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A review and elucidation of the theory of the convergence function is presented here. In this connection,
certain phenomenal aspects of binocular visual experience are noted; it is felt that any general theory must
take cognizance of them. In particular, the Luneburg theory of the alley experiments is discussed in some
detail, and an attempt is made to highlight the underlying and possibly equivocal assumptions. In em-
phasizing the distinction between pure mathematical postulates and pure phenomenal experience, we have
hoped both to clarify those points at which arbitrary decisions may legitimately enter into the theory (e.g.,
the normalization), and to set the stage for deliberate experimentation.

A. INTRODUCTION

OME six years ago, Rudolf Luneburg developed a

new mathematical description of certain aspects of
binocular visual experience.! The critical experimental
data on which he based his formulation are the findings
of Walter Blumenfeld, in 1913, that apparent parallel
alleys are physically narrower than alleys which seem
to be of the same width (Fig. 1).2'Alleys which are
visually parallel seem to be of uneven width and are
convex inwards; equidistant-alleys, are, in fact, distally
converging, and also concave outwards.? In reformu-
lating this fact, within the compass of an intrinsic
geometry, Luneburg devised a three-dimensional bi-
polar coordinate system in which the angle of con-
vergence plays an essential role. We shall call this angle
v [Fig. 2(B)]. Within the Luneburg geometry, the
functional relationship between the bipolar angle v and
the polar visual distance r specifies in its entirety the
transformation equation from visual space to physical
space [Fig. 2(A) and Fig. 2(B)]#* In the empirical
determination of this function lies a possible three-

* Part of this work was done in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in the Department
of Psychology at New York University. In this connection, I wish
to thank Hans-Lukas Teuber for his highly critical guidance. At
the American Optical Company Research Center, Oscar W.
Richards has served many difficult hours as observer; and Gordon
L. Walker has helped immeasurably with the mathematics. I wish
to acknowledge my particular indebtedness to both.

1R. Luneburg, (a) Mathematical Analysis of Binocular Vision
(Princeton University Press, Princeton, 1947); (b) “Methods in
binocular visual perception,” in Couwrant Anniversary Volume
(New York University Press, New York, 1948), pp. 215-240;
(c) J. Opt. Soc. Am. 40, 627-642 (1950).

2 W. Blumenfeld, Z. Psychol. 65, 241-404 (1913).

3 The first (and only?) causal explanation of the shape of the
alley curves was given by Fr. Mayer-Hillebrand [Z. Sinnesphysiol.
61,267-324 (1930/1931) ], based on the Aubert-Foerster phenome-
non [see H.-Aubert and R. Foerster, Arch. Opthalmol. Graefe’s
3,1 ff. (1857)]. However, she assumed that the alley discrepancy
reported by Blumenfeld was an artifact, due to the inadvertent
fixation of the end pair of lights. Blumenfeld did not accept her
explanation [Z. Sinnesphysiol. 62, 132-136 (1932)], and con-
sidered that the problem of the shape of these curves still remained.

4 Note that this collapse of the physically discreet eyes into one
single point, namely the origin of visual space—the ego-center—
introduces a lacuna into our space. The distance between the two
eyes, and the two eyes themselves, are not in visual space. This
precludes the study of entoptic space, for example, but is not at all
an unreasonable restriction from the phenomenological point of
view.

dimensional solution of the classical Fechner problem,
and a reaffirmation of the complexity of the psycho-
physiological isomorphism which we must invoke in
accordance with Gestalt theory. It has long been held
that the prototypical physiological function is logarith-
mic, not linear (e.g., Pieron).? It may be that it is non-
Euclidean as well.

B. THE TRANSFORMATION OF COORDINATES

The Luneburg derivation!® of the general Fechnerian
transformation [e.g., reference 1c, Eq. (6.1)7], from the
intrinsic polar visual coordinates [Fig. 2(A)] to the
extrinsic bipolar physical coordinates [Fig. 2(B)], is
quite different from a derivation which we might
elaborate in analogy with Fechner’s classical reasoning;;
but its general meaning is exactly the same. Given the
values for o1— @2, $1—3, and r1—rs, we attempt to
develop an equation which would enable us to predict

X

Fic. 1. A schematic representation of the findings of Walter
Blumenfeld (1913) that the “ . . . distance-alleys [d] are wider,
nearer to the observer, than are the parallel alleys [$].”” L and
R represent the left and right eyes, respectively.

5H. Pieron, The Sensations (Yale University Press, New
Haven, 1952).
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F16. 2. (A) Luneburg’s choice of polar coordinates in binocular
visual space. O represents the polar origin, the ego-center. (B)
Luneburg’s choice of bipolar coordinates in physical space. L and
R represent the bipolar origin, the left and right eyes, respectively.

the consequent distance and position in physical space—
and vice versa.

The transformations between the two sets of coordi-
nates (Fig. 2) may be taken as follows®:

Visual point P

Polar ¢, 3, 7(y)
Cartesian £, g, ¢

Physical point Q

Bi-polar ¢, 6, v
Cartesian %, y, 2

where 72=E49>-}¢2 is the radial distance in a con-
formal Euclidean map of visual space [as shown in
Fig. 2(A)].

This chart shows that when we are given any distance,
Q1—Qsz, in physical space, a corresponding distance,
P1— Py, in visual space, is uniquely specified when 7(y)
is known. Our present concern is with this latter
relationship.

8 The relations ¢~ ¢ and §=¢ are reasonable on their face;
analytical support may be found in N. Balazs and G. L. Walker.
(Ms. in preparation for J. Opt. Soc. Am. Much of the present
discussion will be found more fully elaborated in this paper.)
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C. THE r(y) FUNCTION

Certain important properties of the phenomenology
of distance perception have been known for many
years; they are readily available to phenomenological
analysis.

(a) There is nothing in our visual space to correspond
with the purely intellectual concept of infinity. All
visual experience is finite. Indeed, all experience is finite
regardless of the sense modality. The very act of per-
ceiving entices the stimulus into the finite realm; the
two events are temporally coextensive. As long as a
point is seen at all, as long as it can be said to exist in
binocular visual space, it is seen at a finite distance,
regardless of its physical distance.”

(b) Moreover, visual experience is bounded; all
physical distances beyond a certain magnitude appear
to be the same. This is true for both monocular and
binocular vision, though the two bounds are by no
means identical.®

(c) Visual space possesses a marked singularity. In
an accurate phenomenology, the origin of visual space
cannot be placed anywhere at will. It is the self which
sees, and it is the self which must, perforce, contain the
origin. Zero radial distances must always describe the
strange case that the point of regard is, actually,
within the head.?

(d) The apparent distance of an object (up to the
boundary) increases regularly with the decrease in the
convergence of the two eyes, though at a somewhat
slower pace.l

7If an infinite visual experience did exist for us, then the choice
of the unit would be entirely restricted; it would be the absolute
radius of the pseudosphere,r.,=2/(—K) §, This has been mentioned
time and again by previous workers in this area. However, such an
experience does not exist and cannot exist. We suggest that all
references to this possibility cease; they are entirely fanciful.

8 A clear distinction between the various bounds of visual
experience has not yet been made. [But see A. Linksz, Trans. Am.
Ophthalmol. Soc. 52, 877-946 (1955).] The bound of binocular
visual space is defined, physiologically, by the cessation of the
significance of the angle of convergence (or of convergence inner-
vation). This is, typically, much nearer than the distance at which,
mathematically, y=0. Moreover, it is also, typically, much
nearer than the horizon distance, itself primarily a monocular
perspective experience. (This point is of relevance in explanations,
for example, of the Moon illusion.) The true:binocular-bound
would be that distance beyond which an actually receding pin-
point of light ceased to appear to recede. The reason this distance
has not been determined in our laboratory is that it lies well
beyond the dimensions of our darkroom.

9 In his discussion of the phenomenology of vision, E. Hering,
Beitrage zur Plysiologie (W. Engelmann, Leipzig, 1861-1864)
placed this origin at the point of momentary .fixation, the so-
called nuclear point; he and his students [e.g., F. P, Fischer and
J. W. Wagenaar, Documental Ophthalmol. 7-8, 359-391 (1954)]
have therefore to struggle with the very difficult problem of the
transformation thence to the Cyclopean (ego?) center.

10 This point, it must be emphasized, refers to a purely binocular
visual environment; no monocular cues whatsoever can be per-
mitted to enter. The apparently relevant discussion of these
issues by H. E. Gruber [Am. J. Psychol. 69, 469-476 (1956)] in
connection with the experimental work of A. Gilinsky [Psychol.
Rev. 58, 460-482 (1951)7is so greatly interwoven with confusions
between monocular and binocular environments, that it is difficult
to evaluate. As a single example: “over-constancy” has never been
demonstrated in an exclusively binocular environment. All the
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(e) There is no inherent component of visual ex-
perience which would automatically predispose us to
one or another visual unit, say visual miles, feet, or
inches. Therefore, in any general mathematization,
whether binocular or not, the choice of the unit must
remain entirely unrestricted.”

The more specific analytical consequences of these
points have been discussed elsewhere.® Balazs and
Walker have shown rigorously that beyond these, the
r(y) function is most probably arbitrary, depending
upon empirical and practical considerations only.

There have been two previous attempts to reduce this
arbitrariness, Luneburg! and Hardy et al."* Luneburg, on
the basis of some preliminary empirical evidence,
considered it to be a logarithmic function 6 Inr/éy=—¢
such that

1’(7): "U(’Y'*‘F):Ce—”'/ (1)

where C=¢~°+. In doing this, the number of parameters
is limited to two, C(or u) and o. This is further delimited
by specifying C (hence p) as constant such that C=2
(the value of » when y=0), the r distance to physical
infinity for all observers under all visual environments.
Hardy, Rand, and Rittler,”* and Zajaczkowska'® have
made use of this restriction for their determinations of
K. (K is an index of the curvature of visual space—see
reference 1.) Note that this defines the unit for all our
experimental magnitudes.* The determination of o re-
mains the only task, before the visual space of an
individual may be completely described.

Not entirely satisfied with the results from the
Blumenfeld alley experiments, Luneburg tried to derive
the same 7 () function from independent evidence based
upon stereoscopic fusion, of unequal left and right eye
images (reference 1a, p. 51 ff). But in this he forgot one
critical point : the theory must assume equal images in both
eyes. Luneburg has often confused this issue by calling
~ sometimes “bipolar parallax” and sometimes “bipolar
disparity.” It is never disparity. The geometry is

studies of this phenomenon have included, in some uncontrolled
manner, contributions of monocular, binocular, and experiential
origin. To show “over-constancy” in the distance alleys would be
more to the point.

1 Hardy, Rand, Rittler, Blank, and Boeder, The Geomelry of
Binocular Space Perception, ONR Terminal Report, N6onr27119;
NR143-638 (J. Schiller, Elizabeth, New Jersey, 1953).

2 Hardy, Rand, and Rittler, A.M.A. Arch. Ophthalmol. 45,
53-63 (1951).

1 A, Zajaczkowska, (a) Quart. J. Exptl. Psychol. 8, 66-78
(1956); (b) J. Opt. Soc. Am. 46, 514-527 (1956).

14 No special meaning is to be ascribed to the fortuitous fact, in
Eq. (1), that 7(v)=7(0)7(y). This merely means that the unit,
7(0), and the factor, C, are identical. This can only be true of the
logarithmic function. In all other cases, where r(y)#r(0)r(y), to
specify 7 (0) still specifies a unit and uniquely determines C. The
specification of any 7 (v») value would also specify the factor, C,
and the unit, provided only that 0<r(yz)<e, for this entails
only that 7(v)=[7(vn)?(v) /7 (vn). The choice, by Luneburg, of
7(0) as a unit was made because physical infinity is a rather
singular value in visual space, the ultimate binocular bound. Any
other 7(v,) would have done as well (reference 21). The choice is
exactly analogous to using miles s inches.
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exclusively a geometry of nondisparate images,'® the
single two-eyed image. It is implicit that visual space is
elaborated by a succession of immediate neighborhoods
to the point of momentary fixation, the nuclear point.
And, certainly, those peripheral images which are not
embedded within the Luneburg torus of constant
convergence, do not appear in the analysis. The
geometry describes the distance function of the angle .
Tt does not describe the depth function of binocular
disparity. In all our discussions, we find it very helpful
to distinguish carefully between visual depth and visual
distance. The cortical fusion (“physiological con-
gruence”) of unequal (“‘geometrical noncongruence”)
retinal images for the production of visual depth
certainly implies a unique non-Euclidean geometry of
its own, as long noted by Woodworth.!® But the present
geometry is predicated upon the proper fusion of
“identical retinal images,” because we may talk only
of “images” within single points [the points, R and L,
of Fig. 2(B)]. It is a generalized geometry of a very
specialized space indeed! Dimorphic phenomena, such
as true depth perception (orthostereoscopy), aniseikonic
depth distortion (parastereoscopy), and anomalous
retinal correspondence, all presuppose nonconformal
geometry and cannot yet be described.!”

Another, though minor difficulty exists. The 7(y)
function proposed by Luneburg,'® and used by Hardy,
Rand, and Rittler'? and Zajaczkowska'® for the deter-
mination of the Gaussian curvature K violates our third
condition of singularity at the origin, where the 7 dis-
tance must be zero. This necessitates a slight change in
the curvature values reported by them. A correct ex-
pression of the same general form would be

r(y)=C(e""—e™7) (2)
where
r(0)=2=C(l—e").

In the other previous attempt to reduce the arbitrari-
ness of the convergence function, Hardy ef al.* and
Blank!$ have suggested that we let 7(v)=7'(y—7va),
where 7(v,) is the greatest visible distance, such that
the “iseikonic” coordinate I'=~y—1, be used in prefer-
ence to the coordinate v. We wish to emphasize that this
substitution has only apparent relevance to the arbi-
trariness of the convergence function; in truth, it does
not affect it at all.®

On this basis alone, the role of their suggestion is
somewhat unclear; though, in another direction, it does
help to highlight a hitherto ambiguous point. Luneburg

15 Indeed, since the theory reduces the two eyes to two points in
physical space, L and R, it is not yet really proper to talk of retinal
images af all within its compass.

16 R, Woodworth, Experimental Psychology (Henry Holt, New
York, 1938), p. 661.

17 Work is in progress in this laboratory extending the theory in
these directions; see also: A, Linksz, Physiology of the Eye (Grune
& Stratton, New York, 1952), Vol. II. Independently of this,
Zajaczkowska (reference 13a, p. 77) has already discussed some
experimental tests of such extensions.

18 A, A. Blank, J. Opt. Soc. Am. 43, 717-727 (1953).
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has implied that the visual distance to the binocular
horizon is constant for a given observer (which it
most probably is), and is somehow permanently carried
in his visual faculty (which it most probably is not);
here it serves as a yardstick (hence a unit) against which
all other distance judgments are made, even when there
are no momentarily visible points actually at the horizon.
The present suggestion to the contrary does serve to
reaffirm the fact that it is the distance to the farthest
point in the momentary configuration which plays this
role. Visual distances are phenomenally matched off
against the distance of the farthest visible point; this
could, of course, actually be a point at the binocular
horizon distance, but in the typical case it is nearer.
What this means, in other words, is that the actual
phenomenal yardstick which we are wont to use for
estimating distances changes with the distance of the
far point; in fact, it is exactly that distance itself (cf.
Gilinsky, reference 10). It is as if we visually measure
short distances in inches, and long distances in feet.
The measures, of course, must all be equivalent in the
end, but we do seem to have somelinterest in the size
(manageability?) of the measuring stick.

Thus, by implication, this suggests that we should
employ a normalization based on y>0 in place of the
Luneburg normalization based on the binocular horizon
v=0. More important, however, this encourages the
complete mathematization of laboratory studies. Here
we can simply obtain an estimate of the distance to the
far-point (hence a geodesic magnitude) and refer, by
ratios, all our other visual magnitudes to this. In the
case of the horizon distance, though we have a perfect
right to normalize according to it since it is also a
singular distance, we can never turn our measurements
into actual subjective visual units because we do not
have (nor can we directly get) the observer’s estimate of
this distance. Only on this basis, however, can we
maintain that normalization according to the horizon
distance is to be discouraged. In either case, we can
thoroughly explore the convergence function, in-
dependently of the final transformation to subjective
units; and, in either case, the convergence function is
still completely unspecified.® We still must learn, from
the empirical evidence, what is the general form and
what are the least number of parameters involved for a
satisfactory fit. This latter problem is particularly
important when the issue of individual prediction
arises, for it would be very convenient if we could
employ only one, or at most two, parameters.

The present evidence is such as to throw doubt on the
unique significance of Luneburg’s parameters, though
the more general meaning remains. The index of curva-
ture K is a measure of the deviation of the space from
Euclidean space. Used only in this most important sense

Y Indeed, other than pointing up the difficulties of an (0)
measurement, the virtue of this substitution has not been made
clear. Moreover, the further suggestion (in 11) that r(y)=r(vyn)/
(1o (y—va)] still suffers from a violation of our condition (c).
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(not in its relation to the convergence function), K
will evince an inverse relationship to visual skills, that is
eye-hand (e.g., hyperbolic-Euclidean) coordination.
But, in another sense, that of Luneburg, K is also a
measure of the distance of the boundary of visual space,
it is the visual limit of the convergence function,? and
in this manner it may, conceivably, directly reflect
certain visual skills which we might call “boundary”’
skills: estimates of very great distances, estimates of
rates of approach from afar and of rates of recession to
and about the horizon, predictions of the best path to
a distant goal, and so on, all judgments referring to the
experience of immense distance. Thus, for small dis-
tances, the absolute magnitude of K would, necessarily,
be inversely related to visual skills, while for great
distances it would, presumably, be directly related.
Hence, the psychophysical significance of K is highly
ambiguous. At present, little more than conjecture
relates K to visual skills. The other Luneburg parameter
o is an analytically arbitrary measure of distance
perception. We now know that the decision to express
the 7(v) function in terms of 7, can be based on empirical
considerations only.® And the evidence® suggests that
equally good mathematical approximations of the data
may be obtained with completely different convergence
functions using basically different parameters.t

The present study employs the classical Hillebrand
alley experiment? in an attempt to clarify these various
issues.

D. THE GEODESIC DISTANCE

The geodesic distance D is simply a more formal
mathematical term for the phenomenal distance; it is
the visual distance as we actually experience it, as we
estimate it in subjective visual units. We thus give a
proper answer to the question: “How far away is that
point of light?”

Remember, that this must be a purely binocular

# It is directly related to the radius of the pseudosphere, see
also; reference 11, p. 13; H. von Helmholtz, “On the origin and
significance of geometrical axioms,” Popular Lectures on Scientific
Subjects, translated by E. Atkinson (Longmans, Green and Com-
pany, London, 1881), pp. 27-72. We employ the spherical represen-
tation, such that, for D=0, £24y24{2=12=[2/(—K)} ], where
2/(—K)? is hyperbolic infinity (by definition) and 7,=2 is the
visual distance (in 7 units) to physical infinity (by choice). K
may presumably be related to visual skills, in that when K= —1 ,
hyperbolic infinity and the geodesic distance to physical infinity
are equal; that is, one would have the actual phenomenal impres-
sion of “Infinite” distance. Hence, Luneburg assumed that the
closer K was to —1, the closer would be the correspondence
between visual experience at very great distances and physical
reality. However, this assumption is more of a mathematical
hunch than a serious psychophysical postulate. At present, as
there is no evidence on it, one way or the other, it remains highly
speculative. Moreover, no special significance whatever is to be
accorded the possible magnitudes of K, i.e., from 1.0 to —1.0.
This range is simply a result of the choice (v.s.) of 7,=2. Had we
chosen 7,=20, then K would have ranged between -+-0.1 and
—0.1; if we had let r,=1, then K would have ranged hetween
+2.0 and —2.0; this is an arbitrary point, a choice of unit size.

2T, Shipley, J. Opt. Soc. Am. 47, 804 (1957).

22 . Hillebrand, (a) Denkschr. math. naturw. K1.d. Akd. Wien
72, 255-307 (1903). (b) Lehre von den Gesichisempfindungen (J.
Springer, Vienna, 1929), )
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judgment ; no monocular cues (as they are traditionally
enumerated, e.g., reference 16) can be allowed to enter.
This distinction is very subtle, much more so than the
traditional approach would imply.® However we can
reinforce the distinction to some extent by ascribing it
more particularly to the physiological significance of
convergence, in whatever manner it may be found (or
supposed) to operate. ,

The D distances are thus radial visual distances from
the self to the points of regard; these distances emerge
from the ego-center in the manner of a sunburst. Once
D is known, for a given observer, we can describe the
subjective visual magnitudes of all visible distances by
means of the D(y) function. Both the differential and
the finite forms of the metric may generally be used for
this purpose.! However, for the mathematization of the
alley experiments, we need only make use of the triangle
equalities; these are also readily available.

Moreover, we shall find it convenient, at times, not to
talk of D directly, but of some function of D, namely
r= f(D). The only necessary requirement of this func-
tion is that D and 7 be in a one-to-one correspondence.
In order that we may simply represent the geodesic
distance, D, in a flat diagram [e.g., Fig. 2(A)], we
have the additional requirement that the r distance
must be an Fuclidean straight line. This is achieved,
once the sign of the curvature of the metric has been
agreed upon, or has been independently ascertained, by
any one of the following expressions:

2 \
= —_ 3

7 (_K)%tanh( K)iD/2, K<O0 3.1
r=D E=0 (3.2)
r=—2 _tan(—K)D/2, K>0.  (3.3)

(—K)?

Whatever properties we ascribe to the visual geodesic
distance (as in Sec. C, above) must, mutatis mutandis,
be reflected in the representational Euclidean distance.

E. THE BASIC ALLEY EXPERIMENT

As we have said, the alley experiment is the crucial
experiment upon which the choice of metric depends.
In fact, it is the only experiment dealing directly with
the geodesics of the space.? All the other experiments on
this problem; i.e., the three- and four-point studies and
the frontal “horopter’” measurements, are more directly
concerned with the transformation equation, and the
independence of form from location, than with the

23 It seems to us that von Schelling [J. Opt. Soc. Am. 46, 309-315
(1956)] perhaps misunderstands this point, when he suggests
that the alley experiment is inappropriate because the eyes are
permitted to move. The very purpose of the geometry, from a
physiological point of view, is to permit the mathematization of
the visual space of moving eyes. To replace the motion of the eyes
by the rotation of the head is too awkard a restriction for us to
accept. Moreover, in the suggested case of an affine space (which
visual space may well turn out to be), the geodesics must, @
fortiori, still be elaborated by moving eyes!
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F1c. 3. A schematic represenfation of the parallel alleys in
binocular visual space, embodying Luneburg’s choice of the
geodesic as normal to the » axis.

fundamental metric structure. However, the alley
experiment also permits a direct investigation of both
these issues; because of this dual strength, it is of
particular importance in this area and warrants the
most careful examination. Therefore, we present the
arguments in very great detail.

Confining ourselves entirely to the triangle equalities,
we can develop the transformation equation, D(y),
from the alley experiment in the following manner.
Figure 3 is a schematic representation of the parallel
alleys as they exist in visual space. It may be seen that
they form right angles with the apparent medial # axis
of visual space. Luneburg suggested that the nature of
the subject’s task permits this assumption.

It is quite reasonable to assume at the outset that the
parallel alleys are straight lines (geodesics) in visual
space; after all, the subject affirms that they “are
straight,” this is his job. Without some other restriction,
however, the parallel alleys may still be any one of an
infinite number of straight lines. The right-angle as-
sumption of Fig. 3 is thus equivalent to the specification
of a single geodesic; it is Luneburg’s choice and we shall
accept it for the present. All our subsequent findings
will reflect this assumption in one way or another.?
Postulating, then, that the hyperbolic-right-triangle
relations hold in visual space, we may cite the intrinsic
right-triangle identity

cosA =tanhkb/tanhke, 4.1)

where k= (—K)* and K is the Gauss curvature of the
space (expressed in units of reciprocal visual length), 4
is any angle (expressed in radians), and b and ¢ are
adjacent sides (expressed in units of visual length).2

2t We shall present evidence later on (see reference 21) to show
that this assumption is not correct in many instances.

25 Note that this identity lies in visual space, where the geodesic
distance, D, applies, not the representative distance, r. Hence:
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Fic. 4. A schematic representation of the distance alleys in
binocular visual space, embodying Luneburg’s choice of the
geodesic as normal to the ¢ axis.

Consider, now, the variable point P in visual space. It
is seen that

cos(m/2— ¢p) =sing,=tanhky,/tanhzD. (5.1)

The same relationship holds for the fixed far point,
P,(Qx) (in our case, Py, since n=>5 for the five light pairs
used), through which the curve must pass

sing,=tanhky/tanhkD,, (5.2)

where D, is the maximum value, D(v)=D,(v,), in the
space. Setting these two expressions [Eq. (5.1) and
Eq. (5.2)] equal to tanhky, and thus to each other, we
find the basic expression for the motion of any variable
point P along the curve, hence the equation of the
parallel alley geodesic (entirely in visual coordinates):

sing, tanhkD=sing, tanhkD,=tanhky,.  (6)

Turning now to Fig. 4, we have a schematic repre-
sentation of the distance alleys as they exist in visual
space. The visual widths form right angles with the
apparent median £ axis of visual space. It is held that
the nature of the subject’s task permits this assump-
tion.”® Let us again assume that the hyperbolic-right-
triangle relations hold intrinsically. We may cite, then,
a second right-triangle identity

sind =sinhka/sinhkc. (7.1)

b=Dsy and ¢=D; in Eq. (4.1); our succeeding discussion refers
directly to D, and only indirectly to 7. However, as we have said,
all the general properties of D(y) must also hold for r(v), and
vice versa.

28 This also specifies one geodesic for the distance alleys, out of
many possible ones, but it is much less tenuous than the choice for
the parallel alleys. Two points sufficiently close together, in any
Riemannian space, always determine a straight line; hence we
know the alley width to be a geodesic. Moreover, since the alley
widths are approximately symmetrical to the straight-ahead line
of sight, the assumption that they are normal to this line of sight
is quite reasonable.
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Consider, now, the variable point P in visual space. It
follows that
singpg=sinhkd/sinhkD. 8.1)

The same relationship holds for the fixed far point,
P.(Q»), through which the alley must pass

sing,=sinhkd/sinhkD,. (8.2)

Setting these two expressions equal to sinhkd and thus
to each other, we find the basic expression for the
motion of any variable point P along the curve, hence
the intrinsic equation of the distance-alley curve?’:

singg sinhkD=sin¢, sinhkD,=sinhkd.

©)

Now, the far point, P,(Q.), is common to both
alleys, hence angle ¢, is identical in both curves, so
that we may set the two equations [Eq. (6) and Eq. (9)]
equal to each other
sing,=singy sinhkD/sinhkD,,

=sing, tanhkD/tanhkD, (10.1)

from which it follows, by transposition and substitution,
that

sing,/sin pa= coshkD/coshkD,. (11.1)

Since % is constant, and D is always smaller than D,,
and the hyperbolic cosine varies directly with D, we must
conclude that

(12.1)

This may be phrased as follows: given the basic structure
of the theory, if the version angles of the distance alley are
found, by experiment, to be greater than those of the
corresponding parallel alley, so that sineg is greater, on the
average,”® than sine, then the hyperbolic-right-triangle
relations would hold in visual space. (In talking of this
finding, independently of the theory, we shall call it a
“negative alley-discrepancy.”) In this point lies the
crucial test of the alley experiments: is it true that, on
the average, the points of the distance alleys are
wider than those of the corresponding parallel alleys?

sing,/sinpa<1.

%" Note that this is not the equation of a geodesic. The geodesic
associated with the distance alley is the width of the alleys, not
the length. Whereas, Eq. (6), of the parallel alley, is a geodesic
equation; there, the lengths are the geodesics, not the widths.
This distinction is essential. Among other things, the relationship
of the distance alleys to size constancy is based upon it.

28 We shall discuss the problem of the choice of the average later
on (reference 21). At present, it is sufficient to note that an
average of some sort must be taken. The errors involved in these
experimental procedures are quite large, and the angles are, of
necessity, quite small. It is certain that the present mathematiza-
tion can only be approximate; since geometry is a highly rarified
symbolism, any sensible reality must deviate from it to some
extent. This point is important, because several people seemed to
have approached this problem with an “either-or” attitude:
either visual space is a metric space, or it is not; either it is a
hyperbolic space, or it is not; and so on. This is a modern form of
the classical problem of the excluded middle (a is either o, or it is
not a), and is part and parcel of the so-called Aristotelian manner
of thought. But, it must be recognized, psychological phenomena
are largely ones of probability, and lie right in the center of the
the no longer excludable middle.
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A schematic diagram of this, in the two-dimensional
hyperbolic plane, is shown in Fig. 5. To the extent that
the complete assumptive structure herein described can
be taken as valid, the close resemblance between this
schema and Blumenfeld’s empirical findings (Fig. 1)
can be taken to indicate that the hyperbolic metric is
the choice of favor. However, it must be emphasized,
that this finding in itself does not in any way defend or
attack the basic underlying structure. To do this
requires entirely different methods.”

If, instead of the hyperbolic identities, Eq. (4.1) and
Eq. (7.1), we had chosen the corresponding Euclidean
relationships, our problem would be mathematically
trivial, because sing, would exactly equal singg and
the ratio of the mean widths of the two alleys would be
unity, i.e., the alleys would be identical. Some Euclidean
cases have been reported in the literature ; their meaning
has not yet been elucidated (reference 21, Fig. 3; also
reference 12).

Retaining the basic assumptive structure intact,
changing only the sign of the metric, the choice of the
corresponding nontrivial elliptical relationships entails
the following intrinsic elliptical-right-triangle identities:

cos4 = tankb/tankc 4.2)
and
sind =sinka/sinkc. (7.2)
In this case, we would replace Eq. (10.1) with
sing,=sinegq sinkD/sinkD,
=sine, tankD/tankD, (10.2)
and Eq. (11.1) with
sine,/sin pg= coskD/coskD.. (11.2)
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F1c. 5. Assuming Luneburg’s choice of geodesics, the theoretical
positions of the two alleys are shown, schematically, in a hyper-
bolic plane: parallel alleys; distance alleys.
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F16. 6. Assuming Luneburg’s choice of geodesics, the theoretical
positions of the two alleys are shown, schematically, in an elliptical
parallel alleys; distance alleys.

Then, with % being constant as before and D always
smaller than D,, and since the circular cosine varies
inversely with D, it would occur that

(12.2)

This may be phrased as follows: given the basic siructure
of the theory, if the version angles of the distance alleys are
found, by experiment, to be less than those of the corre-
sponding parallel alleys, so that siney is, on the average,
less than sine,, then the elliptical-right-triangle relations
would hold in visual space. (In talking of this finding,
independently of the theory, we shall call it a “positive
alley-discrepancy.”) A schematic diagram of this, in the
two-dimensional elliptical plane, is shown in Fig. 6.
With full cognizance of the logical structure herein
developed, the marked discrepancy between this schema
and Blumenfeld’s empirical findings (Fig. 1) allows us to
reject the elliptical metric.?

We have now only to derive the hyperbolic expression
for D,; once we have satisfied the conditions of Eq.
(12.1), we shall then be able to find all the points of the
D(y) curve, according to either or both Eq. (6) and
Eq. (9). We may put, as above,
sing,/singg

= coshkD/coshkD,
=sinh%D tanhkD,/tanhkD sinhkD,.
By transposing and squaring both sides, we have

cosh?kD= cosh?kD,, sin?p,/sin?ea.

sing,/singg>1.

(11.1)

(13
Then we may transpose and square certain other terms,

# Hardy ef ol.2? and P. Squires [A.M.A. Arch. Ophthalmol. 56,
288-297 (1956)] have reported some ‘elliptical” cases. The
significance of these is unclear, because of possible various inter-
pretations of the instructions, in the former case, and of the
“photopic” observational conditions, in the latter. von Schelling?
believes that such findings are based on a misunderstanding.
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from Eq. (10.1), to give us

sinh?kD=sinh?kD,, sin®e,/sin%ep,. (14)
Now we recall the following identity
cosh?ka=1-}-sinh?ka
so that we may put
cosh’kD, sinp,
sinh?kD,, sin®¢,/sinp,= (15)

sin? ©d

From this it follows, by substitution and cancellation,
that

(cosh?kD,—1) sin?p,=cosh?kD, sin’p,—sin%p; (16.1)
or

cosh?kD,, sin?p,—sin’e,

=cosh?D, sin’p,—sin?p,, (16.2)

and, solving the expression for cosh?D,, we have,
finally,

(sin? pa—sin® @)

cosh?(Dpy=——————— (17.1)

(sin?p,—sin’p,)

With this equation, we have derived, in detail, all
the relevant equations for the complete mathematiza-
tion of the alley experiment, with due regard for the
necessary empirical limitations on <. This includes the
specialized expression, Eq. (17.1), for the limiting value
[Dn(Qn)=Du(v»>0)] of the fixed far point. When we
substitute this value into the equations for the two
alleys, Eq. (6) and Eq. (9), we will be able to find the
other empirical values of D(y). This determines the
D(y) function in its entirety.®

It is important to mention, at this point, that in
Eq. (6) and Eq. (9) we have a very subtle check on the
assumptive structure of the theory—particularly upon
the right-angle assumptions of Fig. 3 and Fig. 4.
[Recall that Eq. (12.1) and Eq. (12.2) were our first
check points, assuming the validity of this structure.]
If the D(vy) function is to “characterize” the visual
space of a given individual,® then Eq. (6) and Eq. (9)
must both give the same D(y) function, within the
experimental error; the right-angle assumptions must
hold rigidly for both kinds of alleys. We shall report
several cases later on where this is not so.

F. THE NORMALIZATION

One point remains to be discussed. In Eq. (17.1), the
right-hand side contains the empirical findings, the
left-hand side contains the theoretical constants which
we are trying to determine. But there are two of them,
k and D,. Both cannot be determined simultaneously
from a single equation. The difficulty can only be

D The transformation equations from the actually recorded
Cartesian coordinates to the bipolar coordinates are as follows:
tang=z/x; tang= (y cosf)/x; y= (3PD cos’p cosd)/x.

% See L. H. Hardy, AM.A. Arch. Ophthalmol. 42, 551-561
(1949) ; also references 11 and 13.
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resolved by a priori means. The problem is that of the
choice of unit, for which empirical solutions are not
possible.?

Only three procedures exist : either to assume a value
for & (hence K) and find all the empirical magnitudes in
terms of units of reciprocal visual length (reference 21,
Fig. 10 through Fig. 13); or to assume a value for D
(any D, it matters not which) and express % (hence K)
and all the empirical magnitudes in terms of units of
visual length; or to assume a value for the product of
k (hence K) and some D and express all the empirical
magnitudes as pure numbers (reference 21, Fig. 7 and
Fig. 8). 4

That only these three a priori solutions exist can be
shown substantially as follows. The description of any
measuring process necessarily involves (1) a unit of
magnitude (in the present case, one particular radial
visual length), and (2) an operation (in the present
case, the estimation of some particular radial visual
length), and finally, (3) some magnitude to be described
(in the present case, any radial visual distance). We can
choose the unit, and describe the distance in terms of the
number of operations; we can choose the number of
operations (in units of reciprocal magnitude or length),
and describe the distance in terms of the size of the
unit; or we can, boldly, take the first distance to be
measured as the unit. For this, we typically choose a
very singular distance, e.g., the binocular horizon
or the experimental far point, and describe all other
distances in terms of this. In this latter case, we have,
in effect, taken the product of “size of umit times
number of operations” as unit, and expressed all other
magnitudes in terms of this dimensionless unmeasured
quantity.

There appear to be no reasons, other than purely
pragmatic ones, why we must, or should, choose one or
the other of these normalization procedures. In a
Riemannian space of constant curvature, there can be
no difference, eventually, between the three choices.
Hardy et al* and Zajaczkowska,’® for example, have
both normalized according to D(y=0), as suggested by
Luneburg; it is equally possible to normalize with
respect to the far point, D,(y,). And, as we have
already noted, it is not easy to get a meaningful, or
credulous, response to: “How far away are the stars?”
(see Gilinsky, reference 10).

Independently of the normalization, however, Lune-
burg' (p. 637) has also shown that our Eq. (17.1) may
be expressed as:

K 2
1——D,?
sin? O4— sh12¢n 4 Y()d
cosh’kD,= = =— (17.2)
sin?g,—sinp, K 0p
1+ZD n2

% Recall that one-half the interpupillary distance, taken in
millimeters, is our corresponding choice of unit in physical space
[see Fig. 2(B)].
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or, in terms of K and D,:
4(Vop/ Voa)t—1
" (Vop/ Va1

where Vo, and Vo are the intersections, with the
7 axis, of tangent lines to the respective parallel- and
distance-alley curves, taken at the common far point
of the alleys. There can be no basic objection to this
expression as it stands, but it does have an inherent
weakness, and has encouraged some work which we
believe should be critically reviewed.

Serious comments on these previous studies center
about the subsequent modification of this equation:

& (Vop/Voa)i—1
K= . (18.1)
(Yop/Yoa)*+1

Here, the 7(v) function, 7(y)=2¢°, is assumed to be
as Luneburg gave it; but this very function is, we believe,
the most important point yet at issue! And we shall show
that other functions will do as well, and perhaps better
(see also reference 11). Zajaczkowska'® did some pre-
liminary experiments to justify her choice of the
Luneburg function, but these are not reported in detail.
In any case, it is doubtful that she has shown this to be
the actual form of the function in preference to any num-
ber of other equations, but merely that this does bear a
reasonably close approximation to the empirical data—
which is a somewhat different thing. However, be this
as it may, her further determination of ¢ from the
three-point experiment, entirely independent of the
alleys, is an ideal procedure. The integration of results
from independent experiments is, in a certain sense, the
eventual goal of the theory.

This cannot be said, however, of the procedure used
by Hardy et al.,”> where both ¢ and K were determined
from the single alley experiment, and where r(y) was
assumed without the benefit of preliminary studies.

Moreover, Eq. (18.1) encourages, by its enticing
simplicity, an inherent defect which has affected both
these studies, and which is fairly serious from a psycho-
physical point of view. Only one experimental point
from each alley curve is actually used in the determina-
tion of the intercept values, Yo, and Yo4. The tangent
lines were computed as passing through the fixed far
point, Qn, which is not an experimentally variable point in
itself, and through the single variable point, Qn—1. All
the other variable points, between the observer and
point Q,_1, and these are phenomenologically essential
points, were ignored. Such a procedure wastes what may
be extremely valuable data. It must markedly decrease
the reliability of the results, and may actually give a
false impression. To defend it on the basis that it avoids

(17.3)
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the practical difficulties of a polynomial curve fitting
procedure is certainly possible, but we feel that such
difficulties must be faced squarely, particularly because
the delicacy of the present experimental environment
warrants the greatest possible mathematical sensitivity.
Moreover, any genuine psychophysical function must be
based on integrating or averaging procedures,* albeit
sometimes very complex, else it would lack definitive
accord over the complete phenomenal dimension.

In view of these considerations, we have normalized
in terms of K (see also reference 11). K is taken as —1
such that k=1, hence D,(y,) and D(y) are expressed
in units of 1/k. This simplifies Eq. (17.1), such that

(18.2)

The accumulation of evidence up to the present time
does indicate that the alley-discrepancy, though some-
times apparently zero, is most often negative:1%.2.8
Given the basic assumptive structure of Luneburg,! to
describe binocular visual space as a hyperbolic space of
constant negative curvature does seem to be reasonably
well justified, at this point in our discussion. Moreover,
the assumption that K is constant for each individual
observer, at least in the visual direction of “straight-
ahead at eye-level” (we shall use the more direct
German phrase here: the Gerade-Voraus), is fairly
compelling on its face, in view, among other things, of
the shape-constancies.* Thus, we choose to work with
Eq. (18.2), and not with Eq. (18.1).

cosh?D, = (sinpqs—sine,)/ (sin?p,—sinp,).
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8 T, Shipley (unpublished thesis, New York University, 1955)
has also reported some reversals in the parallel-distance-alley
discrepancies. These were for one observer, in regions of visual
space at various version angles from the straight-ahead direction.
However, due to the uncertainties in rotations of axes, resulting
from our present dissatisfaction with Luneburg’s choice of the
parallel geodesic (reference 21), the significance of these findings
is not yet clear. We shall, therefore, not discuss them in the
present context; the raw data are readily available from the
author. It should be added, however, that the other observer gave
consistent alley discrepancies in all regions of visual space—these
also cannot yet be interpreted.

u T, Shipley (reference 33) has found individual differences in
the constancy of K, on the basis of variable alley discrepancies,
and notes its relation to aniseikonic distortions. However, for
normal observers, or fully corrected observers, the assumption
of constancy may perhaps stand.



