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Last time

• Forces at a fundamental level

• Electric field

• net electric field

• electric field lines



Warm Up Questions
Which of the following could be the charge on the particle hidden
by the question mark?

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that
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Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.
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Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.
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(A) 0 C

(B) −1 C

(C) −1.6× 10−19 C

(D) +1 µC
1Figure from Halliday, Resnick, Walker
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flow through the loop is
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Overview

• Electric field lines

• Net electric field

• the effect of fields on charges

• the electric dipole



Field Lines

The electrostatic field caused by an electric dipole system looks
something like:

 25.4 Obtaining the Value of the Electric Field from the Electric Potential 755

25.4  Obtaining the Value of the Electric Field  
from the Electric Potential

The electric field E
S

 and the electric potential V are related as shown in Equation 
25.3, which tells us how to find DV if the electric field E

S
 is known. What if the situ-

ation is reversed? How do we calculate the value of the electric field if the electric 
potential is known in a certain region?
 From Equation 25.3, the potential difference dV between two points a distance 
ds apart can be expressed as

 dV 5 2 E
S

? d sS  (25.15)

If the electric field has only one component Ex, then E
S

? d sS 5 Ex dx . Therefore, 
Equation 25.15 becomes dV 5 2Ex dx, or

 Ex 5 2
dV
dx

 (25.16)

That is, the x component of the electric field is equal to the negative of the deriv-
ative of the electric potential with respect to x. Similar statements can be made 
about the y and z components. Equation 25.16 is the mathematical statement of 
the electric field being a measure of the rate of change with position of the electric 
potential as mentioned in Section 25.1.
 Experimentally, electric potential and position can be measured easily with a 
voltmeter (a device for measuring potential difference) and a meterstick. Conse-
quently, an electric field can be determined by measuring the electric potential at 
several positions in the field and making a graph of the results. According to Equa-
tion 25.16, the slope of a graph of V versus x at a given point provides the magnitude 
of the electric field at that point.
 Imagine starting at a point and then moving through a displacement d sS along 
an equipotential surface. For this motion, dV 5 0 because the potential is constant 
along an equipotential surface. From Equation 25.15, we see that dV 5 2 E

S
? d sS 5 0; 

therefore, because the dot product is zero, E
S

 must be perpendicular to the displace-
ment along the equipotential surface. This result shows that the equipotential sur-
faces must always be perpendicular to the electric field lines passing through them.
 As mentioned at the end of Section 25.2, the equipotential surfaces associated 
with a uniform electric field consist of a family of planes perpendicular to the 
field lines. Figure 25.11a shows some representative equipotential surfaces for this 
situation.

Figure 25.11 Equipotential surfaces (the dashed blue lines are intersections of these surfaces with the page) and elec-
tric field lines. In all cases, the equipotential surfaces are perpendicular to the electric field lines at every point.

q

!

A uniform electric field produced 
by an infinite sheet of charge

A spherically symmetric electric 
field produced by a point charge

An electric field produced by an 
electric dipole

a b c

E
S

 

Notice that the lines point outward from a positive charge and
inward toward a negative charge.

1Figure from Serway & Jewett



Field Lines

710 Chapter 23 Electric Fields

The number of lines drawn leaving a positive charge or approaching a nega-
tive charge is proportional to the magnitude of the charge.
No two field lines can cross.

 We choose the number of field lines starting from any object with a positive 
charge q1 to be Cq1 and the number of lines ending on any object with a nega-
tive charge q2 to be C uq2u, where C is an arbitrary proportionality constant. Once  
C is chosen, the number of lines is fixed. For example, in a two-charge system, if 
object 1 has charge Q 1 and object 2 has charge Q 2, the ratio of number of lines in 
contact with the charges is N2/N1 5 uQ 2/Q 1u. The electric field lines for two point 
charges of equal magnitude but opposite signs (an electric dipole) are shown in 
Figure 23.20. Because the charges are of equal magnitude, the number of lines that 
begin at the positive charge must equal the number that terminate at the negative 
charge. At points very near the charges, the lines are nearly radial, as for a single 
isolated charge. The high density of lines between the charges indicates a region of 
strong electric field.
 Figure 23.21 shows the electric field lines in the vicinity of two equal positive 
point charges. Again, the lines are nearly radial at points close to either charge, 
and the same number of lines emerges from each charge because the charges are 
equal in magnitude. Because there are no negative charges available, the electric 
field lines end infinitely far away. At great distances from the charges, the field is 
approximately equal to that of a single point charge of magnitude 2q.
 Finally, in Figure 23.22, we sketch the electric field lines associated with a posi-
tive charge 12q and a negative charge 2q. In this case, the number of lines leaving 
12q is twice the number terminating at 2q. Hence, only half the lines that leave the 
positive charge reach the negative charge. The remaining half terminate on a nega-
tive charge we assume to be at infinity. At distances much greater than the charge 
separation, the electric field lines are equivalent to those of a single charge 1q.

Q uick Quiz 23.5  Rank the magnitudes of the electric field at points A, B, and C 
shown in Figure 23.21 (greatest magnitude first).

Pitfall Prevention 23.3
Electric Field Lines Are Not Real  
Electric field lines are not mate-
rial objects. They are used only 
as a pictorial representation to 
provide a qualitative description 
of the electric field. Only a finite 
number of lines from each charge 
can be drawn, which makes it 
appear as if the field were quan-
tized and exists only in certain 
parts of space. The field, in fact, 
is continuous, existing at every 
point. You should avoid obtain-
ing the wrong impression from a 
two-dimensional drawing of field 
lines used to describe a three-
dimensional situation.

The number of field lines leaving 
the positive charge equals the 
number terminating at the 
negative charge.

! "

Figure 23.20  The electric field 
lines for two point charges of 
equal magnitude and opposite 
sign (an electric dipole). 

C
A

B

! !

Figure 23.21  The electric field 
lines for two positive point charges. 
(The locations A, B, and C are dis-
cussed in Quick Quiz 23.5.)

Figure 23.22 The electric field 
lines for a point charge +2q and a 
second point charge 2q. 

!2q "q

Two field lines leave !2q for every 
one that terminates on "q.

! "

23.7  Motion of a Charged Particle in a Uniform 
Electric Field

When a particle of charge q and mass m is placed in an electric field E
S

,  the electric 
force exerted on the charge is q E

S
 according to Equation 23.8 in the particle in a 

1Figure from Serway & Jewett



Field Lines

Compare the electrostatic fields for two like charges and two
opposite charges:

+

Fig. 22-6 The electric field vectors at
various points around a positive point
charge.
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Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.
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field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
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The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
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Field Lines

Compare the fields for gravity in an Earth-Sun system and
electrostatic repulsion of two charges:

+
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Field Lines: Uniform Field

Imagine an infinite sheet of charge. The lines point outward from
the positively charged sheet.

F 

E 
+ + + + 

+ + + + 

+ + + + 

+ + + + 

Positive test 
charge 

(a) (b) 

+ + + 

+ + + + 

+ + + 

+ 
+ + + 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

(c) 

+ + 

+ 

58122-3 E LECTR IC F I E LD LI N E S
PART 3

Although we use a positive test charge to define the electric field of a charged
object, that field exists independently of the test charge. The field at point P in
Figure 22-1b existed both before and after the test charge of Fig. 22-1a was put
there. (We assume that in our defining procedure, the presence of the test charge
does not affect the charge distribution on the charged object, and thus does not
alter the electric field we are defining.)

To examine the role of an electric field in the interaction between charged
objects, we have two tasks: (1) calculating the electric field produced by a given
distribution of charge and (2) calculating the force that a given field exerts on a
charge placed in it. We perform the first task in Sections 22-4 through 22-7 for
several charge distributions. We perform the second task in Sections 22-8 and
22-9 by considering a point charge and a pair of point charges in an electric field.
First, however, we discuss a way to visualize electric fields.

22-3 Electric Field Lines
Michael Faraday, who introduced the idea of electric fields in the 19th century,
thought of the space around a charged body as filled with lines of force. Although
we no longer attach much reality to these lines, now usually called electric field
lines, they still provide a nice way to visualize patterns in electric fields.

The relation between the field lines and electric field vectors is this: (1) At
any point, the direction of a straight field line or the direction of the tangent to a
curved field line gives the direction of at that point, and (2) the field lines are
drawn so that the number of lines per unit area, measured in a plane that is
perpendicular to the lines, is proportional to the magnitude of . Thus, E is large
where field lines are close together and small where they are far apart.

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive
test charge anywhere near the sphere, an electrostatic force pointing toward the
center of the sphere will act on the test charge as shown. In other words, the elec-
tric field vectors at all points near the sphere are directed radially toward the
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b,
which point in the same directions as the force and field vectors. Moreover, the
spreading of the field lines with distance from the sphere tells us that the magni-
tude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field
vectors at all points near the sphere would be directed radially away from
the sphere. Thus, the electric field lines would also extend radially away from the
sphere.We then have the following rule:

E
:

E
:

Fig. 22-2 (a) The electrostatic force
acting on a positive test charge near a

sphere of uniform negative charge. (b)
The electric field vector at the loca-
tion of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the nega-
tively charged sphere. (They originate
on distant positive charges.)

E
:

F
:

Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).
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Figure 22-3a shows part of an infinitely large, nonconducting sheet (or plane)
with a uniform distribution of positive charge on one side. If we were to place a

Fig. 22-3 (a) The electrostatic force
on a positive test charge near a very

large, nonconducting sheet with uni-
formly distributed positive charge on
one side. (b) The electric field vector 
at the location of the test charge, and
the electric field lines in the space
near the sheet.The field lines extend
away from the positively charged
sheet. (c) Side view of (b).
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:
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Electric field due to an Infinite Sheet of Charge
Suppose the sheet is in air (or vacuum) and the charge density on
the sheet is σ (charge per unit area):

E =
σ

2ε0

It is uniform! It does not matter how far a point P is from the
sheet, the field is the same.
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where field lines are close together and small where they are far apart.
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test charge anywhere near the sphere, an electrostatic force pointing toward the
center of the sphere will act on the test charge as shown. In other words, the elec-
tric field vectors at all points near the sphere are directed radially toward the
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b,
which point in the same directions as the force and field vectors. Moreover, the
spreading of the field lines with distance from the sphere tells us that the magni-
tude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field
vectors at all points near the sphere would be directed radially away from
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Field Lines: Uniform Field
The field from two infinite charged plates is the sum of each field.

734 Chapter 24 Gauss’s Law

Example 24.5   A Plane of Charge

Find the electric field due to an infinite plane of positive charge with uniform 
surface charge density s.

Conceptualize  Notice that the plane of charge is infinitely large. Therefore, the 
electric field should be the same at all points equidistant from the plane. How 
would you expect the electric field to depend on the distance from the plane?

Categorize  Because the charge is distributed uniformly on the plane, the charge 
distribution is symmetric; hence, we can use Gauss’s law to find the electric field.

Analyze  By symmetry, E
S

 must be perpendicular to the plane at all points. The 
direction of E

S
 is away from positive charges, indicating that the direction of E

S
 

on one side of the plane must be opposite its direction on the other side as shown 
in Figure 24.13. A gaussian surface that reflects the symmetry is a small cylinder 
whose axis is perpendicular to the plane and whose ends each have an area A 
and are equidistant from the plane. Because E

S
 is parallel to the curved  surface of 

the cylinder—and therefore perpendicular to d A
S

 at all points on this surface— 
condition (3) is satisfied and there is no contribution to the surface integral from this surface. For the flat ends of the 
cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence, the total flux 
through the entire gaussian surface is just that through the ends, FE 5 2EA.

S O L U T I O N A

Gaussian
surface

!
!

!
!

!
!

!

!
!

!

!
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!
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!
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!
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!
!

E
S

 

E
S 

Figure 24.13  (Example 24.5) A 
cylindrical gaussian surface pen-
etrating an infinite plane of charge. 
The flux is EA through each end 
of the gaussian surface and zero 
through its curved surface.

Write Gauss’s law for this surface, noting that the 
enclosed charge is q in 5 sA:

FE 5 2EA 5
q in

P0
5

sA
P0

Solve for E : E 5 
s

2P0
 (24.8)

Finalize  Because the distance from each flat end of 
the cylinder to the plane does not appear in Equation 
24.8, we conclude that E 5 s/2P0 at any distance from 
the plane. That is, the field is uniform everywhere. Fig-
ure 24.14 shows this uniform field due to an infinite 
plane of charge, seen edge-on.

Suppose two infinite planes of charge are 
parallel to each other, one positively charged and the 
other negatively charged. The surface charge densities 
of both planes are of the same magnitude. What does 
the electric field look like in this situation?

Answer  We first addressed this configuration in the 
What If? section of Example 23.9. The electric fields 
due to the two planes add in the region between the 
planes, resulting in a uniform field of magnitude s/P0, 
and cancel elsewhere to give a field of zero. Figure 24.15 
shows the field lines for such a configuration. This 
method is a practical way to achieve uniform electric 
fields with finite-sized planes placed close to each other.

WHAT IF ?

!
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!

!

!
!
!
!
!
!
!
!

Figure 24.14  (Example 24.5) 
The electric field lines due to an 
infinite plane of positive charge.
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Figure 24.15 (Example 24.5) 
The electric field lines between 
two infinite planes of charge, 
one positive and one negative. 
In practice, the field lines near 
the edges of finite-sized sheets 
of charge will curve outward.

 

Conceptual Example 24.6   Don’t Use Gauss’s Law Here! 

Explain why Gauss’s law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a tri-
angle with a point charge at each corner.

The field in the center of a parallel plate capacitor is nearly
uniform.



Free charges in an E-field

The force on a charged particle is given by F = qE.

If the charge is free to move, it will accelerate in the direction of
the force.

Example: Ink-jet printing

Input
signals

Deflecting plate

G C
Deflecting

plate

E

592 CHAPTE R 22 E LECTR IC F I E LDS

The electrostatic force acting on a charged particle located in an external electric
field has the direction of if the charge q of the particle is positive and has the
opposite direction if q is negative.

E
:

E
:

F
:

CHECKPOINT 3

(a) In the figure, what is the direction of
the electrostatic force on the electron
due to the external electric field shown?
(b) In which direction will the electron
accelerate if it is moving parallel to the y
axis before it encounters the external
field? (c) If, instead, the electron is ini-
tially moving rightward, will its speed
increase, decrease, or remain constant?

x
e

y

E

Fig. 22-14 The Millikan oil-drop appa-
ratus for measuring the elementary charge
e.When a charged oil drop drifted into
chamber C through the hole in plate P1, its
motion could be controlled by closing and
opening switch S and thereby setting up or
eliminating an electric field in chamber C.
The microscope was used to view the drop,
to permit timing of its motion.

Fig. 22-15 Ink-jet printer. Drops shot
from generator G receive a charge in
charging unit C.An input signal from a
computer controls the charge and thus the
effect of field on where the drop lands on
the paper.

E
:

22-8 A Point Charge in an Electric Field
In the preceding four sections we worked at the first of our two tasks: given a
charge distribution, to find the electric field it produces in the surrounding space.
Here we begin the second task: to determine what happens to a charged particle
when it is in an electric field set up by other stationary or slowly moving charges.

What happens is that an electrostatic force acts on the particle, as given by

(22-28)

in which q is the charge of the particle (including its sign) and is the electric
field that other charges have produced at the location of the particle. (The field is
not the field set up by the particle itself; to distinguish the two fields, the field
acting on the particle in Eq. 22-28 is often called the external field. A charged
particle or object is not affected by its own electric field.) Equation 22-28 tells us

E
:

F
:

! qE
:

,

Measuring the Elementary Charge
Equation 22-28 played a role in the measurement of the elementary charge e by
American physicist Robert A. Millikan in 1910–1913. Figure 22-14 is a represen-
tation of his apparatus. When tiny oil drops are sprayed into chamber A, some of
them become charged, either positively or negatively, in the process. Consider a
drop that drifts downward through the small hole in plate P1 and into chamber C.
Let us assume that this drop has a negative charge q.

If switch S in Fig. 22-14 is open as shown, battery B has no electrical effect on
chamber C. If the switch is closed (the connection between chamber C and the
positive terminal of the battery is then complete), the battery causes an excess
positive charge on conducting plate P1 and an excess negative charge on conduct-
ing plate P2. The charged plates set up a downward-directed electric field in
chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any
charged drop that happens to be in the chamber and affects its motion. In partic-
ular, our negatively charged drop will tend to drift upward.

By timing the motion of oil drops with the switch opened and with it closed
and thus determining the effect of the charge q, Millikan discovered that the
values of q were always given by

q ! ne, for n ! 0, "1, "2, "3, . . . , (22-29)

in which e turned out to be the fundamental constant we call the elementary
charge, 1.60 # 10$19 C. Millikan’s experiment is convincing proof that charge is
quantized, and he earned the 1923 Nobel Prize in physics in part for this work.
Modern measurements of the elementary charge rely on a variety of interlocking
experiments, all more precise than the pioneering experiment of Millikan.

Ink-Jet Printing
The need for high-quality, high-speed printing has caused a search for an
alternative to impact printing, such as occurs in a standard typewriter. Building
up letters by squirting tiny drops of ink at the paper is one such alternative.

Figure 22-15 shows a negatively charged drop moving between two conduct-
ing deflecting plates, between which a uniform, downward-directed electric field

has been set up. The drop is deflected upward according to Eq. 22-28 and thenE
:

E
:

Insulating
chamber
wall
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Motion of a Charged Particle in an E-field

712 Chapter 23 Electric Fields

Example 23.11   An Accelerated Electron 

An electron enters the region of a uniform electric field as shown 
in Figure 23.24, with vi 5 3.00 3 106 m/s and E 5 200 N/C. The 
horizontal length of the plates is , 5 0.100 m.

(A)  Find the acceleration of the electron while it is in the elec-
tric field.

Conceptualize  This example differs from the preceding one 
because the velocity of the charged particle is initially perpen-
dicular to the electric field lines. (In Example 23.10, the veloc-
ity of the charged particle is always parallel to the electric field 
lines.) As a result, the electron in this example follows a curved 
path as shown in Figure  23.24. The motion of the electron is 
the same as that of a massive particle projected horizontally in a 
gravitational field near the surface of the Earth.

Categorize  The electron is a particle in a field (electric). Because the electric field is uniform, a constant electric force is 
exerted on the electron. To find the acceleration of the electron, we can model it as a particle under a net force.

Analyze  From the particle in a field model, we know that the direction of the electric force on the electron is down-
ward in Figure 23.24, opposite the direction of the electric field lines. From the particle under a net force model, 
therefore, the acceleration of the electron is downward.

AM

S O L U T I O N

Replace the work and kinetic energies with values appro-
priate for this situation:

Fe Dx 5 K ! 2 K " 5 1
2mvf

2 2 0   S   vf 5 Å2Fe Dx
m

Analyze  Write the appropriate reduction of the conser-
vation of energy equation, Equation 8.2, for the system of 
the charged particle:

W 5 DK

Substitute for the magnitude of the electric force Fe from 
the particle in a field model and the displacement Dx:

vf 5 Å2 1qE 2 1d 2
m

5 Å2qEd
m

Finalize  The answer to part (B) is the same as that for part (A), as we expect. This problem can be solved with different 
approaches. We saw the same possibilities with mechanical problems.

(0, 0)

!

(x, y)

vi î
!

!
vS

x

y

The electron undergoes a downward 
acceleration (opposite E), and its motion 
is parabolic while it is between the plates.

S

E
S

 

" " " " " " " " " " " "

! ! ! ! ! ! ! ! ! ! ! !

Figure 23.24 (Example 23.11) An electron is pro-
jected horizontally into a uniform electric field pro-
duced by two charged plates.

Substitute numerical values: ay 5 2
11.60 3 10219 C 2 1200 N/C 2

9.11 3 10231 kg
5  23.51 3 1013 m/s2

The particle under a net force model was used to develop 
Equation 23.12 in the case in which the electric force on 
a particle is the only force. Use this equation to evaluate 
the y component of the acceleration of the electron:

ay 5 2
eE
me

 

(B)  Assuming the electron enters the field at time t 5 0, find the time at which it leaves the field.

Categorize  Because the electric force acts only in the vertical direction in Figure 23.24, the motion of the particle in 
the horizontal direction can be analyzed by modeling it as a particle under constant velocity.

S O L U T I O N

 

▸ 23.10 c o n t i n u e d

Trajectory is a parabola: similar to projectile motion.



Motion of a Charged Particle in an E-field
(a) What is the acceleration of an electron in the field of strength
E?
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lines.) As a result, the electron in this example follows a curved 
path as shown in Figure  23.24. The motion of the electron is 
the same as that of a massive particle projected horizontally in a 
gravitational field near the surface of the Earth.

Categorize  The electron is a particle in a field (electric). Because the electric field is uniform, a constant electric force is 
exerted on the electron. To find the acceleration of the electron, we can model it as a particle under a net force.

Analyze  From the particle in a field model, we know that the direction of the electric force on the electron is down-
ward in Figure 23.24, opposite the direction of the electric field lines. From the particle under a net force model, 
therefore, the acceleration of the electron is downward.

AM

S O L U T I O N

Replace the work and kinetic energies with values appro-
priate for this situation:

Fe Dx 5 K ! 2 K " 5 1
2mvf

2 2 0   S   vf 5 Å2Fe Dx
m

Analyze  Write the appropriate reduction of the conser-
vation of energy equation, Equation 8.2, for the system of 
the charged particle:

W 5 DK

Substitute for the magnitude of the electric force Fe from 
the particle in a field model and the displacement Dx:

vf 5 Å2 1qE 2 1d 2
m

5 Å2qEd
m

Finalize  The answer to part (B) is the same as that for part (A), as we expect. This problem can be solved with different 
approaches. We saw the same possibilities with mechanical problems.
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The electron undergoes a downward 
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Figure 23.24 (Example 23.11) An electron is pro-
jected horizontally into a uniform electric field pro-
duced by two charged plates.

Substitute numerical values: ay 5 2
11.60 3 10219 C 2 1200 N/C 2

9.11 3 10231 kg
5  23.51 3 1013 m/s2

The particle under a net force model was used to develop 
Equation 23.12 in the case in which the electric force on 
a particle is the only force. Use this equation to evaluate 
the y component of the acceleration of the electron:

ay 5 2
eE
me

 

(B)  Assuming the electron enters the field at time t 5 0, find the time at which it leaves the field.

Categorize  Because the electric force acts only in the vertical direction in Figure 23.24, the motion of the particle in 
the horizontal direction can be analyzed by modeling it as a particle under constant velocity.

S O L U T I O N

 

▸ 23.10 c o n t i n u e d

(b) The charge leaves the field at the point (`, yf ). What is yf in
terms of `, vi ,E , e, and me?

yf = −
eE `2

2mev2i



Motion of a Charged Particle in an E-field
(a) What is the acceleration of an electron in the field of strength
E?
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(A)  Find the acceleration of the electron while it is in the elec-
tric field.
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jected horizontally into a uniform electric field pro-
duced by two charged plates.

Substitute numerical values: ay 5 2
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9.11 3 10231 kg
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The particle under a net force model was used to develop 
Equation 23.12 in the case in which the electric force on 
a particle is the only force. Use this equation to evaluate 
the y component of the acceleration of the electron:

ay 5 2
eE
me

 

(B)  Assuming the electron enters the field at time t 5 0, find the time at which it leaves the field.

Categorize  Because the electric force acts only in the vertical direction in Figure 23.24, the motion of the particle in 
the horizontal direction can be analyzed by modeling it as a particle under constant velocity.

S O L U T I O N

 

▸ 23.10 c o n t i n u e d

(b) The charge leaves the field at the point (`, yf ). What is yf in
terms of `, vi ,E , e, and me?

yf = −
eE `2
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Trick for working out Net field

Look for symmetry in the problem.

To find the E-field, usually several components (Ex , Ey , Ex) must
be found independently.

If the effects of charges will cancel out, you can neglect those
charges.

If the effects of charges cancel out in one component, just worry
about the other component(s).



Question about net field

597QU E STION S
PART 3

1 Figure 22-20 shows three arrangements of electric field lines. In
each arrangement, a proton is released from rest at point A and is
then accelerated through point B by the electric field. Points A and
B have equal separations in the three arrangements. Rank the
arrangements according to the linear momentum of the proton at
point B, greatest first.

ducing it? (c) Is the magnitude of
the net electric field at P equal to
the sum of the magnitudes E of the
two field vectors (is it equal to
2E)? (d) Do the x components of
those two field vectors add or can-
cel? (e) Do their y components
add or cancel? (f) Is the direction
of the net field at P that of the can-
celing components or the adding components? (g) What is the di-
rection of the net field?

4 Figure 22-23 shows four situations in which four charged parti-
cles are evenly spaced to the left and right of a central point. The
charge values are indicated. Rank the situations according to the
magnitude of the net electric field at the central point, greatest first.

A B A B A B

(a) (b) (c)

Fig. 22-20 Question 1.

2 Figure 22-21 shows two square arrays of charged particles. The
squares, which are centered on point P, are misaligned. The parti-
cles are separated by either d or d/2 along the perimeters of the
squares. What are the magnitude and direction of the net electric
field at P?

+6q

–2q

+3q
–2q

+3q

–q

+6q

–2q

–3q

–q

+2q –3q

+2q

–qP

Fig. 22-21 Question 2.

where z is the distance between the point and the center of the
dipole.

Field Due to a Continuous Charge Distribution The
electric field due to a continuous charge distribution is found by
treating charge elements as point charges and then summing, via
integration, the electric field vectors produced by all the charge el-
ements to find the net vector.

Force on a Point Charge in an Electric Field When a
point charge q is placed in an external electric field , the electro-
static force that acts on the point charge is

. (22-28)F
:

! qE
:

F
:

E
:

Force has the same direction as if q is positive and the
opposite direction if q is negative.

Dipole in an Electric Field When an electric dipole of dipole
moment is placed in an electric field , the field exerts a torque

on the dipole:
(22-34)

The dipole has a potential energy U associated with its orientation
in the field:

(22-38)

This potential energy is defined to be zero when is perpendicular
to ; it is least ( ) when is aligned with and greatest
( ) when is directed opposite .E

:
p:U ! pE

E
:

p:U ! "pEE
:

p:
U ! "p: ! E

:
.

#: ! p: " E
:

.
#:

E
:

p:

E
:

F
:

3 In Fig. 22-22, two particles of charge "q are arranged symmet-
rically about the y axis; each produces an electric field at point P on
that axis. (a) Are the magnitudes of the fields at P equal? (b) Is
each electric field directed toward or away from the charge pro-

x

y

P

–q –q

d d

Fig. 22-22 Question 3.

(1)
+e +e–e –e

(2)
+e –e+e –e

(3)
–e +e+e +e

(4)
–e –e –e+e

d d d d

Fig. 22-23 Question 4.

5 Figure 22-24 shows two charged particles fixed in place on an
axis. (a) Where on the axis (other
than at an infinite distance) is there
a point at which their net electric
field is zero: between the charges, to
their left, or to their right? (b) Is
there a point of zero net electric field
anywhere off the axis (other than at
an infinite distance)?

6 In Fig. 22-25, two identical cir-
cular nonconducting rings are cen-

+q –3q

Fig. 22-24 Question 5.

P1 P2 P3

Ring A Ring B

Fig. 22-25 Question 6.
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Electric Dipole

electric dipole

A pair of charges of equal magnitude q but opposite sign,
separated by a distance, d .

dipole moment:

p = qd r̂

where r̂ is a unit vector pointing from the negative charge to the
positive charge.

584 CHAPTE R 22 E LECTR IC F I E LDS

Fig. 22-8 (a) An electric dipole.The
electric field vectors and at point
P on the dipole axis result from the dipole’s
two charges. Point P is at distances r(!) and
r(") from the individual charges that make
up the dipole. (b) The dipole moment of
the dipole points from the negative charge
to the positive charge.

p:

E
:

(")E
:

(!)

z 

r(–) 

r(+)

E(+) 

d 

z 

–q 

+q 

P 

(a) (b) 

+ + 

– – 

p 

E(–)

Dipole 
center 

Up here the +q
field dominates.

Down here the –q
field dominates.

22-5 The Electric Field Due to an Electric Dipole
Figure 22-8a shows two charged particles of magnitude q but of opposite sign,
separated by a distance d. As was noted in connection with Fig. 22-5, we call this
configuration an electric dipole. Let us find the electric field due to the dipole of
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the
axis through the particles, which is called the dipole axis.

From symmetry, the electric field at point P—and also the fields and
E
:

(") due to the separate charges that make up the dipole—must lie along the
dipole axis, which we have taken to be a z axis.Applying the superposition princi-
ple for electric fields, we find that the magnitude E of the electric field at P is

(22-5)

After a little algebra, we can rewrite this equation as

(22-6)

After forming a common denominator and multiplying its terms, we come to

(22-7)

We are usually interested in the electrical effect of a dipole only at distances
that are large compared with the dimensions of the dipole—that is, at distances such
that z # d. At such large distances, we have d/2z $ 1 in Eq. 22-7. Thus, in our ap-
proximation, we can neglect the d/2z term in the denominator, which leaves us with

(22-8)

The product qd, which involves the two intrinsic properties q and d of the
dipole, is the magnitude p of a vector quantity known as the electric dipole moment

of the dipole. (The unit of is the coulomb-meter.) Thus, we can write Eq. 22-8 as

(electric dipole). (22-9)

The direction of is taken to be from the negative to the positive end of the
dipole, as indicated in Fig. 22-8b. We can use the direction of to specify the
orientation of a dipole.

Equation 22-9 shows that, if we measure the electric field of a dipole only at
distant points, we can never find q and d separately; instead, we can find only their
product. The field at distant points would be unchanged if, for example, q were
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant
points along the dipole axis, it turns out that E for a dipole varies as 1/r 3 for all
distant points, regardless of whether they lie on the dipole axis; here r is the dis-
tance between the point in question and the dipole center.

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc-
tion of for distant points on the dipole axis is always the direction of the dipoleE

:
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Electric Dipole (Example 23.6, B)
Evaluate the electric field from the dipole at point P, which is at
position (0, y).

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.

S O L U T I O N

P

y

r

a
q

a
–q

x

u

u

u u

! "

E
S

 

E2
S

E1
S

Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.

 



Electric Dipole (Example 23.7)

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.

S O L U T I O N

P

y

r

a
q

a
–q

x

u

u

u u

! "

E
S

 

E2
S

E1
S

Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.

 

The y -components of the electric field
cancel out, Ey = 0.

x-components:

Ex = E1,x + E2,x

Also E1,x = E2,x

Ex = 2
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ke q
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cos θ

)

=
2ke q
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Electric Dipole (Example 23.7)

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.
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Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.

 

The y -components of the electric field
cancel out, Ey = 0.

x-components:

Ex = E1,x + E2,x

Also E1,x = E2,x

Ex = 2

(
ke q

r2
cos θ

)

=
2ke q

(a2 + y2)

(
a√

a2 + y2

)

=
2ke a q

(a2 + y2)3/2



Electric Dipole (Example 23.7)

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.
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Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.

 

What happens as we move infinitely far from
the dipole? (y >> a)
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Electric Dipole (Example 23.7)

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.
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Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.

 

What happens as we move infinitely far from
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Electric Dipole (Example 23.7)

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.
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Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.

 

What happens as we move infinitely far from
the dipole? (y >> a)

The constant a in the denominator has less
and less affect on the function. We can see
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Big-O Notation (Example 23.7)

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.
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Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.
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Big-O Notation (Example 23.7)

 23.4 Analysis Model: Particle in a Field (Electric) 703

(B)  Evaluate the electric field at point P in the special case that uq1u 5 uq2u and a 5 b.

Conceptualize  Figure 23.13 shows the situation in 
this special case. Notice the symmetry in the situa-
tion and that the charge distribution is now an elec-
tric dipole.

Categorize  Because Figure 23.13 is a special case of 
the general case shown in Figure 23.12, we can cat-
egorize this example as one in which we can take the 
result of part (A) and substitute the appropriate val-
ues of the variables.
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Figure 23.13  (Example 23.6) 
When the charges in Figure 
23.12 are of equal magnitude 
and equidistant from the origin, 
the situation becomes symmet-
ric as shown here.

Analyze  Based on the symmetry in Figure 
23.13, evaluate Equations (1) and (2) from 
part (A) with a 5 b, uq1u 5 uq2u 5 q, and f 5 u:

(3)    Ex 5 ke 
q

a 2 1 y 2  cos u 1 ke 
q

a 2 1 y 2  cos u 5 2ke 
q

a 2 1 y2  cos u

 Ey 5 ke 
q

a 2 1 y 2  sin u 2 ke 
q

a 2 1 y 2  sin u 5 0

From the geometry in Figure 23.13, evaluate 
cos u:

(4)   cos u 5
a
r

5
a1a 2 1 y 2 21/2

Substitute Equation (4) into Equation (3): Ex 5 2ke 
q

a 2 1 y 2 c a1a 2 1 y 2 21/2 d 5 ke 
2aq1a 2 1 y 2 23/2

(C)  Find the electric field due to the electric dipole when point P is a distance y .. a from the origin.

S O L U T I O N

In the solution to part (B), because y .. a, neglect a2 com-
pared with y 2 and write the expression for E in this case:

(5)   E < ke 
2aq

y 3

Write the components of the net electric field 
vector:

(1)   Ex 5 E1x 1 E 2x 5 ke 
0 q1 0

a 2 1 y 2  cos f 1 ke 
0 q 2 0

b 2 1 y 2  cos u

(2)   Ey 5 E 1y 1 E 2y 5 ke 
0 q1 0

a 2 1 y 2  sin f 2 ke 
0 q2 0

b 2 1 y 2  sin u

▸ 23.6 c o n t i n u e d

Finalize  From Equation (5), we see that at points far from a dipole but along the perpendicular bisector of the line 
joining the two charges, the magnitude of the electric field created by the dipole varies as 1/r 3, whereas the more 
slowly varying field of a point charge varies as 1/r 2 (see Eq. 23.9). That is because at distant points, the fields of the two 
charges of equal magnitude and opposite sign almost cancel each other. The 1/r 3 variation in E for the dipole also is 
obtained for a distant point along the x axis and for any general distant point.
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Electric Dipole (Example 23.7)

As we move away from the dipole (red line, r−3) the E-field falls
off faster than it does for a point charge (blue line, r−2).

The negative charge partially shields the effect of the positive
charge and vice versa.



Summary

• electric field lines

• the effect of fields on charges

• the electric dipole

Homework
• Collected homework 1, posted online, due on Monday, Jan 22.

Serway & Jewett:

• NEW: Ch 23, onward from page 716. Probs: 36, 51, 61, 79

• Understand examples 23.8 and 23.9.


