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The present paper treats rigorously the dynamo equations describing the 
effects of the internal motion of a bounded volume of incompressible fluid with 
nonzero ohmic resistivity on the magnetic field produced by electric currents 
in that fluid. The procedure involves representing an arbitrary solenoidal 
vector field in terms of two scalars, analogous to the representation of an ar- 
bitrary irrotational field as the gradient of a single scalar. The dynamo equa- 
tions are reduced to scalar heat equations for the two field scalars, the coupling 
between them taking the form of a heat source term. Precise results about the 
magnetic field can be obtained from these heat equations with the help of 
several variational inequalities analogous to Rayleigh’s variational estimate 
for the fundamental frequency of a vibrating system. 

The main result is the explicit construction of a large class of continuously 
differentiable fluid velocities capable of indefinitely maintaining or amplify- 
ing the dipole moment of the external magnetic field. These motions all involve 
periods of stasis in the fluid, and cannot, therefore, be expected to occur in the 
earth’s core. It is believed that it will be possible eventually to obtain more 
exact bounds than those presented here for the magnetic field components 
with high wave number, thus eliminating the need for such periods of stasis. 
The fluid motions shown capable of dynamo maintenance are of this sort: a 
toroidal shear symmetric about the i axis proceeds long enough to produce 
from PM , the lowest poloidal free-decay mode symmetric about that axis, a 
very large energy in TM , the lowest toroidal free-decay mode with such sym- 
metry. During a period of stasis, everything else almost dies out, leaving a 
field which is largely 2’~ . Then almost any velocity which has a radial com- 
ponent and is not axisymmetric about the i axis will regenerate PM and the 
external dipole moment. 

A critique of some previous attempts to produce dissipative self-regenerative 
spherical dynamos is included. 

The techniques which lead to the existence of self-sustaining dynamos pro- 
duce other results about the dynamo equations, most of which are to the au- 
thor’s knowledge either new or not previously precisely formulated. These 
results are listed below. 

(i) Fluid motions in a sphere can be regarded as bounded linear operators on 
the Hilbert space of magnetic fields with finite total energy. 

(ii) The free-decay modes in the rigid sphere are complete in that space. 
(iii) The magnetic effect of a given fluid motion on a given initial field de- 

pends continuously on the resistivity p of the fluid even at p = 0. 
(iv) The magnetic effect of any motion can be approximated with arbi- 
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tmry arcwacy by replacing it by a series of rapid jerks interpcrsed with 
periods of rest. 

(v) The efrect. of a rigid rotation of the flnid is to rotate the magnet,ic field 
while that, field decays as if the fluid were motionless. This efrect can he approsi- 
mated wit,h arbitrary accnracy hy rotating all brat, a sufficiently t,hin shell :II 
the StIrface, even if every point on t,he surface remain. q fixed and :I large ,shwf 
tirvelo~~s in t,he shell. 

(vi I I f  the flnid velocity has no radial component, the poloidal magnetic 
field dw:tys as rapidly as if t,he flnid were at rest. If, frlrther, no poloidal tic~ltl 
is initially present, the toroidal field decays as rapidly as if t.hc fillid \ver~ :~f 
rwt. 

(vii / IIyn:rmo maintenance is impossible if the local straiwrate of the flllitl 
is always and everywhere less than the decay rate of P Irl whcrr the wlocit y  ot 
1 Ii{, flnid is zero. 

1. STATJSMEIGT OF THE J’ItORJ~l:M 

The present’ pnper is addressed to one part of the quextiou of the origiu of the 
earth’s mnF;uetic* field. Gauss (1) in 18:28 used what was t,hell knon~n ahout the 
earth’s surface magnetic field to conclude that the electric currents (or oth(kt 
souwes) which produced it’ were inside the earth. Recent geomagnetic an-\-cys 
illdicak that no more than 2 % of t,he earth’s surface field an he nscrihrd to 
external elec+ric* current’s (9). =Zs Elsasser (3) hns pointed out, if the currents 
inside :L sphere of radius R and uniform electrical condwtivity c we not tlri\,cll 
by :wy sourw of electromot’ive force, the esternzll dipole moment of the magnetic 
field produced by t)hose current’s will decay exponcntiully wit,11 :L mean life of no 
mow than T m’poaR’ seconds, where ~0 is the magnetic permcrthility of frw sp:rrsc’. 

1:or :I sphere thr size of t,he sun with :L conductivity 3s large as wpper’s at 1’00111 

t~cwper:~turr, this mean life is 10” years; thus it is ilot, out of the question t h:it 
t#htr prewnt sol:kr dipole field (,$) was produced at, the birth of the ~111 :1n(1 h:w 
11x1 no time to decay. If, as Elsasser (,5) has suggested, t~urhulcnt ro~r\~cr~ iolt 
dc:st,roys stellar magnetic fields, then the sun would ueed some sort of regrlrw:l- 
tivc me~h;mism. The e&h certainly needs such a mechanism, since for it T ‘,.Q~/I? 
is of the o&r of 15000 years (3), while the paleomagnetic evidence (6) illdiw tw 
that the earth’s surface field has never been orders of m:Lgnittlde st.rong!‘cr ttl:]tl 
it is Ilow. ‘l’hwcfore, a sourw of electromotJive forw must he sought, cxpat,l~~ of 
tlri\kg the illtern: currents which maintain the cwth’s t:stJern:d dipole field. 

‘I’hcw is c+ollsidcral)le widewe (7) that the fluid ill the earth’s (we is mo\.ing 
rcktivo to the m:mt,lC, so that, as Lnrmor (8) proposed, one source of rlcc,troruoti\.t, 
forw might he the Lorcntz elect’ric field u x B SCWI t)y t#hc fluid in t,hc (wrt’ ;IB 

its vc4ocit,y u carries it across the lines of force of thra magnetic field B. 1“or :I 
finitJca \-olumc~ of fluid whose electrical conductivity is fill&c, it is still Iulktlo\vll 
\\-bet htr thaw wn exist such :L “self-regcnernti~,t? d,vn;wno”, :1 soiuw-frw fll iicl 



374 BACKUS 

motion capable of maintaining a magnetic field indefinitely against ohmic losses. 
It is the purpose of the present paper to answer this question rigorously in the 
affirmative. There is a large class of solenoidal velocity fields inside a sphere 
which leave all points on the surface of that sphere fixed, are periodic in time 
(except for short intervals), are bounded and continuously differentiable in space 
and time, and are capable of maintaining or amplifying indefinitely the external 
dipole moment of the magnetic field produced by electric currents in the sphere. 

(B) THE EQUATIONS TO BE SOLVED 

Although the magnetic dynamo equation giving the effects of a fluid velocity 
u on a magnetic field B is well known, the complete system of equations for the 
electromagnetic field in the presence of fluid motion is widely scattered in the 
literature, and some question has been raised about whether the magnetic dy- 
namo equation alone is all that need be considered (3). For completeness, a 
derivation is given below of the formal procedure for obtaining the whole elec- 
tromagnetic field once the magnetic dynamo equation has been solved. 

Let V be a bounded volume of fluid with surface S outside of which is vacuum. 
Denote all of three dimensional space by E. Suppose the fluid has finite isotropic 
ohmic electrical conductivity u and is incompressible. Suppose it moves with 
velocity u(y, t) and that the outward normal component n.u vanishes on S so 
that the fluid always remains inside the fixed volume I’. Then Ohm’s law is 
j = a(E + u x B) inside V, j = 0 outside V. Neglecting displacement current, 
Maxwell’s equations are v x E = - a B/at, v x B = p. j, E~V + E = p, V. B = 0. 
At first sight these equations, which imply ~.j = 0, appear to contradict the 
continuity equation ap/at + ~.j = 0. However, the term ap/at is of order u/c 
times the term v .j, where c is the velocity of light. If u/c is small enough to 
justify the neglect of the displacement current it is small enough to justify the 
neglect of ap/at in the continuity equation. As Bullard and Gellman (9) point 
out, the fact that p can be neglected in the continuity equation does not mean 
that its effect on E can be neglected. The usual argument that inside a metallic 
conductor p dies very rapidly [like e-(ot’ro)] t o zero fails here because of the extra 
term u x B in Ohm’s law. Volume and surface charges will accumulate during 
the motion and will influence E. But Elsasser (10) has shown that the extra 
current produced by the motion of these charges is small of order u/c compared 
with the current computed from Ohm’s law and the Maxwell equations deprived 
of the displacement current. 

The boundary conditions on the electromagnetic field are that B be continuous 
across S (no surface current), that n x E be continuous across S, that n .j = 0 
on S (with an error of order u/c), and that r3B and r2E be bounded at infinity. 
If the conductivity g is infinite, then surface currents must be allowed, and only 
n. B need be continuous across S, while n. j need not vanish there since currents 
flowing into S from V can flow away as surface currents. If u is finite, so that 
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B is continuous across S, then n.V x B is continuous across S, and, since it 
wnishes just outside 8, it does so just inside S :LS well; therefore the condit,ion 
n.j = 0 on S is a consequence of the boundary mnditions on B and WII txx 
omitted from the statement of the problem 

15lirninating E and j from Mnsweli’s equat.ions :I.IK~ Ohm’s Ian-, OIW oht:titlh 

l-he so-wiled dynan~o equntions (9) : 

dB -- = V x (u x B) - L 
at 

VxAxB in V; (ia) 
NJ 

O=cxB iii G - IT; (Ihi 

r,B = 0 in 12;; i Il.1 

r”B is bounded in &; i ItI! 

B is continuous across S if m < x ; (It’) 

n. B is continuous across A\’ if CJ = x . i lfr 

It is now necessary to show that if a solution B of ECIS. (1) has been oht:liwd 
for some prcwrihed velocity field u then that solution grner:ltes :L uuiclue solrltioll 
of the whole system of Maxwell’s equations. 

Since B is known everywhere, a unique vcct,or potential A (~1~ he found SIIV]I 
ht B = T x A, C .A = 0, ;‘A is hounded, and A is cwnt,inuous. ‘i’hc ccln;rtiotl 

E = cp’J’ - u x B (2, 

uniquely spwifies E in 1’ and in consequence of the first, of t,he dynwno wlr~ati(~ll,~ 
(I) thrrc is :I scalar 4 such bhst in 1’ 

In C, - T7 let + be defined hy t,he denumds that i’+ hc bounded, ~‘4 = 0, :wd 
t,hnt, 4 he continuous across 8. If C$ is any solution of equation (:<) in I-, 4 + t’ 
is another, \vhere C is any constant. Then from qwtions (2) alld (ii) in I-, 
$ = Jr) + (’ on S, where .f is a known function WKI C is an unspecified vonst:mt. 
If 40 is the unique harmonic function in G - Iv lvhicah takes the value f(v) OII S 
:md vanishes at infinity, and if $ is the unique harmonic function in c - 1’ 
which takes the value 1 on S and vanishes at infiuity, then in & - V, 4 = tiO + 
Cgb. If t.he c*onst:mt C were known, Eq. (3) would give E in G - V. This con&nt, 
c:tn bth deternlincad from t’he total electric charge Q on the body V, since 

and it is easy to show t,hnt J‘* (n ’ v#) dS cannot vanish. 
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The value of E being now determined in all of &, the volume charge density p 
can be found from p = EOV. E in V and the surface charge density on S 
is eon. (E+ - E-), the superscripts + and - referring to values, respectively, just 
outside and inside S. 

These considerations indicate that any solution of the dynamo equations (1) 
generates a consistent solution of the whole set of Maxwell’s equations with dis- 
placement current neglected, Ohm’s law, and the continuity equation with 
dp/dt neglected, assuming that the total electrostatic charge & on the fluid 
volume V is known. Of course & is a constant of the motion. 

The general dynamo problem can now be formulated thus: solve equations (1) 
in conjunction with the equations of motion and continuity for the fluid. The 
restricted dynamo problem, the subject of the present paper, ignores the source 
of the fluid’s motion and asks simply for the solution B(y, t) of Eqs. (1) when 
B(y, 0) and u(y, t) are given. In particular, are there “physically reasonable” 
fluid motions for which B(y, t) does not decay with time? By a “physically rea- 
sonable” motion is meant a velocity field u continuously differentiable at all 
times at all places in V, for which a bounded positive scalar p exists such that 
dp/dt + v .pu = 0. This paper will make the more restrictive demand v .U = 0, 
or that the fluid is incompressible. The volume V will be assumed to be a sphere 
of radius 1. 

In the preceding section, the symbol p has been used first for t,he charge 
density, and then, in the paragraph above, for the matter density. Both these 
meanings will be dropped, and henceforth p will mean (pea)-‘, which differs from 
the fluid’s resistivity by the factor ~0-l , but for brevity will becalled the resistivit,y 
throughout this paper. 

2. PREVIOUS WORK ON THE DYNAMO PROBLEM 

The present author has given a short survey of previous attempts to construct 
self-sustaining dynamos (11). This discussion will not be repeated here. However, 
further remarks are warranted about three dynamo attempts. 

First, Cowling (12) writes that he is convinced of the existence of self-sustain- 
ing dynamos by the numerical computations carried out b.y Bullard and Gellman 
(9) in an attempt to solve the eigenvalue problem V x V x B = WV x (u x B) 
for the eigenvalue W and the eigenfunction B, given U. Such a solution would 
represent a steady dynamo. The Bullard and Gellman scheme was to expand B 
as a sum of fields fl” (r) B1”(O, 4) where the angular part Bt” is a vector spherical 
harmonic of the form V x YY~” or V x V x rYlnz, Yl” being a scalar spherical 
harmonic of order 1. The partial differential equation V x V x B = WV x (u x B) 
gives rise to an infinite system of coupled ordinary differential equations for the 
flm(r). Bullard and Gellman approximated this system by the sequence of finite 
systems obtained by setting all flm equal to zero above a certain value of 1. They 
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took 1 = 1: 2, 3, and obtained successive approximations VI to t,he true eigcn- 
value TV. Typical values for the TYL they obtained for various velocity fields u 
are II’, = 17.5, IVz = GS.9, IV, not computed; V1 = 22.Ofi, 11’2 not computed, 
I]‘, = tii.4. These sequences are supposed to converge to t)he true values of II’; 
perhaps wh:lt Cowling finds convincing about t,hem is that at, least they are real. 
But, as C’handrasekhar (13) has point’ed out t’hc steady ilwreasc of these :tp- 
proximate values of Tt’ as I increases and the approximation improves may indi- 
cate that in the exact solut’ion an infinite value of TI. is required, or ill othcl 
words that the particular veloc4t’ies u chosen for the c*:d(&tioll cannot m:&t:rill 
:I st.endy dyn:m~o. 

Parker’s paper (14) is an at’tempt to exploit explicitly the suggestion made :IIN] 
rejecated by Elsusser (10) and further examined by Hullard (7) that the m:Lin 
poloidul magnetic field may be generated from :t much larger toroidal field 1)~ 
me:ms of :I poloidal fluid motion (poloidal and toroidal are here used ill tht, 
~cwe of T<ls:wser (3)). The toroidal field itself would be generated by an :lxisyn- 
metric toroidal shearing motion in the fluid (10). Parker gi\res a deLled c~]cu]:r- 
tioli of the &wt of a cyclonic vortex motion in an infinite perfectly wnt]l~c*tilig 
fluid on :t magnetic field which was originally unifornl. He tries t,o show th:rt thtl 
rwistivity of the fluid can in fact be neglected, but his method, :L pcrturb:~tiot~ 
wl(*~dntion iI1 the small parameter p, the resistivity, is not ndrquat~e to t tit, 
pldhYn u111w5 ’ ‘I wnvergence proof can be supplied. probably :t troublrsomc t :I& 
:UK] one he does not attempt. 

A\ minor tliffic*ulty in Parker’s work is his failuw to fit his \.clocait,y fi&]s C’S- 
plicitly into :I sphere. This would cause no misgivings \vere it not dell kl1o\v11 
that singular velocity fields, velocit’ies wit,h point sources for cs:rmple, (YXII m:rill- 

t:tin dy~~:unos. The difficult,!: is minor because 1’:~rkcr’s cyclonic vortic*es (‘:111 
easily lw fitted into a sphere. 

The prilwip:ll diffic&y t,he present author sees in I’arkcr’s approach is th:kt the 
rwl clucstioll :tt issue is the long-term behavior of the magnet,ic field. Since :i 
suc4cwsful tlynumo wnnot be nxisymmetric (Iii, 1 I ), the poloidal flow ivill gel!- 
crate other fields besides the desired axisymmetric poloidal field, and the toroid:l] 
shear flow will transform these in a fashion which m:ry eventually destroy t]lcb 
I\-IlOlC pl‘ows.s, and whose understanding c+on&utes the real difficwlty ill :LI~ 
:11 tempt to \ISC FLwser’s and Rullnrd’s suggrst,ion. l’arker ignores all these str:r> 
tir4ds. 

]Ml:ud :tt~d Gellmnn (9) point’ out a less specific: o]Ijcc*tiol~ to l’arker’s attempt 
to wnstrwt :I dynamo: in t’he absence of corroborativca csperimenta] evidellrtb, 
no such clualitative argument can carry conviction on the dynamo cllIesti()ll. 
FVhnt is needed is either :L proof or a numerical wlculation with every :Ippe;lr;\n(*(’ 
of (wnvergen(‘e. 

l%~t(~helor (Ifi) has argued t’hnt there is in fact esperimellt:ll c\-idence 011 thcb 
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dynamo question. He points out that the equations for thevorticity o = v x u 
in a fluid of kinematic viscosity v moving with velocity u are do/at = v x 
(u x O) - vv x v x o and V .O = 0. If o is identified with themagnetic field 
B and u with the vector potential A these equations are identical with the 
dynamo equations (1). The experimental observation that there are fluid motions 
in which w does not decay is then to be taken to show that velocity fields u exist 
for which the dynamo equations (1) have a nondecaying solution. 

Batchelor advanced this argument only for fluids of infinite extent, and used 
it to conclude that turbulent generation of magnetic fields was possible. Bullard 
and Gellman (9) tried to extend it to finite fluids. For a fluid of finite extent, 
however, the analogy between o and B and between u and A fails because of 
differences in the boundary conditions at the surface of the fluid. These differ- 
ences are presumably irrelevant, as Batchelor has assumed, for times of the 
order of a few mean lives of a turbulent magnetic disturbance whose spatial 
extent is much less than that of the whole fluid [although Cowling (Ref. 12, p. 96) 
disputes even this], but that the boundary conditions can be ignored for times 
longer than the slowest magnetic free decay time for the whole fluid is not so 
clear. 

3. A HEURISTIC DESCRIPTION OF A DYNAMO 

In the published attempts to show that velocity fields u exist for which the 
dynamo equations (1) have nondecaying solutions B their authors have usually 
demanded that u be a velocity which might at least qualitatively resemble the 
actual motion in the earth’s core (10, 17, 9, 14). Since none of these attempts 
was successful, and since the motion of the core is very imperfectly known, it 
would appear expedient to relax this restriction for the time being. In the present 
paper any solenoidal velocity u will be admitted which is bounded and continu- 
ously differentiable everywhere for all time, and which vanishes on S, the surface 
of the fluid. 

With such a wide class of velocities available it turns out to be possible to 
carry out in detail Elsasser’s (10) and Bullard’s (7) suggestion: using an axisym- 
metric toroidal shear flow to produce a large axisymmetric toroidal from a small 
axisymmetric poloidal magnetic field, and then using a poloidal flow to transfer 
some of the energy of the toroidal field back into the poloidal field. Specifically, 
suppose that initially the magnetic field has the form PI + R where PI is an 
axisymmetric poloidal free decay mode with longest mean life in a rigid sphere 
(3). The field PI is taken to have unit energy, and the energy in the remaining 
field R is much less than 1. A rapid axisymmetric shear flow with PI’s axis of 
symmetry will produce from P, a very large axisymmetric toroidal field T1 , 
along with some unwanted fields produced from R. It will be shown that by 
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stopping the fluid motion after the shear has been completed, these unwanted 
fields can he made to decay to a much smaller energy than that of T, , either 
because they have shorter free decay times or because t,hey were not produced ill 
such large amount’s as T, . What remains is a Ail1 large and almost’ pure asisym- 
metric toroidal field T1 . A nonaxisymmetric flow applied for a short, time lvill 
transfer some of the energy of this T1 hack int’o P, . If t,he fluid rnot)ion is stopped 
again for a time P, will decay more slowly than any other fields present, :t11t1 

cvent~ually the field will be a(P, + R’) where the energy of R’ is no greater tlr:lll 
that of t,he original stray field R and the constant a can be made arbitrarily I:rrgr 
by wmg a sufficient~ly rapid and protracted shear flow at the stage of the mot ~OII 
where T, is produced from PI . If all these assertions (~1 be proved, the]) it is 
clear that repet,ition of the motion described above will indefinit,ely maint:rill or 
amplify the external dipole field, since PI is a pure dipole field in the vwuun1 ollt- 
side the fluid. 

When i he argument is presented in detail it will 1~ clear that the axisymmct rice 
toroidal iicld T, need not be regarded as c,ontamirlation; t)hc argument \vill 
work evctl if the second rigid decay t,ime is so short fhnt a large T, is :d\\-qvs 
present t)hroughout t,he whole motion, as long as this second decay tinw is Io11g 

enough to remove all t)he stray fields except T, mrd PI . 
The partiwh~r motion used in this dynamo is clearly indefensible as :I IX’:I- 

sonablc imitation of the actual motion in the earth’s core. However, the nwthods 
used to pro\-e that this motion does maintain B arc of sufhcklt generalit,v that 
thv author bclir\~es thev can be applied to any fluid motion, and he espwts to 
return to this problem in a future publication. The simple dp~lmno preswjt ~1 
here will bc useful primarily because of t)he clarity \vith which it represrvrts at 
lwst OIW physical mechanism for maintaining :III rstcrn:~l magnetic firltl 1)~. 
nir:~ns of fluid motions. 

l’rcvious authors (3, 9) have represented solenoidal fields as infimte scrims of 
products of radial function and vector spherical harmolliw v x ~1~~“’ :~t~tl 

T x c x rlTc”‘. \\.here lTlm . IS a scalar sphrrical harmolk. Elsasscr (d) has :~lr(wl~ 
observed that every vector field of the form -T x T x rp - T  x rq, M$(~w 

p and y arc any scalars, is solenoidal. In t,his section, t,hcl converse n-ill bc pro\~ctl. 
It will be shon-n t,hat, if V. B = 0 in 8, then for e\.ery choke of origin thew t+t 
unique scalars p and y such that B = -G x (C x rp) - t x rcl while p :IIICI tl 

n\wagc to zero on every spherical surface conccntrk with the urigin. 
Choose :L fixed origin in G and let, r denote the position \wtor in E \\hilv ? is 

the unit vcc%or in t)he direction of Y. Let, A denote the operator r x T. ‘I’ht~ll 

- ih is the usual quantum mechanical angular monlwlt um opcr:lt.or. ‘I’tw foll~\~- 
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ing properties of A follow easily from its representation in Cartesian coordinates: 

AA2 = A; AV2 = V’A; V2A2 zzz A2V2; (4b) 

V.A = A.V = r.A = A.(V x A) = (V x A).A = V.(V x A) 

= (A x V).A = 0; 
(4c) 

V x V x A= -AV2. (4d) 

If r, 19, I#I are the radius, polar angle, and azimuthal angle in a system of spherical 
polar coordinates whose origin is that already chosen, and if i, 6, $ denote unit 
vectors in the local directions of increase of r, 0, and +, then 

AZ-6 

vxA=W1A2-ealar-~Idldr; 
r ae r ar sin 0 &#I r ar 

AZ= ’ a a2 __ - 
sin e ae sin2 e $ + J--- - . 

sin2 e &p ’ 

I a - - 
sin 8 ae sin” 0A2 = A2 sin 0 5 * 

ae’ 

sineA + ‘4 
a+ 

; 

i a A.A = r.V x A = __ - 
sin e ae 

sin BA, - 1 dAe 
__ -; sine a+ 

A.v x A = -!A2A +!ar 
r ’ r ar 

sineA + - ~ 

(54 

(5b) 

(5c) 

(54 

(Se) 

(50 

(5g) 

here A = A,i + Aoh + A,$ is an arbitrary vector field. Let Yl” be a normalized 
spherical harmonic, 

KY4 4) = (- 0” rF>“’ (ii y z1:)“’ P?(cos e)?@, 

where Pl m is an associated Legendre function, 

pl”(z) = (1 - z2Yi2 df” 
2lZ! dzlfm (2 - 1)” if 1 2 0, 1 m 1 5 I; 

(6a) 

(6b) 

=0 if l<O or m< -1. 



Then, :w is well known from the theory of Laplace’s equntiou, 

,(’ I’L”’ = -Z(Z + I j ITI”‘. (71 

If A’, denotes the spherical surfare of radius r concelrtric with the origin, :u~tl if A 
is anp vector field defined on S, , .f :any scalar field defined on iqT , then 

j (A.hf) dS = - j fA.A t/S. (S) 
s r s , 

The reprrsentat,ion of the arbitrary solenoidal field B which is to be obt:\ilwtl 
in t,he present, section can now be w-rit’ten 

B = v x up + hq. (!I) 

If such :t representation is possible for a given field B, Ecp. (4~‘) and (5b) shov 
that the scalars p and y satisfy, respectively, 

h”p = r.B; ( IO:\ 1 

A2y = A. B = r. v x B. (101)) 
To find t.hcse scalars, it will be necessary to invert the operator A’, that. i?. to 
find f when g is known and f satisfies 

n’.f = 9. (ill 

Since A’ is independent of r there is no loss of generulit,y in assuming ;t’ and g 
to be defined on X1 , the surface of the unit sphere concentric wit,h the origin. .In 
arbitrary point on this surface will be denoted by O. It is a vector of length 1 :111d 
is determined by 0 and 4. Elements of area on Sl will be denoted by d’w. 

Equation (8) shows that if Eq. (11) is to hn\Te a solution ,f then y must satisfy 

s 
g d”w = 0. 

s I 

If JC~ is the Hilhert, space of square integrable functions on & , with illnet 
product 

(g1, 92) = j g1*92 dZw, 
s T 

the asterisk denoting complex conjugation, then the functions Iv17” of E:cl. ((ia) 
form a complete ort’honormal set in x1 . The set s1 of functions in 3~~ orthogotlal 
t,o Yt is a closed linear subspnee of x1 , and, as has just been remarked, :I IWWS- 
sary condition for the solubilit,y of Eq, (11) is that g lie in this subspace $ . Then, 
;~lways assuming that, g is square integrable on ‘3 r’I ( it can bc written in the form 
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the series being convergent in the mean square. By Eq. (7), there is a unique f 
in $ satisfying Eq. (11)) and this f is 

f@, c#J) = - 2 k gL 
I=1 m=-2 Z(Z + 1) 

YLV, $>, (13) 

a series which is also convergent in the mean square. To be quite precise, an 
operator hP2 can be defined on the linear space $jl : if g is given by Eq. (12)) then 
A-‘g is defined to be the f of Eq. (13). This operator A-’ is linear, and if g is 
sufficiently smooth, A2AP2g = g and AW2A2g = g. 

Although the above argument shows how Eq. (11) can be solved in principle, 
it is a somewhat clumsy way of investigating the smoothness off. Fortunately, 
the generalized Green’s function for Eq. (11) can easily be determined [see, for 
example, Courant and Hilbert (18), pp. 327-3281, and gives the following ex- 
plicit formula for f in terms of g: 

f(w) = $ S, g(w’) In (1 - 0 -0’) G?o’. 
1 

(14) 

If w is fixed, then 

[ ln2 ( 1 - o 00’) d2co’ = 47x2 
JQl 

where K = [(ln 2)’ - 2 In 2 + 21”’ = 1.04603 . . . . An application of Schwarz’s 
inequality to Eq. (14) then gives 

1 fkd 1 5 K [& 1 / g(d) I2 d2u’]‘IP. 
1 

(15) 

In particular, if g is bounded on S1 , then 

If(o) I I KSUp t1gb.4 j:o’on&l. (16) 

Suppose now that g(r, 0,+) is defined in all of space & and that on each spherical 
surface S, concentric with the origin g averages to zero. Then, for each fixed r, g 
regarded as a function of e and $ is a member of $ , and consequently a func- 
tion f(r, 8,4) can be found satisfying Eq. (11) and given explicitly in terms of g 
by Eq. (14). This function f(r, 8, 4) is defined for every r and hence in all of 
space; it averages to zero on every S, . Equation (14) immediately implies that 
if g is continuous (continuously differentiable) inside any S, then except possibly 
at the single point r = 0 the same is true off. The exceptional point r = 0 must 
be examined separately and in some detail, since the smoothness of the solutions 
of Eq. (11) is critical in later arguments. 

First, if g is continuous at r = 0, since it averages to zero on each S, , it must 
actually vanish at r = 0. Then inequality (16) implies that lim,,o f(r, 0,+) = 0, 
while Eq. (14) givesf(0, 0,+) = 0. Thusf is continuous at r = 0. 



Secbond, if when expressed in rectangular coordinates .r, !I, Z, g is differenti:ible 
at T = 0, then g = LYX + flu + ys + h( T, W) where r-‘h,(r, O) approwhes zero 
uniformly in 0 as r approaches zero. Then .f = K”y = - i z(a.r + /3!/ + 72) + 
h-“/i, and rp’hC’h = h”r-‘h approaches zero uniformly in o as I’ approaches zero, 
again in consequence of inequality (16). Thus f is differentiable at I’ = 0. 

I;iually, suppose y is cont,inuously differentiable at Y = 0. TXffrrentiatioir of 
El. (1-l) gives 

\vhere g’ means g(r, 8’, +‘). From t,hese fa& there must, be a constant 111 such 
t,hnt, for all sufficiently small r 

Since bhis inequality is true at all points in all coordinat,e systems with the same 
origin, o can be fixed on S1 and a coordinate system chosen in which this fixed 
w has polar angle 0 = z/2. Therefore, at, the given 0, which is an arbitrary point 
011 N1 ) 

ivjl <A1(supjgj +supjVyj). t 17) 

If g is cont.inuously differentiable at r = 0, g = ax + /3y + yr + h(r, o), where 
F’h(r, 0) and ~h(r, 0) approach zero umformly in o as r approaches zero. l’heli 
f = A-?g = - lz(cu.r + &J + yx) + h-“h and by inequalit,y (16) r-‘X’h ap- 
proaches zero uniformly in o as r approaches zero, while by inequalitly (17)) 
YA-“~ does likewise. Therefore f is continuously differentiable at I’ = 0 if g is SO. 

The met,hod just, developed for solving Itq. (11) can now be applied to 15(ls. 
(lOa) and (lob). Given an arbitrary solenoidal field B, urliyue scalars p and q 
can :dwnys be found to satisfy Eqs. (lOa) and (lob) and average to zero on every 
S, . P’urthermore, inside any 8, , p will be at, least as smooth as r. B and q at 
least as smooth as r. V x B. There remains the question whether B is given in 
t,erms of p and q by IQ. (9). The following theorem settles this question: 

Thcwcm 1: If a vector field A is defined on every S, in some range 1‘0 < I‘ < ri 
and in that range A, = 0 while &(r, e, $) and it&r, B, cp) are bounded for e:wh 
fised r and are cont’inuously differentiable except possibly at 0 = 0 and 0 = 7r, 
and if further A .A = V-A = 0, then A = O. 

The proof of t,his theorem is straightforward. Let .$ = -In (WC 0 + cot 0) so 
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that the mapping (0,+) + (E, 4) is the Mercator projection of the surface of the 
sphere X1 onto a plane. Then sin e(a/ae) = a/at, so since A, = 0, V-A = 0 is 
equivalent to a(sin &&)/a[ + a(sin ~A,)/&#J = 0, while A.A = 0 is equivalent 
to a(sin t&,)/af - a(sin Us)/@ = 0. In the plane of the complex variable 
z = t + $ these are the Cauchy-Riemann equations for the function f(z) = 
sin B(A+, + i&), which must therefore be an entire function of Z. Since f is 
bounded, by the Liouville theorem it is constant, and since as 5 + + m, f + 0, 
that constant must be zero. Hence Al = A# = 0. 

Applying theorem 1 to the vector field A = B - v x hp - liq, if the scalars 
p and 4 are defined by Eqs. (lOa) and (lob), Eq. (9) follows immediat’ely. Pollow- 
ing Elsasser (5) we call a field T toroidal if it has the form T = hq and a field 
P poloidal if it has the form P = v x Ap. The theory of A-” shows that if q 
and p are required to average to zero on every S, they are uniquely determined 
by their fields T and P. Theorem 1 and Eq. (lob) show that a field T is toroidal 
if and only if V. T = i?. T = 0, while theorem 1 and Eq. (lOa) show that a field P 
is poloidal if and only if V. P = A. P = 0. The representation (9) can be sum- 
marized by saying that every solenoidal field is uniquely expressible as the sum 
of a poloidal and a toroidal field. 

5. THE SPACE @ OF REALIZABLE MAGNETIC FIELDS 

(A) FLUID MOTIONS AS LINEAR OPERATORS 

Suppose that the Lagrangian description of a certain fluid motion is given: 
that is, the position y(x, t) at time t of the fluid element which was at position x 
at time zero is given for all x in V and all t in some finite interval 0 5 t 5 to. 
If the resistivity p of the fluid is zero and the initial magnetic field B(x, 0) in the 
fluid is given, the final field B(y, to) produced by the fluid motion is completely 
determined by the function y(x, to) and is independent of y(x, t) for 0 < t < to 

(19). If p differs from zero, B(y, t) depends on the whole fluid motion. A useful 
way of visualizing this situation is as follows: let ZD denote the space of all con- 
tinuously differentiable volume-preserving transformations y(x) of the region V 
onto itself [the fluid point x is moved to the point y(x)]. Then the fluid motion 
y(x, t), 0 5 t 5 to , is a continuous path in D whose endpoints are the transfor- 
mations y(x, 0) = x and y(x, to). In a fluid of zero resistivity p the effect of such 
a motion on magnetic fields depends only on the endpoints of the path in ~0; if 
p is positive, that effect depends on the whole path. 

If B(x, 0) is an initial magnetic field, the final magnetic field B(y, to) produced 
from it by the fluid motion y(x, t), 0 < t 2 to , is obtained by solving the dynamo 
equations (1) for B(y, t) using 

aY(x, 0 
U(Y, t> = --g- (18) 



:IS t,he veloc*ity in those equations. The spatial differentinl operators in the dyn:mw 
quntions refer to y, the instant,uneous position of :I fluid element, rat,her than to 
x, its initial position. Since t,he final field B(y, t,,) depends only on the illiti:ll 
field 23(x, 01, the resist,ivity p of the fluid, and the motion y(x, t), 0 5 t 5 fll , 
that fluid motion van he regarded 21s an operato :vz,, \vhich transforms t fw 
initial field into the final one. This operator is dcfincd hy the eclllation 

3K,B(O) = B(fo). i I!)) 

Sinw the dyllnmo equations are linear in B when the motion y(x, f), 0 _< f < fi, , 
is given :L priori, the operator :SZ, corresponding to that motion is linenr. t<t!g:trd- 
ing the motiwl :IS :L pnt,h in 51, :VZ~ depends only 011 the endpoints whik :vz,, 
dcpcwds on the whole path. 

(‘loser :rt tention must now he given to the sp:we on which N, operatw. This 
sp:wc \vill 1~ denoted by CB and will vousist of all m:lgnc4ic fields which are :~llon~- 
a\+ initial fields for the dynamo equations (1). A field B(X) n-ill he in the sp:tc~~ I\< 
if it, satisfiw all the following vondit,ions: 

r”B is bounded in G; (“Oa j 

B is cwntilluous in 8 and continuously clifl’erentinhlt~ ill 

& - 1’ :~nd 1’ aeparnt,ely; (201)) 

T x B = 0 in G - I-; (L’OC. I 

v.B = 0 in &. (“OCI 1 

If B, and B2 are :my two swh fields in CR, an imwr product 

@I, B,) = 1 B,*.B, 
i: 

can he defined since the integral is finite. The asterisk denotes complex conjuga- 
tion, it being expedient to admit comples-valued B’e. In terms of this imwr 
product, thrl usu:~l norm may be defined: 

/I B /! = (B, B)“‘. (“2 i 

For obvious re:lsons, 11 B /(’ will he called the “energy” of the field B, even though 
it’ differs from the usual energy hy :L factor 2~~) . This norm h:ts t,he espcc~tvcl 
properties of :L length: 

‘1 B !I > 0 and [/ B 11 = 0 if :md only if B = 0; (2:i:l ) 

/I cd? I/ = I a I II B II f or any complex scalnr a; (ZU)) 

11 B, + B? !I 5 j/ Bj /I + I! B, I/ (the triangle ineqwtlity). (2:k) 
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Finally, the inner product and norm are related by the usual Schwarz inequality 
(Ref. 18, p. 2): 

I @I , B2) I I II BI II II B2 Il. (234 

By means of the inner product (21) the space 03 can be completed to a Hilbert 
space, a fact which will be used only to invoke much of the elementary terminol- 
ogy of Hilbert space theory (60). In particular, throughout the present paper 
two fields B,(x) and B4x) will be called orthogonal when (B, , B2) = 0, rather 
than when B,(x) . Bz(x) = 0 at every point x of space. 

(B) THE THREE SPACES USED IN THE PRESENT PAPER 

To avoid confusion it is necessary to list the three different spaces of functions 
which will be used in what follows, and to make clear the relations among them. 
First there is the space Si defined in Section 4, consisting of all square-integrable 
scalar functions g(w) defined and averaging to zero on the surface of the unit 
sphere S1 . Second there is the space S of all scalar functions g(r) defined and 
square integrable in the interior V of Si and averaging to zero on every S, for 
which 0 < T 5 1. Finally there is the space @ of vector functions defined in 
Section 5a. In each of these spaces an inner product is defined: 

(gl , g2)1 = l, gl*g2 d2u if gl and g2 are in $11 

(gl, g2) = l g1*g2 d3r if gl and g2 are in S; 

(B1, B2) = / B1* * B2 d3r if BI and B2 are in (8. 
& 

The norms II g II (9, g)“2 can be defined in S1 and 6. In terms of these inner 
products and norms, S1 and S are Hilbert spaces while @ can be completed to a 
Hilbert space. Equations (23) apply to all three spaces. 

Two elementary concepts from quantum mechanics or Hilbert space theory 
will be essential in what follows, namely the bound of a linear operator and 
decompositions of a space into orthogonal subspaces by means of the orthogonal 
projections onto those spaces. These ideas apply to any Hilbert space, and in 
particular to s1 , S? and a. Since only the definitions are required, these are 
stated in a short space below for readers unacquainted with them. 

(c) BOUNDS OF LINEAR OPERATORS 

Let x be any linear space with complex scalars on which a norm \I h \\ is 
defined having the three properties (23a), (23b), (23~). Let m be any linear 
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operator on X. The “bound” of this operator is conventionally defined as the 
smallest positive number m such bhat for every vector h in SC. 

The ~uunbcr m is usuz~lly denoted by )I SK /(; clwrly it is the least, upper ground 
of the \-nlucs ntt,nined by j/ L~3nh Ij for any vector h such that ); h ji = 1. If I’ :IK ‘i 
is finite, :IK is called a “bounded” linear operator. 

IZs an irnnwdiute and well-known consequence of this definitjion, 14;cls. (23:~)~ 
(2:3b), (2:+) :LI‘C taue if the vectors in those eqw~tions :we replwcd by opwttow. 
I~urt~hrrmorc, for every h in X 

I j  3ni1 j  i I i’ :m 11 [I 11 1~ . (24) 

E’inally, if :VZ :~nd EJZ are both linear operators on X :w~ :Rx is their oper:~t~or 
product, t,he operator obtained by applying first, 3t and then 32, it is another 
well-known ;~nd easily derived consequence of the definition of the boultd of at1 
operator that 

11 SZX 11 2 /I 3liY iI iI 37 1’. (2.5) 

There is :I useful relation between the operat)ors on the spuccs s1 nnd s defined 
in Srctiou 5b. If sz is a bounded linear operator on $ it rnny be regarded as :~n 
operator on s in the following sense: if g(r, 0, 4) is any function in s, the11 for 
:Ilrnost rvery fixed r it is in $jl as a funcbion of 0 and C#L Then for every such Gscd 
/‘ the functjion .f(r, 0, $) = XZg(r, 19, 4) is well defined and in s1 as :L fuwtioll 
of 8 :uld 4. Then 

Thus II f 11 = jj :ng 11 I I/ nn //I II g /I. Th ere ‘ore .f is in I-; :ultl w is a bounded f 
linear operator on s whose bound II :VZ II . 1s no greater than its bound // :YK I/, on 
$;I . As :L nl:itt’er of fnct, it, is not, difficult t’o construct exarnplcs to show that 

11 Lm !I = jj :m /II . (~2Ci) 

(D) OlwHoc;on-i\r, SUBSPACES Ah-D OKTHOGON.ZL I'H~JEcTI~x 0~~x4~0~s 

If JC is any complex linear space on which is defined :I positive-definite con1- 
pies-valued inner product (h, , h2) which is linear in h, and satisfies (h, , h,) == 
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(hz , hr)*, then two vectors h, and h, in x are called orthogonal if their inner 
product vanishes. Two linear subspaces ~1 and x2 of x are called orthogonal if 
any vector from the first is orthogonal to every vector in the second. If x1 , 
xp, *.* is a sequence of mutually orthogonal subspaces of x such that every 
vector h in X can be written in the form h = h, + hz + . - - where h, is in X, , 
the series being convergent in the norm I( h Ij = (h, h)“‘, then X is called the 
“direct sum” of x1 , x2 , . . . , and is written X = ~1 0 X:, 0 * + . . The orthog- 
onality of the spaces X, implies that the vectors h, are unique. The mapping 
Qn of x onto X, which sends the vector h into the vector h, is called the orthog- 
onal projection operator of X onto X, . Since clearly \I h, j\ 5 j\ h (I, t$ is a 
bounded linear operator and [I & 11 5 1. Since QrLhn = h, , 

II Qn II = 1. (27) 

The fact that every h has the form h = hl + hz + . . . can be expressed by the 
equation 

1 = 61 + (32 + . . * 

where Z is the identity operator on X. 

(28) 

6. IMMEDIATE CONSEQUENCES OF THE DYNAMO EQUATIONS 

Some shaightforward applications of the techniques already developed will 
now yield considerable information about the solutions of the dynamo equations 
(1). Some of this information will be used later in the construction of a particu- 
lar dynamo, and all of it illuminates the general behavior of dynamos. 

(A) THE BOUNDEDNESS OF ‘i&, 

The reason for the discussion of boundedness in Section (5~) was that the 
operators XZ, corresponding to fluid motions y(x, t), 0 I 2 I fo , whose velocities 
u(y, t) are continuously differentiable functions of y which vanish on the fluid 
surface S are in fact bounded linear operators on CB. The present subsection is 
devoted to proving this fact. 

If B(x, 0) is an initial magnetic field and B(y, t) is the field produced from it 
by the fluid motion at time t, then there is a scalar ~(zJ, t) defined in & - V such 
that B(y, t) = v~(Y, t) there. This scalar can always be extended into V so as to 
be continuously differentiable in all of E. Of course, inside V there will be no 
relation between B(y, t) and +(y, t), and v2+ cannot vanish everywhere in V, 
since it vanishes in & - V. The argument below is for real B; the modification 
required to extend it to complex B is clear. If n is the outward normal on the 
fluid surface S, 
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l<vm if p = 0, n.aB/dt is continuous across S, so the last of the integrals nho\~ is 

:\pplying the vector ident)it,y A. V x B = B. c x A - t. (A x B), this lust 
integral is J‘,? n. [V+ x (u x B - pV x B)-] where the superscript - ~nea~ls 

that the term in parenthesis, not being continuous across S, is to be evaluated 
just inside S. Since VI#J is continuous across S and u = 0 on S, the integral is 
-p J’S [Bf x (V x B)-] .n, where B+ is t,he value of B just outside ,I;. If p # 0, 
Bf = B-, :md if p = 0 t,he whole term vanishes, so in either (we 

In rectnngulsr coordinates, since 0.~ = 0, 

whew II/IX = alat + U.V is the substantial derivative. Therefore 

;; JI 1 B 1’ = [yB.(B.~)~ - p /,B.V x v x B. 

The last integral on the right is 
s 

Iv x BI’- ~ x B) J .n. Therefore 
5 

This equation is valid even if p = 0. It has been derived by Bullard and (bellman 
(Ref. 9, Ii:q. (II)), and n different proof is given above because later a generaliz:~- 
tion of I1:q. (BY) will be needed which is somewhat less easy to derive by the 
method of Bullurd and Bellman. The above proof appears longer than that of 
Hullard and Bellman because they use l’oynt,ing’s theorem without, including 
the justifiwtion of it when the displacement current is dropped. 

I’sing thv Einstein summnt,ion convention, B. (B. V)U = HiBj(dZli/dQj) = 

’ gR;H,(8tr,,‘a!/i + auj/‘dyl). Let m(t) be the :Jgebraic:Jly largest value that any 
c:h:w:wteristk root of the symmetric matrix Ig(dll, ‘au, + d!Lj/d!/i) ever takw 
anywhere in C’nt time t .  Then B.(B.V)u 5 m(t) 1 B 1”. Therefore Eq. (29) implies 
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In Section 7d it will be shown that if V is a sphere of radius 1 and B is in a, 
j-v 1 V x B 1’ >_ T’ JG 1 B 1’. It f o 11 ows that for a sphere of radius R, 

Assuming that V is such a sphere, inequalities (30) and (31) imply 

$ 11 B II2 5 240 II B II* - $ II B II’. 

Recall that p = (~ctoa)-’ and that pvl = (rz/R2p,p) is the inverse of the mean life 
of the longest lived free decay mode for a rigid sphere of radius R and conduc- 
tivity u. Then 

II HO II2 I II B(O) II2 exp 2 It MT) - ,wl do. (32) 

This inequality has been proved (subject to the verification of inequality (31) 
in Section 7) only for spheres. That it is true for bounded fluids of arbitrary 
shape is a consequence of a variational method for computing the slowest ex- 
ponential decay rate pvl for a rigid conductor V of any shape. This method will 
not be developed here, since it is a simple extension of work already published 
(Ref. 11, Section VI). The result is merely to replace r2/R’ by v1 in inequality 
(31), thus proving inequality (32) for a V of any shape. 

Since B(t,J is by definition %&B(O), Eq. (32) can be restated in the language of 
bounded operators as 

II X, II 5 exp It M> - ml dr. (33) 

Wthout inequality (31), inequality (30) implies inequality (33) directly if ~1 
is omitted from the latter. The presence of vl in inequality (33) is interesting in 
that it gives a necessary condition for a dynamo to be self-sustaining. The rate 
>S(au;/dyj + aUj/ayi) of local stretching of the fluid (and the magnetic lines of 
force) in a self-sustaining dynamo cannot be always and everywhere less than 
the slowest rigid decay rate pvl . That some such result would be true was sug- 
gested by Bullard and Gellman (Ref. 9, p. 217) on the basis of a dimensional 
argument. 

(B) THE EFFECTS OF A SUPERPOSED RIGID ROTATION 

It might appear that caution was necessary in applying the foregoing necessary 
condition for field maintenance to the earth’s core, since the boundary condition 
u = 0 on S is met only in a frame of reference rotating rigidly with the earth’s 
mantle. In fact, no such caution is necessary. Let 6%(t) be a proper 3 X 3 orthog- 
onal matrix whose entries &i(l) depend only on time. Then 6%(t) describes a 
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rigid rotation with t,he angular velocity w(f) whose instantnueous rectangular 
components are w; = - 1,6~;,k(d/dt)CRik(t), ciJk being the alt,ernating tellsor ill 
t,hree dimensions. For an observer whose reference frame at, time f is ohtaillrtl 
from some fixed reference frame via the rotation (R(t), the rcctnngular coordimrtrs 
!/I ’ of the position vector whose coordinates arc !I, ilk the fixed frame can he wn- 
puted as y’ = tK’(t)y. X fluid velocity u(y, fj in the fixed frame is, in the rotating 
frame, 

u’(zJ’, t) = a-‘[u(Y, fj - w x y] 

= CR-‘[u(my’, f) - 0 x My’I 

= K’u(cily’, f) - (CR ‘WI x y’. 

The magnetic field B(y, t) ill the firted frame of reference twomcs in the rot:lt ing 
frame B’(y’, t) = a-l B(@y’, t), if all t’he terms iI1 the Lorentz transf(,rnl:ltitill 
of t,he electromagnetic field which are of the order u c or smaller are neglwtrtl. 
It is now :I matt,er simply of substitution to verify that) if B(y, f) md u(y, /I 
satisfy the dynamo equations (1) when spatial derivat.ives refer to y, then 
B’(y’, f) and u’(y’, f) satisfy those equations whell spatial derivatives refer to 
y’. Therefore the theory of the magnetic dynamo w~llat,iotls (1) is ill\wi:ltlt to 
arbitrary time-dependent rigid rotations of the frame of referenw, and if ot1 :ttly 
fluid motion y(x, t) an arbitrary time-dependent’ rigid rotation is superposctl, its 
effect is simply to make the magnetic field due to thr original velocit,y rotatcb itI 
t hc sn111e way. 

The corresponding result’ for the electric, field is fake, and the c4’cc.t otl E of 
:L superposed rigid rotation has been worked out tkwherc (,?I ).’ 

It will ocwsionully he useful in what follow to shortrt~ the time swlc for :t 
fluid motioil y(x, t), 0 5 f  5 to , hy some large factor K;, that is, to replaw tlwt 
motion t)y the motion y(x, Al), 0 5 f 5 F’ fu The int~roductioll of MI wtr:l 
parameter to describe such scaling can be avoided by ohser\Glg that the &‘cc*t 
of the motion y(x, it), 0 5 t 5 C’tO on an initial magnetic field B(0) in :I fluid of 
resistivity p is identical with t’he effect of the original motion y(x, t), 0 5 t 5 t,, , 
on B(0) in :I. fluid of resistivity KC’P. The operator :VL, for t’hr nccrleratcd motion 
is identical with t’he operator XL- lP for the original motioll. This fact cat1 tw 
seen immediately from t’he first of t.he dynamo ecluations (I ) and the definition 
u(y, t) = ayy!x, t)/dt; it, amounts to writing the dyn:uno w(u:~t,iolls in dimet1sioll- 
less form. 

1 A correction is necessary in that paper. The constant f ’ of its PItl. (16) c:mnot Iw ~lr~tc~t~- 
mined. as there asserted, simply from the demand that. thr electric potenti:tl vanish :~t 
infinity. It mtlst be determined from the total charge on thch twly, like the const:IIlt (’ iIt 
Srvtion It) of the present paper. 
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(D) THE GENERALITY OF JERKY MOTIONS 

The motion proposed in Section 3, bounded and differentiable though it is, 
looks quite unphysical, since it consists of very rapid motions followed by 
periods of rest. In this subsection it will be shown that such a motion is the 
first step in an approrrimation scheme by which the magnetic effect of any mo- 
tion whatever can be computed. 

Suppose a fluid motion y(x, t), 0 < t I to , is given. Let 9,(x, 1), 0 5 t 5 to , 
be any other motion with the property that 1 yil - yi (, 

ayi aYi a2yi a2yi a3yi a3Yi --- 
I ! - - ___ azj axi ) axjaxk I I ax&k ’ 

and 
axjaxkaxL - axiax:kaxl 

are all less than E for all x in V and all t in 0 I t I lo. If y(x, t) is regarded as 
a path in the space ~0 of fluid displacements, y,(x, t) is another nearby path, and 
the points on the two paths at a given time t are always close, even though the 
velocities of those points may be widely different. The fluid velocities u(y, t) = 
ay(x, t)/& and u,(y, t) = dy,(x, t)/at can be quite different. Then as E + 0, the 
operator 3nPf giving the effect of the motion yd’(x, t), 0 5 t 5 to , on magnetic 
fields approaches the operator 311, which gives the effect of y on those fields. 

No attempt will be made to prove this result formally, since its value in the 
present paper is only the heuristic one of indicating that the dynamo of Section 
3 is not as special as it seems. The essential idea of the proof is suggested by 
Lundquist’s (19) integral for the resistance-free fluid. 

If the initial positions x = y(x, 0) of the fluid points are used as a system of 
curvilinear coordinates at time t, the rectangular Cartesian coordinates yi at 
that time are given by the Lagrangian description of the fluid motion: yi = 
yi(x, t). In Cartesian coordinates, Lundquist’s integral for an incompressible 
resistance-free fluid is 

Bi(y, t) = $1 Bj(x, 0). 

This equation says that in the system of curvilinear coordinates x the contra- 
variant components of B are constants of the motion. This suggests that the 
dynamo equation be written in the curvilinear coordinates x even when p is 
positive. 

Denote by Bi(y, t) the Cartesian components of B at time t and by bi(x, t) 
the contravariant components of B at time t in the curvilinear coordinates x. 
Then 

Bi(y, t) = 2; bj(x, t). 
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It is a mat’ter of ordinary tensor analysis (2%‘) to show that in terms of the cwrvi- 
linear coordinat.tes x the first of the dynamo equations (1) becomes 

dbi(x, t) 
at 

= pgjkbi;j;k , ( :i4) 

where g ” is the contravariant metric tensor for the coordinates x while b’, , 
denotes :I c*ovariant derivat,ire of b”. The condition C. B = 0 becomes, of CO~IW, 
1)‘; i = 0. 

The right, side of Eq. (3-l) involves g’J, the Christ,oEel symbols 

second kind, and t,heir derivatives with respect, to X. Thus it involves the first, 
second and t)hird derivatives of y(x, t) with respect, to x. It does not involvcb :tl~y 
derivatives of y(x, f) with respect, to t. If y/(x, t) is xny other motion which, will1 
all possible x derivatives up to and including those of order three, is aln-ay.q c~losc 
to the motion y, then the operators on the right, side of Eq. (S-k) will be pr:wtiwll~ 
the same for the two mot’ions. Since ( y’ - y ( is smull, the boundary wutlitic~~\s 
on h’ n-ill be almost the same for the two motions , and in fwt will he idcllt iwl 
if the 14oc*ities of both motions vanish on the surface of thr fluid. Thewfow, the 
magnetic fields b’(x, t) and b’;(x, t) produced by the two mot,ions from the s:Lmt* 
initial field h’(x, 0) will he practically ident,ical. This is th(> (rather fceblci gftil- 
cwliz:~t,ion of Lurldquist’s integral to fluids of finite resisti\-ity p. 

Now given the motion y(x, fj, 0 5 f 5 to , define the motion y/(x, ti :LS follows: 
divide the interval 0 5 t _< f. by /L points tl < t2 < . < f,, . IA K tw sonlt 
fiwd uumber very much larger than 1. Then y’(x, t) = y(x, A?) if 0 5 t 5 A ‘1, ; 
y/(x, 1) = y(x, f,) if ~-‘f~ 5 t 5 tl ; y’(x, tj = y[x7 fl + li(f - /,)I if tl < I 5 1, + 
L1(t2 - I,); y’(x, t) = y(x, f?) if t1 + C1 (I? - /1) _< f 5 t2 ; etc. Then y’ approsi- 
imites y by a series of short, rapid jerks interspersed with long periods of wst. 
I’rom t.hr form of Eq. (:<A) it now follows in the m:umer renxwked :rho\.tb thzt if 
the number II of points of subdivision of the int)ervnl 0 5 1 < to :~ppro:lc*hcs ill- 
fin&y in suc*h a way that the mnximum distawc ! f,+l - 1, ) approwhcs z(w). 
the11 the magnetic field produced by y’ from an initial field C,;(x, 0) ~~cY~I~~Y \r(bry 
(*lose to that’ produced by y from the same init,i:rl field. 

To malw the above proof complete, it’ would be necessary to show that t hc 
solution b’ of Fs(1. (34) depends continuously on the boundary c,onditious :uA 011 
the coeffkieuts in that equation. iYo such c*ompletcness will be attempted hew. 

l’hysically speaking, what has been proved is that smooth motions of the fIllit 
involve no uew magnetic effects beyond :L distortion of the magnetic linw of 
force by the fluid as if it, were a perfect conductor :rnd the decay of the fkltl :w 
if the fluid were rigid. 
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f~) THE CONTINUITY OF 5Tl, AT p = 0 

A rather touchy point was skirted in the preceding subsection. It was shown 
that the effect of the motion y/(x, 2) on a particular initial field bi(x, 0) approached 
that of the motion y as the motion y’ approached y in the sense of that subsection. 
It was not shown, and the author is not sure it is true, that the rate of approach 
is independent of bi(x, 0). This point will not be discussed further. 

A similar difficulty, which must be examined in some detail, arises in connec- 
tion with the effects of a given fluid motion y(x, t), 0 I t _< to , in a succession 
of fluids whose resistivities p are approaching zero. As p approaches zero, does 
the magnetic effect of the motion y approach its effect when p = 0, and, if so, 
is the rate of approach independent of the initial magnetic field? 

Let B&y, t) be the magnetic field produced by the given fluid motion from the 
initial field B(x, 0) when the fluid has resistivity p. As usual, suppose that 
the fluid velocity vanishes on the surface S. Then (d/d)>5 JG 1 Bo I2 and 

(d/445 SE I B, I2 are given by Eq. (29) while (d/dt) JE Ba. B, can be computed 
in the same way as was that equation. Combining these three time derivatives 
in the obvious fashion gives the following equation for the energy of the differ- 
ence field @,(y, t) = B,(y, t) - Bdy, t): 

x @>.<v x B,) + p~[(Bo- - &+I x 6’ x BJ1.n 

where the superscripts have their usual meaning. If besides the velocity u all its 
first derivatives duJ8yj vanish at the surface of the fluid, and if initially Bo = 
Bo+ (as must be the case if B(x, 0) is in a) then B, = Bo+ at all times. The 
identity (V x 6). (V x B,) = 45 1 V x @ 1’ + $5 1 V x B, 1’ - $$ 1 V x Bo I2 
allows the above equation to take the form 

$fS,lel2 
(35) = s ~?(@.v,u+;p/- IV x B,12-;p/ (IV x@!'+IV xBp12). 

Y v 

If m(t) is defined, as in subsection Ga, to be the maximum strain rate in the fluid 
at time t, then Eq. (35) implies 

; s, I e I2 I 2dt> s, I e I2 + P s, I v x Bo I22 



a11 inequality which can be integrated immediat8ely, using the initial c~ondition 

1 ( P(O) 1 = 0, t’o yield 
:: 

where N(r) = /;’ m(7) c/r. If 3~~ is the operator on CK wrresponding to t,hc 111~ 

tion y(x, f), 0 5 f < to , in :1 fluid of resistivity p, then inecluality (136) show lh:lt 
for any fixed B(0) 

lim 11 Y&B(O) - 3?@(O) 11 = 0. (\37) 
p-0 

This is not enough to warrant the st’ronger cwncolusiotl that 

:111d the :tut,hor doubts that this stronger conclusion is t’rue, although he has been 
un:lhlc &her to prove it or to produce a counter-example. 

(In the lnnguage of Hilbert’ space it has been shown that XZ,, is a contillrtous 
fuwtion of p n,t p = 0 in t’he weak operator tlopology but nothing has hew 
proved about its continuity in the t,opology of the operator norms; t)he author 
wnjcc’tures t,hnt it is not continuous in t,he lnt.ter t,opology. 1 

Itwidentally, the foregoing argument, can easily be gener:dizcd to show th:lt 

lim i/ ‘3&B(O) - 3Tl,,B(O) 1~ = 0 
P-PC 

for atly po > 0, and if po > 0 t’his conclusion remains true for velocities u I\-how 
deriv:ltix:es a~;/ayi do not vanish nt the surfaw of the fluid, :I:: long :I? t hta 
\,rloritiea themselves vanish there. 

The modes of free dewy of the electric currents in a rigid sphere of positive 
resistivity p when the displacement current is neglected have been obtained by 
l+%asser 1.3, IO), who used t.he vector sphericxl harmonics first npplied to the 
problem of the electromagnetic behavior of :I c*onducting sphere by Dehyc (2.9) 
:tnd Mic (9J). In problems where they apply, these vector sphericxl harmonicas 
:w usually introduced as vect#or fields which an be shown to satisfy the vccator 
Hclmholtz equation (26, 3, 26). In order t,o make their origin somewhat, clwrcr, 
to establish :L notation, and to illustrate on n simple problem technique:: later 
usc~l in more wmplicated problems, t.he first two suhsectious below are tlchvoted 
to :I discwasion clc TLOZJO of freely decaying currents in a rigid sphere, even thortgh 
this prohletn may now be said t,o have been esh:~usti\-ely treat~cd in thr liter:\- 
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ture. The present section contains no new results, and is included simply to 
collect the many widely scattered results about the problem of free decay which 
will be useful in what follows. 

(A) THE NORMAL MODES OF FREE DECAY 

As usual, the volume V of fluid will be taken to have radius 1 and in the whole 
of the present section its resistivity p will also be taken to be 1. Since the sphere 
is rigid, the dynamo equations (1) with u = 0 completely describe the magnetic 
field B(x, t). Let p(x, t) and q(x, t) be the scalars’ of Eq. (9) for this magnetic 
field: B = v x up + Aq. Then, inconsequenceof Eq. (4d), V x B = - hV2p + 
V x hq and V x V x B = -V x AV’p - AV’q. The dynamo equation (la) 
becomes 

A@-V2q)- V x A(f$ - V’p) = 0 inV. 

Since p and q average to zero on every S, for which 0 < r < 1, the same is 
true of the two scalar functions aq/at - V”q and dp/at - V’p. Equation (38) 
may be regarded as giving a representation of the solenoidal vector 0 in the form 
(9). The uniqueness of the scalars in equation (9) then establishes that, in V, 
aq/dt = V2q and ap/at = V2p. A similar argument applied to Eq. (lb) estab- 
lishes that, in & - V, q = 0 and V2p = 0. The boundary conditions which B 
must satisfy at 81 and at infinity finally reduce the dynamo equations (1) for a 
rigid sphere to the two following sets of scalar equations: For the poloidal scalar 

P9 

ap - = V2p in V; at (394 

V2p=0 in&-V; (39b) 

p and Vp are continuous in &; WC) 

r2p is bounded in E ; (394 

p averages to zero on every S, . (39e) 

For the toroidal scalar q, 

aq - = V2q in V; at (404 

q=Oin&-V. 3 (40b) 

q is continuous in E; (4Oc) 

q averages to zero on every X, . (404 

The two problems (39) and (40) are both heat flows problems in a sphere of 
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radius 1, although the boundary condition in problem (39) is not usual. Equa- 
tions (39) have a system of solutions plrnn(r, 8, +)e-x’“l and Eqs. (40) have :I 
system ylmn(r, 8, +)ePnt, where 

2 l/2 

P ~ 
jlLlJ) 

Irnh = Z(Z + 1) ( ) al-1 ,%.i, b-1 ,n) 
Ylm(O, 4) if 0 5 r < 1, 

(11) 

2 

( ) 

l/2 
1 

= Z(Z + 1) 
I+L Y1”(O, 4) if 1 I r < r; 
UI-1 .J 

:111cl 

yhm = 
2 l’? j,(a,J-) 

( ) w + 1) j1+1(%L) 
Ylm(t9, 4) if 0 < r 5 1, 

(49 

= 0 if l<r<m. 

Here j,(r) is the Zth spherical Bessel function (?r/~A-)“‘Jl+~~~(r), LYE,, is its r-lth 
positive zero, and Yl” is the normalized spherical harmonic (6:~). The decay 
constants are 

Xl,‘ = LYl-Ln2 (131) 

and 
1 

Pin = alli . (431)) 

The indices take the following values: 1 = 1, 2! 3, . . ; M = -I, . . . , 1; /l = 
1, 2, 3, . . . . 

The two set,s of functions plmn and ylmn are well-known to he each complete 
in t,he space $j’ of square-integrable scalar functions defined inside t#he unit 
sphere. Consequently they can be used t,o solve initial value problems for t.hc 
two heat equations, (39) and (40). Because of the representation of an arbit)rary 
solenoidal B in terms of scalars p and y this amounts to solving the initial value 
problem for the dynamo equation (1) when u = 0. 

The vector fields 

Plmn(T, 8, 4) = v x Aplnm , (Gh) 

Tlmn(r, 0, $J) = Aylm (111,) 

are, except for normalizatjion factors, Elsasser’s (3) poloidal and toroidnl funda- 
ment8al decay modes, or normal modes. The field Plmn satisfies v.P~,,,,, = 0 :~ntl 
t hrse condit*ions : 

V x V x Plrn,? = hlnPlmw in I-; 

v x Plmn = 0 in & - I-; 

P 1 nl,L and V(r.P1,,) are cont’inuous in G; 

Tz+?Plnln is bounded in I. (45) 
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The field Tilnn satisfies V. Tlnn = 0 and these conditions: 

VXVXT zrnn = PzJ’z~~ in 8; 

T zmn = 0 in & - V; 

T Imn is continuous in E. (46) 

(B) THE POLOIDAL AND TOROIDAL NORMAL MODES AS A COMPLETE ORTHO- 
NORMAL SET IN 63 

Suppose that Q is any continuous vector field which satisfies the equations 

v x v x Q= VQ in V; 

vxQ=O in & - V; 

v.Q = 0 in 8, (47) 

where v is some real number. Let B be any vector field in 63, the space of ad- 
missible magnetic fields defined in Section 5a. Then by introducing a scalar 
potential C#I for B in the region E - V and extending 4 into V as in the proof of 
Eq. (29), it is a matter of successive integrations by parts to show that 

V /8 Q*.B = v x Q*)-(V x B). (48) 

The vector fields Plmn and Tlmn are themselves in @ and Eqs. (8) and (4~) imply 
that any poloidal and any toroidal field are orthogonal in the sense of B’S inner 
product (al), while Eq. (48) implies that 

(T lmn , T~,mw) = 6w6,,~S,,~ = (Pm , Pvmw) 

on account of the normalization factors chosen in Eqs. (41) and (42). Therefore 
the vector fields Plmn and Tlmn are an orthonormal set in 63. From Eq. (48) it 
follows that if B is any member of 63 which is orthogonal to all the fields Plmn 
and Tlmn , then the scalars p and q in B’s representation (9) are, as members of 
9 (Section 5b) orthogonal, respectively, to all the plmn and the qlmn . Since both 
these sets of scalars are complete orthogonal sets in s, p, and q vanish, so B 
vanishes. Therefore the vector fields Pimn and Tlmn form a complete orthonormal 
set in 63. 

(c) PROJECTIOI"JS ONTO THE SPACES OF FREE DECAY 

Let the exponential decay rates XI, and pin of the normal modes Plmnn and 
T llnn be relabelled vk , in order of increasing size: y1 < v2 < v3 < . . . . Then the 
decay rate y1 is Xol = 1r2, and only the three poloidal modes PM , m = - 1, 0, 1, 
decay at this rate. The decay rate vp is AZ1 = fin = (y112 = 20.19 . . . ; to this 
decay rate belong the three toroidal modes TImI , m = -1, 0, 1, and the five 
poloidal modes PM , m = - 2, - 1, 0, 1, 2. Table I gives the first seven decay 
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TABLE: I 

THE FIRST SEVEN RATES OF DECAY IN A Rrnro SPHERE 

rates vk , together with the normal modes which decay at those rat,+ :tttd ttw 
total number of such modes belonging to each vg . In every case, m = - 1, t . . 1. 

Denote by 6~1~ the subspace of a3 consisting of all linear combination:: of ttor- 
ma1 triodes with decay rate vk . The last row of T:~hle I gives the dimcttsiotl of 
iRj; for Ii = 1, . . . , 7. If k # k’, 6~~ and (& are orthogonal subspaws of o<. ‘I’h(i 
ttorm:~l modes being complete in (B, every B in ($3 c:ut tw n-rittett in the f’orttt 
B = B1 + Br + . wit,h Bk in ajk . Therefore, in the sense of Hwt,iotl (.id), 
(I3 = 031 0 aa 0 . . . aud the projection opernkxs Q onto the sub+paws TV, :II’(’ 
~11 defined and satisfy Eq. (28). Denote by CK,,” that part of CRY; consisting of 
linear contbinutions of poloidal free decay modes, and by ~~~~ that p:lrt ot CV,,, 
consisting of linear combinations of toroid‘tl free dcc:tv modes. Thett c~lc:wl~. ill 

t.he sense of Section (Sd), CB~ = @,I;” @ (R~‘, SO c$\ = CR;’ @ ctil’ 0 (K:” @ t\12” @ 
. . . Therefore the projection operat’ors (ph. and si. onto t,he spacw oi,,” :ttttl 
&ii’ arc \vell defined, and Qk = CPA + ok . 9otci that for some /<, ;ts at X. r-: I . 
c&” = 0 so t,h:Lt &. = 0. The projection operator CP will hc defined :I:: i\‘l + o):! + 
. . . , whil(h 3 = 3, + Sr + . . . . The poloidnl part of B is d’B; its toroid:d part is 

SB. 
The mcnnings of all these projection opernt,ors are quite sitnplc. Supposc~ :ttt 

:u%itmry field B in (R is expanded in t,erms of the free dr~~lp ntodes (44 I : 

NT, 0, 4) = 2 2 2 h&mPlmn(l., 0, 4) + ~)l,,‘nTl,,,,(r, 8, 411. I-i!)) 
1=1 v&=--l 71=1 

l“or a purticular decay rate vk let 1 and ‘n. be c*hosrtt tie that vk = CI-~,~,~ = A,,, = 
Pl-I,,1 . Then VI; is the decay rate of all the poloidal ttorm:tl modes PI,R,, , HI = 
-I, . . *, I and of all the toroidal normal tnodes T1-t,m, , m = - (I - 1 ), . 

(I - 1 j .  The projection operators QL. , CP,~ , & act’ on B ns follows: 

t&B = i alnnPlnm 
l-l 

+ c Ol~-l,,rnfT1-l,a,,r; !.W:i) 
71=-l nt=-(l--l~ 
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If the initial field B(x, 0) in a rigid conducting sphere of radius 1 and resistivity 
1 has the form (49), then by time t the field B(x, t) will have become 

This equation may be written succinctly as 

B(t) = kz eeuktQkB(0). 

If the operator a>, on the space 6~ is defined as that which carries the initial 
field B(0) into the field B(t) that it has become after a time t of free decay in 
the rigid sphere, then clearly 

%t = k$ eeYktQk = k$ evYkt(@k + h)- 

Equation (52) gives the complete solution of the initial value problem for the 
dynamo equation (1) when the velocity of the fluid is zero. 

Every projection operator is equal to its own square, so Qk2 = Qk , Sk2 s Pk , 
sk2 = & , results which are clear also from Eqs. (50). And since @kp and @kfT 
are mutually orthogonal subspaces, QkQkl = @k&l = &&I = 0 if k # k’, while 
@&I = &I& = 0 for any lc and k’. Therefore 

11 at B II2 = k$ II QkB I12e-z”kt, 

and 

11 (1 - QI - * * * Qs)%B iI2 = k=$le-2vk’ 11 QkB 11’ 

< e--2%+lt ,=$, II QkB II2 I e-2”s+1t II B 112- 

From this fact, for any s, 

I( (I - Q1 - . . . - Q.)LD, 11 I e-‘“+lt. (53) 

Inequality (53) is simply another way of stating the fact that if a field is decay- 
ing freely in a rigid sphere, the energy of that field contained in modes with 
decay rate faster than v8 has a decay rate at least as fast as vs+l , a result which 
can also be seen immediately by comparing Eqs. (49) and (51). Similar argu- 
ments establish the inequalities 

Il(S - cP1 - . .. - 6,)Dt 11 5 e-‘“+‘t; (544 

Il(3 - 3, - . . - - 3,)LDt 11 6 eC”+‘t. (54b) 
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Finally, from IQ. (52) and the fact that all the projection operators CPA . ~1~ , 
ci; commute with one another, 

CPI,Dt = zD,(Pk = c +(JJk ; (..%:I j 

&Dt = D& = c-v5A ; (ei.51)) 

QsDt = 33&k = eCklQII . (.X5(.) 

(1)) \~ARI.~TIONAL hXQUALITIES 

Several inequlaities will he needed later which :ze analogous to Rayleigh’s 
(Ref. 97, p. 110) inequality for the fundamental frequency of a vibrating body. 
These inequalities are as follows: let W, he t)he space of continuous, piere\viw 
continuously differeutiahle functions q defined in the unit sphere I,‘, vanishing 
on it,s surface 81 , and averaging to zero on every spherical surfwe L‘iy for whkh 
0 < r 5 1. Then if p is in W, , 

If t,he Cartesian components A,q of Aq are in W, , as will he true, for examplt>, 
when q is continuously differentiable, t\vice piecewise continuously diffcrenti:~l)lr, 
:md const,ant on S, , then 

l:urther, let, W, hc the space of continuous, piecewise continuously differentiahlc 
fwckions p defined in all of &, averaging to zero on every S, , and for xhivh 
r’p is hounded. Then if p is in IV, , 

Finally, if B is in a, 

s 
/v x BI”>ao12 

s i; I B I?. (CiO) 
v 

Inequality (60) was assumed in the proof of inequality (3X). 
To prove inequality (56), let VW, denote the space of all vector functions 

Yy for which q is in Wq . Introduce on W, the usual inner product, (ql , q..) = 

I 
ql*q:, . Introduce on VW, t,he inner product ( Vql , VP,) = 

s 
vyl*.vy!. It 

v r- 
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is well known that the functions [Z(Z + l)]“‘q lmn with 1 2 1 constitute a complete 
orthonormal basis for 131, . If Vq is any vector field in VW, which is orthogonal 
to all the normalized vector fields hEmn = ulnP1~[Z(Z + l)]l’zqlmn then q is orthog- 
onal to all the [Z(Z + l)]“‘q inn and hence vanishes. So, therefore, does Vq. Thus 
the hlmn with 1 2. 1 constitute a complete orthonormal basis for VW,. The 
equation O(Vq) = q unambiguously defines a linear transformation o from 
VW, to W, . Its effect on the basis vectors is Ohlmn = CQ~-‘[Z(Z + 1)]1’2q1mn, so 
o is a bounded linear operator and 11 (3 (1 = &‘. This means that for any q in 
W, , JvI q /* 5 all-*Jv 1 Vq I’, which is inequality (56). 

To prove inequality (57), let AW, be the space of vector functions Aq where 
q is in Wq , and define on AW, the inner product (Aql , Aq2) = Sy ApI*. hqz . 
Then the vectors hlmn = [Z(Z + l)]-“‘n[Z(Z + 1)]“2ql,, , by an argument like 
that of the preceding paragraph, constitute a complete orthonormal basis in 
AW, . A linear transformation 0 from AW, to W, can be unambiguously defined 
by the equation (3(Aq) = q; its effect on the basis vectors is 

Oh Imn = vu + 1)1-“*(Kz + w2qhbn>, 

so, since Z 2 1, (3 is a bounded linear operator and (( 0 (1 = Z-l’*. This is inequal- 
ity (57). 

If in inequality (56) the function q is replaced by Aiq where Ai is any of the 
three Cartesian components of A, and the index i is summed from 1 to 3, in- 
equality (58) is the result. 

To prove inequality (59), let W,’ be the subspace of W, consisting of all func- 
tions in W, which are harmonic in I - V. Let VW,’ be the space of all vector 
fields Vp where p is in W,‘. On VW?,’ define the inner product (Vpl , Vpz) = 

JE vpl*.vp2 . The functions c+~,,JZ(Z + l)]“‘p Imn with 1 2 1 are well known to 
be a complete orthonormal set in W,’ with the inner product (pl , pz) = Jv p1*p2 . 
By an argument like that used to prove inequality (56), it follows that the 
functions hlmn = [Z(Z + l)]“2Vpl,, are a complete orthonormal basis in VW,‘. 
A linear transformation 0 from VW,’ to W,’ is well-defined by the equation 
@(VP) = p, and its effect on basis vectors is 

@(h,,) = a~-~n-‘(a~-~,nKZ + l)ll’*p~mn). 

Since I >_ 1, o is bounded and I\ 0 11 = c&l;‘. This is inequality (59) when p is 
in W,‘. If p is in W, but not WPo, define po asp in V and in & - V as that har- 
monic function which is equal to p on & , the boundary of Ti, and for which 
r*po is bounded. Then 

1 I PO I2 = s, I P I2 
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tilld 

while 

s 
v I VP0 I2 

[.., (1 vp I2 - I VP0 I”) = l--Y j vp 
- 

s r I VP I2 

vpo 1” + 2 JTpr VP,. V(P - PO) 

= 
s G--’ I VP - VP0 i” > 0. 

Thus 

But p. is in WP” and hence obeys inequality (59). Therefore so does p. 
Finally, to prove inequality (60), define the space V x 63 to consist, of nll 

vector fields V x B for which B is in 03. It was shown in Section ‘ib that thtr 
normal modes Plmn and Tl,,, with 1 2 1 are a complete orthonormal basis for 
63; therefore, by the argument used to prove inequality (56), the normalized 
vector fields CU~-~,,-% x Plmn and alnmlV x T lm7L are a complete orthonormal 
basis for V x cB. A linear transformation 0 from V x iK to (R is well-defined 
by the equation O(V x B) = B, and its effect on the basis vect,ors is as followr: 

o(cY--I,,L--‘v x Pl,,) = -1 
Cf-l,tt P lrn~l , a( cy/,, -‘v x T,,,,) = wrc-‘Ttm . 

HCWW o is a homlded linear operator and /I C? I[ = cyolml. This is inequality (60). 

S. THE EFFECTS OF FLUID MOTION ON THE I’OI,OIDAL FIELL) 

If the solution B of the dynamo equations (1) is represented in tbc form 
B = Y x hp + Ay, those equations lead to equations for t,he two walars p 
and (1. In the present section a discussion will be given of the equation for 71 or, 
strictly speaking, for h2p since that turns out to be a more c~onvenient poloidal 
scalar. In particular, it will he shown that if u has no radial c*omponcntJ the11 the 
poloidnl field dies out, as rapidly as if u mere zero. 

(.\) THE (-++:sER;\I, I’OLOIDAL EQ~TATIOK 

The fluid in t)he sphere V is assumed to have :LII arbitrary solenoidal \yrlocity 
u. Let zu be defined as 

‘w = j-.B = Ii”p. ((il) 
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ThenV x v x B= --V x AV’p- AV’qso 

r.v x v x B = ~11%‘~ = - V2A2p = -V’w. 

From the dynamo equation (la), in Ti 

; r*B + pr.v x v x B = rev x (u x B). 

If u and B are arbitrary solenoidal fields, 

r.V x (u x B) = (B.V)(reu) - (u.V)(r.B). 

Therefore 

C3W 
at + U-VW - pV2w = (B.V)(ru,) in Ti. (624 

From dynamo equation (lb), V’p = 0 in & - V, so h2V2p = V2A2p = 0, or 

V’w = 0 in I - V. Wb) 

The boundary conditions on B imply further that 

r2w is bounded in E; (62~) 

w and VW are continuous in G. (624 

Equations (62) are the poloidal part of the dynamo equations (1); if Eqs. 
(62) have been solved for w, the poloidal part P of B can be obtained imme- 
diately as P = V x A(A-“w). Equations (62) are also the equations of a cer- 
tain heat transfer problem: w is regarded as a temperature, and the region 
& - V has finite heat conductivity but no heat capacity, so that any tempera- 
ture distribution w on the surface S immediately establishes in E - V the steady 
state temperature distribution appropriate to the given temperature on S. The 
region & - V is held at temperature zero at large distance. Thus Eqs. (62b), 
(62c), (62d) simply describe a particular way of losing heat from the spherical 
surface S of the fluid Tr. That fluid itself has thermometric conductivity p, is 
stirred with velocity u, and contains a volume source of heat of strength 
(B.V)(ru,) per unit volume. It is only through this “heat source” that the 
toroidal scalar q appears in Eqs. (62), so no purely toroidal velocity is able to 
generate poloidal from toroidal fields. 

From the temperature analogy it is clear that if uT = 0 the scalar w dies out 
at least as fast as if the fluid were not stirred at all. This is a generalization of 
the observation of Bullard and Gellman (Ref. 9, p. 228) that toroidal velocities 
cannot support steady dynamos. Curiously enough, the dynamo presented in 
Section 11 of the present paper depends for its success primarily on a precise 
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statement. of how t’he poloidal magnetic field decays when u is purely toroidai. 
This precise statement is developed in subsections 8h and 8~. 

(I$) ~1 l’.OltM.\I, hUS1) OS THE ~OLOIDAL t‘IELD ~;ENEI1ATF:D BY A r~‘OI~OIl,.4L l“I,Oi\’ 

In the rest of Section 8 it will he assumed that, (4,. = 0. If l?q. (A2a) is multi- 
plied by w and the result integrat’ed over I’, then :rft,er an integration hy parts 

The continuity of w and VW across 8 allows these two equations t,o he added to 
give t)he result 

This ecfuation has been proved only for real w; an obvious modificatiott of the 
proof ext,cnds it to complex w. From inequality (59), 

and integration of this inequality from 0 to T gives 

I! ,W(T) Ij = (/-. 1 w Ifi 5 11 w(0) #I e p”‘T. 

Inecfualitp (6-I) in its full strength will not he treeded. SitIce 

~1 ,w(O) !/’ = [- 1 r. B 1’ 5 /“- / 6B 1’ 5 Ii, j @B 1’ = ‘1 @B(O) II’, 

therefore 

(I W(T) /I I I( @B(O) I/ I’ ‘““. (63) 

Neit~her of the inequalities (64) and (65) directly conveys information ahJIlt 

the energy in the poloidsl part of the field B(T). To obtain such information, 
let ‘u, he the operator on @ which gives the effect’ on magnetic fields B(0) of t,hr 
persistence of the toroidsl velocity u for a time T: B(T) = ‘U,B(O). What is 

needed is a bound on jj SU,B(O) /I’), th e energy in the poloidal part P( 7) = PB( T) 

of the magnetic field at the end of the motion. Observe that 

II J%-) I”’ = FE I Pbna, P(T)1 I2 
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and that, from Eqs. (48) and (8), 

[P zmn 2 P(T)1 = -ha J, phn*W(T). 

In the notation of Section 5b, Schwarz’s inequality implies 

I [P zmn , PC,)1 I I b?L II Pzmn II II 4’) II. 

The norm II PM II is, from the definition (41), [Z(2 + l)XJ1”, so 

I [P zmn, P(T)1 I2 2 & II w (7) l12. 

This inequality is not directly useful in bounding (1 P(T) [12, since the resulting 
infinite sum diverges; 11 P(T) iI2 could, of course, be bounded by the general ar- 
gument of Section 6a, but the bound so obtained grows exponentially with 7 
and is not strong enough for subsequent arguments in which 7 becomes very 
large. Whether (/ P(T) II2 can grow exponentially as the result of an appropri- 
ately chosen toroidal velocity field is not known to the author. One way out of 
this difficulty is to observe that inequalities (65) imply that such exponential 
growth, if it occurs at all, must result from a gradual accumulation of energy in 
normal modes with ever larger decay rates. Therefore, if, after the toroidal 
motion has been completed at time 7, the fluid is held motionless for a further 
time tl , all this exponentially accumulated energy will disappear. That is, if 
Q, is the free decay operator defined in Section 7c, it should be possible to 
bound I( @z&,w,B(O) l12. Whether such a device can be avoided is not at present 
known to the author, and on this question hinges the possibility of obtaining a 
simple sufficient condition on arbitrary velocity fields to test whether they can 
maintain dynamos. The author proposes to pursue this subject further in a sub- 
sequent paper. For the moment, the device will be accepted. 

At the end of the toroidal motion, the total energy in the poloidal components 
of B(r) with free decay rate Vk = X1, is 

The inequality follows from inequalities (65) and (66). If the fluid is now held 
motionless for a time tl , the resulting field 3&B(7) has altogether in the poloidal 
components with free decay rate Vk the energy 

I( @k%,%B(O) iI2 5 wi AZ, exp (-2~hJ1-2~~17) II @B(O) j12. (67) 

The quantity which will be needed later is the total energy in poloidal modes 
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\vith decay rates larger t’han v2 . This is 

11 (s - (PI - 62)Dt,B(T) [I2 = Ag II PkDl,B(T) II’), 

so, t)y inequality (G7), it, has t.he hound 

The sum is over all I and 1~ for which Xl,L > v3 , or CV-~,~ > vR1”). In terms of 
operat,ora, this inequality implies 

where t#he variable of summation has been changed from I to I + 1. 

The bound (68) is formal until the series on the right has heen shown to con- 
verge and an upper bound has been produced for its sum. Such a demonstrat,ion 
of course demands information about the distribution of the roots ml?, of the 
spherical Bessel functions. Denote the sum on the right of inequality (68) hy )-. 
Drfinr the function F(v) for v 2 v3 as 

(al + 3) F(v) = c ____-~ * 
v:,“Pl a/,t<Y l/Z (I + 1)(1 + 2) cyl’I ’ 

t’hr sum being over all values of 2 and II for which ya”’ < al,, < v”‘. The functioil 
F(v) is conskmt between b-o successive values of vk and at each Q. it jumps ty 

a finite amount. [Incidentally, for each vk there is only one term in I-, that is, 
only one pair 1, n such t’hat. LY~,~” = vl; . , see Watson (Ref. 28, Section 13.28).] 
The derivative of F is a linear combination of Dirac delta functions 6(v - vb- ), 
and if these are taken to he asymmetrical, that is J”; G(v)& = 1, then 

s 

m 
I’ = C-“PtlYF’(v) &,. 

YJ 

Iiitegrating this result by part,s, 

s 

m 
IT = 2pt1 e?+“F(v) dv. 

v3 
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If G(v) is any function such that F(v) _< G(v) for all v 2 v3 , then 

s 

00 
Y 5 2ptl e +“‘“G(v) dv. 

v.3 

After another integration by parts, 

Y < G(v3)e-2p”3t1 + [, e-2pt’YG’(v) dv. (70) 

To allay suspicion about the use of delta functions in this argument, the terms 
F’(V) dv and G’(v) dv which arise in the integrals can be replaced by dF(v) and 
&G(v), those integrals being regarded as Stieltjes integrals (Ref. 29, p. 64 ff .). 
Therefore the sum Y on the right of inequality (68) can be bounded if a bound 
G(v) can be found for the function F(v) of Eq. (69). 

To obtain such a bound, perform the summation (69) first over n for a fixed 
1. What is needed is then 

for a fixed 1. The following lemma bounds this sum: 
Lemma: Let y(z) be a positive, convex function of x defined in the interval 

a - h/2 5 x 5 b + h/2. Suppose all the n points x1 , . . . , X~ lie between a 
and b and xi+] - xi >_ h > Ofori = 1, . . ..n - l.Then 

The proof of this lemma is elementary. Because y is convex (y” 2. 0 if y” 
exists), 

hyh) I s,;;-;; y(t) dt. 
2 

Since y is positive and xi+] - xi and xi - x;-~ are both larger than h, it follows 
that if i # 1, n then 

Adding these inequalities for i = 1, . . . , n, 

h g y(xi> I s,:;;:’ Y(F) dt. 

Since y is positive and a 5 x1 < xn 5 b, the conclusion of the lemma follows 
immediately. 
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To apply this lemma to 

c ‘: “al/*< u(n<v’l* 
azn , 

14 !/(.r) = .(.L) and h = ?r. Because of the fact’ that, for :tuy I :tud II, a,,,,++, - 
a{,( > T [Ref. 28, Section 15.83. In that’ section let U, = C’ sin (.r - al,!) aud 
/I? = xj,(.r). with C c*hown so that, ~~‘(al,~) = t~~‘(al,~)], the :rt)oye lemnx~ irnpIirs 

Another well-known fact (Ref. $8, Section 15.3) is that all > 1 + 1 “. Sillc*ca 
or,, > a21 , in the sum (69) only those l’s can owur for which 1 + 1 z > v’ “, 
I:rom t’his fact aud ineyualit,y (71), the sum (fig) is hornrd& :\+ foll~)~~-\-s: 

‘he Usld met’hod of hounding sums by integ& &o\\.s th:lt 

Consequently, 

Since 

if Y 2 v:$ , iu that range of v 

F(v) I G(v) = O.ll!b’. 

Combining inequalities (GS), (70)) and (72) 

For completeness, note also the following spetkl C:W;PS of incqtl:llity (67) : 
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The whole purpose of subsections 8b and 8c has been to obtain inequalities 
(73), (74)) (75). They are valid in the following circumstances: the velocity u 
which produces the magnetic operator ‘u, is purely toroidal (u, = 0) and proceeds 
for a time 7. Thereafter the fluid is held motionless for a time tl . In the present 
approach, this rigid decay cannot be avoided, since the bound (73) approaches 
infinity as tl approaches zero. As already remarked, the author does not at pres- 
ent know whether this reflects the physical situation or is a defect in the argu- 
ment. Of course the energy given by inequality (73) cannot in reality be infinite, 
as is shown in subsection Ba, but as tl approaches zero that energy may conceiv- 
ably become exponentially large in 7. 

9. THE EFFECTS OF AXISYMMETRIC TOROIDAL VELOCITIES 
ON THE TOROIDAL FIELD 

(A) THE TOROIDAL FIELD EQUATION IX GENERAL AND IN SPECIAL CASES 

Representing the solution of the dynamo equations (1) in the form B = 
v x up + ~q, the equation for the toroidal scalar q analogous to Eq. (62a) 
for the poloidal scalar w = h2p can be obtained by dotting A into both sides of 
Eq. (la), that is, by equating the radial components of the curls of the two sides 
of that equation. The result is 

.2&,v2q)=~.v x (u xB). 

LetA = u x BinEq. (5g).Definew+,we,andDas 

% w 
urn=-* r sin 0 ’ 

we = ---; 
r sin e 

D Aa, 
rar * 

Several judicious applications of Eq. (5d) then permit the conclusion 

h.v x (u x B) = A2 am4 ap -u.Vq - qD,u, + sin 0 ar ae 

+ we$Dp - DsinBp$ 1 [ + D (hu,).(hq-V x Ap) 

+ qh2u, - $ (wwe) + sin 0 $ h2ti+ 

+ p*2(sinBz) + A$($$+$ - %$)I. 

Since when q averages to zero on every S, so does dq/at + ZL. Vq - pV2g, Eq. (76) 
can be written 

z+u.Vq = h inV, VW 
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(htl,) . (Aq - V x hp) + qit’rcr - (i8tji 

As in Sectioli 7, the boundary condition on p is that it \xnish in G - 1. :\ntl ix* 
continuous everywhere. Equat.ions (78) :we t.he toroidal :malogue of the poloida 
equations (62) and, like the latter, are applicable for :my solenoidal \-elocitjr U. 
It should tw lloted that the operator X9A2 is t.he identity only when it opwxttks 
on functions which average t’o zero on every S, . For an :trhitr:try fluic4iori ,f, 
.tmm’ii’.f = ,f - .f, where fr is the ayerage of .f 011 S, . 

Clearly Eqs. (78) are t.he equat,iots for the temporal heh:l\-ior of the ttwpwa- 
ture y in a fluid 1’ witjh thermometric conductivity p, stirred st \,elwity U, wh~sc~ 
t,oundury S1 is maintained at temperature zero, and \vhich wntains :I sours of 
heat h per unlit. volume. In case U, = 0 and init.ially p = 0, then from I+ (62) 
p = 0 at) all times, so h = 0, :md eqwtiou (782) is dy: c?! + u. ~q - p’?q = 0. 
Therefore in this special case t’he toroidal wnl:lr ‘1 dies out at. lwst ;IS r;lpidly :IS 
if t,he velocit,y u were zero. 

Formula (78h) becomes much simphfied in the WIG ww ilk \vhic*h it \vill t w 
employed ill the present paper, that of an asisymmetric~ loroid:~l velocity. III 
this (we, l(? = ((6 = 0 and W+ depends only on /~:md 0. Since W+ is theonly :cng111:r1 
I-oIoc*it,y remuining in h, it will hereafter ht denoted simply hy W(T, 8). Icor :I)) 

A 
:~sisyrnmetric* toroidal velorit’y, u = r sin Bu(r. O)$, formula (78h) for 11 ~P~Y~II~~ 

For the purposes of the present paper, it &ices to consider an well more .-;pcc+i:~l 
(we, t,hat. in which w(I’, 0) = j(r) cos B and 

u = r sin .9 cos @“jr)&. (X0) 

Wit,h tIllis further specializtltion, Eq. (70) hecomes 
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where 

e= A-’ A2 sin2 6 - 2 cos2 0 - 1 + cos 0 sin 0 a >I ae A-2. @lb) 

In order to make use of this formula it is necessary to find t*he average over 
each S, of the operand of AP2A2. To this end, define 

[ 
(1 + m)(Z - m) l’* 

glm = (21 + 1)(2Z - 1) 1 em 

for Z = 1, 2, . . . , m = -I, . . . , 1. Define 

RI* = gzmgl+lm, 

H1” = (gl”)‘. 

Then (SO) 

sin eC+ Y Im = 
(I - m + l)(E - 112 + 2) 1’2y m--l 

(2Z + 1)(2Z + 3) 1 If1 

_ (1 + m>(Z + m - 1) l’zyL-p--l 
(844 

(21 + 1)(2Z - 1) 1 , 
cos 6Y,” = glrnYl-lrn + gl+lmyl+lm, @4b) 

sin &“+Y,” = 
(1 - m)(E - m - 1) 1’2y _ m+l 

(2Z + 1)(2Z - 1) 1 z l 

(1 + m + 1N + m + 2) 
(84~) 

m+~ - 
(21 + 1)(2Z + 3) 1 lizy 1+1 , 

where YEm are the normalized spherical harmonics (6a). Therefore 

cos” BY1” = RI-I~YI-~* + (Hl” + HL+,‘?Y~~ + R1+,myz+2m. (85) 

As is well known in the quantum theory of angular momentum, if L = -ih 
and L+ = L, + iL, , L- = L, - iL, in Cartesian coordinates, then 

L+YI” = [(Z - m)(Z + m + 1)]“2Ylm+1, 

L-Yt” = [(E + m)(Z - m + 1)]1’2Ylm-1. 
(86) 

Since 

_ = 1 [pq+ - pL-1, a 
as 2 

Eqs. (84a), (84c), and (86) imply 

sin 19 t Y1” = Zglflm Ylrn - (I + l)g;“YI-1”. (87) 
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Then the operand of K’h” in Eq. (81) has for each fixed I’ an expansion in 
spherical harmonics Yl”’ of which the term with 1 = 0 is 

If this quantity is subtracted from the operand of k’~’ ilk Eq. (81), t)he truth 
of t,hat equ:ltion is unaffect~ed, while the new operand of A “11” averages to zero 
on a-ery ,S, . The operator A P’~k” has no effect on t)his new oprrmd, SO 

r = 6 + (3 coiL) e - I) + (‘0~ e sin e -c-- . 
as 

To summarize, if the fluid velocity has the toroidnl nsisymmetric form (80), 
t’hen the equation for the t.oroidal w&r Q is the heat quat,ion (78a), which. in 
this simple wse, is 

The heat source h is given by Eq. (90n) in terms of the poloidnl scalar p. The 
boundary condition on y is that it vanish on the surface S of the fluid. 

(13) THB; EFFECT OF A ?'onomil~ FLOW ON P,,,, 

The fact that from an initial poloidal field asisymmetric toroidal shearing 
motions can produce large toroidal fields was pointed out by Elsasser (IO). 

To construct a dynamo it will be necessary t,o see how much of the T,,, mode 
can be produced from the init’ial field B(0) = PI,, by the persistenw of the fluid 
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velocity (80) for a time 7. If the magnetic operator corresponding to this motion 
is denoted by W, , what is wanted is 32~,Plol . 

This problem could be solved by the axisymmetric techniques introduced by 
Lust and Schhiter (31) and Chandrasekhar (3,%), but Eqs. (go), being ready to 
hand, will be used instead. The poloidal field scalar at time t will be simply 
P = mole -“It, and the toroidal scalar Q will vanish initially and will always be 
axisymmetric. The solution of Eq. (90) in this situation is straightforward, and 
leads to the result that if bznm(t) are the expansion coefficients in the series (49) 
then 

~ZnV) = ; 6moC~n [ 
e 
-vtt - e--pNzntl 
PhQn - 4 I’ 

where 

cz, = 821 
s 

1 

J*(mJ 0 
dr &Xcw-) 2ao&‘(aod 

In particular, if 

j = r - r3, (91) 

then 

CT101 ) ci2W,PlO1) = ; Cl1 [e;;; 1 ;;;:“I 7, (924 

where 

j2b,,>Cll = - 1’ dr (r” + ~4)j~(a~~r>j~(aoa> + 2ao1 6’ (r3 - r5>j,(a,~r>jo(a,,r> dr. 
0 

Since the integrands here are products of trigonometric function and powers of r, 
the integrals can be evaluated exactly. The result is 

$@,, = 0.0976. (92b) 

Equations (92) give the amount of Z’,ol generated from PI01 by the motion 
u = ~“(1 - r2) sin 13 cos 04. A bound on the total toroidal field T produced from 
Plol by this motion can also be obtained. Multiply Eq. (9Oc) by - h2p and inte- 
grate over V. Since @/a+ = 0, the result is 
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Then Schwarz’s inequality and inequality (58) imply 

where T = ~4 = 3&t). For the particwkw \-elocit,y under discussion, if P,~~(/‘, 8) 
is written as @(r) cos 0, 

where PL is Zth Legendre polynomial. It is a matter of straightforward computa- 
tion to show that, when f= r - r’, 

/I Ah(t) I! = 0.:31308e-P”” 

so that 

(c) A Bown ON THE TOROIDAL FIELD SCALAR GENEH.~TE:D HY .4 TO~OIDAL E'r,on- 

Elsasser (10) asserts the the effects of an axisymmetric toroidal velocity per- 
sisting for any time 7 are obvious: the poloidal field decays and the t,oroidal rom- 
ponents grow at most linearly with 7. However, in justifying this assert,& 
Elsasser essentially assumes t,he result 

discussed in Section (se) of the present paper. Elsasser does not prove this result, 
and since the present author has been unable to do so (and in fact douhk that 
it is true), a new approach must be devised. 

If Eq. (78a) is multiplied by p and the result integrated over T’, it follows that 

From Schwarz’s inequality and the variational inequality (5(i), 

This last inequality can be integrated from zero to t to yield 
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Inequality (93) is true for any solenoidal velocity whatever. When the velocity 
has the special form (80), h is given by Eq. (81) and is independent of 4. There- 
fore h can be bounded by means of inequality (64), so that Eq. (93) becomes a 
bound on 4. 

As a first step in bounding the h of Eq. (81), a bound will be obtained for the 
linear operator Z From Eqs. (85) and (88) it is not difficult to show that if 
121 

where 
m  

Ulrn = 
(1 + ‘I;;; + 2)’ 

2[3m2 - l(Z + l)] 

&” = Z(Z + 1)(2Z - 1)(2Z + 3) ’ 
Rl-1” 

Czm = -* Z(1 - 1) 

Now if 

se, 4) = 2 5 fzrnYzrn, 
Z=l m&=--l 

then 

Since Schwa&s inequality is no less valid in three-dimensional spaces than in 
infinite dimensional ones, 

II z f 1112 I 2 2, ( I fl+zm I2 + I flrn I2 + l fl-zrn I”> 

( I uzm I2 + I bzrn I2 + 1 Czrn I”) 
I 3 II f III2 sup ( I uzm I2 + I 61” I2 + I czm I”). 

zm 

From the formulas for ulm, blm, and elm 

SEump t 1 azm I2 + I 61” I2 + I Clrn I’1 = l?ios ) 

so \I Z 111 I 0.6967. Then by Eq. (26) 

11 E 11 5 0.6967. (94) 

When f = r - r3, max I dfldr ( = 2, max If / = 3$3’2, max / r-‘d(rJ)/& 1 = 2, 
so from Eq. (81) and inequality (94), 

/I h 11 5 2.1005 I( w /I + 0.2682 d” 
II I! ar * (95) 
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Combining inequalities (64)) (93), and (95)) 

DYK.\MOH 417 

pYLt _ C-PV,r 

P(Y” - VI) 1 

=[ 

e2pY’t - 

2plJa 

the last e(lunlity being obt’ained vin Eq. 

Since I[ y(O) /! _< 2-l” [j T(0) 11, Ij w(O) 11 5 [I P(0) I!, and j’ B(0) Ij’ = 1,: P(0) ’ + 
1: T(0) /I’?, if the right-hand side of inequality (96) is regarded as t,he inner product 
of t,he t,wo-dimensional vector 11 T(0) 11; + I/ P(0) lljl with anot’hrr two-dimeli- 
~ionnl vect,or, Schwnrz’s inequality gives finally 

This inequnlit’y is true of the toroidal magnetic field scalar if the velocity u = 1 
r’(l - r?) (sin 0 cos 0)~ has been extant for a t’ime 7 . -4 similar inequality, with 
different. Ilumericnl coefficientas, could he obtained wit)hout difficulty for tht) L 
slightly more general velocity u = rf(r) sin 0 cos &I, but any c*h:mge ilr the 
angular behavior of u will complicate the analysis c*onsider:\bly. 

Just, ns in Section 81) the bound on II ~(7) 11 \v:ts wnrwted to :L bound 011 
/I PB(T) ‘1 = 1; tP’U,B(O) 11 , so here the hound (!I71 OII I/ Y(T) ‘j must be converte(l 
to :I hountl 011 !I  QqT) II. I 11 order to okknin swh :I bound, it will l)e necess:lry, 
LIS it w:w in Section 8b, to hold the fluid stationary for :I time I, after the nlotioli 
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has been in progress for a time r; this will allow the possibly large amounts of 
energy which have accumulated in normal modes with high decay rates to die 
out. 

Clearly, if ‘0, is the magnetic operator of the motion produced by the per- 
sistence of velocity u for time 7, 

(98) 

In particular, 

II (3 - 32)Q,W(O) 11’ < I[ Cl(T) l[2,z~v3 Z(Z + 1>(2Z + l)e-2pPrnt1, 

the summation being over all Z and n such that pCLln = al,2 > Q . Therefore, if 
H2(7) is defined as the quantity on the right-hand side of inequality (97), 

This is the formal bound on the toroidal energy analogous to the bound (68) on 
the poloidal energy. 

(E) A NUMERICAL BOUND ON THE TOROIDAL FIELD GENERATED BY A TOROIDAL 

FIELD 

The bound (99) is useless without a bound for the sum on the right in that 
inequality. Since the procedure for obtaining such a bound is formally the same 
as that adopted in Section Bc, many of the details will be omitted here. If 

Ny) = .,liz~~m<vl,2 Z(Z + 1w + l), 

then 
“1 /Z--l/Z 

F(Y) < c Z(Z + 1)(2Z + 1) 
[ 

2,1’2 
-2T1”z 

+ l) + 1 
14 1 

<(C+ l)[;:'z x(x + 1)(2x: + 1) dx - L 
s 

v'~"l/Z 

2a 0 
x(x + 1)(2x + 1)” dx 

< 0.17311~‘~ = G(u). 
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Therefore 

C l(Z + 1)(2Z + l)e-zpPzntl = 
91nzv3 

Finally, if U, is the magnetic operator produced by the persit,ence for time T of 
the particular velocity u = ~‘(1 - r’) sin 0 cos 04, 

/lf9t,(3 - CJJW, II” 

< H”(7)(0.173)y35’ze-2p”3t1 1 + 1 5 + 
(lOOa) 

-Ipvatl &+&$ ’ 1 
where 

Equation (loon) is true for any motion W, whatever if H(T) is interpreted as 

Ii ~47) II/II B(O) !I. Th e f unction H(7) can be readily computed only for axisym- 
metrics toroidal velocities, so for velocities outside this class inequality (100:~) 
mill not, be useful. 

@‘or completeness, note the following special case of inequality (98): 

// 3zw, II4 5 BE&). ( 1 oocj 

(F) SPRAWL CASES FOR WHICH A FREE RIGID T~ECSY IS I'NNECESS.~I~F 

Inequalities like (100) can be proved for the magnetic operator giving the 
effect of the persist,ence for a time 7 of any axisymmetric toroidal fluid velocity, 
u = r sin &(r, @it as long as W(T, !3) is sufficiently smooth. As already remarked, 
the author does not know whether, when the free decay z&, is omitted, :L bound 
can be obtained which, like the bound (loo), grows only linearly with 7 or nhet,hel 
in consequence of t’his omission nothing better than the exponential bound (x;) 
can be obt,ained. However, there are two special cases in which :t bound linear 
in 7 can be obtained even if the free decay is omitted. 

For an arbitrary nxisymmetric t’oroidal velocity field u Eq. (‘iSa) for the 
toroidal field scalar q can be multiplied by - A”q nud integrated over I’ to givcb 
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If the initial field was ax&symmetric, @/a$ = 0 at all times. In this special case 
and also in the special case where dw/&9 = 0 the second integral in Eq. (101) 
vanishes. Then Schwarz’s inequality and inequality (58) imply that 

and 

11 T(T) 11 5 Ij T(0) 11 ePzr + ePvsr lr epvzt II Ah(t) II dt. mm 

Equation (81) for h together with the bound (64) on w = 11’~ gives a bound on 
II oh 11 from which it follows that there are constants H and K such that 

11 TU,B(O) 11 5 /I B(0) I[ (eppvzr + HT”’ + K7). (103) 

If &/a0 = 0, inequality (103) is true for any B(O), and therefore II s’u, ]I 5 
e -WV + HT1i2 + KT. Furthermore, when dw/M = 0, the equation dp/& + 
wap/&$ - pV2p = 0 for the poloidal field scalar p can be operated on by V x A 
to give, in V, 

~~+wVxA~+pVxVxP=o. 

Integrate the dot product of the left hand side of this equation and P over V. 
Integrate once by parts, using the condition v x P = 0 in & - V to evaluate 
the boundary term. There results 

The variational inequality (60) then implies that [I P(T) jl 5 /I P(0) I[ eCpYlr or 
I/ 6W, 11 5 e-““. 

In the other special case, when &/CM # 0 but B(0) is axisymmetric, the poloi- 
da1 field behaves as if the fluid were motionless, so 

II 0WW) II I II B(O) lle-p”17. (104 

For an arbitrary W(Y, e), inequalities (103) and (104) have been proved only if 
B(0) is axisymmetric; in inequality (103) H = 0 if B(0) is axisymmetric. 

10. THE TRANSFER OF ENERGY FROM Tm to Pm 

(A) THE POSSIBILITY OF SUCH TRANSFER 

Let the magnetic field B(t) produced from the initial field B(0) by the solenoidal 
velocity u be expanded as 

B(t) = yq [ulnmwlmn + ~l,mw~hnl. (105) 
n 



If B(0) = Tt,,t , t,hen for what velocities u will there be times :tt which c~,t~’ dew 
tlot v:titish‘? Elsnsser (IO) has given some es:mple. i: of such \-elocitiw. Sititrv 
rrll”‘(0) = 0 m-hen B(0) = TtoI , any velocity will he of the desired type if it m:~lws 
at lcnst, ottc of the time deriv:ttjives of all”’ (1) init,inlly differ from zero. Ow \\-oultl 
csprc’t that, this (*l:w of velocitiw is large; how I:trge it is u-ill lw shon-II iti t hta 
Iwsetttj sttlwc~tioit. 

III wh:tt follon-s it will he c*ottvrnicttt to drfitie 

PI,, = -2P’(Plll + Plpnj = r x A[,,,, ) ( IO(i:t ) 

P,,, = i’P’(Pl,, - PI..11) = v x A]‘,?,, , (lolit,, 

PI;1 = PlO, = c x hpz, . (1Olki 

l’he function I?(r) = set 8ptot(r, 0) depends only on r, and if < is any of .I‘, !/, :1tt(1 
2, pltl = .+ ‘p(r), so thr fields PI,1 nttd P tl,t :tre obtained hy rotating the Mtl 
Plzl mtttl its estrrttnl dipole moment, points ;doug the A or fi asis ittstc:ltl of the 
2 xxi+ 5 . 

Defitte nlir, nil”, utl’ by the cquatiott 

It is ttot difficult to show from I!@. (1) (Ref. 9) that if E is any of zr, !I, x, theta 

Sittw u is solrttoid:~l, it has n representation in the form 

u = c x A7i + Al., (10X) 

where if [’ = I’ = dC~j&- = 0 on S, u = 0 on S, and if I7 = 1’ = at-;ar = 
aIT,‘& = a’rj’ai-’ on 8, u = 0 and VU = 0 on S, while if 7: and 1’ are att:tlytk 
in R’, IJ, z t,hett so are I(, , uv , and uz . From the deficit-ions (41) and (12) of ~~~,)t 
:rnd $qOl ) l’:(ls. (1Oi) and (108) imply thni when t = 0 
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Any choice of the scalars U and V for which the appropriate integral (109) fails 
to vanish gives a velocity (108) capable of transferring energy from Tim into 
one of the modes Plzl , PI,, , Plzl . 

As an example, let V = 0 and U = f( ) r sin 0 cos c$, where f(r) = T when 
0 < r 5 1 - E while in the thin shell 1 - e 2 r 5 1 the function f(r) is brought 
smoothly down so that f(1) = f’(1) = 0. Then u is continuously differentiable 
and vanishes on the surface of the fluid. Inside the sphere S1-, , u = -22, and 
the fluid thus translated in the negative 2 direction inside S1-, is returned in 
the opposite direction in the outer part of the shell 1 - E < T 2 1. From for- 
mulas (109)) [dal12/dtlt=o = [dullz/dtlt=o = 0 while 

dall’ L-1 - 2cuOl 
1 

dt t=o = j,(~Ol)j2(~11) 0 s 
rf(r> jl(w> j,bolr) dr 

- 2ao1 s 1 

a j,(ao1) j2(%1) 
rzj~(aur) j,boa> dr = 

- 2cuOl~ll 

0 all2 - cxO12 

Therefore a purely poloidal flow which carries most of the interior of the fluid 
in the positive 3 direction will initially transfer energy from the mode Tlol 
[which might be called Tlzl by analogy with Eqs. (106)j into the mode PI,, but 
not into Plrl or PM . 

As another example, let U = V = f( ) r sin 0 cos @ where f(r) is the function 
described in the preceding paragraph. Then [d2all”/dt2]t=0 # 0 if B(0) = Tlol . 
Inside the sphere S’-, , u = -21 + xfi - yt. Here the translation along the ?C 
axis produces Plvl from Tl,l while the rigid rotation about the .? axis transforms 
P,,, into Plzl . As is to be expected in such a second order process, [dalT/d&,o = 0. 

The foregoing remarks prove that there is a large class of fluid motions capable 
of transforming the initial field B(0) = Tlol into a field with energy in the Plol 
mode. However, Eqs. (109) are not useful except for times so short that the 
total energy produced in the PI01 mode (and all others) is much less than the 
amount initially present in T,o, . For a useful estimate of the velocity at which 
a self-sustaining dynamo must be operated, it is desirable to be able to treat 
larger energy transfers. Furthermore, as Eqs. (109) make clear, the initial pro- 
duction of Plol from Tlol is accompanied by a much larger production of Plzl 
and Plul . This raises the question of whether dynamos can be constructed in 
which the external dipole moment does not shift through large angles during 
one decay time of PI01 . 



SELF-SCST.~IhXiG DYN.\MOH I’,,:$ 

In Section lob below, the amount of energy transferred from TM to Pi,, by 
:L particular large fluid displacement will be estimated, and in Section 101~ it 
will be shown that an arbitrarily large amount of this energy (an be transferred 
t,o PIZl so that each cycle of the dynamo to be constructed in Section 11 regrwr- 
atcs Pm without production of large amounts of P,,, and Przl . 

(IS) (:iENEK.\TION OF P1,1 FROM T  Izl BY A ~‘AIITI~‘l:LAI~ FLUID I>I~PLA(‘EMES’I 

To simplify the notation, a new coordinate system will be cshoscn, ill \vhic*h 
the new j, axis is the old i axis and the new 2 axis is the old axis -L In the rest 
of Section lob, x, y, x, r, 0, and 4 will refer to the new (soordinate system instead 
of the old one. In the new system let a~ = (2:’ + $)ll?. litSated in terms of the 
new coordinate axes, the problem is as follows: find the matrix element (P,,, , 
uT~,~) where u is the magnetic operator corresponding to some as yet unspwi- 
tied finite fluid motion and Tl,i is t’he field B(0) at t’he outset of this motioir. 111 
C2ut~esiaii components 

where 

Suppose the fluid motion y(x, t), 0 < t 2 I, ivhich produces finally the tlis- 
placement, of the fluid point x to y(x, 1) has a velocity u and velocsity gradient 
cu which vanish on the fluid surface s’. If the same tinal displacement is efiecated 
by the more rapid motion y(x, it), 0 5 t < K--I, whose nxtgnet,ic operat~or is 
‘u, , then S&ions AC and Ge make clear that 

where u is the magnetic operatjor for the motion y(x, t), 0 5 f 5 1 in a fluid of 
rrsistivity zero. 

Suppose t,hat, u = V x AU + ~1’ vanishes on S but VU does ilot’; suppose 
also that (Plul , ~2’~~~) is particularly easy to e\xluate, u being the magn&: 
operator of the motion resulting from the persistence of the velocit’y u for unit 
t,ime in a fluid of resistivity zero. The remarks of the preceding paragraph are 
not, directly applicable to this motion. Define the function h,(r) for small t :ts 
follows: h,(r) = 1 if 0 < r _< 1 - t, and h,(r) drops smoothly to zero in 1 - t < 
T < 1. Then if U, = V x A(h,li) + A(h,V) both u, and Vu, vanish on ,Y, so 
the preceding paragraph does apply to the magnetic operator U’ of t’hr motion 
y.(x, t), 0 5 1 5 I, produced by the persistence of U, for unit) time in a fluid of 
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resistivity zero. From the expression for (PIUl , u’TM) as a volume integral it is 
clear that 

l$Pl,l ) U”T1.d) = (Pl,l ) UTlzd. 

Therefore, by choosing E small enough, (PIVl , u’T~,~) can be made very close to 
the easily computed (Ply1 , UT& and if the motion y.(x, t), 0 5 t 5 1, is exe- 
cuted rapidly enough, its magnetic operator ‘u, ’ in a fluid of nonzero resistivity 
p produces a matrix element (Pi,1 , ~~~2’~~~) which is very close to (PI,1 , ~‘Z’l~i). 
The remarks of this and the preceding paragraph make the following clear: let 
u be the magnetic operator for a fluid motion y(x, t), 0 5 t < 1, in a fluid of 
resistivity zero whose velocity u vanishes on the surface X. Then fluid motions 
y,(x, t), 0 5 t 4 1, not very different from y(x, t), 0 5 t 2 1, can be found 
which, if sufficiently speeded up, lead to magnetic operators u,’ in a fluid of 
fixed nonzero resistivity p whose matrix elements (PI,1 , %ptTIP1) are arbitrarily 
close to (P1,i , ~2’~~~). Therefore the rest of the present Section lob, is devoted 
to the evaluation of (PIUl , UT& for a particularly simple motion in a fluid 
whose resistivity vanishes. 

The motion to be considered is that produced by the persistence for unit time 
of the steady axisymmetric velocity u = m-‘Vs x 6 whose axisymmetric stream 
function s is 

s = $m”(r” - l)? (llla) 

Then 

u = @(l - r2)2 sin2 0 cos 0 - br”(1 - r’)(l - 2r2) sin3 0. (lllb) 

The symmetric tensor whose Cartesian components are %(aui/dyj + au,/dyi) 
becomes the covariant dyadic $$(ui;i + uiii) in spherical polar coordinates, 
where now i and j take the values T, 0, and 4. In spherical coordinates it is not 
difficult to show that the largest characteristic root of the tensor $$(ui,j + ui;i) 
obtained from the velocity (lllb) is 1 and occurs at T = 1, 0 = 7r/2. If ‘% is 
the magnetic operator on @ produced by allowing the velocity (lllb) to persist 
for unit time, then inequality (33) implies 

11 u 11 5 e = 2.71828 . . . . (lllc) 

This inequality is true a fortiori for the operators uPf of the preceding paragraph. 
To compute (PIUl , WIZ1) it will be necessary to have an expression for the 

final position T, 8, 4 of a fluid element which at the onset of the velocity (lllb) 
was at the initial position r’, e’, 4’. To find such an expression, introduce the 
new coordinates g, x, 4 defined in terms of Q, Z, 4 by these equations: 

228~ = u sin x, (112a) 

2a2 - 1 = (r cos x. (112b) 
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Theu c = 4a”(r’? - 1) + 1, so 0 5 CJ 5 1, and u = 0 only at the point a = 2 I”, 
2 = 0. Siucc &S/C& = 0, the level lines of u are t’he flow lines of the fluid velw- 
it,y. The level lines of CI and x are shown in Fig. 1. The motion (111) simply 
decreases t’he coordinate x of every fluid particle, wit’hout aflecting u or 4. To 
see the detnlls of this decrease in x, define still nnot)her system of coordiwrtw, 

FIG. 1. Level lines of u and x in a meridian plane. The dotted lines nr~ the initial pmitiow 
3f the fluid elrments whose final positions are the solid level lines of x. 
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u, E, 4: u and + are as before, while E is given in terms of x and u by the equa- 
tions 

Sin $X = snk E, cos ix = cnk &, (113a) 

(113b) 

Here snk and cnk are the Jacobian elliptic functions (Ss> defined by the equa- 
tions snk’& + cnk’& = 1 and 

I 
=lk& 

&= -0 (1 - g2)1/2;; - k2y2)1/2’ 

The position at time t of a particle in the fluid moving with velocity (111) is 

4) = do), 40) = cm, e(t) = E(0) - (l piPz)t (114) 

Therefore the initial position r’, 8’, I$’ and the final position r, 0, C$ of a fluid 
particle are related by Eqs. (112), (113), and 

Now that the fluid displacement has been explicitly obtained, Lundquist’s (19) 
integral of the dynamo equation (la) can be used to compute the field %TIU1 . 
If B", BX, B' are the contravariant components of B in the curvilinear coordi- 
nate system u, X, 4, then 

Bc(u, x, 4) = B”‘W, x’, $4, BX(u, x, 4) = BX’b’, x’, d4, 

@(a, x, 4) = B%‘, x’, 4’). 
(116) 

From Eqs. (110) for the initial field B'(0) = T1, it is not difficult to find the 
contravariant components of that field in the coordinates u’, x’, 4’: 

4?r l/2 

-- 0 3 
l/Z 

4a 1’2 

-- 0 3 

where 

I-) = 1 1 + u@ + 2u’ cos x’ 
2(1 + u’ cos x’) 1 II2 

* 

(117) 

(118) 
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Now if B = UB(O), 
(Pl,l , ‘UBm > = (PI,1 ) B) = - aal ~ p,,,rB,. s 

The covariant and contravariant romponents B, and B’ are t)he same in spheri- 
cal coordinates. Therefore, it follows from Eqs. (115), (1 lA), and (117) t.hat 

--l 4$ 

0 

1 /’ ? 

jdda2Br(r, 8, 4) 

_ (1 - f%(allr’) sin ~ (I + u”) sin (x’ - x) + 2cT(sin x’ - sin x)\ 
(1 l!,) 

rr’ 1 + u cos x’ i’ 

Finally, &we t,he Jacobian determinant / a(r, y, t)/d(g, X, 4) 1 = &I/(T, 

2T jl(a01r1 j~(cw') (PI,1 ) WlLl) = & 1' fJ da J 
.O 0 

7 7 

. (1 - r?) 
i 

(1 + u2) sin (x’ - X) + 2cr(sin x’ - sin x) 
-...--.; dx 

(1 "Oa) 

(1 + u cos x)(1 + u cos x’) 

where r’ and T are given by formula (118) with and without primes, and the 
primed variables are obtained from the unpnmed ones via the coordinate t,rans- 
formation (1113) and the fluid displacement (115). 

With t,he help of the addition formulas for the Jwobian elliptic funct~ions (33) 
the integrand in Eq. (26) can be expressed in terms of u and x using only sqwrt 
roots of rational functions of u and t)rigonomet,rip functions of x. The author did 
not attempt, to obtain this expression since the chances were t-hat’ the integral 
would hare to he evaluated numerically in any case, and that, integral is in a 
very convenient form in Eq. (120) for numerical evaluation with the help of 
trigonomet’ric t,ables and tables of snke (see Ref. :L$ ). Mrs. .Jo:tn Peskin carried 
out such :I numerical evaluation, and obtained 

(Pl,l , CUT1,l) = 0.277 ( 1‘2Ob1 

corresponding t,o an energy t)rnnsfer of 7.67 %. Larger displacements within 
1imit.s will give larger energy transfers. Mrs. l’eskin and the author found one 
which t’ransferred 20 % of the energy of Tlzl into P,,, . Such large displscemcnt~s 
are objectionable in const,rurt)ing a dynamo because the magnetic operators 
t,hey produce have norms exponent,ially large in the amplitude of t,he displwe- 
merit when the finite resistivity of the fluid is taken into account, and IU:L> 
p~*oduw large &ray fields. Iwidentally from ICC{. (1 10) it is (clear t,hnt 

(PI*1 , CUThI) = (PM , ‘1LTld = 0. 

Before leaving the operator u it mill be convtwient to point out that hcttrr 
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bounds on its matrix elements than inequality (11 lc) can be obtained. In particu- 
lar, 

11 61%. 1) 5 0.447. (121) 
To prove inequality (121), observe that in consequence of Eqs. (107), if 

f = x, Y, or 2, 

s 
B(t) . b x &&,,I v 

so 

If x &El II II B(t) Il. (122) 

For the particular velocity (lllb), as has been remarked, the m(t) occurring in 

Eq. (33) is 1, so II W II I II W II et, and therefore from inequality (122) 

I WE I I II B(O) II 
(e;e~::“> 

Vl II u x @El II. (123) 

The velocity (lllb) and the functions pltl are simple enough that the norms 
I( u x &nlfl II can be computed exactly: 

11 u X Aplzl /I2 = & /i r4(1 - r2)2 sin6 19jl”((~o~r) 

*[(l - r2)2 cos2 8 + (1 

if ,$ = x: or y 

2 11 u x &AEI II2 = 3 1 47r Y 
r4(1 - r”)” sin4 0 cos2 f?j,“(c~~r) 

.[(l - r2)2(1 + cos2 e) + (1 

From the values of these integrals 

(12-1) 

2~~)~ sin2 e]; 

2~“)” sin2 e]. 

(12% 

(126) 

If the motion is performed very rapidly, p is very small (see Section 6c) so the 
term in brackets in inequality (126) is essentially e - 1. Since the sum on the 
left of that inequality is I/ PIUB(0) 112, inequality (121) follows immediately. 

(c) ROTATING THE EXTERNAL DIPOLE MOMENT WITHOUT MOVING THE FLUID 
SURFACE 

The “new coordinate axes” introduced at the beginning of subsection lob 
will be used also in the present subsection. In subsection lob a motion was ex- 



hihited which from an initial field B(0) = TIT1 produced energy in the P,,, mode 
and none in t)he P1,l or PIzl modes. The initial field T lrl JV:LS itself geneixted iii 
subswtion !lh from a field Plrl (or P Izl in terms of the “old coordinutje L~SW” j. 
:uld the question now arises whether t,he field PI,, just produced from TIIl (YIN 
tw wnvcrted to the original poloidal field Plxl . 

OIIW a dipole moment in t,he i direction has heel1 produced, it is c*lear inllli- 
t i\ely or from subsection 61) that if the whole fluid is rot:ltcd rigidly through 
90” ahout the i axis, t)he dipole moment will then point in the i direction, alxl 
a11 of the rlwrgy in t’he PlyI mode will have bx transferred into Plzl . Ho\vrvcr. 
sinw the fluids dealt with in this paper cannot IIIO\~C at their surfnws, the>- 
cwmot perform swh a rigid rot,ntion. Can the effects of a rigid rotation be dupli- 
c:ltcd t))- :~llowing t,hc interior of the sphere &SIP, to rotate rigidly while thr ;III- 
gul:rr \-clwity iu the thin shell 1 - t 5 I’ 5 1 drops smoot,hlp from its 1-:11uc~ 
- LL’, :1t r = I - t to zero at r = 11’ Since to dupliwt,r :t rigid rotation, t \\-o~dd 
prwumat)lg ha\-c to he smxll, leading to :I large shear ill the outer shrll, 1 hv 
:Itwver is llot oln%usly yes. It is yes, nonetheless. 

By sulwwtiou (ih, the whole process can 1~ I-iewd from :L referent fr:rrnce 
rotating with thr same angular velocity -W, :IS the interior of the sphere $1 t . 
Thercforc, the question is :IS follows: let CR, tw thr m:iguetic operator 011 IV\ 
produwd 1)~ the persistewe for some fixed time f OF the velocity u = I‘ ,sin Bw(~)& 
n-here w(I.) = 0 if 0 5 I‘ 5 1 - E and w(r) rises smoothly from zero at I’ = 1 - t 
to a1 at I‘ = 1. Let, @I denote the free decay operator 10~ . Then (xn 61, tw m:lclth 
c~low to CR(, by choosing 6 small’.’ A4s has heppewd so often :~lrexly in t)his paper, 
it \\-ill he ne~css:wy t)o follow the rigid rotat,ion 1,~ :I short period tZ of free dw:r? 
ill order to :whiwc the desired c~onclusion, which is 

tim I, Su,,(&, - cRn) (j = 0 if I: > 0. (I1”Ti 
c 4 

For concreteness it will be assumed that in 1 - t 5 I‘ < 1, 

[and, of course, w(r) = 0 if 0 _< T 5 1 - E] although the results would tw the 
same except for numerical coefficients if W<(T) were any pievewise continuously 
different,inble function whose derivative did not become very much larger t#han 
E -I wl, the minimum required to get from zero to w1 in the short, interval 1 - c _< 
r _< 1. If the angular velocity (128) persist,s for :L tune f, it xi11 be shown th:it 
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where ~~ = 2pv& , and 

11 az,3(a1, - 6io) (1 < 1314E”2e-P’2t2 p)(+) 

* 1+14 
[ 

3;;, + 3;2 + $ + 5 + k? 1 
1,2 (12%) 

where K~ = 2pvztz . 
To prove relation (129a), let B(t) be the field produced from B(0) by the ac- 

tual motion (128), while B’(t) = &B(O) is obtained from B(0) by free decay for 
the same time t. After motion (128) and a free decay for time tz , the poloidal 
energy remaining in the difference field &,[B(t) - B’(t)] is, in an obvious nota- 
tion, 

If w = r-B = A2p, then ( (P1,, , P - P”) 1 = Xl, 1 (pL,,, , w - w”) I. 

Defining 

yzm&) = (Pzmn , w - w”) and h’(t) = m$z I yzmn I’, 

then 

I( %,s(@, - @o)B(O) I[* I z Xl,?kln2(t)eC2pX’nt2. 

To estimate kl,(t) multiply the equation for the poloidak scalar of the difference 
field, 

a(w - w”) at0 
at - pv2(w - w”) = -* aT’ 

by plmn* and integrate over V, obtaining 

(g + 2PA,.) Yzmn(O = -1, w g ph,* = -im S, wwplmn*. 

Multiply this last equation by glmn*, add the complex conjugate equation, and 
sum over m. The result is 

(gi-2Ph,?J kh%) = -i S, ww 2, dyhn*phn* - yzmnpzmn) 

i II w II II w II sup / ht damn*ph* - yhnphn) j 

I 2hn II u II II w II SUP [mill m' I phn I2 1”’ 
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Sinw /;ln(0) = 0, inequality (65) implies that 

/if,(t) 2 t 11 W /I /i @B(O) jj I SUP [ ,,&[ i pznLn l’]‘i’ 

and 

11 a),,cp(M, - cn,,)B(0) /I‘? 

From the definition (128), jj w 11’ _< 4 ~~‘45, so there remains only to e\-alwrte 
the sums in the expression above. 

In consequence of the addit)ion t’heorem for spherkal harmonics, 

SO 

Since (Ref. 98, p. 50) for any s and I > 0 

an application of Schwarz’s inequality gives / ,jz(rj 1’ 5 (2Z + I)-‘. It is shown 
in Appendix I that, if 1 2 1, 

Therefore 

and from inequality (130), 

The sum in this inequ&y can he bounded by means of an argument, essentially 
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the same as that used to bound the sum in inequality (68). Therefore the details 
of this argument will be omitted; its result is inequality (129a). 

To prove inequality (129b) is somewhat more troublesome. The toroidal 
energy in the difference field &J&t) - B’(L)] resulting after the motion (128) 
has persisted for a time t and then the fluid has been motionless for a time t2 is 

= ,7 L2(l + 1)” I [qhn , q(t) - a”(01 1’ e?pp’nt2 m 
in an obvious notation. Now let ylmn(t) = [qlrnn, q(t) - q”(t)] and 

Llw = 2, I Yzwm(t) 12. 

The equation for the toroidal scalar of the difference field is, in the present situa- 
tion, 

i (q - qO> - pV2(q - a”) = $ 
[ 

sin 6 2 + k2 plo(r, t)YoO] - w 2 

where 

Multiplying the differential equation by qlmn* and integrating over V gives 

If this last equation is multiplied by yirnn* and the result summed over m and 
added to its complex conjugate, one finds 

-i 
s 

qcojo(xr) 2 m ‘lrnn 
[ 

*Ylmn* - qzmnyzmn 
Y m-2 1 jo(7rr) * 

Therefore 
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Schwas’s inequality for (2Z + 1)-dm~ensional spaces then implies 

Bounds must now be found for all the terms on the righbhand side of ill- 
equ:tlit,y (132). I>irst 11 @/a0 11 5 11 hp I/ < 2-l’ jt 20 jj so 

in consequence of inequality (65). Second, CJ satisfies the equation 

from which follows by a now familkr argument that 

and, since /I q(0) /I 5 2-“” [/ hq(0) /j I 2T”’ II B(0) //, 

Third, from t)he form (128) of w, 

and 

Fourt,h :mcl last, 

It is shown in Appendix I that if I > 0 and 0 5 r < 1, 
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This and inequality (131) imply that 

The bounds obtained above for the terms on the right side of inequality (132) 
lead, since ka(0) = 0, to the following inequality: 

Since 

[I D,,s(cR, - cRio)B(O) (I2 = F E2(Z + 1)2~h2(Oe~2P~zntZ, 

and since for any a and b, (a + b)2 I 2a2 + 2b2, it follows that 

where 

A = c ma21 (1 + W> 0 + I)~‘~ exp ( -2pa1,‘tz) 
In 

and 

B = z ah2Z3 (1 + y2/2) (1 + 1)4’3 exp ( -2pa1,‘t2) . 

The sums A and B can be bounded via the methods used to bound the sum on 
t,he right of inequality (68). Inequality (129b) is the result of such a calculation 
in which no great effort was made to obtain a close bound; the reader could 
produce smaller bounds without great difficulty. 

In rotating a dipole moment into a desired direction, it will never be necessary 
to use an angle of rotation wit larger than ?r radians, so wlt/?r may be replaced 
by 1 in inequalities (129). Equation (127) then follows immediately. Therefore, 
even if the fluid’s surface must be held stationary, all the magnetic effects of a 
rigid rotation can be obtained by rigidly rotating the interior of a sphere &-, , 
allowing a large shear to develop in a thin outer shell, and afterwards leaving 
the fluid motionless for a short time. 
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11. A CLASS OF SELF-SUSTAINIKC DYNAMOS 

In this section a set of conditions on a fluid motion in a sphere of unit radius 
and unit resistivity will be stated which are sufficient to insure that t,hnt motion 
can maintain or amplify the external magnetic dipole moment due to eletkric 
currents in the fluid. The results of Sections 4 through 10 will then be used to 
show that motions exist which satisfy these suflkient~ conditions, and ~~11 :I 
motion will be constructed. 

(.k) SOME CONDITIONS SUFFICIENT FOR SELF-I~EGENI~XATIOS IN A I>Yxa~o 

Suppose that all the modes of free decay except those in 6~~~ are regarded :~s 
“contamination.” To be precise, if a field B has the form 

where P, is in 6?,rP and 

B = K(PI + R), ( 13-h) 

II Pl II = 1, II R II I r. ( 1341,) 

then the field B will be said to have a “level of coat:lmination” no greater thnn r. 
Consider a fluid motion whose magnetic operator x amplifies Plzl nit.hout 

raising the level of contamination. That is, if r is small enough, there exrst num- 
bers K > 1 and r’ < T such that if R is any field for n-hich Ii R // 5 T the11 

X(PM + R) = K(P, + R’) 

where PI is in (13rP and 11 PI // = 1, while /j R’ 11 5 r’ . Any sucxh motion permns 
the maintenance of an external dipole moment in the 2 direction forever. This 
fact is obvious if rigid rotations of the fluid are permitted, since PI cm then 1~ 
romted into the position Plzl by the magnetic operator D~,CR corresponding IO 
such a rigid rotation requiring a t,ime tZ . And as pointed out in Section 10~~ 
even when the points of the fluid boundary must remain fixed, fluid mot iorrs 
rn~r 1~1 foarrd with magnetic operat,ors CK, such t,h:rt, 

Therefore 6 may be chosen so small that 6i,~(P~,~ + R) = K’(P~~I + R”) \vhcre 
K’ > 1 and I/ RN !I < r. The motion whose magnetic opcxrator is ~R,SZ can be r(‘- 
pented indefinit~ely (the axis of rotation of the operator CR, may change with 
eacah repetjition, hut t.he angle of rotation will ne\er exceed r) and aft,er every 
repetition the external dipole moment will have imreased in magnit!udc whilr> 
preserving it.s dire&ion and the level of contaminat~iou of the magnetic field will 
have decreased. 

Hut are there any motions whose magnek operators x increase the est,ern:rl 
dipole moment while decreasing the c~ontaminatiorr level? Suppose that :t (WI- 
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tinuum of motions yl(x, t), 0 5 t I 7, is given, one for each T (these motions 
might, but need not, be obtained from the persistence of some steady velocity 
for various times 7). Let ‘0, be the magnetic operator of the motion yl(x, P-‘t), 
0 < t I ~7, where p is a small number. Suppose y2(x, t), 0 I t I t, is another 
motion, with magnetic operator U. Suppose that the operators u and ‘u, satisfy 
these conditions : 

6W,Plol = e-P”lrPlOl ; (135a) 

32W,PlOl = LY7TlOl , &J a nonzero constant; (135b) 

11 PlYI, 11 I peP1’, p a constant; (135c) 

II 3WrPlOI II I PT, P a nonzero constant; (135d) 

I/ %,(I - @O-L /I* 2 tq12(tl , T) + 7’q2% , r)le-2”*t1, (135e) 

where ql(tl , 7) and ~~z(tl, T) are functions of tl and 7 which remain bounded as 
tI and 7 become large, but may be unbounded for small tl and 7; 

II 61U~lOl II = Y, Y a nonzero constant; (135f) 

)I U 11 I j.4, I* a constant; (135d 

11 CPIU II I X, X a constant. (135h) 

Then r, tl , t2, and r can be chosen so that the operator 

x = LDt,UDt,W, (136) 

decreases contamination levels and increases external dipole moments for all 
fields Plol + R with contamination levels below r. To see this, write the field 
x(Plol + R) in the form 

c~t~=ua,wr(Plo~ + R) 

+ ~2w,Plol + (3 - 3,) w,Plol + (I - 61) WA. 

Equation (137) is simply an identity, except that the terms (6 - 61)W,f’l01 
which ought to appear there have been set equal to zero on account of Eq. 
(135a). The first term on the right in Eq. (137) is ave-Y1tZ-Y2t1P~ where PI’ = 
~~~~~~~~~~ is a field in alp for which II PI’ II = 1. The first of the two terms 
involving brackets on the right in Eq. (137) is a stray field in @rp and the second 
is a stray field orthogonal to alp. The operators before any term in Eq. (137) 
display its origin and subsequent history, and permit the application of inequali- 
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ties (135) in order to estimate the size of the stray fields. In fwt, it is rel:xt~i\~rlg 
simple to show from inequalities (135) that 

‘u~,u:Dt,w,(Plol + R) = (’ Y*f.‘-Y2t’cqT[P1’ + PI” + X], (13X:t) 

whcro PI’ and PI” are in aI’, X is orthogonal to IK~~, I/ P1’ = 1, 

Let .f’ be any number between zero and one. If it can be arranged that, 

II Pl” II I f, ( 1 :i!h 1 

11 x 11 5 r’(l - j’), r’ < r, ( 1391,) 

(1 - f)ay7e-“ltz-“.tl > 1, ( 139v ) 

then the field PI = (1 - f)-‘(P; + PI”) is in 6~~” and 

1 I II Pl II I (1 + .f’)!U - .f), 

while (1 (1 - .f)--‘X I\ 5 T’ and 

X(PlOl + R) = c -““‘-“%yT(l - f)[P, + (1 - f, ‘Xl; 

thus indeed x decreases the caontnmination level and incre:ws the dipole n~o- 
merit. Therefore, it remains only to show that I’, tl , tS , and T c:m be chosen SO 
that, relat8ions (139) are satisfied. To see that this is possible, let g and h bc :UI~ 
numbers between zero and one. Choose tl so large that 

VB (u.--YQ)t, -e < j-g/Y (14OaJ 
“Y 

Then require T to be larger than some lower limit T” and choose r so small that 
if T > 7” 

With t,his choice of tl and r now choose 7 so large that T > rO and 
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Inequalities (138b) and (140) now imply (139a), and r, t1 are fixed while 7 must 
be larger than some lower limit 71 . Let r’ be any number less than the r just 
obtained. Then fix t2 at a value so large that inequality (139b) is satisfied. Finally, 
choose 7 so large that 7 1 71 and that inequality (139c) is satisfied. This com- 
pletes the proof that if ‘U and W, satisfy the relations (135), then the fluid mo- 
tion (136) purifies and amplifies fields Plol + R whose initial levels of contamina- 
tion are sufficiently low; consequently, the motion (136) constitutes a 
self-sustaining dissipative dynamo. 

(B) THE EXISTENCE OF FLUID MOTIONS WHICH SATISFY THE CONDITIONS (135) 
SUFFICIENT FOR DYNAMO MAINTENANCE 

Motions for which the coefficients in inequalities (135) have been computed 
in Sections 4 through 10 are as follows: ‘u, is the magnetic operator of the mo- 
tion resulting from the persistence for time pr of the velocity 

u = pY(1 - r”) sin 8 cos 08 

in the given fluid of unit resistivity, or the velocity u = ~“(1 - r”) sin 0 cos 06 
for time T in a fluid of resistlvity p. The magnetic operator u is one of the opera- 
tors up’ discussed in subsection lob, whose norms are less than e and whose 
matrix elements are very close to those of the operator u of that subsection 
obtained by allowing the velocity (lllb) to persist for unit time in a perfectly 
conducting fluid. With these magnetic operators, the constants and functions 
appearing in relations (135) are as follows: 

-PvlT -PvV 

a = (0.0976) e - e 

Pb2 - YJ?. > 

[see Eq. (92a, b)]; (141a) 

p = 3.85 [see Eq. (74)]; (141b) 

(141c) [see Eq. (92c)l; 

1 + 2$1 + 2 
&‘d~)~ >I , (1414 

(141e) 

where 
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[see Eqs. (73), (79, and (loo)]; 

y = 0.277 [see Eq. (120b)l; (lllf) 

p = e = 2.71828 . . . [see Eq. (111~); (,l-kk) 

X 5 0.477 [see Eq. (121)]. (14lh) 

The following choice of T, fl , t:, , 7, p will be found to conform to the demands 
(140) with f = 46, g = !g, and h close to 1: PT = 1.5 X lo-“, t, = 0.2105, I’ = 
1.047 X 10-3, tz = 0.985, T = 1.2 X 108. Th en the factor by which the velocait> 
(SO) is speeded up is p-l = 8 X 10’. Since the maximum value of the v&&v 
(80) is li, the maximum velocity achieved in the dynamo is 10’ in dimension- 
less units. This velocity i’s maintained for a time pi during the whole cycle of 
length p7 + fl + tl so the time average of the maximum velocit’y is 1.25 X IO’. 
The root-mean-square of velocity (80) is about half its maximum, giving :I 
time- and space-averaged velocit’y of 6 X lo6 dimensionless units. By way of 
comparison, from inequality (33) the velocity below which dynamo mair1tennnc.e 
has been proved impossible is v 1 w 10 dimensionless units. If the mean life 7’,, 
of Plol in a rigid earth’s core of radius R = 3000 kilometers is t’aken to be 15000 
years, t,he unit of velocity is Ii/vITO = 6.6’7 X 1O-5 cm/set, so the largest veloca- 
ity whicbh has been proved incapable of maint#aining n dynamo in the earth’s 
core is about 6 X lop4 cm/set while the smallest mean velocit,y which has bccln 
proved capable of dynamo maintenance is 4 X 10’ cm/set. 

12. coP;CI,USIONS 

(-4) IMPROVIKG THE I,OWER BOCNI) ON DY~AMo-~~AIST~~ISISG ~'P:LOCITIF:S 

For the motion (136) for which numerical results have been obtained there is 
a gap of almost six orders of magnitude in which it has not been shown whet,her 
a dynamo can be maintained. Most of t’his large gap is produced by t,he loss of 
information which occurred every time an equality was replaced by an inequality 
in the argument,. And the most, serious such loss of information occurred through 
the decision to treat only @I as worth observing, everything ortjhogonnl to it. 
being called “contamination”. The minimum velocity which c&an he shown 
capable of maintaining a dynamo is materially lowered by scarutinizing spaces 
with higher decay rates. 

In particular, if the st,igmn ’ of “(:oi~tami~~atio~l” is removed from & , then to 
obtain a dynamo from the motions considered in Section 11 one must start, with 
a field of t’he form Plzl + AP, + BT, + R where A and B are c*onstants agreed 
on before hand, Pz and Tz are fields of unit, energy in 03~~ and &‘, and only the 
field R is regarded as contamination and required to have :L small norm. The 
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effect of the magnetic operator 

must then be computed in two parts: first, all the parts of 

G = (61 + 6’2 + ~2)~t,u~,,w,(P,~ + APL, + BT,) 

which grow linearly with 7 must be computed exactly (except such terms as can 
be shown by symmetry arguments not to interfere with the regeneration of 
Plzl) and bounds for the remainder of this field must be obtained. Second, bounds 
must be obtained on the fields 

and 

K = (I - 61 - Q~)~~,=u~&,WPI~I + AP2 + BT, + R). 

The bound on H will determine the first decay time tl and the level r of contami- 
nation which can be allowed, since H must be so small that when added to G 
it camrot cancel &G. Then the demand that I( K 11 be so small that the final 
field has a contamination level no greater than r will determine t2 . Finally, 7 is 
determined by the demand that at the end of the motion the energy in &p is 
no less than it was at the beginning. (There is a lower bound on 7 arising from 
the bounds on G and H but this is much less than the 7 required to give ampli- 
fication, and can be ignored.) This program looks onerous, since UC& 0 (~2 is an 
11-dimensional space: however, for the motions considered in subsection llb 
only three of the possible 121 matrix elements of u and only nine of W, need be 
computed exactly because of the symmetries of those motions. A very prelim- 
inary estimate indicates that, by scrutinizing the relevant part of ~3~1 0 a32 
instead of just @I , the minimal velocity proved capable of dynamo maintenance 
in the motion (136) can be lowered by about two orders of magnitude, to about 
6 X lo4 dimensionless units; in an earth’s core with longest rigid decay time of 
15,000 years, this is 4 cm/see. It is possible that elevating higher @k’s from the 
incompletely observed contamination into the company of the observed fields 
will lower this minimum by another one or two orders of magnitude, but the 
author believes that the techniques of this paper, carried out with however large 
a space of observed fields, will leave a gap of at least two orders of magnitude 
between the minimum velocity proved capable of maintaining a dynamo and 
the maximum velocity which inequality (33) proves incapable of dynamo main- 
tenance. This question will have to be examined further at a later date. 

(B) THE AMPLIFICATION FACTOR AS A FUNCTION OF VELOCITY 

If u and W, are the magnetic operators of any motions satisfying relations 
(135), the relation between the mean velocity (u) of the whole motion and the 



average growth rate (K) of the dipole moment per unit time can be found from 
ineyualit~y (139c). The time for one full cycle of the mot,ion (1X) is pT -l- (I + 
f2 while t,he factor by which the field Plol has been amplified during that time liw 
bet,ween (1 - j)~?yTc’-(“~~~+“~~~’ and (1 + ,f)~yy7~‘--‘~“‘+“~“, wheref is the numlw 
bet,wwl 0 and 1 chosen for inequalit~y (139a). The arerage velocity is 

(Il) = IrT(pT + 11 + f.L)C’ 

where 1’ is a constant (about 0.05 in the numerical example of subsection 1 lb). 
If p7, 11 , and fz are fixed, as they must be in the approach of Se&ion 1 la, thrti 
t.his amplification factor is proportional to (u), and if the amplitude of Pl,,r is 
witten in t.he form P” the average value of K is (K) = 111 (‘(uj, where (’ is :1 
couskmt depending on l’, pT, II , and tz . In his disc-and-loop dynamo, Hullard 
(vLi) found (K) = ~‘((LL) - ) -h a n ere C’ and a were const,ants. The large wm- 
p:wat,ive loss of efficiency which occurs at high (10 in the dynamos presented 
here is a result of the drastic decays required to enable the Arnp fields to lw 
kept under cwntrol by the crude estimates of this paper. 

(C, ?‘HE (;ESEKALITl- OF THE &.ISS OF b~OTIOSS 7~IIE.kTEIl 

In this paper the attempt to produce dynamos by means of a velocity brlievetl 
to he like that in the earth’s core has been explicitly eschewed. Nevert,heless, it 
is iuteresting t’o ask what motions can, by the methods preseut’ed here, be pro\wl 
capable of dynamo maintenance. 

Any motion whose magnetic operator has t,he form ( IXti), it’s components 
satisfying relations (l%), has been shown to maintain a dynamo if T is s&i- 
ciently large (the toroidal velocity is sufficiently high). l:or reasons already 
pointed out, the free decays Do, and Do, , during which the fluid is motionless, 
arc csseut~inl iu the present approach. No such st,nais can be expeckd of the 
ealth’s cow, so t,his limitation must be removed before t,he present approach 
bwomes rigorously nppli~nhle to motions which might be expected in that core. 
There are two lines along which the difficulty might be attacked: it’ might be 
possible that approsimntin g a motion by a series of jerks interspersed with periods 
of free dewy as suggested in Sevt,ion Cid would lead to a criterion for t’esting the 
ability of arbitrary mot,ions to maintain dynamos. It might also be possible to 
obtain bounds on stray fields generated by arbit,r:wy motions which diswrd so 
little iuformation that no period of free decay 1. “: needed to assure that thaw 
stray ficltls do not grow. 

The maguct~ic opernt)ors 2’, which can he proved by the m&hods of this papel 
t,o satisfy relatious (135) must come from toroidnl shears symmetric about thv 
i axis whose angular velocities ~(r., 0) involve ouly :I finite sum of I,egendrc 
polynomials in ws 0. If w(r, 0) is symmetric about the ecluatorial plane 8 = T ‘2, 
3?‘u,P,“l = 0 :md the least mpidly decaying toroidnl field produced from Plo, 11y 
‘c, is &T,P,,,, = fJrTzOL . This equation together with c~~P,P,~, = 0 rcpl:ww 
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equation (135b) for such angular velocities, and then &B can never be treated 
as a stray field. Otherwise the analysis goes through as in subsection llb. 

The magnetic operator U obtained from the velocity (111) has to recommend 
it only that its effects can be calculated explicitly in a fluid of zero resistivity. 
The motion is axisymmetric, but about an axis perpendicular to i, the presumed 
axis of symmetry of any motions with large scale organization in the earth’s 
core. Furthermore, u produces a &%Tlzl = PI,1 which has to be rotated back 
to the i direction, a physically unlikely motion. But the demands (135f, g, h) 
on u are very weak. Inequalities (135g) and (135h) are an automatic conse- 
quence of inequality (33) for any motion whatever as long as its final displace- 
ment is fixed. The only real demand on (u is Eq. (135f). If this demand is strength- 
ened and it is required that &uT~,~ have most of its energy in Plzl and very 
little in Plzl or PI,I , then the magnetic operator (136) just as it stands regenerates 
Plzl , and no rotation is required. Parker’s (14) vortices, which the reader will 
be able without difficulty to fit into a sphere using the formation of Eq. (108), 
and whose magnetic effects can be calculated from Eq. (109) when the displace- 
ments involved are very small, are an example of such a motion. In this example, 
a small region of the fluid is made to move poloidally and simultaneously to 
rotate about ;, the rest of the fluid remaining stationary. From Eqs. (109) the 
main effect of this motion is to produce Plzl and Plul , but a small amount of 
Plzl is also produced. A large number of such small disjoint regions is distributed 
through the sphere. If the fluid were a perfect conductor, the magnetic operator 
of the whole motion would be the sum of the operators of the individual vortices, 
and this is approximately true if the motion is executed fast enough when p > 0. 
But then if the vortices are more or less axisymmetrically distributed about i, 
their individual Plzl and Pl,l,productions will almost cancel, and only the Plzl 
will remain. With this sort of scheme for regnerating PIEI from Tlzl there is no 
necessity for wild fluctuations in the direction of the external dipoIe moment 
and the axis of symmetry of the internal toroidal field, and the latter field need 
not be small at any time during the motion. 

It should now be clear that the methods of the present paper are sufficiently 
powerful to treat axisymmetric toroidal shears protracted indefinitely, and ar- 
bitrary motions of fixed finite total displacement. The most serious limitation 
of these methods is their dependence on occasional stasis in the fluid in order to 
eliminate insufficiently scrutinized “contamination” fields. 

APPENDIX 1. SOME INEQUALITIES FOR BESSEL FUNCTIONS 

Despite the extensive asymptotic theory of Bessel functions, very little work 
seems to have been done on strict inequalities associated with that theory. 
Therefore, it is necessary to provide proofs of inequalities (131) and (133). These 
proofs involve Sturm’s theorem in a slightly stronger form than that proved by 
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Watson (Ref. 98, p. SlS), hut his proof can easily be modified to give this stronger 
result,, so it will not be proved here. The result needed is 

Sturm’s Theorem: Suppose that for all x larger than some fixed a, We 2 wl(.r), 
alld d’yj/dX’ + 0ijj.j = 0, i = 1 , 2. Suppose also that 0 < jh(aj I ~~(a) and 
!~~‘(a) 5 y,‘(n). Then in any interval a < 5 < c in which !k4(.r) is positJive, !/1(.r) 2 
?/2(X 1. 

Inequality (1X1) will be proved first. To conform to Watson’s notation, ,jy 
will denote the first! positive zero of J, , and the Zt,h spherical Bessel functioii 
(a’2r)“LJl+l!z(x) mill always be written j,(z) to avoid confusion. For t,he mo- 
merit,, consider inequality (131) only when n = 1. Then that, inrqunlitly can tw 
rewritten as 

1 

( > 

113 

v 4-3 d jJy+12(,&) 2 & . . VT 

Since (Ref. 28, p. 487) jy3 5 $i(v + l)(v + 5), this inequality is a consequtwr 
of 

v-2’3j;“J,+,2(j,) >_ 1.215, 

a result, which will be proved immediately. Observe that 

(142) 

jY2.JY+IE( j,) = 2JJ,‘(v)’ + 2 1’” .c.l,~(x) dr 
Y 

(Ref. 28, p. 135). If v I v set /3 I j, and if f is defined as 5 = v (tan fi - 6 J 
then Watson (Ref. 28, p. 521) proves from Sturm’s theorem that’ 

where 

In consequence, if $,, is the first positive zero of F,(l) and p0 is defined by .$, = 
v (tan &-, - PO) then, as Watson (Ref. 28, p. 521) observes, jy’ > gvpo3, so 
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Since cos p > (~/35)l’~, 

1” zJ:(~:) dx 2 g3 i co pF,?(E) dE. 
Y "0 

Thus 

-2’3j:J,+:( j,) 2 [v~‘~J~‘(v)]~ + 3$ 1 go c$-1’3F&) dC;. V 043) 

Since both A(v) and B(v) are monotonically increasing functions of v (Ref. 68, 
p. 260) while ,$“3J1&) and FY([) are positive between zero and lo, it follows 
that FY2(Q is a monotonically increasing function of v; then so is its first zero, 
to(v). Since v~‘~J~‘(v) also increases monotonically with v (Ref. 28, p. 260) the 
right-hand side of inequality (143) does likewise. Inequality (141) was proved 
by evaluating its left hand side from a table of zeroes of spherical Bessel func- 
tions for v = 35, 35, . . . , 39$, and then computing the right-hand side of in- 
equality (143) for v = 435, so below 43,s inequality (141) has been proved only 
for half-integral values of v. 

The left side of inequality (141) turned out to be a monotonically decreasing 
function of v from v = $5 to v = 395. The author has not tried to prove that 
this situation continues for .a11 v, but if it does then inequality (141) can be 
strengthened: the left-hand side is greater than its limit as v + Q, , namely 
1.24716 . . . . This limit can be computed from various limits given by Watson 
(Ref. 28, p. 260) or from the asymptotic expansion for the left side of inequality 
(141) given by Olver (36), who shows, incidentally, that when v = 00 the inte- 
gral on the right in inequality (143) can be evaluated in terms of Airy functions. 

There still remains the comparatively simple task of proving inequality (131) 
when n > 1. Define 

and 

(144a) 

so that Bessel’s equation becomes 

Multiply Eq. (144~) by dy,/dx and integrate from a to b, obtaining 

(145) 
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If a and 6 are both zeroes of yl(z), since dwl/d.r > 0, yl’(n)” < ul’(6) if n < 6. 
Since inequality (131) can be written as y1-1’(~I-1,,I)2 2 (1.481”“)P’, it:: tnllh 
for 11 = I implies its truth for all higher 11. 

Inequality (131) having been proved, inequu1it.y (133) must no\v be dealt 
with. Two lemmas will be useful. 

Lrmma 1: If I 2 1, ay112 2 1(Z + 1) + 7r’). 
From the tables of roots of Bessel funct,ions, cyL1 > (I + 1)(1 + 2) + al’ if 

1 = 1, 2, 3, 4. Since Z(Z + 1) + 7r2 and all are monot~onic~:~lly iwrrnsing fmwtiow 
of I (Ref. 28, p. 508) the lemma is true if 1 5 1 5 5. The inequality 
cy[,‘) 2 (1 + ‘2)(1 + ,$) ( Ref 28, p. 486) proves the lemma for 1 2 3. . 

Ikmma 2: If d’!g/dx’ + w(z)g = 0, dwldx 2 0, :uld g > 0 when rc < .I’ < II. 
lvhile i/(s) and ,(rj are continuous when a 5 .r 5 6, and g(a) = g(6) = 0, thwr 
the unique point. c het,ween a and 6 at, which y’(c) = 0 is larger thnll 1 ~(u + It). 

To pro\.ct lemma 2, let, pi(~) = g/ix:) and ma(x) = ~(1’) when r < .r 5 I), lvhile 
gl(.r) = g(2c - .r) and ~~(2) = w(2c - X) when c 2 x 5 %c - (1. Then at .I’ = C, 
1/l = !/? and !/,’ = gs’, while in the int’erval 0 2 .r < min [r. 2r - (I], wl < (L’? . 
Herwe, by StJurm’s theorem t#he zero of !jl , 2c - n, is l:wger thrill 6, thfh zt‘ro of 
j/:. . This proves lemma 2. 

when 

0 I x I cr1,t . (1461)) 

The case 1~. = 1 is again the hardest and must be settled first. As \Y:W shower iI1 
Swtion lOc, 1 ,jl(xj 1 < (21 + 1 )-li2, so / y&) 1 I x(21 + 1)-1:2, *SO / yr(.r) / 5 #U,,(J) 
if 0 5 z < CU&. To dispose of the other half of the interval (1431~) let K, 1w 
the point x at which the WI(x) of Eq. (144b) becomes eciual to (?r:c~~,)“. I,twm:~ 
1 insures that K( < (~11 , so We < (7r/cu11)’ if 0 5 .r < KI , and w&r) > (~.;‘a~~)‘? 

if K~ < 1‘ < a11 . The well-known asymptotic cxpr&on forjl(x) when x i;; large 
(Ref. 28, p. 199) shows that, 

and it has already heen shown in this appendis that l/L’(~ln)2 incrrasw monot,oni- 
rally wi-it.1~ t2. HCIW~ gl’(a11)2 < 1 = A~‘~~‘(cY~,)~. Sinw !/I(cyII) = ,\‘,,(all) = 0 and 

Sturm’s theorem implies that 1 u&r) j 5 Sll(.rj if K/ I .r 5 WI . 
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n’ow let Z’ be the point between zero and (YZ~ at which yl’(z) = 0. If KZ 5 x’, 

then from the preceding paragraph 1 y*(x) 1 5 SZ~(X) when x’ 5 2 5 (~11 . And 
if x’ < KZ , then at least 1 yl(x’) 1 < sll(z’). T o see this, suppose the contrary: 
I YZW I 2 &lW). L emma 2 implies that cull/2 < x’, so yl’(x’) = 0 > X1l’(~‘). 
Sturm’s theorem applied to Eqs. (144~) and (147) then implies that 1 g(Kz) 1 > 
Sz,(~z), contradicting the result of the preceding paragraph. But now suppose 
there is any point x at all for which x’ < x < KZ and ( ye 1 2 Xzl(z). Then 
there is a least such point, a. At a, d I yl(x) (/dx 2 dSJdx and I yl(a) I = fill(a), 
so another application of Sturm’s theorem leads to the false result / ZJZ(K~) / > 

SZ~(K~). InJine, regardless of the relative positions of x’ and KZ , I ye 1 5 SZ~(X) 

if x’ 5 x < all . 
Since Szl(x) is symmetric about the line x = ail/2 and since I yz(x) I 5 I yz(x’) 1 

if 0 5 x 5 azl, it follows that I yz(x) / 5 Szl(x) if (Y/~ - x’ 5 x 5 all. But 
a11 - x' < (YZIP, so I $/z(x) I I s z1 x in the whole range 0 5 II: 5 azl . ( ) 

For higher n, the argument is quite simple, and proceeds by induction on n. 
Suppose inequalit,y (146a) in the range (146b) has been proved for n. Since 
SZ,(X) I SZ,,+I(X) if 0 I 2 I azn, inequality (146a) is true for n + 1 in this 
interval. And since KZ < CYZ~ , wz > (T/(YzJ~ > (T/cxz,)’ when LYZ~ 5 x I a~++1 , 
while ~z’(cQ,~+I)~ < 1 = SZ,~+I’(~Z,~+I)~ and YZ(~Z,,+I) = SZ,~+I (a~,~+11 = 0. 
Hence by Sturm’s theorem I yz(z) 1 5 Xl,n+l(x) when CYZ~ I x I a~++,. This 
completes the proof of inequality (146a) in the range (146b) for all I 2 1 and 
all n > 1. When I = 0, that inequality is obvious. Therefore inequality (133) is 
proved. 
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