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PREFACE

This book has been written for an advanced undergraduate course
in electricity and magnetism offered to students majoring in physics and
in related fields. It presupposes a year’s course in general physics and one
in calculus. It is based on the lectures in electricity and magnetism given
by the author for the past nine years and is designed to be readily understood
by even the student who will receive only a minimal guidance from the
instructor.

The book has three main objectives. The first objective is a presentation
of the fundamentals of electromagnetic theory reflecting recent developments
and applications of the subject. To achieve this objective, considerable
amount of modern material is included in the book; operational definitions
are introduced for all fundamental electric and magnetic quantities; cur-
rent and voltage are used as the basic measurables (mksva system of units)*;
vector analysis is used as a standard mathematical tool; and, which is most
important, the theory is presented in a logical rather than in a historical
sequence.

The second objective of the book is a rigorous but simple presentation
of electromagnetic theory, with emphasis on the internal unity and har-
mony of the mathematical description of electric and magnetic phenomena.
To achieve this objective, the basic structure of the theory is first deter-
mined. With the aid of general physical considerations it is made plausible
that the theory must be based upon three types of experimental laws: the
field laws, the energy laws, and the constitutive laws. At the same time
it is deduced from Helmholtz’s theorem of vector analysis that a complete
set of electric or magnetic field laws need not contain more than two ex-
perimentally established correlations, which may be either in a differential
form (curl and divergence laws) or in an integral form (circulation and flux
laws). On the basis of these considerations the theory is then presented
rigorously and simply in a systematic, coherent, and logical manner.

The third objective of the book is to develop in the student a creative
ability in the application of electromagnetic theory. For this purpose, detailed
solutions to a large number of illustrative examples demonstrating various
methods and applications of the theory have been incorporated in the book.

*The formulation of the concepts of electric current, voltage, charge, and electric and
magnetic fields is based on ideas developed by R. W. Pohl in his famous lectures on gen-
eral physics. The electricity and magnetism section of the lectures is described in R. W.
Pohl, “Elektrizititslehre,” XIX Auflage, Springer, Berlin (1964).

v



vi PREFACE

Furthermore, each chapter, except Chapter 3, has been supplemented by
a number of carefully selected problems which should help the student to
build up the skill and initiative in practical application of the presented
material.

In agreement with modern curricula, the book deals primarily with a
detailed exposition of the theory of macroscopic electric and magnetic fields.
The book is, however, sufficiently flexible to allow the instructor to add
supplementary topics to the course. With this in mind, much subordinate
material has been relegated to starred section, which may be omitted without
loss of continuity, and to illustrative examples. The instructor can easily
substitute additional material for these sections and examples.

In writing the book, the author has attempted a complete rethinking of
the subject matter. The book contains therefore an appreciable amount of
original material, most of which has evolved in the process of developing
the theory in accordance with the principles outlined in connection with
the second objective of the book.

The author is grateful to many of his former students for their encouraging
attitude and helpful suggestions. He owes a great debt to his wife Valen-
tina, who patiently typed and proofread the numerous drafts of the
manuscript and assisted in the preparation of the lines-of-force photographs
appearing in this book.

PREFACE TO THE SECOND EDITION

The numerous unusually favorable comments that the author has been
receiving about the first edition of the book from many students and teachers
have convinced him that the book does not require an extensive revision.
Therefore, in preparing the second edition for publication, the author has
limited the revision mainly to an improvement of the presentation.

As it was mentioned in the preface to the first edition, the book contains
a substantial number of original derivations, formulas, and problems. Even
more such original material appears in this edition. This kind of material
is always more difficult to present and to verify than that which has repeatedly
appeared in many textbooks and other publications over a period of many
decades. The author can only hope therefore that both the presentation
and the accuracy of this new material are as good as they can be. He also
hopes that the fact that new correlations and methods can be continually
found in even such well explored branches of physics as the classical elec-
tromagnetic theory will be an inspiration for readers and users of this book
to search for new relations and ideas in all branches of physics, no matter
how well established.

Oleg D. Jefimenko
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INTRODUCTION






PHYSICAL QUANTITIES AND
PROPERTIES OF PHYSICAL
EQUATIONS

In physics extensive use is made of the possibility of
mathematical representation of physical phenomena: physical con-
cepts are designated by symbols, the relationships between concepts
are expressed by formulas, and the correlations between phenomena
are represented by equations. Physical formulas and equations are
characterized by special properties and form a special class of mathe-
matical expressions. The knowledge of these properties is essential for
an accurate formulation and intelligent application of physical theories.
In the field of electricity and magnetism this knowledge is also needed
for the understanding of the relations between different systems of
electric and magnetic measurables used in scientific literature. We
shall start therefore with a brief discussion of the nature and properties
of physical formulas and equations.

1-1. Physical Quantities and Physical Equations

The properties of physical formulas and equations are closely
connected with four preliminary procedures which constitute the
starting point for a quantitative study of physical phenomena. These
procedures are:

(1) selection of basic, or primary, measurables (basic objects of
measurements) and specification of properties to be used for their
identification
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(2) selection of instruments for the measurement of basic measur-
ables

(3) selection of standards and units for the calibration of these
instruments and

(4) selection of derived, or secondary, measurables and specification of
rules for their measurement.

The first of these procedures defines the conceptual contents of the
basic, or primary, quantities, while the second and third procedures make
it possible to associate a definite magnitude with each of these quantities,
thus completing their definition. The fourth procedure consists in
selecting certain groups of primary measurements in combination with
specified mathematical operations to be performed upon the results of
these measurements and defines the derived, or secondary, quantities.

With the aid of these four procedures it is possible to describe
various physical phenomena in terms of a few primary quantities
(results of single measurements) and a few secondary quantities (results
of certain groups of measurements). The experimentally observed corre-
lations between phenomena can then be expressed as correlations
between these quantities in the form of algebraic equations.

It is clear that such equations reflect two different things. On
one hand, they reflect correlations inherent in the physical phe-
nomena. On the other hand, they reflect our approach to the quanti-
tative description of these phenomena—in particular, our selection of
measurables, standards, and units. This selection involves a con-
siderable degree of arbitrariness. In principle, one can express the
same set of correlations by using one, two, or any other number of basic
measurables of any reasonable kind. The division of measurables into
primary and secondary is also arbitrary. The choice of standards and
units of measurements is, of course, arbitrary too. As we shall see, this
arbitrariness in the selection of measurables, standards, and units is
responsible for several remarkable properties of the physically meaning-
ful mathematical expressions.

1-2. Ratio Requirement. Dimensions of Physical
Quantities
Let us investigate how physical quantities, formulas, and equations

are affected by the possibility of choosing different standards and units
of measurements.
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Obviously, the correlations between physical phenomena are
determined by the very nature of these phenomena and do not depend
on our choice of standards or units. Since the correlations between
physical phenomena are independent of the choice of standards or
units, all equations which describe these correlations must be invariant
to a change ofthe size of the standards or the size of the corresponding
units. In particular, the ratio of any two physical quantities each of
which represents the same measurable must not depend on the units
in terms of which these quantities are expressed (for instance, the ratio
of two distances must not depend on whether these distances are
measured in feet or in meters). Only those quantities that satisfy this
ratio requirement are considered physically meaningful. The fact that
physical quantities must satisfy the ratio requirement is their character-
istic property.

Since the same quantity can be expressed by different numbers,
depending on the size of units used, a complete specification of a
quantity must contain a statement of the units in terms of which the
quantity is measured. If a quantity represents the result of a group of
measurements (secondary quantity), it is necessary to state how the
number representing the quantity is correlated to each individual unit
used for the evaluation of this number.

It has been found that if both the primary and secondary quantities

atisfy the ratio requirement, then the value of any secondary quantity
represents a power product of the values of primary quantities. There-
fore physical quantities may be written as products of two factors.
The first factor is a number (or a symbol standing for a number) and
is called the numerical value of the quantity. The second factor is a
power product of symbols designating basic units or, in a general case,
a power product of symbols designating basic measurables; this power
product is called the dimensions of the quantity and constitutes a formula
which shows how the numerical value of the quantity is related to the
units of basic measurables. The dimensions of a basic quantity are, of
course, only one symbol designating the basic unit or the basic
measurable itself. Conceptually different quantities usually have
different dimensions, and therefore dimensions are frequently used
for identification of quantities. To indicate that only the dimensions
but not the numerical value of a quantity are being considered, the
symbol designating the quantity is placed between square brackets.
For example, [V] means dimensions of the quantity V. The dimensions
themselves are usually written in square brackets too; thus if L
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designates length and T designates time, the equation [V] = [LT!]
means: the dimensions of V are length divided by time.!

1-3. Dimensional Homogeneity of Physical Equations.

Dimensional Analysis

As has been stated in the preceding section, all physical equations
must be invariant to a change in the size of units. A detailed investiga-
tion shows that the necessary and sufficient condition for this invariance
is the dimensional homogeneity (dimensional uniformity) of the equations,
which means that only quantities possessing the same dimensions may
be added, subtracted, or equated, and that only pure numbers may
serve as exponents or as arguments of trigonometric, hyperbolic, and
other similar functions. If equations are dimensionally homogeneous,
any change of units cancels out and does not influence the equation.
Thus the arbitrariness in the choice of standards and units restricts
physical equations to equations homogeneous in dimensions.

This restriction gave rise to a branch of physics called dimensional
analysis. Dimensional analysis is an aggregate of methods for solving
various physical problems on the basis of dimensional considerations
by utilizing the property of dimensional homogeneity of physical
equations. Dimensional analysis can be used for a variety of purposes,
from finding errors in algebraic computations to solving partial differ-
ential equations. Two especially useful applications of dimensional
analysis are described below. Other applications are demonstrated in
Sections 1-4 and 1-5.

A very useful application of dimensional analysis is a method for
tracing errors in calculations involving physical quantities. Since
physical equations must be homogeneous in dimensions, the dimensions
of all the terms connected by equality signs must be the same. Further-
more, all terms connected by plus or minus signs must have the same
dimensions, and all exponents and arguments of transcendental
functions must be pure numbers. Consequently, if any term obtained
in the process of calculation has dimensions different from those of
the preceding term, or if it violates dimensional homogeneity in any
other manner, then an error has been made in the calculation of
this term. By checking the dimensional consistency of calculations one

1 The symbols L and T are used universally to indicate length and time. Another
universally used symbol is M, indicating mass.
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can find the term in which the error has occurred. Once it is known
where the error is, the error can easily be identified and eliminated.

Of course, even if a calculation is dimensionally consistent it still
may be wrong for a number of obvious reasons. A dimensional check,
however, allows one to detect a surprisingly large number of errors
encountered in most types of calculations.

v
Example 1-3.1 As a result of a certain calculation the following
formula has been obtained:
R, + R
R=—-1—
R, - R,

Determine whether or not this formula is physically meaningful, if R, R,
and R are physical quantities having the same dimensions [R].

To check the formula, we compare the dimensions of the left side with
those of the right side. The dimensions of the left side are [R], the dimensions
of the right side are [R; + R,]/[R,] - [R,] = [R] - [R]™% = [R]™!. Thus
the formula in question is dimensionally wrong, which indicates that
an error has been made in the calculation. (Note that the dimensions of a
sum or a difference of two quantities are the same as the dimensions of
each quantity alone since only quantities of the same dimensions may be
added or subtracted.)

Example 1-3.2 Make a dimensional check of the following calculation:

2x x2 .
fxz cos ax dx = — cos ax + — sin ax — —sin ax,
a a a
where [a] = [x]71.

Taking into account the fact that [dx] = [x], we see that the dimen-
sions of the last two terms on the right are the same as those of the term
(integral) on the left, namely [x]3. The dimensions of the first term on the
right are, however, [x]2. Hence, there is an error in this term (a recalculation
would reveal that there should be a? instead of @ in the denominator).

A

Another very important application of dimensional analysis is a
method for determining functional dependences between quantities
involved in physical phenomena. According to the fundamental
theorem of dimensional analysis—the Buckingham, or “#”’ theorem—a
functional dependence between any physical quantities can always be

expressed as

m = f(my 73y o .o T,),
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where the #’s are independent dimensionless power products built from
the quantities involved.! In particular, if these quantities are such that
only one independent dimensionless power product 7, can be made
from them, then the above formula reduces to 7; = constant. In this
case one can find the functional dependence between the quantities
by building a dimensionless power product from these quantities and
setting the product equal to an undetermined numerical constant.

v

Example 1-3.3 A beam of electrons of cross-sectional area S[m?] and
charge density plamp -sec - m~3] is ejected from an electron gun and
moves with velocity »[m - sec™!]. The beam is equivalent to a current
[amp]. Find how this current depends on S, p, and v.

We begini by constructing independent dimensionless power products
from S, p, v, and I. This we do by combining successively the quantity
having the most complex dimensions (p in the present case) with other
quantities, each time eliminating some of the units from the dimensions of
the quantity with which we start. To eliminate [amp] from p, we use I,
obtaining

? [sec ~m~3].
To eliminate [sec] from this expression, we use v, obtaining
pY .
7 [m 2].

To eliminate [m~2] from this expression, we use S, obtaining

pvS
T

The last expression is a dimensionless power product, 7;. In building it,
we have used all quantities given in the problem, and there are no quantities
left from which we could build other independent z’s. By Buckingham’s
theorem we then have

where C’ is a numerical constant. The dependence which we seek is there-
fore (we replace C’ by 1/C, for simplicity)

I = CpuS.
1'n power products are called independent if none of the products can be

expressed as a power product of any of the remaining n — 1 products. Each product
has the form QF - Qg - Q% -+, where @’s are the quantities under consideration.
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Example 1-3.4 Find the functional dependence between the period
and the length of a simple pendulum, taking into account that the period
¢t depends on the length of the pendulum [/ and on the acceleration of

gravity g.
Since the dimensions of g are

[g] = [LT73],

we see by inspection that the functional dependence must be

2 1
i=CQort:Q/3
g

C=4C"

where

is a numerical constant.

1-4. Dimensional Constants

As we have learned in the preceding section, the basic property of
physical equations is their dimensional homogeneity. This property
originates from the possibility of choosing between different standards
of measurement. Another important property of physical equations is
the presence of dimensional constants in them. This property arises
from the fact that more than one basic measurable is used in the
investigation of physical phenomena.

Adding one more basic measurable to a given set of measurables
results in the appearance of at least one new dimensional constant in
the equations correlating this new measurable with those already
present. Thus in electricity and magnetism the introduction of current
and voltage as new basic measurables in addition to length, mass, and
time results in the appearance of three new universal dimensional
constants:

permittivity of space
|: current - time :|
fo voltage - length’

permeability of space
voltage - time :|
’u°|:current - length]’

and constant of energy
°[ mass * (length)? ]

current - voltage - (time)3
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(these constants are not present if electromagnetic phenomena are
formulated only in terms of length, mass, and time as is the case when
the so-called “‘electrostatic,” “electromagnetic,” or “Gaussian’ systems
of measurables are used).!

Similarly, the reduction of basic measurables by one results in the
disappearance of at least one dimensional constant from the equations
that correlate the eliminated measurable with otheri measurables.
One could, for instance, eliminate mass as a basic measurable in
mechanics and consider it as a secondary measurable of dimensions
[(length)?/(time)2]. As a result, the gravitational constant G would
disappear from all equations where it is now present (Newton’s ex-
pression of the gravitational law would be F = m;m,/r? rather than
F = Gmymy[r?, as it is usually written).

The significance of dimensional constants is frequently under-
estimated. Sometimes they are regarded as a nuisance introduced in
physics because of the necessity of “taking care of units.” Actually,
however, dimensional constants originate from experimentally estab-
lished correlations between physical quantities and may well be regarded
as concise formulations of physical laws. Physical laws express certain
permanent correlations between quantities. These permanent cor-
relations are usually implicitly represented by the corresponding di-
mensional constants. When a dimensional constant enters an equation,
it makes that equation subject to the corresponding law.

To illustrate this point, let us return to Example 1-3.4. In this
example we derived the equation for the period of a pendulum on the
basis of dimensional considerations. We know, however, that in order
to derive this equation by the usual analytical means, we should start
from the law of motion of a particle in the earth’s gravitational field.
The question arises: how could we obtain the correct formula by
merely using dimensional considerations without any reference to the
law of gravity? The answer is simple: we actually did use the infor-
mation contained in the law of gravity by including the constant of
gravity g in the set of quantities pertaining to the problem.?

Often the statement of a physical law is equivalent to the statement
of the existence of a certain dimensional constant. Consider, for

1 For a discussion of various systems of measurables see Section 1-5.

2 In fact, in Example 1-3.4 we have determined the correlation between time
and length for the general case of the motion of a particle in a constant gravitational
field specified by g. Thus the formula ¢ = C\/l/_g describes not only the period of a
pendulum but also the time of fall as a function of distance for a freely falling body,
the time-distance dependence for a particle moving on an inclined plane, etc.
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instance, the well-known Ohm’s law for electric conductors. According
to this law (in its circuital form), the ratio V/I of the voltage V applied
to a conductor and the current / in this conductor has under certain
conditions a constant value independent of either V or I. The ratio
V[I is called the resistance R of the conductor. Thus Ohm’s law states
that under certain conditions R is constant, or that there exists a
dimensional constant R.

An analysis of dimensional constants characterizing a given physical
problem may easily reveal “hidden” correlations that otherwise would
not be known without a detailed mathematical investigation of the
problem. This is illustrated in the following example.

v

Example 1-4.1 Find the correlation between the radius of the orbit
and the period of revolution of a planet by analyzing the dimensions of the
gravitational constant.

Planetary motion is essentially determined by Newton’s gravitational
law, which is represented by the gravitational constant G. Since [G] =
[L3/MT?], it is obvious that the correlation between the radius of the orbit
7, the period of revolution ¢, and the mass of the system m must be such that
G = Cr3[mi?, where C is a numerical constant. Since m, the mass, is constant
for a sun—planet system, this correlation may be written as r3/t? = constant,
which is known as Kepler’s third law. (See also Problem 1.11.)

A

1-5. Transformation of Units and Measurables

Since several systems of units and measurables are used in physics,
it frequently becomes necessary to convert physical quantities and
equations from one system to another. This can be done with the aid
of dimensional analysis.

Two kinds of systems of basic measurables are now used in
electricity and magnetism: the electro-mechanical systems and the
mechanical systems.

The most important representatives of the electro-mechanical
systems are the length-mass-time-voltage-current, or the LMTVI,
system; the length-mass-time-current, or the LM TI, system; and the
length-mass-time-charge, or the LMTQ, system. The fundamental
units in the first system are usually the meter, the kilogram, the second,
the volt, and the ampere—the mksva units. In the second system they
are usually the meter, the kilogram, the second, and the ampere—the
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mksa units! In the third system they are usually the meter, the kilogram,
the second, and the coulomb—the mksc units.

The most important representative of the mechanical systems is
the length-mass-time, or the LM T, system. The units in this system
are usually cgs—the centimeter, the gram, and the second, which, for
historical reasons, are frequently called the “absolute” units. There
are three especially important subdivisions of the LM T system: the
electrostatic, the electromagnetic, and the Gaussian systems. They differ in
the definitions of certain electric and magnetic quantities. The respec-
tive units of these quantities are referred to as the cgs electrostatic, the cgs
electromagnetic, and the cgs Gaussian units.

To convert an equation to a new system of basic measurables, the
symbols designating physical quantities are replaced by the corre-
sponding symbols of the new system, the numerical and dimensional
constants are replaced by the corresponding constants of the new
system, and additional dimensional constants of the new system are
introduced into the equation to make it dimensionally homogeneous
in the new system.? This method of conversion follows from the fact
that all equations describing the same physical phenomenon must
exhibit the same functional dependence between the corresponding
quantities regardless of the system of basic measurables in which each
particular equation is written. Such equations may differ therefore
only in the designation of quantities and in the number and kind of
constants.

v

Example 1-5.1 The “Coulomb law” (once thought to be the most
fundamental law of electricity) can be expressed in the LM TVI system as

o
N9
ey’

Convert this formula to the LM T electrostatic system.

Examining the tables of symbols and constants given in Appendix I,
(Tables A-1 and A-2), we see that no symbols need be replaced in the above
formula, that ° must be replaced by 1, and that ¢, must be replaced by 1 /4.
Coulomb’s law in the LM T electrostatic system is therefore

0192
F = 7 .
! Also known as the International System of Units (SI).
2 Tables of corresponding symbols and constants as well as a table of the dimen-
sions of electric and magnetic quantities in various systems are given in Appendix I.
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Example 1-5.2 The capacitance of a sphere of radius 7 is in the LMT
Gaussian system (indicated by subscript “g”)

C,=r.

Express the capacitance of this sphere in the LM TQ) system.
Since the relations between the constants of the two systems are 1/4m — ¢,
47w — pqo (see Table A-2 in Appendix I), we have in the LMTQ system

C = (4meg)*(uo/4m)Pr,

wherexand f are exponents, to be determined, which are needed to make this
equation dimensionally homogeneous in the LM TQ system. Consulting the
table of dimensions (Table A-3 of Appendix I), wesee thata = land § =0
must be used. The capacitance of the sphere in the LM T'Q) system is therefore

C = 4megr.
Example 1-5.3 The “Maxwell equations” (the most fundamental laws
of electromagnetic fields) can be written in the LM TVI system as
oB
ot’

VxH=J—|—%, V.B=0.

VXxE=— V.D =p,

Convert these equations to the LM T Gaussian system (V is a differential
operator of dimensions [L~1], 8/0¢ is a time derivative of dimensions [ T-1]—
both remain the same in all systems; p is a charge density).

Using the tables of symbols and constants given in Appendix I (Tables
A-1 and A-2), we replace the symbols in the above equations and introduce
the additional constant ¢ characteristic of the Gaussian system (there are no
constants in these equations, so that none can be replaced). We then have,

¢ 9

using subscript ““g”’ to indicate the Gaussian system,

. 9B,
ot’

VxE, = —¢ V. (D,/47) = Pp,,
o(D,[4m)

F T V-B

V x (H,/47) = ¢*], + ¢° , =0,

where «, f, y, and § are exponents, to be determined, which are needed to
make the equations dimensionally homogeneous. Examining the dimensions
ofE,;, B,,D,, p,, H,, and J,, given in the table of dimensions in Appendix I
(Table A-3), we recognize that « = —1, $ =0, y = —1, and 6 = —1.

Thus Maxwell’s equations in the Gaussian system are (we are dropping the
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subscripts “‘g”” now)
10B

VXE=—Z—a-t—, V'D=47Tp,

1 oD
VXH=;(47TJ—}—E), V.B=0.

A

To convert a quantity to new units within the same system of
basic measurables, each unit in the dimensions of the quantity is replaced
with an equivalent number of new units. To convert a quantity to
units of a new system of basic measurables, the units are replaced in the
same manner, except that the sign = (“‘corresponds™) is used in place
of the equality sign whenever a quantity expressed in terms of old units
is ““equated” with a quantity expressed in terms of new units (otherwise
dimensionally inhomogeneous equations would result).! These methods
of conversion are self-evident and require no justification.

v

Example 1-5.4 The average atmospheric electric field near the earth’s
surface is E = 130 volt/m. What is the magnitude of this field in millivolt/
cm?

Since 1 volt = 108 millivolt and 1 m = 102 cm, we have

volt 1 volt . 103 millivolt millivolt

E = 130—15 = 130—1—5—— 130W = 1300

Example 1-5.5 The average density of atmospheric electric charge
near the earth’s surface is p= +3-10"12amp-sec/m3. Convert this
quantity to cgs electrostatic units by converting each basic unit.
According to Table A-4 of Appendix I, 1 amp = 3 - 10° cm? g sec2.
Furthermore, | sec = | sec and 1 m = 102 cm. We have therefore

I amp - 1 sec

amp * sec
3 (1 m)3

p = +3-1012 = +3-1012

3-10° cm? gt sec2- 1 sec

= . —12
= +3-10 (10% cm)?

= 49102 cm~# gt sec?

(this result could be obtained directly from the relation between the units of
p given in Table A-4).

A

1 The correlations between units of various systems are given in Appendix I.
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PrOBLEMS

1.1. Which, if any, of the following expressions are definitely wrong?

— R, + R, I — —2t
(a) R_R1+2R2’ (b) E—477'807'3’ (c) V=Vye 2,
av d’E
gz — i 2
(d) 7 =" (e) V fE(sm ar)dr 4 V.

The dimensions are as follows: [E] = [volt/m]; [¢] = [amp - sec]; [e,] =
[amp - sec/volt - m]; [r] = [m]; [V,] = [V] = [volt]; [¢] = [sec].

1.2. The resonance frequency of an L-C circuit depends on the induct-
ance L[volt - sec/famp] and the capacitance Clamp - sec/volt]. By using
dimensional considerations, find how this frequency will change if the
capacitance is doubled.

1.3. The current in an R-C circuit is given by I = I,¢%. Find « if it
is known that « depends on R[volt/amp], C[amp - sec/volt], and ¢[sec], is
proportional to ¢, and does not contain any numerical constants.

1.4. The representation of correlations between quantities by means of
dimensionless products results in a reduction of the number of variables
(according to a ‘“‘rule of thumb,” the number of independent dimensionless
power products which can be formed from a given set of quantities is equal
to the number of quantities involved, minus the number of basic measurables
in terms of which these quantities are expressed). Taking this into con-
sideration, what is the advantage of using dimensionless products for the
experimental determination of correlations between quantities and for the
graphical representation of functional dependences?

1.5. Often the number of dimensionless products obtained from a
given set of quantities can be made smaller by increasing the number of
basic measurables (independent units) in terms of which the quantities are
expressed. Use this method to find the functional dependence between the
charge ¢[¢] of a parallel-plate capacitor, separation d[!] of the capacitor’s
plates, area of the plates A[S], and voltage V[V] applied to the capacitor,
assuming that the problem is subject to a certain law represented by the
constant £4[¢{/SV], where § is some independent unit of surface area not
equal to /2. Show that this dependence cannot be obtained by dimensional
means if 4 is measured in units of /2

1.6. Dimensional analysis can be used for solving certain partial
differential equations by reducing them to ordinary differential equations.
Apply this method to the following problem. The approximate ‘‘telegraph
equation” for an underwater cable is
ov oV

“Ror =2
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where V is voltage, ¢ is time, x is distance, and C and R are constants. Show
that if the voltage V, is applied at ¢ = O to the terminal x = 0 of an infinitely
long cable, then the voltage at any point x of the cable and at any later time

t is given by
1 3
V= Vo(l — V——fe—*fzdf):
wJo
CR

where & = ks (Hint: use Buckingham’s theorem to express the
CR . )

voltage V as V,f ( A/ e x) = Vof(§) and determine the function f by

substituting this expression in the telegraph equation.)

1.7. Convert Coulomb’s law formula stated in Example 1-5.1 to the
LMTI, LMTQ, LMT electromagnetic, and LMT Gaussian systems of basic
measurables.

1.8. Convert the formula for the capacitance of a sphere stated in
Example 1-5.2 to the LMTVI, LMTI, LMT electrostatic, and LMT
electromagnetic systems of basic measurables.

1.9. Convert Maxwell’s equations stated in Example 1-5.3 to the
LMTI, LMTQ, LMT electrostatic, and LMT electromagnetic systems of
basic measurables.

1.10. Taking into account that in the mksva system the charge of the
electron is 1.6 - 10~1% amp - sec, what energy in ergs corresponds to 1
electron - volt if the electron is considered as a new unit of charge?

1.11. According to Rutherford’s model, an atom may be regarded as a
positive nucleus around which electrons rotate like planets around the sun.
The force between the nucleus and the electrons is determined by
Coulomb’s formula stated in Example 1-5.1. (a) By analyzing the dimen-
sions of the single constant ¢, contained in this formula in the LMTQ
system, show that the electrons obey Kepler’s third law. (b) In the LMT
electrostatic and LM T Gaussian systems, Coulomb’s formula contains no
constants. Yet, even in these systems one can deduce by means of dimen-
sional analysis that the electrons obey Kepler’s third law. How? (Hint:
look at the dimensions of electric charge.) (c) Consider Coulomb’s formula
in the LMTVI, LMTI, and LMT electromagnetic systems and show that
in these systems, too, one can deduce by dimensional analysis that the
electrons obey Kepler s third law.

1.12. The electric field E produced by an ‘‘electric dipole’’ depends on
the ‘‘dipole moment’’ p, ,, distance r from the dipole, and on the angle be-
tween the dipole and r. Show that the field is proportional to p/r.

1.13. Suppose that an atom may be imagined as a nucleus of charge +¢
surrounded by a thin spherical shell (electron shell) of radius r and charge —gq.
Making use of the energy constant © and the permittivity of space g,, show
that the ionization energy of such an atom (the energy needed to increase the
radius of the shell to infinity) may be expected to be proportional to ¢2/7.
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1.14. The thermal energy generated in a wire when a current I passes
through it depends only on ©, I, R (resistance of the wire), and on time ¢{. Show
that the energy is proportional to %

1.15. The magnetic field H of a current-carrying loop has been found to
depend on the area of the loop, the current in the loop, orientation (angle)
of the loop, and the distance from the loop. The field also has been found to
be proportional to the area of the loop. Show that the field must then be pro-
portional to the current in the loop and inversely proportional to the cube of
the distance from the loop.

1.16. It has been found that electromagnetic energy is propagated in space
by means of ‘‘Poynting’s vector’’ (representing energy flow per unit area per
unit time) whose dimensions are [M7 -3]. It also has been found that Poyn-
ting’s vector depends on the energy constant °, the electric field E, and the
magnetic field H. Show that Poynting’s vector is proportional to E and H.

1.17. In a ‘‘unipolar current generator’’ a cylindrical magnet of radius
a and induction (flux density) B is turned with angular velocity w about its
longitudinal axis. The current is generated in a fixed wire, one end of which
touches the center of one end of the magnet, and the other end slides along
the surface of the magnet. Show that the current generated in the wire may
be expected to be proportional to wa?B/R, where R is the resistance of the
magnet and the wire.

1.18. A perfectly conducting submarine moves with velocity v in water
of conductivity o in a region where the induction (flux density) of the earth
magnetic field is B. The motion of the submarine through the magnetic field
generates an electric current in the water and the density of the current, J,
at a given point of observation fixed relative to the submarine depends only
on v, 0, and B. Show that the current density is proportional to cvB.

1.19. A perfectly conducting space ship of linear dimensions / enters with
velocity v into a magnetic cloud of induction (flux density) B and conductivity
0. Show that the ship will experience a retarding force proportional to 5.

1.20. A planet of radius a and conductivity o has a magnetic induction
(flux density) field B. The planet rotates with angular velocity w. Show that
if the space around the planet may be assumed a perfect conductor, the planet
may be expected to lose its rotational energy at the rate P = °Cow?a®B?,
where C is a numerical constant.



VECTOR ANALYSIS

The mathematical description of electromagnetic phenomena
becomes especially simple and clear if it is based on the methods of
vector analysis. Vector analysis provides an efficient shorthand for
writing relations between physical quantities, and at the same time
makes it possible to visualize the physical meaning of these relations
distinctly and exactly. As a result, in contemporary physics, and in
electromagnetic theory in particular, vector analysis is both a standard
mathematical tool and a mode of thought. It is therefore well worth
while to develop a familiarity with vector analysis before proceeding
to formulate electromagnetic theory. The fundamentals of vector
analysis are presented in this chapter.

2-1. Scalars and Vectors

Physical quantities which are not associated with a direction or
orientation in space are called scalars. They can be adequately specified
by the statement of their numerical value and dimensions. Typical
examples of scalars are mass, temperature, and energy. Mathematical
operations with scalars obey the rules of ordinary algebra and ordinary
calculus (“analysis”). Many physical quantities, however, are associ-
ated with some direction or orientation and require for their adequate
specification the statement of this direction or orientation in addition
to the statement of the numerical value and dimensions. Examples of
such quantities are moment of inertia, rotation through an angle, force,

18
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velocity, and displacement. Some of these directional quantities obey
the well-known polygon law (parallelogram law) of addition. The quan-
tities which obey this law are called vectors. Typical examples of vectors
are displacement, velocity, force, and rotation through an infinitesimal
angle.

Vectors may be represented graphically by means of arrows. The
length of the arrow represents the numerical value, or the magnitude,
of the vector. The orientation of the arrow shows the direction of the
vector.

Algebraically, vectors are designated by bold-face letters in con-
trast to scalars, which are designated by ordinary letters. Thus, a
“vector A” is designated by A. The magnitude of A is denoted either
by the symbol |A|, or by the letter 4 in ordinary type. Mathematical
manipulations with vectors obey the rules of vector algebra and vector
analysis.

2-2. Addition and Subtraction of Vectors

As already stated, vectors are added in accordance with the
polygon law of addition. A three-dimensional example of vector
addition is shown in Fig. 2.1.

9=L+‘+6

Fic. 2.1 Addition of vectors.

Vectors are subtracted with the aid of the negative vectors. The
negative vector —A is defined as the vector whose magnitude is the
same as that of A, but whose direction is opposite to the direction of A.
The difference of two vectors B and A is defined as thesum B + (—A).

Two vectors are equal if their difference is zero—that is, if they are
equal both in direction and in magnitude.
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The sum (and difference) of vectors is characterized by the same
properties as the sum of scalars: the commutative property

A+B=B-+A,
and the associative property

A+B+C)=(A+B) +C.

These properties may be easily established by examining Fig. 2.2 and
Fig. 2.3.

Fic. 2.2 Commutative prop- Fic. 2.3 Associative property of vector
erty of vector addition. addition.

2-3. Multiplication of a Vector by a Scalar

The product nA or An of a vector A and a scalar n is defined as a
vector whose magnitude is equal to z |A|, and whose direction is the
same as that of A, if n > 0, or opposite to it, ifn < 0. Ifn = 0,nA = 0.

Graphically, a vector B = nA is represented by the arrow whose
length is n times the length of the arrow representing vector A and
whose direction is parallel to that of A. Figure 2.4 shows vectors A, B,
and G, where B = 2A and C = —}A.

As can be demonstrated by graphical construction, the product of
a vector by a scalar is distributive over addition of the scalars

(n + m)A = nA + mA
as well as over addition of the vectors
n(A + B) = nA + nB.

It is clear, that if two vectors A and B are parallel to each other,
then there exists a relation

B = nA,
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Fic. 2.4 Example of the multiplication R (T
of a vector by a scalar.

which may be written more symmetrically as
aA = bB,

by setting n = a/b. Conversely, the existence of such a relation indicates
that either A and B are parallel, or that a and b are both equal to zero.

The following example gives an illustration of the methods of
vector algebra based on the foregoing definitions.

v
Example 2-3.1 Show that the medians of a triangle intersect each
other at a point of trisection.

Let vectors a and b represent the sides BC and AC of the triangle ABC,
as shown in Tig. 2.5; let vectors d and e represent the medians of this
triangle, so that points D) and E are the midpoints of a and b; and let F
be the point of intersection of the medians. In the triangle ADC we have

e ia=h.
In the triangle BEC we have

d 4 ib =a,

B

Fic. 2.5 Vector method of proving that the medians of a triangle trisect
each other.
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The vector FD is some fraction x of the vector e, or FD = xe. Similarly,
FE = yd. In the quadrangle FDCE we then have

xe + la = d + 1b.

Eliminating e and d from this equation by means of the previous two, we
obtain

#(b — ja) + {a =y(a — ib) + 3b,
or

(~b+ 1 —2)a=(—br+1— b
But since a and b are not parallel, the equation can hold only if

—ix+3—»=0 and —}y+ % —x=0.

Solving these two equations for x and , we finally obtain x = y = }, so that
F is a point of trisection of each median.
A

2-4. Representation of Vectors by Means

of Scalar Components

It is often desirable to perform mathematical operations with
vectors by purely algebraic means, without supplementary geometrical
constructions. This can be accomplished by representing both the
magnitude and the direction of a vector analytically by certain numbers
or by symbols denoting these numbers. The vector itself is represented
in this case by a set of scalars.

The possibility of representing a vector by a set of scalars is based
upon the fact that any vector D can be expressed as a linear combination

D =4A + B + C

of any three vectors A, B, and C, provided that A, B, and C are not all
in one plane (Fig. 2.6). The vectors ¢A, 6B, and ¢C are called the
vector components of D in the direction of A, B, and C, respectively.
Geometrically, they constitute the sides of a parallelepiped with
vector D as a diagonal. The scalars a, 4, and ¢ are called the scalar
components of D along the directions of A, B, and C. The vectors A, B,
and C which determine the directions of the vector components of D are
called the basic vectors. The determination of the components of a vector
is called the resolution of the vector. For a given set of basic vectors the
resolution of a vector is unique—that is, different vectors have different
components, and vice versa. Therefore, once the three basic vectors
A, B, and C are given, any vector D can be uniquely specified by its
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bB
D
eC
C
A A Fic. 2.6 Representation of vector D
. as the sum of three vectors aA, bB,
BY and ¢C.

vector components 2A, /B, and ¢C, or, which is most important, by its
scalar components a, b, and ¢.

Although any three vectors may serve as basic vectors if they are
not all in one plane, the most convenient sets of basic vectors consist of
three mutually perpendicular vectors of magnitude (length) 1. Such
vectors are called orthogonal unit vectors. The most common set of
orthogonal unit vectors is the set of Cartesian unit vectors. These vectors
are customarily designated by the symbols i, j, and k and are the unit
vectors in the direction of the positive x-, y-, and z-axis, respectively, of
a rectangular system of coordinates.

Any vector A (Fig. 2.7) can be expressed in terms of the Cartesian
unit vectors as

A= A‘i + Avj =} A:ks

where 4,, A,, and A, are the scalar components of A corresponding to
the x-, y-, and z-axis, as indicated by subscripts. As can be seen from

Ak

Al
k& >
Ayj

-t

<1

x

Fic. 2.7 Representation of vector A as the sum of its Cartesian components.
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Fig. 2.7, A,, A,, and A, represent the magnitudes of the projections of
A along the directions of the coordinate axes and may be obtained
therefore by multiplying the magnitude of A by the cosine of the angle
between A and the respective axis. Thus

A, = Acos (A, x), A, = Acos (A, y), A, =Acos (A, ?z).

Conversely, since vector A and its components 4,, 4,, and A4, form the
diagonal and the sides of a rectangular prism, the magnitude of A
may be obtained from 4., 4,, and A4, by the formula

A =VA+ A + A2

With the aid of a simple geometrical construction it can be
demonstrated that the sum of two vectors

A=4i+4j+4k and B=25Bi+ Bj+ Bk
can be written as
A+B= (4, +B,)i+ (4, +B)j + (4, + Bk,

so that the addition of vectors reduces to the addition of the corre-
sponding scalar components of these vectors. Similarly, the multiplica-
tion of a vector by a scalar reduces to the multiplication of the scalar
components of this vector by the scalar:

nA = (nd,)i + (nd,)j + (nd,)k.

Thus, the representation of vectors by means of scalar components
makes it possible to reduce mathematical operations with vectors to
purely algebraic operations with their scalar components, so eliminating
the necessity of geometrical constructions for the performance of the
calculations.

2-5. Scalar, or Dot, Product of Two Vectors

Two kinds of products of two vectors A and B are defined in
vector algebra. The first kind is called the scalar, or dot, product and is
denoted as A - B (read ““A dot B”). The second kind is called the vector,
or cross, product and is denoted as A x B (read “A cross B”).

The dot product of two vectors is defined as a scalar equal to the
product of the magnitudes of these vectors multiplied by the cosine of
the angle between them:

A-B = |A| |B| cos (A, B).
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According to this definition, the dot product possesses the commutative

property
A-B=B-A

and, as one can show with the aid of a geometrical construction, also
the distributive property

A-B+C) =A-B1A.C.

If two vectors A and B are perpendicular, cos (A, B) =0, and
therefore

A-B=0 (A 1 B).
If A is parallel (or antiparallel) to B, cos (A, B) = +1, and therefore
A-B= L |A||B|=+4B (A|B),

where the minus sign holds if A and B are antiparallel. The dot
product of a vector A with itself is

A-A =|A]A] = 42
The dot products of the Cartesian unit vectors are
ij=j-k=k-i=0,
and
ivi=j-j=k-k=1.
For any two vectors,
A=4i+4j+ A4k and B =Bi+ Bj+ Bk,
we can write (using the distributive property)
A-B = (Ai+ 4,j+ AK) - (Bi + B,j + BK)
=ABi-i+A4Bi-j+ABi-k+ ABj-i+ ABj-j
+4B,j-k + ABk-i + A Bk-j+ A,Bk-k

and, substituting the above-stated values of the dot products of the unit
vectors, we obtain

A-B —AB, + AB, + A.B,.

Thus the dot product of two vectors is equal to the sum of the products
of the corresponding Cartesian components of these vectors.

The dot product has many applications. By means of the dot
product one can easily find angles between vectors; the dot product
of a vector and a unit vector gives the component of this vector in the
direction represented by the unit vector; the dot product can be used
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for the solution of many geometrical problems; and, of course, it is
extensively used in the description of physical phenomena. An example
of the application of the dot product is given below.

v
Example 2-5.1 Derive the law of cosines for a triangle.

Let vectors a, b, and ¢ represent the sides of the triangle ABC (Fig. 2.8).
In this triangle we have

a=>b+ec

Fic. 2.8 Vector method of deriving the law of cosines for a triangle.

Calculating the dot product a - a, we obtain
ara=(b+c)-(b+c)=b-b+b-ct+ec-b+c-ec

or
a® = b% + be cos (b, €) + ¢b cos (e, b) + 2.

But / (b, ¢) = / (¢, b) = 180° — 6, and therefore
a? = b2 4 ¢ — 2bc cos 0.

2-6. Vector, or Cross, Product of Two Vectors

The vector, or cross, product A x B of two vectors A and B is
defined as a vector C (Fig. 2.9) whose magnitude is equal to the
product of the magnitudes of vectors A and B multiplied by the sine
of the angle between them,

IC| = |A x B| = |A| [B|sin (A, B),

and whose direction is normal to both A and B, and such that vectors
A, B, and C form a right-handed system (a system of three vectors A, B,
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and C is called right-handed if a screw with a right-handed thread will
advance in the direction of C when turned from A to B through the
smaller angle). The magnitude of the cross product of two vectors is
equal to the area of the parallelogram having these vectors as its sides.

Since the rotation which carries A to B is opposite to that which
carries B to A, the cross product is not commutative, but rather

AxB = —BxA.

AC=AxB

\ Area=|AxB|

-C BxA

F1c. 2.9 Definition of the cross product of two vectors.

The cross product is, however, distributive,
Ax(B+C)=AxB+AxC,

as can be shown by means of a geometrical construction,
If two vectors A and B are parallel to each other, sin (A, B) =0,
and therefore

AxB =0 (A | B).
In particular, for any A
AxA=0.

The cross products of the Cartesian unit vectors forming a right-
handed system (the only system used in this book) are

ixi=jxj=kxk=0
and

By using these values of the cross products of the unit vectors, it is
possible to express the cross product of two vectors in terms of the
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components of these vectors. The calculation is similar to that which
was done for the dot product, and only the result of it will be given
here. If

A=Ai+Aj+Ak and B=Bi+Bj+Bk,
then the product A x B is
AxB = i(AvB: == Asz) +j(A:Ba: = AzB:) e k(Aaer - Ava)s

which can also be written in the determinant notation as

i j k
AxB=|4, 4, 4,|
B, B, B,

Like the dot product, the cross product has many applications in
both mathematics and physics. An illustration is given in the following
example.

v
Example 2-6.1 Show that sin (a + ) = sin « cos § + sin £ cos a.

Consider two vectors A and B in the xy-plane as shown in Fig. 2.10,
They can be written as

A=idcosa —jdsinae and B =iBcosf + jBsin f.
Their cross product is by definition

A x B =kABsin (« + f).

Fic. 2.10 Vector method of de-
termining sin (« + f).
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In terms of components, their cross product is
A xB=Kk(4,B, — 4,B,)
= k(A4 cos « Bsin 8 + Asin o B cos f)
= kAB(cos a sin § + sin a cos f).

Hence
kABsin (a + ) = kAB(cos a sin § + sin o cos )

and therefore
sin (¢ + ) = sin a cos § + sin f§ cos a.

2-7. Multiple Products of Vectors

With the aid of the dot and cross products of two vectors one can
build multiple products involving several vectors. Among them, two
kinds of triple products are especially important.

One of these products is the box, or triple scalar, product A - (B x C),
whose magnitude represents the volume of a parallelepiped having A, B,
and C as the edges. This product is invariant to a cyclic permutation
of vectors,

A-BxC)=B-(CxA)=C-(AxB),
and to an interchange of the dot with the cross,
A-BxC)=(AxB)-C,

but changes sign if any two vectors are interchanged,

A-BxC)=—A-(CxB).
It is equal to zero if any two of the three vectors are parallel. In
particular,

A-(AxC) =0

for any A and C. These properties of the box product can be easily
verified with the aid of a geometrical construction.

Another important triple product is the triple cross, or triple vector,
product,

Ax (BxC),
which can also be written as the difference of two other triple products
Ax BxC)=BA-C) —C(A-B). (2-7.1)

This is one of the most frequently used expansion formulas in both
vector algebra and vector analysis (‘‘bac cab” expansion). The proof
of this formula is left to Problem 2.6.
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2-8. Differentiation and Integration of Vectors

A variable vector A is called a wvector function A(s) of a scalar
variable s if to every value of s there corresponds a definite value of A.
The derivative of a vector function with respect to a scalar is defined as
the limit

d . Al + As) — A(s)
—A(s) =1 .
ds (s) Asl_rﬂ) As
According to this definition and to the rules of subtraction (addition)
of vectors in terms of components, the derivative of A(s) can be ex-
pressed as

dA(s) _ dA.(s) it dA,,(s)j n dA,(s)

ds ds ds ds

The differentiation of vectors is a limiting process of the operations
of subtraction (addition) of vectors and division (multiplication) of
vectors by a scalar. Both of these operations obey rules identical with
the rules of ordinary algebra. Therefore the rules of differentiation
known in ordinary calculus are applicable to expressions involving
vectors. For example, if ¢, A, and B are functions of a scalar s, we have

k.

zATB =7+

d do dA

d dA dB
ES-(A B)=E—-B A-E,
d dA dB

Partial differentiation is similarly defined for vectors which are
functions of several scalar variables. For A(x,y, z) the three partial
derivatives are

oA _od, . o4, A,
x ox T axd T ™

Ox
A _ o, o4, o4
» Y o »
oA 04,  04,, o4,

-8—2_6zl+ 82J+6z

k,
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and the total differential is

3 oA

Three types of integrals are cspccially important in vector analysis:
the scalar line integral ICA - dl of a vector A, the scalar surface integral

JSA +dS of a vector A, and the volume integral fv U dv of a scalar U.

Al,.&‘g

4l A

Fic. 2.11 Definition of the scalar > © Al
line integral. a

The line integral J.: A . dl extended from point a to point b along
curve C (Fig. 2.11) is defined as the limit

b
J.A»dl=lim2A‘-Al
a Al—0 4

where Al is an element of the curve C taken at the point 7 in the
direction from a to b, and subject to the condition 3 A/, = length of

L]
the curve C, while A, is the value of the vector A at this point.?
Taking into account that the line element 41 can be expressed in
terms of its Cartesian components as

dl = dd + dyj + dzk

and using the rules of dot multiplication, we can write
b b b
-[A -dl =J. (Azdx + A, dy + A, dz) =J‘ Acos (A, dl)dl. (2-8.1)
a a @

1 The scalar line integral has a simple mechanical meaning: if F represents a
b
force, then the integral J; F - dl represents the work done by this force in moving
a particle from point a to point b.
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Often line integrals must be evaluated along a closed path. In
this case the integral sign is written as §, and the integral is called the

circulation integral. Unless otherwise stated, the path of integration must
be right-handed relative to the enclosed area (see below).

v
Example 2-8.1 Evaluate §A . dl along the path shown in Fig. 2.12,

if A = 2xi + 3.

| v

(a,a)

g g

— Frc. 2.12 Example of the evalua-
(0,0) (a,0) x tion of a scalar line integral.

The integral can be written as the sum of three integrals corresponding
to the three rectilinear portions of the path. Using Eq. (2-8.1), we then have

§A »dl = Adl+f Adl+f A-dl

0,0
=f (2xy dx + x2 dy) +J‘ (2xy dx + x% dy) +f (2xy dx + x%dy).
0,0 a,0 a,a

Since the first of these three integrals is taken along the x-axis, where y = 0
and dy = 0, this integral is equal to zero. Since x = a and dx = 0 along
the second portion of the path, the second integral is

I a?dy = a¥| = a5
0 0
Finally, since x = y along the third part of the path, the third integral is

0 43[0 243 g3

¢+3~¢_

3
Vet =5

For the comp]ctc path we thus obtain
§A-dl=0+a3—-aa——-0.
A

The second type of integral frequently used in vector analysisis the
scalar surface integral.
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Fic. 2,13 Definition of the scalar surface integral.

As a preliminary step to the definition of the scalar surface integral
we shall define the surface-element vector dS. The vector dS (or AS)
is defined as a vector whose magnitude at any point of a surface is
numerically equal to the infinitesimal element dS of the surface area
at this point and whose direction is normal to this element (the sense
of the direction of d8 is determined by certain conventions that will be
stated later). In terms of Cartesian coordinates, 48 is given by

dS = +(dydzi + dzdxj + dxdyk).
The scalar surface integral IS A - dS is defined as the limit

J.A-ds —lim T A, - AS,
5

AS—0 i

where AS, is an element of the surface area § taken at the point ¢
(Fig. 2. 13), subject to the condition z AS; = S, while A, is the value of

the vector A at this point.
The product A - 48 is called the flux of the vector A through the

surface element dS. The surface integral Js A - dS represents the total

flux of A through the surface of integration S, and therefore this
integral is often called the flux integral.
A flux integral can be written in scalar forms:

fA-ds = i” (A dydz + A,dzdx + Adxdy) =J'A cos (A, dS) dS.
8 S s
(2-8.2)

As in the case of line integrals, a surface integral which has to be
evaluated over a closed surface is designated by cﬁ For a closed
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surface the positive direction of 48 is, by convention, outward with
respect to the volume enclosed.

v

Example 2-8.2 Evaluate §xi+dS over the surface of a cube of side a
(Fig. 2.14).

The surface integral may be split into six integrals corresponding to
the six surfaces of the cube. The integrals over four of these surfaces vanish,

4z

¢ g
b i /-"’
—— R
ds ds
d h

*
e
e

a /, e
P .

Fic. 2.14 Example of the evaluation of a scalar surface integral.

ER

because cos (i, dS) is zero for all surfaces other than yz-surfaces. For the
first yz-surface, abed, we have

J.xi-ds = — J‘de.
abed

abed
(Minus sign is needed because the direction of the outward normal at this
surface is opposite to the direction of i.) Recognizing that x is constant and

is equal to —a/2 on the surface abed and taking into account that LMdS = a¥;

we have
. a ad
-'.n-dS=~2-.l‘¢9=-:?~.
abed abed

Similarly, for the second remaining integral we obtain

Therefore
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The third type of integral frequently used in vector analysis is
the volume integral of a scalar function U: fv Udv. This integral is

identical to the triple integral [f U dx dy dz used in ordinary calculus.
In addition to the scalar integrals described above, vector integrals

of the types [ Axdl, [ UdS, [ AxdS, etc. occur in vector

analysis. Their definitions are analogous to the definitions of the line
and surface integrals which we have just learned.

2-9. Scalar and Vector Fields

If a quantity @ has a definite value everywhere within a certain
region of space, then this region of space is called the field of Q. The
field of a scalar quantity is called a scalar field, and the field of a vector
quantity is called a vector field. The quantity @, which determines a
scalar or a vector field, is called, respectively, the scalar or vector
point function.

An example of a scalar field is the temperature field—for instance,
a region of space occupied by a heated body. Every point of the tem-
perature field is associated with some definite temperature. An example
of a vector field is the velocity field—for instance, a region of space
occupied by a moving fluid. Every point of the velocity field is
associated with some definite velocity.

Both scalar and vector fields can be represented graphically by
means of field maps.

A three-dimensional field map of a scalar quantity U consists
of a set of level surfaces. Each level surface is a surface at every point of
which U has the same value. Different level surfaces correspond to
different values of U. A two-dimensional field map of U consists of a
set of level lines. Each level line is a line at every point of which U has
the same value and, again, different level lines correspond to different
values of U.

Familiar examples of the two-dimensional maps of scalar fields
are weather maps. They show the temperature field of the air at the
earth’s surface by means of different “isotherms’ (level lines joining
geographical points of the same temperature) and also show the field
of atmospheric pressure at the earth’s surface by means of different
“isobars” (level lines joining geographical points of the same barometric
pressure).
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A map of a vector field consists of a set of field lines. On the field map
of a vector quantity V, each field line is a curve such that the tangent
at every point of this curve is in the direction of the vector V at this
point.

Familiar examples of crude vector field maps are the “lines of
force” patterns produced by grass seeds in electric fields or by iron
filings in magnetic fields (Plates 1-12). In these patterns the field
lines are represented by the filaments formed by the seeds or filings.

2-10. Gradient

In studying the field of some scalar function U it is often necessary
to know the rate of change of U corresponding to a transition from one
point of the field to some other, neighboring point. This information
can be obtained with the aid of a vector called the gradient of the field of
U or, simply, “gradient U” and defined by the formula
ou, oU, oU k
Pk + '@J + PP
For any point of the field this vector gives the rate of change of U in
the direction normal to the level surface drawn through this point and
is oriented in this direction towards the points of larger U.

To demonstrate these properties of grad U, we shall consider the
increment of U(x,y, z) corresponding to a transition from a point
x, y, z to a point x + dx,y + dy, z + dz. This increment is given by
the total differential

grad U = (2-10.1)

oUu oU oU
dU=$dx +—é;d)’+§'z—dl.
The right side of this formula can be written as a dot product of two

vectors:

oU ou oUu

— —_— —d

FrR i L Pl
(W20,
— \ox oy 17 %2

The first of these vectors we recognize as grad U, while the second

vector is merely dl—vector joining the point x, y, z with the point x + dx,

y + dy, z + dz. We can write therefore
dU = grad U - dl. (2-10.2)

k) - (dxi + dyj + dzk).



VECTOR ANALYSIS 37

Suppose now that both points x, y, zand x + dx, » 4+ dy, z + dz belong
to the same level surface, so that 4l lies in this surface. Since U is
constant on a level surface, dU is then zero, and we have

0 =grad U -dL

Since both grad U and dl are assumed to be different from zero, this
equation shows that grad U is perpendicular to 4l in this case. By
supposition, however, 4l lies in the level surface, and, consequently,
grad U must be perpendicular to this surface. To determine the sense
of direction and the magnitude of grad U, we shall orient the coordinate
axes in such a manner that two of them, say y and z, are tangent to the
level surface, while the third one, x, is normal to it. Then we have

grad U = y i,

which again shows that grad U is normal to the level surface, and also
shows that grad U is directed towards the points of larger U and that
the magnitude of grad U is equal to the rate of change of U in the
direction normal to the level surface.

Since U at any point of the field changes most rapidly in the
direction normal to the level surface drawn through this point, grad U
can be interpreted as a vector whose direction and magnitude at any
point represent the direction and magnitude of the fastest rate of change
of U at this point.

The rate of change of U in a direction s, 0U/0s, is called the
directional derivative of U in the direction of 5. This derivative is equal
to the component of grad U along s.

A vector field that can be represented as the field of the gradient
of a scalar function U is called a potential, or conservative, field, and the
function U (or —U) is called the potential of this field. The level lines
and the level surfaces corresponding to a conservative field are called
the equipotential lines and the equipotential surfaces.

v
Example 2-10.1 Find the gradient of the field of the position function r

representing the distance of the points of space from the origin of Cartesian
coordinates.
In terms of x, y, and z, r is

r=\/x2—i—_y2+z2



38 MATHEMATICAL INTRODUCTION
so that
gradr——\/x2+y + 2%i + \/x2+y —1—22_]—}— \/x2+y + 22k
0=,
\/xz—{—y + z2 \/xz—{—y +22 Va2 f 22
_ 1
- N + 2+ 22

(d + 9§ + 2k) =; (ol + 3j + zk).

Since the expression in parenthesis represents the vector r, we have

"t

gradr = =, or gradr = r,,

where r, is a unit vector in the direction of r away from the origin.?

A

2-11. Divergence and Curl

Just as the gradient yields important information about scalar
fields, two other vector-analytical expressions—divergence and curl—yield
important information about vector fields.

The divergence of the vector field of V or, simply, “divergence V”’
is a scalar quantity defined as

ov, oV, av,

divV = e > + Frl

(2-11.1)

The curl of the vector field of V or, simply, “curl V”’ is a vector

quantity defined as
. (m _ aV,) K (aV,, _ aVz)
AFE ox ox o/’

v, aV,,)
oy 0z

(2-11.2)

The origin of the terms “‘divergence” and “curl” is connected with

the study of the motion of fluids. Their physical significance may be
illustrated with the aid of the following example. Suppose that water
flows in some reservoir from certain points where it is being “produced”
to certain points where it is being “‘consumed.”” The field of the water
velocity V in this reservoir constitutes a vector field. If we calculated
div V for different points of this field, we would find that div V is

curl V = (

u X

! Throughout this book we use the subscript to identify unit vectors. Another

IXP%2]
A

frequently used notation for unit vectors is above a letter.
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essentially a measure of the amount of water produced or consumed
at these points, and that div V is zero everywhere except at the points
where the water is produced or consumed. Similarly, we would find
that curl V is a measure of the magnitude and direction of the rotation
of the water in the reservoir. Experimentally, curl V can be manifested
with the aid of a small paddle wheel immersed in the water. The wheel

— Al
— N\

(a) (b)

SN
2

(c) (d)

Fic. 2.15 Field lines of a vector field V near a point where
(a) divV =0, curl V=0
(b) div V £ 0, curl V=0
(c) divV =0, curl V£ 0
(d) div V £ 0, curl V =£ 0.

turns when placed at points where curl V is not zero. The maximum
angular velocity of the wheel is at all points proportional to curl V
at these points, and the axis of rotation of the wheel is parallel to curl
V when the wheel is so oriented that its angular velocity is a maximum.

On field maps, the divergence is usually different from zero only
at the points where the field lines originate or disappear, and the curl
is usually different from zero only at the points surrounded by closed
or spiralling field lines (Fig. 2.15).t

A vector field whose divergence is everywhere zero is called a
solenoidal field. A vector field whose curl is everywhere zero is called an
irrotational field.

1 Note, however, that on the map of the field V = yi all lines are straight, but
curl V is everywhere different from zero.
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v
Example 2-11.1 Find the divergence and curl of the field of the position

vector r = xi + jj + zk.

From the definition of divergence we have
o 0z
oy T 0z

Similarly, from the definition of curl we have

9z 9\ , .(0x 0z O _ %) _
curlr—l(ay a_z) +J(a_z—5}) +k(5ﬁ-c_@) =0

dlvr—g + =

A

2-12. Operator V (“del”)

Operator, or symbolic vector, del is denoted by the symbol V and

is defined by the expression
V = iz 4+ j _a. + k 2_
ox oy oz"

A ““multiplication” of a scalar U or a vector V by this symbolic
vector produces, respectively, the gradient of U or the divergence and
curl of V:

ou ou oUu

VU—la—' +3i= > —|—ka = grad U,
V-V=% aazv %:divv
Vx V= (aaz aai") (aa_z - aaZ’)

k(aazy — aajz) = curl V.

It is often more convenient to express the gradient, the divergence,
and the curl by means of the operator V rather than by means of the
previously introduced symbols. We shall use this operator frequently,
writing

VU instead of grad U,
V . Vinstead of div V,

V x V instead of curl V.

With the aid of the operator V one can simplify many vector-
analytical calculations. Since V is both a symbolic vector and a
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differential operator, the rules for the calculations of expressions involv-
ing V are a combination of the rules of vector algebra and vector
differentiation. These rules can be summarized as follows:

(1) If V precedes a sum Y a,X,, where the a;’s are constants and
the X,’s are point functions representing scalar or vector fields,! then

V(3 aX,) =2 a, VX,

(2) If V precedes a product of point functions X, Y, and Z, then
the calculation is done in two steps. First, the product is rewritten as
the sum

V(XYZ) = VXY,Z, + VX,YZ, + VX.Y.Z,

where the original order of all the symbols is preserved and V is applied
to only one function in each product, different for each product,
while the remaining functions are treated as constants, as indicated by
the subscript “c.” (This is called ““differentiation by parts.””) Second,
the calculation is completed by transforming each product according
to the rules of vector algebra so that all functions with subscript ‘¢
precede V, and the subscripts are then dropped.

A
Example 2-12.1

div(UV) =V.{UV)=V.UV,+ V.UV =VU.-V,+UV.V
=V.VU+UV.-V=V.grad U+ Udiv V.
Example 2-12.2

div(VxW)=V. (VxW)=V.VxW 4+ V.V, xW
=VxV.-W, - V.WxV=VxV.W, —_VxW.V,
=W, VxV-V . VxW=W.VxV_-_V.VxW
=W-.curl V- V.curl W.

Here we have used the properties of the box product of three vectors.

A

Operator V can operate upon itself as (V-V), (V x V), and
V(X), where (X) is an expression already containing V. The first of
these operations results in a new operator called the Laplacian operator,
vz,

2 2 2
(V-v)=vz=_a_ o a_
ox?  gy?  0z?

1 X, incorporates « or X in the case of vector fields.
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The expression V2U is called the Laplacian of U. The second operation,
(V x V), according to Section 2-6, produces a zero. The third opera-
tion depends on the nature of (X). A typical example of this operation
is Vx (VxV); the application of the expansion formula (2-7.1) to
this expression results in an important vector identity

Vx (VxV)=VV-V)— Vv, (2-12.1)

2-13. Fundamental Properties of Vector Fields

The fundamental properties of vector fields may be summarized
with the aid of the following vector-analytical theorems.!

Gauss’s Theorem. The flux integral of a vector point function A
extended over a closed surface § is equal to the volume integral of
div A extended over the volume bounded by the surface §

§A-ds =fv-Adv. (2-13.1)

Stokes’s Theorem. The circulation integral of a vector point function
A extended along a closed curve C is equal to the scalar surface integral
of curl A extended over any surface bounded by the curve C

ffA.dl :foA-ds. (2-13.2)

Helmholtz’s Theorem. A vector field V is uniquely determined by
its divergence and curl, V- V and V x V, if they are given throughout
all space and if V approaches zero at infinity at least as 1/(distance)?,
or, as one says, V is “‘regular at infinity.”

Poisson’s Theorem. A vector field V, regular at infinity, can be
expressed in terms of its divergence and curl as

V=—4i f V(V'V)_rv"(v"v)dv'. (2-13.3)

s
All space

Corollary: A vector field V, regular at infinity, whose curl and
divergence are zero outside a finite region of space, can be expressed as

V=_Vp+ VxA, (2-13.4)

1 Special considerations may be needed when applying these theorems to
discontinuous fields. Proof of the theorems and a discussion of their limitations
can be found in most texts on vector analysis. For simplicity, we do not always state
these theorems and corollaries here in their most complete or most general forms,
but instead use the forms ordinarily employed in physics texts.
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dv’

@ ; P(x,y,2)

P(x,y,2)

Fic. 2.16 Explanation of symbols used in Poisson integrals. The distance
between the points P’ and Pisr = V(x — 1" )2 + (y — ')t + (z — 2)

where ¢, called the scalar potential of V, is given by

1 V.V
W—4W r

All space

& + ¢, (2-13.5)

and A, called the vector potential of V, is given by

1 VxV
A =g

Allspace

d' + A, (2-13.6)

¢, and A, being arbitrary constants.! We shall call the integrals in
Eqs. (2-13.3), (2-13.5), and (2-13.6) the Poisson integrals; in them r
represents the distance from the point P'(x', y’, z') where the volume
element of integration, dv’, is located to the point P(x, y, z) where V, ¢,
or A is being determined (Fig. 2.16).

Mathematical manipulations with vector fields frequently require
applications of the operator V to expressions of the type

NACES 5] )
Vix—x)2+(—y)2+ (z —2)?

occurring in Poisson integrals. When applying V to such expressions
one should keep in mind that they can be differentiated with respect
to the primed coordinates as well as with respect to the unprimed
coordinates. Whenever an explicit statement of the variables of
differentiation is needed, one uses the primed operator V' to indicate
an operation with respect to the primed coordinates and the ordinary
operator V to indicate an operation with respect to the unprimed

! A, can be also a gradient of any scalar function. Since the curl of a gradient
is zero, the choice of this function has no effect on V calculated from Eq. (2-13.4). Selec-
tion of various possible expressions for A, is called ‘‘gauge transformation.’

A, = constant is called ‘‘Coulomb gauge.”
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coordinates. Similarly, if an explicit statement of the direction of
radius vectors occurring in Poisson integrals is needed, one uses the
primed vectors r’ and r, to indicate a direction towards the point
%', ¥’y z', and the ordinary vectors r and r, to indicate a direction
towards the point x, », z.

Designating an unspecified scalar or vector function f(x", 5, z')
together with an appropriate multiplication sign by (X), and using
the above notations, we have the following two operational relations:

X _vX X

v ; , + r, 7- 5 (2-13.7)
. ) , 1 r r,
where we have used the identity V' -~ = — = = —=,and
r r r
v _ 9 138
r r

Combining these two relations, we obtain another useful relation:

V(X) _ v(—)? . v'%{-). (2-13.9)

r

v

Example 2-13.1 Using Gauss's theorem, evaluate the integral $xi - dS
over the surface of a cube of side ¢ and compare the result with that of
Example 2-8.2.

Since V .- (xi) = 1, we have by Gauss’s theorem

Sﬁﬁ-dS=fv-(ﬁ)dv=fdv=a3.

The same result was obtained in Example 2-8.2 by direct integration.

Example 2-13.2 Using Stokes’s theorem, evaluate the integral §A . dl,
where A = 2xyi 4 x2j, along the path shown in Fig. 2.12 and compare the
result with that of Example 2-8.1.

The curl of A is

V x (2x3i 4+ x%) = k(2x — 2x) =0,
so that by Stokes’s theorem

§(2xﬁ+x2j).d1=fv,<(2xyi+x2j).dS=o.

The same result was obtained in Example 2-8.1.
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Example 2-13.3  Show that f VUd = 56Uds.

Applying Gauss’s theorem to the product GU where G is an arbitrary
constant vector, we have

JV- (CU) dv = fﬁ CU . dS.
Since V - (CU) = C . VU, we have, factoring G out from under the integral
sign,

C-J‘VUdv=C-§UdS.

Since C is arbitrary, this equation can hold only if (see Problem 2.12)

fVUdv=§Ua’S.

Example 2-13.4  Show that f VxVd = —fv x dS.
Applying Gauss’s theorem to the product G x V where G is an arbi-

trary constant vector, we have

fV-(GxV)dv:fﬁCxV-dS.

Since V. (C x V) = —C+(V x V), and since C x V.dS = C.V x dS,
we obtain, factoring C out from under the integral sign,

—C-JV x Va’v=C-§V x dS.
Since C is arbitrary, this equation can hold only if
fV x Vdy = —§V x dS.
v

v
Example 2-13.5  Simplify V' — and V' x — .,
r r
Substituting (X) = -V and (X) = xV in Eq. (2-13.7), we have

v V.V v V VxV
V’o—= +ru'_2 and le_‘: +rux_§'
7 r r r 7 r
Example 2-13.6 Prove the corollary to Poisson’s theorem.

Rewriting Poisson’s theorem in terms of the primed operators (to
g P P
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avoid ambiguity) and using Eq. (2-13.9), we have
JV'(V’ V) — V' x (V' xV)

r

(Tt o
o (T e (T

where all integrals are extended over all space. The second and the fourth
integrals in the last expression can be transformed into surface integrals by
the formulas of Examples 2-13.3 and 2-13.4. This gives

Jo(@ YT
o« (20 (T e

Now, V' -V and V' x V, by the statement of the corollary, are different
from zero only within a limited region of space. The surface of integration
in the above surface integrals encloses, however, all space and thus is outside
the region where V' .V and V' x V differ from zero. Hence V’'+V and
V' x V are zero everywhere on this surface, and the integrals vanish. We
therefore obtain

1 v . V' xVy |
vk [ AT [ o (T

All space AII space

V=—— dv’

and

But the ordinary operator V in these integrals can be factored out because
the integration is done over the primed coordinates, upon which V does
not operate. Hence we have

V. 1 V' xV
Vool [ T Va)sva (L [ TEVa)
47 r
All space All space
Dropping the primes on V' and designating the expressions in parentheses

by ¢ — ¢, and A — A_, where ¢ and A_ are arbitrary constants, we then
obtain the corollary to Poisson’s theorem.

2-14. Vector Wave Fields and Retarded Quantities*

Until now we have made no distinction between time-dependent
and time-independent fields. Certain time-dependent fields have,

* This section is not essential for the understanding of the material presented
in the chapters preceding Chapter 15. The study of this section may therefore be
postponed until Chapter 15 is taken up.
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however, special characteristic properties the knowledge of which is
essential for an adequate mathematical treatment of these fields. An
especially important time-dependent field is the vector wave field.

The vector wave field is the field of a vector V which satisfies the
general wave equation

2
VxVxV 4+ 215%)1—‘2’ = K(x,, z, t), (2-14.1)
where K is some vector function of space and time which, for simplicity,
will be assumed here to be zero outside a finite region of space (this
differential equation constitutes a mathematical expression for a wave-
like disturbance that propagates in space with the speed ¢).

An important special property of a vector wave field is that this
field can be represented not only by the ordinary Poisson integral of
Eq. (2-13.3) and ordinary potentials defined in the preceding section,
but also by the retarded Poisson integral and retarded potentials, as stated
in the following theorem.

Wave Field Theorem.* A vector field V satisfying Eq. (2-14.1) and
vanishing at infinity can be represented by the retarded Poisson
integral as

v_o_Ll [ V(vV-V)—K]

v
All space

dv'. (2-14.2)

r

(Note: the brackets in this and in the following integrals are the
“retardation symbol” to be explained below.)

Corollary I. A vector field V satisfying Eq. (2-14.1), vanishing at
infinity, and having zero divergence outside a finite region of space
can be represented by the retarded scalar potential ¢* and the retarded
vector potential A* as

V = —Vp* + V x A*, (2-14.3)
with ¢* and A* given by
p* = 4i LX_V_"'LI] dv' + o* (2-14.4)
7 J r
All space
and
Ax - L f [Ka) 4y o At (2-14.5)
ﬂAll space 4

where K; and K, are the ordinary potentials of the function K of

1 This theorem is crucial for the author’s representation of time-dependent
electric and magnetic fields in terms of charges and currents (see Section 15-7).
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Eq. (2-14.1) (sothat K = — VK, + V x K,), both vanishing at infinity,
and ¢% and A% are arbitrary constants.

Corollary II. A vector field V satisfying Eq. (2-14.1), vanishing at
infinity, and having zero divergence outside a finite region of space
can be represented by the retarded scalar potential ¢* and the retarded
vector W* as

V = —Vg* + W*, (2-14.6)
with
1 .
¢* _ f u dv' + q)g (2‘14’.7)
v r
All space
and
W* — 1 f (K] v + W¥, (2-14.8)
47 r
All space

where ¢% and W% are arbitrary constants.

In order to clarify the meaning of the above expressions let us
compare Eq. (2-14.2) with Eq. (2-13.3). As one can see, these equations
are similar, except that the integral of Eq. (2-14.2) contains the
retardation symbol [ ] that is not present in the integral of Eq.
(2-13.3). This symbol indicates a special space and time dependence
of the quantities to which it is applied and is defined by the identity

[f] Ef(x',}", 2,3 t— 1‘/0).

Therefore, whereas Eq. (2-13.3), written for a time dependent field,

has the form
f(x',y, 2, t)

1 ,
V(xa.y, Z, t) = E ’ dv',
All space
Eq. (2-14.2) has the form
1 £(x', ', 2/, t —1fc) ,,
V(x,9, z,t) = o . dv'.
All space

The basic difference between these equations is in the time dependence
of the integrands appearing in the two integrals. In the first integral,
the value of the integrand is that which the integrand has at the instant
t for which V is being determined. In the second integral, on the other
hand, the value of the integrand is not that which the integrand has at
the instant ¢, but that which it kad at some earlier instant ¢’ =t — 7/,
or, as one says, the integrand is retarded.

The integrals of retarded quantities are mathematical expressions
reflecting the phenomenon of ““finite signal speed”’—that is, the fact that
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a certain time, ¢ = r/¢c, must elapse before the result of some occurance
at the point x’, y, z’ can be felt at the point x, », z separated from the
point x’, »’, z’ by a distance r. The fact that wave fields can be expressed
in terms of the retarded integrals is therefore plausible, since in wave
fields physical effects are carried by waves, and waves propagate with
finite speed.

Mathematical manipulations with wave fields frequently require
applications of the operator V to retarded point functions. When
applying V to such functions, one should take into account that they
depend on space coordinates not only explicitly, but also implicitly
through r = V/(x — x')2 + (» — »')2 + (z — 2)? appearing in the re-
tarded time ¢ =t — rfc. One also should take into account that V
may operate with respect to x, », z coordinates as well as with respect
to x’, ', 2z’ coordinates. Finally, one should take into account that a V
operation may be performed upon a retarded point function taken at
the instant ¢ = constant as well as at the instant ¢' = ¢t — r/¢ = constant
(the latter operation is identical with the corresponding operation upon
the same unretarded function, combined with the subsequent “‘retardation”
of the resulting quantity by replacing in this quantity ¢ by ¢ — 7/c).

In order to avoid ambiguities with V operations we shall employ
special notations, as follows. If an operation is to be performed with
respect to primed coordinates, we shall use the primed operator V' in
writing this operation. If an operation upon a retarded function is to
be performed considering ¢ — r/c as being constant, we shall denote
the operation as [VX] or [V'X], placing both the operator and the
function upon which it operates between the retardation brackets.
As before, we shall use the ordinary operator V for operations with
respect to unprimed coordinates, and we shall use the ordinary
notations V[X] or V'[X] for operations upon retarded functions when
these operations are to be performed considering ¢, rather than ¢ — 7/c,
as being constant.

We shall now derive several useful operational equations for
retarded functions.

Let us consider the operation 9[X]/ox’| sz Where [X] is some
retarded scalar or vector point function.! Taking into account that
retarded functions depend on %', y’, and z’ not only directly, but also
indirectly through 7, we can write

xX]| _ dX]
ox’ ., ox

y'.2t
1 The notation |y»,z;’, means “y’, z’, { are held constant.”

0[X] o(t — r/c)
ot —1/0) |y O

y',2 t—~rlc
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z, vz

¥, 5.2 @

z

Fic. 2.17 The direction cosine of r with respect to the x-axis is cos & =

(x — x")/r.

We can simplify the last term of this expression by observing that

o[X] _ 9[X]
ot —1/c) |y O

]
'y,

and that
(it —rfc) x—x' cosa

ox’ cr ¢ ?

where cos o is the direction cosine of r with respect to the x-axis
(Fig. 2.17). We then obtain

[X]
ox’

_ 9X]

.2t ox’

cos a 9[X]

y'.2" t—rle ¢ ot z',y,2

Analogous expressions can be obtained also for 9[X]/d)'|, ., and
for 9[X]/2z'),.,,. If we now multiply these expressions by i, j,
and k, respectively, and then add them together, we obtain the
following operational equation

o S|

VX] = [VX] + 252,

(2-14.9)

where r, = i cos o + j cos f + k cos y is the unit vector directed along
r toward the point x, 3, z.
In a‘similar manner we can obtain the corresponding equation
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for the unprimed V (assuming that X does not explicitly depend on
x’y’ Z)

V[X] = -2t (2-14.10)

Combining Egs. (2-14.10) and (2-14.9), we obtain an equation
correlating one unprimed V operation with two primed V operations

[VX] = V[X] + V'[X]. (2-14.11)
Using this equation, we obtain the correlation

Xl _ _nX] VIX]_ rnX] | [VX]  VIX]

r r2 r r2 r r

v

and, combining the first and the last term of the last expression, we
obtain a useful equation

[VX]

r

(2-14.12)

v
Example 2-14.1 Transform V' . [F] into an expression with [V’ - F].
Using Eq. (2-14.9), we have
’ ’ ru a[E‘]
v = (vF) 4
Example 2-14.2 Transform V x [F] into operations with respect to

the primed coordinates, if [F] is a function of x’, 3, z’, and ¢'.
Using Eq. (2-14.11), we have

V x[F]=[V xF] — V' x [F].

Example 2-14.3 Prove Corollary I to the wave field theorem, assuming
that V. V, K,, and K, are zero outside a finite region of space.

The proof of this corollary is analogous to the proof of the corollary to
Poisson’s theorem (Example 2-13.6). Rewriting Eq. (2-14.2) in terms of
primed operators, expressing K as K = —VK; + V x K,, and using Eq.
(2-14.12), we have

v _ L f[V'<V'-V> —K]
47 r

1 J[V'(V' V) + VK, — V' xK,] ,
~ I dv

r

=*%TJV[V °V+K1]dvl_l__fvl[v °Vr+K1]dU/

r 4

1
L

T dm

K 1 K
VxL—z]dv'—i——fV'xL—Z]dv'.
r 47 r
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The second and the fourth integrals of the last expression can be transformed
into surface integrals by formulas of Examples 2-13.3 and 2-13.4. This gives

fv/ [V .V+K1] dv’ :§[v .‘:‘+Kl] ds/

r

fV'mez]dv'=—§f;U§—2]de

But since V.V, K;, and K, are zero outside a finite region of space, while
the surface integrals are taken over all space, the integrals vanish. We thus

have
v———fv V+K1]d + fv ]d’

Factoring V out from under the integral signs and designating the resulting
integrals by ¢* — ¢% and A* — A%, we obtain Corollary I to the wave field
theorem.

and

Example 2-14.4 Prove Corollary II to the wave field theorem.
As in the preceding example, we have

1 V(V'.V) - K 1 v.
‘f[ (v'-v) ]dv,z__fv[ V1,
-V K
LA v sk [ By
The second integral of the last expression is, as before, zero. We thus have

V_——fV v-vy + o f[K]d,

(%) L

Designating the first integral by ¢* — @ and the second integral by W* —
W#%, we obtain Corollary II to the wave field theorem.

A

2-15. Vector Expressions in Curvilinear Orthogonal
Coordinates

Many physical problems require the use of curvilinear orthogonal
coordinates for their solution. The most frequently used curvilinear
orthogonal coordinates are the circular cylindrical coordinates (Fig.
2.18) and the spherical coordinates (Fig. 2.19). The three unit vectors
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in the system of circular cylindrical coordinates are z,, r,, and 6,;
they point in the direction of increasing z, r, and 6, respectively.
Similarly, in the system of spherical coordinates the unit vectors are
r,, 8,, and ¢,; they point in the direction of increasing r, 0, and ¢.

4 S {
|

Fic. 2.18 Cylindrical coordinates.  Fic. 2.19 Spherical coordinates.

The expressions of vector algebra developed for the system of
Cartesian coordinates can be extended to an arbitrary system of
orthogonal coordinates. So, for instance, in any system defined by a set
of three orthogonal unit vectors a,, a,, and a, the dot product can be
written as

A-B = AB, + A,B, + A;B,, (2-15.1)
and the cross product can be written as

a, a, a;
AxB =4, 4, A,|, (2-15.2)
B, B, B,

which follows directly from the definition of these products.

Also, the expressions of vector analysis defined for the system of
Cartesian coordinates can be extended to an arbitrary system of
orthogonal coordinates. The expressions for the gradient, divergence,
curl, and Laplacian in the three most common coordinate systems are
given in Table 2-I. The method for obtaining vector analytical ex-
pressions in general orthogonal coordinate systems is described below.
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Let us first consider the gradient. Since grad U is a vector whose
component in any direction represents the rate of change of U in that
direction, we can write

oU oU oU
VU=a—Slal—|—a—52a2—|—a—&3-a3,

where 0s;, 0s,, 054 are the differential elements of distance in the directions
of the unit vectors a;, a,, and ag, respectively. Obviously, these differential
elements are not always equal to the increments of the corresponding
coordinates. For example, in the spherical system of coordinates the
element of distance in the direction of 8, is r df, rather than dfl. In general,
if ¢,, ¢s, and ¢4 are the three coordinates of an orthogonal system, then the
corresponding differential elements of distance ds,, ds,, ds; can be expressed
as

ds; = hydqy, dsy = hydqy, dsy = hydgs,

where hy, hy, and hy are some multipliers (“metric coefficients’), functions
of ¢, ¢, and ¢3. The general expression for grad U in any orthogonal
system of coordinates is therefore

vo_ U U U
N hy 09 a hy a‘]z 2 hy 99, A3

Before deriving general expressions for divergence and curl, we shall
prove that the divergence and curl of a vector field are independent of the
system of coordinates used for their representation (the gradient, of course,
is also independent of the system of coordinates, as follows from the fact that
the gradient represents the rate of change of a function in the direction
of the fastest change).

TaBLE 2-1

Vector Operations in Cartesian, Cylindrical,
and Spherical Coordinates

Cartesian Coordinates Cylindrical Coordinates
Line elements:
dx, dy, dz dr,rdf, dz
Components of gradient:
oU oU
gradz U = 'g grad, U = —37
oU 19U
d, U =— d i
grad, > grady U -0
oU oU
d = =
grad, U 3z grad, U %
Divergence:
24 04 04 120 104 24
divA =% o ¥, 2 i = - _ Z— z
B T T E divA =25 0d) 45 55 + 5
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TasLE 2-1 (Continued)

Components of curl:

04 04 1 04 24,
LA=2z_ LA =220 "70
e oy oz Ul r 90 0z
04 04 04 04
LA =22 2 A = Lr 22
My az  ox e z o
04 04 1 2 04
curl, A = Txy - —5 curl, A = ;I:Fr (rdg) — a—o":l
Laplacian:
2U 22U o?U 1 of oU 13U 92U
ey =22 2= 7= Ve — - —|, 22 2 2~
VWU=5zt57 oz y ar(’ ar) 2o T oz
Spherical coordinates
Line elements:
dr, r db, r sin 0 dé
Components of gradient:
oU
d U ==
grad, U o
19U
grad, U = e
1 oU
grad¢ U= rsin 6 ﬁ
Divergence:
1 9(r24,) 1 9(sin 6 4p) 1 04y
VA - r o4y
div 2 or + rsin 0 20 rsin 0 0¢

Components of curl:

1 d(sin 6 4 04
curl, A = ——[———( - s - ——0]

rsin 6 26 ¢
I 1 84, a(r4,)
A==~ — 7 _ Y74
curly f[sin@ a6 or

1[a¢4,) o4,
A=-|—-—2  _1
curly r[ or 2

Laplacian:

1af,aU 19 U 1 ®U
oy — = 2,222 — Asno = -
VU =5 ar(' ar) t Rsing ae(smo ae) t 2sin? 0 342
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Let us apply Gauss’s theorem (2-13.1) to a very small volume element
Av. As Av goes to zero, the volume integral approaches (V - A)Av, and
we obtain for V. A

A . dS
V-A:limfﬁ

Jim S (2-15.3)

which is an expression obviously independent of any system of coordinates.
Similarly, applying the relation derived in Example 2-13.4 to a very small
volume element Av, we obtain for V x A

A x dS
VxA— —limAxeS

> 2-15.4
avso Qv ( )

which shows that the curl of a vector field is also independent of the choice
of coordinates.

The above two formulas are considered to be the definitions of di-
vergence and curl in general orthogonal coordinate systems and are used
for obtaining differential formulas for divergence and curl in these systems.

The expression for divergence in terms of general orthogonal curvi-
linear coordinates is obtained from Eq. (2-15.3) by evaluating the integral
§A . dS over the surface of an infinitesimal volume element dv = hydg,"
hydqy - hydgs and by dividing this intcgral by dv. The result is

1 0 0
V.-A= T [aq (hohyAy) + 8 (hghydy) + EPy (h1h2A3):| .

The expression for curl in terms of general orthogonal curvilinear
coordinates is similarly obtained from Eq. (2-15.4) by evaluating the
integral §A x dS over the surface of an infinitesimal volume element dv
and by dividing this integral by dv. The result is

e S T 3
hohy  hshy  hyhy
VxA-| 2 2 2
0¢: 0q, Ogy

hdy  hedy  hydy
The Laplacian of a scalar is obtained by combining the above expressions
for the divergence and gradient. The result is

1 [ 9 [hh, oU 9 (hqhy, OU
ViU =V.VU= “—) —(3—1—)
[aql( hy 0q 09\ hy 0,

1h2h
0 (hihy OU :|
+ dq ( hy 873)

From these general equations the explicit expressions for the gradient,
divergence, curl, and Laplacian may be readily determined for any system
of orthogonal coordinates.
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2-16. Vector Identities

We shall conclude this chapter by tabulating various especially
important vector-analytical identities. In these identities ¢ and U are
scalar point functions; A, B, and V are vector point functions; X isa
scalar or vector point function of primed coordinates and incorporates
an appropriate multiplication sign.

Identities for the calculation of gradient
(V-1) V(pU) = ¢VU + UVyp
(V-2) V(A-B) =(A-V)B + A x (VxB)
+ B:-V)A +Bx (VxA)

n

(V-3) Vo(U, - - =3 a‘p -V,

Identities for the calculation of divergence

(V-4) V.(pA) = ¢V-A +A.Vyp
(V-5) V.- (AxB)=B-VxA—-A.-VxB
& 0A
(v-6) VoAU U) = S5
Identities for the calculation of curl
(V-7) Vx(pA) =9V x A+ Vpx A
(V-8) Vx (AxB) =(B-:-V)A + A(V-B)
—(A.V)B —B(V.A)
V-9) VxAWU,---U, ——ﬁVU oA
(V- x A(U, ) =5 ixm

Repeated application of V
) V. (VxA) =0
) Vx VU =0
-12) Vx (VxA) =V(V.A) — VA
) V2(V x A) = V x (V?A)
) VE(Vg) = V(Vi)
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Identities for the calculation of line and surface integrals
(V-15) §A -dl =fV x A.dS (Stokes’s theorem)
(V-16) fﬁ Udl =de x VU
(V-17) §Axd1 =fV-Aa’S —fV(A-dS)
Identities for the calculation of surface and volume integrals
(V-18) ff; A.dS =fV Adv (Gauss’s theorem)
(V-19) § UdS =fVUa’v
(V-20) ng x dS = —foAdv
(V-21) ff(A . B)dS - ffB(A . dS) - ffA(B - dS) =
J[A x (VxB) +B x (VxA) - A(V-B) — B(V-A)ldo
(V-22) %jEAzdS ——({;A(A.dS) =J[Ax (VxA) —A(V-A)]dv
(V-23) § A(B.4d8) =f[(V ‘B)A+ (B-V)Aldv

Green’s theorems

(V-24) fﬁUlVUde =f(U1v2U2 + VU, - VU,) dv

(V-25) ff(UIVU2 — U,VU,) - dS = f (UNV2U, — U,V2U,) dv

(V-26) fﬁ VU.dS = (WU dv
Poisson’s theorem
vy ve_L [[YEV)-Vx(VxV),,
4 r
All space
Operations with V in Poisson integrals
’ X X
wvag) v _VE LX) gy v, X
r r r2 ’ 2
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(V-32)
(V-33)
(V-34)

(V-35)
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Vector wave field theorem

V= — _1__ [V(V ° V) _ K]ret dv’

T r
All space

Operations with V in retarded Poisson integrals

o[X]r
V'[X]ret [V X]ret + il [ a;:' =
r, a[X]ret
V[X]ret = — 7 ot
[V’X]ret = V[X]ret + V’[}(]ret
[(VXret g Xt | g0 [X]re [X]m
r r

Vector operations in the form independent of coordinate systems

(V-36) VU = lim

(V-38)

(V-39)

$uas A -ds
(V-37) V-.-A = lim
Av—0 Av Av—0 1/
fA x dS
VxA=—-lim ——m—
Av—0 Av
3GVU.ds
VU = lim ——
Av—0 Ay
PROBLEMS

2.1. Show by vector methods that the diagonals of a parallelogram

bisect each other.

2.2. Show by vector methods that the line which joins one vertex of a
parallelogram with the midpoint of an opposite side intersects a diagonal

in a point of trisection.

2.3. Show by vector methods that the diameter of a circle subtends a
right angle at any point of the circumference.
2.4. Using vector methods derive the formulas

sin (¢ — ) = sin « cos f — cos a sin f,

cos (o0 4+ f8) = cos a cos f F sin o sin .

2.5. Using vector methods derive the law of sines for a triangle.



60 MATHEMATICAL INTRODUCTION
2.6. Prove the identity
Ax (BxC)=BA.C) —C(A-B).

2.7. Show that the components of a vector B in the direction parallel
and perpendicular to a vector A are given by

(A-B)A (AxB)x A
Bi=—F > Bi="7% —

2.8. Show that the solution of the two simultaneous vector equations
x-a = b and x x a = ¢ can be written as

__ba—l—axc

2
2.9. Show that the solution of the vector equation

xa +yb + zc=d
can be written as

_d-bxc a-dxc _a-bxd

x T abxe’ fTa bxc

Ta-bxc’ )

and determine the geometrical significance of this solution.
2.10. Find the projection of the vector A = 3i 4 j — 8k upon the
vector B = 2i 4+ 2j + k.
2.11. Find the angle between vectors A and B if
A=j+k and B=i-+j.

2.12. Show that if C« B = C . A for any C, then B = A,
2.13. Show that ¢ dl is always zero.
2.14. Show that § dS is always zero.

dU
2.15. Show that grad U(r) = = T
r
2.16. Show that for any potential field F = —V¢g

b
fF-dl:(pa——(pb and %F-dl:O,
a

where ¢, and @, are the values of the potential ¢ at the points a and b,
respectively.

2.17. Find curl (xpi + yzj + zxk).

2.18. Find the curl and the divergence of rr.

2.19. Prove the identity (V-2).

2.20. Prove the identity (V-8).

TN
.

2.21. Show that in spherical coordinates V . r, =

2.22. Show that V x f(r)r, is always zero.
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2.23. Find the curl and the divergence of the vector

| I1IS
.

V=-1In

Sxim

2.24. Find the curl and the divergence of the vector
V = A(x,, 2) sin [U(x, y, 2)].

2.25. Prove that in spherical coordinates (A - V)r = A,

2.26. Show that V3(Vg¢) = V(V2gp).

2.27. Show that V3(V x A) = V x (V2A).

2.28. Show that V2(pU) = ¢V2U 4 2(V¢) - (VU) 4 UVZ3p.

2.29. Prove the identity (V-16).

2.30. Prove the identity (V-17) by applying Stokes’s theorem to the
vector A x G, where C is an arbitrary constant vector.

2.31. Prove the identity (V-23) by applying Gauss’s theorem to
A,B, A,B, and A,B.

2.32. Prove the identity (V-22) by using identities (V-23), (V-19),
and (V-2).

2.33. Derive the three Green’s theorems from Gauss’s theorem.

2.34. Show that §V x A .dS = §VU x dS for any A and U.

2.35. Show that grad U can be expressed as

fods

vu —Alir—l»lo Av
2.36. Show that the distance r;, between any two points P; and P, may
be expressed as |r; — r,|, where r, and r, are the vectors connecting the
origin of coordinates with the points P, and P,, respectively. Then show that
the vector r), directed from point P; to point P, may be expressed in terms
of the coordinates of the two points as

rp = (% — x2)i + (0 — )i + (2, — 7))k

2.37. Show that for ¢ — o0, the vector wave field theorem reduces to
Poisson’s theorem, and the corollaries to the vector wave field theorem
reduce to the corollary to Poisson’s theorem if V x V = 0 outside a finite
region of space.

2.38. Show that for ¢ — 00, the identity (V-35) reduces to the identity
(V-30).

2.39. Show that for ¢ — o0, the identities (V-32), (V-33), and (V-34)
reduce to correct expressions for the corresponding unretarded operations.

2.40. Using the correlation A = nB for two parallel vectors, derive the
differential equation for the field lines of a map of a vector field V
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2.41. A solid body rotates with angular velocity w about a symmetry
axis. Show that within the body
Vxv =2w,

where v is the linear velocity of a point in the body.

2.42. Show that in the vicinity of the point (x,, 3, zo) the Taylor series
for the function F(x', y’, z’) can be expressed as
(b V')%F (%0, 0> 20) +

1
F(X',)"a z’) = F(xO)yO’ ZO) + (h- V’)F<x0ay0’ Zo) + ;

1
710 V(030 20) + o

where h is the vector from the point (xg, 39, zo) to the point (x', y’, z).
2.43. Using the expression given in Problem 2.42, expand the function

F=ei+edj

in a Taylor series about the origin x, =y, =0.

2.44. Show that the directional derivative dU/ds is equal to VU - s,, where
s, is a unit vector in the direction of s.

2.45. Show that the volume enclosed by a surface S can be found from

v=%§r-a’s,

where r is the position vector directed from the origin of coordinates to the
surface element dS.

2.46. Show that the equation r = acos 8 i + b sin 0 j represents an
ellipse with semi-axes a and 6.

2.47. Using Stokes’s theorem, show that the integral

% fﬁ(xdy -y dx)

represents the area of the surface in the xy-plane enclosed by the path of
integration.

2.48. Using the integral given in Problem 2.47, find the area of the ellipse
given in Problem 2.46.

2.49. Show that the curl of a unidirectional vector field f{x,5,2)A, where
A is a constant vector, is not zero (unless Vf is parallel to A) and is perpen-
dicular to both A and Vf. What implication does this result have on the electric
field at the edges of a parallel plate capacitor, if one assumes that the field is
finite and unidirectional inside the capacitor and zero just outside?

2.50. Show that the divergence of a unidirectional vector field f{x,y,2)A,
where A is a constant vector, is not zero if Vf has a component along A. What
implication does this result have on the magnetic field at the ends of a coil,
if one assumes that the field is finite and unidirectional inside the coil and zero
just outside?
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LINES-OF-FORCE
PHOTOGRAPHS

In order to help the reader to obtain a better understanding of the
structure of electric and magnetic fields, a number of electric and magnetic
lines-of-force photographs have been included in this book. Some of them ap-
pear as Plates on the next 12 pages, others appear as figures on pages 77, 78,
169, 187, 321, 322, 428, and 465.

The lines of force of the magnetic fields of permanent magnets were formed
by iron filings strewed on glass plates placed over the magnets. The lines of
force of the magnetic fields of current-carrying wires were formed by iron fil-
ings strewed on Plexiglas plates; the wires passed through holes drilled in the
plates.

The lines of force of the electrostatic fields were formed by grass seeds
(Kentucky Blue Grass) strewed on glass plates. To make the seeds more mobile,
the plates were waxed with a liquid wax. The conductor models were cut from
an aluminum-coated gift-wrapping paper and were glued to the plates with
rubber cement.

The lines of force of the electric fields of current-carrying conductors were
produced in the same manner, except that models of the conductors were
painted on the glass plates with a conducting ink (moderately good conduc-
tor), and the electrodes were painted with India ink (very good conductor).
[Details of making models of current-carrying conductors on glass plates are
given in Oleg D. Jefimenko ‘‘Demonstration of the Electric Fields of Current-
Carrying Conductors,’’ American Journal of Physics 30, 19 (1962).] As in the case
of electrostatic fields, the plates with the models of current-carrying conduc-
tors were waxed before using. The waxing of the plates was crucial for obtain-
ing long and well-defined grass seed filaments.

The power source for the lines-of-force pictures of the electrostatic fields
and of the fields of current-carrying conductors was a low-current high-voltage
power supply (10-15 kV).
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Plate 2 Electric field of a parallel-plafe capacitor.
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of opposite sign.




Plate 5 Electric field of two spheres carrying charges
of the same sign.
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Plate 6 Electric field of a straight current

ductor (above) and two shorted current-carrying conduc-

tors (below).



“wedge.”

The two halves are connected in parallel (above) and in

Plate 7 Electric field of a current-carrying
series (below)
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Plate 9 Electric field of two current-carrying spherical
shells (above) and of a current-carrying sphere (below)
with four-pole connections.
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QUANTITATIVE
INVESTIGATION OF
ELECTRIC AND MAGNETIC
PHENOMENA

In spite of the enormous variety of presently known physical
phenomena, most of them can be interpreted as the necessary con-
sequence of only a few fundamental interdependences between physical
quantities. These fundamental interdependences are called fundamental
laws. The determination of these laws in the domain of electric and mag-
netic phenomena, the study of their immediate consequences, and the
study of methods of their application to the solution of concrete physical
problems is the main task of electromagnetic theory. There are
many ways in which electromagnetic theory can be developed and
presented. In this chapter we shall discuss the path chosen in this book.

3-1. Landmarks in the History of Macroscopic
Electromagnetic Theory

The systematic study of electric and magnetic phenomena began
about the year 1600 when William Gilbert published his book De
Magnete in which he described his experiments in electricity and mag-
netism and introduced the word “electricity.” The mathematical
analysis of electric and magnetic phenomena began, however, only late
in the eighteenth century when Charles Coulomb, on the basis of
careful measurements, postulated in 1785 his famous force law for

lectric ch
electric charges 019

65



66 ELECTROMAGNETIC THEORY

(F is the force, k is a constant of proportionality, ¢, and ¢, are the
charges, and r is the separation between them). The striking similarity
of Coulomb’s law to Newton’s gravitational law gave rise to mechanical
theories of electricity and magnetism which adopted the mathematical
apparatus previously developed for gravitational systems. In these
‘““action at a distance” theories, Coulomb’s law for electric charges and
a similar law for magnetic poles were regarded as the principal laws,
and all electric and magnetic phenomena were thought to be deducible
from them. The action-at-a-distance theories were not fruitful, however,
and helped little towards a better understanding or utilization of
electricity and magnetism.

Drastic changes in the interpretation of electric and magnetic
phenomena were brought about by Michael Faraday, who founded
the concepts of electric and magnetic fields. During the years 1821-
1848, he performed and studied a number of electric and magnetic
experiments and came to the conclusion that the carriers of electric
and magnetic actions were the regions of space around electric charges
and magnets. These regions of space, or “fields,”” could be represented
by field-line models.

In 1855, James Clerk Maxwell translated Faraday’s ideas about
electric and magnetic fields into a mathematical form. Later he
succeeded in generalizing the basic facts of macroscopic electromag-
netism into a set of fundamental laws for electromagnetic fields. A
direct mathematical consequence of  these laws was the equations
indicating the existence of electromagnetic waves propagating with the
velocity of light. In 1886, such waves were discovered by Heinrich Hertz,
and this discovery was the first triumph of the “field theory” of electric
and magnetic phenomena.

Faraday-Maxwell’s field theory, clarified, perfected, and expanded
by many other physicists, constitutes the contemporary electromagnetic
theory of macroscopic systems. The presentation of the fundamentals
of this theory is the main purpose of this book.

3-2. Three Types of Basic Electric and Magnetic Laws

We shall develop the electromagnetic theory in thrée steps. First
of all, in agreement with the considerations presented in Chapter I,
we shall select basic measurables, instruments, and standards for the
quantitative investigation of electric and magnetic phenomena. Then
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we shall study elementary groups of these phenomena in the order of
increasing complexity and shall obtain the corresponding sets of elemen-
tary fundamental laws capable of explaining all individual phenomena
within the limits of each group. Finally we shall combine these sets of
elementary fundamental laws into one set of general fundamental laws
capable of explaining all presently known macroscopic electromagnetic
phenomena.

We shall need three types of fundamental electric and magnetic
laws, as follows.

Field Laws. The two most important objects of study in the
domain of electric and magnetic phenomena are the electric and
magnetic vector fields. Therefore we shall need a set of fundamental
laws representing the properties of these fields. We shall call these laws
Sield laws.

Two questions now arise: (1) what kind of correlations should
these laws represent? (2) how many correlations are sufficient for a
unique specification of the fields under consideration?

An answer to both these questions is given by Helmholtz’s theorem
of vector analysis. According to this theorem, a vector field is uniquely
determined by its curl and its divergence (provided that the field is
regular at infinity, which is almost always the case). A complete set
of field laws for a vector field will be obtained therefore once the
divergence equation, or the divergence law, and the curl equation, or the
curl law, are found for all points of the field under consideration.

This set of differential laws can be replaced, however, by an equiv-
alent set of integral laws. Indeed, by Gauss’s theorem, a divergence
equation V -V = U valid for all points of space can be expressed as a

flux integral equation ¢V - dS = | U dv valid for all regions of space,
g q g p

and vice versa. Similarly, by Stokes’s theorem, a curl equation
V x V = W valid for all points of space can be expressed as a circula-

tion integral equation $V « d1 — [W . 48 valid for all regions of s ace,
g q g p

and vice versa. Therefore the circulation integral equation, or the
circulation law, and the flux integral equation, or the flux law, constitute
a complete alternative set of field laws uniquely specifying a vector
field.

Divergence, curl, circulation, and flux laws are the laws upon
which we shall base the theory of electric and magnetic fields.

Interaction Laws. Field laws determine the properties of fields but
do not give any information about the electric and magnetic inter-
actions between particles or bodies. These interactions play, however,
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a very important role in electric and magnetic phenomena. Therefore
we shall also need magnetic and electric interaction laws.

The most general electric and magnetic interaction laws must be
applicable to all possible systems of particles or bodies and must be
independent of any specific system, structure, or configuration. As we
shall see, it is possible to obtain such general interaction laws in the
form of energy equations, or energy laws, expressed in terms of electric
and magnetic fields. The energy laws are the laws upon which we
shall base the theory of electric and magnetic interactions.

Constitutive, or Auxiliary, Laws. We shall study electric and
magnetic phenomena in various material media. The laws reflecting
electric and magnetic properties of the media are called constitutive, or
auxiliary, laws. They are the third type of basic laws that we shall need.?

3-3. Basic Measurables in Electricity and Magnetism

At the time when the first quantitative investigations of electric
and magnetic phenomena were conducted, no electric or magnetic
instruments were known. Almost all quantitative information had to
be obtained through measurements of mechanical quantities with the aid
of mechanical instruments.2 For a long time the three mechanical
measurables—length, mass, and time—were used as the only basic
measurables and were even believed to constitute the ultimate system
of basic measurables.

Later it was found that electric and magnetic phenomena could
be investigated much more easily with the aid of special electric and
magnetic instruments. It was also found that the description of these
phenomena became much simpler and clearer if new electric or
magnetic basic measurables were used together with the old mechanical
ones. Finally, it was realized that there can be no ultimate system of
basic measurables and that one should therefore use the system which
serves its purpose best.?

1 The constitutive laws are not as fundamental as the field laws and the inter-
action laws. When the electromagnetic properties of matter are investigated on a
microscopic scale, the differences in many macroscopic electromagnetic phenomena
reflected by the constitutive laws appear as the differences in the atomic and molecular
structure of various physical bodies rather than as the differences in the nature of
electromagnetic phenomena occurring in these bodies.

2 Compare with footnote 1 on page 71.

3 The common systems of basic measurables are described in Section 1-5.
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Modern scientists obtain their knowledge about electric and mag-
netic phenomena mainly through the measurements of two electric
quantities—current and voltage—and use current meters and voltage
meters as basic tools for experimental investigations of these phenomena.
In fact, measurements of current and voltage are the basic sources of
quantitative information in almost any branch of modern experimental
sciences. It is therefore natural to adopt formally current and voltage
as the new basic measurables and to use them alongside with other basic
measurables such as, for instance, length, mass (or force), and time.
This system of five basic measurables (the LMTVI system) is now
generally used in experimental physics and is also most appropriate for
the mathematical representation of physical phenomena. It is the
system which we shall use throughout this book.!

3-4. Current as a Basic Measurable

In order to use current and voltage as basic measurables, we must
first of all specify the properties that are attributed to them and that
are used for their identification and qualitative definition.

The characteristic properties of that which we call current, or,
more accurately, electric current, can be demonstrated with the aid of the
three following experiments.

Magnetic Property. If a wire is placed near a compass needle and is
then connected to the terminals of a battery, the needle deflects from its
initial position, just as it would if a magnet were placed near it. This
magnetic action is attributed to the electric current produced in the
wire by the battery and is regarded as the first characteristic property
of electric current.

Thermal Property. If several turns of wire are wound around a
thermometer, and the wire is connected to a battery, the thermometer
shows that the wire heats up. Also this thermal action is attributed to
the current in the wire and is regarded as the second characteristic
property of current.

1 It must be emphasized that the separation of measurables into basic and
secondary is merely a matter of practical expedience and has nothing to do with
the establishment of ranks or priorities of some physical quantities or concepts
relative to others. Thus, for instance, the fact that we consider here current, rather
than charge, as a basic measurable does not mean that we regard current as a
quantity more (or less) important or fundamental than charge; it merely means

that we regard a direct measurement of current as more expedient or convenient
than that of charge.
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Chemical Property. If two wires are inserted in a glass containing
water, and if one end of each wire is then connected to a battery, small
bubbles of gas begin to rise from the submerged ends of the wires. As
the two previous effects, this chemical action too is attributed to electric
current and is regarded as its third characteristic property.

On the basis of these three experiments we shall define electric
current qualitatively as that which manifests itself by the magnetic,
thermal, and chemical action in the manner described above.!

A closer examination of the chemical action of electric current in
water shows that the current decomposes water into its components:
oxygen and hydrogen. In this process oxygen is liberated at the sur-
face of one wire while hydrogen is liberated at the surface of the
other wire. Thus the two wires and therefore the two terminals of the
battery to which the wires are connected cause different chemical
effects. This means that the two terminals of a battery are electrically
different. By international agreement, the hydrogen-delivering ter-
minal is called the negative terminal and is designated by the — sign;
the oxygen-delivering terminal is called the positive terminal and is
designated by the + sign.

The difference between the two terminals of a battery expresses
itself also in the magnetic action of electric current. Ifin the experiment
with the compass needle the battery connections of the wire were
reversed, so that the end previously connected to the + terminal is
now connected to the — terminal, and the end previously connected
to the — terminal is now connected to the + terminal, the compass
needle would change its deflection by 180 degrees. This effect is
interpreted by assigning a direction to the electric current (as the word
“current” indicates) and is attributed to the reversal of the current in
the wire that takes place when the connections of the wire are reversed.
By convention, the current outside the battery is considered as being
always directed from the positive to the negative terminal.

Current Meters. Ballistic Current Meters. Like any basic measurable,
electric current must be defined quantitatively by specifying the
instruments with which it can be measured.

All three characteristic properties of current can be used for its
measurement. One can construct current meters, or galvanometers,

1 A definition in physics is never an explanation. A qualitative definition is
merely the statement of a verbal convention; a quantitative definition is the statement
of the rules of measurements or calculations.
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Fic. 3.1 D’Arsonval galvanometer.
This galvanometer utilizes the magnetic
property of electric current.

based on the magnetic, thermal, or chemical action of the electric
current.! The most widely used current meters are, however, based on
magnetic action.

A typical current meter based on the magnetic action of electric
current is the d’Arsonval meter shown in Fig. 3.1. In this meter the
current causes an angular deflection of the coil placed between the
poles of a magnet and is measured by this deflection. The deflection
of the coil is indicated on a scale either by a pointer or, in more
sensitive instruments, by a beam of light reflected from a mirror
attached to the coil.

An important property of the d’Arsonval meter is that it can also
be used as a ballistic current meter, that is, as an instrument that measures
directly the current % time integral, or the current-impulse integral, | I dt.

The international unit of electric current is the ampere. A current
of n amperes may be defined as the current that liberates nx1.1180
milligrams of silver from an aqueous solution of AgNO, in one second.?
A current meter calibrated in amperes is called an ammeter.

1 Strictly speaking, to these three actions, or properties, of current one should
add the property of causing a characteristic physiological sensation which makes it
possible to “feel” the current. Strange as it may seem, this property of current can
also be used for electric measurements—for instance, for measurements in bridge
circuits employing the “null method.” In fact, it is reported that two centuries ago
Henry Cavendish by “‘feeling” the current determined the relative conductivity
of different substances with accuracy unsurpassed for almost one hundred years.
This, incidentally, shows clearly that a quantitative study of physical phenomena is
possible without mechanical instruments or devices.

2 See the footnote on page 73.
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Fic. 3.2 Braun electrometer. This elec-
trometer utilizes the force-producing
property of voltage.

3-5. Voltage as a Basic Measurable

The characteristic properties of that which we call voltage can be
demonstrated with the aid of the following two experiments.

Force-Producing Property. 1f two pieces of aluminum foil suspended
by threads one near the other are connected by two wires to the
terminals of a battery, these pieces attract each other (the battery
should have several hundred individual cells in order to make the
motion of the foil visible under class-room conditions). If the battery
is changed, the force of attraction changes. The ability of a battery to
produce force is attributed to the voltage generated by the battery, and
the force-producing property is regarded as the first characteristic
property of voltage.

Current-Producing Property. 1f a wire is connected to the terminals
of a battery, electric current is produced in the wire. If the battery is
changed, the current changes. Also the ability of a battery to produce
current is attributed to the voltage generated by the battery. The
current-producing property is therefore regarded as the second charac-
teristic property of voltage.

On the basis of these two experiments we shall define the voltage
qualitatively as that which manifests itself by the force and current
action in the manner described above.

Voltage Meters. Ballistic Voltage Meters. For the quantitative
definition of voltage we must specify the instruments with which it
can be measured.
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Both characteristic properties of voltage can be used for its
measurement. Voltage meters based on the force-producing property
of voltage are called electrostatic voltage meters, or electrometers. A typical
electrostatic voltage meter is the Braun electrometer shown in Fig. 3.2.
In this electrometer a light aluminum pointer is attached to a metal
rod which is inserted into a metal chamber. If a voltage is applied
between the rod and the chamber, the pointer is attracted to the
wall of the chamber that it faces and diverges from the rod. The
deflection of the pointer is read on a scale and is a measure of the
applied voltage.

With the voltage meters based on the current-producing property
of voltage, voltage is measured by the current that it produces. These
voltage meters are in principle ordinary current meters calibrated,
however, in units of voltage rather than in units of current. The most
widely used voltage meter of this type is the d’Arsonval meter already
described. The d’Arsonval meter can also be used as a ballistic voltage
meter to measure the voltage-impulse integral [V dt.

The international unit of voltage is the volt. A voltage of n volts
may be defined as 1/1.0186 of the voltage produced by » Cd-Hg
standard (Weston Normal) cells connected in series.! A voltage meter
calibrated in volts is called a voltmeter.

! For the legal definition of the ampere and the volt in the United States the
reader is referred to the publications of the National Bureau of Standards.

The international mks system of units (standards), which was first created in
1790-1799 and which initially recognized only three basic measurables, has since ex-
perienced many modifications and has evolved in what is now called the ‘‘International
System of Units’’ (SI), recognizing seven basic measurables. As already mentioned in
Chapter 1, it is essentially a mksa system (the three additional fundamental units are
the kelvin, the mole and the candela).

Not all scientists are satisfied with definitions specified in SI. For example, the
ampere is defined in SI as ‘‘that constant current which, if maintained in two straight
parallel conductors of infinite length, of negligible circular section, and placed 1 meter
apart in a vacuum, will produce between these conductors a force equal to 2 x 10-7
newtons per meter of length.’’ At least two serious objection can be raised against this
definition: (1) the physical system specified in the definition can not be constructed,
and (2) the definition ignores the fact that current-carrying conductors are subject to
both electric and magnetic forces, rather than to a magnetic force alone (see Example
13-6.2 on p. 442).

Modern current meters and voltage meters frequently have no pointers or other
mechanical parts at all. The so-called ‘‘digital meters’’ show the results of measurements
as numbers on a display panel. However, the complexity of these devices make them
unsuitable as a starting point in a presentation of the theory of electric and magnetic
phenomena. For the purpose of this book we shall consider therefore the moving-coil
current meter and the electrostatic voltage meter as the two basic electric instruments.



ELECTROSTATIC FIELD
IN VACUUM

We shall now begin the study of the elementary groups of
electric and magnetic phenomena. In this chapter we shall study
electric fields associated with stationary electric charges in vacuum and
shall familiarize ourselves with the basic properties of these fields as
well as with some typical problems involving these properties.

4-1. Electric Charges

Let us connect one terminal of a ballistic galvanometer to a ter-
minal of a battery (Fig. 4.1). If we now take a small metal plate
attached to a plastic handle (test plate), touch with this plate the open
terminal of the battery, and then move the plate over to the open
terminal of the galvanometer, we find that the galvanometer registers
a current impulse at the moment when the plate touches its terminal.?

Thus we can transport from the battery to the galvanometer
something which produces a current impulse in the galvanometer.
This transportable “something” has been named électric charge. The
charge is called positive if it comes from the positive terminal of a battery
and is called negative if it comes from the negative terminal.

Let us now repeat the experiment on charge transportation, this
time using a double plate consisting of two equal test plates laid one

1 The battery should have several hundred individual cells to make the effect
visible under classroom conditions.

74



ELECTROSTATIC FIELD IN VACUUM 75

/ \
Fic. 4.1 Electric charges can be transported y. 4 L-~|
on a test plate. p_

over the other. If after touching the battery we separate the two
plates, thus dividing the charge equally between them, we find that
the galvanometer, when touched by each plate separately, registers
only half as strong a current impulse as that which it registers when
touched by the two plates when they are not separated. This means
that electric charge can be measured by the current impulse produced
by it.

Using this result, we shall define electric charge quantitatively as
follows: an electric charge q is measured by and is equal to the current impulse
[1 dt that it produces. We thus have

g =J.Idt. (4-1.1)

According to this definition, the units of the electric charge are amp - sec
(these units are usually called “coulomb”).

If, continuing our experiments with charges, we completely dis-
connect the galvanometer from the battery and use two test plates for
the simultaneous transportation of a positive charge to one terminal
of the galvanometer and a negative charge to the other terminal, we
find that the galvanometer registers the same current impulse which it
registered when one of its terminals was connected to the battery. This
shows that the wire connecting the galvanometer to the battery per-
forms the same function as a test plate does: it transports charges from
the battery to the galvanometer, or “conducts™ them.

Substances and bodies capable of conducting electric charges well
are called conductors. Substances and bodies that do not conduct
electric charges well are called insulators, or dielectrics.

A fundamental property of the electric charge is the property of
conservation. Experiments show that no net electric charge can be
created or destroyed. Electric charges can be only separated or
combined, positive and negative charges always appearing or dis-
appearing in equal quantities.
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Many electric and magnetic phenomena depend on how electric
charges are distributed in the free space and in the interior or on the
surface of material bodies. The distribution of electric charges is described
with the aid of the volume charge density, the surface charge density, and the
line charge density. The volume charge density p is defined as

== 4-1.
P dv 2 ( 2)
where dg is the charge contained in the infinitesimal volume element
dv. The surface charge density o is defined as

dg

O’=Z9,

(4-1.3)
where dg is the charge contained in the infinitesimal surface element of
area dS. The line charge density 4 is similarly defined as

dg

r ==L

(4-1.4)
where dq is the charge contained in the infinitesimal length element dl.

Electric phenomena associated with stationary charge distributions
are called electrostatic phenomena, and electric systems in which there
are no moving charges and no currents are called electrostatic systems.

4-2. Electric Field and Electric Field Vector E

Let us take two metal plates supported by insulating stands, place
them opposite each other, and charge them by connecting each plate
to a terminal of a battery. If we then charge a small pith ball suspended
on an insulating string and place this pith ball between the two plates,
we find that in the space between the plates the ball deflects from its
normal vertical position (Fig. 4.2). This deflection of the ball is
attributed to a special force acting on the electric charge carried by the
ball. It is called the electric force. A region of space where an electric
charge at rest experiences electric force (such as the region between the
two charged plates) is called the electric field.

Electric fields surround all electric charges and accompany all
charged bodies. Electric fields of various characteristics can be obtained
by using appropriately arranged charge distributions or by using
charged bodies of various shapes. Especially convenient for this purpose
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Fic. 4.2 A charged pith ball pendulum deflects in an
electric field.

are pairs of oppositely charged conductors; such pairs are called
condensers, or capacttors.

An electric field can be made “visible” by sprinkling small,
elongated, poorly-conducting particles (grass seeds, for example) on a
glass plate placed in the field. In the electric field the particles arrange
themselves in regular chain-like filaments, thus making a picture of the
“electric lines of force” (Plates 1 — 9; Figs. 4.3, 4.4, 4.5, 6.13, 7.1).

Different electric fields can be quantitatively compared with each
other by means of an electric-field-indicator, or an electroscope. An
example of a simple electroscope is the charged pith ball suspended from
a string which we used for demonstrating electric force (Fig. 4.2). If
two electric fields produce the same deflection of an electroscope, the
fields are considered equal (the charge of the electroscope must be small,
otherwise it may distort the fields that are being studied).

The study of various electric fields by means of electroscopes and
lines-of-force pictures shows that the simplest electric field is the field

(a) (b)

Fic. 4.3 (a) Electric lines of force in the field of a parallel plate capacitor.
(b) Electric field map for the same capacitor.
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Fic. 4.4 Electric lines of force
around an isolated uniformly
charged sphere.

inside a thin parallel-plate capacitor; that is, the field between two
parallel, oppositely charged conducting plates placed close to each
other (Fig. 4.3). Except near the edges of the capacitor, this field is
homogeneous : it causes the same deflection of an electroscope no matter
at what point of the field the electroscope is placed, and its lines of force
are straight, parallel lines.

If, using an electroscope, we compare the fields between the plates
of different thin parallel-plate capacitors, we find that the fields
between the plates of all those capacitors which have the same ratio

voltage between the plates
distance between the plates

cause equal deflections of the electroscope regardless of any other

Fic. 4.5 Electric lines of force
around an uncharged sphere in an
external electric field.
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Fig. 4.6 Electric fields can be measured by comparison with a standard
electric field.

characteristics of the capacitors. This ratio can be used therefore as
the measure of the electric field inside a thin parallel-plate capacitor.

Since the field between the plates of a thin parallel-plate capacitor
has a well defined structure, is easily reproducible, and can be used
conveniently for establishing standard laboratory conditions for experi-
ments with electric fields, we shall adopt this field as the standard
electric field E, and, in agreement with the ratio stated above, shall
define its magnitude as

E V

™ :E, (4‘2.1)

where V'is the voltage between the two plates and 4 is their separation.

The magnitude of any electric field can be defined in terms of the
magnitude of the standard field. We shall define it as follows: the
magnitude of an arbitrary electric field E is measured by and is equal to the
magnitude of the standard electric field E, which exactly equalizes the field E.
The units of an electric field are, according to this definition, volt/m.

The principle of measurement of an arbitrary electric field is
illustrated in Fig. 4.6.! The standard field is on the left; it is adjusted
by means of a variable voltage source until the balance arm carrying
on its ends two equal test charges, one of which is in the standard field
while the other is in the unknown field, comes to equilibrium.

1 The method of the direct field measurement shown in Fig. 4.6 is seldom used
in practice. Instead, electric fields are usually measured indirectly by first deter-
mining the effect of the standard field upon some charge carrier and then comparing
this effect with the effect produced upon the same charge carrier by the field that
is being measured. In this manner, for instance, atomic electric fields are measured
by first determining the behavior of elementary charged particles in a standard
electric field (Millikan’s oil-drop experiment, mass spectrographs) and then com-
paring this behavior with the behavior of identical particles in the atomic fields.
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Electric fields are vector fields. With each point of an electric
field one can associate the electric field vector E, whose magnitude is equal
to the magnitude of the electric field at this point and whose direction
is the same as the direction of the force experienced by a test charge
placed at this point (by convention, the test charge must be positive).
In a thin parallel-plate capacitor, for example, E is directed along a
normal drawn from the positive to the negative plate.

It has been found that maps of electric vector fields (see page 36)
are closely represented by pictures of the electric lines of force (filaments
of elongated particles on a glass plate) produced by the same fields
(Fig. 4.3). The easily obtainable pictures of the electric lines of force
are therefore often used as approximate maps of the electric fields.

4-3. Displacement Field and Displacement Vector D

Let us again take two large metal plates on insulating stands, place
them near each other, and charge them by connecting each plate to
opposite terminals of a battery. Let us then take two small test plates
with insulating handles (such as we used for transporting electric
charges), press them one against the other, insert them in the space
between the large plates, and separate them there. If we now take out
these test plates and touch with them the terminals of a ballistic
galvanometer, the galvanometer registers a current impulse, indicating
in this way that the test plates became charged. Thus we can charge
two originally uncharged conducting plates, initially in contact with

A e

F1c. 4.7 Test plates can be charged by induction.
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each other, by merely separating them in the space between two
charged plates (Fig. 4.7). This process of charging is called charging by
electric induction, or charging by displacement of charge. The region of space
where this process of charging can take place (such as the region
between the two charged plates) is called the field of electric induction, or
the displacement field. Experiments show that the displacement field is
intimately related to the electric field defined in the preceding section
and can be produced by the same means as the latter.

If we measure charges induced on small test plates of different
sizes we find that, as long as all plates are inserted at the same point
of the field and are oriented to acquire the greatest induced charge,
the induced surface charge density

charge induced on a test plate

~ surface area occupied by charge

b

is the same for all plates. Therefore the induced surface charge density
can be used as the measure of the displacement field and may be used
for the quantitative definition of this field. Utilizing this possibility
we shall define the displacement field quantitatively as follows: the
magnitude of the displacement field at a given point is measured by and is equal
to the surface charge density induced on a test plate inserted at this point and oriented
to acquire the greatest induced charge. We shall designate the magnitude
of the displacement field by the symbol D and shall call it, for brevity,
the displacement. The units of D are, according to this definition,
amp - sec/m?.

In practice, the test plates for the measurement of displacement
are usually built in the form of a parallel-plate capacitor permanently
connected to a ballistic galvanometer which is calibrated directly in
terms of the induced surface charge density. For the measurement, the
capacitor is either turned through 90° as in the case of the “flip
capacitor’” shown in Fig. 4.8, or its plates are rotated with respect to
each other by 90° as in the case of the “field mill”’ shown in Fig. 4.9.
Test capacitors of these types are frequently used for studying the
earth’s electric field, both as ground and airborne instruments.

Displacement fields are vector fields also. With each point of a
displacement field one can associate the displacement vector D whose
magnitude is equal to the displacement at this point and whose
direction is along the normal drawn from the negative to the positive
test plate when the plates are oriented to acquire the greatest induced
charge (this sense of the direction of D is merely a convention).
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Fic. 4.8 “Flip capacitor” for Fic. 4.9 “Field mill” for
measuring D, measuring D,

To determine the direction of D when using a flip capacitor, one
orients the axis of rotation so that the induced current impulse becomes
zero. The axis of rotation will then be parallel to D. The axis of
rotation of a field mill, however, will be parallel to D when the mill is
oriented so that the current impulse becomes a maximum,

It is customary to use the expression “electric field” as a general
term for designating both the electric field proper, defined in the pre-
ceding section, and the displacement field. When using this expression
in such a general sense, we shall refer to both the displacement vector D
and the electric field vector E as the electric field vectors.

As we shall see later, the electric field vectors E and D have their
magnetic counterparts: the magnetic field vectors H and B. The
definitions of these magnetic vectors are analogous to those of the elec-
tric vectors. In order to emphasize this important analogy, the defini-
tions of all four vectors E, D, H, and B are given in parallel form in
Table 4-1.

4-4, Fundamental Electrostatic Field Laws

The laws of physics are established by means of generalizations of
numerous and various experimental data, rather than by means of any
single measurement, experiment, or observation. The most that a
single measurement, experiment, or observation can accomplish is to
suggest the possibility of the existence of a law. One should not
therefore be surprised if the initial experiments from which the laws of
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physics are first deduced are sometimes crude and not entirely con-
vincing. Their function is merely to make a law appear plausible.
This is the only function of the experiments which we shall use for the
deduction of the fundamental electric and magnetic laws. The proof
of the correctness of these laws lies not in the initial experiments
themselves, but rather in the agreement of all the¢ known consequences
of these laws with the experimental data within the limits of experi-
mental errors imposed upon these data by the available techniques of
measurements.

The fundamental laws of the electrostatic field in vacuum may be
deduced as follows.

The Circulation (Curl) Law. If we compare various electrostatic
lines-of-force pictures obtained by the method described in Section 4-2,
we shall find that all these pictures have one remarkable property in
common: there are no closed lines of force in any of these pictures;
all lines of force begin and end on charged bodies. As we already
know, the absence of closed lines is also the characteristic property of
most vector field maps for fields whose curl is zero. Since the lines-of-
force pictures are the maps (however crude) of the corresponding
electrostatic vector fields, we must suspect that the curl of the electro-

static field is always zero:
VxE=0. (4-4.1a)

By Stokes’s theorem of vector analysis, it must then also be that
fﬁE .dl = 0. (4-4.1b)

The validity and generality of these two equations have been
confirmed by all presently known phenomena involving electrostatic
fields. According to Section 3-2, these equations therefore represent a
fundamental electrostatic field law, in its differential and integral
form, respectively.

The Flux (Divergence) Law. Another fundamental law of the
electrostatic field may be deduced from the well-known Faraday’s
ice-pail experiment. This experiment shows that a charge placed
inside a conducting enclosure always induces an equally large charge of
opposite sign on the inner surface of the enclosure. Since the charge on
a surface is equal to the integral of the surface charge density extended
over this surface, and since the induced surface charge density on a
conducting surface is the measure of the displacement D at this surface,!

1 Because each surface element can be regarded as a test plate for measuring D.



TABLE 4-1

Definitions of Electric and Magnetic Field Vectors
(Basic electric measurables and units: voltage [volt], current [amp])

Electric Field

Magnetic Field

Qualitative definition of the electric field:

A region of space where electric charges at rest experience electric
Sorces.

Definition of the standard electric field:
The field inside a thin parallel-plate capacitor,

Es=§. [E] = [&nﬂ

hy

Definition of the electric field vector E:
A vector in the direction of the force acting on a small positive test
charge. The magnitude of E is measured in terms of
voltage
plate separation

of a thin parallel-plate capacitor whose field exactly equalizes the field
that is measured. Example:

84

Qualitative definition of the magnetic field:

A region of space where permanent magnets at rest experience
magnetic forces.

Definition of the standard magnetic field:
The field inside a long coil,

- 2]

~ e
; H :
/ !_- — — e ——— —

l
I* {_1

H,

Definition of the magnetic field vector H:
A vector in the direction indicated by the north pole of a small
compass needle. The magnitude of H is measured in terms of

current - turns

length

of a long coil whose field exactly equalizes the field that is measured
Example:
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E standard

Definition of the displacement vector D (electric flux density
vector) :

A vector ““causing’ induced surface charges on a test plate or a
test capacitor. The magnitude of D is measured in terms of

induced charge
area

of a small test plate (lest capacitor). The direction of D is normal to
the plane of the test plate when the plale is oriented so that the induced

charge has its maximum value.
amp - sec
[D] = [P_]

me
Example:

RN fra
=D

Hgtandard

Definition of the induction vector B (magnetic flux density
vector) :

A vector “causing” induced voltage in a test wire or a test coil,
The magnitude of B is measured in terms of
induced voltage impulse
arca
of a small, one-turn test coil (test loop). The direction of B is

normal to the lest coil axis when the test coil is oriented so that
the induced voltage impulse has its maximum value,

[B] = [‘M:I

m?

Example:
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Faraday’s ice-pail experiment suggests the following correlation:

Genclosed = ~ Jinduced = _§ cdS = §D ds.

Replacing ¢.0eqa 1N this equation by the integral of the charge
density p extended over the enclosed volume, ¢ 0sea = Jp dv, and
writing the surface integral as a flux integral, we obtain

§D - dS zfp dv, (4-4.2a)

where d8 is directed along the outward normal to the surface of inte-
gration. Although we have deduced this equation from experiments with
closed conducting surfaces (enclosures), it has been found to hold for
any closed surface whatsoever, be it a real material surface or an
imaginary geometrical construction (an imaginary closed surface over
which §D.dS is evaluated is called a Gaussian surface). By Gauss’s
theorem of vector analysis it must then also be that

V-D=p. (4-4.2b)

The validity and generality of these two equations have been
confirmed by all presently known phenomena involving displacement
fields. Therefore, according to Section 3-2, these equations, too, repre-
sent a fundamental electric field law, in its integral and differential
form, respectively. The integral form of this law, Eq. (4-4.2a), is called
Gauss’s law of electrostatics.

Additional experiments show that both the electrostatic E and
electrostatic D fields are always regular at infinity [approach zero at
infinity at least as 1/(distance)?].

The Displacement Law. The set of field laws that we have found
thus far is not as yet complete, since we do not have the circulation
(curl) law for D and the flux (divergence) law for E. These laws can
be obtained, however, from the ones that we already have, if the
correlation between the vectors E and D is known. This correlation
can be determined by making simultaneous measurements of E and D
in various electric fields. On the basis of such measurements it has been
found that in vacuum the vectors E and D are bound to each other by

the equation
D = ¢E, (4-4.3)

where ¢, is an experimentally determined universal constant, called
the permittivity of space; itsvalue is 8.854 x 10-2amp - sec/volt - m.
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The correlation expressed by this equation is called the displacement
law. The displacement law is a constitutive law and, in the above form,
is valid for electric fields in vacuum (and, practically, also in air) but
is not valid for electric fields inside material media, as we shall see later.

Our set of electrostatic laws is now completed. By using the
displacement law in combination with the field laws for E and D deter-
mined previously, we can obtain the curl (circulation) as well as the
divergence (flux) equations for both vectors E and D. Thus, according
to Helmholtz’s theorem of vector analysis, we have a complete set of
equations uniquely specifying the vector fields E and D.  This means
that if somehow we find an expression for E or D which for a given
electrostatic system in vacuum satisfies all three equations' (4-4.1),
(4-4.2), and (4-4.3) at all points of space and is regular at infinity, we
may be sure that this expression is correct and that the field represented
by this expression is the only possible field for the system under con-
sideration.

Several examples on the application of the fundamental electro-
static field laws for the solution of various problems are given below.

v

Example 4-4.1 A charge ¢ is uniformly distributed throughout a
spherical region of radius a (so that p = 0 for r > a and p = 3¢[4ma3 for
r < a). Find E for all points of space.

In order to find the electric field in the space surrounding the charge-
filled region, we describe a concentric spherical Gaussian surface S of
radius 7 around this region, as shown in Fig. 4.10a. Applying Gauss’s law
to this surface, we have

ffD - dS =fp dv = Genclosea = 9-

By the symmetry of the system, the field must be spherically symmetric.?
The displacement vector D must therefore be radial and its magnitude
must be the same at all points of the surface S. Since D and d8 are in this
case parallel, so that D - dS = D dS, and since D is constant on S, so that
D can be factored out from under the integral sign, we have

§D~d8=§DdS:D§d5=D4ﬂr2=q,

1 We refer to either of the two equations (4-4.1a) and (4-4.1b) as to Eq.
(4-4.1). The same holds for all other equations denoted as “a’ and “b.”
2 See Example 4-4.4.
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or

o i

Using now the displacement law D = ¢(E and taking into account that D
is in the radial direction, we obtain

E= ﬁ r, (r>a). (4-4.4)

(a) (b)

Fic. 4.10 (a) Gaussian surface outside a spherical charge distribution.
(b) Gaussian surface inside the same charge distribution.

In order to find the electric field inside the charge-filled region, we
construct a concentric spherical Gaussian surface § of radius r inside the
region, as shown in Fig. 4.10b. Applying Gauss’s law to this surface, we

have
§ D.dS =Ipda.

As before, D is parallel to dS and constant on S, so that the surface integral
is

§D-d$=D§dS=D4m3.

Since p is constant throughout the volume enclosed by § and is equal to
3¢/4ma®, the volume integral is

4 3¢ 4 r3
_ P W N S )
f"d”_PJ.d”_"a'" dmad 37 T U5

We thus have
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or
L
D= 47ra®”

Using now the displacement law and taking into account that D is radial,
we obtain

i (r <a). (4-4.5)

T Amead Fu

Example 4-4.2 A uniformly distributed charge ¢ forms a long circular
rod of length [. Find E near the surface of the rod far from the rod’s ends.

Fic. 4.11 Gaussian surface around a charged rod.

Describing a cylindrical Gaussian surface of radius r and length /'
coaxial with the rod, as shown in Fig. 4.11, we can write

i

—

§D - dS = Fenclosed —

By the symmetry of the system the field is radial (except near the rod’s ends),
so that if the Gaussian surface is constructed sufficiently far from the ends
of the rod, D on this surface is everywhere radial. Thus on the cylindrical
portion of the Gaussian surface D is perpendicular to the surface, so that
D .dS = D dS, while on the two plane ends of the Gaussian surface the
field is parallel to the surface, so that D - d8 = 0. We obtain therefore

ir =§;D-d8= f D.dS + f D.dS — f Das .
Cylindrical Plane Cylindrical
portion ends portion
Furthermore, by the symmetry of the system, the field must be constant on
the cylindrical portion of the Gaussian surface, so that D in the last integral
can be factored out, and therefore

%’r=D dS = D -2url,
Cylindrical
portion

or
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Using the displacement law, designating ¢/l as A (charge per unit length),
and taking into account the direction of E, we obtain then

D A

& 2meyr

r,.

Example 4-4.3 A spherical region of radius R is filled with charge in
such a manner that the electric field inside this region is E = (E,/R?)rr,
where r is the radius vector drawn from the center of the region, and E;is a
constant. Find the charge density in the region.
According to the divergence and displacement laws, the charge
density is
p=V:D=V.(gE) =¢,V-.E.

Substituting E, we have

E E
p=¢gV- (R—grr) = so-R—g V. (rr).
Differentiating by parts (see vector identity V-4) and remembering that
V.r =3 and Vr = r, (see Examples 2-11.1 and 2-10.1), we obtain

E E
p=801—eg(rV-r—|—r-V7)=soﬁg(3r—|—roru)

and, since r - r, =71,
4E,
P = & F r.

Example 4-4.4 In solving the problem of Example 4-4.1 we used
intuitive considerations of symmetry. Therefore there is some doubt that
the solution is correct. Verify the solution.

According to Helmholtz’s theorem of vector analysis and to the basic
electrostatic laws, there is only one correct function for the electric field of
any charge distribution, and in order to be correct this function must satisfy
the following three conditions: (1) it must be regular at infinity, (2) it
must have everywhere zero curl, and (3) it must satisfy everywhere the
divergence equation

V:D=p, or V. (gE)=p,

where p is the density of the charge distribution. These three conditions
constitute a criterion for the correctness of an expression for E, so that if
they are satisfied by the solution under consideration, the solution is correct.

Examining the solution in question, we see that it satisfies the first
condition, since according to Eq. (4-4.4) E is proportional to 1/r? for r > a.

Taking the curl of Eqs. (4-4.4) and (4-4.5), we find that the solution
also satisfies the second condition, because it yields V x E =0 for all
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points of space. Indeed, from Eq. (4-4.4) we have for r > a (using vector
identity V-7 and remembering that V x r = 0 and r, x r = 0)

- 7 ) =1 r
VxE=Vx (47Tsr2r“) —41rsovx (73)

g [ er—i—V( )xrjl
47r80

4 (1 3r, _ 9 _
( Vxr— - xr)—4w80(0—0)—0.

= 3
4reg\r

From Eq. (4-4.5) we similarly have for r < a

VxE=Vx( ar Vxr=0.

——r
4dega® “) 41rsoa3

Finally, taking the divergence of Eqs. (4-4.4) and (4-4.5), we find that
the solution satisfies also the third condition. Indeed, from Eq. (4-4.4) we
have for r > a (using vector identity V-4 and remembering that V . r = 3)

_ ol N _Lg.(x)_2fL L
V- (oE) =V- (4‘77601’2 r") T 4x v (r3) - 477[73 Ver+V (r3) ) r]

which is the correct value of p for r > a. From Eq. (4-4.5) we similarly
have for r < a

V-(soE)=V-( Sof” ru) SIS

4mreqad 4ma® 4mad

which is the correct value of p for r < a.

Thus the solution obtained in Example 4-4.1 satisfies the conditions
which constitute a criterion for the correctness of an expression for E and
is therefore correct.

Example 4-4.5 A certain charge distribution has a region within which
the charge has everywhere the same density p. A spherical cavity is made
in this region by removing the charge originally present at the location of
the cavity without disturbing the rest of the charge. The cavity is centered
at the point where the electric field originally was E,. Find how the presence
of the cavity affects this field.

The effect of the cavity can be determined by regarding the zero charge
density in the cavity as being made up of two equally large charge densities
of opposite polarity, p and —p. The field at the center of the cavity is then
the sum of three fields: (a) the field due to the charge of density p located
within the cavity, (b) the field due to the charge of density —p located
within the cavity, and (c) the field due to the charge located outside the
cavity. Now, the sum of the first and the third fields is just E, since if the
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cavity were filled with charge of density p, the original charge distribution
is restored. The second field is zero, since by symmetry or by Eq. (4-4.5),
the field at the center of a spherical charge distribution of uniform density
is zero. The sum of all three fields is thus E,, so that a spherical cavity made
in a region of uniform charge density does not affect the field at the point
at which the cavity is centered. This, incidentally, allows one to make
the so-called cavity definition of the electric field inside a charge-filled region.
According to this definition the field in a charge-filled region is the field
measured at the center of a spherical cavity whose dimensions are small
compared to the distance over which the charge density changes appreciably.

Example 4-4.6 Show that a unidirectional electrostatic field E cannot
vary in a direction normal to the direction of the field.
Let us assume that the field is directed along the x-axis of the rectangular

system of coordinates, so that
E = E .

Since, by the fundamental law, the curl of an electrostatic field is always

zero, we have
. . OF, oE,
VXE:VX(E:,I) ———]E—k—a—o,

and since a vector may be equal to zero only if all its components are equal

to zero, we obtain
oE oE
=0 and —— =0.
0z dy
These two equations show that E, and therefore E, which is equal to E,
cannot vary in the direction of either z or y, thus proving that a unidirec-
tional field E cannot vary in a direction normal to the direction of the field.

A

4-5. Calculation of Electrostatic Fields from Charge

Distributions

The method of calculating electrostatic fields by direct application
of Gauss’s law (as in examples 4-4.1 and 4-4.2) is limited to fields of
very simple structure, because only then the equation ¢$D-.dS =
J p dv can be easily solved for D. There are other methods, however,
based on immediate consequences of the basic electrostatic laws, which
can be used for calculating fields of arbitrary structure. One of the
most important of these methods is the method of calculating electro-
static fields from the corresponding charge distributions by direct
integration. This method can be deduced from the basic electrostatic
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laws, Egs. (4-4.1), (4-4.2), and (4-4.3), combined with Poisson’s
theorem of vector analysis, Eq. (2-13.3), as follows.
Applying Poisson’s theorem to the field vector E, we have

E__ 1 V/(V'-E) — V' x (V' x E)

v
All space

d ’

r

where we are using primed operators to avoid ambiguity in the trans-
formations that follow. By the curl law, Eq. (4-4.1a), V' x E for an
electrostatic field is always zero, while by the divergence law, Eq.
(4-4.2b), and by the displacement law, Eq. (4-4.3), V' . E is just p/e,.
We can write therefore

E— _ 1 v

Vp .,
4-5.1
4mre, dv'. ( )

r
All space

Let us now apply to the integrand the vector identity (V-28). We have

v’
P VI P2 ru,
r r r
so that
|
E— — v’ Piy + — f Pudy.  (4-5.9)
47re, 477' £0 r’
All space All space

The first integral can be transformed into a surface integral by means
of the vector identity (V-19), which gives

v = 5€ Pas. (4-5.3)
All space r All spacer
In all cases of practical interest, however, p vanishes outside a finite
region of space, and since the surface of integration in the surface
integral on the right encloses all space and thus lies outside the region
where p differs from zero, the surface integral is zero. Therefore the

volume integral on the left is also zero, and we obtain

1 Pry
rry —dv'. (4-5.4)
All space

Thus the electrostatic field is determined by the distribution of electric
charge and can be calculated with the aid of Eq. (4-5.4) if this distri-
bution is known everywhere in space. In this equation r is the distance
between the charge element p dv’ and the point where the field is being
determined (this point is called the point of observation; the points where
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the charge elements p dv’ are located are called the source points).* The
unit vector r, is directed from the source points x’, »’,z’ towards the

observation point x, y, z.
The integral of Eq. (4-5.4) can be simplified in certain cases of
special charge distributions. The most common of such charge distri-

butions are the following ones.

t<<r P
Fic. 4.12 Definition of the surface charge.

Surface Charge. Often charge is confined to a layer-shaped region
whose thickness ¢ is much smaller than the distances r from the points
of this region to the point of observation (Fig. 4.12). In this case the
charge distribution is called a surface charge. For this type of charge
distribution the variation of r with the depth of the source points inside
the layer may be neglected. Integrating over the depth of the layer,
we have then

r r rl..l r r dru r
IP " gy’ ﬂp “ 48’ de’ _.[F Upd:)ds =f s,

where ¢ = [ pdt’ = dgq|dS’ is the charge per unit surface area of the
layer, and 49’ is the element of the surface area. This gives for the field

1 (or,
—-ds 4-5.5
. = (4-5.5)
Thus in the case of a charge layer whose thickness is much smaller than
7, the charge element p dv” may be replaced by o dS; and the volume

! Note that r in this equation can never be equal to zero because, by the definition
of E, only a test charge (“field-experiencing charge”) but not a “field-producing”
charge p dv’ can be located at r = 0 (that is, at the point of observation x, y, z).
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integral may be replaced by the surface integral over the area of the
layer.

Line Charge. Another frequently encountered case of special
charge distributions is the charge distribution confined to a cylindrical
region whose cross section d is much smaller than the distances r from
the points of this region to the point of observation (Fig. 4.13). In this
case the charge distribution is called a line charge. For this type of charge

Td-

d<<r P

Fic. 4.13 Definition of the line charge.

distribution the variation of r over the cross section of the charge-filled
region may be neglected. Taking the integral over the cross-sectional
area § of this region in much the same manner as in the case of the
surface charge, we obtain the expression
. Ay

E = ey b dr, (4-5.6)
where 1 is the charge per unit length of the charge distribution,
4 = [pdS’ = dg/dl’, and the integral is extended over the length of the
charge-filled region. Thus in this case the charge element p dv" may be
replaced by 2 dl; and the volume integral may be replaced by the line
integral.

Point Charge. By far the most important case of special charge
distributions is the charge restricted to a region in which all linear
dimensions are much smaller than the distances from the points of this
region to the point of observation (Fig. 4.14). In this case all points of
the charge-filled region may be considered as lying approximately at the
same distance from the point of observation, so that r and r, in the
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\/ d<<r

Fic. 4.14 Definition of the point charge.

P

integral of Eq. (4-5.4) may be considered constant and may be factored
out from under the integral sign. We then have

1 (pr, r J‘
—_—— — L — » d '
E en.l‘ = dv e pdv,

_ 1 "
E = e ™ (4-5.7)

or

where ¢ = [pdv’ is the total charge contained in the charge-filled
region. This type of charge distribution is called the point charge, and the
field associated with it is called the point charge field, or the Coulomb field.

It must be understood that “point charge” is merely a term used
for designating a localized charge distribution viewed from a distance
large compared with the linear dimensions of this distribution, similar
to the term “light point,” which is frequently used in reference to stars.
In neither case does the word “point” describe the structure or the
constitution of the object; instead, it reflects the attitude of the observer
towards this object. The same holds also for line and surface charges.

The relative nature of the concept of point charge (as well as that of
surface and line charges) may be illustrated as follows. Let us describe a
sphere of radius 7, > 44 around the charge distribution shown in Fig. 4.15,
and let us call this sphere the sphere of approximation. We shall agree that for
all points outside this sphere the ratio dJr is negligible while for all points
inside this sphere this ratio is not negligible. Therefore in the region outside
the sphere of approximation the charge distribution may be regarded as a
point charge, and Eq. (4-5.7) may be used for the calculation of E; inside
the sphere of approximation the distribution may not be regarded as a
point charge, and Eq. (4-5.4) must be used for the calculation of E. The
radius of the sphere of approximation is determined by the requirement
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Fic. 4.15 A charge distribution is considered to be a point charge from a
distance r > ry, but not from a distance r < r,. Note that in physics a
ratio b/a may be considered infinite if b is much larger than a.

that the values for E obtained from the point charge formula (4-5.7) for
points on this sphere may not deviate from the exact values obtained from
Eq. (4-5.4) by more than is considered acceptable in each particular
problem. The radius r, must be increased if greater accuracy is required,
and may be made smaller if lesser accuracy is acceptable. In any case,
however, the point charge formula (4-5.7) may be used only for r > r, > $d.

The three equations (4-5.4), (4-5.5), and (4-5.6) are frequently
written as a single equation

E=— |24 (4-5.8)

where the charge element dgis equal to p dv’, 0 dS’, or A dl’, depending on
the type of the charge distribution under consideration.

For actual calculations the vector equations above may be ex-
pressed as scalar equations for the components of E. Thus, for instance,
multiplying and dividing the integrand of Eq. (4-5.8) by r and obser-
ving thatr, = r = (x — x)i + (» —»)j + (z — 2')k, we have

1 [(x —x")
= [T XS 4-5.
E. 41730.'. a4 (#39)
_ 1 (=) X
E, = 4—«.9_0.'. 3 dq (4-5.10)
1 [(z—2)
Ez = 4_7&; _[_1'8— dq. (4‘-5.11)
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In the same manner we can obtain scalar forms of Eqgs, (4-5.7), (4-5.6),
(4-5.5), and (4-5.4).

A

Example 4-5.1 Find the electric field vector E at a distance R from the
axis of a straight, thin rod carrying a uniformly distributed line charge of
density A and obtain the limiting value of the field for a very long rod.!

vy

(O,R Faos
et
A (_xt,U)

e ey o x,

L, L,

Fic. 4.16 Calculation of the electric field outside a thin charged rod.

Let the rod lie in the x-direction, and let the point of observation be on
the y-axis at a distance R from the origin. Let the ends of the rod be at the
distances L; and L, from the origin as shown in Fig. 4.16. From Egs.
(4-5.9), (4-5.10), and (4-5.11) we then have (using dg = A dx’)

A [+ & )
Ee=—tme)_ L, &%+ RH™ dx
A [th R
Ev=t o) T B
E,=0.
The first of these equations gives
1 ] + Ly

E,

_ﬁl
T 4me

1 1 )
-t & u(s/Lg tR VIt R’)'

== 41750 \/,,fz + R?
The second equation gives
E A X" +ly - A ( L, + L, )
VU dmeRA/x?T L R |-, e R\WIEL R VIt R ;
1 A “thin” rod is a rod whose radius is much smaller than the distance from the
rod to the point of observation. A “long” rod is a rod whose length is much greater
than this distance. Note that all expressions like long, thin, small, large, slender,

infinite, infinitesimal, etc., are statements of relative dimensions or magnitudes of
quantities involved in the physical system at hand and should therefore be understood

as relative, rather than absolute, characteristics of these quantities.
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If the rod is very long (R < L,;, and R < L,), then R can be neglected
in comparison with L; and L,. In this case the expression in parenthesis for
E, becomes zero, and so E, becomes zero. The expression in parenthesis for
E, becomes equal to 2, which gives E, = 1/2me,R. Thus at all points whose
distance R from the rod is such that R < L, and R < L,, the electric field
of the rod is practically radial. In vector form it may be expressed as

A
QﬂEoR Ru’

where R, is the unit vector in the direction of increasing R (observe that this
is the same result that we obtained in Example 4-4.2 by using Gauss’s law).

E =

Example 4-5.2 Find the electric field on the axis of a thin circular ring
of radius a carrying a uniformly distributed charge ¢ and then estimate
the axial distance from the ring beyond which the ring may be regarded as
a point charge if the greatest admissible error for E is 19%,.

(«,y,0)
h ’Q%

|
|
| -
l (0,0,2) 2,7
|

(—=x,y .0)‘
»y

Fi. 4.17 Calculation of the electric field on the axis of a charged ring.

Let the axis of the ring be the z-axis, with the origin at the center of the
ring (Fig. 4.17). Using Egs. (4-5.9), (4-5.10), and (4-5.11), we have

1 x'
K= —mofﬁra“’?

1 ¥y
E=- 417&‘0§;§dq

1 z
R 4r£o§; dg.

The first of these integrals is zero, since to every charge element dg located
at the distance x’ from the y-axis, there corresponds an element dg located at
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the distance —x’ from the y-axis, and r is the same for both elements.
Therefore E, = 0. Similarly, the second integral is zero, so that E, = 0.
In the last integral z and r are constant, so that

E — 1 z do — 1 z
2_4’778073 q_47780(a2+z2)312q.

We finally obtain therefore

In order to estimate the distance beyond which the ring may be regarded
as a point charge, we expand E in a power series of z,

—3l/2
_ 1 AN ¢ 9 3@
E= 47-reoz2(l + z2) " 4e, t
The first term in this series is the point charge field, which we shall designate
as E;; the remaining terms represent the deviation AE of E, from the exact
field E. The relative error resulting from using E, instead of E is in the first
approximation
AE 34
E, — 222’
and since the greatest admissible error is 19, or 0.01, we have for the
smallest z beyond which the ring may be regarded as a point charge

—— ~ 0.01, or =z ,~ 12a.

Example 4-5.3 Find the electric field on the axis of a thin, uniformly
charged disk of radius a and total charge ¢ and then estimate the axial
distance from the disk beyond which the disk may be regarded as a point
charge if the greatest admissible error for E is 19,.

Let the axis of the disk be the z-axis with the origin at the center of the
disk (Fig. 4.18). Using the same symmetry considerations as in the preceding
example, we conclude that E, = E, = 0. Dividing the disk in elementary
rings of radius R and width dR, we then obtain from Eq. (4-5.11) (using
dg = o dS’)

o z ., o [* z2mRdR

E = 4me, 73 ds’ = 47reoﬁ (R + z2)%*
. o z “ o (l z )
- 280\/R2—|—Z20—280 vVa + 22’

and, since oma? = ¢, we finally obtain

q z
E— - )k
27reoa2( Va + 22
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’:‘:Vm_’.\

22

-l
~N

dR

Fic. 4.18 Calculation of the electric field on the axis of a charged disk.

(valid only for z > 0 because after substituting the limits we have used
V2t = 42).

Expanding E in a power series for z, we obtain as in the preceding

example '
q 32 =112
= 217&280[1 - (1 ™ E) ]

=t Ji_q a 1-3at

T 2ma%e)| +2:2_2-4z‘+
- ¢ O,

T 4megz®  Amegz 4z

The smallest z beyond which the field of the disk may be calculated from the
point charge formula with an error smaller than 19, is therefore

3a2
4zﬁ1in

~ 0.01, or zy, =~ Ya.

4-6. Calculation of Electrostatic Fields from Charge
Inhomogeneities

The determination of the electrostatic field E associated with a
given charge distribution p is one of the most fundamental problems
of electrostatics. In the last section we solved this problem in its general
form by deriving Eq. (4-5.4) which can be used to calculate E whenever
pis given. In this section we shall discuss an alternative solution of the
problem—a solution which reveals remarkable new correlations be-
tween clectrostatic fields and electric charges.
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p ‘

x

Fic. 4.19 Example of a charge distribution with abruptly changing
density. Electric field of such a charge distribution can be calculated from
a special formula.

Let us examine Eq. (4-5.1) which we obtained from Poisson’s
theorem in the preceding section,

1 P iy
E=— 44"'80 J. -"r—-dl?. (4‘-5.1)
All space

The remarkable feature of this equation is that it correlates the electric
field with the gradient of the charge distribution rather than with the
charge distribution itself. Hence, the equation may be interpreted as
indicating that the electric field is associated not with the electric
charge as such, but rather with the inhomogeneities in the distribution
of the charge (a homogeneous, or uniform, charge distribution has zero
gradient). As we shall see presently, this point of view is useful
for analyzing and solving certain types of electrostatic problems.

For practical applications, Eq. (4-5.1) can be transformed into a
somewhat different form, which will be more convenient to use in the
case of a discontinuous charge distribution—that is, when the charge
density changes abruptly from a value p, to another value p, across a
thin boundary layer, as shown in Fig. 4.19. For a charge distribution of
this type, the integral of Eq. (4-5.1) can be split into two integrals

Vi f VT"’ dv’ + J 7"’ dv'. (4-6.1)

All space Boundary layer Remaining space

Let the thickness of the boundary layer be At. Since the layer is thin,
V’p for the layer can be written as

. Ap P2 — P1
Ve ™= 5

n;,,
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where n, = n,, is a unit vector normal to the layer and pointing from
p1 to p, (V'p is normal to the layer because, by supposition, p ex-
periences its maximum change across the layer). The volume element dv’
of the layer can be written as dv’ = At dS’, where dS’ is a surface element
of the boundary. The integral over the boundary layer is therefore

~Pay = f Pe = Py, ALdS’

r r At
Boundary layer Boundary
P2 — P1 4o/
= f =Sy, (4-6.2)
Boundary

where we have denoted n,, dS’ as dS;,.
Combining Egs. (4-6.2), (4-6.1), and (4-5.1), we then obtain

1 PL— P2 1 f Vp
E = S, — — —dv'. (4-6.3

4me, f r e 4me 7 d'. (+6.3)
Boundary Remaining space

This equation becomes espécially simple in the case of a constant
(uniform) charge distribution surrounded by charge-free space. In this
case we may set p, = p, p, = 0, and dS;, = dS’, where dS§’ points from
the charge distribution into the surrounding space. Since p is constant,
V’p in the last integral is zero, and the integral vanishes. We therefore
obtain

P ds’

4mre
Boundary

(4-6.4)

Thus in the case of a constant charge distribution confined to a limited
region of space, the electrostatic field is completely determined by the
density of the charge and shape of the surface bounding this distribu-
tion. The direction of the field is then determined solely by the orienta-
tion of the surface elements, each surface element contributing to the
field only in the direction of its normal.

v

Example 4-6.1 Show that if an eccentric or asymmetric cavity is made
around a field-free point within a uniform charge distribution, an electric
field will appear at this point and will be proportional to the size (linear
dimensions) of the cavity.

Since the point under consideration is initially field-free, and the charge
distribution is uniform, the field, after the cavity is made, will be entirely
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due to the surface of the cavity, or, by Eq. (4-6.4),

p [ dS

T 4me, y
Cavity

Since the surface of the cavity is not symmetric about the point under consid-
eration, the contributions of different surface elements to the total field, in
general, will not cancel each other, and the field will be different from zero.
Finally, since for a given point of observation the surface integral in the above
equation depends only on the geometry of the cavity, and since the dimen-
sions of this integral are [area/distance] = [distance], the integral must be
proportional to the size (length, width, or any other characteristic linear
dimension) of the cavity. Hence the electric field also must be proportional
to the size of the cavity.

Example 4-6.2 Find E at an external axial point close to a base of a
very long, uniformly charged cylinder of radius @ and charge density p (Fig.
4.20).

!: W
- e P 5

v Pz

3 - -t —_— - "\_ dR
Fic. 4.20 Calculation of the electric field on the axis of a charged cylinder.

By Eq. (4-6.4), the field is
ds’

—_P udid
E_411'€n r

Boundary

The surface integral can be split into three integrals

ds’ f ds’ J’ ds’ J‘ ds’
— = —+ —4 | —
r r r

Boundary Near base Curved surface Far base

The integral over the far base may be neglected since the base is very far
from the point of observation, and its contribution to the total field at this
point is therefore much smaller than the contribution of the near base.
The integral over the curved surface produces no field on the axis, since to
every surface element on one side of the axis there corresponds an equal and
opposite element on the opposite side. To evaluate the integral over the
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near base, we subdivide this base in elementary rings of radius R and width
dR. Then we have dS'= k2#R dR and r = V R? + z* (Fig. 4.20), so that

§§:=k @ 27RdR
4 04y R2 4 22
=2n(Va® + 22 — 2)k.

=K27VR + 2|
Near base
The field is therefore
E= 5‘-’— V& + 2 — 2)k. (4-6.5)

£y

Example 4-6.3 A spherical cavity is made about an internal axial
point at a distance d from the center of a uniformly charged disk of charge
density p, thickness 2{, and radius a (Fig. 4.21). Find E at the center of the
cavity and obtain the limiting value of E for a very large disk (2> t).

Fic. 4.21 Calculation of the electric field in a spherical cavity located in a
charged disk.

The surface of the cavity makes no contribution to the field at its center,
since a spherical surface produces only a radial field, all components of
which meet in the center and cancel each other. Likewise, the curved
surface of the disk makes no contribution. Hence only the flat surfaces of
the disk are responsible for the field at the point under consideration.
The contribution of one such surface to the field at an axial point is given
by Eq. (4-6.5). Applying Eq. (4-6.5) to the two surfaces of the disk, we obtain

E=£[\/a“‘-+ (t —d)2 — Va®+ (t + d) + 2]k
0

For a very large disk, a > t, and we may neglect (t + d) and (¢ — d)
in the radicals. We obtain then
pd
=
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Example 4-6.4 A cylindrical cavity of length [ and radius a is made in
a uniformly charged sphere of charge density p, as shown in Fig. 4.22.
Find E at the center of the sphere and check whether the result agrees with
that of Example 4-6.1.

Fic. 4.22 Calculation of the electric
field in a cylindrical cavity located
in a charged sphere,

By symmetry, only the two bases of the cavity contribute to the ficld.
Using Eq. (4-6.5), we have

P e
E=E[\/§—(\/a T B -k,

which for a given “shape factor” afl is proportional to the length of the
cavity, as it should be by Example 4-6.1.
A

or

PROBLEMS

4.1. A test plate acquires a charge ¢ when touched to a terminal of a
battery. If the plate is then touched to an uncharged, insulated conductor,
a fraction f of this charge is transferred to it. Show that the maximum total
charge that can be transported from the battery to the conductor by
repeatedly bringing the plate in contact with the battery and the conductor
is

Jq
Qmu = :f

4.2. The radius of the spherical electrode of a van de Graaff generator
is 1 m. Electric charge is delivered to it by a moving belt at the constant
rate of 10~ amp. The field around the electrode may be considered
radially symmetric. Determine the frequency of sparks originating on this
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electrode, assuming that a spark occurs when the field reaches 3 - 10° volt/m,
that a spark completely discharges the electrode, and that no other discharge
processes are possible.

4.3. Taking into account that air becomes conducting when the electric
field in it reaches about 3 - 108 volt/m, determine the radius of the smallest
sphere that can carry a charge of 1 amp - sec in air.

4.4. Show that a unidirectional electrostatic field in a charge-free space
must be constant.

4.5. Find the charge distribution that produces the field

E,
E =—1r, 0<r<a
a

and
E =0, r > a,

where E, and a are constants, and 7 is a radius vector in spherical coordinates.

4.6. Show that the electric field of an infinite plane-parallel slab of
charge of density p and thickness ¢ for points inside and outside the slab is,
respectively,

E= £z and E = £ ,
£ 2¢,
where z is the distance from the midplane of the slab.

4.7. The charges ¢ and —g are uniformly distributed over two concentric
spherical shells of radius a and b, respectively (¢ < b). Find the electric field
vector E associated with these charges in the regions r < a,a <r < b,
and r > b.

4.8. Charge ¢ is distributed throughout a spherical volume of radius
a with the density p = kr*, where k and « are constants and 7 is the distance
from the center of the volume. Find E at all points of space and plot E
against the distance from the center for « = —1, « = 0, and & = +1.

4.9. Show that the electric field of a spherically symmetric charge
distribution p(r) at any point r = r, depends only on the charge inside the
spherical region of radius r, and is the same as if the total charge of the
region were concentrated at the center, r = 0.

4.10. Electric charge is uniformly distributed with density p throughout
the volume of an infinitely long circular cylinder of radius a. Show that the
electric field vector at a distance r from the axis of the charge-filled region is

2
pa
=-—r r=>a
2e4r ’
pr
E=—r, r < a.
2g, ¥

4.11. The average fair-weather electric field of the earth has been
found to vary with the altitude & above the earth’s surface according to the
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empirical formula

E = —E (ac*" + be~*")h,,

where E,, a, b, a, and f are constants (E, = 130 volt/m, a = 0.69, 6 = 0.31,
« = 3.5 km1, § =0.23 km!). (a) Derive the equation for the charge
density p in the earth’s atmosphere. (b) Plot E and p against & and give
the values of E and p at &k = 0, £ = 10 km, and # = 20 km. (c) Assuming
that the earth’s charge is confined to the earth’s surface, find the surface
charge density and the total charge of the earth.

4.12. Show that if the maximum admissible error in E is (100/n)%,
then the distance from an arbitrary charge distribution beyond which this
distribution may be regarded as a point charge is always less than 2na,
where a is the distance between the two extreme points of this distribution.

4.13. Show that if the maximum admissible error in E is (100/r)%,
then the largest distance from a straight uniform line charge within which
this line charge may be regarded as infinitely long is approximately '

a
Von'

and show that the smallest distance beyond which this line-charge may be

regarded as a point charge is approximately

na,

where a is the length of the line charge.

4.14. In the quantum-mechanical model, a normal hydrogen atom
consists of a positive nucleus of charge ¢ located at the center of a negative
electron cloud of density

p = _W_Zg e—2r/ao’
where a, is a constant, and r is the distance from the center. Using this
model, find the electric field E of a hydrogen atom, plot E against r, and
determine the numerical values of the field for r = 0.5a;, r = a4, and
r=2a,if ¢ = 1.6 - 1071% amp - sec and a4 = 0.53 - 1071 m,

4.15. A thin hemispherical shell carries a uniformly distributed charge of
surface density 6. Show that the electric field at the center of curvature of
the shell is

o
E=qo

4.16. Show that if a small hole is punched through the wall of a thin,
uniformly charged spherical shell whose surface charge density is o, then
the field near the center of the hole will be
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4.17. A spherical cavity of radius a is made within a uniformly charged
sphere of radius b, the center of the cavity being at a distance ¢ from the
center of the sphere. Find the electric field associated with this charge
distribution for all points of space.

4.18. Show that the electric field at an external axial point of a thin,
uniformly charged cylinder of charge density p, radius a, and length 2/ is

pa?l

= 2,(22 — B) k,

where z is the distance from the center of the cylinder (z> a). Then show
that the cylinder may be considered a point charge if z> /.

4.19. A charge distribution has the form of a very large disk of thickness
3d consisting of three equally thick layers of uniform charge density p;, p,,
and p3. A cubical cavity is made at the center of the central layer (p,), two
surfaces of the cavity being parallel to the flat surfaces of the disk. Show
that the electric field at the center of the cavity is

E— (Pl — p3)d K,
2¢,

where k is a unit vector along the axis of the disk pointing from p; to p,.

4.20. A uniform charge distribution of density p forms a very long,
thin-walled, cylindrical tube of radius a and wall thickness ¢{. Show that
E at an axial point near an end of the tube is

pat
E=—"
260V a? + 22

i

where z is the axial distance measured outward from the same end of the
tube.

4.21. A uniform charge distribution of density p forms a very long
cylinder of radius a. One end of the cylinder has a spherical depression of
radius b > g, the center of curvature of the depression lying at the point P of
the cylinder’s axis. Show that E at P is

pa’

) k,

where k is along the axis, away from the charge.

4.22. Show by means of dimensional analysis, or otherwise, that if
an electrostatic system consisting of a charge distribution and a point of
observation expands slowly so that all linear dimensions of the system
increase n times, the field at the point of observation decreases n?
times.

4.23. An electrostatic system is studied by means of a small-scale model
whose total charge and linear dimensions are, respectively, m and n times
the charge and dimensions of the actual system. Show that the electric
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field at a point of the model is mn—2 times the field at the corresponding
point of the actual system.

4.24. Suppose that we are located at the center (field-free region) of a
very large, uniform, spherical cloud of positive charge. Show that what we
consider to be negative charges may then be interpreted merely as holes in
this cloud. What are then the positive charges as we know them?

4.25. Show that the equation E x dr = 0, where r is a position vector,
constitutes a differential equation for the field lines of the field E. (Hint: dr
is usually not in the direction of r).

4.26. Show that the differential equation for the field lines of a two-
dimensional electric field

E = E(r, O)r, + Egr, )6,

can be written as r d8/dr = E/E,.

4.27. Let the equation F(x, ) = C, where C is a constant, represent the
field lines of an electric field E. Show that F satisfies the relation

9F oF
E — — =0.

*9x E dy 0

4.28. Show that the equation y = x tan 0 represents the field lines of a
point charge field (6 is the angle between a field line and the x-axis).

4.29. Two point charges ¢, and ¢, are located on the x-axis at points
(a, 0) and ( —a, 0) of the xy-plane, respectively. Show that the field lines of
these charges are correctly given by the equation

gi(x — )[(x — a)? + Y] V2 + gy(x + a)[(x + a)? + ] V2 = constant,
and show that if one of the charges is zero, the field lines are radial.
4.30. The electric field of a dipole (see Section 5-4) is
p cos p sinf
2mey 13 Tu 47y 3
Show that the field lines of the dipole are given by r/sin? § = constant.
4.31. The integral {D - dS is called the ‘“flux’’ of the electric field through
the surface S. A tubular region in an electric field such that the flux through

any cross section of the tube is the same is called a ‘‘flux tube.”’” Show that
flux tubes of a point charge field are cones with the point charge at the apex.

Edipole =

4.32. Using basic laws, show that electrostatic fields satisfy the reciprocal
relation

f piEg dv = _f poE, dv,
All space All space
where E, is the electric field associated with the charge distribution p;, and
E, is the electric field associated with the charge distribution p,, both charge
distributions being confined to a finite space. [Hint: use vector identity (V-21)].



ELECTROSTATIC
POTENTIAL

An electrostatic field can be described not only by vector
quantities E and D but also by a scalar quantity: the electrostatic
potential ¢. The electrostatic potential ¢ is intimately related to the
electrostatic field vector E, and one can be derived from the other.
However, ¢ is frequently easier to measure and (as a scalar quantity)
easier to compute than E, so that it is frequently more convenient to
describe an electrostatic field by means of ¢ rather than by means
of E (or D). The basic properties and applications of the electrostatic
potential are discussed in this chapter.

5-1. Electrustatic Potential

According to the corollary to Poisson’s theorem of vector analysis,
any vector field whose curl is zero can be expressed as the gradient of a
scalar potential. Therefore, since the curl of the electrostatic field is
always zero, the electrostatic field can always be expressed as

E = V. (5-1.1)

The potential ¢ defined by this formula is called the electrostatic potential.
The unit of the electrostatic potential is the volt.

The electrostatic potential is a scalar point function and deter-
mines a scalar field associated with the electrostatic vector field E. By
the basic property of the gradient, E is at every point of the field perpen-
dicular to the equipotential surface (surface of constant ¢) drawn

111
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F1c. 5.1 Calculation of the potential difference between
the plates of a parallel-plate capacitor.

through this point and, being the negative gradient of ¢, points in the
direction of decreasing ¢.

If we take the scalar line integral of E along an arbitrary line
connecting any two points a and b, we obtain, using Egs. (5-1.1) and
(2-10.2),

v v v
JE-dl=—fV(p-dl:—fd(pz(pa-—tpb. (5-1.2)

Thus the scalar line integral of the electrostatic field vector E evaluated
between any two points is independent of the path of integration and is
equal to the difference of the electrostatic potentials, or the potential
difference, between these points. This correlation can be used for
determining ¢ at any point a if a reference potential ¢, at some reference
point ¢ is known. We then have from the last equation

0. = f ‘E-dl + g, (5-1.3)

The physical significance of ¢ can be deduced by calculating the
potential difference between the plates of a thin parallel-plate capacitor.
According to Section 4-2, E in such a capacitor is

E = d—V n,
where V is the voltage between the plates, 4 is the separation of the
plates, and m,, is a unit vector directed along a normal from the positive
to the negative plate. Integrating E along an arbitrary line from a
point a on the positive plate to a point 4 on the negative plate and ob-
serving that n, - dl, by the definition of the dot product, is equal to
dn—Ilength increment in the direction of m, (Fig. 5.1)—we obtain

b bV Vfb V
Pa — Po =J;E°dl =J;znu°dl=zadn—_—_zd

I

V.
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Thus the potential difference between the two plates is equal to the
voltage between them. Since any electrostatic field may be subdivided
into small homogeneous regions in each of which the field may be
regarded as produced by a small, thin parallel-plate capacitor, we
conclude that the equality of the potential difference and voltage,

Pa — P = Vaba (5'1'4)
is a general correlation valid for any two points of an electrostatic field.

In order to measure the voltage between points where no conducting
boundaries are present, special devices known as probes are placed at these
points, and the voltage between the probes is then measured. Examples of
probes are a sharp point, a piece of radioactive substance, a burning candle,
and a “water dropper” (water-filled container with a small hole from which
water drips). Probes make the space around them slightly conducting, so
that the voltage in this space can be measured in essentially the same manner
as in conducting bodies.

From Eq. (5-1.4) several important conclusions about conducting
bodies in the presence of electrostatic fields can be made.

First of all, since voltage and potential difference are equivalent
quantities, all conducting bodies under electrostatic conditions must be
equipotential bodies. Otherwise voltage would be present between
various points of the same conducting body, and due to the current-
producing property of voltage, current would be produced in the body,
thus violating the condition that no current may be presentin an electro-
static system.

From this and from the fact that the electrostatic field vector E
at any point of an equipotential surface is perpendicular to the surface,
it follows that under electrostatic conditions E at any point of a con-
ducting surface is perpendicular to it. And since E (in vacuum) has the
same direction as D, D is also perpendicular to a conducting surface
under these conditions.

Now, according to Section 4-3, the direction of D is at any point
perpendicular to the plane of the test plate which measures D at this
point. But since under electrostatic conditions D at the surface of a
conductor is perpendicular to the surface, any surface element of a
conductor under electrostatic conditions may be regarded as a test
plate for measuring D at the location of this surface element. There-
fore the surface charge density at any point of a conducting surface in an
electrostatic system is equal to the displacement D at this point. Taking
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into account the sense of the direction of D, we can write this correla-

tion as
D =o0n,, (5-1.5)

where n, is a unit vector normal to the conducting surface and point-
ing from the conductor into the surrounding space. Combining this
equation with the displacement law, we obtain the corresponding equa-

tion for E,
E=n, (5-1.6)

€o

A useful special case of this equation is the equation correlating
o and E of a thin parallel-plate capacitor. Insuch a capacitor E = V/d,
where Vis the voltage applied to the plates and 4 is the distance between
them. The surface charge density on the inner surfaces of the capacitor’s

plates is then by Eq. (5-1.6)

14
o —s . (5-1.7)

v

Example 5-1.1 A voltage V is applied to a thin parallel-plate capacitor
of plate separation d. Find the potential at an arbitrary point in the space
between the plates, taking a point on the positive plate as the reference point.

Let the reference point be the origin of a rectangular system of coordi-
nates, with the x-axis lying in the direction of the normal drawn from the
positive to the negative plate (Fig. 5.2). The electric field in the capacitor is
then E = (V/d)i. Integrating from a point x, y, z to the origin and desig-
nating the reference potential as ¢,, we have by Eq. (5-1.3)

0 0 V V 0
<P(x,y,Z)=f E-dl 4 ¢, = —ji-d1+(p0:(?f i-dl+ ¢
.2 2.2 22

Since 1« dl = dx, the integral is a function of x only, and we obtain

V(o
p(x) = d_f dx + @

+ —_
xz,Y, 2
o x
F1c. 5.2 Calculation of the potential in a
parallel-plate capacitor.
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and finally
|4
pl) = — 2%+ o

Example 5-1.2 For all points of space find the potential associated
with the spherical charge of Example 4-4.1, taking as the reference potential

P = 0.
For points in the space outside the charge-filled region (r > a) we have,
using Egs. (5-1.3) and (4-4.4),

o« eg) q
= E.dl = _ .
@(7) f + @s f Treg® dl + 0.
But r, - d1 = dr, so that

_ 9 a9 ]
?(r) _4m30J; r2 dreg T

or

g9
doreyr

@(r) = (r = a). (5-1.8)

The calculation of the potential inside the charge-filled region (r < a)
is a little more complicated because, according to Example 4-4.1, two
different expressions for E must be used in the line integral. The line integral
must be split therefore in two parts: one for the path inside the charge-
filled region, the other for the path outside this region. Using Eqgs. (5-1.3),
(4-4.5), and (4-4.4), we then have

(P(r) :f Einside - dl +f Eoutside - dl
T a
_fa qr r-dl—}-fwir-dl
B 4—1reoa3 * dmregr?

f J‘ ©dr
4—7reoa3 , dr + 4re,

_ g " g 1
 Admegd®2 |, dmeg 1)y’
which finally reduces to
o(r) = 5 (32 —1%) (r <a. (5-1.9)
mEY
Example 5-1.3 Find the external potential near the surface of the

charged rod of Example 4-4.2 taking as the reference potential ¢(ry) = 0,
where 7, is the distance to the reference point from the axis of the rod.
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By the symmetry of the problem, the potential is a function of r only,
and we have according to Eq. (5-1.3)

@(r) =fE dr.

Substituting E from Example 4-4.2, we obtain

o A A
#(r) J; 2meyr ' 27, nr

To

3
r

or
A A
= ——1 —1
7(r) 27, e 27re, e
Example 5-1.4 The potential associated with a certain spherically
symmetric charge distribution is
=_9 o
dmeyr

Find the electric field of this distribution.
According to Eq. (5-1.1) and vector identities (V-1) and (V-3), the
field is

E=-—Vp=— Ve 4 ooy
L4 47780( T )
_ g (a ar ar Ty
i (Fermor ),

or
gt
4778072

5-2. Capacitance

An important problem of electrostatics is the calculation of the
potential or voltage associated with a given charge distribution. In
the next section we shall solve this problem in its general form. In this
section we shall consider a special case of the problem: the calculation
of potentials of charged conductors and voltages between charged
conductors with the aid of a special quantity called capacitance.

Capacitance is defined for single conductors and also for capacitors
(a capacitor is a system of two conductors carrying equally large
charges of opposite sign).

The capacitance of a conductor is defined as the ratio of the charge
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carried by the conductor to the potential of the conductor
c=1, (5-2.1)

where the potential is measured with respect to ¢, = 0.

The capacitance of a capacitor is defined as the ratio of the charge
residing on one of the two conductors forming the capacitor to the
voltage between these conductors

9
C= 7 (5-2.2)

As will be shown in the next chapter,! the capacitance of a single,
isolated conductor or capacitor (in a vacuum) depends only on the
shape and the size of the conductor or capacitor and so constitutes a
constant characterizing this conductor or capacitor. Therefore, once
the capacitance of a given conductor or capacitor has been determined,
the potential of the conductor or the voltage of the capacitor can be
found immediately from Eq. (5-2.1) or Eq. (5-2.2) if the corresponding
charge is known (conversely, the charge can be found if the potential
or voltage is known). The problem of calculating the potential of a
charged conductor or voltage of a charged capacitor reduces therefore
to that of determining the capacitance of the conductor or capacitor
under consideration.?

The units of capacitance are amp - sec/volt (these units are usually
called “farad”).

v

Example 5-2.1 Find the capacitance of a single, isolated conducting
sphere of radius a.

Assuming that the sphere carries a charge ¢, we find by using Gauss’s
law (as in Example 4-4.1)

= m r,.
Using the displacement law, we find

q
E= 4—77—-_%’2 r,.

1 See Example 6-2.2 and Section 6-7.

2 The proportionality of charge and voltage in a capacitor allows one to measure
charges by means of electrostatic voltmeters. The charge is then ¢ = CV, where C
is the capacitance of the voltmeter and V is the voltage indicated by it. Since the
capacitance of these voltmeters is very small, even a small charge produces a large
voltage in them. Their sensitivity for charge measurement is therefore very high
and can exceed the sensitivity of ballistic galvanometers considerably.
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By Eq. (5-1.3), the potential of the sphere with respect to ¢, = 0 is then

o

“ v 4 e & 15
g;¢=aE-dl=‘4w£°’$dr——4«m‘—4“£na, (5-2.3)
Using now the capacitance equation (5-2.1), we obtain
L TS
% 9
or
C = 4meqa.

Example 5-2.2 Find the capacitance of a spherical capacitor consisting
of an inner sphere of external radius @ and an outer sphere, concentric with
the first, of internal radius & (Fig. 5.3).

Fic. 5.3 Spherical capacitor. A
section of the outer sphere is cut out
to make the inner sphere visible.

Assuming a charge ¢ on the inner sphere, we repeat the first three
steps of the preceding example (except that the line integral is taken now
between the limits a and b). This gives for the voltage between the spheres

b
Vi E.dl=L(l_l)_

A 4me,

The capacitance is therefore, by Eq. (5-2.2),
_9 1_1™"
o omem-
or
ab

C=4-'n'£°b_a.

Example 5-2.3 Find the capacitance per unit length of a cylindrical
capacitor consisting of two very long concentric cylinders of radius a and &
(Fig. 5.4).

Describing a cylindrical Gaussian surface of radius r and length
[ coaxial with the two cylinders and assuming that the inner cylinder
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F16. 5.4 Cylindrical capacitor. A Gaussian surface is shown between the
two cylinders which form the capacitor.

carries a charge A per unit length, we have (compare with Example 4-4.2)
2
D=—r,.
Tar
Using the displacement law, we find
!

- 2meyr
This gives for the voltage between the cylindcrs

b
= | E.dl= —dr— In-
Vay J. a f 2megr 211'8,, e

The capacitance per unit length, C; = [V, is therefore

1
CI = 2‘“'8“ m 3

r,.

Example 5-2.4  Find the capacitance of a parallel-plate capacitor of
plate separation d and area 4 neglecting the “edge effects”—that is, assuming
that the field is homogeneous everywhere between the plates and suddenly
becomes zero at the edges of the capacitor (Fig. 5.3).

d
L
R

(a) (b)

Fic. 5.5 (a) Electric field of a parallel-plate capacitor. (b) Idealized
electric field of the same capacitor obtained by neglecting edge effects.
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If the edge effects are neglected, the density of surface charge on the
plates is constant. By Egs. (4-1.3) and (5-1.7) we then have for the charge

on the positive plate
V

= A ] —
q o o d A;
and, substituting ¢ in Eq. (5-2.2), we obtain

C=80§,

5-3. Calculation of Electrostatic Potential
from Charge Distribution

We shall now obtain the fundamental formula which correlates
electrostatic potential with electric charge. According to the corollary
to Poisson’s theorem of vector analysis, the electrostatic potential, which
we have defined by the equation

E — — Vo, (5-1.1)

can be expressed as
V-E

1 ,
¢ =1 ' + @,.

All space

Since by the displacement law and the divergence law

1
V.-E=—V.D =1—p,
&o o
we obtain
- L f Pav + (5-3.1
vy ; Po- 1)
All space

Thus the electrostatic potential is determined by the distribution of
electric charge and can be calculated directly from this distribution by
means of Eq. (5-3.1).

The constant ¢, in Eq. (5-3.1) is an arbitrary reference potential.
The arbitrariness of ¢, follows from Eq. (5-1.1) which defines the
electrostatic potential; since the gradient of any constant is zero, the
presence of an additive constant in the expression for ¢ has no effect
upon E obtained from this expression. In the case of a finite charge
distribution, ¢, is usually set equal to zero, so that ¢ will be zero when
r — oo—that is, at points very distant from the charge distribution.
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When ¢, is set equal to zero the potential is said to be evaluated with
respect to infinity. Quite often ¢, is given a value which makes the
potential of the ground (earth) equal to zero; the potential is then said
to be evaluated with respect to the ground. In general, ¢, is selected so that
the potential ¢ becomes zero at some convenient reference point, and
@ is then said to be evaluated with respect to this point. Unless other-
wise stated, we shall always use ¢, = ¢, = O—that is, we shall always
evaluate the electrostatic potential with respect to infinity.

It follows from a comparison of Eq. (5-3.1) with Eq. (4-5.4) and an
examination of Egs. (4-5.5), (4-5.6), and (4-5.7), that Eq. (5-3.1)

reduces to

¢ = f s’ + ¢, (5-3.2)

4’778 0

for a surface charge distribution,

p—— 2 ~dl + g (5-3.3)

4‘7780

for a line charge distribution, and

9 = + 9 (5-3.4)

41reor
for a point charge (the potential expressed by this formula is called
Coulomb’s potential).

The three equations (5-3.1), (5-3.2), and (5-3.3) are frequently
written as a single equation

dg
4’7780." + q)o’ (5-3'5)

where the charge element dg is equal to p dv’, o0 dS’, or 1 dl’, depending
on the type of the charge distribution under consideration!

v

Example 5-3.1 Find the electrostatic potential on the axis of a thin,
uniformly charged, circular ring of radius a carrying a charge ¢ (Fig. 5.6)
and then estimate the axial distance from the ring beyond which the ring
may be regarded as a point charge if the greatest admissible error for ¢ is
l 0,

B See Problem 5.28 for alternative expressions for ¢.

2 The relative error for ¢ is meaningful only when a fixed reference point is
used. If the reference point is changed, the value of ¢ changes, and hence the value
of the relative error changes. As already stated, we are using ¢, = @ = 0.



122 ELECTROMAGNETIC THEORY

q Frc. 5.6 Calculation of the elec-
trostatic potential on the axis of a
charged ring.

From Eq. (5-3.5) we have

SYLEY S
4mey ) v 4dmeyr

or
S g _
dmey  4me,Va® + 22

In order to estimate the distance beyond which the ring may be regarded
as a point charge, we expand ¢ in the power series of z,

q (l “_s)_mzL__i__.“g
4meyz 2

$= dmegz  4megz 227

The first term in this series is the point charge potential ¢’; the remaining
terms represent its deviation Ag from the exact potential ¢. The relative
error resulting from using the point charge potential instead of the exact
one is in the first approximation

Since the greatest admissible error is 19}, or 0.01, we have for the smallest
z beyond which the ring may be regarded as a point charge (as far as the
potential is concerned)

a®
2lelnin

~ 0.01, or 2z, = T7a.

Example 5-3.2  Find the electrostatic potential on the axis of a thin,
uniformly charged, circular disk of radius ¢ and surface charge density o
(Fig. 5.7) and then estimate the axial distance from the disk beyond which the
disk may be regarded as a point charge if the greatest admissible error for

@ is 1%,.
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Fic. 5.7 Calculation of electrostatic potential on the axis of a charged
disk.

Dividing the disk in elementary rings of radius R and width 4R and
using Eq. (5-3.2), we have

1 . 1 * g2aRdR
A e Y ETERER,
r dmey Jo VRE + 22

VREL 22|,

]

_ o a
w o 4']780 280

or
o
= 2_80(\/'“2 + 22 — 2).

Expanding the potential in the power series for z and noting that the
total charge of the disk is § = owa?, we obtain as in the preceding example

q a2\12 ]
= — 1+—=) —1
v 2ma’e, z[( + 22)

_q lag_ 1 at e )
_21-ra3£°z( tes " Taat :
q qg _a

=
dmegz 4megz 4z

The smallest z beyond‘which the potential may be calculated from the point
charge formula with an error smaller than 19%, is therefore

a?

~ 0.0, or z,; = Sa.
Zmin

Example 5-3.3 Two conducting spheres of radius a and b, each carrying
a charge g, are separated by a distance R > a,b. What, approximately,
will be the potential and the final charge on each sphere after they are
connected by a fine, conducting wire?

We shall find an approximate solution assuming the following idealized
conditions: (a) the charge distribution and the field of each sphere are
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radially symmetric; (b) each sphere can be regarded as a point charge
from the location of the other sphere; (c) no charge is residing on the wire.
With these assumptions an approximate solution of the problem may be
obtained as follows.

In the final state the potentials on the surfaces of both spheres must be
the same,

Pa = Po>

because only then will there be no voltage along the wire and therefore no
current in the wire (initially the potentials of the spheres -are different;
after the spheres are connected, a certain amount of charge will move from
one sphere to the other until the whole system becomes an equipotential
system). The potential at the surface of each sphere may be regarded as the
sum of two partial potentials: the potential due to the charge residing on
the same sphere and the potential due to the charge residing on the other
sphere. According to assumption (a), the former is given by Eq. (5-2.3);
the latter, according to assumption (b), is given by the point charge potential,
Eq. (5-3.4). Using these formulas, we have (designating the charges of the
two spheres by ¢, and ¢;)
9a 9o
dmeqa  4megR’

Po =

(p — q b qa
b 47regb 4megR

Furthermore, since the total charge is conserved, we have according to the
assumption (c),
o + @ = 29

Combining these four equations and solving for g,, ¢,, @,, and ¢,, we obtain

. 2¢(R — b)a
e =R —b)a+ (R —a)b’
2¢(R — a)b
% =R =b)a+ (R—a)b’
2¢(R% — ab)

Pa = P> = 4re,R[(R — b)a + (R — a)b] *

Example 5-3.4 A certain charge distribution has a region within which
the charge has everywhere the same density p. A spherical cavity of radius
a is made in this region, the center of the cavity being at the point where the
potential originally was ¢,. Find the potential at this point after the cavity
is made.

The zero charge density in the cavity can be regarded as two equally
large charge densities of opposite polarity, p and —p. By Eq. (5-3.1), the
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potential at the center of the cavity is then

! Pe ) | P, 1 P,
¢ = 47e, T @'+ 4me, rdv e, 7dv ’

External Cavity Cavity
region

where the first integral is taken over the region of space external to the
cavity (p, is the density of charge in this region). The first two terms of this
expression give just the potential ¢, associated with the initial charge distri-
bution. We can therefore write for the potential at the center of the cavity
1 P
=@, — T =dv'.
= 4e, r
Cavity
Since p is constant, it can be factored out from under the integral sign.
By symmetry, the volume element dv’ can be written as dv’ = 4mr2dr.
Therefore

p  [*4mr?
<P=<Pc—m) . 7 7
or
pa’
‘P=%—E-

It is interesting to note that although the cavity affects the potential at the
center of the cavity, it does not affect the electric field there, as was shown
in Example 4-4.5.

A

5-4. Representation of Electrostatic Potential in Terms
of Multipole Potentials

Multipole is a collective term for certain point charge systems which,
in the order of increasing complexity, are called the monopole (one-
pole), the dipole (two-pole), the quadrupole (four-pole), the octupole
(eight-pole), etc. These names are derived from the number of point
charges, or “poles,” comprising a given multipole. The number of
poles in a multipole is always 2", where n, called the order of the multipole,
can be 0, 1, 2, or any other positive integer.

The simplest multipole is that of the order 0, or the monopole. The
monopole is merely a point charge under a new name.

The multipole of the next higher complexity is the multipole of the
order 1, or the dipole (Fig. 5.8). The dipole is an arrangement of two
monopoles, or point charges, of opposite polarity and equal magnitude
separated from each other by a small distance A/, (in the theory of
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@l(r, 8)

Fic. 5.8 Electric dipole.

multipoles a distance is considered small if it is negligible compared to
the distance from the location of the multipole to the point of observa-
tion).

A still more complex multipole is the multipole of the order 2, or
the quadrupole (Fig. 5.9). The quadrupole is an arrangement of two
parallel dipoles of opposite polarity,! but equal otherwise, separated
from each other by a small distance Al,.

In general, now, a multipole of the order n, or a 2"-pole, is an
arrangement of two multipoles of the order » — 1, or 2"1-poles, having
opposite polarity, having the same orientation in space, and separated
from each other by a small distance Al,.

O +q +q —q
| @—a—@
aly §i
! Al
@Al ~®
_ -q +gq
—q
f Al,
Al
} +q —q -q +q
+q@® @"'"ﬁlil_"a i @"__AJH
2

Fic. 5.9 Examples of electric quadrupoles.

1Two similar and similarly oriented multipoles are said to be of opposite
polarity if the sign of each charge in one multipole is opposite to the sign of the
similarly located charge in the other multipole. For a given point of observation,
the sign of a multipole is determined by the sign of the potential produced by
the multipole.
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nl U0 B(X+AY,y +Ay,7 + A7)

AE,Y,2) T e, —%P( )
XYz

Fic. 5.10 A 2"-pole is generated from two 2"~ 1-poles.

The potential of a 2"-pole can be expressed in terms of the potentials of
the two 2"~1-poles from which the 2"-pole is made up. Let a negative 2"1-
pole be located at a point A(x, y', '), as shown in Fig. 5.10. Let a similar
positive 2"-1-pole be located at a point B(x' + Ax', " + Ay, 2’ + AZ')
separated from the point 4 by a small distance Al,. Let the potentials
produced by these 2"!-poles be —¢'4) and ¢!P), respectively, where the
superscripts indicate the location,and the subscripts indicate the order of
the multipoles by which the potentials are produced. The two 2" 1-poles
together form a 2"-pole, whose potential ¢, is just the sum of the potentials
produced by the two 2"~1-poles. At a point of observation P(x, y, z) we then
have

Pn = ¥ — ¥
The difference ¢'P, — ¢/4) can be regarded as the increment of the
function @,_;(x’, )", z’) associated with a shift of the source point %, y', 2’
from A to B. Since the distance Al, between the points 4 and B is small,
this increment may be written as the differential
Ag, 1 = ¢o0 — 7ah

But according to Eq. (2-10.2), this differential can be expressed as

A&n—l e Aln . v’?n-—l = Aln ag}“_l 3

where Al, is the length element vector drawn from A to B, and where the
prime indicates that the differentiation is done with respect to the source
point coordinates x’, 3", z’.! Thus we obtain for the potential of a 2"-pole

g.=AL -V, . or ¢,=Al Q—%. (5-4.1a, b)

! The derivative 8'p,_,/dl, is the derivative of the function ¢, , with respect
to a length increment in the direction of Al,. It is called the “directional derivative”
of ¢,_, and, as one can verify by means of a geometrical construction, is equal to
the component of V', _, along the direction of Al,. See Problem 2.44.
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Applying cither one of these formulas successively to multipoles of
different orders, starting with the dipole, we can express the potential of any
multipole in terms of the monopole (point charge) potential

q
dmeyr”

Using Eq. (5-4.1b), we obtain for a dipole (n = 1)

g (¢
7= AL ol, = AhL a—ll(‘l-neor) ’

Po =

or
qAL O’
P = e, all( ) (5-4.2)

For a quadrupole (n = 2), we then have

e o' [¢qAlL 0
= Al = Al azz[mo azl(r)]’

or
 qARAL 9 )
P2 = Tane, o0l (5-4.3)
By induction, the potential of a 2"-pole is therefore
_qALAL - AL o 1
#n = 47, 01,0, ,---0L\r)"
The potential of a 2"-pole can be found from the formula
e
= - 5-4.4
n = Gmegnt dl,00,_, - - 9\ 1)’ (5-4.4)

where the differentiation is with respect to the source point coordinates
and

p(") = n! qu,nAl"_l cet All' (5'4’.5)

The quantity p™ is called the multipole moment. It is positive if Al is
directed from a 2"1-pole with a negative moment to a 2" -pole
with a positive moment.

If a multipole consists of point charges lying on one single axis, the
multipole is called an axial multipole. For an axial multipole all Al’s
are along the axis, so that if we take this axis as the z-axis, we have

(n) ot (1
Pn(axial) — p— e (‘r) . (5-4.6)

4megn! 02'"

This formula can be transformed into a more convenient one by
means of the following considerations. Observe that the dimensions of
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r are [length] and the dimensions of z'” are [length]”. Hence the
n
dimensions of the quantity ;m(;) are [length]=(**1, which is the
same as the dimensions of 1/r"*1. Therefore we can write

1 o ( l) _ P,

nldz"\r) — i1’
where P, is a dimensionless coefficient. This coefficient occurs in many
physical formulas and is called the Legendre polynomial of the first kind.

(5-4.7)

TasLE 5-1
Legendre Polynomials of the First (P,) and Second (@,) Kind.®

n Po(p) Qn(;u)
L+ p
1
0 1 21n1_‘u
1+ p
1 U %‘ulnl_‘u—l
1+
2 3(3u — 1) 13— in 5 —
1+
3 (54 — 3p) 1) In T — EPi) — &

¢ u stands for cos 6.

The values of P, for different n can be obtained from Eq. (5-4.7) by
differentiating 1/r and can be tabulated for future reference. The
values of Py, P, Py, and P; are given in Table 5-1.1 For n > 1, all P,’s
can be expressed as functions of cos 6, where 6 is the angle between the
z -axis (or a polar axis in general) and the radius vector drawn from the
source point x’, ', z’ to the point of observation x, y, z.
Using Eq. (5-4.7), we can rewrite Eq. (5-4.6) as
(n) P,
Pr(axial) = 4{)780 m .

(5-4.8)

With the aid of this formula and a table of P,’s, the potential of any
axial multipole having a known multipole moment p™ can be found
immediately.

1 Table 5-I contains also Legendre polynomials of the second kind used in the
“method of harmonics” (Section 6.3).
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Next to the point charge, the most frequently encountered multi-
pole is the dipole (n = 1). The dipole moment p!’ is by Eq. (5-4.5) just
qAl. Tt is customary to designate the dipole moment simply as p,
without the superscript. The potential of a dipole, ¢,, is then, by Eq.
(5-4.8) and Table 5-1,

p cosO
dmey 12

(5-4.9)

Pdipole = s

where 6§ is the angle between r and the axis of the dipole as shown in

Fig. 5.8. The potential of a dipole oriented in an arbitrary manner
can be best found from Eq. (5-4.1a). Using this equation, we have
, , Al (1

Papor = AL, Vgy = AL V(L) =25 v ().

dmeyr 41780 r

The product ¢gAl, is called the dipole mement vector p. It is directed from
the negative to the positive charge of a dipole. By means of p, the dipole
potential can be written in any of the following forms:

. _1ﬂ,g__gﬂ(g_&ﬂ_94
Paipole = 4re, v (r T 4me, v r] T dmeg? T dmeg’’
(5-4.10a, b, c, d)

Sincep = p,i + p,j + phkandr = (x —x)i + (y —»)j + (z — 2)k,
the last expression for g, can be written in terms of rectangular
coordinates as

1
Pdipole = W[ﬁz(x - x’) +pv(.y —_}”) +pz(z - Z')]. (5'4’11)

By taking the gradient of a multipole potential, the electric field of
the multipole can be found:
E,=—Vg,. (5-4.12)

Thus, for instance, from Eq. (5-4.9) we have, using the expression for
the gradient in spherical coordinates (Table 2-I),

. _ b _a_(cosa) i(cosf)) ]
Ejipote = — Vuipole = p 80[37 72 ) Tu + 3\ 0,|

__p cosb _p sinb
Eaipore = 2me, 13 ot e 4me, " 8.

or
(5-4.13)

The magnitude of the dipole field is then
=VE:+ E: = p \/4cos20+sm20




ELECTROSTATIC POTENTIAL 131

or

P 3 5-4.14
E_%Eors\/l—chos 0. ( )

v
Example 5-4.1 Find the potential produced at a point P(r, 0) by the

f b
+q | - —q l +a
&
l——a—c—l a—-l 0
r>>a -
r>>b Sl

Fic. 5.11 Calculation of the potential produced by a linear quadrupole,

For a quadrupole, n = 2. The moment of the quadrupole under
consideration is, by Eq. (5-4.5), 2qab. The potential is then, by Eq. (5-4.8)
and Table 5-1,

~ gab 3cos*f — 1
P2(axial) = 4me, P .

Example 5-4.2 Find the potential produced at the point P(x, y, 0) by
the square quadrupole shown in Fig. 5.12.
The moment of this quadrupole is, by Eq. (5-4.5), 2¢a® The potential,

¥y
r>>a
x’y
.-.:q__..._.____-ft? T __»*

—17 . =,

l "6
a |
L I I’,y’ I

I I

4 \

x

Fic. 5.12 Calculation of the potential produced by a square quadrupole.
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by Eq. (5-4.4), is

=20 ﬁ(l)
Patsauare) = G721 9y'0x' \r
qga® @ (x - x’) _ 3¢a® (x —«')(»—)  3ga® cosfsin b

Tang, )\ P ) T 4ng, ” “4me, 18 7

r

where we have used r = V(x — )2 4 (y — )% + (z — 2)%

Example 5-4.3 Find the quadrupole moment of a system of two
positive charges ¢ separated by a distance 2a and a negative charge —2¢
placed midway between them (Fig. 5.13).

-2q

+q +q
¢ “"’ r‘?‘_‘"l a;"f"g‘?
[ ety it @Sl
| a } a —J.

Fic. 5.13 Example of the calculation of a quadrupole moment.

The system may be regarded as a linear quadrupole formed by two
dipoles of moment ga separated from each other by a distance a. Hence,
by Eq. (5-4.5), the quadrupole moment of the system is 2qa®.

Example 5-4.4 Express the electric field of an arbitrarily oriented
dipole located at x" = 3" = z’ = 0 in terms of rectangular coordinates.
Since Egipo1e = — Vaipoles We obtain by differentiating Eq. (5-4.11):

Pe 3P+ puyx + poa)

E.=— dmreyrd 4areyr® ’
BB o 3(pxy + p,0% + p.20)

" 4mregrd 4megr® 2
E —_ b 3(bxz+ bzt b2

* 4mregrd dmregr® '

Example 5-4.5 Find the value of the Legendre polynomial P, (cos 0)
for 6 = 0.

If 6 = 0, the point of observation x, y, z lies on the z-axis, so that r =
z — Z/, In this case we have, by Eq. (5-4.7),

(z — )1 3"( 1 )

n! d0z"\z — 2’

P,(cos0) = P,(1) =
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But a_( ! )43"4 !
9z"\z — 2'] 9z’ (z — 2')?

N o2 2.1 71 n!
= azm-s[(z — z’)s] = ~z— Z'ynH "

Therefore

5-5. Expansion of Electrostatic Potential in a Series
of Multipole Potentials*

The introduction of the multipole concept into the theory of elec-
tric phenomena results in a new method for expressing the potential of a
charge distribution. This method can be stated in the form of the follow-
ing multipole theorem : the electrostatic potential of a charge distribution
in the space outside an imaginary sphere enclosing this distribution
can be expressed as a convergent series of multipole potentials.

yzﬂz

P(,y. 2)
r=~/z—x2+ (y—y)2+(z—2)2

Fic. 5.14 The potential of a charge distribution can be expressed as a
series of multipole potentials if the point of observation is outside an imaginary
sphere enclosing the charge distribution.

To prove this theorem, let us place a system of rectangular coor-
dinates in or near some charge distribution, as shown in Fig. 5.14. Let
R be the distance between the point of observation P(x, y, z) and the

origin of the coordinates O, so that R = V/x2 + »2 + z2. Let r be the

* This section may be omitted without loss of continuity.
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distance between the point of observation and a source point ¥’, y’, 2/,
so that 7=V (x —x)% + (y — )% + (z — 2')2 If the point of
observation is outside an imaginary sphere enclosing the charge distri-
bution, the quantity

I 1
T VE =+ -+ (22
can be expanded in a convergent power series of x’, »', z’ about O.
By Taylor’s theorem of calculus, this series is

1 1 ,a(l) ,a(l) ,a(l)J
7=r[ =& TV %\R T 2R
1 32() 82<) 07 1)
+2—[ g 5\ T2 5?(1?
,, 0% (1 ,, 0% [1 ,, 0% (1
Txy a—@(ﬁ) ”xm(ﬁ) ﬂzm(fﬁ

Y 557 T 7 wemlw) Y aa))
T2 o\B TP e\ R T aaz\R) T

If we substitute this series into the Poisson integral for electrostatic
potential, factor out all derivatives from under the integral signs (the
derivatives are not functions of primed coordinates), and then replace
the derivatives by those with respect to x’, y’, z’, we obtain

- _1_ p ’r 1 f !’ 1 a (1) f ’ ’
v, 2) = dreg J T ' = 4megR pdv + [4—'77—8; o \rh-rl? do
1 o2 l) f o
+ ] + [411802!@(? | _R)EP

1 o2 1) f N
+417802!ax/ ayr(; | _R xJ’Pdv + :|+ . (5-5,1)

By Eq. (5-3.4), the first term of this expression is just the point charge
potential (monopole potential) that would be produced at P if the total
charge of the distribution, ¢ = [ p dv’, were concentrated at the origin.
By Egs. (5-4.4) and (5-4.5), the terms in the first bracket are the poten-
tials that would be produced at P if three dipoles oriented along the
%, », and z axes and having the moments

b =J‘x’p ', p, =fy'p 'y p, =J‘Z'p ' (5-5.2)

were placed at the origin. Similarly, the terms in the second bracket
are the potentials that would be produced at P if nine appropriately
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oriented quadrupoles of moments
b =[xt g =[pdt p=[vipar
buz =f)"x'P v’ Doy =f)"2p dv’ y2 :fy,zlp dv’ (5'53)

y =fz’x’p dv’ 2 =J‘Ziy'p dv’ bz =f2'2P dv’

were placed at the origin. As the same line of reasoning can be con-
tinued to include still higher multipoles, we see that the multipole
theorem stated above is true.

An important consequence of the multipole theorem is that as far
as the electrostatic potential outside a charge distribution is concerned,
a charge distribution may be replaced by a system of multipoles whose
moments are given by Egs. (5-5.2) and (5-5.3), and by similar equations
for higher multipoles.! The number of multipoles in such a system
depends largely on the accuracy with which the potential must be
represented. For a charge distribution in which the charge density
has everywhere the same sign, the multipoles that must be included in
the system can be determined as follows. Examining the dimensions of
the quantities involved in Eq. (5-5.1), we recognize that the potential
contributed by a 2"-pole to the total potential of the system is approxi-
mately ga"[4me,R"*1, where ¢ is the total charge and « is the average
linear dimension of the charge distribution under consideration. The
ratio of the potential of a 2"-pole to the potential of the point charge ¢
(dominant potential of the system) is then approximately (a/R)".
Therefore no multipoles of an order higher than n need be included in
the system unless the accuracy of the total potential must exceed
(a/R)" - 100 %.

v

Example 5-5.1 Construct a system of multipoles reproducing the
potential of a uniformly charged cube of total charge g and side 2a so that
the error in the potential does not exceed 1%, at R > 10a, where R is the
distance between the center of the cube and the point of observation.

Since for (1/10)" < 1%, n needs not be larger than 2, no multipoles
beyond the quadrupoles are needed. Let the cube be oriented as shown in

1 Axially symmetric charge distributions may also be replaced by axial multi-
poles which are all confined to the axis of symmetry (see Section 6-4).
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y y
H q
. L)
I | q
i 5q |/
)———— - — —
g . o x
2a / q i a 2
3
A z
(a) (b)

Fic. 5.15 The potential of a charged cube can be approximated by a
cluster of point charges.

Fig. 5.15a. By Eq. (5-5.2), the dipole moments are

+a
pa=|x'pd = 4pa2f x'dx" =0,
and similarly
=0, £ =0.
By Eq. (5-5.3), the quadrupole moments are

+a 845
g =J‘x"2p dv' = 4pﬂ3‘[_ x2dx’ = P3 = 3qa?,

and similarly

bw = %qaﬂ’ b= %gae'

All other quadrupole moments are zero, by symmetry (for example,
poy = 2y pdv' = p [ x'y'd’ = 0 because to every positive x’y’ there corre-
sponds an equally large negative x’y’). Hence the system of multipoles that
we are secking consists merely of a point charge ¢ and three axial quadru-
poles placed at the origin. By Eq. (5-4.5), the moment of an axial quadru-
pole can be written as p'® = 2 g(Al)2, so that for Al of p,,, p,,, and p,,
in the present case we can write

1ga® = 2¢(AD?,
or
a

Alse—0s,
V6

By Example 5-4.3, the quadrupole on the x-axis (p,,) can then be constructed
by placing a negative charge —2g¢ at the origin and two positive charges ¢
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at the points x = 4-a/V 6. The quadrupoles on the y and z axes are con-
structed in the same manner. The final multipole system is shown in Fig.
5.15b. The total charge at the origin is @ = ¢ — 6¢ = —5¢. Each charge

on the axes is ¢, each is placed at the distance a/V/6 from the origin.

A

PrROBLEMS

5.1. Taking into account that air becomes conducting when an electric
field in it reaches about 3 - 108 volt/m, determine the radius of the smallest
sphere that can be charged in air to a potential of 108 volts.

5.2. A spherical conductor of radius a carrying a charge ¢, is surrounded
by a thin, concentric spherical conductor of radius b carrying a charge g,.
Find the potential produced by these conductors at all points of space.

5.3. A certain electric field is given by E = E R?r[r® for r > R and
E = Eyr/[R? for r < R, where E; and R are constants, and r is a radius
vector in spherical coordinates. Show that the potential in this field is

5.4. Taking as the reference potential ¢(r,) = 0, show that the potential
due to a charge of uniform density p forming an infinitely long cylinder of
radius a < 7, is, in cylindrical coordinates,

2 2
=—§:—Olnr—i—§—g;lnro, r > a,
P pat . 1,
q)=4—%(a2—r2)+2—%ln;, r < a,
and find the voltage between the axis and the surface of the charge-filled
region.

5.5. Using the data of Problem 4.11, derive the equation for the poten-
tial @ of the earth’s electric field with respect to the ground, plot ¢ against
the altitude 4, and give the values of p at £ = 1, 10, and 20 km.

5.6. An infinite slab of charge has a charge density p and thickness .
Find the potential at all points of space, using the midplane of the slab as
the reference plane.

5.7. Using the data of Problem 4.14, find the potential of a normal
hydrogen atom at all points of space.

5.8. A voltage V is applied between two concentric conducting spheres
of radius a and & (a < b). Show that if the outer sphere is grounded, the
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potential in the space between the spheres is

(b —1)a

o) =V —a

5.9. A voltage V is applied between two coaxial conducting cylinders of
radius @ and b (a < b). Neglecting end effects, show that if the outer
cylinder is grounded, the potential in the space between the cylinders is

Indb —Inr

o) =Vt "ma

5.10. The plates of a thin parallel-plate capacitor of area A4 are separated
by a distance d. Show that if a sheet of metal of thickness ¢ is inserted
between the plates, the capacitance is increased by the amount

gotA

AC:d(T———t—).

5.11. A capacitor is made of two metal spheres of radii ¢ and & which
are separated by a distance d > a4, b. Show that the capacitance of this
capacitor is approximately

1 1 2\-1
C=4—7T£0(:1 —}-Z—g) .

5.12. Show that for a given voltage. the electric field at the surface of
the inner sphere of a concentric spherical capacitor is least if the radius
of this sphere is one-half the internal radius of the outer sphere.

5.13. Show that for a given voltage the electric field at the surface of
the inner cylinder of a coaxial cylindrical capacitor is least if the radius of
this cylinder is 1/e of the internal radius of the outer cylinder (neglect end
effects).

5.14. A capacitor is made of three conducting thin-walled concentric
spheres of radii 4, b, and ¢ (¢ < b < ¢). The inner and the outer spheres are
connected by a fine insulated wire passing through a small hole in the
intermediate sphere. Show that the capacitance of this capacitor is

ab ch )

C = 4—1780(m + pa—

and find how the electric charge placed on the sphere & distributes
itself between the two surfaces of the sphere.

5.15. Show that if the inner conductor in Problem 5.2 is connected by
a fine insulating conducting wire passing through a small hole in the outer
conductor to a distant uncharged conducting sphere of radius ¢, the sphere
will acquire a charge which in the first apprbximation is

_ b+ 9a
~ b(a + o) c)
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5.16. A thin rod carrying a uniformly distributed charge ¢ is bent to
form the arc of a circle of radius r. Show that the potential at the center
of the circle is

9
4mregr

(p=

and that this potential is the same as the potential at the center of a thin,
uniformly charged, hemisphere of radius r carrying the charge q.

5.17. Show that the potential due to a straight uniform line charge of
length 2L and density 4 lying along the x-axis of a rectangular system of
coordinates, with the center at the origin, is

(x—|—L)+\/(x+L)2+y + z2
4"80 D VeE-LErrt 2

5.18. Show that the potential at a point on the circumference of a
uniform circular disk of surface charge density o and radius a is

o(x,9, z) =

ga

= 77'80

5.19. Find the electric field produced by a thin, straight rod of length
2L carrying a charge ¢, by using the potential found in Problem 5.17.

5.20. The electrodes of a certain discharge tube have the form of a
thin parallel-plate capacitor of plate separation d. The potential in the
space between these electrodes has been found to have the form

¢ = V(x/d)*,
where x is the distance from the negative plate, I is the voltage between
the electrodes, and o is a constant. (a) Find the electric field vector in the
space between the electrodes. (b) Find the space charge density in this
space. (c) Find the surface charge density on the electrodes.

5.21. The potential ¢ in a certain discharge tube, as measured with
the aid of probes, is shown in Fig. 5.16, as a function of the distance
from the positive electrode. Using this curve for ¢, obtain the corresponding
curves for the electric field vector E and for the space charge density p in this
tube (assume that the field is a function of the distance along the tube only).

5.22. Show that the potential measured at a point of the model de-
scribed in Problem 4.23 is mn~! times the potential at the corresponding
point of the actual system.

5.23. Derive Eq. (5-4.9) directly, by adding the potentials of the point
charges which make up the dipole.

5.24. Under certain idealized conditions the electric field outside a
spherical artificial satellite has the potential expressed in spherical coordi-
nates centered at the center of the satellite

cos 0
p=A4

1
Bﬁ(?» cos? 0 — 1),
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0 2 4 6 8 10

Fic. 5.16 Distribution of electric potential in a discharge tube. From a
curve like this, the electric field and charge distribution in the tube can be
determined by graphical analysis.

where A and B are constants. With the aid of Section 5-4, show that
this potential can be attributed to a system of multipoles and find the
multipole moments of this system.

5.25. Show that the electrostatic potential of any unconfined spheri-
cally symmetric charge distribution in the space outside the distribution is
the same as if the total charge ¢ of the distribution were concentrated at its
center, and show that the formula

o
Y= dmey
is true for theexternal potential of all unconfined spherically symmetric
charge distributions. Then do the next problem.
5.26. A conducting sphere of radius a carrying a charge ¢ is confined
within a larger conducting sphere of inner radius b and outer radius 4.
The centers of the spheres coincide. Show that the potential of the system is

9 '
(p-—%—w for r=>¥,

. . ,
‘p_‘l-rra“b' for b<r<¥,

and

q

=y W — b ) e REEh
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5.27. Using Eqgs. (5-4.10d) and (5-4.12), show that the electric field of a
dipole can be expressed as
Egipote = ey (3(p-r)r —pr’].
5.28. The counterparts of Eqs. (4-5.1) and (4-6.4) for the electrostatic
potential are the two equations

1

—_ . ! ’ — p . ’
Q= —y r, - Vpds/ and ¢ §ru as'.

-~ Bng,
Show that these equations are correct.

5.29. Using the second integral of Problem 5.28, show that the potential
at the center of a spherical shell of outer radius b, inner radius a, and uniform
charge density p is ¢ = p(b* - a?)/2,.

5.30. Using the first integral of Problem 5.28, show that the potential at
the center of a spherical charge distribution of radius a and density
p = pl - rla)is ¢ = p,a*/6e,.

5.31.% Find the surface charge of an artificial satellite using the poten-
tial given in Problem 5.24, then find the dipole and quadrupole moments
of this charge using formulas of Section 5-5, and finally show that these
moments agree with those found in Problem 5.24.

5.32.* Show that for a charge distribution whose total charge is zero,
the dipole moment of the distribution is a characteristic constant and does
not depend on the location of a rectangular system of coordinates used for
the calculation of the dipole moment.

5.33.* Show that for a charge distribution whose total charge is not
zero, one can always find a point for the origin of a system of rectangular
coordinates such that the dipole moment of the distribution would be zero
(this point is called the center of charge of the distribution).

5.34.% Verify the results of Example 5-4.3 by using Eq. (5-5.3).

5.35.* A point charge 2g is placed at the center of a ring charge —gq of
radius a. (a) Determine ¢ for R > a up to but not including terms in R*
using the expansion formula for ¢. (b) Show by direct calculation that this
@ is correct for any point on the symmetry axis. (c) Find and sketch a
symmetrical arrangement of point charges (multipoles) that would produce
the same potential as the actual charge distribution does up to the terms in
R4,

5.36.* Construct a system of multipoles reproducing the potential of a
uniformly charged square plate of total charge ¢ and side 2a so that the
error in the potential does not exceed 0.1%, at R > 104, where R is the
distance from the center of the plate.

5.37. Under what conditions can the displacement field D be represented
in terms of an electric vector potential? (See Section 11.1 and Problem 11.23).

* This problem is based on the material presented in Section 5-5.



SPECIAL METHODS
FOR THE SOLUTION
OF ELECTROSTATIC
PROBLEMS

The general methods for solving electrostatic problems
which we used in the preceding chapters are not always practicable.
Therefore various special, more expedient methods have been developed
for solving certain types of frequently encountered electrostatic prob-
lems. In this chapter we shall study some of the most common methods
of this type.

6-1. Poisson’s and Laplace’s Equations

Combining the divergence law, Eq. (4-4.2b), with the displace-
ment law, Eq. (4-4.3), and replacing E with — V¢ by means of Eq.
(5-1.1), we obtain

p=V:-D=V.(gE) =g V-E = —gV.Vp = —¢V2,

or

vig = — £, (6-1.1)

%
This differential equation is called Poisson’s equation. As far as the cal-
culation of ¢ is concerned, Poisson’s equation is of little use if p is
known everywhere in space, because in this case ¢ can be obtained
directly from the Poisson integral (5-3.1), which is the solution of Pois-
son’s equation for this particular case (see Problem 6.6). However, while
the Poisson integral can be used for calculating ¢ only if p is known every-
where in space, Poisson’s equation can be used for calculating ¢ even if

142
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p is known only in a limited region of space, provided that certain
additional data concerning ¢, called boundary conditions, are available for
the boundary of this region. And, of course, Poisson’s equation can be
used for determining p if ¢ is known.

A special case of Poisson’s equation is Laplace’s equation

Vg = 0, (6-1.2)

to which Poisson’s equation reduces in charge-free regions. Laplace’s
equation is especially useful for determining the electrostatic potential
in charge-free space surrounding charged conductors, which is one of
the most frequently encountered electrostatic problems.

v

Example 6-1.1 A voltage V is applied to a thin parallel-plate capacitor
of plate separation d filled with a cloud of charge of constant density
p (Fig. 6.1). Find the potential inside the capacitor with respect to the
positive plate, find the electric field vector E inside the capacitor, and find
the surface charge density 0 on the inner surfaces of the plates. Neglect edge
effects.

Fic. 6.1 Electrostatic potential in a capacitor filled with
charge can be found from Poisson’s equation.

The geometry of the problem is such that ¢ can vary only in the
direction normal to the plates. Let this direction be the direction of the
x-axis, and let the positive plate lie in the yz-plane of a rectangular
system of coordinates. Since ¢ is then a function of x only, Poisson’s equation

for this problem reduces to
2

EY
<
©

2 £

&

The boundary conditions are:

(1) atx =0, @ = Qo3
(2) atx =d, p=—V+ g,
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Integrating the Poisson equation, we obtain

do px
o = T T Ow

_ et
(P 280 1 25

where €} and C, are constants of integration. Substituting the first boundary
condition in the last equation, we have

Cy = @0

Substituting the second boundary condition in the same equation, we have

42

TVt p=—E-tCita

€o

so that
V  pd
Cl - — z + 58—0 .

The potential in the space between the plates is therefore

px? pd V
v=— 5t (b a)r
(observe that for p = 0 this expression becomes the same as the one
obtained in Example 5-1.1).
The electric field between the plates may be found by taking the negative
gradient of ¢, and after a rearrangement of terms we obtain

V. r .
E:[E+§aﬁx—@}.

The surface charge density on the inner surfaces of the plates is equal to
the magnitude of the displacement D, or ¢,E, at these surfaces. For the
positive plate, x = 0, we obtain from the last equation

V  pd
02803—?.

For the negative plate, x = d, we obtain, reversing the sign,

V.  pd
0 = —¢& E — —2- .
Example 6-1.2 Show that the electrostatic potential of a point charge
(Coulomb’s potential) satisfies Laplace’s equation.
The point charge potential is, by Eq. (5-3.4),

q

dreyr

¢ = + @
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Using the expression for the Laplacian in spherical coordinates (Table 2-I)
and observing that the point charge potential is a function of 7 only, we have

ey _ye 4 _ 9 gl _ g 10[,0/]
V(p_vélwsor*‘hrsovr_47rsor2arrarr

g 1d 1) _
—47rsor2dr(r z) =0

(observe that, by the definition of a point charge, r is always larger than
zero, so that the effect of r = 0 on the above expressions need not be
investigated).

A

6-2. Uniqueness of Solution of Electrostatic Problems

The most important special methods for the solution of electro-
static problems are based on the fact that electrostatic potential in
charge-free space must satisfy Laplace’s equation and on the three
uniqueness theorems presented below.

Uniqueness Theorem 1. There can be only one distribution of
electrostatic potential which in a limited region of space satisfies
Laplace’s equation and reduces to prescribed values at the boundaries
of the region.

To prove this theorem, let us assume that there can be two distri-
butions of the potential, ¢, and ¢,, both of which satisfy Laplace’s
equation and reduce to the same prescribed values at the boundaries
of the region under consideration (Fig. 6.2). On the boundaries we
then have ¢; = ¢,, or

1 — =0 (boundaries). (6-2.1)

Since ¢; and ¢, satisfy Laplace’s equation, we have everywhere within
the region V2p, = 0 and V3¢, = 0, so that

V3 (g, — @y) =0 (region). (6-2.2)

If we now substitute Egs. (6-2.1) and (6-2.2) into the first Green’s
theorem of vector analysis

J(UIV2U2 + VU, -VU,)dv —_—SE U,VU, - dS (V-24)
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V=0 0=,

Ll

Y1=¢,

Fic. 6.2 To prove Uniqueness Theorem I, we assume that there can be
two potentials satisfying Laplace’s equation and identical boundary con-
ditions. The assumption leads to a contradiction.

we obtain (setting U, = U, = ¢; — @,)

f (91 — @2) V31 — @o)dv + f [V(g, — @2)]%dv

Region Region

= 3 [$(0—9)V(0 — 98], (629

Boundaries

where the surface integral of (V-24) is expressed as the sum of the surface
integrals over individual boundaries of the region. But by Eq. (6-2.1)
each of these surface integrals vanishes, and by Eq. (6-2.2) the first
volume integral of Eq. (6-2.3) vanishes. We therefore obtain

| 56 — gras =o. (6-2.4
Region

Since [V(@, — ®,)]* is the square of a real quantity and therefore
cannot be negative anywhere, Eq. (6-2.4) can hold only if V(¢; — ¢,)
is zero everywhere in the region under consideration. But then ¢; — ¢,
must be constant throughout this region, and since, by supposition,
®, — @, is zero at the boundaries, ; — @, must be zero everywhere
in the region, and hence

P11 = P2 (region).

Both ¢, and ¢, represent therefore the same distribution of the electro-
static potential, and no other distribution which satisfies Laplace’s equa-
tion and is compatible with the boundary conditions stated in the
theorem is possible. This proves the theorem.
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The boundary conditions referred to in the above theorem (the
requirement that ¢ has prescribed values on the boundary of the region
under consideration) are frequently encountered in practice. We
shall call them boundary conditions of the first kind.

Uniqueness Theorem II. There can be only one distribution of elec-
trostatic potential which in an infinite region of space external to a
finite system of conductors satisfies Laplace’s equation, is compatible
with total charge of each conductor, assumes constant values on all
conductors, and reduces to a prescribed value at some reference point.!

To prove this theorem, let us again assume that there can be two
distributions, ¢, and ¢,, compatible with the conditions stated in the
theorem. As before, ¢, and g, satisfy Egs. (6-2.2) and (6-2.3), but the
surface integrals in Eq. (6-2.3) are now extended over the surfaces of all
conductors, and one surface integral is extended over an imaginary
surface enclosing all space (all these surfaces form the boundaries of the
region under consideration):

[0~ 00 Vm —m)-d8]= § (91~ 0 V(o — ) a8

All space

[é; (o1 — @) V(pr — @) * a'S].

Boundaries

Conductors

As we shall now show, these surface integrals vanish.

Consider first the integral over the surface enclosing all space.
Suppose that the average distance from the conductors to this surface
is R. Since R is much larger than the dimensions of the region occupied
by the conductors, all the conductors may be regarded as a single point
charge when viewed from this surface. The potentials ¢, and ¢, on this
surface may be regarded then as point charge potentials, and the
gradients — Vg, and — Vg, may be regarded as point charge fields.
But since ¢, and ¢, are both compatible with the charges of the conduc-
tors, it follows that — Vo, = (Q/4me,R?)R, and — Vg, = (Q/4me,R%R,,
where @ is the total charge of all conductors. The quantity V(p, — @,),
which is equal to Vo, — V,, is therefore zero, and hence the integral
is zero.

Consider now the integrals over the surfaces of conductors. Since
¢, and ¢, are constant on the surface of each conductor, ¢; — @, may
be factored out from under the integral sign. For each conductor we

1 One usually makes ¢, = 0 in all distributions. Therefore the last condition
is usually fulfilled automatically and is ignored.
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then have

§ (= ) Vo — )48 = (51 — 7 § Vign — ) " a8,

If we now multiply and divide the last integral by ¢, and observe that
& Ve, = —D; and ¢, Vg, = —D,, where D, and D, are the displace-
ment vectors corresponding to the potentials ¢, and ¢,, we obtain

§ 51— 9V — 0 8 =1 (51— ) § (D~ D) a8
_1 (%—%)(ffnz-ds—fﬁnl-ds).

&

But by Gauss’s law and by the requirement that ¢, and ¢, are both
compatible with the charges of the conductors, each of the last two
integrals represents the same total charge of the conductor under
consideration, and hence the difference of these integrals is zero.
Therefore the surface integral on the left is also zero. Since this reason-
ing applies to any conductor of the system, the surface integrals over the
surfaces of all the conductors are zero.

Finally, by Eq. (6-2.2), the first volume integral of Eq. (6-2.3) is
also zero. Thus, as before, we obtain Eq. (6-2.4) and conclude that
@; — @, is constant throughout the region under consideration. But
then, since ¢, = @, at the reference point so that ¢, — ¢, = 0 there,
@1 — @, must be zero throughout the region, and hence ¢, = ¢,
everywhere in the region. Therefore ¢, and ¢, represent the same
distribution of electrostatic potential, and as before, no other distribu-
tion satisfying Laplace’s equation and compatible with the boundary
conditions stated in the theorem is possible. The theorem is thus proved.

The boundary conditions referred to in this theorem (the require-
ment that ¢ is compatible with prescribed charges on conductors and
assumes constant values on them) are frequently encountered in practice.
We shall call them boundary conditions of the second kind.

Uniqueness Theorem III. There can be only one distribution of
electrostatic potential which in a region of space external to a system of
charged conductors satisfies Laplace’s equation, reduces to prescribed
values on the outer boundary of the region and on some of the conduc-
tors, is compatible with the charges carried by the remaining conductors,
and assumes constant values on them.

Since this theorem follows directly from the first two, its formal
proof will be left to the reader. The boundary conditions stated in this
theorem constitute what we shall call boundary conditions of the third kind.
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The property of electrostatic potential to satisfy Laplace’s equation
in charge-free regions of space and to have only one possible distribution
compatible with the boundary conditions of the types stated above
constitutes a powerful criterion for establishing the correctness of
expressions representing the electrostatic potential in a charge-free
region of space. Indeed, as it follows from these properties, all that is
needed for establishing that a particular expression correctly represents
the electrostatic potential in such a region is to verify that this expression
satisfies Laplace’s equation throughout the region and satisfies the
boundary conditions on the periphery of the region. Hence, if by any
sort of mathematical procedure, artifice, or intuition we find an
expression for electrostatic potential that in a charge-free region of
space satisfies Laplace’s equation and fits all required boundary
conditions, we may be sure that this expression is correct and that
the potential represented by it is, under these boundary conditions, the
only possible potential for the region. Therefore a problem on the
determination of electrostatic potential in a charge-free region is
considered solved if an expression is obtained that satisfies this correct-
ness criterion, no matter by what means or manipulations the expression
has been obtained.

The methods of obtaining expressions for an electrostatic potential
which are capable of satisfying the above correctness criterion have two
major variations. The first variation is the construction of expressions
capable of satisfying the given boundary conditions from the expressions
known to satisfy Laplace’s equation. Examples of this variation are the
method of harmonics and the method of images. The second variation is the
construction of expressions capable of satisfying Laplace’s equation from
the expressions known to satisfy the boundary conditions. Examples of
this variation are the method of axial expansion and the method of curvilinear
squares. These four methods will be discussed in the four following
sections.

The uniqueness theorems which we have just presented are a
special case of more general uniqueness theorems for the electrostatic
potential in charged-filled regions of space. In such regions the poten-
tial satisfies Poisson’s, rather than Laplace’s, equation. These more
general theorems are therefore stated with reference to Poisson’s
equation, but otherwise are almost identical with the theorems presented
above. The proof of these theorems is also almost identical with the
proof presented above.

The uniqueness theorems for electrostatic potential in charge-
filled regions of space are, in turn, a special case of the general uniqueness
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theorems for an electrostatic field. These theorems can be stated as
follows.

Uniqueness Theorem A. There can be only one electrostatic field E
which at all points of space satisfies the basic field laws, (4-4.1a),
(4-4.2b), (4-4.3), and is regular at infinity (this is merely the Helm-
holtz theorem applied to an electrostatic field).

Uniqueness Theorem B. There can be only one electrostatic field E
which in a limited region of space satisfies the basic field laws, (4-4.1a),
(4-4.2b), (4-4.3), and whose normal component reduces to prescribed
values at the boundaries of the region.

Uniqueness Theorem C. There can be only one electrostatic field E
which in a space external to a finite system of conductors satisfies the
basic field laws, (4-4.1a), (4-4.2b), (4-4.3), is compatible with total
charge of each conductor, is everywhere perpendicular to the surfaces
of the conductors, and is regular at infinity.

Uniqueness Theorem D. There can be only one electrostatic field E
which satisfies the basic field laws, (4-4.1a), (4-4.2b), (4-4.3), and whose
potential satisfies the boundary conditions of the first, second, or third
kind.

Uniqueness Theorem E. The theorems A, B, and C hold also for a
limited region of space if the tangential component of E assumes pre-
scribed values on the outer boundary of the region, regardless of any
other conditions for E on or outside the boundary.!

The proof of these theorems is the same as that of the uniqueness
theorems for electrostatic potential, except that it begins with a supposi-
tion that there can be two fields, E; and E,, which satisfy the basic laws:
VxE =0, VxE, =0, D, =¢E,, D, =¢E,, V-D, =p, and
V . D, = p. Since both E, and E, have zero curl, they can be expressed
asE, = — V¢, and E, = — Vg, From the divergence and displace-
ment laws we then have V2p, = —pfe, and V2p, = —p/e,. Therefore
V2(p, — @;) = 0. From here on, the proof continues just as for the
electrostatic potential.

Each uniqueness theorem for E constitutes a criterion for the
correctness of an expression for E, and if an expression has been

1 This requirement is identical with the requirement that ¢ assumes prescribed
values on the boundary, because

Pboundary = J E.dl +¢, = f Etangentiald! + ®c,

Boundary Boundary

where g, is a reference potential at a point of the boundary.
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obtained which satisfies the requirements stated in one of these theorems,
the expression is definitely correct.

v

Example 6-2.1 Prove that the electrostatic potential in a charge-free
space bounded by a conducting enclosure is constant and equal to the
potential of the enclosure.

Any constant potential satisfies Laplace’s equation. The constant
potential equal to the potential of the enclosure satisfies Laplace’s equation
and also the boundary conditions of the first kind. Hence, by the first
uniqueness theorem, this potential is correct and is the only possible potential
for the system under consideration.

Example 6-2.2 Prove that if in an electrostatic system of charged
conductors the charge of each conductor is increased n times, the potential
(with respect to infinity) at any point of space will also be increased n times.!

Suppose that the potential due to the original charges of the conductors
is ¢. Being the true potential compatible with the charges of the conductors,
@ must satisfy Laplace’s equation

Vip =0
and also the boundary conditions of the second kind, which for each
conductor are
@ = constant, — § gV« dS =g,
where the integral is extended over the surface of the conductor and ¢ is the

charge of the conductor. Suppose now that all charges are increased n
times. The new potential @' must satisfy Laplace’s equation

V2p' =0
and the new boundary conditions
¢’ = constant, — § e Vo' +dS = ngq.
But since ¢ satisfies the first three equations above, ¢’ = ng satisfies the

last three. Hence, by the second uniqueness theorem, ¢’ = ng is the correct
and the only possible potential associated with the new charges of the system.

Example 6-2.3 Prove that the expression
__4
T dmeg? v

1 This means, incidentally, that the capacitance of an isolated conductor or
capacitor does not depend on its charge or potential (voltage) and constitutes a
constant characterizing each particular conductor or capacitor.
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represents correctly the electric field in a concentric spherical capacitor
whose inner sphere carries a charge q.

By inspection, we see that the expression in question satisfies the basic
laws, (4-4.1a), (4-4.2b), (4-4.3), is compatible with total charge of the
inner conductor (§¢oE - dS = ¢), is perpendicular to its surface, and has no
tangential component on the outer boundary (which is formed by the outer
sphere of the capacitor). Therefore, by Uniqueness Theorems C and E,
the field is correct. Note that the prescribed tangential component of E
on the outer boundary is zero, as must be for any conducting surface under
electrostatic conditions.

A

6-3. Method of Harmonics

Functions that satisfy Laplace’s equation are called harmonic
Jfunctions or, simply, harmonics. Different harmonics are usually classified
according to the system of coordinates in terms of which these harmonics
are expressed. Thus one differentiates between rectangular harmonics,
cylindrical harmonics, spherical harmonics, etc.

The method of harmonics consists in selecting a function compatible
with the geometry of the system under consideration from the tables of

TaBLE 6-1
Frequently Used Harmonic Functions®

Rectangular Harmonics

@ = Cpoyz + Cyxy + Cypz + Cyzx + Cyx + Coy + C,z + €', (H-1)

0

@ =Y (4,sin a,x + B, cos a,x)(C,e*¥ + D, e"%") 4 C". (H-2)
" Cylindrical Harmonics
¢ = “:(Anr" + B,r~")(C, cos nf + D,, sin nf)
+ (Flnr 4+ G)(H6 + C'). (H-3)
Spherical Harmonics

¢ =2 (A" + B " )[C,Py(cos 0) + D,Q,(cos 0)] + C".  (H-4)
0

n=

a For derivation of these functions the reader is referred to text books on differential
equations. A4,, B,, C,, D,, F, G, H, C’ are arbitrary constants. Harmonics (H-1) and (H-4)
are in three dimensions; (H-2) and (H-3) are in two dimensions. P,(cos 0) are Legendre
polynomials of the first kind. Legendre polynomials of the second kind, @,(cos ), are
infinite for cos @ = + 1, and thus are not allowed when the region under consideration
includes the symmetry axis.
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harmonic functions, and then adjusting the arbitrary constants
appearing in the selected function to satisfy the boundary conditions
of the first, second, or third kind. Once the selected harmonic function
is made to satisfy the boundary conditions, it becomes, by the unique-
ness theorems, the only possible and therefore the correct electrostatic
potential for the charge-free regions of the system under consideration.

Several representative harmonic functions are given in Table 6-I.
The fact that these functions are indeed solutions of Laplace’s equation
can be verified by direct substitution (see Problems 6.10 and 6.11).

A\

Example 6-3.1 A very thin conducting plate is placed in an initially
uniform electric field E in such a manner that the plane of the plate is
perpendicular to E (Fig. 6.3). Find how the presence of the plate alters the
field.

(a) (b)

Fic. 6.3 (a) A thin conducting plate is placed normally in a uniform
electric field. (b) The field remains the same.

Let the initial field E be in the direction of the x-axis. The initial
potential is then ¢ = —Ex + ¢,, where @, is a constant. Let the altered
potential be ¢'. It must satisfy the following boundary conditions:

(1) ¢’ = constant on the surface of the plate
(2) ff;adS= — fﬁ Ve +dS =0

Plate Plate
(3) ¢ = ¢ = —Ex + @, at large distances from the plate

(these are the conditions of the second kind; the first condition reflects the
fact that the plate is a conductor in an electrostatic system, the second
condition reflects the fact that the plate has no net charge, the third condition
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reflects the fact that the effect of the plate can be felt only in the vicinity of
the plate and thus establishes a reference potential for ¢’). The geometry
of the problem suggests that ¢’ may be represented by rectangular harmonics.
We see by inspection that the first two boundary conditions are satisfied
by the harmonic function (H-1) of Table 6-1 with all constants except
C; and (' set equal to zero,

¢ =Cgx + C'.

The third boundary condition requires that for large x
Csx + C' = —Ex + @,

The values of the two constants must then be C; = —F and C' = ¢,. The
potential ¢’ is therefore
¢’ = —Ex + ¢,

But this expression is identical with the expression for the initial potential
@. Thus the presence of the plate does not alter the initial potential (or
field) at all. This, incidentally, justifies the use of small, thin test plates
for measuring the displacement D; the plates measure the same D that
would exist if the plates were not inserted in the field.

Example 6-3.2 A conducting sphere of radius « is placed in an initially
uniform field E (Fig. 6.4). Find how the presence of the sphere alters the
field.

\/
%
42X \\ r
/ &/0‘\\\ —
\ )

pd

——
x

__//\b
(a) (b)

Fic. 6.4 (a) A conducting sphere is placed in a uniform electric field. (b)
Resultant field.

The problem is essentially the same as the preceding one, except that
now weé have a conducting sphere instead of a conducting plate. The
initial potential is again ¢ = —FEx + @, and can be written as

@ = —Ercos 0 + g,
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where 0 is the polar angle of a spherical system of coordinates with the origin
at the center of the sphere, as shown in Fig. 6.4. The boundary conditions
for the final potential ¢’ are:

(1) @' = constant at r = a (surface of the sphere)

@2 — fﬁ &V - dS =0
Sphere

(3) ¢ =@ = —Ercos 4 ¢, for r > ©

(these are basically the same conditions as in the preceding example).
The geometry of the problem indicates that ¢’ may be expressed in terms of
spherical harmonics (H-4). Considering now the third boundary condition
and consulting the table of Legendre polynomials (Table 5-I), we recognize
that this condition will be satisfied by just a part of (H-4),

@' = (Ayr + Byr~3)CyPy (cos0) + C' = (dyr + Byr=2)C; cos 0 4 C,
if we set 4,C; = —FE and C' = @,. We then have

B
¢ = —E(l + A—lr—s)r cos 0 4 ;.
1
Turning now to the first boundary condition, we see that it will be satisfied
if we set By/4; = —a3. We then obtain

’ as

¢ = —E(l — -r—:;)rcose + @,

This expression does not contain any arbitrary constants that could be
adjusted to satisfy the second boundary condition. Therefore, if correct,
it must satisfy this condition automatically. To check this, we need to
evaluate the integral —§e Vo' - dS over the surface of the sphere. Since
dS for this surface is radial, the integral can be written as —§eo(Ve'), dS,
where (V¢'), is the radial component of Vg'. This component is (Table 2-I)

¢’ 9 a
(V(’)/)r:__aq_;, — —EE(I —F)TCOSO

243 24°
=—Ecos£'i’—]i.'ri3 cos@:—E(l +r_(‘1‘) cos 0.

On the surface of the sphere, r = a, and therefore (V¢'), = —3E cos 0.
But on this surface, to every positive value of cos 0 (0 < 6 < }m) there
corresponds a negative value of equal magnitude (37 < 6 < &), so that the
above surface integral vanishes.

Thus ¢’ that we have obtained satisfies all required boundary con-
ditions and hence is the correct potential for the system under consideration.
The corresponding field E’ is obtained by taking the negative gradient
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of ¢'. The result is
243 3
E’:E(l —1-13) cosOru—E<l &

r r3) sin66,.

Example 6-3.3 A long conducting cylinder of radius a is placed in an
initially uniform field E in such a manner that the axis of the cylinder is
normal to E (Fig. 6.5). Neglecting end effects, find the field around the
cylinder.1

E
-,
G
TS
VL —
-

_/’/\*
(a) (b)

Fi1c. 6.5 (a) A conducting cylinder is placed in a uniform electric field.
(b) Resultant field.

The problem is analogous to the preceding one. However, although
we could solve it in exactly the same manner as the latter, we shall demon-
strate now a slightly different method of solution.? Let the initial potential
again be ¢ = —Ex 4 ¢, which can be written as ¢ = —Er cos 0 + ¢,,
where 0 is the azimuthal angle of the cylindrical system of coordinates
shown in Fig. 6.5a. Let the altered potential be ¢'. The symmetry of the
system under consideration indicates that the potential of the cylinder is
@y, because, as can be seen from Figs. 6.5a and 6.5b, the cylinder forms a
part of the initial equipotential surface ¢ = ¢, the position and the potential
of which are not affected by the presence of the cylinder. We can write
then for the boundary conditions of ¢’

(1) ¢@" = @g at r = a (surface of the cylinder)
(2) ¢' =@ = —Ercos 0 + ¢, for r — oo

(these are boundary conditions of the first kind). The geometry of the
system suggests that ¢’ may be expressed in terms of cylindrical harmonics

1 To neglect end (edge) effects when using the method of harmonics means to
neglect the boundary conditions at the corresponding surfaces.

2 This method can lead to a disaster if incorrectly applied to problems of the
type 6.16 and 6.17.
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(H-3). Considering the second boundary condition, we see that it can be
satisfied by just a part of (H-3),

¢ =.(Ay + Byr1)C cos 0 4 C7,
if we set 4,C; = —E and C' = ¢,. We then have

B
¢ = —E(l + =1 r—z)rcos 0 + @,
4,
Considering now the first boundary condition, we see that it will be satisfied
if we set B;[4, = —a®. The final expression for ¢ is therefore
a2
¢ = —E(l — ﬁ)r cos 0 + g,.

The corresponding field E’ is

a2

2
E' = —V¢' = E(l —|—:—2) cos Or,, — E(l — ﬁ) sin 60,,.

Example 6-3.4 A voltage V is applied between two large rectangular
conducting plates which form an angle 0, one with the other (Fig. 6.6).
Neglecting edge effect, find the electric field in the space between the plates,
and find the charge density on the plates.

6o

(a) (b)

Fic. 6.6 (a) Geometrical relations for calculating electric field between
two nonparallel conducting plates. (b) The map of the field.

If the edge effects are neglected, the boundary conditions are

(1) 9= at =0
(2) p=V+ ¢, at 0 = 0,

where the potential of the negative plate is assumed to be ¢, Consulting
Table 6-1, we see that these boundary conditions can be satisfied by a part
of the harmonics (H-3),

¢ = HO + C,
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if we set H = V[0, and C’ = ¢,. The potential in the space between the
plates is therefore

v
p=g 0+
0
The corresponding field is
d¢
E= — _ — —
Vo 25 &
or
V
E=——80,.
b, 8.

The charge density on the plates, 0 = 4-¢,E, is
vV

o= is";i;'

Example 6-3.5 A grounded conducting block has a very deep narrow
slot covered by an insulated plate, as shown in Fig. 6.7, and a potential

@ = Vysin T x is established in the plate. Find the potential in the slot.
a

/wzvusin%rx

T [T %

Fic. 6.7 Method of harmonics
can be used for finding electro-

1 1 1
1 1 1
I static potential in a slot made in a

L-—a . conducting block.

The geometry of the problem suggests the use of rectangular coordinates.
With the notations of Fig. 6.7, the boundary conditions are:

(1) g=0 at x =0
(2) p=0 at x =a
(3) =0 at y =05

4) o= Vusinzx at y =0.
a

The first condition will be satisfied if we express ¢ in terms of rectangular
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harmonics (H-2) with B, = C’ = 0, so that

-}
@ = A,sin a,x (Cpe®¥ + D, e~).
n=1

.- . . . .. nw
The second condition will be satisfied by this expression if we set o, = —,
so that ¢
x . nmw "y -7y
(p—_—ZAnsm?x(C,,e“ + D,e ° ).
n=1

nmw

Since, by supposition, the slot is deep (6> a), so thate ¢ = 0, the third
condition will be satisfied if we set C, = 0. We then obtain

nr

2 nw y
p=>Ad,sin—zx-e °,
n=1 a

where 4, is used as an abbreviation for the product 4,D,. Finally, the
fourth condition will be satisfied if we set 4] equal to ¥, and all other 4,
coefficients equal to zero. We then obtain

L4
. T - v
g ="Vysin—x-e °
a

Since this expression is a solution of Laplace’s equation and satisfies the
required boundary conditions, it is the correct solution of the problem.
An interesting result of this example is that the potential in a narrow
grounded slot falls off exponentially with the distance from the top of the
slot, so that the electrostatic field originating at the top of the slot is rapidly

attenuated in the slot and does not penetrate the slot to any appreciable
depth.

A

6-4. Method of Axial Expansion

The method of axial expansion is used for determining the external
electrostatic potential of axially symmetric charge distributions for
points not on the symmetry axis when the potential on the axis is
known.

If a charge distribution has no variation of charge density about an
axis of symmetry, the external potential of the distribution can be
represented by spherical harmonics (H-4) with C, = 1and D, =C" =0,

@

B,
@ = Z (A"f" + ’m)Pn(COS 0), (6"4.1)

n=0

where 6 is measured with respect to the symmetry axis. Since on the
axis 6 = 0, so that P, = 1 for all n (see Example 5-4.5), the potential
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reduces on the axis to

pow = 3 (4 + 5n) =3 (4 + 22), (642

n=0 n=0

where z is the distance from the origin along the axis. Suppose now that
the potential on the axis is already known and is expressed as a power
series in z (‘“‘axial expansion”)

0

by
Paxis (known) — z (anz” + ﬂ+l)' (6-43)
n=0 z

The coefficients a, and b, of this series must then be equal to the coeffi-
cients 4, and B, of Eq. (6-4.2) and therefore to those of Eq. (6-4.1).
Hence, a, and b, can be substituted in Eq. (6-4.1) and so, from the
potential on the axis, the external potential of the charge distribution
can be obtained for other points of space.

v
Example 6-4.1 Find the potential of a thin, uniformly charged,

circular ring of radius a and total charge ¢ at all points for which r > a,
where 7 is the distance from the center of the ring.
In Example 5-3.1 we have found that for z > a the potential on the
axis of the ring is
_ 1 .
= 4ne,z  Bregsd oo

This gives for 4, and B, of Eq. (6-4.1)

q
4me,’

4,=0, By=

The complete potential is therefore

2
Q= g l:l —%Pz(cose)—l—"-].

4reyr

A

Representation of an axially symmetric charge distribution in terms of axial
multipoles. If in Eq. (6-4.1) all 4,’s turn out to be zero, the potential

becomes
e}

B,
Q= Zo s (cos 0), (6-4.4)

which can be written as

%9
¢ o ngo 877807’""'1

P,(cos 0), (6-4.5)
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where @, are new coefficients defined by
Q, = 8me,B,. (6-4.6)

As one can see by comparing Eq. (6-4.5) with Eq. (5-4.8), Eq. (6-4.5)
may be regarded as a series of multipole potentials associated with axial
multipoles of moments $@Q,. This equation therefore constitutes an
expansion formula for the potential of an axially symmetric charge
distribution and shows that from the points for which Eq. (6-4.4) holds,
the charge distribution may be regarded as a system of axial multipoles
located on the symmetry axis. To differentiate between the multipole
systems defined by Eq. (6-4.5) and those defined by the general expan-
sion formula (5-5.1), one frequently refers to a @, coefficient given by
Eq. (6-4.6) as the multipole strength and reserves the term multipole
moment for the p coefficients given by Egs. (5-5.2), (5-5.3), etc.

v

Example 6-4.2 Construct the first two axial multipoles approximating
the potential of a ring of radius a carrying a charge ¢ for r > a and compare
this system with the corresponding system of general multipoles defined in
Section 5-5.
Using the B, coefficients found in Example 6-4.1, we have from Eq.
(6-4.6)
1@ =19 1Q, =0, 1Q, = —1qa®

so that the axial multipoles that we are seeking are a monopole ¢ and a
quadrupole of moment —}ga? on the symmetry axis (z-axis).

The general multipoles, on the other hand, are, by Egs. (5-5.1), (5-5.2),
and (5-5.3), a monopole ¢ and two quadrupoles of moments

b = 39a®, Py, = 1ga®
on the x- and y-axis. As one can see, the axial multipole expansion and the

general multipole expansion result here in entirely different multipole
systems.

A

6-5. Method of Images

As we already know, the potential of an arbitrary charge distribu-
tion satisfies Laplace’s equation in a given region of space, provided
that the charge distribution is outside this region. Hence, if one finds
an arrangement of external charge distributions whose combined
potential satisfies the boundary conditions of the first, second, or third
kind on the boundaries of a charge-free region of space, then, by the
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TasLE 6-11
Images in Conductors®

Actual System | Equivalent Image System
Charge distribution in front of an infinite
conducting plane:

. &. -8

Charge distribution in front of two infinite
intersecting conducting planes:

’va_..

Charge distribution in front of a conducting sphere

|
|
a |
I
|
S L
I
|
s |
|
I

carrying a charge @:
Q !//"‘ ""\\\
a [Aq q" \
I . |
\\ I /
N /
il =7
. d d

Ag =—(ald)Aq; " =@ —4q’;
I = a®/d (g” = 0if the sphere is
grounded)

Uniform line charge parallel to an equally long conducting
cylinder carrying a charge @ (end effects neglected):

Q / “"'\\

& - Aq q \\
t...

|
| /

/

s
f d -

ar =Q+q. I=a%d

@ The relationships are given for a differential element Ag of each charge distribution.
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uniqueness theorems, this combined potential will be the correct poten-
tial for this region, even if in reality the potential in the region is pro-
duced not by these charge distributions, but by an entirely different
electrostatic system. For the purpose of calculating an electrostatic
potential, one may therefore replace a real electrostatic system, or a
part of it, by a set of fictitious charge distributions whose combined

]

Fic. 6.8 Electric field between a
charge ¢ and a conducting plate is
the same as the field between ¢ and
its “‘image” —gq.

potential satisfies the boundary conditions of the real system. These
fictitious charge distributions are called image distributions, or electric
tmages, and the method of finding the potential of an electrostatic
system by means of such fictitious charge distributions is called the
method of images.

The images for several frequently encountered electrostatic systems
are shown in Table 6-II. The correctness of these images can be
easily verified by showing that they satisfy the required boundary
conditions (to do so one needs to consider only a differential element
of the original charge distribution and the corresponding differential
element of the image distribution).

The simplest example of the method of images is given by a
special case of the first system shown in Table 6-II: a point charge ¢
placed at a distance a from a very large conducting plate. As one can
see from Fig. 6.8, the field between ¢ and the plate is exactly the same
as the field that would exist in this region if the plate were replaced by
the image charge —g at a distance 2z from the charge ¢. The term
““electric image” is derived from this particular example by analogy of
the fictitious charge —g¢ with the optical mirror image of the real
charge g¢.

There are no universal methods for obtaining images for arbitrary
electrostatic systems. Electric images are therefore found mostly by
inspection and trial and are verified by checking whether or not they
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satisfy the required boundary conditions (see Problems 6.23 and 6.24).

One can easily see that there is a reciprocal relation between real
charges and their images: a real charge is the image of its own image.
Therefore any part of an image system can be regarded as real; the
rest of the system is then regarded as the image of the part assumed to
be real.

v
Example 6-5.1 A point charge ¢ is placed at a distance a from a very

large conducting plate. Find the electric field between the plate and the
charge, and find the density of the surface charge induced on the plate.

y
@
I\
! &)
q / \ra
% b—a—|—a—

Fic. 6.9 Geometrical relations for
calculating electric field between a
point charge and a conducting plate
by the method of images.

Using the first image system shown in Table 6-1I, we replace the
plate by the image charge ¢' = —g as shown in Fig. 6.9. The potential at
a point P(x,y, z) is then (we abbreviate 32 + z2 as R?)

_q 9 9 1 1 ]
L dmegry  4megry 4""'30[\/122 + (x—a? VR + (x+ a2l
The field is E = — Vg, and its components are

E—-—@— g | x—a B x+a __}
2T Ox 4mgl[RE 4 (x —a)?P2 [RE 4+ (x + a)?E)
E__%_ 4 3 B y }
v o dme|[R* + (x — o' [R®+ (x + a)*])
E — — @ _ 9 ( z B z }
: 0z~ 4me|[RE + (x — )P [R® + (x + a)*)2f

At the surface of the plate, x = 0, so that E, and E, vanish and only E,
remains (as it should, since the field must be normal at the surface of the
plate). The field at the surface is then

_q —a a +
Eam'fal:e = 4?780 (Rz 1 QZ)SJE T (Rz + az)am i,
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or
- .
Esurﬁwe — 211’80(.&2 + ag)a‘ig 1

The induced surface charge density is ¢ = D, race = €0Fsurfaces OF

— i
9= T (R T+ R
Example 6-5.2 A point charge ¢ is placed at the distance d from the
center of a grounded conducting sphere of radius a << d. Find the density
of the induced surface charge on the sphere.

Fic. 6.10 Geometrical relations for calculating induced charges on a
conducting sphere by the method of images.

Using the third image system shown in Table 6-II, we replace the
sphere by the image charge ¢ = —ga/d, as shown in Fig. 6.10. The potential
at any point P(r,, r,) is then
_ 4 ¢ _ 9  _4qa
T dmegry, | dmey,  dmeyy, dmegryd

¥

Using the law of cosines, we now express r, and 7, in terms of r and 0.
This gives

4 1 B a :I
o= 4W30|:\/r2 +d® —2rdcosB  dVr® + B — 2lrcos 6

The surface charge density is 6 = D s = EoBsurface> and since on the
surface E must be radial,

0= —& &= = —& A~
oarsurfm Oar
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2
Differentiating and substituting [ = % , we then have
- q r — dcos 0 a(r — [ cos 0)
O = 0 el (Bt &% — 2rdcos O)7 T (7 + B — 2lr cos O) ), ,
. a ot i
_ q dcosO — a a\* 7>
= T k| @ T & Zadeos 0P T, @ 28 e
i AR TS
B a\3/d2
q dcos — a @ (2) (a——dcosﬂ)
= T 4nl (2 2 _ 3/2 3
4m |_(a + d* — 2ad cos 0) (5) (¢ + d* — 2ad cos )"

or
q dg e aS
4ma (a® + d* — 2ad cos 0)*%°

o =

Example 6-5.3 An uncharged, insulated, conducting sphere of radius
a is surrounded by a concentric, uniformly charged ring of radius 4 and
total charge ¢ (Fig. 6.11a). Find the potential at an external point P on the
symmetry axis.

(a)

Fic. 6.11 (a) Conducting sphere surrounded by a charged ring ¢. (b)
To find the electrostatic potential of the system, the sphere is replaced by
an image ring ¢’ and an image charge ¢".

Using the third image system of Table 6-11, we replace the sphere by an
image ring of charge ¢" = —ga/b and radius 5" = 4*/b and an image point
charge ¢" = ga/b, as shown in Fig. 6.11b. The potential at P is then the
sum of the potentials due to the original ring, image ring, and image point
charge. Using the formula for the potential of a charged ring obtained in
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Example 5-3.1, we have for the potential at P

’ L4

q9 q g

- 4megV b? + 22 * dmegV b + 22 ® 4megz
- g e g .
4meyV b2 4 22 dmegbz

4
h%bJ%+zs

-t 3 & g W
o 4‘1780(‘\/52 F 22 Vat + B2 & bz)'

Example 6-5.4 A line charge of uniform density A is placed radially
inside a hollow conducting sphere of radius a, the two ends of the line charge
being at the distance r, and r,, respectively, from the center of the sphere
(Fig. 6.12a). Find the image charge by which the sphere may be replaced
for calculating the potential inside the sphere.

A7k
RN
A
[ | 4/ Xodr
\ id_! /
\ L |/
N
TE r3 1
S
T4
(a) (b)

Fic. 6.12 (a) Line charge A in a conducting sphere. (b) The sphere is
replaced by an image line charge 1.

According to the third image system of Table 6-II, the sphere may be
replaced by a radial line charge whose ends are at the distance

r3 = a?[r, and ry = a%n,

from the center of the sphere (Fig. 6.12b). The density of the image charge
can be found as follows. Consider a differential length element dr of the
original line charge. If this element is at a distance 7 from the center of the
sphere, the corresponding element dr’ of the image charge is at the distance
r' = a*[r from the center. Differentiating, we obtain for the length of 4r’

e

|dr’ l dr — dr.
a?
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Now, according to Table 6-I1, if the charge contained in dr is dg, the charge
contained in dr’ is

’

, a r
dq =—-—;dq=—a—dq.

The charge density of the image charge at the point r’ is therefore

A,_dq’_ v a® dg  a dg
Td T a7t dr 7 dr’
d
and sincc—q=/1,
dr
V=-22
r

6-6. Method of Curvilinear Squares

The method of curvilinear squares is a graphical method for the
analysis of two-dimensional fields (fields that vary in two linear dimen-
sions only). It is based on representing these fields by so-called
curvilinear square maps.

In this method, a drawing of the system under consideration in a
cross-sectional plane normal to the direction along which the field of
the system does not vary is first made. Then, field lines and equi-
potential lines are sketched by guess throughout the drawing to make
a field map that forms a net of possibly accurate curvilinear squares (that
is, curvilinear cells with 90° angles and length-to-width ratio equal to
one). Next, a series of new maps is made where the curvilinear squares
are gradually improved until the angles in all squares are sufficiently
close to 90° and the length-to-width ratio of each square is sufficiently
close to one. Special attention is paid to field lines and equipotential
lines at conducting surfaces: the field lines must be normal to these
surfaces, and the equipotential lines must be parallel to them. If a
field model (lines-of-force picture) for the system under consideration
is available, the model serves as the guide for making the maps (Fig.
6.13).

A finished field map prepared in the above manner has a number
of special properties, of which the following ones are of special interest
here.

(1) The potential difference Ap between adjacent equipotential
lines is constant throughout the map.

(2) The voltage V between any two electrodes in the map is
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(a) (b)

Fic. 6.13 (a) Lines-of-force picture for a two-plate transmission line with a
central chamber. (b) Curvilinear square map of the same system.

divided by the equipotential lines into equal increments, each represent-

ing a potential difference

¥
N,’

where N, is the number of intervals made by the equipotential lines

in the space between the electrodes.

(3) The electric field at the center of any curvilinear square in
the map is

Ag (6-6.1)

Ay
Eagt 6-6.2
=2 (6-6.2)
where Ag is the potential difference and Al is the distance between the
cquipotential lines forming two sides of the square.

(4) The surface charge density at the surface of any conductor in
the map is

o~ g % 2 (6-6.3)

where Ag is the potential difference and Al is the distance from the
point where ¢ is determined to the equipotential line adjacent to the
conductor [Egs. (6-6.2) and (6-6.3) become exact if the curvilinear
squares in the map are sufficiently small].

(5) The electric flux A® between adjacent field lines in a map
representing a field of depth ¢ is constant throughout the map and is

A® = gyAgt, (6-6.4)

where Ag is the potential difference between adjacent equipotential
lines.
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(6) If the map represents the field of a two-dimensional capacitor,
the capacitance of the capacitor is

N,
C=g=Lt, (6-6.5)
o Np

where N, is the number of intervals made by the field lines in the map
(number of “flux tubes™), N, is the number of intervals made by the
equipotential linesin the map, and # is the length (depth) of the capacitor.

The most important property of a finished curvilinear square map
is, however, that the map yields a potential that automatically satisfies
Laplace’s equation and the boundary conditions of the first and the
second kind. By the Uniqueness Theorems I and II, this means then
that regardless of how the map was arrived at, the map represents
correctly the field of the system under consideration.

Derivation of Curvilinear Square Map Properties. Let us consider a region
of a two-dimensional electrostatic field between two cross-sectional planes
separated by a distance At and oriented so that the field does not vary in the
direction normal to them. On the front plane, let us draw a map of this
field showing both the field lines and the equipotential lines, as in Fig. 6.14a.
Using the vector identity

Ve g 07 48

lim Z——, (V-39)

we shall now evaluate V2gp for the region represented by the map. Let the
surface of integration in this formula be the surface of the curvilinear prism
with the front surface abb’a’ shown in Figs. 6.14a and 6.14b. Since all
“vertical” surfaces of this prism are parallel to the field lines, the integrand

Aly
ake—apn—t b
. i
) B Al
a Aw—eb'
@,
(a) (b)

Fic. 6.14 Derivation of curvilinear map properties.
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Vg +dS = —E - dS is zero there, and the only contribution to the integral
§Vg + dS comes from the two “horizontal” surfaces. If the prism is suffi-
ciently small, and the map is sufficiently fine, Vg on the upper surface is
(¢2 — 1)/ Al (see the enlargement of the region abb’a’ shown in Fig. 6.14b),
and Vg on the lower surface is (¢; — @,)/Al;. The area of the upper surface
is Aw, - At, and the area of the lower surface is Aw, - At. The integral is
therefore

§V<p-ds= quv-dS—l— f Vg -dS
abed a’v'e'd

_ P2 N _ PP

=" AL Aw, At AL Aw, At,
where the minus sign shows that Vg is opposite to dS on the lower surface.
According to the above formula for V2p, this quantity must be zero if V2¢p
is to be zero. But V2p must be zero in the region under consideration since
the region is free from charge. Hence, the equation must hold

P2 — 91 Aw, = P1— Po Aw,.

Al Al

This equation will obviously be satisfied if @, — ¢; = ¢; —¢, and
Aw,[Al, = Aw,[/Al;. The first of these conditions is always fulfilled if the
difference of potentials between adjacent equipotential lines, Ap = ¢,,,1 —
@, is constant throughout the map. The second condition is always
fulfilled if the map is constructed so that the curvilinear rectangles formed
by adjacent equipotential lines and by adjacent field lines have the same
width-to-length ratio Aw,[/Al, throughout the map. In particular, this
condition is fulfilled if the ratio is 1:1—that is, if the entire map forms a net
of curvilinear squares.

Thus, a curvilinear square map with equipotential lines marked in
equal increments Ag yields a potential ¢ satisfying Laplace’s equation. If
Ag is made so that the conductors in the map obtain prescribed potentials,
@ also satisfies the boundary conditions of the first kind. But the adjusting
of A and the marking of the equipotential lines does not affect the structure
of the map. Therefore a properly drawn curvilinear square map is auto-
matically compatible with Laplace’s equation and with the boundary
conditions and hence is always a correct field map. The map properties
1 to 4 are then an obvious consequence of the above considerations.

Property 5 can be deduced as follows. The flux between two adjacent
field lines in a square where the field lines are separated by a distance
Aw,, and the equipotential lines are separated by a distance Al, is

A
AD = DAw,t = eFAw,t = &5 Aw,,

where Ag is the potential difference between the equipotential lines and ¢
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is the depth of the field. But Aw,[Al, is the width-to-length ratio of the
square and is one. Therefore A® = g,Ag¢t, which is property 5.

Property 6 follows from properties 5 and 2. Since the charge on a con-
ductor is equal to the total flux through a surface surrounding the conductor,
the charge is given by

g = ADN, = £,ApN,t,

where N; is the number of flux tubes ending on the conductor and ¢ is the
length of the conductor. Using property 2, we then obtain for the capaci-
tance of a two-dimensional capacitor of length ¢

where N, is the number of intervals made by the equipotential lines between
the two plates of the capacitor. This is property 6.

v
Example 6-6.1 A long, charged conducting bar of over-all width 8a

and thickness 2a has rounded edges of radius a. Find the ratio of the smallest
and the largest surface charge density on any portion of the bar, neglecting
end effects,

Fig. 6.15 The ratio of charge den-
sities on a conducting bar can be found
by the method of curvilinear squares.

Except near the ends, the electric field at the surface of the bar may be
considered two-dimensional. The problem may be solved therefore by the
method of curvilinear squares. The corresponding map is shown in Fig.
6.15 (the map needs to be determined for only one quadrant, since, by the
symmetry of the bar, the field pattern is the same for all four quadrants).

A useful guide for constructing this particular map is the fact that from
large distances the bar may be considered a line charge, and the field may be
considered radial. In making this map, therefore, radial field lines were
drawn first (dotted lines in Fig. 6.15). They were then appropriately curved
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near the surface of the bar to meet the surface at a right angle. The equi-
potential lines were drawn next to produce curvilinear squares. The
doubtful squares were then checked by inscribing in each of them a circle
(two such circles are shown in Fig, 6.15). If a circle touched all four sides
of a square, the square was good. If a circle touched only three sides, the
“square’” was dctually an elongated rectangle and the map was corrected
by altering the paths and spacings of field lines and equipotential lines until
good squares were obtained everywhere on the map.

From this map and from Eq. (6-6.3) we see that the smallest surface
charge density is on the flat portions of the bar, while the largest surface
charge density is on the rounded portions. By Eq. (6-6.3), we can write
Opin Omax = (EoA@[AL') - (Al"[egAp) = Al"[|Al', where Al" and Al' rep-
resent the spacing between the surface of the bar and the first equipotential
line at the points under consideration. Measuring Al” and Al’ we obtain
Al' = 6 mm, Al" = 3 mm, so that

Ormin 1

O 2

Example 6-6.2 A long, triangular conducting bar of length [ is placed
above a large conducting plate so that, neglecting end effects, the bar and
the plate form a two-dimensional capacitor whose curvilinear square map
is shown in Fig. 6.16. Find the capacitance.

Fig. 6.16 The capacitance of a tri-
angular bar placed above a conducting
plate can be found by the method of
curvilinear squares. e e =

There are 6 flux tubes and 2 potential difference intervals in the map.
By Eq. (6-6.5), the capacitance is therefore

C = 38.0[.
A

6-7. Method of Configuration Coefficients*

The method of configuration coefficients is a method of expressing
correlations between charges and potentials in systems of conducting

* This section may be omitted without loss of continuity.
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bodies by means of certain quantities (configuration coefficients) which
depend only on geometrical relations within the system.

The method is based on the fact that the potential produced by a
system of n charged conductors can be expressed in terms of charges g,
residing on the conductors as

¢ = él’i%” (6-7.1)

where p, are quantities that depend only on the geometry of the system
and on the location of the point of observation.

To prove Eq. (6-7.1), we shall first prove the following Superposi-
tion Theorem.

If, in a system of conductors, the charges ¢; placed on the conduc-
tors produce the potentials ¢p; on the conductors and the potential ¢ in
the surrounding space, and if the charges ¢'; placed on the same con-
ductors produce the potentials ¢ '; on the conductors and the potential
¢ ' in the surrounding space, then the charges ¢; + ¢'; placed on the
conductors will produce the potentials ¢, + ¢; on the conductors and
the potential @ + ¢ 'in the surrounding space. (In simpler words, when
two sets of charges are superimposed, the resulting potentials are the
sums of the potentials of the superimposed sets.)

This theorem can be easily proved by means of the Uniqueness
Theorem II. Indeed: (1) since both ¢ and ¢ ' satisfy Laplace’s equa-
tion, then also ¢ + ¢ ' satisfies Laplace’s equation; (2) since ¢, and
¢ '; are constant on the conductors, then also ¢, + ¢'; is constant on
the conductors; and (3) since ¢ and ¢ ' are compatible with ¢; and ¢,
respectively, then @ + ¢’ is compatible with ¢; + ¢';. Hence the
theorem is definitely true.

Suppose now that a charge ¢, is placed on the first conductor, and
that all other conductors are neutral (the neutral conductors have in-
duced charges on them, but the net charge on each neutral conductor
is zero). Let the potential at some point in space (‘‘point of observa-
tion’’) due to the charge placed on the first conductor be ¢,. If we
define the coefficient p, as p, = ¢,/q,, we can express the potential ¢,
as p,q,- By Example 6-2.2, the coefficient p, depends only on the
geometry of the system and on the location of the point of observation.
Suppose next that only the second conductor carries a charge and that
all other conductors are neutral. The potential ¢p, at the point of obser-
vation can be expressed then as p,q,, where p, is defined as
p. = ®,/q,. By Example 6-2.2, also p, depends only on the geometry
of the system. We can continue in the same way with the remaining
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conductors, assuming that each of them, in turn, carries a charge and
defining the p coefficients for them. The potential produced at the point
of observation due to the charge placed on the :-th conductor, when on-
ly it carries a charge, will then be ¢; = p,q;, where p; is @,/g;.

Let us now superimpose the charges and the potentials just described.
The result is Eq. (6-7.1), where, by the Superposition Theorem, the
potential ¢p is the sum of the potentials produced at the point under con-
sideration by the simultaneous charges of the individual conductors; the
contribution of each conductor to the total potential is expressed in terms
of the p coefficient for this conductor.

From Eq. (6-7.1) it follows that the potential of any conductor in
a system of charged conductors can be expressed as

®; = Zpiiqi> (6-7.2)

where g; is the potential of the j-th conductor, ¢, is the charge of the
i-th conductor and p;; are configuration coeflicients, which depend
only on the geometrical relations within the system. These coefficients
are usually called coefficients of potential.

If Eq. (6-7.2) is written for each conductor explicitly, it becomes a
system of equations

@1 =pudr T 01292 + °°° F L1l
Qo = Poaqr T Pade + °°° + Pandn

P = pnlql +pn242 + e + pnnqn (6-7'3>

These equations can be solved for the charges ¢y, ¢,, . . . ¢,, and give
for the charge of the j-th conductor

g9, = Z € @i (6-7.4)
i=1

where ¢;; depend only on various p;; and hence themselves are configura-
tion coefficients. They are called coefficients of mutual capacitance, or
induction coefficients (if the system consists of one conductor only, there is
only one coefficient of capacitance, which then is identical with the
capacitance of the conductor).

The configuration coefficients p;; and ¢;; can be either calculated
or measured, and once they are determined the potential of any
conductor can be found from Eq. (6-7.2) if the charges of the conductors
are known, and the charges can be found from Eq. (6-7.4) if the poten-
tials are known.
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To measure a coefficient p,;, one usually measures the potential
@;; of the j-th conductor when only the i-th conductor is charged,
measures the charge ¢, of the latter, and then determines p,; from

=2 (g, =0 for j£i. (6-7.5)
Similarly, to measure a coefficient ¢;;, one measures the charge
¢;; of the j-th conductor when all conductors except the i-th are

at zero potential, measures the potential ¢, of the latter, and determines
then ¢;; from

cﬁz% (¢, =0 for j=i). (6-7.6)

If Eq. (6-7.4) is written for each conductor explicitly, it becomes
a system of equations

1 = Py + Crape + 000+ L9,
gs = € P1 T+ CoaPa + * ** T+ Canpy (6-7.7)

qn = CuP1 + Cn2®P2 + T + ConPne

Adding these equations, we obtain

So- (oo (S (S0

The left side of this equation represents the total charge @ of the
system. The right side can be simplified by means of new coefficients,

n
k;, defined as k; = > ¢;;. We can write therefore

Q = kypy + kagp + + -+ + ke (6-7.8)

Solving this equation for the potential of the j-th conductor, we obtain

¥ = _k;'—l(kl(pl + koo + 0+ k@i + k@i
+... +kn(pn —Q)'

Finally, introducing new coefficients, k;,, defined as k;, = —k; 'k, we
obtain
= E, ko’z“Pi + k;lQ: (6‘7°9)
=1

where the prime on the summation sign is the ‘“‘exclusion symbol”
indicating that the term k,;¢; (for which j = ¢) must be excluded from
the sum. As one can see, the coefficients k;; depend only on the con-
figuration coefficients c¢,;;, and hence are themselves configuration
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coefficients. Therefore, once all the £’s for a given system of conductors
are known, the potential of any conductor can be calculated from
Eq. (6-7.9) if the potentials of the remaining conductors and the total
charge of the system are given.

The coefficients k;; can be either calculated or measured. To
measure a coefficient £;; when @ = 0, all conductors except the j-th
and the ¢-th are grounded, the potentials ¢; and ¢, are measured, and
the value of the coefficient is then determined from

k=Y (All ¢’s except ¢, and ¢, are zero). (6-7.10)

1
)

v

Example 6-7-1 Express the ¢ coefficients in terms of the p coefficients

for a system of two conductors.
For two conductors we have by Eq. (6-7.3)
= +
P1 = pudr + b129: (6-7.3)
P = P1q1 + P2ega.

Solving these equations simultaneously for ¢’s, we obtain

_ Do b1z
=7 PN—"37 P

b b
42=—zA2_l‘P1+A_u‘P2,

where

A = p11P92 — Parbre-

By Eq. (6-7.4), the expressions in front of ¢’s are the ¢ coefficients. We thus
have

b b _ Pa _ bhu
‘u="p > 2= T T T A G2 = A~
Example 6-7.2 Express the capacitance of a capacitor in terms of the

¢ coefficients.
Let the charges of the capacitor plates be ¢; = ¢ and ¢, = —¢. By
Eq. (6-7.7), we then have
g = tu@1 + C12¢s

—g = tnP1 + P
Solving these equations simultaneously for ¢, and ¢,, we obtain

Cop + C1p @5 = e+ oy
22 T 712 g = — —2 T 2

1= ’ .
C11622 — (12021 C11622 — Ci12len
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The voltage between the plates, Vy, = ¢ — ¢,, is then

+ 61p 1 ey + Co9

(=
1
Vlz =
C11fae — €12t

The capacitance, C = I i therefore

l”] 3
C— C1ifee — C1afy
L a2 T Rl 7 e a2

L

Example 6-7.3 Calculate the configuration coefficients p;;, ¢;;, and
k,; for two concentric spheres shown in Fig. 6.17.

Fic. 6.17 Calculation of configuration coeffi-
cients for two concentric spheres.

By Eq. (6-7.3), the potentials of the spheres are

91 = Puqr + hode
P2 = Paq1 + Do
Let the charge of the smaller sphere (sphere 1) be zero, and let the charge
of the larger sphere (sphere 2) be ¢g,. By Examples 5-2.1 and 6-2.1, the
92
4mregh’

1 1
P ey PR g

. Hence

potentials of the spheres are then ¢; = @, =

Now, let g, be zero, and let the charge of the smaller sphere be ¢,. By
Problem 5.26, the potentials are then

91 ’ ’ _ 4
(60" — ab” + ab), @y = e

¥1 = Greqabl’

Hence,
1

l r r Py T —
P = Gy BV = Ha)s pn =g

The ¢ coefficients can be obtained from the p coefficients with the aid of
equations derived in Example 6-7.1. Substituting the above values of p’s
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into these equations, we obtain

ab ab
¢y = 4w, g €1 = —4me, P —a’

ab ab
tg =—4mg, = Cog = 4—#80 + b’

The k coefficients can now be obtained from the ¢ coefficients. We have

ky =en + 6y =0, ky = €13 + e = 4megh’,
km=_f1L+_c22____oo, kn=_m=0.
n + 6y €12 + Cap

Example 6-7.4 The potential at a point P in the vicinity of two
conductors located near the surface of the earth is being measured by means
of a collector (probe) whose effect on the measured potential is negligible,
When conductor 2 is grounded and voltage V; = V] is applied to conductor
1, the voltmeter connected to the collector registers a voltage V). When
conductor 1 is grounded and voltage V, = V, is applied to conductor 2,
the voltmeter registers a voltage V_. What will be the potential at P for
arbitrary values of V; and V,?

Fic. 6.18 Once the potential at
a point near conductors 1 and 2
has been measured for two volt-

ages applied to the conductors, n
the potential at this point for all i
other voltages applied to the £ b

conductors can be calculated from
configuration coefficients.

———
[

14
|
H

In order to take into account the effect of the ground, we replace the
ground by two image conductors as shown in Fig. 6.18. The potential
@p at P, which is equal to the potential of the collector ¢, can be then
expressed, according to Eq. (6-7.9), as

Tp = P = Ik-‘:l Vl + kc2V2 + kcav:s + kc.q V«h

where V3 and Vj are the potentials of the images. By the symmetry of the
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problem, we see that V3 = —V; and V, = —V,. We have therefore
op = (ko1 — kea) Vi + (koo — kea) Vs,
and replacing the expressions in parenthesis by K; and K,, we obtain
pp = KiV; + K,V,.

Substituting in this equation the values of ¢p, V3, and V, given in the

problem, we have
Ve=K\Vi, V=KV,

so that
|24 1244
Kl - Vi ) K2 - 72:: .

For any values of V; and V,, the potential at P is therefore

VI VII
Yp = VI V + V//

ProBLEMS

6.1. One plate of a thin parallel-plate capacitor of plate separation d
is kept at the potential ¢ = 0, the other at ¢ = V. The capacitor contains
a space charge of density p = kx, where £ is a constant and x is the distance
from the plate with ¢ = 0. Find the potential distribution in the capacitor,
the electric field in the capacitor, and the surface charge density on the
inner surfaces of the plates.

6.2. A spherical capacitor consists of two concentric spherical shells
of radii a and b (a < b). The inner shell is kept at the potential ¢ = V, the
other at ¢ = 0. The space between the shells is filled with space charge of
density p = kr where £ is a constant, and r is the distance from the center.
Find the potential due to this system at all points of space and find the
surface charge density on the spheres.

6.3. Consider two very long thin-walled coaxial cylinders of radii a
and b (a < b). The inner cylinder is kept at the potential ¢ = V,, the outer
at ¢ = V,. The space between the cylinders contains a space charge of
density p = kr, where k is a constant and r is the distance from the axis.
Find the potential distribution between the cylinders and find the surface
charge density on the cylinders.

6.4. Two long coaxial cylindrical shells of radii a and 4 are kept at the
potentials V, and V,, respectively. Show that the potential at any point
between the shells is

In (7/a)

<P=Va+(Vb—Va)Wl“),

where r is the distance from the axis.
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6.5. Prove that the electrostatic potential cannot be a maximum or a
minimum in a charge-free region of space.
6.6. Prove that the Poisson integral

1 ex'sy's2")
@(x,9,2) = 7— f - 5 dv

T 4me,
All space
is a solution of Poisson’s equation
20 —
Vip = —ple,.

[Hint: In the vector identity (V-25) substitute @ for U;, — p/e, for V2U;,
and l/r for U,. Integrate (V-25) over all space excluding a small sphere of
radius a centered at the point x, y,z. Express the surface integral of ¢ over
the surface of the sphere as @,yerage * 4ma2. Let a approach zero.]

6.7. Show that the average value of the electrostatic potential ¢ on
any spherical surface is greater, equal to, or smaller than the value of ¢ at
the center of the surface, depending on whether this surface encloses a
charge distribution which is everywhere negative, zero, or positive. [Hint:
The average value of ¢ on a surface S is (§ ¢ dS)/S. Use the same pro-
cedure as in the preceding example, but integrate (V-25) over a sphere of
radius R excluding a small sphere of radius a at its center.]

6.8. (a) Prove Uniqueness Theorem A. (b) Prove Uniqueness
Theorem B. (c) Prove Uniqueness Theorem C.

6.9. Prove Uniqueness Theorem E.

6.10. Show that Rectangular Harmonics (H-1) and (H-2) given in
Table 6-I are solutions of Laplace’s equation.

6.11. Show that Cylindrical Harmonics (H-3) and Spherical Harmonics
(H-4) given in Table 6-I are solutions of Laplace’s equation.

6.12, A potential distribution on a spherical shell of radius a is given
by

p(0) = (iTé)an cos 0.

Prove that if all charge resides on this shell, the potential inside and outside

the shell is, respectively,
k—1
o(r, 0) = (m)Eor cos 6

and

k—1 ad cos 0
(p(r, 6) = (k i 2)E0 72 .

In these formulas £ and E are constants, and r and 6 are spherical coordinates
with the origin at the center of the shell.

6.13. A conducting cone of half-angle « is placed in a truncated,
hollow, conducting cone of inside half-angle 8. The cones are coaxial and
their apexes are at the same point of the axis. Neglecting end effects,
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show that if a voltage V is established between the cones, the electric field in
the space between them is (using the apex as the origin of coordinates)

v a ,3)]‘1
E = . G[IH (tan §) + In (cot 2 0,.

6.14. A conducting sphere carries a charge. A thin hemispherical
conducting shell concentric with the sphere is placed near the sphere. Find
how the presence of the shell alters the electric field of the sphere.

6.15. A small hemispherical bump of radius a is raised on the inner
surface of one plate of a thin parallel-plate capacitor of plate separation d.
(a) Find the potential distribution in the capacitor, if a voltage V is main-
tained between the plates. (b) Show that the total charge residing on the
bump is

g = 3meya® 7

6.16. A conducting sphere of radius a carrying a charge ¢ is placed in
an initially uniform field E. Find how the presence of the sphere alters the
field.

6.17. A long conducting cylinder of radius a carrying a charge of line
density 4 is placed in an initially uniform field E in such a manner that the
axis of the cylinder is normal to E. Neglecting end effects, find how the
presence of the cylinder alters the field.

6.18. Rectangular plates of a capacitor have separation d + a at one
edge and d — a at the other. The width of the plates (along parallel edges)
is b, the length is /. Neglecting edge effects, show that the capacitance is

b d+a

C=tgsnial a2

and show that for a < d it approaches the capacitance of a parallel plate
capacitor.

6.19. A spherical charge distribution of constant density p and radius a
has a spherical cavity of radius }a. The center of the cavity is at a distance
%a from the center of the sphere. Using axial expansion, find the potential
produced by this charge distribution at all points outside the sphere and
compare the result with that obtained from a direct calculation of the
potential.

6.20. Show that the potential of a thin, uniformly charged, circular
disk of radius @ and total charge ¢ can be expressed for r > a as

2
o(r, 0) = 7 l:l —#Pz(cos()) +-~~:|,

dmreyr

where 7 and 0 are spherical coordinates with the origin at the center of the
disk.
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6.21. Show that the quadrupole strength of the disk described in the
preceding problem is Q — —igat

6.22. Show that the potential of a line charge of density 4 and length
2a can be expressed for r > a as

Aa a? at
¢(r, 0) = Treqr Py(cos 0) + 33 Py(cos 0) + 54 Py(cos 0) + - --|,

where r and 6 are spherical coordinates with origin in the middle of the
line charge and having the line charge for the polar axis.

6.23. Prove that the images given in Table 6-1I for the first two
systems are correct.

6.24. Prove that the images given in Table 6-II far the last two
systems are correct.

6.25. A point charge ¢ is placed in front of a very large conducting
plane. Show that the charge of any portion of the plane is proportional to
the solid angle subtended by the area of this portion at the point where ¢
is located.

6.26. A point charge g is placed at a distance d from the center of a
grounded conducting sphere of radius a. Show that the ratio of the charge
induced on the part of the sphere visible from ¢ to that on the rest of the

sphere is 774
A/a’——a.

6.27. A region of uniform field E is produced midway between two
equal and opposite charges a great distance apart. Show by the method of
images that when a conducting sphere of radius a is placed in this region,
the potential around the sphere is
3

a

where r and 0 are spherical coordinates about the center of the sphere.
6.28. A point charge +g¢ is placed at a distance d from the center of
an uncharged conducting sphere of radius a. Show that the least positive
charge which must be given to the sphere so that the surface charge of the
sphere is everywhere positive is
, (3d —a)

R

)r cos 0,

6.29. A point charge ¢ is placed inside a spherical conducting shell
of radius a at a distance d from the center of the shell. Show that this charge
induces on the inner surface of the shell a surface charge of density

p 2 — d?
"~ 4ma (a® — 2ad cos 0 + d2)32°

where 6 is measured with respect to the symmetry axis of the system.

g =
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6.30. A quarter of a hollow conducting sphere is bounded by two
semi-infinite perpendicular diametral planes. Find the images of a charge
placed inside it.

6.31. A line charge of density 1 is placed inside a hollow conducting
circular tube of radius a at a distance / from the tube’s axis. Find the voltage
between the axis and the surface of the tube.

6.32. Neglecting end effects, show that the capacitance of a capacitor
formed by two parallel cylinders of length ! and radius a whose axes are
separated by a distance d(d > a) is

eyl

6.33. Consider a two-dimensional system of conductors where the
charge per unit length of each conductor is known, but the potentials of the
conductors are not known. How should one mark the equipotential lines
on a curvilinear square map of this system ?

6.34. (a) Using the method of curvilinear squares, determine the
capacitance per unit length of a transmission line formed by two equal
parallel ribbons (‘“‘parallel ribbon capacitor’’) whose width is 10 times larger
than the separation between them. (b) Compare the result with that
obtained from an analytical calculation.

6.35. (a) Using the method of curvilinear squares, determine the
capacitance per unit length of a cylindrical capacitor in which the radius of
the inner cylinder is 4 that of the outer one. (b) Check the result by means
of the formula obtained in Example 5-2.3.

6.36. Using the method of curvilinear squares, determine the capaci-
tance of the capacitor described in Problem 6.32 if dfla = 8; then check the
result by using the formula given in Problem 6.32.

6.37. Using the method of curvilinear squares, find the capacitance of
the capacitor described in Problem 6.18 if a/d = } and //a = 2; then check
the result by using the formula given in Problem 6.18.

6.38." Consider a system of n conductors whose initial charges and poten-

tials are, respectively, ¢,, ¢,, - - -, ¢, and @, ¢,, - * *, @,. Let these charges
be replaced with new ones, so that charges and potentials of the conductors
are now gy, ¢35, - - -, gnand @y, @y, - - -, @,. Show that the charges and the

potentials satisfy the relation
299 =24;%;

(this relation is called ‘‘Green’s reciprocation theorem’’). [Hint: let the initial
potential at some point in space be ¢, let the new potential at the same point
be ¢, apply Green’s second theorem (V-25) to these potentials.]

6.39. A point charge ¢ is placed at a distance d from the center of a ground-
ed conducting sphere of radius a. Using Green’s reciprocation theorem (Prob-
lem 6.38), show that this charge induces a charge ¢’ = - ga/d on the sphere.

[Hint: (1) assume that the sphere carries a charge ¢ and that the point charge
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is zero, (2) find the potential that the sphere produces on its surface and at
the location of the point charge, (3) ground the sphere and restore the point
charge, (4) use Green’s reciprocation theorem.]

6.40. A point charge ¢ is placed between the plates of a parallel-plate
capacitor at a distance a from one plate and & from the other. Both plates are
grounded. Show that the charges induced on the two plates are
g, = — gqal(a + b)and g, = — gb/(a + b). (Hint: use the method outlined
in Problem 6.39.)

6.41.* Show that the configuration coefficients for a thin parallel-plate
capacitor of plate separation d and area S are

d
b2 = — g8 = po1» P22 =0 = py;,
2¢,8
‘12:__;‘3521 11 = 0 = cg,
and
kg = —1 = ky. !

6.42.* Using the ¢ coefficients given in the preceding problem, show
that the capacitance of the capacitor described in that problem is

S
CZEOE.

6.43* Two charged conductors whose capacitances are C; and C,,
respectively, are separated by a distance d which is so large that each
conductor may be regarded as a point charge from the location of the other.
Show that the ¢ coefficients are

_ (4med)*Cy
U= (dregd)2 — C,C,

- (47T£0d)202
22 = (regd)® — C,Cy°

_ 4megdCiCy
T T megd)? — GGy ™

6.44* When the two conductors of the preceding problem carry the
charges ¢ and —g, respectively, the potential of conductor 1 is found to be
@1 = Vi Show that the potential of the second conductor is

 (4med — GG v
2= 7 lamegd — CC, | O

* This problem is based on the material presented in Section 6-7.
1 We are using here ¢, = 0, as usual.



ENERGY AND FORCE
RELATIONS IN THE
ELECTROSTATIC FIELD
IN VACUUM

An electrostatic field is a carrier of electrostatic energy. Like
any other form of energy, electrostatic energy satisfies the principle of
conservation, according to which energy can be transformed from one
form to another but can never be destroyed or created. In this chapter
we shall study various energy relations in electrostatic fields, after
which, using the principle of conservation of energy, we shall study force
relations in electrostatic systems.

7-1. The Energy of an Electrostatic Field

Look at the lines-of-force picture of the electric field between a
charged eclectric pendulum and a conducting plate (Fig. 7.1a). The
picture is similar to that of a pendulum pulled to a plate by a set of
clastic strings or springs (Fig. 7.1b). This analogy led Faraday and
later Maxwell to the idea that an electric field could be regarded as an
clastic medium in a state of stress.” But then an electric field should be
a carrier of a definite amount of energy, justasa compressed or astretched
spring is. According to Maxwell’s views, the energy stored in an
electrostatic field should be

%
U= ?0 J. E%dy. (7-1.1a)
All space
! Tension along the lines of force combined with pressure in perpendicular

directions.

186
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This equation has been found to be in complete agreement with
all presently known phenomena involving energy and force relations
in electrostatic fields. What is more, all such relations have been found
to be derivable from this equation, and no equation for the energy of
an electrostatic field (in vacuum) more general than this one has been
discovered. Therefore Eq. (7-1.1a) is considered to represent the
fundamental electrostatic energy law.

(a) (b)

Fic. 7.1 (a) Lines-of-force picture for a charged electric pendulum near a
conducting plate. The picture suggests that there is tension along the lines
of force combined with pressure in perpendicular directions. (b) The effect
of the electric field is similar to that of elastic springs.

Since in vacuum gE = D, this law is frequently written in the

symmetrical form
U= % f E .D dv. (7-1.1)

All space

This law is sometimes written also in the differential form -

U, = %E .D, (7-1.2)
where U, is the energy density of the electrostatic field, defined as the
ratio of the energy which may be associated with a differential element
of the field to the volume of this element.

The symbol ° in Egs. (7-1.1a), (7-1.1), and (7-1.2) stands for a
constant of proportionality, which we shall call the energy constant.
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The value of this constant is

o l[kg -m?2- sec‘?'jl B 1[ newton * m ]
- volt -amp J  Lvolt - amp - sec]’

The size of the units of current and voltage in the mksva system has
been defined by international agreement so that the magnitude of the
energy constant is one.! Therefore this constant is usually omitted from
the equations where it should normally occur. Since the energy constant
is not dimensionless, however, the equations from which it is omitted
become dimensionally inhomogeneous. To remedy the situation, the
dimensions [force - length] are then regarded as being equivalent to
the dimensions [voltage - current - time].

v

Example 7-1.1 Find the electrostatic energy associated with a uniform
spherical charge distribution of total charge ¢ and radius a.
The electric field of this distribution is (see Example 4-4.1)

qr
E»_El—‘}eoa3 forr <a
q
E=E, = Treg? forr > a.

Since the field is radially symmetric, the volume element in Eq. (7-1.1a)
may be expressed as dv = 4#r2dr, so that the energy is

‘¢ ‘& [ Y
U = —-Q—szdU = ?foEf4ﬂ72dr + ‘?fa E224‘1772d1‘,

°l o %2 °l f° g2
= _ — 2 41 — —_ 2
2 f o 167%¢ya® dmridr 4 2 f o 1672, dmrtdr

°q® °q?

40meqa  8mega’

or
_ 3¢
207rega
Example 7-1.2 Find the electrostatic energy of a uniformly charged

spherical shell of total charge ¢ and radius a.

1 According to this agreement these relations must hold exactly:
° =1 [kg - m2-sec™®/volt -amp] and g, = 4= - 107 [volt - sec/amp - m],

where u, is a constant defined in Section 10.4.
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The electric field of the shell is
E=0 forr < a,

q
E=—"_
ey forr > a.

The energy is therefore
o °] [ qz
U = _£Q E2d = — —t 2
2 f T3 f , Tomtegh Tmrodr,
or
= oq2 -
8mega

7-2. Energy in Terms of Charge Distribution

The fundamental energy law (7-1.1) can be transformed into
various special forms which frequently are more convenient to use than
the original expression itself. One of the most important special forms
of the energy law is the equation representing the energy of the electro-
static field in terms of the charge distribution producing this field. It
may be obtained as follows.

Substituting E = — Vg into Eq. (7-1.1) and omitting for brevity
the subscripts “‘all space” on the integrals, we have,

o °]
UzifE‘de = — §jV(p-de.

Using the vector identity (V-4), which may be written as
V.(¢D)=¢V-D + Vg -D,

or
Vp-D = V. (¢D) — ¢V -D,
we obtain

U= — %fv - (¢D) dv + %J(pv - D dv.

Changing the first integral in this expression into a surface integral by
means of Gauss’s theorem and substituting V -D = p in the second
integral, we obtain

°1 °1
where the surface integral is extended over the surface enclosing all
space. However, since the charge distributions with which we deal in
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physics are confined to a finite region of space, this surface integral is
zero, as can be seen from the following consideration. Suppose that the
average distance from the charge-filled region to the surface of inte-
gration is R. The area of the surface is then proportional to R2
Since R is much larger than the dimensions of the charge-filled region,
this region may be regarded as a single point charge when viewed from
this surface, so that ¢ and D may be regarded as point charge potential
and point charge field. The integrand is then proportional to 1/R? and
the integral is proportional to (1/R3) - R* = 1/R. Since R may be
assumed as large as one pleases, the integral can be made as small as
one pleases and in the limit may be set equal to zero. Therefore we
finally obtain

= §J(pp dv. (7-2.1)

This equation can be written in an alternative form by expressing
the potential ¢ in terms of the charge distribution p. Replacing ¢ in
q. (7-2.1) by the Poisson integral (5-3.1) (with ¢, = 0), we obtain

U= 2f (f‘!msor dv)dv = QIPI( 4’"50712 dvz)dvl,

P1P2
81730 ff " dv,dv,, (7-2.2)

where r,, is the distance between any two charge elements dg, = p,dv,
and dg, = pydv, of the charge distribution under consideration, and
both integrals are extended over all space.

or

v

Example 7-2.1 Find the electrostatic energy of a uniformly charged
spherical shell of total charge ¢ and radius a by using Eq. (7-2.1) and
compare the result with that of Example 7-1.2.

The charge density in this distribution is ¢ = ¢/4ma? (surface charge).
The potential at 7 = a is ¢ = g/4mweza. Substituting these values into Eq.
(7-2.1) and replacing dv by dS, we have

°l Tf 9 4 °q
= = s = ~ as = ds
2 fﬁ 7 2 ff; 4ma® 4meqa 327%g4a® f#

P
8meqa

or

U:

The same result was obtained in Example 7-1.2.
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7-3. Energy of a System of Charge Distributions

Several special forms of the energy equation (7-1.1) can be
obtained for the electrostatic energy associated with a system of discrete
charge distributions.

Let us consider a system of charge distributions consisting of =
separate charge-filled regions. Taking into account that the charge
density outside the charge-filled regions is zero, we can write Eq. (7-2.1)
for this system as

v =33 npdo, (7-5.1)

where ¢; and p; are the potential and the charge density within the
i-th charge-filled region, and v, is the volume of this region.

Each potential ¢; in Eq. (7-3.1) may be regarded as the sum of
two potentials o= ¢ + @
where ¢ is the “internal” potential due to the charge contained in the
i-th charge-filled region itself, while ¢ is the ‘“‘external” potential due
to the charges contained in all other charge-filled regions of the system.
Substituting these potentials into Eq. (7-3.1), we have

01 01
=3 Zf¢;fp,»dv,~ + 3 Zf P, (7-3.2)

Since all ¢/ and p; depend only on the internal distribution of
charge in the charge-filled regions, the first term on the right in Eq.
(7-3.2) represents the internal energy, or the self energy, of the individual
charge distributions comprising the system under consideration. This
term is different from zero even if the system consists of only one single
charge distribution, in which case it simply reduces to Eq. (7-2.1). On
the other hand, since ¢, depends on the mutual configuration of all
charge distributions, the last term in Eq. (7-3.2) represents the mutual
energy, or the inferaction energy, of these distributions. This term is
different from zero only if there are two or more discrete charge
distributions in the system, since ¢; by definition is zero otherwise.

Thus the energy of a system of discrete charge distributions can
be expressed as the sum of the self energy, U,, and the interaction
energy, U’, of these distributions.

Using the symbol U, for the self energy, we can write Eq. (7-3.2)
in the simpler form

°l
U =33 [sipio, + U, (3.9
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The self energy of a charge distribution may change as a result of a
rearrangement of charges within the distribution when the positions of
neighboring charge distributions change. This must be taken into
account when determining the assembly work—that is, the work trequired
to set up a given system of charge distributions. If the self energy is
independent of the configuration of the system, the assembly work is
equal to the increment of interaction energy, but in general it is equal to
the increment of the total electrostatic energy brought about in setting
up the system.

Energy of a System of Point Charges. The last equation can be further
simplified if the system of charge distributions under consideration can
be regarded as a system of point charges—that is, if the linear dimensions
of the charge-filled regions are much smaller than the distances between
them. In this case the variation of the external potential inside the
charge-filled regions is negligible. The external potential may then be
considered constant throughout each of these regions, and ¢; may be
factored out from under the integral sign giving

f‘P;‘Pid”t = ¢£indvi = 945

where ¢; is the total charge of the i-th region, or the ¢-th point charge.
Therefore for a system of point charges the energy equation (7-3.3)
reduces to

(e}

1
U=352¢g + Us (7-3.4)

This equation can be written in an alternative form by also
expressing ¢, in terms of the charges. Since ¢ represents the sum of
Coulomb’s potentials produced at the position of the charge ¢, by all
other charges of the system, we have

' ’ qk
$: = % drmegry’
where the prime on the summation sign indicates that the term in
which the summation index £ is equal to i is excluded from the sum.
Substituting this expression into Eq. (7-3.4), we obtain

_ ! 99k :
U= Z z 4ﬂ80r1k + U, (7-3.5)
In the majority of problems in electrostatics, the self energy of a
system of point charges may be considered unaffected by the phenomena
taking place in or outside the system. For this reason U, is usually left
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out of Eq. (7-3.5), and the interaction energy of a system of point
charges is referred to as “the energy” of the system.

v

Example 7-3.1 Show that the self energy of discrete charge distribu-
tions is always larger than their interaction energy.

Let us consider a system of only two charge distributions. The total
electrostatic energy of this system is, by the energy law (7-1.1a),

= f E2dy.
The field vector E in this equation can be expressed as the sum of two vectors
E=E, +E,,

where E; represents the field due to the first charge distribution, and E,
represents the field due to the second charge distribution. Since

E? = (B, + Eyp) - (B, + Ey) = E] + E5 + 2E, - E,,

we have
U= -28—0 f Edy + %’ f E2dy + %’ f 9K, - Eydb. (7-3.6)

The first term on the right in this equation depends only on the field pro-
duced by the first charge distribution, and the second term depends only on
the field produced by the second charge distribution; these two terms
represent therefore the self energy Uy, and Uy, of the two distributions. The
last term, however, depends on both fields and, consequently, represents
the mutual, or the interaction, energy U’ of these charge distributions.
Now, since the square of a real quantity cannot be smaller than zero, we
have

(E, —E,)-(E, —E;) >0,

so that for any E, and E,
E? + E} > 2E, - E,.

Substituting this correlation into the integrals of Eq. (7-3.6), we obtain
Usl + Us2 = U’:

where the equality sign applies only if E; and E, are everywhere equal to
each other. This, however, is possible only if the two charge distributions
overlap, and therefore the self energy of two discrete charge distributions is
always larger than their interaction energy. By induction, the self energy
of any number of discrete charge distributions is then always larger than
their interaction energy.

Example 7-3.2 Find the interaction energy of two point charges ¢,
and g, separated by a distance d.
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Using- the energy equation (7-3.5), we have

, 0 y 9k °l qig, ‘1 g4
U=3 ; g dmegry  24megry, | 24megrsy

or

Example 7-3.3 Find the total electrostatic energy of a point charge ¢
and an infinitely large, conducting plane at a distance a from g, if the self
energy of g is Ul,.

The total energy of this system may be expressed, according to Eq.
(7-3.2), as

° °] °]
U=U, + §f¢10 as + ’fopia S + 5 #2495

where ¢} is the potential produced by the induced surface charge o at the
points of the surface of the conducting plane, ¢; is the potential produced
by the charge ¢ at these points, and g, is the potential produced by ¢ at the
location of ¢. Since the plane is infinitely large and conducting, the total
potential at any point of it must be zero, so that

¢+ e=0

The sum of the two integrals in the above energy expression is therefore

zero, and we obtain
o

1
U= Usq + E(péq

The potential @; can be found by replacing the conducting plane by the
image charge —gq at the distance a behind the position of the plane (see
Section 6-5). The final expression for the energy is then

°,2

q
167eqa

U= — + U,,

Note that this energy is not equal to the energy of the point charge and its
image.
A

7-4. Energy of a Charge Distribution in an External Field

It is often necessary to know the energy associated with a single
charge distribution due to the presence of an external electrostatic
field at the location of this charge distribution. This energy can be
found in the following manner.
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Let p be some charge distribution and let p’ be the charge dis-
tribution which produces the external field at the location of p. Let the
field produced by p be E, and that produced by p’ be E’.

The interaction energy of these charge distributions is, by Eq.
(7-3.6),

U = °eofE - E'dv.

Substituting in this equation E' = — V¢’ and ¢E = D, and repeating
the transformations employed in Section 7-2, we obtain for U’
U = fpcp'do. (7-4.1)

Since the integral in this equation depends only on the charge
distribution p and the external potential ¢’, the equation may be
interpreted as representing the energy associated with the charge
distribution due to the presence of the external field, or, as one usually
says, the energy of the charge distribution in the external field. Note
that, as it follows from the derivation, this energy is the same as the
mutual, or interaction, energy of the charge distribution p and the
charge distribution p’ which produces the external field at the location
of p.

If the charge distribution in Eq. (7-4.1) can be regarded as a point
charge, ¢’ can be factored out from under the integral sign, and since
fp dv = ¢, the energy of a point charge in an external field is

U = °¢'. (7-4.2)

In conclusion, it may be added that if the charge distribution p
and the potential ¢’ in Eq. (7-4.1) can be subdivided into partial
charge distributions and partial potentials, then the energy U’ can be
expressed as the sum of partial energies, each corresponding to the
product of one partial potential and one partial charge distribution
(see Example 7-4.2).

v

Example 7-4.1 Find the electrostatic interaction energy of two thin,
interpenetrating spherical shells of radii @ and b formed by the uniformly
distributed charges ¢, and g, respectively (Fig. 7.2).

The interaction energy of any two charge distributions is equal to the
energy of one distribution in the field of the other and can be found therefore
from Eq. (7-4.1). Furthermore, since the two shells are thin, we can replace
in this equation the volume charge density p and the volume integral by the
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Fic. 7.2 Calculation of interaction energy for interpenetrating charged
spherical shells.

surface charge density ¢ and the corresponding surface integral. Applying
Eq. (7-4.1) to the shell b and using the relation p,dv, = 6,dS,, we then have

U' = QJ‘Pn‘P;dUb =° § G, @, dS,
and, substituting o, = ¢,[/4mb?,
. g
U'= n ;2§ PpdSss

where g} is the potential produced by the charge of the shell @ at the points
of the shell &, and S, is the surface area of the shell 4. The potential ¢}, is

99”:475,,:2’ "Sa:
;. A
‘pb_‘:"ﬂfof’ i v

Taking an infinitesimal ring as the surface element 4S,, we have, according

to Fig. 7.2,
dS, = 2mb*sin 0 d0,

o ]
() ° g, 2
= 4:762(.[. dmreqa daib

and, since by the law of cosines

so that

sin 0 dﬁ) ;

r =Vb2 + d® — 2bd cos 0,
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we obtain
°guduf! [%. ” sin 0 d6
U’=L(—J. sin 0 df + )
8meg\a Jo 0 Vb2 + d® — 2bd cos 0
_ 90 __lcosan°+l\/52+d2—25dcosﬂ'
817'80 a 0 bd Bg '

Using the law of cosines once more, we have

d? 4+ 52 — a?

T

and, substituting this expression into the last equation, we finally obtain
after elementary simplifications (fora + b > d = a — b)

% —16:;:;bd [4ab — (a + b — d)2).

Example 7-4.2 An idealized electrostatic model of an atom may be
imagined as a point charge ¢ (nucleus) located at the center of a thin
spherical shell (electronic shell) formed by a uniformly distributed charge
—¢q. Using this model, find the interaction energy of two identical atoms
at different internuclear separations and estimate the upper limit of the
dissociation energy for a diatomic molecule formed by these atoms.!

(a) (b)

Fic. 7.3 Interaction between two atoms according to electrostatic model:
(a) attraction, (b) repulsion.

Since outside the shell the field of each “atom” is zero, we have by
Eq. (7-4.1) for d > 2a, with d and a as shown in Fig. 7.3, U’ = 0.

When the shells penetrate each other so that a << d < 2a, as shown in
Fig. 7.3a, the interaction energy may be calculated by adding the following
partial energies:

(1) The interaction energy of the two shells, which by the preceding
example is
Oqz

b = s

[4a® — (22 — d)?].

! Oleg D. Jefimenko ‘‘Semiclassical Model of Atomic Interactions,”’ Journal of
Chemical Physics 37, 2125 (1962).
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(2) The interaction energy of the two nuclei, which by Example 7-3.2 is

0q2
Up = 4mreyd ”

(3) and (4) The interaction energies of the nucleus of one atom and
the shell of the other atom; since the potential produced by a uniformly
charged spherical shell outside itself is the same as if the charge of the shell
were concentrated at its center, these energies are

Oq2
T dmed”

?

Ug = — 4mregd’ Ui =

The negative sign is here because of the negative charge on the shell.
The total interaction energy is therefore

U' = Uj+ U + Uj + Uj
o 2

c = [40* — (20 — d)? + 4a* — 4@ — 4a7),

= 16me,

or
02

q

U=~ 167gga®d

(2a — d)2
When the penetration is such that d < a, as shown in Fig. 7.3b, the
energy again may be calculated by adding partial energies. In this case the

energies U] and U, are the same as for a < d < 2a, but the energies U; and
U, are different; since the potential produced by each shell inside itself is

p=— , these energies, by Eq. (7-4.2), are
4meqa
R , ¢
Us = 4meqa’ Ui = dmega ’

The total interaction energy is then

U' = U] + U+ U, + U

_ P e — d)2 2 _ —
= T6megatd [4a (2a — d)? 4 4a® — 4ad — 4ad],
or
0q2
(N S Y 2
U [6meqad [8a (2a + d)?].

The dissociation energy is the energy that must be delivered to a
molecule in order to completely separate the atoms comprising the molecule.
The lowest interaction energy for the molecular model under consideration
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Fic. 7.4 Potential curve of a diatomic
molecule according to electrostatic
model (dashed curve represents an
interaction between two atoms in a

repulsive state, as explained in Problem
7.9).

is seen, by inspection, to occur when d = ¢ and, according to the last

equation, is
°,2
R
167rega

Umin =

Since the interaction energy of the two separated atoms is zero (U’ = 0 for
d > 2a), the upper limit of the dissociation energy is

oqz
167eqa ”

Ud=0_Umin:

The potential curve (the plot of U’ against the internuclear separation)
for this molecular model is shown in Fig. 7.4.

A

7-5. Energy of a Dipole in an External Field

Consider a dipole consisting of two point charges +¢ and —gq
separated by a small distance represented by the vector Al directed
from —g to +¢. Let this dipole be located in an external field E’.
The energies of the two charges in the field E’ are, by Eq. (7-4.2),

U, =%¢, and Ul = —%¢.,

where ¢, and ¢’ represent the potential of the external field at the
location of the positive and negative charge, respectively. The energy
of the dipole in the external field is the sum of the energies of the two
charges in this field, or

U =9, —q9_ = °q(¢", — ¢.).
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Now, the quantity in parentheses can be written as

¢, — ¢ =A¢ =A1.V¢p' = —Al.E,
so that
U = —°¢Al . E'.

But ¢Al is the dipole moment of the dipole, p. Therefore we obtain
for the energy of a dipole in an external field

U = —°p-E. (7-5.1)
v

Example 7-5.1 Show that the interaction energy of two dipoles p, and
P. separated by a distance r can be expressed as

U — °[p1 Py — 3(ry - P(r, Pz)} _

3
degr

According to Eq. (5-1.1), Eq. (5-4.10d), and vector identity (V-1), the
field produced by the dipole p, at the location of the dipole p; is

E = _V Pa-r _3ru<p2.r) _V(p2.r)
dmegrs] T dmegrt 4mregrd

. 3ru(P2 * ru) _ V(P2 ° l‘)

= 3
47y

b

which, if vector identity (V-2) is applied to the last product,! and (p, - V)r
is replaced by p, (see Problem 2.25), becomes

b eper) —py
4mreyrd '

The substitution of this expression into Eq. (7-5.1) yields the above ex-
pression for the energy of the two dipoles after p is replaced by p,.

A

7-6. Energy of a System of Charged Conductors

Special forms of the energy law (7-1.1) are also often used for the
calculation of the electrostatic energy of a system of charged conductors.

Let us consider a system of » mutually external conductors in a
charge-free space, and let us use the symbols S, ¢,, and ¢, to designate
the surface, the potential, and the total charge of the i-th conductor.
Taking into account that under electrostatic conditions each conductor
represents a region of constant potential, so that there is no electric

1Observe that p,x VX r =0 because Vxr =0; (r-V)p, =0 and
r x V x p, = 0 because P, is a constant vector rather than a variable vector point
function.
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field inside conductors, we can write for the electrostatic energy of this
system

U=% f E-Dd,

External space

where the integration is extended only over the space surrounding the
conductors. Substituting E = — V¢ and using the vector identity
(V-4), we have, as in Section 7-2,

o

U= — z|V.(@D)dv + %f{pVode.

Since there is no charge in the space surrounding the conductors,
V.D =0, and the last integral in this expression vanishes. The
remaining integral can be transformed with the aid of Gauss’s theorem
into n + 1 surface integrals: one integral over the surface enclosing
all space, and one integral over the surface of each conductor (all these
surfaces form the boundaries of the volume of integration). As in
Section 7-2, the surface integral over the surface enclosing all space
vanishes, and we obtain

°] °1
U = —§Zf¢piD-dS;=§Z‘(£%D‘dsn

where d8; is the surface element vector directed out of the volume of
integration and therefore into the conductors, while d8; is the surface
clement vector in the opposite direction—that is, out of the conductors.
Since the potential is constant on the surface of each conductor, ¢, can
be factored out from under the integral sign, so that

°1
:§Z‘Pz‘§n‘dsi-

The surface integral in this expression is, according to Gauss’s law
(4-4.2a), equal to the total charge ¢, of the i-th conductor. We obtain
therefore for the energy of a system of charged conductors

°1
U= 9 Z‘Pt%’- (7-6.1)

This formula represents the fotal energy of a system of charged conductors
and should not be confused with the similar expression in Eq. (7-3.4)
representing the interaction energy of a system of point charges.

An important special case of systems of charged conductors is the
system of two oppositely charged conductors, or a capacitor. Let us
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apply Eq. (7-6.1) to a capacitor formed by two arbitrarily shaped,
mutually external conductors carrying charges ¢ and —q (Fig. 7.5).
We obtain

°1 g | L | °1
U = 5‘?’191 + ‘i?’z‘h = 5?’1? S §‘¥’2?s

or

U= 5?(% — Qo).

Fic. 7.5 Calculation of the energy of a capacitor.

Since the potential difference ¢, — g, is equal to the voltage V between
the two conductors, the energy of the capacitor is simply

U= %qV. (7-6.2)

This formula can be expressed in two alternative forms by using the
capacitance C of the capacitor: since C = ¢/V, we have

i |

U= -2—CV2 (7-6.3)
and
DI q2
e S 7-6.4
u 26" (76.4)
v

Example 7-6.1 Two capacitors of capacitances C; and C, carrying
charges ¢, and g,, respectively, are connected in parallel. A spark appears
when the connection is made. Find the energy dissipated by this spark if
no other energy dissipation is taking place.
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The total electrostatic energy of the two capacitors before connection is,

by Eq. (7-6.4),
Upefore =°l qi o'l' ig' .
2G,  2G,

Since the total capacitance of the two capacitors connected in parallel is
equal to the sum of the individual capacitances and since the total charge
after connection is equal to the sum of the original charges, the electrostatic
energy after connection is
°L (g, + 45)?
2 G,+GC, -

By the principle of conservation of energy, the energy lost in the spark is then

°1gt °l1q °l (g + g5)?

2C¢, T30, 2°C +G,°

Uafter -

Uspark = Ub - Ua =

which after simplification becomes

°(Cg2 — Coqy)?
2G,G(C, + Gy)

Uspark =

7-7. Correlation between Electrostatic Energy and

Electrostatic Force

With the aid of Eq. (7-4.1) and the principle of conservation of
energy we shall now determine the electric force which a charge dis-
tribution experiences in an electrostatic field.

Let us consider an arbitrary charge distribution p placed in an
external electrostatic field produced by a charge distribution p’. The
total energy of this system consists of the following components:

(1) The electrostatic energy U of the charge distributions.

(2) The energy W of the mechanical devices keeping the
charge distributions in place (a charge distribution cannot be in a
state of stable equilibrium under the action of electrostatic forces
alone?).

The principle of conservation of energy requires that the total
energy of this system always remains the same, so that

d
S+ W) =0,

or

dU + dW = 0.

1 This statement is known as the “Earnshaw theorem.’’
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Suppose now that under the action of the electrostatic force F,
the whole charge distribution p undergoes a small virtual displacement
(translation) d1 and that the density of p and of p’ is not allowed to
change during the displacement. In this case the self energies of the
charge distributions will not change, so that dU = dU’, where U’ is
the mutual energy of the two charge distributions. We then have from
the last equation for the increment in the mechanical energy

dW = _dUIp=CODStaﬂt = _’dU,lp=constant

(for simplicity, we are writing p = constant instead of p = constant
and p’ = constant). The increment in the mechanical energy is,
however, equal to the work F - dl done by the electric force F in dis-
placing the charge distribution along 41, so that we obtain

F-dl = —dU'|

Now, for constant p and p’, constant orientation of p and p’, and
constant position of p’, there corresponds a definite value of U’ to every
position of p. Therefore the energy increment dU’ associated with the
displacement dl can be expressed in terms of the gradient of the energy
field determined by U’:

AU’ = VU’ - dl |

p=constant®

p=constant*®

We thus have
F.dl = —VU'-dl|

p=constant?’

and since this correlation does not depend on the direction of 4l (it
holds for any dl whatsoever), we obtain

F—=—VU| (7-7.1)

p=constant*

From this formula the electrostatic force experienced by a charge
distribution in an external field can be determined if the energy of this
distribution at different points of the external field is known.

In the same manner the torque experienced by a charge dis-
tribution can be obtained by considering the work dW associated with

an angular displacement df of a charge distribution. Since dW =
Tyl = —dU = —(0U|00)d0, we have

_w
00 ’

p=constant

Ty, = (7-7.2)
where T, is the torque with respect to an axis normal to the plane in
which 0 is measured.

Since dU’" = dU if p and p’ are kept constant, Egs. (7-7.1) and
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(7-7.2) remain valid if instead of the interaction energy U’ the total
electrostatic energy U is used in them. We have therefore the alternative
equations

F = _VUlp=constant (7'7'13')
and
oUu
T, = — 7 (7-7.2a)

p=constant

For conductors, Egs. (7-7.1) and (7-7.2) can be written in a some-
what different form. Suppose, for simplicity, that we have only two
conductors carrying equal charges of opposite sign. Let one of the
conductors undergo a small displacement (translation) 4l under the
action of the electrostatic force, and let the charges of the conductors
remain constant. By Eq. (7-6.4), the energy of the systemis U = °} ¢?/C.
Since C is a function of geometrical relations only (see Sections 5-2 and
6-7), there corresponds a definite value of U to every position of the
displaced conductor. Therefore, repeating the transformations which
led to Eq. (7-7.1), we obtain for the force acting on the conductor

F=-VU lq:constant' (7'7'3)
By Eq. (7-6.3), however, U can be expressed also as U = °} CV?, where

V is the voltage between the two conductors. Now,

q2 V2 (1 )
= — L dC = — —dC = —d|=CV?
g=constant 202 dC 2 d d 2

V =constant

Therefore Eq. (7-7.3) is equivalent to
F=+VU lV=constant' (7-7.4)

As can be shown with the aid of Section 6-7, Eqgs. (7-7.3) and
(7-7.4) remain valid even if there are more than two conductors in the
system.

v
Example 7-7.1 A voltage V is applied to a parallel-plate capacitor of

area 4 and plate separation x. Find the force between the plates by using
Eq. (7-7.4) and Eq. (7-7.3).

Let us express the energy of the capacitor as a function of the voltage
V. We have

°1 °e °eo (V2 A
U= - |E-Ddv=-2|E2 =—°(-) A =g V2 —.
2f =g P 5T By
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By Eq. (7-7.4) the force is then

o 24
F=+VU &V

14 2)(2

An alternative expression for the energy is
°l °1 °l °l [q\2 °l (q?
U=- |E-Ddv=— | D%y = — 2A=—(—) A=—-(—) ,
2f Y 280f ’ 2800x 2¢4 \4 g 2¢4 \4 ¥
where ¢ is the charge of the capacitor. By Eq. (7-7.3) the force is then
— i i
e 2644
But ¢2/¢qd = (¢%/egA2)A = (0?%eq)A = [(eoE)3[eo]lA = £4(V/x)%4, and the

two expressions for F are equal.

= —-VU

Example 7-7.2 Find the force between the two model atoms of Example
7-4.2 for different internuclear separations .

For r > 2a we have from Example 7-4.2 U’ = 0, so that, by Eq. (7-7.1),
F=0.

For a <r < 2a we obtain, using the expression for U’ found in
Example 7-4.2 and substituting r for d,

0,2

—vl—7 — )2
F= V[16760ﬂ2f (2a =7) ]

0 2
= 56;[_(1____ (2a — ,)2]1.“’

167 eqa®r

which upon differentiation becomes
o 2
q

F=- 167eya?r?

(4a® — )r,,.
Since 7 in this case is always smaller than 2a, this force is always directed
toward the origin and thus represents an attraction.

For r < a we similarly have

vl g :
F = V{16w30a2r [8a (2a + 1) ]}
d °q?
— 27 18— 2
- or {leeoazr [8a® — (22 + 1) ]} T
which upon differentiation becomes

IR Y
F=+ 167 e4a%r? (4a® + 7)r,.

This force is always directed from the origin and therefore represents a
repulsion.
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Example 7-7.3 Find the force between the two charged shells of
Example 7-4.1.

Using Eq. (7-7.1) and the energy U’ found in Example 7-4.1, we obtain,
after substituting r for 4,

ol %, o
F= V{lﬁﬂ%abr[‘}ab (a+b r)]}

A 2
T or |16megabr

which after differentiation and simplification becomes

[4ab — (a + b — r)g]}ru,

B S
E= 16mwe abr® [ (@ — 8)%]r,.

If both shells are of the same radius a, this expression reduces to

I
T 16mega® ©

Thus two equal, uniformly charged, interpenetrating shells repel each other
with a force which is independent of the amount of interpenetration.

A

7-8. Force Experienced by a Charge Distribution in an
Electrostatic Field

Combining Egs. (7-7.1) and (7-4.1), we can obtain an explicit
equation for the force experienced by a charge distribution in an
electrostatic field.

Let us express the energy U’ of an arbitrary charge distribution
in an external electrostatic field E’ as a function of points in space.
We can do this by using two systems of coordinates: &, %, { and
%, 9, z, shown in Fig. 7.6. The first system is “frozen” in the charge

v

=

Fic. 7.6 Calculation of the force
acting on a charge distribution in
an external field. z
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distribution, and the origin of this system is located at the point x, y, z of
the second system. We can then write Eq. (7-4.1) as

U5, 2) = [pl&m, D9/ + 7 4+ 2 + D

where dr is a volume element in the system &, 5, {. Applying Eq.
(7-7.1) to this expression and taking into account that V in Eq. (7-7.1)
operates upon the variables x, y, z only, we have

F=-VU lp=constant = - J‘P(‘)S) uB Z) V[(p'(x +&y+nz+ Z)]d‘r

But
—Vig'x+&y+tnz+ ]=E@Ex+ &+ 2+ )

and we obtain therefore

F:jﬂamoﬁu+ay+mz+ow-

Changing this expression back to a single system of coordinates, we
finally obtain

F = f oK’ db. (7-8.1)

From this equation the force experienced by a charge distribution in
an external electrostatic field can be found by direct integration.
Since the self energy U, = °}fp¢"dr does not change if p is
kept constant, ¢’ in the above expression for VU’ can be replaced by
¢ = ¢ + ¢". Then one obtains E rather than E’ after taking the
gradient. An alternative equation for the force acting on a charge

distribution p is therefore

F— f JE do, (7-8.2)

where E is the total field at the location of p.

In the case of a surface charge distribution or a line charge
distribution, the charge element pdv may be replaced by odS or Adl,
respectively, and the volume integration may be changed to a surface
or line integration, accordingly.

If the charge distribution in Eq. (7-8.1) can be regarded as a point
charge, E’ may be factored out from under the integral sign, so that
the force experienced by a point charge in an electrostatic field is

F = °gE' (7-8.3)
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If the field E’ is itself produced by a point charge ¢, so that

!

O
dmeg? W
then
qu!
=———r 7-8.4
dmegrr ( )
where r is the distance between the two charges. This equation is
commonly known as Coulomb’s law, and the force represented by this
equation is known as Coulomb’s force.
In earlier presentations of electromagnetic theory, based on
mechanical basic measurables, Coulomb’s law in the form

F = 99 r,
2
was used for the definition of electric charge; Eq. (7-8.3) was then used

for the definition of electrostatic field; and Eq. (7-4.2) was used for
the definition of electrostatic potential.

v
Example 7-8.1 Find the force experienced by a thin, uniformly

charged rod of total charge ¢ and length 24 lying along the axis of a thin,

| ! o s
3 W9

Fig. 7.7 Calculation of the electric force acting on a charged rod placed
along the axis of a charged ring.

uniformly charged ring of radius a and total charge ¢’ (Fig. 7.7) and then
show that this force reduces to Coulomb’s force if the rod is sufficiently far
from the ring.
The field on the axis of the ring at a distance z from its center is,
according to Example 4-5.2,
i A8
drreg(@® + 22
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so that, by Eq. (7-8.1), the force is
I PO
F= kfp 4meg(a® + 22)372 @,

where p is the charge density of the rod. Since the rod is thin, we can
replace pdv by Adl = (¢/2d)dz. Denoting the distance between the center of
the rod and the center of the ring by z,, we then obtain

e qq’ zot+d z e qq’ 1 zo—d
F = k87T80d J;o—d (az + 22)3/2 dZ = k 81780d \/——02 + 22 zo+¢l’

or

" N R .
8megd|Va? + (zp — d)2  Va® + (z, + d)2]

If zy — d > a, we can neglect a in the radicals, so that in this case

_ °qq’ 1 1 %49 1 1
F= 8778(,(1(.20 —d  zy+ d)k - 87r£0z0a'(1 d d)k’

— 1_+__

Zy Z
and if z, > d, we have

or

which is Coulomb’s force.

7-9. Calculation of Electrostatic Force from

Charge Inhomogeneities

The force equation (7-8.1) can be written as
° °
F = f pE'dv + f pE’dv,
Boundary layer Interior

where the first integral is extended over the boundary layer of the
region occupied by p, and the second integral is extended over the
interior part of the region. The volume of the boundary layer may be
assumed as small as one pleases, so that, unless there is a surface charge
at the boundary, the contribution of the first integral may be assumed
equal to zero. We then have for the force

o

F = f pE'dy. (7-9.1)

Interior
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Let us now replace in Eq. (7-9.1) E" by —Vg¢’, and let us then
transform the integrand by means of the vector identity (V-1). We
have

F = f pE'dy = — f pVe'dv = f @' Vpdv — f V(pg')dv.

Interior Interior Interior Interior

o

If we now transform the last integral by means of the vector identity
(V-19), we obtain .

) o
F = f 'Vpdy — § p@'dS. (7-9.2)
Interior Boundary
The remarkable feature of this equation is that it correlates the force
with the potential ¢’ rather than with the field vector E’, and correlates
the force with the inhomogeneities of the charge distribution.l
In the case of a charge distribution of constant density, Eq. (7-9.2)
becomes especially simple. If p = constant, Vp = 0, and we obtain,
factoring out p from under the integral sign,

F=-% § ¢'dS. (7-9.3)
Boundary

Thus the electrostatic force acting on a constant charge distribution
confined to a finite region of space is completely determined by the
density of charge and the shape of the surface bounding this distribution.
The direction of the force is then determined solely by the orientation
of the surface elements, each surface element contributing to the force
only in the direction of its normal (inward normal because of the minus
in front of the integral).

v
Example 7-9.1 Using Eq. (7-9.3), find the force on the charged rod

described in Example 7-8.1.
Let the cross section area of the rod be S. By symmetry, only the end
surfaces of the rod contribute to the force, and since the rod is thin, Eq.

7-9.3) reduces to o ,
( ) F=— P(‘Pz,,+dS - ?’zo_ds)k’

where the subscripts indicate the location of the end surfaces. By Example
5-3.1, the potentials are

q
dmegVa® + (29 + d)?’

’ ’

. g
Pomt = eV E | (29 — d)F

’ —
(pzo+d -

! In this respect Eq. (7-9.2) is similar to Eq. (4-6.3). Note that Eq. (4-6.3) can
be derived by the method used for deriving Eq. (7-9.2). Note also that ¢ 'in Eqgs. (7-9.2)
and (7-9.3) can be replaced by ¢ (see Problem 7.30).
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The charge density of the rod is p = ¢/28d. Substituting these values in the
above equation for F, we obtain

F_ 97 [ 1 _ ] ]k.
BmedlVa + (20 —d)*  Va* + (2 +d)?
The same expression was obtained in Example 7-8.1.

Example 7-9.2 A point charge ¢’ is located at the center of a uniformly
charged hemispherical shell of inner radius a, outer radius b, and charge
density p (Fig. 7.8). Find the force exerted by the point charge on the shell.

Fic. 7.8 Calculation of the electric force
exerted by a point charge on a uniformly
charged hemispherical shell.

Using Eq. (7-9.3) and the notations shown in Fig. 7.8, we have for the
force acting on the shell

F = —°p§qy'ds
Boundary
= =ifp f ¢'dS —°p f ¢'dS —°p ¢'dS
Flat surface Hemisphere & Hemisphere b
b ’ r ’
S q cx o q jucae o q
= kp J; ey 2mrdr — °p e f ds — °p Py J. ds.

Hemisphere a Hemisphere b

The last two integrals are —ma%k and 7b%k, respectively (because §dS = 0
and [dS over the plane bases of the hemispheres is wa’k and —ub%k).
Integrating the first integral and simplifying, we therefore obtain

r

q
o (b —a)k

F=°p4
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7-10. Force and Torque Experienced by a Dipole in an
Electrostatic Field

Combining Egs. (7-7.1) and (7-5.1), we obtain for the force acting
upon a dipole of dipole moment p in an electrostatic field

’ !
F=-VU lp=constant = —-VU |p=constant

or

F =°V(p-E) (7-10.1)

p=constant*

This equation can be expressed in an alternative form by using
vector identity (V-2). Since V x E’ = 0 in an electrostatic field, and
since p = constant, we then obtain

F="°(p-V)E. (7-10.2)

Observe that the force acting on a dipole depends on the derivative
(rate of change) of the external field rather than on the field itself.
Therefore in a homogeneous field a dipole does not experience an
electric force. Note also that the differential operations indicated
in Egs. (7-10.1) and (7-10.2) must be performed in a rectangular
system of coordinates, because only then will the differentiation
correspond to a pure translation of the charge distribution forming
the dipole (see Section 7-7).

The torque acting on a dipole is, by Eqgs. (7-7.2) and (7-5.1),

°0 ) °0
T, = 20 (p-E) Y
where 0 is the angle between p and E. This equation can be written
simply as

(pE’ cos 0) = —°pE’ sin 6, (7-10.3)

p = constant

T =°p x E'. (7-10.4)

v
Example 7-10.1 Express Egs. (7-10.1) and (7-10.2) in scalar form.

Expanding Eq. (7-10.1), we obtain

oE, aE’ OE]
F_”xax ax+‘b"ax
.. OE; 0E, 8Ez’
Fv= b a}’ + Pu ay + pz a)’
F—c oE] oE, OE]
b5, T TP
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Expanding Eq. (7-10.2), we obtain

p oy OB o, OB o O
T P hy T
g, oy, OB o, OB, O,
pa: ax + Py + pz az

OE; 3 E’ OE;

F = Pac ax + Pz 0z

Example 7-10.2 A dipole of moment p is placed at a distance x from
a point charge ¢, so that p points directly toward ¢ (Fig. 7.9). Find the
force and the torque acting upon the dipole.

Y

q <—P

___% < p

Fic. 7.9 Calculation of the electric force acting on a dipole placed near a
point charge.
The electric field produced by the point charge is

B9 . __qbdt+ k)
T dmeg? v dmey(xE 497 + 222

Differentiating, we have

0E, 3q xy
dy  dmey (x4 9% + 22)502°
0E, 3q xz
0z 4rreg (x2 + 2 + 2%)5/2°

0E, ¢ l: 1 342 :|
Ox  4megL(x® + 92 + 22)32 (x4 2 4 22)5/2 )

For the point where the dipole is located, y = z = 0, so that

0B, OE;

o 0z
and

oF, q

Ox  2mex®”
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Since p = —p,i, so that p, = p, = 0, the force acting upon the dipole is,
by the preceding example,

F=- 2mepxd p-

Since E’, the torque is zero.
P q

A

7-11. Maxwell’s Stress Equation and Electrostatic Pressure

According to Section 7-8, the electric force experienced by a charge
distribution depends only on this charge distribution and the external
electrostatic field. But so does the total electrostatic field around a
charge distribution. It also depends only on this charge distribution
and the external field. It may be anticipated therefore that there
should be a correlation between the force acting on a charge distribution
and the total electric field in the surrounding space. Such a correlation
indeed exists and may be derived as follows.

Using vector identity (V-22) and taking into account that the
curl of an electrostatic field is always zero, we can write

080

%J(v ‘EEd = — ?fﬁEms + °805€ E(E.dS). (7-11.1)

Since ¢,V - E = V. D = p, we can rewrite this expression as
pr dy = — g’ fﬁ E2dS + °c, fﬁ E(E - dS). (7-11.2)

According to Eq. (7-8.2), however, the integral on the left represents the
electric force acting upon p. Thus we obtain for the electric force
acting upon a charge distribution in an electrostatic field

o
€9

F-=— 7fﬁEzafs + °80§E(E-dS), (7-11.3)

where the integrals are extended over a surface enclosing the region
occupied by the charge.

From Eq. (7-11.3) the force experienced by a charge distribution
can be determined if the total electrostatic field at the points of an
arbitrary surface enclosing the charge distribution is known. We shall
call this equation Maxwell’s stress equation for electric fields,and we shall call
the surface to which this equation is applied Maxwellian surface.

A remarkable aspect of Maxwell’s stress equation is that it shows
that the electric force acting on an electric charge may be attributed to
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the conditions (manifested as E) in the space around the charge, rather
than to the charge as such.

Although we obtained Maxwell’s stress equation by considering
a space charge distribution, the equation is also valid for a surface
charge distribution, a line charge distribution, and a point charge
distribution, which are merely the limiting cases of space charge dis-
tributions. This equation is valid also for a charge distribution carried
by a conducting body, because, as it follows from Section 7-8, the
electric force acting on a charge distribution does not depend on how
this distribution is supported.

Equation (7-11.3) is often written in a symmetric form

F=—%3EE-DdS+ §E(D.d5). (7-11.3a)

For the case of the electric force acting on a charged conductor,
Maxwell’s stress equation can be considerably simplified. Applying
Eq. (7-11.3) to the surface of the conductor and taking into account
that E on this surface is normal to it, so that E(E . dS) = E.EdS =
E2%4S, we have

F=— z;’iE%S + °g § E%S,
which gives
F = %—9 § E%dS, (7-11.4)
or
F =oé§E-DdS. (7-11.4a)

This equation suggests that the surface of a conductor in an electrostatic
field is subjected to the electrostatic pressure
°1
p=z-E-D (7-11.5)
2
producing a force on every element of the surface in the direction of
the outward normal.

v

Example 7-11.1 A conducting sphere of radius a consists of two
separate hemispheres in contact with each other. Find the force with which
one hemisphere is repelled from the other when the sphere is given a
charge ¢ (Fig. 7.10).
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Applying Eq. (7-11.4) to the upper hemisphere, we have

where the integral needs to be extended only over the spherical surface of
the hemisphere, because no electric field is present on the plane base of the
hemisphere. Since on the spherical surface the field is constant and is

Fic. 7.10 Electric force between two
charged hemispheres can be found from
Maxwell’s stress integral. For the purpose
of calculation a small gap between the
hemispheres is assumed and the integral is
extended over the surface of the upper
hemisphere.

equal to E = g[4meya®, we obtain after factoring E? out from under the
integral sign

Ogs
F = _3211'26‘00‘ fds.
But (dS over the spherical surface of the hemisphere is equal to 7a% (because
§dS = 0 and [dS over the plane base is —ma®). Therefore the force with
which this hemisphere is repelled from the other is
°,2
N
F= megd i.
Example 7-11.2 A large conducting plate of thickness ¢ is partially
inserted between the plates of a thin parallel-plate capacitor, as shown in
Fig. 7.11, The capacitor’s plates are of length a on a side and are separated
by a distance d; a voltage V is applied between them. Find the electrostatic
force acting on the conducting plate.

Let us construct a Maxwellian surface § as shown in Fig. 7.11; the
front part and the rear part of § are outside the capacitor, and the vertical
parts of § are in the regions where the electric field is homogeneous. Applying
Maxwell’s stress equation to this surface, we have

o

I ? E%4S + °30§E(E . dS),

where the integrals need to be extended only over the parts de, fg, and bc of
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S, because no appreciable field is present outside the capacitor, and the
contribution of the parts ab, kg, cd, and fe is zero, by symmetry,

Since E | dS on de, fg, and be, the last integral in the above expression
vanishes. On the surface de the electric field is E = V/d; on the surfaces fg

Fic. 7.11 Example of electric force calculation by means of Maxwell's
stress integral.

and be the electric field is E = V/(d — t). We therefore have
°l % e | & *1 &
F=— -2—.[50;,? ds,, — 5| %72 @—n 3 dS,, — Jleg @— ds,,

°l y2 i | & °1 V2
— e IJ.dS + 5 5 €0 77— )¢ =0t f e+ 5 5 0 77— 2 =0 1J.a‘SM

°l1 p? °1 p2

__ . 4 — Dai
ghipddt g nd—Nd
°1
ot TR
2 1 ( d — t)
Simplifying, we obtain
F “goatV?
=—" i
2d(d — 1)
A
PrROBLEMS

7.1. Assuming that the electrostatic energy of an electron is equal to
its mass-energy, me2, where m = 9.11 - 10731 kg is the electron mass and
¢ = 3+ 108 m/sec is the velocity of light, find the radius of an electron if the
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electron constitutes (a) a uniformly charged sphere of total charge 1.60 - 101°
amp - sec, (b) a uniformly charged spherical shell of the same charge.

7.2. An electrostatic system consists of two concentric spherical shells
of radii a and b formed by uniformly distributed charges +¢ and —g,
respectively. Is the energy of the system equal to the sum of the energies
of the two shells taken separately ? Explain.

7.3. Find the electrostatic energy associated with a uniform spherical
charge distribution of total charge ¢ and radius a by using Eq. (7-2.1).

7.4. Show that a system of point charges cannot be in a state of stable
equilibrium under the action of electrostatic forces alone (Earnshaw’s
theorem).

7.5. Show that the total electrostatic energy of two concentric spherical
shells of radii @ and & (b > a) formed by the uniformly distributed charges
¢, and ¢,, respectively, is

‘g °q; °4ads
8meqa | Bmegh | 4dmegh

7.6. Assuming that an atom may be regarded as a positive point
charge nucleus in the center of a negative uniformly charged spherical shell,
show that when the atom is excited so that the absolute value of its energy
decreases n times, the radius of the shell increases n times (disregard the
energy of the nucleus).

7.7. The ionization energy of a hydrogen atom (the work required to
excite the atom to zero energy) is 13.6 eV. Using the atomic model described
in the preceding problem, find the radius of the electron shell of a hydrogen
atom.

7.8. Find the interaction energy of two different neutral atoms using
the atomic model described in Problem 7.6 (see also Example 7-4.2), plot
the potential curve for a diatomic molecule consisting of the two atoms, and
show that the minimum of the interaction energy is

°qugs2

U=- 16me b2’

where a and b are the radii of the electron shells (6 >a), and ¢, and
q, are the respective charges of the shells.

7.9. Suppose that the two atoms described in Example 7-4.2 have
impenetrable shells (are in a “repulsive state’), so that after the atoms
come in contact with each other, the shells must shift with respect to their
nuclei to make a closer approach of the nuclei possible. Show that the
interaction energy of the atoms is then

U =0 for r > 2a,
and
°¢*(2a — r)?
" 8meqar(2a + 1)

’

for r < 2a,
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where ¢ is the charge of an electron shell, a is the radius of the shell, and r

is the distance between the two nuclei. Plot the potential curve for U’.
7.10. Using the fundamental electrostatic energy law, find the energy

of a thin parallel-plate capacitor and hence show that its capacitance is

A
C=802,

where 4 is the area of a plate and d is the separation between the plates.

7.11. Rectangular plates of a capacitor are separated by a distance
a + d at one edge and d — a at the other. The width of the plates (along
parallel edges) is b, the length is /. Neglecting edge effects and using the
fundamental electrostatic energy law, find the energy of the capacitor and
hence find its capacitance (see Problem 6.18).

7.12. Conductor 4 is enclosed by conductor B. The two conductors
carry electric charges ¢, and gp, and are kept at potentials ¢, and g, Find
the electrostatic energy of the system.

7.13. Starting from the fundamental energy law, show that the energy
of a charged conductor in an external electrostatic field is

U= j; og'dS,

where § is the surface of the conductor, ¢ is the surface charge density on
the conductor, and ¢’ is the external potential at the points of S.

7.14. Using the result of the preceding problem and the principle of
conservation of energy, show that the electrostatic force experienced by a
charged conductor in an external field E’ is given by

F= fﬁ oE'dS

and then show that this force can also be expressed in terms of the total
field E on the surface of the conductor as

F= % fﬁ oE ds.

7.15. An electrostatic voltmeter has two equal semicircular conducting
plates, one stationary and one movable. The movable plate is suspended by
an insulating fiber above the stationary plate and parallel to it so that the
midpoints of the straight edges of the two plates are always on the same
vertical line. The straight edges of the plates are initially at a right angle to
each other. Neglecting edge effects, show that if a small voltage V is applied
between the plates, the plates will be in equilibrium after the upper plate
turns through the angle

g4tV

b= 4od °
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where 7 is the radius of curvature of the plates, d is their vertical separation
and « is the torsion coefficient of the fiber (restoring torque per unit angular
displacement).

7.16. By what factor does the electrostatic force between an electron
and a proton exceed the gravitational force between them (the mass of a
proton is 1836 times larger than the mass of an electron; the gravitational
constant is G = 6.67-10 ' m3kg ~!sec ~%; see also Problem 7.1)?

7.17. What charge should be carried by a rain drop of 0.1 mm radius
in order to counteract the force of gravity in a region where the earth’s
electric field is 130 volt/m? If the break-down field in air is 3 - 108 volt/m,
can the drop support this charge? (See also Problem 7.45).

7.18. Eight equal negative charges are placed at the corners of a cube.
What positive charge should be placed at the center of the cube to keep the
negative charges in equilibrium?

7.19. A point charge g is located at a distance d from an insulated con-
ducting sphere carrying a charge . Find the work required to remove ¢
to infinity.

7.20. Show that the force between two straight, parallel, uniformly
charged fibers of length [/ and charge density 4, and A, separated by a
distance d(d <) is

M2,
T 27meyd
7.21. Using three methods other than those used in Example 7-7.1,

show that the plates of a thin parallel-plate capacitor attract each other
with the force

F L.

V24
F="0gg>

where ¥ is the voltage applied to the capacitor, 4 is the area of the plates,
and d is the separation of the plates.

7.22. A point charge ¢ is placed at a distance d from an infinite con-
ducting plane. Find the force acting upon gq.

7.23. Show that if a charge is placed within a spherical cavity made in
a conducting material, the charge will be attracted to the inner surface of
the cavity with a force

°qPar
= dmreg(a® — r2)2°

where ¢ is the charge, a is the radius of the cavity, and 7 is the distance to the
charge from the center of the cavity.

7.24. Show that the force experienced by a charge ¢ placed at a distance
r from the center of an uncharged, insulated, conducting sphere of radius a
is
°¢%a3(2r? — a¥r,,

F=- megrd3(rt — a?)? -’
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7.25. Show that a point charge ¢ placed at a distance r from the surface
of a conducting sphere of radius a carrying a charge @ > ¢ (Q and ¢ have
the same signs) will be in equilibrium if

1 /g
r:rowéa 6,

will be repelled from the sphere if r > r,, and will be attracted to it if r < 7,

7.26. Two long, straight fibers, carrying uniformly distributed, equal
and opposite charges, are placed in a median plane inside a long circular
conducting tube of inner radius @, symmetrically with respect to the axis
of the tube. Show that no net electrostatic force will act on the fibers if
their separation is

d=2(V5 — 2)12,

7.27. A point charge ¢ is placed at a distance d from an infinite con-
ducting plane having a hemispherical bump of radius a directly in front of ¢.
Show that the point charge ¢ is attracted toward the plane with the force

o 162345 }
F= 16we0d2|:1 T =

7.28. According to Thomson’s model, a hydrogen atom may be
imagined as a sphere made of uniformly distributed positive charge ¢ at the
center of which a negative point charge —gq (the electron) is embedded.
Show that if the electron is displaced from its equilibrium position, it will
execute simple harmonic vibrations through the center of the “atom’ with
the frequency f given by

Oq2
e 1
r= 1673¢gadm’
where a is the radius of the atom (positive sphere) and m is the mass of the
electron.

7.29. (a) Show that the contribution of the rim of a thin layer of charge
to the total force, as calculated from Eq. (7-9.3), is

where o is the surface charge density of the layer, and dl;, is a vector whose
magnitude represents length elements of the rim and whose direction is nor-
mal to the rim and into the charged layer. (b) Show that if a long sheet of
uniformly charged dielectric of width w and surface charge density o is partial-
ly inserted into a metal box kept at potential ¢p, the sheet will be attracted into
(or repelled from) the box with a force F = °oquw.

7.30. (a) Starting with Eq. (7-8.2) show that Eqgs. (7-9.2) and (7-9.3) are
also valid if the total, rather than the external, potential is used in them. (b)
A spherical space charge ¢ of uniform density and radius @ is cut in two
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hemispheres. Using the total potential found in Example 5-1.2, show that the
hemispheres will repel each other with a force
F = °34%/64neya’.

7.31. Show that the arbitrariness of ¢ has no effect on the force calcu-
lated from Egs. (7-9.2) or (7-9.3).

7.32. Show that the electrostatic interaction energy of two multipoles
of orders n; and n, is proportional to r=?2t1) while the force is propor-
tional to r—(mitnet2),

7.33. Two dipoles of moments p; and p, are placed at a distance r from
each other. Show that if the moments of the dipoles are directed along the
line joining them, the force exerted by one dipole upon the other is

“3p1p,
F== 2megrt

7.34. Two dipoles of moments p, and p, are placed at a distance r from
each other. The moment of the first dipole is directed along the line joining
the dipoles, the moment of the second dipole is perpendicular to that line.
Show that the forces experienced by the dipoles are

31t “3p1pe
= F = R ———
B 4megt’ 2 =T 4megrt
and are not colinear, while the torques are
L, hts L hits
=+ 4rregrd’ o=+ 2megrd

Is Newton’s law of action and reaction satisfied in this case ?

7.35. A small hemispherical cup of radius a is placed on the lower plate
of a horizontal, thin, parallel-plate capacitor of plate separation d(d > a),
the spherical surface of the cup facing the upper plate. Show that if a voltage
V is applied to the capacitor, the cup will rise if its weight is

3aV\?
W<07T80( ¢ )
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7.36. An uncharged conducting sphere of radius a consisting of two
separate hemispheres is placed in a homogeneous external field E so that E
is perpendicular to the plane dividing the two hemispheres. Show that each
hemisphere will be subjected to a force

c
F = ime,a*E?

tending to separate it from the other hemisphere.
7.37. A soap bubble of radius a has a surface tension 7. Show that if
the bubble is given a charge ¢, the radius of the bubble will increase to r
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given by

o 2
P(rP—a% +4T(2—a?) — 1L _ _

R2m2egr
where P is the atmospheric pressure.

7.38. A long cylinder of radius a is partially inserted into another long
cylinder of radius & coaxial with the first. Show that if a voltage V is applied
between the cylinders, the smaller cylinder will be pulled into the larger one
with a force

F~ ——07780[/2 .
In (b/a)

7.39. Show that the interaction energy of a system of spherically sym-
metric charge distributions is the same as if the total charge of each distribu-
tion were concentrated at its center.

7.40. Show that the force experienced by a spherically symmetric
charge distribution in an arbitrary electrostatic field is the same as if the
total charge of this distribution were concentrated at its center.

7.41. Consider a Maxwellian surface in the shape of a rectangular
prism partially inserted between the plates of a parallel-plate capacitor. If
the edge effects of the capacitor are neglected, and if Maxwell’s stress integral
is calculated for this surface, a force is found to be acting on the space en-
closed by the surface. Explain this “capacitor paradox” and calculate the
correction term that must be added to the stress integral in this particular
case. (Hint: by neglecting edge effects in a parallel-plate capacitor, one
creates V x E at the edges; see Appendix 3 for details).

7.42. Derive Maxwell’s stress equation for the gravitational field.

7.43. Do electrostatic forces always satisfy Newton’s law of action and reac-
tion? (Hint: see Problem 4.32).

7.44. The ‘‘slot-effect’’ electrostatic motors [see Oleg D. Jefimenko Elec-
trostatic Motors, Electret Scientific, Star City (1973)] operate on the principal
that when a surface charge distribution is located in an electric field having
a component parallel to the surface charge, the charge experiences a tangen-
tial force. Show that if a surface charge o is located close and parallel to a slot-
ted plate electrode, the tangential force which the slot exerts on the surface
charge when a voltage V is applied across the slot is F = °0VL, where L is
the length of the slot.

7.45. It has been suggested that the atmospheric electric field could be
used for levitating charged balloons. (a) Taking into account that a charged
balloon experiences a downward force not only due to gravity but also due
to its electrostatic image, show that regardless of its charge the electrostatic
balloon will fall unless its altitude is & > (1/E)(mg/4ne,)2, where m is the mass
of the balloon, g is the acceleration of gravity, and E is the atmospheric electric
field at the altitude 4. (b) What is the largest possible mass for a balloon floating
ath = 100 mif E = 120 V/m? (c) Show that the charge of the balloon describ-
ed in (b) must be approximately 10-* As.



ELECTROSTATIC FIELD
IN MATERIAL MEDIA

Thus far we have dealt with electrostatic fields in empty
space, or vacuum. Electrostatic fields can also exist, however, in
non-conducting material media, or dielectrics. The properties of
electrostatic fields in these media will be discussed in the present
chapter.

8-1. Cavity Definition of Electric Field Vectors

The measurement procedures by means of which we have defined
the field vectors E and D in Sections 4-2 and 4-3 can be used directly
for measurements in vacuum, gases, and liquids, but not in solids, since
neither a test charge nor a test plate can move freely inside solid bodies.
A more precise definition of E and D must therefore be made in order to
make clear what we mean when we speak about electric fields inside
material media and, in particular, inside solid bodies.

The only way to perform a field measurement in a solid body is to
insert a measuring device (test charge or test plates) into a hole, or a
cavity, made in the body. It has been found, however, that such a
measurement is affected by the shape and orientation of the cavity.
Therefore the shape and orientation of cavities to be used for field
measurements must be specified in the definitions of E and D for
material media. We shall define E and D for all media as follows.

The electric field vector E at a point inside a material medium is defined as
the vector E measured (by the method of Section 4-2) in a small, needle-shaped

225



226 ELECTROMAGNETIC THEORY

cavity made in this medium at that point and oriented so that the electric field in
the cavity is in the direction of the axis of the cavity. The essence of this
definition is illustrated in Fig. 8.1. The requirement that the cavity be
needle-shaped and oriented along the direction of the field is a result
of investigations showing that the electric field measurements in liquids
and gases by the direct method of Section 4-2 yield the same fields as
the measurements inside small cavities of this type. The requirement
that the cavity be small is needed in order to associate the electric field
vector with a particular point of the medium (a “small” cavity is a

I1c. 8.1 To measure electric field Fic. 8.2 To measure displacement
in a material medium, a needle- field in a material medium, a coin-
shaped cavity or a long cylindrical shaped cavity or a short cylindrical
cavity is used. cavity is used.

cavity whose length is much smaller than the distance over which the
field changes appreciably).

The displacement vector D at a point inside a material medium is defined
as the vector D measured (by the method of Section 4-3) in a small, coin-shaped
cavity made in this medium at that point and oriented so that the displacement
field in the cavity is in the direction of the axis of the cavity. The essence of this
definition is illustrated in Fig. 8.2. The requirement that the cavity be
coin-shaped and oriented with its axis along the direction of the field
is a result of investigations showing that the displacement field measure-
ments in liquids and gases by the direct method of Section 4-3 yield
the same fields as the measurements inside small cavities of this type.
The requirement that the cavity be small is needed in order to
associate the displacement field vector with a particular point of the
medium.

The two definitions which we have just introduced are frequently
expressed symbolically as

E

medium

=E_ and D, = Dy. (8-1.1a, b)

medium
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8-2. Fundamental Laws of the Electrostatic Fields
in Material Media

If we comparc various lines-of-force patterns formed by small
particles suspended in a dielectric liquid,! we find that these patterns
have the same basic property as the lines-of-force pictures obtained
in vacuum: there are no closed lines of force in any of them. We must
suspect therefore that the curl and the circulation integral of the
electrostatic fields in dielectrics, just as in vacuum, are zero:

VxE=0, fﬁE-dl:o. (8-2.1a, b)

If we perform I'araday’s ice-pail experiment using a container
(enclosure) filled with a dielectric liquid, we find that the result of the
experiment is exactly the same as when the container is empty. We
must suspect therefore that the divergence and flux density equations
for displacement fields in dielectrics, just as in vacuum, are

V.D = p, fﬁn.ds :fpdv. (8-2.2a, b)

The validity and generality of these four equations have been
confirmed by all presently known phenomena involving static electric
fields in dielectric media. Therefore, according to Section 3-2, these
equations represent fundamental electrostatic field laws.

If we perform simultaneous D and E measurements in various
dielectrics, we find that, in contrast to electrostatic fields in vacuum,
there is no general law which correlates D and E in an arbitrary
medium, although in the majority of common materials D and E are
connected by the equation

D = ¢, E. (8-2.3)

In this equation ¢ is a dimensionless factor of proportionality, different
for different media, and frequently different for different points of the
same medium. It is called the permittivity. If the permittivity is the
same for all points of a medium, it is called the dielectric constant. The
media for which Eq. (8-2.3) holds are called electrically linear isotropic

! See, for example, F. J. Rutherford, G. Holton and F. G. Watson The Project
Physics Course, Text, Holt, Rinehart and Winston, New York (1972), Unit 4 pp. 48,
49.
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media. They are the media with which we shall be concerned in this

book.
Frequently one expresses ¢ as

e =1+ L (8-2.4)

The quantity y, defined by this equation is called electric susceptibility.

The displacement law D = ¢y¢E reduces to the displacement law
for vacuum, D = ¢E, if ¢ = 1. Since the other two fundamental field
laws for material media are identical with the corresponding laws
for vacuum, a vacuum, as far as the electrostatic field is concerned, is
merely a special case of a material medium—a medium of dielectric
constant ¢ = 1.

In a general case, a medium is neither linear nor isotropic—that is,
in general, D is not a linear function of E, and the correlation between
D and E depends on the direction of E relative to certain characteristic
directions in the medium. An example of anisotropic media is a
crystal. In a crystal, D and E are usually not even parallel to each
other, each vector having a direction of its own.

Equations (8-2.1), (8-2.2), and (8-2.3) determine the circulation
law and the divergence law for both the electric field E and the dis-
placement field D and thus, by Helmholtz’s theorem of vector analysis,
constitute a complete set of equations uniquely specifying these fields.!

The similarity between Egs. (8-2.1), (8-2.2), and (8-2.3) and the
corresponding equations for the electrostatic fields in vacuum suggests
that many of the formulas which we have learned from the preceding
chapters remain valid for electrostatic fields in material media also. In
particular, all formulas remain obviously valid for fields in infinite
media of constant permittivity, provided that ¢, in these formulas is
replaced by the product ¢ge.

8-3. Electrostatic Potential and Capacitance of Conductors

and Capacitors in the Presence of Dielectric Media

Using the same argument as in Section 5-1 (V x E = 0), we can
again express E in terms of the electrostatic potential ¢:

E = —Vop. (8-3.1)

1 See footnote 1 on page 87.
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Taking the line integral of this equation, we obtain

b
vo—p=[E-d =7, 832

where V,, is the voltage between the points ¢ and 4. Thus the electro-
static potential ¢ can be used for describing electrostatic fields also in
material media, and its correlation with the field vector E and with the
voltage V,, is the same as in vacuum.

The existence of the electrostatic potential in dielectric media
allows one to define the capacitance of capacitors and isolated conductors
in the presence of dielectric media. This definition is the same as for
the conductors and capacitors in vacuum—that is,

9 9
C —; and C = 7 (8-3.3a, b)
for an isolated conductor and for a capacitor, respectively.

As it follows from Gauss’s law (8-2.2b) and displacement law (8-2.3),
the capacitance of a capacitor filled with a material of dielectric
constant ¢ is ¢ times larger than the capacitance of the empty capacitor
(¢ = 1). This property is used for measuring & of various dielectrics:

one measures Cg,q and C and then calculates ¢ from

empty
C
g = b (8-3.4)
Cempty

v

Example 8-3.1 A parallel-plate capacitor of plate separation d and
area 4 is filled with a material of dielectric constant &. Neglecting edge
effects, find the capacitance.

By symmetry, the field in the capacitor is homogeneous (except near
the edges). The charge on the positive plate is then

)

g =04 = DA = gyeEA = ¢y¢ dKA
so that the capacitance is, by Eq. (8-3.3b),

4

C = ¢ge¢ 7

Example 8-3.2 A thin parallel-plate capacitor contains two dielectrics

of dielectric constant & and &, as shown in Fig. 8.3. Neglecting edge
effects, find the capacitance.

Let the charge of the capacitor be ¢. By symmetry, the field in the

capacitor is homogeneous (except near the edges). Constructing a Gaussian
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Fic. 8.3 First example of a capacitor
with two dielectrics. The thickness of the
capacitor is exaggerated.

surface § in the shape of a box enclosing the positive plate, and observing
that if the edge effects are neglected the only contribution to the integral
§D - dS comes from the portion of the Gaussian surface lying directly between
the plates, we have from Gauss’s law (8-2.2b)

where 4 is the area of the enclosed plate. Hence, between the plates,
D — 3

The electric field is then, by the displacement law (8-2.3),

.- 9 q
E; = ey and E, = Retid
in dielectrics 1 and 2, respectively. The voltage between the plates is
V=fE-dl= E, -dl + E,-dl
Dieleetrie 1 Dielectric 2

f + _Ff i,
"3081

_aqe . L
= qu(El w 52)-
The capacitance is therefore

C___

or
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Fic. 8.4 Second example of a capacitor with
two dielectrics. The thickness of the capacitor
is exaggerated.

Vv

It
il

As a check, we note that this formula reduces to the expression for the
capacitance of an empty capacitor (Example 5-2.4) if &; = &, = 1.

Example 8-3.3 A thin parallel-plate capacitor of plate separation d
contains two dielectrics of dielectric constant &, and &,, as shown in Fig.
8.4. Neglecting edge effects, find the capacitance.

Let the voltage between the plates be V. By symmetry, the electric
field between the plates is then E = V/d. The displacement is

4
D, = ge, 7 and D, = g&, 7

in dielectrics 1 and 2, respectively. The charge on that part of the. positive
plate which is in contact with dielectric 1 (area 4,) is then

V
g = D4, = Eof1 7 4.

The charge on that part of the positive plate which is in contact withdielectric
2 (area 4,) is

V
9y = Dydy = g4t FAz-

The total charge is ¢ = ¢, + ¢,, or

V
{=%7 (24, + £54,).
The capacitance is therefore

- q (&1 + &945)
TV d :

Again, if &; = g, = 1, the capacitance reduces to that of the empty capaci-
tor (Example 5-2.4).
A
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8-4. Calculation of Electrostatic Field and Electrostatic
Potential within Dielectric Media from Charge

Distribution

One of the most important methods for calculating electrostatic
fields in vacuum is the calculation of fields from the corresponding charge
distributions by direct integration. As we shall now see, this method is
also important for calculating fields in dielectric media, although the
range of its applicability for fields in dielectric media is very limited.

By Poisson’s theorem, the field vector E can be expressed as

1 V(V'-E) —V x (V' x E)

47 r
All space

E — &,

where primed operators are used in order to avoid ambiguity in the
subsequent transformations. By the curl law (8-2.1a), V' x E is zero.
By the divergence law (8-2.2a) and displacement law (8-2.3) (we are
considering here only linear isotropic dielectrics),
D 1 D 1 1 D 1
V. E=V.—=-—V.D4+=--Veo=—p+—.V-,

E0E  &E £ £ gyt & £

The above Poisson integral for the electric field therefore reduces to

. fV’(p/s)dv,_ 1 f VID - VI 4y (ga)

4me, r 4me, r
All space All space

This equation, in general, is not very useful for calculating E, since in

order to evaluate the last integral one needs to know D, and if D is

known then E is also known from Eq. (8-2.3). In the particular case

of a dielectric of constant permittivity occupying all space, however,

V'(l/e) = 0, and Eq. (8-4.1) becomes
L Ve .,

T — av', (8-4.2)

All space

E — —

which is the same equation as Eq. (4-5.1) for E in vacuum except that

the product ¢y¢ replaces now the single ¢, standing in Eq. (4-5.1).
Transforming Eq. (8-4.2) in the same manner that we trans-

formed Eq. (4-5.1) in Section 4-5, we obtain for the electric field
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associated with a charge distribution in a medium of constant permit-
tivity ¢ occupying all space

1 r,
Tros = dy. (8-4.3)
Allspace

E =

Similarly, using the corollary to Poisson’s theorem and the trans-
formations employed in Section 5-3, we obtain the corresponding
cquations for the electrostatic potential

P = f PIe + fD V) gy (844

4'77'80 r
All space All space

and in a medium of constant ¢ occupying all space

1 dq
¢ - 4’7808 f T . (8'4’.5)
Allspace

It is useful to note that Eqgs. (8-4.3), (8-4.5) can be used even if
the dielectric is limited in space, provided that the boundaries of the
dielectric are so far from the regions where the charges are located and
from the point of observation that the field at the boundaries may be
neglected. This follows from Eq. (8-4.1), where in the case of constant
g, V'(1/e) is different from zero only on the boundaries, so that if D = 0
on the boundaries, the last integral in Eq. (8-4.1) vanishes.

8-5. Boundary Conditions at a Dielectric Interface

If two different dielectric media are in contact with each other,
there exists a thin transitional zone between them over which the values
of the characteristic parameters of the media gradually change from
the values which these parameters have in one medium to the values
which they have in the other medium. It is frequently convenient to
disregard the existence of this transitional zone and to assume that the
characteristic parameters change abruptly over the “interface’ between
the media. From the basic laws (8-2.1), (8-2.2), and (8-2.3) one can
derive then the correlations between the field vectors measured on the
opposite sides of the interface. These correlations are called boundary
conditions at a dielectric interface. They are useful for the solution of
problems involving compound dielectrics.
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(a) (b)

Fic. 8.5 (a) Boundary condition for E at a dielectric interface. The
tangential component of E is the same on each side of the interface. (b)
Boundary condition for D at a dielectric interface. The difference of the
normal components of D on the two sides of the interface is equal to the
density of the macroscopic surface charge residing on the interface.

To obtain the boundary condition for E, let us construct a small,
very narrow rectangular loop crossing the interface between two
dielectrics, 1 and 2, asshown in Fig. 8.5a, the long sides of the loop being
tangent to the interface. Applying the circulation law (8-2.1b) to this
loop, we have '

b c d a
ﬁE-dl:fE,-dl +fE-dl -|~J.E1-dl+J.E-d1=0.
a b e d

Since the loop is very narrow, we can neglect the integrals over the
segments bc and da. Therefore

b d
fE,-dl +J‘E‘-d1=0.

Since the segments ab and ¢d can be made as short as we please, we may
regard the entire length of each segment as d/, in which case the last
equation may be written as

E,-dl +E;-(—dl) =E;-dl —E,-dl =0
or

(EE_EI)'dl=0:

where the minus sign is needed because the path from ¢ to 4 is opposite
to the path from a to 5. Replacing in this equation 41 by t, d/, where t,
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is a unit vector in the direction of 41 (and hence tangent to the interface)
and cancelling d/, we finally obtain

(E; —Ey) -t, =0. (8-5.1)

This equation can hold in a general case of an arbitrarily oriented t,
(arbitrarily oriented loop) only if vector E, — E, is normal to all t,.
Therefore, since t, is tangent to the interface, E, — E, must be normal
to it. But then both E, and E, must be in a plane normal to the inter-
face, and the components of E, and E, tangent to the interface and
lying in this plane must be equal, or

E, = Et2' (8-5.2)

The two equations (8-5.1) and (8-5.2) represent, respectively, the
vector and scalar boundary conditions for E at a dielectric interface.
The essence of these conditions is that the tangential component of E
is continuous across a dielectric interface.

To obtain the boundary condition for D, let us construct a
Gaussian surface in the shape of a small, very thin pillbox crossing the
interface under consideration, as shown in Fig. 8.5b, the two bases of
the box being tangent to the interface. Applying Gauss’s law (8-2.2b)
to this surface, we have

§D.dS= sz-dS+ f D-ds+fnl.dS=fpdv.

Base 2 Curved surface Base 1

Since the pillbox is very thin, we can neglect the integral over the
curved surface. Since a very thin pillbox can enclose only the charge
residing on the interface, we can replace the volume integral fp dv by
the surface integral [o dS, where o is the density of surface charge on
the interface. We then have

fD2-dS+ fDI-dS =fadS.
Base 2 Base 1
Since both bases can be made as small as we please, we may regard

the entire area of each base as 4S5, in which case the last equation may
be written as

D,.dS +D,:(—dS) = (D, —D,) -dS =o0dS§
(we have assumed that the positive direction of 48 is from dielectric 1

into dielectric 2, and since the surface element vectors in the above
integrals are in the outward direction, 4S8 for base 1 is negative).
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Replacing 48 in this equation by n,,dS, where n,, is a unit vector in
the direction of dS, and cancelling 4S, we finally obtain

(D, — D,) -n,, = o. (8-5.3)

Since n,, is normal to the interface, D, : n,, and D, - n,, represent
the components of D, and D, normal to the interface. Equation (8-5.3)
can be written therefore also as

D,y — D,y = o. (8-5.4)

In the case when no charge resides on the interface, Egs. (8-5.3)
and (8-5.4) become
Dy — D)) em, =0 (8-5.3a)
and
D,, —D,, =0, (8-5.4a)

so that if the interface carries no charge, the normal component of the
displacement field is continuous across this interface.

The two equations (8-5.3) and (8-5.4) represent, respectively, the
vector and scalar boundary conditions for D at a dielectric interface.

It is important to emphasize that the boundary conditions for E
and D derived here are merely special forms of the basic laws (8-2.1)
and (8-2.2) to which these laws reduce at a dielectric interface. For a
dielectric interface these conditions have therefore the status of funda-
mental laws and must always be satisfied.

From the boundary conditions for E we can derive the boundary
conditions for the electrostatic potential ¢. Let us consider two points
A4 and B located across from each other on the opposite sides of the
interface shown in Fig. 8.6. The potential at A with respect to a
reference point C at the edge of the interface is, by Eq. (8-3.2),

c
pa=[ Eedl + g0
The potential at B is, similarly,
c
wp = [ Evedl + gc.

Let the path of integration in both integrals be adjacent to the interface.
We can then write

"C C
va=[ Bt 4 0 and gy =[ Eadi + g0

By the boundary condition (8-5.2), however, E,; is everywhere equal
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Fic. 8.6 The system of dielectrics used for proving that the electrostatic
potential is the same on each side of a dielectric interface.

to E,. Hence the two integrals are equal, and therefore the two
potentials ¢ , and ¢, are also equal. Designating ¢ as ¢, and ¢, as

@y, we then obtain
P2 = P (8-5.5)

Thus, the electrostatic potential is continuous across a dielectric
interface.!

One should note that inasmuch as the boundary condition for ¢
is derived from the boundary condition for E, it is not independent of
the latter but is, in fact, equivalent to it.

When dealing with linear isotropic dielectrics, it is frequently
desirable to express the boundary condition for D (8-5.4) in terms of the

d
potential ¢. Since by Egs. (8-2.3) and (8-3.1) D, = weosa—‘p , this
boundary condition can be written as %

09, Ops
€0ty onys — Eof2 Iy a, (8-5.6)

where n,, designates a direction along a normal to the boundary
pointing from dielectric 1 into dielectric 2.

v

Example 8-5.1 A thin dielectric disk of dielectric constant ¢ is placed
in an initially uniform field E, the bases of the disk being normal to E
(Fig. 8.7). Neglecting edge effects, find the final field outside and inside the
disk.

1 We assume that the interface does not carry a dipole-type charge distribution
(see Problem 8.13).



238 ELECTROMAGNETIC THEORY

(a) (b)

Fic. 8.7 A thin dielectric disk normal to an initially homogeneous electric
field. (a) The map of the electric field E. (b) The map of the displacement
field D.

The final field must satisfy the basic field laws (8-2.1), (8-2.2), and
(8-2.3) inside and outside the disk, must satisfy Egs. (8-5.2) and (8-5.4a)
(boundary conditions) at the surface of the disk, and must be equal to the
initial field at large distances from the disk. Once these requirements are
satisfied, the problem is solved, since no other independent solution satisfying
these requirements can exist. The geometry of the problem suggests that
except at the edges of the disk the field outside the disk will remain undisturbed

E utsize = E, (8-5.7)
and the field inside the disk will be uniform and normal to the disk. In this
case, Egs. (8-2.1), (8-2.2), and (8-2.3) will be satisfied both inside and outside
the disk, and the requirement that the final field be equal to the initial field
at large distances from the disk will be met. The boundary condition (8-5.2)
at the bases of the disk will also be satisfied, since E, . qe and E; ;40 Will
both be zero on the bases. As far as the boundary conditions at the side
surface (curved surface) of the disk are concerned, we may disregard them
altogether, since in a thin disk the side surface is responsible only for edge
effects, which by the statement of the problem are to be neglected. All we
need in order to complete the solution is, then, to satisfy the boundary
condition (8-5.4a) at the bases of the disk, where we must have

D, utsize = Dy insices
or, since the field is normal to the disk,
Doutside = ‘Dinside'
But D ide = €ofontsider 2N Dingige = £oEinsige- 1 herefore, by Eq. (8-5.7),
the boundary condition (8-5.4a) will be satisfied if

1
Einsige = _ E. (8-5.8)
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- —
e —_ — - —-—
x x

(a) (b)

Fic. 8.8 A thin dielectric cylinder parallel to an initially homogeneous
electric field. (a) E map. (b) D map. If € > I, the field is strongly dis-
torted, and the solution given in the text is not vahd

Example 8-5.2 A thin dielectric cylinder of dielectric constant & is
placed in an initially uniform field E, the axis of the cylinder being parallel
to E (Fig. 8.8). Neglecting end effects, find the final field inside and outside
the cylinder.

By inspection we recognize that, except near the cylinder’s ends, the
field outside the cylinder is undisturbed

E utsige = E, (8-5.9)
and the field inside the cylinder is uniform and parallel to the axis. Since
we neglect the end effects, the boundary conditions need be satisfied at the
curved surface of the cylinder only, where, by Egs. (8-5.2) and (8-5.4a), we
must have

Et outside — Et inside
D =D

Since we assume that the field is parallel to the cylinder’s axis, the normal
componerit of the field is zero, and the boundary condition for D is satisfied
automatically. In the boundary condition for E we can drop the subscript
“1.” We then have Ej 4. and since E_ ;4. = E, this condition
will be satisfied if

and

n outside n inside*

outside?

Eiqe = E. (8-5.10)

We have obtained Egs. (8-5.9) and (8-5.10) largely by inspection, and
therefore we may question their correctness. The equations satisfy, however,
all required boundary conditions and the basic laws. Hence they are
definitely correct provided that the end effects are indeed negligible.

Example 8-5.3 A conducting sphere of radius a carrying a charge ¢
is submerged halfway into a nonconducting liquid of dielectric constant
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*

(c)

(a) (b)

Fic. 8.9 (a) Charged conducting sphere floating in a nonconducting
liquid. (b) Field lines of D. (c) Field lines of E.

e (Fig. 8.9). Find the electric field outside the sphere and the charge density
on the surface of the sphere.

Constructing a concentric spherical Gaussian surface § of radius r
enclosing the sphere, and applying Gauss’s law (8-2.2b) to this surface, we
have

&D - ds =J. Dliquid . ds +f Dsir . ds = q,
Sy Sg

where 8§ and S, are the parts of the Gaussian surface passing through the
liquid and through the air, respectively. The geometry of the problem
suggests that the field is everywhere radial, so that D - dS = D dS. It also
suggests that Dy;, .4 is constant at all points of §; and D,;, is constant at all
points of §,, so that D can be factored out from under the integral signs.
We can therefore write

I)HquJ;‘ig'+'1)NrJ;‘is =4

or
(Driquia + Dyie)27m1® = ¢, (8-5.11)

where 27772 is the area of S, and S,. Now, by the displacement law (8-2.3),
Dyjquia = €oeEjquia and Dy, = eoEy;,. Since the field is radial, it is tangent
to the boundary between the liquid and the air, and hence, by the boundary
condition (8-5.2), Ej; g = Eu,- The subscripts on E are then not needed,
and we can write Dy iq = £¢E, D,;, = g,E. Substituting these expressions
into Eq. (8-5.11), we obtain

(£0eE + €0E)2mr® = g4(e + 1)E2m? = ¢,
or

L 9 5
B = s T E5:19)
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which gives the electric field both in the liquid and in the air. The displace-
ment is then
&q

Diiquia = (e £ 1) and Dy, =

9
2m(e + 1)r?’ (8-5.13a, b)
The surface charge density ¢ on the sphere is equal to the displacement at
the surface of the sphere, so that

&q q
o, = 277(3——{—1)02 and Oy = m (8-5.14&, b)
on the submerged and the exposed half of the sphere, respectively.

In solving this problem we used symmetry considerations which may
not appear entirely convincing. We may therefore want to verify the
solution. This can be done in two ways. We can set ¢ = | and check
whether the solution reduces to that valid for a sphere in vacuum. Ifit does,
it probably is correct (it does). Or, we can check whether the field satisfies
the basic laws (8-2.1), (8-2.2), (8-2.3) at all points outside the sphere,
satisfies the boundary conditions (8-5.2), (8-5.4a) at the dielectric interface,
is compatible with the charge residing on the sphere, and is regular at
infinity, in which case the field is definitely correct by the uniqueness
theorems for electrostatic fields (see Section 8-6). One can easily see that
the field obtained here does satisfy these requirements. Therefore it is
definitely correct.

A
8-6. Special Methods for the Solution of Electrostatic
Problems Involving Dielectrics of Constant e
Combining Eqgs. (8-2.2a), (8-2.3), and (8-3.1), we can write
V:D=V.geE = —¢V.(ecVgp) = p,
and, using vector identity (V-4), we obtain
1 P
20 4 - Ve Vg = — £, -6.
V(p—l—s e Vo e (8-6.1)
If ¢ is constant, Ve = 0, and we obtain
P
Vi = — —, -6.
r=-L (8-6.2)
If p = 0, this equation reduces to
V2g = 0. (8-6.3)

Thus, the electrostatic potential ¢ in media of constant &, just as
in vacuum, satisfies Poisson’s equation (8-6.2) (charge-filled region) or



242 ELECTROMAGNETIC THEORY

Laplace’s equation (8-6.3) (charge-free region).! Therefore all special
methods for the solution of electrostatic problems discussed in Chapter
6 can also be used for the solution of the corresponding problems of
electrostatic fields in media of constant &. As before, the criteria for
the correctness of solutions are furnished by the uniqueness theorems
stated in Section 6-2. These theorems are obviously valid for fields in
dielectrics of constant permittivity occupying the entire region under
consideration, because there is no essential difference between the
basic electrostatic laws for vacuum and for dielectrics if ¢ is everywhere
constant. They are valid, however, even if ¢ is different in different
parts of the region, provided that the boundary conditions (8-5.5) and
(8-5.6) are satisfied at all dielectric interfaces (see Problems 8.17 and
8.18).

The special methods discussed in Chapter 6 can be extended to
problems involving dielectric interfaces. These latter problems are the
only ones which are basically different from the problems discussed
in Chapter 6. Therefore we shall limit the illustrative examples that
follow to problems of this kind only.

v

Example 8-6.1 A dielectric sphere of radius a and dielectric constant
g, is placed in a dielectric liquid of infinite extent and dielectric constant &,

€5

Fic. 8.10 Dielectric sphere in a
dielectric liquid.

(Fig. 8.10). A uniform field E was originally present in the liquid. Find
the resultant field inside and outside the sphere.

The problem can be solved by the method of harmonics (the corre-
sponding problem with a conducting sphere was solved in Example 6-3.2).
The initial potential can be written as ¢ = —Ex 4 ¢, or

@ = —Ercos 0 + g,

1 Note, however, that if £ is not constant, ¢ in dielectric media satisfies Eq.
(8-6.1) rather than Poisson’s or Laplace’s equations.
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Let the final potential inside the sphere be ¢; and that outside the sphere
be @,. By Eqgs. (8-5.5) and (8-5.6), the boundary conditions are then

(1) ¢, = ¢, at  r = a (surface of the sphere)

3% 0,
(2) e or T 2o

(3) oo =¢@ = —Ercos0 + ¢, for r— oo.

at r=a

The geometry of the problem suggests the use of spherical harmonics (see
Table 6-I). The third boundary condition indicates that the potentials
may be represented by just a part of the spherical harmonics (H-4)

@1 = (Ayyr + Byyr™?) cos 0 + @,
and

@2 = (Ayr + Byr2) cos 0 + ¢,

As we see no reason for the potential to be infinite anywhere within the
sphere, we set B;; = 0 (otherwise ¢, — oo for r —0). By inspection we
find that the boundary condition (3) is satisfied if 4,; = —FE. From
boundary conditions (1) and (2), respectively, we then obtain the equations

4,6 = —Ea + Bya~?
and
&84, = —&(E + 2By a73).
Solving these two equations simultaneously, we obtain

3¢,y &
& + 282E Bn =

The potentials are therefore

& — &
Ea3.

An=— & + 2¢,

3e,
= —mEfCOSO—I—(pm
& — & ad
Py = —E(l ;ﬁ—_ﬁ )rcos@ + Po-

Since these potentials satisfy all three boundary conditions stated above, we

are sure that they are correct.
Taking the gradient of these potentials, we obtain the corresponding
equations for the electric field:

3e, E
& + 2¢

E, =

and
&g — & a

& ad 3
E (l —|—2;+_-'2—2 )COSO!‘ E(l m )sm@O
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(a) (b)

Fic. 8.11 Dielectric sphere of permittivity &, is embedded in a dielectric
medium of permittivity & in which a uniform electric field was present
originally. D maps of the resultant field are shown for (a) & > &, and (b)
& < &

It is interesting to note that these equations reduce to the equation
obtained for the conducting sphere of Example 6-3.2 if &; = c0. Thus, as
far as the electrostatic field is concerned, a conductor may be regarded as
a dielectric of infinite permittivity. For & = &,, the above equations reduce
to E; which simply means that if the dielectric constant of the sphere is the
same as that of the surrounding medium the sphere has no effect on the
initial field. For any &, and &,, the field inside the sphere is homogeneous
and in the same direction as the original field. If &; > &, (as for a dielectric
sphere in vacuum), the field lines are “pulled” into the sphere, and in the
sphere E, << E while D, > D (Fig. 8.11a). If & < & (as for a spherical
cavity in a dielectric), the field lines are “pushed out” from the sphere, and
in the sphere E; > E while D, < D (Fig. 8.11b).

Example 8-6.2 A point charge ¢ in a medium of dielectric constant ¢
is placed at a distance ¢ from an infinite-plane boundary with another
medium of dielectric constant &. Prove that the field produced by the
charge can be determined by means of the images shown in Fig. 8.12.

First of all we note that the potential due to the images shown in Fig.
8.12 automatically satisfies Laplace’s equation because all point charge
fields do so. Therefore, to prove that the images are correct, we need only
to show that they are compatible with the boundary conditions at the di-
electric interface. These conditions are

(1) ¢, = @y at x=0,

(2) sl%?=e,—a£§ at x=0.
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Fic. 8.12 (a) Point charge ¢ in front of a plane dielectric interface. (b)
To find the field in medium 1, the original charge together with the image
charge ¢’ is used, and the entire space is considered filled with medium 1.
(c) To find the field in medium 2, the original charge is replaced by the
image charge ¢”, and the entire space is considered filled with medium 2.
(The field lines plotted in these figures are for &, > ¢).

The potential in medium 1 is, according to Fig. 8.12,

q 1 £, — & 1
q’l{x:y) = + 3
dmegt, W(x+a)* + 9 g+ & V(r—a)?+
and that in medium 2 is, similarly,

q 2e, 1
qji(x:}') = .
dmegta 6y + &V (x + @) +*

We see by inspection that these potentials satisfy boundary condition (1).
Substituting these potentials in boundary condition (2), we find that they
satisfy this boundary condition also. Hence the images are correct. Ob-
serve that these images reduce to the ordinary image of a point charge in
front of an infinite-plane conductor if &, = co.

7 §

8-7. Polarization

The theory of electric phenomena in material media becomes
especially informative and concise if in addition to the two field vectors
E and D the third field vector, the polarization vector P, is used. The
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polarization vector is defined by the equation

P =D — ¢E. (8-7.1)
As we shall presently see, this vector allows a convenient description
and analysis of electric phenomena in all nonconducting media, linear
and nonlinear, isotropic and anisotropic, with no restriction upon the
dielectric properties of the media at all.

Using the polarization vector P, we shall now derive several
important formulas for the electrostatic potential and electrostatic field
in material media.

Let us take the divergence of Eq. (8-7.1). We have

V.-P=V.D —¢V-E.
This can be written as
& V-E=V.D - V.P,

or
1
V-E:s—(p—V-P). (8-7.2)
0
By the corollary to Poisson’s theorem of vector analysis we obtain
then for the electrostatic potentiall
1 p—V.P

4mre, r
All space

dv', (8-7.3)

where we have omitted the reference potential ¢, as usual. Splitting
this integral into two integrals and using V'’ to avoid ambiguities in
the transformations which follow, we have

1 f p 1 v'.P
= — ~dv — dv'. 8-7.4
7 47re, y & 47re, y v ( )
All space All space

The last integral can be transformed with the aid of vector identity (V-4)

P V.P 1
V.- = +P.V = (8-7.5)
r r r
into
: VP L f v. B! P.via
4me, r 47e, r 47e, r
Allspace All space All space

By Gauss’s theorem,

1
I TR PYRIE Wy
4me, r 47e, 7
All space All space

1 Compare with Section 5-3.
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and since E and D, and therefore also P, are regular at infinity, the sur-
face integral vanishes. This means that the volume integral on the left
vanishes also. Therefore Eq. (8-7.4) can be written in an alternative
form as
l P ’ 1 ’ 1 ’
g =— ~dv' 4+ — P-V -dv. (8-7.6)
4me, 7 4me, 7
All space All space
As can be seen from Eqs. (8-7.4) and (8-7.6), the electrostatic
potential ¢ produced by a charge distribution p in the presence of a
dielectric can be regarded as the sum of two partial potentials: the
ordinary ‘“vacuum’ potential

1
oy = — L dv'

- dmeyJ 1
identical with the potential associated with p (produced by p) in the
absence of the dielectric, and the “polarization’ potential ¢p, which
can be expressed as either

_ L [v.P R
P = T e T 0T P T

1
fP -V ~do, (8-7.7a,b)

and which is associated with the dielectric. It is therefore clear that,
as far as the calculation of ¢ (or any quantity derivable from ¢) is
concerned, a dielectric is equivalent to a certain charge distribution
that would produce the potential ¢p if the dielectric were replaced by
this charge distribution. This fictitious charge distribution?! is called
the polarization charge distribution. The concept of the polarization charge
is very useful since it allows one to treat a dielectric as an equivalent
charge distribution in vacuum, and thus allows one to apply the
“vacuum” field theory developed in the preceding chapters to systems
containing dielectrics.

The polarization charge distribution by which a particular di-
electric may be replaced can be found either from Eq. (8-7.7a) or
from Eq. (8-7.7b). Let us first consider Eq. (8-7.7a). In the case of a
dielectric of finite extent, the integral of Eq. (8-7.7a) can be split into
three integrals: an integral over the interior volume of the dielectric
(Fig. 8.13), an integral over the volume of the boundary layer of the
dielectric, and an integral over the space external to the dielectric, so

1 As is explained below, this charge distribution is fictitious from the point of
view of the macroscopic theory only.
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e Boundary layer
Interior

Fic. 8.13 Sometimes it is expedient to assume that a dielectric has an
“interior part” and a “boundary layer.”

that Eq. (8-7.7a) can be written as

- 1 "‘V'-Pd, 1 V'-Pd,
Fa= 4me, r d 4are, v
Interior Boundary layer
1 v.pP
- — dv'.
47e, r
External space

Outside the dielectric, P = 0, and the last integral is therefore zero.
The second integral can be written as two integrals by means of Eq.
(8-7.5), so that

1 v.pP 1 P
= — — dv’ — — V' e—dv
¥ 4me, r 4ne, r
Interior Boundary layer
1 wik
—— P.V -dv.
4me, r
Boundary layer

The volume of the boundary layer may be assumed to be as small as one
pleases, and since P is finite, the last integral in this equation vanishes.
The second integral in this equation can be transformed into a surface
integral by means of Gauss’s theorem, and the potential then becomes
1 v.pP 1 § P
= — dv' — — — - ds'.
e 4me, .[ r 4are, 7

Interior Boundary layer

The surface of integration here consists of both the interior and exterior
surfaces of the boundary layer, but since the exterior surface is outside
the dielectric, P = 0 there, and the only contribution to the surface
integral comes from the interior surface (observe that on this surface 48
is pointing into the dielectric). Furthermore, since the boundary layer
may be assumed to be as thin as one wishes, the surface of integration is
just the surface of the dielectric. Substituting m, dS’ for d§’, where m,  is
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a unit vector in the direction of an inward normal to the surface of the
dielectric, we then obtain from the last equation

l V, . P , 1 P * nin ’
Yp = — 41780 " dv' — Z’?T_EO —r- dS . (8-7.8)
Interior Boundary surface

If we compare Eq. (8-7.8) with Eqs. (5-3.1) and (5-3.2), we immediately
recognize that the potential ¢p can be attributed to a volume distri-

bution of polarization charge
pp=—V-.P (8-7.9)

spread through the interior of the dielectric, and to a surface distribu-

tion of polarization charge
op = —P.n (8-7.10)

spread over the surface of the dielectric. This means that for the purpose
of the calculation of ¢ (or any quantity derivable from ¢) the interior
part of a dielectric may be replaced by the volume charge pp = —V - P,
and the boundary layer of the dielectric may be replaced by the surface
charge 6p = —P - n,,. Note that in this representation the real charges
are regarded as contained in cavities made in the dielectric, so that op
is present on all interfaces between p and the dielectric.

The total electrostatic potential produced by a charge distribution
p in the presence of a dielectric can then be expressed as

1 P 1 PP 1 op
— Ly =4 —ds’ -7.11
¢ 4weofrdv+4ws0frdv+4ﬂ60§r > (8710
and the electric field E produced by p in the presence of a dielectric can
therefore be expressed as

1 r, 1 u 1 »
E — Pl o + J PrYw o + fﬁﬂ ds’.  (8-7.12)

dmey J 12 dmeg ) 1? 4me, r?

On electrostatic field maps, the field lines begin and end on electric
charges, which thus constitute the “‘sources” of the electrostatic fields.
According to equation (8-7.12), the sources of the electrostatic field E
in the presence of dielectrics are not only the real charges p, but also the
fictitious, polarization charges pp and op. Therefore the field lines of E
begin and end not only at the points where p is present, but also on
dielectric surfaces (op) as well as at points within the dielectrics (pp).
The field lines of D, on the other hand, begin and end only on the real
charges p. This follows from the divergence law V D = p, which
shows that D is always associated with the real charges only, so that
only the real charges are sources of D. Therefore an E field and a D
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field may have entirely different structure when dielectrics are present.
As a result, an E map and a D map of the same electrostatic system
containing dielectrics may appear very different (see Figs. 8.7, 8.8,
8.9, and 8.16).

Let us now consider Eq. (8-7.7b). This equation can be written as

P ’ 1 ’
Pp = Kgo -V ; dl) . (8'7.13)
Dielectric

If we compare this equation with Eq. (5-4.10a)

Paipole = 4%% : V’} (5-4.10a)
representing the potential of a dipole of moment p, we see that the
integrand in Eq. (8-7.13) can be interpreted as the potential produced
by a fictitious “polarization” dipole of moment dp = Pdv’. The polari-
zation vector P can be interpreted therefore as the dipole moment
-density (dipole moment per unit volume) of such polarization dipoles:

ap
P = e (8-7.14)
The potential ¢p can then be regarded as the total potential produced
by all these dipoles spread through the volume of the dielectric. This
means that for the purpose of the calculation of ¢ (or any quantity
derivable from ¢) a dielectric may be replaced by a distribution of
dipoles of dipole moment density dp/dv = P.

Thus a dielectric can be treated as an equivalent space and surface
charge distribution or an equivalent dipole charge distribution. It can
also be treated as and equivalent polarization current distribution, which is
described in Appendix 4.

The representation of a dielectric as an equivalent charge distri-
bution (pp, op, ordp/dv) is especially useful for dealing with dielec-
trics possessing a permanent polarization P. Such permanently
polarized dielectrics are called electrets.

Equation (8-7.14) constitutes an important link connecting the
macroscopic theory of electric phenomena with the microscopic theory.
In the microscopic theory, a polarized dielectric is regarded as an
assemblage of atoms and molecules whose charges are displaced from
their unperturbed positions under the influence of the applied field:
molecules having permanent dipole moments are lined up so that the
dipole moments are oriented predominantly in the direction of the
applied field, and all atoms and molecules receive “induced” dipole
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moments as a result of a shift of the negative charges relative to the
positive ones. The average dipole moment of these atomic and mole-
cular dipoles per unit volume of a dielectric is defined as the polariza-
tion vector P in the microscopic theory. By setting P ioroscopic =
P, .croscopics @ transition between the two theories is achieved. The
“fictitious” polarization charge of the macroscopic theory is, in the
microscopic theory, the charge “bound” within atomic and molecular
systems. The “real” charge of the macroscopic theory is, in the micro-
scopic theory, the “free” charge accessible to macroscopic observations
(such as the observations described in Section 4-1).

In concluding this section, let us note that the boundary conditions
at a dielectric interface derived in Section 8-5 involve real (free)
charges only.

v

Example 8-7.1 A conducting sphere of radius a is embedded in an
infinite dielectric of dielectric constant e. The sphere carries a charge q.
Compare the physical meaning of Egs. (8-4.3) and (8-7.12) when they are
used for calculating the electrostatic field of the sphere.

® @

(a) (b)

q

Fic. 8.14 Two methods of calculating the electric field of a charged body
surrounded by a dielectric. (a) Direct calculation. (b) Dielectric is replaced
by an equivalent charge distribution.

In Eq. (8-4.3) the effect of the dielectric is taken into account by using
the product ¢4¢ instead of &, and only the real charge is used for the calcu-
lation. The physical system corresponding to this equation is shown in
Fig. 8.149a. When Eq. (8-7.12) is used, however, the sphere is considered to
be in a vacuum, and the dielectric is considered replaced by polarization
charge distributions pp, and 6. By Eq. (8-4.3) (or by Gauss’s and displace-
ment laws), the field of the sphere is

9
E = . 8-7.15
dmeger® e ( )

Let us now see what this field is by Eq. (8-7.12). The polarization of the
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dielectric is, by Egs. (8-7.1) and (8-7.15),
P DB g B g B i ]
eE = eE — gE = (e — 1) o,

The polarization space charge is then [using Ve = 0 and V - (r,/r?) = 0]

pp=—V-P=-—V-|:(£—|)4:£'2r“:|=0.

The polarization surface charge (representing the effect of the boundary of
the cavity containing the sphere) is

gp=—Reog=—(s—1) 41r£a’

The physical system corresponding to Eq. (8-7.12) is shown in Fig. 8.14b.
Note that it is completely different from that shown in Fig. 8.14a. By Eq.
(8-7.12), the field of the sphere is the sum of the field E;- produced by the
real charge ¢ and the field Ep produced by the polarization charge g¢p,
both charges thought to be located in a vacuum. The first field is

q
E;, = Tore st Fur (8-7.16)
The second field is, noting that gp =0p * 4ma® = —(e — 1)(g/e),
—1)g
E, — _ (&—1g <3
P o (8-7.17)

Adding Egs. (8-7.16) and (8-7.17) we again obtain Eq. (8-7.15).

Example 8-7.2 A cylindrical electret of length 2/ and radius a has
constant polarization P directed along the axis of the electret, as shown in

Fic. 8.15 (a) Cylindrical electret. (b) Equivalent charge distribution.

Fig. 8.15a. Find the electric field produced by the electret at an external
point on the axis and then obtain the limiting values of the field for a very
long and a very short electret.

The field of the electret can be calculated with the aid of Eq. (8-7.12).
Since no real charge is present anywhere in the system under consideration,
and since inside the electret P is constant so that pp=—V-:P =0, the
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field can be found from op alone. On the cylindrical surface of the electret
P is perpendicular to my,, so that 6p = —P .m;; = 0. The only contri-
bution to the field comes therefore from op on the flat bases of the electret,
where P and n;, are parallel. On the left base, P and n;;, have the same
direction so that 0p = —P .m;; = —P. On the right base, P is opposite
to m;, so that 6p = —P.m,, = P. By Eq. (8-7.12), the problem thus
reduces to finding the field of two uniformly charged disks located at the
ends of the electret and carrying surface charges 4+ P (Fig. 8.15b).

The field of a uniformly charged disk of charge density ¢ and radius a
has been found in Example 4-5.3, and is

g z

2&, V22 4 a?
where z is the distance from the disk to the point of observation. The field
of the electret under consideration can be obtained from this formula.
Replacing ¢ by 4+P and z by z F [ in it and adding the resulting expres-
sions we obtain

P z—1 P z+1 }
—l - —————— |k — —|] - ———r |k
230[ \/(z—l)2+a2:| 230[ V(z+ D2+ a?

which after simplifications becomes

E =

E

_r z+1 . z—1 ]
B 280[\/(2 +02+a V(z—DZ+ az] : (8-7.18)

This can also be written in terms of the angles subtended by the bases of the

electret at the point of observation as

E = e, (cos B, — cos 0,).

For a very long electret (rod electret), 8, — 0, and the field becomes

P
(1 — cos 0,).

Eq = 2_80

If, in addition, the point of observation is very close to the base, 0, is approx-
imately 90°, and the field becomes simply

P
E = —2_(;‘:) .
For a very short electret (disk electret), by Eq. (8-7.18) the field becomes
P
Ejix = — (l/a) .

™

0
Example 8-7.3 Find the electric field E and the displacement field D
at an internal axial point of the electret discussed in Example 8-7.2.
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(a) (b)

Fic. 8.16 (a) E map for a cylindrical electret. Note that the lines of E
originate and terminate on the faces of the electret (surface charges op).
(b) D map for a cylindrical electret. Note that the lines of D have no
beginning and no end, and that inside the electret D is opposite to E.

Replacing the electret by two uniformly charged disks as in Example
8-7.2, we have

R v e e e L ol

ar

P
E=——(2+ cos f; — cos 0,),
2¢,

where the notations are the same as in Fig. 8.15. For a very long electret
(rod electret), 6, — 0, 6; — m, and the field becomes

Emdzo.

For a very short electret (disk electret), 6, —-»12—7, 6, — g , and the field
becomes

P
Ejix = — —

&
The displacement is found from D = P + ¢,E and is

P
D =5 (cos B, — cos 6,).

Observe that the direction of D in the electret is opposite to that of E (the
E and D maps for the electret are shown in Fig. 8.16a,b). For a very long
electret the displacement becomes D = P. For a short electret (disk) it
becomes D = 0.
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(a) (b)

Fic. 8.17 (a) Open ring electret. (b) Equivalent charge distribution.

Example 8-7.4 A ring electret has the polarization P = (A4/r),,
where 4 is a constant, r is the distance from the axis of the electret, and 6,
is a unit vector in the circular direction, as shown in Fig. 8.17. The electret
has a narrow slot between two plane faces normal to 6,, which form an
angle 6 with each other. Neglecting edge effects, find the electric field in the
slot.

The field can be calculated from the polarization charges. The polari-
zation space charge is (consult Table 2-I)

120 1 /4
—:@PF—:%(:):“-

The polarization surface charge is zero on the side surfaces of the ring
because P is perpendicular to my, there, but on the surfaces of the slot
op=—P-njy = +P = +A[r (P is parallel to mnj, there). The problem
thus reduces to finding the field of two surface charge distributions ¢, =
+Afr located at the surfaces of the slot. This system of surface charges
is similar to the system of two charged conducting plates discussed in Example
6-3.4. Therefore the field in the slot is, by Example 6-3.4,

PP=_V'P=

o A
E=-"L9,=—09,.
£ g
Example 8-7.5 A small spherical cavity of radius r is made in a large

electret of constant polarization P (Fig. 8.18). Neglecting the effect of the
outer boundaries of the electret, find the electric field at the center of the
cavity.

Since the effect of the outer boundaries can be neglected, and since P
is constant, the field can be calculated from the polarization surface charge
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- o, =—Pcosf~

(a) (b)

Fic. 8.18 (a) Spherical cavity in an electret. (b) Equivalent charge
distribution.
ap on the surface of the cavity. Referring to Fig. 8.18, we have
op = —P.n, = —Pcosh.
The field is then, by Eq. (8-7.12),!

E— — 1 TPy o 1 J"Pu;:ﬁr
o

4ney ] 1* T 4me,

272 sin 0 df),

where we have taken as dS’ an elementary ring of area 27r%sin 6 dfl. By
symmetry, the field is along the z-axis, so that only the z-component of r,
or zk, needs to be considered when evaluating the above integral. But
zk = kr cos 0, and hence

k ("Pcosfrcost kP [~
B [P0ty s ds = [ cost0sin 0.0,
4mey Jo r 2¢0 Jo
or
o
3¢

Example 8-7.6  Find the electrostatic potential at a large distance from
a small piece of electret of volume v and constant polarization P (Fig. 8.19).

r>=|

e ——

o(r,8)

Fic. 8.19 Calculation of electric field at a large distance from a piece of
electret.

1 Note that r, appearing in Eq. (8-7.12) is opposite to r shown in Fig. (8.18),
the latter pointing toward the charge.
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This problem can be solved most easily by regarding the electret as a
single dipole. Since P is constant, the dipole moment of the electret is,

according to Eq. (8-7.14), p = Pu.

The potential is then, by Eq. (5-4.9),

Py
P = F cos . (8-719)

Example 8-7.7 A thin disk electret of polarization P directed along
the electret’s axis is placed between two conducting plates which are in
contact with each other (“shorted”) as shown in Fig. 8.20. Find how
the plates affect the internal and external fields, E; and E,, of the electret.

b E
‘HTP T - + + + .

E0RR N N D

(a) (b)

Fic. 8.20 (a) Disk electret between two shorted conducting plates. (b)
Equivalent charge distribution.

Since the plates are in contact with each other, the voltage
between them is zero, and we have, by Eq. (8-3.2),

Ea+ Eb=0. (8-7.20)
From the boundary condition for D, Eq. (8-5.4), we have
D, - D, =0,,=0 (8-7.21)

(observe that this boundary condition involves only the real surface charge).
Expressing D in terms of P and E, we have D, = P, 4 g,E;, = P + ¢yE; and
D, =P, + g,E, = ¢,E,. Eq. (8-7.21) becomes then

£oE, — £oE; — P = 0. (8-7.22)

Solving Egs. (8-7.22) and (8-7.20) for E, and E; and taking into account the
direction of P, we obtain

b a
E=——P = P
£ gla + b) aud. gola + b)
If b > a (free electret) these solutions reduce to those obtained in Examples
8-7.2 and 8-7.3. If b — 0, then E; — 0 (one stores electrets between shorted
conducting plates; since E; = 0 in this case, the electret does not lose its
polarization).

A
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8-8. Energy and Force Relations for Electrostatic Fields

with Dielectrics Present

The basic energy law for electrostatic systems containing dielectrics
can be expressed as!

o o P
U= g’ f E*dy + f (f E-dP)dv. (8-8.1)
All space All space 0

In this equation U is the total electric energy of an electrostatic system
under consideration, the first term on the right is the so-called field
energy U,, and the second term on the right is the so-called polarization
energy Up.

The field energy

U, = ;’ f E*dy (8-8.2)

is attributed to the electric field as such and does not vanish even if
there are no dielectrics in the field.
The polarization energy

Up = f ( fo E. dP)dv (8-8.3)

is attributed to the polarization of dielectrics and vanishes if there are
no polarized dielectrics in the field. The designation of U, as the polari-
zation energy is based upon the observation that an amount of energy
given by Eq. (8-8.3) is absorbed by a dielectric when the polarization
of the dielectric changes from zero to P. Depending on the properties
of the dielectric, the energy U,, may or may not be conserved (stored
in the dielectric in a recoverable form). IfP is a single-valued function
of E, the energy U, is conserved, because then

P 0
fE-dP: —fE-dP.
0 P

If the correlation between P and E is such that the curve representing
P as a function of E (polarization curve) does not retrace itself when the
field changes from —E to +E and back to —E, as in Fig. 8.21, U, is

1 More than any other electric or magnetic law, this law and the corresponding
law for magnetic fields are justified by their consequences rather than by their origin.
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P

/o
Fic. 8.21 Hysteresis loop for a dielec-

tric.

not conserved, because then

P 0
fE-a’P#—fE-dP.
0 P

In this latter case the dielectric is said to exhibit a Apsteresis. The loop
formed by the polarization curve is called the Aysteresis logp. As one can
see from Fig. 8.21 and Eq. (8-8.3), the area enclosed by the hysteresis
loop is proportional to the energy dissipated in the dielectric during
each complete cycle in the change of E.

In a linear isotropic dielectric, P = ¢y(¢ — 1)E, so that

— ) g
fEdP_ —— E

and the polarization energy, according to Eq. (8-8.3), is
Up = 5 f ) E2dv. (8-8.4)
Therefore when all dielectrics contained in a system under consideration

are linear and isotropic, the total energy of the system, according to

Eq. (8-8.1), i
U= f Edy + < f 1) E2dy = —° f ey, (8-8.5)

which is usually written in the symmetrical form
1
=3 fE - D dv. (8-8.6)

By inspecting the transformations used in Chapter 7 for obtaining
the special forms and consequences of Eq. (7-1.1a), we find that the
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same transformations can be applied to Eq. (8-8.2), except that ¢,V - E,
by Eqgs. (8-7.2) and (8-7.9), is now equal to p + p,, rather than to p.
Therefore the equations obtained in Chapter 7 from Eq. (7-1.1a) apply
also to the energy U, of the electrostatic fields in the presence of dielec-
trics, provided that the charge density p appearing in these equations
is replaced by the “effective” charge density p + pp (o) may be used
instead of p, on dielectric boundaries, in which case the volume
integrals over the boundary layer must be replaced by the surface
integrals over the boundary surface). In particular, we find that the
force equation (7-7.1) can be rewritten for the electrostatic fields in the
presence of dielectrics as

F=— VUI, lp,P=constant’ (8'87)
where U7, in analogy with U’ used in Chapter 7, is given by
U ="t + pr)e'av. (8-6.8)

The explicit equations for the force are then

F = f (p + pp)Edy = f (p + pp)Eds,  (8-8.9a,b)

which follow from Eqs. (7-8.1) and (7-8.2). Note that Egs. (8-8.9a, b)
allow one to find not only the forces acting on charged bodies (real
charge p) but also the forces acting on neutral dielectrics (polarization
charge pp).

Since the polarization P may be regarded as the dipole moment
density associated with the polarization charges pp, the force acting on
a neutral dielectric can be expressed, by Eq. (7-10.2), also as

F— f (P. V) Edy. (8-8.10)

As we learned in Chapter 7, an especially important force relation
for an electrostatic system in a vacuum is given by Maxwell’s stress
equation (7-11.3). By inspecting the transformations by means of
which this equation was obtained, we find that it remains valid even if
there are dielectrics in the system under consideration. The electro-
static force acting upon any object (charged body, dielectric, conductor,
etc.) enclosed by a Maxwellian surface § passing through a vacuum is
therefore always (see, however, Appendix 3)

F=— §’§E2ds + °80§E(E.dS). (8-8.11)
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If § is the surface of a free conductor, the force becomes, by analogy
with Eq. (7-11.4), o
F = ~§'—3§E2ds, (8-8.12)

so that a free conductor under electrostatic conditions can always be
regarded as subjected to the electrostatic pressure

P ? E2, (8-8.13)

It is important to remember, however, that all force equations
given above may be used, in general, only for determining forces acting
on a dielectric body (or bodies) as a whole rather than forces acting on a
part of a body. This is because we have arrived at the concept of the
polarization charge pj. by using Poisson’s integral (8-7.3) extended over
the entire volume of each dielectric.

In conclusion, let us mention once again that all equations which
are valid for electrostatic systems contained in vacuum are also valid for
similar systems contained in an infinite dielectric of constant ¢, provided
that ¢, in these equations is replaced by the product ge.

v
Example 8-8.1 A voltage V is applied to a parallel-plate capacitor

consisting of square plates of length a separated by a distance d. A large
dielectric slab of thickness d and dielectric constant ¢ is inserted between the
plates, as shown in Fig. 8.22. Neglecting edge effects, find the force acting on
the slab.

Fic. 8.22 Calculation of force acting on a dielectric slab in a parallel-plate
capacitor.

We shall solve this problem by using the force-energy relation F, =
—0U/0x, valid for all isolated conservative systems. To make the capacitor
an isolated systemn, we shall imagine that it is disconnected from the battery
(observe that in this case the charge @ of the capacitor, rather than the
voltage V, must be considered constant). The electric field in the capacitor is

V
E=E'
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The displacement in the empty part of the capacitor and in the part occupied
by the dielectric is, respectively,

vV
7"

The charge of the capacitor (one plate) is then, by Gauss’s law,

vV
D, =& 7 and D, = g¢

vV vV 14
Q= soz(a—x)a + e 7 xa = sozi—a[a—l— (e — 1)x],

and the voltage expressed in terms of the charge is therefore

V= Qd
T geala + (e — 1)x]”
The energy of the capacitor is, by Eq. (8-8.6),

Ol Ol
U= 5 ED,(a — x)ad + 5 EDyxad
2

., V2 N 4
= "¢ 573 (a — x)ad + °gye 2—(1,—2xad.

Simplifying and substituting V (which is a variable quantity if the capacitor
is disconnected from the battery), we obtain

_ "

"~ 2¢gala + (e — 1)x]

e
U= °80%,a[a + (e — 1)4]

The force on the dielectric is therefore

o ou °Q%d(e — 1) _ %gV?a(e — 1)
=T Ox 2gafa + (e — )x]2 2d )
Example 8-8.2 A small dielectric sphere of radius a and dielectric

constant ¢ is placed at a distance ¥ > a from a point charge ¢ (Fig. 8.23).
Find the force on the dielectric sphere.

p . s

Fic. 8.23 Calculation of force acting on a small dielectric sphere in the
electric field of a point charge.

This problem can be solved by using Eq. (8-7.14). The electric field
produced by ¢ at the location of the dielectric sphere is.

. g,
E T e "

Since x> a, this field, in the first approximation, is uniform throughout the
region occupied by the sphere. The electric field within the sphere is then,
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by Example 8-6.1, 3

—— E’
5 e+27°
and the polarization of the sphere is, by Eq. (8-7.1),
3eg(e — 1) _,
P:D—£0E=£o(£— I}E=‘—(:—+Q")—E

Using Eq. (7-10.2) and taking into account that a < x, so that the sphere
may be regarded as a single dipole of moment §7a®P, we have therefore
°4 0 °4 q
< B - P PR e . L aadpe L s
F=°p-V)E 3 ™4 PaxE 3 ™4 P21r£0x31’
and substituting P, we obtain
T [P~ AL
Fe —_te— e
2mey(e + 2)x°

Thus, the sphere is attracted to the point charge with a force proportional to
x5

Example 8-8.3 A point charge ¢ is placed into a nonconducting liquid
of dielectric constant £. A spherical air bubble of radius a has formed at a
distance x > a from the point charge (Fig. 8.24). Find the electric force on
the bubble, assuming that the liquid may be considered as extending to
infinity in all directions.

EERRAER -

Fic. 8.24 Calculation of force acting on a spherical air bubble in a dielec-
tric liquid under the influence of a point charge. It is assumed that x > a.

We note from Example 8-6.1 that if the original field at the location of
the bubble is E’, the effect of the bubble on the field outside it is to produce
an additional field

e—1a® e—1la

Bl e rins oin i

3

E'sin68,.
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Comparing this field with the field of a dipole embedded in a dielectric of
dielectric constant ¢, given by Eq. (5-4.13) with ¢, replaced by ¢,
__p cosb p sin0

— —_—T —
2mege 13 Y dmee 18

ud

we see that the bubble may be regarded as a dipole of moment

pP=— 22—_’_—1 477808(13E’.
Since
/ q9 .
E' = Amegext
P can be written as
e — 1 ga®,
%2 + 1 42

The force on the bubble is then, by Eq. (7-10.2),
o , °Nfe—1 ga® 0 q .
F="(p V)E'=— [28 +1 &% ax(4ﬂeoex2 11’

_ (e —Dg%® |

T 2mege(2e + 1)4° -

P=—

or

Thus in contrast to the dielectric sphere of the preceding example, the bubble
is repelled from the point charge with a force proportional to x5,

Example 8-8.4 A conducting sphere consisting of two separate hemi-
spheres of radius 4 is placed in a nonconducting liquid of infinite extent and
dielectric constant e. Find the force with which one hemisphere is repelled
from the other when the sphere is given a charge g.

This problem is the same as that discussed in Example 7-11.1, except
that now the sphere is in a dielectric rather than in a vacuum. Therefore
the solution can be obtained from that of Example 7-11.1 by replacing ¢,
by eqe. This gives

? .
F= 32meyea’ *
Examples 8-8.5 A conducting sphere of radius ¢ and density p floats
in a nonconducting liquid of density p’ > 2p and dielectric constant e.
How much charge must be placed on the sphere in order to make the sphere
half submerged in the liquid ?

By Example 8-5.3, when the sphere is half submerged and carries a
charge ¢, the electric field around it is

. q
E= 2meg(e + 1)r?
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and the displacement is

D& Y
liquld ™ 97(e + 1)r2’ 27(e + 1)r?”

Thus, the E and D fields in the liquid are the same as those that would be
produced by the same sphere if the liquid occupied all space around the
sphere and if the sphere carried a charge ¢' = 2¢¢/(¢ + 1). Since electric
fields are force fields, equal electric fields produce equal forces on charges
located in these fields. By the preceding example, the electric force on the
lower hemisphere is therefore

D air

Osgg

Faown = 8mey(e + 1)%®’
Similarly, the E and D fields in the air are the same as those that would be
produced by the same sphere in a vacuum if the sphere carried a charge
q" = 2q/(e + 1). The electric force on the upper hemisphere is therefore,
by Example 7-11.1, o 3
.
WP Bmey(e + 1)%2%°

The total force down is the sum of F ., and the weight of the sphere, or

eq? 4
Fiown total P + 3 wa’pg.

The total force up is the sum of F,, and the bouyant force of the liquid, or

©.2

T 2
Fup totar = 8meg(e + 1)%a® * L
Setting F
total down — £ total up

and solving for ¢, we obtain

o 167%g(e + 1)*(p" — 2p)a’e
7= 3(e—1) ’

o

Example 8-8.6 A thin disk electret of thickness a, face area A4, and
polarization P directed along the electret’s axis is laid on a conducting plate.
A second conducting plate, connected by a wire to the first, is placed above
the electret at a distance b from its surface (Fig. 8.25). Find the force on
this plate neglecting end effects.

ha o EEE— i
s 7

laf U5 e T

Fic. 8.25 Calculation of force acting on a metal plate placed above an
electret. S is a Maxwellian surface enclosing the plate.
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The force can be found from Eq. (8-8.12). The electric field above the

plate is zero. The electric field below the plate is, by Example 8-7.7,

a

E=———P
g (a + b)

The force is therefore, by Eq. (8-8.12),
&0 J‘ a®p? °a?P?4

2 ei(a + b)2 ds = 2¢4(a + b)?
Plate

F =

directed towards the electret.

Example 8-8.7 Determine the change in electric energy which takes
place when a linear isotropic dielectric is placed in the electric field of a
capacitor carrying a constant charge.
Let the initial field be E,. The initial electric energy is then, by Eq.
(7-1.1),
°1
U, = EJ‘EO « Dydv.
When the dielectric is introduced into the field, the field changes to
E, and the energy becomes, by Eq. (8-8.6),
°1
= EfE - D dv.
The change in energy is

o

1
AU = EJ(E-D—EO-DO)dv,

which can be written as

o

1 °l

AU = -Q—J‘(E-DO—D-EO)JU—F §f(E+Eo)-(D—Do)dv
Ol 01

= §j(E *Dy — D - Eg)dv — §fv(¢ + @o) + (D — Dy)dy,

where @ and ¢, are the potentials corresponding to E and E,. We shall show
now that the last integral is zero. Since

V(g + @o) + (D — Dg) = V- [(¢ + ¢0)(D — Dy)]
—(p+ @) V- (D —Dy)

and since V.D = V. D, = 0 throughout the space under consideration,
we can transform the last integral into a surface integral:

3| V(o + 5 - @ —D)ar = 3¢ (¢ + )@ — Dy a5,

This surface integral is extended over a surface enclosing all space and over
the surfaces of the capacitor plates. The surface enclosing all space makes

o
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no contribution to the integral because the field is regular at infinity. The
surfaces of the capacitor plates also make no contribution to the integral.
This is because ¢ and g, are constant at all points of each plate, and the

integrals
§D-ds and §D°-ds

are both equal to the charge residing on the plate over whose surface the
integrals are taken. The surface integral under consideration is therefore
zero, and so the last volume integral is zero. The change in the energy is

then o1
Al = EJ‘(E D, — D-E))dv.

Now, outside the dielectric, E- Dy — D - E; = E - (¢,E,) — (¢,E) - E; = 0.
Therefore the last integral needs to be extended only over the volume
occupied by the dielectric. Thus we obtain

|
AU= 5 f (E-D, — D-E)dv
Dielectric
2|
=3 f [E - (¢0E;) — D - Eg]dv
Dielectric
°1
——3 | ®—cB) B,
Dielectrie

AU = — = |P.Eb. (8-8.14)

Example 8-8.9 A nonconducting liquid of dielectric constant & and
density p is contained in a U-tube of rectangular cross section. When the
tube is inserted between the plates of a parallel-plate capacitor (Fig. 8.26)

Fic. 8.26 Dielectric liquid is pulled in the
electric field of a parallel-plate capacitor.
This phenomenon can be used for deter-
mining ¢ of the liquid.
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whose charges are kept constant, the liquid between the plates rises by an
amount k. Neglecting all edge effects, find 4 if the initial field between the
plates is E,, the dielectric constant of the tube is ¢’ = 1, and the inner
dimensions of the tube’s cross section are a (perpendicular to E;) and &
(parallel to E;), with a> b.

By the preceding example, the final electric energy of the system is

°
U=U,— §JP-Eodv.

Since all edge effects are neglected, P may be assumed constant in the part
of the tube located between the plates of the capacitor and zero elsewhere,
and if the height of the liquid between the plates with respect to their lower
edge is , the energy can be written as

(o]

1
U=U, — QP-EOaby.

The electric force on the liquid is then

oUu °l

= ——_— = = . E .

F, PR 5 P.Ejab

This force is kept in equilibrium by the weight of the liquid contained in the
portion of the tube of length 24:

w = 2abhpg.
Combining the last two equations, we obtain

_ °P.E,
4pg

To complete the solution, we must find P. Since the tube has a rectangular
cross section with @ > b, the field in the liquid contained in the tube is the
same as in the thin disk discussed in Example 8-5.1. By Example 8-5.1, we

then have in the liquid

1
D = ¢E, and E=;E0.

The polarization is therefore

gle — 1)
€

P=D — ¢gE = E,,

and we finally obtain
h— Ceg(e — 1)Ey? .

4epg
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PROBLEMS

8.1. Prove that if a capacitor is filled with a material of dielectric con-
stant ¢, the capacitance of the capacitor will increase ¢ times.

8.2. A large dielectric slab of thickness ¢ and dielectric constant ¢ is
inserted between the plates of a thin parallel-plate capacitor of plate area
A4 and plate separation d. The slab is parallel to the plates and its edges are
outside the capacitor. Neglecting edge effects, show that the capacitance of
the capacitor is

C = gped[ed — (e — 1)t]7L.

8.3. The plates of a thin parallel-plate capacitor are separated by a
distance d. The maximum voltage which can be applied to this capacitor
before a spark occurs in the air inside the capacitor is V. A dielectric plate
of dielectric constant & and thickness ¢t < d is laid on the inner surface of
one of the capacitor’s plates. Show that the maximum voltage which can
now be applied to the capacitor before a spark in the air inside the capacitor
occurs is only

V= Vol — (d)(1 — 1/e)).

8.4. A parallel plate capacitor of plate area 4 and plate separation d is
filled with a dielectric whose permittivity varies uniformly from ¢; at one
plate to ¢, at the other. Neglecting edge effects, show that the capacitance
of this capacitor is

cofd o
d In (&/e)

8.5. A cylindrical capacitor is filled with a dielectric of variable
permittivity & = «/r, where o is a constant and r is the distance from the
axis of the capacitor. The radius of the inner cylinder is a, that of the outer
cylinder is 5. Find the capacitance per unit length.

8.6. The radii of the two cylinders forming a cylindrical capacitor are
a and b. The medium between the cylinders has a dielectric constant ¢,
from a to r and ¢, from 7 to b. Show that the capacitance per unit length of
this capacitor is

1 r 1 !
c, = 2m0(— Inl——In -) .
& a & b

8.7. A conducting sphere of radius a receives a coat .of material of
uniform thickness ¢ and dielectric constant . Show that the capacitance of
the sphere increases by the factor

ela + 1)

T ea+1
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8.8. A spherical capacitor is formed by two spheres whose radii are a
and b, a < b. The inner sphere receives a uniform coat of material of
thickness ¢ and dielectric constant e. Show that if ¢ < a, the capacitance
increases approximately by
(e — 1)b?

AC = 4’1Té‘ot s(b_—a)2 .

8.9. A spherical capacitor is filled with a dielectric of variable permit-
tivity &€ = o/r?, where « is a constant and 7 is the distance from the center.
The radius of the inner sphere is ¢, that of the outer sphere is 4. Find the
capacitance.

8.10. The radii of the two spheres forming a spherical capacitor are 2
and b. The medium between the spheres has a dielectric constant ¢, from a
to r and ¢, from r to 5. Show that the capacitance of the capacitor is

1 /1 1 1 /1 1\ 71
c=ml e —3) — 56 -)]

8.11. Alarge dielectricslab of dielectric constant ¢ is placed in a uniform
electric field E which makes an angle 6 with the normal to the surface of the
slab. Find the magnitude and direction of the electric field within the slab.

8.12. Consider an interface between two dielectrics, 1 and 2, of
dielectric constant ¢, and &,. At the interface, the electric field vector in the
two dielectrics makes, respectively, angles o; and ay with the normal to the
interface. Show that these angles satisfy the “law of refraction”

& cot a; = &, COt oLy,

8.13. A dielectric interface carries a double layer of charge, whose
dipole moment per unit area is mm,, where m, is a unit vector normal to
the interface. Show that the potentials on the two sides of the interface
satisfy the condition

®1 — P2 = T/

8.14. The lower half of a spherical capacitor is filled with a dielectric
of dielectric constant ¢. Show that the capacitance of the capacitor is the
same as if the entire capacitor were filled with a material of dielectric
constant

e = §(1 + &).

8.15. Show that if the space between two equipotential surfaces of an
electrostatic system is filled with a material of dielectric constant &, the two
surfaces will remain equipotential, but the potential difference between
them will sink to 1/ of its original value.

8.16. Show that if the space between two equipotential surfaces in the
field of a capacitor is filled with a material of dielectric constant ¢, the
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capacitance of the capacitor will increase by the factor

€
T e—fle—1)

where fis the ratio of the initial potential difference between the two surfaces
to the voltage applied between the terminals of the capacitor.

8.17. Prove that in a linear isotropic dielectric the electrostatic potential
satisfies Uniqueness Theorems I, II, and III of Section 6-2, provided that
the boundary conditions discussed in Section 8-5 are satisfied at all dielectric
interfaces.

8.18. Prove that in a linear isotropic dielectric the electric field satisfies
Uniqueness Theorems A, B, C, and D of Section 6-2, provided that the
boundary conditions discussed in Section 8-5 are satisfied at all dielectric
interfaces.

8.19. If the charge of the capacitor described in Problem 8.9 is ¢, the
potential in the capacitor is

n

p = (b —r).

47T€ o

Show that this potential does not satisfy Laplace’s equation, but satisfies
Eq. (8-6.1) instead.

8.20. A spherical capacitor is formed by two spheres of radii a and b.
The capacitor is filled with a material of variable permittivity ¢ = (« + 7)/r,
where « is a constant and r is the distance from the center. Using the basic
laws, show that if @ < b the potential in the capacitor is

AR
dmege r(a + b))’

(p:

where ¢ is the charge of the capacitor. Then show that this potential satisfies
Eq. (8-6.1).

8.21. An infinitely long circular dielectric cylinder of radius a and
dielectric constant g, is placed with its axis perpendicular to a uniform
electric field E; in an infinite dielectric liquid of dielectric constant &,.
Show that the resultant field is

E = EO—}—E & —I— 2a—(cos@r +sin 0 6,)
outside the cylinder and
2¢,
N

inside the cylinder, where 6 and r are cylindrical coordinates of the point of
observation. '

8.22. When a dielectric or conducting sphere is placed in a uniform
electric field E,, the resultant field E outside the sphere becomes

E=E, +E,
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(a) Show that E, can be attributed to a dipole-type charge distribution
of moment p induced in the sphere by the field E and given by

p = 4me oK,

where « is a constant of proportionality.
(b) The constant of proportionality « is called polarizability.) Show
that in the case under consideration it is given by

e — 1 3

a=8+2a.

8.23. A dielectric sphere of dielectric constant ¢ and radius 2a contains
a concentric conducting sphere of radius a. Show that if the spheres are
placed in a uniform field E,, the total positive (or negative) charge induced
on the metal sphere is
36meyca?
1= et 7 v

8.24. A spherical shell of radii @ and b (b > a) and dielectric constant
¢ is placed in an initially uniform field E,. Show that the final field inside
the central cavity of the shell is

9¢

E= e @ =)

E,.

8.25. Consider a line charge of density A per unit length in a medium of
dielectric constant g a distance a from an infinite plane boundary with
another medium of dielectric constant ¢,. Show that the potential in medium
1 is the same as that due to the actual charge 1 and an image line charge
A = [(& — &)/(&; + €)]A placed a distance a on the other side of
the boundary (considering the entire space to be filled with medium 1).
Show that the potential in medium 2 is the same as that due to an image
line charge of density 1" = [2¢,/(¢; + &,)]4 at the position actually occupied
by 1 (considering the entire space to be filled with medium 2).

8.26. Consider a line charge of density 4 per unit length in a medium of
dielectric constant ¢; a distance 4 from the axis of an infinite circular cylinder
of radius a and dielectric constant ¢,. Show that the potential outside the
cylinder is the same as that due to the actual charge 1 and two image
charges 1] = [(&, — &)/(&; + &)]Aand A, = —[(&; — &5)/(&; + )] located
at distances / = a2/d and [/ = 0 from the axis of the cylinder, respectively
(all charges lie in one plane and the entire space is considered to be filled with
medium 1). Show that the potential in the cylinder is the same as that due to
an image line charge of density A" = [2¢,/(¢; + &,)]4 at the position actually
occupied by 4 (considering the entire space to be filled with medium 2).

1 Polarizability is frequently defined as p = oE, where « incorporates the factor
4mrey.
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8.27. Show that the electrostatic potential measured at the center of a
spherical cavity made. in a uniformly polarized dielectric is independent of
the size of the cavity.

8.28. Assuming that the electret described in Example 8-7.2 is such
that [ > a,and using the method of axial expansion, find the potential at all
points near one end of the electret.

8.29. A spherical electret of radius a is made from a permanently
polarized material of uniform polarization P. Show that the potential of the
electret at a distance 7 > a from the center is

P.r/a\3
T 3¢y \r)°

8.30. A spherical electret of diameter 2¢ and a cubical electret of
length 24 on a side both have the same uniform polarization P. Show that
at large distances from the electrets the maximum field produced by the
cubical electret exceeds that produced by the spherical electret 6/7 times.

8.31. Two electrets of diffc-ent shape are made from equal amounts of
the same material of the same uniform polarization P. Show that at large
distances from the electrets the maximum fields which the two electrets can
produce are equal. .

8.32. A disk electret of radius ¢ and uniform polarization P directed
along the symmetry axis is placed between two conducting plates connected
by a wire. The wire is then removed from the plates and the plates are
removed from the electret. Show that opposite charges, not exceeding
¢ = wa®P, will appear on the plates.

8.33. Show that the force between two point charges ¢, and ¢, em-
bedded in an infinite liquid of dielectric constant ¢ a distance r apart is

o
N9 r
dmreger®

8.34. Two point charges ¢, and ¢, are placed at the respective centers
of two small spherical cavities located a distance r apart in an infinite solid
body of dielectric constant ¢. Show that each charge is subjected to the
force

_ 3019 r
4meg(2e + 1)r2 ™

8.35. The space between the plates of a thin parallel-plate capacitor
of plate separation d is filled with a dielectric of dielectric constant ¢. A
voltage V'is applied to the capacitor. Find the force acting on a point charge
g when this charge is placed in (a) a very small needle-shaped cavity made
in the dielectric with the axis normal to the plates, and (b) a very small
coin-shaped cavity made in the dielectric with the axis normal to the plates.

8.36. A small, slender dielectric cylinder of dielectric constant ¢ and
volume v is placed at a large distance r from a small conducting sphere of
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radius a kept at a potential V. The axis of the cylinder is along the line
joining the sphere with the cylinder. Neglecting the end effects of the
cylinder, show that the cylinder is attracted to the sphere with a force

_ %2g(e — 1)V2%aP

= 3 .

8.37. A small piece of electret of uniform polarization P and volume v,
is placed at a large distance r from a small, thin dielectric disk of dielectric
constant ¢ and volume v,. The polarization of the electret is in the direction
of the line joining the electret with the disk. The flat surfaces of the disk
are normal to this line. .Neglecting the edge effects of the disk, show that the
disk is attracted to the electret with a force
°3(e — 1)P%20,

dnleger’

F

F =

8.38. A large container made of dielectric material is covered with two
conducting plates separated from each other by a straight narrow gap.
The container is filled with a dielectric liquid of dielectric constant ¢ and
density p, and a voltage V is applied between the plates. A small spherical
air bubble has formed in the liquid at a depth & directly below the gap
separating the plates. Neglecting all edge and end effects, show that the

bubble will not rise if opr o (2¢ + 1)m2pgh’
T Bge(e — 1)

8.39. A cylindrical capacitor consisting of two coaxial cylinders of
radii a and b and length / is used as an electrostatic dust percipitator (dust
particles in the inhomogeneous field of the capacitor experience an attraction
to the inner cylinder). The air to be filtered contains spherical dust particles
of density p and dielectric constant &. Show that when a voltage V is applied
to the capacitor, the velocity » with which the air must be blown through
the capacitor in order to be made completely free of dust must be

V°3e4(e — 1)V
v < .
b1n (b/a)V p(e + 2)(b% — a?)

8.40. A parallel-plate capacitor of plate separation ¢ and area 4 has
a dielectric slab also of area 4 and thickness ¢ between the plates. The
plates and the dielectric are not fastened to each other. Show that when
a voltage V is applied to the capacitor and the capacitor is kept in a
horizontal position, the entire capacitor can be lifted by its upper plate
without coming apart if the combined weight w of the lower plate and
dielectric satisfies the relation

v < °g,e2V24
-2
8.41. A long, horizontal, hollow dielectric cylinder of dielectric con-
stant g, inner radius a, outer radius b, and length { has its upper half replaced
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by two semi-infinite horizontal metal plates which almost touch each other
along the axis of the cylinder. Show that if a voltage V is applied between the
plates, the dielectric will stay in place without being fastened to the plates
provided that its weight w satisfies the relation

w < %go(e? — l)Vzl(l l)

2 - — =

a b

8.42. The upper half of a hollow conducting sphere of radius & is filled
with a solid dielectric of dielectric constant . The dielectric has a hemi-
spherical depression of radius a concentric with the hollow sphere. A
conducting sphere of radius a is placed into this depression, and a voltage
Visapplied between the two spheres. Show that the smaller sphere will stay
in place without being fastened to the dielectric if the weight of the smaller
sphere w satisfies the relation

™

V22
(b —a)?’

8.43. A line charge of density A is placed in a dielectric liquid of
dielectric constant ¢, parallel to, and at a distance a from, the infinite-plane
boundary with a solid dielectric ¢,. Show that the force per unit length of
the line charge is °32(e;, — &)

fi= dmegeia(e; + &)

8.44. Two coaxial cylinders of radii a and b are lowered vertically into a
dielectric liquid of density p. Show that if the liquid in the space between
the cylinders rises a distance 2 when a voltage V is applied between them,
the dielectric constant of the liquid is

pgh(b? — a?) In (b/a)
&€= g, V2

8.45. A nonconducting liquid of dielectric constant ¢ and density p
is contained in a U-tube of circular cross section. The inner radius of the
tube is a, and the dielectric constant of the tube is ¢’ = 1. One half of
the tube is located between the plates of a thin parallel-plate capacitor, the
other half is outside the capacitor. The separation between the plates is
d, (d> a), and the voltage between the plates is V. Show that difference
of liquid levels in the two halves of the tube is
%go(e — 1) V2

(e + Dped -

8.46. Show that the electrostatic energy of a system consisting of a small
dielectric or conducting sphere located at a distance 7 from a point charge
¢ can be expressed as .

U=— 2 41,
8meyrt @
where « is the polarizability of the sphere (see Problem 8.22) and U, is the
self energy of the point charge.

w < °Lmey(e? — 1)

+ 1.

Ah ~



STATIONARY ELECTRIC
FIELD IN CONDUCTING
MEDIA

The sphere of existence of electric fields is not limited to
vacuum and dielectrics. Electric fields can exist in all media, including
conductors. In this chapter we shall study the time-independent
electric fields in conducting media. We shall call these fields the
stationary fields.

9-1. Electric Fields in Conductors. Current Density Field

The electric field in a conductor is defined in the same manner as
the electric field in any other medium—that is, as the electric field E
measured in a needle-shaped cavity drilled along the direction of
the field.

Electric fields in conductors are always accompanied by electric
currents (electrostatic fields cannot exist in conductors). Itis convenient
to describe these currents in terms of the electric current density J. The
current density is a vector defined by the formula

1=J.J-ds, (9-1.1)

where [ is the current through the surface of integration S. The current
density may also be defined in the equivalent differential form as

dI
ds,’
276

J, = (9-1.2)



STATIONARY ELECTRIC FIELD IN CONDUCTING MEDIA 277

tar

Fic. 9.1 Definition of electric current density.

where J, is the component of J along some direction g, dS, is an element
of area normal to this direction, and 4/ is the current through this
element of area (Fig. 9.1). From this definition it follows that J =
dI|dS,, where dS, is an element of area so oriented that the ratio dI/dS is
a maximum (compare with the definition of the displacement vector
D, p. 81). The sense of the direction of J is defined to be the same as
that of the current I at the point under consideration; the general
orientation of J is therefore from the positive to the negative terminal
of the current source. The units of current density are amp/m?.

The space distribution of the electric current density: constitutes
a vector field. This field is intimately related to the electric field E.

9-2. Fundamental Laws of the Stationary Electric Fields
in Conducting Media

Just like electrostatic fields, electric fields of current-carrying
conductors can be made ‘“‘visible” by means of lines-of-force pictures
formed by grass seeds (Plates 6-9).» The study of these fields has
shown that the curl and circulation laws for them are the same as for
the electrostatic fields:

VxE =0, §E-dl=0. (9-2.1a, b)

! The method for obtaining such pictures is described in Oleg D. Jefimenko
‘‘Demonstration of the Electric Fields of Current-Carrying Conductors,”’ American Journal
of Physics 30, 19-21 (1962).
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The study of the stationary current density fields has shown that
the divergence and flux laws for them are

V.J=0, %J.ds = 0. (9-2.2a, b)

Furthermore, it has been established that in the majority of
common conducting media the current density field J is connected
with the electric field E by the equation

J = oE, (9-2.3)

where ¢ is a factor of proportionality called the conductivity. The con-
ductivity has different values for different substances and usually
depends on temperature and other parameters characterizing the state
of the substance under consideration. The units of conductivity are
amp/volt - m. The reciprocal of the conductivity is called the resistivity p,

: (9-2.4)

Q 1

P:

its units are volt - m/amp. Equation (9-2.3) is usually called Ohm’s law,
and the media for which this law holds are called okmic conductors, or linear
isotropic conductors.

Equations (9-2.1), (9-2.2), and (9-2.3) completely determine the
curl and divergence laws for both the stationary E field and the station-
ary J field and thus, by Helmholtz’s theorem of vector analysis, con-
stitute a complete set of equations uniquely specifying these fields.

As one can see, the basic field laws for the stationary fields are
analogous to the basic laws for the electrostatic fields in charge-free
dielectrics. In fact, they can be formally obtained from the correspond-
ing electrostatic laws by merely substituting J for D (I for ¢), and o for
goe. Similarly, the dimensions of the stationary field quantities can be
formally obtained from the dimensions of the corresponding electro-
static quantities by merely changing amp - sec to amp. This is a very
useful analogy, since it allows one to write down immediately various
consequences of the stationary field laws by using the consequences
derived previously from the electrostatic field laws, and also allows one
to extend the techniques and methods used for the solution of electro-
static problems to the solution of the stationary field problems.

Ohm’s law (9-2.3) constitutes an important link connecting the
macroscopic theory of currents in metallic conductors with the mi-
croscopic theory. In the microscopic theory, electric current in metals
is attributed to a drift of free electrons under the action of the applied
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electric field, and the current density is given by (compare with
Example 1-3.3)
J = envy,

where ¢ is the charge of an electron, 7 is the number of free clectrons
per unit volume, and v, is the drift velocity of the electrons. The
drift velocity is

°1 ¢E
v, = -Q'Z t,
where m is the mass of an electron, E is the applied electric field, and ¢
is the average time between collisions of an electron with the atoms
(ions) that make up the metal. This time is given by

t=—,
vy
where [ is the mean free path of the electrons, and v, is their thermal
velocity (which usually is much larger than u,). Combining these
equations, one obtains

°l1 €3l
J=3 m_z;,E’
and if one sets
°1 e
2" mo,

where ¢ is the conductivity of the metal, a transition between the
macroscopic and the microscopic theory is achieved.

9-3. Some Consequences of the Fundamental Laws.

Conductance and Resistance

We shall now derive the most important consequences of the
stationary field laws.

According to the curl law (9-2.1a) and corollary to Poisson’s
theorem of vector analysis, a stationary electric field in a conductor
can be expressed in terms of the scalar potential ¢ defined (just as for
the electrostatic field) by the equation

E = —Vgp. (9-3.1)
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Taking the line integral of this equation, we obtain the familiar integral
formula for the potential

b
v~ o= E-a1=7, (932

where V,, is the voltage between the points a and .

Applying the circulation law (9-2.1b) to an infinitesimal loop
enclosing the interface between two different conductors, we obtain
the boundary condition for E (compare with the derivation of the
boundary conditions at a dielectric interface, Section 8-5)

E, = E,, (9-3.3)
and hence the boundary condition for ¢

P1 = P (9'3-4)

Applying the flux law (9-2.2b) to an infinitesimal ‘‘pillbox”’
enclosing the interface between two different conductors, we similarly
obtain the boundary condition for J (compare with the derivation of
the boundary conditions for D in Section 8-5)

Jnl = ny (9'3.5)

and combining this equation with Egs. (9-2.3) and (9-3.1), we obtain
dp, O,

G- =% (9-3.6)

where n designates a direction normal to the interface. Observe that
because no current can be present in a dielectric, Eq. (9-3.5) implies
that J,, and hence E,, is zero at a conductor-dielectric interface, so
that only J, and E, may exist at such an interface under stationary
conditions.

Finally, combining Egs. (9-2.2a), (9-2.3), and (9-3.1), we can
write

V.J=V.0E=Vs-E+oV.-E= —Vg.Vp —oV2p =0,
or

1
Vip + - Vo - Vg =0, (9-3.7)

which in the case of constant ¢ reduces to Laplace’s equation
V2p = 0. (9-3.8)

To complete this set of equations, we shall now introduce two
important quantities correlating current and voltage in a conductor.
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The first of these quantities is the conductance G. It is defined by the
equation

I
=7

where V is the voltage applied to the conductor, and [ is the current in
it. As one can see from this formula, G constitutes the stationary field
counterpart of the capacitance C. The other quantity is the reciprocal of
the conductance, called the resistance R. The resistance is thus defined by

G (9-3.9)

, (9-3.10)
or

(9-3.11)

(this formula is often mistaken for a law and is sometimes referred to
as “Ohm’s law’’). The units of resistance are volt/amp, commonly
called “ohm’; the units of conductance are amp/volt, sometimes called
“mho”. The procedure for the calculation of the conductance or
resistance is analogous to that for the calculation of capacitance.

In any conducting system in which a steady current is maintained
by external sources, there are at least two conducting bodies by means
of which the electric field is established in the system and through
which the current enters and leaves this system. They are called
electrodes and correspond to the capacitor plates of an electrostatic
system. In order to minimize heat losses (see Section 9-7), electrodes
are usually made of materials having very high conductivity o, so that
for a finite current the electric field inside an electrode is practically
zero, and hence the potential at all points of an electrode is practically
constant. Itis therefore customary to consider electrodes as equipoten-
tial bodies whenever no explicit statement to the contrary is made.

v

Example 9-3.1 Determine the conductance and the resistance of
a straight cylindrical rod of conductivity o, cross-section area S, and
length [/, between two plane electrodes normal to the axis of the rod
(Fig. 9.2).

The electric field in the rod is homogeneous (a straight rod is the
stationary field counterpart of a parallel-plate capacitor of electrostatics)
and is given by

14
E= T
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1

l_'—_-
[ 4

T "\s & _,‘
T

Fic. 9.2 Calculation of the conductance and resistance of a cylindrical rod.

where V is the voltage applied to the rod. Substituting this expression into
Ohm’s law (9-2.3), we have

J V
=

The current in the rod is then
Vs
I =fj -dS =a¢ 7

and the conductance, G = I/V, is therefore

A
G=0 f_
(in analogy with the capacitance of a parallel plate capacitor). The resist-

ance, R = V/[I, is

Ll ~

!

Example 9-3.2 A spherical electrode of radius @ is lowered centrally
into a perfectly conducting hemispherical bowl of inner radius 4, which is
then filled with a conducting liquid of conductivity ¢ (Fig. 9.3). Find the
resistance of the liquid between the bowl and the sphere.

Describing a concentric spherical Gaussian surface S of radius r around
the spherical electrode and applying the flux law (9-2.2b) to this surface,
we have

§]-a’5=0.

Let us now split this integral into three integrals: the integral over the part
of the Gaussian surface submerged in the liquid, S;; the integral over the
part of the Gaussian surface crossing the lead wire, S,; and the integral over
the part of the Gaussian surface external to the liquid and to the lead wire,
S5. We then obtain

SEJ-ds =fj,-dsl+.f]2.ds2 +J‘J3-ds:,=0.

By symmetry, the current density J on the surface S; is radial and constant,
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Fic. 9.3 Calculation of the resistance of a liquid contained in a hemi-
spherical bowl.

so that the first integral is
J"'l - dS; = del = J2mr2,

By the definition of current density, the second integral represents the current
carried by the lead wire in the outward direction, or

sz.dsg= o,

where I is the current entering the Gaussian surface through this wire.
Since no current is present outside the liquid and the lead wire, the third
integral is zero. We thus have

J2mr2 — 1 =0,
or, solving for J and taking into account the radial direction of the current,

1
J=gpme
The field is then, by Ohm’s law (9-2.3),

B 4
= 2mor v

Taking the line integral of E, we obtain for the voltage V,, between the
two electrodes

b b T I /1 1
Vao =£E""=£—2mﬂ'u"’*=m(;—z)’

which, by Eq. (9-3.11), gives for the resistance
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dS = tadf

A

Ik
F16. 9.4 Calculation of the resistance of a circular tube.

Example 9-3.3 A thin-walled tube of circular cross-section, radius a,
wall thickness ¢ < a, and resistivity p is bent to form a “half-ring” of median
radius b (Fig. 9.4). Two flat electrodes are attached to the ends of the tube.
Find the resistance of the tube between the two electrodes, and determine
the limiting value of this resistance for a very narrow tube (a < b).

By inspection we see that the field lines are coaxial circular arcs parallel
to the axis of the tube. The field is therefore

V

=

where V is the voltage applied to the tube and #r is the length of the arc of
radius 7 joining the two electrodes. The current density is then

V

prr
The current in the tube can be found by integrating J over the cross-sectional
area of the tube. The element of area for this integration is dS = ta df,
where § is the angle between the vertical plane and the radius vector joining
dS with the axis of the tube. The radius r expressed in terms of 0 is r =
b -+ acos 6. The current is therefore

Ly Via db
=fra-l ey
_ Via 4 o I:(b — a) tan 8/2]
pm VR @ P .
Via - s 2Vita

— —— . — —
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which upon multiplication and division by 7 and substitution of § for 2nat
(cross-sectional area of the tube wall) and / for 7b (length of the tube) gives

h [
K= ma ™ s

Thus in this limiting case the resistance approaches the value that it would
have if the tube were straight (see Example 9-3.1).

Example 9-3.4 A coaxial cable has two layers of different insulating

materials between the core and the sheath. The length of the cable is /;

the radius of the core is a, that of the sheath is b, the radius of the boundary

between the two insulating layers is ¢, the resistivity of the inner layer is p,,

that of the outer is p, (Fig. 9.5). Find the leakage resistance of the cable.
The leakage current density is, by the flux law (9-2.2b),

I
2arrl "

The electric field associated with this current is, by Egs. (9-2.3) and (9-2.4),

sl -
E = 27rl waiel M= 2mrl

for the inner and the outer insulating layers, respectively. The voltage
between the core and the sheath is, by Eq. (9-3.2),

b e b
Vas =J E.dr ='[ E.dr —I—f Eydr
I PR . A
= f = g +J; 2 ¥

1
=5 (pyIncfa + py In bfc).

Fic. 9.5 Calculation of the leakage
resistance of a coaxial cable with two
layers of insulating material.
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The resistance is therefore

1
R = o (prIncla 4 pyIn bjc).

9-4. Special Methods for the Solution of Stationary Electric
Field Problems

Just as in the case of the electrostatic field problems involving linear
isotropic dielectrics, most special methods for the solution of the
stationary field problems involving ohmic conductors are based on the
uniqueness theorems for the potential ¢ representing the fields under
consideration.

The potential for the stationary fields in ohmic conductors of
constant conductivity satisfies Laplace’s equations, is constant on the
surfaces of electrodes, and satisfies the boundary conditions at conductor-
conductor interfaces analogous to the boundary conditions which are
satisfied by the electrostatic potential at dielectric-dielectric interfaces.
Therefore the potential ¢ for the stationary fields in ohmic conductors
is subject to essentially the same uniqueness theorems that apply to the
electrostatic ¢ except that the theorems are now formulated in reference
to electrodes and currents instead of conductors and charges.! Con-
sequently, all those special methods for the solution of the electrostatic
problems that are based on the uniqueness theorems for ¢ are applicable
for the solution of the stationary field problems as well.

Moreover, it is clear that the electrostatic and the stationary field
problems of identical geometry have identical solutions, except thatin
the formulas representing the electrostatic solutions the symbols D, ¢,
C, and ¢,¢ appear in places where the symbols J, I, G, and o appear in
the formulas representing the stationary field solutions. Hence, one
can ‘“‘borrow” solutions for the stationary field problems from electro-
static problems.

It must be pointed out, however, that there are certain limitations
in the applicability of such borrowed solutions. In particular, the lead
wires necessary for maintaining the current in conductors may introduce
field distortions that do not have a counterpart in the electrostatic
fields, and thus may impair the accuracy of the results obtained from
the borrowed solutions. Furthermore, since in the free space ¢ =1,

! The proof of the theorems is left to Problem 9.1.
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while ¢ = 0, the electrostatic systems may have fringing fields (edge
effects) that do not have a counterpart in the geometrically similar
stationary field systems (see Example 9-4.5). This also imposes limita-
tions on the use of the borrowed solutions.

Another important exception to the analogy between the electro-
static and the stationary field problems is that whereas there are only
two types of electrostatic images (one due to the dielectric-conductor
interface, the other due to the dielectric-dielectric interface), there are
three types of images for stationary fields. The first type is due to the
conductor-electrode interface (Table 9-I), the second due to the con-
ductor-conductor interface,! and the third due to the conductor-
dielectric interface (Table 9-II); the latter has no counterpart in
electrostatics.?

v
Example 9-4.1 A spherical shell of resistivity p contains two conical
electrodes as shown in Fig. 9.6. Find the resistance of the shell between the
two electrodes and check the result by investigating the limiting case of
o = 7/2 — f3, where < | (in this limiting case the shell becomes a thin
flat ring).

This problem can be solved by using the method of harmonics. By

i

Fic. 9.6 Calculation of the resistance of a spherical shell.

1These images are analogous to the ones described in Example 8-6.2 and
Problems 8.25 and 8.26.

2 The correctness of the images given in Tables 9-T and 9-11 is verified, as usual,
by checking whether the images satisfy the required boundary conditions.
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the symmetry of the problem, the potential must be constant on conical
surfaces coaxial with the electrodes and having the common apex in the
center of the shell. A suitable function found from Tables 6-I and 5-I is

1 4+ cos 6
@ = AyQ(cos 0) = Alnm.

The constant 4 can be determined from the boundary conditions

1 0 = _v
( ) at = a, (P - 2 5
V
(2)at 0 = 7 — «, p=—7:
which require that
A_—:—I{ ln1 —}-cosoc‘l.
2 1 — cos a
The electric field is then
op 0 1 4 cos 6
E=—-Vyp=—15%~= —,a—e(“““—l _cose)"u
24
T rsinf *

The current density is therefore

24
prsinf %

j=1
P

The current in the shell may now be found by integrating J over the cross
section of the shell. Taking the equatorial cross section (simplest integration,
0 = m/2, sin § = 1), we have

24 1
szj'ds :[ — 27rdr = — 47w A(b — a),
Ja pT P

and substituting 4,

1 —1
=;27rV(b——a)(l 1+C°S°‘) .

T cos o
The resistance, R = V]I, is then

P 1 1 4 cos «

R:27r(b—a) "T " cosa”

If « = w/2 — 8, where 8 < 1, we can write

1 +sinp 1n1+/3
I —p

I-+-cosoc_l 1+COS(7T/2—I3)__1

T —osw — T —cos(@m2—p)  "T—sinp”™

~ 2p.
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The resistance becomes in this case

R~ —L—2p.

2n(b — a)
Multiplying and dividing this expression by (b + a)/2, we obtain
b+a 1 2
RN = Bl —a) bre

If we now observe that for § < 1 the conducting shell degenerates into a
flat circular ring of average thickness ¢t = 2f- (b + a)/2 and area S =
m(b? — a?), we can write
t
R~ P E >
which was to be expected by analogy with the parallel-plate capacitor or by
Example 9-3.1.

Example 9-4.2  To measure the conductivity of sea water, two spherical
electrodes (Fig. 9.7a) of radius a are lowered in the sea to a depth £ at a
distance d from each other (both  and d are large compared to ). Find the
conductivity of the water if a voltage V applied to the electrodes produces
a current I between them, and estimate the accuracy of the obtained
expression.

(a) (b)

Fic. 9.7 Method of images for current carrying conductors. (a) Two
spherical electrodes in water. (b) Equivalent image system.

We shall solve this problem by the method of images. The image system
is shown in Fig. 9.7b. By analogy with electrostatics [Eq. (5-3.4)] or by Egs.
(9-2.2b), (9-2.3) and (9-3.2), the potential due to a spherical electrode delivering
a current / to an ohmic conductor is ¢ = I/4mor, where r is the distance
from the center of the electrode to the point of observation (we assume that
the electrode is so small compared to other characteristic dimensions of the
system, that the field around the electrode may be considered spherically
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TasLE 9-1
Images in Conductor-Electrode Interfaces®

Actual System

Equivalent Image System

Point or line electrode in front of an
infinite plane electrode:

|
—~

Point or line electrode in front of two intersecting,

infinite plane

I
by

Ii

Point electrode in front of a spherical electrode:

I=(a/d)I; I"'=1-1I; I=a2/d

Line electrode in front of a cylindrical electrode:

=a?ld

& Except for the third system, all images in this table are valid also for thin conducting

sheets.
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TasLe 9-11
Images in Conductor-Dielectric Interfaces®

Actual System l Equivalent Image System
Pomtorlmeelechodemﬁuntoianmﬁmteplane

Point or line electrode in front of two intersecting,
infinite, plane conductor-dielectric boundaries:

I=a%d

* All images in this table are valid also for thin conducting sheets.
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symmetric). The potential on the surface of the electrode 1, being the sum
of the potentials due to the two electrodes and their images, is then
1 I 1 n 1
Y1 = 4n6a T dmod 4moVd® + 4R2  4mo2h

1 1 a a a:I
“moa T @ VEraE )

The potential on the surface of the electrode 2 is similarly

I 1 a a a
%2 = 4roa| — +3+\/d2+4h2—2h )

The voltage between the two electrodes is therefore

v I i a a a]
TN T T g _a'_\/d2+4/l2+2h ’

This gives for the conductivity

. I 1 a a a
= 2maV| TdT Ve rar o

To estimate the accuracy of this expression, we first note that the method
of images as we have used it in this problem applies only to point charges or
point electrodes. Also, the method for the calculation of potentials that we
have used here is justifiable only if all electrodes may be regarded as point
sources from the location of other electrodes. As it follows from Problem
4.12 and Eq. (5-3.4), any electrode may be regarded as a point source from a
distance ! > 2na, provided that the maximum admissible error in the poten-
tial does not exceed (100/n)% . Hence, neglecting the effect of the lead wires,
the accuracy of our expression for 0 may be expected to be at least (2a/d)100%
or (a/h)100%, whichever is larger.

Example 9-4.3 Under the action of mechanical stress, a conducting
bar of conductivity ¢ is deformed from the initial shape shown in Fig. 9.8a
to the final shape shown in Fig. 9.8b. Find the relative change in the
resistance of the bar between the faces 4 and B if the thickness of the bar
does not change.

This problem can be solved by the method of curvilinear squares. By
analogy with the capacitance, the conductance of a plane conductor of
uniform thickness ¢ and conductivity ¢ is given by [see Eq. (6-6.5)]

Nf
G =N ot,

»

where N, is the number of flux tubes (current tubes), and N, is the number
of potential division (voltage steps) on the conductor’s field map. Using
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P B
(a) (b)

Fic. 9.8 Method of curvilinear squares for current-carrying conductors.
(a) Curvilinear-square map of a conducting bar. (b) Curvilinear-square map
of the bar after it has deformed.

the maps drawn in Figs. 9.8a and 9.8b, we then have for the original and
the deformed bar, respectively,

4 4
G, = lﬁa‘ and G; = 18
The relative change in resistance (the reciprocal of the relative change in
conductance) is therefore
R G,
= = 5- = 1.125.

Example 9-4.4  Electric current enters an infinite plane conducting
sheet at a point P and leaves at infinity. A circular hole, exclusive of P, is
cut in the sheet, and the point G nearest to P on the edge of the hole is
grounded (Fig. 9.9). Show that the potential at any point on the edge of the
hole with respect to the ground is twice that which was present before the
hole was cut.

Before the hole was cut, the electric field E, in the sheet was radial, so
that if the thickness of the sheet is # we have from the flux law (9-2.2b) and
Ohm’s law (9-2.3)

I
E, = 27alr Fu

Fic. 9.9 Method of images for current-carrying conductors. (a) Actual
system. (b) Equivalent image system.
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The corresponding potential at any point N of the circle forming the edge
of the hole was then

I r I Vd? + a® — 2ad cos ()
e ) = [ !

Eo- drﬁ_2?ratln;,;:_21rmn d—a ’
where the symbols are the same as in Fig. 9.9a. The potential at the same
point after the hole was cut is obtained by the method of images (Table
9-IT) and is, accordingly, the sum of the three partial potentials

I Vd? + a® — 2ad cos 0 I AP+ a®— 2alcosb

#la,9)=— 2mat In d—a o Qwatln a— |

I 1 a
+2mrt na’

where the symbols are the same as in Fig. 9.9b. Substituting / = a?/d, we
obtain after simplifications

I . (d®+a®—2adcosh)

p(a,0) = — 2,”0.‘1“ (d—a)? = 2¢,(a, 0).

Example 9-4.5 As it has been stated above, one can find the conduct-
ance of a conductor by replacing £4¢ by o in the expression for the capaci-
tance of the geometrically similar capacitor. Investigate the limitations of
this method by considering the system of two electrodes (Fig. 9.10), the
space between which is partially filled with a material of conductivity ¢
and dielectric constant &.

The ratio of the capacitance to the conductance of this system is

where @ is the charge of one electrode and 7 is the current carried by the
intervening medium from one electrode to the other. The charge @ can be
expressed as the surface integral §D - dS evaluated over a surface enclosing
the electrode carrying @, so that

- d

=5 § D .dS.

TN
L, A
—\- J L
AN __.-‘/j-él am»—  Iic. 9.10 Correlation between capac-

I itance and conductance.
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The surface integral can be expressed as the sum of two integrals taken over
the surface §; (lying inside the material between the two electrodes) and S,
(external to the material). This gives with D, replaced by ee,E,,

¢ 1
e T(fsanl - dS, -I—sz . dSZ) .

Replacing E; by J/o, we now obtain
¢ 1
&=I( 805'] - dS, +fD dS)
1

= 7(303‘ + Dz-dsz)

30

3 &t Q'
+ 3 fD dsz P — + T:

where @’ is the charge that is responsible for the flux through the surface
S,. If this charge is very small, it may be disregarded as the ‘“‘edge effect.”
In this case one can write

C gt aC

c=% o G=p
so that the conductance may be obtained from the capacitance by merely
replacing go¢ by 0. This formula is accurate, however, only to the extent

that one can neglect the edge effects in the calculation of C.
A

9-5. Displacement Field and Static Charge in Current-
Carrying Conductors

As in any material medium, the displacement field in a current-
carrying conducter is defined in terms of the displacement vector D
measured in a coin-shaped cavity whose axis lies in the direction of this
vector. It has been found that D in conductors carrying a steady current
is subject to the same basic laws as in the dielectric media. In particular,
for the majority of common conductors

D = ¢yE, (9-5.1)
and for all conductors

V.D=p and ff;D-dS:fpdv. (9-5.2a, b)

An important consequence of these equations is that currents are
associated with accumulations of static space and surface charge in the
conductors that carry these currents.
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A static space charge accumulates in electrically inhomogeneous
current-carrying conductors at the points where either ¢ or o, or both
¢ and o, are such functions of position that V(e/s) does not vanish.
This-can be shown by combining Egs. (9-5.2a), (9-5.1), and (9-2.3),
which give for a space charge distribution?

=V-D=Voeosl?.=V~esoe‘I

Pcharge a
=) Vit eglv.].
¢ g
Since V - J = 0 by Eq. (9-2.2a), we obtain
€
Pcharge = eJ -V P (9-5.3)

A static surface charge accumulates on the interface between two
different conductors at the points where the currents traverse this
interface. This can be shown as follows. According to Eq. (8-5.4)
(which, being a consequence of V-.D = p, is valid for conductors
as well as for dielectrics) the surface charge on an interface is

Ocharge — Dnz - Dnl'

Since
&
D = gpeE = ¢y — J,
o
we can write
& &
2 1
Ocharge = €0 — an — & — Jnl'
Gy o,

But, by Eq. (9-3.5),

Jnl = Jn2
and hence we obtain
€g 31)
o =g J (= — 2. 9-5.4
charge 0 "(02 0, ( )

Since all complete conducting systems contain interfaces traversed
by currents (conductor-electrode interfaces, for example) and many
systems contain inhomogeneous conductors, electric currents in con-
ductors are always associated with stationary charge accumulations.?
Therefore, according to Egs. (9-5.1) and (9-5.2), the stationary electric
field (or potential) in a current-carrying conductor can be determined

1 We shall use subscripts “charge” to differentiate the charge densities p and
o from the resistivity p and conductivity ¢ whenever a confusion of symbols could
result if the subscripts were not used.

2 Charges accumulate also on conductor-dielectric interfaces (see Section 9-6).
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by the ordinary electrostatic methods from these charge accumulations
once the location and density of all these accumulations are known.
That is to say, as far as the calculation of the stationary electric field
inside (or outside, see Section 9-6) a current-carrying conductor is
concerned, the current as such may be completely ignored, and only
the charge distribution on the surface and in the interior of the con-
ductor needs to be taken into account. Thus the stationary fields of
current-carrying conductors, just like the electrostatic fields, have
electric charges as their sources.!

The phenomenon of the formation of space and surface charge
accumulations associated with leakage currents in dielectrics is called
dielectric absorption. The dielectric absorption is, among other things,
responsible for the residual charge appearing on the plates of a capacitor
shortly after the capacitor has been disconnected from the voltage
source and has been discharged by a spark. It may also be responsible
for certain properties of wax electrets (see Example 9-5.2).

v

Example 9-5.1  Find the surface charge accumulating on the core and the

sheath (“‘electrodes’’) and on the dielectric interface of the coaxial cable of Ex-

ample 9-3.4 when a voltage V is applied between the core and the sheath.
The current density at the interface is

_ I _ vV
T 2wl T 2melR’

where R is the leakage resistance of the cable. Using the value for R found

in Example 9-3.4, we have
14

J= ¢(pyIncla + pyIn bfc) "
The surface charge density on the interface is then, by Eqgs. (9-5.4) and
(9-2.4),

. &V _
Ocharge — (p, In cJa + Py In bc) (pote P1€1)s

where ¢, and ¢, are the dielectric constants of the inner and outer insulator,
respectively. The surface charge density on the electrodes is, similarly,
(taking into account that the resistivity of electrodes is zero by definition)

_ oV
Ocharge = T a(p,Incja + psIn bjc) P18

11t must be emphasized that the charge accumulations described above are
associated with stationary currents and are different from the charge distributions
that appear in conductors carrying time-dependent currents.
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and
&V

Tcharge = b(pyIncla + pyln bfc

Paf2
)
for the inner and outer electrode, respectively.

Example 9-5.2 A heated wax slab of thickness d and area S is placed
between two parallel plate electrodes, and a voltage V is applied to them.
Because of the irregular cooling of the slab, its permittivity becomes smaller
near the surfaces than well inside, and will be assumed to be given by

. mX . .
e = kl(l + ky sin 7), where £, and £, are constants, and x is the distance

from the positive electrode toward the negative one. The conductivity ¢
of the slab will be assumed constant. Find the space charge accumulating
in the slab as a result of the current in it (such charge accumulations may
be formed during the making of wax electrets !).

By Eq. (9-5.3) the space charge is

£ J . T
p=2¢gJ- V(;) =& " V[kl(l + k, sin —(;—)]
= eoE‘(klkzg cos%xi)

= gokqky g E . cos "—; i

Since J and o are constant everywhere in the slab, E = J/o is also constant,
and hence E = V/[d. The space charge is therefore

o
Peharge = &k 1Ky PE cos -
Example 9-5.3 Show that the potential

I
47ror

(p:

due to a single spherical electrode delivering a current I to an infinite
conductor of conductivity ¢ is the same as that given by the electrostatic
formula

__49
- b
4mreyer

@

where ¢ is the charge on the electrode-conductor interface and ¢ is the
permittivity of the conductor.

! D. K. Walker and O. D. Jefimenko ‘‘Volume Charge Distribution in Carnauba
Wax Electrets,”’ Journal of Applied Physics 44, 3459-3464 (1973).
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Let the quantities pertaining to the conductor be designated by sub-
script 2 and those pertaining to the electrode by subscript 1. According
to Eq. (9-5.4), the surface charge density on the electrode-conductor
interface is then )

Ocharge — €0Jn (_ -

The conductivity of the electrode, oy, is infinite by definition. The current
density at the interface is, by symmetry,

I
J =

" 4qa?’

where qa is the radius of the electrode. We have therefore

I &,
Ocharge = &o ind o,
2

Multiplying this expression by the surface area of the electrode, we obtain
for the total charge residing on the electrode ¢ = ¢gy¢,//0,. The potential due
to this charge is, by symmetry,

q

drege,r

4

Substituting ¢ in this expression and dropping the subscripts, we therefore
obtain for the potential due to the electrode under consideration

which was to be proved. A

9-6. Electric Field Outside a Current-Carrying Conductor

In contrast to the electrostatic held outside a conductor in the
state of electrostatic equilibrium, the electric field outside a conductor
carrying a current has a nonvanishing tangential component at the
surface of the conductor. Indeed, as it has been shown in Sections 8-5
and 9-3, the tangential component of E must be continuous across a
dielectric-dielectric and a conductor-conductor interface. Since there
is no demarcation line between substances which we call conductors
and substances which we call dielectrics, however, the tangential
component of E must also be continuous across a conductor-dielectric
interface and, thus, across any interface whatsoever. Therefore at the
surface of any body, E satisfies the relation

E, = (9-6.1)

outside t inside*®
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Hence, since at the surface of a current-carrying conductor there is a
nonvanishing tangential component of E inside the conductor, there
also must be an equal nonvanishing component of E outside the con-
ductor.

On the other hand, the normal component of the electric field
outside a current-carrying conductor is exactly the same as it would be if
the conductor were in electrostatic equilibrium:

o

E .. o= 9-6.2
n outside £t ’ ( )
where o is the surface charge density on the conductor and ¢ is the di-
electric constant of the medium outside the conductor. Indeed, the
boundary conditions for D, obtained in Section 8-5 require that at
the surface of any body

D

and, since E,, and hence also D,, is zero inside a conductor at a con-
ductor-dielectric interface, Eq. (9-6.2) results.

One should note that Eq. (9-6.1) implies the continuity of the
potential ¢ across the surface of a current-carrying conductor (see
Sections 8-5 and 9-3)

n outside Dn inside — 9>

(9-6.3)

()Doutside = Pinside*

These properties of the electric field outside a current-carrying
conductor have a remarkable consequence: a time-independent elec-
tric field can exist in a charge-free space completely enclosed by con-
ducting walls, provided that there is an electric current in these walls.
What is more, one can confine and shape time-independent electric
fields in chambers with current-carrying walls. The structure of such
fields is determined by the geometry of the chamber and is not affected
by stationary charges or steady currents outside the chamber. Figure
9.11 presents a simple example of such confinement and shaping of
electric fields.

It is interesting to note that the structure of the field inside a
chamber with current-carrying walls does not depend on the con-
ductivity of the walls. Therefore the poorer the conductor used for the
chamber walls, the better, because with poorer conductors less energy
is needed to maintain the field (see Section 9-7). The poorer the con-
ductor, however, the longer the time required for the field to establish
itself in equilibrium (see Sections 15-1 and 15-2). Thus, if rapidly vary-
ing fields are present either outside or inside the chamber, walls made
of good conductors are needed.
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20 20 20 20

(a) (b)

Fic. 9.11 (a) Map of the electric field inside and outside a chamber with
semiconducting current-carrying walls. The map shows equipotential
lines (marked in volts) determined with a radioactive probe. The current
in the walls is 0.5 X 10~ amp. (b) Map of the electric field of the same
system but with a conducting disk at 80 volts potential placed outside the
chamber. Although the field outside the chamber has changed, the field
inside remains the same. [O. D. Jefimenko, T. L. Barnett, and W. H. Kelly

“‘Confinement and Shaping of Electric Fields by Current-Carrying Conduc-
tors,”’ Proceedings of the West Virginia Academy of Science 34, 163-167 (1962).]

There are numerous examples when a field produced by current-
carrying conductors is more convenient to use than the ordinary
electrostatic field. For instance, a uniform electrostatic field 10 m long
is impractical with a parallel-plate capacitor; the plates would have to
be as wide as the front of a house. However, one can easily produce a
uniform field 10 m long in a tube, say 1 cm in diameter, simply by
coating the inside of this tube with a uniform semi-conducting film and
by establishing a current in this film.

The surest way to determine the electric field in the space external
to a current-carrying conductor is to find the potential ¢ in this space
and then take the gradient of this potential. It must be kept in mind,
however, that the surface of a current-carrying conductor is, in general,
not an equipotential one, and therefore the potential distribution on this
surface must be determined before the potential in the surrounding
space can be found.
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v

Example 9-6.1 A straight conducting tube of uniform conductivity and
length [/ is sealed off at its ends by two plane electrodes normal to the axis
of the tube. What is the electric field inside the tube when a voltage V is
applied between these electrodes?
By symmetry of the system, we immediately recognize that the field
inside the tube is homogeneous, so that
vV
E= 7

Example 9-6.2 Two very large, thin, rectangular, uniform, conducting
plates of length / meet along one of their edges. Their opposite edges are
separated by a distance 4 from each other. A battery of terminal voltage
V is connected to these edges, thus producing a current in the plates (Fig.
9.12a). Neglecting edge effects, find the electric field in the space between
the plates.
The electric field within the plates is
V
Ephtu = ﬁ
and tangent to the surface of the plates. By inspection, we recognize that
the field between the plates is then simply
Vv
E = 4

directed at a right angle to the symmetry plane of the system. Indeed, at
the surface of the plates the tangential component of this field is

(a) (b)

Fic. 9.12 (a) Two intersecting plates carrying a current. (b) Schematic
map of the electric field between and outside the plates.
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so that the boundary condition for E, is satisfied. Since this is the only
condition imposed by the statement of the problem upon the field between
the plates, however, the field that we have found is the correct one. The
charge density on the inner surfaces of the plates is then

0= +4¢gE = +eFEcosu,
or

—in? [i2
=g

where the plus sign indicates the plate connected to the positive terminal of
the battery and the minus sign indicates the plate connected to the negative
terminal. A schematic map of this field is shown in Fig. 9.12b and is to be
compared with the lines-of-force picture for this system shown in Plate 7.

Example 9-6.3 Two moderately-conducting plates form a thin parallel-
plate capacitor of length / and plate separation d. The capacitor is shorted
and grounded along one of its edges and a voltage V is applied to it at the
opposite edge, thus producing a stationary current in the plates (Fig. 9.13a).
Neglecting edge effects, find the electric field in the space between the plates
and the surface charge density on the plates and on the shorting bar.

We shall find the electric field in the space between the plates by finding
first the corresponding potential function ¢. The electric field inside the
plates is, by inspection, E = —(V/2[)i and E = (¥/2/)i for the upper and
the lower plates, respectively. The potential (with respect to the ground)
at any point of the upper plate (y = d/2) is therefore

. Vx Vx
‘p(x)upperp;al.e:J;E'dl—i—(po ZEI_ —{—0=2—£'

(a) (b)

Fic. 9.13 (a) A shorted parallel-plate capacitor carrying a current. (b)
Schematic map of the electric field between and outside the plates.
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Similarly, the potential at any point of the lower plate (y = — d/2) is

° Vx Vx
‘P(x)lowerplate = J;E‘dl + @ = — o7 +0=— 5

These expressions constitute the boundary conditions which must be satisfied
by the potential function ¢ in the space between the plates. The potential
function compatible with the geometry of the problem and capable of
satisfying these boundary conditions is

¢ = Ay

[this is function (H-1) of Table 6-I with all constants other than C, set equal
to zero and C, = A]. Since at y = 4d[2 the potential must reduce to
@ = 4 Vx[2l, we have

Vx

l

NI

Ax

or
vV

A=l—‘2.

The potential in the space between the plates is then

4
=™

Taking the gradient of this expression, we now obtain for the electric field
between the plates

o Wy
Ee=—%="7
and
op Vx
&_—6 ld

The surface charge on the plates is, by Eq. (9-6.2),

0 = &oE, outsige = T &oE,
or

Vx
o = isoﬁ,

where 4 and — correspond to the upper and the lower plate, respectively.

The surface charge on the shorting bar is similarly

Vy
0‘=—£01—d.

A schematic map of this field is shown in Fig. 9.13b. This map is to be
compared with the lines-of-force picture for this system shown in Plate 6.
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Example 9-6.4 A small spherical cavity has formed inside a large
conducting slab that was carrying a uniform current of density J, = Jok
prior to the formation of the cavity. Prove that the potentials after the
formation of the cavity are (with reference to the cavity center)

a3
Pslab = _PJO(l + ﬁ) r cos 6

and
— 3
Peavity = — 2PJ07 cos 0,

where p is the resistivity of the slab, a is the radius of the cavity, 7 is the
distance from the center of the cavity, and 0 is the polar angle with respect
to the z-axis. Also find the charge on the surface of the cavity.

By the uniqueness theorems for potential functions, the above expressions
are correct if they constitute solutions of Laplace’s equation V2p = 0 and
satisfy the boundary conditions characterizing the system under considera-
tion. As can be easily verified by direct differentiation or by consulting
Table 6-1, these expressions do constitute solutions of Laplace’s equation.
The boundary conditions characterizing the system under consideration
are as follows:

(1) Since the cavity is small, the potential at large distances from the
cavity must be the same as it was before the formation of the cavity,

0 0
Pr>a :f Eipitiar * dr =f pJo s dr = —pJyr cos 0.
r r

(2) Since the potential must be continuous across the surface of the
conductor,

Peavity = Pslap 3t 7 = 4.

(3) Since there may be no normal component of the electric field in the
slab at the surface of the cavity,

9Psian
T =0 at r=a.
The potentials g, and @,,;;, given in the problem clearly satisfy all these
conditions and hence are the only possible and thus the correct potentials.
The charge on the wall of the cavity is, according to Eq. (9-6.2),

a‘Pcavity
o = 50En cavity — _eoEr cavity = &g or

or
o = —3e,pJ, cos 0.



306 ELECTROMAGNETIC THEORY

9-7. Dissipation of Energy in Current-Carrying

Conductors

An electric current generates heat in the conductor which carries
this current. Thus energy is continuously dissipated in a current-
carrying conductor, and a continuous supply of energy compensating
for this dissipation is necessary in order to maintain the current and
hence the electric field in the conductor. This energy dissipation is the
most important characteristic differentiating the electric field in a
current-carrying conductor from the electric field in a dielectric, where
no energy is consumed once the field has been established and therefore
no energy is needed to maintain the field.

The generation of heat caused by an electric current in a conductor
can be attributed mainly to the effect known as Joule’s heating.

The basic law representing the dissipation of energy in the process
of Joule’s heating is, according to calorimetric measurements,

P= f J-Ed, (9-7.1)

All conductor

where P is the rate of energy dissipation, P = dU/dt, or, which is the
same, the power consumed in the process of Joule’s heating. The rate
of the energy dissipation per unit volume of a conductor, P, = dP/dy,
is accordingly

P,="°J-E. (9-7.2)

These two equations are frequently referred to as Joule’s law in its
integral and differential form, respectively. Joule’s law constitutes the
stationary field counterpart of the basic electrostatic energy law (7-1.1)
and (7-1.2) [observe, however, that unlike Egs. (7-1.1) and (7-1.2),
Egs. (9-7.1) and (9-7.2) do not contain the factor }].

Joule’s law (9-7.1) can be transformed into various special forms
which in many instances are more convenient to use than the original
expression itself.

One of the most important special forms of Joule’s law is the
equation representing the rate of energy dissipation due to Joule’s
heating in terms of the currents entering a conductor through individual
electrodes. It may be obtained as follows. Substituting E = — Vg into
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Eq. (9-7.1), and using vector identity (V-4), we have
P = fJ-Edv = — f] Vo dy
= — fV - (@)) dv + f¢V < Jdv.

Since for a stationary current V -J = 0, the last integral vanishes.
Changing the remaining integral into a surface integral by means of
Gauss’s theorem, we then have

P— —°§§¢J-ds,

where the integration is extended over the surface of the conductor
under consideration. This integral can be expressed as the sum of
n + 1 integrals

n+l

P=-° z (ann ¢ dsm
n=1

where the first n integrals are taken over the electrode-conductor
interfaces, while the last, n + 1-s¢, integral is taken over the remaining
portion of the conductor’s surface (free surface). Since the current
density has no normal component at the free surface of the conductor,
Jos1 - dS,4, 1s zero, and this last integral vanishes. Furthermore, since
an electrode-conductor interface constitutes an equipotential surface,
@, is constant in each of the remaining n integrals and may be factored
out from under the integral signs, so that

P— —°z%fj,,.ds,,.
n=1

But each integral [J, - dS, represents the current leaving the conductor
through the n-th electrode. Therefore, substituting

jJ" -dS, = —1I,,
we finally obtain

P =°3 g, (9-7.3)
n=1

where ¢, is the potential of the n-th electrode, and I, is the current
entering the conductor through this electrode.

The most common conducting system consists of a conductor with
only two electrodes. For this system Eq. (9-7.3) reduces to a much
simpler form. Indeed, by the flux law (9-2.2b), in a two-electrode
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system one electrode delivers the current to the conductor, while the
other carries this current away from it, so that we can write /;, = and
I, = —1I, where I is the current in the conductor, We then have from
Eq. (9-7.3)

P = (g, + @ol3) = (o] — @oI) = °I(¢, — ;).

But ¢, — ¢, represents the voltage V between the two electrodes, and

hence we obtain
P = °IV. (9-7.4)

This formula can be expressed in two alternative forms by using the
resistance of the conductor, R. Since R = V/I, we have by substitution

P =°I?R, (9-7.5)
and
o Ve
P= = (9-7.6)
v

Example 9-7.1 At what points is the conductor of the two-dimensional
conducting system shown in Fig. 9.14 most likely to start melting in conse-
quence of Joule’s heating ?

I

—* Fic. 9.14 A two-dimensional con-
ductor between a plane electrodeand
a cylindrical electrode.

The melting is most likely to begin at the points of the largest P,, which,
according to Joule’s law (9-7.2), occurs at the points of the largest E. By
using the method of curvilinear squares, we find that in this system there
are two regions where E is especially large: one is at the cylindrical electrode
(#"), the other is in the straight part of the conductor (4"). The melting is
therefore most likely to start somewhere within these regions.

Example 9-7.2 Show that when a capacitor is charged by a battery,
the amount of Joule’s heat developed in the circuit is equal to the final
electrostatic energy of the capacitor, so that not more than one half of the
energy released by the battery is stored in the capacitor (assume that the
charging occurs so slowly that the current can be treated as being essentially
stationary).

Let the potentials of the capacitor plates and the potentials of the
battery terminals be ¢., ¢., ¢, and ¢,, as shown in Fig. 9.15. Using
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@
I ‘ Ve
Vi
=t +
Fic. 9.15 Dissipation of energy during the charging — | -
of a capacitor. @y ' Py

Eq. (9-7.4), we then have for the rate of Joule’s heating in the two lead wires
P ="I(p, — ¢,) + g, — ¢.)
=°llg, — ;) — *Ip; — 9.)-

But ¢, — ¢, represents the terminal voltage V, of the battery (constant),

while ¢, — @’ represents the voltage V, across the capacitor (increasing).
The rate of the energy dissipation due to heating is therefore

dU . .
S =P="1h—°m.

The energy dissipated in the lead wires during charging (duration T') is

orT
U= fI(V,,—Vc)dt
0

o (T o T
= JIVbdt— fIVcdt
0 0

T o T
=°be Idt — f 1V, dt.
0 0

Since I dt = dgq (dg is the charge delivered to the capacitor during the time
interval dt), we have, using the final charge on the capacitor @ and the
capacitance of the capacitor C = ¢/V,,

o ° ¢ o “(C4
U="°VQ — f Vedg =°V,Q — f Edq
0 0

o
o Q
=V - 56
After the charging is completed, V, = V, = @/C, so that
e
T 2Cc”

which according to Eq. (7-6.4) is equal to the energy stored in the capacitor
in the process of charging.

A
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9-8. Stored Energy and Forces Associated with the Electric
Field of Current-Carrying Conductors

Like all electric fields, the electric field of a current-carrying
conductor possesses energy given by the basic law (assuming linear iso-
tropic media)

U= - fE.Ddu. (9-8.1)

All space

This energy is associated with both the internal and the external fields
of the conductor.

Like all electric fields, the field of a current-carrying conductor
exerts forces upon charges located in this field. These forces can be
found from the usual force equations!

F = pr'dv or F= pr dv. (9-8.2a, b)

Since a current-carrying conductor always has a surface charge
and may also have interface and space charges (see Section 9-5), a
current-carrying conductor always experiences electric forces due to its
own field or due to external fields. (Magnetic forces acting on current-
carrying conductors are discussed in Chapter 13.)

Like all conductors, current-carrying conductors also exert image
forces on the charged bodies placed in the vicinity of these conductors.
These forces are identical with the image forces appearing in electro-
statics and are found from the image systems given in Table 6-II (the
presence of a current in the conductor has no effect upon the image
field, as can be easily deduced from the uniqueness theorems for E or
@). The total force on a charged body placed in the vicinity of a current-
carrying conductor is, of course, the sum of the force due to the image
field and the force due to the conductor’s field proper.

v

Example 9.8.1 A current [ is maintained between two small spherical
electrodes placed at a large distance r from each other in an infinite liquid
of conductivity ¢ and permittivity &. Neglecting the effect of the lead wires,
find the force between the electrodes.

1 These equations are valid for all electric fields regardless of their origin because
they are valid for electrostatic fields and because all electric fields are force fields by
definition.
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By Example 9-5.3, the electric field produced by one electrode at the
location of the other is E = I[4mor?, and the charge of the electrodes is
q = &4el/o. Taking into account that the electrodes are small compared
to r so that each electrode may be regarded as a point charge from the
location of the other, we then have by Eq. (9-8.2a)

Ceqel? °gt
T dnoht T dmegert’

Example 9-8.2 Neglecting the outside field and the edge effects, find
the electric force with which the plates of the shorted capacitor of Example
9-6.3 attract each other (the width of the plates is 4).
For the normal component of the force acting upon the upper plate
we have 7
F, = JOE; ds,

where o is the surface charge density on the plate and E is the normal
component of the external electric field at the location of 6. This component
is equal to the normal component of the total field E, just outside the plate
minus the contribution of the surface charge ¢ to this component. By
Examples 4-5.3 and 9-6.3, this contribution is 6/2¢, = 1E,, and hence
E) = }E,. Using the expressions obtained for ¢ and E, in Example 9-6.3
and observing that E, = E,, we then have (disregarding the minus sign)

°ft Vx 1Vx g V2
Fo= )% 37" 2:242_’.‘2“"“
or 5 V
.. 2.
F,=-2=bl.

Example 9-8.3 A point charge ¢ is placed midway between the current-
carrying plates shown in Fig. 9.16. The plates are very wide, and the angle
between them is 7/2. Find the force acting on the charge.

N P
! .

Fic. 9.16 Calculation of the force on
a point charge placed near two inter-
secting current-carrying plates. —=x
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The force acting on the charge is the sum of the force due to the field of
the plates and the force due to the image field. The field of the plates is, by
Example 9-6.2, E = —jV/d. The image field is formed by three image
charges as shown in Fig. 9.16. This field is

E,:i( ¢ V2 g V2 9)

4mey2a® 2 4meg2a® 2 4meyta®

—i—2 1 —22).

].Gﬂ'so

The force is therefore

PrOBLEMS

9.1. Using Section 6-2 as a guide, state and prove three uniqueness
theorems for the potential and four uniqueness theorems for the stationary
electric field in current-carrying conductors.

9.2. A metal bar of conductivity ¢ is bent to form a flat 90° sector
(quarter-ring) of inner radius a, outer radius b, and thickness ¢ (Fig. 9.17).

I4 90° o
- L . Fi1c. 9.17 Find the resistance of
B J this 90° sector.
t

Show that the resistance of this sector between the two horizontal surfaces is

4t
=am—a

9.3. Show that the resistance of the conducting sector, described in
Problem 9.2, between the two end surfaces (vertical areas) of the sector is

m

R = 5otin (b]a) *
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9.4. Show that the resistance of the conducting sector, described in
Problem 9.2, between the two curved surfaces is

2 b

= —In -

omt a’

9.5. A conducting circular cylinder of resistivity p, inner radius a,
outer radius 4, and length L is cut in half along its length. The cylinder is
then reassembled with two thin sheet electrodes inserted between the halves,
each side of both electrodes being in contact with the entire area of the wall
exposed in cutting the cylinder. Show that the resistance of the cylinder
between these electrodes is

P
R= e

9.6. Two small circular electrodes of radius b are attached at two
antipodal points to a thin spherical shell of thickness ¢, radius a4, and con-
ductivity g. Show that the resistance of the shell between these electrodes is

1 1 2a
I 7T_Ut n 7 .

9.7. A conductor of conductivity ¢ is made in the shape of a truncated
cone of half angle « with the two bases formed by concentric spherical
surfaces of radii @ and b > a, respectively; the spherical surfaces have their
center at the apex of the conical surface of the cone. Show that the resistance
of this conductor between the two bases is

1 I 1
R= 27a(l — cos oc)(z_z - 77)

9.8. A spherical electrode of radius a has two thin-walled, cone-shaped
conductors attached to it opposite each other, each conductor having a ring
electrode attached to its free end. The wall thickness of the conducting
cones is ¢, the conductivity is ¢, the distance from the edge of each cone to the
center of the spherical electrode is d, and the half-angle of each cone is «.
Show that the resistance between the spherical electrode and the two ring

electrodes is
1 d

=-———1In-.
dmotsino | a
9.9. A spherical grounding terminal of an antenna tower is sunk
halfway into the ground and carries a current [ to the ground. Show that
this current produces a voltage between the feet of a man directly approach-
ing the tower (“step voltage”), the magnitude of the voltage being

1 l

T 2mar r+1°
where [ is the length of the man’s step, 7 is his distance from the tower, and
o is the conductivity of the ground.
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9.10. Two spherical grounding electrodes, each of radius a, are sunk
halfway into the surface of the ground at a distance d > a from each other.
A second pair of electrodes, identical with the first, is sunk into the surface of
the ground at a distance 2 > a from the first, so that the four electrodes form
a rectangle of length d and width 4. Show that when a voltage V is applied
to the first pair of electrodes, an “interference voltage”

1 1
Vo= 1als ~ V)

will appear between the second pair.
9.11. A coaxial cable contains an insulating material of conductivity
0, in its lower half and of conductivity o, in its upper half. The radius of the
central wire is a, that of the sheath is b, the length of the cable is /. Show that
the leakage resistance of the cable is
1

R= ot oyPa

9.12. Show that, disregarding the temperature- and pressure-induced
variations, the resistance of any conducting system consisting of ohmic
conductors does not depend on the voltage applied to the system.

9.13. The capacitance of a capacitor is C, the dielectric constant and
the leakage conductivity of its dielectric are ¢ and o, respectively. Show
that if a voltage V is applied to the capacitor, the leakage current in it is

oC
I~—V.
€€
9.14. A small circular hole of radius « is made near the center of a large
conducting sheet of resistivity p initially carrying a current of uniform

density J,. (a) Show that after the hole is made, the potential distribution
in the sheet and in the hole is, respectively,

a2
Psheet = —pJor (l + 72) cos 0,
Phote = —2pJy7 cos 0,

where 7 and 6 are polar coordinates about the center of the hole, and 0 is
measured with respect to the original direction of the current. (b) Show
that the electric field in the hole is

Ehole = QEO’

where E, is the original electric field in the sheet.
9.15. A stationary current of uniform density J, is carried by a large
conducting sheet of conductivity 0. Show that if a small circular portion of
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radius ¢ in the central part of this sheet is replaced by one having the con-
ductivity ¢’, the current in this portion will be
20’
J=Joo7%-

9.16. A sphere of conductivity ¢’ is embedded in a large conducting
block of conductivity ¢ and a current is established in the block. The
sphere itself is not accessible for current measurements, but the current has
been measured near the surface of the block and has been found to be
everywhere of the same density J,. Show that the current density in the
sphere must then be

30’
Jsphere = JO 27—_’_01 .

9.17. A spherical electrode of radius a is placed in a medium of con-
ductivity ¢ at a distance d > a from a large perfectly conducting plate.
Show that the resistance between the sphere and the plate is in the first

approximation
R— 1 1 a
" 4mga\” 24"

9.18. Two small circular electrodes are placed on a large, thin, con-
ducting sheet so that the line joining their centers is perpendicular to the
edge of the sheet. Show that the resistance between the electrodes is in the
first approximation

1, (B —d)?
T 2mot 4didyaja,

where q,, a, are the radii of the electrodes, d,, d, are the distances of their
centers from the edge of the sheet, ¢ is the conductivity of the sheet, and ¢ is
its thickness.

9.19. Show that the resistance of a long conducting strip of conductivity
0, thickness ¢, and width 4 between two small circular electrodes of radius a
with their centers distance d apart on the middle line of the strip is in the
first approximation

1 b . wd
R = — In{— sinh — .
ot (‘n'a b )

9.20. A current is carried by a medium of conductivity ¢ from a large
hollow spherical electrode of radius a to a point electrode located inside the
first one at a distance d from its center. Find the distribution of current
density at the inner surface of the outer electrode.

9.21. Theradii of the core and the sheath of a coaxial cable are ¢ and 3a,
respectively. The conductivity of the medium between the core and the
sheath is 0. Using the method of curvilinear squares, find the leakage resistance
per unit length of the cable and compare the result numerically with that ob-
tained from an analytical calculation.
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Llcm

Fic. 9.18 Find the resistance of this bar.

9.22. Using the method of curvilinear squares, find the resistance be-
tween the end surfaces of the conducting bar shown in Fig. 9.18.

9.23. Find the resistance of the medium of conductivity ¢ and thickness
¢t between the hollow cylindrical electrode and the long rectangular electrode
shown in Fig. 9.19.

Fic. 9.19 Find the resistance of the
medium between the inner bar and the
outer cylinder.

9.24. Two circular electrodes of radius 2 = 2 cm are laid on the edge of
a thin circular disk of conductivity o, thickness ¢, and radius r = 10 c¢m, so
that the centers of the two electrodes are on the periphery of the disk and
10 cm apart. Using the method of curvilinear squares, or otherwise, find the
resistance of the disk between the two electrodes.

9.25. Using dimensional analysis, show that the ratio of resistances of
any two ohmic conductors of identical shapes but of different linear dimen-
sions is

R
R,

0ol

U

-

where /; and /, are the distances between any two corresponding points on
the two conductors (“characteristic lengths”), and ¢, and o, are the con-
ductivities.
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9.26. Show that the distribution of the surface charge in the hole of the
conductor described in Problem 9.14 is ¢ = —2¢4E cos 6.

9.27. What is the total charge accumulating in the upper half of the
wax electret described in Example 9-5.2°?

9.28. The dielectric of a thin parallel-plate capacitor of plate area A4
consists of two plane slabs of thicknesses 2 and &, dielectric constants ¢, and
&,, and conductivities ¢, and o¢,, respectively. (a) Show that the leakage
resistance of this capacitor is

aog, + bo,
R= 4do,0,
(b) Show that when a voltage V is applied to the capacitor, the potential of
the dielectric interface with respect to the plate adjacent to the slab of
thickness a is

Vao,
== ac, + ba, "

(c) Show that the surface charge appearing on the interface when a voltage
V is applied to the capacitor is
V(saab _ sbga)

Ocharge = &0 ac, + bo,
a

9.29. A parallel-plate capacitor of plate separation d is filled with a
laminated material so composed that its permittivity is
£ = kl(l + kycos %x),
and its conductivity is

o= k3(1 + kg sin ”7")

where k,, k,, k3, and £, are constants and x is the distance from the positive
plate toward the negative one. (a) Find the capacitance and the leakage
resistance of this capacitor. (b) Find the density of space charge accumu-
lating in the laminated material when a voltage V'is applied to the capacitor.

9.30. Show that the stationary electric field of an infinite current-
carrying ohmic conductor of conductivity o satisfies the relation

ST N g 6. L.

4 a?r?
All space
if the field is regular at infinity.

9.31. Find the electric field between the plates described in Example
9-6.2 by first determining the potential and then taking the gradient of this
potential.

9.32. Two large, thin, rectangular, conducting plates of length / meet
at an angle 2o along one of their edges, while their opposite edges are
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shorted by means of a perfectly conducting plate extending over the entire
length of these edges. Show that if a voltage V is applied between the
common edge of the two plates (negative terminal) and the shorting plate
(positive terminal) the electric field in the space between the plates is -

v . r,
“leosa' L®

where 1 is a unit vector normal to the shorting plate and pointing toward
the common edge, and L is the distance between this plate and the edge.
9.33. A long cylindrical conducting tube of uniform conductivity has
a narrow slot along its entire length. Two electrodes are attached to the
exposed surfaces of the tube’s wall in the slot, both electrodes extending
over the entire length of the tube. (a) Show that if a voltage V is applied
between the electrodes, the electric field in the space inside the tube is

E-Lg

Viva us

where r and 6 are polar coordinates about the slot as the z-axis. (b) Find the
surface charge on the inner surface of the tube.

9.34. A cylindrical coaxial cable carries a current from a battery of
voltage V located at z = 0 to a load resistance R and back. (a) Show that
the potential in the space between the central wire and the sheath is

_F 1 R,z In b R,z 1
?=moell! TR R IR TR TR TR Y

where [ is the length of the cable, R, is the resistance of the central wire, a
is the radius of this wire, R, is the resistance of the sheath, and b is the radius
of the sheath. (b) Find the distribution of the surface charge in the cable.

9.35. Show that the time needed to dissipate as much energy in Joule’s
heating of an ohmic conductor carrying a steady current as is stored in the
electric field within this conductor is

&t
=355
where ¢ is the permittivity, and ¢ is the conductivity, both assumed constant
throughout the conductor.

9.36. Show that as a result of the deformation of the conducting bar
described in Example 9-4.3 the power loss due to Joule’s heating of the bar
decreases 1.125 times.

9.37. A cubic vessel of side [ has the bottom two the sides made of
nonconducting material and the two ends made of perfect conductors
serving as electrodes. Show that if a voltage V is applied between the elec-
trodes, and if the vessel is filled with liquid of conductivity o, specific heat
¢, and density 0, the temperature 7 of the liquid will rise at the rate

dT  °oV?
dt T R
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9.38. Find the power lost in Joule’s heating per unit length of the
dielectric in the cable described in Problem 9.11.

9.39. Find the rate at which heat is generated in Joule’s heating of the
leaky dielectric in the capacitor described in Problem 9.13.

9.40. Find the energy of the electric field in the space inside the tube
described in Example 9-6.1.

9.41. Show that the force with which the inner surfaces of the con-
ducting plates described in Problem 9.32 are attracted to the shorting bar
is

lcos a 2

and show that the force with which the inner surface of the shorting bar is
attracted to the plates is

V2b 1
F—op% tan a(— sin? o + cos? ot),

V2
F =g, Tool w sin « ,
where b is the width of the plates and the bar.
9.42. Find the force resulting from the accumulation of surface charge
on the dielectric interface described in Problem 9.28.
9.43. Show that as a result of charge accumulation in the wax slab
(electret) described in Example 9-5.2 the slab is subjected to a volume force

(force per unit volume)
2

%
F, = °meghky o5 cos =

d i,
and show that the maximum pressure inside the wax due to the charge

accumulation is
_ Ceekyky V2
Pmax = PE] .

9.44. A hollow, perfectly conducting sphere of radius & is half filled with
a liquid of conductivity ¢ and permittivity . A smaller perfectly conducting
sphere of radius a is half submerged in the liquid, and the centers of the
spheres coincide. The two spheres are connected to a battery of terminal
voltage V, so that a current is present in the liquid. Neglecting the effect of
the lead wires, show that the smaller sphere is subjected to the electric force

_ %go(e — 1)m V%2
T 2b—a)2

and then show that the same force acts on the sphere if the liquid is
nonconducting.



STATIONARY MAGNETIC
FIELD IN VACUUM

The basic definitions, formulas, and equations used for the
quantitative representation of magnetic phenomena are analogous to
those used for the quantitative representation of electric phenomena.
Moreover, most of the fundamental electric quantities have magnetic
counterparts. Thus, the electric field vector E[V/m] corresponds to the
magnetic field vector H[A/m)], the electric displacement vector D[As/m?]
corresponds to the magnetic induction vector B[Vs/m?], capacitance
C[As[V] corresponds to inductance L[Vs/A], etc. (the dimensions of
analogous electric and magnetic quantities have the same structure,
but [V] and [A] are interchanged).! This symmetry of quantities
contributes greatly to the internal unity and harmony of electromagnetic
theory, simplifies its mathematical formulation considerably, and is
very helpful for practical applications of the theory. In particular,
this symmetry will enable us to present the theory of magnetic phe-
nomena in a form parallel to that in which the theory of electric
phenomena was presented, and thus will allow us to utilize again
many of the already familiar logical and mathematical deductions and
techniques developed in the preceding chapters.

10-1. Magnetic Field and Magnetic Field Vector H

It has been known since ancient times that certain bodies, called
magnets, respond to a special force known as the magnetic force.

1'We are using here the short form of unit notations, writing A for ampere,
V for volt, m for meter, and s for second.

320
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(a) (b)

Fic. 10.1 (a) Magnetic lines of force in the field of a solenoid. (b) Magnetic
field map for the same solenoid.

A region of space where a stationary magnet experiences a
magnetic force (or torque) is called a magnetic field. Experiments show
that all magnets themselves are accompanied by magnetic fields and,
what is most important, that all current-carrying conductors are
accompanied by magnetic fields.! Magnetic fields of various character-
istics can therefore be obtained by using magnets of various shapes or by
using appropriately arranged current-carrying conductors. Especially
convenient for this purpose are current-carrying coils.

A magnetic field can be made ““visible” by sprinkling iron filings
on a glass plate and placing this plate in the field. In the magnetic field
the filings arrange themselves in regular chain-like filaments, thus
making a picture of the “magnetic lines of force” (Figs. 10.1, 10.2,
and 10.3).

Different magnetic fields can be quantitatively compared with each
other with the aid of a magnetic-field-indicator or a magnetoscope. An
example of a magnetoscope is a small compass needle suspended on an
elastic wire or supported by a torsion spring that can exert a restoring
torque upon the needle (Fig. 10.4). If two magnetic fields produce the
same deflection of a magnetoscope, the fields are considered equal (sub-
ject to proper orientation of the magnetoscope, as will be clear from the
following discussion).

The study of various magnetic fields with the aid of magnetoscopes
and lines-of-force pictures shows that the simplest magnetic field is the
field inside a straight, tightly wound, current-carrying coil whose length

1 Compare with Section 10-3.
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Fic. 10.2 Magnetic lines of force
around a current-carrying wire
directed at a right angle to the page.

F1c. 10.3 Magnetic lines of force
in the field of a toroidal coil.

_ F1c. 10.4 A magnetic field indicator, or magnetoscope, for
» comparing different magnetic fields.
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is much larger than the diameter (“solenoid”’). Except near the ends of
the coil, this field is homogeneous; it causes the same deflection of a
magnetoscope no matter at what point of the field the magnetoscope is
placed, and its lines of force are straight, parallel lines (Fig. 10.1) (thus
the magnetic field inside a long coil corresponds to the electric field
inside a thin parallel-plate capacitor).!

If, using a magnetoscope, we compare the magnetic fields in differ-
ent long coils, we find that the fields in those coils which have the same
ratio

number of turns X current in the coil
length of the coil

cause equal deflections of the magnetoscope regardless of any other
characteristics of the coils. Therefore this ratio can be used as the meas-
ure of the magnetic field inside a long coil.

Since the field in a long coil has a well defined structure, is easily
reproducible, and can be used conveniently for producing standard
laboratory conditions for experiments with magnetic fields, we shall
adopt this field as the standard magnetic field H, and, in agreement with
the ratio stated above, shall define its magnitude as

H, =”T[, (10-1.1)

where 7 is the number of turns in the coil, /is the current in the coil, and
[ is the length of the coil.

The magnitude of any magnetic field can be defined in terms of
the magnitude of the standard field. We shall define it as follows:
the magnitude of an arbitrary magnetic field H is measured by and is equal to the
magnitude of the standard field H_ which exactly equalizes the field H. The
units of a magnetic field are, according to this definition, ampere/meter.

The principle of measurement of an arbitrary magnetic field is
illustrated in Fig. 10.5. The standard field is on the left; it is adjusted
by means of a variable current source until the torsion balance carrying
on the ends of its axle two identical compass needles which are placed
in the standard and the unknown field, respectively, is in equilibrium.

The method of direct field measurement shown in Fig. 10.5 is seldom
used in practice. Instead, magnetic fields are usually measured indirectly
in two steps. First the effect of the standard field upon some magnetic-
field-indicator is determined (calibration of the indicator). Then this effect

1 A homogeneous magnetic field can be produced also between the plates of
a parallel-plate capacitor by establishing opposite currents in the two plates (see
Problem 10.8 and Example 13-6.2).
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T—‘
i H=2?
= Sl A= A
P v

Fic. 10.5 Magnetic fields can be measured by comparison with a standard
magnetic field.

is compared with the effect produced upon the same indicator by the field
that is being measured. An example of an instrument for such an indirect
field measurement is shown in Fig. 10.6. The indicator is a small piece of
soft iron attached to a pointer. The iron piece and the pointer are deflected
under the action of the magnetic field that is being measured, and the
deflection is read on the scale calibrated previously with the aid of a standard
field. Magnetic field meters of this type are known as cerstedmeters.

Magnetic fields, like electric fields, are vector fields. With each
point of a magnetic field one can associate the magnetic field vector H,
whose magnitude is equal to the magnitude of the magnetic field at that
point and whose direction is indicated by a compass needle placed at
that point (by convention, the positive direction of H is that indicated
by the north-seeking pole of the needle).

It has been found that maps of magnetic vector fields (see page
36) are closely represented by pictures of the magnetic lines of force
(filaments of iron filings on a glass plate) produced by the same fields
(Fig. 10.1). The easily obtainable pictures of the magnetic lines of
force are therefore often used as the approximate maps of the magnetic
fields.

The magnetic field and the magnetic field vector H are the counter-
parts of the electric field and the electric field vector E. It is useful to
note the similarity of the dimensions of H and E. Both dimensions have
the same form, [A/m] and [V/m], respectively, but [V] and [A] are
interchanged.

G

[T

e
Fic. 10.6 An oerstedmeter.
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10-2. Induction Field and Induction Vector B

Let us take two thin conducting rods, connect them to a ballistic
voltmeter, and place across them a short piece of bare wire that can be
slid over them. Let us then insert the rods with the slide wire into a
current-carrying coil through a slot made in the coil at a right angle to
the axis of the coil (Fig. 10.7a). If we now slide the wire along the rods,
the voltmeter registers a voltage impulse, indicating in this way that a
voltage has appeared in the wire. Thuswe can ““generate’ voltage (and,
hence, current) in a wire by merely moving the wire inside a current-
carrying coil. This type of voltage generation is called generation by
electromagnetic induction. The region of space where this generation can
take place is called the field of electromagnetic induction, or, simply, the
induction field. Experiments show that the induction field is intimately
related to the magnetic field defined in the preceding section and can be
produced by the same means as the latter.

If we measure voltage-impulses produced by small slide wires of
different sizes which are moved with different speeds over different small
distances Al (Fig. 10.7b) we find that, as long as all wires are inserted
at the same point of the field and are oriented in exactly the same
manner, the ratio

fVdt  voltage-impulse produced by the slide wire
AS ~ area swept during the motion of the slide wire

is the same for all wires. This ratio may therefore be regarded as the
measure of the induction field and may be used for the quantitative
definition of this field. Using this possibility, we shall quantitatively
define the induction field as follows: the magnitude of the induction field at a

if‘“":“’-}._ =
@
Ballistic —*  Ballistic
voltmeter voltmeter
(a) (b)

Fie. 10.7 Voltage can be generated in a wire by moving the wire across
a current-carrying coil.
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Fic. 10.8 “Flip coil” for measuring B.

given point is measured by and is equal to the ratio ({Vdt)|AS obtained with a small
slide wire inserted at this point and oriented so that this ratio is a maximum. We
shall designate the magnitude of the induction field by the symbol B and
shall call it, for brevity, the induction. The units of B are, according to
this definition, volt - sec/m?2.

In practice, B is measured with the aid of a small test coil, rather
than with a slide wire. When the test coil is turned about a diameter, a
voltage-impulse is induced in it. A properly oriented test coil of one
turn and of area AS produces the same voltage impulse when turned
through 90° as a slide wire sweeping an equal area AS; a coil of n turns
produces a voltage impulse 7 times larger. A test coil is usually per-
manently connected to a ballistic voltmeter calibrated directly in terms
of the induction B. A spring “flips” the coil (Fig. 10.8) through 180°
when the measurement is made (turning the coil through 180° instead
of 90° increases the voltage impulse by a factor of 2). Test coils of this
type, also known as “flip coils,” “search coils,” and “induction coils”
are important instruments for the study of magnetic fields. A test coil
for studying the earth magnetic field is called the ‘“‘earth inductor.”

Induction fields are vector fields also, With each point of an induc-
tion field one can associate the induction vector B whose magnitude is
equal to the induction at this point and whose direction is normal to the
surface swept by the slide wire when the wire is oriented to produce the
largest ratio (fVdt)[/AS. By convention, the sense of the direction of B is
then such that the induced current density vector in the slide wire, J,.4,
the velocity vector of the slide wire, v, and the induction vector, B,
form a right-handed system in the order stated (Fig. 10.9).

A simple way to determine the direction of B when using a test coil
is to orient the axis of rotation so that no voltage is induced in the coil.
The axis of rotation will then be parallel to B.

The induction field and the induction field vector B are the counter-
parts of the displacement field and the displacement field vector D.
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B

AR T,

Fic. 10.9 Directional relations for = e /
current induced in a slide wire. Y

It is useful to note the similarity of the dimensions of B and D. Both
dimensions have the same form, [Vs/m?] and [As/m?], respectively,
but [V] and [A] are interchanged.

It is customary to use the expression “magnetic field” as a general
term for designating both the magnetic field proper, defined in the
preceding section, and the induction field. When using this expression
in such a general sense, we shall refer to both the induction vector B
and the magnetic field vector H as the magnetic field vectors.

The definitions of the magnetic field vectors are given in Table 4-I
parallel to the definitions of the electric field vectors.

10-3. Magnetic Fields as a Property of Moving Electric
Charges

As we have seen in the preceding chapters, the time-independent
electric fields can always be attributed to electric charges, which thus
may be always considered as the sources of the fields. It is natural to
ask whether the time-independent magnetic fields could be similarly
attributed to some “magnetic charges” as the sources of these fields.

All experiments conducted in search of such magnetic charges
gave negative results. Magnetic charges have never been found.

These and other experiments have shown, however, that all time-
independent magnetic fields can ultimately be traced to moving electric
charges. Thus, for example, it has been established that the magnetic
fields of permanent magnets are a result of rotation and revolution of
electric charges within atoms and molecules, and that the magnetic
fields of current-carrying conductors are a result of translational motion
of the electric charges within the conductors.

It has also been found that a stream of electric charges of density p
and velocity v produces the same magnetic field as that produced by a
conductor carrying a current of density J = pv. A stream of charged
particles is therefore frequently called a convection current. Its current
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density is defined, in accordance with the observation just mentioned,
as

Jeony = pV. (10-3.1)

10-4. Fundamental Magnetostatic Field Laws

The simplest magnetic fields are the time-independent, or the
magnetostatic, fields. The fundamental laws of magnetostatic fields in
vacuum may be deduced as follows.

The Circulation (Curl) Law. If we compare the lines-of-force pictures
obtained with the aid of iron filings in the magnetostatic fields of various
current-carrying conductors, we shall find that all the pictures have one
remarkable property in common: there are only closed lines of force in
all of them; no lines have a beginning or an end. Since the lines-of-
force pictures essentially represent the vector maps of the corresponding
magnetic fields, and since closed field lines are the characteristic
property of vector fields with nonvanishing curl and circulation integral,
we must suspect that the circulation integral and curl of a magneto-
static field are different from zero. A further study of the lines-of-force
pictures shows that the lines of force always encircle current-carrying
conductors. This suggests that the circulation integral of magneto-
static fields is intimately related to the current enclosed by the path of
integration. If we now observe that the dimensions of the circulation
integral of the field vector H are the same as the dimensions of the
electric current, we are immediately led to the assumption that in a
magnetostatic field §H - d1 is simply equal to the current enclosed by
the path of integration: §H.dl =1, ... Expressing the enclosed
current as the surface integral of current density, we thus obtain

§H-dl =f_]-dS. (10-4.1a)
The curl of H, according to Stoke’s theorem, is then
VxH-=]. (10-4.1Db)

The validity and generality of these equations have been confirmed
by all presently known phenomena involving the correlations between
electric currents and magnetostatic fields. According to Section 3-2,
these equations therefore constitute a fundamental magnetostatic field
law in its integral and differential form, respectively. The circulation
law expressed by Eq. (10-4.1a) is called Ampere’s law, and the path of
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integration (right-handed relative to the enclosed current) used for
evaluating the circulation integral is called an Amperian loop.

The Flux (Divergence) Law. There is another deduction that we can
make from the study of magnetic lines of force. As already noted, these
lines have neither a beginning nor an end. This is also, however, the
characteristic property of field lines in vector fields whose divergence
is zero. Observing now that in the electric fields it was the displace-
ment vector D that entered the divergence law, and remembering
that the magnetic counterpart of D is the induction vector B, we are led
to the assumption that in the time-independent induction fields

V.B=0. (10-4.2a)

By Gauss’s theorem, we can then also write
4;B -dS = 0. (10-4.2b)

These equations, too, have been confirmed by all presently known
phenomena involving the induction fields. Therefore, according to Sec-
tion 3-2, they constitute a fundamental law of the induction fields in
its differential and integral form, respectively.

Equation (10-4.2b) shows that the field vector B represents the
flux density of the magnetic induction field. It is therefore customary
to call B the flux density vector, or the magnetic flux density vector.

Additional experiments show that both the time-independent H
and time-independent B fields are always regular at infinity.

The Flux Density Law. The set of field laws that we have thus far
introduced is incomplete, since we do not have the circulation (curl)
law for B and the flux (divergence) law for H. These laws can be
obtained, however, from the ones that we already have, if the correla-
tion between the vectors B and H is known. This correlation can be
determined by making simultaneous measurements of B and H in
various magnetic fields. On the basis of such measurements it has been
found that in vacuum H and B are bound to each other by the equation

B = 4,H, (10-4.3)

where g, is an experimentally determined universal constant, called the
permeability of space; itsvalueis 1.256 - 10~¢ volt - sec/lamp - m.! The
correlation expressed by this equation is called the flux density law. This

1 As has been stated in Section 7-1, the units of current and voltage in the
mksva system are so defined as to make u, equal to 4 - 10~7 volt - secfamp - meter.
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law is a constitutive law and, in the above form, is valid only for
magnetic fields in vacuum (and, practically, also in air) but not for the
fields in material media, as we shall see later.

The flux density law is the magnetic counterpart of the displace-
ment law of electrostatics, and the constant g, is the magnetic counter-
part of the constant &. Observe that both constants have the same
dimensional structure, [Vs/Am] and [As/Vm], respectively, but [V]
and [A] are interchanged.

The flux density law completes the set of the fundamental magneto-
static field laws expressed in Eqgs. (10-4.1) and (10-4.2), since both the
circulation (curl) law and the flux (divergence) law for H as well as for
B can now be obtained from these equations, and hence, by Helm-
holtz’s theorem of vector analysis, both vector fields H and B are now
specified completely.!

This means that if somehow we find an expression for H or B
which for a given magnetic system in vacuum satisfies all three equa-
tions (10-4.1), (10-4.2), and (10-4.3) at all points of space and is
regular at infinity, we may be sure that this expression is correct and
that the field represented by this expression is the only possible field for
the system under consideration.

What is more, just like the corresponding equations for electric
fields, these three equations uniquely specify the vector fields H and B
within a given region of space even if these equations are known for the
points of this region only, provided that the normal component of H
or B is known for all points of the boundaries of the region (the proof of
this statement is left to Problem 10.1).

v

Example 10-4.1 Find the magnetic field outside and inside a long wire
of radius a carrying a uniform current 1.

Let us describe a circular Amperian loop C of radius r around the wire,
as shown in Fig. 10.10a. Applying Ampere’s law to this loop we have

§ H.dl = [;qosea

By the symmetry of the system, the magnetic field lines must be circles
centered on the axis of the wire, and the magnitude of H must be the same
at all points of each such circle. Therefore, at any point of the Amperianloop,
the magnetic field vector H must be parallel to d1 and constant in magnitude,

1 As usual, we are referring to Eqgs. (10-4.1a) and (10-4.1b) as to Eq. (10-4.1),
and we are referring to Egs. (10-4.2a) and (10-4.2b) as to Eq. (10-4.2).
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(a) (b)

Fic. 10.10 Calculation of the magnetic field of a current-carrying wire.

so that §H . dl = §Hdl = H$dl. Since §dl = 27r, Ampere’s law for this
problem reduces to
H2mr = Ienclosed:
and hence
o Ienclosetl
27r

Taking into account the direction of H and dropping the subscript on I, we

finally obtain
1
H= D 0,
where 0, is a unit vector in the circular direction forming a right-handed
system with the direction of the current. To find the field inside the wire,
we likewise describe a circular Amperian loop of radius r inside the wire, as
shown in Fig. 10.10b. Applying Ampere’s law to this loop, we obtain, as

before,

(r > a), (10-4.4)

Ienclofasd
H = e
However, the enclosed current is now I,geea = (Ifma®)mr? = I(r2[a?),
where a is the radius of the wire. The field is therefore
Ir
= 27d®

H 0, (r<a). (10-4.5)

Example 10-4.2 A long cylindrical beam of charged particles has a
uniform space charge density p and moves with a constant velocity v in
the direction of its axis (Fig. 10.11). The radius of the beam is a. Find
the magnetic field inside and outside the beam.

By the symmetry of the system, the magnetic field is everywhere circular.
To find the field inside the beam we apply Ampere’s law to a circular loop
of radius r < a centered on the axis of the beam. We then have

§ H.dl :J.Jconv - dS,
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Fic. 10.11 Calculation of the magnetic field of a beam of charged particles.

where J.., is the convection current density of the beam. By Eq. (10-3.1),
Jeony = pv. Since both p and v are constant, J..,, is constant. We can
therefore write! [J-dS = [JdS = J|dS = JS = Jnr? = pvmr?, and since
§H - d1 = H27r, we obtain H2mr = pumr?, so that the field inside the beam
is
7 i (r <a).
2

To find the field outside the beam we apply Ampere’s law to a circle of
radius r > a centered on the axis. Since the beam is now completely
enclosed by the path of integration, [J « d8 = Jma® = pvma?, and therefore
the field outside the beam is

pva®

=y (r = a).

Taking into account the direction of the field, we can write

vXr

2

H=p for r <a, and H = pa® for r >a.

Example 10-4.3 A large conducting slab of thickness ¢ carries a uniform
current of density J along the length of the slab. Find the magnetic field
inside and outside the slab, neglecting the edge effects.

Let us construct a rectangular Amperian loop of length { and width
w < t, as shown in Fig. 10.12a. Applying Ampere’s law to this loop, we have

fca- o

By the symmetry of the system, the field H is parallel to d1 on the horizontal
portions of the loop and is constant at all points of these portions, so that on
them (H-dl = (Hdl = Hfdl = HIl. On the vertical portions of the loop
the field H is perpendicular to dl, so that there [H-dl = 0. Designating
the corners of the loop by the symbols a, b, ¢, and d, as shown in Fig. 10.12a,

1 We naturally assume that the surface of integration S is simply a disk normal
to the axis of the beam. One should emphasize, however, that Ampere’s law is
valid for any surface of integration as long as this surface is bounded by the line
along which the circulation integral is being evaluated; it may be a cone, a hemis-
phere, a cylinder closed at one end, or any other surface. For practical applications
of Ampere’s law one selects, of course, the surface that makes the integration simplest.
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Fic. 10.12 Calculation of the magnetic field of a current-carrying slab.

we then have

€ d a
%H-dl=."bH'dl+J.H-dl —t—fﬂ.dl +fH-dl
a b ¢ d

= HIl + 0+ Hl + 0 = 2HI,
and since for this loop [J - 48 = 2Jly, we obtain for the field inside the slab
H=Jy (y=<t2),

where y is as shown in Fig. 10.12a. Taking into account the direction of H
(the H-lines form a right-handed system with the vector J), we can write

then for H He 5t (y < 12).

Constructing a rectangular Amperian loop of length [ and width w > ¢,
as shown in Fig. 10.12b, we likewise obtain for the magnetic field outside the
slab

1 |
H=§JI, or H=§Jtml ()2!/2)
Example 10-4.4 In a field emission microscope, charged particles
(electrons) leave a hemispherical tip (radius a) of a needle-shaped cathode
and move toward a concave, concentric, hemispherical anode (radius 5), as
shown in Fig. 10.13. The current in the cathode and anode is 7, and the

Fic. 10.13 Calculation of the magnetic field within a stream of electrons
moving from a hemispherical cathode to a hemispherical anode.
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charged particles constitute an equal convection current while they are on
their way from the cathode to the anode. Assuming that the flux density of
the particles is constant at all points of the tip, and that the particles move
radially, find the magnetic field at any point (r, ) between the cathode and
the anode.

By the symmetry of the system, the field is everywhere circular.
Applying Ampere’s law to a circle of radius R constructed between the
cathode and anode and centered on the symmetry axis, we have therefore
$H - dl = [J,ony + dS, and since §H -dl = H27R = H2nrsin 0, we obtain

chonv - dS
H=Y

T 2mrsinf

where 0 is the polar angle, as shown in Fig. 10.13. Since the convection
current is spherically symmetric, J,,, at a distance 7 from the center of the
tip is
I
Joony = — 55 T

Using as the surface of integration a spherical cup of radius r and polar angle
0, we then have for the surface integral

I o I ,
chonv - dS =f'2—”;2 ds = J:,Q—wﬁ 272 sin 0df = I(1 — cos 0).
The field is therefore
Il —cos) [ 0

H = 277 sin 0 _Zr—rtanﬁ'

Example 10-4.5 Two parallel wires separated by a distance 2d carry
equal currents I in the same direction (Fig. 10.14). Find the magnetic
field outside the wires and determine the limiting value of this field for points
far away from the wires.

Each wire alone has the field given by Eq. (10-4.4). The combined
field of the two wires is the vector sum of their individual fields. To find this
sum we shall express Eq. (10-4.4) in terms of the rectangular coordinates
shown in Fig. 10.14. Using subscript 1 to indicate quantities pertaining
to the wire on the left and subscript 2 for quantities pertaining to the wire
on the right, we then have

n=VET DA n=VE- TS
o . ;- il
0u1=sm011+00501.l=\/ml_ (x+d)2+)’2],

J x—d .

\/(x—d)z—i—yzi \/(x—d)2+_y2']’

0,, = sin 0,i 4 cos 0,5 =
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Fic. 10.14 Calculation of the magnetic field of two parallel wires carrying

equal currents.

so that

and

I

= ) g |

I

(x + d)j]

B, = ol — 7 0 — (¢ — il

The total field, H = H, + H,, is then

H=

1

x +

d

- [(x Ty

+ya+(

VTt emarrl)

=l

For the points far away from the wires, d in the denominator of the last
equation can be neglected. We then have

H

or

2y .

2x

1 .
= 5elmapt— )
21 ( J . x o,
— 1—
27V X% 2\ Va2 | 52 \/:c2+y"‘J
H= L 0
=5=08. (r>4d),

)

where I’ = 21, and r and 0, are as shown in Fig. 10.14. If r > d, the field

is thus the same as that of a single wire carrying the current 2/,

Example 10-4.6

Prove that any two current distributions, J; and J,,
confined to a finite region of space (as all real currents are), satisfy the
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reciprocation relation
B, x Jodv = f J1 % Bydo,
All space All space

where B, is the induction field associated with the current J;, and B, is the
induction field associated with the current J,.

Using the flux density law (10-4.3), the curl law (10-4.1b), and the
vector identity (V-2), we can write

1
fBI X Jodv = %JBI x (V x By)dv
1 1 1
= E JV(BI . Bz)dv — % f(Bl . V)B2dv — E) f(B2 . V)Bldl}

1
—— |B, x (V x B,)dy,
Ho

where the integrals are extended over all space. We shall show now that
the first three integrals in the last expression vanish. The first integral in this
expression can be transformed into a surface integral by means of the
vector identity (V-19):

f V(B, - B,)ds = ffnl . B,dS.

But since J; and J, are confined to a finite region of space, B, and B, are
regular at infinity. Therefore the surface integral vanishes, and so does the
volume integral. The second and third integrals in the expression under
consideration can be transformed by means of the vector identity (V-23)
as follows:

f(Bl « V)B,ydy = ffBZ(Bl - dS) —f(V + B,)Bydu,
and

f (B, V)Bydo — #;131(132 .dS) — f (V - B,)B,do.

But since B, and B, are regular at infinity, and since V- B, = V.B, =0
by the divergence law (10-4.2a), the integrals on the right vanish, and so
do the integrals on the left. Thus only the last integral in the expression
under consideration remains, and we have

1
fBl X Jodv = — ﬂ—fBz x (V x B,)dv.
0
Substituting (V x B,)/u, = J;, we finally obtain
fBl x Jodv = —fB2 x Jidv =f‘]1 x Bydv,

which was to be proved. [Even a simpler proof can be obtained by using vec-
tor identity (V-21).] A
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10-5. Inductance

An important problem in the domain of magnetic phenomena is
the calculation of magnetic fields associated with a given current
distribution. In the next section we shall solve this problem in its
general form. In this section we shall consider a special case of the
problem: the calculation of the magnetic flux

@ =fB~dS (10-5.1)

associated with currents in conductors, by means of a special quantity
called inductance.

Inductance is defined for single conductors and also for pairs of
conductors.

The inductance of a single conductor, or the self-inductance, is defined,

in general, as the ratio
(i

= T N
where [ is the current in the conductor, and ® is the total magnetic

flux due to this current. However, the inductance of a tightly wound
coil with negligible end effects is defined as

L="2 (10-5.3)
1
where 7 is the number of turns in the coil and @ is the total magnetic
flux of the coil.

Frequently the inductance is determined by using only that part
of the flux ® which is produced by the magnetic field outside the con-
ductor. The inductance so obtained is called the external inductance.

For pairs of conductors, the so-called mutual inductance is defined.
The mutual inductance of a conductor ¢ with respect to a conductor j
is, in general, defined as the ratio

L (10-5.2)

L, = %’T_’. (10-5.4)

J

where I; is the current in the conductor j, and ®,; is the magnetic flux
due to this current evaluated over a surface bounded by the conductor :.
However, the mutual inductance of a tightly wound coil with respect
to another conductor is defined as the sum of the mutual inductance of
each individual turn of the coil with respect to this conductor. In the
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particular case when the current in the conductor causes the same flux
®,; through each turn of the coil, the mutual inductance is therefore

Lij="ﬁ%?,

J

(10-5.5)

where I, is the current in the conductor, #; is the number of turns in the
coil, and ®,; is the flux through a turn of the coil due to the current in
the conductor.

The units of inductance are volt - sec/amp. These units are usually
called the “henry.”

It must be pointed out that the above definitions of self and mutual
inductance ordinarily do not permit a unique determination of the
inductance, and that other definitions are possible (a more satisfactory
definition is given in Section 13-5). Therefore different authors fre-
quently give different expressions for inductances of the same systems.

Inductance is the magnetic counterpart of capacitance (mutual
inductance is the counterpart of the coefficient of mutual capacitance).
Observe that the dimensions of inductance and capacitance have the
same structure, [Vs/A] and [As/V], respectively, but [V] and [A] are
interchanged.

Like the capacitance, the inductance is a function of geometrical
relations only. Therefore, once it has been calculated (or measured)
for a system to which one of the four equations (10-5.2) to (10-5.5)
applies, the flux in the system can be immediately found from these
equations if the corresponding current is known. The problem of
calculating the magnetic flux in such a system reduces therefore to
that of determining the inductance of the system.

v

Example 10-5.1 A coaxial cable consists of an inner thin-walled
cylinder of radius a carrying a current I, and an outer thin-walled cylinder
of radius & returning this current. Find the inductance of a portion of this
cable of length / (Fig. 10.15).

By the symmetry of the system, the magnetic field must be everywhere
circular, with the field lines forming circles centered on the axis of the
cable. Applying Ampere’s law to an Amperian circle of radius r centered
on the axis (Fig. 10.15a), we have, as in Example 10-4.1,

§Hodl=§Hdl=H§dl=H27ﬂ‘= enclosed»

or

I enclosed

H = 27r

.
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Fic. 10.15 Calculation of the inductance of coaxial cable.

For r < a, I 05a = 0, so that H and B are also zero. For a <r < b,

I iosea = 1, so that

I
H=2m
and (by the flux density law)
ol

2mr”

For r > b, I u0ea =1 — I =0 (the conductors carry equal currents in
opposite directions), so that H and B are again zero. Thus the magnetic
field is confined to the space between the cylinders. The magnetic flux

®=|B-dS

associated with a portion [ of the cable can be obtained therefore by eval-
uating the flux integral over a rectangular plane surface of length [ in the
space between the cylinders (Fig. 10.15b). The surface element of such a
surface can be taken as d§ = [ dr. Since B, being circular, is perpendicular
to this surface (parallel to the vector element d8), we can replace in the
flux integral the dot product B.d8 with the product B dS. The flux is

therefore
b
®=|Bds =j Pty Jalby B
o 2mr 2r T a

The inductance is then, by Eq. (10-5.2),

Example 10-5.2 Two parallel wires whose centers are a distance d
apart carry equal currents in opposite directions (Fig. 10.16). The radius
of each wire is a. Find the external inductance of a length [ of these wires.

By Example 10-4.1, each wire produces in the external space a circular
field

I
H =g
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el

Fic. 10.16 Calculation of the inductance of a two-wire transmission line.

where r is the distance from the wire in question and [ is the current in this
wire. The total field at a point x between the wires is therefore

I I
4

T mx " 2m(d— 1)
Since all field lines of this field pass between the wires, the total flux pro-
duced by this field is just the flux through the plane surface extending from
x = a to x = d — a in the space between the wires. Taking into account
that the field lines are normal to this surface and that B = u H, we then
have for a length [ of the wires

-—f .dS = deS fd_[ (g{ )]tdx
8 d—a

a

X

_#021:' d—x|,

= Uy ;—ln

The inductance is therefore

d—a

Example 10-5.3 Find the inductance of a long, thin-walled coil of n
turns, length /, and cross-sectional area 4.
Let the current in the coil be /. The magnetic field in the coil is then

nl
H= T
and the flux density is
B— pond

Since the field in the coil is homogeneous and is directed along the coil’s
axis, the magnetic flux produced by the coil is

¢=BA=M
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The inductance is therefore, by Eq. (10-5.3),
n®  ugnA

L==g 1

Example 10-5.4 A rectangular loop of wire of width & and height b4 is
placed at a distance d from a long straight wire, as shown in Fig. 10.17.
Find the mutual inductance of the loop with respect to the wire.

——

Fic. 10.17 Calculationof themutual inductance
between a long wire and a rectangular loop (only
a small portion of the wire is shown).

Let the current in the wire be I;. The magnetic field of the wire is then
1, 1

= 2w’
and the flux density is
_ oy
B = Gy
The flux produced by this field through the rectangular loop is

d+a d+a
D, =fB-dS= BdS:f Bbdr:f by 4
d a 2mr

or
_ politb . d+a
= In -

The mutual inductance of the loop with respect to the wire is therefore, by
Eq. (10-5.4),

(1)21

Example 10-5.5 A tightly wound, thin-walled toroidal coil of rectan-
gular cross section, inner radius R, width 4, and height & is placed at a right
angle to a long straight wire coinciding with the symmetry axis of the coil,
as shown in Fig. 10.18. The coil has n turns. Find the mutual inductance
of the coil with respect to the wire and the mutual inductance of the wire
with respect to the coil.
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Ill‘ ————————— !

¥

It

Fic. 10.18 Calculation of the
mutual inductance between a
toroidal coil and a straight
| A wire.

By symmetry, the current in the wire causes the same flux through each
turn of the coil. According to the preceding example, this flux is (using R in
place of d)
D, = ﬁ'ﬁ In R+a

nT 2 R
By Eq. (10-5.5), the mutual inductance of the coil with respect to the wire is
therefore

filoh In B8 ;

27 R

To find the mutual inductance of the wire with respect to the coil, we assume
that the coil carries a current I,. Describing a circular Amperian loop of
radius r within the coil, with the center on the coil’s axis, we have, by

Ampere’s law,

L21 ==

%H cdl = H27r = I 000q = 5.

The field in the coil is therefore

and the flux density is

The flux in the coil is then

R+a ponfz bd
r

o =J.B-dS = |BdS =
R 27r

npglob In R+a

2ar R
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But this is also the flux caused by I, through the area bounded by the wire
(the area is semi-infinite), so that

npolyb In R+a

Cre = 27 R
The mutual inductance of the wire with respect to the coil is therefore
npueh . R+ a
Ly, =—1 .
1 o R

As one can see, this is the same expression as that obtained for the mutual
inductance of the coil with respect to the wire.

10-6. Calculation of Magnetostatic Fields from Current

Distributions

The method of calculating magnetostatic fields by direct applica-
tion of Ampere’s law (see examples in Section 10-4) is limited to fields
of very simple structure, because only then can the equation §H - d1 =
JJ - dS be easily solved for H. There are other methods, however,
based on immediate consequences of the basic laws, which can be used
for calculating fields of arbitrary structure. One of the most important
of these methods is the method of calculating magnetostatic fields from
the corresponding current distributions by direct integration. This
method can be deduced from the basic magnetostatic laws combined
with Poisson’s theorem of vector analysis, as follows.

Applying Poisson’s theorem, Eq. (2-13.3), to the field vector H, we
have

1 V(V-H) — V' x (V' x H)
4r r

All space
where we are using primed operators to avoid ambiguity in the trans-
formations that follow. By the curl law, Eq. (10-4.1b), V' x H = ],
while by the divergence law, Eq. (10-4.2a), and by the flux density law,
Eq. (10-4.3), V- H = V' . B[y, = 0. We can write therefore

1 V' x]J

H = dv’,

dv'. (10-6.1)

r
All space

Let us now apply to the integrand of this integral the operational
relation (V-28). We have
Vl
_—)_(_'I=V'x!_rux1=v’x‘1+‘h<_r_u’
r r 2 r 2
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so that

—r r J ’ l Jxr“ ’
H=— j V' oxTd + - tdd. (106.2)

All space All apace

The first integral can be transformed into a surface integral by means
of vector identity (V-20), which gives

v x‘-I;du' = — § % x d§'. (10-6.3)
All space All space

In all cases of practical interest, however, J vanishes outside a finite

region of space, and since the surface of integration in the above surface

integral encloses all space and thus lies outside the region where J

differs from zero, the surface integral is zero. Therefore the first volume

integral is also zero, and we finally obtain

1 Jxr,
H_E r2

All space

dv'. (10-6.4)

Thus the magnetostatic field is determined by the distribution of elec-
tric currents and can be calculated with the aid of Eq. (10-6.4) if this
distribution is known everywhere in space. Note that in this integral r,
is directed from the source point x’, y’, z’ (the point where J dv" islocated)
to the point of observation x, , z.

The integral of Eq. (10-6.4) can be simplified in the following two
cases of special current distribution.

Surface Current. Very often current is confined to a layer whose
thickness ¢ is much smaller than the distances r from the source points
of this layer to the point of observation (Fig. 10.19). In this case the
current distribution is called a surface current. For this type of current
distribution the variation of r with the depth of the source points inside
the layer may be neglected. Integrating over the thickness of the layer,

Fic. 10.19 Definition of the surface current.
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we then have
1 (Jxr, ,_lfJ'Jxru ,,_lj'(j ,) r, .
H_EJ. 2 dv = 3 as’dt =g Jdt deS,

or
I FIme o
= EJT as’, (10-6.5)
where J® = [ Jdt' is the so-called surface current density. Since one must
integrate J* over the width w (Fig. 10.19) of the layer to obtain the
total current in the layer, J* is simply the current per unit width of the
layer.

Thus, in the case of a current confined to a layer whose thickness
is much smaller than r, the element J 40" may be replaced by J®4d$’ and
the volume integral may be replaced by the surface integral over the
area of the layer to which the current is confined.

Filamentary Current. Another frequently encountered case of special
current distribution is a current confined to a filament-like region of
space whose cross section 4 is much smaller than the distance r from the
points of this region to the point of observation (Fig. 10.20). In this
case the current distribution is called a line current, or, more frequently, a
filamentary current. The variation of r over the cross-section area .S’ of a
filamentary current may be neglected. Since the current in a filament
must be directed along the filament, we can write

Jav' =Jds'dl' = Jds'av,

where the vector notation has been transferred from J to d1’. The
magnetic field of a filamentary current is then

1 (Jxr, ,__I_J'(J' ,)dl’x:-u
H—4ﬂ_J‘ p dv—% JdS ol

r>>d

Fic. 10.20 Definition of the line current.
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But [ JdS’ is simply the total current / in the filament. This current is
constant throughout the entire length of the filament (because §J - dS' =
0) and can be factored out from under the integral sign. Furthermore,
the filament must be closed (for the same reason), so that the last integral
must be a circulation integral. We therefore obtain for the magnetic
field of a filamentary current

I [dl'xr,
H =a—;§—r§-— (10-6.6)

(the sense of the direction of dl’ is the same as that of the current [).
This formula is called the_formula of Biot and Savart.

v

Example 10-6.1 A circular ring carries a current I, The radius of the
ring is R. Find the magnetic field produced by this ring at a point of the
symmetry axis (Fig. 10.21).
Let us rewrite Eq. (10-6.6) as
I [dl'xr

T 44 3

(10-6.7)

According to Fig. 10.21, vector r can be expressed asr =z — R. We can
therefore write
I [dl'x (z—R) I [d'xz I [dI'xR

~ 4n 3 T4 ) B 4x rd

.

Since z and r are both constant, we can factor them out from under the
integral signs, obtaining

H= i dl’ - dl' x R
- ‘1-11'3'az % T 4m® el

n

Fic. 10.21 CQalculation of the magnetic field on the axis of a current-
carrying ring.
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But §d1' = 0 (by the polygon law of vector addition) and d1' x R = —kR dl’
(by Fig. 10.21). The last expression for H therefore reduces to

IR , IR

Using now the relation r = (R2 + 2z2)2, we finally obtain

IR? I . o
H= W k, or H= 2_R sin? 0 k. (10-6.83, b)
It is interesting to note that in the center of the ring (z = 0, 6 = #/2) the
field is simply
I

Hcenter = EE k. (1 0-'5.9)

Example 10-6.2 Find the contribution of a straight segment of current-
carrying wire to the magnetic field determined by the formula of Biot and
Savart.

Let the current in the wire be /, and let the length of the segment under
consideration be /, as shown in Fig. 10.22. The formula of Biot and Savart
for this segment can be written as

I (dz' xr,
- o
In this integral dz’ x r, = dz’sin (dz’, r,) 0, = dz’ cos ¢ 8, where ¢ is as
shown in Fig. 10.22, and 0, is a unit vector in the circular direction normal

Fic. 10.22 Calculation of the magnetic field associated with a segment of
a current-carrying wire.
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to the wire and forming a right-handed system with the current I. Let us
now assume that the point of observation P is at a distance R from the wire.
As one can see from Fig. 10.22, z’ = R tan ¢ so that dz’ = (R/cos® ¢)dyp,
and r = R/cos ¢. Substituting these values in the above integral, we
obtain

? (R[cos® g) cos ¢ dp I
9“— f (Rjcos 9)? = Gu%—R _acos pdy

= 4_R (sin f + sin )0,

Observe that for a very long segment (aas f~ m/2) this expression reduces
to that found in Example 10-4.1 by direct application of Ampere’s law.

Example 10-6.3 A thin-walled cylinder of radius R and length / carries
a uniform circular current I as shown in Fig. 10.23. Find H at a point of
the cylinder’s axis.

Since the cylinder is thin-walled, the current in the cylinder may be
regarded as a surface current and Eq. (10-6.5) may be used for finding H.
It is, however, simpler to consider the cylinder merely as a system of current-
carrying rings of width dl and current df = (Ifl)dl, one of which is shown in
Fig. 10.23. The contribution of such a ring to the magnetic field of the
cylinder is, by Eq. (10-6.8b) obtained in Example 10-6.1,

I
T 3
dH = k2Rlsm 6 dl.

But as can be seen from Fig. 10.23,

rdf R df
= sinf sin20°

Substituting this expression in the above formula for dH and integrating, we

obtain
%2 sin3 OR df I (e |
ZREJ —E :k-é—tj;l sin 0 d0,

Fic. 10.23 Calculation of the magnetic field on the axis of a thin-walled
current-carrying cylinder.
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or

I
H= T (cos B; — cos 6,)k.

At the center of the cylinder, 6, = 7 — 0,, and
0 0 !
COs = — COs .
: T VET AR
Therefore
I

Hce]] er = —m k
VB AR
In the plane of one end of the cylinder, the field is similarly

I

=-'_=k
Hena WE+ R

For a very long cylinder, R < [, so that these formulas become

I I
Hcemer = Ik and Hend = ﬂ k.

349

Example 10-6.4 A spherical shell of radius R and uniform surface
charge density ¢ is rotated with angular velocity w about a diameter (Fig.

10.24). Find the magnetic field in the center of the shell.

Let the thickness of the shell be t. The space charge density in the shell
is then p = aft. By Eq. (10-3.1), the shell constitutes a current distribu-
tion of density J = pv = (oft)v, where v is the linear velocity at a point of
the shell. Since the shell is thin, this current distribution may be regarded
as a surface current of surface current density J® = Jt = ov. The
magnetic field of the shell can therefore be found from Eq. (10-6.5). Since

Fic. 10.24 Calculation of the magnetic field at the center of a charged,

rotating spherical shell.
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v =w x R, Eq. (10-6.5) for the shell can be written as

6 [(wxR)xR

H=_477 R3

as’

(the minus sign is needed because R in Fig. 10.24 is directed toward the
source points). Now, according to Fig. 10.24, R = z 4 a,so thatw x R =
wXxz+ wxa But wxz=0 because w is parallel to z. We can
therefore write, making use of the ‘“‘bac cab’ expansion,

6 [(wxa)xR = o [w@-R) =~ ¢ [a(w-R)
He—p % ¥=¢m ¥ ¢ m &
The last integral is, however, zero because to every a(w - R) there corre-
sponds an equally large —a(w + R), and R3 is a constant. Thus the field is

o [w(a-R)
T 47 R3

as’.

Taking into account thatw(a « R) = wR?sin? § and that dS’ may be written
as dS’ = 2w R?sin 6 df, we obtain therefore

R T
H:wG—J‘sin"OdO,
2 Jo
or

H = % oRw.

10-7. Calculation of Magnetostatic Fields from Current
Inhomogeneities

Let us examine Eq. (10-6.1), which we obtained in the preceding
section,

1 V'x]
H=&
All space

dv'. (10-6.1)

The remarkable feature of this equation is that it correlates the mag-
netic field with the cur/ of the current distribution rather than with the
current distribution itself. Hence the equation may be interpreted as
indicating that the magnetic field is associated not with the electric
current as such, but with the inhomogeneities in the distribution of the
current (a homogeneous, or uniform, current has zero curl). As we
shall presently see, this point of view is useful for analyzing and solving
certain types of magnetostatic problems.



STATIONARY MAGNETIC FIELD IN VACUUM 351

For practical applications Eq. (10-6.1) can be transformed into a
somewhat different form, which is more convenient to use in the case of
currents changing abruptly from one value to another across a thin
boundary layer. For a current distribution of this type, the integral of
Eq. (10-6.1) can be split into two integrals

Vi x]J V' 'x]J

___dvl= VXJ

r
(10-7.1)

dv’ +

All space Boundary layer Remaining space

dv'.

Using vector identity (V-28), we can write the first integral on the
right as

V' x Jdv’

r
Boundary layer

= f V' x ‘%a’v’ — f r, X ,lzd”,' (10-7.2)
Boundary layer Boundary layer

Since J and r,/r? are finite, however, the last integral vanishes if the
boundary layer is sufficiently thin, which we assume to be the case.
The first integral on the right of Eq. (10-7.2) can be transformed into a
surface integral by means of vector identity (V-20). This reduces

Eq. (10-7.2) to
V' x]

@ = — J)v J x dS’,
r

Boundary layer Boundary layer

where the surface integral is extended over both surfaces of the boundary
layer. Since for a sufficiently thin layer these surfaces are equal, the
last equation can also be written as

v’ —

VixJ gy = ff; b =L s, (107.3)

Boundary layer 4 Boundary 4
where J, and J, are the current densities on side 1 and side 2 of the
boundary, and 48, is directed from side 1 to side 2.
Combining Eqgs. (10-7.3), (10-7.1), and (10-6.1), we obtain

1 Ji—-1J. / 1 f Vix]J

H = ET § _7'— X d812 + Ef ; dv'. (10-7.4')
Boundary Remaining space

This equation becomes especially simple in the case of a curl-free

current distribution surrounded by a current-free space. In this case

we may set J, = 0, J; = J and dS;, = dS’, where dS’ points from the
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current distribution into the surrounding space. We then obtain

1 J x ds’
H_Efﬁ — . (10-7.5)

Boundary

Since d8’ is normal to the boundary, and since J must be tangent to the
boundary, J x dS’ must also be tangent to the boundary. A magnetic
field due to a boundary surface is therefore always parallel to this
surface.

Example 10-7.1 An axially symmetric channel is made in a conducting
bar of length /, as shown in Fig. 10.25. A voltage I is applied between the
ends of the bar. Neglecting end effects, find how the magnetic field on
the symmetry axis of the channel is affected by the linear dimensions of
the channel.

Fic. 10.25 Effect of the size of a channel on the magnetic field on the axis
of the channel.

The current in the bar is curl-free, so that Eq. (10-7.5) applies. By
symmetry, the walls of the channel do not contribute to the magnetic field
on the axis. The magnetic field on the axis is therefore entirely due to the
external surfaces of the bar. Since these surfaces are not affected by the
channel, the field on the axis can vary with the size of the channel only if
the channel affects the current density in the bar. The current density is
J = oE = oV/l, however, and does not depend on the presence or size
of the channel. The linear dimensions of the channel therefore have no
effect on the field on the symmetry axis of the channel.

Example 10-7.2 To measure the magnetic field inside a homogeneous
current-carrying conductor, a spherical cavity is made in the conductor,
and the magnetic field at the center of the cavity is measured. The cavity is
so small that neither the total current in the conductor nor the current
density at the surfaces of the conductor is affected by its presence. Find how
the magnetic field at the center of the cavity depends on the radius of the
cavity (Fig. 10.26).
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Fic. 10.26 Effect of the size of a spherical cavity on the magnetic field at
the center of the cavity.

Since the conductor is homogeneous, V x J = 0, and the magnetic
field is given by Eq. (10-7.5). By symmetry, the surface of the cavity has no
effect on the magnetic field at the center of the cavity. The remaining
surfaces are, however, not affected by the presence of the cavity, and the
currents at these surfaces, by supposition, are not affected either. Therefore
the magnetic field under consideration does not depend on the radius of the
cavity.

Example 10-7.3 A thin, uniformly charged disk of charge density p,
radius R, and thickness ¢ rotates with angular velocity w about the axis of
symmetry, as shown in Fig. 10.27. Find the magnetic field at the center of
the disk.

By Eq. (10-3.1), the disk may be regarded as a current of density
J = pv = pw x r, where r is the radius vector from the axis of the disk to
a source point within the disk. With the aid of the “bac cab” expansion
we obtain

V' xJ =V x (pw xx) = ple(V' 1) — (- V)r],

and since r can be written as xi + »j, while w - V' can be written as
wd[0z', we have

V' x J=2pw.

iy
ey

Fic. 10.27 Calculation of the mag-

netic field at the center of a rotating ;g
charged disk.
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The magnetic field is then, according to Eq. (10-7 A4),
H—l § (mxr)de' f?pm
4‘.-7

47 r
Boundary Interior

By symmetry, the flat surfaces of the disk make no contribution to the
field at the center of the disk, so that only the curved surface of the disk needs
to be considered in the first integral. For the curved surface, however, r = R,
and
(w x r) x dS' = (w x R) x d8’
= —w(R:d¥) + R(w-dS') = —wRdS.

In the last integral we can write dv’ = 277t dr. The magnetic field is therefore

1 R R 2 o271t
Ho— p"" dS’ + f ’°“’ dr
47
Curved surface
p R
= — — 4 4
W - J AN mptL dr
Curved surface

R .
w7 27Rt + wptR,
or

1
H= EP!R@.

Example 10-7.4 Find the magnetic field associated with a very long,
plane boundary surface, one side of which is in a current-free region, while

the other is in a region of constant current density J directed along the surface
(Fig. 10.28).

Fic. 10.28 Calculation of the magnetic field associated with a very long,
plane boundary surface.
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According to Eq. (10-7.5), the field is given by

H—— des,
4 r

where dS’ is directed into the current-free region. Let the coordinates be as
shown in Fig. 10.28, and let the surface extend from ' = —L to ' = +1L,
and from z' = —a to z' = a. Since J x d8’ is directed along the z-axis,
the magnetic field has only the z-component. The contribution of an ele-
mentary ribbon of width dz’ to the total field of the surface is

Jdz' dx’ Ja'z
dH =k —_
dm )1Vt 4 R \/x'2 + R?
L L 2 Re
_kJde n (¥ + VxE + R —kJde In J”/If &

and since L > R,
J ’
dH = k2—ﬂ_(ln2L — In R)dz'.

The total field of the surface is

J [+ J
H=ky | (n2l—InRd =kg (22l —| lanz

Since R = \/y2 + (z — 2')2, we have
J +a
H=k— {4a In 2L —f In [+ (z — z')z]dz': .
4 —a
Noting that dz’ = —d(z — 2’), and integrating by parts, we obtain

+a

H:k%{‘taanL—{- (z—2)In[)? + (z — 2)¥]

—a

+a 2(2 — z')z N i
——f_a md(l — Z)} = k4ﬂ_{4a In 2L

+2(z — 2) lnR—Q[(z—z') —ytan—lz_z]}
y

+a

b
—a

which after the substitution of the limits simplifies to

J
H= kE:r (2aln 2L + z1ln Ry/R, — aln R\Ry + 2a — ya), (10-7.6)

where R,, R,, and « are as in Fig. 10.28.
Example 10-7.5 Find the magnetic field produced by a long, thin,

straight conducting ribbon of width 24 carrying a uniform current I (the
thickness of the ribbon is 2t).
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w2 o

Fic. 10.29 Calculation of the magnetic field of a thin current-carrying
ribbon.

The field of the ribbon can be obtained by adding the fields associated
with each surface of the ribbon. Let the coordinates be as shown in Fig.
10.29. The z-component of the field is produced by the horizontal surfaces.
The contribution of the upper surface to the field is given by Eq. (10-7.6)
of the preceding example. The contribution of the lower surface is given by
the same equation, except that k in this equation is now replaced by —k,
and y is replaced by y + 2£. Since both surfaces are of the same length and
width, and since the ribbon is thin, so that R, and R, are the same for both
surfaces, we obtain upon adding the two contributions

Jt
H =—a,

w

and since J = If4at, the z-component of the field is

The y-component of the field is produced by the vertical surfaces of the
ribbon. The contribution of the back surface is given by Eq. (10-7.6) with
k replaced by j, a replaced by ¢, R, and R, replaced by R" (this surface in a
thin ribbon is so narrow that both R’s may be considered equal to R"), and
with u set equal to zero (because the ribbon is thin). The contribution of
the front surface is also given by Eq. (10-7.6), but with k replaced by —j, a
replaced by ¢, R, and R, replaced by R’, and with « set again equal to zero.
Adding the two contributions gives

Jt. R
Hv=;lnﬁ’
or
I R
=-—In—.

Y 4ma R
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(a) (b)

Fic. 10.30 Calculation of the radial magnetic field in an end plane of a
current-carrying cylinder.

Example 10-7.6 A long thin-walled cylinder of radius ¢ and wall
thickness ¢ carries a circular current of density J, as shown in Fig. 10.30.
Find the radial component of the magnetic field at a point near the sym-
metry axis in one of the two end planes of the cylinder.

Only the end surfaces of the cylinder can contribute to the radial field.
Since the cylinder is long, the contribution of the far end is negligible. Let
the point of observation P be at a distance 4 from the axis, as shown in Fig.
10.30b. According to Eq. (10-7.5), the radial field at this point is then given
by
1 (Jxds 1 J’ J x ds’

H, = — — L
L r 47 ] Va® + d? — 2ad cos 0

where the integral is extended over the end surface shown in Fig. 10.30b.
The direction of J x d8' on this surface is radial, toward the axis. By
symmetry, however, the component of J x d8' parallel to the line PO is the
only one which makes a net contribution to the field. The magnitude of
this component is J cos 0 d§’. Taking now into account that, by supposition,
d < a, and making use of the well-known rules for operations with small
quantities, we have for the magnitude of the radial field

1 27 J cos B
H =—— ta df
47 Jo Va® + d® — 2ad cos O

4 dl t |7 d
%LMILH'MiJCOSG l—}—-COSO)dﬁ
27 Jo d 27 J, a
a l—;cosﬁ

T Jud (6 1 .
u+%(§+151n23)

Jt 7
= gsmﬁ

]
0

or
Jtd

Hyw 4a
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PRrROBLEMS

10.1. Prove that the basic laws given by Egs. (10-4.1) to (10-4.3) uniquely
specify the fields H and B within a limited region of space, provided that
the normal component of H or B is known for all points of the surface by
which the region is bounded.

10.2. A long cylindrical wire of 1 mm radius carries a current of 1 amp.
Calculate and plot the magnetic field and the magnetic flux density, for
both external and internal points, as a function of the distance from the axis
of the wire.

10.3. Find the magnetic field produced by a lightning bolt carrying
a current of 1000 amp confined to a long cylindrical channel of 10 cm in
diameter at a point just outside the channel and at a point 100 m distant
from the channel.

10.4. A cylindrical channel is drilled in a long conducting cylinder so
that the axis of the channel is parallel to the axis of the cylinder but is
displaced from it by a distance a. Show that if the cylinder carries a uniform
current of density J in the direction of its length, the magnetic field anywhere
in the channel is
Jxa

5 -

10.5. Find the magnetic field for both internal and external points of
the cylinder described in the preceding problem.
10.6. Show that the magnetic field inside a long solenoid

H =

nl
f=7
is compatible with Ampere’s law and can be obtained by a direct application
of this law to the solenoid.

10.7. Show that the magnetic field inside a toroidal coil of 7 turns
carrying a current I is the same as that which would be produced by a straight
wire carrying a current nl along the symmetry axis of the toroid.

10.8. Two large parallel conducting plates of width w are separated
by a small distance (they form a parallel-plate capacitor) and carry a
current [ in opposite directions. Show that if the edge effects are neglected,
the magnetic field in the space between the plates is

1

T w
10.9. A transmission line is formed by two parallel conducting ribbons
of width w separated from each other by a small distance 4 (the broad sides
of the ribbons are facing one another). Show that if the edge effects are
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neglected, the self inductance per unit length of this transmission line is

d
Ll: Ho ; .
10.10. Show that the self inductance of a ‘““double’ solenoid consisting
of two long, thin-walled coaxial coils placed one inside the other and carrying
a current [ in opposite directions is

mun?(6? — a?)
S
where b and a are the radii of the outer and inner coils, respectively, [ is the
length of each coil, and # is the number of turns in each coil.
10.11. Show that the self inductance of a tightly wound toroidal coil of
rectangular cross section is

L

Pt b
27 a
where a and b are the internal and external radii of the coil, w is the width
of the coil, and 7 is the number of turns in the coil.
10.12. Show that the self inductance of a toroidal coil of n turns, cross-

sectional radius ¢, and mean radius b is

L = pgn?b — (6% — a?)].

L:

10.13. A toroidal ring of mean radius a and cross-sectional radius b is
wound with two windings of n; and n, turns, respectively. Find the mutual
inductance between the two windings.

10.14. Find the mutual inductance of two parallel coaxial circular
loops of radii a and b, respectively, separated by a large distance R (R > a,b).

10.15. Show that the mutual inductance of two coaxial solenoids of
radii 7, and 7, having n, and n, turns, respectively, and separated by a distance
R which is much larger than the linear dimensions of either solenoid, is
L. — WA
2= " ops

10.16. Show that a current-carrying wire forming a circular arc
contributes to the magnetic field at the center of curvature of the arc an
amount

I
=4 4'—77-;' a’
where [ is the current in the wire, r is the radius of the arc, and « is the angle
subtended by the arc at the center of curvature.

10.17. Show that the magnetic field at the center of a square loop of

length [ on a side carrying a current I is

221

ml
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10.18. A conducting loop made in the form of a regular polygon of n
sides carries a current /. Show that the field at the center of the polygon is
nl T
H= 2—17 R tan ; N
where R is the radius of the circle which may be described about the polygon.
10.19. A “current disk” of radius R is made of insulated wire wound as
a close flat spiral of n turns carrying a current I from the terminal at the
center to the terminal at circumference. Show that on the axis of the disk

1 nl
- - -1 i
H= 5 R [cosh~! (sec §) — sin 6],

where 0 is the angle subtended by the radius of the disk at the point of
observation.
10.20. Show that the magnetic field on the axis inside a solenoid is

I
H= g? (cos 0, & cos 0,),

where n is the number of turns in the solenoid, I is the current in the solenoid,
{is the length of the solenoid, and 0,, 0, are the angles subtended at the point
of observation by the radii of the end surfaces of the solenoid.

10.21. A helix of angle « and radius a is formed by n complete turns of
a wire carrying a current I. Show that the axial magnetic field at the center
of the helix is

I
H= g; (1 4+ 72n? tan2 o) ~V/2,

10.22. A current [ flows along an elliptical path of length / and area 4.
Show that the field at the center of the ellipse is I//4A.

10.23. Prove by means of dimensional analysis, or otherwise, that the
magnetic field H of a current-carrying conductor can be expressed as a
function of the power dissipated in the conductor, P, the conductivity of
the conductor, o, a characteristic linear dimension of the conductor, a, and

the energy constant,’, as
oP
H=6 /%,

where G is a numerical factor, a function of geometrical parameters of the
conductor only (G may be called the “efficiency factor” of the conductor).

10.24. Consider the magnetic field at the center of a thin-walled
cylinder carrying a circular current. Show that if the characteristic linear
dimension of the cylinder is assumed to be its radius 7, then the efficiency
factor of the cylinder, as defined in the preceding problem, is

]
G:J%m+%w
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where [ is the length of the cylinder and ¢ is its wall thickness. Show also
that for given r and ¢ the cylinder will consume least power to maintain a
prescribed field if [ = 2r.

10.25. A spherical capacitor consisting of two concentric spherical
shells of radii @ and b carrying charges +¢ and —g¢, respectively, is rotated
with angular velocity w about a diameter. Show that a magnetic field

g (1 1
H=w (a — b)
will appear at the center of the capacitor.

10.26. A thin, uniformly charged disk of surface charge density ¢ and
radius R is rotating with angular velocity w about the axis of symmetry.
Show that the magnetic field at a point on this axis is

H-— ‘% [(R? + 222)(R® + 22)-V2 — 22],

where z is the distance from the disk.
10.27. Show that the components of the field of a long rectangular bar
carrying a uniformly distributed current I in the x-direction are:

H,=0

I
H, = o (n ln +y3 ln— + zy0, — zg0t3)

H, = A (21 ln + 23 ln - —)’10‘4 + y30,).

In this formula 4 is the cross-sectlonal area of the bar; r,, ry, 75, and r, are
the respective distances from the observation point in the positive quadrant
to the edges of the bar starting with the nearest and proceeding clockwise
around the x-axis; y;, z; and yg, z5 are the Cartesian components of r; and
ry, respectively. The angles o, ay, a3, and a4 are those between successive
r’s. The current is directed away from the observer.

10.28. Show that the field of a long rectangular bar approaches the
field of a cylindrical wire for points far remote from the bar.

10.29. Show that at the end of a long solenoid the magnetic field near
the axis of the solenoid has a radial component

nld
r N EZ s
where 7 is the number of turns, / is the current, ! is the length, and a is the
radius of the solenoid, while d is the distance of the point of observation

from the axis.
10.30. Show that near the center of a long solenoid the magnetic field

has a radial component
a*zd
(%),

l5
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where the symbols are the same as in the preceding problem and z is the
distance of the point of observation from the central plane of the solenoid.

10.31. Consider a cylindrical boundary surface the inner side of which
is in a region of circular current of density J, while the outer side is in a
current-free region. Show that on the symmetry axis the magnetic field
associated with this surface can be expressed as

]xalnz2+\/a2+z§
2 zl—l-\/az—l—zf’

where z; and z, are the coordinates of the planes of the near and far ends of
the surface, respectively, measured along the symmetry axis from the origin
at the point of observation, and a is the radius of the surface measured in the
direction away from the axis.

10.32. Consider a ring of rectangular cross section, inner radius ay,
outer radius a,, width w, and conductivity 6. A narrow slot is cut through
the ring in a plane containing the ring’s axis, and two plane electrodes are
attached to the exposed surfaces. A voltage V is then applied to the elec-
trodes, and a circular current is thus set up in the ring. Show that the
magnetic field on the axis of the ring can be expressed as

H =

H— on (zo + \/a2 + 22)(z, + Vai + 22)
4 (2 + Vel ) (s + Vi + )
where z; and z, are the coordinates of the end planes of the ring, as defined
in the preceding problem. (Rings of this type can be used for producing
very strong magnetic fields.)

10.33. A sphere of radius a carrying a uniformly distributed charge of den-
sity p consists of two separate hemispheres rotating in opposite directions with
angular velocity w about their common symmetry axis. Using Eq. (10-7.4)
and dimensional analysis, show that the sphere has a radial magnetic field at
the equator, H, = Cpwa?, where C is a numerical constant, and show that it
also has similar oppositely directed axial fields at the two poles.

10.34. A sphere of radius a carries a uniformly distributed charge of den-
sity p. Using Eq. (10-7.4), show that if the sphere rotates with angular velocity
w about a diameter, (a) the magnetic field at the center of the sphere is

1
H = pa?
3pre
and (b) the external magnetic field along the axis of rotation is
2pwad’®
- 158

where R is the distance from the center of the sphere. [Hint: to simplify the
evaluation of the volume integral, use its similarity with Eq. (5-3.1) and *‘bor-
row’’ the solution given by Eq. (5-1.8).]



MAGNETIC POTENTIALS

A magnetostatic field can be described not only by the vectors
H and B but also by another vector: the magnetostatic vector potential
A. What is more, in a current-free region a magnetostatic field can also
be described by a scalar quantity: the magnetostatic scalar potential g.
All four of these quantities are intimately related to each other, and can
be derived one from another. However, the potentials A or ¢ are fre-
quently easier to calculate than the field vectors H or B. It is therefore
frequently more convenient to use one of these potentials instead of a
field vector for describing a magnetostatic field. The basic properties
and applications of magnetostatic potentials are discussed in this chapter.

11-1. Magnetic Vector Potential

According to the corollary to Poisson’s theorem of vector analysis,
any vector field whose divergence is zero can be expressed as the curl of
the vector potential defined by Eq. (2-13.6). Therefore, since the diver-
gence of the magnetic induction field B is zero, this field can be expressed

as
B—V xA, (11-1.1)

where A, by Eq. (2-13.6), is
VxB

1
— &' + A, (11-1.2)
4
All space

363
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Setting A, = 0, for simplicity, and substituting V x B = V x yH =
1oV x H = yu,J, we can write Eq. (11-1.2) as

I ]
A=r f  dv, (11-1.3)
All space

or, in terms of the Cartesian components, as

Mo ‘]:’c ’ _

A, = —f_r dv', (11-1.4a)
=t ‘.{1‘ )’ -1.4
4, = erb, (11-1.4b)
=t ‘L’ ‘ -1.4
A, frdv, (11-1.4¢)

where each integral is extended over all space.

The vector potential A defined by Eq. (11-1.2) or Eq. (11-1.3) is
called the magnetostatic vector potential. It constitutes a vector point
function which determines a new vector field A associated with the
induction field B.

The integral in Eq. (11-1.3) can be simplified in the case of a
filamentary current-distribution. For a filamentary current (see Section
10-6), Jdv'= Idl; I is constant over the entire length of the filament,
and the filament is closed. Therefore Eq. (11-1.3) reduces in this case
to
_ Mol [l
T 4x S

A (11-1.5)

(the sense of the direction of dl'is the same as that of the current I).
The vector potential defined by Eq. (11-1.3) is characterized by two
important properties: its divergence is zero

V-A=0, (11-1.6)
and it satisfies Poisson’s equation
VA = —u,J, (11-1.7)
which can be written in the scalar form

Ved, = —poJ, (11-1.8a)
Ved, = —p,J (11-1.8b)
Ved, = —p,.. (11-1.8¢)
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That V- A = 0 can be shown as follows. From Eq. (11-1.3) we
have

v.A=i‘2v.( f Jdv’).
47 r
All space

Since the integration here is to be done over the primed coordinates
(source point coordinates), while V operates upon the unprimed
coordinates only, we can introduce V under the integral sign, obtaining
V.A = f V-‘Ia’v’,
4 r

T
All space

or, since J is a function of primed coordinates only,

Sy vl
V-A——47T f J Vra’v.
All space

But V(1/r) = —V’'(1/r), and therefore

_ M v la
V.-A= y f J-v r dv'.
All space
Now, by vector identity (V-4),
1
vl () ley

r r

and since V' - J = 0, we have

polov ()

r

Substituting this expression into the last integral, transforming the
integral by means of Gauss’s theorem, and observing that J = 0 on a
surface enclosing all space (the currents are assumed to be limited in
space), we obtain
V.A— o jﬁ I.as —o.
4

r
All space

That V2A = —py,J can be shown as follows. Using vector identity
(V-12), we can write

Vx (VxA) = V(V.A) — VA,

and since V x (V x A) =V x B = y,J, while V-A = 0, we obtain
VA = —u,J.
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The significance of the magnetostatic vector potential for the
calculation of magnetostatic fields is contained in the fact that once the
distribution of electric currents is known, their magnetic field can be
found by first finding A from Egs. (11-1.3) or (11-1.7) (see Problem
11.24 for alternative equations) and then finding B from Eq. (11-1.1).

Sometimes it is desirable to determine A from B, rather than the
other way around. This can be done either by means of Eq. (11-1.1),
or by means of the integral form of Eq. (11-1.1)

5EA-d1 =fB-dS = D, oens (11-1.9)

where @, .. is the flux through the surface bounded by the path of
integration [this relation is obtained from Eq. (11-1.1) by applying
Stokes’s theorem of vector analysis to it].

v

Example 11-1.1 Find the contribution made by a long, straight
segment of a thin current-carrying wire to the magnetostatic vector potential
outside the segment at a point equidistant from the ends of the segment and
then find the corresponding contribution to the magnetic flux density.

L>>R

Fie. 11.1 Calculation of the magnetic vector potential associated with a
segment of a current-carrying wire.

Let the current be in the z-direction, and let the point of observation
lie on the x-axis a distance R from the origin. Let the ends of the segment
be at a distance L from the origin, as shown in Fig, 11.1. By Eq. (11-1.5),
we then have

A=kﬁ‘ﬂ_fff' a7
dm J_1V/Z? L R?

,uDIJ'L dz' ol &
=k — ———— L, ! 2 2
G2l APV arey -l e ma LA C 4+ Vz + 8|
pol . L+ VI?+ R
=k—In—————.

27 R
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Since the segment is long, L2 > R2, so that R? in the last expression may be
neglected. The potential is therefore

Mol . 2L

A=k~ 9 In -
The flux density associated with this potential is B = V x A, Using
the expression for the curl in circular cylindrical coordinates (Table 2-I) and
observing that 4, = A = 0 and that 4, is a function of R only, we have for

the flux density

24,
B = ~ 7R 0.,
or
_ Al
27R
which agrees with the expression obtained by means of Ampere’s law in

Example 10-4.1.

Example 11-1.2 Show that the magnetostatic vector potential outside
a long current-carrying cylinder in which the current density is a function
of the distance from the cylinder’s axis only is the same as if the total current
of the cylinder were confined to the axis.

Let the current in the cylinder be along the z-axis. The vector potential

is then, by Eq. (11-1.3),
=k Il‘of dv'.

Although we can prove the required property of the vector potential by a
direct transformation of this equation, we shall use a simpler procedure based
on the analogy between this equation and Eq. (5-3.1)
1

¢ = 471'80 dv
representing the electrostatic potential of a charge distribution (we have set
@, = 0, as usual). As can be seen, except for the vector notation in the
equation for A, these equations can be obtained from each other by a mere
substitution of symbols

J—>p and o — 1/eq-

Therefore the solutions of these equations for systems of identical geometry
can differ only in the symbols appearing in these solutions, but not in the
functional dependences. Now, from the chapters on electrostatics we know
that ¢ for a cylindrically symmetric charge distribution outside the distri-
bution is the same as if the entire charge were confined to the axis. Conse-
quently, A for the current distribution under consideration is also the same as
if the entire current were confined to the axis.
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N\

Fic. 11.2 Calculation of the magnetic vector potential inside and outside a
current-carrying cylinder.

Example 11-1.3 For both external and internal points find the mag-
netostatic vector potential due to a long cylinder of length 2L and radius
a carrying a current / uniformly distributed over the cross section of the
cylinder.

Let the cylinder be parallel to the z-axis. By Examples 11-1.1 and
11-1.2, the potential outside the cylinder is then

Ajutside = 2,”_ In ﬁ .
The potential inside the cylinder can be found from Eq. (11-1.9)

§A~dl =J.B«ds.

Using the path of integration shown in Fig. 11.2 and taking into account
that A is parallel to the cylinder’s axis, we have for the circulation integral

§ A.dl= AinaideAI - "qua.tt!sic:lne‘&lf

2L
= fac — B A1 22
so that
1 ,uol 2L
Ainsige = 'A'}§ cdl 4 = - R
The flux density produced by the cylinder is, according to Example 10-4.1,
B g,
27r
outside the cylinder, and
_ Bl
B 2mwa® 6.

inside the cylinder. The flux enclosed by the path of integration is then

J.B ds—f Bl Aldr+f ol ~ Aldr

ol Al (_ ” 1_2)
5 —

2 242 In al’




MAGNETIC POTENTIALS 369

The potential inside the cylinder is therefore

1 I 2L 1 I 2L
Ajnsidze = Kl§ - dl + ,‘;(;T n-— Alf +dS + /;0

I (1 2 2L
Ajnsige = k bo ( + In _)

or

27 \2 7 242 a

Example 11-1.4 A currentdistribution J(&, %, {) is located in an external
magnetic field B'(x 4 &, + 7, z 4+ {) whose vector potential is A'(x + &,
»+n,z+ ). Prove that

\" f J-Ahdr = J (J x B')dr,
All space All space

where V operates upon x, y, z, and dr is a volume element in the system
&, 5, { (we shall use this relation in Chapter 13 for deriving magnetic
force equations).

Since the integration is to be performed with respect to &, %, ¢, upon
which V does not operate, we can introduce V under the integral sign:

Vf(_] A')dr =fV(J . A")dr,

where the integrals are extended over all space. Using now vector identity
(V-2) to transform the last integral, we have

fV(J-A’)dT =f(]- V)A'dr +JJ x (V x A')dr
—|—f(A'-V)Jd7-—|—fA' x (V x J)dr

Since J is a function of £, 5, { only, upon which V does not operate, the last
two integrals vanish. The first integral on the right also vanishes, as can be
seen by transforming it with the aid of the vector identity (V-23):

f(J - V)A'dr = ff; A(J-dS) — f (V. J)A'dr.

Here, the surface integral vanishes because there is no J at infinity, and the
volume integral on the right vanishes because J is not a function of x, y, z
Thus we are left with

VJ(J-A')dT =f] x (V x A')dr,

and since V x A’ = B’, we obtain

Vf(J-A’)dT =J(J x B')dr.



370 ELECTROMAGNETIC THEORY

11-2. Neumann’s Formula

With the aid of the magnetostatic vector potential we can derive
a useful expression for the calculation of the coefficient of mutual
inductance of two filamentary current systems (circuits).

By definition, the mutual inductance coefficient L,, is

0]
L, =2,
A

Writing the flux ®,, as the surface integral of the flux density B,, and
expressing the flux density as the curl of the vector potential A,,, we

have
1 1
Ly, = _IBw -d8, = “‘IV x A, - d§,.
1, I,

Transforming the last surface integral with the aid of Stokes’s theorem
and using Eq. (11-1.5), we obtain

1 1 I dl, - a’l
L12=T§A12‘dll—_ Pos §;§ L
2 1

dl, - d1
Ly, =f£3€§—;——3 (11-2.1)

This formula is called Neumann’s formula. A very important consequence
of Neumann’s formula is the equivalence of the two inductance
coefficients L, and L,,. Indeed, since r;, = r,; this formula shows at
once that

or

Ly = Ly, (11-2.2)

so that two circuits have but a single mutualinductance M = L, = L,,.

Equation (11-2.1) can be written in a somewhat different manner
if the two circuits are made up of straight line segments all of which
are either parallel or perpendicular to each other. This is a much
more general case than may at first appear, since any two circuits
may be approximated by such straight line circuits with parallel and
perpendicular segments, as shown in Fig. 11.3. The approximation
can be made with any degree of accuracy by making the number of
segments sufficiently large. For such circuits, dl, - dl, in Eq. (11-2.1)
is zero whenever the two segments are mutually perpendicular, and
dl, - dl, = +dl,dl, whenever the segments are parallel or antiparallel
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Fic. 11.3 Circuits can be regarded as made up of straight line segments
along perpendicular directions.

(opposite currents). Equation (11-2.1) can be written then as

m=fezgle) 5]

E T

(dl; || di),

where the integration is extended over each pair of the mutually
parallel (4) or antiparallel (—) segments of the two circuits, and
where the subscript ¢ refers to different segments of one circuit, while
the subscript £ refers to different segments of the other circuit.

The double integral for the segments of the two circuits can be
evaluated in terms of the parameters shown in Fig. 11.4. Integrating

F d
a

|
{ c
|

Fic. 11.4 Mutual inductance of two parallel segments can be expressed in
terms of the parameters a, b, ¢, d and 4, B, C, D shown here.
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over the segment ¢, we have

dl, dx’ . x —x
— = ———————— = — sinh™!
ita JiV(x — x)2 4 y2 J
= —l:sinh‘1 L sinh-1~ a CJ.
J J
Integrating this expression over the segment £, we have

f iy _ —f[sinh—l N S ‘}dx
iJe Ty k ) J

_ —I:(x 4+ 4) sinh1 210

x +c

—b

—C

VEFI R

d—b

FVETT A

— (x + ¢) sinh™!

Substituting the limits and changing the hyperbolic functions to loga-
rithms, we finally obtain

f dldl, _ l:ln (a + A)*(b + B)®
i Jr (¢ + C)°(d + D)¢
Thus the mutual inductance of two circuits can be written as

M=733AM,, (11-2.3)
where, referring to Fig. 11.4, n

(a + 4 + By
AMy = Z;[ " e+ C)¥(d + D)*

+(D+C) — (B + A)L.

Tik

+(D+C) — (B+ A)lk.
(11-2.4)

Example 11-2.1 Find the coefficient of mutual inductance of two
coaxial, parallel, square circuits of length / on a side separated by a distance
k (Fig. 11.5).

The problem is most conveniently solved with the aid of Egs. (11-2.3)
and (11-2.4). For the sides directly opposing each other the parameters of
Eq. (11-2.4) are (see Fig. 114) a=0, b= —l, A=B=V12+ k% c=
d = 0, C = D = h, so that the contribution to the mutual inductance from
these sides is

(z+\/12—112)l —

LV 2
- %[Qz-mﬁ—#— 1ok — zm].
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’ # |

& 2 72

!

h =

| I |

Fic. 11.5 Calculation of the mutual i /f [ f
inductance of two square circuits. Vs

For the sides diagonally opposing each other the parameters are a = [,

b=—L,A=B=V2® [k c=d=0,C=D =1+ k2, so that the

contribution of these sides to the mutual inductance is

tho (I + V22 + k2!
[ (=l + V2P + )

_0[2!.1 I+ \/QF'—l-kz

m TVErR

(the minus sign is needed because the currents here are antiparallel).
Adding the above expressions, we obtain for the total mutual inductance of

the two circuits
2 2
M=2iu|}_ln(i+\/£2+k)\/ﬁ+k
h(L + V212 + h2)

4AM, = — +2\/F+h2-2\/2l2+k{|

+2\/12+a2—2\/2ﬂ+h]

+k+\/2zﬂ+k*—2\/£2+hﬂ].
A

11-3. Magnetostatic Scalar Potential

The curl of a gradient is always zero. The curl of the magnetostatic
field H in a current-free space, by the basic law (10-4.1b), is also always
zero. It should therefore be possible to express the magnetostatic field
in a current-free space by the equation

H= —Vyg, (11-3.1)
provided that this equation is compatible with the remaining two
basic laws given by Egs. (10-4.2) and (10-4.3). That Eq. (11-3.1) is
compatible with Eq. (10-4.3) is obvious. That Eq. (11-3.1) is com-
patible also with Eq. (10-4.2) follows from the following considerations.
Substituting Eq. (10-4.3) into Eq. (10-4.2a) and using Eq. (11-3.1),
we have

V-B=0=V-puH=—pV-. Vg

or
V2p = 0. (11-3.2)
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Therefore Eq. (11-3.1) is compatible with Eq. (10-4.2) if ¢ satisfies
Laplace’s equation (11-3.2).

Thus, it is always possible to express the magnetostatic field H in
a current-free space by Eq. (11-3.1), where ¢ is a harmonic function.
This function is called the magnetostatic scalar potential.

In the particular case of a magnetostatic field produced by a
closed filamentary current at points outside the current, ¢ can be
expressed directly in terms of the current, as follows. Applying vector
identity (V-16) to Eq. (11-1.5), we have

pol dl /401 ’ 1
= v
4 J r  4m a8 r’

where we are using the primed operator V' in order to avoid ambiguity
in the transformations that follow. Combining this equation with
Egs. (11-1.1) and (10-4.3), we obtain

H=—1—V><A——V><de’><V'l
Mo

Since the last integral is to be evaluated with respect to the primed co-
ordinates only, and since the unprimed V does not operate upon these
coordinates, V can be placed under the integral sign. We have then

H=i V x (dS' xV’-l—).
47 r

But V’'(1/r) = —V(1/r), so that we can write

H=—ifo(dS’le) Ifo(ledS’).
4 r 47 r

Using vector identity (V-8) to transform the last integral and noting
that V2(1/r) = 0, we now obtain!

I , 1
H=Ef(ds V)V

Using vector identity (V-2) and observing that V x V(1/r) = 0, we
can transform this equation into

I o1
H=47fv("s"77)’

1 Observe that operations of the type V % dS’, V .dS’, etc. are always zero
because dS’ is not a point function.
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and factoring out V from under the integral sign, we finally obtain
& 1 :
H = V(GJ‘V;-dS). (11-3.3)

Comparing this equation with Eq. (11-3.1), we see that the expression
in parenthesis may be regarded as the negative of the magnetostatic
scalar potential, so that for a closed filamentary current the scalar
potential can be expressed as

rf{_1 .
¢==—E;IV;-dS. (11-3.4)

This equation has a simple geometrical meaning. The quantity

1 - 4S8’
—fV—-dS'=fr“ das
r r2

represents the solid angle Q subtended at the point of observation by
the loop formed by the current filament. Thus, the magnetostatic
scalar potential can be written also as

P (11-3.5)
4n

(the solid angle Q is considered positive if the direction of the current
in the filament as seen from the point of observation is counterclockwise).

v

Example 11-3.1 By using the magnetostatic scalar potential, find the
magnetic field on the axis of a circular ring of radius R carrying a current /.

H(0,0, z)
z

Fic. 11.6 Magnetic scalar potential can be used for magnetic field calcula-
tions.
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The solid angle subtended by the ring at the point z of the axis (Fig.
11.6) is
z
Q= 277(1 — COS 0) = 277(1 - \/R2—_—|——22)
The magnetic field is therefore

I z I 1 22
H=— ym \Y {271[1 e 22)1/2}} = 5[(132 + 22 (R —|—z2)3/2:| k
1
T 2(R® 1 2232

or

(R?* 4+ 22 — 22k,

IR?

H= 2(R® + 2)%2

k,

which agrees with the results of Example 10-6.1.

11-4. Special Methods for the Solution of Magnetostatic

Problems

Various special methods are available for solving certain types of
frequently encountered magnetostatic problems. The most important
of these methods are based on the fact that in a current-free region of
space, the magnetostatic potentials A and ¢ satisfy Laplace’s equation.

We shall consider here two such special methods: the method of
harmonics and the method of axial expansion. Both these methods are
essentially the same as the corresponding methods for the solution of
electrostatic problems, so that little additional explanation is needed
here. It must be pointed out, however, that the correctness of solution
of a magnetostatic problem is verified best not by means of the unique-
ness of solution theorems for magnetostatic potentials (which will not
be presented here), but rather by checking whether the solution is
compatible with the basic magnetostatic laws (Section 10.4).

Although the potentials A and ¢ satisfy Laplace’s equation only
in a current-free region of space, the region may contain current-
carrying surfaces (boundaries). A solution to a problem involving such
surfaces is correct if it is compatible with the basic laws in the space
external to the surfaces and with the boundary conditions

H, —H,=J9 (11-4.1)
and

Buy — By =0 (11-4.2)
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on the two sides of each surface (J® is the surface current density;
see Section 10-6). The above boundary conditions are, of course, the
special forms of the curl and divergence laws for a current-carrying
surface and are analogous to the boundary conditions for electric fields
which we have met in Sections 8-5 and 9-3. We shall derive these
conditions later (Section 14-5). In the meantime, since they are almost
obvious, we shall use them without derivation,

v
Example 11-4.1 A spherical shell of radius R and surface charge density

o is rotated with angular velocity e about a diameter (Fig. 11.7). Find the
magnetic field inside and outside the shell.

We shall solve this problem by the method of harmonics. The sym-
metry of the system suggests that we should try the spherical harmonics (see
Tables 6-I and 5-I)

Pinside = A;7cos 0 (11-4.3)
and j
cos
Poutside= 4o > (11-4.4)

where A4; and 4, are constants and the coordinates are those shown in Fig.
11.7. By Example 10-6.4, the sphere constitutes a surface current

J® = gwR sin 0.

According to Egs. (11-4.1) and (11-4.2), the two potentials must therefore
satisfy the following boundary conditions at the surface of the shell (r = R):

s )
Ht outside — Hs inside — J@

and

B, outside = Bn imsider

op Op
But for the shell H, = — +30 and B, = Mo, » 5O that the boundary

r
conditions become upon differentiating Eqs. (11-4.3) and (11-4.4)

in 0
Aa% — A;sin 0 = owRsin 0

Fic. 11.7 Method of harmonics can be used to find the magnetic field
inside and outside a charged, rotating spherical shell.
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and

2 cos 0
#odo % = — o4, cos 0.

Solving these equations, we obtain

so that the potentials are
2
Pinside = ~ 3 gwRr cos 0

and

owR cos 0
Poutside = 3 r2

Applying H = — Vg to these potentials, we obtain

H,

inside

2
= gO’CORk

20wR*
H,ytside = 3y a3 Cos Or, +

R
sin60,.

As one can see, the field outside the shell is a dipole field (compare Section
11-5).

Example 11-4.2 Find the magnetic scalar potential of a circular loop
of radius R carrying a current I for all points of space exclusive of the loop.

This problem can be solved by the method of axial expansion. Ac-
cording to Eq. (11-3.5) and Example 11-3.1, the potential on the axis of the
loop is

_I1 z
P =2\ ~VET )

where z is the distance from the center of the loop. Expanding this expression
into a power series of z, we have for z > R (compare with Example 6-4.1)

s =3[~ )

I GoiR L3R
3l U TeE T

R2(1 1 1-3R? )
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P,_;(cos 0)

1
Replacing now — by - , we obtain
z r

515

R[1 Pi(cos 8) 1-3 Pg(cos 6)R?
‘P("G):I_[2 Br T +J

where r is the distance from the center of the loop and 6 is the angle between
r and the z-axis. Similarly, for z << R we have

I z
Paxis = gl:l e W]

A 1 2(; 122 1.3z
=3'7rR\! T2E TR~
o - 128 1-32

“a\'! "rTam 2Rt )
and replacing z" by r"P,(cos ), we obtain

I 1 #3
o(r, 0) = 5[1 - F;Pl(cos 9) + §%ps‘(cos 6) — - }

Example 11-4.3 Two parallel coaxial coils of radius R are separated
by a distance R (Helmholtz coils). The coils have n turns, each coil carries
the same current I, and the dimensions of the cross-sectional area of the
coils are small. Find the magnetic field in the central region between the
coils.

Let one coil lie in the plane z = R/2, the other in the plane z = —R/2,
as shown in Fig. 11.8. By the preceding example and Fig. 11.8, the magnetic

/ “\\"-. /-\‘

R § oHY R
\ i ‘ \
| J Ty
0 o"| [o | N
B B S
. | |
< R—§ —=i |
\nl nl
b / \

Fig. 11.8 Helmbholtz coils are used for producing easily accessible, almost
homogeneous magnetic fields in the central region between the coils.
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scalar potential in the central region of the coil at a point whose cylindrical
coordinates are z and 7' = 0 is

@ = %’{1 ~ (R/2 + 2)[R* + (RI2 + 2)?]- 12}
- "—21{ 1 - (RI2 - 2)[R? + (R/2 - z)}] "2},

Expanding this potential into a power series of 1/R up to and including terms
with 1/R%, replacing 2" with 7P (cos 8) (7 is the distance from the origin to the
point where the potential is being determined, and 0 is the angle between 7
and the z-axis), substituting the two Legendre polynomials P (cos 8) = cos 6
and Pj(cos 0) = (1/8)(63 cos® 8 — 70 cos® 6 + 15 cos ), and using the rela-
tionsrcos @ = zand 7 = 7'% + 2%, we obtain (the details of this calculation

are left to Problem 11.13)
8nl z 144 z* 144 z%'2 54 o'
9= —mﬁ(‘ “6nR T 1B R IBR )
Taking the gradient of this potential, we then obtain for the magnetic field

gl (s mrn sre )
*7 T 9z 5v5R 125R* ' 125 R* 125 R4
and
o — Oyp 8nl 72zr'(42% — 372 + -+ °)

T T T 5v/5R 125R%
for the axial and the radial components of the field, respectively. An im-
portant property of Helmholtz coils is that they produce a nearly homoge-
neous field in the central region. Indeed, as can be seen from the above
equations, the axial component of the field in the central region is

8nl
* 5V/5R
to the terms of the order (//R)%, where [ is the linear dimensions of the region.
The radial component is
HT’ == O
to the terms of the order (//R)%. Helmholtz coils are frequently used in
laboratories for producing easily accessible, almost homogeneous fields.

A

11-5. Current Dipole

By Eq. (11-3.4), the magnetic scalar potential of a current-carrying

loop is
fV—odS 1 rodS,
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where dS’ is an element of the surface bounded by the loop, and r is the
distance from this element to the point of observation.

Let us apply this formula to a plane current-carrying loop whose
linear dimensions are much smaller than the distance between the
loop and the point of observation. For such a loop, the variation of r
in the above integrals can be neglected, so that r can be factored out
from under the integral sign. The potential becomes then

I _1 , [Ir,-8 IScosb
""“_EV?'S_E 2 4m?

(in this formula 6 is the angle between r, and 8'; 8§’ has a magnitude
equal to the area of the loop; the direction of 8" is normal to the plane
of the loop and forms a right-handed system with the circulation of the
current in the loop).

If we now define the vector

m = u,l§ (11-5.1)
and rewrite the last equation for ¢ in terms of this vector, we obtain

m 1 m-.r, mcosf

Q= — T VY G B (11-5.2a, b, c)
But these formulas have exactly the same form as the formulas for
the electrostatic potential of an electric dipole (Section 5-4), except
that now m and p, appear where p and ¢, were standing in the
formulas for the electrostatic dipole. Therefore a distant, plane current-
carrying loop is called a magnetic dipole, or a current dipole (Fig. 11.9).
The vector m defined by Eq. (11-5.1) is called, accordingly, the
magnetic dipole moment of a current-carrying loop.

By applying H = — V¢ to one of the formulas of Egs. (11-5.2a,
b, ¢), we obtain for the magnetic field of a distant current-carrying
loop

m cos 0 m sin 0

=— —— 6
2m gt Tu 4 pgr®

A (11-5.3)

o(r,0)

r/

Fic. 11.9 A current-carrying loop [ ot
viewed from a large distance con- \
stitutes a magnetic dipole.
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and
m

These equations, too, have the same form as the equations for the
electric field of an electric dipole.

V1 4+ 3 cos?6. (11-5.4)

v

Example 11-5.1 Find the magnetic dipole moment of a straight, long,
tightly wound coil of n turns, length [/, and cross-sectional area § if the coil
carries a current I.

Each turn of the wire in the coil constitutes a dipole of moment py/S.
The total moment of the coil is just the sum of the moments of all individual
turns, or

m = nyylS.

This formula has a noteworthy consequence. Multiplying and dividing
the right side by the length of the coil, we have

nlS
m = Ho T l.
But
s
E S =BS =07,
Therefore we can write
m= ®l.

By comparing this formula with the formula for the dipole moment of an
electric dipole, p = ¢/, we find that the magnetic counterpart of the electric
charge ¢ is the magnetic flux @ (they also correspond dimensionally: [As]
and [Vs], respectively).

Example 11-5.2 Find the magnetic dipole moment of the spinning
spherical shell described in Example 11-4.1.

Comparing the expression for H .4, obtained in Example 11-4.1
with Eq. (11-5.3), we immediately recognize that the dipole moment is

_ AmpgooR?

n 3

Example 11-5.3 A thin, uniformly charged disk of surface charge
density ¢ and radius a rotates with angular velocity w about the axis of
symmetry. Find the magnetic dipole moment of the disk.

Let us subdivide the disk into elementary rings of radius R. By Egs.
(11-5.1) and (10-3.1), each ring has a dipole moment

dm = pyowmR3dR.
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The total dipole moment of the disk is then

a
m= f po0wTR3R,
0

or
at
M= po0OT - .

ProBLEMS

11.1. Show that the vector potential of a homogeneous field B = Bk,
in a rectangular system of coordinates, can be expressed as

A = —iC,Byy + jC,Byx,

where C; and C, are constants, subject to the condition C; + C, = 1.
11.2. Show that the vector potential of a homogeneous field B = Bk,
in a cylindrical system of coordinates, can be expressed as

Byr
=73 O
11.3. Show that the vector potential of a homogeneous field B = Bk,
in a spherical system of coordinates with k pointing along the polar axis, can

be expressed as
B
A= T°’ (sin 0) .

11.4. Show that the magnetic vector potential at the center of curva-
ture of a segment of wire having the shape of an arc of radius 7 subtending
an angle § = 0, — 0, at the center and carrying a current / in the direction
of 0, is (assuming that the wire lies in the xy-plane)

ol
Az=ﬁ(cos 6, — cos 6,)
A, =2 G0, in6y
v 477 2 1/

11.5. In a very long parallel-wire transmission line, one wire carries a
current I and the other returns the current. (a) Show that the magnetic
vector potential of the line is parallel to the line and is equal to

g Ml n

K
27y

where 7; and r, are the distances from the point of observation to the wires.
(b) Using this vector potential, find the magnetic field of the line.
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11.6. Two square-shaped loops of wire, each of length a on a side, are
placed opposite each other a distance a apart. Show that the coefficient of
mutual inductance is

Q,uoa( 2112 — _)
M= 1 1 3 — 2v2).
- nl+\/§+ + vV vV

11.7. Two coaxial circular loops of wire are placed a distance ¢ apart
with their planes normal to the axis. The radii of the loops are a and b.
Show that the coefficient of mutual inductance, in a cylindrical system of
coordinates, is

M——l bf2” cos 6 db
= gt o (¢ + a® + b2 — 2ab cos 0)1/2

11.8. A thin, uniformly charged disk of surface charge density ¢ and
radius a rotates with angular velocity w about the axis of symmetry. Show
that the magnetic scalar potential on the axis can be expressed as

ow ow
tp=72(z—\/a2+z2)+7a2.

11.9. A narrow rectangular loop of wire has the length 24 and width
w(w < a). The loop carries a current I. Show that if the loop lies in the
xy-plane with the center at the origin and long side parallel to the x-axis,
the magnetic scalar potential at distances sufficiently far from the loop is

(5,9, 2) = Iwz |: a— x n a+ x :I
pin T Ar(PH AWV @ — 2+ 2+ 22 V(e + )42+ 2

11.10. A square loop of wire carries a current I. The loop is of length 2a
on a side. Using the fact that the loop subtends the solid angle

. alt 1/2
Q = 27 — 45sin— I:l _((12—+—22_)é]
at a point of the symmetry axis at the distance z from the center of the loop,
show that the magnetic field on the axis is

21a?
H=+ (@ + 2%)(2a® + 22)12 k.

11.11. A spherical capacitor consisting of two thin, concentric spherical
shells of radii @ and b carrying charges +¢ and —g, respectively, rotates
with angular velocity w about a diameter. Find the magnetic field at all
points of space exclusive of the shells and show that the field in the space
enclosed by the inner shell is largest when the radius of this shell approaches
zero.

11.12. Helmholtz coils are used to produce an almost homogeneous
field in a cubic region of length [ on a side. The magnitude of the field
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may not deviate from its value at the center of the system by more than
(1/n) 100%,. Show that the radius of the coils must be R > n'/4/.

11.13. Complete the calculation of the magnetic field of Helmholtz coils
outlined in Example 11-4.3. (In order to take into account all the 1/R?® terms,
you will need to carry out the expansion of the potentials of the left and the
right coil to the sixth term of the series. You will initially have terms up to
1/R™, After simplifications, only the terms with 1/R and 1/R® will remain.)

11.14. A uniformly charged cylinder of total charge ¢ and radius a
rotates with angular velocity w about the axis of symmetry. Show that the
magnetic dipole moment of the cylinder is

m o P92
4

11.15. Show that the shell discussed in Example 11-5.2 has a gyro-
magnetic ratio (the ratio of the magnetic dipole moment to the angular
momentum)

sof
2m’’
where m’ is the mass of the shell.
11.16. Show that the disk discussed in Example 11-5.3 has a gyro-
magnetic ratio (see Problem 11.15)

#od
om'’

where m’ is the mass of the disk.
11.17. Show that the cylinder discussed in Problem 11.14 has a gyro-
magnetic ratio (see Problem 11.15)

Mo
2ml 3
where m’ is the mass of the cylinder.
11.18. A homogeneous solid sphere of mass m’ has a charge ¢ uniformly
distributed throughout its volume. The sphere rotates about a diameter.
Show that the gyro-magnetic ratio of the sphere (see Problem 11.15) is

bt
om’ "

11.19. A sphere of radius a has a charge -+¢ uniformly distributed over
its surface and a charge —g¢ uniformly distributed throughout its volume.
Show that if the sphere rotates with angular velocity w about a diameter,
the magnetic dipole moment of the sphere is

m= E,uoazqw.
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11.20. A tightly wound coil of n turns has the shape of a half-ring.
The cross-sectional area of the coil is S. Show that if the coil carries a
current /, the magnetic dipole moment of the coil is

2 ugnST
m N ——

™

directed along the line joining the ends of the coil.

11.21. Two identical, small coaxial rings are perpendicular to their
common axis of symmetry and are separated by a small distance a. They
carry equal currents, but the direction of the current in one ring is opposite
to that in the other. Show by direct calculation that at a point far from the
rings the magnetic scalar potential of the rings is

ma
= 3 cos?0 — 1),
? 47%#( o8 )

where r is the distance from the rings, 8 is the angle between 7 and the
symmetry axis, and m is the magnetic dipole moment of each ring. Then,
consulting Section 5-4, show that the rings constitute a magnetic quadrupole
whose moment is m® = 2ma.

11.22. The rings described in Problem 11.21 are now placed in a single
plane, with their centers again separated by a small distance a. Show by
direct calculation that the magnetic scalar potential of the rings is now

p = jﬂl—cos@sin 0,
7 e
where 7 is the distance from the rings, and 6 is the angle between 7 and a
normal to the plane. Then show that the rings still constitute a magnetic
quadrupole whose moment is the same as before.

11.23. Find the electric vector potential for a homogeneous D field and for
the D field of a point charge.

11.24. (a) Show that for the vector potential the counterparts of Eqs.
(10-6.1) and (10-7.5) are

A - _%frux(V'xJ)du'andA= -g’%ffruquds').

(b) Show that if J is constant, the above surface integral for A can be written as

A= - %J %(ru-dS’).

(c) Compare the formula obtained in (b) with the surface integral of Problem
5.28 and, using the electrostatic potentials given in Problem 5.4, write the in-
ternal and external vector potentials for an infinitely long current-carrying wire.

11.25. Show that the magnetic scalar potential of a long straight wire car-
rying a current / is, in cylindrical coordinates, ¢ = - 16/2m.



MOTION OF BODIES
AND PARTICLES

IN MAGNETIC

AND ELECTRIC FIELDS

In this chapter we shall present the fundamentals of the elec-
tromagnetic theory of moving systems. The importance of this theory
can be recognized from the fact that it constitutes the most essential part
of the foundation upon which such new branches of physics as cosmical
electrodynamics, magnetohydrodynamics, and plasma physics are built.
To stay within the scope of this book, we shall present only the most
elementary equations and ideas involved in this theory and shall limit
the presentation to systems moving with velocities much smaller than
the velocity of light [which, as we shall see in Chapters 15 and 16, is
given by ¢ = (g,) ~¥?]. The reason for taking up this subject now,
rather than in a later chapter, is that it will provide us with equations
needed for the theory of energy and force relations in magnetic fields.
These relations, in turn, will provide us with relations needed for a fur-
ther development of the theory of electric and magnetic phenomena.

12-1. Dependence of Magnetic and Electric Fields
on Reference Frame

On the basis of various experiments it has been established that
the results of magnetic and electric field measurements depend on the
velocity of the instruments which are used for these measurements.

Let us denote the field vectors measured in a given region of space
by instruments considered to be stationary as E, D, H, and B, and let
us denote as E*, D*, H* and B* the field vectors measured in the

387
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E*, D* H*, B*

-

E,D H,B 1

-—

|

-—

(a) (b)

Fic. 12.1 (a) Electric and magnetic fields measured by stationary instru-
ments. (b) When these instruments are placed on a moving platform, they
indicate entirely different values of the fields in the same region of space.

same region of space by instruments considered to be moving (Fig.
12.1). Let the velocity of the latter instruments with respect to the
former be v. Experiments show that if v < ¢, where ¢ is the velocity
of light, then the two sets of field vectors are connected by the relations

E*=E +vxB (12-1.1)
and
H*=H — v x D. (12-1.2)
Thus the moving instruments measure additional fields
E; =vxB (12-1.3)
and
H,=-—-vxD (12-1.4)

which the stationary instruments do not measure. We shall call these
fields Lorentz’s fields.

Equations (12-1.1) and (12-1.2) show that magnetic and electric
fields are intimately related to each other, and what is regarded as a
purely electric or a purely magnetic field in one frame of reference will
appear as a combination of electric and magnetic fields in another
frame of reference, if it is moving with respect to the first. To speak of
electric or magnetic fields without specifying the reference frame in
which these fields are measured is therefore meaningless.

In all reference frames which move without acceleration, the
fundamental laws for electric and magnetic fields are, of course, the
same as in a “‘stationary’’ reference frame. However, the fundamental
laws stated in terms of a given coordinate system are usually not valid
for field vectors measured by instruments moving with respect to
this coordinate system. This follows from the fact that the divergence
and curl of v x B and v x D in Eqgs. (12-1.1) and (12-1.2) are not
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equal to zero unless v, B, and D are all constant or v is parallel to B
and D, neither of which is usually the case (see Example 12-1.3).

v

Example 12-1.1 According to Bohr’s initial model, a hydrogen atom

consists of a point charge nucleus of charge ¢ around which an electron

revolves in a circular orbit. Find the magnetic field experienced by the

electron if its orbital angular velocity is w and the radius of the orbit is 7.
By Eq. (12-1.2), the electron experiences a magnetic field

H*=H — v x D,

where H and D are the magnetic and displacement fields as ‘“‘seen’ by a
stationary electron at a given point of the orbit, and v is the velocity of the
electron (H can be produced by the spin of the nucleus and by sources
external to the atom, D is produced by the charge of the nucleus). Since

e
=-——r and vV=wXr
47r3 ’

we have, using the “‘bac cab’ expansion and noting that w | r,

e e . e
vxD:Z;r—s[(er)Xr]=m[r(w-r)—w(r-r)]——4;00

The magnetic field experienced by the electron is therefore
¢
H*=H + -— w.
47r

Example 12-1.2 A particle of charge ¢ moves with velocity v relative
to an observer. Find the electric and magnetic fields produced by the
particle at the location of the observer.

The simplest way to solve this problem is to assume that the particle
is at rest and that the observer is moving. Let r be the radius vector joining
the particle with the observer. A charged particle at rest produces an
electric field E = (g/4meyr®)r but no magnetic field. From Eq. (12-1.1) we
then obtain for the electric field which the observer will see

q

E* = r.
4mregrd

Now, if the velocity of the particle with respect to the observer is v, the
velocity of the observer with respect to the particle is —v. From Eq. (12-1.2)
we then have for the magnetic field which the observer will see
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Replacing the starred vectors in these equations by ordinary vectors, we
obtain for the electric and magnetic fields produced by the particle at the
location of the observer assumed to be at rest

——q—r and H =

= vXr.
4egrd 47rr3

Example 12-1.3 Can one determine the charges and currents present
in a certain region of space by evaluating V - D* and V x H*, where D*
and H* are fields measured by instruments located on a rotating platform
and V is the ordinary operator expressed in terms of a stationary coordinate
system?

Let the platform rotate with angular velocity w. The linear velocity
of an instrument on the platform is then v = w x r, where r is the distance
to the instrument from the point about which the platform is rotated.
Substituting v in Egs. (12-1.1) and (12-1.2), multiplying Eq. (12-1.1) by
€9, and differentiating, we have

V. .:D* = V. (gE*) = V. (gE) + V- [(wxr) xB] (12-1.5)
and
VxH*=VxH-—Vx [(wxr) xD]. (12-1.6)

The charges and currents in the region under consideration are given by
p=V.D=V.(¢E) and J=V x H.
The calculation in question yields therefore not p and J, but

p+ps and J+Jg

where
ps =6V [(wxr)xB] and Jg= —V x [(w xr) x D].

The quantities pg and Jg are sometimes called Schiff’s charges and
Schiff’s currents. They represent the illusory charges and currents that one
obtains by using the calculation in question. It is instructive to calculate
them for the special case of constant w, B, and D. Using vector identities
(V-5) and (V-8), we have

ps =&V [(wxr) x Bl =¢B:-[V x (wxr)]

=¢B-[w(V:r) — (w-V)r]
Since V-r = 3 and (w - V)r = w (see Problem 2.25), we obtain
ps = 2gqw - B. (12-1.7)
Using the “bac cab” expansion and vector identities (V-7) and (V-2), we
likewise have
Js=-—-Vx[(wxr)xD] =V x[wr-D) —r(w-D)]
= —wXxVr-D)=—wx D-Vr,
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or, since (D« V)r =D,
Js=Dxw. (12-1.8)

Thus Schiff’s charges and currents are not zero even when w, B, and D are
constant, so that the calculation in question yields wrong values even in this
simplest case (the calculation yields charges and currents equal to pg and
Js, while in reality no charges or currents are present in the region under
consideration if D and B are constant, as we have assumed).

A

12-2. Motion of Bodies in Magnetic and Electric Fields

In this section we shall present an elementary discussion of the
electromagnetic phenomena associated with the motion of material
media in magnetic and electric fields. The purpose of this discussion
is to introduce the reader into the domain of these phenomena, rather
than to present a consequent mathematical treatment of them. Plau-
sibility arguments and empirical methods will be used therefore in the
discussion. A consequent treatment of the subject matter will be
presented in Sections 12-3 and 12-4. The arguments and methods
which we shall use now will then appear as a consequence of a rigorous,
although somewhat complex, theory.

Suppose that a body moves with a velocity v,, in an electric or
magnetic field. Taking into account Egs. (12-1.1) and (12-1.2), we
can write for the field vectors measured in the body by instruments
moving with the body

E*=E, +v, xB, (12-2.1)
and

H*=H, — v, xD,, (12-2.2)

where the subscript m is used to point out the fact that the vectors on
the right refer to the interior of a moving body and are not to be con-
fused with the vectors E, D, H, and B measured in a vacuum.

Like Egs. (12-1.1) and (12-1.2), Egs. (12-2.1) and (12-2.2) cor-
relate the starred vectors measured in a moving frame of reference
with vectors which a stationary observer uses in his frame of reference.
As we shall see in Section 12-3, however, vectors E,,, D, H,, and B,
unlike vectors E, D, H, and B, usually cannot be measured and must
be calculated from the starred vectors. In fact, in the rigorous theory,
Egs. (12-2.1) and (12-2.2) together with two other equations are used
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to define the vectors E,, D,,, H,, and B, in terms of the starred
vectors.
From Egs. (12-2.1) and (12-2.2) it follows that in the interior of a
moving body there are Lorentz’s fields
EL =V

x B, (12-2.3)

m

and

H, = —v, xD,. (12-2.4)

Since B,, and D,, are usually different from B and D measured outside
the body, these fields are usually different from Lorentz’s fields meas-
ured in the space external to the body.

Experiments show, however, that in the case of nonmagnetic
bodies,! B,, is practically equal to the field vector B, which a stationary
observer would measure at the location of the body if the body were
absent. For a nonmagnetic uniformly moving body (v,, constant in
magnitude and direction) and homogeneous B, the Lorentz field E;,
is therefore the same throughout all space. The body appears then to
be at rest in a homogeneous electric field E;, = v,, x B, (“background
field”).

The fact that a body moving in an electric or magnetic field
becomes subjected to the Lorentz fields is the most important aspect
of the electromagnetic phenomena associated with moving bodies.
The main effects produced by the Lorentz field E, are the polarization
of dielectrics and the induction of charges and currents in conductors.

In a conducting body the Lorentz field E; induces charges which
pile up on the surface (and sometimes in the interior) of the body until
the field E,, produced by them, and by all other charges present inside
or outside the body, balances the field E; throughout the body. The
motion of charges in the process of induction constitutes an induced
conduction current. Under certain conditions it may happen that the
induced charges cannot set up a field E,, which would balance the
field E;. The induced current is then present as long as the body is
moving. This happens, for example, when a conductor moves through
a magnetic field and the charges are allowed to escape from this moving
conductor into a stationary conductor which connects the regions of
the moving conductor where charges of opposite polarity pile up.
Electric current generators are built on this principle.

1 Bodies whose permeability is u = 1 (see Section 14-2).
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A

E*=E, .
-— - +
\Vm Vi
-t - + ==
—~ld —~ld —d f—
(a) (b) (©

Fic. 12.2 Conducting plate moving through a magnetic field B,. (a) Ob-
server moving with the plate finds an electric field E* = E;, outside the
plate but no field inside the plate. (b) Stationary observer finds an electric
field E,, inside the plate but no field outside the plate. (c) Current is gener-
ated in a circuit connected to the plate by sliding contacts.

Experiments show that the density of conduction currents in
moving ohmic conductors satisfies the modified Ohm’s law

J = oE* =o(E, + v, xB,), (12-2.5)

where ¢ and v,, are the conductivity and the velocity of the conductor,
and all other symbols are the same as before. As it follows from this
equation and from Eq. (12-2.3), there is no current in a moving con-
ductor if

E_— —F; (12-2.6)

This agrees with the mechanism of induced currents just described.

The relations between the vectors E*, E, , and E; for the simple
case of a nonmagnetic conducting plate moving parallel to itself with
a velocity v,, in a homogeneous magnetic field B, | v, are demon-
strated in Fig. 12.2.

An observer moving with the plate (Fig. 12.2a) finds it immersed
in an electric field E¥ .. = v,, x B, (this is the Lorentz field E;).?
He finds no electric field inside the plate and considers therefore the

1 If the observer does not know that the plate is moving, he probably will not
recognize the field E¥ qe as a Lorentz field. He may simply accept the fact that
in his “world” there exists a general background electric field.
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plate as an equipotential body. He finds that the plate carries a
surface charge, which he associates with E¥ ;. according to the re-
lation ¢ = H-¢&¢ |E¥ 0| 50 that 0 = +£q0,B,.

An observer at rest (Fig. 12.2b) sees no electric field outside the
plate (the Lorentz field E; disappears in his reference frame). He
finds, of course, the same surface charges which the moving observer
finds, because the number of electrons and ions on the plate does not
depend on a reference frame. He associates these charges, however,
with the field E, inside the plate according to the relation o =
+¢,|E,|.! By Egs. (12-2.6) and (12-2.3), E,, = —E; = —v,x B;so
that 0 = +¢gp,,Byjust as for the moving observer. Since E,, is not zero,
the plate is not an equipotential body for the stationary observer. He
finds that there is a voltage V=E, d =v,,B.d across the plate. He utilizes
the current-producing property of this voltage (see Section 3-5) by
using the plate as a current generator. For this purpose he connects the
positive and the negative side of the plate by a stationary wire with the
help of sliding contacts (Fig. 12.2c). The charges escape now from
the plate into the wire and produce a current in the wire (at the same
time newly induced charges produce a current in the plate, as was
already explained; under steady-state conditions the current in the
plate is equal to the current in the wire).

In concluding this section, it is useful to emphasize the fact that
physical systems to which Eq. (12-2.1) applies are encountered much
more frequently than physical systems to which Eq. (12-2.2) applies.
For this reason we have been concerned here almost exclusively with
Eq. (12-2.1).

v

Example 12-2.1 A nonmagnetic, conducting, spherical artificial satel-
lite of radius a moves in an equatorial orbit with a constant velocity v
(Fig. 12.3). The space around the satellite may be considered nonconducting
(vacuum). The earth’s magnetic field at the location of the satellite is B.
Show that the satellite acquires induced surface charges which make it an
electric dipole of moment p = 4mwegwBad.

This problem is best solved in the frame of reference moving with the
satellite. In this frame of reference the satellite appears to be immersed
in a homogeneous electric Lorentz field E;, (background field), which is equal

1 More exactly, he associates these charges with the field D,, inside the plate. As
is shown in Section 12-3, in the case under consideration D,, = ¢E,, regardless of the
dielectric constant of the plate. Hence ¢ = + |D,,| = +¢, |E,|.
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Fic. 12.3 Electric dipole field E, produced by charges induced by the
earth’s magnetic field on an artificial satellite.

to v,, x B=v x B. The problem then reduces to that discussed in Ex-
ample 6-3.2. According to this example, the field E* around the satellite is
(the coordinates are shown in Fig. 12.11)

3 3

E* — EL(I + %) cos Or, — EL(I __%) sin 0 0,

24° s o
=ELcosﬂru+ELT:‘—cosﬂru-—-ELsmﬁﬁu + ELf—a sin 6 6,

243 at
=E; + ELF cosfr, + EL;§5m 086,
Since E* must be the sum of the field E; and the field produced by the

charges induced on the satellite, the last two terms represent the field pro-
duced by these charges. If we compare these terms with Eq. (5-4.13)

0

ur

E p cosf p sinf
R e i
dipole = 9rrey 12 Y | dmey 13

we recognize that the charges induced on the satellite constitute a dipole
distribution of moment p = 4mwe Ea®, where E; = |v x B| = vB. The
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dipole moment of the satellite is therefore
P = 4meqBa®,

which was to be shown.

Example 12-2.2 Two nonmagnetic, conducting, spherical space probes
move parallel to each other through a magnetic cloud (Fig. 12.4). The
radius of each probe is a, the velocity of the probes is v, the probes are at a
distance r one from the other, and the magnetic field of the cloudis B | v.
Show that the probes will exert an electric force on each other and find this
force if r is large compared with a.

In the frame of reference moving with the probes, the probes appear
to be immersed in an electric field E;. According to Example 12-2.1, each
probe becomes then an electric dipole of moment p = 4mwggwBa® (since the
probes are far from each other, the charges which they induce on each other
may be ignored). Like all electric dipoles, the probes produce electric
fields. The electric field produced by one probe at the location of the other
is, by Eq. (5-4.13),

2uBa®

r3

E =

rﬂ’

where r, points from the first to the second probe. The force between the

probes is therefore, by Eq. (7-10.2),

a (203&") °24 e w2 B2a®
ry, = — —a1

- 3
F = ®4meqpBa® — 3 7

or

ry

F r

and is an attraction.

v

Fic. 12.4 Two space probes moving through a magnetic cloud exert electric
forces on each other.
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Fic. 12.5 A river as an electric current generator. In 1832 Faraday
attempted to produce current in this manner at Waterloo Bridge on the
river Thames. The current was, however, too small to be measured. A
modern version of this current generator is the magnetohydrodynamic current
generator described in Problem 12.14.

Example 12-2.3 The bed of a river has a rectangular cross section of
width w and depth 2. Two long electrodes of length / are placed along the
vertical sides of the river bed, as shown in Fig. 12.5. The velocity of the river
is v, the conductivity of the water in the river is o, and the vertical com-
ponent of the earth’s magnetic field at the location of the river is B. If the
river is used as an electric current generator, and if the end effects of the
electrodes can be neglected, what current is produced in the load resistance
R connected to the electrodes?

By inspection we see that the electric field E* in the river is homo-
geneous (we neglect the end effects of the electrodes). The current in the
river is then, by Eq. (12-2.5),

I= J.J-dS — ¢E*lh = o(—E,, + v,B)lh = o(uB — E,,)lh

(—E,, is used because E,, is produced by induced charges accumulating on
the electrodes under the action of E; = B and is therefore opposite to E;).
Since E* and E; are homogeneous, £, is also homogeneous. The voltage
measured between the electrodes by a stationary observer is then

V=E,w,
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and the current in the load resistance is

Solving this equation for E,, we obtain
RI
e

E =

m

Substituting E,, in the first equation for I, we have

RI
I = o’(vB — —-—) lh.
w

Solving this equation for I, we finally obtain

olhvB

I'=3 + olhR|w "

12-3. Minkowski’s Equations for Moving Media*

The electromagnetic phenomena associated with motion of
material media in electric and magnetic fields can be described rigor-
ously by means of three sets of equations first obtained by Minkowski.!

The first set of Minkowski’s equations consists of equations defining
the vectors E,,, D,,, H,,, and B,, which we shall call Minkowski’s
vectors.? If the velocities of the media are much smaller than the
velocity of light, these equations are

E, +v,xB, =E* D, + cuev, x H, =D* (12-3.1a,b)
H, —v, xD, =H* B, —cuv, xE, =B* (12-3.1c,d)

where v, is the velocity of a medium at the point for which the vectors
are being determined, and the starred vectors are field vectors measured
in the medium at this point by instruments moving with the medium
(the instruments are located in needle-shaped or coin-shaped cavities,
as required by the definitions stated in Sections 8-1 and 14-1).

A remarkable property of Minkowski’s vectors is the fact that,
although they represent the fields in moving media, they satisfy in a

m

* Sections 12-3 and 12-4 may be omitted without loss of continuity.

1 H. Minkowski, ‘“Raum-Zeit-Vektor II Art,” Géttinger Nachrichten, 1908,
p- 53.

2 They are the same vectors which we used in Section 12-2. From now on,
however, we shall regard the subscript m as an abbreviation for “Minkowski.”
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coordinate system at rest the same ordinary field laws which are
satisfied by field vectors representing electric and magnetic fields
in media at rest with respect to this coordinate system. For time-
independent fields these laws are in a differential form

VxE,—0, V-D,—op, (12-3.2a,b)
VxH,—J, V-B,—0, (12-3.2¢,d)

and in an integral form
§§Em .dl = 0, fﬁ D, . dS — f pds, (12-3.3a,b)
fﬁ H,-dl — f J-ds, §§ B, -dS — 0, (12-3.3¢,d)

where J is the total conduction and convection current density, and
p is the charge density, both as seen by an observer at rest. At surfaces
of discontinuity (discontinuity in the velocity or in the constitution
of the media) these laws become, as usual,

Emt2 - Emtl = Oa Dmnz - Dmnl = Ocharge (12-34a,b)
Hmt2 - Hmtl = J(S)) an2 - anl = 0 (12'3.4C,d)
Jog — Joy = 0. (12-3.4€)

Equations (12-3.2) and (12-3.3) constitute the second set of Minkowski’s
equations (for time-independent fields). They can be deduced from
ordinary electric and magnetic field laws by using Einstein’s special
theory of relativity. We shall regard them here, however, as experi-
mentally established correlations.

The third, and the last, set of Minkowski’s equations consists of
equations representing the constitutive relations for Minkowski’s
vectors. These equations are obtained from the first set by using the
constitutive relations for the starred vectors. In the case of linear and
isotropic media we have! D* = ge¢E* and B* = u uH*. Using these
relations to eliminate the starred vectors from Eqs. (12-3.1), we obtain

D, = ey¢E,, — equov,, x H,, + ggev,, x B, (12-3.5a)
and
Bm = :uO:uHm + EofhoVm X Em — KoV, X Dm' (12'3'5b)

1 For readers not familiar with the basic relations between magnetic field
vectors in material media we would like to point out that in a linear isotropic medium
B = puouH, where u is a factor of proportionality called the permeability of the
medium (see Section 14-2).
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If the media are conducting, these equations must be supplemented
by a constitutive relation for the conduction current density. Assuming
ohmic conductors, we have by Ohm’s law J¥ ..cion = 0E*. However,
as it follows from Section 9.2, a conduction current depends only on
the relative motion of electrons and atoms (ions) that make up the
medium. In the first approximation this relative motion is independent
of the velocity of the medium. Hence we may set J, quction = Jeonduction®
Ohm’s law for moving conductors becomes then, as we already know

from Section 12-2,
Jconduction = oE* = o(E, + v, x B,). (12-3.5¢)

Within the limitations stated above (v, <¢, time-independent
fields, linear isotropic media) we have now a complete system of
Minkowski’s equations. These equations, and Egs. (12-3.2) and (12-3.3)
in particular, allow one to treat electromagnetic phenomena asso-
ciated with moving media in essentially the same manner in which
the electromagnetic phenomena associated with stationary media are
treated. All calculations can be made in a single frame of reference
(“laboratory’’), and one can use the same familiar field laws which are
used for fields with no moving media present. Thus through Min-
kowski’s equations the electromagnetic theory of moving media essen-
tially reduces to the theory of stationary media.!

The complexity of the constitutive equations (12-3.5a) and
(12-3.5b), however, makes practical applications of Minkowski’s equa-
tions difficult except in certain special cases. Two such cases are stated
below.

Special Case I. Frequently the terms containing magnetic vectors
in Eq. (12-3.5a) are much smaller than the terms containing electric
vectors. This happens, for example, when a body with x4 &~ 1 moves
in an electric field; the magnetic field appears then as a field “induced”
by the motion of the body and, as a secondary effect, is relatively
small. In this case the terms containing magnetic vectors in Eq.
(12-3.5a) can be neglected, and we obtain from Egs. (12-3.5a) and
(12-3.5Db)

D, = ¢,E,, (12-3.6a)

1 There is some disagreement among different authors concerning the ap-
plicability of Minkowski’s equations to materials with u # 1 and concerning the
meaning of B, in such materials. For a discussion see R. M. Fano, L. J. Chu, and
R. B. Adler, Electromagnetic Fields, Energy, and Forces, John Wiley and Sons, New
York (1960).
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and
B, = poul,, — eopo(ep — 1)v,, x E,,. (12-3.6b)

If, in addition, ¢ = 1, and the charge in the medium is negligible,
then E,, becomes equal to the field E, which would exist at the location
of the medium if the medium were absent (see Example 12-3.1). In
this case the constitutive equations become

D, = ¢E, =D, (12-3.6¢)
and
B, = uouH,, — eouo(pp — 1)v,, x E,. (12-3.6d)

Special Case 1I. Frequently the terms containing electric vectors
in Eq. (12-3.5b) are much smaller than the terms containing magnetic
vectors. This happens, for example, when a neutral body moves in a
magnetic field; the electric field appears then as a field “induced”
by the motion of the body and, as a secondary effect, is relatively small.
In this case the terms containing electric vectors in Eq. (12-3.5b) can
be neglected, and we obtain from Egs. (12-3.5b) and (12-3.5a)

D,, = ¢yE,, + ecouo(eu — 1)v,, x H,, (12-3.7a)
and
B, = uouH,,. (12-3.7b)

If, in addition, u = 1, and all currents in the medium are negligible,
then H,, becomes equal to the field H, which would exist at the location
of the medium if the medium were absent (see Example 12-3.1). In
this case the constitutive equations become

D, = ¢yE,, + eouo(e — 1)v,, x H, (12-3.7¢)
and

B, = uH, = B,. (12-3.7d)

In concluding this section, it is well to stress that Minkowski’s
vectors in a moving medium are not the electric and magnetic field
vectors as they are defined in Sections 8-1 and 14-1. According to
Sections 8-1 and 14-1, the fields in a material medium are the fields
measured in cavities made in the medium. In general, however, one
cannot make a cavity which does not move with a medium if the
medium is moving. Therefore, in general, only the starred vectors of
Egs. (12-3.1) can be regarded as electric and magnetic field vectors in a,
moving medium. Outside a moving medium, however, Minkowski’s
vectors are identical with the ordinary vectors E, D, H, and B measured
by stationary instruments. This follows from the fact that everywhere
except in a moving medium v,, = 0. Therefore, by Egs. (12-3.1), all
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Minkowski’s vectors outside a moving medium are equal to the starred
vectors. But the starred vectors are measured by instruments moving
with the velocity v,,. Since v,, = 0 in this case, the instruments must be
stationary, which proves our statement.

v
Example 12-3.1 Show that if the electric terms in Eq. (12-3.5b) can be
neglected and if u =1, then Minkowski’s field H,, for a current-free,
charge-free medium is identical with the field H, which would exist at the
location of the medium if the medium were absent.

Under the conditions stated we have from Eq. (12-3.5b)

B, = ”OHm
The curl and divergence equations for H,, are then, by Egs. (12-3.2¢,d)
VxH, =], V-H, =0.
By the basic magnetostatic laws, Egs. (10-4.1b), (10-4.2a), and (10-4.3),
the curl and divergence equations for Hy are
VxH,=] V-H,=0,
where the current density J is the same as in the curl equation for H,,
(because, by supposition, the medium carries no conduction or convection
current). As we see, the field H, has the same curl and divergence as the
field H,,. Furthermore, since all media of interest are limited in space, the
medium cannot produce a field at infinity. Hence, by Helmholtz’s theorem
of vector analysis,
H, = H,.
The corresponding theorem for electric fields (see Special Case I, above)
can be proved in the same manner.

Example 12-3.2 Show that the voltage measured by a stationary
observer between points a and b on the surface of a moving body is correctly
given by

b
Vi = f E,, e - dl, (12:3.8)
a

where the path of integration is inside the body.
The voltage measured by a stationary observer between the two points
is
b
Vay = f Eoutsiae * 41,
a

where the path of integration is outside the body. Outside the body, how-
ever, E=E_, and hence

b b
f Eoutside <dl= f Em outside * dl.
a a
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Now, by the circulation law (12-3.3a),
§ E,-dl=0
for any closed path. Therefore

b b
f Em outside * dl = f Em inside * dl,
a a

and hence
b
Vab = f Em inside * dl,
a

which was to be shown.

Example 12.3.3 Show that if Special Case II applies, the displacement
law for a current-free nonmagnetic conductor reduces to

D, = ¢k, (12-3.9)

regardless of the permittivity of the conductor.
If there is no current in the conductor, E* in the conductor must be
zero. Therefore, by Eq. (12-3.1a)

E,=—-v,xB,

in the conductor. Substituting this expression in Eq. (12-3.7c) and taking
into account Eq. (12-3.7d), we then have
D, = ¢,¢E,, 4+ ¢o(¢ — 1)v,, x B,

m
= ¢oeE,, + geev,, X By — ggv,, x B,

= ¢ocE,, — £4¢E,, + ¢E,,,
or
D, = ¢E,.
Example 12-3.4 A long, uncharged, nonmagnetic dielectric cylinder
of dielectric constant ¢ rotates about its axis with angular velocity w. The
cylinder is located in a uniform magnetic field H, parallel to w. Neglecting
end effects, find the polarization of the cylinder.

Special Case II and Egs. (12-3.7c) and (12-3.7d) apply to the system
under consideration. The cylinder carries no charge, and there is no charge
in the surrounded space. By symmetry and by Gauss’s law (12-3.3b),
vector D, must then be everywhere zero. By Eq. (12-3.7¢), this means that
vector E,, in the cylinder is

m

E :-%’(g—l)v,an():—%(s—l)(wxr)xHo,
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where r is the distance from the cylinder’s axis. From Eqgs. (12-3.1a),
(12.3.1b), and (12-3.7d) we have therefore

E*=——£82(8—1)(0)Xl')XHo+ﬂo(wxr)XHo

=i‘8—°(wxr)xHo

and
D* = gouqo(w x r) x Hy,.

Hence the polarization, P = D* — ¢ E* is
P=%(e_1)(wxr) x H,,
or, after the vector product is simplified by means of ‘‘bac cab” expansion,
P= 60—50 (e — 1)Hyor.

Example 12-3.5 A long, hollow, uncharged, nonmagnetic dielectric
cylinder of dielectric constant ¢, inner radius a, and outer radius b rotates
with angular velocity w about its axis. The cylinder is located in a uniform
magnetic field H, parallel to w. The inner and outer walls of the cylinder
are coated with a thin layer of conducting material, and a stationary electro-
static voltmeter is connected to these walls by means of sliding contacts
(Fig. 12.6a). Neglecting end effects, find the voltage indicated by the volt-
meter.

Proceeding as in Example 12-3.4, we have for the vector E,, in the
dielectric

E,=—£0— v, xHy=— £ — )0 xx) xH,

m
= — '% (e — )Hyowr,

where r is the distance from the axis of the cylinder. The voltage is then,
by Example 12-3.2,

b b'u
V,,,,,=f Emodr=—f =2 (¢ — 1)Hr dr,
a a €
or

v,

= %’ (e — 1)(a® — b%)wH,

Example 12-3.6 A long, hollow, uncharged, nonmagnetic conducting
cylinder of inner radius a and outer radius b rotates with angular velocity
® about its axis. The cylinder is located in a uniform magnetic field H,
parallel to w. A stationary electrostatic voltmeter is connected to the inner
and outer walls of the cylinder by means of sliding contacts (Fig. 12.6b).
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(a) (b)

Fig. 12.6 (a) Voltage is produced by a dielectric cylinder rotating in a
magnetic field. (b) Voltage is produced by a metal cylinder rotating in a
magnetic field. If the voltmeter is replaced by a load resistance, electric
current will be produced in the resistance and cylinder. The cylinder acts
then as a current generator. Such current generators are called unipolar
current generators. They are used for producing extremely high currents (of
the order of 108 A).

Assuming that Special Case II applies to the system under consideration,
find the voltage indicated by the voltmeter and find the charge induced
inside and on the surface of the cylinder. Neglect edge effects.
Since there is no current in the cylinder, the vector E,, in the cylinder
must be, by Eq. (12-3.5¢),
E,=—-v,xB,,

m

or, since Eq. (12-3.7d) applies to the system under consideration,
E,=—pwv, x Ho= —pyw xr) x Hy = —uHyor, (12-3.10)

where r is the distance from the axis of the cylinder. The voltage is then,
by Example 12-3.2,

= r E, - dr — —fb poHyor dr,
or ’ ’
- % (@ — ) wH,.
To find the charge induced in the cylinder we use Egs. (12-3.10),
(12-3.9), and (12-3.2b). By Egs. (12-3.9) and (12-3.10),
D, = ¢E, = —guHor. (12-3.11)

m
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From Eq. (12-3.2b) we then have
p = —2¢gpuoH o0

(since r is a radius vector in cylindrical coordinates, V - r = 2).

To find the charge induced on the surfaces of the cylinder we use Eqgs.
(12-3.3b), (12-3.4b), and (12-3.11). We note that since the cylinder has no
net charge and since no charge is present in the space external to the cylinder,
the displacement D,,, by Eq. (12-3.3b) and by symmetry, must be zero in the
external space. From Eqgs. (12-3.11) and (12-3.4b) we then have

0= —¢gguoHywa
for the inner surface (r = a) and
0 = gouoHywb

for the outer surface (r = 5).!

Example 12-3.7 A thin parallel-plate capacitor of plate separation d
and plate area 4 is placed in a uniform magnetic field H, which is parallel to
the capacitor’s plates. A large nonmagnetic dielectric plate of thickness d and
permittivity ¢ is moving between the plates with a velocity v,, perpendicular
to H,. (a) Find the voltage between the plates if the capacitor carries no
charge (Fig. 12.7a). (b) Find the charge on the plates if the plates are
connected by a wire (Fig. 12.7b). (c) Find the voltage between the plates
if charges 4-¢ are placed on the plates (Fig. 12.7c). (d) Find the charges on
the plates if a voltage V is applied between the plates (Fig. 12.7d). Neglect
end effects and assume that Special Case II is valid in all four cases.

In the case (a) the capacitor carries no charge. Therefore if we con-
struct a Gaussian surface as in Fig. 8.3 and apply Gauss’s law (12-3.3b) to
this surface, we obtain in the dielectric D,, = 0. From Eq. (12-3.7c), we
then have (taking into account that v,, | H, so that |—v, x Hg| is v,,H,)

0

E, =L (e — 1)o,H,
which, by Eq. (12-3.8), gives for the voltage between the plates
V= % e — 1)o, Hyd.

In the case (b) the plates are connected by a wire so that there is no
voltage between them. Therefore, by the symmetry of the system and by

1 It is important to emphasize that all these charges (p and o) are real macro-
scopic charges. They are needed in order to make E* = 0 in the cylinder. The
fact that such charges may reside under steady-state conditions on the surface of
and within conducting bodies moving through magnetic fields is an important
property of electromagnetic phenomena associated with moving bodies.
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f:""'“m ; dz =g

(d)

Fic. 12,7 Dielectric plate moving in a parallel-plate capacitor in the
presence of a magnetic field (directed into the page). The relation between
the charge and the voltage of the capacitor is entirely different from that
which exists when the dielectric is at rest.

Eq. (12-3.8), we have in the dielectric £,, = 0. From Eq. (12-3.7c) we
then obtain

D, = eqpuole — 1), H,,
which, by Gauss’s law (12-3.3b), gives for the charge on the plates

+q = gopo(e — 1)v,,HoA.
In the case (c) there are charges 4-¢ on the plates. Therefore, by
Gauss’s law (12-3.3b), we have in the dielectric D = gf/4. From Eq.
(12-3.7¢), we then obtain

st A BB
E _sosAi - (e Do, Hy,

m

where the -+ sign is needed because the contributions of the two terms on
the right may be in opposite directions. By Eq. (12-3.8), this gives for the
voltage between the plates

e PG
V_sosAdi = (¢ — Do, Hyd.
In the case (d) a voltage V is applied between the plates. Therefore,
by the symmetry of the system and by Eq. (12-3.8), we have in the dielectric

E, = V/d. From Eq. (12-3.7c) we then obtain
4
D, =g T& gottole — 1o, Hy,

where the -+ sign is needed for the same reason as in case (c), above. By
Gauss’s law (12-3.3b), this gives for the charges on the plates

V
+q = suegfl + eopo(e — 1)u, Hpd.
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12-4. Method of Harmonics for Fields of Moving Bodies*

The similarity between the field laws for Minkowski’s vectors
and field laws for ordinary electric and magnetic vectors suggests that
the special methods devised for solving electrostatic and magnetostatic
field problems can be applied to problems involving electric and
magnetic fields of moving media. Minkowski’s vectors, however,
satisfy constitutive relations very different from those satisfied by the
ordinary electric and magnetic field vectors. As a result, only the
method of harmonics remains sufficiently simple and general to justify
a discussion in this book. We shall discuss this method for three different
systems: dielectrics of constant ¢ moving in vacuum, conductors
moving in vacuum, and conductors of constant ¢ moving in conducting
media of constant 0. We shall assume that Special Case II and Egs.
(12-3.7c) and (12-3.7d) apply to all three systems and that the motion
is either a uniform translation or a uniform rotation.

According to Eq. (12-3.2a), we can always set

E, = —Vp. (12-4.1)

Let us see now what conditions must be satisfied by ¢ in the three
systems under consideration.

In the case of a dielectric of constant ¢, we have by Egs. (12-3.2b),
(12-3.7c), and (12-3.7d),

VD, =p=¢¢V-E, +ee —1)V: (v, xB),

or, substituting V+E, = —V?p [which follows from Eq. (12-4.1)]
and solving for V2,
e —1

Vip = — £ + V. (v, xB. (12-4.2)

£o€ €

For a uniform translation, V - (v,, x Bg) = 0, and we have

Vip = — £ (uniform translation). (12-4.3)
€08

For a uniform rotation with angular velocity w, V. (v, x Bj) =
2w - B, (see, for instance, Example 12-1.3), and hence

—1
Vg = — -eis + 2 £ w - B, (uniform rotation). (12-4.4)
0

* May be omitted without loss of continuity.
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At the surface of the dielectric, the boundary conditions (12-3.4a) and
(12-3.4b) must be satisfied. Obviously, the first condition can be
written as

Y1 = Ps (12-4.5)

where subscripts 1 and 2 refer to the dielectric and vacuum, respec-
tively. The second condition, by Eqs. (12-4.1), (12-3.7c), and (12-3.7d),
can be written as

0, e op,

€€ T— — &9 T
Onyy onyy

= Ocharge + 80(8 - l)(vm x BO) * My, (12'4’6)

where n,, is a unit vector in the direction of an outward normal at the
surface of the dielectric, and o, is the density of the real surface
charge on the surface.

In the case of a current-free conductor moving in vacuum, we
have by Eq. (12-3.5¢),

charge

E,=—v,xB, (12-4.7)
Taking the divergence of this expression and substituting V-E, =
—V2p, we obtain

Vig = V. (v, x B, (12-4.8)
which reduces to
V2 = 0 (uniform translation), (12-4.9)
and
Vip = 2w - B, (uniform rotation). (12-4.10)

At the surface of the conductor, the boundary conditions (12-3.4a) and
(12-3.4b) must be satisfied. Again, the condition (12-3.4a) can be
written as

91 = Qs (12-4.5)

The condition (12-3.4b), however, by Eqs. (12-3.9) and (12-4.1),
becomes
42 0Py

€o — & = O¢harges
onyp ony,

(12-4.11)

where the notations are the same as in Eq. (12-4.6).
Finally, in the case of a conductor of constant ¢ moving in a
conducting medium of constant o, we have, by Eq. (12-3.5¢),
1

E, = ;Jconduction — Vn x By,

so that

1
v. Em = ; v 'Jconduction —-V. (vm X BO)
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According to Eq. (12-3.2c), however,
V. Jeonduction =0 (12'4'12)

(because divergence of a curl is always zero, and a convection current
carried by a solid body can have no divergence). Therefore, sub-

stituting V - E,, = —V2gp in the preceding equation, we obtain
Vig = V. (v, x By, (12-4.13)
which reduces to
Vigp = 0 (uniform translation) (12-4.14)
and
V¢ = 2w - B, (uniform rotation). (12-4.15)

Note that the last three equations are exactly the same as for a current-
free conductor. At the interface, the boundary conditions (12-3.4a)
and (12-3.4e) must be satisfied. The first condition is, as before,

P1 = Pa- (12-4.5)

The second condition, by Egs. (12-4.1) and (12-3.5c), can be written
as

09, Op,

Oy e iy ——
Y ony, ® Onye

where the subscripts 1 and 2 refer to the moving conductor and the
surrounding medium, respectively.

= 0y(v,, x By) - m,, (12-4.16)

v

Example 12-4.1 A nonmagnetic dielectric cylinder of constant & and
radius @ moves along its axis with uniform velocity v in a magnetic field
B, | v (Fig. 12.8). Neglecting end effects, find the electric field outside the
cylinder and the polarization of the cylinder.

(a) (b) (c)

Fic. 12.8 (a) Dielectric cylinder moving across a magnetic field. (b)
Minkowski’s field E,, of the cylinder. (c) E* field and the polarization P
of the cylinder.
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Special Case I applies to the system under consideration. Since there
is no charge in the system, we have, by Eq. (12-4.3),

Vi =0

inside as well as outside the cylinder. By Egs. (12-4.5) and (12-4.6), the
following boundary conditions must be satisfied at the surface of the cylinder

(- =a)

(1) Pingige = Poutsidze at 7 =a,

O@inside _ O@outsiae _
(2) e or o

where r and 0 are as shown in Fig. 12.8, and vB,cos 0 is the term
(v, X By) +my, of Eq. (12-4.6). Consulting Table 6-1, we find that these
conditions can be satisfied by the part of cylindrical harmonics (H-3)
containing cos 6. Calculating in the usual manner the constants appearing
in these harmonics, we obtain

(¢ — vBycos O at r=a,

e —1
Pinside = 1 vBgr cos 0
and
e —1 a2
Poutside = e 1 5 vB, cos 0.

Taking the gradient of @;p4q, and @guisiae » We have

e—1
e+ 1

—1la®
€ - : a_2 vBy(cos Or, +sin66,).
€ r

vBi

Em inside — —

Em outside =

Since outside a moving medium E,, = E, the last expression represents the
electric field outside the cylinder. The polarization of the cylinder is given
by

P =D* — g E* = ¢g(e — 1)E*.

Substituting E* = E,, j1cqet Vm X B,, = E, in6qe + vBl, we obtain

-1 . . —1
P=eo(e—-l)(—z+lvBol+vBol)=2602+1

vBi.

Example 12-4.2 An uncharged nonmagnetic conducting sphere rotates
with constant angular velocity w about a diameter in a uniform magnetic
field B, || @ (Fig. 12.9). Assuming that Special Case IT and Egs. (12-3.7¢)
and (12-3.7d) apply to the system under consideration, find the electric
field outside the sphere and find the charge distribution inside and on the
surface of the sphere.
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IBQ,G’
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I
|
|
|
l

r

(a) (b)

Fic. 12.9 (a) Conducting sphere rotating in a magnetic field B,. (b) In-
duced charges and electric field of the sphere.

The geometry of the system suggests the use of spherical coordinates
shown in Fig. 12.9a. By Eq. (12-4.7), we must have inside the sphere

Epimite = — (Vo X B) = —(@ x 1) x By (124.17)

Since there is no charge outside the sphere, we have for the potential in the

space external to the sphere
V2@outsize = O-

This potential must be regular at infinity and must reduce on the surface
of the sphere to the potential ¢, ¢ determined by E, ;... We can
find @ggace from Egs. (12-3.8) and (12-4.17). Taking the potential of the
upper pole of the sphere (8 = 0) as the reference potential ¢4, and in-
tegrating E,, along the surface of the sphere in the direction of 8, we have

0
Psurface = —J; [(m x a) X B(l] . oua di + Po

= aJ:[a(w ‘B, —w(a-B,)]-0,d0 + @os

where we have used the “bac cab” expansion. Since a | 0,, we obtain
6
Psurface = _av[ (a-By)(w-0,)d0 + Po
0

]
= a”wBUJ. cos 0 sin 0 df - ¢,

1]
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or
a®wB
Psurface = 2 2 (1 — cos? 0) + o

Consulting Tables 6-1 and 5-I, we find that a potential function which can
reduce to this expression at the surface of the sphere and is regular at in-
finity is the part of the spherical harmonics (H-4) containing cos? 6:

¢ = C = Py(cos 0) = 0511_3(3 cos? 6 — 1).
r

By inspection, we see that this function will reduce to @gg,c. at the surface
of the sphere (r = a) if

C=—

2*wB,
3

dwB,

and @, = —

The potential outside the sphere is therefore

adwB
Poutside = 673 0 (l — 3 cos? 0)

The corresponding electric field is calculated from E = —Vg. Taking the
gradient of @ siqe» WE Obtain

E, 0 = adwB,
'outside 27'4

adSwB .
(1 — 3 cos? O)r, — — % cos Osin 6 0,.

This is a quadrupole field. It is shown schematically in Fig. 12.9b.
To determine the charge distribution in the sphere, we use Eq. (12-3.2b)

p=V-D,.

According to Example 12-3.3, we have in the sphere
D, = ¢E,. (12-4.18)

Taking into account Eq. (12-4.17) and noting that in the case under con-
sideration V « [(w x r) x By] = 2wB,, we then have for the charge within

the sphere
p= —¢gV:[(w xr)x Bj] = —2¢,0B,.

To determine the charge distribution on the surface of the sphere, we
use Eq. (12-3.4b), which for the case under consideration can be written as

=D, outside D, inside:

Using the expression for E ;4. obtained above, we have for the normal
component of D4, at the surface of the sphere

gqawB,

— J— —_ 2
D, sutsidze = €oEy outside = €oEr outsidte = D) (1 — 3 cos? ).
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Taking into account Eqs. (12-4.18) and (12-4.17), we have for the normal
component of D, ;... at the surface of the sphere

D inside = €0Fmn mside = —€o[(w X @) X By] - r,,
= —¢go[a(w By —w(a-By)]r,
= —¢gy(awBy, — awB cos? ) = gqawBy(cos? 6 — 1).
The surface charge is therefore
o= %w&, (1 — 3 cos?0) — gpawBy(cos? 6 — 1),

or
_ %“”“’ (1 — 3 cos? 0) + e,awB, sin? .

This charge distribution is shown schematically in Fig. 12.9b. The total
charge on the surface is, of course, equal to the total charge inside the
sphere.

Example 1243  The bottom of a river flowing across a horizontal
plane has the cross-section in the shape of a semi-circle of radius a. The
diameter of the semi-circle coincides with the surface of the river, and the
surface of the river is on the same level as the ground in the vicinity of

Fic. 12.10 Current is induced by the earth’s magnetic field in the river
and in the ground near the river.
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the river. The velocity of water in the river is v, the conductivity of water
is g, the conductivity of the ground is ¢,. There is a magnetic field with a
vertical component B at the location of the river. Assuming that Special
Case II applies, find the current distribution in the river and in the ground
near the river.

The geometry of the system suggests the use of cylindrical coordinates
shown in Fig. 12.10. By Eq. (12-4.14), we have in the water as well as in
the ground

Vip = 0.
Let the potentials in the water and in the ground be ¢,, and ¢,, respectively.
By Eqgs. (12-4.5) and (12-4.16), these potentials must satisfy the following
boundary conditions at r = a:

M vu=19,

(2) Uwggr—'-” — 0, a_g;—g = o ,vB cos 0,
where ¢,vB cos 0 is the term ¢,(v,, X B;) - n;, of Eq. (12-4.16). Consulting
Table 6-I, we find that these conditions are satisfied by the cylindrical

harmonics

@, = Cy,rcos 0
and
C
Q, = 7” cos 0,
if we set
o o
C,= ¥ 9B and C,=—"—vBa
o, + 0, o, + 0,
Hence the potentials must be
c
P = ¥ __ yBrcos 0
o, + 0,
and
o a®
p, = Y — vB— cos 0.

o o, + 0, r
By Eqgs. (12-4.1) and (12-3.5c), we then have for the current in the water

Jo=0,(—Vg, +vxB) = o'w(— o % __ yBi + vBi),

w 09

or
0,0, .
Jw = %9 yBi.
Oy + 0,
For the current in the ground we have likewise

J, = 0,(—Vg,),

or

0,0, a* 0.0, a? .
J,=—22 —vBcosOr, + —22__yBsinb0,.
o, + o, r? o, + o,7?
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Fic. 12.11 Geometrical relations
for finding current induced in an
artificial satellite.

Example 12-4.4  Suppose that the artificial satellite of Example 12-2.1
has the conductivity o, and the medium (assumed to be at rest) outside
the satellite has the conductivity ¢,. Find the current generated in the
satellite and in the surrounding medium, assuming that Special Case II
applies to the system under consideration.

The geometry of the system suggests the use of spherical coordinates
shown in Fig. 12.11. By Eq. (12-4.14), we have in the satellite as well as in

the surrounding medium
Vip = 0.

Let the potentials in the satellite and in the medium be ¢, and ¢,, respec-
tively. By Eqgs. (12-4.5) and (12-4.16), these potentials must satisfy the
following boundary conditions at the surface of the satellite (r = a):

(1) o1 =g2

¢ 0
2) oy g?l — 0, —%3 = ¢,vB cos 0,

where o¢,0B cos 0 is the term ¢,(v,, x B,) - n;, of Eq. (12-4.16). Consulting
Table 6-1 we find that these conditions are satisfied by the spherical har-
monics

@, =C,rcosf
and
G
2 = — cos 0
if we set
C, = % _ B and Gy = vBad.
0, + 20, 1 + 0, + 20,
Hence the potentials must be
o
p Br cos 0
q‘l Jl + 20’2 ¢ s
and
_%__ B cos .
@y = B0 vB — cos
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The currents are therefore, by Eqs. (12-4.1) and (12-3.5c)

o
Jsatenite = 01(”_V‘P1 + v X B) = 0'1(— o +1202 vBk + ka),

or
20,0,
0, + 20,

J satellite — vBk,

and likewise

Jmedium = 0'2(_V‘P2):
or

20,0, ad 0102

Jmedium = -5 UB — COs 0 ru + - a_
r3 o, + 20,

a3
B —sin 6 0,,.
o, + 20, ey *

A

12-5. Motion of Charged Particles through a Magnetic
and Electric Field

Although we are concerned in this book with the macroscopic
theory of electric and magnetic phenomena, some mention must be
made of the motion of charged particles in electric and magnetic fields.

Since an electric field is, by definition, a region of space where a
charged particle at rest experiences a purely electric force, the electric
force experienced by a moving charged particle is, according to Egs.

(7-8.3) and (12-1.1),
F = °gE* = °%4(E + v x B), (12-5.1a,b)

where E* is the electric field in the frame of reference moving with the
particle, and v is the velocity of the particle. If the electric field
measured by a stationary observer at the location of the particle, E,
is zero, the particle experiences a force

F,="°v xB, (12-5.2)

known as the Lorentz force. Note that according to this equation a
particle moving through a purely magnetic field experiences a force
normal to the velocity of the particle, and hence has a radial but no
tangential acceleration. The trajectory of a charged particle in such
a field is therefore helix-like.

In general, however, E = 0. In this case the motion of a charged
particle can be rather complex. The general characteristics of this
motion can be deduced as follows.
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Let us assume that v | B and then rewrite Eq. (12-5.1b) for a
frame of reference moving with velocity v, | B with respect to the
reference frame in which E and B are measured. The velocity of the
particle in this new frame of reference is v/ = v — v,, and the force act-
ing upon the particle is, according to Eq. (12-5.1b),

F="%E-+v xB +v, xB).
Suppose now that v, is such that
E+4+v,xB=0. (12-5.3)
Then the above force equation reduces to
F =°¢(v' x B),

so that in the frame of reference moving with velocity v,, the trajectory
of the particle is a circle. Hence, if v | B and if Eq. (12-5.3) can be
satisfied, the trajectory of a particle in the stationary frame of reference
is a cycloid in a plane normal to B. However, Eq. (12-5.3) cannot be
satisfied if E has a component parallel to B. In this case this com-
ponent of E exerts a force on the particle along the direction of B.
The motion of the particle is then a translation along B superimposed
upon the motion along a cycloidal path normal to B. Similar super-
position of motions takes place if v has a component along B.

The motion of a particle along the cycloidal path is called the
drift of the particle, and v, defined by Eq. (12-5.3) is called the drift
velocity (this is the velocity of the “guiding center” of the cycloid).

iB IB, E

E

ELB

v i i

F1c. 12.12 Examples of trajectories of charged particles in electric and
magnetic fields. (a) E | Band v | B. (b) E| B.
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Two typical trajectories for a charged particle moving in homo-
geneous fields are shown in Fig. 12.12. If the fields are not homo-
geneous, the trajectories become much more intricate.!

v

Example 12-5.1 Show that all particles of equal charge-to-mass ratio
g/m moving through a uniform magnetic field B which is perpendicular to
their velocity vector v circulate with the same angular velocity

Since B | v, the trajectories of the particles under consideration are
circles. From Newton’s second law and Lorentz’s force equation we then

have
°quB = mw?r,

where r is the radius of the circle described by a particle. Since v = wr,
we can write

°qowrB = maw?r,
and, solving for w, we obtain

il
m

By supposition, however, g/m is the same for all particles, and B is uniform.
Therefore w is the same for all particles. This means, incidentally, that all
particles require the same time (period) T = 2x/e to complete one revo-
lution along the circle. The reciprocal of T is sometimes called the c¢ycloiron
JSrequency because particles circulate at this frequency in a cyclotron.

Example 12-5.2 A slightly divergent beam of electrons is emitted from
a point electrode along a uniform magnetic field B. Show that at a certain

Fia. 12.13 A slightly divergent beam of electrons emitted from a point
electrode along a magnetic field is “focused’ at the point F. The trajectories
of two electrons with different o’s are shown.

! For details the reader is referred to books on plasma physics and magneto-
gasdynamics.
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distance from the electrode all electrons will pass through the same single
point (“focus’”) and find the location of this point if the velocity of the
electrons is v and the half-angle of the beam at the electrode is « (small).

Let us denote the component of v along B as v, and the component
normal to B as »,. The motion of the electrons in the beam is a super-
position of a translation along B with velocity »; and a circular motion with
velocity v | in a plane normal to B, the latter motion being a result of the
Lorentz force °qv | B. According to Example 12-5.1, the time required for
each electron to complete one cycle of the circular motion is

27rm
qu >

where m is the mass, and ¢ is the charge of an electron. Therefore all electrons

emitted from the electrode at the instant ¢ = 0 will pass through a point

directly in front of the electrode at the instant ¢, = 7. Since the trans-

lational velocity of the electrons is »; = v cos a & v, this point is located at
the distance

Il~vT=v 207"”

qB

from the electrode (Fig. 12.13).2

Example 12-5.3 A long cylindrical beam of charged particles moves
with velocity v along its length. The radius of the beam is @ and the charge
density in the beam (measured in a reference frame moving with the beam)
is p. Find the total force acting upon a particle of charge ¢ located on the
surface of the beam.

According to Example 12-1.2, the electric field of moving charged par-
ticles is the same as that of stationary particles. The magnetic field of the beam
was found in Example 10-4.2. Therefore, by Eq. (12-5.1b), Example 4-4.2
(or Problem 4.10), and Example 10-4.2, the force on g is

o,
_ 9P . _ 2
F 2, (1 — ggugv®).

Since g, = 1/¢2, where ¢ is the velocity of light, and since the velocity of the
beam is less than ¢, the electric repulsion dominates over the inward magnetic
force, the charge experiences an outward force, and the beam expands
(diverges). If the beam could move with the velocity of light, the charge would
not experience any force, and the beam would not expand.

Example 12-5.4 Find the drift velocity of a charged particle in an
electric field E and magnetic field B, if E | B.

1 By measuring this distance, one can determine g/m if v and B are known.
This method of determining g/m is called the Busch method.
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According to Eq. (12-5.3), the drift velocity v, is given by

E+ v, xB=0.
Multiplying by B, we have

ExB+ (v; xB) x B=0.
Using the ‘“‘bac cab” expansion, we obtain
ExB -+ B(v,-B) — v,B2=0.

But by the definition of v,, v, is perpendicular to B, so that the second term
in the above equation is zero. Therefore

ExB
Vd = —— .
B2
A
ProBLEMS

12.1. Assuming that the sun has a magnetic dipole moment m along
the polar axis, find the electric field experienced by a planet due to its
orbital motion (the radius of the orbit is R, the orbital velocity of the planet
is v, the plane of the orbit is normal to m).

12.2. A speed boat moves with a velocity of 20 m/sec. The earth’s
electric field at the surface of the water is 120 V/m and vertical. If the
horizontal component of the earth’s magnetic field is 0.2 X 107% Vs/m?,
what is the maximum angular deviation of the boat’s compass caused by the
motion of the boat?

12.3. A long, thin parallel-plate capacitor moves parallel to itself
with a velocity v in the direction of its length. The capacitor is charged,
and the surface charge density on its plates is +-0. Show that the magnetic
field measured in the capacitor by stationary instruments is

H = ov,

and demonstrate that this result can be obtained from Eq. (12-1.2) as well
as from Eq. (10-3.1).

12.4. Show that elongated nonmagnetic particles moving across a
magnetic field will orient themselves in a direction perpendicular to the
field.

12.5. A large nonmagnetic dielectric plate moves with velocity v in
the direction of its length across a magnetic field B. Find the polarization
of the plate if (a) B is parallel to the plate, (b) B is perpendicular to the
plate.

12.6. Two small nonmagnetic dielectric needle-shaped particles of
cosmic dust move with velocity v normal to a galactic magnetic field B.
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The volume of each particle is 7, and the distance, r, between them is much
larger than their linear dimensions. The particles are oriented along a
single line perpendicular to v and B. Show that the particles are attracted
to each other with a force

° — 1)2+2,2R2
_ PBeole — VPr%PB® |

Qrrt o

F

where F, is the gravitational force between the particles.

12.7. A conducting, nonmagnetic spherical space vehicle of radius a
moves with velocity v through a magnetic cloud whose magnetic field B is
perpendicular to v. Show that an electric force

F = -Zneoazszz

acts on each half of the vehicle along a direction perpendicular to v and B
tending to break the vehicle in two.

12.8. A long nonmagnetic conducting rod of radius a moves with veloc-
ity v along its axis through a magnetic field B which is perpendicular to v.
Show that a stationary observer will see an electric field outside the rod

2
E = 32- vB(cosOr, +sin60,),
r

where r and 0 are cylindrical coordinates about the axis of the rod (the end
effects are neglected).

12.9. Show that the surface charge density on the artificial satellite
described in Example 12-2.1 is

o = 3eqB cos 6.

12.10. An uncharged parallel-plate capacitor moves along its length
through a magnetic field B which is perpendicular to the direction of the
motion of the capacitor and parallel to its plates. A stationary electrostatic
voltmeter is connected between the plates by means of sliding contacts.
What voltage will the voltmeter indicate?

12.11. The magnetic field of the earth can be assumed to be nearly
homogeneous throughout the interior of the earth, with B =6 x 10~*
Vs/m2 Show that for an observer not participating in the rotation of the
earth there is a voltage of ~10% V between the pole and the equator.

12.12. The plates of a large parallel-plate capacitor are separated by a
distance d and are perfect conductors. A long thin plate of conductivity
o, length a, thickness ¢, and width d is inserted between the capacitor’s
plates and makes perfect contact with them, while a load resistance R is
connected between the plates outside the capacitor. A magnetic field B is
then applied parallel to all three plates, and the thin plate is moved with
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velocity v in the direction normal to the magnetic field. Show that a current

/ vBd
~ R ¥ djoat
will be produced in the load.

12.13. A disk of radius b, thickness ¢, and conductivity ¢ rotates about
its axis with angular velocity w in a magnetic field B which is parallel to the
axis of the disk. The disk is mounted on a perfectly conducting axle of
radius g, and is surrounded by a stationary, perfectly conducting ring, also
of thickness ¢, which makes perfect contact with the disk. A resistance R is
connected between the axle and the ring. Show that the disk constitutes a
current generator (unipolar generator) and that the current in R is

_ maot(b® — a*)B
~ 270tR + In (bja) °

1

12.14. In a magnetohydrodynamic current generator a stream of
conducting gas passes between the plates of a parallel-plate capacitor

Fic. 12.14 Magnetohydrodynamic current generator.

located in a magnetic field which is parallel to the plates and perpendicular
to the stream (Fig. 12.14). Show that the current generated in an external
load R is, in the first approximation,

ogvBabd

I el
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where a, b, and d are the width, length, and separation of the capacitor's
plates, respectively, ¢ and » are the conductivity and velocity of the gas,
respectively, and B is the magnetic field.

12.15. Prove that if the magnetic terms in Eq. (12-3.5a) can be ne-
glected and if ¢ = 1, then Minkowski’s field E,, for a charge-free medium is
identical with the field E, which would exist at the location of the medium
if the medium were absent.

12.16. Show that if the terms of the order (v/c)? can be neglected, the
constitutive equations (12-3.5a) and (12-3.5b) reduce to

Dm = 808Em + 80:“0(8:“ - l)vm X Hm
and
Bm = IuOIuHm - 60/‘0(8/‘ - l)vm X Em'

12.17. Show by direct calculation that the fictitious charges and currents
found in Example 12-1.3 do not appear if Minkowski’s vectors are used for
charge and current calculation.

12.18. Show that if the coatings of the cylinder discussed in Example
12-3.5 are replaced by stationary conducting cylinders, the voltage in-
dicated by the voltmeter will not change.

12.19. Show that if the parallel-plate capacitor discussed in Example
12-3.7 moves together with the dielectric, the results obtained in all four
cases (a), (b), (c), and (d) of that example will be the same.

12.20. Two conductors are in contact along an interface. One con-
ductor moves with velocity v,, the other with velocity v, parallel to the
interface. There is a Minkowski’s vector B,, at the interface. Show that if
there is no current in the conductors, then there appears a surface charge

0 = £&[(vi — v,) xB,] -m,

on the interface, where m,, is a unit vector normal to the interface.

12.21. Two conductors are in contact along an interface. One con-
ductor moves with velocity v;, the other with velocity v, parallel to the
interface. There is a Minkowski’s vector H,, at the interface. Show that
if there is a current in the conductors, and if Special Case II applies, then
there appears a surface charge

Ocharge = i{eojn(;_z - ?) + eoptol(vi — vo) x H,] - m,
2 1

at the interface, where J, is the normal component of the current density,
¢ and o are the permittivity and conductivity of the conductors, respectively,
and n, is a unit vector normal to the interface.

12.22. Show that if Special Case II applies, the charge density in a
rotating current-carrying conductor as well as in a rotating current-free
conductor is given by the same expression

p = —2gopow - H,,
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where w is the angular velocity of the conductor, and H,, is Minkowski’s
vector in the conductor.

12.23. Show by direct calculation that the total charge of the cylinder
and the sphere discussed in Examples 12-3.6 and 12-4.2, respectively, is
zero.

12.24. Show that the potential inside the sphere discussed in Example
12-4.2 is

wB,
a2,

B
p = %rz(l — cos? 0) —

Is this a harmonic function?

12.25. Find the surface charges accumulating along the river bed
discussed in Example 12-4.3.

12.26. Using Example 12-4.2 and the data given in Problem 12.11,
find the space and surface charge of the earth.

12.27. A dielectric sphere rotates in a uniform magnetic field. Find
the polarization assuming that Special Case II applies.

12.28. Suppose that the sphere discussed in Example 12-4.2 is located
in a nonmagnetic conducting medium, and that the conductivities of the
sphere and the medium are o, and ¢,, respectively. Show that the currents

Jinsige = —a)rBo%alﬁ [(3cos?20 — 1)r, — 3sin O cos 0 0,]
1 2
and
wa5B0 0,0y .
Joutside = T T3 9~ I a2~ [(3 cos? § — l)ru + 2 sin 6 cos 6§ Ou]

rt 20, 4+ 30,

will be generated inside and outside the sphere. Then find the surface
charges accumulating on the sphere.

12.29. A nonmagnetic, incompressible conducting liquid is forced
between two closely spaced parallel dielectric disks through an opening
made at the center of one of them. There is a homogeneous magnetic
field B normal to the disks. Show that a circular current of density

J= gBou’

where C is a constant depending on the rate of liquid flow at the opening
and on the conductivity of the liquid, is set up between the plates. (The
reverse of this arrangement constitutes a magnetohydrodynamic pump: a
circular current is set up by means of appropriate electrodes, and the mag-
netic field forces the liquid to flow.)

12.30. Find the power dissipated in Joule’s heating of the river and
resistor described in Example 12-2.3 and hence show that the electro-
magnetic force resisting the flow of water in the river between the two
electrodes (“induction drag”) is

Fe °olhwyB?
(1 + olhR[w) *
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(Hint: The force of resistance is given by P = vF, where v is the velocity
of motion and P is the rate of energy dissipation.)

12.31. Find the induction drag (see Problem 12.30) on the satellite
described in Example 12-4.4.

12.32. Suppose that a submarine is a long thin-walled cylinder of
radius ¢ and length /. The submarine moves at a great depth with a hori-
zontal velocity » through a region where the vertical component of the
earth’s magnetic field is B. The conductivity of the sea water is ¢, and the
conductivity of the submarine is o, = 0. Neglecting edge effects, find
the distribution of electric currents in and outside the submarine, find the
power dissipated in Joule’s heating of the submarine and the water, and
find the induction drag (see Problem 12.30) on the submarine (assume that
the water around the submarine is stationary).

12.33. Show that in a perfect conductor the relation between E,,, v,,,
and B,, is always

E,=—-v,xB,

regardless of whether or not there is a current in the conductor.
12.34. Find the natural period of rotation of an electron (¢ = 1.6 X
10-1® As) in the magnetic field of the earth (B = 0.4 X 104 Vs/m?).
12.35. A ““magnetic wall” is formed by a uniform magnetic field B
confined to a region of space whose boundaries are two planes parallel to B
separated by a distance ¢{. Show that a particle of charge ¢ and mass m
cannot penetrate the wall unless its velocity is

°gtB
vzq .
2m

12.36. Show that the maximum energy to which a particle of charge ¢
and mass m (assumed to be constant) can be accelerated in a cyclotron is
°,2R2RB2
U q

max 2 m >

where B is the magnetic field of the cyclotron and R is the largest possible

radius for the particle’s orbit in the cyclotron.
12.37. Show that the magnetic field produced by the moving charged

particles derived in Example 12-1.2 is compatible with the convection current
given by Eq. (10-3.1).



ENERGY AND FORCE
RELATIONS IN THE
MAGNETOSTATIC FIELD
IN VACUUM

A magnetostatic field is a carrier of magnetic energy. Like any
other energy, magnetic energy satisfies the principle of conservation. In
this chapter we shall study various energy relations in magnetostatic
fields, after which, using the principle of conservation of energy, we shall
study force relations in magnetostatic systems.

13-1. The Energy of a Magnetostatic Field

Look at the lines-of-force picture of the magnetic field between a
compass needle and a horseshoe magnet (Fig. 13.1). It seems as if the
ends of the needle are pulled to the magnet by a set of elastic strings or
springs. This analogy led Faraday and later Maxwell to the idea that
a magnetic field could be regarded as an elastic medium in a state of
stress. But then a magnetic field should be a carrier of a definite amount
of energy, just as a compressed or a stretched spring is. According to
Maxwell’s views, the energy stored in a magnetostatic field should be

U=$ f Hzdy. (13-1.1a)

All space

This equation has been found to be in complete agreement with
all presently known phenomena involving energy and force relations in
magnetostatic fields. What is more, all such relations have been found
to be derivable from this equation, and no equation for the energy of a

427
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Fic. 13.1 Lines-of-force picture for a compass needle and a horseshoe
magnet. The picture suggests that there is a tension along the lines of force
combined with pressure in perpendicular directions.

magnetostatic field (in vacuum) more general than this one has been
discovered. Therefore Eq. (13-1.1a) is considered to represent the
fundamental magnetostatic energy law.

Since in vacuum uH = B, this law is frequently written in the
symmetrical form

U= = jH-de. (13-1.1)

Allspace

This law is sometimes written also in the differential form

U, = %H-B, (13-1.2)

where U, is the energy density of the magnetostatic field.

It is useful to note the similarity between the above equations and
the corresponding equations for electric energy (Section 7-1). This
similarity between the basic magnetic and electric energy equations
leads to a similarity between the corresponding special forms of these
equations, as will be seen from the following sections.

v

Example 13-1.1 Find the ratio of the magnetic and electric energies
of a uniformly charged spherical shell of total charge ¢ and radius a rotating
with angular velocity @ about a diameter.
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By Example 11-4.1, the magnetic field of the shell is

H — 203wa k (r < a)
and
26wa? cos 0 owa? sin 0
H= 53 r, + 33 0, (r = a).

The magnetic energy of the shell is then, by Eq. (13-1.1a),

° 4\ 2 o 7 (1 3 2
+%(“%) f Uou—re—“—’fﬂ%rzsino(ie]dr

_ Brugtew’d® | *4muictwd
o 27 27
or, substituting ¢ = ¢/4ma? and simplifying,

° pog*w?a
367
The electric energy of the shell is, by Example 7-1.2,

U=

0,2
__ 9
8meqa’

The ratio of the two energies is therefore

Unag _ 2eqpow®a®
Uelec - 9 )
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Since gguq is 1/c2, where ¢ is the velocity of light (see Chapter 16), and
since w2a? must be always smaller than ¢2, this ratio is always less than one.

13-2. Energy in Terms of Current Distribution

A

The fundamental energy law (13-1.1) can be transformed into
various special forms which in many instances are more convenient to
use than the original expression itself. One of the most important
special forms of the energy law is the equation representing the energy
of the magnetostatic field in terms of the current distribution producing

this field. It may be obtained as follows.
Substituting B = V x A into Eq. (13-1.1), we have
U= % f H-Bdv = % f H.(V x A) dv.

Allspace Allspace
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Using the vector identity (V-5), which may be written as

V.(HxA) =A-(VxH) —H-.(VxA),
or
H-(VxA) =A.(VxH) — V. (HxA),

we obtain (omitting for brevity the subscripts ““all space”)
o

U= §on(V x H) dv — %fv-(HxA)dv.

The last integral can be transformed into a surface integral by using
Gauss’s theorem of vector analysis, and since H and A are regular at
infinity, this integral vanishes. In the first integral we can substitute
V x H = J. We then obtain

U= §JA.Jdv. (13-2.1)

This equation can be written in an alternative form by also
expressing the potential A in terms of current distribution. Using
Eq. (11-1.3), we then obtain

U = ﬁf VIR LR (13-2.2)
877' 712

where 7y, is the distance between the two volume elements dv;, and dv,,
while J, and J, are the current densities in these elements.

13-3. Energy of a System of Current Distributions

Several special forms of the energy equation (13-1.1) can be
obtained for the magnetic energy associated with a system of discrete
current distributions.

Let us consider a system of current distributions consisting of n
separate current-carrying regions. Taking into account that the current
density outside the current-carrying regions is zero, we can write
Eq. (13-2.1) as

U= %ZJAi - J.dv,, (13-3.1)

where A, and J, are the potential and the current density in the volume
element dv, of the i-th region.
Each potential A; in Eq. (13-3.1) may be regarded as the sum of
two potentials
A=A +A)
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where A7 is the “internal” potential due to the current in the i-th
current-carrying region itself, while A is the “external” potential due
to the currents in all other current-carrying regions of the system.
Substituting these potentials into Eq. (13-3.1), we have

= %Z_ f A} Jido, + % zfA;  Judo,. (13-3.2)

As in the corresponding equation for the electrostatic energy, the
first term on the right represents the internal energy, or the self energy, U,,
of the individual current distributions comprising the system under
consideration, while the last term represents the mutual energy, or the
interaction energy, U’, of these current distributions.

Using the symbol U, for the self energy, we can write Eq. (13-3.2)
in the simpler form

= % S f Al Jdv, + U, (13-3.3)

13-4. Energy of a Current Distribution in an External Field

It is often desirable to know the energy of the interaction between
a current distribution and an external magnetic field. This energy can
be found as follows.

Let J be some current distribution and let J' be the current
distribution which produces the external magnetic field at the location
of J. Let the field produced by J be H, and that produced by J' be H',.
so that the total field at any point of space is H,;,, = H + H'.

The total magnetic energy of the system is then, by the energy
law (13-1.1a),

U= %fH %otaldv = _/Q‘QJ‘Htotal - Higimdv

=_‘§’ H+H) . (H + H)dy

or

U= _.Q@fmdv + %’JH'%: + °,40fH ‘H'do.  (13-4.1)

The first term on the right of this equation depends only on the field
produced by the current distribution J, and the second term depends
only on the field produced by the current distribution J’; these two
terms represent therefore the self energy U, of the two distributions.
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The last term, however, depends on both fields and, consequently,
represents the mutual, or interaction, energy U’ of these current
distributions.

Writing this term as

U= fH-B'a’v - fH-(V x A')dy

and rcpeating the transformations employed in Section 13-2, we obtain

for U’
U = fJ - A'dy. (13-4.2)

Since the integral in this equation depends only on the current
distribution J and the external potential A’, the equation may be
interpreted as representing the interaction energy of the current distri-
bution with the external field, or, as one usually says, the energy of
the current distribution iz the external field.

As it follows from the derivation, this energy is the same as the
mutual, or interaction, energy of the current distribution J and the
current distribution J” which produces the external field at the location

of J.
\4

Example 13-4.1 Consider two mutually external uniformly charged
spherical shells, each spinning about its diameter (Fig. 13.2a). Show that
the magnetic interaction energy of the shells is equal to that of two magnetic
dipoles located at the centers of the shells, each having a dipole moment
(magnitude and direction) equal to the dipole moment of the respective
shell.

According to Eq. (13-4.2), the magnetic interaction energy of the shells
is

U= fJ.A'dv,

where A’ is the vector potential produced by one shell at the location of the
other. A spinning charged shell, by Example 11-4.1 and Example 11-5.2,
produces a dipole field in the external space. Therefore the ““field-producing”
shell may be replaced by an equivalent dipole at the center without affecting
the interaction energy (Fig. 13.2b). Now, the interaction energy of this
new system can be expressed as

U= JJ-A’dv,

where J is the current in the dipole and A’ is the potential produced at the
location of the dipole by the remaining sphere. In view of the considerations



ENERGY AND FORCE IN THE MAGNETOSTATIC FIELD 433

(a) (b) (c)

Fic. 13.2 Magnetic interaction energy of two mutually external, charged,
spinning shells is equal to the interaction energy of two magnetic dipoles.

just presented, this energy will not be affected either, if the sphere is replaced
by an equivalent dipole at the center (Fig. 13.2¢). Thus the magnetic
interaction energy of two spinning, uniformly charged spherical shells is
indeed equal to the magnetic interaction energy of the two dipoles at the
centers of the shells.

A

13-5. Energy of a System of Filamentary Currents or
Circuits
Special forms of the energy law (13-1.1) are also frequently used
for representing the magnetic energy of a system of stationary filamen-
tary currents.
Let us consider a system of n mutually external currents carried

by n separate wires (circuits). The magnetic energy of this system can
be expressed, by Eq. (13-3.1), as

U — == ZIJ' ., Aidyt"
25
Since the currents are all filamentary, we can write

Jidv; = Jadl; = Idl,,
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where a; is the cross-sectional area of the wire carrying the current 7,
and dl; is the length element of the wire. The current in a wire is,
however, the same at all points of the wire, so that we can write the
above energy equation as

U= —213§A dl,

(the integral is closed because only closed circuits can carry stationary
currents). Using Stokes’s theorem of vector analysis, we can transform
the integral in this equation into a surface integral over a surface S,
bounded by the i-th wire. We then obtain

U= %zf,.fv x A, - dS, = %zl,fni.dsi,

where B; is the magnetic flux density at the location of the surface
element 4S;. Since the last integral represents the magnetic flux @,
linking the i-th wire (circuit), we finally obtain for the magnetic energy
of a system of stationary filamentary currents

U= %ZIiCDi. (13-5.1)

(In using this equation, we should remember that the product I,®;
can be positive as well as negative. As it follows from the derivation, the
product is positive if I, and ®, form a right-handed system; the product
is negative if they form a left-handed system.)

If we designate the contribution of the current I, of the k-th wire
to the flux @, linking the i-th wire as ®;,, we can express @, as

D, =3 Dy,
* )
or, using the inductance coefficient L, = T'I-C , as
O, = > L. (13-5.2)
k
Substituting this expression into Eq. (13-5.1), we obtain an alternative
expression for the energy of the filamentary currents
°1
U= 5 > > LILL,. (13-5.3)
i

From this equation we can easily obtain the expression for the
energy of a filamentary current in an external field. For this purpose
let us rewrite Eq. (13-5.3) as

Ol 01 01 Ol
U= 5IL,; + 511 Z LLy + 511 Z LL, + § Z 2 LLLyg,

2 ¥>1 i1 S1ES1
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where we have written explicitly all terms involving the wire number 1.
Since L,;, = L, (see Section 11-2), we can combine the second and
third terms by replacing the index of summation 7 in the third term
by k. Then we obtain

°1 °1
U—‘ 12L11+011 ZIL1k+ E EIIsz’
2 21>1 k>
or, using Eq. (13-5.2),
°1 , o °l
U= —IfLu + oIlq)l + Z Z IIsz,
2 2z>1 k>1

where the prime on ®] indicates that the flux ®; is due to currents
other than I, (that is, due to sources external to the circuit number 1).
The first term in this expression depends only on the current /; and
therefore represents the self energy of this current. The last term
depends on currents other than /; and therefore represents the energy
of the remaining currents in the system. The second term, however,
depends on the current I; and also on the currents which produce the
external field (causing ®;) at the location of this current. Consequently
this term represents the mutual, or interaction, energy of the current
I, with all other currents of the system, or, which is the same, the energy
of I, in the field of these currents.

Thus, for the magnetic energy of a filamentary current / in an
external magnetic field we have

U = I, (13-5.4)

where @’ is the flux through the circuit carrying the current I due to
this external field. [Eq. (13-5.4) can be obtained, of course, directly
from Eq. (13-4.2); see Problem 13.3.]
For a single circuit, Eqs. (13-5.1), (13-5.3), and (10-5.2) yield
01 0 01 ®2

U= §(I)I— 2LI2—- A (13-5.5a, b, ¢)
where @ is the flux linking the circuit, I is the current in the circuit,
and L is the self-inductance of the circuit. These equations are the
magnetic counterpart of the equations for the electrostatic energy of a
single capacitor.

One frequently uses Eq. (13-5.5b) as the definition of self-inductance
for systems in which the currents are not filamentary. This definition
avoids the ambiguity inherent in the definition stated in Section 10-5.
When this definition is used, Eq. (13-5.5b) is usually combined with
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Eq. (13-1.1a) and the self-inductance is calculated from

L= % f H? do. (13-5.6)
All space

A\
Example 13-5.1 Neglecting end effects, find the self-inductance of a

coaxial cable of length [ consisting of a central wire of radius a and a sheath
of inner radius & and outer radius ¢ (Fig. 13.3).

Fic. 13.3 Example of self-inductance calculation by energy method.

If the central wire carries a current / and the sheath returns this current,
the magnetic field in the wire is, by Ampere’s law,

Ir

=2 =9

where r is the distance from the axis of the wire. The field in the space
between the wire and the sheath is, similarly,

H=% (a,<_r_<_b).

The field in the sheath is

1 1 r2 — b2 I [ —12 "
= 2 _(gz—bz):l I\ — bz) byl

The field outside the sheath (r > ¢) is zero. We thus have, by Eq. (13-5.6),

_ EQ al [r \2 b I J‘ )(cﬂ — r2
L= 1,2|:J; (m) 27 dr -|-J; (%‘ 27r dr + O “——"‘—_ 27r dr



ENERGY AND FORCE IN THE MAGNETOSTATIC FIELD 437

which upon integration and simplification yields

_m G A e e
L_8ﬂl{l +4lna+4|:(62_b2)2lnb — i@ —ml
A

13-6. Correlation between Magnetic Energy and Magnetic

Force

With the aid of Eq. (13-4.2) and the principle of conservation of
energy, we shall now determine the magnetic force which a current
distribution experiences in a magnetic field.

Let us consider an isolated system consisting of a conductor
carrying a current distribution J, placed in a magnetic field of a current
distribution J, carried by another conductor or conductors (the system
also contains all devices necessary for maintaining the currents and
keeping the conductors in equilibrium). The total energy of this
system may be subdivided into the following components:

(1) The magnetic energy of the currents, U.

(2) The electric energy of the battery and other sources which
maintain the currents, U,.

(3) The energy dissipated in Joule’s heating of the conductors
carrying the currents, U,.

(4) The mechanical energy of the devices keeping the conductors
in equilibrium, W.

The principle of conservation of energy requires that the sum of
these four energies remains constant, or that

dU + dU, + dU, + dW = 0.

Suppose now that under the action of the magnetic force F the
first conductor undergoes a small displacement (translation) 4l in a time
interval df, so that the velocity of the conductor during this displacement
is v =dl/dt. Suppose also that during this displacement both
the current density in the first conductor, J,, and the current density
in the second conductor, J,, are maintained constant. In this case the
magnetic self energies of J, and J, remain constant, and the change in
the total magnetic energy of the system is equal to the change in the
magnetic interaction energy U’ of J, with J,, or

’
dU |]=constant = dU IJ=constant'
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The above energy relation can then be written as

dW = —(dU + dUe + dUh) Ij=constant
= —(dU’ + dU, + dU,) |j—constant-

The increment in the mechanical energy dW is, however, equal
to the work F - dl done by the force F in displacing the current dis-
tribution along dl, so that we have

F.dl = —(dU' + dU, + dU,) |;ecomstant: (13-6.1)

Let us now evaluate the term on the right of this equation. When
the conductors are at rest, and the currents are steady, the energy
of the batteries is needed only to supply the steady-state heat losses,
so that dU, + dU, = 0. When conductor 1 undergoes a displacement,
however, it moves through the external magnetic field (flux density
B,) produced by the current distribution of conductor 2. An electric
field (see Section 12-2)

Ef =vxB, (13-6.2)
is then induced in conductor 1. At the same time, conductor 2 may be
regarded as moving with velocity —v through the magnetic field (flux
density B,) produced by the current distribution of conductor 1. An

electric field
Ef = —vxB, (13-6.3)

is therefore induced in conductor 2. These induced fields cause an
additional dissipation of energy, dU*,, so that during the displacement
of conductor 1 (time interval dt) dU, + dU, = dU¥*,.

By Joule’s law and by Egs. (13-6.2) and (13-6.3), we have

dU* = (°fjl Erds +°sz . E;"dv)dt
= ( le -v x Bidy —osz ‘v x B;a'v)dt

= JJl -dl x Bjdy — sz - dl x Bydy,

and using the permutation property of the ‘“box product” (Section 2-7),
we obtain

daU¥ = — fdl -J. x By + fdl - J, x Bydy,
or

dU* = —°dl .fjl x Bldy + °dl -f]2 x BLdv.
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Now, by Example 10-4.6,!

sz x Bydy = —f]l x B dy,
so that
dU¥ = —°2.d1 ‘le x B, dv.

Therefore we can write Eq. (13-6.1) as

F.dl = —(dU’ —°24l. f J. x B;du) (13-6.4)

J=constant
If J is kept constant, however,

dU" = VU’ - dl,
and hence

F.dl = —a’l-(VU’—°2fJ1 xB;dv)

J=constant

Since dl is arbitrary, this relation demands that
F = —(VU’ ~ °2JJl x B;dv)

Now, for constant current, by Eq. (13-4.2) and Example 11-1.4,
VU’ = V(OJJl -A{a’v) =OJJl x Bldv,

and we finally obtain (eliminating °2(J; x B;dv from the preceding
equation)

J=constant

F = vu’ |J=constant’ (13'65)
and (eliminating VU’ from the same equation)
F = f]l x Bdv. (13-6.6)

Equation (13-6.5) constitutes the general relation between the
magnetic energy of a current distribution in the magnetic field of
external currents and the magnetic force acting upon this current
distribution. Since for J = constant, VU’ is equal to VU, this relation

can be written also as
F = VU|J=cmmt. (13-6.7)

Observe that in Egs. (13-6.5) and (13-6.7) the force is given by the
positive gradient of the energy.

! Note that the field previously designated as B, is now designated as B;, and
the field previously designated as B, is now designated as B;.
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Equation (13-6.6) can be written without subscripts as
F= f J x B'dv. (13-6.8)

This is the basic equation representing the magnetic force acting upon
a current distribution in an external magnetic field.

Since the self energy U, = °%4( J - A "dv does not change if J is kept
constant (compare with Section 7-8), this equation is equivalent to

F =°fj x B ds, (13-6.9)

where B is the total field at the location of volume element dv.
For filamentary currents, Eq. (13-6.7) becomes

F = VU |;_constans: (13-6.10)
By Eqgs. (13-5.3), (10-5.4), (11-2.2), and (13-5.1), however,
w| = 3 SILVL,
~ I IE T Ve I Ve
- - szl - %V,z SO,

=—-VU |0=constant'

Therefore for filamentray currents we have also

F=-VU |¢=commnt. (13-6.11)
v
Example 13-6.1 A long, flexible, cylindrical coil of negligible weight,
radius a, and length [ has n turns of wire. The coil is suspended from its
upper end, and to its lower end a weight w is attached (Fig. 13.4). Ne-
glecting end effects of the coil, find the current / that should be sent through
the coil in order that the coil will support the weight w without stretching
or contracting.

We shall solve this problem first by using Eq. (13-6.10) and then by
using Eq. (13-6.11) in order to demonstrate that either equation can be
used for magnetic force calculation in a system of filamentary currents.

Let z be the distance from the point from which the upper end of the
coil is suspended to the center of gravity of w. Since the end effects of the
coil may be neglected, we may assume that the field of the coil is just

nl
l
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ti

I

L]

=
Fic. 13.4 If a current of certain magnitude is sent -
through the coil, the coil lifts the weight. A coil of
this type is known as “Roget’s spiral.” ‘w

and is confined to the interior of the coil. The energy of this field is, by Eq.
(13-1.1a),
o n2J2

Ho 2
2H27m£'—2 7

° o
2

U=

(13-6.12)

The force exerted by the coil on the weight w is, by Eq. (13-6.10),

oU
F=—k
0z [1=constant’
and since Az = Al,
oU © g n2I2
F=—k =_—-L2__
0l " |r=constant 2 B
For equilibrium we must have
F = —uwk,
so that
2
Fo
naN °puom

The same result can be obtained from Eq. (13-6.11). Indeed, the
magnetic flux @ in the coil is

® = Brna® = pHna® = y, —Imzs, (13-6.13)

so that the energy of the coil, Eq. (13-6.12), can be expressed in terms of
O as
°P2

2ugma®’

U:
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The force is then, by Eq. (13-6.11),

ou
F=——k x
az P=constant
or, since as before Az = Al,
0@2
F _ - W k.
Substituting © from Eq. (13-6.13), we again obtain

o 272
‘;0 EIT mzzk,

so that Egs. (13-6.10) and (13-6.11) yield identical results.

F—_

Example 13-6.2 A parallel-plate capacitor of plate separation x and
length [ on a side is a part of the circuit shown in Fig. 13.5. Assuming that
the plates are perfect conductors and neglecting edge effects, find the
magnetic force acting on the capacitor’s plates and compare it with the
electric force acting on the plates.

If the edge effects are neglected and the plates are sufficiently thin,
the magnetic field of the capacitor is confined to the region between the
plates. By Ampere’s law, this field is (compare with Problem 10.8)

I
H= 7"
The magnetic energy of the capacitor is then, by Eq. (13-1.1a),
o o
N s
U= 5 He2x = 2 %

Fic. 13.5 Ifa currentis sent through the plates of a parallel-plate capacitor,
the plates are subjected to magnetic as well as electric forces which act in
opposite directions.
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and the magnetic force on the upper plate, for example, is, by Eq.
(13-6.7),
au, _ “mol?

Fmag = '5'1 =

i.
X |J=constant 2

In terms of the applied voltage V and the resistance R this force is

‘roV?
Fmag = W 1
This force represents a repulsion.
The electric field of the capacitor is
14

E=-

X 2

and the electric energy is, by Eq. (7-1.1a),

_0_‘90 272 _°£0V212
U—2Elx— o "

The electric force on the upper plate is then (see Example 7-7.1)

oUu g, V212
F = —1 — 0 .
elec 0% [p=constant 2x%

This force represents an attraction.

Thus, the plates of the capacitor are subjected to a magnetic as well as
to an electric force, which act in opposite directions. The two forces become
equal when

CugV?®  CggV2AU2
2RE T2

or

R= A/@’-‘ ~ 377 % ohms.
& ! l
If R is larger than this value, the electric attraction predominates. If R
is smaller than this value, the magnetic repulsion predominates.

The simultaneous presence of magnetic and electric forces in systems of
current-carrying conductors is a very important phenomenon, which must
be taken into account when magnetic forces are used for the measurement of
electric currents or for calibration of standard current meters (as in the
so-called ‘““Ampere balance,” for example). If electric forces acting on
current-carrying conductors are disregarded in such measurements or
calibrations, considerable errors may result.

Example 13-6.3 Find the induction drag (the force exerted by a
magnetic field upon a current induced by this field) experienced by the
artificial satellite discussed in Example 12-4.4.
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By Eq. (13-6.8), the drag is
F = j] x B'do.

Let the velocity of the satellite be in the x-direction, and let the magnetic
field be in the y-direction. Since J is in the z-direction, we have

F = —°ifJ,B;dy = —°iJ.JB’dv,

where the integral is extended over the volume of the satellite. Substituting
the expression for J found in Example 12-4.4, dropping the prime on B,
and designating the velocity of the satellite by 4, we obtain for the drag

oo o[ SO o PR A
oy + 20, o, + 20, 3
or
80,0,

F = i3 + 20y

muadB?,
Example 13-6.4 A thin, long conducting strip of width w and thickness
t is moved with velocity v across a uniform magnetic field of flux density
B. Two sliding contacts are attached to the strip, as shown in Fig. 13.6.
One contact delivers a current I to the strip, the other leads it away. Find
the force needed to maintain the motion of the strip.

Fic. 13.6 Force is needed to move a current-carrying conductor across a
magnetic field,
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By Eq. (13-6.8), the magnetic force acting on the strip is (writing B
for B")

F — fJdev,

where J is the current density in the strip, and the integration is extended
over the volume of the strip. In terms of the coordinates shown in Fig. 13.6
this force is

F="[[0s+ 00 xBaa,
and since B is a constant,

F— —°Bxff(Jg+ij)tdx@

= —°B x (iﬂ.}mmxdy +jﬂj,tdx4y).

By the symmetry of the system, however, the first integral of the last expression

B (e L

and the last integral is zero. The magnetic force acting on the strip is
therefore
F = —°Bluj.
The force needed to maintain the motion of the strip is then.
F = °Bluj.

13-7. Energy and Force Relations for a Current Dipole

As we know from Section 11-5, a small, plane, current-carrying
loop, or a current dipole, has the same significance in the theory of
magnetic fields of current-carrying conductors as an electric dipole has
in the theory of electric fields. We shall now obtain explicit expressions
for the energy of a current dipole in an external magnetic field and for
the magnetic force acting on such a dipole.

Starting from Eq. (13-4.2) and taking into account that a current
dipole is a filamentary current, we can write

U'=fJoA'dv=°I§;A’-d1=°1foA’-a’S:°IfB'~dS,

where the integral is extended over the area § of the loop forming the
dipole. By the definition of the current dipole, § must be so small that
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the external field is essentially the same at all points of §. We can
therefore write

U =°IB -de =°IB" .S =°IuyH -8

and finally obtain
U =°m-H, (13-7.1)

where m = /8 is the dipole moment of the dipole.
Combining Eqs. (13-7.1) and (13-6.5), we obtain for the force
acting upon a current dipole in an external magnetic field

’ _ ’ _ ’
F = VU |J=constant - VU |I=constant - VU lm:constant

or

F=°Vm- H (13-7.2)

) Im=const,ant'

Since V x H' = 0 at the location of the dipole, this equation, by vector
identity (V-2), can be transformed into

F =°(m.V)H. (13-7.3)

As one can see, Eqs. (13-7.2) and (13-7.3) are the same as the
corresponding equations for the force acting on an electric dipole in an
external electric field. This implies that the torque acting on a current

dipole in a magnetic field is, just as for an electric dipole in an electric
field,
T ="m x H'. (13-7.4)

13-8. Maxwell’s Stress Equation for a Magnetic Field

According to Section 13-6, the magnetic force experienced by a
current distribution depends only on this distribution and on the
external magnetic field. On the other hand, the fotal magnetic field
around a current distribution also depends only on this current dis-
tribution and on the external field. It may therefore be anticipated
that there should be a correlation between the force acting on a current
distribution and the total magnetic field in the surrounding space. Such
a correlation indeed exists and may be derived in the following manner.

Since in a vacuum V:B = V.-H =0 and B = y4H, we can
write for the magnetic field vector H, according to the vector identity
(V-22),

ﬂof(v xH) xHdo = — %’5£H2ds + yofﬁn(n.dsy (13-8.1)
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But V x H = J, so that

p[,f(v x H) x Hdv =f] x uH dv =f] x Bdv. (13-8.2)

Substituting Egs. (13-8.2) and (13-8.1) into Eq. (13-6.9), we obtain for
the magnetic force acting upon a current distribution in a given region
of space

B s %’EEH%S i %5511(11 - dS), (13-8.3)

where the integrals are extended over the surface of the region under
consideration.

We shall call this equation Maxwell’s stress equation for magnetic
fields. From this equation the force experienced by a current dis-
tribution can be determined if the total magnetic field at the points of
some arbitrary surface of integration (Maxwellian surface) surrounding
the current distribution is known. It is useful to note that this equation
is the magnetic counterpart of the Maxwell stress equation for electric
fields and has the same form as the latter.

Equation (13-8.3) is often written in a symmetric form

01 =]
F-— 3 55H-Bds £ 3(;H(B-d8). (13-8.32)
v

Example 13-8.1 A long coil of n turns, length [, and cross-sectional
area A is wound on two separate thin-walled cores (Fig. 13.7). Neglecting
end effects, find the force needed to pull the two halves of the coil apart
when the coil carries a current 1.

Let us assume that there is a small gap between the two halves of the
coil, and let us construct a Maxwellian surface passing through this gap,
as shown in Fig. 13.7. Since when the end effects are neglected, the field may
be assumed zero everywhere on this surface except in the gap, and since the

Fic. 13.7 The force needed to separate the two parts of the coil can be
found from Maxwell’s stress integral.
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field in the gap is H = nl|l, Maxwell’s stress equation for this surface becomes

I Y (A P f:'(’if)]
F_[“2(£)A+“°z 74 [

where k is the unit vector shown in Fig. 13.7. The force needed to pull the
two halves of the coil apart is therefore
o (n1\?
= Lo (7) A.
Example 13-8.2 A long coil of length [ and radius a is made of n thin
wires, each carrying a current I, as shown in Fig. 13.8. Neglecting edge
effects, find the pitch 6 that the coil should have in order to be “force free”
(a system is called force free when the force acting on each element of the
system is zero). Also, investigate how a variation of the pitch affects the
forces acting on the coil.
By Ampere’s law and by the geometry of the system, the magnetic field
inside the coil is
nl I,
Hinsae = (2mx cot G)E B = 27ra cos 0
and just outside the coil
nl cos 0
2ma

Houtalde =

Let us now apply Maxwell’s stress equation
F— _.%'§H2ds B °,u,,§;H(H-dS)

to a small element of the coil shown in the insert of Fig. 13.8. By symmetry,
only the upper and the lower surfaces of the element contribute to the total

Fic. 13.8 A coil of 45° pitch is force free in radial direction.
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force on the element. Furthermore, since H is perpendicular to dS on both
these surfaces, the last term in Maxwell’s stress equation makes no contri-
bution. Designating the surface area of the element as AS, we therefore
have for the force AF acting upon the element

_ °_,ug nl cos 6\? l) nlsin2 6 \2
AF _[_ 2 ( 2ma ) + 2 \2ma cos 6 AS.
For the coil to be force free this force must vanish, so that

nl cos 6 nl sin2 6

2ma 27a cos 6’

or
cos2f = sin2?0,
which gives
0 = 45°.

As one can easily see, for § > 45° the force on the inner surface of the coil
predominates so that the coil experiences a ‘“magnetic pressure’’ from within
tending to make the radius of the coil larger. On the other hand, for § < 45°,
the force from the outside predominates and the coil experiences a magnetic
pressure from without (“pinch effect”) tending to make the radius of the
coil smaller.

A

PRrROBLEMS

13.1. Show that the ratio of the electric to the magnetic energy in a
region where there is an electric field £ = n volt/meter and a magnetic
field H = n ampere/meter is

g—; ~ 7 x 1078,

13.2. Show that the magnetic self energy of a system of current distri-
butions is always larger than the mutual, or interaction, energy of these
distributions.

13.3. Starting with Eq. (13-4.2), show that the energy of a filamentary
current [ in an external field of flux density B’ can be expressed as

U = °IfB’ . dS = °Id’,

where the integral is extended over a surface bounded by the current, and
@’ is the external flux linking this current.

13.4. Show that the magnetic energy of a system of 7 circuits can be
written as the sum of self energy terms °} Y L,I?plus the sum of mutual
energy terms z 2 L,LIL, where i <j. :
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13.5. A current [ is carried by a circular loop of radius a, and a current
1, is carried by an infinite coplanar straight wire at a distance & > a from the
center of the loop. Show that the mutual energy of this system is

U' = uohih[b — (62 — a?)'?],

13.6. A superconducting ring of weight w is placed over one end of a
coil of wire whose axis is vertical. Show that if a current [ is sent through
the coil, the ring will rise to a maximum height

o
(M — M)
h= 2wl P,

where M, and M, are the respective coefficients of mutual inductance
between the ring and the coil initially and at the height 4, and L is the
self-inductance of the ring. (Hint: the magnetic flux linking a supercon-
ducting ring always remains the same.)
13.7. Show that in a system of n circuits the x-component of the force
exerted upon the j-th circuit by all other circuits is
F,, =°3 LI, a;% (n#j),
< x

where I’s are the currents in the corresponding circuits and L;,, is the mutual
inductance between the j-th and the n-th circuit.

13.8. Show that a circular loop of wire carrying a current J will break
if the breaking strength of the wire, T, is

°I? 9L
T< T
where 7 is the radius and L is the self-inductance of the loop.

13.9. Two square loops, each of length a on a side, are placed parallel
to each other and at right angles to the line joining their centers. The
distance between the centers is £, and each loop carries a current /. Show that
the force between the loops is

° 2
F= —27—7”;1’—1 [#2(2a% + K2)Y2(a® + K2)~1 + h — (a® + 28%)(a® + A2)~2].

13.10. Show that a closed current-carrying circuit does not experience
a net force in a homogeneous magnetic field.

13.11. Show that the loop described in Problem 13.5 is attracted to the
infinite wire with the force

F = °uo,I,[1 — b(b? — a%)~12].
13.12. The self-inductance of a thin circular wire ring is
8R 7)

L= ,uoR(ln7 _Z
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where R is the radius of curvature of the ring, and r is the radius of the wire.
Find the tension in the ring if the ring carries a current I.

13.13. Show that the force exerted by two closed filamentary currents
I, and I, upon each other can be expressed as

% dl - dl
F=— 4 IIIZ §§ Ty (12) 7%2 5

where dl, and dl, are length elements of the two currents in the direction of
the currents, 7y, is the distance between these elements, and r,,) is a unit
vector pointing from length element dl, to length element dl,.

13.14. A circular loop of wire of radius r carries a current I. Show that
if the loop is placed in an external magnetic field of flux density B’ parallel
to the axis of the loop, and if the current is maintained constant, the loop
will experience an additional tension

T = °rIB’.

13.15. Two thin, very long, parallel wires carry currents I; and I,
respectively. The wires are separated by a distance d. Show that each wire
exerts a force per unit length of the other given by

“pohly *polil,
f== omd ' f=+ 27d
depending on whether the two currents are parallel or antiparallel.

13.16. Find the force between the wire and the loop of Example 10-5.4.

13.17. A long coil of n; turns, length /; and cross-sectional area 4 is
partially inserted into a larger coil of n, turns and length /,. Neglecting
end effects, show that if the coils carry currents I; and I, respectively, in the
same direction, there is an attractive force between them

F =°u, 22 AL,
1112

13.18. A plane loop carrying a current [ is placed in a uniform magnetic
field of flux density B. The plane of the loop, whose area is S, forms an
angle 0 with the direction of B. Show that the loop experiences a torque

T = °IBS cos 0.

13.19. Two parallel coaxial rings of radii a and b carry currents I, and
I,, respectively. Show that if a > b and if the centers of the rings are a
distance d apart, the force between the rings is

 °Bugma?h?L],
T 2(a? 4252

13.20. Two concentric circular loops of radii @ and b carry currents I,
and I, respectively. The loops are free to turn about a common diameter.
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Show that if a < b, a torque

° poma® 942
2% (1 TTeE T -)1,,1,,
is required to hold the loops at a right angle to each other.

13.21. A long straight wire carries a current I. A current dipole of
dipole moment m is placed at a distance 7 from the wire. Show that the
dipole is subjected to an attractive or repulsive force F which, depending on
the orientation of the dipole, lies in the interval
°ml

w2’

T =

0<F <L

13.22. Find the force between a large square loop of length a on a side
carrying a current I and a small parallel, coaxial, square loop of length &
on a side carrying a current i and placed at a distance d from the first.

13.23. Suppose that the rim of a “flying saucer’ constitutes a circular
conducting ring of radius a. The saucer is at a distance R from the earth,
directly above earth’s magnetic south pole. The plane of the saucer is
normal to R. Assuming that ¢ € R, show that in order to overcome the
gravitational attraction of the earth a current
oy  2MIMLRE

3ma?

G

must be maintained in the rim. In this equation G is the gravitational
constant, M, is the mass of the earth, M, is the mass of the saucer and m is
the magnetic dipole moment of the earth. Considering that large currents
require massive conductors, of what material could this rim be made?

13.24. A metal bar of weight w and length [ falls without friction along
a vertical track formed by two perfectly conducting metal rails, the ends of
the bar being at all times in contact with the rails. The resistance of the
bar is R, and a resistance R’ is connected between the upper ends of the rails.
Show that if there is a magnetic field B perpendicular to the plane of the
track, the velocity of the bar cannot exceed

w(R + R')
T Br

o

13.25. A thin long coil of n turns, length [/, and cross-sectional area 4
carries a current /. The coil is placed along the axis of a large circular ring
of radius R carrying a current I’. Find the force between the coil and the
ring as a function of position of the center of the coil relative to the center of
the ring.

13.26. A conducting disk is turning about a thin axle passing through
the center at a right angle to the disk and parallel to a magnetic field H. A
current [ is delivered to the disk through a sliding contact on the periphery
and is led away through a contact on the axle. Show that a torque
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T = °}ugHIa?

is needed to maintain the rotation of the disk. (This device is called
“Faraday’s disk.”)

13.27. A circular wire of conductivity ¢; and radius a is bent to form a
ring of radius R (R > a). The ring is embedded in a liquid of conductivity
g, and is turning around its axis with an angular velocity w. A uniform
magnetic field B is present at the location of the ring and is directed along the
axis of the ring. Assuming that the liquid remains at rest, find the induction
drag experienced by the ring. (Hint: consider a portion L of the ring,
R > L > a, and treat it as a long cylinder.)

13.28. Suppose that a bolt of lightning constitutes a current of 104
ampere confined to a long, thin cylindrical shell of 10~1 meter radius. Show
that the cylinder is subjected to an external magnetic pressure (pinch effect)
of approximately 158 newton/ meter 2.

13.29. A toroidal coil of rectangular cross section is wound on two
separate thin-walled cores, each in the shape of a half-ring. The inner
radius of the toroid is a, the outer radius is 4, and the width is w. The
toroid has n turns of wire and carries a current /. Show that the force needed
to pull the two halves apart is

o nlw(l 1
P=i (o 3)

13.30. If the end effects of a solenoid are neglected, and if Maxwell’s stress
integral is evaluated over a cylindrical surface partially inserted into the solenoid
through one of its ends, a force is found to be acting on the space enclosed
by the cylindrical surface. Explain this ‘‘solenoid paradox’’ and calculate the
correction term that must be added to the stress integral to produce a zero force
(see Appendix 3 for a detailed discussion).

13.31. Magnetic forces can be computed not only from fields and cur-
rents but also from potentials and current inhomogeneities. Using the method
employed in Section 7-9, derive the two force equations

F- —°u035w3 x &8 - [@wx])d

and
F=2° §A’-]ds - °f(A'-V)Jdv -° JA’ x (V x J) dv.

13.32. A long straight wire carrying a current / is placed at a distance
d directly in front of and parallel to a long straight ribbon of length L, width
2a, and thickness ¢ carrying a current /I'. Using Problem 11.25 and Example
11-1.1, show that the force exerted on the ribbon by the wire, as computed
by either of the two equations given in Problem 13.31, is



MAGNETOSTATIC FIELD
IN MATERIAL MEDIA

Thus far we have dealt with magnetostatic fields in empty
space, or vacuum. Magnetostatic fields can exist, however, in material
media also. The properties of magnetostatic fields in material media
will be discussed in this chapter.

14-1. Cavity Definition of Magnetic Field Vectors

The measurement procedures by means of which we have defined
the field vectors H and B in Sections 10-1 and 10-2 can be used directly
for measurements in vacuum, gases, and liquids, but not in solids,
since neither a compass needle nor a test coil can move freely inside
solid bodies. Therefore more precise definitions of H and B must be
made in order to make clear what we mean when we speak about
magnetic fields inside material media and, in particular, inside solid
bodies.

The only way to perform a field measurement in a solid body is
to insert a measuring device (compass needle or test coil) into a hole,
or cavity, made in the body. It has been found, however, that such a
measurement is affected by the shape and orientation of the cavity,
Therefore the shape and orientation of cavities to be used for field
measurements must be specified in the definitions of H and B for
material media. We shall define H and B for all media as follows.

The magnetic field vector H at a point inside a material medium is defined

454
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Fic. 14.1 To measure magnetic Fic. 14.2 To measure induction
field in a material medium, a needle- field in a material medium, a coin-
shaped cavity or a long cylindrical shaped cavity or a short cylindrical
cavity is used. cavity is used.

as the vector H measured (by the method of Section 10-1) in a small, needle-
shaped cavity made in this medium at that point and oriented so that the magnetic
Jreld in the cavity is in the direction of the axis of the cavity. The essence of
this definition is illustrated in Fig. 14.1. The requirement that the
cavity be needle-shaped and oriented along the direction of the field is a
result of investigations showing that the magnetic field measurements
in liquids and gases by the direct method of Section 10-1 yield the same
fields as the measurements inside small cavities of this type. The
requirement that the cavity be small is needed in order to associate the
magnetic field vector with a particular point of the medium (a ‘“‘small”
cavity is a cavity whose length is much smaller than the distance over
which the field changes appreciably).

The induction vector B at a point inside a material medium is defined as the
vector B measured (by the method of Section 10-2) in a small, coin-shaped
cavity made in this medium at that point and oriented so that the induction field
in the cavity is in the direction of the axis of the cavity. The essence of this
definition is illustrated in Fig. 14.2. The requirement that the cavity
be coin-shaped and oriented with its axis along the direction of the field
is a result of investigations showing that the induction field measure-
ments in liquids and gases by the direct method of Section 10-2 yield
the same values as the measurements inside small cavities of this type.
The requirement that the cavity be small is needed in order to associate
the induction field vector with a particular point of the medium.

The two definitions which we have just introduced are frequently
expressed symbolically as

H, .um =H- and B =B, (l4-l.la,b)

medium
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Observe that these definitions are analogous to those for the electric
field vectors E and D stated in Section 8-1.

14-2. Fundamental Laws of the Magnetostatic Fields
in Material Media

It has been established that the curl (circulation) law and the
divergence (flux) law for the magnetostatic fields in material media are
the same as for the magnetostatic fields in vacuum:

VxH=], %H-dl =fJ-dS (14-2.1a, b)
and
V-B =0, fﬁB -dS = 0. (14-2.2a, b)

On the other hand, it has been established that, in contrast to the
magnetostatic fields in vacuum, there is no general law which correlates
B and H in an arbitrary medium, although for the majority of common
materials the correlation between B and H can be expressed by the

equation
B = uopH. (14-2.3)

In this equation u is a dimensionless factor of proportionality, different

for different media, frequently different for different points of the same

medium, and often depending on H. It is called the permeability. The

media for which p is not a function of H are called magnetically linear

media. The media for which the correlation between B and H is

independent of the direction of H are called magnetically isotropic media.
Frequently one expresses u as

u=xm + 1. (14-2.4)

The quantity yx, defined by this equation is called magnetic susceptibility.

Equation (14-2.3) reduces to the flux density law for vacuum,
B = pu H, if u = 1. Since the other two fundamental field laws for
material media are identical with the corresponding laws for vacuum, a
vacuum, as far as the magnetostatic field is concerned, is merely a special
case of a material medium—a medium of permeability u = 1.

In a general case, a medium is neither linear nor isotropic—that
is, in general, B is not a linear function of H, and the correlation
between B and H depends on the direction of H relative to certain
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characteristic directions in the medium. An example of anisotropic
media is a crystal. In a crystal, the correlation between B and H
depends on the direction of H relative to crystal’s axis. As a result, in a
crystal, B and H are usually not even parallel to each other, each vector
having a direction of its own.

It is customary to subdivide various media into three classes
according to the magnitude of their permeability. The first class com-
prises media with u < 1; they are called the diamagnetic media. The
second class comprises media with u > 1; they are called the para-
magnetic media. The third class comprises media with 4 > 1; they are
called the ferromagnetic media.

Equations (14-2.1) to (14-2.3) determine the circulation law and
the divergence law for both the magnetic field H and the induction
field B and thus, by Helmholtz’s theorem of vector analysis, constitute
a complete set of equations uniquely specifying these fields.!

The similarity between Egs. (14-2.1), (14-2.2), and (14-2.3) and
the corresponding equations for the magnetostatic fields in vacuum
suggests that many of the formulas which we have learned in the
preceding chapters remain valid for the magnetostatic fields in material
media. In particular, all formulas remain valid for the fields in the
media of constant permeability x4 occupying all space where the fields
are present, provided that g, in these formulas is replaced by the
product pou.

14-3. Inductance of Conducting Systems in the Presence
of Material Media

The inductance of conducting systems in the presence of material

media is defined by the same equations as the inductance in a vacuum—
that is, by Egs. (10-5.2), (10-5.3), (10-5.4), and (10-5.5).

Example 14-3.1 A coaxial cable has two layers of different insulating
materials between the core and the sheath. The length of the cable is /, the
radius of the core is g, that of the sheath is b, the radius of the boundary be-
tween the two insulating layers is ¢, the permeability of the inner layer is
41, that of the outer layer is u, (Fig. 14.3). Find the external inductance of
the cable.

1 Provided, of course, that the fields are regular at infinity, which we always
assume to be the case.
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dr

Fia. 14.3 Coaxial cable with two layers of insulating material.

Let the core carry a current I, and let the sheath return this current.
By the symmetry of the system, the magnetic field must be circular, with
field lines forming circles centered on the axis of the cable. Applying
Ampere’s law to an Amperian circle of radius r centered on the axis, we
obtain fora <r < b
I

2mr

The induction field is then, by Eq. (14-2.3),

I
B:%, a<r<c,
and
I
B=”§:§, c<r<b.

The magnetic flux is

=.fu0.|ulﬂ ¢ + P‘o.“‘an é
27 27 ¢’

The inductance is therefore, by Eq. (10-5.2),

Example 14-3.2 A rectangular loop of wire of width & and height b is
placed at a distance d from a long straight wire. The loop and the wire are
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d—L—-—a—-—-|

M

Fic. 144 Mutual inductance of a wire and a rectangular loop in the
presence of a material medium (only a short segment of the wire is shown).

embedded halfway in a medium of permeability w at a right angle to the
surface of the medium, as shown in Fig. 14.4. Find the mutual inductance

of the loop with respect to the wire.
Let the current in the wire be I;. The magnetic field of the wire is then,

by the symmetry of the system and by Eq. (14-2.1b),

= L
27r’

and the flux density is, by Eq. (14-2.3),

_ Moh _ Hoth
B, = B and B, o

in the upper and lower halves of the system, respectively. The flux produced
by this field through the rectangular loop is

11)21=f +dS = BdS—J. “er+f B, - dr

or
_ mhb d4-a poyfb d+a
Oy = 4 i d + d
_Mlb(l+ﬁ)lnd+a
- i 7

The mutual inductance of the loop with respect to the wire is therefore, by
Eq. (10-5.4),

Ou_ pb(l +p), d+a

I, 47 d ~

L21 =
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14-4. Calculation of Magnetostatic Field and Magnetostatic
Potentials within Material Media in Terms of Current
Distribution

By Poisson’s theorem, the field vector H can be expressed as
H——i V(V'.-H) — V' x (V' x H)
T
All space
By the curl law (14-2.1a), we have V' x H = J. By the divergence
law (14-2.2a) and flux density law (14-2.3) (we are considering here
only linear isotropic media), we have

d ’

r

voH_v.B_ 1o g B ol B o1
Holt Mol Ho L ] m
The above integral for the magnetic field therefore reduces to
V' [B.V'(1 1 v’
H-— — f _L__ul_ +_.f *J g, (1441
4 r
All space All space

Obviously this equation, in general, is not very useful for calculating
H, since in order to evaluate the first integral one needs to know B,
and if B is known, then H is also known from Eq. (14-2.3).

However, in the particular case of a medium of constant per-
meability occupying all space, V'(1/u) = 0, and Eq. (14-4.1) becomes

H=£; V:JW, (14-4.2)
All space

which is the same equation as Eq. (10-6.1) for H in vacuum. All
consequences derived from Eq. (10-6.1) in Chapters 10 and 11 are
therefore also valid for the fields in material media of constant per-
meability occupying all space (y, in the equations of Chapters 10 and
11 must be replaced, however, by u,u to make these equations valid
for material media). Specifically, for material media of constant
permeability occupying all space, we have

1 J X r,
H-=— = dv’, (14-4.3)
™ All space
A—%ﬂ !wg (14-4.4)
All space
and I

p =0 (14-4.5)
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14-5. Boundary Conditions for Magnetic Fields
at an Interface between Two Media

As we already know (see Section 8-5), if two media are in contact
with each other, there exists between them a thin transitional zone over
which the values of the characteristic parameters of the media gradually
change from the values which these parameters have in one medium to
the values which they have in the other medium. It is frequently
convenient to disregard the existence of this transitional zone and to
assume that the characteristic parameters change abruptly over the
“interface” between the media. From the basic laws (14-2.1), (14-2.2),
and (14-2.3) one can derive then the boundary conditions for the field
vectors measured on the opposite sides of the interface. At the points of
the interface these boundary conditions replace the basic laws and are
used in their place.

To obtain the boundary condition for H, let us construct a small,
very narrow rectangular loop crossing the interface between two media,
1 and 2, as shown in Fig. 14.5a. Applying the circulation law (14-2.1b)
to this loop, we have

b € a a
3€H-ﬂ=IH2-dl +JH-dl +le.dl +fH.d1 =f]-ds.
a b ¢ d

Fic. 14.5 (a) Boundary condition for H at an interface between two media.
The tangential component of H is the same on each side of the interface if the
interface carries no surface current. (b) Boundary condition for B at an
interface between two media. The normal component of B is the same on
each side of the interface.
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Since the loop is very narrow, the line integrals over the segments b¢
and da vanish. Since the area of the loop is very small, the surface
integral of the current density vanishes also, unless there is a surface
current confined to the interface, in which case

b
J:] . ds =f J(S) X n]2 . dl,

where J® is the surface current density, and m,, is a unit vector normal
to the interface and directed from medium 1 into medium 2. Hence

b a b
sz'dl +f Hl’dl =fJ(s) X nlz'dl,

and since the loop is short,
Hz'dl + Hl’ (_dl) =J(3) X nlz'dl.

Replacing in this equation 41 by dit,, where t, is a unit vector in the
direction of 41 (and, hence, tangent to the interface) and cancelling dl,
we finally obtain

Hy —H;) -t, =J® xm,-t, (14-5.1)

It is interesting to note that in contrast to the corresponding
equation for the electric fields, Eq. (8-5.1), this equation does not
require that H, and H, both be in a plane normal to the interface.

If there is no surface current on the interface, Eq. (14-5.1) reduces
to

H, —H,;)-¢t, =0, or H; =H,,  (14-5.1a,b)

so that in this particular case the tangential component of H is con-
tinuous across the interface.

To obtain the boundary condition for B, we construct a Gaussian
surface in the shape of a small, very thin pillbox crossing the interface
under consideration, as shown in Fig. 14.5b. Applying flux law
(14-2.2b) to this surface, we easily obtain

(B, —B,)n, =0, or B, =B, (14-5.2a, b)
where n, is a unit vector normal to the interface.

Utilizing the analogy between Eqgs. (14-5.1a, b) for magnetic fields
at a current-free interface and Egs. (8-5.1) and (8-5.2) for electric fields
at a dielectric interface, and utilizing the analogy between the magneto-
static and electrostatic potentials, we can immediately transform the
boundary condition for the electrostatic potential, Eq. (8-5.5), into the
boundary condition for the magnetostatic potential at a current-free
interface, obtaining

P1 = Pa- (14-5.3)
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When dealing with linear isotropic media involving a current-free
interface, it is frequently desirable to express the boundary condition
(14-5.2) for B in terms of the magnetostatic potential ¢. Since by
Eqs. (14-2.3) and (11-3.1) B, = — uou 9¢[0n, this boundary condition

can be written as

dg, o 09,
,“1 an e ﬂs ‘_a'; 3 (]4'5.4’)

where n designates a direction along a normal to the interface.

v
Example 14-5.1 Two long plungers of permeability g are inserted in a

long closely fitting coil of n turns and length / carrying a current I. The
plungers are separated by a narrow gap of length d, as shown in Fig. 14.6.
Neglecting all end effects, find the magnetic field within the coil.

Fic. 14.6 Calculation of the magnetic field in a coil with two plungers.

Applying the circulation law (14-2.1b) to the path abcdefa shown in Fig.
14.6 and taking into account that, if the end effects of the coil are neglected,
the only contribution to the circulation integral comes from the portion of the
path cdef within the coil, we have

cdef

By symmetry, the magnetic field within the coil may be assumed to be
everywhere parallel to the coil’s axis, so that

IH dl = fde f H dl + f H,dl = nl,
edef plungers gap

where the subscripts p and g stand for “plungers” and “gap,” respectively.
Furthermore, if the end effects are neglected, H, and H, may be considered
constant, and the distance ¢f may be conmdered equal to [. Hence we have

H,(—d) + Hd = nl. (14-5.5)
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At the surfaces of the plungers facing the gap, the induction must satisfy
the boundary condition (14-5.2), which can be written as

B, =B,

or, in view of the induction law (14-2.3),

uH, = H,. (14-5.6)

Combining Eqgs. (14-5.5) and (14-5.6), we finally obtain

nl unl
H=iraw—n "=rrau=1n"

14-6. Special Methods for the Solution of Magnetostatic
Problems Involving Media of Constant p.

As we already know, the magnetic field in a current-free region
can be expressed in terms of the magnetostatic potential ¢ as

H= —Vq. (14-6.1)
Combining Eqgs. (14-6.1), (14-2.2a), and (14-2.3), we can write
V-B=V-puuH = —p,V:(uVep) =0,

and, using vector identity (V-4), we obtain

Vip + %‘V‘u «- Vo = 0. (14-6.2)

If u is constant, Vu = 0, and we obtain
V2p = 0. (14-6.3)

Thus, the magnetostatic potential in current-free media of constant u
satisfies Laplace’s equation (14-6.3), just as the electrostatic potential
in charge-free media of constant ¢ and the stationary electric field
potential in conductors of constant ¢ do. Therefore the magnetostatic
problems involving current-free media of constant u can be solved by
essentially the same special methods as those used to solve the corre-
sponding electrostatic or stationary electric field problems. The criteria
for the correctness of solutions obtained by such methods are furnished
by uniqueness theorems for magnetic fields, which can be easily de-
duced from Sections 6-2 and 14-2 [the boundary conditions (14-5.3)
and (14-5.4) must be satisfied, of course, at all interfaces].
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The analogy between electric and magnetic systems frequently
allows one to obtain solutions for magnetic problems from the known
solutions for similar electric problems by merely replacing ¢ and ¢, by u
and p,, or o by uou (see Sections 8-6, 9-3 and 9-4).

Especially useful is the analogy between the magnetostatic prob-
lems involving current-free media of constant x and the stationary
electric field problems involving conductors of constant o. This is
because in both cases the problems are subject to the same types of
fundamental laws:

VxH=0, V-B =0, B = u,uH
for the magnetic problems and

VxE=0, V.J=0, J=06E
for the electric problems. The only essential difference between these
problems is in the fact that o can vary from co to 0, while ugu is always
finite and always larger than 0. Magnetic systems therefore correspond
to conducting systems in which conductors are embedded in an infinite
conductor whose conductivity corresponds to p,, and where there are
no perfect electrodes (because uyu is always less than o). Frequently,
however, one neglects these differences between conducting and mag-
netic systems and obtains approximate solutions for magnetic problems
by means of the methods developed for current-carrying conductors
surrounded by nonconducting media. That this procedure is frequently
well justified can be seen by comparing the electric and the magnetic
field patterns produced by electric and magnetic systems of similar
geometry (Fig. 14.7).
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(a) (b)

Fic. 14.7 (a) Electric lines of force of a current-carrying ring. (b) Mag-
netic lines of force of a circular magnet.
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}I f;

(a) (b)

Fic. 14.8 (a) Magnetic circuit consisting of three segments connected in
series. Ifthe permeability of the material of these segments is sufficientlyhigh,
all magnetic flux is contained in the material. (b) Although an ideal mag-
netic circuit must form a filamentary path for the magnetic flux, the mag-
netic circuit method is frequently applied to systems where the flux is not
filamentary. For example, the magnetic field of an electromagnet can be
approximately calculated by using the magnetic circuit method.

Magnetic Circuits. Theanalogy between current-carrying conduetors
and magnetic systems containing material media leads to the concept of
the magnetic circuit (Fig. 14.8a). A magnetic circuit is a filamentary
path for the magnetic flux ® = | B - d8, just like a conducting circuit
is a filamentary path for the electric current / = [ J - d8S.

The magnetic flux in a magnetic circuit can be represented by
the formula

3

®=—,

(14-6.4)
known as the “Ohm’s law of magnetism.” In this formula ¥” is the
“magnetic voltage,” or magnetomotance, given by ¥~ = nl, where n
is the number of turns, and [ is the current in the coil which produces
the flux (see Fig. 14.8a). Z is the ““magnetic resistance,” or reluctance.
If the circuit contains only one medium, then

l

=—, 14-6.5
HolS ( )
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where u is the permeability of the medium, / is the length of the circuit,
and S is the cross-sectional area of the circuit (cross-sectional area of the
filament containing the flux). If the circuit has several segments
formed by different media, however, then, depending on whether the
segments are in series or in parallel, the reluctance of the circuit is,
respectively,

R =R+ By + - (14-6.6)
or
Xz ! (14-6.7)
TR ARy - '
where %#;, #, - - - are the reluctances of individual segments.

The derivation of these properties of magnetic circuits is.left to
Problem 14.8.

v
Example 14-6.1 A sphere of radius a and permeability u, is placed in

a liquid of infinite extent and permeability u,. A uniform magnetic field H
was originally present in the liquid. Find the resultant field inside and
outside the sphere.

Using the analogy between electric and magnetic systems, we imme-
diately obtain from the results of Example 8-6.1

3
B+ 2p,

inside —

P a3
Houtside = H(l +2 /%TF——Q% 7_3)(:08 0 r,

_Hl_u.a_:.’ sineo,
M+ 2py 7 *

where the coordinates are as shown in Fig. 8.10. The shape of the field lines
in the sphere and in the liquid is exactly the same as the shape of the electric
field lines shown in Fig. 8.11.

Example 14-6.2 Using the magnetic circuit method, find an approxi-
mate value for the magnetic field in the air gap of the electromagnet shown
in Fig. 14.8b.

Let the coil of the magnet have » turns, and let the current in the coil
be I. The magnetomotance is then

¥ =nl.

The circuit has two segments in series: the core of the magnet and the
gap. Let the average length of the core be /,, and let the length of the gap
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be /,. If the permeability of the core is u, and the cross-sectional area of
the core and the gap is S, we have from Egs. (14-6.5) and (14-6.6)

_ bk _p
BoS  popS  popS

The flux in the magnet is then, by Eq. (14-6.4),

@ — HonlS
uly + L,

The magnetic field in the gap is therefore

It follows from this equation that the shorter the gap, the stronger is
the field in the gap.
A

14-7. Magnetization and Magnetization Charges

The theory of magnetic phenomena in material media becomes
especially informative and concise if in addition to the two field vectors
H and B, the third field vector, the magnetization vector M is used. The
magnetization vector is defined by the equation!

M =B — »H. (14-7.1)

As we shall presently see, this vector allows a convenient description
of magnetic phenomena in all media, linear and nonlinear, isotropic
and anisotropic, with no restriction upon the magnetic properties of
the media at all.

Using the magnetization vector, we shall now derive several
important formulas for the magnetostatic field quantities associated
with magnetized media (media for which M # 0).

Let us take the divergence of Eq. (14-7.1). We have

V-M=V-.B—y4,V-H,
and since V «- B = 0 by the divergence law (14-2.2a),
1

V-H= - -—-V.-M. (14-7.2)
Mo

1 The magnetization vector is frequently defined also as M = B/u, — H.
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Substituting Egs. (14-7.2) and (14-2.1a) into the Poisson’s integral for

H [Eq. (2-13.3)],
a1 V/(V -H) — V x (V x H)

v
All space

!’
dv',

r

we obtain

_ v(V - M) 1 vV ox]J

dv' +
4 g r 4 r
All space All space

d'.  (14-7.3)

As can be seen from this equation, the magnetostatic field H
produced by a current distribution J in the presence of a magnetized
medium can be regarded as the sum

H =H, + Hy, (14-7.4)
of two partial fields: the ordinary “vacuum” field
1 V'x]J ., ,
H, = o " dv (10-6.1)
All space

identical with the field produced by J in the absence of the medium,
and the “magnetization” field

1 ’ ’ .
qu = 4"/‘0 f V (Vr M) dl}l, (14-7.5)

Allspace

which is associated with the medium.
By comparing Eq. (14-7.5) with Eq. (4-5.1) representing the
electrostatic field E associated with a charge distribution p,
1 v’
—r’-’ v, (4-5.1)

All space

E=—

4me,

it becomes clear that, as far as the calculation of H (or any quantity
derivable from H) is concerned, a magnetized medium is equivalent to
a certain “magnetic charge” distribution that would produce the field
H,, if the medium were replaced by this charge distribution. This
fictitious charge distribution is called the magnetization charge distribution
and is defined by

Pa = —V . M. (14"7.6)
The magnetization field can therefore be expressed as
1 Vou
H = — ’ =/ .
M 4—77-Iu0 ’ dv N (14’ 7 7)
All space

which is an equation analogous to Eq. (4-5.1).
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Like Eq. (4-5.1), Eq. (14-7.7) can be transformed in various
special forms which frequently are more convenient to use than thc
original equation itself. One such special form is

H, - PuTu gy (14-7.8)
4o ?

All space
which follows from Eq. (14-7.7) in the same manner in which Eq. (4-5.4)
follows from Eq. (4-5.1) (see Section 4-5).

Ordinarily one deals with magnetized media of finite extent. For
a medium of this type, the integral of Eq. (14-7.8) can be split into three
integrals: an integral over the interior volume of the medium, an
integral over the volume of the boundary layer of the medium, and an
integral over the space external to the medium. Then Eq. (14-7.8)

becomes

1 r r
HM — PIWZ u dv’ + p1l12 u dv’'
4, r 4, 4
Interior Boundary layer
1 r
M
P_z_u dv'.

External space

Outside the medium, M = yH — yH = 0,sothat p, = —V-M =
0, and the last integral is therefore zero. The second integral can be
transformed by means of the vector identity (V-23) into a surface and a
volume integral (using primed V’ to avoid ambiguity)

1 r

1
y— uledn — — ; (V- M)=* 4o’
ﬂ'uoBoundary layer r "‘uoBoundary layer T
1 1 r
- - § Tmas) i [ mMowEe,
4, T 4 p, r
Boundary layer Boundary layer
so that
1 1
Hy, = [ gy M. as)
THo Interior 4 Mo Boundary layerr
1
+ f (M- V) 2t dy,
Tho Boundary layer 4

The volume of the boundary layer may be assumed to be as small as
one pleases, and since M is finite, the last integral of this equation
vanishes. In the surface integral, the surface of integration consists of
both the interior and exterior surfaces of the boundary layer, but since
the exterior surface is outside the medium, M = 0 there, and the only
contribution to the surface integral comes from the interior surface
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(observe that on this surface dS ' is pointing into the medium). Further-
more, since the boundary layer may be assumed to be as thin as one
wishes, the surface of integration is just the surface of the medium.
Substituting n; dS’ for dS’, where n;, is a unit vector in the direction of
an inward normal to the surface of the medium, we then obtain from
the last equation

_ Pty ,, 1 § (M-n,) .,
HM—47r,uo f o T dmp, = rudS. (14-7.9)

Interior Surface

If we now compare Eq. (14-7.9) with Eqgs. (4-5.4) and (4-5.5), we
recognize immediately that the magnetization field can be attributed
to a volume distribution of magnetization charge

o= —V-M (14-7.6)

spread through the interior of the medium, and to a surface dis-
tribution of the magnetization charge defined as

oy = —M-n, (14-7.10)

spread over the surface of the medium. We can therefore write Hy, in
the form

1 Pur 1 oyt
H, = '+ jﬁ ~tdS’. (14-7.11)
477”0 Interior r 477”0 Surface r

The curl of the magnetization field is always zero. This follows
from the fact that the curl of the total magnetostatic field, by Eq.
(14-7.4), can be written as

VxH=VxH, + VxH,, (14-7.12)

where by the basic laws (14-2.1a) and (10-4.1b), V x H = J and
V x H, = J. We thus have

V xH, =0. (14-7.13)
The divergence of the magnetization field is, again by Eq. (14-7.4),
V.-H,=V-H—- V-H,,
and since V - H, = 0 by Eqs. (10-4.2a) and (10-4.3), and

1
VH=- _—v.M=2%
Ho Ko
by Egs. (4-7.2) and (14-7.6),

V.H, =22, (14-7.14)
Mo
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By the corollary to Poisson’s theorem (p. 42), the magnetization
field is therefore derivable from the magnetization scalar potential

H, = — Vg, (14-7.15)
where
1

4

Py gy (14-7.16)

0All space

P =

or

1 f PM ;4 1 § oM ;o0
oy = —d + — —ds'.  (14-7.17)
477”0 Interior 4 477”0 Surface 4
Equation (14-7.16) for the magnetization potential can be trans-
formed in the same manner in which the corresponding expression for
the polarization potential [the last integral of Eq. (8-7.4)] was trans-
formed in Section 8-7. The magnetization potential then becomes

I M.V l dv', (14-7.18)
4 r

P =
0All space

which is an equation analogous to Eq. (8-7.7b) for the polarization
potential. Like the integrand in Eq. (8-7.7b), the integrand in Eq.
(14-7.18) can be interpreted as the potential produced by a fictitious
“magnetization” dipole of moment dm = M dv’. The magnetization
vector M can therefore be interpreted as the dipole moment density
(dipole moment per unit volume) of such magnetization dipoles

_dm
T dy

The potential ¢, can then be regarded as the total potential produced
by all these dipoles spread throughout the magnetized medium. This
means that for the purpose of the calculation of ¢,, (or any quantity
derivable from ¢,) a magnetized medium may be replaced by a dis-
tribution of dipoles of moment density dm/dv = M.

Thus a magnetized medium can be replaced by either a magnetiza-
tion charge distribution given by Eqs. (14-7.6) and (14-7.10), or by a
magnetization dipole distribution given by (14-7.19). A choice between
these two possibilities is merely a question of expediency. Note that,
by Egs. (14-7.14) and (14-7.15), ¢ is a harmonic function.

The representation of a magnetized medium as an equivalent
charge distribution is especially useful for dealing with magnets—that
is, bodies possessing a permanent magnetization.

(14-7.19)
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Fic. 14.9 (a) Cylindrical magnet. (b) Equivalent magnetization charge
distribution.

Example 14-7.1 A cylindrical magnet of length 2/ and radius a has
constant magnetization M directed along the axis of the magnet, as shown in
Fig. 14.9a. Find the magnetic field produced by the magnet at an external
axial point.

The field can be obtained easily from Example 8-7.2 by means of
magneto-electric analogy. We shall, however, present here a more or less
complete calculation, for clarity. We shall use Eq. (14-7.11) for this
calculation.

Since M is constant in the interior of the magnet,

Py = _V'M=0’

and the field can be found from o,; alone. On the cylindrical surface of
the magnet M is perpendicular to mjy so that opy = —M -m;, = 0. The
only contribution to th