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LIQUIDS AND' SOFT SOLIDS 145 

One has first to determine the true fluidity of the material at rest, 
as explained above. If we know this we redraw the consistency 
curve in accordance with the equation 

/» - L m _ „ ' —* • ' 2 m i . ' — • * . 
<Pw + %-q>, <P«, + <Po~ <Po 

(31) 

The first term of the series on the right side, i.e. for n = 0, is 
identical with the first term for a liquid showing no wall effect. In 
the case of a simple Newtonian liquid showing a wall effect, this 
curve is therefore the correct consistency curve of the bulk of the 
material and may accordingly be named the " bulk " consistency 
curve. The curve is identical with the consistency curve of the bulk 
of a generalized Newtonian liquid showing a wall effect, if either 
small P*s are considered or \\R is small. For larger P's and lfR's 
there is no way of plotting consistency curves independently of the 
dimensions of the apparatus, if the law of flow of the material is 
not known. 

Regions of very small shearing velocities require special 
consideration. Very thorough investigations were undertaken 
by Scott Blair and collaborators (compare Scott Blair Intro­
duction [35], pp. 32-34). The consistency curve of clay and 
soil pastes was found to divide itself into four regions. In 
region I there is no flow, region I I is a straight line, region I I I 
is markedly curved and region IV becomes asymptotically 
straight. In regions I and IV one recognizes the picture of 
Fig. 4. Region I I is due to slippage. I t was Scott Blair's 
contribution to find Region I, i.e. the fact that a definite stress 
is necessary to start slippage. 

9. Lubricating and Roughening Wall Layers 

When considering wall effects in the foregoing, we have 
spoken of " slippage " as occurring in a two-phase system, 
with the dispersion medium forming the wall layer. But this 
is taking too narrow a view of wall effects. As Bingham early 
(1922) pointed out, it is " quite possible that the fluidity of a 
liquid near the surface is not identical with that within the body 
of the liquid ". Bartsch [36] found, e.g. that when oleic acid 
is in contact with a metal surface a layer about 10,000 molecules 
thick adheres to the wall. Such molecules are at the same time 
oriented. Generally there may be two sorts of effects. The 
molecules may be either oriented parallel to the wall, which 
should reduce friction, or they may become oriented normal, 
which must increase friction. The first made a " lubricating ", 
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If we introduce in (29) 

(32) 

the second a " roughening " layer. 

d = Rjn 
Fig. 4 shows tp0 as a function of ljn for different values of a. 

F o r a < I the wall layer acts as lubricant, for OL>1 as a 
roughener. It must, however, be said that it is doubtful 
whether these effects are pronounced enough to affect viscosity 
measurements in the case of simple liquids. An attempt by 

n " R 

Fia. VHI, 4. Apparent zero fluidities of liquids in the presence of 
wall effects as determined in capillary instruments. 

<pa fluidity of the wall layer. 
Jt radius of capillary. 
d thickness of wall layer. 

R. Bulkley [37] in the case of different oils, using capillary 
viscometers and raising the precision of the measurements to 
unusual levels, had negative results. 

When a liquid does not wet the solid, as in the case of 
mercury, one cannot properly speak of slippage in the sense in 
which this word is ordinarily used. In this case there exists a 
layer of some other medium, either air or the vapour of the 
liquid, between the material and the solid wall. In the case 
of air at room temperature <pw> 5,000. The thickness d must 
be >10~8 cm., which is the order of magnitude of the diameter 
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of simple molecules. Bingham and Thompson (1928) deter­
mined the viscosity of mercury in a capillary of B — 0-012 cm. 
Therefore in this case <p' — <p (compare (29) ) > 0-026. The 
observed fluidity of mercury at room temperature <66. 

m' — tp 

Therefore ;—>0-024 per cent. This is less than the 
accuracy of the Bingham instrument, which is about 0*1 per 
cent. The presence of the air layer can therefore not make 
itself felt and the viscosity of mercury can be determined from 
the usual formulas assuming that the mercury adheres to the 
solid wall [1]. Erk [2] has pointed out that the viscosity of 
air or vapour, which is in a state of adsorption on the solid 
surface, must be assumed as much higher and may even have 
a " roughening " influence. 

10. Summary 
In the flow of a dispersed system, the dispersion medium may 

form a lubricating layer between the body of the liquid and a 
solid wall. This is especially so with suspensions which are 
soft plastic solids. In liquids in contact with solids there may 
be wall layers acting either as " lubricants " or " rougheners ". 

In the presence of a wall layer the apparent fluidity at rest 
will be in the case of a plastic solid in the 

capillary [ rotating-oylinder 
instrument 

l~2dj{Re-R%) -, 
( I+W(2-WJ l V ' } 

and in the case of a liquid, the fluidity at rest of which is q>0> 

9>/=9>o+?d.7-( i-<W] 9*' = Vo + 2<P» [ ' -

When plotting calculated <p0' values against varying 
IjR | IfRi, keeping " a " constant 
extrapolation of the resultant curve to zero gives <p0' = 0 in 
the case of a plastic solid and <p0 in the case of a liquid. 

L 2 



CHAPTER IX 

VOLUME ELASTICITY AND VISCOSITY 

1. Epistomological Digression 
W E have said in Chapter I that under isotropic pressure all 

materials are elastic and only elastic, and we have called this 
an axiom of rheology. We did not give any proof for this 
statement. We relied upon the fact that, being an axiom, it is, 
as the Oxford Dictionary puts it, " a self-evident proposition, 
not requiring demonstration, but assented to as soon as stated ". 
This use of the term axiom, going back (again on the authority 
of the Oxford Dictionary) to the year 1600, is, however, not in 
accordance with modern ideas. We now, even in geometry, 
and still more so in rheology, do not accept the truth of a 
proposition without recourse to experience and'if, as in the case 
of an axiom, experience is not drawn upon, the axiom cannot 
be more than the definition (an " implicit" definition) of a 
word appearing in the proposition. If we now look back to 
our statement that " under isotropic pressure all materials are 
elastic and only elastic " we find that there is no word in it 
which we have not already defined before, and, therefore, as it 
stands, the statement cannot be true. And so it is. We 
arrived at the statement by considering such materials as steel, 
plasticene and water. But if we had put a piece oiwood under a 
high hydrostatic pressure we would have observed, after 
release of the pressure, a Permanent Set, i.e. an instantaneous 
deformation which is not recoverable. The reason is that there 
are pores in the wood and, under high pressure, stresses are 
produced which partly crush the material around the hollow 
spaces of the pores, forcing it into the pores. This local 
deformation which exceeds the strength of the material, is 
not reco rered on the removal of the pressure, and the aggregate 
effect of many such microscopic deformations becomes manifest 
in the macroscopic set. To make our statement true we have 
to re-word it as follows : " Under isotropic pressure all non-
porous materials are elastic and only elastic ", and in this form 
the axiom is an implicit (rheological) definition for " non-

148 
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porous ". If we now read this statement together with the 
second rheological axiom tha t " every real material possesses 
all rheological properties ", which, as we now realize, is an 
implicit definition for " real material ", we must conclude that 
no real material is non-porous and we shall not be surprised to 
learn tha t Eyring [38] has propounded a theory of the viscosity 
of liquids which assumes that even a liquid possesses " holes ". 

Some readers may think this digression to be out of place, 
but the situation as described means tha t the assertions which 
I have made and shall make about properties of materials 
are never quite correct. They are always only provisional, to 
be amplified or qualified later. If the reader will keep this 
in mind, I will be able to go ahead, speaking often in a loose way, 
without having to add to every quantitative statement the 
qualification " approximately ". Therefore, let it be granted 
tha t there are materials, which on the whole, are under iso­
tropic pressure and tension elastic and only elastic, and let us 
examine what the laws of such elasticity may be. 

2. The Bulk Modulus 

If a hydrostatic pressure is applied to a body, its volume V 
is reduced and its density p, which is the mass per unit volume, 
or 

P = ™JV (1) 
increased. Conversely, an isotropic tension (which it is much 
more difficult to apply) will increase the volume and reduce the 
density. Let V0 be the volume for vanishing isotropic tension 
p = 0 and let A VQ be the increase of volume produced by p, 
then an Elastic Bulk Modulus K is usually defined by 

p=KAVJV0 (2) 
from which 

AV0=pJK.V0 (3) 
and therefore 

V = V0 + AV0 = V0{l+p!*<) . . . (4) 
Equation (2) is regarded as a special case of Hooke's law, 

but this definition of the bulk modulus is objectionable for the 
reason tha t the latter cannot be constant. We denned the 
coefficient of viscosity in a certain way and said that in certain 
liquids it will be a constant, while in others it may vary with 
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the stress. Rheological coefficients should generally be denned 
in such a way tha t for certain simple materials they are constants. 
The coefficient K as denned above, can, however, under no 
circumstances be a constant because then the volume V0 would 
vanish for p = — K, with the density increasing to infinity. 
Actually, if K is defined as in (2), it is generally found to increase 
with increasing compression ; i.e. in order to produce the same 
increase of compression the pressure has to be comparatively 
more increased the greater the compression from which we 
start. For instance, Bridgman (1923) found that /c -1 varies 
for metals in accordance with the following empirical formulas : 

for iron K"1 = 20"7 {5-87 - 2-10 x 10^p) . . . A 
for copper = 10~7 (7-32 - 2-7 x lO^p) . . . A (5) 
for lead = 10~7 {23-73 = 17-25 x 10^p) . . . J 

where p is the hydrostatic pressure measured in kg. cm. - 2 up to 
20,000 kg. cm.-2. 

Other approximate bulk moduli are listed in the Table. 

TABLE IX, 1. Bulk Moduli 

Material 

K X I O " 8 in 
megaba r s 

Ether 

0-08 

Alcohol 

0-1 

Water 

0-2 

Tuff 

0-5 

Clay 

1 

Glass 

4 

Mercury 

5-4 

Iron 

15 

Steel 

18 

3. Volumetric Strain 

We can derive from (2) a more suitable definition by keeping 
in mind that this equation was put up to suit a comparatively 
small range of stresses. 

Let that range be infinitely small, then (2) becomes 

dp=KdV0iV0 (6) 
Now let this equation be assumed to be valid not only for the 

volume Y0> but for any volume V, then 

dp = KdVjV (7) 

and this equation defines a bulk modulus which, in principle, 
oould be a constant. Because let K be a constant, then (6) can 
be integrated and gives 

" p=Kln(V}V0) (8) 
or 

V = VQe*>* (9) 
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In this case, therefore, V vanishes forp = — co or, practically 
never, the negative sign denoting a pressure. 

We call the quantity 
ev=\n(VjV0) (10) 

the Volumetric Strain or Cubical Dilatation and we can 
accordingly write (7) in the form 

P =K% (11) 

which is the complete analogy to (I, d). Introducing again 
7 = V0 + AV„ ev = In (1 + AVJV0) and if AVJV0 is small, 
this expression can be developed into a series, the first two terms 
of which are 

ev = AVJV0 - h{AV0jV0Y . . . . (12) 
In a first approximation we find again (2), but in a second 

approximation we have 
p = KA V0(V0 - K\2 . (A VJV0)* . . . (13) 

Indicating by K' an " apparent " bulk modulus in accordance 
with (2), we find by introducing 

AVJV0=PIK' (14) 

p =PKIK' - KI2.P2}K'2 . . . . (15) 

from which 

and 
K' = K — PKJ2K 

K' =KI2[1 + V1-2PIK'] • 

(16) 

(17) 

K' l 

s 

he 

2 i 

J^ 

'/!<• 

t 1 i i 1 10 '-? 
Fig. IX , 1. Apparent bulk modulus (*') and apparent coefficient of 

compressibility (1/*') as a function of the hydrostatic pressure 
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If we plot K against p we get a curve as shown in Fig. 1. 
The Apparent Coefficient of Compressibility («'_1) has also been 
plotted. It can be seen from these curves that the assumption 
that K in (11) is a constant gives a better approximation to the 
compressibility of materials because the compressibility in 
accordance with this formula decreases with increasing pressure. 
However, comparison with the empirical equations (5) shows 
that quantitatively for large pressures the position is still far 
from satisfactory. Following Hencky [39] we therefore proceed 
to apply two corrections. 

4. The Reduced Stress 
For the first correction we must remember that the resistance 

of the material to the external forces comes from reactive forces 
between the molecules or atoms, as the case may be, caused by 
a change in their stable distances. The forces, accordingly, are 
bound up with the quantity of matter. The stresses, on the 
other hand, are denned in respect of the areas through which 
the forces act and a unit isotropic pressure will be a unit force 
applied upon the sides of a cube of unit length of edge and unit 
volume, say 1 cm.3 That cubic centimetre of volume, however, 
contains in the strained state, assuming tension and V>V0, 
fewer molecules or atoms than in the unstrained state, in short, 
less matter. Conversely, the unity of matter in the unstrained 
state will in the strained state take up a volume increased in 
the proportion pjp where p0 is the density in the unstrained, p 
the density in the strained state. To calculate from the stresses 
the reactive force caused by the same piece of matter, we must 
increase the stress in the same proportion, i.e. we must replace 
the stress as defined in Chapter I by the Reduced Stress 

Pred=~P = VIV0.p=Vrelp . . . (18)* 

where Vnl is the Relative Volume = VjV0. This makes (11) 

p = K]nVrJVrel = Keve~<* . . . . (19) 

where e is the basis of " natural " logarithms. 

* Note that V^j here is an entirely different quantity from what IB denoted 
in the same way in Chapter V. 
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5. The Limiting Relative Volume 
The second correction refers to the feature of (11) or (19) that 

with infinite pressure the volume of the body would be com­
pressed to zero. There must, however, be a limiting volume 
containing all the molecules even if in a collapsed and crumpled-
up state (the latter was realized by Bridgmann reaching 
pressures up to 20,000 kg. cm. -2). Hencky, on applying (19) 
to Bridgman's observations, found that for a small number of 
solids this was a satisfactory formula. Most of the experi­
ments, however, suggested that there was a Limiting Relative 
Volume W which could not be reached by finite pressure. He 
therefore suggested the formula 

p - w f 4 ^ - . . . . <*» 
v rel -TV rel 

which he compared with Bridgman's observations and especially 
of those substances which Bridgman had marked out as very 
irregular and therefore particularly fit for a crucial test. Near 
atmospheric pressure (20) does not give as good results as at 
higher pressures and the simpler formula (11) may be used 
there. Hencky concluded that the individual structure of the 
molecule apparently has much influence at low pressures, but 
i t seems tha t a t pressure from 10,000 kg. cm."2 upwards even 
gases acquire a constant bulk modulus in accordance with (20). 
The following Table gives the results of his calculations. Equa­
tion (20) can be considered as expressing the modulus K of (11) 
by (K) (1 — *?)/( Vrel — W). While now K is a variable coefficient 
and not a constant, (K) and W are supposed to be constants. 

TABLE IX, 2. Hencky's Bulk Modulus (K) and Limiting 
Volume {¥) of certain Substances calculated with Hencky^ 
Theory (20) from Bridgman's Observations. 

Substance 

Iron . . . . 
Rubidium 
Mercury 
Water 
Alcohol 
Hydrogen 
Helium 

Temperature 
Centigrade 

30 
50 
20 
40 
20 
65 
65 

K X 10* In 
kg/cm -1 

170 
1-66 

24-9 
2-34 
4-17 
0-82 
0-47 

* 

0-8 
0-44 
0-75 
0-50 
0-52 

nearly zero 
i j 
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6. Pulsations 
We have said in Section 4 that the internal forces with which 

the material reacts to the external forces are due to the dis­
placements of the molecules or atoms from their stable relative 
positions. To effect such displacement, external work has to 
be expended which is converted into the potential elastic 
energy of the strained body. Let us look into this process in 
more detail. 

If we apply a finite isotropic pressure p upon a body,* its 
particles will be brought into movement in accordance with 
(I, a), i.e. after some time through the operation of the accelera­
tion a, they will attain certain velocities v and will by virtue 
of these possess kinetic energy of the magnitude 

EK = mv2j2 (21) 

At the same time they will undergo by displacements u 
and this will produce in their surroundings elastic stresses in 
accordance with (11) or (20) or some other rheological equation. 
Let us assume the body to be a sphere of radius Roi the centre 
of which is fixed, then, for reasons of symmetry, we may assume 
that the direction of the different w's and v's passes through the 
centre. To every p there corresponds a certain definite ev and 
therefore a certain definite radius R at which the internal 
stresses p raised in the body through the strain will balance the 
external pressure p. If p is applied from the start to the full 
extent, this means that before R0 is reduced to R there is no 
equilibrium; this causes the appearance of kinetic energy. 
When the sphere is compressed to V, p balances p, but the 
particles will move on towards the centre because they have 
kinetic energy. This increases p beyond p and there are 
unbalanced stresses acting away from the centre. This, in 
turn, causes a negative acceleration a or retardation — a, a 
diminution of v and ultimately a state of rest when v vanishes. 
That state of rest, however, does not correspond to a state of 
equilibrium. The stress p exceeds the external pressure p; 
rest lasts only through an element of time ; the body starts to 
expand. We need not continue this story ; the result will be 
voluminal oscillations or pulsations around the position of 

* The bar above jj indioates the external foroe. 
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equilibrium ev = pJK ; a position which, however, is not one of 
rest. 

7. Volumetric Strainwork 
If we want to determine the compressibility of a material in a 

suitable test, we shall therefore have to apply the external 
pressure very slowly, practically infinitely slowly, i.e. we shall 
have to increase the pressure from zero to p so slowly that it 
is always equal to p and the body passes continuously through 
states of equilibrium. Considering now the sphere of radius R 
which is at rest under the action of the isotropic tension p 

Fia. IX, 2. Volumetric strainwork. 
p isotropic tension. AR increase of radius. 

applied upon its surface A ; if pis slightly increased the radius 
will slightly be increased by AR and the forces acting upon the 
surface perform work. The force acting upon an element of 
the surface (AA) is p.AA and the work p.AA, AR (compare 
Fig. 1). Adding up all elements of work over the whole surface 
of the sphere, we get p.A.AR. If AR is very small, the 
increase of volume is dV = A dR and, therefore, 

dW = pdV (22) 
or the elementary work per unit volume 

dw =pdV}V =pev (23) 
and the power per unit volume 

w= swjdt = pev (24) 
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If p is gradually increased from zero to p, the work performed 
per unit volume is 

w = Cpdev (25) 
Jo 

If the load p is decreased from p to zero, 

V)' = pdev = — pdev = — w . . . (26) 
J'o Jo 

and the strainwork is completely regained. The only condition 
for this reversibility is that there should be a one-to-one relation 
between # and ev) but the form of the relation, whether straight 
line or curved, is immaterial. Generally, in a perfectly elastic 
body, all strainwork performed by the external forces through 
states of equilibrium is stored up in the body as potential energy 
and completely regained upon removal of the external forces, if 
this is likewise carried out through states of equilibrium. 

If p is expressed as a function of ev by means of a Theological 
equation, the integration can be carried out. For instance, if 
we use (11), 

w = Ke^/2 (27) 
or 

w=p2j2K (28) 

F I G . IX , 3. Fundamental rheological curve for infinitely slow 
compression. Area o a b measures the strainwork. 

e„ volumetric strain. 
p isotropic stress. 
Ic modulus of compressibility. 
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The reader will note that (22) is the analogue of (III, 41); 
(25) of (III, 42); (27) of (III, 43); and (28) of (III, 44). 

If we plot correlated observed values of p against evi the 
resultant curve is a graphical representation of the rheological 
equation (compare Fig. IX, 3). If the curve is a straight line, K in 
(11) is a constant; otherwise K is variable. Comparing (23), 
we see that the elementary work per unit volume is represented 
in the Figure by an elementary strip parallel to the p-axis and 
of width det. The total work performed when increasing the 
pressure from zero to p is therefore represented by the area 
enclosed by the curve, the c„ axis and the ordinate p. If all 
stored-up energy is to be regained as the material expands with 
decreasing pressure, the points representing descending obser­
vations must lie on the same curve or, as we said before, p 
must be a one-valued function of ev. 

8. Damping of Free Pulsations 
Let us now consider what will happen if, having compressed 

a sphere, by gradually applying an isotropic pressure p, from the 
radius R0 to the radius M, the external pressure is suddenly 
released. Now, in expanding, the internal stresses meet no 
resistance against which to perform work. The particles will 
therefore acquire kinetic energy and oscillations will start. 
Because of the absence of external forces, the oscillations are 
called free oscillations. The elastic potential energy (Ev) is 
converted into kinetic energy {Ek), which gradually increases 
until it reaches a maximum for R — R0 when the elastic energy 
vanishes. Then the sphere continues to expand with kinetic 
energy being converted into potential energy, etc., all the time 
the law of conservation of energy requiring that the sum of both 
is constant. This, however, cannot go on indefinitely. The 
process just described of recurring conversion of kinetic into 
potential energy requires that the velocities and accelerations 
or retardations of all particles are at all times directed towards 
the centre of the sphere. But if the oscillations started in this 
way, imperfections in the structure of the material making up 
the sphere, such as pores, local variations of density, or, 
generally, heterogeneities and local aeolotropies, etc., will soon 
make themselves felt. While the sum of the kinetic energies 
of all particles will still conform to the law of conservation, the 
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velocities will gradually become less oriented towards the centre 
and more and more acquire a random orientation. The oscilla­
tions of the sphere as a whole will gradually be replaced by 
individual oscillations of the particles which macroscopically 
manifest themselves in an increase of temperature. This is 
called Damping of Oscillations, with which we shall deal in 
more detail in Chapter XV. But as we have said in Section 9 
of Chapter III, a rheological experiment must be isothermal. 
This can be realized by connecting the body with a large heat 
reservoir kept at constant temperature. The heat into which 
the kinetic energy of the oscillations is gradually converted is 
drawn off into the reservoir and dissipated {Ed). The law of 
conservation of energy now requires 

E„ + Ek + Ed const (29) 
No other form of energy appears in rheology. What we have 

derived here on the example of isotropic stress and voluminal 
oscillations is, as will be shown later, valid for every other kind 
of stress and deformation. Equation (29), together with the 
proviso that in every process Ed can only increase, form the 
energetic basis of rheology. 

9. The Coefficient of Volume Viscosity 
If there is dissipation of energy whenever the cubical dilata­

tion is not produced infinitely slowly, or whenever there is a finite 
rate of dilatation, ev, this implies a sort of viscosity -qv which 
we may call Volume Viscosity. The complete isotropic 
rheological equation is accordingly 

p = Kev + yev (30) 
I t should be noted that in deriving (30) we did not say 

whether we were speaking of a liquid or a solid. This is in 
accordance with the first rheological axiom which (in other 
words) says that for simple changes of volume or density it is 
irrelevant whether the material is a solid or liquid. A Kquid, 
therefore, mwt have two kinds of viscosity, viz. the ordinary 
Newtonian viscosity in shear rj and the volume viscosity 7}v. 
One could, of course, in principle assume that for a certain class 
of liquids r)v vanishes and we may call this class of liquids the 
Stokes Liquid, because this was what Stokes (1851) assumed 
when deriving the famous Stokes-Navier differential equation 
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of viscous flow named after him and Navier (1823). Until 
recently this was generally assumed to conform to actual 
conditions, but Tisza [40] has pointed out tha t v\v must in real 
liquids be rather high and I have pointed to other consequences 
connected with a vanishing 77. which are not likely to conform 
to experience and about which we shall say more in Chapter X. 

10. Elastic After-effect and Total Strainwork 

Equation (30) yields an interesting consequence. Let a 
certain volumetric strain [ej be produced by an isotropic 
external tension p which is then removed. If r}0 is large so 

FJG. IX, 4. Elastic after effect in volumetric strain upon removal 
of stress, / t ime, T time of lagging, © basis of natural logarithms. 

that no oscillations, but only an aperiodic movement results 
(or, conversely, if inertia-forces can be neglected) we find 
from (30) for p =0 

Ke. + i f c e . = 0 (31) 

and introducing 

ec = dejdt (32) 

7}v dejev = -tcdt (33) 

which by integration yields 

Vo)nev = -Kt + C (34) 
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The integration constant G is determined from % = [ej for 
t = o and we ultimately have 

e. + Kle - 'V* (35) 

The quotient TJJK is of the dimension of t ime (T) which is a 
measure of the lagging of the elastic strain, r may be called 
Time of Lagging. In accordance with (35), the original 
volume is recovered (i.e. ev = 0) when tjr = co, which is t = co 
for any finite T. The curve corresponding to (35) is shown in 
Fig. IX, 4. 

When the load is removed, the original volume for which 
ev = 0 is therefore generally not instantaneously regained; 
this takes time and, theoretically, even infinite time. Con­
versely, when the load is applied, it also takes time (and again 
theoretically infinite time) until the cubical dilatation corre­
sponding to the load is attained. This phenomenon is called 
Elastic After-Effect. I t should be noted that the elastic after­
effect does not constitute an imperfection of elasticity, according 
to both definitions of perfect elasticity, viz. (i) total disap­
pearance of strain on removal of load, (ii) complete conservation 
of strainwork in infinitely slow deformation. If, however, the 
deformation is produced with a finite velocity, par t of the 
strainwork is dissipated through volume viscosity. 

Volume viscosity in liquids makes itself felt in the absorption 
and dispersion of ultrasonic waves, the rate of which is higher 
than if shear viscosity (rj) only was present. In liquids — Kev 

is called the hydrostatic pressure. I t is, as follows from (30), 
not identical with the isotropic component of the stress. 

In the general case (30), the strainpower per unit volume is 

& = M> = K%% + Vv%2 • • (36) 
The first term on the right-hand side reverses its sign when ev 

decreases and cv is negative. On de-straining, this work is 
therefore regained and the first term accordingly constitutes 
the conserved part of the strainwork. The second term is 
always positive, whether ev increases (positive e j or decreases 
(negative e„). On de-straining as well as on straining, work is 
expended and the second term accordingly constitutes the 
dissipated part of the strainwork. The total strainwork is 

w = j w dt = | \ev dev + | 7}vev*dr . . (37) 
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We shall come back to the Theological equation of form (30) 
in Chapter XIV showing that i t embodies other properties 
besides those dealt with in the present chapter. Here let us 
only add the remark tha t we have introduced another qualifica­
tion into our first axiom. Under isotropic stress non-porous 
materials are elastic only if the stress is applied infinitely dowly. 
Otherwise they also show a viscous resistance. 

11. Summary 

The rheological behaviour of every homogeneous material 
solid or liquid, conforms under isotropic stress p to the Theo­
logical equation 

p = KCV + 7}vev . . . . (IX, a) 

where ev, the volumetric strain, 

e , = m ( 7 / F , ) « l n ( F M l ) . . . (IX, b) 

In liquids KBV is called " hydrostatic pressure." 
In cases where the density p of the material is much changed 

by pressure, p must be replaced by the reduced stress 

P*i--P (IX, o) 
P 

The volumetric strain-power is 
wv = K%% + 7]vev

2 . . . . (IX, d) 

of which the first part is conserved, the second dissipated. If 
K is constant, the conserved (potential) energy is 

Ev=Ke*j2=p*i2K . . . . (IX, e) 

I t follows from (IX, a) that there is an elastic after-effect 
with lagging time 

r = *?> (IX, f) 
so that a strain [e„] disappears upon removal of the load in 
accordance with the equation 

% = feje-* (IX, g) 
where it is assumed that T is constant. 

Where K is a variable coefficient, Hencky has proposed 

1 - W 

W being the relative limiting volume and (K) a constant. 
o r . ii 



CHAPTER X 

SIMPLE TENSION AND SIMPLE EXTENSION 

1. Simple Stresses and Deformations 
So far we have become acquainted with two simple cases of 

stress and deformation. They are simple shearing stress and 
simple isotropic stress on the one hand—simple shear and simple 
cubical dilatation on the other. These are co-ordinated pairs, 
simple shearing stress producing simple shear, and simple 
isotropic stress producing simple cubical dilatation. There 
exist, however, two other important cases of stress and defor­
mation with which we have not yet dealt and which are of an 
entirely different character. They are simple tension on the one 
hand and simple extension on the other. Simple tension is a 
one-dimensional stress and simple extension is a one-dimen­
sional deformation, but the latter is not produced by the former. 

Simple tension and its opposite, simple pressure, can both be 
included under the term simple Normal Stress, designated by 
pn, where the subscript n indicates " normal". A simple 
normal stress is produced by either simple Pull (+ Pn) or 
simple Push (— Pn) upon a prismatic bar, acting in the direction 
normal to, and passing through the centre of the cross-section.* 
Under the action of such simple pull, the bar is elongated ; at 
the same time, however, it contracts laterally. A one-dimen­
sional traction is here accompanied by a three-dimensional 
deformation. 

Simple extension, or its opposite, simple compression, both 
included under the term simple Normal Deformation, (e„), 
because the displacement is in the direction normal to the cross-
section, is not so easily realised. A plastic material filling a 
cylinder, where the latter is so rigid that it does not extend in 
diameter, would, under pressure from a piston, be deformed in 
the manner of simple compression. Here the walls of the 
cylinder will also produce pressure upon the material and the 

* If the force does not pasa through the centre of the cross-section, bending 
is caused, with which we shall deal m Chapter XI I . 
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one-dimensional deformation is therefore accompanied by a three-
dimensional stress. However, in order to produce in a plastic 
material a measurable compression, the pressure would have 
to be so high that the walls of the cylinder, too, would give way 
slightly, albeit elastically. Nevertheless, in porous materials, 
simple pressure may produce simple compression. One such 
material is cork, another porous rubber; still another, as we 
shall learn in Chapter XIII, is concrete. These, however, are 
exceptions. 

2. Young's Modulus 
The solution of this puzzle—viz. that simple normal stress 

does not correspond to simple normal deformation or strain 
(and vice versa)—is that " simple " normal stress and deforma­
tion are not as simple as one may think. 

Let us first consider simple normal stress, for instance as 
produced by the simple pull of a cylinder or prismatic steel bar 
in the so-called " tensile test ". This is the predominant test 
for metals, but has also been in use for such materials as 
cement, pitch, bitumen, flour dough, etc. In this test a short 
bar, say of mild steel, of length l0 is fixed between two pairs of 
jaws (or some similar device), one stationary and the other 
movable, and is elongated by a gradually increasing load P n . 
If A is the cross-sectional area of the bar, a traction is produced 
equal to 

acting in the longitudinal direction, or normal to the cross-
section, and which may be assumed as uniformly distributed 
over the cross-section. The assumption is not correct near 
the ends, where the bar is fixed between the jaws, but it will be 
valid at some distance from the ends, especially if the bar is 
slender.* Up to a certain point, the elongation Al is propor­
tional to the load and therefore follows Hooke's law. For this 
part we write in analogy to (I, 5) 

Aljl0 = (PJA)le . ' (2) 
where the coefficient c is called Young's Modulus. 

The ratio Aljl0 is usually taken as the measure of the normal 
strain, here called Extension, positive or negative. For small 

* This ia the Principle of St, Venant about which compare Ten Lectures, 
pp. 58-59, 65. 

H 2 
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elongations Al there is no objection to this. For large elonga­
tions, however, this definition breaks down ; firstly, for the 
same reason as advanced in Section 3 of Chapter IX in respect 
of the volumetric strain; and, secondly, because there is no 
reason why Aljl0 should be a more correct measure than 
Alfl, where I = l0 + Al. For Al — l0, the first gives 100 per 
cent, the second a 50 per cent, increase.* A consistent definition 
would result from relatmg a differential of increase to the 
instantaneous length so that the element of strain is dljl and 
the total strain 

en=\dlll = {lnlil0) (3) 

A 
in which formula both I and l0 are of equal standing. 

This logarithmic measure of extension was first introduced 
by Roentgen, of X-ray fame. It was first systematically 
employed by Hencky (1929, 1) (compare also Ten Lectures, 
pp. 23-25). 

For small elongations 

I 4~Al 
en = ln(2/Z0)=ln^— =]n(l+Al}l0)=Alll0-lWIh)2+ • W 

With this definition in mind we write for the Hooke solid 

e«=Pnfc (5) 

Values of Young's modulus for different materials are listed 
in the following Table :— 

Material 

e X 10"5 in 
in megabars 

Lead 

1 

Concrete 

2 

Tin 

4 

Glass 

7 

ZlDC 

8 

Copper 

12 

Wrought 
lion 

18 

Steel 

25 

* Recently a local paper quoted the President of an American College as 
having said that " the price of automatic pilot devices had dropped by several 
hundred per cent, during the war " I t must be assumed that he did not 
intend to say that every buyer of a pilot device is being paid a premium. 
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3 . Poisson's Ratio 

As we have already pointed out, the pull P n produces in the 
bar not only an axial extension but, generally, at the same time 
also lateral contractions ee of magnitude. 

ec = - oen (6) 
where a is a material constant called " Poisson's ratio ". If en 

is negative, ee will be positive or be a lateral expansion. Such 
lateral expansion cannot be observed in a cork-cylinder under 
pressure, in which case a = 0. 

Both ec and en are to be measured logarithmically, and (6) 
therefore defines Poisson's ratio for finite strains as well. 

|d+e.) 

-!ci-se,y Pri 
FIG. X, 1. Simple pull of a prismatic bar. 

The strain has been assumed as very small, so that " a " can be put for 
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We have thereby introduced for the Hooke solid two new 
constants, e and a, so that altogether we have four constants 
y, /c, e and <J. However, the values for y and K completely 
determine the rheological behaviour of a Hooke solid and it 
must therefore be possible to express e and a by the former. 
We regard y and / c a s " fundamental ", e and a as " derived " 
constants. 

Poisson's ratio is a pure number. Approximate values of 
Poisson's ratio for different materials are listed in the following 
Table :— 

Material 

<7 

Cork 

0 

Aluminium 

013 

Zinc 

0-20 

Glass 

0-24 

Steel 

0-30 

Copper 

0-32 

Lead 

0-40 

Rubber 

0-49 

Let us consider an axial section of the bar shown in Fig. X, 1. 
Generally, when being extended, the volume of the bar will be 
increased. At the same time, as can be seen from that figure, 
certain right angles will be changed and certain parallel planes 
accordingly sheared against each other. Therefore, the simple 
normal stress pn will be accompanied by a volumetric strain ev 

and a tangential strain et. Similarly, it is obvious that a simple 
extension en is accompanied by an isotropic stress p and a 
tangential stress pt. 

Our task will consist in finding the stresses p and pt equiva­
lent to pn in the first case and the strains ev and et equivalent 
to e„ in the second case. 

4. Principal Strains and Deformations 
If the bar is not itself a prism, it can be considered as made up 

of a large number of " elementary " prisms, the deformation of 
which we shall presently investigate. 

Let the prism of edges a, b, c be extended or contracted in the 
directions of its edges. These directions are at right angles to 
each other before deformation and remain so after deformation. 
If we look at Fig. I, 1, we see that in the case of simple shear 
there also exist three such directions. They are called the 
Principal Axes of Deformation. In the case of simple shear, 
as again to be seen from Fig. I, 1, there is not only deformation 
but also rotation. One axis (the one normal to the plane of the 
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figure) is fixed, but the other two are rotated by the same angle 
around the third. In our case, where the straining of the prism 
is in the direction of the edges, there is no such rotation. A 
deformation without rotation is called Pure Deformation. 

We denote the directions of the principal axes by i, j and h. 
If these directions are the same throughout the body, the 
deformation is said to be homogeneous. This is the case in 
simple extension. 

Now, let the edges of the prism before strain be aQi boi c0, so 
that V0 = a0, b0, c0, and after strain a, b, c, so that 7 = abc. 

The principal strains or deformations are 

e, = ln(a/a0), ei = ln(6/60), ek =In(c/c0) . . (7) 

Therefore 

e , = l n ( F / F J = \n{abcja0b0c0) = \n{aja0) + ln(6/6J + In(c/c0) = 

et + es + ek (8) 

If we define Mean Normal Strain or Deformation em by 

«* = («< + c, + en)/3 (9) 
we have 

ev=3em (10) 

If we deduct from each of the three principal strains the mean 
strain in the following manner 

eoi = ei ~ em> %} = ei ~ em» eok = efc — em • • ( H ) 

three other principal strains result, the cubical dilatation of 
which vanishes in accordance with 

e<* = %i + %i + eok = ei + ei + ek-3em = 0 . (12) 

Therefore eoi. eoj. eojQ are the principal strains of the distortion 
resulting from the strains or, more generally, deformations 
et e}i ek. Every combination of principal deformations ef, et, ek, 
can be resolved into a dilatation ev = e{ + e} -f- ek and a distortion 
et - ej3, es - eJ3, ek-eJ3. 

We shall indicate the distortional deformation by the 
subscript " 0 ". 

In the case of simple normal stress (or more correctly, 
traction) pn, the principal strains are en in the longitudinal and 
— aen in the two transverse directions and, therefore, 
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ev=en{l-2a); em=eJ3=en(l-2o)l3 ^ 
eo<=eoi = - 0 € n - e m = - ( J + a ) / 3 . e n ; e , * = e „ - e m = ^ (13) 

2(l+o)eJ3i 
For an incompressible material, c„ must vanish or a = J, in 

which case eoi = eoi = - eJ2 ; eoft = en. 
In the case of simple normal strain in the ^-direction we have 

e, = ei = 0 ; ek = en ; ev = en 

5. Principal Stresses 

The foregoing considerations in respect of strains can be 
repeated with suitable modifications in respect of stresses. 
Here Principal Stress Axes exist and in isotropic materials these 
coincide with the principal axes of strain, so that we can use for 
them the same subscripts, i, j , h. The Mean Normal Stress 

Prn = (Pt+Pi + Pk)l3 (15) 
is that part of the stress which, when applied isotropically in the 
manner of a hydrostatic stress, causes the cubical dilatation 
(with positive or negative sign as the case may be) of the 
material, while the normal stresses 

Pox =Pi ~Pm\ Pot =Pi ~Pm\ Pok = Pk ~ Pm • (16) 

cause the distortion. In the case of simple normal tension 

Pk =Pn\ Pi =Pi = 0; p =pm = pJ3^, 
Po* = Pa = - PJ3 ; Pok = 3p»/3 / 

Now if the cubical dilatation et, as calculated in (13), is caused 
by the mean stresses pm as expressed in (16), Equation (IX, a) 
requires in the case of rest {ev —0),p — xev, oipnj3 = /cen (1 —2a) 
and because of (5) 

K = €j3{l ~2a) (18) 

6. The Definition of Finite Shearing Strain 
Let us now consider the shear produced by simple normal stress. 

In Fig. X, 1 a square has been inscribed on the longitudinal section 
of the prism, which by the extension en is converted into a rhomb. 
Let us first assume the extension to be very small; in fact so small 
that we may use the first term only in the development (4) of c„ ; 
then the originally right angle of the square will be slightly changed 
to, say, 8. In Section 5 of Chapter I we have defined the change of 
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a right angle produced by shear, if small, as the shearing strain. 
We find from the Figure 

tg$l2 = (1 - ae„)j{l + e„) (19) 
The change of the right angle is (90 — 8) and its tangent is equal 

to the cotangent of 0, or tg(90 — 6) = ctg6 = Ijtgd. 
From known formula 

tgS = {2tgBj2)i(l - tg^) (20) 
and introducing igBj2 from (19) 

,,fl _ o (-* ~ ge") <J + en) 
* ' - * < ; + « . ) ' - < * - * . ) • / ; • • ( 2 1 ) 

Neglecting powers of en higher than the first, this gives 
Ijtgd = en(l + a) (22) 

Therefore, for a small change of the right angle into 6, 
et^ejl+a) (23)* 

A 

FIG. X, 2. The maximum shearing strain in pure extension. 

V2~ . V2 en 
a / 2 = — _ e n + 2y/2 

We now make a new definition for the shearing strain. We postu­
late that if c„ is large so that the complete (3) applies, ê  is defined 
by (23). This definition is consistent and for small strains conforms 
with the usual definition of the classical theory of elasticity. 

7. The Law of Elastic Distortion 
The shear of the square inscribed into the rectangle of Fig. 

X, 1 is produced by a shearing stress resulting from the action of 

* Por those readers who prefer geometrical methods. Fig. X, 2 shows 
another way of deriving (23). 
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forces PJ2 acting on all sides of the square. These forces 
which act in the longitudinal direction, have tangential com-

p __ 
ponents Pt = -^IV2. The tangential forces act upon areas 

— —— . c and the tangential stresses are therefore 

* = PJ ~ o = PJ2bc. 

Introducing PJbc = pn, this gives 

Pt=Pj2 ^ (24) 

For a Hookean solid we can go back to (I, d) and get 

pJ2=yen(l + o) (25) 

which gives, because of (5), 

2y=el(l + o) (26) 

From the two equations (18) and (26) we can now express the 
derived coefficients e and a through the fundamental coefficient 
Kand y :— 

e = 9KYJ{3K + y) ; a = (3K-2y)l2(3K+y) . . (27) 

For an incompressible material K = oo and therefore 

e = 9yl(3 + yJK) =3yyo=\ . . . (27') 

From (17) we find 

Pa =Pa = ~ i/3.e t t ; pQh = 2j3.een . . . (28) 

and considering (13) 

poi=el(l+o).eoi; ^ = € / ( J + f f ) . e e i ; pok=ej(l-\-a).eok . (29) 

Because of (26), these now become 

Pa = 2y%i; Pd = 2y%3; p0* = h%*. • • • (3°) 

and from the symmetry of the expressions it is clear tha t the 
relations (30) express Hooke's law for elastic distortion, inde­
pendent of the conditions of simple normal stress from which 
they were derived. We can accordingly write more concisely 

Pon=2yeon (30') 

where n now stands for any direction of the normal to any 
section however oriented. 
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If the distortion is accompanied by a cubical dilatation, very 
much changing the density of the body, the stresses p0 must be 

replaced by the reduced stresses — p0 in accordance with (IX,c). 
P 

8. Strain-work in Simple Tension and Simple Extension 

Let us go back to the tensile test of a steel bar extended 
elastically in simple tension with which we started in Section 2. 
In extending the bar, the pull P n will perform work. In the 
testing machine, the speed of extension is moderate and the 
change will be through states of equilibrium so that kinetic 
energy is not generated. Therefore all work of the external 
forces will be converted into strain-work. Consider again an 
elementary prism with edges a, b, c (where a is in the direction 
of the axis of the test-piece) which is in equilibrium under the 
action of the simple normal stress pn. Ifpn is slightly increased, 
the edge a will be increased by Aa, while b and c will be decreased 
by Ab and Ac respectively. However, while in the direction of 
a, the force pnbc is acting, no forces act in the directions b and c. 
The increment of work will therefore be 

AW = pnbcAa = pnabc.Aaja . . . (31) 

If Aa is very small, Aaja = en and the element of work per 
unit volume 

dw = pnden = €enden (32) 

This equation is perfectly analogous to (IX, 23) and 
analogous conclusions can be drawn which need not all be 
enunciated here. 

For the simple Hooke body, where e is constant, (32) gives 
by integration 

w=cen*l2=pn*l2c (33) 

In simple extension, while there are stresses in all three 
directions a, b and c, displacement is only in the direction a. 
We therefore arrive at the simple expression (32), but here (5) 
is not applicable. To calculate the stress-strain relation, we 
start from (14) from which 

p = Kev = K.en ; pok = 2yeon = 4}3.yen . . (34) 

and therefore 
** = *„* + * = « » ( « + 4/3.y) • • • (35) 
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This gives for constant coefficients 

10 = (K + 4j3 . y). e*j2 (36) 

For an incompressible material (K = co) both pk and w 
become infinite, which means tha t simple extension is not 
possible with an incompressible material. 

9. The Coefficient of Viscous Traction 

We said in Section 2 that the tensile test is used not only for 
metals but also for such materials as pitch. Of course, in the 
latter case the rheologics of the test is entirely different. I t is 
generally assumed tha t if a rod of mild steel is loaded below the 
yield point it extends elastically and then stays put to the end 
of times. This, now, is a statement where the epistomological 
considerations of Section 1 of Chapter I X come in. I t has been 
maintained that even at room temperature mild steel will flow 
slowly or " creep ". About creep we shall speak in Chapter XI I I . 
But even if mild steel should flow at the same temperature as 
pitch, there still remains a very definite quantitative difference 
between both. In the case of a rod of pitch it is not necessary to 
employ exceedingly sensitive instruments to discover the con­
tinuous elongation ; it is visible to the naked eye—so much so 
tha t Trouton (1906) regarded pitch as a very viscous liquid. This, 
too, is a gross simplification and we shall therefore consider 
here the continuous elongation under constant load of a rod made 
of a Newtonian liquid of very high viscosity instead of pitch, 
which, as we shall see in Chapter XIV, manifestly possesses 
other properties in addition to viscosity. 

For such exceedingly viscous liquids, which to all appearances 
are solids, the two methods for the determination of viscosity, 
dealt with in Chapter I, are inapplicable. Whilst the viscosity 
of bitumen has been determined in rotation and tube visco­
meters, it may reach such values that it would either take 
tremendous force to produce a flow measurable in short time, 
or an impracticable long time under ordinary forces. In such 
cases (and for similar materials) Trouton applied such testing 
methods as are used for the determination of the elasticity of 
solids, e.g. the tensile test. He loaded a rod made of the material 
under test and measured the velocity of its extension. I t is 
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clear that the load per unit area of the section {pn) divided by 
the velocity of extension (e„) must be a measure of the viscosity. 
Trouton called it the coefficient of viscous traction. 

A=i>„/en .(37) 

10. The Mohr-Circle for Simple Tension 
The question now arises : how is this quantity related to the 

coefficient of viscosity 17 as defined by (I, f) ? In the latter 
equation the coefficient of viscosity 77 is defined by considering 
a case of simple shear, i.e. a case where neither the strain nor 

F I G . X, 3. 
Stresses in simple tension. P„„ normal component of pull P„. 

P„, tangential component of pull P„. 

the stress in respect of a given surface element has a normal 
component, i.e. e„ = 0 and pn = 0. Moreover, simple shear 
is a laminar displacement and therefore not accompanied by 
any change of volume, which means that we also have ev = 0. 

Now, is there any section in the loaded rod inclined against 
the cross-section at the angle <f>, where the only stress is a shear­
ing stress ? If we examine Fig. X, 3, it is clear that in every 
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section through the rod, the pull P is equivalent to a tangential 
force 

P n , = P „ s i n ^ (38) 
together with a normal force 

P n n = P n c o s ^ (39) 
Let the cross-section of the rod be unity, then the area of the 

inclined section is 
A+ = 7/cos <f> (40) 

and the tractions in the inclined section 

Pnt = PntlA4. = P n sin ^ cos <j> = ?^ sin 2<j> 

p n n = PnJA4 = p n c o s ^ = ^(1 + cos 2<j>) 
(41) 

Therefore, when <j> varies from zero to 90°, the normal 
component of the traction acting upon the inclined section 
increases from zero to pni while the tangential component goes 
from zero to zero, passing through a maximum for ^ = 45° 

nn 

FIG. 3C 4. Mohr's Circle for simple tension. 
<j> slope of inclined section. 

when max p^ = pJ2) while in that section pnn also = pJ2. 
These relations can be pictured graphically in a co-ordinate 
system where the pnn are abscissas and pnt ordinates. As can 
be seen from Fig. X, 4, comparing (41), all points representing 
connected values of pnn and pnt lie on a circle. 
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This is a special case of the so-called Mohr circle (compare 
Ten Lectures, pp. 123-128).* The reply to the question, 
whether in any section the only stress is a shearing stress, is 
therefore in the negative. 

11. Trouton's Derivation of the Relation between A and -q 
The reply being in the negative, we cannot directly apply 

(I, f). However, have we forgotten our first Theological axiom 
that, in order to examine rheological properties, we have to 
consider distortions ? Let us correct this oversight. 

This is usually done as follows, the method apparently being 
due to Lord Kelvin. Let us resolve the longitudinal tensile 
stress pn into three superposed tensile stresses, each equal to 
pJ3. The strains produced will not be affected by this proce­
dure. Also let each side face be subjected to two opposite 
normal stresses, each equal to pJ3; these stresses will not 
produce any strain, and thus original strains remain unchanged. 
We can now group the stresses applied to the prism in any way 
we please, and the resultant strains must be identical with those 
produced by tensile stresses applied to the end faces. Each 
side face is subjected to a tensile stress pJ3, indicated in Fig. X, 5 
by a black arrow ; grouping these stresses with the component 
tensile stresses pJ3 applied to the end faces, we obtain a 
uniform dilatational stress pJ3. We then group the stresses 
indicated by white arrows and those indicated by alternatively 
black and white arrows together, f 

As can be seen from the Inset 1 of Fig. X, 5, these stresses—• 
black and alternate arrows separately—are equivalent to 
shearing stresses equal to any of them (and therefore = pJ3) 
and making angles of 45° with the length of the prism (compare 
Inset 2). Therefore, if a pyramid as shown in Inset 3 is cut 
out of the prism, it is in equilibrium under the action of the 
forces shown, with the traction pn requiring the superposition 
of a hydrostatic tension pn. In his calculation of the coefficient 

* This gives us the opportunity to explain, with an example, the difference 
between " t r a c t i o n " and " s t r e s s " . We have used both indiscriminately, 
but the stress is represented by the complete circle, which contains all tractions 
(Pnn» Pnt)> while the tractions are represented by points on the circle. This shows 
that stress is an entity of a higher order than traction. 

t The reader will recognise that this is a geometrical derivation of what 
we found analytically in Section 5. 
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of viscous traction, Trouton followed this method as is evident 
from the quotation : " The tractional force applied to a rod 
may be resolved, as is usual in questions of elasticity, into two 

equal shears ( = shearing stresses or tractions, M.R.) which 
are situated at right angles to each other and at 45° to the 
direction of traction, along with a uniform force of dilatation. 
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The value of either shearing stress and also of the dilatation 
stress {hydrostatic tension) is in each case one-third of that of 
the tractive stress (pn)" 

I t should be noted that Trouton is wrong in stating that the 

Fio. X, 6 Graphical determination of angle between planes of shear 
ABa and ABb. 

Arrows and figures 1 to 1G indicate procedure of construction. 

two shears are " at right angles to each other ". Their hori­
zontal projections are at right angles to each other, but not they 
themselves ; because the planes in which the shears act make 

D.F. 
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an angle which is necessarily greater than 90°.* Trouton 
continues : " I n the first instance on the application of the 
tractive force, the resolved effects produced corresponding to 
these resolved stresses, will consist of a dilatation and of 
shearing strain. It can only be to the flow resulting from the 
latter that the continued elongation of the rod is due. Nothing 
similar can take place in the case of the stress of dilatation, 
which can only have an initial effect." I.e. should the material 
be compressible, and this it will generally be, then hydro­
static tension will only change its density immediately after 
the application of the traction and this will be all hydrostatic 
tension can produce : it will have no influence upon the flow. 
" The continued application of each shear will produce a 
corresponding flow given in each case by pt — r}6t, where pt is 
the shearing stress, t\ the coefficient of viscosity, and et the rate 
of change of direction of any line in the material in the plane 
of the shear, as it passes through the direction normal to the 
shearing stress " (see Inset 1 in Fig. X, 5). This, however, 
involves two assumptions, which have not been expressly 
stated : Firstly the assumption that added hydrostatic pressure 
or tension does not effect the value of the coefficient of viscosity. 
This is only approximately correct. Secondly, it should be 
noted that (I, f) defines rj for the case of one simple shear, while 
here we have two shears superposed. But what is worse, 
these two shears are not at right angles to each other, as was in 
Trouton's mind when advancing his argument. Trouton 
finishes as follows : " The resulting flow in the direction of the 
axis is obtained by adding the resolved components of the two 
flows in that direction; so that resolving the two effects, 
adding the components, and reducing the axial alongation to 
that per unit length, we find that e„ = et. Since pt = -qet 

and pt = pj3, where pn is the tractive force per square centi­
meter, we get 7] = Xj3, so that the coefficient of viscosity is 
equal to one-third of the coefficient of viscous traction." 

This can be seen as follows :— 
We consider a square with sides of unit length, subjected to 

simple shear. The square shown in Fig. X, 7, in dotted lines 

* I t is approximately = U8£°. For those of my readers who studied 
Descriptive Geometry and liked it, I have shown in Fig. X, 6, how the angle can 
be determined on that method. 
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becomes a rhomboid, as shown in full lines. If the displace­
ment BB' = CC is very small, the originally right angle 
between the diagonals AG and BD, which after strain are AC' 
and B'D, remains a right angle. AG, however, is extended to 
AC and BD contracted to B'D. Simple shear is therefore 
equivalent to an extension and contraction without shear in 
two directions which are at right angles to each other and 
inclined by 45° against the direction of shear. As can be seen 
BB" = BB'jV2. On the other hand DB" is equal to DB' 
with a good enough approximation. 

Furthermore, since BD = y/2, we have (DB — DB')jDB = 

(DB-DB")JDB = BB"jDB = j$lV2 = BB'j2. Similarly 

it is found that {AC - AC)jAC is equal to CC\2. As AB is 
unity, BB' = CC = et and a simple shear et is equivalent to 
an extension etj2 combined with a contraction eJ2 in directions 
which are mutually perpendicular, while either is inclined at an 
angle of 45° to the direction of the. shearing displacement. 

Therefore, comparing Fig. X, 7, we find that from the action of 

Fia. X, 7. Simple shear of square ABCD into rhomboid A, B', C , D. 
4 indicates right angle (exactly or approximately.) 

the white arrows the prism will extend by etf2 and from the 
action of the alternately black and white arrows likewise by 
et}2. The total extension is therefore twice eJ2 or = et. 
Now e\ can be calculated from (I, f) and is equal to ptjn. 
However, as pt = pJ3, we have et = pj3r) and therefore also 

From the definition of the coefficient of viscous traction (1) 
K 2 
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on the other hand, e „ = pJX. Comparing the two last equa­
tions, we obtain 

A = 3r) (42) 

12. The General Relation between A and -q 
We have reproduced Trouton's proof of the relation between 

the coefficient of viscous traction and the coefficient of viscosity 
because most rheologists have followed the same lines. I t 
must, however, be said that at the same time many have felt 
some uneasiness. The subject has its difficulties, and I have 
therefore dealt with it by applying exact methods of tensor 
analysis, reducing assumptions to a minimum [39']. The 
result is that Trouton's relation (42) is not generally correct, 
but perhaps correct in most practical cases. To indicate this, 
we shall write Trouton's special A with an asterisk, so A*. 

I shall here give the mathematical derivation in an elemen­
tary form. This will give me the opportunity to correct a 
mistake of mine in Ten Lectures, p . 49. 

I n Trouton's experiment we have to distinguish two stages. 
The stress due to the pull pn has, in accordance with (17), an 
isotropic component pm = pJ3. When the pull is applied 
there will be an initial stage which starts with an accelerated 
and ends with a retarded movement of the particles with—in 
general—pulsations in between. During this initial stage the 
material expands, the measure of the cubical dilatation a t every 
movement being ev. This cubical dilatation produces an 
elastic isotropic reaction — KCV. I t is accompanied by a viscous 
resistance = t\ev due to volume viscosity. When ev has so 
much increased that *e„ = pJ3, the elastic isotropic reaction 
balances the isotropic component of the pull pn. The cubical 
dilatation then ceases to increase and e\ therefore vanishes. 
Then the second stage sets in, in which the movement is steady. 

Now let us assume that the rate of deformation of the prism 
or the velocities of flow of its particles are so small that their 
kinetic energy may be neglected ; in which case there will be 
no pulsations but only an aperiodic movement leading to the 
second stage, when the movement becomes steady. 

For the isotropic component of the traction we have 
accordingly (compare (IX, a ) ) 

PJ2 = «e* + Vv% (43) 
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For viscous distortion, because of the perfect analogy of 
(I, d) and (I, f), there are equations in force analogous to those 
of elastic distortion (30'), viz. 

Pan = &?«„» (44) 
I n our case (compare (17)) 

Po* = 2pJ3 (45) 
while (compare (10) and (11)) 

Kh = efc - eJ3 = en - eJ3 . . . . (46) 

Therefore 

pJ3=r)(en-eJ3) (47) 
and 

i.=3in-Pnh (48) 

Introducing this expression for ev into (43) we find 

pJ3 = Kev + 7}v(3en - pjrj) . . . . (49) 

or 

tn=(Pnl3-K%)}3Vv + pJ2v • • • (50) 

The coefficient of viscous traction A is defined by (37) in 
accordance with which we find 

X-l=tnIPn = tt-3KeJpn)l9r)v + ll3r} . . (51) 

or 

*-(*7^/(' + 7^--<«> 
Equation (52) is the viscous analogy to the first of (27), viz. 

e ~—£=—. The analogy is, however, not exact. While « = 3y 

for k = oo and only in this case, the situation is very different 
in the case of A. 

In interpreting (52) one should keep in mind that 1 — 3KeJp„ 
is either >0 in the first stage of Trouton's experiment, or = 0 
in the second stage. For the volume viscosity we have 
0 ^ Vv ^ ° ° - ft *s c l e a r th& t the volume viscosity cannot be 
negative as " otherwise the more alternate expansion and 
compression, alike in all directions, of a fluid, instead of 
demanding the exertion of work upon it, would cause it to 
give work out " (Stokes). As can be seen, if r}v' vanishes. A 
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also vanishes in the first stage. On the other hand, A/17 = 3 
in both stages if rjv = 00 and also in the second stage, when 
1 — 3icejpn = 0, whatever the magnitude of T)V. Because -qv 

cannot be negative, A/77 cannot exceed the value 3. Therefore 

0 ^ A £ 3T) (55) 

with A* = 3v in the second stage only. 

13. The Stokes Liquid 

These results are of interest in connection with the rheologics 
of the classical viscous liquid or what we called the Stokes 
Liquid. This was derived by Stokes by assuming t\v = 0, but 
in the first stage of the Trouton experiment a vanishing volume 
viscosity would mean A = 0 or vanishing viscous resistance 
against extension of a liquid cylinder no matter how high the 
ordinary viscosity -q of the liquid, a result at variance with our 
ideas of viscous flow. Tisza [40] has recently drawn attention 
to the following quotation from Stokes : " O f course we may 
at once put 17̂  = 0 if we assume that in the case of a uniform 
motion of dilatation the pressure at any instant depends only 
on the actual density and temperature at tha t instant and not 
at the rate at which the former changes with the time. In most 
cases in which it would be interesting to apply the theory of 
friction of fluids, the density of the fluid is either constant or 
may without sensible error be regarded as constant, or else 
changes slowly with the time. In the first two cases the results 
would be the same and in the third nearly the same whether 
r}v were equal to zero or not. Consequently, if theory and 
experiments should in such cases agree, the experiments must 
not be regarded as confirming that part of the theory which 
relates to supposing 7)v to be equal to zero." Stokes does not 
seem to have realised the consequences which his assumption 
of vanishing volume viscosity carries in respect of the viscous 
resistance in simple tension, and he was definitely mistaken in 
equating the influence of either ev = 0 or r}v = 0 on experi­
mental results. Examination of (52) shows that the same 
result follows from either e\ = 0 or TJV = 00 and not t\v — 0. I 
was misled by Stokes to make the same mis-statement in my 
Ten Lectures, p. 49, lines 17-20. If we assume with Stokes 
vanishing volume viscosity, the material would in the first 
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stage expand purely elastically and instantaneously in no time 
as is natural in the absence of the damping influence of a 
volume viscosity. If, on the other hand, 7jv were so great 
that it may be put = oo, the expansion would be infinitely 
delayed and the second stage never reached. Tisza deduces 
from observations on supersonic adsorption in certain liquids 
a value of yj-q = 2,000. This, when introduced in (54), is 
practically infinite. It is true, as Trouton found, that in the 
second stage A/17 = 3; but it cannot be assumed a priori tliat in 
an actual experiment with some real material that second stage is 
reached during the experiment. This depends entirely upon the 
magnitude of r]v. 

Assuming that the second stage has in fact been reached in 
his experiments, Trouton calculated the values for A* shown 
in the following table :— 

Material 

A*xl0-1 0 

in poises 

Pitch 

3-6-4-3 

Mixture of pitch 
and 

Tar 

1-29 

More tor 

0-67 

Shocmnker'a 
Wax 

0-0059 

14. Summary 
In every deformed body there exists at every point a triple 

of normal axes i, j , k which were at right angles, too, before 
deformation. They are called principal axes of deformation 
(or strain, as the case may be). As the right angles between 
them do not change, they are not sheared and the deformation 
consists of positive or negative extensions in the direction of 
the principal axes or normal to the planes containing them. 
They are accordingly normal deformations (en) called principal 
deformations and denoted by et, cy, ek. In an isotropic material 
these deformations are connected with normal stresses (pn) 
called principal stresses and denoted by pif pit pk. 

If the directions of i, j , k in space are the same before and 
after deformation, the latter is called pure deformation. 

If the directions i, j , k and the magnitudes of et, eJ} ek are the 
same throughout the body, the deformation is said to be 
homogeneous. 
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In a prism with edges a, 6, c oriented in the directions i, j , h 
respectively with lengths of edges a0, b0> c0 before deformation, 
the principal deformations are extensions 

e, = In(a/aD), e, = ln(6/60), ek = ln(c/c0) . . (X, a) 

and the cubical dilatation as defined by (IX, 6) 

% = ei + et + Ct ( x , b) 
The principal deformations 

««« = e( - «,A %i = e, - eJ3, eok = ek - eJ3 . (X, c) 

for which e0{ -+- eoi + e0jt vanishes, constitute a distortion. 
In accordance with the first axiom of rheology (compare 

Section 3 of Chapter I) the characteristic rheological equation 
of a material connects eoi, eoj, eok, with stresses poi,poi,pok which 
are to be derived from plf p^ pk through 

Po* = P*-P>Poj =Pi-P>Poie =P*-P • (X, d) 
where the isotropic stress p is the mean of the principal stresses 

P=(pi + Pi+pk)f3 • . • . (X,e) 
In the case of simple tension, pn, 

P = Pnfi ; Pa =Po, = ~ PJ3 ; Pok = 2pJ3 - (X, f) 
The isotropic stress p is connected with the cubical dilatation 

e„ by means of (IX, a), which is the isotropic rheological 
equation valid for every kind of material. 

For the distortional part in the case of the Hooke solid 

Pen = 2ye„n (X, g) 

In the case of the Newtonian liquid 

Pon=2v%n (X,h) 

When a prismatic bar of length l0 is acted upon by a pull 
( + Pn) or a push (— Pn) in the direction of its axis (direction k) 
they produce a simple one-dimensional stress pn. This causes 
a three-dimensional pure deformation. In a Hooke-solid this 
consists of a longitudinal extension without shear 

e„ = In (Z/ZJ (X, i) 

or for small extensions 
«««4yi. (x,i'> 

which is connected with pn through 
e* = Pj< (X,j) 
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and lateral contractions of the magnitude 

% = ~ ™n (X, k) 
In sections inclined by 45° against the axis there is a maxi­

mum shearing strain 
et=en{l + a) (X,J) 

The " derived " elastic coefficients e and <J can be calculated 
from the " fundamental " coefficients K and y in accordance 
with 

€ = 9KYI{3K + y) (X,m) 

o = (3K-2y)j2(3K+y) . . . (X,n) 

When a viscous liquid is subjected to simple normal stress 
the analogy to e is Trouton's coefficient of viscous traction 

A - i > n / e n (X,o) 

and the analogy to (X, 1) 

_ 1 - 3KeJpn 
A = j - . . . . (X, p) 

V + 1 - 3KeJPn 

When e„ vanishes and the movement becomes steady, 
ev = PJ3K, and A* = 3r\. This is also so whenever ev = 0. 

A Newtonian hquid in the special condition when e„ vanishes 
is called a Stokes Liquid. 

Simple extension is a one-dimensional extension which 
generally is connected with a three-dimensional stress. In the 
case of simple shear c() the principal deformations are e< = et 

— etj2 while ek normal to the plane of shear vanishes. The 
axes i and j are inclined at angles of 45° to the direction of the 
shearing displacement. 

The strain-work per unit volume in simple tension is 

w» = \Pn den= yenden . . . . (X, q) 

which for the simple Hooke body when e is constant 

wH = cen*l2=pn*l2t . . . . <X,r) 



CHAPTER XI 

WORK -HARDENING 

1. Technical and Rheological Test Curves 
W E have dealt in the preceding Chapter with the tensile test 

and have mentioned that this is the predominant test for 
metals. Among these the most important from the economical 
point of view is, without doubt, mild steel. Let us therefore 
look more closely into the tensile test of mild steel. 

A record of the observations consists in plotting the load (P) 
against the elongation (Al) or vice versd. In Section 5 of 
Chapter V we have called such a curve, where directly measured 
quantities are plotted, a Technical Curve. I t forms the basis of 
the theoretical analysis; the latter aims at expressing the 
rheological properties of the material under test by (i) a rheological 
equation and (ii) the numerical values of its rheological coefficients. 
For accomplishing this task there are certain difficulties to be 
overcome. First of all, there is a difference depending upon 
which one of the two variables P and Al is taken as the indepen­
dent and which one as the dependent variable. If we gradually 
increase the load, the rod of mild steel behaves first elastically, 
more or less as a Hooke solid ; but with a certain load the yield 
point is reached, when the rod starts to flowplastically at a more 
or less constant load. If, disregarding this, we continue to 
increase the load, there will be no equilibrium, the material will 
flow at an accelerated rate and soon break. This difficulty does 
not arise if the elongation is taken as independent variable. Here 
the load first increases ; then remains constant; then again 
increases ; then, after what is called the " necking " of the 
piece, decreases, until the piece breaks. This is the arrange­
ment in most tensile testing machines for metals, where one 
end of the rod is fixed, the other travels at constant rate ; and 
where Al is therefore the independent variable, and the 
co-related P is observed. 

Another method of taking account of the difficulty consists in 
considering the traction p and not the load P as the independent 
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variable. With increasing elongation the cross-sectional area 
gradually decreases. If we let the traction gradually increase, 
this will often mean that the load must be decreased. If the 
elongation continues under constant traction, as it is supposed 
in a St. Venant body or in viscous traction, the load must be 
gradually decreased in the same ratio as the cross-sectional 
area decreases. There exist a number of devices to effect this 
automatically. One, by Andrade for pull, is described in 
Ten Lectures, p. 83. For another one, also for pull, compare 
Andrade and Chalmers (1932). Two methods for push, keeping 
compression stresses constant, are described by Scott Blair in 
Survey, pp. 120-122. Compare also Caffyn [41]. 

A curve in which stress is plotted against deformation in 
such a manner that the curve is independent of the dimensions 
of the apparatus may be called, in contradistinction to the 
technical curve, a Rheological Test-Curve. A consistency curve, 
in which the stress and deformation are consistency variables, 
is such a rheological test curve (provided there is no wall-
effect). A rheological test curve will not necessarily be inde­
pendent of the kind of apparatus. If the variables are such 
that this is the case, the curve may be called the Fundamental 
Rheological Curve of the material. This is a graphical repre­
sentation of the rheological equation of the material. The upper 
part of Fig. I l l , 3, a, shows the fundamental rheological curve 
of the Bingham body, while Fig. I l l , 4, shows two of its 
rheological test curves. 

2. Strain-hardening 
I have mentioned the necking of a mild steel bar after 

prolonged plastic extension. When necking starts, the rod 
ceases to be cylindrical or prismatic and obtains a shape which 
makes it less suitable as a test-piece ; stresses and deformations 
being no longer more or less evenly distributed over the length 
of the test-piece, but now concentrated at the section of striction 
where the cross-sectional area is a minimum. 

If one comes to think of it, it is rather strange that the 
cylindrical shape can be maintained in any tensile test, either 
throughout the test or up to a certain elongation. The material 
tested (whatever it may be) cannot be of uniform quality over 
the length of the bar ; its quality must at some section be lowest. 
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At the same time it will not be absolutely cylindrical, but 
possess somewhere a minimum cross-sectional area. Therefore 
when loaded, it will first give way at one or the other of those 
sections. If so, the cross-sectional area will there be reduced 
and become markedly less than along the rest of the test piece. 
This will increase the stress at that section and worsen the 
position.* If this does not actually happen there must be some 
counteracting influence. The counteracting influence is strain 
hardening.^ Strain Hardening is the rise of the yield point of a 
material with increased deformation.I When the material first 
gives way at the weakest section it is there strained. When 
the strain brings with it strain-hardening, the material at that 
section may become harder than throughout the rest of the 
length and, even with increased local stress, deformation will 
not continue at the section but start somewhere else, i.e. a t the 
next worst place. By attacking one section after the other, 
deformation is equally distributed over the length of the rod, 
the shape of which is finally again cylindrical. Therefore, if a 
bar of any material remains cylindrical (or prismatic) in a tensile 
test, this is an indication that the material possesses the property 
of strain-hardening. 

3. The " Stress-Strain " Curve of Mild Steel 
Let us go back to the technical curve for the tensile test of 

mild steel. If we plot the load P against the elongation 
JZ, this gives from the start a different curve for every 
different diameter of bar of the same material. Therefore, 
denoting by A0 the original cross-sectional area and by l0 the 
original length of the test-piece, the " stress " PjA is plotted 
against the " s t r a i n " Aljl0 in what is called § the " stress-

* The tensile test, accordingly, proceeds through states of unstable equili­
brium ; in contradistinction to the compression test where the equilibrium is 
stable, any local deformation resulting in a reduction of stress. 

t This is the usual designation. I t should, however, be noted that after 
the first yield point has been exceeded we should (in accordance with our 
terminology) not speak of " strain " but of " deformation ". We shall later 
propose to replace " strain hardening " by work hardening, a term which is 
more appropriate. 

J This is the customary case. Schofield and Scott Blair [42] have observed 
strain hardening in flour dough where the viscosity increases with strain. 

§ The terms " nominal stress ", " nominal strain " and " nominal stress-
strain curve " are also used, to distinguish them from the " true " stress, 
strain and stress-strain curve, about which more will presently be said. 
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strain curve " of mild steel. While this curve is more or less 
independent of the dimensions of the test-piece, it can still not 
be regarded as a rheological test curve, the designation of 
" stress-strain curve " being, as we shall presently see, not fully 
justified. 

As we have said, the elongation Al is at first proportional to 

P/W/A A 
tag/cm"2 i cm2 

7000 -

ihi 

0.05 

Fio. XI , 1. Technical " stress-strain curve " of mild steel. 
" a " first yield point. " h " yield point after strain-hardening. 

A cross-sectional area. P load. £1 elongation. (The elastic strain 
has been exaggerated.) 

the load, until the yield point {a in Fig. XI, 1) is reached. This 
is the elastic or Hooke-range. After that the elongation grows 
quickly at approximately constant load. This is the plastic 
range. When the point c is reached the load must again be 
increased, but at a much lower rate than in the Hooke range. 
This is the strain-hardening range. When the point b is 
reached the load must be decreased ; the rod starts " necking " 
until it finally breaks at point e. Plotting PjA0 against Aljl0. 
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results in the curve o-a-c-d-b-e of Fig. 1. However, it is 
clear that this does not tell us much about the Theological pro­
perties of the material and even gives a misleading picture, 
because it is not obvious why, if the test-piece actually breaks 
at the load Pet it can sustain the same load at an earlier point d 
without breaking ; and later on at point b an even higher load. 
The explanation is, of course, that with increasing elongation 
the cross-sectional area is gradually reduced and, therefore, 
the stress increases even for the same load. If we plot the 
stress PjA against Mjloy the curve o-a-c'-b'-e' results and this 
curve looks more reasonable in tha t there is no fall of stress 
with increasing strain. However, the strain is here understood 
as the ratio of elongation to the total length of the test-piece, 
while after necking elongation takes place at the section of 
striction and should be related to the length of the latter. 
For this reason the denotion " stress-strain curve " is not 
applicable after the point " 6 " . 

4. The St. Venant Range 

Our description of what we called in the preceding section 
the plastic range, but what in accordance with our nomen­
clature we shall call the Simple St. Venant Range, was rather 
superficial. When the bar first yields, an immediate drop of 
the load to a lower level can be observed and yielding continues 
at that lower level. To describe this phenomenon, Bach [43] 
coined the terms " upper " and " lower " yield point. I t has 
often been maintained that the phenomenon is not due to 
intrinsic rheological properties of the material, but to a 
" machine-effect" resulting from the combined mechanics of 
test-piece-cum-testing-machine. I t has been stated that the 
rise of the yield point is caused by the inertia of the machine 
and is due to the sudden stretching of the specimen and the 
inability of the machine to react satisfactorily to this quick 
change. This question of the influence of the mechanical 
behaviour of the testing machine upon the observational results 
is certainly of importance. When the reaction of the apparatus 
is of the same order of magnitude as the phenomenon to be 
observed, these can hardly be separated. This has lead in the 
realm of the submicroscopic, where the observed is an electron 
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and the means of observation a photon, to Heisenberg's 
uncertainty principle. If, in the realm of the macroscopic, the 
testing machine is a steel structure and the test-piece a steel 
rod introduced into that structure, conditions become similar. 
We cannot go into the problem here. I t has been dealt with 
in great detail in a book by W. Spath [44]. In order to find 
out about the reality of the upper yield point, Edwards, 
Phillips and Liu [45] used a simple arrangement of direct 
loading by adding weights on a pan attached to the lower end 
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FIG. XI , 2. Model for a St. Venant body. 

of the test-piece, avoiding mechanical devices for applying loads 
so that the difficulties from inertia arising from machine 
bearings, levers and other features of design would be overcome. 
It was found that, once plastic deformation commenced, it 
continued at much lower loads than those initially required. 
The upper yield point could be raised by careful and very slow 
loading. 

This suggests for the St. Venant body a model as shown in 
Fig. XI, 2. A weight rests upon a table top and there is sob'd 
friction between both, a friction which is higher at rest and 
lower when movement takes place. A string is connected to 
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the weight and a gradually increasing pull P applied to its free 
end.* First the string is slack, then it is tightened. 

As long as the pull is smaller than static friction, the weight 
remains at rest. When P reaches and slightly exceeds static 
friction, the weight starts to move, and in order to maintain 
equilibrium with constant velocity of movement, P must be 
reduced to kinetic friction. The resulting load-movement 
diagram is shown in the lower half of Fig. XI, 2. If we introduce 
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FIG. XI, 3. Model for a combined Hooke-St. Venant body. 

the stress pn for the load P and the strain en for the movement 
Alt we see that the model qualitatively reproduces the 
behaviour of the test-piece during the St. Venant range. To 
include the Hooke range, we introduce an elastic spring as a 
model for the Hooke solid and replace the string by the sprin°-
or couple the StV element with the H element in series, an 
operation which we indicate symbolically by StV — H. In 

* If the reader has seen Fig. VIII, 1, (a) in Ten Lectures or the figure in my 
paper [46], he will notice that I have now changed the model by introducing 
the " string " as a structural element. This was suggested to me by Mr. W. 
Fuchs and has many advantages. 
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Fig. XT, 3, the model and the load-movement diagram for this 
arrangement are shown. 

5. The Strain-hardening Range 

I t is not difficult to adapt this model so as to include the 
strain-hardening range. Fig. XI , 4 shows a model and the 

*mfr*-

LIMIT OF 
STRAIN HARDENING 

- A I 

•INCREASE OF DISTANCE BETWEEN WEIGHTS 
CONNECTING STRING THK3HTENED 

Fio. XI, 4. Model for a generalised St. Venant body. 

respective load diagram. The model consists of a number of 
St. Venant elements connected in series and preceded by an 
H element. As deformation proceeds, or more strings are 
tightened, more and more weights are called into action, with 
the yield point rising. I t has been found that in mild steel, as 
in other materials showing strain-hardening, this does not go 
on indefinitely as the deformation increases. In the tensile 
test the process is interrupted by the breakage of the test-piece 
at about 20 per cent, overall extension or 30 per cent, local 
extension, but in wire drawing that same small steel rod can be 
converted into a thin wire by drawing it cold through a number 
of decreasing holes. By this process its diameter is reduced 
to a fraction and its length increased by many thousands 
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per cent. The process has a limit only when the wire thins 
to crystaUite dimensions. While, therefore, the deformation 
is practically without limit, no such parallel unhmited increase 
in yield point can be observed. The yield point gradually 
increases with diminishing rate of increase until a Maximum 
Yield stress, O^ is reached. This implies the existence of a 
Limit of strain-hardening. To this fact there corresponds in 
the model a limited number of decreasing weights. 

6. The Tensile Strength 

The models of Figs. X I , 2,3 and 4 do not include considerations 
of " strength ". We shall deal with strength in Chapter XVIII . 
However, as the main object of the tensile test for mild steel is 
the determination of its " strength " we cannot avoid including 
a preliminary treatment of strength already in the present 
Chapter. 

The tensile test is carried out in accordance with specifica­
tions for which we may take as typical the British Standard 
Specification (B.S.S.) No. 785—1938 for rolled steel bars and 
hard-drawn steel wire for concrete reinforcement. That 
specification asks (Clause 5) for " the tensile breaking strength, 
yield point (where specified) and elongation ". The terms are 
not defined, but there can be no question that the " yield po in t " 
is the stress PJA0 (Fig. XI , 1) and the "elongation" (extension) 
Aljl0. There is, however, a curious point about the "tensile 
breaking strength ". The specification says that it " shall 
conform to the requirements specified in Appendix A, page 18 ", 
but if we turn to that Appendix no tensile breaking strength is 
specified, but something which is called Ultimate Tensile 
Stress. The question naturally arises : are these two one and 
the same and how is it that they are named differently ? 

British terminology is not as definite about the concepts 
involved as is American. In the United States the stress PbjA0 

is called Ultimate Tensile Strength and the stress PJA0 Tensile 
Breaking Strength. In the well-known English textbook, 
The Strength of Materials, by E. S. Andrews, Ph\A0 is called 
Commercial Maximum Stress. The Germans call PJA0 

Zvgfestigkeit. There can be no doubt that what the British 
Standard Specification requires is PjA0. In view, however, of 
the fact that at the Load Pb no breaking occurs, the term 
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" tensile breaking strength " is not very fortunate, especially if 
it is not defined. 

The purpose of the present discussion is neither philological 
nor legalistic. There can be no question that in the use of a 
steel rod or bar as a structural member in tension, what governs 
its usefulness is the magnitude of the load Pb. The load which 
the member is to take is given. I t does not help that the steel 
member can resist higher stresses when the point b has been 
passed (compare Fig. X I , 1), if the load has at the same time to 
be decreased—because this cannot be done. There are, however, 
other uses of mild steel and the question then arises : Is the 
stress PbjA0 or, more correctly, PJA of physical significance ? 
Does it tell us something of the intrinsic properties of the steel 
under test ? What is the necking due to ? Until the point b 
is reached the cylindrical rod remains cylindrical, albeit with 
increased length and reduced cross-section. Why does this 
not continue down to actual breaking ? And why does breakage 
occur at a certain extension, while in the wire-drawing process 
that extension can be infinitely enlarged ? 

We shall presently discuss these questions using the matter 
provided by experiments which I first undertook in collabora­
tion with W. Fuchs and H. Hberg at the Laboratory for Testing 
Materials of the Standards Institution of Palestine at Tel-Aviv 
[47] and continued in collaboration with A. Freudenthal [48] 
and which will be described in the following sections. 

7. A Close-up of the Tensile Test Piece 

A test-piece was shaped as shown in Fig. XI, 5. I t was assumed 
that the yield stress of the steel was about 3,000 kg/cm.2 and 

n — — — U i — 
u- j—i 

\* 1.- IM em M 

I 
FIG. XI, 5. Original form and dimensions of test piece. 

the test-piece was first loaded with 4,500 kg., giving a stress of 
1,460 kg./cm.2 After that the rod was unloaded and the length 
found to be the same within 1/100 part of a mm. This, there-

O 2 
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fore, was a purely elastic strain. After that, experiment 2 was 
undertaken. 

In experiment 2, point a of Fig. XI, 1 was reached and exceeded 
at a load of between 8,900 and 9,000 kg., giving a stress of about 
2,900 kg./cm.2 The rod was again unloaded and measured. 

F I G . XI , 6. Lateral contractions of testpiece in linear scale. 
The testpiece was turned down several times. I shows the con­

tractions of the original testpiece ; I I , I I I , IV of testpieces turned 
down. The outline of the last shape before turning down has been 
hatched vertically. Numbers indicate the experiment (as listed in 
the Tablo) in which the deformation was effected. For the meaning 
of " a " compare section 11 below. 

There was now a permanent elongation of the central piece of 
1-65 mm. which gives an extension = elongation/original 
length of 1-26 per cent, within a hundredth of 1 per cent. 
Elongations were measured in two longitudinal sections at right 
angles and differed slightly. They were averaged. 

This procedure was continued. The rod was loaded until 
the yield point was reached, then unloaded, then measured. 
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There were large intervals of time between experiments ; not 
on purpose, but due to the conditions under which the investi­
gation was undertaken. However, as will be explained later, 
this brought to better light the phenomenon of " ageing " of 
steel. 

Table I gives the data of the experiments made. With the 
sixth experiment necking set in, the point b in Fig. XI, 1 being 
reached. The tensile strength, as usually defined, was found 
to be 4,120 kg./cm.2 In the same Table the reduced cross-
sectional areas as determined by measurement have also been 
entered, and the " true " stress calculated accordingly. The 
" true " tensile strength was 5,200 kg./cm.2 but it should be 
kept in mind that actually no breaking occurred at this stress. 
There was no point in continuing the experiments in the same 
way. One knew what was to be expected : the rod would 
cease to be extended over the whole length, it would thin down 
at the section of striction where it would locally be extended ; 
finally the rod would break at that place at a certain smaller 
load but higher stress. 

TABLE I . Data for Eheological Tensile Test Curve of Mild Steel 

1 
3 

n 

3r
d 

Se
rie

s 

n 
1 
§ 

Experi­
ment 
No. 

1 
2 
3 
4 
5 
6 

7 
8 
9 

10 

11 
12 
13 
14 
IB 

10 
17 

18 
19 
20 
21 
22 

Date 
0 - 2 6 43 

In dajs 

0 
0 

46 
113 
103 
193 

266 
278 
S23 
341 

350 
371 
443 
440 
471 

5(12 
512 

543 
553 
560 
572 
5S0 

Load 
P 

in kg 

4500 
8050 
0010 
9730 

12380 
12720 

10000 
10900 
11020 
11220 

7700 
7900 
8140 
7970 
8030 

5850 
5850 

5150 
5100 
5240 
5100 
5220 

Stress 
P/A0 

in 
kg/cm' 

1400 
2000 
2020 
3150 
4020 
4730 

4780 
5180 
5240 
5340 

5400 
5490 
5G60 
5550 
5590 

5710 
6710 

5870 
5810 
5960 
5810 
5940 

Elonga-

in cm 

0 
0-165 
0 263 
0 379 
1202 
1801 

0180 
0-392 
0-558 
0-701 

0-000 
0-118 
0 220 
0 287 
0 3(18 

0 077 
0-121 

0152 
0-218 

Unit 
Exten­

sion 
Al/la 
f n % 

0 
1 2 6 
2 01 
2-90 
9-18 

14-20 

126 
2-65 
3-77 
5-14 

0-43 
0-76 
1-42 
1-85 
109 

II 18 
0 70 

0-95 
1-36 

Initial 
dimensions 
for scries 

D , = l 982 cm 
A , - 3 085cm' 
/„ - 1 3 - 1 cm 

D , - 1 636 cm 
^ , - 2 - 1 0 2 c m 1 

/„ -14-8cm 

D , = l 333cm 
d , = l 438 cm" 
/ , —15 5 cm 

D,>-=1 ] 11 tin 
A , = l 0 'J4nn' 
/ , —15 9 cm 

D, - 1 tlSScta 
A, = 0 878 cm' 
/ , - 1 0 0 cm 

Smnllcst 
cross-

scctlona] 
area 

A 
in cm' 

3-085 
3 040 
2-080 
2 979 
£814 
2 430 

" True " 
stress 
P/A 
in 

Kg/cm' 

1400 
2038 
3030 
3260 
4400 
6200 

NOTE: 
Elongation AI 
and smallest 
crosa - sectional 
nrta A arc thoso 
n(tallied a t the 
end of the experi­
ment. 
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When measuring the length after eaoh experiment, the 
diameters along the length were also measured to 1/100 mm. 
In the uppermost part of Fig. XI, 6 the shapes of the rod up to the 
necking are shown in exaggerated scale. As can be seen, the 
statement in most textbooks that " until the point b is reached 
the cylindrical rod remains cylindrical " is correct only as far as 
observation with the naked eye goes. Actually the rod loses 
its perfect cylindrical shape with the first permanent 
deformation in experiment 2. 

In experiment 3 the section where the diameter had been 
reduced before toll minimum, did not move ; deformation took 
place where the diameter had not been changed and the stress 
was therefore the smallest. In experiment 4 also the shallow 
microscopic neck formed in experiment 2 was not changed ; 
deformation took place at the ends which had not moved in 
either experiment 2 or 3. As we said in Section 2, the point 
where the diameter is most reduced in each experiment wanders 
along the length of the rod, to find the material which has so 
far been least strained. Just before necking, in experiment 5, 
the shape was again fairly cylindrical. 

8. The Cause of Necking 
We can now understand what causes necking. As can be 

seen from Fig. XI, 1, the rate of strain-hardening, i.e. the rise in 
yield point per unit increase of strain, falls off between points c 
and b. At the same time, with the reduction of the cross-
sectional area, the stress increases and has its maximum at the 
smallest section. At that section the yield point has also been 
raised most. There is accordingly a competition between the 
increase in yield-point and increase in stress at the smallest 
section. As long as the former prevails the deformation 
wanders away to some other place where the yield point is 
lower. As soon, however, as the rate of strain-hardening has 
become so low that the latter prevails, deformation continues 
at the same place and necking sets in. 

This answered the question as to the cause of necking. At the 
same time it showed in which way the experiments were to be 
continued. After necking has set in the stresses are not more 
or less uniformly distributed over the length of the rod, but 
concentrated at the point of striction. Therefore, before con­
tinuing the experiments, the cylindrical form was restored. 
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This was done by turning down the test-piece from a diameter 
of 1*982 cm. to 1*636 cm. The experiments were then con­
tinued as before. 

9. Ageing 
Now necking occurred at once, but at an entirely different 

place from that in experiment 6 (compare Fig. XT, 6). When the 

FIG. XI , 7. Test-piece after the 9th experiment, showing three 
strictures. (Compare Fig. XI, 6.) 
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test-piece was given a " rest", it further hardened at the place 
where it had been strained most or, as is said, it " aged *\ 
Therefore in the nest experiment the deformation did not 
continue at the same place but occurred elsewhere, etc. In 
the end we had three strictions in the one test-piece, a rather 
unusual phenomenon (compare Fig. XI, 7). After that, the test-
piece was again turned down and this was repeated several 

F I G . XI , 8. Superposed lateral contractions of all testpieces. 
Numbers correspond with number of experiment in Table. Roman 

numerals refer to the series, of which each represents a new turning-
down. Note how the testpiece in the first experiment to which it 
was subjected in series I I (No. 7) remembers, so to speak, where its 
least contraction had taken place before i t was turned down after 
series I {and similarly in further experiments). 

The fifth testpiece has again been turned down and is now perfectly 
cylindrical. Necking was expected at point A and so happened in 
experiment 21. 

times. In Fig. XI, 8, all deformations have been plotted in one 
figure. As can be seen, the material well " remembers " its 
previous history. Here also deformation wanders from point 
to point: from a more to a less strained section, even if the 
test-piece, after turning down, is perfectly cylindrical. 

10. Local Deformations 
It is clear that the value for M has no significance after 

necking has set in. Before that it gives a good average of the 
deformation in the different cross-sections. After necking, 
however, all deformation occurs at one place, while the rest of 
the rod is not deformed. Locally, as we pointed out in 
Section 3, the deformation will be quite considerable ; while 
its contribution to the increase in length will be very small. 
The apparent high rate of strain hardening between points b' 
and e' in Fig. XI, 1 is therefore misleading. Actually the length 
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on the abscissa related to these two points will be much longer 
in terms of deformation than shown here in terms of Aljl0. 

To get a true picture one has to relate the stress at a section 
to the local deformation which manifests itself in the reduction 
of the diameter. Let us imagine the rod divided into disks of 
originally equal thickness d0. The elongation Al is the sum of 
the increases of thicknesses of these disks. Every such 
increase in thickness is accompanied by a decrease in diameter 
and we may assume (as a first approximation) that in this 
process the volume of the disk is not changed. Let d be the 
thickness of the disk after extension, then its contribution to 
the total axial extension is in, the correct logarithmic measure 
en = \x\(djd0). Furthermore, let D0 be the original diameter 
and D the reduced diameter of the disk, then constancy of 
volume requires that 

D*d=D0*d0 (1) 
or 

\n{DHjD0U0) = 2 \n{DjD0) + ln(dfd9) = 0 . . (2) 

from which with 
In(Z>/Z>0) = cfi (3) 

e„ = - 2ec (4)* 

I t is, therefore, possible to calculate the local axial extension 
from the local relative contraction. The former is twice as 
large as the latter. 

11. The Rheological Tensile Test Curve 

For the rheological test curve we have to plot local stresses 
D27T 

Pj—r- against local strains en = \n{djd0). This requires the 

tracing of the different disks in the consecutive experiments as 
they change their distance from the axis. 

Tn Fig. XI , 6 I have shown how we can follow the course of 
one such disk, marked " a," and it obviously is a cumbersome 
process. In Fig. XI , 9 the successive extended lengths of the 
test-piece have therefore been reduced to the original length 
taking account of local extensions and in this way the disks 

* The same result is obtained from (X, 8) considering that the length and 
two diameters at right angles are principal axes of strain and therefore er = 
e„ + 2ef. If er vanishes, e„ = — 2ee. 
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keep their places. At the same time the diameters have been 
plotted in logarithmic scale and the strains, or rather deforma­
tions, can therefore be read directly from the figure. K i n the 
first series of experiments (I) any one disk suffered a reduction 
of its diameter from DQ to Dx and was then turned down to a 
diameter D2 which by deformation was reduced to Da, etc., its 

20 T Sfains i7i?egari/Amic fiteasure can be rtacC Jirzcfy from /4/s-

19 

FIG. XI . 9. Lateral deformations of testpiece. The contractions 
shown m Fig. X I , 5 are here plotted in logaritlimic scale and 
the lateral deformation can be read off directly. 

final deformation is ec = Iv^DJD^ + ln(D3/Z)2) - ( - . . . which 
is therefore simply additive. This is not the case with the 
usual definition of strains and deformations. In Fig. XI , 9 
all deformations have been superposed, in accordance with this 
principle, upon those of the first series as if no turning down 
had taken place. 

I t is now easy to plot local yield stresses against local strains, 
which has been done in Fig. XI , 10. No special precautions were 
taken either to exclude ageing or to ensure a definite and equal 
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degree of ageing in the course of the experiments and there is 
therefore considerable scattering of points. Nevertheless the 
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F I G . XI , 10. Kheological stress-deformation omve. The true 
yield stress has been plotted against double the local contraction. 

curve can serve as the basis for the discussion of the problem 
of the determination of the rheological equation governing the 
strain-hardening of a material, i.e. a relation between 0- and e. 

12. The Mechanism of Strain-hardening of a Polycrystal 
Before attacking this problem we must enquire to what 

cause the strain-hardening of mild steel may be due. First of 
all it should be mentioned that single crystals of metals are in 
all cases very soft. Metals, as we ordinarily know them, are, 
however, assemblages of very small crystals ; they are poly-
crystals. It is to this fact that they owe their hardness. At the 
same time it has been found that the hardness of a metal is 
greater the finer its crystalline structure (compare Andrade 
[49]). Therefore, whatever makes for smaller crystals will 
make for greater hardness and strain-hardening, on this view, 
is due to the diminution of the crystals through individual 
rupture on plastic deformation. 

But then the question arises : why should a polycrystalline 
structure make for hardness ? To answer this question two 
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theories were proposed, one by Beilby and Rosenhain and the 
other by Ludwik. In accordance with the first, between the 
crystals of a metal there exists a layer of metal in the amorphous 
state—" the intercrystalline cement"—to which the hardness 
is attributed. This theory was discarded because no difference 
in hardness in the interior of the crystals and in the inter-
crystalline cement could be found. The second theory attri­
butes the greater hardness of the polycrystalline metal to the 
random arrangement of adjacent crystals, with their glide 
planes in different directions, which leads to a, jamming, which in 
turn renders glide more difficult. This theory is now generally 
accepted. It has been proposed also by Jeffries and Archer 
under the name of the Slip-Interference Theory. We cannot 
here go more fully into these questions, but the reader may look 
up the very instructive and easily understandable article by Sir 
Lawrence Bragg [50] from which Fig. XI, 11 is reproduced.* 

This shows a model for a single crystal and for a polycrystal 
made of small soap-bubbles, each one representing an " atom ". 
It can be seen at once why the first can be easily deformed by 
gliding between rows of bubbles, while in the second gliding is 
more difficult through the different orientations of the rows. 

13. The Bauschinger Effect 
While, therefore, rupture of individual crystals increases the 

resistance against gliding and raises the yield point, nevertheless 
a weakness is introduced in the surface along which rupture has 
taken place. This weakness possibly makes itself felt in the 
so-called Bauschinger effect. After plastic deformation and a 
reversal of direction of loading (from tension to compression or 
vice versa or from twisting in one sense to twisting in the 
opposite sense) comparatively large plastic deformations are 
produced by very small loads ; in other words, the yield point 
for the opposite kind of stress is lowered. But when a mild 
steel bar is twisted in one sense beyond the yield point there 
will be small internal rupture surfaces in the crystals along 
which there will be minute gliding. If the twisting is reversed, 
some of the ruptures will open up in the same way as the 
strands in a rope open up when the rope is twisted against its 
thread. This must cause large deformations or, * in other 

* Endeavour, 1943, 2, 43-51: by permission. 
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words, a Bauschinger effect in torsion. The explanation for 
the reversal from tension to compression is similar. Now, 
when we deformed the mild steel test-piece beyond the yield 
point and then allowed it to rest before reloading, we found 
that the yield point is raised and it is raised the more the longer 
the rest. This phenomenon is the ageing of which we spoke 
before. Ageing in this sense of the word is accelerated by 
heating to low temperatures up to, but not exceeding about 
300° C. and the Bauschinger effect disappears. This is the 
tempering of the strain-hardened steel. It can be explained 
as brought about by a healing of internal rupture surfaces and 
the term " ageing " is therefore rather misleading. Rupture 
has taken place because the distance between the atoms on 
both sides of an interface is increased so much that they leave 
the range of atomic cohesion. Now, due to the heat energy of 
the body, every atom is in constant vibrations, the amplitude 
of which is determined by the temperature. If the amplitude 
of a vibration is sufficiently great, an atom on one side of the 
rupture surface may come within the range of attraction of an 
atom on the other side of the surface and a connection is made 
across the rupture. In this way the rupture heals. The 
process will also take place at ordinary temperature (albeit at 
a lower rate), because the vibrations are not all of the same 
amplitude but statistically distributed around some mean 
magnitude, and from time to time an extraordinarily great 
amplitude will effect a connection and local healing of the 
rupture. 

When, however, the temperature is raised above 300° C. the 
vibrations become so strong that they not only heal the ruptures, 
but the atoms re-arrange themselves in their most stable grids. 
This is reerystallisation ; the crystals increase in size and the 
yield point is lowered until all strain-hardening may vanish. 
This is the annealing of the strain-hardened steel. 

14. In Search of a Law of Strain-hardening 
We are now in a better position to take up the problem 

which we put to ourselves in the closing sentence of Section 11. 
The tensile test of mild steel shows that the yield stress increases 
with increasing deformation. The question is, how is the former 
related to the latter ? 
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Let us go back to our test as represented graphically in 
Fig. XI, 1. If we, after reaching po in t " / " on the curve, unload 
the test-piece, a certain elastic strain is recovered, corresponding 
to the difference of abscissas of points " / " and "g", while the 
deformation og is plastic and permanent. Now, again increas­
ing the load to the amount corresponding to point " / " » we 
reach approximately the same point (denoted in the figure by 
" h ") in an elastic straining with the same elastic modulus as in 
the first loading. This shows itself in the figure by the slope 
of gh being the same as that of oa. The curve a-c—b-e is there­
fore the geometrical locus of all the yield points corresponding to 
the successive deformations.* Nevertheless, as becomes clear 
for reasons which we similarly encountered before in two other 
cases,t the yield stress cannot depend directly upon the 
deformation. We mentioned in Section 13 the raising of the 
yield stress through a twisting of the bar. It is immediately 
obvious that this effect cannot depend upon whether we twist 
the bar clockwise or anti-clockwise. The yield stress &, must 
therefore be an even function of the tangential deformation et 

or a function of the et
2. Let us remember (compare Section 

7, Chapter III) that 9> itself is calculated by taking the root 
of another quantity, the plastic resilience Evl which itself is an 
even function of the stress. I t will also help us in our problem 
if we recollect that strain-hardening is also called work-harden­
ing. What governs the rise of the yield point is clearly the 
work expended in the plastic deformation and not the deforma­
tion itself. Let us imagine a giant of such strength that he 
would be able to knead mild steel as we knead flour dough. 
Let us hand him a steel ball which he will knead into all sorts 
of shapes, at the end restoring the sphere. When he has 
handed back the ball to us, its deformation is nil: all distor­
tions, positive ana" negative, having cancelled each other. The 
strain-work, however, has all the time increased to a distinct 
amount. If, in order to make our considerations more definite, 
we assume that the deformations are simple shears, alternatively 
in positive and negative directions, the deformational work in 
terms of strain is, in accordance with (III, 43), = yet

2j2. 

* The existence of a yield point is therefore best revealed on unloading a 
testpiece. 

f Vide Section 5 of Chapter I I I and Section 2 of Chapter VII. 
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The resilience on the other hand is, in accordance with 
(III, d) = pt

zj2y, and the plastic resilience in accordance with 
(III, b) = $2j2y. The modulus of elasticity being in that 
process constant (as we said before), we may lump it together 
with the numerical factor 2. In the case of tangential deform­
ations the law of work-hardening would therefore relate &t

2 to ef 
and should be expressed as a functional relationship &(

2 =f(ef). 
We may denote by 8 the limiting strain corresponding to S-, so 
that 6t is the ultimate shearing strain when the yield point is 
reached, or 

*t=y9t (5) 
In other words, therefore, the law of work-hardening must 

relate the square of the tangential strain to the square of the 
tangential deformation.* 

15. The Mises-Hencky Flow Condition for Simple Tension 
We cannot apply such a functional relationship directly to 

our case, which is one of simple tension and not of simple shear. 
We must first express the Mises-Hencky flow condition for the 
case of simple tension. As we remarked in Section 1 of 
Chapter X, simple tension is not as simple as one may think. 
We have shown in Section 5 of that Chapter and in Fig. V, 5, 
that a simple tension pn can be considered as the result of the 
superposition of an isotropic tension p = pJ3 and a distortional 
stress the components pf which are a tension 2pJ3 in the axial 
direction and two compressions pj3 normal to the axis and at 
right angles to each other. In accordance with the first axiom 
of rheology, the distortional stress only produces the plastic 
deformation and the plastic resilience Evl must be calculated 
not from the total strain-work of simple tension but only from 
its distortional component. The first is, in accordance with 
(X, r), = pn

2j2e. The latter can be calculated as follows:— 
In accordance with (X, g) we have 

eon=PoJ2y (5') 
Therefore the distortional work 

U>o = )Ponte0n= y - | P 0 n ^ o n = Pon*!*/ - - • (6) 

* Keeping in mind the de6nition of strain as the recoverable part of the 
deformation. 
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Now, in the oase of simple extension, in accordance with 
(X,f) 

P0l =Poi = ~ PJ3 : Pou = 2pJ3 . . . . (V) 
and, therefore, 

w0=l!4y.PT?i9.(l + l + 4)=pn*l6y. . . (8) 

If we increase the tension pn until we reach the yield point, 
when pn = &„, the strain-work w0 reaches the plastic resilience 
Evl and therefore 

K = + VW* («) 
On the other hand from (III, b) 

E*i=*t*IZy (10) 
which makes 

&n = &tV3 = 1-73 a„, or &t = 0-578 &n . . (11) 

and if we determine &t from a torsion experiment we can 
predict the yield stress $n in a tensile experiment with the same 
material. We may compare (11) with St. Venant's flow 
condition,* i.e. the condition that the shearing stress reaches a 
certain maximum (compare Section 6 of Chapter III). We know 
from Mohr's circle, Fig. X, 4, that in the case of a simple tension 
pn, the shearing stress reaches its maximum in a section inclined 
at 45° to the axis of the test-piece and is there equal to pJ2. 
The yield point will therefore be reached in simple tension 
when pn — &n = 2&t. The normal yield stress in accordance 
with St. Venant would accordingly be 2/1-73 = 1-15 times the 
yield stress in accordance with Mises-Hencky. The difference 
is not great. Geiringer and Prager [51] are of the opinion that 
St. Venant's flow condition furnishes in certain cases, e.g. the 
first starting of flow of mild steel, the best description and 
must be abandoned only when full plastic flow has developed. 
I hope, however, to have made it clear that, theoretically, the 
Mises-Hencky flow condition is highly superior to the St. 
Venanfc flow condition. Speaking of flow conditions, I may 
mention that Beltrami in 1885 postulated that the yield point 
is reached when the strain-work reaches a certain limit. This 
hypothesis was soon refuted by experimental evidence and we 
know why : it contradicts our first rheological axiom ; the 

* This condition was postulated independently by Couloumb (1801) and 
Treaca (1863) 
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dilatational strain-work should not cause any appreciable 
plastic flow. 

16. A "Primit ive" Law of Work-hardening 
We said at the end of Section 14 that the law of strain-

hardening would be one relating 8t
2 to et

2, or, as we can now 
say, 6n

2 to e„2. In physical language we express the plastic 
resilience, which is the resilience at the yield point, as a function 
of what we may call the Hardening Work ; the first is propor­
tional to 8t

2 or 0n
2, the second to e2 or e2. If we plot 8n

2 

against en
2 the resulting curve has a striking resemblance to 

the one (Fig. V, 8) for the variable fluidity of a Hquid as a 
function of pt

2, with 82 corresponding to q>0, 8^2 to (p^ and en
2 

to pt
2. We may therefore tentatively write down in analogy 

to (VII, i) 
02 = dj _ (0w« _ 0o2)e-«V* ( 1 2 ) 

or in another form 

Evl = EDl<0 - (Epta> - Ept0)e-"k& . . . (13) 

where Epl is the plastic resilience which gradually, but more and 
more slowly, increases from Epl0, the plastic resilience in the 
annealed state, to Evlv>, the maximum plastic resilience which 
can be stored up in the material after it undergoes the maximum 
work-hardening. The hardening work wh is the work of the 
external forces spent in overcoming internal plastic friction 
and in changing the structure of the metal by breaking down 
its constituent crystal grains. The coefficient ^ is therefore 
quite analogous to the coefficient x '> i* also is a Coefficient of 
Structural Stability. As the expressions e2/^ and wh[ij/ must 
be dimensionless, the quantity ^ has the dimension of work, 
and *l> (compare (III, d ) ) the dimension of a work per unit 
rigidity. 

Equation (13) was proposed by me as a " primitive " work-
hardening law at the Paris Congress for Applied Mechanics, 
1946. 

We found in Chapter VII that x was not a constant. Neither 
can we expect ^ or ^ to be constants. From what has been 
said in Section 12 it is clear that the larger the crystal the less 
its resistance against slip. With the continuous breaking down 
of the crystals $ and f must therefore increase. 

OF, * 
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In the second of the researches mentioned at the end of 
Section 6 above [48'], a strain-hardening curve was obtained 
first by discontinuous pulling in a tensile testing machine, and 
then by successive wire-drawing operations. A hot-rolled 
low-carbon steel rod of 8 mm. diameter was drawn down to a 
wire of 0-8 mm. diameter resulting in an extensional deforma­
tion of 4-6 in the logarithmic measure. It was found that the 
work-hardening curve consisted of three e-eurves of the form 
of Equations (12) and (13) following each other with short 
transitional curves between them. The transition from the 
first to the second e-curve occurred at the maximum tensile load 
(point b in Fig. XI, 1); that from the second to the third at an 
extension at which the tensile test fracture (point e in Fig. XI, 1) 
takes place. In the paper, an " atomistic " interpretation is 
given, using ideas developed by Sir Lawrence Bragg [50], 
which, however, belong to what may be termed Metarheology. 

17. Summary 
In a static test, i.e. one proceeding through states of equili­

brium, mild steel shows a Hooke range, a simple St. Venant 
range reached through an " upper " and " lower " yield point, 
and a " generalised " St. Venant range in which the yield point 
increases at a decreasing rate, reaching an upper limit. An 
elastic spring can serve as a model for the Hooke-body (indi­
cated symbolically by H) and a weight resting on a table, with 
solid friction between them, as a model for the St. Venant body 
(StV). Both coupled in series {H-StV) represent the Hooke 
and simple St. Venant range, while H-{StV)x-{StV) 2-.. .'-(StV)n 

includes the work-hardening or generalised St. Venant range, 
provided the series (StV)lt . . . {StV)n is arranged in mono­
tonously decreasing order. 

The distortional work in simple tension is 

«>o»=Pn2I6Y (XI, a) 

and, therefore, the yield stress 

&n = ±V&^> (XI, b) 
which gives 

fr.=2-73», (XI, o) 
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in accordance with Mises-Hencky, while 

* . = « * * (XI, d) 
in accordance with St. Venant. 

The rise of the yield point in the work-hardening range is due 
to the breaking up of large into small crystals. For a hypo­
thetical polycrystal consisting of large crystals of equal size 
which in each slip are converted into small crystals of minimum 
size, the rheological equation 

S2 - V - (*«2 - V)©""* • • (XI, e) 
is proposed, where ^ is a coefficient of structural stability. 
For a real polycrystal $ gradually increases and the equation 
must be amended, taking into account a distribution of crystals 
of different sizes. 

P 2 



CHAPTER XII 

BENDING AND TORSION* 

1. Homogeneous Deformation and Stress 
IN the foregoing we have become acquainted with three cases 

of simple deformation, viz., simple shear, simple cubical dilata­
tion and simple extension. These three are Homogeneous 
Deformations, i.e. they are the same throughout the body. 
If we assume that the prism of Fig. I, 2 has no weight and 
subdivide it into a number of smaller prisms, each one of these 
is deformed in exactly the same manner as the large prism. 
In other words, et or ev or en in each one of the three cases 
does not depend upon the ordinates of the particles of the 
body. As the stress is related to the deformation by means 
of a rheological _ equation in which the co-ordinates do not 
appear, homogeneity of deformation carries with it homogeneity 
of stress. 

On the other hand, if we subdivide a prism which has 
weight into horizontal layers, the weight of the material will 
cause a pressure increasing from zero at the top to a maximum 
at the bottom of the prism. It is therefore clear that homo­
geneous stress, and consequently homogeneous deformation, are 
possible only in the absence of weight, or, more generally, 
of Body Forces, such as inertia. Only if external forces acting 
upon the surface of the body, or Surface Forces, prevail over 
body forces so that the latter can be neglected, is homogeneous 
stress and consequently homogeneous deformation possible. 

Generally, we must relate the rheological equation to an 
" infinitely " small volume element to which we apply the laws 
of mechanics (I, a) or (I, b) and (I, c), deriving, by integration, 
the rheological behaviour of the whole body. Sometimes, as 

* The &ubject-matter of this Chapter can be found in essence m any of the 
numerous textbooks on the Strength of Materials ; I have, however, included 
it for the benefit of those readers who have not had an engineering training in 
order to make the book self-contained, aa in the followmg chapters reference 
is made to certain equations derived here. 
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in laminar distortion, we can treat a portion of the body, the 
lamina, finite in two dimensions but infinitely small in the 
third, as the volume element. This was the case when we 
dealt with the flow through the tube and in the rotation 
instrument where et was assumed to be constant throughout 
the length of the cylinder and the same in all radial sections, 
depending upon r only. This may be called ' quasi-homo­
geneous " deformation. In homogeneous deformation we do 
not need to relate the rheological equation to the volume 
element. If the deformation is homogeneous, the whole body 
can be considered as an "element"; there is no need for 
integration and all the rheologics of the body is contained in 
its rheological equation. This is the case in simple shear, 
simple dilatation and simple extension. 

2. Simple Bending 
There is an important case of " simple " deformation which 

is neither homogeneous nor quasi-homogeneous. It is Simple 
Bending. 

Let a prismatic bar be subjected at both ends to couples 
which are in equilibrium, the plane in which the couples act 
passing through the axis (x) of the beam. Such couples are 
called " bending couples " (see Fig. XII, 1). 

In order to find the deformation and the stresses by an 
elementary method, we reason as follows :— 

For the sake of simplicity of argument let us first assume 
that the cross-section of the bar is symmetrical about an axis 
(y) and that the plane in which the bending couples act passes 
through this axis of symmetry. This plane is therefore the 
xy plane of the co-ordinate system. Now let the beam be 
divided into a number of shorter lengths. 

As each length is in equilibrium, this requires that the internal 
stresses give rise to couples equal to the couples of the external 
forces. With exactly the same forces acting on each free body 
there is no reason why one should be strained differently from 
another. Yet, if all are strained in the same manner, the axes 
of all pieces are bent to the same curvature. As the length of 
the pieces can be taken as infinitely small, this implies that the 
whole beam is bent to a curve of constant curvature, i.e. to a 
circle, the plane of which is the x-y plane. Furthermore, it is 
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Fia. XI I , 1. Simple bending of a prismatic beam. 
The first length has been given a rotation without altering the 

deformation. 

obvious that the plane end sections of the pieces must remain 
plane and normal to the bent axis otherwise they could not fit 
together to complete the beam. This is known as Bernoulli's 
assumption (1705). 

We now consider such a piece of length dx. As has been 
said above, the internal stresses acting upon an imagined cross-
section are equivalent to a couple and to a couple only. The 
resultant of the stresses therefore vanishes, and the short 
prismatic piece is, accordingly, as a wJiole, neither extended nor 
compressed. The length dx of the axis will therefore not be 
changed and as it is bent, as we have seen, to a circular curve, 
the (< fibres " of the prism of length dx which are parallel to 
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the axis are either extended or shortened in accordance with 
the equation 

dx — dx = (M -f y) dQ — dx (1) 

If the arc to which the beam is bent is flat, the strains will be 
small and the bending strain eb will be 

e6 = (dx — dx)jdx — (M + y) dQjdx — 1 . . (2) 

However, dQ — dxjR, and, therefore, 

% = yfR (3) 

These strains are directed Twrmal to the cross-section. They 
are therefore normal strains as dealt with in Chapter X, and if 
the material is a Hooke body, Hooke's law in the form (X, j) 
can be applied, or 

The stresses are accordingly distributed linearily over the 
cross-section in triangles. Let the distance from the axis of the 
outermost fibre in tension be h1 and of the innermost fibre in 
compression A 2 > t n e n t n e maximum tensile stress is ekJR, and 
the maximum compressive stress ckJM. 

Now let us assume the cross-section to be a rectangle of 
width 6, then the stresses give a resultant force in the in­
direction 

In our case, as there is no external force in the a;-direction, Px 

must vanish or h1 = k2 and the axis of the beam the length of 
which is not changed, or the so-called Neutral Axis, will pass 
through the centre of the section. This will be so in the case 
of every cross-section symmetrical about the 2-axis, but the 
reader will easily find that in a triangular cross-section the 
neutral axis will be nearer to the base and that, generally, 
the neutral axis will pass through the centre of gravity of 
the section. 

The stresses must, however, give a finite bending couple Mbt 

the couple of the external forces. 
Consider a strip of the cross-section having a length 6 parallel 
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to the z-direction and the width dy. The increment of force 

acting on this strip will be r=bdy and its moment in respect of 

the axis \-^bdy)y = -^y2dy. The bending moment is 

therefore Mb = ^Ufdy =JLJ0* 

The reader will have no difficulty in finding that in the more 
general case 

Mh = eIlR (6) 

where I is the moment of inertia of the cross-section about the 
neutral axis. 

From (6) we find the radius of curvature 

-B = e!\Mh (7) 

FIG. XII , 2. Deformation of the cross-section of a bent beam. 
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and, therefore, considering (3) and (4) 

eb = Mbyjd ; pb = Mbyjl . . . . (8) 

The maximum stress is found for the greatest value of y = h-^ 
in tension and y — h2 in compression. If the neutral axis 
passes through the geometrical centre of the section, 
ht = h2 = hj2. The quantity SM = 21jk is called the Section 
Modulus and 

max.#ft = MbjSM (9) 

For a rectangular section i" = bh3jl2 and SM = bh2j6 and, 
therefore, 

max.^b = 6MJbh2 (9') 

While the pb stresses are the only stresses acting on the 
cross-section, the eb strains are not, of course, the only strains. 
With the extension of the fibres on the positive y-side, there 
goes hand-in-hand a contraction in the 2-direction which is its 
Ija part. With the shortening of the fibres on the negative 
y-sides, there goes hand-in-hand an extension in ^-direction. 
An originally rectangular cross-section therefore becomes of a 
shape as shown in Fig. XII, 2. 

The " deflection " of the beam (d) can be calculated from 
well-known geometrical properties of a circle, according to 
which 

{Lj2f = d{2R - d) (10) 
or, if d is small, 

L2j4 =2Bd (11) 
and 

d = L*j8R = LWj8eI (12) 

If the bending couple M is known and L and J are determined 
and d is measured, Young's modulus e can be calculated from 

€ = L*MI8Id (13) 

Simple bending is produced if a beam rests on two supports and 
loads are suspended outside the supports as shown in Fig. XII, 3. 
Only the piece of the beam between the supports is bent to a 
circle, because only in that part are the external forces equiva­
lent to a constant couple M = P.I provided the weight of the 
beam can be neglected. 
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FIG. XII , 3. Scheme for simple bending of a beam. 

Bernoulli's assumption is correct only in this single case of 
simple bending. I t is not correct in any other case. E.g. in a 
beam resting upon two supports and bent by its own weight, 
plane cross-sections do not remain plane and the neutral-axis 
is not bent to a circle. 

The general problem of bending has been treated by Reiner 
[52]. I t transcends the possibilities of elementary methods. 
If, however, it is desired to find such an " overall " macro-
quantity as the deflection d of the beam, when the exact micro-
distribution of local strains and stresses is irrelevant, (8) gives 
a sufficient approximation. 

If the curve is not a circle, its curvature at any point is, from 
known principles 

^ " [ J H T F F (14) 
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where y' = dyjdx and y" = dhjjdx2. If the curvature is 
moderate and the arc to which the beam is bent is accordingly 
flat, dyjdx can be neglected and IjR approximately = dh/jdx2. 
This makes (8) 

s — • « (15)* 

from which the deflection can be calculated if Mb is known as 
a function of x. 

3. Bending under its Own Weight 

Let the weight of the beam itself be w per unit length, then 
the reactions from the supports are wLj2 and, therefore, the 
bending moment at the point x 

wL x 
x = ~2X ~ ^2 

(16) 

(compare Fig. XII , 4). 

REACTION FROM 
SUPPORT*^ foAL 

l 

m± 
A 

VElWyjAx I 

Fio. XII , 4. Bending of a beam by a distributed load. 

Therefore 
w 

dh/jdx* = - g - j * ( £ - * ) • • • 

which gives by integrating twice 

wx* v--jgrfI*-*M + 0* + 0* • • 

(17) 

(18) 

where Gx and Cz are integration constants. 

» The negative sign is due to d being positive for a negative curvature. 
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y 

We determine these from the kinematic boundary conditions 
wL3 

= 0 for x = 0 and x = L, which give C2 — 0, Cx = , so 
24eF 

that 

and 
y = wx}24el. (£3 + a;3 - 2Lx*). . . . (19) 

d=yl* = us = 5wL4l384tI . . . . (20) 

4. Bending by a Concentrated Load in the Centre 

Here the reactions from the supports are P\2 and the moment 

Compare Fig. XI I , 5. 

REACTION PA 
FROM SUPPORT 

Mx = Pxj2 (21) 

^ilff.Wl/A 

Apmmm-} 
\ 

REACTION P/z 
FROM SUPPORT 

F I G . X I I , 5. Bending of a beam by a concentrated load in the centre. 

Therefore 
dhjidx* = - Px\2*I (22) 

which gives by integrating twice 

y = - PX*\12<LI + C1x + C2. . . . (23) 

The deflection line consists of two parts which meet at the 
centre without a break. The tangent to the deflection line at the 
centre is therefore horizontal. The integration constants can 
accordingly be determined from y = 0 for x— 0 and dyjdx = 0 
for x = L\2. We find C% = 0, C t = Plt/lSd, and therefore 

y = PL* 116*1. (L* - 4x2}3) . . . . (24) 
This makes 

d = Vz-1,12 = PL*f48eI (25) 
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5. Bending by Two Concentrated Loads arranged Sym­
metrically about the Centre 

Here the reactions from the supports are M = P, and the 
moment is (compare Fig. XII, 6) 

REACT/ON 'P' 
FROM SUPPORT p 

REACTION P' 
FROM SUPPORT 

<x 

Y////////////A 
A 
7 

x£ 
-& 

FIG. XII , 6. Bending of a beam by two concentrated loads arranged 
symmetrically about the centre. 

Mn=Px (26) 
between x =0 and x = (L — a)j2, 
and 

Mx=P(L-a)j2 (27) 
between both loads. 

Therefore 
d*yjdx* = - Pxj€l (28) 

between x = 0 and x = (L — a)\2, while 

Ahjl&x* = - P(L ~a)l2 (29) 

between the loads. 
Integration of both differential equations gives 

y = _ Px*l6tl -f Cx x + C2 . . . . (30) 

y = - P(£ - a)x*l4el + C3 x + C4 . . (31) 
Prom the condition y = 0 for x = 0 we find C3 — 0. 
From the condition dyjdx = 0 for x = LJ2, C3 = PL{L — a)j4. 
The other two integration constants can be calculated from 

the condition that at x = {L — a)j2 the deflection and the slope 
must be the same whether calculated from (30) or (31), i.e. 
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P{L - af P{L - af , n L-a 
48<d +Cl"2~ 16*1 

PL{L - af 
8el 

+ 
+ Ct (32) 

and 
P(L - af c = P(L - af PL(L - a) 

8el 4cl 4el 
We find 

P(L* - q«) P(L - af 
° 1 - S -? » ° 4 - _ 

8*1 
and therefore 
2/ = - iV/oW + P(£2 - a2)xj8el 

48el 

(33) 

(34) 

(35) 
y = - P(L - a)x2j4el + P i ( L - o)a/4e/ - P{L - afj48€I 

The maximum deflection follows from the second equation 
for x = Lj2 with 
d = P ( i - a)(2i2 + 2£a - a2)/4Se/ (36) 

6. Simple Elastic Torsion 
Another case of simple deformation is simple torsion. It is 

laminar, as shown in Fig. I, I, and accordingly quasi-homo-

FIG. XII , 7. Torsion of a circular cylinder. 
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geneous. Let the circular cylinder of radius R and length I be 
fixed at one end and, at the other end, loaded by a torsional 
couple Mt. The cylinder will be twisted, i.e. the section z = I 
will be rotated against the section z = 0 by an angle, say Q. 
The problem is to express Q in terms of Mz and the dimensions 
of the cylinder, i.e. the geometrical quantities R and I. 

In the elementary method which we are following in the 
present book we cannot solve this problem without the intro­
duction of an assumption similar to Bernoulli's assumption. 
This assumption can be expressed in different ways. The 
first to attempt a solution of the problem of torsion was 
Coulomb and he started from the assumption that shearing 
stresses only act in the cross-sections and that they are propor­
tional to their distances from the axis and directed normal to 
the radius, i.e. he started from the equation 

Pt=cr (37) 

where c is a constant. 

From this he found by applying Hooke's law 

et=crly (38) 

Comparing Fig. XII , 7 with Fig. I, 2, we see that we can 
express et, introducing dz for H, as follows :—• 

et = dujdz (39) 
or 

CT 

du=-dz (40) 
y 

and by integration 
u = crjy.z (41) 

considering that u = 0 for z = 0. 
In order to find c we compose the stresses taken over the 

section to the torsional couple 

Mz = f (j>fir-ndr)r = 2TTC\ r3dr = -ncrWft . . (42) 

and get c = 2MJTTR* so that (compare with (37)) 

pt = ZMzr\TTW (43) 

Equation (41), on the other hand, gives 

u =2MJirBKrly.z (44) 



224 BENDING AND TORSION 

The free end-section is rotated through the angle 

Q = ujr\z=l = 2MJIirR*y (45) 

and this equation connects the observable macromechanical 
quantities Mz and Q. Q may be called the rotational 
displacement. 

Equation (45) can also be written 

Mz = d ^ \ l = QDjl T . . . (45') 

where Djl is the "restoring momen t " of (2, 45) and D the 
" torsional resistance " of Table I I I , Chapter V. 

From (41) it can be "seen that" the section % = z will be 
rotated against the section z = 0 by an angle of the magnitude 
ujr =cjy, z ~ Qjt.z. 

The quantity Qjt is called the twist. In our case, the twist 
is constant. Generally where it is not constant, the twist is 
measured by the relative rotation of one slice against the other 
or by dQjdz. From (41) it also follows tha t if the cylinder is 
imagined to be composed of " slices " of thickness dz, the slices 
are displaced as wJwles so that the displacements have neither 
radial nor longitudinal components, the only component being 
a rotational displacement. This confirms the picture of 
Fig. I I , 1. 

We could also have started with this, as a natural kinematical 
assumption, and would have found from 

ug = Crz (46) 

et = du$jdz =Cr (47) 

and, in accordance with Hooke's law, again 

Pt=Yet=yOr (48) 

where 
yC = c (49) 

While it might seem natural to assume that in torsion the 
shearing stress is proportional to the distance from the axis ; 
or that plane cross-sections are rotated against each other, but 
remain plane (both assumptions, as has just been shown, being 
identical), it can easily be shown that Coulomb's assumption 
cannot be valid for any shape of section other than a circular 
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section. If the section is other than circular its edge makes an 
angle with the radius vector r; and the shearing stress^, which 
has the direction of 8, or is normal to r, must then have a 
component normal to the linear element of the edge (see 
Fig. XII, 8), i.e. in the direction of n. However, in accordance 
with the law of corresponding shearing stresses {compare 
Section 6, Chapter I), for every shearing stress in the cross-

FIG. XII , 8. Torsion of a rod of non-circular cross-section. 

section there exists an equal shearing stress in a longitudinal 
section normal to the cross-section. In our case, if there existed 
a shearing stress in the cross-section having the direction n, 
there would have to exist a shearing stress acting upon the side 
in a direction normal to n. We have, however, assumed that 
no surface forces act upon the side of the cylinder and, therefore, 
such a shearing stress as mentioned last does not exist. There­
fore, pt cannot have a component in the direction n. Hence 
pt cannot he directed normal to r and it has for non-circular 
sections generally the two components p0 and pr. 

The general solution for non-circular sections was found by 
St. Venant (1855). St. Venant assumed, as we have assumed 

D . F . <» 
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above, that no forces act upon the sides of the prism. Actually, 
however, in order to twist a rod it must be fixed at the ends in 
such a way that surface forces are exerted upon short lengths of 
the sides. I t is true that at some distance from the fixing-points, 
the sides will be free from forces and there the stresses will be 
those of St. Venant's theory. These stresses may, however, not 
be the maximum stresses and if the material fails it will do so 
at the fixed ends. Therefore, for calculations of strengths, a 
better approximation to actual conditions than provided by 
St. Venant's theory is required. In three papers I have made 
an attempt at such a generalisation of St. Venant's theory by 
considering the action of torsional surface forces applied upon 
the sides of a cylinder or prism [52', 53, 54]. 

7. Plastic Torsion 

If an elastic rod is subjected to torsion, we find (compare (45) ) 
that in order to rotate its free end through an angle Q a torque 

Mz = ir&yQftl (50) 

has to be applied. From this equation it follows that there 
is a linear relationship between Mz and Q. If, however, Q is 
gradually increased through an increase of the external forces, 
we find that this linear relationship has a limit and that the 
rod either breaks, when it is brittle, or that it can from a 
certain stage on be further considerably increased by a very 
small increase of Ms> when the material is ductile or plastic. 
We may therefore t ry to apply St. Venant's law (I, e) to this 
case. 

The application of St. Venant's law is easy enough if we have 
a case of homogeneous stress. Then the yield point is reached 
in all parts of the body at the same time and while, before 
reaching the yield point, the deformation of the whole body was 
elastic, after passing the yield point the deformation of the 
whole body is plastic. I t is not so in cases of heterogeneous 
stress. In such cases there must be a surface or surfaces 
dividing the body in two parts, the rheological equation of 
which will be either (I, d) or (I, e). The form of the dividing 
surface is generally not known and this causes the greatest 
mathematical difficulties. In certain cases, however, the form 
of the surface suggests itself. This is especially so if we are 



PLASTIC TORSION 227 

dealing with a laminar displacement. The form of the surface 
can then be assumed, the assumption can be verified and the 
position of the surface found from the condition that for the 
dividing surface the tangential stresses of the elastic part are 
all equal in magnitude and equal to &t. We followed this 
procedure in deriving the Buckingham-Reiner and the Reiner 
and Riwlin equations. We shall take the same course in the 
present case. 

As we have shown in the preceding Section, the tangential 
stress in the twisted elastic rod is 

pt = 2Mzrl7rR* = yQrjI (51) 

The tangential stress has therefore the same value in every 
point of a cylindrical surface with the radius r and its maximum 
value for r = R 

max. pt = 2MJirR* (52) 

The dividing surface will accordingly be a coaxial cylindrical 
surface. If Q is gradually increased, maximum pt also 
increases, until it reaches the value &t and the other stresses 
are increased correspondingly. If Q is still further increased, 
maximum pt cannot, in accordance with St. Venant's law, 
increase beyond $t and a plastic body develops as the outer 
shell of the cylinder, enclosing an elastic co-axial cylinder. As 
the tangential stress pt of this elastic core is the same over one 
and the same concentric cylindrical surface, the dividing surface 
between the plastic and the elastic parts must, as has been 
said before, be a cylinder of, say, radius r0. Within this 
cylinder the stresses will still follow Hooke's law as given in 
(51) and r0 can be calculated from 

*t=yrfill (53) 
to be 

r0=HfrQ (54) 

In the outer shell the tangential stresses will all be equal to 
§t. Analogous to (42) we then have 

M = 27r[Rptr
2dr = J&r|~J "yr^jl.rHr + J &tr

2drj = 

& r * ^ » / 3 - w V * W f l 8 * • (55) 

Fig. XI I , 9 shows Mx as a function of Q. 
a 2 
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It is interesting to note that while in the case represented in 
Fig. I, 5, b, when the shear has exceeded the value &/y, the 
material starts to flow under constant stress ; in our case, when 
plastic deformation starts there is no flow, but the external 

2*tfF^ 

COMBINED HOOKE-StVEIWNT RANGE 
FIG. XII , 9. Plastic torque-twist diagram. 

forces may even be increased and there will still be an arresting 
deformation up to a maximum moment (max. M. = 2&tirR*j3). 
This is due to the fact that in the present case there always 
remains a solid elastic core of ch^inishing, but never vanishing, 
radius r0. It should, however, be noted that we have treated 
our problem as a case of equilibrium. The torsional moment 
of the external forces can, of course, be greater than maximum 
M3. In this case equilibrium is not possible and also not 
steady flow. If Mx>2&tTTRzj3, there will be accelerated flow 
under the action of a torsional moment which is Mz — 2Q-tirR3j3. 

8. Viscosity-Elasticity Analogies 
In Section 1 of Chapter III we have pointed out the analogy 

of (I, d) and (I, f) in accordance with which, if we know the 
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solution of a problem of elasticity, we can write down at once the 
solution of the analogous problem of viscosity. These equa­
tions refer to cases of shear, but in Seotion 12 of Chapter X we 
have shown that a similar analogy exists also in simple tension. 
In shear, 77 corresponds to y ; in simple tension in the second 
stage after the cubical dilatation has reached its maximum, 
Trouton's coefficient of viscous traction A corresponds to 
Young's modulus e in the case of an incompressible material. 
If, for instance, we place a beam made of, say, fairly hard 
bitumen upon two supports and load the beam in such a way 
that simple bending is produced, the beam will gradually and 
continuously sag and, as long as the deflection is not too great, 
the rate of sagging, d can be found from (12) to be 

d = L2Mj8\I = L*MI24*iI (56) 
If the bending is by a weight w per unit length of the 

beam, the rate of deflection is in accordance with (20) 
d = 5wL*j384)J = 5wLilll52vI . . . (57) 

A concentrated load P in the centre will produce a rate of 
deflection in accordance with (25) of 

d =PL*148\I =PL*jl44r)I . . . . (58) 
Bending by two concentrated loads P arranged symmetrically 

about the centre with a as the distance between them will 
produce in accordance with (36) a rate of deflection 
d = P(L - a){2L2 + 2La - a2)j48\I = P(L - a) 

{21? + 2La- a2)ll44r)I . (59) 
These are all examples where the main stress is " normal ". 

Torsion of a viscous liquid gives, in accordance with (45) 

& = 2ML\ITB.S (6°) 

9. The Advantages of Bending and Torsion Tests and Hooke's 
Lucky Chance 

The bending and torsion tests are often more suitable for 
the determination of rheological constants than simple tension. 
In a rheological test the kinematical quantity observed is 
seldom directly a strain (or a deformation) or rate of strain 
(or rate of deformation). It is rather a displacement or rate of 
displacement. In simple tension, where the deformation is 



230 BENDING AND TORSION 

'pure, the total displacement is the sum of the elementary dis­
placements. In the bending of a rod, where there is rotation of 
the elements, the displacements are increased along the length 
of the rod as in a rotating pointer arrangement. Take, for 
instance, a short rod of any elastic material in your hand and 
apply with the other hand some force. If the force is a pull in 
the direction of the axis of the rod, the displacement of the free 
end will hardly be noticeable. If the force is applied at the 
free end in the direction normal to the axis, there will be a 
noticeable displacement, provided the rod is not too stiff. To 
make this example more definite, let us assume the rod to 
be of mild steel of a cross-section 1 mm. square and 10 cm. 
long. Applying a pull of 100 g., the extension will be in 
accordance with (X, j), en — 3 x 10~6 and, therefore, in 
accordance with (X, i') the displacement of the tree end Al = 
3 x 10~s cm. Applying the same force in the direction normal 
to the axis, the deflection will be found to be the same as if 
twice the load had been applied in the centre of a beam of double 
length supported at both ends. Tins, in accordance with (25) 
is d = 2P(8L5)/48€l and considering I = bhz\12 = 1(12 mm.\ we 
shall find d to be slightly over 1 cm. or a displacement one 
million times that of the first case. 

Because of the viscosity-elasticity analogies mentioned in the 
preceding section, similar considerations apply in respect of 
the determination of coefficients of viscosity. Here also the 
" sagging-beam method " is more striking than simple traction. 

In torsion also, due to the cumulative effect of rotations, the 
displacement is much greater than in simple shear. 

The disadvantage of both the bending and torsion test is the 
heterogeneity of deformation and stress which means that the 
rheological test curve is not a fundamental curve in the meaning 
of Section 1, Chapter XI. 

These considerations are relevant when considering the 
elastic deformation of a helical spring. Even when every 
element of the spring undergoes infinitesimal strain only, the 
combined and additive effect of rotations due to bending and 
torsion of the elements will produce a very pronounced displace­
ment of the ends under an axial pull. • Even should the material 
of the spring not follow Hooke's law of proportionality, the 
displacement will follow such a law because deviations from the 
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law become noticeable at finite strain only. I t was Hooke's 
lucky chance to experiment with springs, to measure displace­
ments, and to relate force and displacement. Had he attempted 
a law between stress and strain, he would have failed because 
(i) he would not have been able to calculate either stress or 
strain in a spring, a problem which was solved by Kirchhoff 
centuries later only, (ii) had he therefore chosen the case of 
simple tension of a straight rod, the mechanics of which were 
accessible to him, his means of measurement would not have 
been accurate enough. Most rheological laws were discovered 
in such loose ways. 

10. Summary 

If a beam of elastic material is acted upon at both ends by 
bending couples Mb which are in equilibrium, it is bent to a 
circular arc of radius R which is 

R = djMb (XII, a) 

The deflection of the beam, if small, is given by 

d = L*MJ8€l (XH, b) 

The equation of the neutral axis can generally be calculated 
for small deflections from the differential equation 

d*yjdx2 = - MJel . . . . (XII, c) 

By integration we find for the deflection of a beam through 
bending from its own weight w 

d = 5wLil384€l (XII, d) 

from a load P concentrated in the centre 

d = PLs}48eI (XII, e) 

and from two concentrated equal loads P with a the distance 
between them 

d=P(L- a) (2L* + 2La- a2)j48d . (XH, f) 

The twist of a circular rod of elastic material by the torsional 
moment Mt is 

Qfl = 2Mtl7rR*y . . . . (XII, g) 
and the stress 

pt = 2Mplir& (XII, h) 
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If the material is plastic there is, in the case of equilibrium 
Mt = 2*^13 - irn5l6ys& . . . (XII, i) 

The viscosity-elasticity analogy permits the calculation of 
the rate of deflection from (XII, b to f) by replacing d by d and 
e by A and of the rate of twist from (XII, g) by replacing Q by 
& and y by 77. 



CHAPTER XIJI 

CREEP 

1. Cement Stone a Liquid, not a Solid—Glass a Solid, not a 
Liquid ? 

COMMERCIAL cement is a powder which on mixing with water 
hardens to an artificial stone. Many will be astonished to hear 
tha t this stone, which looks solid enough, flows, if given enough 
time, and is therefore actually a liquid. One may well ask : 
if cement stone is a liquid, what is a liquid ? The answer is : 
a liquid flows, and flow is a continuous deformation under 
constant stress. A solid either does not flow at all, or it flows 
plastically. Plastic flow requires a stress larger than a definite 
stress, the yield stress, and a plastic solid does not flow under 
the action of a stress below that yield stress. The limiting stress 
below which the material does not flow may be quite low : this 
makes a Soft Solid. Such a soft solid may be mistaken for a 
liquid for quite a long time, as was the case with oil paint. In 
contradistinction to the plastic solid, a liquid flows under any 
stress, however small.* 

If this definition is accepted, cement stone is, as will presently 
be described, at least up to an age of five or six years, a liquid. 
(After that, it possibly has hardened to a solid.) 

But if cement stone is a liquid, one may become doubtful, 
whether there are any solids at all. There is an inclination 
among physicists to admit a single crystal only to the status of 
" true solid " and to consider every amorphous material as a 
liquid. Glass, for instance, is spoken of as an " undercooled 
liquid " ; but it is interesting to hear that " the 200-inch 
mirror for Mount Palomar is made of glass not for any optical 
property . . . but for" its mechanical properties. In this case 
we are concerned with permanence of shape. . . . For in that 
mirror the silver or aluminium is on the front face, not the back 
one. . . . The glass is a purely mechanical support for the 

* Never forget that first axiom of rheolopy. If I spenk of " iwiy " stress, 
I exclude, of course, an isotropic stream. 
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almost infinitesimally thin mirror. We use glass in this case, 
not because it is transparent, but because its general rigidity and 
permanence of shape are better than, steel or concrete " [55]. 

If this is so, glass would be—at least Theologically—a solid, 
not a liquid. However, let us see what Lord Rayleigh had to 
say on this subject: " I have tried the following experiment: 
A piece of optically flat crown glass 3*5 cm. long and 1*5 cm. 
broad and 0-3 cm. thick, was supported on wood at the extreme 
ends, and the middle was loaded with 6 kg. applied by means 
of wooden chisel edge. I t remained in position from April 6th, 
1938, to December 13th, 1939. At the end of tha t time the 
glass was taken out and tested on an optical flat by means of 
interference fringes. I t was found to have been bent, the 
sagita of the arc amounting to 2-5 bands or 1*25 waves, tha t 
is about 6 x 10~5 cm." [56]. With the help of (III, e) and the 
viscosity elasticity analogy it is easy to calculate the viscosity 
of that particular glass at room temperature : 

We have 

rie=PL^\lUdI (1) 

where, in our case, 1 = bhz\12 = 1-5 X 0-3*jl2 = 0-0034 cm.4 ; 
P = 6,000 x 981 = 5,886 X 10* dyne ; L = 3-5 cm.; d = 
6 X 10-5/616 x24 x60 X60 = 125 X 10~™ cm/sec. We find 
rje — 6'3 x 1016 poises, using the subscript c in ??„ to indicate 
Creep Viscosity. This is a viscosity not essentially different 
from the ordinary liquid shear viscosity, creep not being 
essentially different from slow viscous flow. 

In the above-mentioned paper [55], Preston finds. ij0 by 
extrapolating to room temperature a graph showing viscosities 
of glass at high temperatures to be around 10*° or 1070 

poises and then demonstrates tha t in our universe such a 
viscosity is without meaning. If Lord Rayleigh's experiment 
can be trusted, this shows the well-known dangers of extra­
polation. We shall presently calculate the creep viscosity 
of concrete and find it to be about 3 X 1017 poises and this 
confirms tha t the " permanence of shape (of glass) is somewhat 
better than . . . concrete." I am not sure tha t it is better 
than steel. 

Comparatively speaking, therefore, cement stone and 
concrete may be considered as liquids and glass as a solid—but 
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actually this brings us back to what we said in the first Chapter, 
namely that the strictly defined rheological divisions belong to 
ideal abstract bodies and not to real materials. If we say that 
concrete is a liquid, every builder will laugh at us and the 
structural engineer dismiss the idea as fantastic ; if we say that 
glass is a solid, the theoretical physicists will consider us to be 
simple and crude. But neither the one nor the other can 
answer if we say : " a Hookean material is a solid, a Newtonian 
is a liquid ". And we shall presently have to postulate another 
liquid to take account of the fact that while both concrete and 
glass flow slowly or creep, both are also elastic, a property 
absent in a Newtonian liquid. 

2. The Permanent Deformation of Concrete 
The discovery of the creep of cement stone was made through 

the discovery of the creep of a still more (t solid " material, of 
which cement is a constituent, viz. the creep of concrete and 
even reinforced concrete. 

When a concrete prism of height h is loaded, it is compressed, 

i-z u 

X 
h i 

a. 

Fio. XIEI, 1. Creep and permanent set. 
JA„ permanent deformation. 
Aht permanent set. 
Ahe creep. 

i.e. shortened by, say Ah. When the load is removed, part of 
the reduction of height is recovered at once (Ake). After a day 
or two we find that still more is recovered, and this process goes 
on for several days up to a maximum {Aha). A residuum {Ahv) 
is not recovered even if we wait for a long time. 

We accordingly have, 
Ah=Ahc + Aha + Ahv (1) 

Ake is the ordinary elastic strain, and the phenomenon to 
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which Aha is due is called delayed elasticity, about which we shall 
speak in Chapter XV. Ahv is called the Permanent Deforma­
tion, but needs a further analysis. 

If we keep our load in position for, say, a year, we shall see 
that Ake and Aha are not affected, but AhP increases with time. 
If we plot the Ahv against time and extrapolate to time t = o, 
we get a permanent Ahs and a variable Ahc so that 

Ahv=Ahs + Ahe (2) 

Aks is called the Permanent Set and creep is the phenomenon 
to which Ahc is due (compare Fig. X I I I , 1). The same con­
siderations can be applied to the deflections of a loaded beam, 
where h then stands for " deflection ". 

The permanent deformation {Ahv) was described by Bach as 

FIG. X H I , 2. Creep of a reinforced concrete beam in a building. 
Reinforced concrete in elevation shown dotted, in section shown full. 

early as 1888, but as its increase in time was not noticed, it was 
thought to be entirely due to the permanent set (Aha).* 

During the first world war, American investigators first 
observed and described creep. McMillan in 1921 reported on 
a concrete column in compression which at the end of a period 
of 600 days still showed a deformation proceeding at the average 
rate. In 1928 Eaber first described creep in England. He 
called it " plastic yield " but it is important to keep in mind 

* We shall say more about the permanent set in Section 11 below. 
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that oreep is not what we called plastic deformation. The 
plastic deformation of metals is easily produced by impact. 
Tn contradistinction, creep is slow viscous flow of a very viscous 
liquid and not the plastic deformation of a plastic solid. For 
instance, bitumen will flow slowly, i.e. will creep, but cannot be 
quickly deformed plastically. If an attempt is made to 
produce the permanent deformation quickly by impact, the 
bitumen breaks in a brittle manner. Also, a plastically 
deformable body can sustain loads up to the yield point 
without further deformation, while a creeping material has no 
yield point: it flows under the smallest load. 

Faber discovered creep in a case very similar to what I had 
occasion to observe in a building in Jerusalem some years later. 
The building is a monolithic reinforced concrete frame with 
concrete panels later filled in (compare Fig. XIII, 2). 

The floor A was heavily loaded. It was carried by beams of 
large spans (B and Bx). After a few years, a crack (C) was 
noticed. The calculation and design of beam B were checked 
and found in order. It was also found that the width of the 
crack was of such magnitude that the sagging of the beam 
could not have been elastic. An elastic deflection of such 
magnitude would have been accompanied by stresses exceeding 
the strength of the concrete. Actually the following had 
happened : the heavily loaded floor had caused high stresses 
in the beams and these in turn had caused creep, i.e. a deflection 
of the beams increasing with time. The deflection was too 
small to be noticed at one of the intermediate beams (Bj), but 
at the front wall the rigid panel {P) which was fixed between 
the pillars {P1 and P2) had not partaken in the movement of 
beam B and the joint between panel and beam had accordingly 
opened up to form a crack. Faber was led to the discovery of 
creep by the observation of cracks (c) in partitions which did 
partake in the movement of the beams on which they were 
standing. 

The nature of the creep of concrete was at first not very well 
understood. In 1931, Straub [57], speaking of the plastic flow 
in concrete arches, proposed a " power law " or what would 
now be called a Nutting-Scott Blair equation for the creep of 
concrete, of the form 

e, =apnT (1) 
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where ec is the deformation due to creep, p is the stress, t is 
time and a, m and n are constants. The equation did not 
allow for a yield strength and in the discussion the question 
was raised : Is concrete a viscous liquid or a plastic solid ? 
This question could not be answered on the basis of the experi­
mental material existing at the time. In 1930, Glanville [58] 
had stated that the creep of a 1 : 2 : 4 mix* is approximately 
twice that of 1 : 1 : 2 mix and it is generally assumed that the 
creep increases as the quantity of aggregate is increased. This 
would imply that the aggregates flow as loose sand may flow, 
and that it is the cement, which binds the aggregates together, 
that prevents flow. 
3. The Creep of Cement and Cement Mortar 

Without knowing of Glanville's paper, I co-operated in 1932 
with Prof. Bingham in an investigation which aimed at finding 
out what actually was flowing in reinforced concrete [59]. 
Reinforced concrete consists of four macroscopic phases: cement, 
sand, stone, steel, and several microscopic phases in addition, 
among them water. I t is heterogeneous and seolotropic and 
cannot be considered even as quasi-homogeneous or quasi-
isotropic. The seolotropy is introduced through the steel 
which is inserted into the concrete in the shape of rods, i.e. of 
bodies one dimension of which exceeds the other two. Con­
crete, which is an aggregation of the first three material consti­
tuents, i.e. cement, sand and stone, can be considered as 
quasi-isotropic, but is heterogeneous -because of the large size 
of the stones in the mix. Mortar, which consists of cement and 
sand only, is quasi-isotropic and can be treated to a first 
approximation as quasi-homogeneous. But cement itself, after 
setting, although it will contain water which is not chemically 
bound, is macroscopically isotropic and homogeneous. We 
therefore started with the simplest of these mixtures, i.e. 
hardened neat cement and cement mortar (1 : 3) using the 
" sagging beam " method. The beams, 2-27 cm. square in 
section, were placed on two supports, 76*1 cm. apart and 
allowed to sag under their own weight. The deflections were 
determined as functions of time. The curves were all of the 
same shape, viz. starting as parabolas and then proceeding 
as roughly straight lines for a limited time. The slope of the 

* i.e. 1 par t cement, 2 parts sand, 4 parts crushed stone. 
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curve is a measure of the Rate of Creep, and the creep curves, 
therefore, show that the rate of creep first falls off rapidly and 
then for some time remains nearly constant. The decrease in 
rate of creep in the parabolic part is mainly due to chemical 
hardening, i.e. the setting of the cement up to an age of about 
60 days when following a short curing. In beams allowed to 
set or kept wet for curing for a longer period before loading, 
the parabolic part nearly vanishes, being reduced to a small 
parabolic start extending over a few days only, which is probably 
due to an elastic after-effect, a phenomenon, as will be shown, 
entirely different from creep. 

Our investigations brought out two main results :— 
(i) The rate of creep in its approximately constant stage is 

the same whatever the previous history of the material as to 
setting and curing ; (ii) The rate of creep of neat cement stone 
is about twice or more than that of a 1 : 3 cement mortar stone. 

However, our investigations were limited in two respects : 
firstly, there was one load only, i.e. the weight of the 
beams; secondly, there were two different mixes only (1:0 
and 1 : 3). To decide upon the relation between cement and 
sand in the mechanism of flow, I undertook, about ten years 
later, a further series of investigations in co-operation with 
A. Arastein at the Laboratory for Testing Materials at Tel 
Aviv [60]. 

4. The Creep Viscosities of Different Mortar Mixes 
In these investigations four neat cement beams and two 

beams each of the mortar mixes 1 : £, 1:1, 1:2 and 1 : 3 
were observed under the action of their own weight and of 
superposed weights of 460 and 920 g. in the centre, producing 
bending moments approximately twice and three times the 
moments produced by their own weight. The dimensions of 
the beams were the same as of those of Bingham and Reiner. 

First of all it was found that the rate of creep under the two 
superposed loads was roughly twice and three times that under 
its own weight. It had already been observed by GlanviJle 
[58] that the creep of concrete " can be considered for practical 
purposes as proportional to the stress." This is a characteristic 
property of viscous flow, in contradistinction to plastic flow. 
In the latter case, as there is no flow below the yield point and 
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FIG. XIII , 3. Creep curves of cement and mortars. Deflections 

plotted against log of time. 
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therefore zero flow corresponds to a finite stress, there can be no 
proportionality. This was also Glanville's conclusion " the 
movement appears to be . . . in the nature of viscous flow " 
and Glanville and Thomas' [62]: " if there is a yield stress for 
concrete, its value is negligible ". This justified the calculation 
of creep viscosities from rates of creep, making use of the 
formulse of Chapter XII. 

The creep curves are shown in Fig. 3 on a semi-log scale. 
This scale has the advantage that prolonged times can be 
plotted on convenient lengths of abscissa; it has the disad­
vantage that a straight line of constant slope appears as 
curved. The parabolas up to the age of 60 days have not been 
shown. The creep under superposed loads has been propor­
tionately reduced to creep under the beam weight. The curves 
confirmed that there exists a roughly straight line portion as 
shown by Bingham and Reiner. It is followed by a curve of 
gradually diminishing slope as shown by Glanville. 

In Table I (p. 242) the calculated creep viscosities have been 
entered in columns 13-15. Glanville observed compression in 
cylinders and deflection in beams of the type to which (XIII, f) 
refers; Glanville and Thomas observed also extensions in cylin­
ders. The materials were concretes of different mixes, different 
cements, and mortars. The viscosities change with age and 
the age of 60 days was selected as the greatest for which obser­
vations were available for all different materials, and as one 
which is past the first parabolic part of the creep curve during 
which the setting of the cement is proceeding at a high rate.* 

In the present case also, as in the case of Bingham and 
Reiner's beams, the rate of creep of neat cement was over double 
that of the 1: 3 mortar. This was the more remarkable as the rate 
of creep of the beams prepared in Easton from the American 
" Atlas " cement was about four times the rate of creep of the 
cement beams prepared in Tel Aviv from " Nesher " cement. 
One conclusion only can be drawn from this as expressed by 
Thomas [62], viz.: " Concrete (and mortar, M.R.) is considered 
as comprising two parts (or phases M.R.): (i) the cementitious 

* The rate of creep had to be estimated from the slope of the tangent to 
the creep curves. This procedure does not permit of great accuracy, and in 
columns 9-11 the whole range of estimated slopes has been entered, and in 
columns 13-15 corresponding ranges of viscosities. 
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material which behaves in a viscous manner when loaded, and 
(ii) inert aggregate, which does not flow (but moves) under 
load ". On this view {a) the rate of creep of a mortar depends 
ceteris paribtis, upon the nature of the cement, but not the 
nature of the sand ; (b) the increase in creep viscosity of the 
mortar over the neat cement is due to the sand taking up space 
which it immobilises. Therefore it is the cement which creeps* 
and by embedding rigid particles into it to make mortar, the 
resistance to creep is naturally increased. 

5. The Application of Einstein's Viscosity Equation to the 
Creep of Mortar 

But if this-is so, then the mortar is in its Theological behaviour 
essentially not different from any other suspension of solid 
particles in a liquid. We can therefore try to apply the 
generalized Einstein equation (TV, b) 

Vwc =y£v (2) 
and determine how the intrinsic viscosity T){ depends upon the 
volume-concentration cv in the case of cement mortar concretes. 

In the present case, cv is the volume concentration of the 
aggregate in the mix. This can be calculated from the given 
weight concentrations if the specific weights of the ingredients 
making up the mortar are known. We may assume for the 
latter the values shown in Table I I . 

TABLE I I 

Material 

Specific Weight in 
g/cm3 

Water 

1 

Ce nent 

3.15 

Aggregates 

2.05 

The recorded mixes by weight are shown in columns 5, 6, 7 
of Table I and the calculated mixes by volume in columns 
16, 17, 18. The volume concentration of the aggregates in 
the mix, cv> was calculated from the volume of the aggregates as 
shown in column 18, and the total as added up in column 19, and 
it was entered in column 20. In Fig. XI I I , 4, the creep viscosities 
7/c from columns 13-15 have been plotted against the volume 
concentrations c„ of the aggregates as shown in column 20. A 

a 2 
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remarkable fact results : all observed points for the mortars 
lie in a first approximation on straight lines radiating from a 
point (A) which lies at the distance of 0*4 from the origin. 
This distance is equal to 1/2-5 and, therefore, 7jt is in a first 
approximation a constant and equal to 2-5. In a second 
approximation the points drop below the lines ; the more so 
the leaner the mix. One reason for this becomes evident from 
an examination of column 21 of Table I. The water-cement 
ratio is not the same for all mixes. On the contrary, it increases 
for the leaner mixes. However, in the same way as the sand 

\ ^CONCRLIE CUE? 

VISCOSITIES IN 

t t p Vl i tOS""- \ 1 ACCOKPANCt Wmi 

Fio. XII I , 4. Creep viscosities plotted against volume concentration 
of aggregates. 

increases the viscosity by immobilising volume, water (with 
a viscosity negligible in comparison to the viscosity of the 
cement stone) decreases the viscosity. Denoting by w0 the 
viscosity of the neat cement stone, the viscosity of any 
other cement" base " in a mortar (^0) will be, in accordance with 
Guth and Mark [63], 

Vo=y0(l - c j (3) 
where cw is the volume concentration of water which the cement 
base contains in addition to the water of the neat cement stone. 
E.g. the neat cement stone in our case was composed of 317 
parts cement and 250 parts water by volume, i.e. in a volume 
water-cement ratio of 0-79. In the 1 : 3 mortar, the volume 
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water-cement ratio was 1-05 (compare column 21, row 7 of 
Table I). On 100 parts of cement there were, therefore, in 
the first case 79 parts of water and in the second case 105 parts 
of water, or 26 parts in excess. The total volume of cement and 
water in the mortar is 205 parts, and 26 parts, therefore, 
correspond to a volume concentration of excess-water cw = 
26(105 = 0'13. The values of ca have been calculated accord­
ingly and entered in column 23. From these the viscosities •qQ 

of the cement base were calculated and entered in column 24. 
When these viscosities are plotted on the vertical axis of 
Fig. XIII, 4, and connected with the point A, the observed 
mortar viscosities lie well on the straight lines radiating from A. 

6. The Creep Viscosities of Mortar confirming Einstein's 
Equation 

I must confess that when I had found that Einstein's equa­
tion (IV, a) is valid for cement mortars up to a concentration 
of over 60(!) per cent., I thought there was something wrong 
in the observations or their interpretation. In all text-books 
dealing with this equation, the experiments of Bancelin 
(1911) and Oden (1913) are quoted as providing a fair proof of 
the validity of the equation for spherical particles and concentra­
tions of not more than 3 per cent. In the present case the 
particles (Leighton Buzzard British Standard sand) were fairly 
spherical, but the concentrations unbelievably high. Never­
theless, on second thoughts, the agreement with Einstein's 
equation can be understood. As we said in Section 2 of 
Chapter IV, there are two factors which may invalidate the 
equation. Firstly, if the suspended article is not exactly 
spherical, the change of orientation during flow will change the 
degree of interference with the flow of the dispersion medium. 
Secondly, if the concentration is not very small the modification 
in the flow of the dispersion medium caused by any one particle 
reaches into the field of neighbouring particles, increasing the 
resistance to flow still more. However, if the viscosity of the 
dispersion medium, in our case the cement base, is of the order 
of 1017 poises, the flow during one year will be too small to 
cause either an appreciable change in the orientation of the 
sand particles or an interference beyond the volume proper of 
the particle. One year in the flow of cement is as much as 
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10~1B years or about 10-12 seconds in the flow of water. If the 
observation were to last 10-12 seconds only we would likewise 
in a suspension in water not observe any interference other than 
the simple taking up of volume. As a matter of fact, in such 
a short period, a state of steady flow could not establish itself. 
To change the picture from a temporal into a spatial one: 
the distances between particles in a " liquid " of a viscosity of 
the order of 1017 poises are equivalent to distances in water 1019 

times as great. We can accordingly see that a concentration 
at 60 per cent, in cement is infinitesimally small in terms of 
concentration in water. 

7. A Formula for the Creep-viscosity of Cement Mortars 
On the basis of the foregoing, the creep viscosity of a cement 

mortar rj£ can be predicted if the creep viscosity of the neat 
cement TJ0 used in the mix is known. 

We should have 
14-WG 

^ = ^JTWc[1 + 2-5%) • • • • (4) 

where WC is the volume water-cement ratio of the neat cement, 
WC is that of the cement base used in the mortar and cv the 
volume concentration of the sand in the mortar. Equation (4) 
results from (3) through 

WC - WC 

^TT¥ (5) 

8. An Empirical Formula for the Creep-viscosity of Concrete 
Equation (4) does not hold good for concretes. First of all, 

the relative creep viscosity of the 1 : 1 : 2 concrete, which has a 
concentration of inert material equal to that of a 1 : 3 mortar 
(cv = 0-61) is much higher than that of the mortar. The 
reason may well be that besides cement, water and aggregates, 
there is always another material present in the mix, viz. air, 
filling voids. The viscosity of air is negligible and its volume 
should be added to the volume of the excess water. I t may be 
assumed that the leaner the mix the more voids in the mortar 
or concrete. At the same time, however, it will be seen that 
a 1 : 1: 2 concrete, because of the better grading of the aggre­
gate, will have less pore space than a 1 : 3 mortar. Therefore, the 
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relative viscosity of the former should be greater—and so it is. 
The values for rft were calculated for concretes from (1), 

where r)Bvec and c„ were introduced from columns 26 and 20 
respectively. They can be approximated by a straight line 

Vt=40-53cv (6) 
where 0-60 < c„ < 0-75. This gives for concrete 

, , 5 C , ' J + ^ 5 ( J + 40c^53c') ' ' ' ( 7 ) 

In order to check (6) and (7), the creep viscosities of the 
mortars and concretes were calculated from these equations, 
using the values for cv from column 20 and for cw from column 23. 
The results were entered in column 28. As can be seen, the 
viscosities calculated from the equation fall within the ranges 
of the observed viscosities. 

9. Dissimilarity of Creep-Behaviour of Mortars and 
Concretes 

The dissimilarity of the behaviour of mortar and concretes— 
the first having their rate of creep decreased with increased 
quantity of aggregate, the second, on the contrary, having the 
rate of creep increased—can be understood on the analogy of 
the behaviour of a sand-water mixture. When the sand is dry, 
its cohesion is very small; its internal friction, as measured by 
the angle of repose, is also comparatively small. When we add 
a little water its cohesion is increased and there is an optimum 
water content, which we used when as boys we built castles on 
the beach. Still more water reduces the cohesion and 100 per 
cent, of water, of course, flows freely. The complete curve 
will, therefore, pass through the zero for cw = 1 and cw = 0 
where cm is the volume concentration of water. When cw 

decreases from 1 to 0 the curve will go up at the nearer end 
and go down at the farther end. The role of water is played in 
our case by the cement. When the aggregates are on the 
increase and the cement on the decrease, the mortars lie on the 
rising part, the concretes on the descending part of the curve. 

10. The Volume-Flow of Concrete 
In our foregoing considerations we have over-simplified condi­

tions. We assumed in accordance with our first rheological axiom 
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that there is no voluminal flow, i.e. that all flow consists in a 
continuous distortion and that there is no such thing as a con­
tinuous condensation or rarefaction of the material. The 
assumption is so natural that Hencky based his theory of 
plastic flow upon it without questioning it and we also accepted 
it as an axiom. One reasons that, say, in compression, the 
condensation can, in Trouton's words (compare Section 11, 
Chapter X) be an " ini t ial" effect only, or that we are, as we 
called it, in the second stage of viscous traction. But when we 
come to materials with a viscosity of the order of 1017 poises 
" initial " may be a period exceeding our lifetime. This is 
what Glanville and Thomas [62] found when investigating 
" lateral " creep. Concrete, on hardening, " shrinks ", i.e. 
all its dimensions are reduced proportionally. There is a 
negative cubical dilatation, e0, going on for some time with a 
decreasing rate ev without any corresponding stress. This is 
one of those time-effects with which we shall deal in 
Chapter XVIII . 

In the sagging beam test, shrinkage will reduce the radius to 
which the beam is bent, but the influence upon the deflection is 
negligible. I t is not so when a concrete cylinder is observed 
under compression and longitudinal and lateral movements are 
measured. Here shrinkage movements must be deducted. 
These were taken account of by measuring both longitudinal 
and lateral movements in a loaded and an unloaded specimen. 
I t was found that the longitudinal movement increased very 
rapidly as a result of loading, but the lateral movement was 
practically unaffected, continuing to increase at about the same 
rate as the unloaded specimen (compare Fig. XI I I , 5). From the 
results of the tests, which the authors call " surprising ", the 
conclusion must be drawn that there is practically no lateral 
creep. 

Following (X, k) we can define a viscous analogue to Poisson's 
ratio a by 

If av is a constant, this gives by integration 

«e = - < V » (»)* 

* Here the subscript " c " indicates " contraction " find not creep, while 
" v " indicates " viscous " and not volume. 
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In the case of concrete, as observed by Glanville and Thomas, 
av vanished while a was 0'14. 

This surprised the authors because, as we recognise, they had 
tacitly assumed that the first axiom was valid and that , 
therefore, the volumetric deformation could only be an elastic 
strain taking place in the " first stage ". Later, in the second 
stage there would be no change of volume, or (compare (X, 27')) 
av = 0-5. A vanishing Poisson-ratio indicates a case of simple 
extension (in our case negative extension). This, we said in 
Section 1 of Chapter X, is " not . . . easily realized " and we 
gave a very far-fetched example. Now we meet such a case 
under quite ordinary conditions of an everyday material. But 
let us remember that we found it necessary in Section 1 of 
Chapter X to restate the first rheological axiom in the following 
form : " Under isotropic pressure all non-porous materials are 
elastic and only elastic " and that we said tha t this was an 
implicit (rheological) definition for " non-porous ". Glanville 
and Thomas' experiment accordingly revealed by rheological 
means the porosity of concrete which, of course, is known from 
other facts. In creep the concrete flows into its pores and con­
crete shows voluminal flow. 

11. Trouton's Coefficient in the Case of Simple Extension 

This gives us occasion to deal with the following problem :— 
Let a material, the rheological equation of which is (IX, a) 

and which, therefore, has both volume elasticity (K) and 
volume viscosity (rjv) undergo simple extension ; what will the 
magnitude of Trouton's coefficient be, and in what manner will 
flow take place ? 

Our case is the one defined by (X, 14), in accordance with 
which ev = en. 

Introducing this expression into (X, 51), we get 

e„ + ^ e „ = ^ + % ) / ^ v • • • (10) 

This equation is of the type 

dyjdx + My=N (11)* 
the solution of which is 

y = e~SMdx {/Nef
Mdxdx + (7) . . . . (12)* 

* We shall meet the same differential equation again in Chapter XIV. 
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as can easily be verified by differentiation and substitution into 
(H). 

Accordingly, we find 

and, therefore, 

This gives 

% = Pn1—1* e ^ - ' (14) 

X=^=JWve<,3,B.t ( 1 5 ) 

At the beginning of loading, i.e. for t = 0, we have 

K = - x V = ^ " ^ + 1 3 « - (16) 
and only if -qv = GO is A0 = <?*/, in which case A is constant and 
throughout = 3-q, Ifr)v < co, A0 < 3TJ. In this case A is not 
constant, but increases with increasing time. There will be a 
limiting strain, which from (13) can be derived at 

•- - ^ - ^ • • • • <17> 

The increase of creep viscosity in concrete after some years, 
may have other causes besides the filling up of holes. I t is not 
likely to be due to a chemical change, because if such a one has 
not taken place for quite a prolonged period during which the 
creep is a straight line, there is no reason why it should suddenly 
appear at a later date. I t may, however, be that the modifica­
tion of flow of the cement in the vicinity of a sand particle, 
caused by the other sand particles about which we spoke in 
Section 6 and which at first is absent, may make itself felt after 
years, thereby increasing the overall viscosity of the mortar, 
bringing its operative concentration up to the nominal concen­
tration. Gradually a 1 : 3 mortar would tend to acquire the 
viscosity of a suspension of 63 per cent, concentration and only 
when this was the case would the state of flow become steady. 

We have not yet explained the nature of the " permanent 
set " which we mentioned in Section 2. This is a deformation 
which appears immediately on loading—in contradistinction to 
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the elastic after-effect and creep—and which is not recovered— 
in contradistinction to the instantaneous or acoustical elasticity. 
The appearance of a permanent set on deforming a body can be 
understood from the fact tha t no body is perfectly homo­
geneous and that all possess pores or holes and also inclu­
sions of foreign material. To these imperfections should be 
added sharp local depressions on the surfaces, scratches and 
the like, forming notches. A stressed body will have stress-
concentrations at these places. When considering the surface 
of a body these concentrations are spoken of as " notch-effects ", 
but the stress concentrations at holes and inclusions are not 
essentially different. 

These flaws form weak spots and, while the body as a whole 
may be strong enough to resist the forces causing the deforma­
tion, at these irregularly interspersed imperfections the strength 
of the material may be exceeded. 

In the case of a plastic material this will cause local plastic 
deformations ; in the case of brittle material local rupture. 
When the body is released from the external forces, the aggregate 
of these minute plastic deformations or ruptures vnll show itself 
as a permanent set. The stress concentration is the more 
marked the sharper the angle at the notch or the smaller the 
smallest radius of curvature at the hole. A local plastic 
deformation will tend to flatten the angle or to increase the 
radius of the curvature and a second loading of the same extent 
may therefore be more nearly perfectly elastic. This is well 
known in many metals. 

A local rupture, however, may make the angle even sharper 
and produce sharp re-entrant angles starting from holes. In 
this case second and further loadings will again produce perma­
nent sets and after many such repeated local breakages the 
rupture may spread across the whole body and the body breaks. 
Such rupture of a material after repeated loading and unloading 
is called Fatigue. The nature of fatigue which is the failure 
under repeated cycles of stress or strain is not yet fully under­
stood. Fatigue occurs not only in brittle materials but also, 
and predominantly, in plastic metals. I t should, of course, be 
kept in mind that in metals the local plastic deformation must 
raise the local yield point by causing local strain-hardening and 
therefore brittleness. I t may also be assumed that apart from 
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imperfections of structure of microscopic size there should also 
be sub-microscopic variations of cohesional bonds {atomic or 
molecular) of the material, and some may break under compara­
tively small stresses. This will cause a redistribution of stresses, 
increasing the latter beyond the average and bringing about in 
turn other breakages of cohesional bonds. Conditions of 
fatigue would accordingly be governed by principles of statistics. 
I t appears that whatever laws of fatigue have been established 
until now, can simply be explained from such statistical 
considerations (Freudenthal [64]), but the meclmnism of 
fatigue has still to be discovered. 

It is, however, clear that no direct relation will exist between 
fatigue and damping of oscillations of the material in question. 
Whatever causes dissipation of energy will cause damping of 
oscillations. We shall see in Chapter XIV that there may be 
damping without any change in the structure of the material 
and that fatigue can only be one of the contributory causes of 
damping. 

12. The Loading Test for Reinforced Concrete Structures 
The considerations of the last Section are important in 

connection with the Load Test for reinforced concrete structures. 
When there is doubt about the safe bearing capacity of a 

reinforced concrete structure, many regulations prescribe a 
" load test ". For instance, the American Concrete Institute 
Standard prescribes that a beam or slab shall, under a certain 
load, show a deflection not greater than a certain maximum 
which is directly proportional to the square of its span and 
inversely to its thickness. However, " if the deflection exceeds 
(that) value . . . the construction shall be considered to have 
passed the test if within twenty-four hours after the removal 
of the load the portion of the structure shows a recovery of at 
least 25 per cent, of the observed deflection ". The British 
Code of Practice has an analogous stipulation but uses the 
words " if after the removal of the load " without saying when 
after the removal. The experience of the Testing Laboratory 
of the Standards Institution of Palestine has almost invariably 
been that if the recovery is determined immediately after the 
removal of the load, most structures must be considered to have 
failed, but if the recovery is measured after twenty-four hours, 
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there is hardly any structure so deficient that it would not 
pass. 

The history of the load test and the theory underlying it are 
difficult to trace. I t looks as if somebody somewhere intro­
duced the test as a rule of thumb and its provisions were then 
copied by others for lack of something better. The theory would 
seem to be that a structural member should be elastic and the 
more elastic the better its performance. The non-recovered defor­
mation indicates a deficiency in elasticity and the ratio of 
recovery to total deformation would accordingly be a measure 
of the fitness of the member. 

This view, however, does not take into account the two 
important phenomena happening with time, viz. (i) creep, 
(ii) elastic after-effect. 

In creep, the molecules of the material change places without 
any cracks or discontinuities appearing in the material and, 
therefore, without any loss in strength. This has been con­
firmed by experiment. The non-recovered part of the deflection 
being partly due to creep, the view that non-recovery of deflec­
tion is an indication of weakness cannot be entirely correct. 

The nature of the elastic after-effect, which we mentioned 
in Chapter IX, will be fully discussed in Chapter XTV. I t will 
be seen that an elastic after-effect does not indicate a lack in 
strength of the material—rather the opposite. I t is the 
permanent set only which points to a weakness in the concrete 
and which on repeated loading may lead to destruction. On 
first loading a permanent set resulting from local failures such 
as crushing around holes or a t notches is unavoidable. On 
second loading one of two things may happen. If the concrete 
has internally adapted itself to the load by closing holes, cracks 
and notches, there will be no new permanent set. If, however, 
the structure of the concrete is such that in the first loading 
notches are developing into cracks and cracks are lengthened, 
the second loading will result in an additional permanent set. 
In plotting loads increasing from zero and then decreasing to 
zero, against deflections, tins reveals itself in the existence of 
a " power-diagram " enclosing between the loading and the 
unloading curve an area which is a measure of the work per­
formed. In this case the structure behaves like a machine, 
in fact as a stone-crusher working for its own destruction. 
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Accordingly, it appears that a proper specification for a load 
test should not use the total recovery or non-recovery of the 
deflection as the criterion, but only the existence or the absence 
of permanent sets on second and further loadings. A specifica­
tion on these lines is at present in hand at the Standards 
Institution of Palestine [65]. 

13. Summary 
A liquid flows under any distortional stress, however small, 

while a solid flows plastically if the yield stress is exceeded. 
Seemingly solid materials such as pitch, bitumen, concrete, 
glass and metals may flow in the liquid manner, but exceedingly 
slowly: this slow flow is called creep. That permanent deforma­
tion of a body, which is neither plastic nor due to creep, is called 
permanent set, i.e. the aggregate of minute local microscopic 
failures of the material caused by random stress concentrations. 
Accumulating permanent sets may cause fatigue or rupture 
under repeated cycles of stress or strain. The latter may also 
be due to submicroscopic variations of cohesional bonds and 
local breakages. 

The creep viscosity T)B of cement mortar can in a first approxi­
mation be calculated from the following modification of 
Einstein's equation (IV, a) 

1+WC 

^=^T^wc{1 + 2'5Cv) ' ' ( x m , a ) 

where WC is the volume-water-cement ratio of the neat cement 
of viscosity ij0 and WC that of the cement base used in the 
mortar. 

For concrete the following empirical formula can be used 

*>- = '• iTW ( i + 4K ~ 53c"i] " (Xm 'b) 

If the material is porous, as is the case with concrete, part 
of the flow is into the holes and the flow has accordingly a 
volume-component accompanied by a volume viscosity TJV. 

A viscous analogue to Poisson's ratio can be defined by 

% = - *Jn (XIII, C) 

where ec is the rate of contraction. When there is no volume 
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flow crv = J, otherwise 0 ^ av < £. When ô  is constant, it 
can be calculated from 

ec = -oven (XIII, d) 
For ov = 0, in which case there is no lateral creep, i.e. no 

change of lateral dimensions, we have 

A = 97}7}l e - ^ V . . . . (XIII, e) 
1 + 6rlv 

When all holes are filled, the limiting deformation 

is reached, where 

*.=P»r (XIH, f) 

K=m$ + iM .. • • <xni,g) 



CHAPTER XIV 

ELASTICO -VISCOSITY AND FIRMO ^VISCOSITY 

1. Elastic Liquids 

I N Chapter XI I I we have described the rheological behaviour 
of materials which, while they impress us as very solid, never­
theless, under constant (distortional) stress of however small a 
magnitude are continuously deformed, or, in other words, flow. 
Such flow is very slow and is therefore termed creep and it can be 
detected only through exceedingly accurate measurements over 
long periods. However, while they flow, these materials are not 
Newtonian liquids. In addition to viscosity, they exhibit 
elasticity. Their complex rheological behaviour has therefore 
been named by Jeffreys [66] Elastico-Viscosity. The first com­
ponent of this property is not necessarily connected with a 
high value of the second, as is the case in cement, glass and 
asphalt. Hess [67] has described the elastic behaviour of a 
1-5 per cent, starch solution which is elastic, while not exceed­
ingly viscous. The liquid is brought into rotation by rotating 
its container, which is then suddenly stopped. " When a state 
of rest is apparently about to be reached with gradual diminu­
tion of the rotational velocity, we see that the liquid starts to 
move again in the opposite direction. A state of rest is again 
approached, first with increasing and then with diminishing 
velocity, but it is not final. Only after several oscillations does 
the liquid come to rest. The oscillations do not appear in the 
case of a glycerine-water mixture of corresponding viscosity: 
here the first rest is definite. These oscillations must be due to 
elastic forces which arise in the liquid from internal structures." 

A 1*5 per cent, starch solution is obviously a liquid. Here the 
flow will not be spoken of as creep and this will underline that 
there is nothing in creep which distinguishes it from viscous 
flow except its low rate. 

A few words must be added about the difference between an 
elastic liquid and a soft plastic solid. The latter also " flows ", 
but it flows plastically, i.e. only after the yield stress has been 

D.». 257 
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exceeded. Up to the yield point it is elastic, but its elasticity 
is of a very different kind. I n a soft plastic solid the elastic 
component becomes predominant at small velocities. In contra­
distinction the elasticity of a true liquid makes itself felt at high 
velocities, when no time is given to its elastic stresses to 
" relax ". Twenty years ago, when rheology was in its infancy, 
that difference was not so well understood and I published a 
few papers on the theory of flow of soft plastic solids under titles 
referring to elastic liquids (compare Section 1 of Chapter IV). 
The theory was correct, but the terminology was misleading. 

2. Relaxation of Stress 

The elasticity of a solid, even of a soft solid, is of the Hooke 
type. The strainwork which has been put into a distorted 
Hooke body is stored there safely for as long as it is loaded; 
and it can be regained at any time by removing the load. So, 
on releasing the pressure after the second stage shown in Fig. 
I, 6, the segment disappears and the elastic potential energy 
stored in the paste, small as it may be, is regained. On 
increasing the pressure to the third stage, that potential energy 
is not affected and in the fourth stage it is regained in the same 
amount. In contradistinction, an elastico-viscous material, so 
to speak, leaks : the longer we wait, the less complete is the 
recovery on removal of the load. In other words, the strained 
material loses resilience, its internal stresses relax. 

In his investigations on the dynamical theory of gases (1868), 
Maxwell was the first to treat the relaxation of elastic stresses. 
In his words, but using our notation and interspersing our 
comments :— 

" A distortion or strain of some kind, which we may call e, is 
produced in the body by displacement. A state of stress or elastic 
force which we may call p is thus excited. The relation between the 
stress and the strain may be written p = ee, when e is a coefficient 
of elasticity for that particular kind of strain. . . ." That 
coefficient is Young's modulus e if p and e are normal stresses 
and strains, and i t is the modulus of rigidity if they are tangential 
stresses and strains. " In a solid body free from relaxation,* p 
will remain = ee, and 

p = ee (1) 
* Here I have slightly changed Maxwell's wording. 
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" / / , however, the body relaxes, p will not remain constant, but 
will tend to disappear, at a rate depending on the value ofp and of 
(he nature of tJie body. If we suppose this rate proportional to p, 
the equation may be written 

p = ee — pjr " (2) 

T is a material constant, the nature of which will be explained 
later. 
" . . . which will indicate the actual phenomena in an empirical 
manner" 

Eor " empirical " we would say " phenomenological ". 
" For ife be constant, 

p = tee-"* (3) 

showing that p gradually disappears, so that if the body is left to 
itself it gradually loses any internal stress. . . . " 

Equation (3) can easily be derived from (2) as follows : If e 
is constant e vanishes and (2) becomes 

dpjdt = — pjr (4) 

or 

dpjp = - Ijr.dt (5) 

which by integration gives 

hip ~~\D.p0——tJT (6) 

P 

*•" 

FIG. XIV, 1. Reltivation curve of a Maxwell liquid. p0 stress at the time 
t = o. r relaxation time, e basis of natural logarithms. 

s 2 
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where p0 is the stress produced originally, i.e. a t time t = 0, 
in the body. This stress, however, is equal to ee. 

From (6) follows (3). 
If we plot the stress against time the resulting curve is as 

shown in Fig. 1. The constant T has the dimension of time, 
because the exponent tjr of e must be a dimensionless number. 

If we introduce in (3) r for t, we get 

Pr=Po!* V) 
The time of relaxation is therefore that time in which the 

stress relaxes to the " eth " part of its original magnitude. 

3 . Viscosity Arising from Relaxation 

Maxwell, actually, was not so much interested in the relaxa­
tion of the elastic stresses in solids. Following an earlier 
attempt by Navier to derive the equations of viscous flow of 
liquids from the elasticity equations by assuming instantaneous 
relaxation, he postulated his law (2) as a starting point for a 
theory of viscosity. He accordingly continues :— 

" / / e is constant ( = c), that is if there is a steady motion of the 
body . . . " 

This is meant to read ' ( of the particles of the body '', because 
this is not a question of the motion of the body as a whole. 
Even so the statement is not quite correct because e is not the 
velocity of a motion, but the rate of a strain. 
" . . . which continuously increases the displacement, 

p = ere + Ce~"T (8) 
shouting that p tends to a constant value depending on the rate of 
displacement " (read " rate of strain."—M.R.) " The quantity 
CT, by which the rate of displacement " . ( a s before) " must be multi­
plied to get the force " (read " traction ") , " may be called the 
1 coefficient of viscosity.' " 

Equation (8) can be verified by differentiation. We get 

p = — e ~ " T and as from (8) ce-*/r = p — ere, this gives (2). 
T 

The identification of €T with a coefficient of viscosity can be 
supported by the following consideration : If p is constant, 
p vanishes and (2) gives 

e = Pier (9) 
Under constant stress the rate of strain is therefore also 
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constant which means that there is continuous flow. In addi­
tion, assuming e and T to be constants, the relation between 
stress and rate of strain is linear, This, if stress and strain are 
tangential, is Newton's law of viscous flow; and if they are 
normal (as we have assumed in (1)) it is Trouton's law. 

Let us continue the quotation from Maxwell. " It (CT) is the 
product of a coefficient of elasticity (e) and a time (r) which may 
be called the Time of Relaxation of the elastic force. In mobile 
fluids T is a very small fraction of a second and e is not easily 
determined experimentally. In viscous solids . . . " 

In our terminology we call such materials liquids and not 
solids, reserving the term " viscous solids " for very different 
materials as will be explained in Section 6. We would say 
here " In very viscous elastic liquids . . . " and, continuing the 
quotation, " . . . r may be several hours or days, and then e is 
easily measured. It is possible that in some bodies r may be a 
function of p. . . . " 

Introducing 
A = cr (10) 

* 
Equation (2) can be written in the form 

e=ple+pl\ . . . . . . (11) 
In the quoted paper Maxwell arrived at the notion that the 

" rigidity " of air is equal to its pressure, i.e. in the free atmo­
sphere equal to 1-014 X 106 dyne cm - 2 . This sounds para­
doxical, but one should bear in mind that the elastic deformation 
is the smaller, the greater y. Therefore, for an inelastic New­
tonian liquid y — co. 

Having determined the viscosity of air at atmospheric 
pressure by experiment (which is about 0-0002 poises), he easily 
found its time of relaxation to be 1-961 x 10~10 seconds. We 
can therefore say that the order of magnitude of the smallest 
time of relaxation is 10~10 seconds, and we may assume that 
even for water it does not vanish altogether. Experiments to 
find a rigidity of water must therefore have been unsuccessful 
because of imperfections of experimental technique only. 

4. Remember the First Axiom 
There is a flaw in the foregoing considerations. Maxwell must 

have been well aware of what we called the first axiom of 
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rheology, but he did not pay attention to it. This was first 
emphasized by Reiger [68] who reports* tha t Zaremba [69] 
pointed out before him that, in principle, there must be two 
different times of relaxation just as the elastic state of a body 
is determined by two independent elastic constants. In hydro-
dynamical calculations a liquid is usually assumed as incom­
pressible. This may be justified when one considers flow, 
because the deformations due to liquid flow are incomparably 
greater than those due to volumetric strain. However, when 
we consider an elasticity of the liquid, similar to the one of a 
solid, we must remember (compare the Table in Chapter IX) 
that actually liquids are much more compressible than solids. 

We therefore have to assume, in principle, two different times 
of relaxation, viz. 

Tt =vh>rv =r)JK (12) 

one tangential, the other voluminal. 
Reiger assumed that there is no relaxation of volume elasti­

city, or TV = co which implies tha t TJV = co. This was also 
our point of view when postulating the " first axiom of 
rheology " in Section 2 of Chapter I . Since then, what we 
learned about the voluminal flow of concrete (compare 
Section 10 of Chapter XII I ) has made us more careful and 
our first axiom is more modestly reduced to the statement 
that for every property there are two independent Theological 
coefficients, one referring to changes of volume, the other to 
changes of shape. We therefore replace Equation (11) by the 
two independent equations 

e< =PtlYi+Pth (13) 

K =P!K+Phv (14) 

where y and K are the two elastic moduli, ij and -qv the two 
coefficients of viscosity referring to change of shape and change 
of volume respectively. 

To find the relaxation equation for simple tension we must 
first resolve the simple tension pn into its two components in 
accordance with Equation (X, f) 

P=pJ3;p<tn=2pJ3 (15) 

* I must warn the reader desirous of studying Reiger's paper of its numerous 
mistakes, which I cannot point out in detail. 



REMEMBER THE FIRST AXIOM 263 

while the corresponding strains are in accordance with 
Equations (X, b), (X, c) and (X, k) 

ec = en(l - 2a); eon = 2(1 + a)eJ3 . . . (16) 

Taking first the voluminal part, Equation (14), we find 

6n(l-2v)=pJ3K+1>J37]v . . . . (17) 

where, in differentiating the first of (16) we have assumed that 
CT is a constant. 

For the distortional part we go back to Equations (X, g) and 
(X, h) and replace (13) by 

ton=PoJ2y + P0J2v (18) 
which, introducing (15) and (16), becomes 

2{l + v)en=pJY + pnh . . . . (19) 
Elimination of a from (17) and (19) by adding both gives 

3 \3K y) 3 \ 3i)0 7)/ 

However, in accordance with (X, m), 1\3K -f- Ijy = 3J€% 

while from (X, p) 

l + l ' + 'lJ*, (21) 

This yields, considering the first of (16) 

tn=pJ* + 2>J* + Ken{1~2<r) • • • (22) 
dVVv 

Equation (11), therefore, is correct only if either 1^ = 00 
or a = -J. 

If one assumes with Stokes—an assumption which possibly 
was also in Maxwell's mind—that the volume viscosity vanishes, 
the last term on the right-hand side, contrary to expectations, 
becomes infinitely great. 

5. The Maxwell Liquid 
We may call a material the rheological equation of which is 

(13) or (18) a Maxwell Liquid. To indicate its nature as a 
liquid, the subscript "I" has been added to the modulus of 
rigidity y. If its volume viscosity TJ0 is not infinite, the 
voluminal rheological equation (14) must also be taken into 
consideration. These rheological equations can be derived 
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through a combination of those of the Hooke solid (I, d) and the 
Newtonian liquid (I, f). The nature of this combination is 
found by considering in accordance with Equation (13) an 
infinitely small displacement du attained during the time dt. 
This is 

du = dptjyi -f pj-q . dt = due + duv . . . (23) 
where due is the elastic and duv the viscous displacement. 
Accordingly, in a Maxwell liquid the displacements are additive. 

POTENTIAL ENERG/ | ™ ™ ^ 

DISSIPATED ENERGY 

FIG. XIV, 2. Models for the Hooke solid and the Newtonian liquid. 
In working out the diagrams, the inertia of the mechanism has 
been neglected and the elongation assumed as starting instantane­
ously with applied force. 

In Section 4 of Chapter XI we have proposed a spring as a 
model for an elastic (Hooke) material. We now introduce a 
dashpot as shown in Fig. XIV, 2, as a model for the Newtonian 
liquid. 

If displacements of both should add up, we must com­
bine them in series in order to get a model for the Maxwell 
liquid. Fig. XIV, 3, shows the model together with its stress-
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displacement-time curves under load and after removal of the 
load (the latter in dotted lines ). Using, as before, the 
horizontal dash — for " coupling in series", we write the 
structural formula of the Maxwell liquid in the form 

M =H -N (24) 

p t CURVE FOR 
/ tX * CONSTANT 

FIG. XIV, 3. Model for the Maxwell liquid. OAB = elastic recovery 
for elongation A '• O'A'B' = relaxation curve for stress p ' . p.s. = 
permanent strain ; r.s. = recovered strain. 

Equation (13) is of the form of Equation (XIII, 11). Pro­
vided y and TJ are constants, its solution is, in accordance with 
Equation (XIII, 12). 

p = e - ^ ' t e , + y j ee^'dt) . . . . (25) 
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where we have, for simphcity, omitted the subscripts " t " and 
"I". 

If the deformation is kept constant, o r e = 0, we find from 
Equation {25) the relaxation curve 

P=p0e-yht (26) 

as in Equation (3). On the other hand | e»'«(dt = - ( e^ - ' — 1) 

J y 

and, therefore, if e is constant c, 

P=r)c + (Po-Vc)e-vl'>t (27) 
For c0 = p0jt) this gives p = -qc0 = p0 and the stress remains 

constant. For c>c0 the stress increases, for c<c0 the stress 
decreases as shown in Fig. 2. 

FIG. XIV, 4. The test piece is first (t=o) suddenly stressed to the value 
p0 and then strained at the constant rate c. There exists for every 
initial stress p0 a certain rate of strain c0 so that the stress is not 
changed. 

6. Viscous Solids 
At about the same time when Maxwell was pondering over 

the relaxation of stresses, William Thomson, later Lord Kelvin, 
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published a paper " On the Elasticity and Viscosity of Metals " 
[70], which was subsequently incorporated into his article on 
Elasticity in the Encycloposdia Britannica. He reasoned from 
thermodynamical considerations that " no cJtange of volume or 
of shape can be produced in any kind of matter witliout dissipation 
of energy ". He also proceded from theoretical reasoning to 
experiment and found " by vibrating a spring alternately in 
air of ordinary pressure and in the exhausted receiver of an air-
pump, that there is an internal resistance to its motions 
immensely greater than the resistance of the air ". He con­
cluded that " there is in elastic solids a molecular friction which 
may be properly called Viscosity of Solids, because, as being an 
internal resistance to change of shape depending on the rapidity 
of change, it must be classed with fluid molecular friction, 
which by general consent is called viscosity of fluids ". He also 
proposed a model for the better understanding of the pheno­
menon as follows : " Consider a perfectly elastic vesicular solid, 
whether like a sponge with communications between the vesicles, 
or with each vesicle separately enclosed in elastic solid : imagine 
its pores and interstices filled up with a viscous fluid, such as oil. 
Static experiments on such a solid will show perfect elasticity of 
bulk and shape ; kinetic experiments will show losses of energy 
such as are really shown by vibrators of . . . elastic homogeneous 
solids. . . . According to Newton's* law of viscosity of fluids, 
our supposed vesicular vibrator would follow the law of subsidence 
of a simple vibrator experiencing a resistance simply proportional 
to the velocity of its motion." However, he adds as a result of 
his experiments on the damping of torsional oscillations of 
metal wires that while the resistance depended in some manner 
upon the velocity " no such simple law is applicable ". 

The property named by Kelvin " viscosity of solids " was 
called by Jeffreys [66] Firmo-Viscosity. He remarks that this 
type of " imperfection of elasticity " implies not weakness but 
additional stiffness, the resistance to deformation being smaller 
when the viscosity is absent. However, in accordance with 
Kelvin " the elasticity is said to be perfect when the body 
always requires the same force to keep it at rest, in the same bulk 

* Kelvin says " Stokes's law ", but Stokos only generalised Newton's 
relation between shearing forco an<l velocity gradient, Equation (I, f), into a 
relation between stress and rate of strain. 
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and shape . . . through whatever variations of bulk and shape 
it be brought." Therefore, firmo-viscosity should not be 
regarded as an imperfection of elasticity (compare also Section 
10 of Chapter IX). 

7. The Kelvin Solid 
We may call a solid constituted on the model of the " vesicular 

solid ", or, if truly homogeneous, behaving in the same manner, a 

K=H N 
p* pH + P* 

p« 

] [ 

± PN 

ELASTIC HYSTERESIS 

MEASURE OF -3-

^uR.e 

FIG. XIV, 5. The mechanisms in the figures show extensions and 
pulls, but one shou'd not forget that these stand for shearing 
strains and shearing stresses, respectively. Also, the stress-strain 
relations have been pictured as linear; but the models can be 
applied in a general manner for nonlinear relations BB well. 
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Kelvin Solid.* I t is important to keep the italicised generali­
sation in mind. Mardles [76] has objected to what he calls my 
" assumption that the behaviour of a given material f can be 
represented in terms of a number of elements each obeying a 
simple law " as, e.g. in the sponge the solid substance between 
the pores and the liquid filling them. But, as Kelvin said when 
introducing his model: " to farm a rough (or qualitative—M.R.) 
idea of the results, irrespectively of the ultimate molecular (or 
structural—M.R.) theory . . . " and I have shown in Section 8 
of Chapter I X how even in a perfectly elastic homogeneous 
material, damping of free pulsations or dissipation of energy 
arises. The model does not serve any other purpose than the 
rheological equation. The elements of the model are symbols 
not essentially different from the mathematical symbols of the 
differential equation. To make this more obvious, we may 
replace the " vesicular solid " or sponge by a structural formula 
similar to the structural formula of the Maxwell liquid, Equation 
(24). When the sponge, which is full of liquid, is loaded, 
part of the load is taken up by the solid substance and part by 
the liquid. This causes the sponge to be deformed and in this 
process load is transferred from the liquid which yields through 
flow, to the solid which is strained. The solid and liquid 
stresses are additive, adding up to the total load ; but the 
deformation is the same for both phases. This is in contra­
distinction to the Maxwell liquid where the same stress is taken 
by both elements, while the deformations are additive. Com­
bining the spring and the dashpot, we get a picture as shown 
in Fig. XIV, 5. 

Indicating by a vertical dash, thus, |, parallel coupling, the 
structural formula of the Kelvin Solid is accordingly 

K = H | N (28) 
The rheological equation can easily be written down from 

(I, d) and (I, f). The stresses being additive, we have 
p=ye + r)e (29) 

* Jeffreys Bays that the firrao-viscous law was suggested to him by Sir J . 
Larmor. Weissenberg [71] quotes Jeffreys. Mises [72] ascribed it to Voigt 
[73] and I [74] followed him. Alfrey and Doty [75] speak of tho Voigt model. 
I came across Lord Kelvin's article in the British Encyclopaedia, which has the 
priority, by chance and I can strongly recommond its study to the reader. I t 
contains a "wealth of forgotten knowlodge, as we shall have to point out again 
in Chapter XVIII. 

t Mardles uses the term " system." 
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which, in accordance with our modified first axiom, stands for 
two equations 

p = KBV - f 7jvev (30) 

pt =ret + yA (31) 
In Equation (31) we have given the r\ the subscript " s " to 

indicate the " solid " viscosity. 
I t will be noted that Equation (30) is identical with (IX, a). 

However, while Equation (30) has here been derived with the 
help of a model representing the material as made up of two 
elements, Equation (IX, a) was derived for a perfectly homo­
geneous, non-porous material. 

8. Delayed Elasticity 
Equations (30) and (14), (31) and (13) are built up analo­

gously. We can therefore write down the solution of either of 
them on the model of Equation (25). For instance, omitting 
for simplicity the subscripts " t" and " s ", the solution of 
Equation (31) is 

e = e-v1*-1 (e0 + -\ p&h ldt) . . . . (32) 
Wo 

If the stress is constant, we find as analogy to Equation (27) 

e = ply + (e0 - pMe-yl** . . . . (33) 

For p = e0y, this gives e = e0 and the strain remains constant. 
For p > e0y the strain increases, for p < e0y the strain decreases, 
in both cases reaching ply asymptotically. If a stress p acts 
on an unstrained body, i.e. e0 = 0, we find 

e = — {1 - e - ^ ' ) (34) 
y 

The elastic strain p}y, therefore, does not appear instanta­
neously or rather with acoustic speed, but is delayed and reaches 
this value only after infinite time. Likewise, if the load is 
removed from a strained body, it will not revert to the 
unstrained state with acoustic speed, but in accordance with 

e = e0e-?/*' (35) 

and it will take infinite time until the strain completely 
vanishes. 
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The analogous equation for volume strain has already been 
derived in Equation (IX, g). The phenomenon was called 
elastic after-effect, but this is only a special case of Delayed 
Elasticity * and the effect described by Equation (34) is some­
times called elastic Fore-Effect, a term not altogether happy, 
suggesting an effect preceding the cause—which, of course, 
cannot be. As can be seen, every Kelvin body will show 
delayed elasticity. 

As we pointed out in Section 10 of Chapter IX, -qjy is of the 
dimension of time. We called it there " time of lagging ", but 
Time of Retardation, as has also been proposed, may be a 
better term. The use of the term " time of relaxation ", as 
sometimes met, is misleading and should be reserved for the 
Maxwell liquid only. 

9. Damping of Oscillations 
As we saw in Section 6, Kelvin conceived the notion of solid 

viscosity in order to explain the damping of oscillations. This 
is " viscous damping ". However, viscous damping is not the 
only kind of damping. Whatever causes dissipation of either 
elastic potential or kinetic energy produces damping. 

In analysing the causes of damping we must distinguish be­
tween the first two kinds, viz. external and internal* External 
causes are (i) friction at the fixing points of the vibrating body, 
and (ii) the resistance of the air. Neither tells us anything about 
the nature of the material: for the rheologist they are nuisances 
which must be eliminated. The internal resistances only 
interest him. He will make experiments on damping of oscilla­
tions for the purpose of learning something about those Theo­
logical properties which produce the internal resistances. The 
latter are of four kinds, which can be arranged in two pairs. 
We have first the viscous damping due to solid viscosity. Solid 
viscosity dissipates kinetic energy. The second is due to 
viscosity present in liquids, or liquid viscosity. I t will operate 
in damping oscillations of a rod of asphalt or a slab of concrete 
or of any body consisting of a Maxwell liquid. Liquid viscosity 
dissipates elastic potential energy. The third kind is due to 
plastic resistance. A rod made of a plastic material and 
subjected to the torsion described in Section 7 of Chapter XII 

* Also termed Retarded Elasticity. 
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will show such damping. The fourth is due to local microscopic 
or submicroscopic destructions such as occur in " permanent 
sets " the nature of which was explained in Section 11 of 
Chapter XIII. In the first two instances the resistance depends 
upon the velocity; in the second two it is independent of the 
velocity. We shall deal here in detail with the mathematics of 
viscous damping only, simplifying our problem by considering 
a homogeneous one-dimensional case. 

Let us imagine an arrangement as indicated in Fig. XIV, 6. A 

L_ 
« - 5 -

1 1 
y////////////r//A 

FIG. XIV, 6. Model for linear oscillator. 

body of mass m oscillates on a frictionless horizontal plane in a 
straight line under the action of an elastic force exerted by 
springs which obey Hooke's law. We assume that the experi­
ment is carried out in vacuo and that the springs are stressed 
below the elastic limit. The only resistance which we consider 
is internal viscous resistance of the springs in accordance with 
the equation 

p = ee + XJ (36) 

In the Figure we have shown two springs, such as would be 
suitable for a working model, but for the calculation we replace 
the springs by a straight elastic rod which is capable of resisting 
push as well as pull, e being its Young's modulus and A, its 
" solid " viscous Trouton coefficient. 

Applying Newton's law (I, a) we write 

m . d2xfdt2 = P (37) 

The force is P =A.p where " A " is the cross-sectional area 
of the rod. 
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Introducing e = xjl and e = xjl we write 

lp = — €X - Xfixjdt (38) 

where the negative sign for ex is introduced because the elastic 
force acts in the direction opposite to an increasing elongation 
and the negative sign for Xx because the viscous resistance is 
opposed to the direction of the velocity. 

From Equations (37) and (38) we get 

d2xfdt2 + e*x + X*dxjdt = 0 . . . . (39) 
where 

e* = Aejlm ; A* = AXjlm . . . . (391) 

The solution of the differential equation (39) can be expressed 
in two different forms, depending on whether A*s

2/4 > €*, or 
X*2j4 < e*. 

(i) If we first take the case X*9
2}4 > e*, the solution can be 

expressed as follows : 

x=xJ2a.{(X*l2+a)e(-x*l2+a)t+(-X*l2+a)ei-»l2-a)t} (40) 

where 
a = VX**}4 - e* (41) 

That (40) is a solution of (39) can be verified by differentiation 
and substitution. 

Introducing t — 0 in (40), we get 

At-° =*o (42) 

and x0 is therefore the initial amplitude. 
By differentiation of (40) we find 

x=x0(a?-X*2l4)l2a{ei-W2+a»-e{-xtls-a>1} . . . . (43) 

From (43) we find that x vanishes for t = 0 and t — <x>, but 
not between these extreme values, and from (40) it follows 
that a: vanishes for t = oo but not before. This is therefore 
not a case of oscillations, but an aperiodic movement. 
In this case the viscosity is so great that the body asymp­
totically approaches the unstrained state, without any kinetic 
energy left to produce oscillation. 

(ii) Secondly, we consider the case X*2j4 < e. 
The solution is 

x = ayj-**'*' (cos bt + X*j2b . sin 6/) . . . (44) 
D P T 
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where 
6 = Ve* - A*a

2/4 . . . . (45) 

This also can be easily verified by differentiation and substi­
tution. Again we find 

<4-« = xo (46) 
and 

x = x0e*lb . e-*''2 'sin bt (47) 
From (47) we see that x vanishes for t = 0,7r/6, 27T/6 . . . nirjb. 
For these values of t the amplitudes are x0 , — x0e~^*'rl2b

 t 

+ â e-****'24', . . . . The movement therefore consists of 
oscillations with the period 

T = 2-nfb = &r/\A* - Q~J . . . . (48) 

This period is a constant. This is quite remarkable. Oscilla­
tions with viscous damping are accordingly isochronous, the 
same as oscillations without damping. When the amplitudes 
become smaller, the velocity decreases correspondingly, so that 
the time for making the smaller movement remains the same. 
The period itself is, however, greater in the damped than in the 
undamped oscillations, because " b " becomes larger if, in (45), 
the coefficient of the damping viscosity A*3 vanishes. The 
greater the damping, the slower, therefore, the oscillations. 
The amplitude of the oscillations gradually diminishes in 
accordance with our last series. In infinite time (t = co) x 
vanishes, i.e. the movement ceases, and at the same time x also 
vanishes, i.e. the position of rest is the unstrained state. The 
amplitudes form a geometrical series with the coefficient e~x,,rl2b 

and the logarithms of the amplitudes form an arithmetical 
series with a negative increment or decrement, X*irj2b. This 
is called the Logarithmic Decrement of the oscillations. If we 
consult (48) we find the logarithmic decrement to be equal to 
\*Tj4. 

Plotting the elongation on a logarithmic scale we get a 
straight line. 

The main difference between damped and undamped oscilla­
tions is in the factor e-**l2t in (44). In the beginning of the 
oscillations as long as t is small, this factor is not very different 
from unity and the movement of the damped oscillations does 
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not differ much frdm the movement of undamped oscillations. 
If A* is also small, several oscillations may pass before the 
diminution of amplitudes is noticeable. As soon, however, as 
t has increased to such an extent tha t the exponential factor is 
markedly different from unity, the amphtudes decrease very 
quickly. If after one second the exponential factor was, say, 
0-9 and after two seconds = 0-8 which may be entirely within 
the error of observations, it becomes after 10 seconds 0-910 = 
0*35, i.e. very noticeable; and after 20 seconds, when it is 0*1, 
the original oscillations have probably been entirely superseded 
by vibrations from accidental causes. 

10. Summary 
The property of elastico-viscosity is typified by the Maxwell 

liquid, the structural formula of which is 
M = H-N (XIV, a) 

with the rheological equation 

tt^ftfa + Pth . . . . (Xiv, b) 
where yt is the " liquid " rigidity. 

For constant stress (pt = 0), et = pj-q and the Maxwell body 
behaves as a Newtonian liquid. 

If yj and 7} are constant, Equation (XIV, a) gives on integra­
tion 

Pt = e-V*' (Pti0 + Yl f'e(eV* ldt) . . (XIV, c) 
Jo 

For et = 0 this is reduced to 

Pt=Pt,o^hl (XIV, d) 
which shows that for constant strain the elastio stress relaxes. 

The quantity 
rM = 7)l7l (XIV, d) 

is called the relaxation time. 

The property of firmo-viscosity is typified by the Kelvin 
solid, the structural formula of which is 

K = E\N (XIV, f) 

with the rheological equation 

Pt =yet + lA (XIV, g) 
where -q, is the " solid " viscosity. 

T 2 
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For constant strain (% — 0), pt = yet and the Kelvin body-
behaves as a Hookean solid. 

If y and r}a are constant, Equation (XTV, g) gives on inte­
gration 

1 cl 

et = e-
y/V' fe0 + — ptQ

vh'tdt) . . (XIV, h) 

If a constant stress acts upon an unstrained body 

et = A ( j _ e-^V) . . . . (XTV, i) 
y 

and the elastic strain ptfy does not appear with acoustic speed, 
but is delayed and reaches this value only after infinite time. 
Likewise, if the load is removed from a body the strain of which 
is et0, this reverts to the unstrained state in accordance with 

e, = e,.0e-'lx.> (XIV, j) 
The first phenomenon is called elastic fore-effect, the second 

elastic after-effect, both constituting delayed elasticity. 
The quantity 

TK=vJy (XIV, k) 
is called the retardation time. 

A Kelvin solid shows viscous damping of oscillations. 
The oscillations are isochronous with the period 

T = &r/V«* - (A*/2)2 . . . . (XIV, 1) 
The amplitudes form a geometrical series with the coefficient 

e-A'WM a n d 

A = \*irj2b = X*TJ4 . . . (XIV, m) 
is called the logarithmic decrement. 

In these equations 
e* =Aejlm; A* = AXJlm . . . (XIV,n) 

where A is the cross-sectional area and I the length of a rod 
executing longitudinal vibrations, e and Aa being its Young's 
modulus and solid Trouton coefficient respectively, while m is 
the mass of the vibrator attached to the rod. 



CHAPTER XV 

COMPLEX BODIES 

1. Delayed Elasticity in Concrete and the Burgers Body 

I N the preceding Chapters we have become acquainted with 
materials showing the simple properties of elasticity and 
viscosity ; the more complex property of plasticity which can 
only be realised together with the property of elasticity; and 
finally the 3till more complex properties of elastico -viscosity 
and firmo-viscosity. These materials were idealised in the 
abstractions of the Hooke-, Newton-, St. Venant-, Maxwell- and 
Kelvin-Body. Of these, the first three only are elementary and 
it was shown how the other two could be related qualitatively 
to the first two by means of structural formulas. Quantita­
tively, rheological equations between p, p, e and e were postu­
lated in which the three parameters y, 77 and 9- appeared in 
different forms, constituting " Theological coefficients **. For 
every material two such independent rheological equations 
exist, one for change of volume, the other for change of shape. 
The first was indicated by the subscript " v " , the second by 
" t". In the case of " simple " materials, the rheological 
coeflicients are constants, while in the " generalised " materials 
they are functions involving deformational work or power and 
parameters, which may be constants. These developments 
provided us with ever better approximations for the description 
of the behaviour of real materials. In Chapter XI I I we 
described in detail the rheological behaviour of concrete. In 
the first place concrete possesses elasticity : this makes it 
suitable for a structural material. One can accordingly regard 
concrete, in a first approximation, as a Hooke solid. As a 
matter of fact, structural engineers base their designs nearly 
exclusively upon that abstraction. Only when creep must be 
taken into consideration, will they proceed to the second 
approximation and consider concrete as a Maxwell liquid. 
However, we have mentioned that in evaluating a " load test ", 
one has to take cognizance of the fact that concrete also shows 
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delayed elasticity. If we want to take this also into considera­
tion, we must reach a third approximation by proceeding 
beyond the Maxwell liquid. 

Delayed elasticity, as we have seen, is bound up with firmo-
viscosity, for which the Kelvin solid was devised. We therefore 
have to attach the K to the M complex and the question is only 
whether this is to be done in series or parallel. Concrete, 
because of its slow viscous flow, should not, even in a fur­
ther approximation, lose its character of a liquid. The connec­
tion must therefore be in series. Such a model was proposed 
by Burgers [77] and we may name the ideal material correspond­
ing to it the Burgers body (Bu). We accordingly write 

Bu=M - K = {H -N) - (B\N) . . . (1) 
and the reader will have no difficulty in making himself a sketch 
of the model representing the Bu-body in accordance with 
Equation (1). 

The " second axiom " of rheology must lead us to expect that 
the Burgers body will be applicable to many other materials 
besides concrete. Lee and Markwiok [29] found that there was 
" good qualitative agreement between the behaviour of actual 
(bituminous road-) surfacing materials and the behaviour of the 
model. The model also illustrates the behaviour of . . . 
binders such as bitumen and pitch." 

In order to proceed from the structural formula (1) to a 
rheological equation, we note that there will be four rheological 
coefficients, two of viscosity and two of elasticity. If we 
consider shear (or, more generally, distortion), these will be the 
" ordinary " viscosity (77) in the JW-complex and " solid " 
viscosity (r)s) in the iC-complex ; " liquid " rigidity (yt) in the 
first and " ordinary " rigidity (y) in the second case. Jeffreys 
[66] who was the first to propose a rheological equation for a 
M-K complex proceeded as follows :— 

Being arranged in series, both the M- and ^-complex must 
take the same stress. For the first we find from Equations 
(XIV, b) and (XIV, e) 

Yfit =Pt~\ \ptdt (2) 

For the second we find from Equations (XIV, g) and (XIV, k) 

Pt=vifit + Tifii) (3) 
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Equating both, we get 

y(e» + TRet) = pt-\-~ \ptdt . . . . (4) 
rMJ 

Jeffreys remarks tha t the substance would follow the firmo-
viscous law if TM was infinite, and the elastico-viscous one if rR 

was zero. The substance will flow indefinitely with long-
continued stresses, but the partial recovery on release will be 
gradual. If any problem of elastic strain had been solved for a 
simple elastic solid, the behaviour of that substance, so long as 
squares of the displacements can be neglected, could be inferred 

simply by writing y(l + T x ^ ) / ( J + uidt)) f° r Y' A b ° d y 

nearly simply elastic has T ^ large and TE small and has approxi­
mately y[l + rK(d/dt) — l[TM(djdt] for y. The damping of 
surface waves of earthquakes as they advance would suggest that 
either rM = 750 sec. and rK = 0 or rK = 0-004 sec. and rM = <x>. 
In the rocky shell approximately rM> 3 X 10s sec , TK =^0-004 
sec, y = 1'7 X W12 dynes cm - 2 , i j = 5 x 1020 poises. 

In the above derivation one may object to the equating of 
ytet with pt. I t is true that the stress pt must be the same in 
both the H- and the JT-element of the JLf-complex, but to 
calculate pt one would have to take into account in the first 
case the strain of the spring only and in the second the rate of 
flow in the dashpot. Actually, however, et in Equation (2) is 
derived from the sum of both. Nevertheless, disregarding the 
derivation, one may postulate Equation (4) as a rheological 
equation, permitting even the coefficients y and T to be variable 
and test it against the rheological behaviour of some real 
material. 

A more consistent method for the derivation of the rheo­
logical equation of the Bu-body seems to me to be the one used 
by Reiner [46] by taking into account that the displacements 
of the M- and K.-complex are additive; the same method as 
used above in the derivation of the equation of the M-body. 

From 
e*u = e*i + IK (6) 

we find by means of Equations (XIV, b) and (XTV, h) 

et = Ph + p/tt + 1 [ e ^ ' (e, + - j *e*'V( <ft)] . (6) 
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After carrying out the differentiation, this yields 

e = p l ± ^ s + pjyi - 2L e - ^ ' (e0 + - f J H * ' V dt) . (7) 
*P7* ' J - *?,J 

Here also, while in the integration the coefficients were 
assumed to be constants, the derivation of Equation (7) may be 
disregarded and the equation postulated as the rheological 
equation of the Burgers body, even should the coefficients turn 
out to be variable. 

If a stress is applied to a iJu-body when it is in an un­
stressed and unstrained state, we find- from Equation (7), 
putting e0 = 0 and p — 0, e = p\yx. This is an instantaneous 
strain due to the HM— element. If, on the other hand, the stress 
is kept constant or p = 0, we find 

c =plri+plr)a.e-yW (8) 

and two kinds of continuous deformation take place simulta­
neously, the second vanishing in infinite time. We have called 
the first creep and the second elastic fore-effect, but if, as has 
recently been observed by Lethersich [79], in some materials 
tha t fore-effect lasts for years it is difficult to separate them and 
there may be some justification in naming the phenomenon to 
which that e is due in toto, " creep ", in which case there will be 
a partial " creep-recovery ". That term " creep-recovery " 
was used by Glanville and Thomas [62] and while I voiced my 
objection to it a t one time, I am now rather inclined to 
think that there might be an advantage in having a term for 
slow continuous deformation prior to an analysis of which part 
of it is recoverable and which not, an analysis which might 
require further years of observation. 

2. The Rheological Behaviour of Bitumen and the Truncated 
Burgers Body 

If we let yl increase —*- co, the second term on the right side 
of Equation (7) disappears and with it the HM element in 
the structural formula which becomes N-K. Such material 
which, until a proper name is put forward, may be termed 
Truncated Burgers Body, has been proposed by Lethersich [79] 
to represent the behaviour of bitumen. This would mean that 
with the apparatus or the kind of bitumen used by him, 
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Lethersich could not observe the acoustic elasticity, which Lee 
and Markwick [29] had observed. We accordingly see that 
bitumen will be represented by successive approximations by 
N, N-K, M-K ; its most prominent rheological property being 
flow (N), the next prominent delayed elasticity (K) and the 
least easily observable acoustic elasticity (H). 

Actually Lethersich proposed two alternative models as 
shown in Fig. XV, 1. Their structural formulas are respectively 
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(a) N - K = N - (H\N) (b) M\X = (N - H)\N 

FIG. XV, 1. Models proposed by Lethersich to represent the rheological 
behaviour of bitumen. 

K-N and M\N. By making use of the transformation, 
K-N = {N\H) -N =N\{H-N) = N\M, one could come to 
the conclusion that they are equivalent. This, however, 
would be too rash, as we shall presently show. 

3. Rheological Models, Structural Formulas and Rheological 
Equations 

In order to treat' rheological problems by mathematical 
methods, we found it necessary to create concepts of ideal 
bodies having rigorously defined (rheological) properties. This 
process is facilitated by building up in imagination models 
consisting of various combinations of mechanical elements 
which under the action of appropriate forces register displace-
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ments of particular kinds, similar to those exhibited by the 
materials the behaviour of which we desire to describe. 

We have introduced in our exposition such models. 
The first, in Section 4 of Chapter X, was a model for the St. 
Venant body in the form of a weight resting upon a table top 
with solid friction between them. To describe more complex 
behaviour, we added a spring as a model for the Hooke body. 
Then, in Section 5 of Chapter XIV, we brought in the dashpot 
for the Newtonian liquid. At the same place we showed how 
coupling a spring and dashpot in series reproduces the properties 
of the Maxwell liquid, while, when coupled in parallel, the same 
elements reproduce the so different behaviour of the Kelvin 
solid. We then saw in the present chapter how other Theo­
logical properties can be understood from the contemplation 
of some combination of these three elements. To give another 
example we shall presently show how a model for the Bingham 
body is to be built up. We met this body in Chapter III. We 
found that when stressed below a certain stress it is strained 
elastically. We therefore take as our first element a spring. 
However, when the yield stress is exceeded, the body is deformed 
plastically. We therefore have to attach the spring to a weight. 
When the rate of plastic deformation is increased, the stress also 
increases. This required the attaching of a dashpot to the weight 
at the side of it which is opposite of the spring. The model is 
shown in Fig. XV, 2. When putting the elements together, one 

HW144*—H* 
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FIG. XV, 2. Model for a Bingham body corresponding to the structural 
formula B = N ~ iStV — H. 

should keep in mind that, in contradistinction to the spring and 
the dashpot, the StV element is not symmetrical. When 
coupling a StV element it is therefore necessary to indicate 
whether the connection is to the " weight " or to both " weight 
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and table " . In our case we had to connect the spring in the 
first, the dashpot in the second manner. When using the 
symbol StV we shall assume that St stands for the table and V 
for the weight. The friction & acts between the St and the V 
part of the StV element. 

I t should be pointed out that the displacements which the 
models can register are increases in length or elongations 
produced by pulls. These, however, may be translated into 
every other kind of deformation and corresponding stress. One 
may consider the elongation as representing a shear, when the 
pull will represent a shearing stress ; or the first may be a 
cubical dilatation and the second a hydrostatic tension, etc. 
I t should also be noted that while, if we should build real 
models (which can conveniently be done, using Meccano parts), 
the materials and arrangements for our mechanical elements 
would correspond to constant rheological coefficients, this does 
not preclude their application in cases where the coefficients are 
variable. 

From the model we proceeded to the structural formula, 
which is a sort of shorthand representation of the model's 
blueprint. For instance, the structural formula for the 
Bingham body is 

B =N -StV ~ E (9) 

This gives us all the information which we may draw from 
the picture of the model as shown in Fig. XV, 2, but is, of 
course, much more economical. 

The models and structural formulas help us to understand 
rheological behaviour qualitatively. But they also help us to 
establish the rheological equations of the different ideal bodies, 
which we need for a quantitative description. These equations 
connect certain types * of stress and deformation. For instance 
the .ff-spring with its elastic extensions leads us to a rheological 
equation of any one of the three following types 

Pt = Ye t \ P = K6v > Pn = &n • • - - ( 1 0 ) 

where it does not matter that e can be expressed by y and K in 
accordance with Equation (X, m). If, therefore, in writing the 
rheological equation, we omit the subscripts " t ", " v " or 

* In advanced rheology they connect tho tensors of stress and deformation. 
Compare Ten Lectures, p. 38. 
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" n ", the reader may put them in as required, taking care to 
use at the same time the appropriate coefficient, which e.g. in 
the case of viscous flow will be one of the following, viz. rj, nv , 
or A. 

We shall now examine systematically in what ways complex 
bodies can be built up from the elements and how the corre­
sponding rheological equations are to be derived. 

We first note that elements can be connected either (i) in 
series (—), or (ii) in parallel (|). 

As will be seen, all elements, when coupled in series, act as 
if they were links in one chain and they must therefore all take 
the same stress, while the elongation of the combination will 
be the sum of the elongations of each element. 

In contradistinction, when coupled in parallel, all elements 
are forced to undergo the same displacement, while the stress 
which the combination will take is the sum of the stresses taken 
by each single element. These two principles will guide us 
when composing the rheological equations. 

Let us start with the H-body, the rheological equation of 
which we write in the form 

P=ye (11) 

If we have two different springs, viz. Hx for which px =y1e1 

and H2 for which p2 = y2e2, and couple them in series, 
Hx—H2, we have in accordance with the first of the above 
principles 

e = e1 + e2= p\yx + p\y2 = p{ljyx + ljy2) = p(y . (12) 

and we see that n H-bodies connected in series are equivalent to 
one single H-body the coefficient of elasticity (reverse of modulus 
of elasticity) of which is the sum of the individual coefficients of 
elasticity. 

If we couple the springs in parallel, HX\H2, we have, in 
accoi dance with the second principle, 

V = Pi + 2>2 = r r 5 + yae = (YI + y2)e = ye . . (13) 
from which we see that n H-bodies connected in parallel are 
equivalent with one single H-body (he modulus of elasticity of 
which is the sum of the n individual moduli. 

Conditions with regard to the if-bodies are entirely 
analogous. 
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4. M- Complexes 
We have already dealt with N — H = M and -^ | H = K in 

detail. 
We now examine the combination Mx — M%. This will give 

ph + Ply • • (14) 
where 

lh=lhi + lhilllY=llYi + llYi. • • (15) 

Several M-complexes coupled in series are accordingly equiva­
lent to one M-complex in which all springs and all dashpots are 
taken together to form one spring and one dashpot each. 

I t is very different with Mx \ M2. Here we have to add 
stresses in accordance with Equation (XIV, c) and find, putting 

Po = y%> 

p = e^e-y^1 + y^y*htt) + (y1e-*'/,,'•| [ ee^'dt + 

yjje-*^' ' f ee^*'dt) . . (16) 
Jo 

Neither sums within brackets can be replaced by a single term 
of similar form. As a matter of fact, the M | M body behaves 
very differently from a single M-body, as we shall presently see. 

If we put c = const. = c, we get from Equation (15) 

P = <^x + V2) +Q-y^1 {e0yx - CTh) +e-»'"-< (e0y2 - cV2) (17) 

Now, we can select such a rate of deformation, c, tha t either 
the second or the third term vanishes, but both these terms will 
vanish only if both constituent M-complexes have the same 
relaxation time. Generally, therefore, if the material flows at a 
constant rate, the stress will relax. Conversely, under a 
constant stress, the material will not flow at a constant rate of 
deformation. In other words there will be no state of simple 
viscous flow, as is possible in a Maxwell liquid. 

The problem of the rheological behaviour of a system built 
up by a combination of Maxwell bodies connected partly in 
series and partly in parallel has lately become important in the 
investigation of the " relaxation spect rum" of rubbery 
materials. From our considerations it can be seen that only 
parallel connections will become manifest, while all different 
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M-bodies when connected in series will give one simple relaxation 
curve and not be detectable (compare W. Kuhn [83]). 

5. Limitations of the Structural Formula 

We can now come back to the comparison of the truncated 
Bu-body (N-K) and the body proposed by Lethersich (M \ N). 

The rheological equation of the first can easily be written 
down from Equation (7) by omitting the second term on the 
right side. The rheological equation of the second is found by 
adding the stresses taken by M and N, or 

P = ^ + ^ = e - ^ j f ' ( ^ e 0 + y u | e e ^ » ( * ) + ^ c . (18) 

where I have introduced 7}Me0 for poM. 
We now compare the behaviour of both bodies under constant 

stress, p = p0) applied upon the unstrained and unstressed 
body. For the first we find a rate of deformation as given by 
Equation (8) in accordance with which it gradually decreases 
from 

%=Po(ih + ihs) (19) 
to 

«*> =PoN (20) 
In contradistinction, it can easily be found by substitution 

into Equation (17) that the second body will, under a constant 
stress p0 flow at a constant rate 

i=Pj(VM + Vx) (21) 
and will therefore behave no differently from a single M-com­
plex. 

We draw the conclusion tha t we must write in structural 
formulas each complex within brackets and that the equivalence 
of different models built up from the same elements must be 
investigated separately in every single case. 

6. The Plastic Strength of a Gelatine Solution and the 
Schwedoff Body 

The examples of the rheological behaviour of cement and 
concrete, bitumen and asphalt (the relation of asphalt to 
bitumen being the same as that of concrete to cement) showed 
us that there are kinds of materials where it becomes necessary 
to consider a combination of the Maxwell liquid with the Kelvin 
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solid. Investigations carried out by Schwedoff [84] with a 
gelatine solution showed that in this case the Maxwell liquid 
must be combined with the St. Venant plastic. Schwedoff 
tested a 0*5 per cent, gelatine solution at an age of 24 hours 
in an apparatus consisting of the same elements as the Couette-
Hatschek viscometer (compare Section 7 of Chapter II). If 
the external cylinder does not rotate, and the top of the wire 
on which the internal cylinder is suspended is given a twist 
through the angle Q, the internal cylinder, if the material 
between both cylinders is an elastic solid, will be rotated through 
another angle, say 8. Making use of the elasticity-viscosity 
analogy, the angle 6 can be calculated from Equation (II, k) 
with the result that 

d=MJ4ynh.(lin*-llBe*) . . . . (22) 

where Ms is the torque exerted upon the wire. 
If, however, the material between the cylinders is a 

Newtonian liquid, the inner cylinder will follow the wire 
immediately with decreasing velocity until it has moved 
through the angle Q, i.e. until no torsion is left in the wire. 
Thirdly, if the material is a Maxwell liquid, the cylinder will 
not follow immediately, but will in the first instance rotate 
through the angle 8 (< Q), the elastic resistance of the liquid 
balancing the torque Mz of the wire, which is (compare Equa­
tion (XII, g)) 

Ms = *RJLyJ2l„(Q -8)=(Q- 8)DJl„ . . (23) 

where the subscript " w " indicates " of the wire ". 
Introducing Q — 6 = <j>, Equation (22) becomes 

8 -fy/dynh . Wf-IIR*) . , (24) 

From Equation (24) the rigidity of the elastic liquid can be 
determined and is found to be 

Yl=??4>{llR*-llR*)l&rhe . . . (25) 

The internal cylinder does not remain at the deflection 8 but 
relaxation sets in and the cylinder gradually follows the wire. 
The relaxation of the stresses required to maintain the elastic 
strain 8 can be studied by reducing the torsion of the wire (D) 
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from time to time, so as to maintain the cylinder at the deflec­
tion 8 and by plotting the torques <f>x, <f>2, tf>3 . . . against the times 
tv t2, t3. . . . If the material is a Maxwell liquid, the j>-t curve 
is of the exponential type and the stress vanishes for t = <x>. 
Schwedoff, however, found that in his gelatine solution the 
relaxation was not of this type, Hut that the material apparently 
maintained a small residual deformation permanently ; i.e. if 
Q was maintained at a constant value, the inner cylinder did 
not follow until 6 = Q or <j> = 0, but a finite <f> remained. 
Instead of Equation (XIV, d) he found the equation 

P = & + (Po ~ »)e-"T (26) 
to be applicable, where & is the residual stress which does not 
relax after practically infinite time. Hatschek [85] says that 
" the magnitude of this permanent deformation is very uncer­
tain, as the whole apparatus and the condition of the liquid are 
highly susceptible to even small vibrations ", but if Schwedoff's 
observations were only qualitatively correct, and similar 
observations were made by Hatschek and Jane [86] on a 
number of other solutions, this would mean that the materials 
in question were in fact not liquids, as was thought from their 
appearance, but solids, or, in another terminology, not sols but 
gels. 

To represent such materials, we postulate the Schwedoff 
body, built up of three elements in accordance with the 
structural formula 

Schw =M -StV - B (27) 
The model is shown in Fig. XV, 3. The rheological 

equation is 
e = (P - &)MBl + ViVi (28) 

HW4* h* 
y77777Z7777777777/. 

i wzmw, 
Fio. XV, 3. Model for a Sohwedoff body corresponding to the 

structural formula Schw = M — StV — H. 
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7. The Schofield-Scott Blair Body 
So far the most complex body which it was necessary to 

postulate in order adequately to describe the observations on 
a material, appears to be the Schofield-Scott Blair body, the 
material being flour dough. 

In a series of investigations [42], the authors first stretched 
out long cylindrical pieces of dough for a measured time, at 
the end of which the cylinders were cut loose. I t was found 
that part of the extension was recovered, but part was perma­
nent (Fig. 1 in [42], part I). This showed that while flour dough 
(FJD), because of the permanent extension of the cylinders, 
is not a Hooke body, it has a Hooke component; and in a first 
approximation we write FD = H — X, where X represents 
another element or elements to be deduced from further 
experiments. In the next series of experiments it was found 
that the elastic recovery decreased with time under stress in 
accordance with an exponential law (Fig. 4, in the same paper). 
Comparison with our Fig. XIV, 3, shows that we must write N for 
X, so that in a second approximation FD — H — N =M. This 
was confirmed by further experiments, in which the decay of 
internal stresses in pieces of dough which had been stretched 
and held stretched was followed (Fig. 6 in [42], part I). The 
shape of the curve conformed to our Fig. for M = const. The 
second report of the authors describes observations in which 
the rate of extension of cylinders of dough, hung vertically and 
allowed to elongate under the action of gravity, is related to the 
stress. It was found that, while the rate of extension generally 
decreased with decreasing stress, there was a finite stress at 
which the rate of extension vanished ; in fact, a yield point. 
This shows that a St. Venant element must further be added ; 
and in a third approximation FD = N — H — StV = M — 
StV = Sckw. It had however been noticed that " a consider­
able time often elapses between the release of stress and the 
cessation of contraction ". This indicated an elastic after­
effect, to the investigation of which a third report is devoted. 
For an elastic after-effect a K body must be coupled on. As 
the structural formula for FD contains a StV element, the 
question arises as to which end of the StV element the K body 
is to be connected (compare Section 3 above). Experiments 
(Fig. 2 in report III) showed that the elastic after-effect makes 
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its appearance in strains below the yield point. This means that 
the K-bo&y must be connected at the spring end. I t could be 
formed there by parallel coupling of the spring with an JV-ele-
ment. The same figure, however, illustrates that, beside the 
" lagging " elastic recovery, there is also " instantaneous " 
recovery, i.e. the spring of the St. Venant element is not 
impaired in its working and the .BT-body is therefore connected 
to it " in series ". We accordingly obtain in a fourth approxi­
mation the structural formula 

SchScB=N-H-StV-K=M-8tV-K=Schw-K . (28) 
Fig. 4 in report III confirms the formula for deformations 

above the yield point. 
Guided by Equation (28) it is not difficult to design a model 

for the Schofield-Scott Blair body. Equation (28), in addition, 
helps us to establish the rheological equation. The authors 
expressed it, translated into our notation, as follows :— 

« = ph + PIY — a (29) 
where a represents the elastic after-effect. We note that they 
do not take into account that flour dough, as they themselves 
had found, possesses a yield point. Their rheological equation, 
therefore, represents only part of their experimental findings ; 
as a matter of fact it corresponds to the structural formula 
Bu = M — K which results from the second form of Equation 
(28) when omitting the StV element. If we compare the 
rheological equation (7) of the Burgers body with Equation (29) 
we find that Schofield and Scott Blair's a is actually 

Yhja^'bo + —f P&'^'dt) - phs 

and only if p is equal to zero, as in an elastic after-effect, is this 

reduced to e ^ e - r ' v 1 =h-e-it*K. Equation (29), therefore, 
V* T/C 

cannot adequately express an elastic fore-effect. 
If we take into account the StV element, the complete 

rheological equation of the Schofield-Scott Blair body is 

e = (p - a.)^2i±25 + £ / y i _ Xe-WV 

[ * • + - ( (P -&)e>'v'^J (30) 
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Under a constant stress, exceeding the yield value, the body 
is plastically deformed at a rate which, in analogy to Equation 
(8)is 

e = ( p - * ) ( 2 / r / j ) I + - e - * / V ) . . . . (31) 
"Ha 

Therefore, as in the case of Equations (19) and (20), the rate 
gradually decreases from 

to 

e . = (P - *)h,i (33) 
I t all depends upon the magnitude of the retardation time 

T< = 7)Jy how long it will take for e to become practically 
constant and indistinguishable from ex. However, Equation 
(33) is the same as Equation (III, a), the rheological equation 
of the Bingham body. I t is therefore not astonishing tha t 
Wolarowitsch and Samarina [87], when testing flour dough in a 
plastometer of the co-axial rotating cylinder type, found tha t 
the Reiner and Riwlin equation (III, g), which is based upon the 
.B-body, was applicable. They probably sheared the material 
long enough to reach a steady state, and this was one corre­
sponding to a B-body. 

8. Regarding the Second and Third Axioms 

This furnishes an illustration for the working of what I called 
•the second and third axioms of rheology. The second (compare 
Section 12, Chapter I) says tha t every real material possesses 
all rheological properties, while the third states that every 
" simple " behaviour is a degeneracy of a more complex one. 
If flour dough is put into an apparatus where its properties 
under steady laminar shear are observed, nothing more compli­
cated than corresponds to tJie B-body can be observed. In order to 
find out about the other properties of flour dough, i.e. those 
which Schofield and Scott Blair discovered, Wolarowitsch and 
Samarina would have had to use their apparatus in the manner 
of Schwedoff; they would then have found its JW-component, 
etc., in accordance with the second axiom. On the other hand, 
we see now that Scott Blair was not entirely correct when he 
stated on page 27 of his book [35] that to apply " Bingham's 

D 2 



292 COMPLEX BODIES 

principles to . . . flour dough . . . is contrary to the author's 
[Scott Blair's] experience." I t is true that flour dough is not 
a Bingham body, but from Schofield and Scott Blair's observa­
tions the conclusion can be drawn with the help of the third 
axiom that flour dough must under certain conditions show the 
properties of a Bingham body. 

Let us go back to Equation (30). If £ —> 0, the SchScB-hody 
degenerates, as we have already shown, into the Bu-ho&y. 
If 7}s —> 0, it degenerates into the Schw-hody. The Bu-hody 
itself can degenerate into the M- and X-bodies respectively and 
both these into the N- and H-bodies. The Schw-hody 
degenerates into the J3-body for yx —> co and the latter into the 
iSttF-body for -qvl—> 0. Ultimately the SchScB-hody is thereby 
reduced to either the N~, H- or ^F-body and in accordance 
with the conditions of testing one or the other will predominate. 
One investigator may lay stress upon the elasticity of flour 
dough, the other upon its viscosity, while a third may emphasise 
its plasticity. Each one will be right, but not entirely so. 
Similarly, we have seen that Lee and Markwick [29] approxi­
mated bitumen by the Bu-hodyy while Lethersich assumed a 
degeneracy of the latter, which we called the truncated Bu-hody. 
As far as I know, nobody has yet found a yield value in bitumen, 
but this may only mean that it was not observed under suitable 
conditions. When these will be established and a yield value 
found, for which there is some likelihood in blown bitumen, one 
will have to use the SchScB-hody to describe the rheological 
properties of bitumen. 

9. Summary 
Complex ideal bodies can be built up in the form of models, 

structural formulas and rheological equations, from the 
elemental bodies of (i) the Hooke elastic (H) represented by a 
spring; (ii) the St. Venant plastic (StV) represented by a 
weight sliding over a table ; and (iii) the Newtonian liquid {N) 
represented by a dashpot. The mechanical elements may be 
connected either " in series " (—) or " in parallel " (|). The 
rheological equation of a complex is derived from the rheolo­
gical equations of the components by (a) adding deformations, 
when the coupling is in series ; (b) adding stresses, when the 
coupling is in parallel. 
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When elements of the same kind are connected the resultant 
body possesses the same properties, e.g. Hx — H2 = 3, etc. 
For complexes, this is generally not true, e.g. Mx \ M2 is not an 
jtf-body. But M1 - M2 = M ; Kt \ K2 = E ; M -N =Ml; 
M1-H = M2; K\N =KX; K^H = K2. 

The following ideal bodies have been applied for the repre­
sentation of the behaviour of certain materials, but are applic­
able for many others :— 

(I) For bitumen, asphalt and concrete, the Burgers body 
Bu=K -M (XV, a) 

with the rheological equation 

e = p i ± l ' + i>lYl - Z- e->V (fio-f- L [ peyh, * dt) . (XV, b) 

When the stress is constant 

e = ph + Ph, • *-ylv'' • . . • (XV, c) 
and there is both viscous flow and an elastic after-effect 
starting with 

e0=p(lh + lM . . . . (XV, d) 
and finishing up with 

L =Ph (XV, e) 
(II) Also for bitumen, Lethersich proposed the two bodies 

N — K and M \ N. The first can be considered as a truncated 
Burgers body. 

(III) For a concentrated gelatine solution, the Schwedofif 
body 

Schw =M -StV - H . . . (XV, f) 
with the rheological equation 

e = {p-^)hPi + plY • • • • (XV, g) 
If the deformation is kept constant, the stress relaxes in 

accordance with 
P = * + iPo - $)e-yh ' • • • (XV, h) 

(IV) For flour dough, the Schofield-Scott Blair body 
SchScB=N-H-StV~K=M-StV-K=Schw-K . (XV, i) 
with the rheological equation 

^ ( p - ^ ^ l ^ + p / ^ - ^ e - r ^ ' L + l f ^ ^ ^ e ^ r ^ l f X V J ) 
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Of these bodies the most complex is the SchScB-body and all 
others can be derived from it as degeneracies, assuming that 
certain rheological comcients vanish. 

In the rheological equations the rheological coefficients 
appropriate for shear (et, pt) have been used. Similar equa­
tions can be written down for isotropic (e,,,^) and normal 
(en, pn) deformation, when, for elasticity the moduli K and € 
and for viscosity the coefficients -qv (£) and A must be used. 



CHAPTER XVI 

STRENGTH 

1. Theories of Strength 

T H E strength of a material is that property by which it resists 
either rupture or excessive deformation, the latter in many 
cases ultimately leading to rupture. Rupture is the visible 

FIG. XVI, 1. Types of rupture, ' a ' tension-rupture of a non-
porous material. * b ' rupture by glide. ' c ' . brittle rupture. 
' il' rupture by flow of porous material. 

separation of parts of a material body. When the body is 
strained beyond its strength, it fails. Failure can therefore be 
either through (i) excessive deformation, or (ii) rupture. 
Excessive deformation may lead to rupture either (o) in tension 

205 
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under constant load when the cross-sectional area has substan­
tially decreased and the traction accordingly much increased ; 
or {b) one part of the body may be sheared against the other 
until both are separated : this is rupture by glide. In rupture 
by glide the separation is tangential to the surface of the separa­
tion, in (c) brittle rupture it is normal to that surface. There 
may, however, also be (d) a separation normal to the surface 
which is not brittle, but occurs in flow. There does not exist 
an established terminology and it will help the reader to 
compare Fig. XVI, 1. 

To prevent failure is a very important task in engineering 
which makes it imperative to have a quantitative measure of 
strength. This is accomplished by means of a theory of strength. 
The following are the main theories of strength proposed to 
date :— 

The material fails when a certain limit, which is of a different 
character in each case, is exceeded by 

(i) the greatest of the principal stresses (Rankine), 
(ii) the greatest of the principal strains (St. Venant), 

(iii) the maximum strain-work (Beltrami, Haigh), 
(iv) the maximum shearing stress (Coulomb, Mohr, Guest), 
(v) the maximum distortional strain-work (Huber, Hencky), 

(vi) the maximum conserved isotropic or distortional strain-
work (Reiner and Weissenberg [89]). 

Nadai [8] has critically discussed the theories (i) to (v), of 
which (i) to (iii) are of historical interest only. He finally 
accepts (v) under the heading " New Theories ". I t should be 
noted that (vi) was not known at the date of the publication of 
Nadai's book. Regarding (v), the mathematical expressions 
for both Huber's and Hencky's theories are not very different, 
but while Huber is concerned with rupture, Hencky is concerned 
with, plastic flow. 

2. Importance of Rate of Deformation 
All the above-mentioned theories, except the last one, have in 

common that the rate of deformation does not enter. They are 
purely statical. Recent improvements in the methods of 
testing and the frequent use of high-speed tests as well as of 
creep tests, and specially the testing of synthetic plastics, have 
made it, however, increasingly evident that the rate of deforma-
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tion or, what comes to the same thing, the rate of application 
of the external forces, considerably influences the results of the 
tests. I t is therefore obvious that purely statical concepts 
cannot lead to a satisfactory theory of strength. A theory 
taking account of velocity is required, both from theoretical and 
practical considerations. For instance, standard specifications 
for mild steel until recently asked for a certain minimum 
breaking stress to be determined in a tensile test without, 
however, specifying the rate at which the test is to be carried 
out. I t is known that less conscientious suppliers of rolled 
steel, if their product was not up to standard at ordinary speeds, 
sometimes used to resort to the device of increasing the speed, 
with the result that a higher breaking strength was recorded. 
This loophole has been closed in the latest British Standard 
Specification by prescribing a definite rate of application of the 
load. On the extreme end of a series of materials where the 
influence of the testing speed makes itself felt, stands such a 
material as rayon, where the concept of strength has a meaning 
only in relation to a maximum rate of deformation. 

3. The Huber-Hencky Theory 
Because of the satisfactory evidence for the Huber-Hencky 

theory at low speeds, a good dynamical theory must include 
Huber-Hencky's statical theory as a special case for vanishing 
rate. This requirement is satisfied by Reiner and Weissenberg's 
theory, which, as far as I know, is the most general rheological 
theory of strength. 

Huber's theory arose from Beltrami's theory of maximum 
strainwork. Beltrami overlooked the important fact of the 
radically different behaviour of all materials in isotropic strain 
and distortion, which we have emphasised at the very beginning 
of the present book. Many experiments have shown that under 
high hydrostatic pressure increasing amounts of elastic energy 
may be stored in a body without any limit from fracture or 
permanent deformation. Huber, therefore, considered iso­
tropic strain and distortion separately. He assumed that there 
are two different measures for strength in the case of simple pull 
and push respectively. Let wv be the strain-work per unit 
volume in isotropic (voluminal) strain and w0 in distortion, 
then Huber assumed that in push the measure of breaking 
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strength is given by a maximum value of wQ and in pull by a 
maximum value of wv + w0. Hencky was concerned with 
finding a measure of plastic yield strength. He argued that 
there cannot be isotropic flow—and therefore also not isotropic 
plastic flow—either in compression or in tension. Therefore 
the plastic Flow-Condition must be expressible in terms of 
distortion only. As we have already mentioned in Chapter III, 
he accordingly pictured every plastic material as a vessel 
capable of absorbing in the unit volume a limited amount of 
distortional energy. When more is " poured in " the vessel 
overflows, or the material yields. 

Huber's and Hencky's theories can be combined by assuming 
that there are three independent measures of strength, viz.:— 

(A) Against rupture by isotropic tension ; the resilience Ev. 
(B) Against plastic yielding in distortion : the resilience for 

Eo, pi-

(C) Against rupture in distortion : the resilience E0iT. 
Here E is " resilience " (energy), while the subscripts indicate 

" voluminal " (v), " distortional " (o), " plastic " (pi) and 
" rupture " (r). 

In accordance with this, and in contradistinction to Huber, 
in pull a material may break in two ways, depending upon 
whether in the particular case Ev or E0iVl is exceeded. 

4. Cohesional Strength 

In Chapter IX we considered a body under the action of 
isotropic stress. When the stress is a pressure, the volume is 
decreased and we assumed that there is a limiting relative 
volume which cannot be reduced, even with the pressure 
becoming infinite. This would not exclude that the body may 
break under such pressure with the total volume of all parte 
remaining constant, which could well be the case in an seolo-
tropic material. (This gives us the opportunity to remark 
again that we are dealing in the present book with isotropic or 
quasi-isotropic materials only.) Secondly, one has to keep in 
mind the possibility of local or internal ruptures in porous 
materials, manifesting itself in a permanent set. With these 
qualifications it may be said that for isotropic pressure the 
strength of every material is infinite. It is not so if the stress 
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is a tension. The volume is then increased, the distances 
between the molecules or atoms which make up the material 
are also increased and by this, correspondingly, the attractive 
reactions between them, which balance the external forces. 
This cannot go on indefinitely because there is a maximum 
attractive force which cannot be substantially exceeded. When 
the external isotropic tension reaches that maximum, the 
strength of the material is reached. When the maximum is 
exceeded, the body breaks through rupture, its parts are torn 
asunder, it loses cohesion. We can therefore say that for 
isotropic tension the strength of every material is determined by 
its cohesion. The cohesion itself is the resultant of the attrac­
tive and repulsive atomic forces. In the unstrained state the 
resultant vanishes, each atom being at the bottom of a potential 
trough, about which its heat movements make it oscillate; 
in this state the material does not possess any elastic potential 
energy. At smaller distances there is practically unlimited 
repulsion, at larger distances an attraction prevails, which is 
limited. The elastic energy which is produced by isotropio 
tension is therefore also limited by the value Ev. This is a 
measure of its cohesional strength. 

Rupture in isotropic tension may be of two kinds. Let the 
material have no pores or holes, then, when cohesion fails, there 
cannot be any flow in which the particles of the body move 
away radially with preservation of the continuity of matter. 
In this case the rupture is brittle. But if the material has 
holes, such as was found by Reiner, Rigden and Thrower [90] 
in asphalt, the rupture will be preceded by flow, if given enough 
time (as at " d " of Inset of Fig. XVI, 1). If the stresses are 
very great, rupture will in this case also be brittle, there 
being not enough time for flow (as at " c " of Inset of Fig. 
XVI, 1). The statement made by me on page 119 of Ten 
Lectures that rupture under isotropic tension is always brittle 
must accordingly be qualified. 

5. Breaking Energy 
When the body breaks into pieces the process is accompanied 

by the appearance of certain forms of energy. There is an 
audible report which indicates the presence of vibrations. 
These vibrations will gradually die down and ultimately be 
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converted into heat. Of greater importance is the increase of 
surface energy due to the increase of the surfaces of the broken 
parts over the surface of the entire body. These energies and 
others appearing in rupture are provided for by the conversion 
of the potential energy E. There have been attempts to 
calculate on this basis the strength of a material from the value 
of its surface tension. The results were many orders of 
magnitude out. We shall not go into this side of the 
problem : i t belongs to metarheology. But one thing is clear : 
the expenditure of energy connected with rupture cannot come 
from the total strain-work performed by the external forces. 
Only that part of the strain-work which is conserved in the body 
is available for conversion into other forms of energy. Generally, 
part of the strain-work is dissipated, and this, of course, is»not 
available. For instance, when isotropic tension is not applied 
infinitely slowly through states of equilibrium but with finite 
speed, this will cause, as we learned in Chapter IX, viscous 
resistance and part of the strain-work will be dissipated. In 
order to reach the limiting value Ev of potential energy, the 
external forces will have to perform a greater amount of work. 
This can be done only by increasing the isotropic stress over 
that stress at which the material breaks when the forces are 
applied infinitely slowly. This will, accordingly, manifest itself 
in a rise of strength. 

6. Isotropic Tensile Strength 
Let us consider this case in greater detail. In the infinitely 

slow application of the tension, Ev can be calculated in accord­
ance with Equation (IX, d) and expressed in terms of stress or 
strain or relative volume or density—there being a one-valued 
relation between all these quantities. In this case there is 
therefore a definite isotropic tension (or cubical dilatation, 
relative volume, density) at which the material will break. 
As we said before, that isotropic tension is equal to the mole­
cular or atomic cohesion. For non-porous materials the 
isotropic tensile strength must accordingly be very high. In 
classical hydrodynamics it is assumed that liquids have no such 
strength, but from thermodynamic considerations Poynting 
and Thomson [91] suggested that the isotropic tensile strength 
of water is about 25,000 atmospheres, while van der Waals 
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calculated from his equation a value of about 10,000 atmo­
spheres. O. Reynolds found by actual experiment that water 
could sustain a tension of about 5 atmospheres without rupture. 
I suggested in a letter [92] that the well-known phenomenon of 
cavitation-erosion of metals may be due to pieces of metal being 
torn off by the water before its own tensile strength is reached. 
This would imply that the isotropic tensile strength of a metal 
was lower than that of water. In reply to my letter, R. S. 
Silver [93] pointed out that " the failure of a liquid to sustain 
the calculated tensile strength in an enclosed and filled space 
is due . . . to the formation of vapour bubbles. It is the 
formation of vapour cavities around nuclei which prevents the 
full tensile strength from being attained." This means that the 
liquid actually is not non-porous, it contains microscopic holes 
around which there exist non-isotropic stress-concentrations. 
Now, if even a liquid the molecules of which easily flow into 
internal holes to reduce and close them actually has pores, 
still more must this be assumed of solids, where pores developed 
in the process of formation will be stable. Therefore, while 
theoretical cohesion might be very high, actually, because of 
holes, pores, flaws and cracks, the isotropic tensile strength will 
be comparatively low. 

7. The Isotropic Rupture Condition 
Let us now consider the action of isotropic tension when the 

rate of dilatation does not vanish. As we said in Section 5 
above, this will cause a rise in strength. We shall presently 
translate this qualitative statement into quantitative language. 

The general volumetric rheological equation of a homogeneous 
material is in accordance with Equation (IX, a). 

p = Kev + iKe\ (1) 

where £K is the Kelvin coefficient of volume viscosity. In 
Equation (IX, a) we wrote -qv, but, in accordance with the 
principles laid down in the Summary to Section XV, we must 
use the subscript K in order to make clear that the function of 
this volume viscosity is to delay the appearance of the elastic 
strain and/or to cause viscous damping, but that, actually, 
there is no flow. In short, it is a solid viscosity. 
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The strain-work per unit volume is in accordance with the 
Equation (IX, 37) 

wv = \\evdev + \iejdt (2) 
Jo Jo 

As explained in Section 10 of Chapter IX, the first part on 
the right side is conserved as elastic potential energy, while the 
second part is converted into heat and dissipated. Rupture, 
therefore, takes -place when the first part reaches and exceeds 
the isotropic resilience of the material measured by Ev. The 
Rupture Condition will accordingly be 

wv-\\jv
2dt= [Kevdev^Ev . . . . (3) 
Jo Jo 

If K is constant, the integral on the right-hand side can be calcu­
lated and is Kev

2/2 and, therefore, the cubical dilatation at 
which rupture takes place 

evr = ±V2EJ^ (4) 

Now, Equation (1) gives for the tensile stress at which rupture 
takes place 

Pr = Kevr + LK = V2B& + L% . . . (5) 

Let the breaking stress in the static state for which ev = 0 

Prs=±V2EvK (6) 

then 

Pr=Prs+&V (?) 

Therefore : the stress at which a material fails in isotropic 
tension increases with the rate of dilatation. If ^ is constant 
that increase is linear ; otherwise it follows some other law 
determined by lK = f(ev). 

I t should be noted tha t this result does not depend on K being 
constant. From Equation (2) it follows directly that the strain-
work to bring about rupture {wj) is for any given rate of 
dilatation (e j always greater than «JWJ) the strain-work expended 
in infinitely slow dilatation (for which e\ = 0). 

While, therefore, in the absence of viscous resistance to the 
cubical volume expansion of a material there is a definite stress 

file:///iejdt


THE ISOTROPIC RUPTURE CONDITION 303 

at which rupture occurs ; when there exists volume viscosity, 
the dilatation zw is definite (compare (4)), but the stress pr 

is not. 

8. The Distortional Failure Condition for a Hooke Solid in 
Simple Shear 

We now pass to simple shear. Here we have before us not 
mainly one general rheological equation as in the case of cubical 
dilatation. For shear we have to consider a great variety of 
rheological equations corresponding to the infinite variety of 
real materials. 

Let us first consider the Hooke solid. 
Its rheological equation is (I, d) and the strain-work is given 

by (III, o). 
The rupture condition is accordingly 

wtr = yetdet ;> Etr (8) 
Jo 

If y is constant this gives, considering (III, d) 

elr = ± VMJy 
Ptr = ± V2yEtr 

Both elr and ptr are definite constants depending upon the 
same definite quantities y and Elr and are independent of the 
rate of strain or the rate of application of load. 

Should the body be plastic, similar reasoning, starting from 
Equation (I, e) results in the Equation (III, b) and 

et,Pl = ±V2E^ (10) 

9. Failure of a Newtonian Liquid 
At the other extreme of the rheological bodies is the New­

tonian liquid with the rheological equation {I, f), the strainwork 
being in accordance with (VII, a). 

wt = f rjefdt (11) 
Jo 

In accordance with our criterion, rupture in a Newtonian 
liquid would therefore only be possible if EtT was equal to zero 
and then rupture would always and continuously take place. 
This is not what we observe. Rupture has been defined by us 

1(9) 
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as a visible separation of the parts of the body, and we do not 
observe such visible separation in a flowing liquid in laminar 
flow.* If the velocity increases so that turbulence sets in, a 
visible separation of the parts of the liquid can be observed. 
Turbulence is of great interest to the hydraulic engineer, but 
of little interest to the rheologist, except perhaps in the case of 
what Wo. Ostwald termed Structural Turbulence and about 
which we shall presently have to say a few words. We may, 
at this occasion point out the analogy which exists between 
turbulence and rupture as conceived by us. The inception of 
turbulence is connected with a dimensionless figure called 
Reynolds' Number. Weissenberg (compare Rabinowitsch [94]) 
has expressed this figure as the ratio of dissipated to kinetic 
energy. In this interpretation the kinetic energy Ek plays in 
turbulence the same part as the potential energy Ev in rupture. 
Turbulence is accordingly determined by a certain point on the 
side Ek-EA of the triangle, Fig., page 117 of Ten Lectures, while 
rupture is determined by a point on the side EJ)-Ea of the 
triangle. 

10. Structural Turbulence 
If one were to assume the Coulomb theory of maximum shear­

ing stress (iii of Section 1 above) to be valid for every kind of 
material, one would say that in a liquid pt could also not exceed 
a certain maximum value. Otherwise, as there is no inherent 
limit to e\, the shearing stress could also increase without limit and 
water would be stronger than steel. In a very early paper [95], 
I assumed that there was a shearing strength for liquids, the 
same as for solids, and when this is exceeded a discontinuity in 
the flow appears so that, e.g. in the case of Fig. I, 4, there would 
be a break in the straight line representing the increase in 
velocity from zero to V. There does not appear to be any 
evidence to support this view in regard to simple Newtonian 
liquids, but Wo. Ostwald and Auerbach [96] maintained that 
in liquids showing structural viscosity, turbulence sets in long 
before Reynolds' critical velocity is reached. They suggested as 
the reason the internal rupture of the structure of the system, 

* The breaking up of a jet of liquid into drops due to surface tension belongs 
to metarheology. 
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which causes the appearance of eddies such as occur in turbu­
lence. 

If this is so, there would, e.g. in laminar flow of a liquid 
through a tube, be a maximum shearing stress 

max. pt = RApj2l (12) 
compare (II, c). If we assume that in a first approximation 
Poiseuille's law is valid, the mean velocity is 

mean v = Q}R2ir = R2Apl8rjl . . . . (13) 
and, therefore, 

crit. v ^Bj4v.ptimax (14) 
the critical velocity for the appearance of structural turbulence. 

As is known, Reynolds' critical velocity is 
crit. u =rjjR .Cjp (15) 

where C is a constant of the apparatus, but not of the liquid. 
These two critical velocities are accordingly of opposite 
character. Crit. v increases, while crit. u decreases with R. 

t 

w. 
\2 

<— £o—> 

I > - — 
J . 

Fio. XVI, 2, Structural and Reynolds' Turbulence. 

In respect of 7/ the opposite takes place. For one and the same 
liquid, crit. v and crit. u vary as shown in Fig. XVI, 2. Both 
are equal when the radius of the tube is 

R0 = toiVC/PPt.**. (16) 
A solution exhibiting structural viscosity would therefore be 

D.F. X 
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" weaker " than its solvent. While the latter could sustain 
shearing stresses up to the inception of Reynolds' turbulence, 
the former would break up before, namely when the structure 
of the dispersed phase is destroyed (Reiner [97]). 

11. A Model of Liquid Strength 
For a better understanding of the strength of a liquid a 

modification of Henckv's model (compare Section 6 of 
Chapter III) will serve. Let the bottom of Hencky's vessel be 

.yj=- Rv RUPTURE 

iX\ \ PLA9T/C y/£lO 

M , • • • ! • 

CP£BP 

Fio. XVI, 3. Model of strength of a liquid. 

perforated as shown in Fig. XVI, 3. Let there be an overflow 
at some level above the bottom. The liquid contained in the 
vessel represents the elastic distortional energy which can 
be stored in unit volume of the material. If energy is 
expended upon the material, or liquid poured into the vessel, 
so slowly that it leaks out entirely through the holes in the 
bottom, in other words ; if the velocity of deformation is less 
than or equal to the velocity of relaxation, there will be no 
failure by distortion. The material, even if to all appearances 
it is taken as a solid, will flow at some rate depending upon the 
area of the openings. If that area is small the liquid will leak 
out slowly, i.e. there will be creep. However, by pouring in 
energy at a higher rate, i.e. by increasing the power of deforma­
tion (remember : power = work/time) the vessel is steadily 
filled until the overflow opening is reached (assuming that such 
one exists) and further energy is lost by plastic yield. This is 
the case for instance with a metal which creeps under stresses 
below the yield point, and flows plastically when the yield point 
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is exceeded. If the combined leakage by relaxation and plastic 
yield is not sufficient to dissipate the energy of work of the 
external forces, the level in the vessel rises above the overflow 
and reaches its brim. The moment the energy flows over the 
brim, the material breaks. 

One or the other of the just-mentioned features of the vessel 
may be absent or especially prominent. If there are no holes 
in the bottom and no overflow, the material can only fail 
through brittle rupture. If there is an overflow so large that it 
will dispose of any supply of energy at whatever rate, the 
material will yield plastically, but will not break. If there are 
holes in the bottom but no overflow, the material will show 
creep and brittle rupture. This is the case with asphalt and 
concrete which, in spite of their ability to creep, cannot be 
deformed plastically and fail only through brittle rupture. If 
the holes are not at the bottom but in the sides at some level 
above the bottom, there will be viscous dissipation of energy 
down to that level: this is the case of the Schwedoff body. A 
vessel without a bottom (if there was such an absurdity) through 
which infinite quantities of energy can be poured at any rate 
is the model of a Newtonian liquid, the velocity of relaxation of 
which is infinite and which, through its viscosity, can dissipate 
energy at any rate desired. From considering the model we 
therefore come again (as in Section 10 above) to the result that 
a Newtonian liquid, say water, should be able to withstand very 
high, practically unlimited shearing stresses, a result which we 
cannot very well accept. This result, therefore, points to some 
defect or limitation in our theory. The limitation arises from 
our having considered steady states of equilibrium only, when 
there are no accelerations. When the particles are accelerated, 
rupture may occur through an entirely different mechanism. 
Let two contiguous parts of the body have at some time the 
same or slightly different velocities : if the state is steady and 
the movements are not accelerated, the body will either move 
as a whole and/or be deformed. The same happens if both 
parts are accelerated in equal amounts. But let the accelera­
tions differ, however little, then after some time there will be 
reached a state when both parts must separate, i.e. there will 
be rupture. It can be shown that the stresses at which rupture 
then occurs may be very small or even vanish : this result can 

X 2 
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be deduced from the complete stress equations (Equation (1), 
page 30, Ten Lectures) by considering d'Alembert forces, -which 
balance or nearly balance the external forces with the tractions 
absent or small (compare Reiner [98]). 

12. Failure of a Maxwell Liquid 
Passing from qualitative to quantitative considerations, let 

us now consider the failure of a Maxwell liquid with the Theo­
logical equation (XIV, b). Its elastic stresses relax and the 
" vessel " will accordingly have holes at the bottom. 

We have 

wt = ptet = VtVtiyM + Ptzh . . . . (17) 

of which the conserved part is PtPtlYu- Conditions for failure 
by either plastic yielding or rupture are entirely analogous and 
we shall therefore writeE 0jt for hoth.E0tVl and Eor of Section 3, 
(B) and (C). We shall .also, for simplicity, omit the subscript 
" t ", but the reader should mentally add it. 

The failure condition is accordingly 

[PPIYM = Uw-p*fo)dt^E0if . . . (18) 
Jo Jo 

If y is constant, this results in 
p*=2yMEoJ (19) 

and Equation (XTV, b) now gives 

e, = PflYM + ~V2yME0tf (20) 
V 

Now, let efrs be the rate of deformation at which the material 
fails under a constant stationary load, when p vanishes so that 

e / | 3 = | V 2 ^ A j (21) 
then 

'<*/ = e,,8 + VtlYM (22) 
The Maxwell liquid, therefore, fails in distortion when the 

tangential stress reaches a definite limit, ptJ = ^ V2yE0jf. There 
is, however, no limit to distortional deformation, while the rate of 
deformation at which the material fails increases with the rate at 
which the load is applied. 

I£y&i is not constant, this increase is not linear. 
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13. Failure of a Kelvin Solid 
We proceed in the same manner when investigating the failure 

of a Kelvin solid. The results are similar to those found in 
Section 7 above for isotropic strain and stress, because we 
assumed there the presence of solid viscosity. 

.Starting from the Theological Equation (XIV, g) the failure 
condition is found to be 

jVee + j V - y^2) > E0j . . . . (23) 
Let .2V s be *h© stress at which the material fails in a static test 

when e vanishes, then 

The Kelvin solid, therefore, fails in distortion when the 
tangential strain reaches a definite limit etf = ± V2Eofjy. 
There is, however, no limit to the rate at which the stress is 
applied, while the tangential stress at which the material fails 
increases with the rate of strain. If TJE is not constant, this 
increase is not linear. 

14. The Maxwell Liquid in Simple Pull 
The examples treated so far show the way by which to arrive 

at the failure condition for other more complicated materials, 
e.g. the Burgers body, the Bingham body and others. This 
we shall not do here, but shall apply the theory in greater detail 
to the problem of failure of a Maxwell liquid in simple pull, 
following Reiner and Freudenthal [99]. 

Let the material under investigation be formed into a cylin­
drical rod, as Schofield and Scott Blair did with flour dough [42] 
and Lethersich [82] with bitumen. Let I be the length of the 
cylinder and R the radius of the circular section of area A ; 
l0, R0 and A0 denoting their values at the beginning of the 
experiment, when t = 0. Let a pull P be applied in the longitu­
dinal direction. For reasons of symmetry, that direction will 
be one of the principal axes (compare Chapter X) of stress and 
deformation, say " k ", while tractions and deformations in the 
directions " i " and "j " normal to the axis will be equal. The 
normal traction in the direction of the axis will be 

Pn^PI* (26) 
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causing a longitudinal extension et and lateral contractions 
— ec. The latter are not accompanied by stresses and the 
power of deformation is therefore 

w = Vji (26) 

In accordance with Equation (X, f) the stress can be resolved 
into its isotropic and deviatoric components, or, in other 
terminology, hydrostatic tension and a system of shears (stress 
differences), 

IP 2P IP 
p=-3A;P«=-3A;p°° = —3l ' * " ( 2 7 ) 

where the subscript " o " indicates the deviator. 
The deformation can be resolved in the same way in accord­

ance with Equations (X, b) and (X, c) 

2 1 
ev = e, + 2ec; eol = -{et - ee); eoe = - ^(e, - ee) . (28) 

The power of deformation consists of two parts, viz. one of 
cubical dilatation 

IP 
«\, = VK = j j-{et + 2ec) . . . . (29) 

the other of distortion 

. 4 - 9.n ft = 
3A 

2 P 

both adding up to w of (26). 
We now arrange the test so that one end of the rod is fixed, 

while the other end at the distance I moves with the velocity 
v(t) = dljdt. The extension is, in accordance with (X, a), 

en = In <Z/y (31) 

Therefore the rate of extension 

y,i T i T « . i 1 dl v 
en=d(lal-}nl0)ldt=-l- = j . . . (32) 

Now, in accordance with (X, b) 

% = K + 2ec (33) 
But 

V = U (34) 
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and therefore l n F = l n Z - { - l n ^ 4 , o r 

1_<W = 181 1JA 
V dt Idt^ Adt K f 

Comparison of (33) and (35) yields 

e°=2AJt <36) 

Expressions (32) and (36) make Equations (29) and (30). 

P (v 1 dA\ 

2P(v 1 dA\ 
W°=TA\l-2ATt) ( 3 8 ) 

So far the expressions of this Section are valid for any 
material and any magnitude of deformation. We now consider 
a special material which, we assume, behaves as a Maxwell 
liquid in distortion, while its cubical dilatation is purely elastic. 
In other words, we assume that its distortional stresses relax, 
while its isotropic stresses do not relax. The latter assumption 
is safe for all dense materials with no appreciable voids. Let us 
furthermore assume, for simplicity, that the material has no 
" solid " volume viscosity, i.e. tha t its volume-elasticity acts 
instantaneously without delay. Then its " isotropic " Theo­
logical equation will be 

P = ««. (39) 

Even should the material have delayed volume elasticity, our 
results will be valid when the volume does not change or when 
it changes slowly. 

For the " distortional " equation we have to take into account 
that we are dealing here with simple tension and not with simple 
shear for which case we postulated Equation (XIV, b). An 
appropriate modification gives for our present case 

en = Vnhu + PJ*u (40) 
or introducing pn from (25) 

t.-^+±M) <«> 
When the load is applied, the volume expands to its maxi­

mum which it assumes under the stress p and which is pJK. 



312 STRENGTH 

After this, the volume either remains constant or changes so 
slowly that we may assume ev = 0. 

When this is the case IA is constant and Equations (33) and 
(36) yield 

i ~ - * * ± (42) 
A dt K } 

and Equation (32) 
I dA 

V = ~Adt - (43) 

With this Equation (41) becomes 

while Equation (38) is reduced to 
PdA 1 d{PjAf , 1 

w - = w = -T»A=«i"5-+Ai (P/ j i ) ' ( 4 5 ) 

The strain-work expended during the time t is accordingly 

w = (wdt =-L{PjAY + ±\'(PIA)*dt . . (46) 

where it should be kept in mind that in order to calculate the 
potential elastic energy we have to start from the unstressed 
state, or P = 0 for t = 0. 

Rupture occurs either when the isotropic stress PJ3A reaches 
a certain value = V2KEV1. in accordance with Equation (6) or 
when (as in Equation (18)) 

ik&(P,AYdt=E° m 

which, as in Equation (19), gives 
{PIA)r*=2eME0tr (48) 

Therefore, there will be brittle or deformational rupture in 

accordance with whether Evr is smaller or larger than ~Q-Eor. 

The material can be tested under the following conditions: 
(i) constant stress pn 

(ii) constant load P 
(iii) constant velocity of elongation v 
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(iv) constant rate of strain e„ 
(v) constant rate of stress pn. 

(i) With one of the apparatuses mentioned in Section 1 of 
Chapter X I we keep the stress PfA constant = P0{Aoi or 

P =~A (49) 
A0 

Introducing expression (48) into Equation (44) yields a 
differential equation in dAjdt as follows : 

dAjdt = - P0AIA0\x . . . . (50) 

the solution of which is 

A = , 4 0 e - / W n i i (51) 

and therefore 

dAjdt = - ^ - e - W A u ' (52) 

We now easily find the following relations : 
(a) Velocity-time function (compare (43)) 

72 p 

v =f-^-e-pJA^t (53) 

(6) Length-time function 

I =loe-pJA.,*ul (54) 

(c) Length-load function 

l=KPoiP (65) 

(d) Strainwork-time function (compare (46)) 

w = (l!2eM + WMPJA.)* . . . . (56) 

Because PjA = P0jA0, rupture takes place either imme­
diately when the load is applied or not at all. The rupture 
condition is accordingly independent of time and identical with 
the Huber-Hencky condition. 

(ii) If we apply to the rod a constant load P = const. = 
P0> this constitutes the creep tes t : 

Equation (44) now becomes 

idA==_P^dm)_P_l_ 
A dt ejj dt XVA 

the solution of which is 
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AjAQ-^-MAlA0) = l ~ ^ - t . . (58) 

When e_w is very large, as it mostly will be, or the rate of stress 
small, the last equation can be approximated between the limits 
A0 > A ^ 0-5 A0 by the linear equation 

'-'•O-^O (59) 

From this 
dAjdt = - PJ\M (60) 

Hence 
(a) Velocity-time function 

v=l L>hi (61) 
A0(l - PjA0\MA) 

(6) Length-time function 

I = °- (62) 
1-PJA^.t 

(c) Stress-deformation function 
K = Pj\u (63) 

[d) Strainwork-time function 

*^jrw«-PJ
1A^.v+™i=pfazt • (64) 

Rupture takes place when either 
PJA0 = 3(i - PojA0\M.tW2^Z) . . (65) 

or 

P0IA0=(l~PJA0X,t.t)V2^E;tr). . . (66) 
i.e. at the time 

t=\u{A0lP0-lj3^2^~Vir) . . . . (67) 
or 

t =^(AJP0 - ljy/2^EZ.) . ' . . . (68) 

Comparing Equation (63) with (X, o) we see that by assuming 
€M to be very large we have in some respects reduced the Maxwell 
to the Newtonian liquid. For the latter, Equation (62) is of 
special interest when written in the form 
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l\l=l\h- ^ t (69) 

In accordance with this equation, if we plot ljl against time, 
a Newtonian liquid, and in a first approximation a Maxwell 
liquid also, should give a straight line the slope of which is 
Pj VXM and a measure of the fluidity of the material. Mr, T. J . 
Qadura of the Arab Training College, Jerusalem, independently 
found this relation and tried it with success on numerous 
observations with bitumen, one of which is shown in Fig. XVI, 4. 
If it does not break before, the rod would become of 

infinite length in finite time = ° ,lf. 

For behaviour under the other testing conditions, the reader 
is referred to the paper by Reiner and Freudenthal [99]. The 
apparently so simple ordinary tensile test with constant velocity 
of elongation leads to the most complicated equations. 

15. Summary. 
Strength is that property of a material by which it resists 

failure through either (i) excessive deformation, or (ii) rupture. 
There are two independent modes of failure in each one of the 
cases mentioned, viz. (a) in isotropic, (b) in distortional strain. 
Excluding the exceptional case of volume-flow, failure in 
isotropic strain can only be brittle rupture. 

In steady states of deformation, the strength is reached when 
a definite amount of elastic potential energy, the resilience E of 
the material, is produced in unit volume of it. There are 
ordinarily three independent measures of strength, viz., 
Ev,E0Pl> Eor; in exceptional cases E0 may be either Ev Tl or 

The resilience E is the time-integral of that part of the rate of 
strain-work which changes sign on change of sense of strain from 
positive to negative, while that part of the power which is 
always positive is dissipated. 

The following criteria are found for some ideal materials : 
A. Hooke-solid. 

et = V2EJP,pf=VWf • • • (XVI, a) 
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There exists a definite stress at which the material fails and 
likewise a definite limit to deformation. 

B. Newtonian liquid. 
A Newtonian liquid will not fail in steady states of flow. 

In non-steady states, a simple Newtonian liquid may fail 
through Reynolds' turbulence, while a generalized Newtonian 
liquid possessing structural viscosity may fail before tha t 
through structural turbulence. 

C. Maxwell liquid. 

pf = V2^Ef (XVI, b) 

6t=Pfh>M + -V2Y3tBr • • • (XVI, c) 
V 

There exists a definite failure-stress, but no limit to deforma­
tion. The rate of deformation at which the material fails 
increases as the rate at which the load is applied. 

D. Kelvin-solid. 

ef = V2E^ . . . . (XVI, d) 

Pf=vA+<StyEf • • • . (XVI, e) 
There is a definite limit to deformation, The stress, however, 

at which the material fails increases with the rate of deformation. 
I n all the above equations the subscript " / " can be replaced 

by one of the following, " o, pi ", " o, r ". For the isotropic 
stress-strain case when Ef is either EVtVl or Evr, the modulus of 
elasticity y must be replaced by the modulus K and the coeffi­
cient of viscosity 77 by the coefficient £. Similarly in simple pull 
these coefficients will be e and A. 

When a Newtonian liquid is formed into a rod and pulled with 
constant load, plotting Ijl against time gives the straight line 

iji=ilK-^t . . . . . (xvi,f) 

where V is the constant volume of the rod. This relation can in 
a first approximation also be used for a Maxwell liquid. 



CHAPTER XVII 

DILATANCY AND THE WEISSENBERG EFFECT 

1. Independence of dilatation and distortion. 
IN the foregoing, when postulating rheological equations, we 

resolved both deformation and stress into an isotropic com­
ponent and another one by which it " deviates " from isotropy. 
When a deformation, the first was called volumetric deforma­
tion or strain, cubical dilatation, or, simply, dilatation; the 
second we called distortion. When a stress, the first is often 
spoken of as " hydrostatic " pressure or tension and the second 
as stress-difference; the latter can also be regarded as a com­
bination of shearing tractions. We then assumed that ever}' 
material was characterised by two* independent rheological 
equations : one between the isotropic, the other between the 
deviatoric components of stress and strain; the latter being 
equivalent to a relation between shear and shearing stress. 
I t was assumed that an isotropic stress produced a cubical 
dilatation only or a change of volume, but no change of shape. 
Similarly, a shearing traction was supposed to produce shear or 
a change of shape only, but not to affect the volume or density 
of the material. It will presently be shown that while this view 
—the view of classical elasticity and hydrodynamics—is 
generally correct, there are two phenomena which contradict it. 
These are dilatancy discovered by 0. Reynolds [100] and 
"cross-elasticity", or what may be named the Weissenberg 
effect. 

2. Reynolds' Experiments. 
In 1885 0. Reynolds described the following experiment: 

" If . . . we have an extremely flexible bag of indiarubber, 
this envelope, when filled with heavy spheres, imposes no 
sensible restraint on their distortion ; standing on the table it 
takes nearly the form of a heap of shot. . . . Filling up the 
interstices between the shot with water so that the bag is quite 
full of water and shot, no bubble of air in it, and carefully 
closing the mouth, I now find that the bag has become absolutely 
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rigid in whatever form it happened to be when closed. I t is 
clear that the envelope . . . imposes no distortional constraint 
on the shot within it, nor does the water. What, then, converts 
the heap of loose shot into an absolutely rigid body ? Clearly 
the limit which is imposed on the volume by the pressure of the 
atmosphere. So long as the arrangement of the shot is such 
that there is enough water to fill the interstices the shot are 
free, but any arrangement which requires more room* is absolutely 
prevented by the pressure of the atmosphere. If there is an 
(small, M.R.) excess of water in the bag when the shot are in 
their maximum density, the bag will change its shape quite 
freely for a limited extent, but then becomes instantly rigid 
. . . without further change. By connecting the bag with a 
graduated vessel of water so tha t the quantity which flows in 
and out can be measured, the bag again becomes susceptible of 
any amount of distortion. Getting the bag into a spherical 
form and its contents at maximum density, and then squeezing 
it between two planes, the moment the squeezing begins the 
water begins to flow in, and flows in at a diminishing rate until 
it ceases to draw more water. . . . The material in the bag is 
(then, M.R.) in a condition of minimum density. . . . If we 
continue to squeeze, water begins to flow out. . . . The very 
finest quartz sand, or glass balls 2-inch hi diameter, all give the 
same results. Sand is, on the whole, the most convenient 
material, and its extreme fineness reduces any effect of the 
squeezing of the indiarubber between the interstices of the balls 
at the boundaries." 

3. Dilatancy of Granular Masses. 

The explanation for this strange behaviour was given by 
Reynolds as follows : 

" If . . . a group of spheres . . . (is) arranged as a pile of 
shot (Fig. XVII, 1, left) . . . the density of the media is 
7TJ3V2, taking the density of the sphere as unity. If arranged 
in a cubical formation (Fig. XVII , 1, right) the density is TT/6, 
or V<2 times less than in the former case. These arrangements 
are both controlled by the bounding spheres ; and in either case 
the distortion necessitates a change of volume. I have called this 

* The italics are mine.—MtR. 
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unique property of granular masses ' dilatancy ' because the 
property consists in a definite change of bulk, consequent on a 
definite change of shape or distortional strain, any disturbance 
whatever causing a change of volume." 

He then cites the following example : " A well-marked 
phenomenon receives its explanation at once from the existence 
of dilatancy in sand. When the falling tide leaves the sand 
firm, as the foot falls on it the sand whitens, or appears momen­
tarily to dry round the foot, When this happens the sand is full 
of water, the surface of which is kept up to that of the sand by 
capillary attraction ; the pressure of the foot causing dilatation 
of the sand, more water is required, which has to be obtained 
either by depressing the level of the surface against the capillary 
attraction, or by drawing water through the interstices of the 
surrounding sand. The latter requires time to accomplish, so 
that for the moment the capillary forces are overcome ; the 
surface of the water is lowered below that of the sand, leaving 
the latter white or dryer until a sufficient supply has been 
obtained from below, when the surface rises and wets the sand 
again. On raising the foot it is generally seen that the sand 
under the foot and around becomes momentarily wet; this is 
because, on the distortion forces being removed, the sand again 
contracts, and the excess of water finds momentary relief at the 
surface." 

4. Dilatancy as a General Property. 
It is historically interesting to note that Reynolds undertook 

his investigation in order to arrive at a mechanical theory of the 
ether. Accordingly he said that " as regards any results which 
may be expected to follow from the recognition of this property 
of dilatancy,— 

" In a practical point of view it will place the theory of earth 
pressures on a true foundation. . . . 

" The greatest results are likely to follow in philosophy. . . . " 
We do not apply nowadays rheology to " explain the funda­

mental arrangement of the universe," but we have found that 
dilatancy is not confined to granular masses. 

After positive dilatancy in sand, negative dilatancy was 
observed in clay. While sand particles are little spheres, 
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clay particles are minute discs. A sandy soil will therefore 
settle in dense packing, while a clay will in its undisturbed 
state be in loose packing, many of the discs standing on edge. 
In shear these will collapse and the density of the clay will be 
increased. These cases may be regarded as such of " plastic " 
dilatancy. But about the same time when Reynolds discovered 
his remarkable phenomenon in settled sands, a famous con­
temporary predicted on purely theoretical grounds that an 
analogous phenomenon should be present in elastic solids. 
In 1875 Sir William Thomson, later Lord Kelvin, contributed 
the article on Elasticity in the ninth edition of the Encyclo­
paedia Britannica, which I have already mentioned before 
(Section 6 of Chapter XIV), and wrote there : " It is possible 
that a shearing stress may produce in a truly isotropic solid 
condensation or dilatation in proportion to the square of its 
value ; and it is possible that such effect may be sensible in 
indiarubber or cork, or other bodies susceptible of great defor­
mations or compressions with persistent elasticity" [70]. 
Reynolds must certainly have read that article and it is 
extraordinary that he did not connect this remark with his 
observation. If he had attempted to relate the change of 
volume observed by him to the shear or rather the shearing 
stress causing it, he would without doubt have realised that a 
shear " to the right " must produce the same effect as a shear 
" to the left." I t is inconceivable that a shear to the " right " 
should produce a " dilatation" and one to the " left" a 
" condensation." Therefore, the shear or shearing stress 
cannot enter into a rheological equation except in an even 
power, or in the first instance in the square of its value. This 
is what Kelvin maintained in the case of elasticity. 

I do not know of any observations on elastic dilatancy in 
solid indiarubber or cork, but it is very easy to observe it in 
" expanded " or porous rubber, which has the property of 
negative elastic dilatancy to a very marked degree. This can 
easily be demonstrated with a commercial rubber sponge. 
Sticking a piece of board on each of its two flat surfaces, it 
can be observed that if one is shifted tangentially against 
the other, the surfaces also approach each other. 

We can say that there will generally be elastic, plastic and 
viscous dilatancy. In an elastic solid, side by side with the 
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volume component of the Hooke solid resulting from the 
isotropic stress p, 

^vi=PlK " • (!) 

there will be one resulting from the shearing stress pt, 

«.! = * , ' / « (2) 

and we may define the Reynolds elastic by the rheological 
equation 

ev=pl*+Pt
2lS (3) 

The parameter 8 may be called the Modulus of Dilatancy. 
There may also be an analogous Reynolds liquid, and we 

know that there are Reynolds plastics, positive and negative. 
In the Reynolds elastic an isotropic tension will cause a cubical 
dilatation and vice versd, as in the Hooke solid ; but cubical 
dilatation may also be caused in the absence of a hydrostatic 
tension by simple shearing stress. Likewise, a hydrostatic 
pressure may be required to maintain simple shear. Similar 
conditions may be present in liquids [101]. 

5. Second Order Phenomena. 
Dilatancy, being dependent upon p2

t, is a second order 
phenomenon. The stress necessary to produce a small strain 
may be a large figure in the usual measure, but then the elastic 
modulus is likewise a large figure and the quotient of both 
small. As long as the strain is small, the stress can therefore 
also be considered as small. We see from Equ. (2) that the 
modulus of dilatancy is of the dimension of the square of a 
stress. Therefore if the shear is small, dilatancy, depending 
upon the square of the shear, may be neglected. This is the 
reason why in classical elasticity dilatancy was not noticed. 
I t has changed now when we have to consider in many fields 
large deformations, as was prophetically realised by Kelvin. 

But then there may be other second order phenomena, 
which likewise cannot be neglected. If we consider shear, 
there is no reason why finite shear should affect not only the 
volume, but why it should not also cause linear extensions or 
contractions in some specific directions, likewise depending 
upon the square of the magnitude of the shear. Actually, 

» J . T 
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Weissenberg [102] has observed phenomena which point to 
the existence of such " cross-elasticity," as we may call it for 
reasons to be seen later. These phenomena we shall presently 
describe. 

6. The Weissenberg Effect. 
In Fig. I, 3 we showed simple shear converting a prism into 

a parallelepiped. Now imagine the parallelepiped being the 
undeformed body and the force Pt acting from right to left: 
clearly the parallelepiped will be deformed into a piisni. We 
show in Fig. XVII, 2, a section through the body and ask 
ourselves : what is the relative position of planes which are 
parallel to the boundary surfaces of the body ? 

* - DISPLACEMENT 
////////////////////// ////////////////////// 

//////////////////////// ///////////////////////// 
FIG. XVII, 2. Parallelepiped deformed into a prism through simple shear. 

Let us consider planes ab and cd which after deformation 
become ab' and cd'. It can be seen from the figure at the left 
that their distance increases after deformation.* In contra­
distinction the distance of the two planes cd and ac remains 
the same. We do not know the mechanism which produces 
stresses in a strained solid, but Weissenberg assumes that it is 
the change of distances of such planes which governs the reac­
tive forces or stresses. From this he predicted that in simple 
shear there would be not only a shearing stress, but also a 
pull or tension in the direction of the displacement. That tension 
would be a second order phenomenon because in a first approxi­
mation, if the displacement is very small, the distance be­
tween planes ab and cd is not changed. 

* Remember that the distance of two parallel planes is measured in the 
direction normal to both. 
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Now take an elastic liquid where the deformation naturally 
is very large and experiment with it in an arrangement such 
that the liquid is sheared in a gap between an outer vessel 
rotated with an angular velocity which is kept constant a t various 
levels and an inner member which is held against rotation and 
either rigidly fixed in position or free to move up and down 
the axis of rotation. The conditions are so chosen that under 
the combined actions of the shear imposed at the boundaries, 
and the forces of gravity and inertia (centrifugal forces) the 
liquid executes a steady laminar shearing movement. As has 
been argued above, if the liquid is elastic, there should be in 
addition to the shear stress components, a pull along the lines 
of flow. If, as in our experiments, the lines of flow are closed 
circles, the pull along these lines " strangulates " the liquid 
and forces it inwards against the centrifugal forces and upwards 
against the forces of gravity. The effect, as predicted by 
Weissenberg, may be called " Weissenberg effect." 

7. Experimental Evidence of the Weissenberg Effect. 

Experiments carried out by C. H. Lander with a variety of 
materials, including saponified oils, solutions of rubber, starch, 
cellulose acetate, etc., showed that the predicted phenomena 
actually occur in a great variety of conditions of flow such as 
are reproduced by Fig. XVII, 3. I t should be noted that 
Weissenberg calls a Newtonian liquid " special liquid," a 
designation natural enough considering that the Newtonian 
liquid is a special case of the more " general " Maxwell liquid 
for yx = oo. 

8. Gross Elasticity. 
As I have shown by tensor analysis [102], the phenomenon 

can also be described without assuming anything about the 
mechanism of stress-strain connection. If we were to assume 
that the reactive forces or stresses are governed by changed 
distances of material points in the body and not of planes, 
Fig. XVII, 3, will show that there would be no pull in the 
direction of displacement, but a push normal to it. While 
after deformation the distances of points ac and bdha,ve remained 
unchanged, the distances of points ab and cd are decreased. I t 
can be shown that in the usual expressions for elastic stresa-

Y a 
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strain relations it all depends upon how you define the strain, 
whether you get a pull or a push. However, it is unacceptable 
that our definition of strain should prejudice an experimental 
result. Therefore, there is something wrong with the usual 
functional stress-strain relationship. I have shown how this 
position is to be amended by taking into account the second 
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Fie . XVII, 3.* Flow ofliquids under actions of steady shear in gaps, 

powers of the tensors [101].f It all comes to this : Let n be the 
normal to an element of interface in the interior or of surface 
on the boundary of an elastic body. Let the traction on this 
interface be resolved into three orthogonal components, one 
normal pn and two tangential pt and pc. Now select the 

* Reproduced with the permission of Macmillian & Co. Ltd , from Katun, 
159,310(1947). 

t The same method was applied independently byPrager [1031 in a more 
restricted manner. 
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directions t and c so that pe vanishes. Let the strain be 
resolved in the same directions. Then the new theory requires 
tha t ec does not vanish; or, in other words, tha t there is a 
strain sideways or in the crosswise direction. Conversely 
there may be a stress in a crosswise direction where there is no 
strain. This justifies the designation " cross-elasticity." If 
cross-elasticity is assumed, experimental results are not 
prejudiced. In this case simple shear may require for its 
maintenance not only 'a corresponding shearing stress but 
also a traction in the direction of the displacement (pnll), or 
normal to it (push), or both. 



CHAPTER XVII I 

POSTSCRIPT 

1. Rheology also Flows 
Several years have elapsed between the time when I started 

writing the manuscript of this book and the time of its publica­
tion. But rheology, as was to be expected from a young 
science of that name, does not stand still, but also flows. What 
is more, I myself have made some progress during tha t period 
and have changed my views on several points. I t was impos­
sible to re-write the manuscript, because at the time I would 
have finished I would have had to start anew. The reader will 
have noticed, however, how I have modified or qualified in later 
chapters views expressed in earlier ones. 

2. Volume Flow 

When I started writing this book it was a generally accepted 
axiom of rheology that, as said in Section 3 of Chapter I, 
" under isotropic stress all materials are purely and simply 
elastic." This was at the base of Hencky's theory of plasticity.* 
Hencky started with the s tatement: " I t is clear that a hydro­
static pressure or tension can have no influence on plastic flow." 
However, as somebody has said, " if you find a sentence starting 
with the words ' i t is clear t h a t ' you may be sure tha t they 
will be followed by something which is not clear at all." And 
so Hencky had to continue : " I f tension experiments simulate 
such an effect it must be due to the disturbance produced by 
invisible rupture phenomena." This is nothing else but an 
allusion to the permanent set, by which I qualified the axiom 
when I came to writing Chapter IX . But this was not enough. 
If there was volume elasticity, this was necessarily connected 
with solid viscosity. This I introduced as volume viscosity, 
denoting it by rjv. I overlooked that this viscosity was not 
analogous to the shear viscosity 17. I t was not connected with 
fioio as the latter is, but with the viscous resistance to elastic 
strain. I t did not occur to me that there might be real isotropic 

* As already mentioned in Section 10 of Chapter XI I I . 

320 
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flow. If there was isotropic or volume flow, say under hydro­
static pressure, where would the material go to ? The reply, 
of course, w a s : into its holes. I knew Glanville and 
Thomas' [62] observations which showed that the volume of a 
body (of concrete) may gradually decrease over a considerable 
period of time. But I still did not recognise its true nature. 
As an excuse I can only mention the fact that Dr. Glanville 
himself, as he told me, had not realised that this meant volume 
flow. " I reported on this phenomenon in Section 10 in 
Chapter XII I , but I was still mixing up the viscosity of that 
flow with the " volume-viscosity " of Chapter IX . Only last 
year did Dr. Glanville put his original observations at my 
disposal, and in an as yet unpublished paper I used them to 
clear up this problem of volume flow. In this way it has now 
become clear to me that in principle the only difference in the 
isotropic and distortional behaviour of a material is that in 
the former case every material can be considered in a first 
approximation as a Hooke body and in a second approximation 
as a Kelvin body, both belonging to the group of solids, so that 
there are, strictly speaking, no first-approximation-liquids 
under isotropic stress. Both water and steel are, under hydro­
static pressure, elastic solids : so much remains of my first 
axiom. Nevertheless, in a third approximation some materials 
may be regarded in their isotropic behaviour as Burgers bodies 
and these, as we know, will under certain circumstances flow 
in the manner of a Newtonian liquid. 

There is, therefore, not one coefficient of volume-viscosity, 
but at least two. For this reason it is better to adopt a special 
symbol for volume viscosity, for which I introduced in Section 5 
of Chapter XV the Greek letter £, which has the mnemotechnic 
advantage of following ij. We may use £ without subscript as 
the analogy to rj, and £K for what I denoted by -qv in Chapter IX, 
Sections 12and 13of Chapter X, and Section 11 of Chapter XII I , 
the subscript '* K " indicating " of a Kelvin solid." I accord­
ingly request the reader to go back over the matter wherever 
I mentioned a " volume-viscosity " and to make it clear to 
himself of what sort of viscosity I am speaking, whether 
" solid " or " liquid," and what sort of body I am dealing with, 
whether " Kelvin " or " Maxwell " or " Newton " or " Burgers." 

I also cannot see how we can differentiate in a phenomeno-
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logical way between permanent set and plastic deformation, 
and we must consider the former as indicating the existence of 
just what Hencky wanted to exclude, namely volume-plasticity. 
Therefore to sum up : all properties which make themselves 
manifest in distortion will also occur" under isotropic stress, 
albeit in very diiferent degrees and in very different materials. 
In Chapter XIII we have found it necessary to consider con­
crete under hydrostatic pressure as a liquid, but while I cannot 
imagine any circumstances under which it would be necessary 
to consider water under the same stress type of other than as an 
elastic solid, such circumstances may make themselves manifest 
some da}7". 

3. Deformation and Strain 
In my terminology I should now be more careful in using 

the word strain for the recoverable part of the deformation 
only, deformation remaining the more general term. There 
would then be no strain without stress, while a body may 
have been deformed and remain deformed when all stress has 
been removed. This should show itself also in the notation, 
and I propose to use accordingly " D " for " deformation " 
and " e " for " strain." It should be kept in mind that when 
a body is deformed plastically by some stress, there will at the 
same time also be some strain, but then " D " is so much 
larger than " e " that the former may be regarded as including 
the latter. Solid or Kelvin viscosity is accordingly bound up 
with rate of strain e, but ordinary or flow—or Maxwell—viscosity 
with rate of deformation 2). 

4. The Tangential Component of Strain. 
In Section 5 of Chapter I, I denned ujH — et as the tangential 

component of strain. This is in accordance with the usage in 
the classical theory of elasticity, including Love's standard 
work, and in technical hterature. I followed this usage in my 
Ten Lectures and was censured for it by Prof. Prager because, as 
defined here, et is not a component of the tensor [|e||, even in infi­
nitesimal strain, the correct component being 1/2 . ujH=\j2 . et. 
For tensor notation it is, of course, much simpler to define et 

by 1/2 . ujH, and this is followed in more modern works. But 
in the present book, which is meant to be elementary. I was 
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not using tensor notation. An escape from this dilemma can 
be found by denoting ujH by (?, for gradient, in this case 
" displacement gradient." One would then use G for vjH, 
i.e. the "velocity gradient." I t can be shown that while Q is 
double the tangential component of the " velocity-deformation 
tensor," G is double the component of the " displacement-
deformation-tensor " only when the deformation is very small. 
This is a complicated subject and I cannot say more about 
it without using very advanced mathematical language. 

5. Strain-work versus Second Invariant 
There is another point requiring advanced mathematics, 

and with which I cannot deal here in full, but which never­
theless I want to mention. I t starts with the difference between 
Mises' and Hencky's flow conditions in the theory of plasticity. 
Many authors deal with them as if they were actually identical, 
i.e., one single Mises-Hencky flow condition. In Chapters III and 
XI, I have used the same expression, but actually there is an 
essential difference between them, wlu'ch disappears only in the 
determination of the first yield point of a simple Hooke solid. 
Briefly, every tensor is determined hy three scalar quantities of 
first, second and third degree which are called its invariants. 
The first invariant of the deformation is the cubical dilatation, 
the first invariant of the stress its isotropic component. The 
second invariant of the tensor of strain, if it is a shear et, is et

2 ; 
of the tensor of stress, if it is a shearing stress pt, pt

2. When 
the material is a simple Hooke solid the strain-work is propor­
tional to either et

2 orpt
2 or proportional to the second invariant 

of either strain or stress. Mises' flow condition prescribes a 
limit of the second invariant, Hencky's flow condition of the 
strain-work ; when y is not constant, both are different. I knew 
of this difference and had pointed it out on several occasions, 
but I thought the Mises condition to be more general (not 
supposing simple Hookean behaviour) and therefore superior. 
The strain-work, of course, is also an invariant and therefore 
in the general case also expressible in terms of the second 
invariant. I had come across these considerations in two 
investigations, namely when trying to establish (i) a law for 
generalized Newtonian behaviour (Chapter VII), (ii) a law of 
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work-hardening (Chapter XI) . In both cases I had taken as 
the argument (in the mathematical sense) the second invariant, 
following Mises. In the first case I tried to express the variable 
fluidity 93 as a function of pt

z ; in the second I tried to express 
the square of the yield stress #• as a function of e,2. In the first 
case I did not succeed in establishing a law, in the second case 
I thought I did [48] and this may be so. I have, however, 
lately conceived the notion that possibly the Hencky condition, 
being abstract mathematical concept but having a concrete 
physical content, might be the superior one. As I said 
before, the strain-work can be expressed as a function of the 
second invariant and vice versa, but, except in the uninteresting 
case when the fluidity q> or the yield stress S- is constant, 
we do not know in what manner this reduction is to be carried 
out. The laws which we try to find will, however, look very 
differently in accordance with the argument of the function ; 
they may be simple and obvious in one case, but very 
complicated and hidden in the other. 

6. Envoi 
I am sending off these last pages to the Publisher in the 

midst of a war which has for over half a year prevented me 
from giving the book its final touch. I must apologize to the 
reader for it and can only hope that even in this imperfect form 
it will be found useful. 

T E L AVIV, ISRAEL, 
July, 1948. 



CHAPTER X I X 

NOTATION 

ONE of the difficulties in studying scientific books and papers 
is the diversity of notation. This is sometimes accidental and 
often unsystematic. I n the present book a systematic notation 
has been attempted, based on mnemotechnic principles. These 
a r e :— 

I . A Roman letter is, as far as possible, the first letter of 
the term in the Latin language for which it stands as a symbol, 
e.g., P for force (pondus) and not F (force). 

I I . Capital and small letters are used for the same term, 
the former in a wider sense and the latter in a more restricted 
meaning, e.g., P for total force, p for a force per unit area 
(traction). 

I I I . Small Greek letters are used for physical (material) 
constants (parameters), e.g. a for Poisson's ratio (and not for 
stress as in American technical literature). Similarly y for 
modulus of rigidity and not G. This principle will only make 
consistent an often-followed practice, e.g. y for fluidity, p 
for density. The -n for 3.1415 . . . is an exception. 

IV. Capital Greek letters will be used for angles, e.g. 8 for 
angular distance. 

V. Newton's method of notation for the differential quotient 
in respect of time is used, e.g. # = ddjdt for angular 
velocity and not u>. This saves a letter for some other use. 

VI . The same symbol is used for quantities which 
differ only algebraically, e.g. p for pressure, where p is tension 
and not p for pressure and cr for tension. 

I t is hoped tha t this systematic notation will facilitate 
study, and the reader is recommended, when studying a 
rheological paper, to translate the notation used by the 
author into a notation familiar to him, e.g. tha t of the 
present book. 

In order to economize in the cost of printing, division will 
often be indicated by the sloped bar / and not by the horizontal 
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bar —. The influence of the sloped bar / is meant to reach to 
the nearest operational sign, where operational signs are + , 

—, and.but not V>|» ^- Therefore ajbc =-r-> but ajb.c =jc. 

Equations and figures are numbered separately in every 
chapter. 
A 
A0 

a 
a 

B 
Bit 
b 

P 
C 
c 

cv 
X 
D 
Dfl 
d 

d 
A 
Al 
Ap 
As 
E 
Ed 

Ef 

Ek 

Eo 
K 
S9i 
Br 
Ev 

area, also a constant. 
original area. 
acceleration, also =̂  (Ri/Re)2. 
an angle ; also a material constant or coefficient; 

also spherical equivalent volume coefficient. 
Bingham body. 
Burgers body. 
breadth, also "of bending" (qualificatory index 

in eb, pb> Mb). 
a material constant or coefficient. 
an integration constant. 
concentration, also " of creep" (qualificatory index 

in ec). 
volume concentration. 
coefficient of structural stability. 
deformation, also diameter. 
restoring moment. 
differential, also distance, also thickness, also 

deflection. 
rate of deflection. 
increment. 
elongation. 
pressure difference. 
deflection. 
energy. 
dissipated energy. 
ultimate resilience (energy at failure). 
kinetic energy. 
distortional energy. 
potential energy. 
plastic resilience. 
rupture resilience. 
volume resilience. 
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e 

«6 

ec 
ei> ej> ek 

«« 
en 
60 

e* 
C«> 
e 

e< 
K 
e 
€ 

1 

Vc 

% 

M 
1o 

1*1 

^nrl 

Vs 

Vaolu 

Isolv 

"Hspeo 

Vv 
IJao 

1 

f r 
/ ( n ) 

V 
<Po 
(ft*. 

¥ 
<Pu 
4>{x) 

* 
G 

Q 

strain, also *' external " (qualificatory index in Jte). 
bending strain. 
contraction. 
principal strains. 
mean normal strain. 
normal strain, extension. 
distortion. 
tangential strain, shearing strain. 
volume strain, cubical dilatation. 
rate of strain. 
rate of shear. 
rate of cubical dilatation. 
basis of natural logarithms. 
Young's modulus. 
coefficient of viscosity. 
creep viscosity. 
intrinsic (reduced) viscosity. 
limiting intrinsic viscosity. 
viscosity of liquid at rest. 
plastic viscosity, stiffness. 
relative viscosity. 
solid viscosity. 
viscosity of solution. 
viscosity of solvent. 
specific viscosity. 
volume viscosity (better £). 
viscosity of liquid at maximum shear. 
apparent viscosity. 
function, " of failure " (qualificatory index in Ef). 
first derivative of function / . 
nth derivative of function / . 
coefficient of fluidity. 
zero fluidhty, fluidity of the liquid at rest. 
maximum fluidity. 
apparent fluidity. 
fluidity of wall layer. 
Gauss' error integral. 
angle. 
gradient, displacement gradient. 
velocity gradient. 
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g acceleration of gravity. 
y modulus of rigidity. 
yt liquid shear elasticity. 
H height, also Hooke body. 
h height. 
I moment of inertia. 
i, j , k principal axes. 
i qualificatory index for " internal " in Pt. 
K Kelvin-body, also constant. 
k of kinetic {qualificatory index in Ek), also constant. 
K bulk modulus. 
K apparent bulk modulus. 
L length. 
I length, also of liquid {qualificatory index in yt), also 

" lagging " (qualificatory index in e,), also " longi­
tudinal " (qualificatory index in e,). 

lint limes, limiting. 
In natural logarithm. 
l0 original length. 
A Trouton's coefficient of viscous traction. 
M moment, couple, also Maxwell liquid. 
Mb bending moment. 
Mx moment in respect of axis x. 
Mz moment in respect of axis z, torsional moment. 
m mass, also constant (power). 
N pull (—N push), also Newtonian liquid. 
n number of revolutions, also constant (power), also 

qualificatory index for normal in e„. 
n\ = 1 , 2, 3 . . . n. 
o " o f d e v i a t o r " (qualificatory index in E0), also 

qualificatory index for " original " in l01 A0. 
Q angle of rotation. 
& angular velocity. 
P force, also dynamic consistency variable. 
Pnn normal component of force Pn. 
Pnt tangential component of force P n . 
Pt tangential force. 
p traction (stress), hydrostatic tension = isotropic 

tension, also qualificatory index for " permanent" 
in hp. 
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'n-

p rate of stress = dpjdt. 
pb bending stress. 
P%> Ps> Pk principal stresses. 
pm mean normal stress. 
pn normal stress. 
pnn normal component of traction p, 
pnt tangential component of traction pn. 
p0 deviator of stress. 
pr rupture stress. 
prs static rupture stress. 
p r e d reduced stress. 
Pt tangential stress, shearing stress. 
V limiting relative volume, also coefficient of struc­

tural stability. 
TT 3" 1415 . . . 
Q quantity of flow. 
R rheological function, also radius. 
Ra radius of external cylinder. 
Mt radius of internal cylinder. 
T radius. 
P density. 
Sch Sc B Schofield-Scott Blair body. 
Schio Schwedoff body. 
StV St. Venant body. 
E the sum of . . . 
cr Poisson's ratio. 
<Jd deformational Poisson ratio. 
o-„ viscous Poisson ratio. 
T period of oscillation. 
t time, also tangential (qualificatory index in 

• Pt, et). 
•9- yield stress. 
•9-„ normal yield stress. 
•9, tangential yield stress. 
6 angle, also limiting strain. 
6 angular velocity. 
T time-constant. 
r r relaxation time = TM 

TJ lagging time, retardation time = rK. 
u displacement. 
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velocity, also volume, also kinematic consistency 
variable, 

original volume, 
velocity, also qualificatory index for " viscous," also 

qualificatory index for " voluminal." 
velocity at centre. 
velocity in the direction of increasing 8. 
work. 
water-cement ratio, 
strain work per unit volume, also weight per unit 

length, also qualificatory index for " of wire." 
power of deformation = dwjdt. 
volumetric strainwork. 
co-ordinates and co-ordinate axes. 



CHAPTER X X 

BIBLIOGRAPHY 

I N ALPHABETICAL ORDER OF AUTHORS 

. Papers listed in Bingham's Rheology Index, J. Mheology, 
2, 10-107 (1931), are not included in this bibliography. 

The figure in brackets, thus [6], before the author's name, 
indicates the order in which the paper is quoted in the text. 

[75] ALFREY, T., and DOTY, P . J. Appl. Phys., 16, 700-713 
(1945). 

[49] ANDRADE, E. N. DA C. Science Progress, No. 120, 
April 1936. 

[60] ARNSTEIN, A., and R E I N E R , M. Civil Engineering, 40, 
198-202 (1945). 

[65] ARNSTEIN, A., REINER, M., and TEINOWITZ, M. Research 
on loading test . . . Government of Palestine, Board 
for Scientific and Industrial Research, Jerusalem, 1949. 

[43] BACH, C. ZeiUchr. d. Ver. deutsch. Ing. 1040 (1904); [19] 
Zeitschr. d. Ver. deutsch. Ing., 32, 193 (1888). 

[36] BARTSCH. Koll. Z., 38, 325 (1926). 
BINGHAM, E. C. Fluidity and Plasticity, New York, 1922. 

[59] BINGHAM, E.C., and REINER, M. Physics, 4,88-96 (1933). 
[22] BLUEH. Handb. d. phys. u. techn. MecJianik. 
[50] BRAGG, SIR T. Nature, 149, 511 (1942); Endeavour, 2, 

43-51 (1943); Trans. N.E. Coast Inst, of Eng. and 
Shipbuilders, 62, 25-34 (1945). 

[37] BULKLEY. R. Journal of Research, 6, 89 (1931). 
[18] BULFFINGER, G. B. Comm. Acad. Petrop., 4, 164 (1729). 
[77] BURGERS, J . M. Academy of Sciences of Amsterdam, 

First Report on Viscosity and Plasticity (1935). 
[41] CAFFYN, J . E. J. Scient. Instr., 21, 213-216 (1944). 
[45] EDWARDS, C. A. J. Iron and Steel Inst. (1943). 
[16] EIRICH, F. , and MARK, H. Ergeb. d. exdkt. Naturw., 15 

1-43 (1936). 
[26] EISENSCHITZ, R., RABINOWISCH, B., and WEISSENBERG, 

K. Mitt. d. deutsch. Materialprufungsanstalten, 9, 91-94 
(1929). 

D.F 337 £ 



338 BIBLIOGRAPHY 

[2] E R K , S. Z. Physik, 79, 141 (1932). 
[93] EVANS, U. R. Engineering, 154, (1943). 
[38] EYEING, H. J. Chem. Phys., 4, 283 (1936). 
[64] FREUPENTHAL, A. Proc. Boy. Soc. A. (1946). 
[48] FREUDENTHAL, A., and R E I N E R , M. A Law of Work-

hardening. Awaiting publication. 
[47] FUCHS, W., ILBERG, H., and R E I N E R , M. Journ. Assoc. 

of Eng. and Arch, in Palestine, 7, 9-16 (1945). 
[50] GEIRINGER, H., and PRAGER, W. Ergeb. d. exackt. 

Naturw., 13, 310-363 (1934). 
[59] [61] GLAKVILLE, W. H. Building Research Technical 

Papers, 12 (1930). 
[62] GLANVUXE, W.H. , and THOMAS, F . G . Building Research 

Technical Papers, 21 (1939). 
[20] GRUNEISEN, E. Verhandl. phys. Oes., 4, 469 (1906). 
[63] GUTH, E., and MARK, H. Ergeb. d. exakt. Naturw., 12, 

115-162 (1933). 
[13] HALLER, W. Koll. Z., 56, 257-267 (1931). 
[85] HATSCHEK, E. The Viscosity of Liquids, London, 1928. 
[86] HATSCKEK, E., and JANE, R. S. Koll. Z., 40, 53-58 

(1926). 
[9] HENCKY, H. Z. angew. Math. u. Mech., 4, 323-334 

(1924); [6] Z. angew. Math. u. Mech., 5, 115 (1925); 
[39] Rkeology, 2, 169-176 (1931). 

[17] HERRMANN, K., GERNGROS, O., and ABITZ, W. Zeitschr. 
f. phys. Chem., B 10, 371 (1930). 

[34] HERSCHEL, W. H. Rheology, 1, 505-506 (1930). 
[3] [30] HERSEY, M. D. J. Rheology, 3, 196-203 (1932); 

Theory of Lubrication, New York, 1938. 
[21] HODGKINSON, E . Report of the commissioners appointed 

to enquire into the application of iron to railway 
structures, London, 1849. 

HOUWINK, R. Elasticity, Plasticity and Structure of 
Matter, Cambridge, 1937. 

[66] JEFFREYS, H. The Earth, Cambridge University Press, 
1929. 

[11] KRAEMER, E. O. Ind. Eng. Chem., 30, 1200-1203 (1938). 
[83] K U H N , W. Helvetica chimica Acta, 30, 487-493 (1947). 

LAMB, H. Hydrodynamics, Cambridge, 1879. 



BIBLIOGRAPHY 339 

[29] L E E , A. R., and MARKWTCK, A. H. D. J. Soc. Ckem. 
Ind., 56, 146T-156T (1937). 

[82] LETHERSICH, W. The British Electrical and Allied 
Industries Research Association, London, 1941. 

[4] LrcxiE, H. R. Phys. Rev., 36, 347-362 (1930). 
LOVE, A. E. H. A Treatise on the Mathematical Theory of 

Elasticity, Cambridge. 
[76] MARDLES, E. W. J . British Rheologists' Club Con­

ference, London, 1946. 
[12] MARK, H. Physical Chemistry of High Polymer Systems. 

Interscience Publishers Inc., New York (1940). 
[10] MISES, R. Nachr. d. Gesellsch. d. Wissensch. zu Qoettingen. 

Math.-Phys. Klasse., 582-592 (1913); [72] Intern. 
Gongr. for Appl. Mechanics, Stockholm, 1930. 

[31] MOONEY, M. Mheology, 2, 210-222 (1931). 
[8] NADAI, A. Plasticity, McGraw-Hill Book Co., New York 

and London (1931); [23] J. Appl. Physics, 8, 418-432 
(1937). 

[96] OSTWALD, Wo., and ATJERBACH, R. Koll Z., 38, 261-28 
(1926). 

[27] PHILLIPOFF, W. Koll. Z., 75, 142 (1936); Koll. Z., 75, 
155 (1936); Viskositaetder Kolloide, Dresden, 1942 (also 
Edwards Bros., Ann Arbor, Mich.). 

[11] PHUJLIPOFF, W., and H E S S , K. Z. Phys. Chem. (B) 31, 
237-255 (1936). 

[91] POYNTING, J . H., and THOMSON, J . J . Properties of 
Matter, London, 1929. 

[7] PRAGER, W. Z. angew. Math. u. Mech., 10, 93-94 (1930); 
[103] J. Appl. Phys., 16, 837-840 (1945). 

[55] PRESTON, F . W. J. Appl. Physics, 13, 623-634 (1942). 
[94] RABINOWITSCH, B. Zeitschr. phys. Chem., A 145, 1-26 

(1929) ; [25] Zeitschr. f. physik. Chem., A166, 257 (1933) 
[56] RAYLEIGH, LORD. Nature, 45, 29 (1940). 
[68] REIGER, R. Ber.d.deutschenPhys.Qes., 421-434(1919). 
[95] R E I N E R , M. Zeitschr. d. oesterr. Ing. u. Arch. Ver., 63, 

803-807 (1911); [52] Z. ozsterr. Ing. u. Arch. Ver., No. 18 
(1914) ; [53] (Esterr. Wochenschrift f. d. cejfentl. 
Baudienst (1915); [54] Z.f. angew. Math. u. Mech., 6, 
409 (1925); [32] Bheology, 2, 338-350 (1931); [74] 
Naturw., 19, 878-880 (1931); [28] Koll Z.t 54,175-181 



340 BIBLIOGRAPHY 

(1931); London Congress, 602-604 (1937); [51] 
Quarterly Journal of Math., Oxford Series, 4,12 (1933); 
[24] Naturw., 21, 294^299 (1933); [92] Engineering 
(1943); Ten Lectures on Theoretical Eheology, Jerusalem, 
1943; [39] Amer. J. of Math., 68, 672-680(1947); [79] 
Eheology Bulletin, 16,53-68 (1945); [46] J. Scient. Instr., 
22,127 (1945); [48] Research on the work-hardening of 
polycrystalline metals, Board for Scientific and In­
dustrial Research, Jerusalem, 1948 ; [101] Am. J. of 
Math., 67, 350-362 (1945); "Elasticity beyond the 
Elastic Limit," ^imer. J. of Math., 70, 433, (1948). 

[90] REINER, M., RIGDEN, P. , and THROWER. Volume Flow 
of Asphalt. Awaiting publication. 

[15] R E I N E R , N., and SCHOENFELD-REINER, R. Koll. Z., 
65, 44^62 (1933). 

[89] REINER, M., and WEISSENBERG, K. Eheology Leaflet, 
No. 10, 12-20 (1939). 

[100] REYNOLDS, O. Phil. Mag., 20, (5) 469-481 (1885). 
[42] SCHOFIELD, R. K., and SCOTT BLAIR, G. W. Journ. 

Phys. Chem., 34,248-262 (1930); 35,1212-1215 (1931); 
Proc. Eoy. Soc, A 138, 707-718 (1932); 139, 557-566 
(1933); 141, 72-85 (1933); 160, 87-94 (1937). 

[35] SCOTT BLAIR, G. W. J. Phys. Chem., 39, 213 (1935); 
Koll. Z., 78, 19 (1937); J. Agric. Science, 27, 541 
(1937); Introduction to Industrial Eheology, J . and A. 
Churchill Ltd., London, 1938 ; J. Dairy Eesearch, 9, 
347-350 (1938); J. Scient. Instr., 17, 169 (1940) ; 
Chemistry and Industry, 61, 142-143 (1942); Nature, 
149, 197 (1942); Nature, 152, 412 (1943); Nature, 
154, 213 (1944); A Survey of General and Applied 
Eheology, Sir Isaac Pitman and Sons, London, 1944 ; 
J. Scient. Instr., 21, 80 (1944); Nature, 156,147 (1945); 
Nature, 157, 455-456 (1946). 

[93] SILVER, R. S. Engineering, 154, 454 (1943). 
[14] STATTDINGER, H. Die hochmolehularen organischen Ver-

bindungen, Berlin (1932). 
[44] SPAETH, W. Physik der mechanischen Werkstoffpruefung, 

Berlin, 1938. 
[57] STRATJB, L. G. Trans. Amer. Soc. Civ. Eng., 95, 613 

(1931). 



BIBLIOGRAPHY 341 

[70] THOMSON, S I R WTT.T.TAW (LORD KELVIN) . " Elasticity " 
in Encyclopaedia Britannica, ninth edition, 1876; 
also Papers, 3, London, 1890. 

[40] TISZA, L. Phys. Review, 61, 531-536 (1942). 
[73] VOIGT, W. Abh. d. kgl. Ges. d. Wissenschaften. Goettin-

gen, 36 (1890). 
[5] WOLAROWITSCH, M. P., KTTLAKOFF, N. N., and ROMAN-

SKY, A. N. Koll. Zeitschr., 77, 267 (1935). 
[87] WOLABOWITSCH, M. P., and SAMARINA, K. I . Koll. 

Zeitschr., 70, 280 (1935). 
[71] WEISSENBEBG, K. Abhandl. d. Preuss. Akad. d. 

Wissenssh. Phys. math. Klasse, No. 2 (1931); [102] 
Nature, 159, 310 (1947). 

[69] ZABEMBA. Krak. Am. 385 (1903). 



INDEX 
For the convenience of the reader the appropriate symbol ia given 

brackets after all quantities listed below. Where several page references 
given the first of these usually contains the definition. 

ABITZ, 93 
Acceleration (a), 1 
Acceleration of gravity (g), 2 
After effect, elastic, 159 
Ageing, of mild steel, 199 
Alfrey, 269 
Analogies, viscosity-elasticity, 228 
Analysis, rheological, 70 
Andrade, 107, 187 
Andrews, 194 
Angular velocity (9), 2 
Apparent fluidity ( '̂)> 88 
Apparent viscosity (ij')>, 37, 40, 84 
Archer, 204 
Arnstein, 239 
Auerbacb, 304 
Axiom of rheology, first, 4 

second, 12 
third, 48 

BACH, 99 
Bancelin, 246 
Bartsch, 145 
Bauschinger effect, 204 
Beilby, 204 
Beltrami, 208, 296 
Bending, 212 

of beams, 219, 221 
Bernoulli, 218 
Bingham, 6, 36, 145 
Bingham body (B), 36 

generalised, 136, 142 
Bitumen, 280 
Blueh, 101 
Boundary condition, 19 
Boyle-Marriotte's law, 98 
Bragg, 204 
Breaking energy, 299 
Bridgman, 150, 153 
Brittle rupture, 295 
Brownian movement, 62 
Buckingham, 39, 133 
Buckingham-Reiner equation, 39 
Buelffinger, 99 
Bulkley, 77, 146 
Bulk modulus («), 149 
Burgers, 278 
Burgers' body (Bu), 277, 280 

CAFFYN, 187 
Cement and cement stone, 233, 238, 

245 
Chalmers, 187 
Coefficient of fluidity {^), 22 

of viscosity (TJ), 8 
rheological, 53 

Cohesional strength, 298 
Complex bodies, 277 
Concrete, creep of, 235, 246 

delayed elasticity in, 277 
reinforced structures, 253 
volume flow of, 247 

Consistency, 39, 41 
curves, 41, 75 
variables, 21, 74 

Constants, rheological, 53 
Couette, 27 
Couette-Hatschek viscometer, 32 
Coulomb, 208, 223, 296, 304 
Creep, 233 

of cement stone, 238, 245 
of concrete, 235, 246 
of glass, 233 
viscosity (TJC ), 234 

Cross elasticity, 323 
Crowther, 41 

DAMPING, of oscillations, 271 
of pulsations, 157 

Deformation, (JP), 2, 13, 328 
plastic, 7 

Delayed elasticity, 270, 277 
Denning, 56 
Density (p), 3 
de Waele, 94 
Differentiation method, 114 
Dilatancy, 317, 319 
Dilatation, 317 
Dimensions, 10, 102 
Dispersions, 56, 72 
Displacement (it), 5 
Distortion, 4, 15 

elastic, 169 
laminar, 15 

Distortional failure condition, 303 
resilience (I89), 298 



INDEX 343 

Disturbance, 62 
Doty, 269 
Duclaux, 101 

EDWARDS, 191 
Einstein's equation, 59 

for cement mortar, 243 
Eirich, 93 
Eisenschitz, 111 
Elastic after effects, 159 

liquids, 257 
strain (e), 4 
torsion, 222 

Elasticity, cross, 323 
delayed, 270 
volume, 148 

Elastico-viscosity, 257 
Ellis, 98, 132 
Elongated particles, 61 
Elongation (M), 163 
Equilibrium, 1 

rotational, 6 
Equivalence principle, 2 
Erk, 147 
Extension (en), 164 
Eyring, 149 

FABEB,236 
Failure, 303, 308, 309 
Finite shearing strain, 168 
Firmo-viscosity, 257 
Flow, 2 

laminar, 18 
plastic, 38, 186 
stationary, 19 
turbulent, 16 
viscous, 8 

Flow condition, 49 
Fluidity (<f>), 22, 88 

of wall layer, 137 
plastic, 54 

Force (P), 1 
Fracture, see Rupture 
Freudenthal, 195, 253, 315 
Freundlich, 16, 56, 101 
Fuchs, 195 
Fulcher, 102 

GABETT, 56 
Gauss, 117 
Geiringer, 208 
Generalised Bingham body, 136 
Generalised Newtonian liquid, 106, 

112, 143 
Gerngross, 93 
Glanville, 238, 241, 249, 327 

Glass, creep of, 233 
Graham, 56 
Granular masses, 318 
Green, 37, 132 
Grueneisen, 100 
Guest, 296 
Guth, 244 

HAGEN, 16 
Hagen-Poiseuille law, 20 
Hagenbach, 21 
Haigh, 296 
Haller, 62 
Haslam, 132 
Hatschek, 27, 32, 56 
Heisenberg, 191 
Hencky, 46, 50, 153, 296, 306, 326 
Hencky flow condition, 329 
Hermann, 93 
Herschel, 77, 106, 133 
Hersey, 26, 114 
Hess, 56, 87, 257 
Hodgkinson, 100 
Homogeneous deformation and stress, 

212 
Hooke, 6, 10 
Hooke solid, 11 

failure of, 303 
Hooke's law, 6 
Huber, 296 
Huber-Hencky theory, 297 
Hydrostatic pressure (p), 3 

IDEAL bodies, 10 
Ilberg, 195 
Immobilisation, 64 
Integration method, 114 
Intrinsic viscosity, (TJ{), 69, 85 
Isotropic pressure (p), 2 

rupture condition, 301 
stress (p), 2 
tensile strength, 300 

JANE, 57 
Jeffreys, 257, 267, 269 
Jeffries, 204 

KELVIN, Lord, 175, 267, 320 
Kelvin solids, 268 

failure of, 309 
Kinematical boundary condition, 20 
Kinetic energy correction, 17 
Kirchhof, 321 
Kraemer, 59, 64 
Kroepelin, 133 
Kuhn, 286 
Kulakoff, 41 



344 INDEX 

LAMINAE distortion, 16 
flow, 18 

Lander, 323 
Lark-Horowitz, 102 
Larmor, 269 
Lee, 107, 278 
Lethersich, 280 
Lillie, 30 
Limiting intrinsic viscosity ([17]), 
Limiting volume {¥), 153 
Liquid, 3 

Maxwell, 263 
strength, 306 

Littelton, 102 
Liu, 191 
Logarithmic homologue, 101 
Love, 5 
Lowe, 94 
Ludwik, 204 

MABDLES, 269 
Margules, 30 

equation, 35 
Mark, 60, 88, 93, 244 
Markwick, 278 
Maxwell, 111, 258 
Maxwell liquid (itf), 263 

failure of, 308 
McMdlen, 236 
Mechanics, 1 
Mises, 50, 269 

flow condition, 329 
Mises-Hencky flow condition, 50, 
Mobility, 54 
Models, rheological, 281, 306 
Modulus, bulk («), 149 

of rigidity (y), 5 
Young's («), 163 

Mohr, 173, 296 
Mohr-circle, 173 
Moment (M), 1 
Mooney, 114 

N A D U , 49, 102, 296 
Navier, 159 
Neale, 95 
Necking* 198 
Newton, 8, 11, 23 
Newtonian liquid (AT), 10 

failure of, 103 
generalised, 108 

Newton's law of viscous flow, 8 
third corollary, 25 
non-linear behaviour, 56 
notation, 331 

Nutting-Scott Blair equation, 107 

ODEN, 245 
Orientation of particles, 61 
Ostwald, 20, 67, 304 

curve, 67, 77 

PASCAL, 3 
Permanent set, 148 
Philippoff, 87 
Phillips, 191 
Plastic deformation, 7 

flow, 38, 186 
fluidity, 54 
resilience {Epl)t 54, 298 
strength, 286 
viscosity, 38, 54 

Plasticity, 38 
Plastico-dynamics, 49 
Plastico -statics, 49 
Plug flow, 39 
Poise, 10 
Poiseuille, 10, 18 
Poiseuille's law, 18 
Poisson's ratio (<r), 165 
Polynomial equations, 110 
Porter, 95, 
Power functions, 94, 97 

laws, 94, 98 
series, 108, 118 

Poynting, 300 
Prager, 48, 208 
Preston, 234 
Principal strains {ef, ejr ek), 166 

stresses (pu pJt pk), 168 
Pseudo-plasticity, 51 
Pulsations, 154, 157 

QADDUBA, 316 

R A B I N O W I T S C H , 110 
Rankine, 296 
Rao, 95 
Rate of shear (c(), 8 
Rayleigh, Lord, 234 
Reduced stress (pn<i), 162 
Reiger, 262 
Reiner, 39, 97, 296, 299, 316 
Reiner-Riwlin equation, 43 
Relative consistency curves, 75 

viscosity (i/^f), 59 
Relaxation of stress, 258 
Relaxation time (rr), 260 
Resilience (E), 298 

isotropic (#,,), 302 
Retardation time (TJ), 27 



Reynolds, 101, 301, 317 
liquid, 321 
number, 304 
plastic, 321 

Rheological analysis, 70 
of rubber solutions, 70 

constants, 53 
diagrams, 11 
equations, 281 
Memoirs, 20 
models, 281 
properties, 2 

Rheology, 1, 326 
Index, 16 

Rigden, 299 
Rigid body, 6 
Rigidity, modulus of (y), 5 
Riwlin, 43, 45 
Roentgen, 164 
Romansky, 41 
Rosenhain, 204 
Rotation viscometers, 27 
Rotational distortion, 15 

equilibrium, 6 
Rubber-toluene solution, 70, 120 
Rupture, 295, 301 

resilience (ET), 298 

SAMAEIKA, 291 
Schalek, 16 
Schofield, 133 
Schofield-Scott Blair body (Sch Sc B) 

289 
Schwedoff body, (Schw), 286 
Scott Blair, 41, 105, 133, 145 
Searle, 27 
Shear, 5 

finite, 168 
simple, 3 

Shortening, 66 
Silver, 301 
Simple tension and simple extension, 

162 
Slippage, 133, 135 
Solid, Kelvin, 268 

plastic, 39 
soft, 144 
viscosity (ij,), 267 

Sols, 72 
Spath, 191 
Specific viscosity {q,p«), 69 
Staudinger, 59, 64 
Steady state of flow, 19 
Steel, test curves for, 186 
Stefan-Boltzmann law, 99 
Stiffness, 54 
Stokes, 20, 158, 182 

EX 345 

Stokes-liquid, 182 
Stokes-Navier equation, 158 
Strain, (e), 2, 328 
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