1872
Progress of Theoretical Physics, Vol. 54, No..6, December 1975
Einstein’s Theory of Relativity and Mach’s Principle

Hiroshi OKAMURA, Tadayuki OHTA,* Toshiei KIMURA**
and Kichiro HIIDA***

Department of Physics, University of Tokyo, Tokyo 118 and
Department of Physics, Faculty of General Education

Kogakuin University, Shinjuku, Tokyo 160

*Department of Mathematical Physics, College of Technology
Seikei University, Musashino, Tokyo 180

**Research Institute for Theoretical Physics, Hiroshima University
Takehara, Hiroshima 725
*** Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 118

(Received January 10, 1975)

The equations of motion of a test particle near the center of a rotating spherical shell
with the mass M and the radius R are investigated in the framework of Einstein’s- theory
of relativity up to the post-post-Newtonian order of approximation.

Among the forces acting on the test particle, the Coriolis and the centrifugal forces
appear. In order that Mach’s thought about rotation is realized, two conditions on M/R
must be imposed. It is shown that these two conditions are not consistent with each other.

In a previous paper” we investigated in the context of Einstein’s theory of
relativity the equations of motion of a test particle near the center of a massive
rotating ring with the angular velocity . Calculations were carried out up to
the post-post-Newtonian order of approximation. Among the forces acting on. the
test particle, there appear the Coriolis and the centrifugal forces, and the @-depend-
ent force directing to the rotation axis. The latter vanishes when GM/R=3n/
(277 —7), where G, M and R are the gravitational constant, the mass and the
radius of the ring, respectively. On this condition the relative magnitude of the
Coriolis force to the centrifugal force in the equations of motion agrees with the
expected one from the equations of motion in a rotating reference frame.

As a more realistic model of the universe, in this paper, we shall consider the
case of a spherical shell rotating with the angular velocity ®. This case was
first studied by Thirring® in the lowest order of G. However, in order to know
whether Einstein’s theory of gravity realizes Mach’s thought® on the relativity
of motion, it is necessary to. calculate the equations of motion of a test particle
at least to the order of (Gw)? because the Coriolis force and the centrifugal
force are proportional to Gw and (Gw)? in the lowest order of G, respectively.®

* The necessity for the calculation of the equations of motion up to the order of (Gw)?® was
stressed by A. Lausberg and R. Simon [Bull. Acad. roy. de Belg. (1971), 125; (1972), 58]. We
would like to thank Dr. Lausberg who has recently informed us of these papers.
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We' shall discuss the equations of motion of the test particle by using the metric
tensor for many-body system which was obtained previously by solving Einstein’s
equation up to the post-post-Newtonian order of approximation.”” The metric tensor
becomes Minkowskian at spatial infinity.

Let F(x', 2% 2*) be a frame of reference in which fixed fictitious stars are
at rest. Consider a slowly moving test particle with the mass m near the center of
the spherical shell which rotates counter-clockwise around the z -axis in the frame F.
The equations of motion of the particle are given in Einstein’s theory of relativity
by

mzt=m(—I—2I v + Tyt — S’V + 210! + TMo'viv?) (@H)
where I'z, denotes the Christoffel symbol evaluated at the position of the test

particle and v*=2%"% Now we would like to know whether these equations of
motion reduce to the form

mi=K-—m(xXZ)XZ+2m(wx25), 2

where K is the w-independent force and J is an angular velocity proportional to
®. The form of Eq. (2) is just the same with that of the equations of motion
in a rotating reference frame in the Newtonian mechanics. Therefore the second
and the third terms on the right-hand side of Eq. (2) represent the centrifugal
force and the Coriolis force in the frame F » respectively. Neglecting the second
and the third powers of v* in Eq. (1) we have

mz'= —mIy—m (2T v — b, 3
The centrifugal force and the Coriolis force should be included in the first and

the second terms on the right-hand side of Eq. (3), respectively.
We shall rewrite the metric tensor g,, as

Jas=Tagthag. (Moo= —1, 7;=0, 75;=0y) 4)
Using this notation, we have
T35 = % (Pt — hog, i+ hago) +O(R), &)
0= —}hu,o+O (A, (6)
T = = bhoo,i + Pos,o+ Shishon s + $Poshon,s— highos o+ O (A9). (7)

We calculated A, for many-body system up to. the post-post-Newtonian order of
approximation.® The part of the expression of A, which is necessary for our
calculation will be given in the Appendix. We shall calculate hee for the spherical
shell from the expression of A, for many-body system by assuming that the shell
is composed of infinitely many bodies and its mass-distribution is uniform.

* In this paper we use the following conventions. Greek indices take the values 0, 1, 2 and
3, while Latin indices take 1, 2 and 3. Repetition of these indices implies summation. A comma
in a subscript denotes a partial derivative. We use the unit of ¢=1, ¢ being the velocity of light.
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Let M and R be the mass and the radius of the spherical shell, whose center
is fixed at the origin of the coordinate system. From the expression (A-3), we

get®

__GMo _ i
o= — S0 (—y, 2, 01 ®
Since the test particle is near the origin of the coordinate system, 'the terms of
the order of (z%)® and of higher orders are neglected in the expression (8). We
can show that A, , vanishes in the case of the spherical shell rotating with a.
constant angular velocity. From Egs. (5), (6) and (8) we have, in the lowest
order of G, ‘

aenm] O 1O
riy="=2221-1 0 o , I'i=0. ©
00 o,

Then the second term on the right-hand side of Eq. (3) reduces to

—% (wxw), | (10)
which means )
__4dGM, (11)

3R '

We shall evaluate I'% up to the

Table 1. . .
order of (Gw)% The expression of
MN"" 1 2 3 4 |Total hg ~ consists of seventeen -“terms.
GCM ) Eleven terms of them are written
R 0 0 0 2 explicitly in the expression (A-4)
and the remaining six are given in
GMRw* 0 2 0 0 2 .
. the expression (A-5). We call them
GEM? 0 0 ol —ol —4 in turn 1,2, ---,17, following the
R order written in the expressions
GII\zlw’ @ty -2 0 1 0 0 1 (A-4) and (A-5). We shall show
. 5 5 the result of the evaluation of these
Type No. V5167 |8|9lw0|1|12|13]1a]l15] 16]17 Total
2782 ‘ _10 20 8ol 2] 4|1
G*M?*w 0 3 0 9 0|0 9 0| -1 '9\0 VART: -2
GMW , .. , 8 8 1 1l 16
R 2+ 00 9 0 . 00 9 0 6 0|0 0 |— 6 9
G:M%*, , 1 74 ' 8 1| 13 417 1217
—22° —H o2&l o]0 |-2 0 |—r -0 |- L] U
R @YD 0 =31 0508 011 0 |=45 @ |71g 228 © | 525 180 6300

*) Hereafter we use the notations z=z', y=x* 2=z
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" terms in Table I. From this table we get

» _2GM_4G*M?
00— o T T
R R

N <GMa)2 1217 GM*»
5R 6300 R?

The third term on the right-hand —side of Eq. (7) gives

2 2,.2
+ 2GMRo* — 2G* M* v+ 16%1-{]‘24_‘" (439

ot 22 (12)

=" (z,y, —22). 13)

As a result we get the force

_16G'M'mo*, . GMmot/, 3737 GM
—mIhy= 100G M ma’ oy <1~ -_>‘,,—2 (14
e Y A 1260 R ) @¥ ~%). A9

The first term on the right-hand side is just the centrifugal force expected from
Eq. (2):

—m(xx5) x5, | (15)

where 2 is given by (11). The second term contributes to the centrifugal force
and the w-dependent force directing to the z-axis.

Now we shall study the equation of motion of the particle in the frame F’ (z/,
', '), which rotates counter-clockwise to F around z-axis with a constant angular
vélocity £. The shell also rotates, in the frame F, around the same axis with
the angular velocity ®. - Under the coordinate transformations®

x'=xcos Qt+ysin ¢, v =—xsin 2t-+y cos 2¢,

' z':z,: t':t’ (16)
the metric tensor ¢.z(x) is transformed as
. T a t]
Voo (=) =22, T @), a7

We shall evaluate the metric tensor gos(x’), and calculate Eq. (3) in the frame
F’.  After a lengthy calculation, we get

m(Z’,y’, &)

AGM

m w)(y’, -z, O)‘—m<.9— AGM

3R

2
=2m< - 0)) (.12’, y,y O)i

*) We cannot ‘apply the coordinate transformations (16) at large distances, where the time
component -of the metric tensor changes its sign and becomes positive. Thus we must modify the
transformation laws (16). Transformation laws must satisfy at least the following two conditions:
(1) At small distances they reduce to the laws (16). (2) At (2" +y%) /2> 00, the velocity 2(z?+y?) 2
does not exceed the velocity of light. As discussed in the previous paper,” the equations of motion
‘(18) remain unchanged under any coordinate transformations satisfying the above two conditions.
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_|_GMma)2<1_3737 ﬂw>( 'y, —22) (18)
5R 1260 R ‘ ]
The first and the second terms on the right-hand side of Eq. (18) represent the
Coriolis and the centrifugal forces, respectively. The last term includes the w-
dependent force directing to z-axis.

Newton considered that we can select an absolute rest-system with respect to
rotation. Mach criticized Newton’s thought. He asserted in his book® that it is
impossible, in principle, to choose the absolute rest-system by observing the motion
of a test particle. According to- him, we cannot determine whether the distant
matter in the universe rotates or the coordinate system does. If there exists an
w-dependent force directing to z-axis, we can recognize the rotation of the distant
matter, that is, the existence of the absolute rest-frame F. '

Here we would like to examine whether Mach’s thought is realized in Ein-
stein’s theory of relativity or not. In order that Mach’s thought is realized, the
following two conditions must be satisfied in Eq. (18):

® GM _1260
R 3737’

.. GM__3

@ R4

The vanishing of the force directing to z-axis requires the condition (i). The
condition (ii) is obtained from the requirement that the Coriolis and the centrifugal
forces must vanish when £=w. If GM/R=3/4, there exists a coordinate system
F’ in which both the Coriolis and the centrifugal forces disappear, but the distant
matter rotates relatively to F’. This imples the existence of the absolute rest-
frame.

Obviously the condition (ii) is not consistent with the condition (i). We
conclude that Mach’s thought is not realized, in the case of the rotating spherical
shell® up to the post-post-Newtonian order of approximation. This conclusion
will be unchanged in higher order of approximation. We cannot deny the pos-
sibility that, for some model with artificial matter distribution, and/or for some artificial
boundary conditions, the conditions corresponding to (i) and (ii) become consistent
with each other. It must be emphasized, however, that Mach’s thought is not
satisfied automatically in Einstein’s theory of relativity.

Appendix

——Expression for hqg

In previous papers® we solved Einstein’s equation for' the many-body system

* We have discussed the case of the rotating ring.? The conclusion in that case is the same
with that obtained in this paper. :
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up to the post-post-Newtonian order of approximation and obtained the expression
" for hap. In this appendix we shall write down only the part of the expression
which is necessary for the evaluation of the Coriolis and the centrifugal forces.
Let m, and %, be the mass and the coordinate of a-th body, respectively.

We have

' h,-,=ai;<2c;2 Mo | G mw:)+hff<v>+---, (A-1)
e 7, e 7, '

where 7,=|x—2,|, v,=4%, and hf;® is the velocity-dependent part of the transverse
traceless part of hy. The expression for AZF® is given by

RITO = %G 3 e (00,507 + 0170, — 50 (11 va) + 6 (v'ng + v277,") (o v,)
a 7,

- 5nai”aj'va2 + 372,,,‘71,,," (nu : va)z} ’ (A . 2)

where n,= (x—%,)/7,. The necessary parts of %y, and ho are

hoi:_%GZ&{T(}J"“nai(na'va)}+"", (A3)
a 7,

h.,,,_zcz:mwrsc;zma —20222”’“’”” 2G2 Y1 3 PaTs

@ Tq 7a L o o e e 7T ap

"%GZ 3 7 5 {19v," — 35 (- 0.0} — 5G* 3] 3 T Mooy,

[ o o'

H8G* P DT oy 0) 4G D 3 P gt U, )

LI % 8 e b£a 7,70

+ L (10 20) (s o)} =2 G D T 0, (g )
2 2 a3 7,

+ G2 I (4 0) (an-00) + G2 S mym,

a b+a ra a b+a

2
X {(5'(1,}‘(1;, —16v,7v,%) - 8vaivbj—a_} In(ro+7y+745)

zaiaz,, azaiazuj
+RETO 4 (A-9)

where 74,=|%,—%)|, n,=(3,—%,) /74 and h"(") denotes the contribution of A7F® to
hy. The expression for Ay ® is given by

RIT® — . e z‘, ma’ {ma —35(n,-va)% — G2 )IDY b (3042 — (120 - v0)}
e rarb

+lG2 > Z mb{ 3v,* + (nab ‘Ub) +2v,%}
2 @ bFa 7, 7qp
1

G S I (my ) (50— (a0 — 1 () (0 90)]

|
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+ %Gz ;1:;; ma,:Lb [ (o 1as) 505" — (ap - 05) — 14 (na-v5) (1260 vf’) 1

Ta .

R - ‘ 02 . ag 3
+G* mam { o'+ 8vs'vy) ——— + 8v,t .,’——————}
2 g mams | (Va0 v ey Rl e

X In (| — 34| + |2 — 53] +|%a— 55]) - = " (A-5)

The metric tensor for the rotating spherical shell is obtained from the above
expressions for k., for many-body system by performing the following substitutions: ‘

2ai— {R sin 0, cos (0¢+ ¢o), R sin O, sin(0F + ga), R cos 0.},

4 2
Sim, —»]—WJ‘ dl, sin 6, I dd., .
a 47‘[ 0 0 )
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