQ(all)w2B (7', 0, ¢)

. . , (119
1 = e’ . (1 + o) sin (x" — x) + 20(sin x* — sin X)\'\
= oI din ¢ ; .
rr 1+ ocosx
Finally, since the Jacobian determinant | d(x, ¥, 2)/3(e, x, ¢) | = 8a/0,
0 2 1 2 - . ’
(P, UTy) = — ..371- / o j L(amr) ‘]l(atlr)
b-l‘]g(olu) ) 0 r r
(1202)

(1 + o cos x)(1 + o cos x')

where " and r are given by formula (118) with and without primes, and the
primed variables are obtained from the unprimed ones via the coordinate trans-
formation (113) and the fluid displacement (115).

With the help of the addition formulas for the Jacobian elliptic functions (33)
the integrand in Eq. (26) can be expressed in terms of ¢ and x using only square
roots of rational functions of o and trigonometrie functions of x. The author did
not attempt to obtain this expression since the chances were that the integral
would have to be evaluated numerically in any case, and that integral is in a
very convenient form in Eq. (120) for numerical evaluation with the help of
trigonometric tables and tables of snge (see Ref. 34). Mrs. Joan Peskin carried
out such a numerical evaluation, and obtained

(Pllll 3 cuTlxl) = 0277 (]20}))

- {(1 + o%) sin (X' = x) + 20(sin x’ — sin x)} "

corresponding to an energy transfer of 7.67 %. Larger displacements within
limits will give larger energy transfers. Mrs. Peskin and the author found one
which transferred 20% of the energy of Ty, into Py, . Such large displacements
are objectionable in constructing a dynamo because the magnetic operators
they produce have norms exponentially large in the amplitude of the displace-
ment, when the finite resistivity of the fluid is taken into account, and may
produce large stray fields. Incidentally from Eq. (119) it is clear that

(Plxl s (uTul) = (Plzl ’ ‘UTM) = (0.

Before leaving the operator U it will be couvenient to point out that hetter
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bounds on its matrix elements than inequality (111¢) can be obtained. In particu-
lar,
I eru ]l < 0.447. (121)
To prove inequality (121), observe that in consequence of Egs. (107), if
E =I,Y,0rz
d

Cﬁaus + pran® = —M\y fv B()-[u x Apul

‘ <% + PV1> 0111E

For the particular velocity (111b), as has been remarked, the m(f) oceurring in
Eq. (33) is 1, s0 || B(t) || < || B(0) || ¢, and therefore from inequality (122)

80

Shallu x Apa || [ BO) [ (122)

—pvyt

t 1
a1 <180 | (5 Yl w x Apal (123)
14+ o
The velocity (111b) and the functions p;y; are simple enough that the norms

|2 % Apu| can be computed exactly:

lu x Apua ||* = i jy r'(1 — )" sin® 87, (cor?)

47 (129)
0 = ®Pcos’ 8 + Q1 — 2% sin® 6];
if&g=wxory
3
9 2=_f4_22-4 2 .2
lu x Apa || w T (1 — )" sin” 0 cos” @5, (amr) (125)
1@ = A 4 cos’6) + (1 — 2/°)% sin” 6].
From the values of these integrals
t_ —pr1tT]2
ladt P < BO I [e—‘i—] (0.0687). (126)
£ 1 + pm

If the motion is performed very rapidly, p is very small (see Section 6¢) so the
term in brackets in inequality (126) is essentially ¢ — 1. Since the sum on the
left of that inequality is || ®UB(0) ||%, inequality (121) follows immediately.

(c) RoraTiNnGg THE EXTERNAL DipoL.E MOMENT WITHOUT MOVING THE FLUID
SURFACE

The “new coordinate axes” introduced at the beginning of subsection 10b
will be used also in the present subsection. In subsection 10b a motion was ex-
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hibited which from an initial field B(0) = Ty produced energy in the Py, mode
and none in the P, or Py modes. The initial field Ty, was itself generated in
subsection 9Yb from a field Py (or P,y in terms of the “‘old coordinate axes™),
and the question now arises whether the field P, just produced from T, can
be converted to the original poloidal field Py, .

Once a dipole moment in the g direction has heen produced, it is clear intui-
tively or from subsection 6b that if the whole fluid is rotated rigidly through
90° about the Z axis, the dipole moment will then point in the x direction, and
all of the energy in the Py,; mode will have been transferred into Py . However,
since the fluids dealt with in this paper cannot move at their surfaces, they
cannot perform such a rigid rotation. Can the effects of a rigid rotation be dupli-
cuted by allowing the interior of the sphere S, to rotate rigidly while the an-
gular veloeity in the thin shell 1 — ¢ < » < 1 drops smoothly from its value
—w at r = 1 — etozero at r = 17 Since to duplicate a rigid rotation, e would
presumably have to be small, leading to a large shear in the outer shell, the
answer is not obviously yes. It is yes, nonetheless.

By subsection 6b, the whole process can be viewed from a reference frame
rotating with the same angular veloeity —w, as the interior of the sphere S .
Therefore, the question is as follows: let & be the magnetic operator on ®
produced by the persistence for some fixed time 7 of the velocity u = r xin fw(r)d
where w(r) = 0if 0 < r <1 — eand w(r) rises smoothly from zeroat r = 1 — ¢
to wy at r = 1. Let ® denote the free decay operator 9, . Then can &, be made
¢lose to Gy by choosing € small? As has happened so often already in this paper,
it will be necessary to follow the rigid rotation by a short period ¢, of free decay
in order to achieve the desired conelusion, which ix

lim | DG — ®Ra) | =0 if &> 0 (129
e>0
I'or concreteness it will be assumed that in 1 — ¢ < r < 1,
we(r) = @ (C—tLi_e) , (12%)
€

[and, of course, w(r) = 0if 0 < » < 1 — ¢ although the results would be the
same except for numerical coefficients if w.(r) were any piecewise continuously
differentiable function whose derivative did not become very much larger than
¢ ' wy, the minimum required to get from zero to « in the short interval 1 — ¢ <
r < 1. If the angular velocity (128) persists for & tume ¢, it will be shown that

1/2
I DR R — Ro) || < 6651 <‘””t>[1 + =+ = + -+- 19] (1292)
™

1 ‘)K1
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where k; = 2pmf, , and

| Dus(®e — ®o) || < 131472720 (ﬂ)(a&ﬁ)

T ™

56 . 56 1 112]”" (129b)

14
where k; = 2pafy .

To prove relation (129a), let B(¢) be the field produced from B(0) by the ac-
tual motion (128), while B°(f) = ®oB(0) is obtained from B(0) by free decay for
the same time ¢. After motion (128) and a free decay for time ¢, the poloidal
energy remaining in the difference field ©,,[B(t) — B%(#)] is, in an obvious nota-
tion,

| Du®(®e — R)BO) | = l%l [Pinn , P(H) — P°(D)] |* e2Mnt2,

If w=rB = A’, then | (Pimn, P — P) | = Ao | Dimn, w — w°) |.
Defining
ylmn(t) = (plmn y W — ,w()) and kln2(t) Z l Yimn l

then
| DuE @ — R)BO) 1 < 20 Nk () 2,
In

To estimate k() multiply the equation for the poloidal scalar of the difference
field,
a(w — w’) o2 ow

0 = — PR—
Y oV (w w) %) 3%’

by pima* and integrate over V, obtaining

(d + 20)\17») ylmn(t) —f O.)——~ plmn = —im /; wwplmn*-

Multiply this last equation by ym..*, add the complex conjugate equation, and
sum over m. The result is

( + 2P>\ln> kln (t) —’Lf ww Z m(ylmn pzmn - ylmnplmn)

et
1

> M(Yimn*Pimn® — YimnPimn)
m=—1

1 1/2
< 2k ffo |l sup | 2 g |

<ol llwlsup
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S0

((‘52 + W> k@ < U ol lw | sup [ 2, | pom *3]

m=—1

Since £,,(0) = 0, inequality (65) implies that

k() < tllwll |l ®B(0) || L sup [ 2, | P | ]

m=—-1

and

| DR — R)BO) |°

<t

l:bup Z | Pimn |:l e 'p)""’2' (I%O)

m=—1

From the definition (128), || o ||* < 4rw’e/5, so there remains only to evaluate
the sums in the expression above.
In consequence of the addition theorem for spherical harmonics,

! w2+ 1
Z[yl r: +“7

me=—1 41{‘
S0
2 204+ 1 jzz(al—l,nr)
m=2— I P i l(l + 1) < 47 > al,l,nzjﬁ(al_hn)'
Since (Ref. 28, p. 50) for any x and [ > 0
AN 1
Ji@) = (=9 f e'"Py() dt
2 I
an application of Schwarz’s i Sy P < (20 + 17U It is shown
in Appendix I that, if [ > 1,
23} 1n2j12(az ln) > “‘]— (]31)
- YT 1 AR

Therefore

Z|lenl (%?)1

m—1 BRI+ 1)
and from inequality (130),
’3

| D, ®(Ge — R) [[* < (w1t> ( )(1 1) Z:(l + 104

The sum in this inequality can be bounded by means of an argument essentially

Z arya' exp —2pa; 1, .
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the same as that used to bound the sum in inequality (68). Therefore the details
of this argument will be omitted; its result is inequality (129a).

To prove inequality (129b) is somewhat more troublesome. The toroidal
energy in the difference field ©,,[B(t) — B°(f)] resulting after the motion (128)
has persisted for a time ¢ and then the fluid has been motionless for a time & is

H S)tzs(cple - G’zo)B(O) H2 = l; ] [Tlmn, T(t) — To(t)] |2 e‘ZPMlntz

- l; PA+ D° | Qimn, ¢@) — ¢@O] |7 21"

in an obvious notation. Now let ¥1mn(t) = [gims , ¢(t) — ¢"(1)] and
1
klnz(t) = —Z—l lylmn(t) |2.
The equation for the toroidal scalar of the difference field is, in the present situa-
tion,
i) 2 0 >0 aq
&(q—q)—pV(q-—q) r[sme +§;,—2p1(r,t)lo]—wé;

where
p= IZ plm(T, t) Ylm(aa ¢)

Multiplying the differential equation by ¢u..* and integrating over V gives

(Gt o) o = [ [ Gton sin o ]| 5 ) (58) — i [ it 22 s

If this last equation is multiplied by ¥im.* and the result summed over m and
added to its complex conjugate, one finds

d 2 ap __]l: : qimn ylmn + q1mnylmn]
(c_i_t + 2P#ln> ki = fV (60) [Sln 0.70(71'7“) m;_l Go(ar)

l * *
. - mn mn mnlf lmn
_zf q"’JO(""T)l:ZZmQZ Y _ Qimal1 :|
v m—

Jo(wr)

Therefore

Pe]
(%t + 2pmn> b? < H % H

+ gl [ wjo(ar) [ sup

ZZ qlmn Jlmn + qlmnylmn
m=—1 Jo(wr)

sin 0 — ]o(7r7‘) sup

Gimn ylmn — Qimnlimn
m .
Z Jo(r)
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Nchwarz’s inequality for (20 + 1)-dimensional spaces then implies

1
(i o)

< {122 Lo itwn |+ 11l Toiden o[ 35 2T

m=—1 JO(T") \

(132)

Bounds must now be found for all the terms on the right-hand side of in-
equality (132). First || dp/a8| < [|Ap| < 27wl o

3 .,
|2 < gm0
in consequence of inequality (65). Second, ¢ satisfies the equation
d ) do| . 9 2 : ,
q + w —¢ — Vg = Zi; [sm 0 55 + 517 pi(r, DY (,0] ,

from which follows by a now familiar argument that

d Edw“i . p
- 2 <sup | —— | || sin 6 =
((lt + pu_) l¢l < sup || sin 0 TRE

and, since 1 g(0) || < 27 1 Aq(0) || < 277 | B(O) |,

00 < 5 BO r[“ﬂfwsup?i"]
] *dl“

Third, from the form (128) of w,
it | < ()" e

l 4<7F>'2w61,2
=3\ o

E
1 sin 0 — Jo( r)
and

Fourth and last,

!

QImnr B — (Zl + 1) 2 i.jl(alnr) %2 1
Jo(wr) dr S U+ D Jo(ar) | ()

It is shown in Appendix I that if I > 0and 0 < r < 1,

m=—1

jl (alnr)
Jo(ar)
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qlm'n
Jo(ar)

This and inequality (131) imply that
1 1/2
i 2771/2 < (1_4_8 1/2 (l + Q) A
e “\ 7 Dl 4 1)

The bounds obtained above for the terms on the right side of inequality (132)
lead, since k;,(0) = 0, to the following inequality:

1
k() < €7 | B(O) | <1 48)”2 ‘i(it‘l)— {4« (10> ) (w—lt>

TR+ 1) .
1/2
2 fwrt) fwit + ¢
+Z<105) ”(7>< - >}

| D30 — @IBO) | = 28 + Dk’ O,

Since

and since for any a and b, (@ + b)® < 2a® + 2b%, it follows that

| Dus(®e — ) | 3(16”) (1.48¢) (“"t) A +(105) (1.48¢) (“’”) (“lt: 6)28,

where

4= ); el (1 + 14) (U + DY exp (—2pa’ts)
and

B = 3 (L + 38) (+ D’ exp (—2pa’h) .

The sums 4 and B can be bounded via the methods used to bound the sum on
the right of inequality (68). Inequality (129b) is the result of such a calculation
in which no great effort was made to obtain a close bound; the reader could
produce smaller bounds without great difficulty.

In rotating a dipole moment into a desired direction, it will never be necessary
to use an angle of rotation wif larger than = radians, so wif/r may be replaced
by 1 in inequalities (129). Equation (127) then follows immediately. Therefore,
even if the fluid’s surface must be held stationary, all the magnetic effects of a
rigid rotation can be obtained by rigidly rotating the interior of a sphere S;_,
allowing a large shear to develop in a thin outer shell, and afterwards leaving
the fluid motionless for a short time.
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11. A CLASS OF SELF-SUSTAINING DYNAMOS

In this section a set of conditions on a fluid motion in a sphere of unit radius
and unit resistivity will be stated which are sufficient to insure that that motion
can maintain or amplify the external magnetic dipole moment due to electric
currents in the fluid. The results of Sections 4 through 10 will then be used to
show that motions exist which satisfy these sufficient conditions, and such a
motion will be constructed.

(a) Some CONDITIONS SUFFICIENT FOR SELF-REGENERATION IN A DYNAMO

Suppose that all the modes of free decay except those in ®," are regarded as
“contamination.” To be precise, if a field B has the form

B = «(P, + R), (134a)
where Py is in ®," and
| Pyl =1, | R <, (134h)

then the field B will be said to have a “level of contamination’ no greater than r.
Consider a fluid motion whose magnetic operator X amplifies Py; without

raising the level of contamination. That is, if » is small enough, there exist num-

bers « > 1 and #* < 7 such that if R is any field for which ' R | < r then

:K:(Plzl + R) = K(P] + R/)

where Py is in & and || Py || = 1, while || R" || < /. Any such motion permits
the maintenance of an external dipole moment in the z direction forever. This
fact is obvious if rigid rotations of the fluid are permitted, since Py can then he
rotated into the position P, by the magnetic operator ©,,® corresponding to
such o rigid rotation requiring a time £ . And as pointed out in Section 10e,
even when the points of the fluid boundary must remain fixed, fluid motions
can be found with magnetic operators &, such that

Im || ® — DR = 0.

€0
Therefore e may be chosen so small that ®K(P.; + R) = «'(Pix + R”) where
« > 1land || R” | < r. The motion whose magnetic operator is K can be re-
peated indefinitely (the axis of rotation of the operator ®. may change with
each repetition, but the angle of rotation will never exceed 7) and after every
repetition the external dipole moment will have mcreased in magnitude while
preserving its direction and the level of contamination of the magnetic field will
have decreased.

But are there any motions whose magnetic operators X increase the external

dipole moment while decreasing the contamination level? Suppose that a con-
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tinuum of motions y,(x, ¢), 0 < ¢ < 7, is given, one for each 7 (these motions
might, but need not, be obtained from the persistence of some steady velocity
for various times 7). Let ‘U, be the magnetic operator of the motion yy(x, p 't),
0 < t < pr, where p is a small number. Suppose y:(x, t), 0 < ¢ < t, is another
motion, with magnetic operator U. Suppose that the operators U and . satisfy
these conditions:

®UV,Pin = € ""Pyy (135a)
350 P1y = arTin, @ a nonzero constant; (135b)
| @10, || < pe™™", p a constant; (135¢)
|| 30.Piun || < B7, 8 a nonzero constant; (135d)
| D4, — )0, P < lglth, ) + gt , 1], (135e)

where ¢;(t; , 7) and ¢(f:, ) are functions of 4 and 7 which remain bounded as
t, and 7 become large, but may be unbounded for small 4 and 7;

| ®»UTin | = 7,7 a nonzero constant; (135f)
lu|l < u, u aconstant; (135g)
| @l <A, A a constant. (135h)

Then r, £, t2, and 7 can be chosen so that the operator
X = D,UD,, 0, (136)

decreases contamination levels and increases external dipole moments for all
fields Piy + R with contamination levels below r. To see this, write the field
(P, + R) in the form

D,UD,, 0, (Pix + R)
= DLEUD,5H0,Pry + D,®1UD[C10(Piy + R) + (3 — 3) 0P
+ (I — ®DUR] + D, — CHUD,[PV,(P1r + R)
4 3,0.Piy + (G — 32)0,Pin + (I — ®)U,R].

(137)

Equation (137) is simply an identity, except that the terms (¢ — @,)0U.-Pin
which ought to appear there have been set equal to zero on account of Eq.
(135a). The first term on the right in Eq. (137) is ayre " "*"Py where P,/ =
v '@ UT o is a field in ®” for which || Py’ || = 1. The first of the two terms
involving brackets on the right in Eq. (137) is a stray field in ®;" and the second
is a stray field orthogonal to ®&,". The operators before any term in Eq. (137)
display its origin and subsequent history, and permit the application of inequali-
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ties (135) In order to estimate the size of the stray fields. In fact, it is relatively
simple to show from inequalities (135) that

OV, UD,V(Pryn + R) = ¢ Mayr|PY + P+ X),  (138)

where Py and Py” are in &,", X is orthogonal to ®,", | Py " = 1,
2 2wg—vy)1—2pv)7 . 2 1.2 _ 2
PP < <A> e atre) +[r<fl‘7+ q;’> + w‘”’—'”ﬂ"l} } (138h)
ay/ | T 7" )
and
,[ XH.Z < 62(“»./2:12 _I-L : 62(,/2—”1)[1_20”11(,£,+ Ip)
T ay 7
2 1,2 2 ) " (138¢)
() e ] [ (8 4 ) ]
T P
Let f be any number between zero and one. If it can be arranged that.
P <7, (139:)
1X[ <@ =7, <, (139b)
(1 = fayre 17 > 1, (139¢)

then the field Py = (1 — )Py + Py is in &, and
L P S +0/A =1,
while | (1 — /H7'X || < " and
K(Pin + R) = ¢ ayr(l — [Py + (1 — f)'X];

thus indeed % decreases the contamination level and increases the dipole mo-
ment. Therefore, it remains only to show that r, &, t2, and 7 can be chosen =0
that relations (139) are satisfied. To see that this is possible, let g and & be any
numbers hetween zero and one. Choose #; 3o large that

N (1402)
ay

Then require 7 to be larger than some lower limit r, and choose r so small that
ifr72> 1

2 1/2
r<(’—{, + qf) < f(1 — b (1401)
=

With this choice of 4 and r now choose r so large that + > rp and

e2(v2—v1)t1~—2pvlr(1 + rp) < |

— h. {(140¢)
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Inequalities (138b) and (140) now imply (139a), and r, ¢, are fixed while r must
be larger than some lower limit 7; . Let 7’ be any number less than the r just
obtained. Then fix 7, at a value so large that inequality (139b) is satisfied. Finally,
choose 7 so large that » > 7, and that inequality (139¢) is satisfied. This com-
pletes the proof that if W and U, satisfy the relations (135), then the fluid mo-
tion (136) purifies and amplifies fields P;; + R whose initial levels of contamina-
tion are sufficiently low; consequently, the motion (136) constitutes a
self-sustaining dissipative dynamo.

(8) T ExisTENCE OF FLutp Motions Waich SatisFy THE Conprtions (135)
SUFFICIENT FOR DYNAMO MAINTENANCE

Motions for which the coefficients in inequalities (135) have been computed
in Sections 4 through 10 are as follows: U, is the magnetic operator of the mo-
tion resulting from the persistence for time pr of the velocity

u = p *(1 — %) sin 6 cos 0

in the given fluid of unit resistivity, or the velocity u = +*(1 — ) sin 6 cos 6
for time 7 in a fluid of resistivity p. The magnetic operator U is one of the opera-
tors al,° discussed in subsection 10b, whose norms are less than e and whose
matrix elements are very close to those of the operator U of that subsection
obtained by allowing the velocity (111b) to persist for unit time in a perfectly
conducting fluid. With these magnetic operators, the constants and functions
appearing in relations (135) are as follows:

—PYIT _ TPveT
a = (0.0976) (e ¢ ) [see Eq. (92a, b)]; (141a)
P(V2 - Vl)‘f
p = 3.85 [see Eq. (74)]; (141b)
—PT __ evet
8 = (0.31308) (e ¢ ) [see Eq. (92¢)]; (141c)
p(ve — )7
—2p A(tl) 2(rg—», 2 2 ]
2 =207 (rg—v3) i
@b, ) =¢ [16.8 + 5o+ de A (1 + 57 + ("—21@1)2) ,  (141d)
and
_ T — wv) 0.2682 (1 - 6—2‘”2’)”2]
glts, 7) = AV*(ty) [2.1005( FOTae + LG Sovar , (141e)
where

. 2(vg—r3) t1 5 5 5 :l
A(h) = 6 + 1100¢ [1 T 5@ T @ T Gty
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[see Egs. (73), (75), and (100)];

v = 0.277 [see Eq. (120b)]; (1416)
= ¢ = 271828 ... [see Eq. (111c); (141g)
A <0477 [see Eq. (121)]. (141h)

The following choice of r, #;, ta, 7, p will be found to conform to the demands
(140) with f = 5§, ¢ = 34, and A close to 1: pr = 1.5 X 107% ¢, = 0.2105, r =
1.047 X 107° t, = 0.985, + = 1.2 X 10°. Then the factor by which the velocity
(80) is speeded up is p = = 8 X 10°. Since the maximum value of the velocity
(80) is 1¢, the maximum velocity achieved in the dynamo is 10” in dimension-
less units. This velocity is maintained for a time pr during the whole cycle of
length pr + & + t; so the time average of the maximum velocity is 1.25 X 107,
The root-mean-square of velocity (80) is about half its maximum, giving a
time- and space-averaged velocity of 6 X 10° dimensionless units. By way of
comparison, from inequality (33) the velocity below whick dynamo maintenance
has been proved impossible it »; & 10 dimensionless units. If the mean life 7',
of Py in a rigid earth’s core of radius B = 3000 kilometers is taken to be 15000
years, the unit of velocity is B/nTy = 6.67 X 107° cm/sec, so the largest veloe-
ity which has been proved incapable of maintaining a dynamo in the earth’s
core is about 6 X 107" em/sec while the smallest mean velocity which has been
proved capable of dynamo maintenance is 4 X 10° cmn/sec.

12. CONCLUSIONS

(1) ImprovING THE LowER BoUND ON DynaMo-MAINTAINING VELOCITIES

For the motion (136) for which numerical results have been obtained there is
a gap of almost six orders of magnitude in which it has not heen shown whether
a dynamo can be maintained. Most of this large gap is produced by the loss of
information which occurred every time an equality was replaced by an inequality
in the argument. And the most serious such loss of information occurred through
the decision to treat only ®&; as worth observing, everything orthogonal to it
being called “contamination”. The minimum velocity which can be shown
capable of maintaining a dynamo is materially lowered by serutinizing spaces
with higher decay rates.

In particular, if the stigma of “contamination’ is removed from ®;, then to
obtain a dynamo from the motions considered in Section 11 one must start with
a field of the form Py, + AP, + BT; + R where 4 and B are constants agreed
on before hand, P, and T are fields of unit energy in ®" and ®,", and only the
field R is regarded as contamination and required to have a small norm. The
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effect of the magnetic operator
DL UD,, O
must then be computed in two parts: first, all the parts of
G = (¢ + ® + 3) D, UD, V. (Pyy + AP, + BT,)

which grow linearly with  must be computed exactly (except such terms as can
be shown by symmetry arguments not to interfere with the regeneration of
P..)) and bounds for the remainder of this field must be obtained. Second, bounds
must be obtained on the fields

H = (& + @)D, UD,U,R
and
K=({I- ¢ — @)D, UD,V.(Pra + AP, + BT, + R).

The bound on H will determine the first decay time # and the level r of contami-
nation which ean be allowed, since H must be so small that when added to G
it cannot cancel ®;G. Then the demand that || K || be so small that the final
field has a contamination level no greater than r will determine ¢, . Finally, 7 is
determined by the demand that at the end of the motion the energy in ®" is
no less than it was at the beginning. (There is a lower bound on r arising from
the bounds on G and H but this is much less than the 7 required to give ampli-
fication, and can be ignored.) This program looks onerous, since &, ® ®; is an
11-dimensional space: however, for the motions considered in subsection 11b
only three of the possible 121 matrix elements of U and only nine of U, need be
computed exactly because of the symmetries of those motions. A very prelim-
inary estimate indicates that, by scrutinizing the relevant part of & @ ®,
instead of just ®;, the minimal velocity proved capable of dynamo maintenance
in the motion (136) can be lowered by about two orders of magnitude, to about
6 X 10* dimensionless units; in an earth’s core with longest rigid decay time of
15,000 years, this is 4 cm/sec. It is possible that elevating higher ®:’s from the
incompletely observed contamination into the company of the observed fields
will lower this minimum by another one or two orders of magnitude, but the
author believes that the techniques of this paper, carried out with however large
a space of observed fields, will leave a gap of at least two orders of magnitude
between the minimum velocity proved capable of maintaining a dynamo and
the maximum velocity which inequality (33) proves incapable of dynamo main-
tenance. This question will have to be examined further at a later date.

(8B) TrE AMrLIFICATION FacTOR As A Funcrion oF VELocIiTY

If w and U, are the magnetic operators of any motions satisfying relations
(135), the relation between the mean velocity () of the whole motion and the
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average growth rate (x) of the dipole moment per unit time can be found from
inequality (139¢). The time for one full cycle of the motion (136) is pr + #; +
t» while the factor by which the field Py has been amplified during that time lies
between (1 — Payre” V2™ and (1 4+ NHayre” " *7 where f is the number
between (0 and 1 chosen for inequality (139a). The average velocity is

<'11> = V’r(pr + il + l’;)_.)i‘

where 17 15 a constant (about 0.05 in the numerical example of subsection 11b}.
If pr, t;, and & are fixed, as they must be in the approach of Section 11a, then
this amplification factor is proportional to {(u), and if the amplitude of Py ix
written i the form ¢ the average value of « is (x) = In ((u), where (! is a
constant depending on V', pr, f;, and ¢ . In his dise-and-loop dynamo, Bullard
(33) found () = C'({u) — a) where ¢’ and a were constants. The large com-
parative loss of efficiency which oceurs at high (1) in the dynamos presented
here is a result of the drastic decays required to enable the stray fields to be
kept under control by the crude estimates of this paper.

(¢) Tae Gexeravity oF THE CLass oF Morions TREATED

In this paper the attempt to produce dynamos by means of a velocity believed
to be like that in the earth’s core has been explicitly eschewed. Nevertheless, it
is interesting to ask what motions can, by the method~ presented here, he proved
capable of dynamo maintenance.

Any motion whose magnetic operator has the form (136), its components
satisfying relations (133), has been shown to maintain a dynamo if 7 is suffi-
clently large (the toroidal velocity is sufficiently high). For reasons already
pointed out, the free decays 9, and D,,, during which the fluid is motionless,
are essential in the present approach. No such stasis can be expected of the
earth’s core, so this limitation must be removed before the present approach
becomes rigorouslty applicable to motions which might be expected in that core.
There are two lines along which the difficulty might be attacked: it might be
possible that approximating a motion by a series of jerks interspersed with periods
of free decay as suggested in Section 6d would lead to a criterion for testing the
ability of arbitrary motions to maintain dynamos. It might also he possible to
obtain hounds on stray fields generated by arbitrary motions which discard =o
little information that no period of free decay is needed to assure that those
stray fields do not grow.

The magunetic operators U, which can be proved by the methods of this paper
to satisfy relations (135) must come from toroidal shears symmetric about the
z uxis whose angular velocities w(r, 8) involve ouly a finite sum of Legendre
polynomials in cos 6. If w(r, 8) is symmetric about the equatorial plane 6§ = =2,
3C,Pir = 0 and the least rapidly decaying toroidal field produced from Pyy by
T, ix 0P = o Tep . This equation together with 3.0.Py = 0 replaces
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equation (135b) for such angular velocities, and then ®.B can never be treated
as a stray field. Otherwise the analysis goes through as in subsection 11b.

The magnetic operator U obtained from the velocity (111) has to recommend
it only that its effects can be calculated explicitly in a fluid of zero resistivity.
The motion is axisymmetric, but about an axis perpendicular to z, the presumed
axis of symmetry of any motions with large scale organization in the earth’s
core. Furthermore, U produces a ®:UTy,; = Py, which has to be rotated back
to the Z direction, a physically unlikely motion. But the demands (135f, g, h)
on U are very weak. Inequalities (135g) and (135h) are an automatic conse-
quence of inequality (33) for any motion whatever as long as its final displace-
ment is fixed. The only real demand on U is Eq. (135f). If this demand is strength-
ened and it is required that ®UT;; have most of its energy in Pi: and very
little in Py, or Py, , then the magnetic operator (136) just as it stands regenerates
P,., , and no rotation is required. Parker’s (14) vortices, which the reader will
be able without difficulty to fit into a sphere using the formation of Eq. (108),
and whose magnetic effects can be calculated from Eq. (109) when the displace-
ments involved are very small, are an example of such a motion. In this example,
a small region of the fluid is made to move poloidally and simultaneously to
rotate about 7, the rest of the fluid remaining stationary. From Egs. (109) the
main effect of this motion is to produce Py, and Py, , but a small amount of
Py, is also produced. A large number of such small disjoint regions is distributed
through the sphere. If the fluid were a perfect conductor, the magnetic operator
of the whole motion would be the sum of the operators of the individual vortices,
and this is approximately true if the motion is executed fast enough when p > 0.
But then if the vortices are more or less axisymmetrically distributed about z,
their individual Py, and Py, ‘productions will almost cancel, and only the Py,
will remain. With this sort of scheme for regnerating Py, from T, there is no
necessity for wild fluctuations in the direction of the external dipole moment
and the axis of symmetry of the internal toroidal field, and the latter field need
not be small at any time during the motion.

It should now be clear that the methods of the present paper are sufficiently
powerful to treat axisymmetric toroidal shears protracted indefinitely, and ar-
bitrary motions of fixed finite total displacement. The most serious limitation
of these methods is their dependence on occasional stasis in the fluid in order to
eliminate insufficiently scrutinized ‘“contamination” fields.

APPENDIX 1. SOME INEQUALITIES FOR BESSEL FUNCTIONS

Despite the extensive asymptotic theory of Bessel functions, very little work
seems to have been done on strict inequalities associated with that theory.
Therefore, it is necessary to provide proofs of inequalities (131) and (133). These
proofs involve Sturm’s theorem in a slightly stronger form than that proved by
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Watson (Ref. 28, p. 518), but his proof can easily be modified to give this stronger
result, so it will not be proved here. The result needed is

Sturm’s Theorem: Suppose that for all z larger than some fixed a, wa(z) > w (),
and d'y/de’ + oy = 0,71 = 1, 2. Suppose also that 0 < ya(a) < j(a) and
¥’ (@) < y'(a). Then in any interval @ < & < ¢ in which y(x) is positive, (1) >
ya(x).

Inequality (131) will be proved first. To conform to Watson’s notation, j,
will denote the first positive zero of J,, and the [th spherical Bessel funetion
(7r/2.17)1’/2J re{r) will always be written j,(x) to avoid confusion. For the mo-
ment, consider inequality (131) only when n = 1. Then that inequality can he
rewritten as

N? ., 2
(V + 5) JvJv+1 (]v) > 1_‘4—87:

Since (Ref. 28, p. 487) j.' < 43(v 4+ 1)(» + 5), this inequality is a consequence
of

v TG > 1.215, (142)

a result which will be proved immediately. Observe that
v
jvz']v-klg(jv) = VZJV’(V)Z + 2 f .l'-]y.l(l') ({Jf

(Ref. 28, p. 135). If » < vsee B < j, and if £ is defined as £ = » (tun 8 — B
then Watson (Ref. 28, p. 521) proves from Sturm’s theorem that

LU B) 5 AW T n®) + BOE @] = R, (1420

cos'? B
where
- (B9 (215t ‘
AQ) = ( 5 ) (142h)
and
_{ 1% >(v”3Jy’(v)> o
B@) = (61,3“%) 760 ) (142¢)

In consequence, if & is the first positive zero of F,(¢) and g, is defined by &, =
v (tan Bo — Bo) then, as Watson (Ref. 28, p. 521) observes, j,° > 1418,°, s0

iy 1/3v893 “Eg 72 ,
f 2] (x) de > % f . A dED) = f Tolvsee ) 4

y sin B cos B
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Since cos 8 > (v/38)",

f " aJ X z) dz > 2 / g—”aF (£) dt.

31/ 3
Thus

%o

TG 2B o [ R de (143)
Since both A(») and B(») are monotonically increasing functions of » (Ref. 28,
p. 260) while £3J,3(8) and F,(¢) are positive between zero and £, it follows
that F,’(¢) is a monotonically increasing function of v; then so is its first zero,
£(v). Since »°J,/(») also increases monotonically with » (Ref. 28, p. 260) the
right-hand side of inequality (143) does likewise. Inequality (141) was proved
by evaluating its left hand side from a table of zeroes of spherical Bessel func-
tions for » = 14, 34, ---, 394, and then computing the right-hand side of in-
equality (143) for » = 414, so below 414 inequality (141) has been proved only
for half-integral values of ».

The left side of inequality (141) turned out to be a monotonically decreasing
function of » from » = 14 to » = 394. The author has not tried to prove that
this situation continues for all », but if it does then inequality (141) can be
strengthened: the left-hand side is greater than its limit as » — o, namely
1.24716 - --. This limit can be computed from various limits given by Watson
(Ref. 28, p. 260) or from the asymptotic expansion for the left side of inequality
(141) given by Olver (36), who shows, incidentally, that when » = « the inte-
gral on the right in inequality (143) can be evaluated in terms of Airy functions.

There still remains the comparatively simple task of proving inequality (131)
when n > 1. Define

yi(z) = xjx) (144a)

and

wlz) = 1 — ;’; D) (144b)

so that Bessel’s equation becomes
d2yl
2 T e@ye = 0. (144c)

Multiply Eq. (144¢) by dyi/dz and integrate from a to b, obtaining

(& + o] - [ % a (145)
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If g and b are both zeroes of y,(x), since dw;/de > 0, y/(a)* < y/(b)*if a < b.
Since inequality (131) can be written as y,1'(a;—y.)’ > (L4817 its truth
for n = 1 implies its truth for all higher n.

Inequality (131) having been proved, inequality (133) must now be dealt
with. Two lemmas will be useful.

Lemma 1: 1> 1, a0" 2 W1+ 1) + o

I'rom the tables of roots of Bessel functions, ay’ > (I + (I + 2) + «° if
[ =1,2, 3,4 Since [(I + 1) + = and an’ are monotonically increasing funetions
of { (Ref. 28, p. 508) the lemma is true if 1 < [ < 5. The inequality
an’ > (L + Yol + 55) (Ref. 28, p. 486) proves the lemma for I > 5.

Lemma 2: If &y/da” + w(@)y = 0, dw/dr > 0, and y > 0 when a < & < b,
while y(r) and w(x) are continuous when ¢ < & < b, and y(a) = y(b) = 0, then
the unique point ¢ between a and b at which %'(¢) = 0 is larger than tu(a + b,

To prove lemma 2, let yo(x) = y(x) and w(x) = w(r) when ¢ < o < b, while
() = y(2c — 1) and o (@) = o2 — ) when ¢ < 2 € 2¢ — a. Then at .+ = ¢,
i = y2 and y’ =y, while in the interval 0 < & < min e, 2¢ — al, wy < wy.
Hence, by Sturm’s theorem the zero of y;, 2¢ — a, ix larger than b, the zero of
ya . This proves lemma 2.

Again defining yi(x) as 25,(2), inequality (133) can be written

ydo) | < 2 6in T8 = §,,00) (14ti)
™ (¢ 75
when
0<zx<an. (146h)

The case n = 1 is again the hardest and must be settled first. As was shown in
Section 10¢, | 7,(@) | < @4+ 1) s0 | yu(x) | < 2204 1) 50| yul2) | < Snle)
if 0 <z < ay/2. To dispose of the other half of the interval (146b) let «, he
the point = at which the «,(z) of Eq. (144b) becomes equal to (r/ay)”. Lemma
1 insures that x; < apn, 0 wi(x) < (w/ap)’if 0 < v < «, and wi(x) > (r/an)’
if £, < 2 < ay . The well-known asymptotic expression for j,(x) when 2 is large
(Ref. 28, p. 199) shows that

hm yl,(aln)g = 17

n->u
and it has already been shown in this appendix that y,'(a:,)’ inereases monotoni-
cally with n. Hence yllan)’ <1 = Su’(an)®. Since yilan) = Splan) = 0 and

a \ e
bln + — bln = O, (14()

da* in

Sturm’s theorem implies that | y(x) | < Sp(x) it &, < 2 < ap .
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Now let 2’ be the point between zero and aj at which y;/(z) = 0. If ¥, < 2/,
then from the preceding paragraph | y:(z) | < Su(z) when 2’ < 2 < ;. And
if < x;, then at least | y,(x") | < Su(z’). To see this, suppose the contrary:
| yi(2) | > Su(@’). Lemma 2 implies that a;/2 < 2/, s0 /(") = 0 > S,/ (@).
Sturm’s theorem applied to Eqs. (144¢) and (147) then implies that | y(x;) | >
Sa(ks), contradicting the result of the preceding paragraph. But now suppose
there is any point z at all for which ' < & < x; and | y;(z) | > Su(z). Then
there is a least such point, a. At a, d | y:(z) |/dx > dSu/dx and | yi(a) | = Su(a),
so another application of Sturm’s theorem leads to the false result | y(x;) | >
Su(xy). In fine, regardless of the relative positions of &’ and «;, | y:i(x) | < Su(x)
if 2’ S x S o .

Since Sy(z) is symmetric about the line = «;;/2 and since | y;(zx) | < | yi(2') |
if 0 <2 < au, it follows that | y(x) | < Su@) if an — 2’ < 2 < ay . But
an — 2 < an/2,s0 | yi(x) | £ Su(z) in the whole range 0 < = < ay .

For higher n, the argument is quite simple, and proceeds by induction on .
Suppose inequality (146a) in the range (146b) has been proved for =». Since
Sw(x) < 8 wplx) if 0 < 2 < ap,, inequality (146a) is true for » + 1 in this
interval. And since ; < ay, w1 > (w/an)® > (7/a)’ when a;, < 2 < ajp1,
while yl'(az,n+1)2 < 1= Sl,n+l’(al,n+1)2 and yi(ainp1) = Sipp (erng) = 0.
Hence by Sturm’s theorem |y;(z) | < S;.(x) when o, < 2 < oyny1. This
completes the proof of inequality (146a) in the range (146b) for all I > 1 and
alln > 1. When [ = 0, that inequality is obvious. Therefore inequality (133) is
proved.
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