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Preface

A few years ago, in my role as a member of the editorial board of Advances in
Atomic, Molecular, and Optical Physics, 1 proposed that a special volume in that
series be devoted to the rapidly emerging field of Arom Interferometry. This
suggestion was met enthusiastically by the editors of that series, Benjamin
Bederson and Herbert Walther. With their encouragement, I started to solicit
contributions for this volume in the spring of 1994. Since I was fortunate enough
to obtain commitments from many of the researchers who were instrumental in
the development of atom interferometry, a decision was made to go ahead with
the publication of a special volume in the Advances series. Somewhere along the
line, the publishers at Academic Press, with the consent of Bederson and
Walther, decided that it would be better for this book to be published as a stand-
alone volume rather than as a special supplement to the Advances series. Be that
as it may, the contributions to this book were written in the spirit of Advances
articles, that is, reasonably long contributions summarizing recent accomplish-
ments of the authors.

When I was on the faculty at New York University, I developed a course for
nonscience majors entitled 20th Century Concepts of Space, Time, and Matter,
which I now teach at the University of Michigan. An important component of
that course, as well as any introductory physics sequence, is an appreciation of
the fact that both electromagnetic radiation and matter exhibit wave-like proper-
ties. The wave nature of electromagnetic radiation is often illustrated using some
form of Young’s double slit apparatus, which produces interference fringes that
are explained in terms of constructive and destructive interference of the radia-
tion that has traveled different optical path lengths to the screen on which the
pattern is displayed. The wave nature of matter is often illustrated using electron
diffraction patterns.

Although the equations that govern the propagation of electromagnetic radia-
tion (Maxwell’s equations) and nonrelativistic matter waves (Schrddinger’s
equation) are not the same, many of the basic wave-like properties of electro-
magnetic waves and matter waves are quite similar. Thus, it is possible for both
electromagnetic radiation and matter to exhibit particle-like behavior if the
wavelength of the radiation or matter waves is much smaller than all the relevant
length scales in the problem, such as the size of obstacles that are scattering the
waves. On the other hand, both electromagnetic waves and matter exhibit wave-
like properties when the wavelength of the radiation or matter waves is compara-
ble with the dimensions of the obstacles that are scattering the waves.

Xiii
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An interferometer is a device that exploits the wave nature of light. Typically,
an interferometer contains a beam splitter that separates an incident beam of
radiation or matter into two or more mutually coherent outgoing beams. The
beams then recombine on a screen and exhibit interference fringes. Sometimes,
additional beam splitters or mirrors are used to recombine the beams. Radiation
and matter interferometers work on the same principle —they differ only in the
wavelength of the working medium (radiation or matter) and the nature of the
beam splitters and mirrors that are needed. The wavelength associated with mat-
ter waves is typically 100 to 1000 times smaller than the wavelength of visible
light.

Interferometers using visible light as the working medium date to the 19th
century. The wave nature of electrons was demonstrated by Davisson and Ger-
mer in 1927 by scattering electrons from nickel crystals. Crystals, microfabri-
cated slits, and electric fields can be used as “optical” elements for scattering
electron waves. Electron interferometers were constructed using electron
biprisms in the 1950s [for a review, see Mollenstedt, G. and Lichte, H., in Neu-
tron Interferometry, edited by Bonse, U. and Rauch, H. (Clarendon Press, Ox-
ford, 1979), pps. 363—388]. Neutron interferometers were developed first in the
1960s using refraction from biprisms and Bragg scattering from crystals, but
major advances in the field occurred following the use of interferometers cut
from single Si crystals [for reviews, see, for example, Neutron Interferometry,
edited by Bonse, U. and Rauch, H. (Clarendon Press, Oxford, 1979) and Neutron
Optics by Sears, V. F. (Oxford University Press, New York, 1989)]. With the
development of ultra-cold neutron sources, the de Broglie wavelength could be
increased from a characteristic value of about 1.0 A for thermal neutrons to tens
of A for ultra-cold neutrons, enabling one to use slits as optical elements [for re-
views, see, for example, Ultra-Cold Neutrons by Golub, R., Richardson, D., and
Lamoreaux, S. K. (Adam Hilger, Bristol, 1991) and Gihler, R. and Zeilinger, A.,
Am. J. of Phys. 59,316—-324 (1991)].

The major stumbling block in the development of atom interferometers has
been development of atom optics, that is, beam splitters and mirrors for atom
matter waves of which the de Broglie wavelengths are typically a fraction of an
angstrom. In the past five years, however, significant advances have been made
in atom interferometry. Many of the research groups that contributed to these
advances and pioneered the field of atom interferometry are represented in this
volume.

The chapter by Schmiedmayer, Chapman, Ekstrom, Hammond, Kokorowski,
Lenef, Rubenstein, Smith, and Pritchard reviews many of the important contri-
butions to atom interferometry made by this group. The atom interferometers are
constructed using a beam of sodium atoms as the matter wave and microfabri-
cated structures as the “optical” elements. Diffraction from a single grating has
allowed them to distinguish between sodium atoms and sodium dimers in their
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beam. Using a three grating Mach-Zehnder atom interferometer, they were able
to measure the electric polarizability of the ground state of sodium and the index
of refraction of the sodium matter waves in a buffer gas environment. A key fea-
ture of their measurements was the physical separation of the matter waves in
the two arms of the interferometer. They were also able to monitor the loss of
atomic coherence resulting from scattering of radiation from the matter waves in
the interferometer.

Batelaan, Bernet, Oberthaler, Rasel, Schmiedmayer, and Zeilinger also report
on an atom interferometer of the Mach-Zehnder type, but with standing-wave
fields rather than microfabricated gratings used as the optical elements. The
matter wave used in their experiments was metastable argon, and different tran-
sitions could be used to study the effect of spontaneous emission on the interfer-
ence signals. In addition, they carried out an experiment using three microfabri-
cated structures to scatter the metastable argon atoms, in which the atoms’
center-of-mass motion could be treated classically. They show that the “shadow”
or moiré pattern that is formed when atoms pass through the gratings can be
used to measure the value of the acceleration of gravity and the Sagnac effect
(modification of the fringe pattern resulting from rotation of the apparatus).
Finally, they study scattering from standing wave light fields in the Bragg scat-
tering limit.

Clauser and Li compare interferometers in which the scattered matter waves
are separated physically within the interferometers with those in which the scat-
tered waves overlap within the interferometer. Both the Talbot and Talbot-(Ernst)
Lau interferometers are examples of the latter class of interferometers. Clauser
and his colleagues were the first to stress that Talbot-Lau interferometry had im-
portant potential applications in atom interferometry. In this article, Clauser and
Li discuss the basic features of both the Talbot and Talbot-Lau interferometers,
and present results from experiments in which potassium atoms were used as the
matter waves in a three (microfabricated) grating Talbot-Lau interferometer. Ap-
plications discussed include Sagnac and electric polarizability measurements, as
well as interferometric studies of matter wave decoherence produced by light
scattering.

The chapter by Shimizu includes a review of his work on two-slit interference
patterns using metastable neon atoms released from a magneto-optical trap. This
is followed by a description of a method for creating a binary hologram. When
such a hologram is fabricated on a SiN film and illuminated with a matter wave
of neon, the original object is reconstructed. Also included in this contribution is
a report of a measurement of the second order correlation function associated
with a matter wave.

Kurtsiefer, Spreeuw, Drewsen, Wilkens, and Mlynek explore several aspects
of atom optics in their contribution. They begin by reviewing the interaction of
atoms with radiation fields. For a beam of atoms scattered by a standing-wave
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optical field that is detuned from the atomic transition frequency, the radiation
field can be considered as a lens for the matter waves. Methods for correcting
the various aberrations associated with this type of lens are discussed, as well as
applications to atom lithography and surface probes. The authors then describe
an experiment using metastable helium atoms scattered by a resonant standing-
wave field; as a result of spontaneous emission following the atom-field interac-
tion, the visibility of the atom interference pattern is reduced. The visibility can
be restored by measuring only those atomic events that are correlated with spe-
cific spontaneous emission modes. Additional methods are described for prepar-
ing entangled states involving the atoms and one or more photons. Finally a pro-
posal for an atomic boson laser is set forth in which spontaneous emission into
bound states of an optical lattice is stimulated by identical atoms already in that
state.

The subject matter shifts slightly with the article by Briegel, Englert, Scully, and
Walther. They begin a discussion of atom interferometry in which internal state la-
bels of the atoms take on an important role. The first part of their chapter is devoted
to a study of internal state atomic interference for atoms passing through modified
versions of the Young’s double slit experiment. They discuss complementarity and
the importance of “which path” information in establishing interference patterns.
The use of micromaser cavities in such experiments and the role played by the
quantized field modes in the cavities is emphasized. The second half of the chapter
contains a critical assessment of the possibility to recombine different spin states of
atoms that have been split by a Stern-Gerlach magnet.

In his contribution, Bordé presents a general discussion of the theory of atom
interferometers, including those employing either microfabricated slits or stand-
ing-wave fields as beam splitters and combiners. The role played by the internal
states of the atoms is stressed. He studies Bragg scattering in the limit of off-res-
onance excitation and also uses a wave packet approach in analyzing the inter-
ferometers. Bordé presents a unified approach to matter-wave interferometry in
which the atoms, represented by Dirac fields, are coupled to the electromagnetic
field and to inertial fields. Effects such as the recoil splitting, gravitational shift,
Thomas precession, Sagnac effect, Lense-Thirring effect, spin-rotation effect,
and topological phase effects emerge naturally from this treatment.

The next chapter by Sterr, Sengstock, Ertmer, Riehle, and Helmcke contains
contributions from groups at the University of Hannover and the Physikalisch-
Technische Bundesanstalt. The atom interferometers studied by these groups use
either calcium or magnesium atoms as the active element and optical fields as
the beam splitters and combiners. Internal state labeling plays an important role
in these interferometers, in which the scattered waves overlap within the inter-
ferometer. Experiments are carried out for a geometry corresponding to a Ram-
sey-Bordé interferometer using both continuous wave (cw) and pulsed optical
fields. For the cw experiments, thermal or laser-cooled atomic beams are sent
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through several field regions where state-dependent scattering occurs. In the
pulsed experiments, the interferometer is constructed in the time domain rather
than the spatial domain. Among the measurements discussed are those of de
Stark shift and polarizability, ac Stark effect, Aharonov-Bohm effect, Aharonov-
Casher effect, and the Sagnac effect. Also included are applications of the inter-
ferometers as frequency standards.

The chapter by Young, Kasevich, and Chu also discusses Ramsey-type inter-
ferometers, although the working atomic transition is one between different
ground state sublevels rather than between a ground state level and a long-lived
excited state level as in the case of calcium and magnesium. A review of the the-
ory of the Ramsey interferometer is given, including effects of atomic recoil.
The beam splitters and combiners used by Young, Kasevich, and Chu are based
on single or multiple Raman pulses of counterpropagating optical fields, or on
adiabatic transfer between the ground state sublevels. Both of these methods are
reviewed. Atom interferometric measurements of the acceleration of gravity,
variations in the acceleration of gravity, and the fine structure constant are re-
ported, and the potential use of the interferometer as a gyroscope is discussed.

The article by Dubetsky and myself returns to calculations of Talbot and Talbot-
Lau interferometry using microfabricated slits as scatterers for the matter waves.
Scattering in the classical and Fresnel diffraction (Talbot and Talbot-Lau effects)
limits is interpreted in terms of the recoil that atoms undergo when they are scat-
tered from the microfabricated gratings. It is shown that it is possible to produce
atomic density profiles having periods that are a fraction of the periods of the mi-
crofabricated structures in both the classical and Fresnel diffraction limits. More-
over, it is shown that Talbot effect fringes can be produced even when the atomic
beam has a thermal longitudinal velocity distribution. Processes that lead to modu-
lation of the atomic density profile are classified into those that rely critically on
quantization of the atoms’ center-of-mass motion and those that do not.

Of course, in a volume of this size it is impossible to present chapters from all
the individuals and groups who have made important contributions to atom inter-
ferometry. In particular, material directly related to atom interferometers has
been included somewhat at the expense of research focused in the areas of atom
optics and atom lithography. Moreover, since atom interferometry is a rapidly
developing field, many new and important contributions will have appeared be-
tween the planning stage and publication date of this volume. Readers are re-
ferred to the chapters of this book for additional references as well as the follow-
ing journal volumes, which are special issues devoted to atom interferometry:

» Applied Physics, Volume B 54, Number 5, May, 1992
» Journal de Physique II, Volume 4, Number 11, November, 1994

* Quantum and Semiclassical Optics, Volume 8, Number 3, June, 1996.
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Finally, I would like to thank each of the contributors for their cooperation in
preparing this volume. I am aware of the amount of work that goes into writing
chapters of this nature and also understand that all of the participants are heavily
burdened with other demands on their time. I would also like to thank Zvi Ruder
and Abby Heim at Academic Press for their help, encouragement, and patience.

Paul R. Berman
Ann Arbor, 1996
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1. Introduction

In the 19th century, the work of Fizeau (1853), Michelson (1881), Rayleigh
(1881), and Fabry and Perot (1899) with light interferometers established a tra-
dition of beautiful experiments and precise measurements that continues to this
day. Shortly after the de Broglie 1924 proposal that every particle should exhibit
wavelike behavior, atomic diffraction was observed in scattering from crystal
surfaces (Estermann and Stern 1930). Subsequently, matter wave interferometry
with electrons (Marton, 1952; Marton et al., 1954; Mollenstedt and Duker,
1955) and neutrons (Maier-Leibnitz and Springer 1962; Rauch et al., 1974) was
demonstrated. Today, neutron and electron interferometry are invaluable tools
for probing fundamental physics, for studying quantum mechanical phenomena,
and for making new types of measurements. For an overview of matter wave in-
terferometry, see Bonse and Rauch (1979) and Badurek et al. (1988).

The scientific value of interferometry with atoms, and even molecules, has
long been recognized. In fact, the concept of an atom interferometer was
patented in 1973 (Altschuler and Franz 1973) and has been extensively dis-
cussed (Chebotayev et al., 1985; Bordé, 1989; Special Issue Atom Optics, 1992,
1994). Atom interferometry offers great richness, stemming from the varied in-
ternal structure of atoms, the wide range of properties possessed by different
atoms (e.g., mass, magnetic moment, absorption frequencies, and polarizability),
and the great variety of interactions between atoms and their environment (e.g.,
static E-M fields, radiation, and other atoms).

The technology for the production and detection of beams of atoms and mol-
ecules of many different species is well developed. Even a sophisticated super-
sonic molecular beam machine like the one used in our experiments (and de-
scribed in Section II) can be built largely of commercially available components
at moderate expense, unlike the nuclear reactor required for neutron beams.
Hence, the delay in the development of atom interferometers can be attributed to
the lack of suitable optical elements for coherently manipulating atomic and
molecular de Broglie waves. Therefore, it is appropriate that our review address
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(in Section III) the recent advances in atom optics that have allowed the develop-
ment of atom interferometers. We concentrate mostly on atom optics techniques
based on nanofabrication technology, since this is the type employed in our atom
and molecule interferometer.

These advances have allowed us to construct a versatile three grating
Mach-Zehnder atom and molecule interferometer (Keith ef al., 1991a; Schmied-
mayer et al. 1993; Chapman et al., 1995a). Over the past few years our work at
MIT has focused on the development of new techniques for atom and molecule
interferometry (Schmiedmayer et al., 1994a; Hammond et al., 1995; Chapman et
al., 1995a) and especially on the application of atom interferometers to the three
classes of scientific problems for which they are ideally suited: study of atomic
and molecular properties (Ekstrom et al., 1995; Schmiedmayer et al., 1995a), in-
vestigation of fundamental issues (Chapman er al., 1995¢, Schmiedmayer et al.,
1995b), and measurement of inertial effects (Lenef et al., 1996).

In this chapter, we provide an overview of the recent accomplishments in
atom and molecular optics and interferometry at MIT. We begin with a discus-
sion of the details of our experimental apparatus (Section II) and give an
overview of our recent-accomplishments in atom and molecular optics (Section
III). We then describe our atom and molecule interferometer, which is unique in
that the two interfering components of the atom wave are spatially separated and
can be physically isolated by a metal foil (Section IV), and give an overview of
atom interferometry techniques (Section V).

Our interferometer is especially well suited to the study of atomic and molec-
ular properties (Section VI), as it enables us to apply different interactions to
each of the two components of the wave function, which in turn permits spectro-
scopic precision in the study of interactions that shift the energy or phase of a
single state of the atom. We describe an experiment in which we have used this
capability to determine the ground state polarizability of sodium to 0.3%—an
order of magnitude improvement—by measuring the energy shift due to a uni-
form electric field applied to one component of the wave function. In a different
experiment, we measured the index of refraction seen by sodium matter waves
traveling through a gas sample, thus determining previously unmeasureable col-
lisional phase shifts, which we interpreted to reveal information about the form
of the long-range interatomic potential.

Our studies of fundamental issues (Section VII) have both investigated and
taken advantage of effects arising from the internal structure of atoms. In partic-
ular, we have addressed the limitations to interferometry due to complexity of
the interfering particles and conducted experiments investigating the loss of co-
herence due to the scattering of a single photon from each atom passing through
the interferometer. As a probe of the basic process of measurement in a quantum
system, we performed a correlation experiment in which the lost coherence was
regained. Finally, as a demonstration of the application of atom interferometers
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as inertial sensors, we demonstrated both the accuracy and the sensitivity of our
interferometer to rotation (Section VIII).

II. Beam Machine

All the experiments described in this review were carried out in a 3-meter-long
beam machine using a Na or Na, beam seeded in a supersonic noble carrier gas.
After an overview of the apparatus, we will outline the various techniques used
to prepare and detect atomic and molecular beams. The reader more interested in
atom interferometry and its applications may wish to skip this section and return
later for more information on the experimental details.

A. VACUUM SYSTEM

The vacuum envelope of our atom beam machine consisted of five differentially
pumped chambers (Fig. 1). The first chamber, which enclosed the supersonic
beam source, was pumped by a special high throughput 4 in Stokes ring jet

Ist Differential . .
Source Pumping Chamber 2nd Differential Interferometer Chamber Detector Chamber

Chamber Pumping Chamber - P o ‘__
) '7113; S P

Beliows for
vibration isolation

80 I/s Turbo Pump

4" Diffusion
Slok;suri(;)oster 10" Diffusion Pump
Pump
Skimmer Stern Gerlach Magnet
Sodium Ist Atom Grating 2nd Atom Grating  3rd Atom Grating
Reservoir \/_\
yi ; IR
Optical . .
Pumpi E————  Second Slit Light Interferometer Hot Wire Detector
wopine =5 aite Eage
First Slit  for "Broom"

FiG. 1. The vacuum chamber of our atomic beam machine. The lower figure gives a top view,
showing the paths of both the atom interferometer and the laser interferometer (which is used to
measure the relative positions of the atom diffraction gratings).
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booster diffusion pump with a pumping speed of 100 liter/sec at 0.015 torr. The
gas load from the source into this chamber was about 0.5 torr-liter/sec, resulting
in a typical pressure of a few mtorr. A conical skimmer removed the central por-
tion of the expanding gas from the oven and also formed the aperture into the
second chamber, allowing roughly 0.3% of the gas load from the source into this
differential pumping region.

The second and third chambers provided access for beam preparation, colli-
mation, and manipulation as well as the differential pumping needed to achieve a
good vacuum in the main experimental chamber. In the second chamber the
pressure was maintained at 2 X 10~° torr by an unbaffled 10 in diffusion pump
(4200 liter/sec). The beam traveled only about 20 cm in this chamber, then en-
tered the third chamber through the first of two collimation slits. The third cham-
ber was held at a pressure near 5 X 1077 torr by a 4 in diffusion pump (800
liter/sec) hung from a water cooled elbow. The aperture between the third cham-
ber and the main chamber was 1 cm in diameter and could be sealed with a
transparent Plexiglas gate valve that allowed optical alignment within the evacu-
ated main chamber with the source chamber open to air.

The 150 cm long main chamber contained all of the interferometer compo-
nents except the detector. Pumped by a 4 in baffled diffusion pump, the pressure
in this chamber was typically 3 X 1077 torr, good enough to limit losses from
scattering to below 10%. A 1 cm aperture with another Plexiglas gate valve sep-
arated the main chamber from the detector chamber.

The detector chamber required the lowest possible pressure, to reduce false
counts in the detector due to residual background gas. This chamber was
pumped with a turbo pump and in addition had a liquid nitrogen pumping sur-
face, a combination yielding pressures of 2 to 5 X 107® torr. The turbo pump
was hung on a 6 in vacuum bellows to isolate its vibrations from the rest of the
machine.

To further reduce vibrations in the machine, the roughing pumps were situ-
ated several meters from the machine and mounted on vibration isolation pads.
Roughing lines were mounted solidly to a wall and connected to the machine
with flexible vibration isolating lines. In addition, we could lift up the whole
vacuum system and hang it from the ceiling, thereby significantly reducing the
higher frequency vibrations transmitted by the building floor.

B. SUPERSONIC SOURCE

The atomic and molecular sodium beams were produced in an inert gas supersonic
expansion seeded with sodium vapor. The most important feature of this source was
that it produced an intense beam with a narrow longitudinal velocity distribution
(<5% rms), which was necessary for most of the experiments that we undertook.
Sodium metal, contained in a stainless steel reservoir, was heated to temperatures as
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high as 800°C (>5 torr vapor pressure of sodium) and mixed with a noble gas at
high pressure (typically >2 atm). The noble gas/sodium mixture flowed through a
70 wm diameter nozzle into vacuum, producing an isenthalpic supersonic expan-
sion. The result was a very cold beam. The 500 um skimmer orifice leading to the
first differential pumping chamber was located inside this expansion, allowing the
cooler core of the supersonic beam to propagate down the rest of the machine with
low probability of further collisions. The total detected brightness of the sodium
beam was as large as 10%! atoms str~! sec™! cm~2,

Clogging of the 70 um nozzle was prevented by carefully purifying the inert
carrier gas before transferring it into the source. We used two gas purifier stages
between the gas handling system and the source, yielding residual water and
oxygen impurities of a few ppb. With the gas purifier system in place, we were
able to operate our source continuously for several weeks.

An additional feature of this source is that the velocity (and hence the de
Broglie wavelength) of the atomic or molecular sodium is (to within a few per-
cent) determined by v = V5k,T/ M, e » Where m_, . is the mass of the inert car-
rier gas (Scoles, 1988). Hence, the velocity of the source could be varied by
changing the carrier gas (Table I). With a source temperature of 700°C and argon
as the carrier gas, our supersonic sodium beam had a mean velocity of 1000
m/sec, which corresponds to a de Broglie wavelength of A, ~ 0.17 A. By mix-
ing carrier gases, we were able to vary the beam velocity continuously from 650
m/sec using pure xenon to 3300 m/sec using pure helium (Table I).

The velocity distribution of the source also varies according to changes in
carrier gas pressure. We have produced velocity distributions with a FWHM
ranging from Av/v = 70% with no carrier gas to Av/v < 8% at 3 atm of argon,
the latter figure corresponding to an rms velocity width of 3.4%, and a (longitu-
dinal) translational temperature of 1.6 K. Narrower velocity distributions with
lower final temperature are obtainable with helium, in part because it does not
heat the expansion by forming dimers.

TABLE 1
TyPICAL PARAMETERS FOR OUR Na AND Na, SOURCE

Seed gas Kr Ar Ne He
Velocity (m/sec) 750 1000 1700 3300
Na
A A) 0.23 0.17 0.10 0.05
Separation  (um) 75 55 34 18
Na,
A A) 0.125 0.085 0.05 0.025

dB
Separation  (um) 38 28 17 9
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C. AtoMIiC BEAM

After exiting the source chamber, the supersonic sodium beam passed through a
series of operations preparing it for use in the interferometer. In general, our ex-
periments required that the beam be fairly monochromatic and well collimated,
and sometimes that the ensemble of sodium atoms be prepared in a particular
quantum state.

Beam collimation was provided by two slits, 20 (or 10) um wide, the second
of which could be rotated under vacuum for proper alignment. The slits were
spaced 87 cm apart, yielding a ribbon-shaped beam up to 3 mm high with a typi-
cal beam divergence of 23 (12) urad FWHM. For a 1000 m/sec atomic Na
beam, this collimation represents a transverse velocity of about 2 (1) cm/sec, or
%(%) of the recoil velocity induced by a single photon, and a corresponding
transverse “temperature” of 0.5 (0.25) uK.

To prepare the Na atoms in a single hyperfine state, we optically pumped
them to the 35, ,F =2, m, =2 state using a circularly polarized laser beam
tuned to the F = 2 — F’ = 3 transition of the sodium D, line. An additional side-
band tuned to the F = 1—F’ =2 transition pumped atoms out of the F = 1
ground state. A standing wave dye laser (Coherent 599) generated the resonant
F =2—F’ =3 light. This light was directed through an electro-optical modula-
tor to generate sidebands at 1713 MHz and then transferred to the beam machine
via single mode, polarization preserving optical fiber. We employed a locking
technique described in Gould et al., (1987) to select a specific atomic state and
to achieve long-term frequency stability of the laser (McClelland and Kelley,
1985). This technique is based on the fact that the transverse position of the fluo-
rescent spot formed when the laser intersects a diverging atomic beam depends
on the laser frequency due to the spatially varying doppler shift. The differential
signal obtained by imaging this spot onto a split photodiode provides the error
signal for laser frequency locking (Gould, 1985).

Because atoms optically pumped in this manner necessarily have scattered
many photons, these atoms are deflected relative to the other beam constituents.
For this reason, we chose to optically pump the atoms in the first vacuum cham-
ber, before the first collimation slit, so that we still obtained good beam collima-
tion and so that by optimizing the positions of the collimation slits we could
greatly reduce the background of Na, molecules and unpolarized atoms. Weak
(~4 Gauss) magnetic guide fields provided a quantization axis for the optically
pumped atoms, and maintained the atomic polarization throughout the interfer-
ometer. The direction and strength of these fields were variable, allowing us to
select the orientation of the atomic spins in our experiments.

Due to the rapid transit of atoms through the collimation slits, any residual
magnetism in these slits can cause nonadiabatic transitions, also known as Mar-
Jorana flops, with resulting loss of polarization. We observed significant depolar-
ization when using stainless steel slits, even after they had been demagnetized,



8 Jorg Schmiedmayer et al.

so we elected to fabricate our own slits out of silicon. Employing the silicon
slits, we achieved better than 95% polarization, as determined by a two-wire
Stern—Gerlach magnet (Ramsey 1985), located 30 cm after the second collimat-
ing slit, used to measure the state-dependent deflections of the atomic beam.

D. MOLECULAR BEAM

To prepare a pure beam of molecules for molecular optics and interferometry ex-
periments, a number of additional steps were necessary. By heating the sodium
reservoir to 800°C (Na vapor pressure ~6.5 torr), we were able to enhance the
population of sodium dimers in the beam to as much as 30% of the detected
beam intensity. To obtain a pure beam of molecules, we deflected atoms out of
the beam using resonant laser light applied halfway between the two collimating
slits (Fig. 2) (this required less than 2£k of transverse momentum). Sodium mol-
ecules are not resonant with the deflecting laser beam and therefore were unaf-
fected [the X! E;—* A' 2" transition to the first excited dimer state lies around
680 nm (Herzberg, 1950)]. A knife edge, positioned directly upstream from the
laser beam, blocked atoms that could have been deflected back into the now
purely molecular beam. At a carrier gas pressure of 2000 torr, our Na, beam had
only 3.5% rms longitudinal velocity spread, corresponding to a (longitudinal)
translational temperature of 2 K.

E. DETECTOR

In the detection chamber, individual sodium atoms and molecules were ion-
ized on the surface of a SO wm rhenium wire heated to approximately 850°C
and detected by a channeltron electron multiplier. To reduce background

. Na
— Knife )
5 .lJI\\ Edoe ’—| Resonant
‘ “\ Laser Pure
- I Na, Beam
e n— — el
I

Collimation \/ \\ Colhmaton

L
e
-

Sl Shit

FiG. 2. Production of a pure molecular beam by removing the sodium atoms. The deflecting laser
imparts a transverse momentum to the sodium atoms, deflecting them away from the second collima-
tion slit. The knife edge prevents scattering of sodium atoms back into the molecular beam.
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noise the wire was cleaned thoroughly by baking it out at temperatures
>2500°C. Furthermore, we employed specially designed electric fields so that
only ions from the hot wire were collected, and thermally emitted electrons
were prevented from ionizing the residual gas in the detector chamber. To
achieve high efficiency, we grew an oxide layer on the wire by periodically
oxidizing it at a low pressure (10™* torr O,) and high temperature (again
>2500°C) for 10 sec. Typical performance characteristics of the Na atom de-
tector were a response time of 1 msec, and background count rate of less than
50 counts per second (cps).

The use of this detector for Na, dimers raises the interesting question of
whether an Na, dimer will produce one or two detector counts (Parrish and
Herm 1969). If the molecule dissociates on the hot surface and each atom gets
ionized independently, then we might see two separate counts. Using our molec-
ular beam, we measured the time correlation function of neighboring counts. For
single counts arriving randomly, the correlation exhibited an exponential decay,
reflecting the average count rate. A pair of counts from a single dimer that was
thermally dissociated before ionization had a faster correlation decay, reflecting
the average ionization time scale. To use this difference to study the degree of
thermal dissociation, we chose a higher than normal operating temperature of
the hot wire to make the ionization time fast enough that a correlated ion pair
from a Na, molecule could be distinguished from the random counts. From the
correlation data (Fig. 3), we find the probability of detecting a pair of disassoci-
ated ions to be at least 5%. This figure includes an estimated single ion detection
efficiency of 20%. From this data we can also estimate a lower boundary of the
ionization efficiency of the hot Re surface to be >50%, and a probability of the
Na, molecule to break up at the surface to be larger than 66%.

II1. Optics for Atoms and Molecules

The field of atom/molecule interferometry has been opened up by recent ad-
vances in atom optics. Optical elements based on both the mechanical forces
of light (Gould er al., 1986; Bordé, 1989; Kasevich and Chu, 1991; Riehle et
al., 1991; Sterr et al., 1992) and nanofabricated structures (Keith et al., 1988,
1991a; Carnal and Mlynek, 1991; Shimizu ef al., 1992) allow sufficiently co-
herent manipulation of de Broglie waves that atomic/molecular interferome-
ters can now be built and used in a variety of different experimental applica-
tions. These two types of optical elements for atoms and molecules are
complimentary in many respects: nanofabricated optics are inexpensive,
rugged, reliable, and species insensitive, whereas light-based optics are
species and state selective, require light from stabilized single-mode lasers,
are highly precise, and do not clog up if used with high intensity atom beams.



10 Jorg Schmiedmayer et al.

Counts per Time Channel
8

9

8t

7

6

5

4

3H ] ] | 1 h
0 1 2 3 4 5

Delay Time (ms)

FiG. 3. Histogram of the time between successive counts obtained if Na, molecules impinge on
our Re hot wire detector. Two different time scales can be distinguished. The first is an exponential
decay that matches our constant count rate of 240 counts per second. The second feature is a steeper
decay at short time delays. We attribute this to two sodium ions being produced from a single sodium
dimer and infer that the time constant of the decay reflects the time response of the detector wire.
Subtracting our background of 125 counts/sec we can estimate that for about 5% of the Na, mole-
cules we see two counts.

We predict that both will see wide future application, perhaps combined in
the same experiment as we have done for molecules (see Sections III.B and
IV.G). Many of the light force based developments in atom optics are re-
viewed in special issues of JOSA-B. (Special Issue Mechanical Effects of
Light, 1985, 1989; Special Issue Atom Optics, 1992, 1994).

Our group was instrumental in the development of atom and molecule dif-
fraction gratings, elements used in practically all atom interferometers, using
both of the major approaches described previously: light forces (Moskowitz et
al., 1983; Gould et al., 1986; Martin, et al. 1988) and nanofabricated optical ele-
ments (Keith, et al. 1988, 1991b, Ekstrom ez al., 1992 and references therein).
The earlier atom optics work performed by our group, which was concerned pri-
marily with light forces, is covered in several previous articles and reviews
(Moskowitz et al., 1983; Gould et al., 1986, 1987b, Martin er al., 1988; Oldaker
et al., 1990; Gould and Pritchard, 1996) and will not be discussed here. There-
fore, in this section, we shall concentrate on nanofabricated atom/molecule ele-
ments such as those used in our interferometer.
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A. NANOFABRICATION TECHNOLOGY

The major enabling factor for our atom/molecule interferometer was the de-
velopment of nanofabricated diffraction gratings, consisting of thin (100—-200
nm) low-stress silicon nitride membranes with precisely patterned holes (see
Fig. 4). These structures are used as diffractive optical elements for atoms and
molecules. The fabrication process has been described in detail in Keith et al.
(1991b) and Ekstrom et al. (1992), we will give only a quick overview here
(see Fig. 5).

Our procedure for fabricating atom optics devices begins with the deposi-
tion of low-stress silicon nitride by low-pressure chemical vapor deposition
on both sides of a standard double polished <100> silicon wafer 250 wm
thick. We then apply a layer of optical photoresist on which a pattern of
windows is exposed. Each window is etched entirely through the silicon,
leaving a suspended nitride “window pane” on the front of the wafer. We
next apply a 120-210 nm layer of PMMA (polymethyl methacrylate) to the
front side of the wafer, on which is evaporated a thin layer of gold to prevent
distortions due to the accumulation of charge from the electron beam. After-
ward, the desired pattern is written into the PMMA using electron beam lith-
ography.

To make diffraction gratings suitable for use in the interferometer, great care
has to be taken that the pattern is written with positional accuracy below a small
fraction of the grating period (typically a few tens of nanometers). Since the
electron beam writer must piece together many (80 wm square) fields to write a
large area pattern such as our gratings, “stitching” errors can occur. To prevent

A
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FIG. 4. Transmission electron microscope picture of a 140 nm period grating. The orthogonal
support structure has a 4 wm period.
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FiG. 5. Construction steps to produce a patterned, free-standing silicon nitride membrane (after
Keith et al., 1991b).

this misalignment of the many small fields, we write markers on the chip that
subsequently are used to realign the translation stage prior to writing each small
area (Rooks et al., 1995).

The areas in the PMMA exposed by the e-beam writer are washed away with
a mixture of methyl isobutyl ketone (MIBK) and isopropanol (IPA). The ex-
posed pattern is then directly transferred onto the silicon nitride window using a
specially developed reactive ion etching gas mixture (Keith et al., 1991b), leav-
ing a free-standing pattern of slots in the silicon nitrate membrane (Fig. 4). Us-
ing this method, we can fabricate gratings possessing better than 10 nm accuracy
over areas as large as 0.8 X 0.8 mm.
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B. DIFFRACTION OF ATOMS AND MOLECULES

We have investigated atomic and molecular diffraction by directing our Na and
Na, beams through nanofabricated gratings with various periods (Keith et al.,
1988; Chapman er al., 1995a). Diffraction patterns for a pure Na, beam and a
mixed Na—Na, beam, obtained using a 100 nm grating, are shown in Fig. 6.
Note that the various atomic diffraction orders are sufficiently separated to per-
mit easy identification of the intermediate molecular diffraction peaks at half the
atomic diffraction angle (Fig. 6b). This is exactly as we would expect since
atoms and molecules in the argon-seeded supersonic beam have nearly identical
velocities, while their unequal masses result in a factor of 2 difference in de
Broglie wavelength. Further comparison of the two patterns in Fig. 6 reveals that
our pure Na, beam contains residual Na contamination of less than 2%.

These diffraction patterns were powerful tools for analyzing atoms and mole-
cules in our supersonic expansion. Knowing the diffraction angle, we deter-
mined an average beam velocity using 0, = A p/d = (h/mv)(l/dg) where dg is
the grating period and A, = 277/k,, is the de Broglie wavelength. Further, we ex-
tracted the width of our beam’s velocity distribution from the broadening of

—_

10* '3 $ 4 3 Pure Na,

412 a2l
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Counts/second
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P PN P B b O, .
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Fic. 6. Diffraction of 750 m/sec sodium atoms and molecules (Kr as a carrier gas) by a 100 nm
period nanofabricated diffraction grating: (a) Diffraction of the mixed atom-molecule beam (de-
flecting laser off). One can clearly distinguish the atoms from the Na, molecules by their different
diffraction angle. A fit to the combined diffraction pattern (thin solid line) indicates 16.5% of the in-
tensity is molecules. The thick solid line is the fit to the Na, diffraction pattern in (b). For this mea-
surement the deflecting laser was on. The fits determine the grating open fraction to be 30% and are
a very good measurement (<.1%) of the de Broglie wavelength (velocity) of the atomic/molecular
beam.
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higher order diffraction peaks. In experiments with mixed beams, we were able
to determine the mean fraction of dimers in the beam, as well as the center and
width of the velocity distributions for both atoms and dimers. We observed a ve-
locity slip between the atoms and slower moving molecules of as much as
3.5(6)% at low source pressures (400 torr). At a more typical source pressure of
1500 torr, the slip was less than 1% (Scoles, 1988).

A good fit to the measured diffraction pattern also provides information about
the open fraction (ratio of slit width to grating period) and homogeneity of the
grating. Due to imperfections in the fabrication process, the width of the grating
bars, and hence the open fraction, is not uniform. We modeled this nonunifor-
mity as an incoherent sum of diffraction patterns with a distribution of various
open fractions. Fits to diffraction patterns from many different gratings suggest
that our grating bars are uniform to within * 10 nm.

Using these and other diffraction techniques to investigate the properties of
atomic and molecular beams has the advantage of being non-destructive. Indeed,
our method and gratings have recently been used to produce unequivocal evi-
dence for the existence of the weakly bound Van der Waals molecule He, (and of
higher He  clusters as well) (Schallkopf and Toennies, 1994).

C. NEAR FIELD ATOM OPTICS: THE TALBOT EFFECT

To more directly measure the homogeneity of the gratings, one could place two
gratings close to each other in an atomic beam and examine the moiré pattern
due to the “shadow” of the first grating falling on the second. The difficulty is
that the “shadow” quickly blurs downstream from the first grating due to diffrac-
tion. However, further downstream, the shadows remarkably return at discrete
distances from the first grating. These “self-images” of the first grating are
known as Talbot images (Talbot, 1836), and in this section we discuss our mea-
surement of these images using atom waves. This effect is well-known in classi-
cal optics and has many applications in image processing and synthesis, pho-
tolithography, optical testing, and optical metrology (Patorski, 1989).

Classical wave optics recognizes two limiting cases, near and far field. In the
far-field limit, the intensity pattern of the beam is characterized by Fraunhofer
diffraction, in which the curvature of the atom wave fronts is negligible. How-
ever, in the near-field limit the curvature of the wave fronts must be considered.
In this case, the intensity pattern of the beam is characterized by Fresnel diffrac-
tion. Our study of the Talbot effect is one example of near-field atom optics, the
self-imaging of a periodic structure (Chapman et al., 1995b).

We can understand the Talbot effect by considering the image formed by the
interference of three plane waves: the 1st, Oth, and — 1st diffracted orders from a
grating. At a characteristic distance beyond the grating known as the Talbot

length, Ly . = 2d§/)\ ap (d, 1s the grating period, A is the wavelength of the in-
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cident wave), the three diffraction orders are laterally displaced from their initial
positions by an even number of grating periods and interfere to form a grating
self-image. At % L. ... an image identical to the grating is formed, which is later-
ally shifted by half a period. Images of both grating and shifted self-images ap-
pear repetitively further downstream, spaced one Talbot length apart. Other self-
images with smaller periods dg/n (n=234, . . .) are produced at intermediate
distances (Cowley and Moodie, 1957; Rogers, 1964; Winthrop and Worthington,
1965; Clauser and Reinisch, 1992) if diffraction into higher orders is significant.
A full treatment of the problem, including the other diffracted orders and more
detailed predictions of the positions and contrast of the subperiod images, re-
quires solving the Fresnel diffraction problem with more formal techniques
(Patorski, 1989; Clauser and Reinisch, 1992; Clauser and Li, 1994).

We investigated these successive self-images with atom waves (Schmied-
mayer et al., 1993; Chapman et al., 1995b), using transmission gratings with
two different periods, 200 and 300 nm, which yield Talbot lengths of 4.7 and
10.6 mm, respectively, for our atomic beam. The Talbot self-images were de-
tected by masking them with a second transmission grating placed downstream
(see inset of Fig. 7). When the second grating, whose period exactly matched
that of the image, was scanned laterally across the self-image, the total transmit-
ted intensity measured by the detector behind the grating revealed a high-con-
trast moiré fringe pattern.

In our experiment, we varied the separation between the gratings from 3.5 to
13.5 mm, and the contrast of the moiré fringe pattern was determined as a func-
tion of grating separation. Experimental results for both the 200 and 300 nm
gratings are shown in Fig. 7. The contrast of the images damps out for larger
grating separations, primarily because of the transverse incoherence of our atom
beam as determined by the imperfect collimation of the source.

An especially promising application of Talbot (or Lau) imaging with atoms is
atom lithography (Timp et al., 1992). It should be possible to write small fea-
tures using the reduced period intermediate images discussed earlier. These im-
ages have been used successfully in x-ray lithography to write half-period grat-
ings (Flanders et al., 1979). Grating self-images may also be used in quantum
optics experiments to produce a periodic atom density in an optical resonator.

D. RABI OsCILLATIONS OBSERVED USING MOMENTUM TRANSFER

If an atom traverses a running light wave that is focused to a narrow waist so
that the traversal time is smaller than the radiative decay time, then damping by
spontaneous emission is negligible and the state of the atom after the traversal is
determined by the coherent interaction with the light field. The probability for res-

onant excitation in a two-state system (ignoring damping), is given by the Rabi
formula P(g—> e) = sin’ (wpt/2) (here w, =2m-10 MHz VI/(12 mW/cm?)
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Fic. 7. The experimental data and calculations showing the contrast of the Talbot self-image as a
function of grating separation for 200 nm gratings (above) and 300 nm gratings (below). The insert
shows a schematic of the experimental apparatus. The distance between the two gratings, z, can be
varied from 0.35 to 1.35 cm. The lateral position of the second grating is scanned using a PZT.

for the 3P, , transition in Na and / is the intensity of the excitation light). The os-
cillations of the probability are called Rabi oscillations.

We observed these predicted Rabi oscillations, corresponding to the coherent
exchange of photons, in our atomic beam. Rabi oscillations correspond to the al-
ternate absorption and (stimulated) emission of one photon from the laser beam.
Since the transferred momentum is respectively 1%k and — 14k, there is a corre-
sponding oscillation in the transverse momentum of the atoms. Excited atoms
were identified by the deflection imparted to them by the absorbed photon. An
atom exiting the laser field in the excited state will have received 1%k of momen-
tum in the direction of propagation of the laser and the subsequent spontaneous
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photon will transfer another 1%k of momentum in a random direction. Therefore,
excited atoms will be deflected with momentum around 17%k.

For this experiment, the atoms were first prepared in the F = 2,m_ = 2 ground
state by optical pumping (~95% efficiency) with a o + polarized laser beam
(see Section II.C). They were then excited from this state to the ' =3, m; =3
excited state (this constitutes a closed two-level system) using resonant o + po-
larized laser light focused to a ~15 um waist (FWHM of the field) along the
atom propagation direction. A cylindrical lens was used to defocus the beam in
the direction perpendicular to the atomic beam to ensure uniform illumination
over the full height of the beam (~1 mm). Using 3000 m/sec atoms from a He
driven expansion, the transit time through the waist (5 ns) was smaller than the
lifetime of the excited state (16 nsec), and hence the probability for resonant ex-
citation in the two-state system showed weakly damped Rabi oscillations as a
function of laser power. Data taken with the detector wire displaced from the
atomic beam axis by a distance corresponding to a single photon recoil are
shown in Fig. 8.

In conducting our single-photon scattering experiments (see Section VII), we
used this effect as a tool to align our laser beam relative to the atomic beam and
to adjust the laser intensity to produce a mr-pulse, ensuring as nearly as possible
that exactly one photon was scattered by each atom.

| | I |
300 |-
g 200}
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100 = ;- ARG
0 L 1 | |
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Laser Field Strength (arb. units)

FiG. 8. Observing Rabi flops in momentum transfer. The detector is displaced from the collima-
tion axis by one photon recoil, and we measure the count rate as a function of laser intensity. As the
power increases, the atoms have an oscillatory probability of being excited that is given by the Rabi
formula. To scatter a single photon, we set the power to the value at the first maximum of these oscil-
lations, which closely corresponds to a 7 pulse.
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IV. Interferometry with Atoms and Molecules

In this section we will outline the theoretical and design principles underlying
the construction of our atom/molecule interferometer.

A. THREE GRATING MACH—ZEHNDER ATOM INTERFEROMETER

The MIT atom interferometer (Keith et al., 1991a; Schmiedmayer et al., 1993)
was built with a Mach—Zehnder geometry employing three 200 nm period
nanofabricated transmission gratings (Keith et al., 1991b; Ekstrom et al., 1992)
mounted on separate translation stages inside the vacuum chamber (Fig. 9). The
first grating diffracts the atomic beam primarily into the diverging orders —1, 0,
and +1. The Oth and 1st orders are diffracted through the second grating a dis-
tance L downstream. The second grating diffracts a portion of each of the two in-
coming beams toward each other. These diffracted beams, which are the —1st
and +1st orders of the two incident beams, respectively, overlap after traveling
another distance L, forming a standing matter wave pattern, just upstream of the
third grating, whose crests are parallel to the longitudinal axis of the interferom-
eter. This standing wave pattern propagates along the longitudinal axis through

Translation Reference

Stages
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Collimation
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Hot Wire
Detector

Na/A i i
Sourcz 10 um Copper Foil Interaction Region

He-Ne | '
Laser 0.6m i 0.6 m |

FiG. 9. A schematic, not to scale, of our atom interferometer (thick lines are atom beams). The
Oth and 1st order beams from the first grating strike the middle grating where they are diffracted in
the 1st and — Ist orders. These orders form an interference pattern in the plane of the third grating,
which acts as a mask to sample this pattern. The detector, located beyond the third grating, records
the flux transmitted through the third grating. The 10 cm long interaction region with the 10 um
thick copper foil between the two arms of the interferometer is positioned behind the second grating.
An optical interferometer (thin lines are laser beams) measures the relative position of the 200 nm
period atom gratings (which are indicated by vertical dashed lines).
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the third grating, which then acts as a mask, with its transverse position relative
to the interference pattern determining the total transmitted flux. This flux is then
measured by the detector (a 50 um wire, which is much wider than a grating pe-
riod). Uniform translation of either the standing wave pattern or the grating re-
sults in a periodic change in the transmitted intensity, creating an observable
fringe pattern. The diamond shaped pattern of the interfering beams forms the
classic Mach—Zehnder interferometer. We have observed atomic interference
patterns with up to 50% contrast (Fig. 10) and obtained maximum interfering
amplitudes of more than 50000 counts/sec at slightly lower contrast.

An interferometer geometry employing three equally spaced transmission
gratings but without the collimation that would restrict it to the Mach—Zehn-
der geometry just described also creates a robust interferometer (Chang er al.,
1975). Like the Mach—Zehnder geometry, it is white fringe, with phase and
period of the interference pattern independent of the wavelength, wavelength
spread, width, and initial direction of the input beam. This second geometry
obviously offers the advantage of greatly enhanced signal, and we have ap-
plied it in studies where it is not necessary to physically isolate the two inter-
fering atom waves.

An added benefit of both geometries just discussed is that the grating period-
icity (200 nm) determines the scale of transverse dimensional stability required,
rather than the much smaller de Broglie wavelength of sodium atoms (16 pm) or
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FiG. 10. Interference pattern from 30 sec of data (1 sec per point). The contrast is 49% and the
phase uncertainty is <10 mrad.
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molecules (8 pm). Requirements on the longitudinal spacing are much less re-
strictive (Turchette et al., 1992).

To understand the principles of our interferometer, it is helpful to review the
theoretical foundations of matter wave interferometry using semi-classical
physics. We begin by considering the difference in phase between two possible
paths I, and T, through the interferometer from source to detector, since this
difference determines the phase of the interference pattern. The difference be-
tween the phases accumulated along each path can be expressed in terms of the
classical actions along these paths S, , (Feynman and Hibbs 1965; Storey and
Cohen-Tannoudji, 1994):

1
=7 6 =S5 ey

The classical action is defined in terms of the Lagrangian, which is (for a one-
dimension system with a position-dependent potential)

L(x, X) = 5 mi* — V(%) ()

for a particle with mass m in a potential V(x). The classical action along each
path then becomes (for i = 1,2)

S, Ef Lx(),x()] dt
I

dx mv?
= J; (mva - [V(x) + T} dt) 3

=f (pdx—Hdy)
r

where H is the Hamiltonian governing the classical motion of the particle. In a
time-independent problem, H is constant and the phase difference accumulated
along the classical paths can be written as

p= f k(x) dx — J k,(x) dx C)
rl rZ

where k(x) = %\/2m(E — V(x)) is the local k vector.

To answer the question “What will the interference pattern look like?” we
must consider in detail (Turchette, 1991; Turchette et al., 1992) the superposi-
tion of both contributing paths in the interferometer [Eq. (1)]. In doing this, we
discover that the phase of the interference pattern can be attributed to two sepa-
rate terms: a term dependent on the paths through the interferometer and a term
dependent on any interaction that alters the de Broglie wavelength along these
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paths: that is, ¢ = Pposition T A¢. The first phase contribution, hereafter referred
to as the position phase, is a function of the relative transverse grating positions,
X,, given by

21
Pposition a4 (x, = 2x, + x3) = k(x, — 2x, + x3) )

8
where k, = 2m/d, is the lattice vector of the grating. The second or interaction
phase shift (A¢p) arises from the difference between the interactions along the
two paths:

1 1
Ap= 5 jo Lix(0),x(0] dr - 7 f Lix(0,x(0)] dr (6)
r r

1 2

where I'? and T' now denote classical paths through the interferometer with
x, = x; = 0 and with no applied interaction. This split is allowed because the
action is stationary with respect to small perturbations of the paths. By splitting
the observed phase in this manner, we can focus our attention on analyzing the
phase difference between just the two paths I'? and I'Y rather than solving the
full path integral problem (Feynman and Hibbs, 1965). It is important to note
here that Ag is O when the action along both paths are equal; that is, only a dif-
ference in the applied potential V(x) along the two paths will lead to an interac-
tion phase shift Ag.

B. PHASE AND CONTRAST MEASUREMENT

The near field detection scheme discussed above, in which the third grating
masks the interference pattern, gives rise to oscillations in the total transmitted
flux as the grating is translated with respect to the pattern. This method gives in-
terference fringes like those shown in Fig. 10.

The detected intensity, /, from the portion of the two interfering beams pass-
ing through the third grating is

1=|¥? = A7+ AL + 2A A, cos (¢) @)
={I) (1 + C cos(¢))

where A|, A, are the amplitudes of these interfering beams and ¢ is their phase
difference. The second preceding equation has been reformulated in terms of the
mean intensity (I) = A3 + A3 and contrast:

=Imax — Imin — 2AIAZ (8)

I +1. A2+ AY

ma:

The output of the interferometer signal is fitted to Eq. (7) to determine the
phase difference, ¢, the contrast, C, and the mean intensity, (I). Since the atoms
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in the interferometer do not interact with each other, the contrast is independent
of the source intensity. Moreover, if the intensity of one of the interfering beams
is attenuated by some factor, the contrast is reduced by only the square root of
this factor. Thus, an interference pattern with 1% contrast may be obtained even
if one beam is attenuated by as much as 10~* (Rauch et al., 1990; Schmied-
mayer et al., 1995a).

C. OPTIMIZING CONTRAST AND SIGNAL TO NOISE

One of our primary goals in designing this experiment was to be able to deter-
mine the phase of an interference pattern as accurately as possible. Neglecting
systematic errors and assuming Poissonian counting statistics, the theoretical
limit on the rms error in the phase measurement (Rauch et al., 1990; Dowling
and Scully, 1993) is given by

1
%~ VNC ®
where N is the total number of atoms contributing to the recorded interference
pattern and C is the observed contrast. The quantity VNC depends strongly on
the open fractions B, of the three amplitude gratings. For example, the third grat-
ing alone contributes a reduction in the observed fringe amplitude of sin(7g,)/,
and a reduction in contrast of sin(73,)/7f3;.

The problem of determining the ideal open fractions can be split into two
parts: optimizing the interference pattern and optimizing the open fraction of the
third grating for near field detection. Taking into account all possible paths
through the interferometer, the largest interference signal at the position of the
third grating is obtained for B, = 0.56 and 8, = 0.5. Maximizing VNC for the
third grating yields 8, = 0.37 as the best value. With these open fractions, we
expect a maximum contrast of 67% and a maximum detected signal of 1% of the
initial beam. Note that higher contrasts (up to 100%) can be obtained with small
first and third grating open fractions, but only at the expense of a reduced trans-
mitted intensity.

D. GRATING ALIGNMENT

Parallel alignment of the axes of the three gratings with respect to each other
was essential to the production of high-contrast fringes in our experiment.
Roughly, the gratings had to be aligned to better than half a grating period over
the beam height. For our interferometer, this corresponds to about 0.1 mrad (100
nm/1 mm). An expression for the contrast reduction due to rotational misalign-
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ment results from assuming an extended incoherent source and an extended de-
tector in the plane of the third grating. The total interference pattern is then an
incoherent sum over all possible interferometers located in all allowed planes.
The total contrast depends on the relative rotations of the gratings a, = 6, — 6,
and a; = 6; — 6, according to Ekstrom (1993):

L 1 La
H - = inl & + 73
sm(kxho L +2L a') Sm(z kgh3(“1 L + ZL))
L

Lo
[ 1 _ 573
k.hy L +2L a, 2 kgh3<oz1 + )

Clay, oy by, By) =

(10

where h and h, are the source and detector heights respectively, L, is the dis-
tance from the source to the first grating, and L the separation between gratings.

Figure 11 illustrates the relationship between the contrast and the rotational
alignment of the third grating.

Contrast (%)

Third Grating Rotation (mrad)

FiG. 11. The dependence of the contrast in our interferometer on grating rotation. The data

shown is for the rotational alignment of the third grating. The insert illustrates the geometric arrange-
ment discussed in the text and Eq. (10).
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E. SENSITIVITY TO MOTIONS OF GRATINGS

In our discussions up to this point, we have assumed that the gratings were fixed
in an inertial frame, although both vibrations and overall acceleration of the ap-
paratus cause this assumption to fail. To account for the time-dependent dis-
placements of the gratings from an inertial reference frame Eq. (5) must be gen-
eralized. The time-dependent phase of the interference depends on the position
of each grating when the atom passed through it:

%osmon(t) = kg(xl(t —27) — 2t — 1+ x,(0) an

where 7= L/v is the time it takes a particle with velocity v to travel between two
gratings separated by a distance L. It is convenient to rewrite Eq. (11) as

‘Pposmon(t) = ‘»"granng(t -n+ kg(xl(t -2 —-—xt—7)+ kg(x3(t) —x;(t— 'r))lz
(12)

where the first term, which is called the grating phase and is given by
gogming(t) = kg(xl(t) — 2x,(1) + x4(#)), is the position phase [Eq. (5)] at the instant
when the particle passed through the middle grating, while the other two terms
describe the effects of grating motion during the free flight of the particle
through the interferometer.

If the changes in position of the gratings are due to acceleration and rotation
of the interferometer as a whole, we can derive expressions for phase shifts due
to these non-inertial motions. Assuming that changes in the rotation rate and ac-
celeration occur over much longer time periods than the particles’ transit time
through the interferometer, we express the time-dependent grating positions that
determine the observed phase [Eq. (12)] in terms of the velocity and acceleration
of the interferometer, then rearrange terms to reflect these specific non-inertial
motions:

‘Pposition(t) = ¢grating(t - T) + (Prolation(t - T) + gDa\cceleralion(t - T)' (13)
Here, the phase from rotation
(prolation(t) = kg().(3(t) - .).Cl(t))T = kgLQT 14)

is determined by the difference in the velocities of the first and last gratings,
which follows from the rotation rate, {); and the phase from acceleration

qDaccelerz‘nion(t) = kg %(Xl(t) + x3(t))72 (15)

is given by the average acceleration of the first and last gratings.

Because of these time-dependent phase shifts, vibrations of the gratings can
wash out the fringe pattern if it is not observed on a sufficiently short time scale.
Since the gratings are mounted on independent stages on three different flanges,
a reasonable model to assess the contrast loss due to vibrations invokes the as-
sumption of independent, random, Gaussian distributed positions for each of the
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three gratings, each with variance o2. Following Eq. (5) we separately consider
the positions at the time of passage through the middle grating and the subse-
quent displacements Ax_= x(¢ — 7) — x(#) of the gratings during the passage of a
particle through the interferometer. The displacements Ax_are also assumed to
be Gaussian distributed (variance o with o~ o, wvib'r/\/i for w,;, T<€1). Aver-
aging over a time larger than the characteristic time scale of the displacements,
we find that this model predicts that the contrast of the interferometer will be re-
duced to

C= CO CXp(_ %(02((Pgrating) + Uz(goinenial)))
=C, exp(—kg(Saf +0?2) 16)
= C, exp(—3k20%6 + w2 7).

The first term in the exponent (Uz(gogming) = 6k%0?) comes from the random
grating phase Poratin g(t — 7), and the second term (0*(¢, . ...) = 20§) comes from
the random movements of the gratings during the flight of the atoms through the
interferometer (inertial noise). Equation (16) implies significant (70%) reduction
of the contrast at rms displacement amplitudes of o, = 1/10 of the grating pe-
riod, or ~20 nm. Thus, vibration reduction represents a serious experimental
challenge.

The best way to prevent grating motion from reducing contrast would be to
isolate the whole interferometer and mount it on a stable inertial platform. This
was not practical in our experiment, as it is very hard to isolate the whole vac-
uum chamber. We therefore adopted a combination of passive isolation of the
apparatus from sources of vibration, active grating control, and digital data pro-
cessing that corrected for the vibrational misalignment. Both of the latter reme-
dies required knowledge of the relative positions of the gratings, which was pro-
vided by a light interferometer formed by three 3.3 um phase gratings rigidly
connected to our atom optics gratings (see Fig. 9).

Our active control system assured long-term alignment of the gratings by ser-
voing the second grating to stay at a given position relative to the other two grat-
ings. This point was picked to ensure that the light interferometer was always
near its maximum sensitivity point for position measurements. As an added
bonus, the servo allowed us to apply a well-defined grating phase to the interfer-
ometer by deliberately shifting the second grating.

The position information from the light interferometer also made it possible
to digitally correct our data after it had been collected: the light interferometer
measured the grating phase ¢, in real time, allowing us to make suitable cor-
rections for the dominating first term in Eq. (16). During each sampling period
At, the readings from the light interferometer were recorded and stored along
with the rest of the associated experimental data. During analysis, the data were
sorted according to the measured relative grating positions (which corresponds
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to sorting with respect to Porating

). Typically data were taken over a range of
Pyrating’ and a fit to this data (a plot of atom counts as a function of qogming) of the
form of Eq. (7) was made. Recalling that ¢ = Pposition T A and plugging in Eq.
(13), we can express the total phase of the interference pattern as
@ = (Proration T Pacceleration T Pyrating + Ag). Thus, this fit determines the sum of
the phases due to interaction and non-inertial motion, the variables we observed
in our experiments.

The combined effect of the servo and plotting atom intensity versus Pyrating is
to effectively remove the contribution of the first term of Eq. (16) to the noise.
The residual average grating motion, after this correction, corresponded to an ef-
fective rms displacement o(x; — 2x, + x;,A¢), of typically 10—30 nm during the
sampling period, resulting in a typical rms grating phase 0(<pgming,At) of 0.3-0.9
rad for a 200 nm grating period. The best operating conditions were achieved by
keeping the position servo relatively loose o, =~ 300 nm to suppress the higher
frequency components caused by a tight lock. The typical contrast reduction was
then about 25%.

While this method was effective in reducing noise due to independent grating
vibrations, the problem remained of collective rotations or accelerations of the
whole interferometer as expressed by a'f. The effect of this collective motion
was found to be significantly smaller than that of the vibrations and was most
evident when the interfering particles were moving relatively slowly (e.g., in ex-
periments using Kr as a carrier gas). For our slowest atoms (700 m/sec) we ob-
serve a 25% contrast reduction due to residual accelerations and rotations. This
could be corrected for by measuring the rotation and acceleration directly with a
pair of accelerometers mounted close to the first and third gratings. In the future,
we will employ this technique to improve the performance of the interferometer

when operating at lower velocities.

F. INTERACTION REGION

A unique feature of our interferometer is that the two interfering beams have
been physically isolated by inserting a foil or “septum” between them where
they are spatially separated immediately behind the second grating. To fit be-
tween the beams, whose centers are separated by only 55 um, this septum must
be thin and very flat (<30 um peak to peak ripple over its whole length).

Our interaction region was 10 cm long and the stretched foil was held sym-
metrically between two side electrodes. The foil was spaced from the side plates
with insulating 2 mm thick precision ground alumina spacers (Fig. 12). We cut
the foil in a “butterfly” shape, then pulled all wrinkles out of the area that was
used in the final interaction region by clamping it in a special jig that stretched
the edges away from the center and flattened the foil. The stretched foil was then
carefully clamped between the spacers and side plates using a mounting clamp.
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Fi. 12. Exploded view of the interaction region. The foil is black. The insulating alumina spac-
ers are shown in white, and the aluminum side plates are gray. The split atomic beams of the interfer-
ometer enter from the front (Jower left) and pass on either side of the foil.

We have made good septa using both 10 um thick copper foil and 12 um thick
metalized mylar.

The interaction region was mounted behind the second grating on a stack of
manipulators. These provided transverse translation to move the foil in and out
of the beam line and rotation about both the vertical axis and the beam axis to
align the plane of the foil parallel to the ribbon-shaped atomic beam. A typical
10 cm long septum, aligned to the atomic beam, cast a shadow on the detector
which was 20—-30 um wide. This is wider than the nominal 10 um foil thick-
ness due to overall deviations from planarity, waviness, and material rolled over
at the cut ends. With the septum carefully positioned using precision translator
and rotators between the beams in the interferometer, we have observed fringes
with 23% contrast and an interference amplitude of more than 2800 counts/sec
(Fig. 10).

This conducting physical barrier between the separated beams allows the ap-
plication of different interactions to the two paths in the interferometer and mea-
surement of the resulting differential phase shift. The sensitivity of this phase
shift measurement is set by the interaction time. The intrinsic line width is 10
kHz for a 1050 m/s beam and 10 cm long interaction region. In an typical exper-
iment we can determine the phase of the interference pattern with a precision of
5 mrad in one min, which corresponds to a sensitivity to energy shifts of roughly
3 X 107** eV/Vmin or 8 Hz/Vmin.
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G. MOLECULAR INTERFEROMETRY

Combining our pure Na, beam (described in Section I1.D) with our three grating
atom interferometer, we constructed a Mach—Zehnder interferometer for mole-
cules (Chapman et al., 1995a) (Fig. 13a). With 200 nm gratings, our molecular
beam produced high-contrast fringes (Fig. 13b). Molecular and atomic fringes in
our interferometer have the same period, since the period is independent of de
Broglie wavelength in our white fringe interferometer. Therefore, we used two
different methods to verify that the observed interference was actually from mol-
ecules:

¢ We introduced a (decoherence) laser that destroyed the atom interference
pattern by scattering resonant light from the split atomic wave function in-
side the interferometer.

* We checked that the molecular interference signal (or fringe height) was
maximum at a smaller detector offset from the beam axis than the atomic
interference signal. Since the de Broglie wavelength of Na, is smaller than
Na, the molecules diffract at smaller angles and pass through the interfer-
ometer on different paths than the atoms (Fig. 13a).

The results from a study combining these two methods together with turning
on and off the laser used to deflect the atoms out of the molecular beam are
shown in Fig. 13b. We observed the largest interference signal from the com-
bined atom and molecule fringe pattern (both deflection and decoherence lasers
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F1G. 13. Interferometry with molecules: In (a), we show a schematic of our three grating interfer-

ometer displaying the different paths of Na and Na,. In (b), the variation of the interfering signal vs.

the third grating offset from the collimation axis is shown for the mixed Na—Na, beam (® = no laser
on) and the pure Na, beam (X = decoherence laser on, A = deflecting laser on, O = both lasers on).

Calculated curves are discussed in the text. The inset shows the interference fringe data for the mixed

Na-Na, beam (®) and the pure Na, beam (O) observed for a third grating offset of —10 pm.
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off). The amplitudes of the interference fringes were reduced by the same
amount with either the deflection or decoherence laser beam on, suggesting that
only molecules contribute to the interference in both of these cases. This inter-
pretation was confirmed by the fact that the fringe amplitude did not decrease
further when both lasers were on simultaneously. The maximum interference
signal for the predominately atomic beam was observed at 55 uwm from the colli-
mation axis, as expected from the diffraction angle for Na in Ar carrier gas,
whereas the molecular interference signal maximized much closer to this axis. In
Fig. 13b, the data are compared with curves calculated in the far-field limit using
a convolution of the trapezoidal beam profiles with the 50-pum acceptance of the
third grating. The upper curve is normalized to the maximum observed interfer-
ence signal and the lower curve follows from the known fraction of molecules
(27% of the detected signal).

For both the mixed interferometer and the purely molecular interferometer,
the maximum observed contrast was nearly 30% and was the same to within 1%.
We observed no degradation in interference signal despite the plethora of close
lying rotational —vibrational states in the molecules. This is not very surprising
since the first order interference observed in an interferometer involves only the
interference of each particle with itself. The fact that two nearby molecules are
very unlikely to have the same quantum numbers for both the rotational —vibra-
tional state and total angular momentum projection is irrelevant. Although the
300 K thermal background photon energies typically exceed the internal level
spacing of molecules (~1 cm~! for rotations and ~100 cm~! for vibrations), de-
coherence effects due to transitions between vibrational or rotational levels or
spontaneous emission are minimized because electric dipole transitions between
rotational —vibrational levels in the same electronic state are not allowed in a
homonuciear diatomic molecule (Herzberg 1950). Scattering of the molecules
on the nanofabricated diffraction gratings could also cause rotational or vibra-
tional transitions, since a beam velocity of 1000 m/sec and a grating thickness of
200 nm produces Fourier components up to 5 GHz (or 0.17 cm~!). However,
this is less than the smallest allowed rotational transition 4B (B is the rotational
constant) of 0.61 cm~! and much smaller than the vibrational spacing of 159
cm~!. The fact that we did not observe any contrast reduction places only a weak
bound on the probability of these transitions.

Using Kr as the carrier gas, our Na, interferometer produced a beam separa-
tion of 38 um at the second grating. This just exceeded the beam width at that
position and allowed insertion of an interaction region with a thin foil barrier be-
tween the interfering beams. The foil cast a shadow 20 wm wide, which partially
blocked the edges of the two beams and reduced the contrast from 19% without
the foil to 7% with the foil. The lower observed contrast with Kr as the carrier
gas (even without the inserted foil) is attributed to the slower beam velocity,
which enhanced the inertial sensitivity of the interferometer, making it more vul-
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nerable to vibrations of the entire apparatus. A similar contrast reduction was ob-
served with atoms when using Kr as a carrier gas.

V. Atom Interferometry Techniques

We are now in a position to examine how interferometric techniques can be used
to obtain useful physical information. We concentrate first on what information
can be extracted from the phase of the interference pattern and the limits to the ac-
curacy with which the phase can be determined. Then we describe how the con-
trast may be exploited to infer properties of the interaction even though the various
unselected internal states of the atoms or molecules have different phase shifts. In
the last section, we discuss a new technique that will greatly reduce the systematic
errors and contrast loss arising from velocity averaging.

A. SIGNIFICANCE OF PHASE SHIFTS

We can learn a great deal about various interactions by measuring the phase shift
of an interference pattern caused by the applied interaction. In most of our ex-
periments, we exploited the ability to physically separate the two arms of our in-
terferometer by applying a time-independent interaction potential V(x) to one
arm only (classical path I'Y). Since the other arm of the interferometer has no po-
tential applied, the interaction induces a relative phase difference between the
two arms (see Eq. (6)).

We recall that the interaction phase A from Eq. (6) is O for the case of no ap-
plied interaction to either arm. Hence, if one arm is unshifted, the overall phase
shift of the interference pattern is given by the difference between the phase ac-
cumulated along the shifted arm with the interaction on and the phase accumu-
lated along this arm if there were no applied interaction.

Thus, the phase shift induced by the potential is of the form:

Ap(ky) = f (k(x) = k() dx = f Ak(x) dx (17
re re

where k) = /AV2mE and k(x) = 1/AV2m(E — V(x)) are the unperturbed and
perturbed & vectors, respectively. If the potential V is much smaller than the en-
ergy of the atom E (as is the case for all of the work described here), the phase
shift can be expanded to first order in V/E:

Vix) -1

—1 (%
Aplky) =3 koj?dx=W V(x)dx=7f[ Vo de  (18)

where, in the integral over the time, we used the fact that the potential is time
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independent and one can apply the paraxial approximation using ¢ = x/v. Al-
ternatively, we can think of the potential V(x) as giving rise to a refractive in-
dex:

k vV

n=—=1-— (19)

k, 2E

where the phase shift can now be expressed as Ag(k) = kf(n(k) — 1) dx. We
can see from Eq. (18) that the phase shift due to a constant scalar potential
applied over a length L,  is Ag(k,) = (—m/h*)VL, . In our interferometer
with a 10 cm long interaction region and 1000 m/sec Na atoms, an applied
potential of V =6.6X10"!2 eV corresponds to a refractive index of
[1 — n] =2.7%x 10""" and gives a phase shift of 1 rad. Note that positive V
corresponds to a repulsive interaction that reduces & in the interaction region,
giving rise to an index of refraction less than unity and a negative phase
shift.

Equation (18) shows that the phase shift associated with a constant potential
depends inversely on velocity and therefore is dispersive (it depends linearly on
the de Broglie wavelength). If, on the other hand, the potential has a linear ve-
locity dependence, as in the Aharonov—Casher effect (Aharonov and Casher,
1984), the phase shift becomes independent of atomic velocity. Similarly, a po-
tential applied to all particles for the same specific length of time, rather than
over a specific distance, will produce a velocity-independent phase shift
A = 1/ [V(t)dt, the scalar Aharonov—-Bohm effect (Allman er al., 1993;
Badurek et al., 1993).

B. AVERAGING OVER THE VELOCITY DISTRIBUTION: THE COHERENCE LENGTH

Real experiments are not performed with monochromatic beams, and since atom
sources tend to have relatively large velocity spreads, velocity averaging is an
important consideration in the analysis of our experiments (our velocity spread
is typically about 4% rms). In our previous analysis, we have not discussed the
fact that the observed phase shift, Eo , and contrast, C, result from weighted av-
erages over the different velocity components present in the beam.

In general, one can represent the averaged interference pattern by an averaged
phase vector C '3 in the complex plane. Velocity (momentum) averaging is
calculated by integrating over the normalized initial atomic £ vector (velocity)
distribution f(k):

Cee = f JUOC (k) 9P dk (20)

where we take into account a possible dependence of the original contrast of the
interferometer, C(k), on the wave vector k. The average phase shift A¢ and con-
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trast C are the argument and rnagnitude of the averaged phase vector, respec-
tively.

In the simplified case, when the contrast of the interference fringes is
independent of the velocity of the atoms, then C e*¢ = C, [f(k)e"**®) dk and one
finds for the observed phase shift Ep, and contrast, C:

J fik) sin(A p(k)) dk )
J k) cos(Ag(k)) dk

C = C VIS fiky sin(Ag(k)) dkI* + [f ftk) cos(Ag(k)) dkI* = C,P(Ag) (22)

where C; is the contrast at zero phase shift and P(Ag) is the relative retained
contrast as a function of the applied phase.

Due to the non-linear dispersion of the phase shift (1/k, for a scalar poten-
tial, 1/k3 for a deflection in a potential gradient), Ag is not simply the phase
shift for particles traveling at the mean velocity. This nonlinear dispersion
causes systematic phase shifts that depend on the width, and to a lesser extent
on the form, of the velocity distribution. For precision measurements these
shifts must be accounted for in the analysis. For a 4% Gaussian velocity
spread, the contrast is reduced to 28% of its initial value and the observed
phase [given by Eq. (21)] differs from the applied phase ¢(v,) by 0.20% at
Ag = 40 rad. This phase error can be avoided by the velocity multiplexing
technique described later.

In our experiments, the reduction of the contrast can be parametrized by the
coherence length defined by [, = 1/0, of the beam. In the case of linear disper-
sion, if f(k) is a Gaussian distribution with rms width o, centered at k, the above
equation then reduces to

Kq? = arctan( (21)

0.2
C=¢, exp(— HA@k,)P k‘g) (23)
0

These assumptions are reasonable because seeded supersonic beams give a
flux density that varies approximately as v* exp(—(v — Vo) /2Av%), which is quite
Gaussian when Ay << v, the mean velocity. Furthermore, the true 1/v dispersion
is well represented by a linear (negative) dispersion over our narrow velocity
distribution. Our contrast data were fit within estimated total errors by this ex-
pression when the differential phase shift was supplied by a constant potential
due to an electric field (see Fig. 14).

It is important to note that, unlike photons in vacuum, the coherence length
and wave packet size for matter waves are not the same, except perhaps at spe-
cific points in time. This is because the vacuum is dispersive for matter waves. In
our beam, the coherence length is only 0.65 A (1.6 A FWHM) at the source.
But, by the time a minimum uncertainty wave packet that could be created at the
source reaches the third grating (where the interference “occurs”), its length



OPTICS AND INTERFEROMETRY 33

(\®)
-

[am—y
O

W

Contrast (%)
O
LA B BLELELELE BLELELEL B B B o

11||l||1|l|1||4;1|41|

-100 -50 0 50 100
Phase (radians)

FiG. 14. Reduction of the interference contrast with applied phase. From the width of the con-
trast curve, we calculated a coherence length of 0.65(3) A in good agreement with a determination of
the velocity distribution from a measurement of the diffraction pattern.

would be on the order of 10 cm FWHM, an increase by a factor of 10® (Klein ez
al., 1983; Kaiser et al., 1983).

C. CONTRAST INTERFEROMETRY

If all atoms in our interferometer have the same interaction potential and the
same velocity, their interference patterns will all be in phase and will combine
to give an observed interference pattern of maximum contrast. Observations
of decreased contrast therefore allow investigation of the differences among
the interfering atoms (Schmiedmayer et al., 1994a). Of particular interest is
the case when the internal states of atoms or molecules in our beam respond
differently to some applied interaction. As we shall now discuss, this can re-
sult in a periodic degradation and revival of the contrast of fringes in our in-
terferometer. This effect can be employed to gain new, highly accurate in-
formation from measurements of the contrast— we call this contrast interfer-
ometry.
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We consider now the case in which each internal state interacts differently.
Atoms in each state therefore form independent interference patterns, and the
observed intensity is the incoherent sum of all these individual patterns

Iobserved = E CO(1 +f;‘ COS(A(P,')) (24)

where f; is the fraction of atoms in the ith state, A¢; is the phase shift of atoms in
that state, and C|, is the contrast of atoms in a pure state. Both the phase and the
contrast of the interference pattern thus reflect this average over internal states.

The key point is that, if there are a finite number of internal states, one can
expect destructions and revivals of the total contrast, especially if the phase
shifts of these states are regularly spaced. The presence of revivals gives contrast
interferometry the potential for high-accuracy measurements.

As a demonstration of contrast interferometry, we studied the interactions of a
magnetic field with the ground level of sodium atoms (Schmiedmayer et al.,
1994a). The sodium ground state, %S, jp» consists of two hyperfine levels with to-
tal angular momentum F = 1, 2, respectively. In the presence of a weak mag-
netic field, B, each atom experiences a potential V(x) = —p-B = g u,m B
(Zeeman splitting), where g u F is the atom’s total magnetic moment and
—grMm, is the projection of the magnetic moment in the direction of the field.
This interaction splits these levels into eight magnetic substates, each with one
of five possible magnetic moment projections: g ppm, = (=2, —1,0, 1, 2)u,/2
with associated f; = %, %, %, }‘, é

By applying field magnitudes differing by AB(x) to the two arms of our inter-
ferometer, we introduced a relative phase shift Ag, which is given by

Ag(k,) = ﬁ—g';{— f g g AB(x) dx. 25)
0
For a 1000 m/sec Na atom in a F = 2, m, = *2 state in a magnetic field of 0.01
G, we found a phase shift of 8 rad corresponding to a refractive index of
(1—n)=25X%X10"1°
Since the relative phase shift given by the preceding equation differs for the
five possible values of g.m,, the total interference pattern is an incoherent sum
of five individual patterns averaged over the incoming velocity distribution. The
contrast of the interference pattern, as a function of the velocity averaged phase

shift Kaz of the (F = 2, m,. = 2) stretched state, therefore is
—— c| — - Ao, Ao,
CBe) = 2| PBe;) cos(Bey) + ZP(%) cos(f"’) + 1] (26)

where C is the ‘initial’ contrast and P(A—cpz) is defined in Eq. (22). The main feature
of Eq. (26) is a rapid decrease in contrast with rising phase shift and later revivals of
the contrast at specific values of A—<p2, where the interference patterns rephase. The
nth revival occurs when |Ag,| = 4nr for the |m,| = 2 states, |Ag,| = 2nr for the
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Im,| = 1 states, and O for the m, = O states. If Ag, is small (Mg, < k/oy), the aver-
age over the velocity distribution tends to diminish and broaden the rephasing reso-
nances. As the applied phase shift becomes larger, (Z\?Z >> kfa,), such averaging
reduces the contrast to O for all atoms except those in m, = 0 states, which experi-
ence no Zeeman shift. The total contrast in the large phase shift limit thus is de-
creased to one quarter of the original contrast. Data from a typical rephasing experi-
ment are shown in Fig. 15, together with a fit from Eq. (26).

Conirast interferometry has various applications. If a particular interaction is
known accurately, as in the case of the magnetic interaction just described, it be-
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FIG. 15. Contrast and phase of the interference pattern versus septum current /.. The upper graph
shows the contrast revivals from constructive rephasing of the independent interference patterns of
the eight different magnetic substates of the sodium atom. The lower graph shows the phase (in rad)
of the observed interference pattern. The inset shows the septum geometry, currents, and magnetic
fields as used in the magnetic rephasing experiment. The upper inset shows a schematic of the metal
septum separating the two interfering beams, the current connections, and the current flowing
through the septum. For clarity, the side plates of the interaction region were omitted. The lower in-
set shows a detail of the interaction region and the magnetic fields for the rephasing experiment. The
dark arrows are magnetic fields, and the light arrows represent the atomic beams.
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comes possible to measure the beam’s velocity distribution. Alternatively, if rephas-
ing techniques are applied to systems where the interaction is unknown, they may
reveal new information about it. One such system is a molecule having a tensor po-
larizability, which causes an orientational dependence of the polarizability. States
with different projections of the total angular momentum |mj| have different interac-
tions, leading to variations in the contrast that may be used to infer the tensor polar-
izability (the phase shift basically is determined by the isotropic polarizability).

Another use of contrast techniques in interferometry is to isolate the interfer-
ence pattern of atoms in a single state by destroying the contrast of interference
patterns of all other states. This may be achieved by applying a large dispersive
state-independent phase shift to one arm of the interferometer and then selec-
tively regaining the contrast in the desired state by applying a state-dependent
interaction to the other arm whose magnitude cancels the dispersion only in the
desired state. We demonstrated this idea by using a Stark phase shift to compen-
sate for a large magnetic phase shift (A@ >> k/o;) with the same dispersion
properties (i.e., Ag « 1/v) but opposite sign. Contrast was regained for one spe-
cific magnetic substate at a time, allowing experiments with polarized atoms
even though the atomic beam was unpolarized (Fig. 16).
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FIG. 16. Magnetic phase shift for |m.| =2 and |m,| =1 states as observed with an unpolarized
beam in a “magnetic rephasing” experiment. An additional dc Stark phase shift of 65 rad is applied in
one arm of the interferometer. For 400—700 mA septum current, one of the |m, | = 2 states and, between
700 and 1050 mA, two of the |m,| = 1 states are shifted back in coherence. The two slopes of the phase
correspond to different magnetic moment projections being within their coherence length. The insert
shows a schematic for the field configurations of the E—B balance experiment.
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D. VELOCITY MULTIPLEXING

We have proposed a rephasing technique that recovers the contrast lost due to
velocity averaging (Eq. 22) with a constant potential (Hammond et al., 1995).
The basic idea is to make the velocity distribution discontinuous, selecting a dis-
crete set of velocities such that the acquired phase shifts are all multiples of an
applied phase. At some applied phase, the acquired phase shifts will all be multi-
ples of 27 and the interference patterns of atoms in all velocity classes will
rephase. This creates a contrast revival analogous to those just discussed for con-
trast interferometry. Another view of this is that those velocities that do not add
constructively to the final interference pattern are filtered out.

The desired velocity distribution can be formed by two fast choppers (beam
shutters) a distance L_ apart that are periodically and simultaneously opened for
a time fAt, where fis the open fraction and At is the period. These cut the origi-
nal velocity distribution of the beam into a comb of velocities. The transmitted
atoms will have a velocity distribution with peaks at velocities
v,=L/t, = L /nAt. The integer n is the number of shutter cycles that occur dur-
ing the traversal time ¢, = nAr between the two shutters for a particle with veloc-
ity v,. For an interaction V = Aw, , applied to one arm of the interferometer over
an interaction region length L, , the applied phase shift for velocity class v, is
o, =w L = (L /L) nAt The phase shifts of the different velocity classes
will be equally spaced and the mth rephasing will occur when w, (L, /L) At =
2mar. All velocity classes will then have accumulated phase shifts that are a mul-
tiple of 277 and will be in phase, resulting in a contrast revival.

This rephasing technique will allow us to apply much larger phase shifts
without losing contrast due to the velocity dependence of the phase. More im-
portant, the nonlinear relation between phase shift and velocity that causes
pulling of the averaged phase from its center value acts only within the individ-
ual narrow velocity slices; consequently the phase pulling is small enough to
permit an overall fractional uncertainty of less than 1 part in 10°.

Velocity multiplexing combines the advantage of very narrow velocity slices
with the high intensity of an unchopped beam. The optimum parameters for best
phase determination using this velocity multiplexing technique show a broad
maximum around open fraction f = 0.375, where 14% of the original beam is
transmitted. Increasing the chopping frequency widens the spacing between con-
trast revivals and permits a more accurate determination of V. Numerical calcu-
lations show that high precision phase measurements can be made even with a
thermally effusive beam with a velocity width of 100% (Fig. 17).

E. MEASURING DEFLECTIONS

Another potential application of matter wave interferometers utilizes their high
spatial resolution to measure small deflections resulting from the application of a
uniform potential gradient applied across the region traversed by the atoms. Ap-
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FiG. 17. Revivals in the contrast are shown as a function of applied phase ¢(v,) and n (top axis) for
three velocity distributions. Revivals occur at n = 40 (m = 1), n = 80 (m = 2), etc. The inset shows a de-
tailed study of the first revival in contrast for an open fraction of f = 0.375. The contrast (top) and the
progression of the observed phase (middle) are shown as a function of applied phase ¢(v;). A phase 0 in
@, coincides with the contrast maximum to better than 1 part in 10°. A vertical dashed line is drawn
through the contrast maximum to guide the eye. The generation of the lower graph is described in the
text. It shows that the phase difference is very linear in the region of the contrast maximum.

plying a potential gradient across the entire interferometer leads to a phase shift
between the interfering paths proportional to the difference of the potentials on
the two paths traversed, as described in the previous section.

The primary difference between applying a uniform potential gradient and
uniform (but different on the two arms) potentials is that, in an interferometer
with diffractive beam splitters (like ours), the separation between the interfering
paths depends on the de Broglie wavelength and hence on the velocity of the
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atom. When passing through a potential gradient, slower atoms therefore will
have a bigger separation between the two arms and see a bigger potential differ-
ence than fast atoms. This adds one additional power of 1/v to the dispersion, re-
sulting in a total velocity dependence of 1/v? in experiments where a constant,
velocity independent potential gradient is applied (the other power of 1/v comes
from Eq. (18). This means that averaging over realistic velocity distributions will
give more blurring of the fringes when using a potential gradient rather than a
stepwise uniform potential.

Not only the 1/v* dispersion, but also the absolute amount of phase shift of
the atoms in the potential gradient may be calculated from the classical displace-
ment Ax of the atoms’ trajectories in passing through the potential gradient (i.e.,
force), converted to a phase Ap = Ax k, by multiplying by the grating vector .
The interference pattern, the envelope of the fringe pattern, and the fringes them-
selves all move as a unit in a potential gradient, following the classical trajectory
of the atoms (Ehrenfest’s theorem).

VI. Measuring Atomic and Molecular Properties

Atom interferometers will find wide application in the study of atomic and mole-
cular interactions, particularly through measurements of the phase shifts due to
differential interactions applied to the arms of the interferometer. A separated
beam atom interferometer has the important advantage that one can investigate
ground state atomic properties and interactions with spectroscopic precision,
even in cases where atomic beam resonance techniques (Ramsey, 1985) are in-
applicable because all the sublevels are shifted by the same amount. We discuss
next the first application of an atom interferometer in this manner, a precise mea-
surement of the polarizability of atomic Na.

When the observed phase shift results from the time integral of some applied
interaction potential, as described in Section V.A, the interferometer is essentially
measuring energy level shifts, and it is unlikely that the phenomenon under study
cannot be studied by some sort of spectroscopy. However, a separated beam inter-
ferometer can also directly investigate phase shifts associated with interactions like
collisions with other atoms or surfaces, which are often not accessible by other
techniques. Such a novel application will be discussed later in this section—the
measurement of the index of refraction of a gas for atomic matter-waves.

A. ELECTRIC POLARIZABILITY OF Na

We have used our separated beam atom interferometer to perform a high-accu-
racy measurement of the electric polarizability, «, of the Na atom (Ekstrom,
1993; Ekstrom et al., 1995). The dramatic increase in accuracy achieved here
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came from two sources: our ability to apply a very well-controlled interaction
characterized by a uniform electric field and our ability to gain precise knowl-
edge of the interaction time by measuring the beam velocity using single-grating
diffraction patterns (Section II1.B). Previous methods relied on deflection of an
atomic beam in a potential gradient, and were limited by the uncertainties in the
characterization of the applied gradient and the velocity distribution of the
atomic beam (Molof et al., 1974).

In our experiment, we applied a uniform electric field, E, to one of the sepa-
rated atomic beams, shifting its energy by the Stark potential V = —aE?/2. The
resulting induced phase shift is quadratic in the applied potential and given by
(Eq. 18):

2
Ag = % f % aEX(x)dx = % % a(%) L, N
where v is the mean velocity of the atomic beam, ® is the voltage applied to one
side of the interaction region across a distance D, the spacer width, and L, is the
effective interaction region length defined as

2
(%) L, = f E2dx. (28)

In our interferometer with a 10 cm long interaction region (L = 10 cm) and
a beam velocity of v = 1000 m/sec, an electric field of 280 V/cm produces a
phase shift of 1 rad. A typical measurement of the Stark phase shift is shown in
Fig. 18. The phase shift for various voltages was measured with respect to the
phase with no voltage applied. To correct for drifts and fluctuations of the 0
phase, we took frequent measurements of the O reference phase. We found the
Stark phase shift to be a quadratic function of the applied voltage whose coeffi-
cient we measured with a statistical uncertainty of typically 0.2%.

For an accurate determination of the electric polarizability, the crucial ele-
ments are the knowledge of the magnitude of the applied fields, the exact geom-
etry of the interaction region, and the width and mean of the velocity distribution
of the Na atoms. The main contributor of uncertainties in the electric field and
L were the spacer thicknesses D and the fringing fields near the ends of the
septum. The spacer thicknesses D were measured to 0.05% with a dial indicator
calibrated with precision gauge blocks. The electric fields around the ends of the
interaction region were calculated numerically using standard relaxation meth-
ods, and the results were parameterized by an effective length L ;.

We performed polarizability measurements with three different interaction re-
gions, displaying different field configurations. The first and second interaction
regions had foils with lengths 10 cm and 7 cm, but no guard electrodes. The
third interaction region had guard electrodes located at the ends of the side plates
and spaced 6 cm apart (Fig. 18 insert), which were held at the same potential as
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FiG. 18. Measurement of the electric polarizability of Na: (a) shows a schematic of the separated
beam interferometer with the interaction region installed behind the second grating; (b) shows the
measured phase shifts vs. applied voltage. The two different signs of the phase shift stem from the
voltage being applied on either the left (open circles) or the right (filled circles) side of the interac-
tion region (arm of the interferometer). The fit is to a quadratic and the residuals are shown in the
lower graph.

the foil to minimize the fringing fields. In this interaction region, the fringe fields
had a much smaller contribution to L ;. We also performed polarizability mea-
surements with voltages applied to the right side or the left side of the interac-
tion region (see Fig. 18), using both the left and the right interferometer. In addi-
tion we measured the asymmetry of the interaction region (it was 0.1%) by
applying a voltage to the septum with the side plates grounded.

The mean velocity and velocity width of the Na beam were determined to
0.15% from a fit to the diffraction pattern produced by the first grating (period
200 = 0.1 nm) (see Section IIL.B). The velocity distribution of our beam compli-
cated this simple analysis. The rms width of the velocity distribution was on the
order of 3—5%, and we had to average over the actual velocity distribution to ex-
tract the polarizability accurately from the phase of the interference pattern (see
Eq. (21) and the discussion in Section V.B).

Additional systematic shifts can arise, because the velocity distribution con-
tributing to the interference pattern may differ from the velocity distribution of
the atomic beam as determined from the diffraction pattern. This can be caused
by blocking of atoms by the septum or variation in the detector position, both of
which are velocity selective because faster atoms have a smaller diffraction an-
gle and therefore travel closer to the axis than slower ones. These effects consti-
tuted a correction of about 0.4% and were measured by changing the positions
of the interaction region and the detector. These data were found to agree with a
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model obtained with a ray tracing algorithm. We estimated that these corrections
introduced an additional uncertainty of 0.15% into our determination of the po-
larizability.

Taking all corrections and all sources of errors into account, we found the
Stark shift of the ground state of sodium to be 40.56(10)(10) kHz/(kV/cm)?,
which corresponds to an electric polarizability of @ = 24.11(6)(6) X 10-2* cm?,
where the first error is statistical and the second is systematic (Ekstrom et al.,
1995). Our systematic error was dominated by uncertainties in the geometry of
the interaction region and uncertainties in the determination of our velocity dis-
tribution, and our statistical error was dominated by the short-term stability of
the phase reference in our experiment and to a lesser extent by counting statis-
tics.

Our measurement represents a nearly 30-fold improvement on the best previ-
ous direct measurement of the polarizability of sodium 24.4(1.7) X 10-% cm®
(Hall and Zorn 1974), a 7% result. The currently accepted value 23.6(5) X 1072
cm’, with a 2% uncertainty (Molof et al., 1974), comes from a measurement of
the Na polarizability with respect to that of the 23S, metastable state of He,
which is calculated (Chung and Hurst, 1966). Using our measurement together
with the experiment of (Molof ef al., 1974) allows us to determine the polariz-
ability of the °S, metastable state of He to be 47.7(1.0) X 10~ cm?’, in good
agreement with the calculated value 46.77 X 10~2* ¢cm®, (Chung and Hurst,
1966). The error in the experimental value is dominated by the experimental er-
ror of Molof, et al. (1974).

Significant improvements in our technique would result from an interaction
region whose spacing was determined more accurately (e.g., with light interfer-
ometry) and from finding a better way to determine the velocity of the interfer-
ing atoms. Better determination of the velocity distribution can be accomplished
by a magnetic or radio frequency rephasing experiment (Schmiedmayer et al.,
1994a; see also Section V.C) or by using our velocity multiplexing scheme
(Hammond et al., 1995; see also Section V.D). With these improvements it
seems feasible to perform polarizability measurements with uncertainties in the
10~ range.

B. REFRACTIVE INDEX FOR NA MATTER WAVES

In this section, we discuss a study of an atomic property that was inaccessible to
measurement before the advent of atom interferometers —the index of refraction
seen by atomic de Broglie matter waves traveling through a gas sample
(Schmiedmayer et al., 1995a). This effect is the direct counterpart to the well-
known index of refraction found in optical physics, in which an optical wave is
phase shifted (and possibly attenuated) while passing through a dispersive
medium. In the case of atomic de Broglie waves, the index of refraction arises
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from the collision-induced phase shift between the ground state Na atoms and
the molecules in the gas (Schmiedmayer et al., 1993). Our studies of the phase
shift in collisions add significant information to long-standing problems, such as
solving ambiguities in the inversion of the scattering problem to find the poten-
tial (Chadan and Musette 1989), the attempts to interpret other data sensitive to
the form of the long-range interatomic potential (Bagnato et al., 1993; Lett et
al., 1993; Cline ef al., 1994; Walker and Feng, 1994) and to collective effects in
a weakly interacting gas (Stoof, 1991; Moerdijk et al., 1994; Moerdijk and Ver-
haar, 1994; Stwalley et al. 1994).

From the perspective of wave optics, the evolution of the wave function, V¥,
propagating through a medium in the x direction for a distance x is given by

. 2 27
\I’(.X) — ‘I’(O) etkox el kme Re( fik,,, 00 e ,‘me Im( ik, 0))_ (29)

Here k, is the wave vector in the laboratory frame, k_, is the wave vector in
the center of mass frame of the collision, N is the density of the medium and
fitk,,.0) is the forward scattering amplitude. To measure the index of refrac-
tion, we introduce a gas in the path of one arm of the interferometer. The
phase shift of ¥ on the arm with the medium relative to the arm with no
medium is then given by
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Ag(x) = -— NxRe(flk,,.0)) (30)
which is proportional to the real part of the forward scattering amplitude. In ad-
dition, the amplitude of ¥ is attenuated in proportion to the imaginary part of
the forward scattering amplitude, which is related to the total scattering cross
section by the optical theorem
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In analogy to light optics, one defines the complex index of refraction

n=1+-2"N. k., 0). (32)
0" em

We elected to use the ratio of the real and imaginary parts of the forward scat-
tering amplitude, Re[ f(k,0)}/Im[ f(k,0)], as the primary variable to be measured
and compared with theory. This ratio proves to be a more natural theoretical
variable with the advantage that it gives quite “orthogonal” information to the
previously studied total scattering cross section. In addition, it has the experi-
mental advantage of being independent of our knowledge of the absolute pres-
sure in the scattering region, which is known less accurately than the 3% accu-
racy with which we were able to determine this ratio by measuring the slope of
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the observed phase shift plotted as a function of the log of the fringe amplitude
for each particular gas density (see also Fig. 19¢):

—A(N) _ _ Relf(0)]
In(AM)/AQ)] ~ Im[f(0)]

Since both A and A could be determined from the same interference scan, this
method did not rely on a pressure measurement at all. This procedure also took
advantage of the fact that the interference amplitude decreases only as the square
root of the intensity in the attenuated beam (Rauch et al. 1990) and therefore is
easier to measure at high target gas densities, where the intensity of the beam
passing through the gas-filled side of the interaction region is strongly reduced.

We have used our separated beam atom/molecule interferometer to measure
the ratio Re[ f(k,0)]/Im[f(k,0)] for the scattering of Na atoms on various
monatomic rare gases He, Ne, Ar, Kr, and Xe and the molecular gases N,, CO,,
NH,, and H,O (Table II) (Schmiedmayer et al., 1995a). In addition, we have
measured both the phase shift and attenuation of Na, de Broglie waves that pass
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FiG. 19. Experiment to measure the refractive index for Na matter waves when passing through a
dilute gas: (a) The detail of the interaction region shows the 10 um mylar foil suspended between the
side plates. The side plates that form the gas cell are indicated in black at both ends. (b) The phase
shift of Na matter waves passing through He, Ne, Ar, and Xe gas as a function of the estimated gas
density in the cell. (c) The phase shift of Na matter waves plotted vs. the interfering amplitude when
passing through He, Ne, and Ar in the gas cell. The slope of the fitted line is a direct measurement of
the ratio Re[ f(k,0)]/Im{ f(k,0)].
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TABLE 11
PHASE SHIFT A¢, REFRACTIVE INDEX n, AND THE RATIO Re[ £(k,0))/Im[ f(£,0] FOR 1000 M/sEc Na
ATOMS PASSING THROUGH VARIOUS GASES AT 300 K AND 1 MTORR PRESSURE

Experiment Calculations
Ap (n—1) 10 (6-8) 6-12) General
mtorr ! mtorr™! Re (/)/Im (f) Potentials Potentials Potentials
He 0.50 0.14 = 118 0.12(2) 0.26
Ne 2.0 0.55 £ 0.56i 0.98(2) 1.24 1.1
Ar 39 1.07 * 1.81i 0.59(3) 0.69 0.65
Kr 54 1.51 = 2.45; 0.62(6) 0.75 0.73
Xe 6.5 1.81 = 2.49; 0.73(3) 0.76 0.73
N, 4.7 0.91 *+ 1.39; 0.60(2)
NH, 3.3 1.30 = 2.16i 0.65(4)
Co, 5.0 1.37 £ 2.21i 0.62(2)
H,0 6.2 1.71 + 2.40i 0.72(3)

Note: The data are compared to JWKB calculations using (6—8) (Gottscho et al. 1981) and
(6—12) (Duren et al. 1972 and Barwig et al. 1966) potentials and in the last column for potentials
given by J. Pascale (He) (1983) and Tang and Toennies (Ne, Ar) (1977).

through Ne gas in one path of the interferometer (Chapman er al., 1995a). To
perform these experiments, we modified the interaction region so that a gas tar-
get could be inserted in one arm of the interferometer. An inlet was added to the
center of one side plate for the introduction of gas, and end tabs were added to
restrict the openings at the entrance and exit to only 200 um (Fig. 19a). This al-
lowed us to send one portion of the atom wave through a gas with pressure of
~1073 torr without noticeably attenuating the atom wave passing on the other
side of the septum. By changing the carrier gas used in our source (see Section
I1.2 and Table I), and hence the velocity of our atomic beam, we also measured
the velocity dependence of f(,0) for the rare gases (Fig. 20) or equivalently the
dispersion of the refractive index.

Our experimental procedure was to determine both the amplitude reduction
A(N)/A(0), proportional to exp(—2m/k )N Im[ f(k_,0)]), and the phase shift
A@(N), proportional to —Q2alk,, )N Re[ f(k_, ,0)], from a fit to the observed inter-
ference fringes with and without gas in one arm of the atom interferometer. We
positioned the interaction region with the stronger Oth order beam passing
through the gas sample so that the absorption at first equalized the amplitude of
the two interfering beams, resulting in higher contrast for the observed fringes.
Interference patterns were recorded alternately: first while leaking gas into the
interaction region and then with zero gas flow. This procedure provided the ref-
erence amplitudes and O phase points. The gas flow into the interaction region
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FIG. 20. Integrands for Re[f] and Im[ f] for Na—Ar collisions at 1000 m/sec. The rapidly oscil-
lating behavior at small impact parameter averages to O for Re[ f] and to a positive value for Im[ f].

was varied, and interference patterns were recorded with amplitude reductions
varying by over a factor of 30, corresponding to beam attenuations through the
gas cell of more than a factor of 1000. The corresponding pressures in the main
chamber were also recorded.

In a separate experiment, the absorption of a well-collimated Na or Na, beam
was measured. This allowed us to verify that the amount of gas that caused a
factor of b reduction in the amplitude of the interference fringes caused a factor
b? attenuation of the transmitted beam intensity, and also allowed us to measure
the relative attenuations for Na or Na, in Ne.

The measured phase shift was found to be a linear function of the pressure
rise (Fig. 19b). It is noteworthy that the measured phase shifts/torr vary by a fac-
tor of 13, whereas the total scattering cross sections vary by only a factor of 4.
Comparing the measured attenuations for Ar, Kr, and Xe to the cross sections
calculated from the potentials (Buck and Pauly, 1968; Diiren et al., 1968, 1972)
allowed us to estimate the column density of the gas in our interaction region.

The refractive index of matter for de Broglie waves has been demonstrated in
electron holography (Lichte, 1988) and extensively studied in neutron optics
(Sears, 1990), especially using neutron interferometers (Badurek et al., 1988). In
neutron optics, scattering is dominantly s wave and measuring the refractive in-
dex gives information about the scattering length.

In contrast, many partial waves (typically €_, = x,/A;; =a few hundred)
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contribute to scattering in the present study because the range of the interatomic
potential x, between two atoms is much larger than the de Broglie wavelength
0.17 A for 1000 m/s Na atoms). This results in the differential cross section
having a considerable angular structure at the scale 1/€_, , which is a few milli-
radians. Fortunately, the angular acceptance of our interferometer (30 urad) is
much smaller than the size of this structure, so we are exclusively sensitive to
f(k,0) as assumed previously.

Using the standard partial wave treatment for central potential scattering, we find
the real and imaginary parts of the scattering amplitude in the forward direction:

Rel[f(k,0)] = i S e+ 1) sin 25, (34)
£=0

Im{f£,0)] = —zl—k > @+ 1)2sin%, (35)
£€=0

where 3, is the phase shift of the partial wave with angular momentum ¢£. For a
typical interatomic potential with a reasonably deep attractive well, the rapidly
oscillating sin 26, term in Eq. (34) averages to zero at most impact parameters
(this is the random phase approximation), and the main contribution to
Re[ f(k,0)] comes from large impact parameters beyond the potential minimum,
where the phase shift i 1s on the order of 7 or less. In contrast, the sin? 8, term on
Eq. (35) averages to 2 for impact parameters inside the point at Wthh o,=m
where the random phase approximation is valid. The value of Im[ f(k, O)] and
therefore the total cross section basically is determined by the location of this
point. Figure 20 shows a typical calculation for the phase shifts &, and their con-
tribution to Re[ f(£,0)] and Im[ f(k,0)].

To make comparisons with our data, any theory must be averaged over the ve-
locity distribution of the target gas (Schmiedmayer ef al., 1995a). This averaging
is best done by calculating the mean scattering amplitude as seen by the atoms.
This velocity averaging is very strong in the case of Na—He scattering (the mean
velocity of the He atoms is comparable to the beam velocity) and gets less and
less for heavier target atoms.

Our measurements show that Re[ f(k,0)] varies substantially more than
Im[ f(k,0)] with the collision system. The theoretical models discussed by
Schmiedmayer et al. (1995a) show that Re[ f(k,0)] gives new information about
the shape of the long range potential. In the following paragraphs, we will sum-
marize these calculations and give some simple illustrative examples.

In the case of a hard sphere with radius r,, the sum over all partial wave
phase shifts can be evaluated numerically. We have shown that the constraint that
the wave function vanish at r,, affects partial waves whose classical impact para-
meter b = (£+ 1/2)/k is smaller than r,, and, due to tunneling through the cen-
trifugal barrier, also slightly beyond r,,. The numeric sum can be approximated
by Re[ f(k,0)/Im[ f(k,0)] = — 1/\//7 roughly equal to the inverse of the square
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root of the number of partial waves contributing to the scattering process. Fur-
thermore, the ratio of real to imaginary parts of the scattering amplitude is al-
ways negative, reflecting the repulsion of the partial waves affected by tunneling.
In the case of a pure long-range attractive interaction potential of the form
C r", it is possible to predict analytically the ratio Re[ f(k,0)}/Im[ f(k,0)]. Cal-
culating the partial wave phase shifts in the Eikonal approximation and convert-
ing the partial wave sums in Eqgs. (34) and (35) into an integral over the impact
parameter (the semi-classical approximation) we find, for an »~" potential,

1 1 1 1
Re[ f(k,0)] F(E—n—-1>r<5+n-—l) ™
—Im[f(k,O)] =Fn-—-1 F(_ ) )F< 1 ) = itan(n — 1) 36)

n—1 n—1

where the upper signs are for attractive potentials. This ratio is independent of
both the strength of the potential (i.e., of C,) and de Broglie wavelength, which
follows because no length scale is defined by the potential. It depends strongly
on n (Table III). For neutral atoms in s-states one would expect the long range
tail of the actual potential to be a van der Waals interaction, V, ,, (r) = —Cr~",
in which case we would expect Re[ f(k,0)]/Im[ f(k,0)] = 0.72. This approxima-
tion fails at small energies (i.e., for ultracold atomic collisions) because there are
not enough partial waves to justify the semi-classical approximation. Applying it
to real systems requires that the actual potential be reasonably well-represented
by a power law into small enough distances to apply the random phase approxi-
mation; consequently it will certainly not be applicable to potentials whose wells
are not deep enough to generate a phase shift of several .

To make a more detailed comparison of our results with theory we used the
JWKB approximation to calculate the phase shifts §, in Eqgs. (34) and (35) lead-
ing to the forward scattering amplitude for modified 6—12 potentials (Buck and
Pauly 1968; Diiren er al. 1968) and 68 potentials (Barwig et al., 1966; Diiren
et al., 1972; Gottscho et al., 1981) as well as more sophisticated dispersion po-
tentials from Tang and Toennies (1977, 1984, 1986), and Proctor and Stwalley
(1977) determined from scattering and spectroscopic data. Based on these calcu-

TABLE 111
THE Rat10 Re[f(k,0)]/Im[ f(k,0)] CALCULATED FOR A LONG-RANGE 1/r" POTENTIAL

n 5 6 7 8

Re[f(k,0)/Im[ f(k,0)] 1.00 0.72 0.58 0.48
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lations, we can give the following basic characteristics of the phase shifts and
the ratio Re{ f(£,0)]/Im[ f(k,0)] in atom—atom collisions.

« The biggest contribution to the real part of the scattering amplitude and there-
fore to the observed phase shift A stems from regions of the potential where
the partial wave phase shifts §, are slowly varying and smaller than 7. This is
certain to be the case for large interatomic separation. In contrast, all partial
waves contribute to the imaginary part of the scattering amplitude and the total
cross section. Therefore, the phase shift Ag and the ratio Re[ f(k,0)]/Im[ f(%,0)]
carry new information about the long-range part of the scattering amplitude.

+ The phase shift A and the ratio Re[ f(k,0)]1/Im[ f(k,0)] both show glory os-
cillations similar to those seen in the total cross section, but shifted. In the
experiment, these oscillations were reduced by the velocity averaging, but
indications of them can be seen in our 1993 data (Fig. 21) as described by
Schmiedmayer et al. (1994b). These glory oscillations have also been pre-
dicted by Audouard et al. (1995).

+ For the light gases with a weak interaction potential (3,<  at the potential
minimum), the ratio Re[ f(k,0)}/Im[ f(k,0)] is very sensitive to the minimum
of the potential and therefore also to the form of the inner core.

» For the heavy gases with a strong interaction potential, the ratio
Re[ f(k,0)1/Im[ f(k,0)] tends to approach the simple pure long range limit
[Eq. (36)].

Using these basic characteristics, we can say several qualitative things about
the collisional phase shifts we have observed. We find that the collision-induced
phase shift for sodium atom waves passing through a variety of target gases is
much more strongly dependent on the collision partner than the previously mea-
sured cross sections (Diiren, 1980). Semi-classical calculations of this phase
shift show that it is very sensitive to the shape of the interatomic potential at in-
teratomic separations beyond where the random phase approximation is valid.

As a general trend, we see that the depth of the minimum of the interatomic
potential varies considerably from He to Xe. Helium has the weakest long range
attraction, a very shallow minimum, and it behaves most like a hard sphere. The
ratio Re[ f(k,0))/Im[ f(£,0)] for Na—He scattering is very small, but its positive
sign gives clear evidence of an attractive long-range interaction. The large ratio of
real to imaginary part for Na—Ne results from the fact that the maximum of the
phase shift near the potential minimum is never larger than 1 rad, generating a
large contribution to the sum in Eq. (34). The Na—Xe potential, on the other
hand, has a well deep enough to generate many radians of phase, and so the long-
range part of the potential should dominate. Its ratio comes closest to the value
expected for a long-range S interaction. The values measured for the other gases
Na-Kr and Na—Ar deviate progressively further from this ratio as the well depth
decreases (which it does monotonically with decreasing mass of the rare gas).
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For the scattering of Na, molecules on Ne gas (Chapman e al., 1995a), we
find the ratio Re[ f(k,0)]/Im[ f(k,0)] = 1.4(3). For better comparison with the Na
atom, we have separately measured the total absorption of Na, by Ne (i.e.,
(4n/k)Im[ f(k,0)]) to be 57(2)% larger than the corresponding absorption of Na.
These measurements are in qualitative agreement with Na—Ne potentials from
Tang and Toennies (1977, 1984) if extended to Na, using combination rules
from Tang and Toennies (1986).

Significant discrepancies remain between our experiments and the predic-
tions based on potentials obtained by standard scattering experiments (Diiren,
1980; Table II), especially for the velocity-dependent measurements for
Na—He, Na—Ne, and Na—Ar (Fig. 21). This shows the power of refractive in-
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FiG. 21. Velocity dependence of the ratio Re[ f(£,0)I/Im[ f(£,0)] for Na mauer waves passing
through He, Ne, Ar, and Xe gas. The data for the heavy gases (Ar, Kr, Xe) show indication of glory
oscillations. The calculated curves stem from various potentials found the literature.
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dex measurements to test existing potentials, and indicates an opportunity to
refine these potentials using this new technique. Considerably more effort is
required to understand both the velocity-selective data and the molecular
data.

We think that information from phase shift experiments may add signifi-
cant understanding to atom-atom and atom-molecule interactions and, we
hope, will allow us to learn more about the interatomic potentials in these
simple systems. We also hope to study the effects of inelastic processes and
excitations in forward scattering. These should cause a reduction in the ratio
of Re[ f(k,0)1/Im] f(k,0)] if they occur at large impact parameters (but no evi-
dence for this is seen here).

VII. Fundamental Studies

Interferometers of all types have had application to fundamental problems and
precision tests of physical theories, especially in quantum mechanics, and atom
interferometers are sure to continue this tradition (see also other contributions in
this volume; for example, the measurement of A/m for Cs by Young et al.). In
this section, we focus our attention on the fundamental question, “What limits
do the size and complexity of particles place on the ability of their center of
mass motion to exhibit interference effects?”

The quantum mechanical treatment of the center of mass motion of in-
creasingly complex systems is an important theme in modern physics. This is-
sue is manifest theoretically in studies of the transition from quantum through
mesoscopic to classical regimes and experimentally in efforts to coherently
control and manipulate the external spatial coordinates of complex systems,
as exemplified by the wide interest in matter wave optics and interferometry.
As described earlier, matter wave optics and interferometry have been ex-
tended to atoms and molecules, systems characterized by many degenerate
and non-degenerate internal quantum states. In this section, we will investi-
gate if and where there might be limits, in theory or practice, to coherent ma-
nipulation of the center of mass motion of larger and more complex particles.
We shall first consider the effect of particle size and mass, showing that the
minimum transit time needed in the interferometer varies as a high power of
the particle size. We then will consider the interaction of radiation with the
atom as it is passing through the interferometer, actually performing a
gedanken experiment suggested by Feynman. This will lead naturally to an
understanding of the limitations to observing interference with macroscopic
objects posed by their coupling to the environment. Whereas internal state co-
herences in complex molecules have long been cleverly manipulated in spec-
troscopy in both the radio (Ramsey 1985) and optical frequency domains
(Bordé et al., 1994; Chebotayev et al., 1985), we re-emphasize our concern
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here with the limits to the coherent manipulation of the center of mass mo-
tion. Finally, we shall consider the question of what happens to the coherence
lost when the particle passing through the interferometer interacts with radia-
tion, demonstrating that it becomes entangled with the scattered radiation—
and showing that this coherence can be regained by selectively detecting par-
ticles that scatter this radiation into a subspace of possible scattered photon
directions.

A. PARTICLE SIZE

First we will concentrate on particle size and complexity and their influence on
interference. Our experiments described previously demonstrate that interference
fringes can be observed when the size of the particle (~6 A for Na, molecules)
is considerably larger than both its de Broglie wavelength (0.16 A) and its coher-
ence length, typically 1 A (Schmiedmayer ez al., 1993; Chapman et al., 1995a).

If the particle’s size relative to its de Broglie wavelength or coherence length
pose no fundamental limits to matter wave interferometry, large mass or physical
size may limit the ability to observe interference fringes in a more practical
sense. To produce interference fringes in a grating interferometer with particles
of large mass, the single slit diffraction angle 6.~ A g/d, from the first grating
must be large enough to include at least two adjacent slits in the second grating.
This implies that L > d?/A,, > s*/A 5, where L is the spacing between the first
and second gratings, d, is the grating period, and s is the particle diameter. (The
last inequality follows from the requirement that the particle must be able to pass
between the grating bars.) The quantity L = d;/AdB is exactly half the Talbot
length (see Section III.C). Fulfilling this condition will allow interferometry in
the Talbot—Lau regime (but not with separated beams). For heavier particles, the
diffraction angle would be reduced further and there would be no opportunity for
two different paths to interfere. The pattern observed in a three-grating geometry
would then be a classical moiré fringe pattern (Batelaan et al., 1997 in this vol-
ume and Oberthaler et al., 1996) and not interference fringes.

We can rewrite this limit in terms of the mass density p of the (assumed
spherical) particle and the transit time between gratings 7= L/v as

S
> % . (37)

For example, an interferometer with a 1 sec transit time (between gratings)
would be able to interfere particles with a diameter smailer than 70 nm (typically
clusters of about 8 X 107 sodium atoms). Even if we waited one year, we could
not expect to observe interference from composite particles with a diameter ex-
ceeding 2 um, corresponding to an atomic weight of about 10'*; this is the size
of a large bacterium.
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B. COHERENCE L0SS DUE TO SCATTERING A SINGLE PHOTON — DISCUSSION

The principle that a system can be in a coherent superposition of different states
and exhibit interference effects is a fundamental element of quantum mechanics.
Immediately, the question arises as to what happens to the interference if one
tries to determine experimentally which state the system is in. This is the basis
of the famous debate between Bohr and Einstein, in which they discussed
Welcher Weg (“which way”) information in the Young’s double slit experiment
(Bohr, 1949; Feynman ez al., 1965; Wooters and Zurek, 1979; Zeilinger, 1986).
In a more recent gedanken experiment suggested by Feynman, a Heisenberg
light microscope is used to provide Welcher Weg information in a Young’s two-
slit experiment with electrons (Feynman ez al., 1965) or atoms (Sleator et al.,
1991; Tan and Walls, 1993). In this section, we will discuss our experimental re-
alization of this gedanken experiment using our atom interferometer. Since the
contrast of the fringes is a measure of the amount of the atomic coherence, com-
plementarity suggests that the fringes must disappear when the slit separation
(more generally the path separation at the point of measurement) is large enough
that, in principle, one could detect through which slit the particle passed (Scully
et al., 1991) using a Heisenberg microscope. This explains why scattering pho-
tons from the atoms in our interferometer at a location, where the separation of
the paths was many wavelengths of light, completely destroyed the atomic inter-
ference fringes (Section IV.G).

Since the loss of contrast is caused by the measurement of the atom’s position
by the photon, it is necessary to consider a quantum treatment of the measure-
ment process. The measurement interaction here is the elastic scattering of the
photon by the atom that causes their initially separable wave function to evolve
into an entangled state (Schrodinger 1935)—a sum of separable wave functions,
each one of which conserves the total momentum and energy of the system, that
no longer can be written as a product of separate atom and photon wave func-
tions. This entanglement can result in a loss of atomic coherence when informa-
tion about the scattered photon is disregarded. The effects of such entanglement
is an important issue in contemporary quantum mechanics, particularly with re-
gards to EPR-type correlations and for understanding the measurement process
and the loss of coherence in the passage from quantum to classical mechanics.
The details of the loss of coherence of one system due to entanglement with an-
other can be studied directly in interferometry experiments like the one dis-
cussed here by scattering a probe particle off an interfering superposition of the
observed system.

In this section, we discuss experiments we performed to measure the loss of
atomic coherence due to scattering single photons from the atoms inside our
three grating Mach—Zehnder interferometer (see Fig. 22). Our experiments
(Chapman et al., 1995c) demonstrate that the loss of coherence may be attrib-
uted to the random phase imprinted by the scattering process and that it depends
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O.P. Laser Excitation Laser

FiG. 22. A schematic, not to scale, of our atom interferometer. The original atom trajectories
(dashed lines) are modified (solid lines) due to scattering a photon (wavy lines). The inset shows a
detailed view of the scattering process.

on the spatial separation of the interfering waves at the point of scattering com-
pared with the wavelength of the scattering probe.

Our experiments also address the questions of where the coherence is lost to
and how it may be regained. Although the elastic scattering of a photon pro-
duces an entangled state, it is not per se a dissipative process and may be
treated with Schrodinger’s equation without any ad hoc dissipative term. There-
fore, the coherence is not truly lost but rather becomes entangled with the scat-
tered photon, which may be considered a simple reservoir, consisting of only
the vacuum radiation modes accessible to it. We show that this indeed is the
case by demonstrating that selective observation of atoms which scatter photons
into a restricted part of the accessible phase space results in fringes with re-
gained contrast.
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C. COHERENCE L0SSs DUE TO SCATTERING A SINGLE PHOTON — EXPERIMENT

To study the effects of photon scattering on the atomic coherence as a function
of the interfering path separation, single photons were scattered from the atoms
within the interferometer. The contrast and the phase of the interference pattern
were measured as a function of the separation of the atom paths at the point of
scattering (Chapman et al., 1995c).

In the absence of scattering, the atom wave function at the third grating may
be written W(x) = u,(x) + e“u,(x) e*~, where u, , are (real) amplitudes of the up-
per and lower beams, respectively; k, = 2m/d,, where d, is the period of the grat-
ings, and ¢ is the phase difference between the two beams. To describe the effects
of scattering within the interferometer, we first consider an atom within the inter-
ferometer elastically scattering a photon with well-defined incident and final
(measured) momenta, k; and k, with |k|= k| =k, . After this well-defined
scattering event, the atomic wave function becomes

W' (x) o< uy (x — Ax) + eu,(x — Ax) e e+ie, (38)

The resulting atomic interference pattern shows no loss in contrast but acquires a
phase shift (Bord€, 1989; Storey and Cohen-Tannoudji, 1994):

Ap=Ak -d=Akd (39)

where Ak = kf —k,, and d is the relative displacement of the two arms of the in-
terferometer at the point of scattering. Equation (38) shows that there is a spatial
shift of the envelope of the atomic fringes due to the photon recoil given by
Ax = 2L — 2)Ak /k,, ., where k= 27/) 5, and (2L — 2) is the distance from
the point of scattering to the third grating.

In the case that the photon is disregarded, the atom interference pattern is
given by an incoherent sum of the interference patterns with different phase
shifts (Stern et al., 1990) corresponding to different final photon directions (i.e.,

a trace over the photon states):
C' costkx + Ag') = Jd(Akx)P(Akx)CO cos(kx + Ak d) (40)

where P(Ak) is the probability distribution of transverse momentum transfer
and C,, is the original contrast or visibility of the atomic fringe pattern. For scat-
tering a single photon (shown in the insert to Fig. 23), P(Ak ) is given by the ra-
diation pattern of an oscillating dipole. The average transverse momentum trans-
fer is fidk, = 17k (the maximum of 2%k occurs for backward scattering of the
incoming photon and the minimum of 0%k occurs for forward scattering). Due to
the average over the angular distribution of the unobserved scattered photons,
there will be a loss of contrast (C’' = C) and a phase shift A’ of the observed
atomic interference pattern. It follows from Eq. (40) that the measured contrast
(phase) of the interference pattern as a function of the separation d of the atom
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FIG. 23. Relative contrast and phase shift as a function of the separation of the interferometer
arms at the point of scattering. The inset shows the angular distribution of spontaneously emitted
photons projected onto the x axis. The dashed curve corresponds to purely single-photon scattering,
and the solid curve is a best fit that includes contributions from atoms that scattered no photons (4%)
and two photons (14%).

o

waves will vary as the magnitude (argument) of the Fourier transform of P(Ak ).
Equation (40) is equivalent to the theoretical results obtained for the two-slit
gedanken experiment (Sleator et al. 1991; Tan and Walls 1993) (in which case d
is the slit separation), even though explicit which-path information is not neces-
sarily available in our Mach—-Zehnder interferometer, in which the atom wave
functions can have a lateral extent (determined by the collimating slits) much
larger than their relative displacement, d.

We arranged to scatter a single photon from each atom within the interferom-
eter by using a short interaction time and a laser field strength most likely to re-
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sult in the scattering of a single photon (Fig. 22). The scattering cross section
was maximized using o+ polarized laser light tuned to the D2 resonant line of
Na (/\photon = 589 nm) connecting the F = 2, m, =2 ground state to the F' = 3,
m;' =3 excited state. This ensured that the scattering left the atom in the same
hyperfine state. The atomic beam was prepared in the F' = 2, m, = 2 state by op-
tical pumping with a o+ polarized laser beam intersecting the atomic beam be-
fore the first collimating slit (see Section II.C). We typically achieved ~95%
optical pumping, as measured (to within a few percent) by a two-wire
Stern—Gerlach magnet, which caused state-dependent deflections of the atomic
beam.

The excitation laser beam was focused to a ~15 um waist (FWHM of the
field) along the atom propagation direction. A cylindrical lens was used to defo-
cus the beam in the y direction to ensure uniform illumination over the full
height of the atomic beam (~1 mm). The transit time through the waist was
smaller than the lifetime of the excited state, hence the probability for resonant
scattering in the two-state system showed weakly damped Rabi oscillations,
which we observed by measuring the number of atoms deflected from the colli-
mated atom beam as a function of laser power (see Section III.D and Fig. 8.). To
achieve one photon scattering event per atom, we adjusted the laser power to the
first maximum of these oscillations, closely approximating a 7 pulse.

The contrast and phase of the measured atomic interference patterns are
shown in Fig. 23 for different path separations. The contrast was high when the
separation d at the point of scattering was much less than A phom/2 (correspond-
ing to Ak d << ), but fell smoothly to zero as the separation was increased to
about half the photon wavelength, at which point ﬂxd =~ qr. (This would occur
exactly at d= A, /2 if the scattered photon angular distribution were
isotropic.) As d increased further, a periodic rephasing of the interference gave
rise to partial revivals of the contrast and to a periodic phase modulation.

The observed behavior of the contrast (Chapman et al. 1995c) is consistent
with the complementarity principle. Considering the photon scattering as a posi-
tion measurement of the atom, complementarity suggests that fringe contrast
must disappear when the path separation is approximately half the wavelength of
the scattered light, since this is the smallest distance that can be resolved by a
perfect optical microscope for this wavelength. At larger separations, we see not
only the general suppression of the fringe contrast expected from complementar-
ity, but also several subsequent revivals of the fringe contrast. These contrast re-
vivals reflect the inability (because of diffraction) of an optical system to spa-
tially localize the atom using a single scattered photon. If light were scattered
from an atom localized on one side of the interferometer and imaged with a lens,
this image would have diffraction rings determined by the wavelength of the
scattered photon (even in the limit of an infinitely large lens). Thus, if a single
photon is recorded where it would be expected if it had scattered from an atom
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localized on the upper arm of the interferometer, it may actually have come from
an atom on the lower arm if one of the diffraction rings coincides with the posi-
tion of the recorded photon. Under these circumstances there is significant un-
certainty as to which side the atom that emitted the photon really traversed; con-
sequently the fringe contrast can be (and is) revived to some extent.

While the contrast generally decreases as d increases, the phase shift Ap of
the fringes exhibits a sawtooth oscillation that is damped by the finite resolution
of the machine. Starting at d = 0, it increases linearly, with slope 2. This is the
slope expected for momentum transfer of 1%k, which is the average momentum
transfer of the symmetrical distribution of momentum transfer (Fig. 23). After
each O of the contrast, the sign of the interference pattern is reversed, subtracting
7 from the phase and resulting in the observed sawtooth pattern.

In studying the decoherence and phase shift, we used a 50 um detector wire,
which is larger than the deflection Ax of the atom beam that results from the re-
coil momentum imparted by the scattered photon. The finite collimation of the
atomic beam further degrades the overall momentum resolution of the apparatus.
The result of this lack of resolution is that the measured interference patterns are
averaged evenly over all values of Ax, which can be as big as 40 um in our ex-
periment— corresponding to displacement of the envelope of the fringe pattern
by ~100-200 fringes.

These numbers highlight the distinction between the expectation value of the
atom’s classical transverse position (the peak of the fringe envelope) and the
phase of the fringes (which are never shifted by more than half a fringe). In fact,
moving the point of scattering further downstream reduces the displacement of
the fringe envelope for a given k;, while monotonically increasing the corre-
sponding phase shift. Therefore, the measured loss of fringe visibility cannot
simply be understood as resulting from the transverse deflections of the atom at
the detection screen (in our case, the third grating) due to the photon momentum
transfer, as it can be for the two-slit gedanken experiments. We point out that Ax
(or equivalently the x component of the photon momentum transfer) is precisely
what is measured in determining the transverse momentum distribution of an
atomic beam after scattering a photon. These distributions have been measured
for diffraction of an atomic beam passing through a standing light wave and un-
dergoing a single (Pfau et al., 1994) or many (Gould et al., 1991) spontaneous
emissions, as well as for a simple collimated beam excited by a traveling light
wave (Oldaker ef al., 1990). These results are usually discussed using a simple
classical argument: the recoil momentum from spontaneous emission produces
random angular displacements that smear the far-field pattern, a viewpoint also
applicable to two-slit gedanken experiments. Clearly the quantum phase shift
measured in our experiment is distinct from the “deflection” of the atom Ax due
to the photon recoil. It reflects the phase difference of the photon wave function
where it intersects the two arms of the interferometer.
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These results also are interesting as a contrast to the gedanken experiments re-
cently proposed in which loss of contrast in an atom interferometer occurs after
emission of a photon by the atom, even though there is insufficient momentum
transfer to the wave function to explain this loss on the basis of dephasing (Englert
et al., 1994). In our experiment the opposite occurs: there is sufficient momentum
transfer to the atom by the emitted photon to be easily detected, but the interference
pattern is not destroyed for small separations. In both experiments the interaction
with the radiation adds insignificant relative phase difference between the two arms
of the interferometer. The crucial difference is that in the gedanken experiment of
Englert ez al., 1994), the photon emitted by the atom is retained in one of two cavi-
ties located symmetrically on the two sides of the interferometer and can be used to
determine which path the atom traversed (assuming the cavities were initially in
number states), whereas in our experiment the scattered photon scatters without
constraint and no subsequent measurement can determine which path was traversed
by the atom (for the case considered here). Indeed, if a metal foil were interposed
between the two sides of our interferometer, and a beamsplitter and mirrors added
so the laser beam was split and excited both sides with well determined relative
phase, detection of the scattered photon would then determine which side of the foil
the atom traversed, and would destroy the interference pattern even though the
phase shift imparted to the atoms was negligible, just as in (Englert et al., 1994).

D. COUPLING TO THE ENVIRONMENT

An important limitation to matter wave interferometry is posed by the interac-
tion of the interfering particle with the environment, of which the most trouble-
some aspect is interaction with thermal radiation. The mechanism of dephasing
will then be the scattering of blackbody photons from the interfering particle as
just discussed, their absorption by the particle resulting in a change of internal
state or possibly the emission of spontaneous thermal radiation by the particle.

In general, the interference pattern will be destroyed if the interaction with
the environment will allow, even in principle, the path of the interfering particle
to be determined with certainty (Scully er al., 1991). For interference that results
from internal coherences, as in Ramsey type experiments where the particles
travel in different states, this implies that any scattering that can differentiate
which state the particle is in (e.g., by frequency of absorption or polarization
sensitivity of the scattering) will destroy the interference. This is illustrated by
the necessity of working at temperatures below 4 K in separated oscillatory reso-
nance experiments using high #» Rydberg atoms.

The formation of interference fringes requires that the final internal states of
the particle wave along the interfering paths be the same (or at least nonorthogo-
nal). If the particle arrives in different, orthogonal states along the two paths, no
interference will be observable. This makes an interferometer the ultimate state-
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sensitive detector: Any change of internal state induced by radiation confined to
one side of the interferometer will completely destroy the interference pattern.
This would allow the detection of low-frequency transitions that cause reorienta-
tion or rotational state changes in molecules, for example. Even if the absorption
or spontaneous emission is accompanied by the same change of state on both
paths, interference will not be observed if the radiation on the two sides is un-
coupled (e.g., a barrier is present to shield the fields) so that a subsequent mea-
surement of the fields, in principle, could determine which side the atom was on
when it underwent the transition.

In interferometers in which the particles are initially in the same state in both
arms, the absorption, spontaneous emission, or scattering of a photon is not nec-
essarily sufficient to destroy the interference pattern if no barrier is present.
While such an event can be exploited to indicate that a particle passed through
the interferometer and possibly to determine its initial and final internal states, it
must be able to provide Welcher Weg (Scully et al., 1991) information in order to
destroy the interference. Even if the separation of the paths at the point of scat-
tering is several half wavelengths of the radiation, some coherence may be re-
tained as shown in our experiment earlier.

The dephasing experiment discussed in the preceding section of this review
shows the extent to which the scattering of a single photon from an atom in an
interferometer destroys the interference. This work shows that the destruction of
interference due to scattering of a single photon may be regarded as being
caused by a random dephasing of the interfering wave function’s external phase
caused by the uncertainty in the direction of the scattered photon. In the likely
event that a strongly interacting particle like a polar molecule or a Rydberg atom
interacts with a number of photons from a thermal radiation field, one can use a
random phase diffusion model to evaluate the destruction of spatial coherence
between two paths separated by a distance d. Each interaction with a background
radiation photon kphoton will imprint a random phase —kphmond <Ap< K otond-
Since thermal photons have typical k vectors on the order of about 500 cm™~! the
typical imprinted phase for separations on the order of 1 mm is 0.05 rad. Conse-
quently, many scattering events will be needed to destroy the coherence.

In this limit, we expect that, for N isotropic scattering events, the contrast will
be reduced to

C  [sintk,  .d)
C

N
—kumd—) ~ expl— Nk p0n)*/6). (41)

0 photon

Assuming a scattering rate of »n photons per second, the interference contrast
will be destroyed after a characteristic time 7:

)
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This clearly shows that the coherence in the external motion can be preserved
much longer than internal coherences. Thus, a large particle with dense internal
levels coupling to a thermal radiation field does not have to be completely iso-
lated from the environment to exhibit interference.

For ground state atoms, this dephasing by thermal radiation poses no prob-
lem, since the photon density at typical excitation energies of 2 eV are negligibly
small. However, the same does not hold for slowly moving more massive parti-
cles like molecules or clusters, or especially Rydberg atoms.

E. REGAINING ENTANGLED COHERENCE BY SELECTIVE OBSERVATIONS

Returning to the loss of coherence by scattering of single photons from atoms in
the interferometer, we now address the questions of where the coherence is lost
to and how it may be regained. We performed an experiment (Chapman et al.,
1995c¢) to show that selective observation of atoms that scatter photons into a re-
stricted part of the accessible phase space results in fringes with regained con-
trast. This demonstrates that the coherence is not truly lost, but becomes entan-
gled with the scattered photon, which may be considered as a simple reservoir
consisting of only the vacuum radiation modes.

In this experiment, we observed atoms that are correlated with photons
scattered in a narrow range of final directions. In principle, this could be
achieved by detecting the photons scattered in a specific direction in coincidence
with the detected atoms. With Ak d now being a known quantity, the fringe shift
is predicted to be the same for all the atoms; consequently, the fringe patterns of
this restricted set of atoms would line up and no coherence would be lost. Unfor-
tunately, such an approach is not feasible in our experiment for a number of
technical reasons—principally the slow response of our atom detector and the
inefficiency of photon detectors.

Fortunately, an alternative experimental approach is made possible by the fact
that the change of momentum of the photon, Ak, is imparted to the atom and
can be measured by the atom’s deflection Ax. Hence, a measurement of an
atom’s Ax gives the Ak _of its scattered photon. Furthermore, it is easily possible
to measure Ax in our three grating interferometer, because (since we scatter the
photons close to the first grating) the deflection of the envelope of the atomic
fringes for a particular Ak_is 100 times larger than the associated fringe shift,
Ak d. In practice, this approach is superior to a correlation experiment because
no inefficiencies or accidental coincidences are introduced by the measurement
of the scattered photon: the measurement of an atom’s position reliably indicates
the momentum transferred to that particular atom.

We have performed an experiment based on this technique to demonstrate the
recovery of the entangled coherence. By using very narrow beam collimation in
conjunction with a smaller detector, we can selectively detect only those atoms
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correlated with photons scattered within a limited range of Ak,. This restricts the
possible final photon states and results in a narrower distribution P'(Ak,) in Eq.
(40). We performed experiments with recoil distributions centered on three dif-
ferent photon momenta. Figure 24 shows three different realizations (referred to
as Cases I-III) with the corresponding momentum transfer distributions,
P!(Ak), i =1, 11, HI. The contrast is plotted as a function of d for Cases I and III,
where we preferentially detect atoms that scattered photons in the forward and
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FIG. 24. Relative contrast and phase shift of the interferometer as a function of d for the cases in
which atoms are correlated with photons scattered into a limited range of directions. The dashed
curve is for the uncorrelated case. The inset shows the acceptance of the detector for each case com-
pared to the original distribution (dotted line). Case I corresponds to predominantly forward-scat-
tered photons (minimal transfer of momentum), Case III corresponds to backward-scattered photons
(transfer of 2 photon momenta), and Case II lies in between.
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backward directions, respectively. The contrast for Case II is similar to Case I
and is not shown. The measured contrasts in this figure were normalized to the
d = 0 (laser on) values, since a different number of atoms was detected with the
laser off due to the absence of the deflection by the photons.

Our results show that the contrast falls off much more slowly than previ-
ously —indeed, we have regained over 60% of the lost contrast at d = A/2. The
contrast falls off more rapidly for the faster beam velocity (Case III,
Vieam — 3200 m/sec) than the slower beam velocity (Cases I and I, v, = 1400
m/sec) because the momentum selectivity for the final photon states is corre-
spondingly lower.

The phase shift is plotted as a function of d for the three cases in the lower
half of Fig. 24. The slope of Case Il is nearly 4, indicating that the phase of
the interference pattern is determined predominantly by the backward-scattering
events. Similarly, the slope of Case I asymptotically approaches a small constant
value due to the predominance of forward-scattering events. Case II is an inter-
mediate case in which the slope of the curve, ~3r, is determined by the mean
accepted momentum transfer of 1.5%k. The lower inset shows the transverse mo-
mentum acceptance of the detector for each of the three cases (i.e., the functions
P(Ak)), which we determined using the known collimator geometry and beam
velocity. The fits for the data in Fig. 24 were calculated using Eq. (40) and the
modified distributions P/(Ak ) and include effects of velocity averaging as well
as the effects of those few atoms that scattered no or two photons.

F. SCATTERING A SINGLE PHOTON OFF AN ATOM IN TwWO INTERFEROMETERS

Our atom interferometer employs thin diffraction gratings that split the incident
beam into many diffracted beams. As a consequence, in the absence of addi-
tional collimation, there are always at least two or more equivalent interferome-
ters in which the atom can be found. By positioning the detector at specific
points between two interferometers, one can selectively detect atoms that were
in a superposition of more than two states (and are in more than one interferom-
eter). This is especially interesting if one considers photon scattering off of an
atom in such states. In general, the picture will be more complicated than the
simple two path case discussed previously. Different final photon momenta can
now cause the atom from different interferometers to be found at the same detec-
tor position (see inset in Fig. 25). Photons in different final photon momentum
states leading to the atom being scattered into the detector are distinguishable
and therefore carry information about which of the two interferometers the atom
went through. This dramatically alters the observed contrast patterns.

In Fig. 25, we show measurements for the simplest case in which the detector
(third grating) is centered between the deflected profiles of the two principle in-
terference orders. The atom has two possibilities to be detected: The atom either
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FiG. 25. Experimental data (solid markers) for the detector centered between the deflected pro-
files of the two central interference orders as shown in the upper right graph. The solid curves in the
lower graph are calculated with the modified distribution shown in the upper left graph, and are com-
pared with the original (dashed).

comes from the first interferometer, scattering a photon with nearly maximal
momentum transfer Akamm = 2Akphmon, or it comes from the other interferometer,
scattering the photon in the forward direction with nearly no momentum transfer
Ak, = 0. These photons are distinguishable, and the two interference patterns
add incoherently, with a differential phase shift determined by the beam separa-
tion d. This will lead to a “beating” between the two interference patterns, show-
ing strong contrast revivals with an envelope given by the single interferometer
contrast. As predicted by the calculation, the contrast showed striking revivals
(Fig. 25). The first revival was twice as high as for the uncorrelated case. The
agreement with the calculation is quite good for the contrast data. For the phase
data, the agreement is very good up until d = X and less satisfactory thereafter,
which we attribute to contributions from interferometers containing higher dif-
fraction orders.

This information about from which interferometer the atom was emitted can
be erased by building a cavity around the scattering point and mixing the two
photons. This opens up the possibility of combining cavity QED experiments,
which focus on the quantum states of the radiation field, with atomic interfer-
ence experiments probing the coherence of the center of mass motion of the
atoms.
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VIII. Inertial Effects

Phase shifts that arise in accelerating frames have been discussed by many au-
thors in both nonrelativistic and relativistic contexts (see, e.g., Colella et al.,
1975; Anandan, 1977; Greenberger and Overhauser, 1979; Werner et al., 1979;
Clauser, 1988). Because such phase shifts increase with the mass of the interfer-
ing particle, atom interferometers are especially sensitive to inertial effects and
may be developed into accelerometers, rotation sensors, gravimeters, and gra-
diometers.

The inertial sensitivity of an atom interferometer arises because the freely
propagating atoms form fringes with respect to an inertial reference frame.
These fringes appear shifted if the interferometer moves with respect to this iner-
tial frame while the atoms are in transit. To illustrate this, we now present a sim-
ple calculation of the fringe shift that results from acceleration a of a three grat-
ing interferometer in a direction perpendicular to both the grating bars and the
atomic beam axis.

In the time 7= L/v that it takes an atom moving with velocity v to travel the
distance L between adjacent gratings (Fig. 26), the interferometer moves a dis-
tance at2 = D/2. Atoms moving with an initial transverse velocity Vians =
at/2 = aL /2v with respect to the interferometer axis at the time the atoms passed
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Fi1G. 26. The interferometer in motion under the influence of a transverse acceleration. The
atomic beam travels from left to right in the laboratory frame but interacts with the progressively dis-
placed gratings of the moving apparatus. Because a centerline (short dash) between the atom beam
paths passes through the middle of the first grating at t = 0, and is offset by a transverse velocity,
Vians = 1/2a7, it also passes through the middle of the displaced second grating at ¢ = 7. The dashed
curve (long dash) represents the displacement of the interferometer due to acceleration. The center-
line of the accelerating interferometer is shown (short-long dash) at 7 = 0 and ¢ = 27, where fringes
have a relative displacement of —D.
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through the first grating therefore will pass through the first and second gratings
of the accelerating interferometer at the same positions as would on-axis atoms
in the case of a nonaccelerated interferometer. These atoms continue with this
transverse velocity, forming a fringe pattern at the third grating that is displaced
by v,,..7=ar? =D from the original axis. When these atoms now reach the
third grating, the interferometer will have moved a(27)%/2 = 2D from its original
position, resulting an apparent fringe shift of —D. This is observed as a phase
shift:

-D 27 (L? 2Tm*A LA
Pacceleration 277(7) = - d_ (;) a= — —h2dB_a (43)

4 4

where d, is the period of the gratings, A,z = A/mv is the de Broglie wavelength
for an atom with mass m and velocity v, and A = L%(A dB/a'g) is the area enclosed
by the two arms of the interferometer. This expression can also be obtained di-
rectly from Eq. (15) and the discussion about the sensitivity of our interferome-
ter to vibrations (see Section IV.E). It should be noted that the phase shift in our
three grating white light geometry is independent of the mass of the particle, and
was derived using classical physics.

The phase shift due to rotation of the interferometer (called the Sagnac effect)
follows by noting that rotation with angular rate ) gives rise to a Coriolis accel-
eration a = 2v X ), allowing one to use Eq. (43) to calculate the phase shift due

to rotation:
27 [L\? mA
Protation = [‘7 (v> 2V]Q = [477 7}9 44)

8

where we call the bracketed factor the rotational response factor. This expres-
sion can also be directly obtained from Eq. (14) in the discussion about the sen-
sitivity of our interferometer to vibrations (see Section IV.E).

The results of these simple derivations agree with the nonrelativistic phase
contributions derived by various more sophisticated methods (Greenberger and
Overhauser 1979; Werner et al., 1979; Clauser, 1988). Relativistic contributions
to the phase shift caused by accelerations and rotations are of the order E,, /mc?
smaller than the nonrelativistic terms (Anandan, 1977) and are unresolvable in
our experiments.

The Sagnac effect is not dispersive per se and is independent of the velocity
of the particle in an interferometer in which the area is constant (as it would be
for an interferometer employing conventional beam-splitters). However, since
most atom interferometers employ diffractive beam splitters (as does ours), their
rotational response factors will exhibit 1/v dependence. This dependence arises
from the variation of the enclosed area, which in turn results from the variation
of the diffraction angle with velocity. In contrast to rotations, the phase shift due
to linear accelerations [see Eq. (43)] varies with velocity as 1/v2. Thus atom in-
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terferometers that use slow atoms will be relatively more sensitive to accelera-
tion than to rotation.

Phase shifts due to rotation and acceleration, as well as shifts due to gravita-
tional fields (which give the same response factor as acceleration due to the
equivalence principle), have been observed in many kinds of matter wave inter-
ferometers. Accelerations were measured using neutron interferometers (Colella
et al. 1975; Wemer et al., 1979) and using atoms (Kasevich and Chu, 1991,
Oberthaler ef al., 1996). The Sagnac phase shift for matter-waves has been veri-
fied with accuracy on the order of 1% for neutrons (Werner et al., 1979; Atwood
et al., 1984) and electrons (Hasselbach and Nicklaus, 1993), and to about 10%
for atoms using both interferometers (Bordé, 1989; Riehle er al., 1991) and clas-
sical moiré regime atom optics (Oberthaler et al., 1996).

In view of the numerous demonstrations of the sensitivity of matter wave in-
terferometers to noninertial motion, the motivation for such experiments is prin-
cipally technological: Can such devices become the sensors of choice in practi-
cal applications or can they demonstrate such high sensitivity that they open up
new scientific possibilities? With these considerations in mind, the observation
that the rotation-induced phase shift in an atom interferometer exceeds the
Sagnac phase for light of frequency w by an amount mc*/fiw (typically 10'%)
suggests the tremendous potential of atom interferometer rotation sensors
(Clauser, 1988).

We now estimate the minimum angular velocities and accelerations de-
tectable by our atom interferometer using the atomic velocities and signal inten-
sities achieved in our apparatus. We assume that only Poissonian detection statis-
tics degrade the signal-to-noise ratio, which is therefore proportional to C VN,
where C is the fringe contrast and N is the total number of counts (see Section
IV.C). The response factor and corresponding (purely statistical) rotational noise
are summarized in Table IV.

TABLE IV
RESPONSE FACTORS AND ROTATIONAL SHOT NOISE FOR INERTIAL SENSITIVITY MEASUREMENTS

Response Factor Rotational Noise
Atom interferometer: rotation 1.86 rad/Q, 58 %107 Q/ Vhr
Commercial laser gyroscope: rotation ~2 rad/Q}, 17X 107490/ Vhr
Atom interferometer: acceleration 116 rad/g 9.2 X 107%/ Vhr

Note: In obtaining these estimates, we used actual values for our interferometer, which are an
average beam velocity of 1075 m/sec, a contrast of 12.9%, and an rms rate of 29 kcounts/sec for
data taken in the reproducibility experiment (one earth rate is 7.3 X 1077 rad/sec).
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We performed experiments to measure both the response factor and the repro-
ducibility for rotations of our interferometer, comparing the response factor with
the predictions of Eq. (44) and reproducibility with the noise predicted in Table
IV. Both measurements were made by suspending the interferometer by a cable
from the ceiling and then driving it with a sinusoidally varying force applied at
some distance from the center of mass, thereby giving the interferometer a rota-
tion rate of

Q) = O, sinQf). (45)

The rotation rate £}, was typically several earth rates ({2, = 7.3 X 10~ rad/sec)
for the response factor measurement, and about Qe/ 10 for the noise measure-
ments. For the response measurements, f was chosen just over 1 Hz in order to
minimize deformations of our interferometer (which has several prominent me-
chanical resonances in the 10—30 Hz frequency range). For the noise measure-
ments, f was around 4.6 Hz, where the measured residual rotational noise spec-
trum of the apparatus had a broad minimum.

Our procedure was to measure the acceleration of the suspended interferome-
ter using accelerometers at the sites of the first and third gratings. While modu-
lating the grating phase, ¢_ ..., with a sawtooth pattern at a frequency just less
than 1 Hz, we recorded accelerations (from both accelerometers), Pyrating’ and the
atomn counts each millisecond. Readings from the accelerometers allowed us to
infer the atom phase expected from the acceleration and rotation rate of the in-
terferometer using equations (14, 15). We called this predicted inertial phase
(ppredicted'

To study the magnitude and constancy of the response factor, we binned these
data according to the Ppredicted predicted from the accelerometer readings after
suitable correction for their known frequency response. Since the frequency of
the sawtooth modulation of @, ., was chosen to be incommensurate with f, the
data in a bin with a particular value of ¢, ., had a variety of values ¢, . al-
lowing us to make a fit using Eq. (7) to determine the inertial phase contribution
to Eq. (1), whichis ¢, . . Aplotof ¢ . vs. @ oredicted is shown in Fig. 27 from
a combination of 20 sec runs totaling ~400 sec (i.e., ~10 sec of data in each
Ppredicted bin). The data reveal a linear response and an average response factor
within error (0.8%) of that predicted from Eq. (44).

To study the reproducibility of our interferometer we employed a phase mod-
ulation technique to immediately convert atom counts into ¢_, . (¢). This was
accomplished by scanning the second grating (@yrating) at 1 Hz to produce a car-
rier modulation on the atom count rate in Eq. (7). The rotation of the interferom-
eter introduced a phase modulation ¢, . (¢) onto the carrier that was demodu-
lated by homodyne detection, using the sine of 277/d, times the grating position
signal from the optical interferometer as the local oscillator.

From each of 21 data sets 32 sec long, we analyzed samples of different
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FiG. 27. A plot of the measured interferometer phase, ¢,_,,..., versus the inferred phase from the
accelerometer readings, ¢

predicted” from a combination of 20 sec runs totaling approximately 400 sec
of data (~10 sec of data per point). There is a 0.8% difference between these measurements with a
total error of 1%.

sizes to find the rotation rate {} . .(r) measured from the rotation phase
@ onation(r) Of the interferometer. The samples were taken from the middile of
each data set and ranged in duration, 7, from 0.66 to 10.66 sec. Each sample
was Fourier transformed and the magnitude of the amplitude of the rotation
at drive frequency f found. The rms fluctuations in the amplitudes for given
sample lengths were then determined for the various averaging times, T. In
Fig. 28, they are plotted and compared to the shot noise limit computed in
Table IV.

For averaging times up to 2 sec, the reproducibility is close to the predicted
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FIG. 28. Reproducibility of the rotation measurement while driving the interferometer by a 4.6
Hz sinusoidally varying force. The standard deviation of the fluctuations in the measured rotation of
the 4.6 Hz spectral peak is plotted versus integration time (circles). This is compared to the shot
noise limited error verses integration time (dashed line).

statistical noise; for longer intervals, the observed fluctuations rise above this
limit. Since long-term zero drift of the interferometer does not contribute to the
amplitude of the rotation at 4.6 Hz, we think this irreproducibility reflects contri-
butions from drive amplitude fluctuations, residual 4.6 Hz rotational noise of the
interferometer, and possibly other unidentified sources of rotation such as fluctu-
ations in cooling water pressure.

We regard these results as highly encouraging for the future of inertial sen-
sors using atom interferometers. Our interferometer was designed for separated
beam interferometry, not inertial sensing. This resulted in restricting the usable
area of our small 1 mm X 200 um gratings by a combined factor of 100 for both
ends of the machine. Furthermore, the vacuum envelope, with heavy diffusion
pumps hung at odd angles, had numerous low frequency mechanical resonances.
Despite these difficulties, we verified the rotational response factor to better than
1%, indicating that atom interferometric rotation sensors perform as predicted.
Moreover, we achieved reproducibility at the 10 m{2,/Vhr level. This is about
three orders of magnitude more sensitive than previous rotation measurements
using atom interferometry (Riehle er al., 1991) and approaches the sensitivities
of much more difficult neutron interferometry measurements that required inte-
gration times of many minutes per point (Werner et al., 1979). Clearly, a dedi-
cated rotation sensor using atom interferometric techniques would perform many
orders of magnitude better than ours and should considerably exceed the per-
formance of laser gyroscopes.
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IX. Outlook

In documenting both scientific and technical advances made with atom interfer-
ometers, this chapter demonstrates that atom interferometers have progressed be-
yond the “demonstration” phase and now must be considered as instruments for
performing a variety of scientific and technological measurements. Even without
new developments, which are expected in atom optics and slow atom technol-
ogy, atom interferometers can be expected to make further scientific advances in
the three basic areas we have discussed: atomic and molecular physics, funda-
mental studies, and inertial sensing. We shall now discuss several applications in
these areas, enumerating in each several developments that we forsee.

A. ATOMIC AND MOLECULAR PHYSICS

We expect to see increased application of atom and molecule interferometers to
atomic and molecular physics. It is certainly possible to use such devices to make
significant advances in the accuracy of atomic and molecular measurements.
Techniques such as velocity multiplexing (Section V.D) can produce atomic or
molecular beams with narrow velocity widths, making it feasible to perform mea-
surements with uncertainties in the 10~ range. This level of precision would be
particularly welcome for the measurement of the polarizability of cesium, since a
better determination of this quantity would help constrain the atomic structure
theories used to determine the Weinberg angle from measurements of parity vio-
lation in this system (Noecker ez al., 1988; Wood et al., 1995).

A qualitatively new application of atom and molecule interferometers would
be to measure the separate parallel and perpendicular components of the polariz-
ability of a dimer molecule such as Na, in the ground state manifold (or else the
anisotropy of polarizability of an atom with ground state electron spin greater
than %). This could be done using our technique of contrast interferometry (Sec-
tion V.C) to determine the anisotropy of the polarizability, while simultaneously
determining the weighted average of the ground state polarizability from the av-
erage phase shift, which is a function of electric field squared (see Section
VI.A). An even more elegant technique would be to apply the same magnitude
of electric field to both sides of the interferometer, but in orthogonal directions.
Then the average polarizability would cause the same phase shift on both sides
of the interferometer, giving no average phase shift, while the contrast would be
reduced at a rate proportional to the anisotropy of the polarizability.

Our measurement of the index of refraction of a gas for matter-waves (Sec-
tion VI.B) has been shown to provide unique information about the long-range
shape of the potential interaction between two colliding atoms or molecules. By
varying the relative velocity of the two colliding particles, a more detailed study
of the index of refraction of various gases for matter-waves could be obtained.
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This is a relatively straightforward measurement in our apparatus, since the ve-
locity of the Na beam can be varied simply by changing the mass of the carrier
gas in our beam source.

It is an open question whether atoms will bounce coherently from a surface
(although they are known to bounce specularly from some surfaces, suggesting
that there should be some coherence). Investigation of this phenomenon may be
possible by studying the phase shift for bounces of atoms from surfaces using
atom interferometry. Perhaps the most interesting investigation here would be to
vary the surface and observe the consequent phase change.

B. FUNDAMENTAL STUDIES

We predict that the most fruitful area for scientific application of atom interferome-
ters will be to the study of a wide variety of fundamental processes. While interfer-
ometry experiments with neutrons will continue to illuminate many fundamental
points, atoms possess many advantages. Atoms have much larger magnetic dipole
moments, very large electric polarizabilities, strong interactions with laser light, and
easily accessible (with RF or laser radiation) internal structure. The availability of
species with either Fermi or Bose statistics also presents interesting opportunities
for experiments. Furthermore, atom interferometers are in a rapid stage of develop-
ment and great increases in signal strength can be anticipated.

In the following brief overview of fundamental experiments that we foresee,
we will first discuss geometric phases (e.g., Berry’s phase), then phases that
come from the interaction of the atoms with B or E fields induced by the motion
of the atom through E or B fields, respectively, then address the contentious is-
sue of whether these induced fields produce potentials whose derivative causes
observable forces on the particles.

C. BERRY’S PHASE

When a quantum system evolves (even adiabatically) around a cyclic path in
phase space, it gains an additional phase, as first described by Berry (Berry,
1984, 1990; Wilczek and Shapere, 1989). Various demonstrations of this effect
have been performed with photons (Chiao and Wu, 1986; Kwiat and Chiao,
1991), spin rotation experiments with neutrons (Bitters and Dubbers, 1987,
Wilczek and Shapere, 1989), and atomic hydrogen (Miniatura et al., 1992). With
our separated beam interferometer, we can measure the geometric phase result-
ing from transport of the state vector of the atoms through two different paths in
phase space back to their starting points (Schmiedmayer et al., 1993). For exam-
ple, atoms with a definite spin projection could traverse a magnetic field configu-
ration arranged such that the spin (which would follow the field adiabatically)
evolves through different paths in the two arms of the interferometer. If atoms on
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the two different arms see the same total integrated magnetic field, and hence ac-
quire the same total dynamic phase, the only phase shift observed will be the
purely geometric phase shift, Ag, .. = MpAL, 0, 8iven by the (easily var-
ied) difference between the solid angle that the magnetic field and hence the
state vector subtends on the two arms. Measurements with even and odd m, have
not previously been performed; in addition, the adiabaticity can be varied by
changing the total field strengths, thus probing nonadiabatic geometrical phases.
It is interesting to point out that an experiment like this can also be seen as a
demonstration of geometric forces (Stern, 1992; Aharonov and Stern, 1992). The
phase shift has the same relation to the geometric force as the Aharonov—Bohm
phase shift has to the Lorentz force.

D. RELATIVISTIC EFFECTS IN ELECTROMAGNETIC INTERACTIONS

Atoms are so sensitive to electric and magnetic fields that even the small fields gen-
erated by their motions (i.e., E = (v/c) X B and B = —(v/c) X E) produce observ-
able effects, some of which are especially interesting because the extra linear power
of v cancels the usual 1/v dispersion of phase shifts in the interferometer, producing
an effect independent of velocity. An example of this is the Aharonov —Casher (AC)
effect. In its simplest form, this effect manifests itself as a phase shift of the interfer-
ence pattern of a particle possessing a magnetic moment whose interfering paths
form a loop around a line of charge (Anandan, 1982; Aharonov and Casher, 1984).
The fundamental importance of the AC effect, as well as the Aharonov—Bohm ef-
fect (Aharonov and Bohm, 1959), is the prediction of a phase shift of the atom
wave even though the classical force on the particle vanishes. The first measure-
ment of the AC phase was made with a neutron interferometer (Cimmino et al.,
1989). Several recent measurements have employed single-beam Ramsey atom in-
terferometers to measure the phase shift to within a few percent (Sangster et al.,
1994; Zeiske et al., 1995; Gorlitz et al., 1995). An atom interferometer like ours
could measure the AC phase shift to better than 1% using a geometry that would
also allow examination of the hitherto unstudied dependence of the effect on the
relative orientation of the magnetic moment and the line charge.

An effect complimentary to the AC effect involves the electric fields induced
by motion through magnetic fields. The small electric fields produced by such
motion may be sensitively detected by exploiting the fact that a polarizable atom
responds quadratically to the applied electric field. If a large dc electric field,

heterodyne? is applied oppositely to the two arms of the interferometer, the total
phase shift would then have a form like

1% 1%
Agomotion = a[(Eheterndyne + EB)z - (—Eheterodyne + ;B)z:l /2 (46)

sa E Eheterodyne ‘B
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assuming v and B are perpendicular. It was recently proposed that this effect
should be observable (Wei et al. 1995). Finally, motion of an electric dipole
(even one induced by an electric field) through a magnetic field can also cause a
geometrical phase analogous to the Aharonov—Casher topological phase
(Wilkens 1994).

E. DIFFERENTIAL FORCE INTERFEROMETRY

Any matter-wave interferometer is very sensitive to differences in longitudinal
force applied between the two arms because these change the relative momenta
and hence the relative energy of the two particle waves that are recombined, re-
sulting in time-varying phase shifts. The great sensitivity of atoms to electro-
magnetic fields makes it easy to construct a region where differential forces re-
sult from differences in the field gradients on the two sides of the interferometer.
Assuming that the atoms entering such a region are initially in a mixture of pure
momentum states (as is the case for an atomic beam emitted by an effusive
oven), a small differential force will destroy the time-averaged interference con-
trast. A larger differential force could be studied by means of its ability to
rephase a momentum correlation that was induced in the atom beam upstream
by some modulation process (e.g., a fast beam chopper).

Using the intrinsically time-varying methods just described, a generalization
of the scalar Aharonov—Bohm effect (Aharonov and Bohm, 1959) might be per-
formed. Instead of measuring the phase accumulated by the interaction of the
atom’s magnetic dipole moment with a uniform magnetic field present during
some fixed interval, one could apply a magnetic field gradient during this inter-
val.

Differential force interferometer experiments could address two separate con-
troversies that have recently arisen in discussions of the AC effect and related
theoretical issues involving the interaction of the dipole with a time-varying
magnetic field induced by the motion of the atom in a time-varying electric field.
The first concerns whether a motion-induced magnetic field can be treated ex-
actly like an applied magnetic field, as Boyer claims in his analysis of the AC
phase shift (Boyer 1987). If this is the case, then there will be a longitudinal
force on the dipole as it enters or leaves the gradient at the ends of the applied
electric field. Varying the electric field while the atom is present in the interac-
tion region would then make the gradient experienced by the atom exiting the in-
teraction different from the one it experienced on entering, causing a differential
momentum that could be detected as described earlier. If, as others (Aharonov et
al., 1988; Goldhaber, 1989; Casella, 1994) claim, a full classical analysis finds
the net force in the rest frame of the spin equal to O (in the special case when the
spin is along the direction of the line charge) then no differential force will be
observed and at most a fixed relative phase shift would result.
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A second controversy concerning forces on moving dipoles centers on the ob-
servability of the force term
FIV(’L'B)—1MX@+2—MEX(HXB) 47
c ot hc
derived by Anandan (1989) for a magnetic dipole moving through crossed elec-
tric and magnetic fields. Casella and Wener (1992) claim that for a spin-% parti-
cle the last term in this expression is unobservable in principle, but Anandan’s
group disagrees (Anandan and Hagen 1994). Atom interferometers could resolve
this controversy by applying a spatially varying electric field to atoms whose
magnetic moments are precessing about a parallel magnetic field at a rate chosen
so that the force on the atoms due to the E X (u X B) term keeps the same sign
throughout the interaction but is opposite on the two sides of the interaction re-
gion.

F. INERTIAL MEASUREMENTS

In view of the smallness of relativistic contributions to the response of atom inter-
ferometers to inertial motion, there is little likelihood that atom interferometers will
uncover any flaws in the theories presented in section VIII. Therefore, we argue that
performance and performance per unit cost are the parameters by which atom inter-
ferometric inertial sensors ultimately must be judged. Since their cost is unlikely to
be low, their best opportunity lies in spectacular performance.

We first discuss rotation sensing. We have calculated that a 1 m long atom inter-
ferometer with three microfabricated matter gratings 1 cm? in area would give rota-
tional noise of 2 X 10~% Q/ Vhr (earthrate per square root hour) with a consump-
tion rate of 1 g of cesium per hour. Slightly improved performance could be
achieved using light gratings instead of matter gratings, owing to the larger overall
throughput. This performance is four orders of magnitude better than commercially
available laser gyros and might have interesting applications to study of the geo-
physics of earthquakes and other short-term phenomenon. Zero drift of such an in-
strument would result from long-term mechanical misalignment of the gratings and
would constitute a formidable problem, even if overall drifts in grating alignment
are corrected for by running atoms in two directions through the interferometer.
Overall sensitivity and stability could be improved by using slow atoms, but only at
the price of increasing sensitivity to accelerations.

G. CONCLUSION

The work presented in the bulk of this chapter, together with the suggestions for
the future just presented, show that atom interferometers have considerable
prospect for future study of fundamental physical phenomena and atomic and
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molecular properties and as tools for measurement of noninertial motion. While
this much can be anticipated with fair certainty, we hope that there will be excit-
ing developments for applications not anticipated here.
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Appendix: Frequently Used Symbols

area of interferometer

fringe amplitude

amplitudes for beam paths 1,2

rotational constant of molecular energy level
magnetic field

contrast

observed contrast

initial contrast (before taking into account vibrations)
oK) original contrast of interferometer

ES
3

anaAnOw®m> >

C, coefficient of 1/r~" potential
D spacer width

D transverse distance moved by interferometer
E energy

E electric field

Em,‘lcmdyne heterodyne electric field

En kinetic energy

F total angular momentum

G gauss

H Hamiltonian

I mean detected intensity

1 laser intensity

T S maximum, minimum intensity
1 pservea observed intensity

L grating separation
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Talbot length

shutter separation

effective length of interaction region

length of applied potential region, length of interaction region
source to 1st grating distance

number of counts, density of medium

relative retained contrast as a function of applied phase
probability distribution of transverse momentum transfer
probability of transition from ground to excited state
action

action along classical path

average time

temperature (in Kelvins)

potential

Van der Waals potential

acceleration (transverse to gratings and atomic beam)
interferometer fringe amplitude reduction factor
classical impact parameter

speed of light

separation of two arms of interferometer at point of scattering
grating period

frequency of rotation of interferometer

shutter open fraction

fraction of atoms in ith state

atomic & vector (velocity) distribution
forward-scattering amplitude

g factor

source height

detector height

wave vector

initial wave vector of atoms

lattice vector of grating

atom wave vector

Boltzmann constant

wave vector in center of mass frame

initial and final photon momentum

magnitude of photon momentum

coherence length

angular momentum

highest contributing partial wave

mass of atom

magnetic quantum number

mass of carrier gas atom

index of refraction, number of shutter cycles during traversal time
momentum

hard sphere radius

particle diameter

time

traversal time

amplitudes of upper and lower beams in interferometer
velocity of atomic beam
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particle velocity

transverse velocity

particle position

transverse position of grating i

range of interatomic potential

path

paths with x, = x; =0

dynamic phase

phase shift induced by a potential

observed phase shift

phase shift for stretched state

geometric phase shift

phase shift of atoms in a particular state

difference in solid angle subtended by state vectors on two paths
differential magnetic field between two arms of the interferometer
change in photon momentum during scattering event
x component of change in photon momentum
average value of Ak,

sampling period, shutter period

velocity width

classical displacement

deflection due to photon recoil

displacements of grating (due to random vibrations)
electric field

voltage (potential)

wave function

rotation rate of interferometer

base rotation rate

dynamic phase contribution

rotation rate measured

electric polarizability

relative grating rotations

open fraction of grating i

phase shift of the partial wave

diffraction angle

rotation angle of grating J

de Broglie wavelength

photon wavelength

magnetic moment

Bohr magneton

mass density

circularly polarized light

rms width of Gaussian & vector distribution of atoms
total scattering cross section

variance of grating position (due to random vibrations)
transit time between gratings

decoherence time

rms error in phase measurement

phase difference between two paths

phase due to interferometer accelerations
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Porating phas; due to relative grating positions
Pinertiat 1ner¥lal phase
Prposition grating phase

(ppos“m(t) measured phase

rotational phase of interferometer predicted by the accelerometers
Proration phase due to interferometer rotations

@ angular frequency of light

Rabi frequency

vibration frequency of gratings

(Pprcdicled
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I. Introduction

Atoms now provide us with the possibility of investigating both the classical and
the quantum motion of particles in periodic structures in great detail. Atomic
sources are readily available (Ramsey, 1985), and atoms can be easily manipu-
lated with the atom optics (Mlynek et al., 1992; Baudon and Miniatura, 1994;
Adams et al., 1994) and laser cooling technology developed in recent years
(Meystre and Stenholm, 1985; Chu and Wieman, 1989; Arimondo et al., 1992).

Atoms offer an additional advantage over other particles since they interact
strongly with electromagnetic fields, which can be very precisely engineered us-
ing laser technology. Using diffractive optics and holography, one can build a
great variety of structures in the laboratory (Collier ef al., 1971). In addition, one

85 Copyright © 1997 by Academic Press. Inc.
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can change the interaction between the object and the atom at will, allowing
(1) very weak, elastic interactions such as those in dynamical diffraction, (2)
very strong interactions as in channeling, and (3) those interactions dominated
by dissipative processes using on-resonant light.

In this chapter, we describe our first attempts to exploit the unique possibili-
ties of atomic beams and their interactions with light fields for fundamental
physics. The first simple experiments commenced in our laboratory in 1992 and
funding for large-scale projects was obtained in 1993. The following sections es-
sentially cover that part of our activities which concentrates on investigating the
motion of atoms in designed, periodic structures, both fabricated mechanical
structures and structures constituted by light.

We will start our overview with a short description of our experimental appa-
ratus (Section 1I) and then describe a classical experiment: a three grating moiré
imaging device based on classical ray optics (Section III) (Oberthaler er al.,
1996a). We show that this classical device is a very sensitive inertial sensor, ca-
pable even of surpassing present-day commercial sensors.

We then describe our three grating de Broglie wave atom interferometer
based on diffraction at standing light waves (Section IV) (Rasel et al., 1995) and
subsequently discuss the similarities between the classical moiré apparatus and
the quantum apparatus, the interferometer (Section V).

In the last section (VI), we will comment on the new features one might expect
in the study of coherent motion in periodic structures made of light, which we call
light crystals. Starting from the similar and well-developed fields of dynamical dif-
fraction (Rauch and Petrascheck, 1978; Batterman, 1964) in neutron, electron, and
x-ray physics, we give an introduction into the different regimes accessible by ex-
periment and show the first realizations of some of the expected effects.

II. Experimental Apparatus

All the experiments were performed using a beam of metastable argon atoms
(Rasel, 1996). Our atomic beam apparatus is designed to resolve the tiny deflec-
tion of atoms when diffracted at a standing light wave with a 405 nm (/\“gm/2)
period (8, = 32 urad for 800 m/sec atoms).

A. THE ARGON ATOM

Our main reasons for choosing metastable *°Ar for our experiments are that its
radiative transitions can be driven by diode lasers and metastable atoms can be
detected easily using a channeltron. Furthermore, the lifetime of the metastable
state is >>> 10 sec, which is much longer than the flight time of the atoms (<10
msec); hence, it can be regarded as a stable state for all our experiments.
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Metastable “°Ar has a simple but very interesting level scheme (see Fig. 1 and
Table I). Argon has no nuclear spin and, hence, no hyperfine structure. There are
two long lived metastable states in Argon, “Ar: [3p*4 ]1s, and [3p*4 ]1s,, both
of which can be used for laser manipulation.

» Starting from the ls; metastable state, there is a closed transition
(1s;—2p,) at 811 nm (J = 2—J = 3) and an open transition (1s,— 2p,)
at 801 nm (J = 2—J = 2), both accessible with standard laser diodes as
well as with a TiSaph—laser. The closed transition at 811 nm can function
as a closed (two-level) system for laser manipulations. The open transition
at 801 nm has the additional advantage that there is a 72% probability for
the 2p, state to decay to the 1s, state, which then decays back to the Ar
ground state. Thus, resonant 801 nm light can be used to optically pump the
Ls, state to the ground state. Such a process can be viewed as absorption for
the 15, metastable atoms.

+ Starting from the other metastable state (1s,) there are no closed transitions.
The transition (1s,—2p,) at 795 nm (J/ = 0—J = 1) can be used again as
an open transition and to pump the 1s, state to the ground state.

ji=1/2 j=3/2
J=0 J=1 J=2 J=0 J=1 J=2 J=3

811 nm

/
801 nm

1s,

FiG. 1. Level scheme of metastable Ar.
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TABLE 1
TRANSITIONS IN METASTABLE Ar AS DISCUSSED IN THE TEXT
Transition AA) A, (sec™h) Branching Ratio (%)

A=811nm

lsg —2p,J=2—>J=3 8115.3 3.66 X 107 100.0
Total 3.66 X 107
A =801 nm

Isg =2p J=2—>J=2 8014.8 9.60 X 10° 27.8

Is, = 2p,J=1—>J=2 8424.7 233 x 107 67.5

Is, = 2p, J=1—2J=2 9784.5 1.61 X 10° 4.7
Total 3.45 X 107
A=795nm, A =715nm

Is;—2p,J=2—>J=1 7147.0 6.50 X 10° 1.9

Is, = 2p,J=1—>J=1 7471.2 2.50 < 104 0.1

Is;, = 2p, J=0—>J=1 7948.2 1.96 X 107 56.0

Is, = 2p,J=1—J=1 8521.4 1.47 X 107 420
Total 3.50 X 107

Note: In the upper part of the table, we give the parameters for the closed transition at A = 811
nm, in the middle the parameters for the open transition at A = 801 nm, both starting from the 1s
metastable state. In the lower part of the table, we give the parameters for the open transitions to the
2p, state at A = 795 nm, starting from the Is,, and at A = 715 nm, starting from the ls; metastable
state. A, are the Einstein coefficients.

« The transition via the 2p, excited state allows coherent transfer between the
Is; and 1s, metastable states. The transition (1s;,—2p,) at 715 nm
(J/=2—J=1) is very weak and has a probability of only 1.9% to decay
back to the s, state, but a 56% probability to decay to the 1s, metastable
state and a 42% probability to decay to the ground state via the 1s, state.
This is an ideal transition to study the scattering of a single photon from an
atom.

The strong decay channels into the ground state for the open transitions offer
the interesting possibility of realizing amplitude gratings with standing light
fields as well as studying the loss of coherence by spontaneous emission.

B. AtoMiC BEAM MACHINE
1. Vacuum System

The vacuum system consists of five components: the source chamber, the first
collimator, the multipurpose chamber for studying the atom-light interaction,
the second collimator, and the detector unit. The pressure in the vacuum system
was low enough (<{10~* torr in the source and typically 1077 torr in the other
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sections) that beam attenuation due to collisions with the residual gas could be
neglected. To achieve this pressure, the apparatus is divided into three sections,
separated from each other by differential pumping diaphragms. The source with
the high gas load and the first collimator were separately evacuated by two tur-
bomolecular pumps having pumping speeds of 2200 and 300 liter/sec, respec-
tively, while the other three parts were pumped together using one turbomolecu-
lar pump (600 liter/sec).

The high resolution for transverse deflections is obtained with the two sepa-
rate collimation sections, each formed by two narrow slits (typically 5 um wide)
with a spacing of 1 m. We obtain an angular resolution of about 7 urad FWHM,
significantly smaller than the deflection angle produced as a result of scattering
of a single 800 nm wavelength photon (about 16 urad for 800 m/sec atoms).

2. Source

Argon, like the other noble gases, has to be excited to a metastable state to be ac-
cessible with conventional lasers. The energy difference between the ground and
the first excited state is on the order of 15 eV and corresponds to radiation in the
tar UV. This energy has to be supplied to the atom, usually by electronic colli-
sions.

The extreme collimation of the atomic beam requires a bright source to pro-
vide enough intensity over a small solid angle. High intensities of metastable
atoms can be produced in a dc discharge providing the electronic collisions (up
to 100 eV) for excitation of atoms into a mixture of highly excited states, which
subsequently decay into the “’Ar* metastable states, Is; and ls,, with relative
weights of about 85%: 15%. The overall efficiency of the whole process is be-
tween 10~% and 107°.

The discharge is burned from a cold stainless steel electrode inside a gas cell
through the nozzle (diameter 0.5 mm) to the skimmer. Burning outside the dis-
charge cell is essential for a high yield of metastable atoms. In our configuration,
we apply a potential of about —1.5 kV to a current-limiting resistor connected to
a stainless steel cathode; the skimmer is connected to ground. A stable discharge
operates at a typical pressure of about 10 mbar in the cell and draws a current of
about 10 mA. The mean flux of metastable argon atoms is on the order of 10"
atoms/(sterad sec).

The emerging beam of metastable atoms has a most probable velocity deter-
mined by the temperature of the source. Without cooling, this was typically 850
m/sec, corresponding to a de Broglie wavelength of 0.12 A. The velocity spread
and, hence, width of the wavelength distribution in the beam was 60% FWHM.
Thus, the characteristics of the atomic beam are in between an effusive and a jet
beam.

Our source can also be operated in a pulsed mode by pulsing the applied volt-
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age (up to 3 kV). The pulsed source operates in two regimes with different ve-
locity distributions: one giving a faster mean velocity, the other a slower mean
velocity for the atoms. One can move continuously between the two regimes. In
the transition region, our pulsed metastable argon source generates two sharply
separated peak velocities of 600 and 920 m/sec, having FWHMs of 140 m/sec
and 260 m/sec, respectively (at room temperature, without cooling). This dou-
ble-peaked structure is probably generated by different types of gas discharges
burning during a short (5 usec) pulse. By adjusting other source parameters (gas
pressure, distance between cathode and skimmer, discharge voltage), it is possi-
ble to get almost equal count rates for the two velocity peaks. A typical time of
flight spectrum of the atoms is shown later as an insert in Fig. 5.

By cooling the source with liquid nitrogen (Kawanaka et al., 1993), we re-
cently achieved velocities as low as 330 m/sec corresponding to a de Broglie
wavelength of 0.3 A.

3. Detector

The overwhelming advantage of metastable noble gas atoms, especially he-
lium, neon, and argon, is their ease of detection, which is both simple and
very efficient. Due to the high internal energy, metastables can be detected
with high selectivity on impact at a surface by de-excitation and subsequent
detection of the emitted Auger electrons with charge detectors. In our appara-
tus, the Auger electrons were detected with a channeltron (Galileo type 4860).
This method is insensitive to ground state atoms and the low background rate
of less than 1 count/sec compensates the rather inefficient production of the
metastables. However, one should note that discharges also cause an intense
background of UV radiation (A ~ 100 nm), large enough to saturate the detec-
tor in direct view to the source. In the present experiment, the radiation was
scattered away from the detector by diffraction at the collimation slits. One
10-um slit reduces the transmitted photons through the next 10-um slit sepa-
rated by 1 m by a factor of about 1000.

Finally, the fine spatial resolution of the detector was achieved by scanning a
small (10-pm) slit in front of the channeltron.

HI1. Classical Atom Fringes: The Moiré Experiment

The first experiment we describe is concerned with classical ray atomic optics in
a regime where diffraction effects can be neglected (see also Dubetsky and
Berman, 1996, in this book). We discuss the formation of classical moiré fringes
in a three grating setup and its application to precision measurements of atomic
deflections.
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A. CLASSICAL THREE GRATING OPTICS
1. Three Grating Moiré Imaging

A schematic sketch of our moiré imaging setup is shown in Fig. 2. It consists of
three material gratings that are equally spaced and aligned exactly parallel to
each other and perpendicular to the atomic beam. The first two gratings select
transversal directions of an originally diverging atomic beam in such a way that
they overlap exactly at the position of the third grating. Each pair of slits (one in
the first grating, the second in the second grating) form a well-collimated atomic
beam. The many beams overlap at distances given by the geometry of the grat-
ings and form a shadow image in which the atoms are distributed in the form of
fringes, very similar to an atom interferometer. These fringes can be measured
by scanning the third grating in a direction transverse to the atomic beam. This
kind of imaging is a characteristic self-focusing feature of any two grating setup,
which can be explained easily by drawing the geometric paths of an undirected
beam through the grating slits as shown in Fig. 2. The local atomic density mod-
ulation is detected using the moiré effect by superposing it with the third grating,

Scanning Direction

First Second Third
Grating (30% Open Fraction)

FiG. 2. Principle of a moiré deflectometer. The first two identical gratings separated by distance
L act as collimation for an originally uncollimated atomic beam. The figure shows only those classi-
cal rays that pass through both the first and the second grating. After a distance L, an image of the
collimation gratings is formed. At this position, a third, identical, probe grating is placed, which de-
tects the intensity modulation using the moiré effect. By scanning this grating a periodical transmis-
sion modulation is obtained.
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which has the same spatial frequency. If this grating is scanned in the direction
of its grating vector, the transmission of the atoms will oscillate with the grating
period. A similar three grating setup was discussed theoretically by Dubetsky
and Berman (1994) with emphasis on atomic lithography applications.

The contrast of the three grating moiré imaging device depends on the open
fraction of the amplitude gratings. This can be seen by calculating the classical
shadow pattern of a two grating arrangement. For high-contrast fringes, the
beams formed by the first two gratings at the position of the third grating must be
narrower than the grating period (see Fig. 2). Calculations assuming a geometric
propagation of an uncollimated beam through a set of three identical thin gratings
show that the contrast, C, of the moiré fringes equals 100% for an open fraction
of less than 25% and decreases linearly in the range of 25—-50%. Simultaneously,
the transmission of the grating set increases. Best resolution to a small fringe shift
AD (AD . = 1/(CVN), where N is the total number of detected atoms) is ob-
tained at an open fraction of approximately 30%, which we then used in our ex-
perimental setup. In this case, the fringe contrast is C = 80% and the mean trans-
mission of the three grating set is 2.7% of the original atomic beam intensity.

Our moiré imaging device is very well-suited for measuring deflections by
a classical force F(x). The fringe shift A® is given by the classical defiection
Ax obtained by the solution of the classical equations of motion
d’x/dr* = F(x)/m:

2
AdD = Ax R AXK ing: (1)

grating
The high resolution of our device arises from the small spatial structure of the
grating (period dgraling) and the large atomic flux that passes through the large
area gratings. The flux is n*2 (n being the number of slits in the grating)
times higher than that of a single collimated beam with the same spatial reso-
lution.

It should be noted that a broad velocity distribution of the atomic beam de-
creases the contrast in a CW experiment for large fringe shifts. For a classical
deflection with a velocity-independent force, the dispersion varies as 1/v%, and
therefore, the fringe shift, A®(v), depends on the inverse square of the velocity.
One has to average the fringe patterns over the velocity distribution, which leads
to a reduction of the fringe contrast. For example, the width of the velocity dis-
tribution (50% FWHM) of our atomic beam limits the bandwidth of our moiré
experiment for rotation measurements to a maximal rotation rate of 50 mrad/sec.
Nevertheless, the contrast reduction decreases with decreasing rotation rates and
is negligible (better than 1 X 10-%) in our experiments. In addition, the 1/v? dis-
persion implies that the measured average fringe shift is not exactly the fringe
shift for the averaged velocity.
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2. Sensitivity to Inertial Effects

The inertial sensitivity of atom—optical devices originates because a freely prop-
agating beam defines a local inertial system (Colella et al., 1975; Anandan, 1977;
Staudenmann et al., 1979; Greenberger and Overhauser, 1979; Clauser, 1988;
Young et al., 1996, in this book). Thus, any apparent deviation from the linear
flight in the reference frame of an observer has to be attributed to an accelerated
motion of this system, like a rotation or an acceleration, or to a force acting on
the atomic beam, for example, gravitation. The inertial sensitivity of matter wave
interferometers was demonstrated in many experiments using neutrons [rota-
tions: (Werner et al., 1979; Atwood et al., 1984), acceleration and gravity:
(Colella et al., 1975; Wemer et al., 1988)], electrons [rotations: (Nicklaus, 1989)]
and atoms [rotations: (Riehle er al., 1991)], gravity: (Kasevich and Chu, 1991)].

In our case, the inertial sensitivity of the moiré deflectometer arises because
the image formed by the atoms is located at a predetermined location in inertial
space, which appears shifted if the device accelerates during the time the atoms
are in transit. Consider atoms moving with a velocity v in the laboratory frame.
They spend the time 7= L/v between each pair of gratings separated by the dis-
tance L. The atoms pass the three gratings at times t = —27, —7, and 0, respec-
tively. If z,(s) is the transverse position of the ith grating, then the final displace-
ment X of the atom fringes z4(0) with respect to the position of the third grating
z,(0) is

X =24(0) —z,(0) =2z,(—1—z,(—27). (2)
The corresponding fringe shift is
&, =k, 22 —7) —z,(~27)] 3)

where K, is the reciprocal grating vector with [k | = 27/d, and d, is the period of
the gratmgs Applied to the case of a linear acceleratlon a of the whole setup
perpendicular to the grating bars, where z(r) = 2 at: k we get X = a72k and

d® = —kgaT . 4)

acc

In the case of a rotation of the whole system with angular rate {2 around a center
located in the deflectometer plane at a distance 1 from the position of the second
grating, we get z,(r) = X (I — L)t and z,(¢) = £ X It, which yields

q)rotzzkgﬂ [} VTZ (5)
where () is the component of the rotation vector £ parallel to the grating bars.

Note that the same result is obtained by substituting the Coriolis acceleration
a=2v X Qinto Eq. (4).
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If we define the resolution R of our setup as the infinitesimal fringe shift that
occurs as a function of an infinitesimal change in rotation frequency or accelera-
tion, we get, according to Eqs. (4) and (5),

D
R, = aa o = 2k 6)
R, = ‘*lagb; =k, %

Obviously, the inertial resolution of the moiré deflectometer depends only on the
geometrical properties of the experiment—the dimensions of the deflectometer
and the velocity of the atoms. On the other hand, the accuracy of practical mza-
surements depends also on the statistical precision achievable in the phase deter-
mination of a recorded data track, which depends on the number of registered
atoms. This can be taken into account by defining the sensitivity S of our setup
as the minimal rotation or acceleration that can be detected during a given time
S = 1/(RC \/IVO), where N, is the mean number of atoms detected per unit time).

B. INERTIAL EXPERIMENTS
1. Experimental Setup

In our experiment (Oberthaler et al., 1996a), the moiré setup consists of three
commercially available (Heidenhain) identical 3 X 3 mm? gold gratings with a
grating period of 10 um and a slit width of 3 um. The three gratings are
mounted symmetrically on an optical bench with successive gratings separated
by 27 cm. They are aligned exactly parallel to each other (within 200 urad) and
perpendicular to the atomic beam. The last grating is mounted on a flexure trans-
lation stage and can be shifted by a few grating periods perpendicular to the
grating bars. The moiré fringes are then measured by linearly moving the third
grating and observing a periodic modulation in the transmitted atomic flux. Our
experimentally achieved fringe contrast is typically 70%, which is reasonably
close to the maximal theoretical contrast of 80% expected for our gratings with
an open fraction of 30%, as explained previously.

2. Sagnac Experiment

To test the sensitivity of our moiré deflectometer to rotations, the whole optical
bench with the three gratings is mounted on a torsion spring and can be oscil-
lated around a vertical axis (rotation vector parallel to gravity) located at the
center of the bench (see Fig. 3). Resonant vibrations of the whole bench are pro-
duced by an oscillating piezo crystal. For the most part, frequencies of 10 Hz
and 577 Hz are used, having typical oscillation amplitudes of 5 um and 100 nm,
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Rotation measurement

Atoms

“

Detector

Gravitation measurement

Atoms

Detector

FiG. 3. Experimental setup for measuring rotations (upper graph) and gravitation (lower graph).
For measuring the fringe shift due to the Coriolis force, the moiré setup is mounted on an optical
bench that is oscillated with a small amplitude around its center. If the transit time of the atoms is
short enough, one can neglect the change in angular velocity during the crossing of the atoms. For
measuring the local gravitation, the optical bench is turned 90°. The parabolic trajectories of the
atoms result in a velocity-dependent fringe shift. By measuring this fringe shift as a function of the
time of flight of the atoms, the value of g can be extrapolated.

respectively. For the 10-Hz vibration, the whole bench can be assumed to rotate
with an almost constant angular frequency during the travel time of 0.75 msec of
an atom through the 54 cm long moiré setup. For the 577-Hz oscillation, a cor-
rection of 35% to the measured fringe shifts has to be taken into account due to
the limited bandwidth given by the transit time 7= 0.75 msec of the atoms
through our system.

The angular acceleration of the optical bench is measured with two mechani-
cal acceleration sensors (Briel & Kjaer) and, independently, using an optical in-
terferometer, by measuring the relative velocity of the two outer edges of the op-
tical bench. From both these measurements, we can extract the vibration
amplitude, the angular velocity, and the angular acceleration of the optical
bench. Both these independent measurements agree within 5% uncertainty.
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It may be noted that, in our experiment, only the three grating-setup is rotated
and not the atomic source, which is in contrast to typical applications where the
moiré deflectometer would be used to sense a rotation from inside of a system.
However, due to the broad angular width of the atomic beam, the two setups ac-
tually correspond to the same physical situation. If the atomic source is also ro-
tating, just another part of the originally undirected atomic beam enters the three
grating setup, which has no effect on the moiré fringes.

We measure the phase of the moiré fringes for each rotation rate occurring
during the optical bench vibrations. We use a digital lock-in technique by
synchronizing the linear scanning motion of the third grating (slow) to the
bench vibration (fast). The scanning time for the third grating is selected to be
a multiple of the bench vibration’s period, and each grating scan is synchro-
nized to the signal driving the bench vibrations. The transmitted atoms are
then counted as a function of their arrival time relative to the start of the grat-
ing scan. For data processing, it is necessary to extract all data points that be-
long to the same angular velocity. This is done by sampling the data track
with the exact period of the fast bench vibrations. This yields, simultaneously,
the phase shift of the moiré fringes at the different rotation frequencies,
which occur during one bench oscillation.

The results of our rotation measurements are summarized in Fig. 4. The
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Fi6. 4 Shift of the moiré fringes as a function of the angular rotation velocities for a 10-Hz
bench oscillation with an amplitude of 18 um. The linear slope yields the experimental resolution of
our setup, corresponding to 130 X 2 rad/Hz. The inset shows the results of a measurement using
the resonant 577 Hz bench vibration with an amplitude of only 20 nm, where we demonstrated a sen-
sitivity better than one earth rate ({2 = 7.3 X 1077 rad/sec).

‘earth
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fringe shifts measured during a bench oscillation show a linear behavior, as ex-
pected from Eq. (5). The resolution of our experiment is derived from the slope
of this plot as 130 X 27 rad/Hz, which is in good agreement with the theoretical
value of 122 X 27 rad/Hz calculated using Eq. (5) with our geometrical parame-
ters. The small deviation is due mainly to our poor knowledge of the atomic
beam velocity during dc operation of the source.

3. Acceleration Experiment

A full measurement of the inertial motion of a system also includes a measure-
ment of the acceleration (Colella et al., 1975; Staudenmann et al., 1979). Due to
the equivalence principle of relativity theory, acceleration is indistinguishable
from the action of gravity. For simplicity, we decided to determine the gravita-
tional action on the moiré-fringes in our experimental demonstration. We also
show how the velocity dispersion of the moiré fringes can be used to perform an
absolute measurement with no external calibration and independent of any bend-
ing effects.

For measuring the value of the local gravitation, g, the whole optical bench in
the moir€ setup is turned 90° around its longitudinal axis. The three gratings are
then oriented horizontally and the flexure translation stage scans the third grating
parallel to the grating vector, which is now in the vertical direction (Fig. 3). The
parabolic trajectory of the atomic beam yields a fringe shift of the transmitted
atoms with respect to the vertical alignment used before.

An estimate of the resolution of this setup for acceleration measurements
from Eq. (6) yields 0.08 rad/(m/sec?) for v = 750 m/sec. Thus, the effect of
the earth’s gravitational field is an easily observable phase shift of 0.8 rad. In
our measurement of the acceleration due to local gravity, g, we use the veloc-
ity dispersion of the fringe shift as given in Eq. (4) by performing a time of
flight measurement with a pulsed atomic source having a broad velocity spec-
trum (see Section I1.B.2). In the experiment, we synchronized the scans of the
third grating (slow) with the typical 100-Hz pulse repetition rate of the pulsed
source (fast), similar to the Sagnac experiment. Both the fringe shift as a
function of the atomic velocities and the time of flight spectrum of the atoms
are shown in Fig. 5. The source operated in a special mode, generating a dou-
bly peaked velocity distribution with peaks at 600 and 920 m/sec, respec-
tively.

From the parabolic functional dependence of the fringe shift, the value of g is
determined as g = (9.86 % 0.07) m/sec®. The absolute accuracy of this value is
limited by our knowledge of the geometric constants in our setup and not by the
counting statistics. The total time elapsed in this experiment was 105 min, yield-
ing an experimentally achieved sensitivity of 0.56 g@.
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FiG. 5. Parabolic dependence of the fringe shift as a function of time of flight in the gravity ex-
periment. From the data, we obtain a value of g = (9.86 * 0.07) m/sec?. The dashed line corresponds
to the time-of-flight spectrum of a single pulse.

4. Future Moiré Inertial Sensors

Our moiré setup, with its simple design, has practical applications as an inertial sen-
sor. We demonstrated that, even with our test device, rotation rates below the earth’s
rotation frequency could be detected in a few seconds and a measurement of the lo-
cal gravity was performed (see also Table II). A major advantage of moiré inertial
sensors is that, in principle, rotations and accelerations can be measured simultane-
ously with the same device and independent of external calibrations. This allows

TABLE II
RESOLUTIONS AND SENSITIVITIES FOR INERTIAL. MEASUREMENTS, USING A THREE GRATING MOIRE
SETUP (80% CONTRAST)

Velocity Grating Distance Resolution
Measurement (m/sec) (pm) (cm) (rad/Q2, ) Sensitivity
Sagnac (Ar) 750 10 25 7.6 mrad/Q), 5X%107'Q,./VHz
Sagnac (Cs) 250 10 100 365 mrad/Q)_ ., 3X1075Q ./ VHz
Acceleration (Ar) 750 10 25 0.7 rad/g 6X 1073 g/ VHz
Acceleration (Cs) 250 10 100 100 rad/g 1.2x 10"7 g/ VHz

Note: The values for Ar are for our present test measurement (10 um gratings with 9 mm? and a
typical count rate of 10° per second. The values quoted for Cs are for a typical Cs beam with a count
rate of 10'° per second (Q_, = 7.3 X 10° rad/s).
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tracing the complete motion of an accelerated system. In an application as an iner-
tial sensor our experimental device should be modified two ways:

1. For distinguishing rotations from accelerations, the sensor can be modified
so that two counterpropagating atomic beams can be used in the same setup.
Thus rotations and accelerations can be distinguished, because they give differ-
ent signs for the fringe shift ¢. The fringe shifts due to acceleration and rota-
tions then are given by

q)acc = % (¢1 - 4)2) (Drot = % (¢l +¢2)' (8)

Another method for achieving the same purpose has already been demonstrated
in the gravity experiment described earlier. The velocity dispersion of the moiré
fringes allows one, in principle, to calibrate the setup and determine the rotation
and the acceleration simultaneously, by measuring the phase of the fringes at
three different atomic velocities.

2. The third grating should be slightly rotated relative to the other two grat-
ings or the third grating should have a slightly different period, so that a fringe
shift translates into an intensity pattern along the grating bars, corresponding to
the original moiré effect. Using a position-sensitive detector, one could then
measure the phase of the fringes with no movement of the gratings, which will
give the device a high bandwidth, limited only by the transit time of the atoms.

The sensitivities obtained in our experiment can be increased by several or-
ders of magnitude using an optimized design. Increasing the distance between
adjacent gratings from 25 cm to | m yields an increase in resolution of 16. Fur-
thermore, by exchanging our metastable argon atomic source with a cesium
atomic source such as that used in atomic frequency standards, with a velocity of
250 m/sec and a beam intensity of >>10'® atoms/sec (a factor of 10° larger than
our actual intensity), would result in a further increase of the sensitivity to small
inertial effects by a factor of 10°. Typical achievable sensitivities for the opti-
mized design and our current experiment are summarized in Table II.

Applied to the case of rotation sensing, the resulting sensitivity of such a
moiré inertial sensor (3 X 1073 Qemh\/&) would be comparable with the best
reported rotation sensor, in Canterbury, New Zealand (2 X 1073 Qemh@), a
highly sophisticated, large-size active ring laser gyroscope, located 30 m under-
ground in a cave due to its requirements for mechanical and temperature stability
(Stedman et al., 1993; Anderson ef al., 1994).

In the case of acceleration or gravitation sensing, a theoretical sensitivity of
1.2 X 1077 g\/& can be reached. This is better than typical mechanical devices.
Such an accuracy would be sufficient for detecting the gravitational effect of a
10-ton mass at a distance of 2.5 m in 100 sec. Furthermore, by using time-
resolved measurements, an absolute calibration standard is inherently available,
as demonstrated in our experiment.
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IV. Quantum Fringes: The Interferometer

Experiments utilizing and investigating the wave character of quantum motion of
massive particles and, in particular, interferometry with matter waves (Badurek
et al., 1988), have had a significant impact on our understanding of fundamental
physics. Experiments with electron interferometers (Marton et al., 1953; Mol-
lenstedt and Diiker, 1955) and neutron interferometers (Rauch et al., 1974; Gru-
ber et al., 1989) have provided both demonstrations of many fundamental as-
pects of quantum theory and precision tests against alternative theories (Badurek
et al., 1988). Most recently, interferometry with matter waves has been greatly
expanded by the experimental realization of atom interferometers [for an
overview see the chapters in this book and the special issues on atom optics:
(Mlynek et al., 1992; Baudon and Miniatura, 1994)].

Atom interferometers can be divided in two classes. In the first class, called
atomic state interferometers by Sokolov (Sokolov and Yakovlev, 1982), the
beam splitter produces a superposition of internal states, which is the mechanism
for coherently splitting the beams (Sokolov and Yakovlev, 1982; Bordé, 1989;
Riehle et al., 1991; Kasevich and Chu, 1991; Robert et al., 1991; Sterr et al.,
1992). In the other class of interferometers, the beam splitter does not change
the internal state of the atom. Here, diffraction produces a superposition of exter-
nal states and thus directly creates distinctly different paths in real space (Cheb-
otayev ef al., 1985; Carnal and Mlynek, 1991; Keith et al., 1991; Shimizu et al.,
1992; Rasel et al., 1995; Giltner er al., 1995a). Such interferometers, where the
beam splitting process is directly linked to the wave nature of the external mo-
tion, we call de Broglie wave interferometers.

In this section, we describe our Mach—Zehnder type interferometer for
atomic de Broglie waves (Rasel et al., 1995), where we use diffraction at stand-
ing light waves as beam splitters. This interferometer is the exact mirror image
of a grating interferometer for light, with switched roles for atoms and light.

A. A MACH-ZEHNDER INTERFEROMETER USING DIFFRACTION BY STANDING
LIGHT WAVES

In our interferometer beam separation and recombination occurs by diffraction
at three standing light waves operating as phase diffraction gratings for the
atomic de Broglie waves (Fig. 6). Incident atom waves are divided at the first
standing light wave, which produces a coherent superposition of mainly zeroth
and first order beams. These beams then impinge on the second standing light
wave, where they are redirected to superpose at the position of the third grating.
Finally, after the third standing light wave, a number of beams emerge. Some of
these are coherent superpositions of different trajectories through the three grat-
ings, forming an interferometer. We use either of the two skew symmetric inter-
ferometers formed by zeroth and first diffraction orders at the first grating, first
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FiG. 6. Schematic arrangement of our interferometer setup (not to scale). The collimation slits
for the incoming beam, the three standing light waves created by retroreflection at the mirrors, and
the two final slits, one selecting a specific interferometer (thick lines) and the other selecting a spe-
cific output port are shown. For reasons of presentation, the wavelength of the light beams is greatly
exaggerated. In the experiment, the atomic beam was wide enough to cover more than 12 light wave
antinodes.

diffraction orders at the second grating, and finaily zeroth and first diffraction or-
ders at the third grating. The interferences are detected by translating the third
grating and observing the intensity modulations in either of the two outgoing
beams in the far field. The two output beams of the Mach—Zehnder interferome-
ter show complementary intensity oscillations (Fig. 7).
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FiG. 7. Measured atom interference pattern for the two output ports of the interferometer. The
complementary intensity variation of the two output beams observed is a consequence of particle
number conservation. The solid line is a fitted sinusoid.
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With a separation of 25 cm between each of the standing light waves, our in-
terferometer has an overall length of 50 cm (Fig. 6). The diffraction angle of 32
prad leads to a beam separation of about 8 wm, which is larger than the width of
the collimated beam (5 wm). Thus, the two interfering beams are spatially sepa-
rated.

1. Standing Light Waves

In the experiment, standing light waves were realized by retroreflecting a ribbon-
shaped, tightly focused beam of linearly polarized light at three ultraflat (A/30)
mirrors. The ribbon-shaped laser beams were created by using three separate
telescopes, each consisting of a cylindrical lens (f= 30 mm) and a spherical
lens (f= 300 mm). The incident laser beam is focused to a waist of 90 um in
the direction along the atomic beam and expanded to more than 30 mm in the di-
rection perpendicular to the atomic beam. A retroreflecting mirror is placed in
the focus of the laser beam. The atomic beam passes at a distance of less than
5 mm from the mirror surfaces, within the Rayleigh range of the Gaussian focus
(~8 mm). In this region, the quality of the grating is limited only by the preci-
sion of the mirror surface (A/30). The maximum deviation from an ideal grating
is less than 40 nm. The interaction time, 7, between the atoms and the light field
is very short (7~100 nsec) and, therefore, the atoms pass a thin grating, which
can be viewed as having zero thickness (see also Section VI).

Diffraction of atoms at near resonant standing light waves can be viewed as
diffraction from a sinusoidal phase grating (Moskowitz et al., 1983; Gould et al.,
1986b; Henkel et al., 1994). The strength of the nth diffraction order is then given
by P, = J2(¢,/2), where ¢, = Va2 Q27/A is the maximum phase shift of the
atomic wave function when traversing a Gaussian standing wave at the antinodes of
the electric field (Gould, 1986a), (), is the Rabi frequency, and J, is a Bessel func-
tion. The strength of diffraction orders and, therefore, the characteristics of the
beam splitters in our interferometer can be varied by changing either the detuning,
A, or the laser intensity, QO, of the light field.

For an ideal two level system, one can optimize the strength of the diffraction
gratings to maximize the signal to noise ratio in the atomic interferometer. An opti-
mum is obtained for ¢, =2.16 for the first and third grating and ¢, = 3.68 for the
second grating. The contrast is then 100% in the symmetric outgoing beams, and
7.8% of the total incoming beam intensity is found in the interfering beam. In our
case of metastable Ar, diffraction at the light gratings is altered both by the differ-
ing dipole moments of the different m states of the Ar* 1s, metastable state and by
our 60% FWHM-wide velocity distribution, resulting in different interaction
times. In addition, stray magnetic fields in our apparatus mix the m states. Taking
all these influences into account, the optimal interaction strengths for a
J=2—J =73 transition like the 1s,-—>2p, transition at 811 nm are such that
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FiG. 8. Atom diffraction at each of the three standing light waves (A = 811 nm) used in the atom
interferometer. The solid lines show a theoretical calculation including the various effects of the
magnetic sublevel structure, of both the velocity distribution and divergence of the atomic beam and
of spontaneous emission. The separation between the diffraction orders is best for the first grating,
which is at the farthest distance (1.25 m) from the detector.

¢, = 2.56 for the first and third grating and ¢, = 4.34 for the second grating. Then,
theoretically, our configuration has 90% contrast in the symmetric beams and an
interfering amplitude of 6.6% of the total incoming beam intensity. This is about
an order of magnitude improvement over any optimized absorption grating inter-
ferometer. Figure 8 shows typical diffraction patterns for each of the three standing
light waves in the configuration used for our interferometer.

2. Alignment of the Interferometer

The contrast of the interferometer depends critically on grating alignment. For
efficient diffraction, the standing light waves have to be exactly orthogonal to the
atomic beam. Deviations lead to a reduction of diffraction efficiency, and thus,
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beam splitting requires a more intense standing light wave. However, an increase
in power enlarges spontaneous emission and causes additional losses. Therefore,
the mirrors have to be oriented parallel along the atomic beam to much better
than one grating period over the grating thickness. The mirrors were first aligned
parallel to each other to better than 1073 rad, and the atomic beam was finally
aligned parallel to the mirror surfaces by optimizing the diffraction efficiency.

Furthermore, the vertical parallel orientation of the retroreflecting mirrors has
to be much better than one grating period over the atomic beam height. We
achieved a vertical parallel alignment of the three mirrors on the order of 3-1073
rad (100 nm over the 3 mm beam height) by an autocollimation technique.

3. Vibrations and Inertial Stability

The phase of the interferometer depends on the relative positions of the diffrac-
tion gratings. Vibrations and random motions will result in random phase shifts
and reduced contrast. To avoid vibrations, we mounted the mirrors on a stiff op-
tical bench inside the vacuum chamber. The bench itself was vibration isolated
from the vacuum chamber by a stack of steel plates spaced by viton O rings. The
residual motions of the mirrors were measured with a high-precision doppler in-
terferometer mounted on a damped pendulum. According to these measure-
ments, our vibration isolation suppressed frequencies above 50 Hz. Below 50
Hz, the amplitude of the motions was small enough to result in a total contrast
reduction of only 10%. Thus, we could avoid active control of our interferometer
and of the mirror positions.

B. AroMIC INTERFERENCE FRINGES

For the standing light waves in our interferometric experiments, we used both
the closed cycle transition ls;—>2p, at 811 nm and the open transition
1s,— 2p, at 801 nm,

1. Experiments with the Closed Transition at 811 nm

The 811 nm, J =2—J =3 transition, in Ar involves five sublevels in the
ground state and seven sublevels in the excited state. For linearly polarized light,
the coupling of the five sublevels in the ground state differs by up to 45%.

For the experiments with the closed transition, we used a large detuning of
about 360 MHz (~60 times the natural line width). Thus, excitation and, hence,
spontancous emission were largely suppressed (<<1%). Figure 8 shows typical
diffraction patterns for each of the three standing light waves in the configura-
tion used for our interferometer. Combining all three in an interferometer, we
observed an interference contrast of about 12%. These results are in good agree-



CLASSICAL AND QUANTUM ATOM FRINGES 105

ment with Monte Carlo simulations, assuming our actual collimation and veloc-
ity distribution. Our beam collimation is not perfect and, therefore, the detector
sees parts of other noninterfering diffraction orders reducing the contrast to
40%. For instance, according to this model an improvement of our atomic beam
collimation by a factor of 2 would yield a contrast of 60%. Misalignment of the
gratings further lower the contrast to 25%. For matter wave interferometers with
a nonzero enclosed area, Sagnac phase noise from rotational vibrations is signifi-
cantly more detrimental than phase noise caused by translational vibrations
(Shull, 1982). Opticaily measured rotations of our interferometer then decrease
the contrast to 17%. The final discrepancy can be attributed to mechanical drifts
during a 1-hr interference scan.

We expect to improve the contrast significantly by using slower atoms, better
collimation, and actively stabilizing the mirror positions.

2. Experiments with the Open Transition at 801 nm

For the 801 nm transition the total angular momentum does not change,
J =2-—1] =2, and both the excited and the ground states have the same number
of sublevels. However, only four of these levels contribute to the atom laser in-
teraction, unfortunately with rather different dipole moments. Consequently, the
adjustment of the grating diffraction strengths cannot be optimized as effectively
as for 811 nm, which results in a reduced interference contrast.

The interferometric experiments with the open transition at 801 nm were
performed with a small detuning of about 80 MHz. Here, the mean percentage
of spontaneously emitting atoms was 10% per grating. We successfully oper-
ated the interferometer in this regime and observed a contrast of about 4%,
which is only a factor of 2.5 smaller than that of the far off-resonance interfer-
ometer.

Close to resonance, the percentage of spontaneously emitting atoms per grat-
ing can be very high (close to 100%). For the open transition at 801 nm, 72% of
those atoms are lost in the ground state and, hence, are not detectable. This has
the advantage that the total flux reduction due to spontaneous decay can be used
to estimate the number of detected atoms that emitted one photon. Operating one
grating of the interferometer, or even the whole interferometer in this regime,
will allow us to study the effect of spontaneous emission on the atomic interfer-
ence. As discussed later, spontaneous emissions at the first and third gratings

does not destroy the interference contrast (see also Chapman et al.,, 1995;
Schmiedmayer et al., 1996). Only at the second grating, where the beam separa-
tion is much larger than the optical wavelength, does an emitted photon carry
Welcher Weg information that leads to a loss of interference contrast. We plan to
use this to investigate the effect of spontaneous scattering on the observed inter-
ference pattern in future atom interferometer experiments.
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C. THE QUESTION OF COHERENCE IN ATOM DIFFRACTION

Operating our atomic interferometer demonstrates experimentally that diffrac-
tion at a standing light wave is a coherent beam splitting process. We will now
consider in more detail the conditions under which diffraction from standing
light waves acts as a coherent beam splitter.

1. Diffraction from a Coherent State vs. a Number State

If the standing light wave is regarded as a superposition of two counterpropagat-
ing waves with photon momenta 7k and —#k, respectively, then the coherence
of the beam splitting mechanism is not obvious. An atom can then be viewed as
absorbing a photon out of one of these waves and re-emitting it via stimulated
emission into the other, picking up a momentum change of 2Ak. One could ar-
gue that, under specific conditions, a measurement of the number of photons in
these modes leads to information about whether or not the atom has been dif-
fracted. The atom can be entangled with the light field and Welcher Weg infor-
mation can be obtained, thus destroying the atomic interferences. We will ana-
lyze this argument in more detail in the next paragraphs.

First, and in a general sense, a beam splitter is coherent if a stationary phase
relation exists between the (two) outgoing beams that is not spoiled by the beam
splitter itself. This phase relation has to be stable for the time interval needed to
measure the interference. As an example, splitting the beam by diffraction af-
fords a stable phase between the diffraction orders. The simplest requirement for
coherence between the diffraction orders is that the grating has to be fixed in po-
sition relative to the apparatus measuring the coherence (a grating moving rela-
tive to the apparatus will give a time-dependent phase shift in the interference
pattern, see Section III.A.2).

For a standing light wave, the position of the nodes and antinodes that form
the grating has to be fixed for coherent beam splitting. If one adopts the picture
of a standing light wave as a superposition of two modes (E, =E,
coslkz — wt + ¢/(1)] and E, = E2‘0 cos[ — kz — wt + ¢,(t)]) counterpropagating
relative to each other, one can quantify the preceding condition. The nodes and
antinodes depend on the relative phases of the two interfering light waves:

Ejw, = Ejg+ Eg + E (E, o (1 + cos [2kz — ¢,() + ¢,(0]} ©

and, therefore, the two interfering waves must have a rigid or at least known
phase relation during the time of the experiment. For all practical purposes, this
basically requires that both waves have a “common source” and sufficiently long
coherence length. The simplest way to realize such a condition is to retroreflect a
running wave by a mirror. We will analyze this configuration now in more detail.

The distance from the atomic beam to the retroreflecting mirror (d,,,) defines
the time difference, A, =t, — ¢, = 2d,,,/c. For the nodes and antinodes of the
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standing light wave to be fixed to the mirror surface, d,,, has to be much smaller
than the length over which the phase of the light field gets randomized, the co-
herence length of the radiation. Under this condition, the position of the standing
light wave is determined by the mirror position and, for a stable mirror, the beam
splitting will be coherent. This condition is necessary and, as we will show in the
next paragraph, it is also sufficient for coherent diffraction.

Now we return to the question of detecting the path the atom took by measur-
ing the photon field. Here, the photon statistics in the two running waves build-
ing up the standing light field become important because, if each wave has a
well-defined photon number, in principle one could determine the path by the
exchange of photons between the two counterpropagating waves. One therefore
could expect that uncertainty of the photon number is a necessary condition for a
standing light wave to act as a coherent beam splitter; thus, coherent states of the
light field, but not Fock states, would coherently split the beam. This is mislead-
ing for the practical case of creating the standing light wave by retroreflecting
from a mirror because, if one satisfies the minimal requirements for coherent
beam-splitting given previously, one actually erases completely the Welcher Weg
information, since an observer could not decide if the momentum of a photon se-
lected out of the standing wave is reversed by the mirror or by absorption and
stimulated reemission by the atom (A <<z_ , the coherence time). Therefore, the
carlier classical condition on the stability of the nodes of the standing light wave
is necessary and sufficient for coherently splitting an atomic beam by any photon
state, if retroreflected from a mirror.

If the standing light waves are not built up by retroreflecting from a mirror or
by splitting and recombining a single light beam, but as a superposition of two
independent light beams, different considerations apply. For instance, a com-
pletely different situation arises if one uses parametric downconversion as a
source for two one-photon states. In this case, the photon number in the two
modes after diffraction carries the Welcher Weg information and the atomic dif-
fraction will not be coherent.

2. Diffraction with Spontaneous Emission

We can now apply similar arguments to the question whether diffraction accom-
panied by a spontaneous emission event can still be seen as a coherent beam
splitter. Spontaneous emission or, better, the scattering of a photon into the vac-
uum modes entangles the atom with the photon, whereby the initially separable
state evolves into an entangled state such that the total momentum and energy of
the system is conserved for each possible outcome. Through energy and momen-
tum conservation, the final photon momentum is related to the momentum trans-
fer to the atom. The scattering of the photon has two effects on the atom: first a
classical momentum transfer (kick) and second, if the atom is in a superposition
of different spatial modes, the entanglement results in additional phase shifts of
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the different spatial components of the atomic wave function. These phase shifts
depend on the spatial separation of the superposed atomic de Broglie waves and
are correlated with the final mode of the photon (Chapman er al., 1995;
Schmiedmayer et al., 1995).

At the beam splitter all the different modes are not spatially separated yet and
the only effect the photon has is the classical momentum transfer to the atom
(Oldaker et al., 1990; Gould et al., 1991; Pfau ef al., 1994) and, if the line width is
much larger than the recoil shift #k*2M no Welcher Weg information about the
atom’s diffraction order can be extracted from the photon. Therefore, simple spon-
taneous emission at a diffraction grating does not destroy the coherence of the beam
splitting process (see also Chapman et al., 1995; Schmiedmayer et al., 1996).

D. ADVANTAGES OF OUR INTERFEROMETER

Finally, we would like to mention the advantages of the present interferometer
and compare it to existing atomic interferometers.

Our interferometer is nondispersive; that is, the fringe position depends only
on the relative orientation of the three diffraction gratings. It provides spatial
separation that allows the insertion of any material or field into one of the inter-
ferometric arms for precision measurements. A significant advantage of gratings
of light is that their frequencies and, hence, their period can be far better defined
than the dimensions of mechanical gratings.

Another striking advantage of our interferometer is that the phase, polariza-
tion, or amplitude of the three standing light waves can be varied rather easily,
corresponding to a modulation of the beam splitter properties, unachieved in any
previous type of matter wave interferometers. In addition, the diffrc >tion charac-
teristics of standing light waves can also be modified by changing their Fourier
decomposition. It is obvious that the ease of manipulation and modulation of the
standing light wave opens the way for fundamental coherence studies in ques-
tions of quantum chaos and quantum localization (Graham et al., 1992; Moore et
al., 1994; Bardroff et al., 1995; Robinson et al., 1995) and of time-dependent
quantum mechanics (see Section VI.B).

V. Comparing Classical and Quantum Fringes:
The Classical Analog to an Interferometer

A. MOIRE FRINGES AND INTERFERENCE PATTERNS

In this section, we will argue that the moiré deflectometer (see Section III), in a
certain sense, represents the classical analog to a Mach—Zehnder-type three
grating interferometer with amplitude gratings. Specifically, we will show that
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the fringe shift of the moiré deflectometer due to any accelerated motion of the
whole setup, or to the application of a gradient potential (a classical force), cor-
responds exactly to the phase shift obtained in the interferometer.

In our three grating moiré experiment, the fringes are formed by classical ray
optics. The principle of a Mach—Zehnder-type interferometer is to split the in-
coming atom beam with the first grating into two plane waves that are redirected
by the second grating to superpose at the position of the third grating. These two
setups, the moiré deflectometer and the atomic interferometer, form a similar
fringe pattern with the same period as the first two gratings. The pattern is an in-
terference pattern in the case of an interferometer and a shadow pattern in the
classical case. Scanning of the third absorption grating over the modulation pat-
tern yields periodic transmission oscillations. The shape of the oscillations is ex-
actly sinusoidal for an interferometer. In the moiré experiment, they have a very
similar but slightly different form, given by the convolution of the shadow image
with the third grating.

One can show (Oberthaler et al., 1996a) that, in the static case, the atomic
fringes resulting from interferometric superposition of the split de Broglie wave
have exactly the same spatial phase as in the moiré experiment (Fig. 2). The dy-
namical case will be investigated in the next section.

The underlying reason for the similar behavior of a Mach-Zehnder interfer-
ometer and our moiré apparatus is that both employ the same three grating
geometry and, thus, both exhibit white-light fringes. In an inertial system, the in-
terference fringes formed by all k components, with arbitrary absolute value and
direction, coincide. Therefore, even for a (Mach—Zehnder) interferometer nei-
ther spatial nor temporal coherence of the incoming de Broglie waves is neces-
sary. Therefore, the moiré sensor can be viewed as the correspondence limit of
the Mach—Zehnder interferometer, which is achieved if the mass of the atoms
and, hence, the de Broglie frequency become infinitely large.

A natural borderline for a distinction between the classical and the quantum me-
chanical cases arises if the diffraction angle of the beam at the gratings is large
enough to redirect the beam, on its way between two successive gratings, by one
grating period. This leads to the requirement for the relations between the grating
period d,, the de Broglie wavelength of the atoms A 5, and the grating separation L:

d,<<VAg,L (10)
for the quantum case, and
d >V L (11)

for the classical case, where diffraction is negligible. Note that the characteristic
separation corresponds to the double Talbot length L, = 2d§/ Ay (Talbot, 1836).
A similar three grating setup designed to work in the Talbot regime has been
demonstrated by (Clauser and Li, 1994).
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B. INERTIAL SENSITIVITY

As an example of the similarities between the two apparatuses, we will discuss
the sensitivity to inertial effects such as rotations and accelerations.

We discussed the inertial sensitivity of the moiré setup extensively in Section
III.A.2. The same arguments apply as well to the inertial sensitivity of a three
grating interferometer. As a comparison here we will give a different viewpoint
of the phase shifts in an interferometer.

The inertial sensitivity of an interferometer for nonuniform motions can be
seen as due to the fact that the de Broglie waves experience different Doppler
shifts on their different paths from the first to the last grating (Dresden and Yang,
1979). The additional frequency Aw of a de Broglie wave due to a grating mov-
ing with velocity v, is Aw = ikg v, for diffraction into the * 1st diffraction or-
ders, respectively. If such a frequency offset is applied during a time interval 7,
then a corresponding phase shift &, = *+ [ (’)x K v () dr is picked up by the de
Broglie wave, as compared to another wave that experiences no Doppler shift. In
an interferometer, the total phase difference between the two paths yields the
fringe shift of the accelerated interferometer with respect to the motionless case.
In the Mach—Zehnder geometry, this difference is given by

0 0
<1>,=J k- v, (0 dr - 2f k, v, dr (12)

=27

where 7 is again the transit time of the atom between two adjacent gratings, and
Vo = Zy, V,, = Z,, are the velocities of the first and second gratings, respectively.
By using these relations and performing the integration, we get

@, =k, - [22,( — ) — z,( — 27)]. (13)

This result, which is valid for all types of (nonrelativistic) movements, is
identical to the phase shift, ®,,, in the moiré deflectometer as obtained in Section
II1.A.2. Note that this reveals a surprising correspondence between a quasi-static
“snapshot” description, where the grating positions are regarded only at fixed
points in time, and a “dynamic” Doppler effect description, where the velocity of
the gratings during the whole transit time is important because the correspond-
ing phase shift has to be integrated. In an interferometer, the particles are de-
scribed as matter waves by assigning a wave vector, k to an atom with mass,
m,. One gets for the interferometer that

2kgmaL2) 2m

atom’

Q=—"32A.0 (14)

o = 2kgv‘r2Q = ( P

my
a

where A = |A| = LYk /K.om) 18 the area enclosed by the paths of the interferome-
ter. This phase shift due to rotation is the well-known Sagnac effect for interfer-

ometers. Note that this formula, which is usually derived by quantum mechani-
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cal analysis, is now obtained just by “artificially” substituting v = fk___/m, into
the purely classical derivation of the moiré deflection. In the same way, originat-
ing from Eq. (13), the quantum description of a uniformly accelerated interfer-
ometer yields

L 2 m2
= — . 2 = . —_ = - —
®, .=k, ar’=k, a(v) ﬁzkatomaSA (15)

where a_ is the acceleration in the plane of the device orthogonal to the beam.
We have related the transit time to the area of the interferometer.

Comparing the moiré deflectometer with the Mach—Zehnder interferometer,
it is striking that, in the moiré deflectometer, only geometric properties of the ex-
periment determine the resolution of the setup—the dimensions of the deflec-
tometer and the velocity of the atoms. On the other hand, the interferometric
phase shift [Eqs. (14) and (15)] includes a material property, the mass of the
atoms. Obviously, this is canceled out due to the proportionality between the
atomic mass, the wave vector of the atoms, and the area enclosed by the interfer-
ometer paths. Therefore, from Eqgs. (14) and (15), it is obvious that, due to their
different velocities, atom devices with the same physical dimensions are much
more sensitive than sensors using light (Chow et al., 1985; Bergh et al., 1981;
Anderson et al., 1994).

C. PHASE SHIFT VS. ENVELOPE SHIFT

The preceding similarities between the classical apparatus and a quantum me-
chanical interferometer can be understood by investigating the behavior of the
phase shift (fringe shift) as compared to the classical deflection, resulting in an
envelope shift of the atomic beam.

Applying a classical force, F, the change in the direction of the propagation
of an atom is identical to the application of a phase gradient to the atomic plane
wave. The force F can be viewed as stemming from a potential gradient
(F = —VU). In this potential, a propagating matter-wave will experience a po-
sition-dependent phase gradient, which is exactly the one needed to account for
the deflection. This is because the phase gradient leads to a tilting of the wave
front and the propagation direction of a plane wave in an isotropic medium, in
our case the vacuum, is always normal to the wave fronts. One easily sees then
that, in this case of a potential gradient acting in a matter-wave optical appara-
tus. The fringe shift is the same as the classical deflection, shown as the enve-
lope shift (see Fig. 9). This holds for the cases of both a moiré deflectometer
and an atom interferometer. One measures only the classical deflection but
uses a very small ruler. This explains the high sensitivity of the three grating
apparatus.
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fringe shift = envelope shift  fringe shift but no envelope shift
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Fic. 9. Phase shift vs. envelope shift for a gradient potential (a) and (b) and for a separated beam
experiment (c) and (d), when the same phase shift of 3-7r is applied to one of the arms of the inter-
ferometer (d).

Very generally speaking, one can say that in all experiments, that can be ex-
plained by simple classical mechanics, the fringe shift is the same as the enve-
lope shift (Zeilinger, 1986).

On the other hand, in many cases the fringe shift is not identical to the enve-
lope shift. A rather trivial case occurs if one applies a constant potential to one
arm of an interferometer in such a way that there is no classical deflection; nev-
ertheless, a fringe shift will be observed. This fringe shift is different from the
envelope shift (see Fig. 9). A different, more interesting case arises when one ap-
plies a time-dependent spatially constant potential to one arm of the interferome-
ter, so that the atom never sees a gradient in space. Then, clearly, no change
whatsoever will occur in the classical motion but one still obtains a fringe shift
(Zeilinger, 1984). Another possible situation arises when purely topological
phases, like the Aharonov—-Bohm phase, are involved. In such situations, one
clearly utilizes the full quantum mechanical properties of an interferometer.

VI. Atoms in Light Crystals

In the previous experiments we considered fringes caused by a series of three thin
optical elements; that is, diffraction or shadow gratings. A grating of thickness D
can be regarded as thin when the separation between different diffracted orders
when leaving the grating is smaller than the grating period. Quantitatively, this
implies that D A p/d <<d;, where A is the de Broglie wavelength, d is the
grating constant and Agp/dg; = 6, 1s the diffraction angle. This can be rewritten as
D, <<d%/ Ny = % Lo Where Lo is the Talbot length of near-field diffraction
(Talbot, 1836). If that criterion is fulfilled, all diffracted orders sample the grating



CLASSICAL AND QUANTUM ATOM FRINGES 113

in the same way, and so the grating can be viewed as having no extension along
the direction of the beam and is equivalent to a two-dimensional structure.

If the periodic structure, from now on called a crystal, extends for longer than
a Talbot length D, >> d2 /A, then diffraction orders cross the lattice planes and
we will call such a crystal thick. Waves passing through thick crystals can not be
described by simple diffraction anymore. One has to consider the interference of
all the different scattered waves and a plethora of multipath interference phe-
nomena arises.

If one discusses atomic motion in thick crystals, a second distinction
arises: whether the motion transverse to the incoming beam direction is free
or bound. Depending on these characteristics one can distinguish between
two regimes:

» Quantum channeling of particles can be observed if the light shift potential
U represented by the planes of the three-dimensional grating is high enough
that the particle is confined to one row or plane. This can be formulated ei-
ther by requiring that there is at least one bound state in a row or plane or
by demanding that

h2k2
U>>—¢ 16
M (16)
where k is the reciprocal grating vector and M is the mass of the particle.
The quantity € = #%k% /2M is also referred to as a recoil energy, associ-
ated with the transfer of momentum %k to the particle.

o Dynamical diffraction describes the motion of particles if the potential is

much smaller than € :
22
U<x—X 17
M amn
Then, the motion transverse to the lattice planes is quasi-free and the waves
scattered at different lattice planes interfere and, typical for dynamical dif-
fraction, multibeam interference phenomena arise.

Bragg scattering of atoms from thick standing light waves was first observed
by Martin et al. (1988) and more recently by Giltner et al. (1995b) and Diirr er
al. (1996).

Numerous investigations of channeling or dynamical diffraction with many
different types of particles have been performed (Batterman, 1964; Rauch and
Petrascheck, 1978). Investigating the coherent motion of atoms in light fields has
many advantages for studying these regimes of diffraction. Using diffractive op-
tics and holography, one can build a wide variety of three-dimensional light
structures. Atoms interact strongly and in a well-controllable manner with the
light fields, and one can change the interaction between the light crystal and the
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atom continuously from very weak to very strong and from elastic, using far de-
tuned light, to dissipative dominated, using on—resonant light.

In the next two sections, we will provide an outlook into this new area of
atom optics and atomic interference and present two experiments illustrating the
fascinating new possibilities arising from dynamical diffraction and multibeam
interferences.

A. DYNAMICAL DIFFRACTION OF ATOMS: ANOMALOUS TRANSMISSION

Of the many dynamical diffraction phenomena realized for X-rays (Batterman,
1964) and neutrons (Rauch and Petrascheck, 1978), one of the most striking
ones is the so-called anomalous transmission effect (Borrmann, 1941). This ef-
fect results when a wave is incident on an absorbing crystal under Bragg diffrac-
tion conditions. One then observes that the transmitted intensity can be signifi-
cantly higher than that expected from simple absorption considerations; that is,
the transmission for oblique angles of incidence. The effect can be understood
when one realizes that, inside the crystal, two wave fields are excited by the inci-
dent Bragg wave, one having nodes and the other having antinodes at the lattice
planes. While the one with the antinodes is rapidly absorbed, the one with the
nodes has a much smaller probability of overlapping with the absorber, and
hence, it has a much higher chance to survive the transmission.

With atoms, we can expect to observe anomalous transmission if, instead of an
absorptive crystal, we use a standing light wave tuned on-resonance to an open
transition such that the atom can be excited to the intermediate state and then de-
cay to a different ground state and thus be lost for the detection process. In full
analogy with the neutron and X-ray cases, we expect here, too, that the atom will
be in a superposition of two standing matter-wave fields in the standing light
wave, one of which will be pumped to the undetected ground state with a high ef-
ficiency, while the other one will have a much higher chance of surviving the
transmission through the standing light wave than if the beam were off-Bragg.

In our experiments (Oberthaler et al., 1996b) we exploit the fact that the Argon
atoms are detected only if they are in a metastable state. The light crystal was
formed using the open 801 nm transition (see Section II.A). A spontaneous decay
from the excited state leads, with 72%, to the ground state of the atom not detected.

In the experiment, the metastable argon beam had a mean velocity of 500
m/sec with a corresponding de Broglie wavelength of about 20 pm. The collima-
tion was better than one third of the Bragg angle (OBmgg~30 prad). The far-field
diffraction pattern was scanned with a 10 um slit 1.4 m downstream and the to-
tal transmission was measured by removing the third slit and measuring the inte-
gral intensity of the atoms.

The standing light wave was 3 cm thick and realized by a mirror inside the
vacuum chamber and a telescope for the laser beam expansion. The mirror was
tiltable with a piezoactuator with a reproducibility of % Bragg angle.
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Our first experimental results are shown in Fig. 10. The lowest curve repre-
sents the intensity of the forward-diffracted beam as a function of the angle, if
the detuning is large enough that spontaneous emission could be neglected. The
intensity reduces for two angles for which the incident beam satisfy the Bragg
condition. The inset shows a scan of the third slit showing the far-field pattern.
The intensity lost in zeroth order appears in first order. This was used as a
marker for the Bragg angle. For the upper trace, the last slit was removed so that
the detector measures the integral intensity of zero and first order. If the laser is
exactly on resonance, spontaneous emission, and hence absorption of the atoms,
is no longer negligible. The data clearly show that the total transmission in-
creases at the Bragg angle. This is a clear indication of the interference of the
forward- and Bragg-scattered beams inside the crystal.
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Fic. 10. “Rocking curves” showing Bragg scattering and anomalous transmission. The lower
trace shows the intensity of the transmitted beam as a function of Bragg angle for light far off reso-
nance. The far-field pattern for Bragg scattering is given in the inset, where the corresponding mirror
angle is indicated by the arrow. The upper trace shows the total transmission as a function of the mir-
ror angle and for on-resonant light. The two peaks at the two symmetric Bragg positions clearly
show the anomalous transmission of atoms through an on resonant light crystal.
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In this experiment, exactly on-resonance, the real part of the refractive index
for de Broglie waves vanishes and one can realize a purely absorptive Bragg
crystal for atoms.

B. TIME-DEPENDENT BRAGG SCATTERING: THE DE BROGLIE WAVE MODULATOR

In “conventional” optics, Bragg diffraction at a running sound wave is used as an
efficient frequency shifter for light waves. In acousto-optic modulators, photons
are diffracted at a traveling refractive index grating produced by propagating
sound waves in a crystal. We have built an analogous coherent frequency shifter
for atomic de Broglie waves, which are diffracted at traveling light crystals.

To set up “slowly” traveling light waves in front of a retroreflection mirror,
the intensity of the light is modulated in the sub-MHz regime. This produces fre-
quency sidebands separated symmetrically from the carrier by the intensity mod-
ulation frequency v, The standing light wave in front of the mirror can be
viewed as a superposition of (three) different frequency components: the carrier
frequency and (two) sidebands. The superposition of two counterpropagating
light waves with a frequency difference Av leads to a slowly traveling intensity
grating with a velocity of v, = AvA,/2, where A, is the average wavelength of
the light. We can show (Bernet et al., 1996) that Bragg diffraction of the atomic
beam with velocity v, now occurs under a detuned Bragg angle A8y = v;/v,.
Due to energy conservation, the de Broglie frequency of the diffracted wave is
shifted by the frequency difference between the counterpropagating waves.

It is interesting to note that the superposition of the carrier frequency with the
two first sidebands leads to four traveling waves with the same velocities,
*y,A, /2. Thus, there are two contributions for each diffraction process when the
corresponding angle of incidence is detuned by *w,A,/2v, from the original
Bragg angle. It can be shown (Bernet et al., 1996a, 1996b) that both contribu-
tions interfere perfectly constructively in the case of sideband production by in-
tensity modulation. However, further analysis shows that, in the case where the
frequency sidebands are created by phase modulation instead of intensity modu-
lation, the interference is destructive and diffraction under the same detuned
Bragg angles is suppressed.

In Fig. 11 we show the results of Bragg-diffraction experiments of our Argon
atomic beamn at intensity modulated light waves. The detection slit is located
such that only atoms deflected into the first diffraction order are registered. The
diffraction efficiency is measured as a function of the angle of our light crystal,
which we detune by tilting the retroreflection mirror. This keeps the spatial posi-
tion of the first diffraction order constant for any velocities of the traveling inten-
sity grating.

The lower graph in Fig. 11 shows the result of a mirror “rocking” curve with-
out intensity modulation of the light field. Only one peak occurs where the mir-
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Fi6. 11. Bragg diffraction of an argon atom beam at an intensity modulated light grating. “Rock-
ing curves” are obtained by measuring the number of diffracted atoms in the first diffraction order as
a function of the incidence angle of the atom beam at the light crystal. The lower curve shows the re-
sult without intensity modulation. A single peak is obtained where the angle of incidence equals the
Bragg angle. The upper curve shows the same measurement with diffraction at an intensity-modu-
lated light grating. The modulation frequency was 250 kHz, which is within the homogeneous line
width (1 MHz) of our diode laser. Now, in addition to the previous Bragg peak, two side peaks ap-
pear at symmetrically detuned angles. They correspond to Bragg-deflected atoms at intensity grat-
ings, which propagate with a velocity of *10 cm/sec. The de Broglie frequency of the atoms in the
side peaks is coherently shifted by =250 kHz with respect to the central frequency.

ror angle corresponds to the static Bragg angle. The width of the curve is limited
mainly by the velocity distribution of our atom beam and not by the anguiar ac-
ceptance of Bragg diffraction.

In the upper graph, the light intensity was modulated with a frequency of 250
kHz, which is fast compared with the transit time (0.1 msec) of the atoms
through the light crystal (5 cm long in this experiment). Now, two pronounced
side peaks appear in addition to the central peak. They correspond to atoms dif-
fracted at a traveling intensity grating, which is composed by two contributions:
the center frequency that superposes with any of the sideband frequencies. The
traveling velocity is =10.1 cm/sec. We could verify the expected linear depen-
dence of the Bragg angle detuning from the intensity modulation frequency
within 9% uncertainty of the mirror adjustment.

In a similar experiment with phase- instead of intensity-modulated light, no
diffraction at these detuned angles was observed, as expected from the destruc-
tive interference between the sideband contributions.
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I. Introduction

More than 20 years ago, Altshuler and Frantz (1973), with great foresight, pro-
posed the possibility of directly observing the de Broglie wave spatial interfer-
ence exhibited by the propagation of whole neutral atoms. More recently, the
idea of building an atom interferometer again was proposed independently by
Dubetskii et al., (1984), Chebotayev and coworkers (1985), and Clauser (1988,
1989, 1991). Soon thereafter, a wide variety of atom interferometer configura-
tions was demonstrated. Among these are what are commonly called grating in-
terferometers. In a solid grating interferometer, coherent path separation is ac-
complished by passing atom de Broglie waves through carefully tailored
aperture sets (e.g., slits) in a solid membrane, while in a “light grating” interfer-
ometer a standing-wave phase grating replaces the solid amplitude grating.

This chapter describes a particular form of grating interferometer that we
have developed, called the generalized Talbot—Lau (GTL) interferometer. In
Sections II and III, we first identify a significant weakness (low throughput) of

121 Copyright © 1997 by Academic Press, Inc.
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its progenitor form, separated beam envelope (SBE) interferometry, outline the
operating principles of GTL interferometry, and show how GTL interferometry
remedies this weakness. GTL interferometry is based on a unique form of inter-
ference, intimately associated with Fresnel diffraction, that occurs when Fraun-
hofer diffraction orders overlap. This effect was originally discovered in the op-
tical domain using lenses and gratings and is called the Talbot effect. lts
diffraction pattern consists of so-called Fourier and Fresnel fringes that, surpris-
ingly, are actually multiply “aliased” near self-images of a grating’s periodic
complex amplitude transmission function. In Sections IV and V, we introduce
the Talbot effect and give a brief historical outline of work contributing to its un-
derstanding. Sections VI and VII summarize its surprising properties. Sections
VIII and IX then introduce the related Lau effect and Talbot interferometer, re-
spectively; and Section X shows how we combine these to create generalized
lens-free Talbot—Lau interferometers, suitable for de Broglie wave interferome-
try. Since we have been unable to find a treatment of Kirchoff scalar diffraction
theory for wave propagation in a medium with inhomogeneous index of refrac-
tion, we derive its basic results in an appendix, applied to de Broglie wave prop-
agation in a spatially varying potential. Section XI then applies this result to a
general discussion of Fresnel diffraction and the Talbot effect for the case of a de
Broglie wave interferometer in the earth’s gravity field. Finally, Sections
XII-XIV discuss atom interferometry experiments that employ the GTL and
Talbot effects.

I1. SBE Interferometry

The progenitor form of the GTL solid grating interferometer is the separated
beam envelope (SBE) solid grating interferometer, first proposed by Clauser
(1989) and shown in Fig. 1a. It has been used extensively by Pritchard’s group at
MIT (Keith et al. 1991), (Schmiedmayer et al. 1995), (Chapman et al. 1995a),
(Ekstrom et al. 1995). In it, grating G1 is illuminated by a carefully collimated
atomic beam. Grating Gl coherently separates the input beam into separated
beams via Fraunhofer diffraction. Two of these separated beams are then redi-
rected by a second grating pair, G2A and G2B, to superpose, interfere, and form
a transverse standing wave on the face of a third grating, G3. The standing wave
is then masked by G3 to form a moiré pattern, so that a measurement of the flux
of transmitted atoms allows detection of the interference.

The SBE configuration has quite remarkable image-forming properties. As a
result, the standing wave’s visibility is unaffected by direction and magnitude
variations of the incident k vector (i.e., by coma or chromatic aberration). Unfor-
tunately, the parameter range appropriate to atom interferometry usually does
not allow one to fully exploit these properties, as strong collimation of the inci-
dent atomic beam is required to fully separate the Fraunhofer orders at G2A,
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G2B, and G3. For illumination by a source of atoms with a fixed brightness, B,
the transmitted atomic current (in two-dimensions) scales as
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where L, is the collimator length, L, is the interferometer length, W, is the colli-
mator width, a is the period of the gratings, and A, is the atomic de Broglie
wavelength. Unfortunately, for typical available values for A ; and a, Eq. (1) sets
a severe limit to the atomic current transmitted by a SBE interferometer.

III. GTL Interferometry vs. SBE Interferometry
The layout for a GTL interferometer is shown in Fig. 1b. It eliminates the colli-

mator entirely and consists simply of a set of three very wide diffraction gratings
Gs, Gd, and Gm, in sequence. (Rather than identifying these gratings as G1, G2,
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and G3, as we have in previous works, here we use the notation Gs, Gd, and
Gm to indicate their functions as source, diffraction, and mask gratings.) A
GTL interferometer’s transmitted atomic current correspondingly scales as
BW W /L, where L, is the interferometer’s total length, and W, and W, are
the Gs and Gm grating widths. Since there is no limitation to the widths W_and
Wi then, relative to a SBE interferometer, a GTL interferometer provides an
enormously higher throughput atomic current for a given source brightness. For
interferometry with slow atoms, where available source brightness is consider-
ably less than that for fast atoms, the increased throughput (ratio of fringe inten-
sity to illuminating source brightness) can be dramatic. For example, in our first
GTL atom interferometer (Clauser and Li, 1994a), the source brightness was
2500 times weaker than that of MIT’s first SBE interferometer (Keith et al.,
1991). Nonetheless, the peak-to-peak transmitted current variation of the inter-
ference signal was 3000 times stronger. This throughput improvement (by nearly
a factor of 107) can be readily extended by another factor of 10 through the use
of larger gratings and/or gratings with a higher open area fractions.

How does it work? In a GTL interferometer, each point within each slit of Gs
acts as an independent source. For each such source, diffraction grating Gd pro-
duces strongly overlapped Fraunhofer diffraction orders on the face of Gm. How-
ever, in this overlap region, Fresnel diffraction applies and the various orders coher-
ently superpose to create a form of wave interference unique to Fresnel diffraction,
called the Talbot effect. As with SBE interferometry, the interference produces a
standing de Broglie wave on the face of Gm, thereby allowing Gm to act as a mask,
so that the wave interference may be detected by laterally scanning a grating’s posi-
tion. The finite slit widths of Gs and Gm only slightly wash out the transmitted cur-
rent’s associated fringe variation. Thus, while the gratings still physically separate
an atom’s interfering paths within the beam’s envelope, that envelope itself does not
separate. Interfering paths within the envelope consist topologically of many sets of
nested diamonds, starting in a given slit on Gs, passing through the various Gd slits,
and terminating at a point on Gm, where they interfere.

Now, if Gs is suitably periodic, each Gs slit produces essentially the same stand-
ing wave as that produced by other Gs slits. The contributions by all Gs slits then
add to the intensity without deteriorating the fringe visibility. This incoherent addi-
tion of Talbot fringe patterns is called the Lau effect. It is noteworthy that, while the
usual demonstrations of the optical Talbot and Lau effects require the presence of
one or more lenses, our generalization of these effects allows a lens-free system.
Additionally, our GTL configuration retains or even improves on many of the desir-
able features of SBE interferometry. It has higher grating-misalignment tolerance.
Since no collimation is needed, the formation of the standing wave is independent
of the source area; hence, no coma occurs. The price paid for the increased angular
acceptance, however, is increased chromatic aberration. The standing wave formed
at Gm is strongly dependent on illumination wavelength and is not a simple geo-
metric shadow effect but a true interference effect. Depending on illumination
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wavelength, the standing wave period appears at various different harmonics of the
shadow period.! Actually, this chromatic aberration manifests itself as a resonant
chromatic selectivity that proves to be desirable in many instances and can even act
as a de Broglie wave interference filter (see Section XV).

There is another dramatic difference between SBE and GTL interferometry.
For a given A, and interferometer length, GTL interferometry allows grating pe-
riods that are at least an order of magnitude larger than those for SBE interfer-
ometry. This grating period difference results from different scaling mechanisms
for the two schemes. Equation (1) shows that, to maintain a minimum through-
put and interferometer size, as the particle mass increases, the SBE grating pe-
riod must scale directly with A ; = A/(mv). It is noteworthy that MIT’s current
SBE experiments use microfabricated gratings with a period (=200 nm) close to
the current lower limit for microfabrication. Thus, SBE interferometry with very
massive particles seems precluded.

On the other hand, with GTL interferometry, the necessary grating period
scales as A)Z. Figure 2 shows the required Gd grating period, a ,» as a function of

'The discussion by Dubetsky and Berman (1994) of the transmission of atoms by three sequential
gratings employs only the wavelength independent (n = 0, see later) shadow moiré effect, even
though their arrangement affords a wide variety of moiré fringe multiplicities, because of the higher
spatial frequencies introduced by Gs.
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FIG. 2. Required Gd grating period, a,, as a function of species atomic mass number for a 3 m
long m = 2 GTL interferometer.
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atomic mass number for a 3 m long interferometer. The two lines on the left are
for the most probable particle velocity in thermal beams at 300 K and 3 K, re-
spectively, while the right side’s limiting line is for freely falling particles gravi-
tationally accelerating in the 3-m interferometer length. The interferometer is as-
sumed here to operate with a, = a, = 2a, at the n =1, m = 2 resonance (see
later), allowing it to demonstrate wave interference unambiguously. It can be
seen that GTL de Broglie wave interferometry with very massive particles such
as very large atomic clusters (i.e., very small rocks) or even small live viruses
may be achievable in the near future.

IV. What Happens When Fraunhofer
Diffraction Orders Overlap?

To appreciate the Talbot effect, it is helpful to understand what happens when
Fraunhofer diffraction orders overlap. Consider the simple two-dimensional
(2D) Fresnel scalar diffraction pattern formed by the Young’s N-slit interferome-
ter depicted in Fig. 3. A point source located at r, = (x,,z,) emits monochromatic
waves (classical or quantum mechanical) with wavelength A. The waves are then
passed by a planar finite-extent periodic complex transmitting object (diffraction
grating). The grating contains N periods, with period a,, and is located at z = z,
with R, =z, — z,, with its axis of symmetry located on the z axis. The general
solution to this problem will provide the complex amplitude for waves imping-
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FIG. 3. Young’s N-slit interferometer arrangement for demonstrating Fresnel scalar diffraction.
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ing on the z = z_ plane, here called the image plane, at a point r,, = (x,,,z, ), with
R,=z, — z, Because of complications arising from quadratic phase factors in
the Fresnel approximation, this general solution with finite N was delayed until
1992, when it was found by Clauser and Reinsch (1992). A summary of impor-
tant features of the Clauser and Reinsch (1992) solution is given in Sections VI
and VIIL

An important distinction between this problem and that for Fraunhofer dif-
fraction is that, in the latter case, plane-wave illumination is assumed, where-
upon one must specify R, = o, and then the resulting pattern’s scale depends
only on the length R,. In marked contrast, the solution to the present Fresnel
problem requires a careful consideration of both lengths R, and R,. It is conve-
nient to reparameterize these in terms of two other parameters, the “reduced
length,” p, defined as

R R

=_1"2 2
PR+ R, @)
and the geometric shadow magnification, M, defined as
R, + R R, R
M=—"1—2=1+ =2, 3)
R, R, p
It will soon become apparent that the quantity
N =a3/p )

named the Talbot-Rayleigh wavelength by Clauser and Reinsch (1992), is also a
very important parameter in this problem.

Surprising features emerge from the solution of this simple diffraction prob-
lem. These are illustrated by a straightforward numerical evaluation of the Kir-
choff diffraction integral, as is done by Clauser and Reinsch (1992) and
reprinted here in Figs. 4a—4f. For all of this figure the calculation is for a simple
binary grating composed of 12 unit-transmission slits, each of width &,, with
syla,;=1/3, Ry =1, a,= 1075, and A =5 X 10~3—all held constant, thereby
freezing the positions of the Fraunhofer diffraction orders to integral multiples
of 500 X 1075, (If MKS units are assumed, the parameter range spanned will be
found to be appropriate for a typical atom interferometer.) Each successive part
of the figure represents a situation with the source moved progressively closer to
the grating. That is, among these parts, the value of R, varies, starting in Fig. 4a
at R, = o, taking on progressively decreasing values, and yielding correspond-
ingly increasing values for A, and M. Each part displays two graphs. The upper
trace shows the image intensity, and the lower trace shows the associated geo-
metric shadow (A = 0) image of the grating.

Fraunhofer order overlap does not occur (Clauser and Reinsch, 1992, Sec-
tion 1.5) as long as the product NA, is less than the illuminating wave-
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Fic. 4. (a—c) Fresnel diffraction patterns and (d—f) geometric shadow patterns as a function of
x,,» for x, = 0 produced by the arrangement of Fig. 3 for various values of R, but all with the same
fixed A and R,,. Fraunhofer orders always occur at integer multiples of 500 (see text). Fresnel patterns
are normalized correctly only relative to each other, while shadow patterns are renormalized to 1.
(Figure adapted from Clauser and Reinsch, 1992.)

length, A. For the present calculation, R, was chosen sufficiently large that
NA L is smaller than A for both Figs. 4a and 4b. In turn, these two parts dis-
play well-formed Fraunhofer diffraction orders. Figure 4c corresponds to
NA g = A, where the order structure now resembles a step function. Figures
4d, 4e, and 4f, all correspond to cases with NA, > A. Figures 4d—4f show
cases with NAp > nA. ., = A, where n (<N) is an integer (3, 2, and 1, respec-
tively). Each part shows n equally spaced, non sinusoidal “fringes” formed
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HG. 4. (continued)

per order separation. When this calculation is performed for a grating with
much larger N, the features in Figs. 4d—4f “fringes” become rectangles, with
the same shapes (except for Gibbs phenomena) as those of the associated
geometric shadows.

The presence of these regular “fringes” in Figs. 4d—4f is not self-evident
from an inspection of the form of the Kirchoff diffraction integral. Moreover, for
intermediate choices for R, such that n is not an integer, the pattern displays
highly irregular features. The regular features seen here are examples of what we
call the generalized (finite-N) Talbot effect.
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V. Historical Development of the Generalized Talbot Effect

A different manifestation of the surprising periodicities evident in Figs. 4d—4f
was first noticed experimentally (with light) by Talbot (1836). His apparatus is
shown in Fig. Sa. A beam of monochromatic light is focused to parallel by a lens
and directed through a coarse periodic binary transmission grating (Ronchi rul-
ing) with large N. In analogy with the arrangement of Fig. 3, his arrangement ef-
fectively sets R; = and M = 1. In contrast to the variation of Fig. 4, it varies
A by varying R,. In addition, a second identical grating is placed in the trans-
mitted light to act as a mask, aligned so that its slits and plane are maintained
parallel to those of the first grating. An observation consists of varying the lateral
position of either grating while monitoring the transmitted light for different
choices for the separation R, between the grating planes.

When the spacing between the gratings R, is 0 (i.e., when they contact each
other), the lateral position variation yields a simple moiré (triangular) variation
of the transmitted intensity. When the gratings are slightly separated, diffraction
initially blurs the moiré variation. However, at grating spacings, R,, equal to in-
tegral multiples of a characteristic length, the moiré fringes reappear at nearly
100% visibility! The inescapable conclusion is that, with monochromatic light, a
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FIG. 5. (a) Talbot’s experiment, (b) Lau’s experiment.
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grating at these spacings can produce a nearly exact image of itself. Further-
more, this self-imaging must intimately involve wave interference, since the
characteristic length is wavelength dependent.

Talbot’s effect remained totally mysterious until Lord Rayleigh (1881) noted
that it is intimately associated with a nonvanishing wavefront curvature and
identified the characteristic length in Talbot’s experiment. The first detailed ex-
planation of this long-standing mystery was first given in 1957 in the landmark
work by Cowley and Moodie (1957). They solved the problem depicted in Fig. 3
for an infinite periodic transmission grating with an arbitrarily shaped (real) sin-
gle-period transmission function. To do so, they used a Fourier series technique.
Self-evident in their resulting formulas is a direct prediction of the self-images
observed by Talbot. They named these images Fourier images.

In their further experimental observations, however, Cowley and Moodie
(1957) found a wide variety of additional, now even more mysterious, shorter-
period periodic images.? The regularities of these images are not self-evident
from an inspection of the Cowley and Moodie (1957) formulas.? They named
these additional mysterious images Fresnel images. Rogers (1963) studied Fres-
nel images numerically, while Hiedemann and Breazeale (1959) presented addi-
tional experimental evidence for them. Winthrop and Worthington (1965, 1966)
provided a (not particularly transparent) method for calculating Fresnel images
by introducing what they called the Fresnel transform but provided no transform
inversion method.

The first correct classification of Fresnel images was given by Gori (1979; see
also, Sudol and Thompson, 1979), working in the domain of binary gratings
with “sufficiently narrow” slits. Gori showed that the resulting fringe “multiplic-
ities” (relative to the geometric shadow period) are governed by a ratio of two
integers, n and m, in which m controls the fringe multiplicity, while » accounts
for the periodic recurrence of the self-images. He also experimentally demon-
strated this effect. Additionally, Gori presents a qualitative argument to show that
the finite extent of a binary grating limits the allowed multiplicity of the Fresnel
images, while Smimov (1979) gives an order-of-magnitude estimate for their
depth of focus. Patorski (1989, 1993) provides reviews of these and other treat-
ments up to 1992,

The problem depicted in Fig. 3 with both finite and infinite periodic complex
gratings was first given an exact analytic solution by Clauser and Reinsch

XCowley and Moodie (1957) comment, “In fact it is observed that with gratings of this type a large
number of sharp and frequently complicated out-of-focus patterns are generated.”

*These images may be calculated using the Cowley and Moody (1957) formulas, although Cowley
and Moodie did not appear to recognize this fact. Indeed, they comment (Cowley and Moodie, 1957,
p. 499) that “No obvious relationship exists between the positions of the delta functions and the max-
ima and minima of the real and imaginary parts of the Fourier transform of the Fresnel wave func-
tion.”
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(1992). They provide formulas for calculating both the detailed fringe and enve-
lope shape. More important, in the Clauser and Reinsch (1992) formulas the for-
mation of both Fourier and Fresnel images is self-evident by inspection. Further,
Clauser and Reinsch (1992) show that in the N — o limit the image amplitude of
the Fourier images become exact complex amplitude self-images of the grating.
With finite gratings, “filtered” amplitude self-imaging occurs instead. Clauser
and Reinsch also show that Fresnel images consist of multiply added (aliased)
laterally displaced Fourier self-images. In addition, they give a formula for the
spatial frequency spectrum of the fringe intensity showing finite-width “reso-
nances” at the integer ratios discovered by Gori. In the finite-N domain, the
Clauser and Reinsch (1992) formulas also predict a small spatial frequency shift
of the fringe pattern, new effects associated with a detuning from a resonance,
limitations to the spatial frequency spectrum set by finite grating extent, and a
number theoretical relationship between n and N.

VI. Spatial Properties of the Generalized
Talbot Effect “Image”

The Clauser and Reinsch (1992) analysis shows that the basic requirement for a
“fringe” resonance to occur, or equivalently for a Fourier or Fresnel “image” to
form, is set by Gori’s (1979) condition:

A M )

A Ap n

where m and n are small integers, generalized by Clauser and Reinsch to allow
for a tuning error, €. These integers are what we call here resonance indexes
(quantum numbers). Equation (5) represents a fundamental constraint for the
generalized (finite-N) Talbot effect to occur.

So-called Fourier fringes are formed on the image plane for m = 1 and integer
values of n = 1. The terms fringe and image may be applied only loosely to the
pattern formed on the “image plane,” as the pattern’s shape, in general, is nonsi-
nusoidal and not an image, either, in the usual sense. Indeed, the pattern’s ampli-
tude is a magnified (by M) near replica of the complex grating amplitude trans-
mission function itself. For N <, the pattern is a filtered (slightly rounded)
amplitude self-image, with the associated filtering given by the Clauser and
Reinsch (1992) Egs. (25)—(27). In the N— %, € = 0 limit, the self-image is an
exact magnified replica. For N < o, the filtered self-image has a finite envelope
(produced via Clauser and Reinsch (1992) Eq. (25)) that is comparable to the
grating’s magnified finite shadow width. For a finite N, approximate self-imaging
persists for a finite range of € # 0, limited by the inequality, |€| < 2/(nN), which
results from a finite remainder in the integer division of Eq. (5).
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It should be noted further that the Clauser and Reinsch (1992) treatment
holds exactly only when n is a factor (rational divisor) of N, the number of slits.
For modestly large N, the Clauser and Reinsch (1992) Egs. (23)—(27) still yield
an approximate but increasingly accurate prediction for the resulting pattern. Re-
cently, Clauser and Dowling (1996) show further that with small slit widths, all
such “fringes” will have the same height if and only if n is a rational divisor of
N. They then use this result to show that the simple Young’s N-slit interferometer
depicted in Fig. 3 can be used as an analog computer to find the integer factors
of N.

So-called Fresnel fringes are formed on the image plane for integer values,
m>1 and n= 1. Clauser and Reinsch (1992) generalize the Gori (1979) and
Cowley and Moodie (1957) results to cover general complex gratings, so as to
show that the pattern now consists of m copies (aliases) of the “filtered” m = 1
(Fourier) amplitude self-image per geometric shadow period, with the associated
complex amplitudes all added together. The result is a periodic pattern with pe-
riod Ma,/m. Thus, the resonance index m is referred to as the alias multiplicity.
Because of this addition, the added set of images is no longer a self-image of the
original grating, although each of the added components is such a self-image.
Correspondingly, for m > 1, the summed pattern for a binary grating does not
preserve the original grating’s slit-width to period-width ratio. Also, when the
added components overlap, their added amplitudes interfere, so that the integer
fraction m/n is always reduced to its lowest terms.

The m = 1 case is obviously consistent with the m > 1 case, as the Fourier
image case represents the Fresnel image case, where only one copy, the filtered
self-image itself, is present. Correspondingly, other features of the m = 1 case
discussed earlier, also persist in the m > 1 case. Finally, it should be noted that,
whenever the produce m X n is odd (whether or not N is finite), the whole pat-
tern is shifted laterally (relative to the position of the geometric shadow pattern)
by half a shadow (magnified) period.

VII. Wavelength Dependence of the Spatial
Spectrum of the Fringe Intensity

Even with small integer values for the resonance indexes, m and »n, many possi-
ble rational fractions occur, with each such fraction providing a “resonance.”
The effect of m > 1 aliasing will be to introduce (or intensify) the mth harmonic
of the basic geometric shadow period into (in) the spatial spectrum of the image
intensity. Each of the intensity’s various spatial frequency components then con-
tains a regular set of finite-width resonances as a function of the illuminating
wavelength, A. These are shown in Fig. 6. Here we display the A dependence of
the lowest (m-dominated) five Fourier coefficients of the intensity for the limit-
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ing case of a binary grating composed of an infinite number (N = «) of slits,
where the intensity has become exactly periodic. Here, the slits have a width, &,
and period, a,, with &,/a, = 1/4. In contrast to the geometric variation employed
in Section IV, here the geometry (and A ;) is held fixed and only the wavelength
varies. The Fourier series expansion of the intensity used here has all real coeffi-
cients and should not be confused with Cowley and Moodie’s Fourier expansion
of the image amplitude.

For the important case of a binary grating (used for Fig. 6), each resonance
has sharply defined boundaries (Clauser and Reinsch 1992, Eqgs. (57) and (59),
and the resonance full widths are given by

|€l < mmd AA — 20/! ) (6)
2 9
n‘a, A na,

For modestly high »,/a,, the contribution by each multiplicity-m alias is associ-
ated dominantly with the associated mth harmonic content. Cases a, c, and ¢ in
the figure show odd valued multiplicities, m = 1, 3, and 5. Correspondingly,
these spectra display negative values for the associated Fourier coefficient when
m X n is odd, as a result of the associated half-period shift of the pattern. Cusps
occur in the m = 4 resonances shown in Fig. 6d, because, when the wavelength
is tuned exactly to a resonance, with &,/a, = 1/4, four quarter-period slit images
add together to produce a flat intensity distribution.

The condition » = 0, € = 0, holds when the wavelength A exactly vanishes;
that is, the A—0 (n =0, e —0) limit is the geometric shadow limit. Figure 6
shows that for small but finite A, the mth Fourier coefficient of the shadow pat-
tern vanishes abruptly at A/A., = a,/(ma), with the coefficient for the funda-
mental (m = 1) component correspondingly persisting to longest wavelength.

For N < =, the image is no longer periodic and each Fourier component ob-
tains a finite spectral width, while the number of resonances for each value of m
is limited by N and results in image filtering. The N < spatial spectrum is
given by the Clauser and Reinsch (1992) Eqs. (57) and (59). We further note that
these formulas hold whether or not »n is a factor of N. As a result, when multi-
plied by the Fourier transforms of the Gs and Gm intensity transmissions (suit-
ably adjusted by the “shifting theorem”), they provide the least computationally
intensive method for numerically calculating the exact intensity transmission for
a GTL interferometer as a function of grating displacement.

VIII. The Lau Effect

Lau (1948) performed an experiment similar to that by Talbot. A diagram of his
apparatus is shown in Fig. 5b. In Lau’s experiment, a diffuse extended (spatially
incoherent) monochromatic source illuminates a wide, coarse binary grating.
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The transmitted light then passes through a second identical grating and a lens.
A screen is placed at the focal distance of the lens to observe the magnified pat-
terns thus produced. As before, when the grating spacing, R, is an integral mul-
tiple of Rayleigh’s characteristic length, nearly exact images of the gratings are
formed on the screen.

One may assume negligible transverse coherence in the narrow bandwidth
light illuminating Lau’s first grating, Gs. Each point within a slit of Gs then acts
as an isolated, independent point source illuminating grating Gd, spaced from
Gs by R|. Each such source point generates a Talbot effect image on the screen.
Lau has effectively placed the image at R, = « by the use of a lens. Incoherently
averaging the intensity produced by all such points within a given source grating
slit yields the intensity produced by one such slit. Now, since the resulting pat-
tern is periodic, a second Gs slit spaced at a distance a, = a , from the first slit
will produce the same pattern, simply shifted by one period. Hence, all source
slits produce essentially the same periodic image (except for finite envelope-
width effects) that is observed on the screen for one slit, and the intensities from
all Gs slits add.

IX. The Talbot Interferometer

The next step in understanding the operation of a GTL interferometer is to dis-
cuss what is commonly referred to as the Talbot interferometer, first demon-
strated by Lohmann and Silva (1971). Its configuration is essentially identical to
that of Fig. 5a, with an imaging screen acting as the detector (following the sec-
ond grating). The spacing R, is set so that the m = 1, n = 1 resonance obtains for
Gd. In a variant configuration by Yokozeki and Suzuki (1971), a laser replaces
the point source and lens. When a refractive object is inserted between the two
gratings, a shadow image of the object forms on the screen. Image features de-
pend on the object’s refractive index gradient distribution.

X. Generalized Lens-Free Talbot—Lau Interferometers

Given an understanding of the Lau effect, one can see that another interferometer,
similar to the Talbot interferometer, may be created by combining the Talbot and
Lau effects. This may be done by simply adding a “masking” grating, Gm, to the
image plane in Lau’s experiment. Equivalently, one can replace Talbot’s point
source with a diffuse source, followed by a “source” grating Gs. However, neither
combination is particularly useful for atom interferometry, since both involve the
use of a lens. Indeed, Patorski reviews a variety of experiments using similar
arrangements, all involving the inclusion of one or more lenses. Unfortunately, in-
terferometric quality lenses do not, as yet, exist for atom de Broglie waves.
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We can see, however, that lenses are readily eliminated from a Talbot—Lau
interferometer by suitable choices for the grating periods or for the resonance in-
dexes associated with diffraction by Gd. Thus, a lens-free generalized Talbot—
Lau interferometer (Reinsch and Clauser, 1991) suitable for atom de Broglie
wave interferometry may be created by simply placing three gratings in se-
quence and employing spatially incoherent de Broglie wave illumination, as we
have done in Fig. 1b.

Consider the simple symmetric (R, = R,) example shown in Fig. 1b. If the
wavelength, grating spacing, and Gd period, a,, are chosen so that the m = 1,
n = 1 resonance obtains, then the fringe period formed on Gm by a point source
on the Gs plane will be Ma,/m = 2a,. If the Gs and Gm periods are chosen to be
a,=a, =2a, then the Lau effect will occur and the resulting self-image
“fringes” formed on the Gm plane may be detected by moiré techniques, as be-
fore, by monitoring the transmission of Gm and its variation under a lateral
translation of any one of the three gratings.

It should be noted that a wide variety of choices is possible for grating peri-
odicities, resonance indexes, and associated grating spacings. To obtain highest
throughput, gratings with periods e, = Ma,/(mM — m) and a,, = Ma,/m are ap-
propriate. Clauser and Reinsch (1992) experimentally demonstrate operation of
a lens-free asymmetric GTL interferometer for light operating at the m = 3,
n = 1 resonance that employs illumination by a spatially incoherent sodium dis-
charge lamp. Another useful variant is with R, =R,, m=2,and a, =a,=a,,.
This latter case, however, will not allow one experimentally to distinguish m = 1
and m = 2 resonances from each other.

A gravity gradiometer (Clauser, 1988, 1989, 1991), (Marzlin and Audrecht,
1995) may be built using a GTL interferometer composed of four gratings,
shown in Figs. 7a and 7c. Here, Gs and Gd separated by R, (T,) create a periodic
“real” image at an image plane a distance R, (T,) behind Gd. Rather than placing
a masking Gm grating at this plane, this image acts as a periodic source for a
second Gd’ diffraction grating placed R| = R, behind Gd. A final masking Gm
grating placed R; = R, behind Gd’ then detects the fringes.

Finally, it should be noted that, since self-images are amplitude images, one
may use a phase grating for Gd. Indeed, Janike and Wilkens (1994) use a stand-
ing wave laser beam to act as an atom de Broglie wave phase grating in an
arrangement useful for high-resolution lithography. One may also consider the
possibility of observing a “temporal” Talbot effect, where laser phase gratings
are sequentially pulsed so that the atomic velocities multiplied by the time inter-
vals yield appropriate values for R, and R, (see Section XI). Analyzed in this re-
gard, however, it will be seen that the experiment by Mossberg et al. (1979) op-
erates in the n = 0 geometric shadow regime.*

*See endnote, p. 150.
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FiG. 7. (a) Gravity gradiometer configuration using GTL interferometry and four gratings. (b)
Vertical GTL interferometer in a gravitational field. (c) Gravity gradiometer configuration of (a) with
R, and R, having equal fall times, also showing typical (patented) figure 8 interfering paths within
the beam’s envelope.

XI. Fresnel Diffraction and the Talbot Effect
with a Spatially Varying Potential

So far, we have discussed Fresnel diffraction and the Talbot effect for de Broglie
wave propagation under a constant potential, V(r) = V. In such case we have
k= |k(r)] = 2m[E — V}'?/h, = 2/A 5, and the path integral (see the appendix)
is just simply k|r — r’|. However, we noted in Section IX that a detectable fringe
shift will result if, at any place between the gratings of a Talbot interferometer, a
change in the intervening index of refraction occurs. For de Broglie waves the
index of refraction is given by n(r) = [1 — V(r)/E]"? and will be spatially vary-
ing in the presence of nonvanishing Coriolis, gravitational, electric, and/or mag-
netic fields. The appendix presents a derivation of the Kirchoff diffraction inte-
gral for de Broglie wave diffraction in the presence of a slowly spatially varying
(with respect to A ) potential V(r). Here, we apply the results of this appendix
to demonstrate how the Talbot effect still occurs and how the associated fringe
shifts may be evaluated for a few simple cases.

When V(r) << E is not constant, a simple approximation may be used to
evaluate the path integrals (Anadan, 1984), (Greenberger and Overhauser,
1979). The approximation is to neglect the path curvature, which is now
small, and perform the path integration along a straight-line path, which is not
far from the desired classical path Fcl. Moreover, if the variation of V(r) is
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uniform through the propagation volume, as is the case when V(r) is due to
gravity, it will contribute a common error to all paths that will cancel. The use
of exactly horizontal or vertical gratings significantly improves the accuracy
of this approximation. For the case of fast particles in a gravitational field,
when the trajectory is roughly horizontal, this approximation yields a simple
classical fall of the envelope and the fringes at the image plane for both SBE
and GTL interferometers.*

With very slow atoms (and long A,;), unless one somehow eliminates the pull
of the earth’s gravity, then the potential energy, V(r) = mgzé,, is not small with
respect to £ and the associated classical path curvature may not be neglected,
even in an interferometer with exactly horizontal gratings. Consider a particle
falling from a point r, = (x=0, z=0) to a point r, = (x =x,, z= —L). The
path integral, via Eq. (A6), is then given by

2mgl/2

3%

O(r,.r,) = [2€+ L+ % (aLe+ 4€Z—x§)1/2]

XL + 26+ (L2 +22)\2 = [L + 26— (L2 +:0)'""
where € = E/(mg).

We now apply Eq. (7) to a vertical axis interferometer with horizontal grat-
ings operating in the earth’s gravity field, as shown in Fig. 7b. We calculate the
phase difference between two representative paths, a straight down reference
path and one passing through a Gd slit a distance x, off the axis. To apply the
Fresnel approximation, we express Eq. (7) as a power series in x,, keeping terms
only to the second order. Terms of higher order are negligible for x% <<44R,.
The phase difference is then given by

— 2
Mz%<i+i). (8)

} )

27 2h \T, T

1 2

Here, T, and T, are the fall times for a classical particle through the associated
distances R, and R,. A comparison of the form of Eq. (8) with that for the V=0
case (Clauser and Reinsch 1992, Eq. (4)), A¢/(2m) = x2/ (2Ap), provides the de-
finition

h T[T,
mT, +T,

(N gpPesr = )]
which, in turn, may be used in place of Eq. (2) to allow a direct application of
the Clauser and Reinsch (1992) formulas for GTL interferometry in terms of the
classical fall times in place of axial vertical fall distances. Equation (7) may be
used in similar fashion to evaluate higher order phase shifts, aberrations, the ef-

4Note, however, that in a (two—-loop) gravity gradiometer the envelope fails but the fringes do not.
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fects of grating period foreshortening associated with a path’s oblique incidence
on a grating, and so forth, for an arbitrarily inclined interferometer in the earth’s
gravity field.

XII. GTL Atom Interferometry Experiments with K and Li,
The first working GTL atom interferometer was demonstrated by us at the Uni-

versity of California— Berkeley (UCB) (Clauser and Li, 1994a). The experi-
mental arrangement is shown in Fig. 8. The atomic beam source actually gener-
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FIG. 8. Generalized Talbot—Lau atom interferometer used by Clauser and Li (1994a). Grating ro-
tational alignment uses a HeNe laser that forms a SBE optical interferometer using all three atom
gratings and a fourth additional identical grating, displaced to one side of Gd. (Figure adapted from
Clauser and Li, 1994a.)
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ates two copropagating atomic beams: a dc hot thermal beam and an ac-modu-
lated cold slow potassium beam. Thermal potassium atoms effuse from an oven,
pass through a wide collimating slit (needed for velocity selection only), and
then through an atom de Broglie wave GTL interferometer to a hot wire (surface
ionization) detector. The oven slit is offset from the interferometer axis so that
only one wing of the collimated thermal beam (produced by scattering near the
oven slit) passes through the interferometer to the detector. Cold slow atoms are
velocity selected by using laser light to deflect them out of the offset parent ther-
mal beam onto the interferometer axis (Li and Clauser, 1994). The laser beam
crosses the atomic beam immediately below the collimating slit at 20° from co-
moving parallel. The parallel component of the laser’s propagation vector pro-
vides Doppler velocity selection of atoms from the low-velocity portion of the
parent beam’s thermal distribution, while the perpendicular component provides
momentum transfer for deflection. The small deflection angle (=.5 mrad.) re-
quires scattering of only about seven photons, so that perpendicular heating of
the slow atoms is minimal and a source brightness of about 4 X 10'> atoms cm 2
st~ ! sec! is achieved for 182 m/sec atoms.

The ac modulation of the deflecting laser allows the transmission of the two
different beam components to be measured independently. The average dc hot
wire signal represents that due to the thermal velocity component of the atomic
current. The weak ac component of the current is synchronously detected by an
“up/down boxcar integrator.” The maximum transmitted ac current is roughly
4 X 10° atoms per sec at 182 m/sec. The dc current is about 130 times stronger,
and the signal to noise ratio of the AC signal is limited by the shot noise of the
much larger copropagating dc current.

The interferometer consists of a sequence of three microfabricated rectangular
vacuum-slit transmission gratings. The gratings are microfabricated from 1 um-
thick silicon nitride membranes supported by silicon frames, with parallel slits
etched through the membranes. Grating fabrication was done by us at UCB’s
Microfabrication Lab via conventional optical lithography and etching techniques.
The interferometer’s parameters are R, =R, =46.2 cm, a, = a,, = 162 um, a, =
8.1 um, N =22, N,= 111, and N, = 76 slits. All gratings are 8.5 mm long with
s/a = 1/8. Fringes are sensed by measuring the interferometer’s transmission as a
function of Gd position. The fringe pattern and transmitted current contain various
spatial harmonics of the geometric shadow period, with each harmonic resonant in
the interferometer at a different atomic velocity (different A ;). The hot beam pro-
duces a pattern that appears as diffraction-limited shadow moiré fringes, shown in
Fig. 9a. Its high spatial frequency Talbot fringe structure is washed out by the ther-
mal velocity average. (In Section XIV, we show how components of this structure
may be recovered and observed.) The ac-modulated slow beam produces high-
visibility interference fringes at the 5th and 6th spatial harmonics of the shadow
moiré, via excitation of the (m,n) = (5,1), and (6,1) interferometer resonances, evi-
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FI1G. 9. (a) Diffraction-limited shadow moiré fringes formed with thermal potassium beam illu-
mination of the interferometer of Fig. 8. (b) High-visibility de Broglie wave interference fringes at
the 5'th and 6’th spatial harmonics of the shadow period, formed with illumination by a slow cold
potassium beam. (Figure adapted from Clauser and Li, 1994a.)

dent in the ac signal, shown in Fig. 9b, and in agreement with numerical simula-
tions.

In these experiments, we also observed that a strong Sagnac phase shift of the
pA dc (fast atom) fringe signal was immediately (¢, <1 mS) evident whenever
the chamber was touched, even lightly. Using the straight-line path integral ap-
proximation of Section XI, we find that this translates to a sensitivity to rotations
of , =~7X 1073 rad/sec, as the rotation rate needed to provide a 27 phase
shift. For the ac (slow atom) sixth harmonic fringes, rotations at Qzﬂ =4 x107*
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rad/sec (at a count rate of almost 10° atoms/sec) caused similar fringe shifts. For
comparison purposes, the atom interferometry experiment by Riehle er al.
(1991) yielded sz = (.4, the neutron interferometer Sagnac effect measurement
by Werner et al. (1979) yielded (), ~ 3 X 1073 and the electron interferometer
Sagnac effect measurement by Hasselbach and Nicklaus (1993) yielded
(1, = 46. Subsequently, we have used the same apparatus (after some modifica-
tion) to observe fringes from thermal Li, molecules. Inserting electric field gra-
dient electrodes, we have used our apparatus to determine the electric polariz-
ability of Li,.

XII. Talbot Interferometer Using Na
An example of a de Broglie wave Talbot interferometer (Section IX) was

demonstrated using sodium by Chapman et al. (1995b). A diagram of their appa-
ratus is shown in Fig. 10a. There is no Gs, since this is not a GTL configuration.
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FiG. 10 (a) Talbot interferometer apparatus used by Chapman ez al. (1995b) (b) Observed fringe
“visibility” as a function of R,, showing the n =1, m =1 and n =2, m = 1 resonances. (Figures
adapted from Chapman ez al., 1995b.)
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Instead, they produce a quasi-parallel atomic beam by configuring R, >> R,. The
resulting low throughput is compensated for, using brute force, by employing a
very bright fast-atom source. Their experiment was performed as a near parallel
to Talbot’s experiment. By varying the spacing R, between the gratings, they ob-
served both the n = 1, m = 1 and n = 2, m = 1 resonances. Figure 10b shows the
observed fringe “visibility” as a function of R,. The visibility of higher n self-
images is reduced by a combination of finite collimator size, lack of exact beam
parallelism (equivalently, M # 1), and finite atomic velocity spread.

XIV. “Heisenberg Microscope” Decoherence
GTL Atom Interferometry

Walls er al. (1991; see also Tan and Walls, 1993) and, independently, Sleator et
al. (1992) have analyzed a problem, analogous to that of the “Heisenberg micro-
scope” gedanken experiment for freely propagating atoms with well-defined mo-
menta that form de Broglie wave fringes in a Young’s two-slit interferometer.
They consider a situation where both slits are simultaneously illuminated by a
single photon that is resonant with an atomic transition and calculate the result-
ing atomic fringe visibility as a function of slit separation. They predict that,
when the slits are separated sufficiently that a Heisenberg microscope viewing
the fluorescent reemission of the photon could image this light to determine
which slit an atom passes, the atomic fringe visibility will vanish. But, when the
slit spacing is comparable to the optical wavelength, such a determination by the
microscope exceeds its resolving power, and then the atomic interference pattern
will persist.

While performing the GTL atom interferometry experiment of Section XIII,
we recognized that our interferometer could be modified simply to allow testing
this prediction in the limit of large slit spacing. While a similar effect had been
earlier observed by Sterr er al. (1992) with high-intensity scattered light, we
were the first to demonstrate (Clauser ef al. , 1993a—c; Clauser and Li, 1994b)
that the scattering of a single low energy photon by an atom passing through an
N-slit interferometer with wide slit spacing, a,>> A will totally destroy the
de Broglie wave interference fringes formed.

To do this, we reconfigured our experiment to that of Fig. 11. For this experi-
ment, we passed only a thermal velocity distribution of potassium atoms through
the GTL atom interferometer. It produced a thermal velocity average of different
fringe Fourier components, with each component resonant in the interferometer
at a different atomic velocity. As noted previously, the velocity distribution aver-
ages and hides the high-frequency fringe components. To recover a specific com-
ponent, we pass very weak ac-modulated laser light diagonally through the inter-
ferometer near the middle grating to scatter off of the transiting atoms. Since

photon’®
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FiG. 11. “Heisenberg microscope” decoherence GTL atom interferometry apparatus used by
Clauser and Li (1994b). (Figure adapted from Clauser and Li, 1994b.)

imaging of the scattered fluorescent light could be used to determine which slit
an atom passes, the scattering removes the contribution to the averaged pattern
by atoms whose velocity corresponds to the laser’s Doppler-shifted wavelength.
That velocity component (only) thus is ac modulated and detected. Its ac modu-
lation then reveals the destroyed high spatial-frequency fringe contribution.
Thus, to observe the destroyed fringe pattern, we record the ac transmitted atom
current as a function of Gd position, while holding the laser tuning fixed. The re-
sults are shown in Fig. 12.

When the laser is on, photons are scattered by the atoms. Given our GTL
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Grating Position
FiG. 12. (a) The dc signal (thermal beam transmission) recorded for the arrangement of Fig. 11
as a function of Gd lateral position. (b) The associated ac signal for constant laser tuning displaying
the interference fringe pattern destroyed by the scattering of a single photon. (Figure adapted from
Clauser and Li, 1994b.)

geometry and sufficient momentum transfer from the photon, atoms may be
scattered into open slits and thence transmitted. We model this process assuming
a classical atomic trajectory and use the pointwise momentum-transfer photon
scattering model developed by Einstein in his discussion of the kinematics re-
quired for thermal equilibrium to be produced when a gas is irradiated by ther-
mal light. The potassium hyperfine structure effectively limits the number of
photons scattered by an atom to about one via the high probability that following
a scattering the atom will optically be pumped and thereafter be transparent to
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the laser radiation. To further assure less than one photon’s scattering per atom
in an atom’s flight time through the laser beam, and to provide a narrow effective
laser bandwidth, the laser is attenuated heavily.

To test this model, we measure the velocity (laser-tuning) dependence of the
ac signal while holding the grating positions fixed. While the hyperfine structure
is not resolved in the fluorescence spectrum, by contrast, the ac transmission
spectrum displays two well-resolved peaks whose spacing corresponds to the
hyperfine structure. In effect, we thus have used the chromatic selectivity of a
GTL interferometer to create here what amounts to an atom interference filter.
The filter’s velocity selectivity has allowed us to narrow the effective transmitted
velocity range, to provide an improvement in the optical fluorescence spectral
resolution.

Subsequently, Pfau et al. (1994) have further improved on our experiment by
measuring the coherence loss as a function of slit spacing. Pfau’s group is now
pursuing a third generation experiment in which the scattered photon is detected
in coincidence with the scattered atom.

XV. Conclusions and Future Applications

The fringe deflection at the final masking grating produced by a weak external
field, such as that resulting from gravitational and Coriolis forces, is the classical
deflection in either a SBE or GTL interferometer. Hence, for comparable mask-
ing of grating slit widths and comparable atomic velocities, the fringe shifts due
to these forces (or any other weak deflecting force) are identical. However, for
comparable source brightness, the transmitted atomic current in a GTL interfer-
ometer is many orders of magnitude higher than that of a SBE interferometer. In
addition, the brightness afforded by most sources for very slow atoms generally
is too weak to be used in SBE interferometers. Hence, GTL interferometry of-
fers much higher sensitivity than SBE interferometry for the measurement of
weak deflecting forces, in view of its potential for dramatically superior signal to
noise ratio.

The study of GTL interferometry also is a source of new physics. Figure 2
shows that GTL interferometry may be applied to species with very large mass
and thereby can probe the fundamental limits for a possible breakdown of de
Broglie wave interference as the classical domain is approached. As the study of
the quantum mechanics of large atoms and molecules advanced beyond consid-
erations of the hydrogen atom, it yielded new surprises and new quantum num-
bers. In a direct parallel, extending one’s consideration of Young’s two-slit con-
figuration to that of the N-slit configuration has revealed new surprises in
diffraction theory, including new quantum numbers (m and n), a rich new spec-
troscopy (see Fig. 6), a surprising relationship between number theory and dif-
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fraction theory, and possible new insights for quantum computing (Clauser and
Dowling, 1996).

Presently in progress in our laboratory is an experiment to observe de Broglie
wave interference with freely falling very cold Rb atoms. Using now standard tech-
niques to provide a bright source, the atoms are dropped from a MOT (see Shimizu
et al., 1992) and focused with a magnetic lens (see Comnell et al., 1991) through a
GTL interferometer. This configuration is particularly interesting for study, since
the atoms experience a form of gravitational pseudo-cooling during their fall (some-
times referred to as dynamic velocity compression), so that the velocity distribution
incident on Gd (as viewed in the lab frame) is much narrower than that of the MOT.

Appendix: Kirchoff Diffraction with Spatially Varying V(r)

Unlike a light-pulse interferometer, a grating interferometer is an inherently sta-
tic device. Thus the wave function, J(r), of a particle with energy E propagating
through such a device in the presence of a static potential V(r) must satisfy the
time-independent Schrodinger equation, which may be written in the form of the
Helmbholtz equation as

[V} + EO)l(r) =0 (AD)

with &,(r) = 2m[E — V(r)l/ #2. Since the Helmholtz equation is the time-inde-
pendent parent equation for propagation of many other types of waves, our dis-
cussion applies to these cases as well. In turn, the Green'’s function, G(r; r’) for
this problem satisfies the equation

[VZ+ MG r') = 3(r —r'). (A2)

The diffraction problem to be solved involves the boundary conditions of Fig.
3. Consider a trial Green’s function:

ei¢(r;r’)

G(r,r')y= (A3)

jr—r’|’
Substituting Eq. (A3) into Eq. (A2), we find that the phase function, ¢(r; r’),
satisfies the equation
(r—r’)

2
[kz(r)—[quﬁ(r; l"):| } + 1[V3 - m . Vr](b(r; r)=0. (A4)

For a slow spatial variation of V(r) (with respect to A ) such that the WKB ap-
proximation holds, that is, such that |V,¢|* >>|VZ$| holds, and outside of the
“very near-field” region such that |V¢| >> 1/|r — r’| holds, then Eq. (A4) becomes

[V.o(r; )| = kX(r) = 2m[E — V(r))/K2. (A5)
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Without a loss of generality, we take ¢(r; r) =0. Then, given the identity
¢(ry; r)) = [ Ve(r; r))-dr for any integration path, we see that |(ry; r))| must
be no greater than the extremum among possible integration paths, I', of the
path-dependent line integral [P . IV(r; rl)l dl(r). This extremum occurs for
the path that is always locally tangent to V ¢(r; r); that is, for the path for
which [Vé(r; r))-dr| = [Vé(r; r))| di(r) holds throughout. However, a classical
particle with energy E traveling from r, to r, under the influence of V(r) will
have its momentum p_(r) = mv_(r) always tangent to its trajectory, I',, with
|pcl(r)|2 =2m [E — V(r)]. The path I, may be found by solving Hamilton’s
equatlons for the classical motion. By Eq. (AS), we then have !pcl(r)|2 =#h?
2, and from Maupertuis’s principle of least action, we know that the
path FC] is the desired extremum integration path. Therefore, the solution to Eq.
(AS) is given by the path integral

Ad(ry; 1) == j Cp,(r)-dr ==+ f " VamlE - V(D] dir).  (A6)
r . r\:nl

Pt

Given our trial Green’s function of Eqgs. (A3) and (A6), we may write the am-
plitude transmitted by the grating of Fig. 3 with amplitude transmission «r ) at
any point r, on the z = z, plane, in response to a point source at r, as

lrb,(r i)

W(r,) = 1 n(r). (A7)

Ir,—r]
For the solution to the right of the grating for the problem of Fig. 3, we con-

struct a Green’s function satisfying the Rayleigh—Sommerfeld boundary condi-

tions, using instead [8(r — r') + 8(r — r")]/2 for the right-hand side of Eq. (A2),

where we have defined r”=r’ — 2 (z — z,)é,, and take the limitas r’ —r". It is

given by

eid)(r;r’) eid)(r;r”)

G(rr') = (A8)

=+ e
rF=r'|" jr—r
Via Green’s theorem, the amplitude at any point r, on the z = z, image plane is
given by the integral over the z = z, surface S as
1[¢(r e+ rgr )l

P(r,) = i(r) X f Ir €, - p,(ryur,y) da(r)) (A9)

—r)lr,-r,)
where da(r ) is a differential area on S.

We note a formal resemblance between the Green'’s function G(r; r,) and the
Feynmann propagator K(r.z;; r,,t,). The latter is used by Storey and Cohen-Tan-
noudji (1994) in their apphcatlon of Feynmann path-integral methods to atom
interferometers. While their method is more appropriate for time-dependent
problems (such as light-pulse interferometers), ours is more suitable for time-in-
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dependent problems. Both methods evaluate the final amplitude by an integra-
tion over all possible classical path contributions to the final amplitude. Both
methods evaluate the phase shift along a “classical” path from r, to r, and inte-
grate over a variation of an endpoint for this classical motion, thereby specifying
a family of integration paths. However, the classical physics assumed for the mo-
tions along these paths is quite different, as are the paths within each family. In
our family (that for the Kirchoff diffraction integral), the classical paths I | are
all for a particle with a constant energy E but with a varying propagation time;
while in a Feynmann path integral family, they are all for a particle with a fixed
propagation time ¢, — ¢, but with a varying total energy E.
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Endnote

After completion of this manuscript, an example of the “temporal” Talbot effect predicted herein was
experimentally demonstrated by Weitz et al. (1996). Effectively, in their experiment 5-slit multipath
de Broglie wave interference is created in momentum space via a sum of quadratic phase factors,
wherein the interfering paths form nested diamonds. The “slits” are magnetic sublevels of a cesium
atom excited by a sequence of three “walking-wave” light pulses, equally spaced in time. Nonsinu-
soidal interference fringes are observed in the fluorescence as a function of optical phase-shift.
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1. Introduction

Metastable rare gas atoms offer attractive features for the study of interferomet-
ric phenomena of atomic waves. Metastable rare gas atoms, whose excited state
energies exceed several electronvolts, can be detected with high quantum effi-
ciency by conventional particle detectors. They can be cooled to an ultracold
temperature by laser fields (Shimizu et al., 1989). The long de Broglie wave-
length of cooled atoms is an advantage when designing interferometric measure-
ments. In addition, the lowest excited state of rare gases has two metastable lev-
els, one of which is the zero angular momentum level, J = 0. The J = O atoms
have no magnetic level degeneracy and are nearly free from electromagnetic in-
teractions. This also simplifies the behavior of atoms.

We describe, in this chapter, three experiments with a laser-cooled metastable
neon atomic beam in a J = O state. We first describe the configuration of our atomic
source. Then, we show the result of the Young’s double-slit interferometer, which is
the simplest example of atomic interferometry (Shimizu et al., 1992a). In the fourth
section, we discuss a more sophisticated atom interferometric application, the ma-
nipulation of an atomic beam by a computer-generated hologram (Fujita et al.,
1996). We also describe, in the last section, an interferometric effect concerning
more than one atom, which has not previously been demonstrated experimentally.

II. Atomic Beam Source

Photons do not interact with each other. The maximum intensity of an optical
beam, therefore, is limited only by the damage threshold of optical components.
In an atomic beam, the interaction among atoms cannot be neglected and deter-
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mines the maximum intensity. As a result, the flux of an atomic beam is many
orders of magnitude less than that of an optical beam. When designing the inter-
ferometric apparatus, it is important to design the beam source to maximize the
spatially coherent atomic flux.

We consider releasing atoms from a reservoir through a hole having diameter
D. On average, atoms in the reservoir collide with each other in a time
7., = 1/(an), where « is the binary collisional rate constant and # is the atomic
density. The released atoms must move without collision over a minimum dis-
tance, D, if they are to form an atomic beam. Therefore, 7, = Dfv, where v_ is
the average atomic velocity in the source. This gives the maximum atomic flux
F:

nv_ 2D
F:—J—DZZ—L_ 1
4 4 16« D

To obtain interference the atomic wave has to be spatially coherent, and only the
atoms emitted within the diffraction angle

o _Am_

ko
dif D myv SD
can be used. Therefore, the usual flux F_, is

’7Tﬁ2
Fop = F83= 16am’D’ €))
At low temperatures, the collisional rate constant « is nearly constant and the
coherent atomic flux F,, does not depend on the atomic velocity. Ground state
atoms can collide any number of times in the reservoir. However, a single colli-
sion changes the internal state of the metastable atoms. This sets the limit to the
product of the diameter and the atomic density of the trap. To obtain a large den-
sity, the size of the reservoir must be as small as possible, and the maximum flux
F is obtained when the reservoir diameter is approximately equal to D. The
J = 0 metastable rare gas beam described below automatically satisfies this con-
dition. The atoms are collected from 4 directions, are cooled, and immediately

released after they have been collected in the trap.
In many interferometric applications, only one-dimensional coherence is re-

quired. In such a case the flux is given by

Thy,

FlD = Fecoh = 16am
and the thermal source produces much higher flux than the laser-cooled source.
Figure 1 shows the energy diagram of neon relevant to the atomic source.
Other rare gas atoms have similar level structure. The lowest excited state multi-
plex 1s has four fine structure levels, of which two are metastable. They have a
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2p, (J=1) 150774cm*

2p,(J=3) 149659¢cm!

Cooling & trapping
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1s 15,00=1)
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74 nm VUV
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Fic. 1. The energy diagram of neon relevant to the generation of the ultracold metatable atomic
beam. Spacings between the ground, 1s, and 2p staes are not to scale.

lifetime of order 10? sec and can be considered to be stable for the present appli-
cattons. The metastable states have an energy of approximately 17 eV, and the
atoms are easily detected with high quantum efficiency by using a conventional
charged-particle detector such as an electron multiplier, channeltron or mi-
crochanne] plate detector (MCP). One of the metastable levels has angular mo-
mentum J = 2 and is used to cool and trap the atoms. The cooling is on the tran-
sition between the J =2 level and a J =3 level in the upper excited state
multiplet 2p. The other metastable level has zero angular momentum, and there
is no efficient method for cooling the beam using this transition. We use optical
pumping from the cooled J = 2 metastable state to generate the J = 0 level. Four
J =1 levels in the 2p state are optically connected to the J = 2 metastable level.
The atoms in the J = 1 level can decay to any one of the four levels in 1s by
emitting a spontaneous photon. If an atom decays to one of the two J = 1 levels,
it cascades to the ground state by emitting a 74 nm VUYV photon. For an appro-
priate excitation scheme, approximately a half of the / = 2 metastable atoms are
transferred to the J = 0 metastable level using optical pumping. All cooling and
optical pumping transitions for Ne, Ar, and Kr are either in the red or near-
infrared region. Therefore, those processes can be driven with diode or argon-ion
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laser pumped dye lasers. The transfer process involves only a single spontaneous
emission process, and the heating is on the order of 1 uK.

Both the / = 2 and J = 0 atoms are good candidates for an ultracold atomic
beam. They are generated from the ground state gas either by electron bombard-
ment or simply by discharge. In optimized conditions, a beam flux of order 10"
sec”!Q ! is possible. The first stage of the cooling is to send a counter propagat-
ing laser beam resonant with the 1s(J/ = 2) to 2p(J = 3) transition. The velocity
spread can be reduced by adding a copropagating laser beam that has a slightly
lower frequency and produces a moving standing wave with velocity designed
for the atomic beam (Faulstich et al., 1992). In principle, this cooling scheme
compresses the velocity spread to the limiting velocity of doppler cooling. The
energy spread mvAv, however, is higher than the doppler-limited temperature. To
obtain further cooling, one has to trap the atoms and release them. When freed
from the optical and electromagnetic force, the atoms are accelerated by gravity.
Since the energy spread remains constant, the velocity spread is reduced as the
atoms are accelerated. For the J = 2 metastable atoms, the generated beam is in-
evitably intermittent, because the trapping and releasing of atoms has to be alter-
nated. The J = 0 metastable atomic beam can be made continuous, because the
atoms are not affected by the trapping light and the quadrupole magnetic field of
the trap.

Figure 2 shows the configuration of the Ne atomic source we used in our ex-
periments. The metastable atoms were generated using a weak discharge through
a glass capillary having a diameter of approximately 0.5 mm. The cathode was
inside the glass tube, and a grounded metal disk outside the capillary served as
the anode. The current through the capillary was typically 20 mA. The source
part was surrounded by a liquid nitrogen shroud to reduce the average velocity
of the beam. A typical temperature of the beam was 300 K. The beam passed

640nm laser 598 nm

Transfer laser
Collimator Zeeman tuning solenoid

deflector
(2 dimensional)

Ne
discharge 640 nm
tube Cooling and

trapping laser

Trapping Iaseﬂ
(3 beams)

FIG. 2. A schematic diagram of the J = 0 metastable atomic source.

18, neon beam
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through a two-dimensional beam collimator, which consisted of two sets of a
concave and convex mirrors whose centers of curvature were placed at the same
point. A resonant laser beam was sent perpendicular to the atomic beam, and it
zigzagged between two mirrors as shown in the figure. This bent and simultane-
ously collimated the atomic beam to a direction parallel to the wavefront of the
laser at the exit of the mirror set. This increased the J = 2 metastable atomic in-
tensity by a factor of 30 and reduced the number of ground state atoms entering
the trapping region. The atomic beam was led into a region where there was an
axial magnetic field gradient and slowed by a counterpropagating laser, using
standard Doppler tuning techniques. At the end of this slowing stage, the direc-
tion of the magnetic field was reversed, forming an axially symmetric quadru-
pole field. Atoms were trapped at the center of the quadrupole field by four laser
beams directed toward the center. The size of the atomic cloud and its tempera-
ture were adjusted by changing the magnetic field gradient, laser intensity, and
detuning from resonance. The minimum velocity we obtained for the neon trap
corresponded to a temperature of approximately 80 uK.

The J = 0 metastable atoms were generated by sending the focused laser
beam into the trap. The laser field pumped the 1s(/ = 2) atoms to the 2p(J = 1)
level, which then decayed to the 1s(J = 0) level (Shimizu et al., 1992a). The
J =0 atoms were freed from the trapping forces and dropped vertically under
the action of gravity. The interferometric components were placed nearly vertical
from the beam source.

The cold atomic beam generated by this procedure has many excellent fea-
tures. First, it is a continuous atomic beam with the characteristics of a scalar field
that is influenced very slightly by optical and electromagnetic perturbations. Sec-
ond, its temperature is extremely low. The beam was constantly accelerated by
gravity, and the velocity spread rapidly decreases as the atoms dropped. At a ver-
tical distance of 1 m, the typical velocity spread Av/v = v?/(2v?) is of order 10~>.
Third, the size of the source can be adjusted by varying the size of the focused
pumping laser and the trap size.

The collision rate a of neon atoms in the trap is of order 107 cm~3 sec™!.
This gives a maximum density of n = 10'2 cm~3 for the trap dlameter D =02
mm and v, =20 cm/sec. The coherent flux achievable from this trap is
F_, = 10°sec™" at the trap density n = 10'? cm~>. To keep this density, we need
an incoming atomic flux of N = (#/6)D’n/7_, = mv’D/(6a) =4 X 10° sec™ .
The present source and slowing stage can supply a flux that is at least 10? times
this amount. Therefore, it will be possible to further increase the coherent flux
F_, by inducing the stimulated process when converting the atomic state from
15, to 1s; by optical pumping. The optical pumping process can dissipate mo-
mentum up to A/A, where A is the wavelength of the scattered photon. If one can
squeeze the ls, atoms into a single mode of the trap, the coherent flux should in-
crease by a factor of (D/A)2.
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III. Young’s Double-Slit Experiment

The Young’s double-slit interferometer is the simplest atom interferometer and
was first demonstrated by Carnal and Mlynek (1991) using a thermal beam.
Since the de Broglie wavelength of a thermal atom is on the order of its classical
size, the spacing of the interference pattern is usually extremely small. When the
double-slit interferometer is operated with laser-cooled atoms, the interference
pattern becomes sufficiently large to be resolved by a commercially available
position-sensitive detector. As is shown in Fig. 3, we can produce an image of
the interference pattern similar to the analogous optical, double-slit interference
pattéerns commonly displayed in optics texts. Because of the small kinetic en-
ergy, the cold-atom interferometer is very sensitive to perturbing potentials. The
acceleration of atoms by gravity in the interferometer may change the atomic ve-
locity by an order of magnitude, and the atomic trajectory is not straight but par-
abolic.

We consider a double-slit interferometer that is aligned parallel to the direc-
tion of gravity. The phase difference of the atomic wave between two points, r,

F1G. 3. The double-slit interference pattern.
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and r,, is obtained in semiclassical approximation by integrating the wave vector
along the classical atomic path

where v, is the group velocity of the atom. For an atom that falls vertically by a
distance /, the phase ¢ as a function of the deviation £ from the vertical line is, if
& << (see Fig. 4),

2
+
¢ = constant + %%10—2—‘) + (Ox%

where v, and v are the initial and final velocity, respectively. The phase difference
A ¢ between atomic waves from two slits that are separated by d therefore, is,

_xdmy, + v
Ad = 1A 2
Atomic
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|
|
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|
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’/ sl
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|
|
y | .
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F1G. 4. The trajectory of falling atoms in the double-slit interferometer.
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and the interference fringe separation Ax is

_ih o2
dmvy,+ v

3)

This form is exactly the same as that of an optical interferometer, where the opti-
cal wavelength is replaced by the average de Broglie wavelength.

In the experiment shown in this section, the atomic source, double slit, and
the detector were placed along a vertical line. The distance between the source
and the detector, /, + I, was 82 cm. Two parallel slits were cut in gold foil. Each
slit had a width of 2 um, a length of 2 mm, and the slits were separated by d = 6
pm. An atom that passed through the double slit was detected by a two-stage
microchannel plate detector (MCP) equipped with a fluorescent plate. The im-
ages of individual atoms were recorded on videotape. Their positions were read
by an image processor from the tape, and the interferometric pattern was recon-
structed from the position data. Figure 3 shows the pattern when the double slit
was placed 35 mm below the source, and the initial atomic velocity was nearly
0. The figure contains approximately 8 X 10° points, and the effective accumula-
tion time was approximately 10 min.

An atom takes approximately a fraction of a second to reach the MCP from
the source. Therefore, the variation of the interference pattern with atomic de
Broglie wavelength can be investigated by pulsing the optical pumping laser
synchronously with the video frame. Figure 5 shows the variation of the interfer-
ence pattern as a function of the transit time of the atom from the source to the
MCP. The top curve shows the interference pattern produced by atoms whose
initial velocity was approximately 0. The middle and bottom curves are the pat-
terns taken 50 and 100 msec, respectively, before the top curve. The atomic ve-
locity at the source, v,, in those curves is 50 and 100 cm/sec, respectively. The
variation of the fringe spacing with atomic velocity is clearly seen in those
curves. The shift of the peak position was caused by the horizontal displacement
of the trap and the double slit.

The number of fringes in the double slit interferometer depends on the ra-
tio between the slit width d,, and separation d; it is approximately d/d, when
d>>d,. In an atom interferometer it is rather difficult to increase this num-
ber owing to the limited beam intensity. The length difference of two atomic
paths in the central peak is 0 and at most several de Broglie wavelengths,
even in the outermost peak. Therefore, the double-slit interferometer is not a
device to measure accurately the wavelength of atoms. However, it is ex-
tremely sensitive to the difference of perturbing potentials between two
paths. We have demonstrated the phase shift caused by the gradient of the
Stark potential (Shimizu et al., 1992b). The phase shift accompanying elastic
collisions was measured by Schmiedmayer et al. (1995) using a thermal Na
beam.
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FiG. 5. Variation of the interference pattern with the transit time of the atoms. The transit times
of atoms from the source to the detector are 400 msec (top curve), 350 msec (middle curve), and 300
msec (lower curve).

IV. Holographic Manipulation of Atoms

The double slit interferometer may be considered a simple form of atomic beam
manipulation. More elaborate structures, such as a grating (Keith ez a/., 1988,
1991) and Fresnel zone plate (Carnal et al., 1991), were used to deflect and fo-
cus an atomic beam by interferometric means. In optics, holographic methods
can be used to manipulate an optical beam to an arbitrary shape by passing it
through a hologram that is a semitransparent film with an interferometric pat-
tern. For an atomic beam, it is not possible to make a semitransparent film, and
the hologram for atoms has to have a binary pattern composed of either totally
transparent or totally opaque areas. The technique to approximate continuous
change of transmission by a binary pattern was also developed in optical holo-
graphy to generate a hologram by computer; this is called binary holography
(Lohmsann and Paris, 1967). We describe, in this section, the simplest example
of a computer-generated atomic binary hologram that generates a Fourier trans-
formed wave front of the object wave. By transmitting a plane wave through the
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hologram, the plane wave front is converted to a wave front that generates the
pattern of the object at infinite distance.

The scheme to construct the binary Fourier hologram is illustrated in Fig. 6.
We divide the object pattern we want to reconstruct into N X N square cells,
where N is an integral power of 2. We assign a value to each cell that is equal to
the average transmission inside the cell. Each value is then multiplied by a ran-
dom phase factor, a procedure that increases the stability of the reconstructed
pattern against defects of the hologram. Then, we calculate the Fourier transform
of the object pattern by a FFT algorithm. The resulting N X N complex numbers
A, explid, ), where n,m=1, . . . , N, represent the transmittance and phase
change of cells of the Fourier hologram. To express a complex number, it is nec-
essary to encode the phase as well as amplitude information. To accomplish this
task, we cut a slit parallel to a side of the cell whose length is proportional to
A, at a position Ax = (¢,,/2mAl from the edge of the cell, where Al is the
length of the cell. When the hologram is illuminated by a plane wave, the com-
plex amplitude of the wave transmitted through the slit at the reference plane
that has an angle 6 = A /Al is proportional to A exp(i¢,,). This reference
plane corresponds to that of the first order diffracted wave from the grating that
has pitch A/ In the hologram that we used in the experiment, a cell was divided
into n X 7 subcells, and the complex amplitude is approximated by the number
and positions of transparent subcells. The example in Fig. 6 shows the value
—1 + 3i when 1 = 4. The transmitted wave consists of diffracted waves of dif-
ferent orders with an average diffraction angle

0y = (AL mA /D),

(nm)

Object Hologram

Fourier
transform

§1wcture of
acefl

Wave front
ofthe istorder © ™ = 32
diffracted wave (8i-1)

FiG. 6. Coding of the phase and amplitude on a binary Fourier hologram.
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where n indicates the diffraction order perpendicular to the slit direction, and m
is the order parallel to the slit. The intensity of the wave with n or m larger than
7 decreases rapidly with increasing order, because the amplitude of the wave is
canceled out owing to phase variations inside a subcell. The diffracted waves of
order (1, m) produce a pattern corresponding to an object at infinite distance.
The waves with (nn — 1, m) have the conjugate pattern. All waves with (nn, m)
do not carry phase information, and the image is a spot.

The hologram was fabricated on a SiN film having a thickness of 100 nm by
using the preceding procedure. The number of cell divisions N was 128, and the
size of the subcell I/n = I/4 was 0.3 um. Figure 7 shows the pattern of the recon-
structed image, when the hologram was placed 45 cm above the MCP.

The relative resolution of a binary holography, determined by the number of
cells, is approximately 1/N, provided that the atomic beam is monochromatic.
The size of N is limited only by the capacity of the computer. The monochro-
maticity depends on the velocity spread at the atomic source. For the beam in
Section II, the velocity spread at the source is approximately 20 cm/sec, and
Av/v is reduced to 103 at a vertical distance of 1m. Therefore, a pattern having a
resolution of 103 can be expected. In the example just described, we did not use
a focusing device, and the resolution of the reconstructed image was limited by
the size of the diaphragm placed near the hologram. Though it is difficult to de-
sign two-dimensional imaging optics of atoms using electromagnetic potentials,
it is relatively easy to implement the focusing effect into the hologram. When the

5mm

F1G. 7. Reconstructed atomic pattern of the hologram: (a) the entire view, (b) an expanded view
of the (1,0) diffraction pattern. (Fig. 7 continues next page.)
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(b)

FiG. 7. (continued)

focusing is approximated by a parabolic phase shift, the correction to the Fourier
hologram is accomplished by imposing a phase shift on the object pattern (Mori-
naga, 1996).

V. Two-Atom Correlation

So far we have discussed interferometric effects originating from the quantum
mechanical wave nature of a single atom. In optics, various higher order interfer-
ometric effects have been discussed and experimentally demonstrated. In con-
trast multiparticle interferometric effects have never been experimentally tested
for a particle beam with a finite mass. The major obstacie was the beam inten-
sity. To observe two-atom interferometric effects, two atoms have to be found in
a single external quantum state. This probability was completely negligible with
a conventional atomic beam. Therefore, no multiatom quantum effects could be
expected. This situation has changed owing to advances in laser cooling tech-
niques. In this section, we describe an experiment involving a laser-cooled neon
beam, which is the atomic analog of the Hanbury-Brown and Twiss intensity
correlation experiment (Hanbury-Brown and Twiss, 1957). To our knowledge,
this is the first experiment to be carried out that measures matter wave correla-
tions between two atoms.

The joint probability to find an atom at (r,f) and then at (',¢') is (Mandel, 1983)

Prriy=< \I’|8T(r,t)8T(r’,t')8(r't’)8(r,t)|\I’ > @)
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where &61(r,¢) and 6(r,f) are atomic creation and annihilation operators. The
atomic wave function may be written

1
— ALTZSALY
v n; c(nyn,, . . ) \/’T @)@y . o>
where a' is the creation operator of the atom that is in the single-atom eigenstate
Yr(rexp(—iwt). For boson-like atoms, n; can take any positive integer value,
while for fermion-like atoms n, = 1 or 0. Insertion of this expression into Eq. (4)
gives terms proportional to ¢, (r)(/fj(r’)(/f;(r)(//}“(r’). If the atoms are in a chaotic
state, all terms other than i =k, j =17 and i =1, j = k vanish on average. There-
fore,

P(r;r' )= 2 G pmnlen, ... n, . )P

all combination of
[ PN O+ [Pl + B W)

e'(w; = )=+ YIPE WPee T (o= w) 0 }]
where =1 for boson-like atoms and 8 = —1 for fermion-like atoms. We as-
sume that the eigenfunctions ¢/(r) are nearly plane waves at the detector and that
the detector surface is matched to the wave front of the eigenfunctions. Then, we
may drop the r dependence of ¢, and replace the summation

2 Y nafe(ny, .o PP

all combination of (i, j)

by the integration
f W(m,.)W(wj)du)ldwj
where W(w) is the kinetic energy distribution of the atoms in the source. This gives
L@ =Prsre+mn= f W(w)W(w)[1 + B cos {(w, - w)7}ldwdw;.
Our time-of-flight measurement shows that the velocity distribution of the atoms

is nearly Gaussian, with a width corresponding to the theoretical limit of Doppler
cooling:

1 v?
)= (‘ *)
0 0

with vy = VAy/(2m), where 7 is the natural width of the cooling transition and m
is the mass of the atom. Using w = mvf/ (24), we obtain

_ B
Im =1+ Viiags &)
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where Aw =mv§/ (2#). Therefore, we expect a peak at 7= 0 with width approxi-
mately equal to the energy spread of the atoms in the source and with height
equal to the background count.

The basic experimental setup of the two-atom correlation measurement is
simple. We detect the 1s, neon beam at some distance from the source and mea-
sure the distribution of the time interval between two successive pulses hitting
the detector. The detector surface has to match the wave front of the atomic wave
within the accuracy of the longitudinal coherence length of the atomic waves.
Since atoms move very slowly compared to photons, the coherence length is
usually shorter than the depth of a commercial particle detector. In our case, the
average velocity of the atom at the detector was v =4 m/sec, and the energy
spread Aw/27 =2 MHz. Therefore, the coherence length was approximately
v/(mAw) = 0.6 um. To satisfy this condition, we used a gold-coated concave
mirror as the metastable atom detector. An electron was emitted when a
metastable atom hit the mirror surface and was detected by a microchannel plate
detector. The electron pulse signal from the MCP was fed into a time interval
counter and then processed to give the interval distribution of metastable atoms.
This measurement gave the time-interval distribution. However, the deviation
from the second order correlation function was negligible in the range
7= 1/(Aw), because, in our experiment, the probability to detect more than one
atom in this period was very small.

In the actual experiment, a complicated procedure was necessary to discrimi-
nate the signal from the transient effect of the electronics. The largest spurious
transient signal was caused by the MCP. The microchannel plate detector appar-
ently had a small probability to produce a noise pulse within 1 usec when it was
hit by an electron. Although this probability was of order 1072 or less, the noise
pulses completely masked the signal. To eliminate the noise signal, we divided
the mirror surface into four quadrants, and electrons that were emitted from dif-
ferent quadrants were detected by separate MCPs. Furthermore, to ensure that
the observed correlation spectrum was of a quantum statistical nature, we re-
peated the experiment with two different configurations, from which different
spectral shapes were expected.

Figure 8 shows the setup for the correlation measurement. The 1s, neon
atomic source, electrostatic lenses, and the detector mirror were aligned verti-
cally within an accuracy of 3 X 10~* The mirror was placed 82 cm below the
atomic source and the electrostatic lens was 33.6 cm above the mirror. The lens,
which had an aperture of diameter 2.3 mm, expanded the atomic beam coher-
ently to cover the entire mirror surface. When a voltage of 6 kV was applied to
the lens, the angular divergence of the atoms increased approximately by a factor
of 40, and only those atoms that passed through the central 0.4 mm diameter hit
the mirror. When the voltage was off, all atoms that passed through the aperture
hit the mirror. In the former case, the atomic beam was nearly coherent. In the
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FIG. 8. The experimental setup for the correlation measurement.

latter case, the phase variation of the atoms emitted from different parts of the
source was much larger than 27 and the beam could be considered spatially in-
coherent. The one-dimensional defocusing lens placed 15 cm below the source
was used to equalize the average atomic count between the two cases.

Figure 9 shows the spectrum in two cases. Equation (5) shows that the spec-
trum should have a peak around 7= 0O with a width of approximately 2/Aw when
the transverse spatial coherence of the atomic beam is perfect. If the atomic
beam is partially coherent, the height of the peak will decrease, but its width will
remain approximately constant. This feature is clearly seen in the figure. By as-
suming Aw = 2 X 108 sec™!, which was determined from a time of flight mea-
surement of the velocity spread, one can fit the experimental data using Eq. (5)
to obtain 8 = 1.0 £ 0.31 for the coherent case in Fig. 9(a) and 8= 0.27 + 0.22
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FI1G. 9. The time interval spectrum (a) for the spatially coherent atomic beam and (b) for the spa-
tially incoherent atomic beam.

for the incoherent case of Fig. 9(b). The value of 8 in the incoherent case is
larger than that expected from the degree of the coherence of the atomic beam.
However, the values of B in the two cases differ by more than four standard de-
viations. This shows clearly that the peak observed in Fig. 9(a) is due mainly to
guantum statistics.

The second order correlation measurement described previously measures the
energy spread of the atomic source. Though such measurements are of little
practical importance, they are still interesting as a demonstration of the quantum
mechanical nature of a system of many identical particles. The sign of the peak
at 7= 0 should change if the atoms have fermion-like statistics. If the atomic
source has an energy distribution with two peaks separated by AE, the correla-
tion should show beating at the frequency of AE/h. Recent reports of the Bosé
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Einstein condensation of alkali atoms (Anderson et al., 1995; Bradley et al.,
1995; Davis et al., 1995) show that we can prepare a sample of atoms with vari-
ous statistics. For a correlated sample of atoms the temporal correlation mea-
surement is an interesting technique to test its statistical characteristics.
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When modern quantum mechanics was carved out some 70 years ago, it was first
postulated by Louis de Broglie that any collection of particles of total momentum P
in fact must be considered a wave of wavelength A ; = 27A/P. Originally meant to
explain the discrete orbits of a single Coulomb-bound electron, the ultimate wave
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character of matter has meanwhile been confirmed for most fundamental particles
and also composed particles like ions, atoms, and even molecules.

The physics of atomic matter waves is the subject of atom optics, which is de-
voted to a systematic study of their propagation, reflection, refraction, diffraction,
and interference [1]. In this respect, atom optics shares many of its principles with
other optics, be it neutron optics, electron optics, optics of alpha particles or—last
but not least— classical light optics. What makes atom optics differ from these oth-
ers are the additional possibilities associated with the electronic or magnetic de-
grees of freedom of the atoms; that is, their interaction with the electromagnetic
field and in particular their strong coupling to near-resonant laser fields.

Indeed, the electromagnetic fields may be used not only to manipulate the in-
ternal degrees of freedom of atoms, but also to influence their center-of-mass de-
grees of freedom via the concomitant ponderomotive forces. This aspect finds its
most amazing expression in the reflection of atoms from light-covered surfaces,
in the diffraction of an atom wave from a standing wave laser field, and in the fo-
cusing of atoms using “lenses of light” [2—4].

In this chapter, we concentrate on our experiments in atom optics in which
laser fields play a predominant role in the manipulation of the center-of-mass
motion of atoms. A brief introduction to the theory of the mechanical effects of
laser light is given in Section II (see also [5]).

In the course of atom—light interaction, all three participating degrees of free-
dom—-that is, the electronic and the center-of-mass degrees of freedom of the
atom and the degrees of freedom of the electromagnetic field—become entan-
gled. This entanglement may be used, for example, to gain information about the
center-of-mass position (or momentum) of an atom by actually measuring the
state of the electromagnetic field to which it is coupled. Recently, this possibility
has attracted attention both theoretically [6—-10] and also experimentally [11,
12]. Furthermore, it may be speculated that the atom—laser interaction allows for
the preparation of multiparticle atom—photon correlated states and in particular
for the preparation of the so-called Greenberger—Horne—Zeilinger (GHZ) en-
tangled states. These states are believed to be of interest for the so-called foun-
dations of quantum mechanics since they should allow one to test Bell’s inequal-
ities on the basis of single events [13].

The entanglement of atoms and photons leads to effects that are manifestly
nonclassical; that is, they cannot be understood on the level of “classical” wave
optics, which reveals the effects of only first order coherence of the atom matter
field. Another instance of nonclassical behavior in atom optics is encountered
when the temperature of an atomic gas becomes so low that the thermal coher-
ence length of the atoms exceeds the average distance between pairs of atoms. In
this case, the quantum statistical effects become manifest that lead, for example,
to the recently observed Bose—Einstein condensation of trapped atomic gases
[14-16]. A very similar, but even more ambitious goal, is the realization of a
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laserlike source of atoms, where many atoms occupy the same center of mass
state of motion. This project has recently attracted quite some attention from the
theoretical side and various schemes have been proposed [17—21]. In contrast to
schemes that rely on tunneling to pump the resonator and evaporation to load the
“lasing” mode [20], in our scheme both pumping and loading are based on spon-
taneous emission. Thus a high pump rate can be achieved and the difficulties as-
sociated with the in—out symmetry of tunneling are avoided [21].

This chapter is organized as follows. In Section II, we introduce our notation and
review the basic ingredients of the mechanical effects of atom-laser interactions. In
Section III, we discuss focusing of atoms using “lenses of light,” we present field
configurations that realize achromatic lenses, and we outline our experimental ac-
tivities in atom lithography. The following sections are devoted to “nonclassical”
atom optics. The entanglement of photons and atoms lies at the core of Section 1V,
in which we present our experiments that demonstrate the underlying principle of a
Heisenberg microscope. Also contained in this section are the first results of
atom-—photon correlation experiments, which should ultimately lead to the realiza-
tion of GHZ entangled states. Effects of quantum degeneracy finally are addressed
in Section V, where we present a scheme for a laserlike source of atoms and where
we outline our experimental efforts to build resonators and waveguides for atoms.

II. Models and Notation

The mechanical effects of laser light on single atoms are easily understood by
means of a simple generalization of the atom—laser interaction in which the po-
sition and momentum of the atom are treated as dynamical variables. In the elec-
tric dipole approximation, the interaction of a single atom with the electromag-
netic field of a laser is described by

H (= —-d-Erp N

nt

where d is the electric dipole operator and the vector field E(r,¢) denotes the
electric field strength of the laser at the center-of-mass position r of the atomn.

In most of our experiments, the electric field may be treated as a classical
field. For a single-mode laser of frequency w,

Ern)=E* e @ +c.c, 2)

where the positive frequency component E(*)(r) defines both the polarization
and the spatial characteristics of the laser field. A standing wave laser field that
is spatially periodic in the x direction and linearly polarized in the y direction,
for example, is described by

E+)x) = €,€,8(x,,2) cos gx 3)
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where €, is a field amplitude, e, is the polarization unit vector, ¢ is the effective
wave number of the standing wave, and the slowly varying function g(x,y,z) with
peak value g = 1 accounts for the profile of the laser field. Note that, in our
notation, the peak value of the total electric field is given by 2€ . Note also that
the effective wave number ¢q in Eq. (3) may differ from its natural value k = w/c.
For example, if a propagating laser field is reflected from a mirror oriented per-
pendicular to the x direction, the resulting field is a standing wave in the x direc-
tion with effective wave number

qg=kcosa @)

where « is the angle of incidence of the laser.

A. TwO-LEVEL APPROXIMATION

The electric dipole operator d acts in the Hilbert space of electronic states of the
atom. In the important case that the polarization of the laser field is spatially uni-
form and spontaneous emission plays no role, the electronic degrees of freedom
of the atom may be modeled by a two-level system with electronic levels |e) and
|g) having energies E, and E, respectively, and a corresponding Bohr transition
frequency w,=(E,— E g)/ﬁ. For the particular laser field (3), the quantization
axis for the electronic degrees of freedom is most conveniently chose along the y
direction, and the dipole transition operator becomes that of a Am = 0 transition:

d=—pelo+ o'] 3)

where g is the reduced matrix element of the dipole transition, and o = |g)(e| is
an atomic ladder operator that transfers the atom from the excited state into the
ground state.

In the following, the laser field is assumed to be nearly resonant with the
|e) <> | g) transition, and we denote by A = w, — w the atom—laser detuning. Us-
ing the rotating wave approximation in an interaction picture with respect to the
laser frequency, the Hamiltonian describing the atomic dynamics, both internal
and center-of-mass, is given by

2

N
H= TRl O(r) (6)
where
Ur) = hAcdT o + % R(r) [0 + o'] 7

defines the atom-—laser interaction matrix with

R(r) = 2pe - EXr)/h ®)
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being the spatially dependent bare Rabi frequency of the atom—laser interaction.
In the field (3), R(r) is cosinusoidal in the x direction with peak value

R, = 2p¢y/h.

B. PARAXIAL APPROXIMATION

In our experiments, the atomic beam propagates predominantly in the z direction
with nearly constant velocity v = Vv? + v§ + vf ~vy_and only small velocity
components in the transverse direction v, v, << v,. Also, in all our applications,
the laser field is nearly homogeneous in the y direction, which allows to drop the
y dependence in first approximation. With the Ansatz W(r,t) = "™ =~ EV/Agy(x; 7)
where E = Mv?/2, in neglect of 8*/dy* and 6%/dz% in a slowly varying envelope ap-
proximation, the Schrodinger equation that describes our experiments becomes

v L i) = s Ot _

ihv aZd)()c,z) RETEE + Ulx; 2) td(x; 2) )]
where @(x; 2) = @,(x; 2)|e) + @ (x; z)|g)is the wave function of the two-level
atom.

Note that Eq. (9) has exactly the form of a time-dependent Schrodinger equa-
tion in one dimension, with z/v playing the role of a fictitious time 7. With this
interpretation, the spatial evolution of phase fronts of the atom beam along the z
axis can be analyzed in terms of the dynamics of a one-dimensional model of
particles moving in the x direction.

The Hamiltonian governing the dynamics in Eq. (9) may be written in an al-
ternative form:

_pP*  h
H= 'ﬁ + 50‘ . Beff(X; Z) (10)
where p = —if(d/dx), o = (0,,0,,07) is the vector of Pauli spin matrices, and
B (x; 2) = [R(x; 2),0,A] an

is an effective “magnetic” field vector. In this notation, the o in Eq. (7) is given by
o = (0, — io,)/2. As it stands, the Hamiltonian (10) describes the precession and
center-of-mass motion of a fictitious spin in an external “magnetic” field B_(x; ).
Spatial variations of this field give rise to the atom optical Stern—
Gerlach effect; that is, the splitting of the atomic center-of-mass wave function [21a].

C. ADIABATIC APPROXIMATION

In many of our experiments, the detuning is large enough to allow for a decou-
pling of the two amplitudes in Eq. (9) using a so-called adiabatic approximation.
Formally, this approximation is obtained by a local diagonalization of the inter-
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action matrix U and by neglecting the spatial variations of the corresponding
transformation matrix.
The approximation proceeds by introducing so-called dressed states:

[+),., = cos g le) + sin g lg) (12)

|=),., = cos g lg) — sin g le) (13)

where the Stiickelberg angle ¥ = J(x; z) is defined via

A
cos V= m————
VIR(x; 2)]* + A?

The dressed states are eigenstates of the interaction matrix

. h
Ux; 2)|*),.,= 15\/|R(x; )P + AYE),, (15)

(14)

where the square root defines the dressed Rabi frequency.
The transformation in the dressed state basis is achieved by expanding the
state ¢{(x; z) in terms of dressed states

¢ 2) = @ (% D)|+), + o (6 2)]-),, (16)

where the amplitudes ¢ * (x; z) are ordinary c-number functions. Inserting (16)
into (9) and neglecting the spatial variations of |1>X: . in an adiabatic approxima-
tion, problem (9) decouples into two independent Schrodinger equations for the
dressed states amplitudes:

i le = 1P P R T A
ihv 5P = {ZM x5 |R(x; 2)]> + A } e, (17)

The meaning of the dressed states |+) depends on the sign of the detuning;
that is, on the frequency of the laser field relative to the atomic transition. For
positive detuning (red detuning), the dressed state |[—)__ connects smoothly to
the bare ground state |g) outside the interaction region. In this case, the ground
state atoms are attracted toward regions of high laser intensity. This effect is ex-
ploited in focusing atoms, which is described in detail in the next section.

In contrast, for negative detuning (blue detuning), the dressed state |+)X.Z con-
nects smoothly to the bare ground state |g), and ground state atoms are rei;)elled
from regions of high field intensity. This latter case is of particular importance
for the dissipation-free confinement of atoms using “mirrors” of blue light; see
Section V for details.

In most of our experiments, atoms enter the interaction zone in the ground
state. To obtain a unified description for the motion of these atoms that is valid



CLASSICAL AND NONCLASSICAL ATOM OPTICS 177

for both signs of the detuning, we introduce an amplitude function ¢(x; z), which
is defined to connect smoothly to the electronic ground state outside the interac-
tion region. The Schridinger equation for this amplitude reads

v Lo, = |2+ U 2) ot 2 18
zvazgo(x,z =51 (x; 2) plx; 2 (18)

where
Ux; 2) = % V1 + | R(x; 2)[*/A? (19)

is the ponderomotive potential of the atomic motion. The gradient of that poten-
tial defines the induced dipole force:

F. = _9 Ulx; 2). 20)
ax

dip

II1. Atom Focusing and Applications

A. INTRODUCTION

Focusing of atomic beams by various methods has been investigated during the
last 50 years {22-35]. Due to the development of tunable lasers and the strong
coupling of intense near-resonant laser light to atoms through the induced dipole
moment, lenses based on the induced dipole force have drawn much attention.
The induced dipole forces have first been applied by Bjorkholm ez al. in 1978 to
focus a sodium beam along a traveling TEM,,, laser beam in two dimensions
[25]. Lenses based on the light field of a TEM ;‘0 (donut mode) of a laser beam
co- or counterpropagating with an atomic beam were later proposed but not
tested [26—-28). More recently, standing wave light fields have been used as
more compact focusing elements. Sleator et al. demonstrated the focusing of a
metastable helium beam down to a diffraction limited spot size of 4 um in one
dimension using a long period standing wave [29], and atoms focused into struc-
tures with a width of about 50 nm on surfaces have been reported [30—32]. Di-
pole lenses have been the ones most successful in producing small spot sizes
during the past, and they seem to be promising for applications. Therefore, in the
following, only focusing elements based on the dipole force will be discussed,
we know well that the whole field of atom focusing will not be covered. After a
short introduction to focusing with induced dipole forces (Section II1.B), various
limitations on focusing will be discussed (Section III.C). In Section IIL.D, we
present schemes for dipole lenses that dramatically decrease chromatic aberra-
tion. The last subsection (Section IIL.E) considers applications such as atomic
probes for surfaces and atom lithography.
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B. FOCUSING ATOMS BY DIPOLE FORCES

According to Eq. (19), the adiabatic coupling of an atom in the dressed particle
state to the standing wave field of a laser is described by the ponderomotive po-
tential:

Ux) = —%\fl + (R2/A?) cos? gx. 1)

Expanding U(x) around one of its minima and dropping an uninteresting con-
stant, the potential becomes harmonic:

Ux)= %K(X - x,)° (22)

where the spring constant « and spatial offset x, depend on the sign of the detun-
ing.

For blue detuning (A < 0), the potential has to be expanded around one of the
nodes of the standing wave, for example, x, = 7/2, and

ARG
= , A <. 23
“= 2l @
For red detuning (A > 0), the expansion is around one of the antinodes, for ex-
ample, at x, = 0, and

ARG
= ,  A>0. 24
AT+ R @

Note that the spring constants, (23) and (24), assume the same functional depen-
dence in the limit of strong detuning, |A| > R,

Two regimes in which it is possible to derive a simple expression for the focal
length for lenses based on a potential of the form (22) are: (1) the “thin” lens
regime, which is based on the assumption that the atom does not change its posi-
tion in the lens plane while it passes through the light field, and (2) the “thick”
lens regime, where the focusing takes place inside or closely behind the light
field.

1. Thin Lenses

In the thin lens regime, the momentum transferred to the atom along the x axis is
given by

int

d
Ap (x) = gy U)T, =—x(x — x)7, 25)

where 7. is the time it takes to traverse the interaction region. For a laser field of

int
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thickness L, 7,, = L/v, where v is the longitudinal velocity of the atomic beam.

For an initially collimated beam, the geometrical focusing condition
Ap (%) _ = x)
My f

(26)

leads to a focal length f*

M 2
f= EV @7

The thin lens approximation is justified for short interaction times:

< M 28
Tim ™y glo/ox U @®

which also corresponds to the so-called Raman—Nath regime.

2. Thick Lenses

In the thick lens regime, an initially collimated beam is focused after an interac-
tion time 7, equal to one quarter of the oscillation period 7, = 27 VM/x of the
harmonic potential, and hence the focal length can be written as

T T M
f—v4—2v\/: (29)

with the standing wave result obtained by introducing Eq. (23) or (24) into Eq.
(29), depending on the laser detuning.

C. LIMITATIONS OF FOCUSING

As is the case for lenses that focus light, the performance of lenses that focus atoms
is limited by diffraction and by various aberrations. The finite size of the atomic
sources, in many cases, is another limiting factor for the focal spot size. Various
limitations are discussed next with the emphasis on light-induced dipole lenses.

1. Diffraction Limit

For many focusing situations one can neglect the wave nature of atoms and use
just classical ray tracing (geometrical optics) to calculate the properties of the
lens systems. However, ultimately, one may have to consider the effect of dif-
fraction of the de Broglie wave associated with the atomic motion in the lens
plane. The diffraction limited spot size w, is given by

~2fAp

spot D (30)

w
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where D is the opening aperture of the lens and A ; = 27#/Mv is the de Broglie
wavelength. Especially for small numerical apertures, which is often the case for
thin lenses, diffraction can become a problem; while for strong thick dipole
lenses, other limitations dominate.

2. Chromatic Aberration

Chromatic aberration comes into play when the longitudinal momentum
distribution of the atomic beam is broad (e.g., a thermal effusive beam) or,
equivalently, when the variation in the de Broglie wavelengths is large in
the beam. For the dipole lenses discussed earlier, the variation of focal
length with atomic momentum is linear (thick lens) or even quadratic (thin
lens). This means that, for typical thermal beams, the focal length varies
more than a factor of 2, which can be a severe limiting factor. One way to
reduce the chromaticity is to create an atomic beam with a very narrow ve-
locity distribution. This can be achieved, for instance, by using supersonic
atomic beam sources, or compressing the initial velocity distribution by
laser cooling [36], or simply by mechanically selecting a certain velocity
class. In Section III.D, the possibility to create partly achromatic dipole
lenses will be discussed.

3. Spherical Aberration

For dipole lenses, spherical aberration occurs because the optical potential is
nearly parabolic only in a certain region. Deviations from a perfect harmonic po-
tential makes the focal point dependent on the atom path through the lens and,
hence, enlarges the spot size. For dipole lenses based on a standing wave, the po-
tential is harmonic only for a fraction of the standing wave period. Spherical
aberration in principle, can be reduced by introducing a slit or an orifice in front
of the lens. However, this also raises the diffraction limit. When a standing wave
is used as a lens array (see Section IIL.E), the effect of spherical aberration is
hard to eliminate and actually is assumed to be an important limiting factor in
the experiments reported by McClelland et al. [30].

4. Astigmatism

Astigmatism can also occur for atomic lenses. For instance, when a two-dimen-
sional lens is constructed by crossing two standing waves, an intensity imbal-
ance between the beams will lead to astigmatism. Astigmatism in dipole lenses
can easily be avoided by adjusting the laser intensities.
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5. Diffusive Aberration

Light-based lenses suffer from another aberration type, diffusive aberration,
which is due to spontaneous emission and is not present in other atom lens sys-
tems. Lenses based on the radiation pressure force [33] are inherently limited by
this aberration. For dipole lenses, in addition to the small random momentum
kick transferred to atoms by the photon recoil, spontaneous emission can lead to
a sign change of the optical potential because of population in the “wrong”
dressed state {37]. In the case of a strongly focusing potential, the latter plays
a dominant role. The total rate at which spontaneous emission occurs is given
by {37]

r =r

tot NC

+T a3

c
with

Ty = i 1 — 1/V1 + Rx)?/AHT (32)

Fo= 11 = 1/ + Re?/adr (33)
where I' is the natural decay rate, I'y. is the rate of potential preserving transi-
tions, and I'. is the rate of potential sign changing ones. From Egs. (31), (32),
and (33), it follows immediately that focusing with negatively detuned (btue)
laser light fields is affected less by spontaneous emission, since the light field
has a local intensity minimum at the lens axis. When the interaction time is only
a fraction of the excited lifetime of the atom, however, the diffusive aberration is
negligible both for positive and negative detuning. By introducing a slit or an
orifice in front of a negatively detuned dipole lens, the diffusive aberration can
further be diminished.

6. Atomic Sources

As most light sources before the advent of the laser, atomic beam sources are of-
ten not spatially coherent. As a consequence the ultimately achievable spot size
is generally dependent on the atomic source extension and on the spread in the
transverse velocity. Atomic sources always can be improved by inserting narrow
slits or orifices into the beam but with a corresponding reduction of the atomic
flux. Laser cooling is an alternative solution that not only makes the beam effec-
tively more coherent but also typically results in an enhanced beam intensity. Fi-
nally, the recent realization of Bose—Einstein condensates [14—16], and the pro-
posals for laserlike sources for atoms (see Section V) opens new ways of
creating coherent atomic beams.



182 C. Kurtsiefer et al.

D. ACHROMATIC DIPOLE LENSES

Chromatic aberration is generally a severe limitation for atom lenses. To solve
this problem, an achromatic doublet lens based on a combination of a Fresnel
zone plate and an electro/magnetostatic lens has been proposed in Ref. 38 while,
in Ref. 33, the possibility of using the Doppler effect to create radiation pressure
lenses that are less sensitive to chromatic effects was discussed. We have been
investigating the possibility of constructing light field configurations that can
minimize the chromatic effect of dipole lenses [39]. The idea is to make the de-
tuning velocity dependent through the Doppler effect. Our goal is then to make
the induced dipole force dependent on the atomic velocity.

1. Singlet Achromatic Dipole Lenses
If the effective (Doppler-shifted) detuning A’(v) is given in the form
A'G)=A+gq'v (34)

where v is the atomic velocity and ¢’ is the component of the wave vector in the
direction of the atomic beam, then for negative detuning, chromatic aberration is
compensated to the first order in v around a central velocity v, if

3

A= 3 q'v,. 35)

With Eq. (35) fulfilled, the focal lengths for thin and thick lenses become

MG o
f(§)—K(VO)L(1 3¢5 -28) (36)
and
T M
= — R — 2 3
1O 5 Jay o V1~ 38~ 2¢ (37)

respectively, where k(v,) is the spring constant [Eqs. (23) and (24)] of the op-
tical potential for the detuning A’(v,), and £= (v — v;)/v, is the normalized
relative velocity. Figure 1 compares the relative focal length f(£)/f(0) of a
standard standing wave thin lens and f(£)/f(0) =1 — 3£, —2£; of a corre-
sponding achromatic lens. For velocities within 10% of the central velocity
(—0.1 = £=0.1), the variation in focal length for the uncompensated lens is
about 40%, whereas it is less than 3% for the velocity-dependent light poten-
tial. The same improvement is found for the thick lens. The large suppression
of the chromatic aberration gets even more pronounced for narrower velocity
distributions.

For positive detuning it is also possible, in principle, to obtain velocity-com-
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FiG. 1. The relative focal length of a thin lens formed by a standing wave (dashed line) and a cor-
responding achromatic lens (solid line) as a function of the relative velocity displacement
£= (v — vy)/v,. The focal length is normalized to the value { = 0.

pensated dipole lenses, but in practice, spontaneous emission poses a problem in
this case in terms of a large diffusive aberration [39].

Figure 2 shows two possible experimental realizations of achromatic lenses
for one-dimensional focusing. In Fig. 2a, a velocity-dependent detuning is real-
ized in a standing light field along the x axis created by two traveling light
waves, whose propagation directions are defined by two angles, « and 8. The &
vectors of the two traveling waves make an angle 7 — 2, so that the standing
wave has a period 7/(k cosa) = A/(2 cosa). If an atom is moving along the
y axis with a velocity v, the effective detuning of the SW light fieldis A’ = A +
kv sin B sin a; that is, in the form of Eq. (34).

An even simpler achromatic dipole lens can be constructed with the use of
TEM,,, (Hermite—Gaussian) laser beams, as shown in Fig. 2b. With the indicated
angle B, the effective detuning becomes A’ = A + kv sin B. In this case, the size
of the lens opening is proportional to the waist parameter perpendicular to the
atomic beam. Because of its simplicity, a combination of two such lenses in se-
ries seems particularly interesting for focusing in two dimensions.

To show that other aberrations do not necessarily dominate chromatic errors,
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(a) TEM,, laser beams (b) TEM,, laser beams
e — 1
x :> W Tee———— :> T<:>>
atomic / focal atomic focal
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Fic. 2. (a) Proposed setup for a standing wave achromatic lens. The angle « is defined as
7/2 — y/2, where 7 is the angle between the two wave vectors. 8 is the angle between the plane

spanned by the two wave vectors and the x — z plane. (b) Proposed setup for a TEM,,, mode achro-
mat. Here, B is the angle between the z axis and the wave vector.

beam \ plane beam plane

Fig. 3 presents simulations of atomic beam profiles in the focal plane for experi-
ments with thin lenses. The solid curve corresponds to an achromatic lens, while
the dashed line refers to a standard thin dipole lens with the same focal length.

In the calculation, we used a dressed-atom Monte Carlo simulation [40] for
the atom-—light field interaction and beam parameters that are realistic for the
metastable helium beam apparatus in Konstanz [29]; that is, Av/v, = 0.2 and
v, = 1800 m/sec. The distance from the atomic source to the dipole-lens setup is
set to 1 m and the focal length is chosen to be about 15 cm. The source slit is
chosen to be 2 um and a 30 wm slit just in front of the lens limits the spherical
aberration. The two traveling laser beams are assumed Gaussian in the direction
of the atomic beam with a waist of 2 mm and a maximum Rabi frequency
RO = 340T", where I' is the decay rate from the 1s2p 3P0‘l,2 to the metastable
state 1525 3S|. The angles a and B were chosen to be 89.85° and 30°, respec-
tively, which gives a detuning A = —245T". In the simulation, the achromatic
lens yields a threefold increase in the on-axis atomic intensity as compared to
the normal chromatic lens. Furthermore, the original top-hat profile of the source
is better reproduced by the achromat. The limitation of the scheme for achro-
matic lenses lies essentially in the restriction given by Eq. (35) to choose the de-
tuning for a given atomic velocity v,. As a consequence, for dipole-allowed tran-
sitions, it is not possible to make short focal length lenses for slow atoms
without encountering problems with spontaneous emission and deviation from
adiabatic following of the optical potential.
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FiG. 3. Dressed-state Monte Carlo simulations of the atomic beam intensity at the focal plane as
a function of the position from the beam center for a realistic focusing experiments with metastable
helium. The solid line represent the results with a achromatic thin lens, while the dashed line corre-
sponds to a normal standing wave lens. The intensity is normalized to the intensity at the lens. Exper-
imental parameters are given in the text.

2. Achromatic Doublets

The achromatic singlets discussed previously were corrected for chromatic aber-
ration to the first order. However, dipole lenses can be corrected to even higher
orders if composed of several laser beams. Examples of such lens systems are
lenses consisting of two successive thin dipole lenses around laser intensity min-
ima. The focal length of such a combined system can be written as

A A, 2
AMWRIL, + A(WRIL,

Jfv) o« — (38)
where A, = A, + g,v is the effective velocity dependent detuning, R, is the Rabi
frequency, and L, is the thickness of the two lenses. The proportionality constant
depends on the laser beam configuration; such as standing waves or TEM,;, but
not on the velocity. This doublet lens system can be compensated for in chro-
matic aberrations to the second order in v around a specific velocity v, if

I
ov

_ #f)

2

=0. (39

Vo VO
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This leads to the two conditions

A, A, 6+3
S10 22 — ___B V(Z) (40)
9, 9, 3+B
A A, 8+
B0y B0 8+ B (41)
q, 9, 3+t8
with 3 defined as
R2L g, + RiL
B= o 3‘72 7 2‘1‘ - (42)
ILl 20 + 2L2 10

It can be shown that a solution to Egs. (40) and (41) exists if 8 €[—3.15,—0.85]
and the velocity dependent part of the focal length expression is given by

G+BL-B+3HC+ 63 _ v
1+ B¢ ’ N
Figure 4 presents the relative focal length versus velocity for some particular

values of the parameter B. For 8 << —2.5, the variation in focal length for a ve-
locity distribution with Av/v, = 0.6 is less than 10% and hence chromatic aberra-

FB) > (43)
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FiG. 4. Relative focal length of achromatic doublet as a function of the normalized velocity

{ = v/v, for a set of B values.
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FiG. 5. Focal length of the achromatic doublets versus the parameter 8 (defined in the text) for
fixed value of ¢,v3/R2L,. The focal length scales linearly with this latter parameter.

tion would not be a large problem even for a thermal atomic beam. For a fixed
value of B, it can be shown that the absolute focal length scales with the parame-
ter ¢,v3/(R3L,). The behavior of the absolute focal length as a function of S is
given in Fig. 5. Unfortunately, the focal length increases dramatically for larger
negative values of 3, where the chromatic compensation is best. A value around
—2.5 for B seems to be a good compromise. Calculations for a metastable he-
lium beam with v, =1800 m/sec show that it should be possible, using realistic
laser parameters, to create an achromatic doublet with a focal length of f= 10
cm and 8 = —2.5. The nonadiabatic following of the optical potentials is also an
issue of concern for doublet lenses. For too small values of S, this is a problem
even for thermal beams, but fortunately not when @ is smaller than = —2.5, In
principle, lens systems composed of even more thin lenses could be considered,
but the improvement obtainable with the achromatic doublets seems sufficient.

E. APPLICATIONS

In addition to being intense and well-defined sources for atomic physics experi-
ments (e.g., atomic collision experiments), focused atomic beams have a poten-
tial in fields such as atom-—surface interaction studies, where the focused beam
can serve as a spatially well-defined probe, and atom lithography, where the aim
is to write nanostructures on surfaces.
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1. Atoms as Surface Probes

Atomic beams have frequently been applied as a surface probe [41]. In contrast
to other techniques for surface probing, such as low-energy electron diffraction
(LEED), thermal atomic beams probe only the outermost layer and hence offer a
higher surface sensitivity. Moreover, the low kinetic energy associated with ther-
mal atomic beams (=10 meV) makes atomic probes essentially nondestructive if
inert gases are used. Using such gases, surface phonon dispersion relations have
been obtained from the diffraction pattern of atomic beams [42]. The internal
structure of atoms also allows for probing surface properties such as the surface
density of electronic states [43—45]. So far, only nonfocused atomic beams have
been applied, leading to a relatively poor spatial resolution. The de Broglie
wavelength of thermal atoms is A;;<<0.1 nm, which means that atomic scale res-
olution is possible, in principle. However, it seems difficult to create a single in-
tense atomic probe with a resolution much better than =100 nm, even with the
new focusing schemes presented previously. Nevertheless, many mesoscopic
structures could be revealed with this resolution. In secondary electron spec-
troscopy, for example [43—45], a resolution beyond the spot size of the atomic
beam could be obtained using electron optics. The use of coherent atomic
sources in this field could give additional insight into the surface structures
through the diffraction pattern of the scattered atoms.

2. Atom Lithography

Lithography, that is, the creation of fine structures on a substrate, at present is
done using a variety of techniques. Optical lithography, by far the most applied
technique, is limited in resolution to =100 nm, either by diffraction for
visible/UV light or by poor optics for x rays. Far higher resolution is obtained by
electron/ion-beam lithography, where structures as small as =1 nm can be pro-
duced routinely [46]. In pioneering work of Timp et al. [47] and McClelland et
al. [30] it was demonstrated that atom lithography using inhomogenous light
fields as focusing elements could compete very well with these more traditional
techniques. In 1993, McClelland et al. produced a set of chromium lines on a
silicon substrate with a spatial resolution of 65 nm ({30—32]). In the meantime,
similar results were also obtained in our group. In Fig. 6 we show the litho-
graphic pattern of Cr lines written on a silicon substrate using the standing wave
laser field of a frequency doubled Ti:sapphire laser. The line spacing is =~212.5
nm, which corresponds to the period of the optical potential induced by the laser
field. The width of the Cr lines is =70 nm.

From theoretical considerations (including limitations as discussed in Section
[11.C), it should even be possible with this technique to produce structures with
typical sizes below 10 nm. However, parameters such as the atom diffusion time



CLASSICAL AND NONCLASSICAL ATOM OPTICS 189

Ooum 2um 4um

FiG. 6. Atom force microscopy image of chromium lines on a silicon substrate written with a
standing light field of wavelength 425 nm. The line separation corresponds to half the optical wave-
length, width (FWHM) =70 nm (courtesy of U. Drodofsky, Universitit Konstanz).

on the surfaces relative to the deposition time may be crucial for experimentally
achieving this. Forming structures having a fractional periodicity of the standing
wave is possible in principle by using the near-field pattern of a focused atomic
beam whose transverse coherence is larger than the standing wave period [48§].
Exposing self-assembled monolayers with focused metastable rare gas atoms
that locally damage the layer may be another fruitful approach to atom lithogra-
phy [49]. While the electron/ion-beam techniques remove material in a serial
way, atom lithography is a parallel technique, with the prospect of writing more
than 10° identical small structures per mm? on a single substrate. This makes
atom lithography an interesting technique in nano-technology.

Since the dipole lenses are element specific, they can also be used in a related
process, which we call structural doping. A structure grown from an effusive
beam of an element A can be doped in a structural way by a second element B
being focused by a dipole lens array. By controlling the flux of element B, 3D
structured doping should be possible. Such a technique could be an elegant
method for the mass production of quantum wires or dots.
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IV. Correlation Experiments with Atoms and Photons

A. INTRODUCTION

It appears that one of the most puzzling aspects of quantum theory is the imple-
mentation of the measurement process on a quantum mechanical system and un-
derstanding the back action of this process on the system. The spontaneous
emission of a photon from an atom can be regarded as such a process. In fact, a
gedanken experiment from the very early days of quantum mechanics dealing
with this problem was proposed by Heisenberg in 1927 [50]. In this section, we
want to have a closer look at a single spontaneous emission process.

The position of the particle in each fundamental step is described by its center
of mass wave function, which may have a certain spatial extent. A critical com-
ponent of the measurement is the observation of scattered light from this parti-
cle. The uncertainty Ax of the measurable origin of the scattered wave is given
from classical optics by the wavelength A of the light used for the illumination of
the particle. One expects a localization of the object, since a position measure-
ment is carried out with a resolution on the order of A.

To analyze the measurement process, the action of the scattered light on the
momentum of the particle has to be studied. As light carries not only energy, one
has to consider the momentum transfer from the light field to the particle. If this
particle is smaller than the wavelength of the scattered light, the scattered wave
may be conveniently described in a spherical basis. To evaluate the momentum
distribution of such a light field, it has to be projected onto a basis of plane
waves. Assuming momentum conservation for the scattering process, the mo-
mentum distribution from that projection must be transferred to the particle un-
der observation. For an efficient measurement process, the back action on the
particle for a certain amount of achievable information should be as small as
possible. The smallest amount of momentum transfer to the particle is given by
the smallest detectable amount of light necessary for the localization of the parti-
cle, which is a single photon. The momentum uncertainty contained in a spheri-
cal wave of one photon is just given by Ap = fik, where k = 2@/A and A is the
wavelength of the photon.

This process, in fact, is not restricted to a certain combination of particles and
scattering waves but may be extended to a whole variety of pairs. As atom optics
allows for preparation and investigation of subrecoil atomic momenta, we use an
atom as the quantum particle the position of which should be measured. For the
investigation of a single measurement step by one photon, as considered in the
Heisenberg gedanken experiment, we use the spontaneously emitted photon pro-
duced from a decaying excited internal state of the atom.

In this section, we describe how such an entangled state between a photon
and an atom can be generated and discuss the experimental techniques for inves-
tigating it. Having the tool of generation and observation of entangled pair sys-
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tems in hand, more sophisticated states can be produced. We will show how we
can restrict the entanglement in the continuous momentum space between a pho-
ton and an atom as a consequence of momentum conservation in the conceptu-
ally simpler spin-% space for the single particles. With this method, some of the
puzzling highly entangled states between more than two distinguishable particles
should be accessible to experimental investigation.

B. THE ATOM—PHOTON PAIR

To investigate the balance of information contained in both particles of an
atom—photon pair, we first have to look closer at its preparation. For simplicity,
we restrict our quantum mechanical treatment of the particle motion in an
atomic beam to the transverse direction x. First, an atom in our experiment [11]
has to be prepared in a state with a known motional wave function ¥(x). The
simplest state of this type is a momentum eigenstate with p, = 0; the wave func-
tion W(x) there is constant for all x, and the initial position x is unknown.

Then, the atom has to be in an internally excited state to allow for a single
spontaneous emission. The excitation process of the atom must not allow for a
localization of the atom,; that is, the coherence properties of the separated parts
of the matter field have to be preserved. This is necessary for a clean entangle-
ment between the atom and the subsequent spontaneously emitted photon. Such
an excitation can be achieved by using a quasi-classical light field. It has been
shown that the change in the “purity” of a quantum mechanical single particle
state of the atom in this case is very low, because the amount of extractable in-
formation may be arbitrarily small in the quasi-classical field, which has lost one
photon by the excitation of the atom.

Within some lifetimes of the excited internal state after the atom has been
prepared in an excited state, a single spontaneous emission of a photon takes
place. The atom then is entangled with the photon owing to momentum conser-
vation.

C. SINGLE PARTICLE COHERENCE FUNCTION

Initially, we ignore the information encoded in the spontaneously emitted photon
and expect, therefore, a loss of spatial coherence of the atomic matter field. Ide-
ally, an atom in our experiment [11] is prepared in a state where the external mo-
tion can be described by a discrete set of plane waves. After the decay, the atom
is in a momentum state complementary to that of the photon. Since the photon
momentum distribution is not detected, there appears a momentum uncertainty
in the atomic center-of-mass motion, reflecting the momentum distribution of
the emitted photon.

The momentum uncertainty may be regarded as a loss of momentum infor-
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mation on the atom and can be described as a loss of spatial coherence, which is
an experimentally accessible quantity. Spatial coherence of a wavelike phenome-
non is expressed with the two-point correlation function of a field. Physically,
this function describes the possibility of interference between Huygens wavelets
originating from separated points of the space carrying the matter field. Because
we regard only the transverse motion, the two-point correlation function will be
called the transverse coherence function in the following {51].

If the center-of-mass motion is described by a classical mixture of momen-
tum eigenstates, the coherence of the matter field ¥ depends only on the separa-
tion x between two test points. The coherence function is then identical to the
autocorrelation function of the field [52],

gh) = f V' —0)W () dy’ 44)

which is identical to the Fourier transform of the transverse atomic momentum
distribution /(p ),

gV = Fll(p)] (45)

where p_denotes the transverse component of the atomic momentum.

After the spontaneous emission of a photon from an atom, the initial coher-
ence function for the atom has to be multiplied by the Fourier transform of the
momentum distribution induced by the photon recoil, which is complementary
to the momentum distribution I(fik) of the spontaneously emitted light. For an
atom initially in a plane wave state corresponding to a é-shaped momentum dis-
tribution, the initial coherence function would be 1 for all distances x, as a plane
wave state is completely delocalized. Assuming spontaneous emission with an
isotropic emission probability with a fixed absolute wave vector k, the one-
dimensional momentum distribution of the light field is given by a square func-
tion ranging from —#ik to #ik. The corresponding coherence function of the mat-
ter field after the spontaneous emission is then given by

sin (kx)

. (46)

g0 =
The extent of this coherence function has been reduced to a small region, with a
separation A of the first nodes of g'¥(x). Furthermore, the coherence function
shows an oscillatory behavior in the wings (see Fig. 7).

D. MEASUREMENT OF THE COHERENCE FUNCTION

A proposal for the measurement of this coherence function by Sleator et al. [53]
uses the visibility of an atomic far-field diffraction pattern from a double slit, be-
cause the far-field distribution essentially contains the transverse momentum dis-
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FiG. 7. Momentum distribution /(p,) and coherence function g""(x) of the atom before and after
the spontaneous emission.

tribution /( p,) of an atomic beam. If an atom is allowed to spontaneously emit a
photon shortly after having passed the double slit (i.e., in the near field of the
diffraction pattern), this photon allows for a localization of the atom, and the vis-
ibility of the diffraction pattern should be reduced according to the amount of
position information extractable from the photon. For certain ratios of the slit
separation and the wavelength of the emitted photon, there should be an inver-
sion of the contrast of the far-field diffraction pattern (see Fig. 8a), and for a
large slit separation, the visibility should completely vanish, since Welcher Weg
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FiG. 8. Diffraction of atomic matter waves from (a) a double slit, and (b) from an on resonant
standing light wave, in both cases followed by a spontaneous emission of a photon.

information is accessible to an observer. A detailed theoretical treatment of the
expected diffraction pattern can be found in Ref. 54.

An operational definition of the visibility V of a double slit diffraction pattern
uses the Fourier component of the atomic momentum distribution at the trans-
verse momentum #/27d, where d is the slit separation. With this definition, neg-
ative values of V may occur which correspond to a contrast inversion of the dif-
fraction pattern. The coherence function is then simply given by this visibility as
a function of the slit separation d:

gD = V(@ = F,_ I (47

E. EXPERIMENTAL IMPLEMENTATION

Because it is difficult to realize a double slit with a variable slit separation exper-
imentally, we have chosen a different approach to generate a diffraction pattern.
The diffractive structure is formed by a resonant standing light wave with a vari-
able period (see Fig. 8b). This setup allows not only a continuous variation of
the diffraction period and thereby a continuous measurement of g‘"(x) but also
has a higher transmission for the atoms than a double slit. Furthermore, the exci-
tation of the internal degrees of freedom of the atom is contained in this interac-
tion region. The spontaneous emission process can be clearly separated from the
excitation process, if the interaction time between an atom and the light field is
shorter than the natural lifetime of the excited state.

A sketch of the experimental setup is shown in Fig. 9. The atomic species we
use is helium excited to the metastable triplet state S, within a gas discharge
atomic source with a mean velocity of v = 2150 m/sec., The plane wave state for
the external motion of the atom is prepared by collimation of the atomic beam
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F1G. 9. Setup for the atomic beam experiment. Atoms are diffracted from a standing light wave
with a variable period.

using two narrow slits (10 um) having a separation of 110 cm. The variable pe-
riod standing light wave was produced by reflecting a Gaussian laser beam at a
variable angle « off a mirror close to the second collimation slit. For such a
setup, the desired light field configuration with the variable period standing light
field is produced in a region close to the mirror surface. The light was generated
by a LNA laser tuned to the 2 S, — 2 3P, transition in helium at 1083.3 nm.
During the interaction of the atom with the light field, the probability of a spon-
taneous emission of a photon is very small, since the interaction with the light
field takes place within a time of 17 nsec, whereas the spontaneous emission
should occur on a time scale of the natural lifetime 7= 100 nsec of the excited
state. Therefore, the region of spontaneous emission is clearly separated from
the standing light field but still is in the near field of the diffraction from the dif-
fracting region. The diffraction pattern itself was detected in the far field of the
light grating, so the momentum distribution /(p,) was converted in a position
distribution, which was mapped out using a 5 wm wide scanning slit and a chan-
neltron detector.

To extract the coherence function from the diffraction patterns, the excitation
process has to be analyzed in more detail. For a light field in resonance with the
atom, the interaction can be treated by regarding the local eigenenergies of a
two-level atom coupled to a light field as optical potentials {37] for the local en-
ergy eigenstates, |*) = (|g) = |e))/ V2. The light field intensities and interaction
times in our experiment are high enough that the field can be treated classically.
This also ensures that no significant loss of information occurs on the atomic
wave function associated with the excitation process. The effect of diffraction of
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the atoms from this light field can be explained by regarding the interaction re-
gion as a phase modulating object for the matter wave. The phase acquired by
atoms in the two energy eigenstates depends on their transverse position:

Ad)t(x) = +g sin(gx) 48)

where a is a constant containing the light field strength and the interaction time,
and g = k cos (a). Because the atoms are in the ground state of the two-level
model system before the interaction and this ground state does not coincide with
an asymptotic energy eigenstate for a light field exactly on resonance, the atomic
state has to be projected onto the dressed states. After the interaction, these
states, with their different acquired phase shifts, have to be re-expressed in the
bare state basis of the atom. The resulting total transverse wave function of the
atom after the interaction takes the form

W(x) = cos[a sin(gx)] |g) + i sin [a sin(gx)] |e). (49)

With this procedure, atoms in the ground state leaving the interaction region
are diffracted in orders having a transverse momentum corresponding to even
multiples of #g, whereas the atomic component in the excited state populate the
odd momentum orders. The laser is tuned on-resonance; therefore, half of the
atoms leave the interaction region in the ground state and half in the excited state.

Only the atoms in the excited state emit a photon, so the observed visibility
for the diffraction pattern has to be corrected for the contribution of atoms leav-
ing the interaction zone in the ground state. This correction was carried out in a
reference diffraction experiment, where the light field was detuned from the
atomic resonance. In this case, the asymptotic energy eigenstates of the atom
light interaction are the bare states, and for sufficiently large detuning, the atoms
travel adiabatically through the light field. Therefore, the atoms leave the inter-
action region in the ground state, and for a proper choice of the light field inten-
sity and detuning, the ground state contribution to the diffraction patterns with
the resonant laser is reproduced.

Figure 10 shows two pairs of measured atomic diffraction patterns for differ-
ent standing light wave periods. In both Figs. 10a and 10b, the visibility for the
laser on-resonance is smaller due to the loss of transverse coherence by sponta-
neous emission. For a larger period (Fig. 10b), the diffraction orders are more
closely spaced, since the far-field pattern represents the momentum distribution.
Also a reduction of the visibility for the laser off resonance at a large standing
wave period can be seen, which is due to the limited momentum resolution in
the experiment corresponding to 0.5 #ik. To correct for that contribution to the
visibility and take into account the finite size of the diffraction pattern, we nor-
malized the visibility of the excited state component to the visibility of patterns
with an off-resonant laser. This final visibility functicn for atoms in the excited
state is plotted in Fig. 10c as a function of the standing wave period. Experimen-
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Fic. 10. Experimental diffraction patterns for a standing wave period of 0.55 A in (a) and A in
(b). The diffraction orders are more closely spaced with increasing period and the visibility is re-
duced for an on-resonant laser. (¢) Normalized visibility of the diffraction patterns. The solid line
shows the theoretical prediction for the transverse coherence function after one spontaneous emis-
sion.

tally, we have access to g"(x) for x ranging from A/2 to 3A/2, corresponding to
incident angles « varying from 0° to 70° of the laser beam on the mirror. The
solid line in the figure shows the one-dimensional Fourier transform of the angu-
lar emission characteristic for the atomic transition 2 *P, — 2 3§, taking into ac-
count the excitation with linearly polarized light. This theoretical description ex-
plains the measured visibility within our experimental accuracy. A similar study
was carried out by measuring the loss of visibility of fringes in a three grating
atom interferometer [55].

F. CORRELATION EXPERIMENTS

In the experiment described previously, we observed the momentum of the atom
after a spontaneous emission of a photon and ignored the information carried
away by the photon. The uncertainty in the momentum of the emitted photon
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was transferred to an uncertainty of the atom, leading to a loss of coherence of
the atomic wave function.

In a more general picture, the spontaneous emission process may be de-
scribed in a larger space, where not only the atomic wave function is regarded
but also the wave function of the photon. To experimentally observe the entan-
glement of this two-particle system, one has to carry out correlation experiments
between atoms and photons.

One such an experiment would be an implementation of Heisenberg’s
gedanken experiment (see Fig. 11). Excited atoms are diffracted from a double
slit with a slit separation d >> A. Therefore, by detecting the photon with a mi-
croscope, in principle one can tell through which of the two slits the atom went.
As a consequence, the interference should be destroyed in a correlation experi-
ment, where atoms and the corresponding photons are detected.

If the resolution of the microscope is reduced by closing its aperture, a de-
tected photon will contain more and more information about the momentum of
the photon, and information about its origin will vanish. Analogously to the dis-
cussion of “Einstein’s recoiling slit” gedanken experiment, in the case of an al-
most closed aperture, the photon is detected in a momentum basis and no
Welcher Weg information is available. In such a basis, the two-particle wave
function becomes disentangled and the interference pattern should show maxi-
mum fringe visibility, as if no spontaneous emission had occurred.

For such an experiment, once again, the excitation process must be controlled
carefully so as not to destroy the coherence properties of the matter wave func-
tion. An excitation process that just shifts the momentum of the atom by one
photon recoil %k in a deterministic way involves rapid adiabatic passage [56] in a

diffraction structure

excitation -.l. .
laser = '."“-----'.I . ‘r

He *atoms

apernure

atom detector
Imaging system

4

'S - photodetector
coincidence unit -(- -------- 4

FiG. 11. Experimental setup to observe conditional diffraction patterns. The photon could be
measured either directly in a momentum basis without collection optics or in a position basis using a
microscope.
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classical light field with a detuning chirp induced by the atom passing a curved
wave front. For experiments with fast atomic beams of metastable helium, the
excitation efficiency can be higher than 96% [57].

Furthermore, a correlation measurement between atoms and photons will
be repeated for many pairs in an actual atomic beam experiment. Then, a
clear association between an atom and its corresponding spontaneously emit-
ted photon has to be ensured. The way we achieve this pair identification in-
volves a time of flight measurement for each atom being emitted from a
pulsed source. Thus, the instant of the spontaneous emission of a photon can
be calculated back from the velocity for each atom, given the longitudinal po-
sition of the spontaneous emission region. Comparing detection times to, of
photo events with arrival times ¢ of atoms, we are able to identify corre-
sponding atom—photon pairs.

Major experimental problems for the atom—photon pair identification are the
properties of near-infrared single photon counting devices, mainly their large
dark count rate and low quantum efficiency. Although devices are available with
quite good performance for optical wavelengths around 800 nm, single photon
counting at the wavelength for the optical transition is still a difficult task for he-
lium (A =1083 nm), which is—due to the long lifetime of the excited state and
the large recoil velocity —extraordinarily suited for the two-particle state prepa-
ration. Typical dark count rates are in the range of 1000 sec™!, while the quan-
tum efficiency may reach a few percent for silicon avalanche diodes. The actual
atom - photon correlation signal then sits atop a large background of artificial co-
incidences. To distinguish the true correlations from the background, one can
use the fixed ratio between the time delay ¢, between the release of an atom
from the source and the spontaneous emission of a photon and its time of flight
t, from the source to the atom detector.

Using an experimental setup like that in Fig. 11, Fig. 12 shows a two-dimen-
sional record of all registered pairs (tph,tm) for a large number of source pulses,
which were normalized to a flat distribution of atomic arrival times ¢z . This fig-
ure is dominated by artificial coincidences, forming a flat distribution for the
photon time ¢, in the interval from 0 to 1450 usec. On top of that, the detection
of the spontaneously emitted light from the atoms can be observed for photo
event times, Lons around 500 usec, reflecting the atomic velocity distribution. In
this region, one can recognize a diagonal line along which pair events tend to be
more probable than for the other regions in this plot. The slope of this line repre-
sents exactly the length ratio between source—photodetector and source —atom
detector, and its appearance indicates that, with such a time-resolved detection
technique, atom—photon pair identification is possible.

With this tool of pair identification in hand, one should be able to investigate
conditional atomic interference patterns with a detector giving both arrival time
and position information for the individual atoms.
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FI1G. 12. A record of pair events of atoms and photons. Pairs tend to occur more often for a
line for a fixed detection time ratio 7, /t, = 0.55 than for other ratios, indicating a correlation of
corresponding atom—photon pairs. The distribution is normalized to a constant density of atomic
arrival times ¢ . Furthermore, at to, = 500 usec, an uncorrelated fluorescence signal is visible,
because the atom detector efficiency is not unity in this plot. This signal reflects the atomic ve-

G. TRANSITION TO A DISCRETE SPACE FOR THE PARTICLES

Up to now, the entanglement between atoms and photons was discussed in a
continuous space, such as momentum or position space. However, a simple
method can prepare the spontaneously emitted photon and/or atom into spin-%
spaces. The preparation technique for the atom was used already in the previous
section. An atom having passed the coherently illuminated double slit is in a lin-
ear superposition of having passed one of the two slits.

In a similar way, the emitted photon may be treated as in a linear superpo-
sition of two origins (s,s"), if their separation is larger than the optical wave-
length of the photon. Such a photon can be transferred by some imaging optics
into a pair of optical fibers f, f and may be treated there as a spin-; particle.
Such a quantum mechanical system allows for a convenient state manipulation
with widely established classical optical components like retarders and
Mach—Zehnder interferometers [58].

Assuming a spherical emission characteristic for the atomic transition and
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unity coupling efficiency to the optical fibers, the combined system formed by
the atom and the photon is then in an entangled state:

v = —\}—5 A 17 + I 17D, (50)

In the following, we will discuss briefly some experiments with particles in
those discrete spaces that can be realized with atom optical methods.

H. TwoO-PARTICLE EXPERIMENTS

Probably the most prominent experiment with a pair of entangled spin-% parti-
cles goes back to a suggestion of Einstein, Podolsky, and Rosen (the EPR exper-
iment), where quantum mechanics predicts a violation of Bell-type inequalities
[59]. To test local hidden variable theories, the detection of both the atom and
the choice of the measurement basis for the photons should occur in two space-
like regions. Such experiments were first performed with a pair of photons emit-
ted from a cascading atom [60]. Today, EPR experiments are very efficiently
performed with photons from parametric downconversion [58].
The atom ~photon state (Eq. 51) is exactly a representation of the Bell state

1
—\E(IW + L0 51

in a product space of two spin-% Hilbert spaces. Once the photon propagates in
the fiber pair, the setting of the phase shifters y and ¢ determines the basis | d*)
on which the photon part of the entangled state will be projected. With these
phase shifters, a unitary transformation in the two-dimensional Hilbert space of
the photon can be realized in the following way:

pn sin %’— e cos g L
e g0}

e " cos— —sin—
2 2

The projection of the photon part of the entangled state on the detector states
| d*) leads to a general conditional atomic momentum distribution:

. p
1 =sin pcos(xy +55d)  for|p| <#hk
Ip) = h (53)

0 elsewhere

where p_ is the transverse atomic momentum and k is the modulus of the wave
vector of the photon.
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The vistbility of the conditional double slit pattern is given by sin ¢, and the
period of the interference pattern by 27/d. The phase y in the photon detection
scheme is directly transferred into the atomic interference pattern, reflecting the
entanglement of the atom—photon state. The term (p, /#)d represents the atomic
phase, which is not freely variable in the discussed setup. To check the perfect
correlation of the system, it is sufficient to record the conditional interference
pattern and verify its full visibility.!

The envelope of the conditional interference pattern is obtained by the projec-
tion of the radiation pattern on the transverse axis. This reflects the fact that the
photon can transfer, at most, one photon momentum #k in the transverse direc-
tion.

Surprisingly, the presence of the slit for the atom is not necessary at all; the im-
age of the fiber mode at the position of the atomic beam defines which of the pho-
tons are actually transported to the detection unit for the photon. Then, the width
of those “virtual slits” is given by the uncertainty of the origin of the radiation
mode coupled to one fiber. In the case of nonspherical radiation patterns and lim-
ited collection efficiencies, the effective radiation modes seen by the fibers are
changed. This will affect the envelope of the interference pattern, and if the over-
lap of the two modes does not vanish, its visibility should be reduced.

In essence, the detection of the spontaneously emitted photon in a certain ba-
sis leads to a conditional double slit interference pattern without the physical
presence of a double slit. This represents Popper’s historical *“virtual double slit”
experiment for atoms [61].

One difficulty in an atom—photon EPR experiment would be the very differ-
ent propagation velocities of atoms and photons from the origin of the EPR pair
to the detection systems. Therefore, the photon must be delayed by nearly the
atomic transit time to the detector, for example, in a reasonably long fiber (about
100 km for our current experimental parameters), before the choice of the mea-
surement basis and the detection is carried out (see Fig. 13). The actual choice of
the base in which the photon is detected can be performed with a Mach—Zehn-
der interferometer, followed by single-photon detectors (see Fig. 14).

I. THE PREPARATION OF MULTIPLE-PARTICLE ENTANGLED STATES

Up to now, we discussed the use of a single spontaneous emission for the gener-
ation of a pair of entangled particles. However, the emission process following a
nondissipative excitation of an atom can be applied more than once, causing the
generation of additional photons that are still entangled with the atom. As the
single “splitting process” of a photon from an atom is very efficient, such a
method therefore allows for efficient generation of several entangled quantum

'An idealized setup would contain a variable atomic phase shifter and a recombination of the two
paths of the atom using a beam splitter.
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FIG. 13. A possible experimental setup for an EPR experiment between an atom and a photon.
The spontaneously emitted photon is coupled into a pair of fibers to allow the atom to get close to a
momentum detector. Then, a measurement basis for the photon is chosen and the particles are de-
tected in two spacelike regions.

particles. Those particles are distinguishable, and the state space for such a sys-
tem is considerably larger than the multiple-particle space for indistinguishable
particles. There has been recent interest in such systems in the context of quan-
tum computation and a great interest in physical systems that can produce highly
entangled states with a high efficiency, whereas the successive downconversion
of photons seems not to be advantageous for this purpose because of the low
conversion efficiency in nonlinear crystals.

In Ref. 13, it is shown that the entanglement of more than two particles leads
also to a new and in some sense more striking version of Bell’s relationships for
the so-called GHZ states.

Following the discussion in the previous section, two sequentially scattered

FiG. 14. The photon is in a linear combination with running waves in the two fibers, f, f'. The
choice of the retardation angles y, ¢ allows one to detect the photon in an arbitrary basis in the spin-
% space at the photodetectors d, d'.
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photons (see Fig. 15), which are both detected by a fiber pair lead to a three par-
ticle state of the following form:

1 Do
V= %(I ARSI (54)

where f, , and f], represent the basis states of the respective scattered photon.
This is a representation of the GHZ state

1
\—5(ITTT>+|M>) (55)

of three entangled particles, each living in a spin-% Hilbert space.
In this situation, the conditional atomic momentum distribution and, there-
fore, the far field diffraction pattern has the following form:

I(p /) = [1 % sin @, sin ¢, cos(x, +x, +kid)] (56)

where the sign = depends on the combination of detector events chosen. If, for
example, d} and 47, fire, the sign is negative. If x, + x, + p /fid is chosen to be a
multiple of 7, the photons and the atoms are perfectly correlated and a test of
Bells theorem without inequality [13] should be possible.

The proposed scheme seems experimentally realistic if, for example, a near-
infrared transition in metastable rare gas atoms is used. In this case, the required
integration times for a signal to noise ratio of 1 in the conditional atomic inter-
ference pattern is on the order of minutes if realistic collection and detection ef-
ficiencies for the emitted photons and present atomic beam intensities are con-
sidered.

N
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FiG. 15. Extended scheme for the preparation of a GHZ state by scattering two photons from one
atom that is delocalized in the transverse direction. The two photons are detected by four detectors
d7, through two Mach~Zehnder interferometers with variable phase shifters x, , and ¢, ,.
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V. Scheme for an Atomic Boson Laser

A. A NEW SOURCE FOR COHERENT ATOMIC DE BROGLIE WAVES?

Experiments in atom optics typically involve the following three ingredients: a
source of atoms, an interaction region (containing optical elements such as
lenses and beam splitters), and a detection region. During the past few years,
progress has been rapid on the development of optical elements (see Ref. 1 for a
review), whereas progress has been less dramatic on the source end. Laser-cool-
ing techniques have produced bright, cold, and slow atomic beams, which could
perhaps be considered sophisticated atom—optical lamps. Naturally, then, look-
ing at the revolution that the laser has caused in light optics, one would like to
develop coherent atom sources that could play a similar role in future atom op-
tics as the laser does in light optics. Such a coherent emitter of de Broglie waves
could potentially have a tremendous impact on the field of atom optics.

In this section, we present a scheme that could lead to the realization of such
an “atom laser,” which is based on quantum statistical effects in a system of
identical bosons. The atom laser considered here is related to Bose—Einstein
condensation (BEC) [14-16]. In fact, other schemes for realizing an atom laser,
based on BEC, have been proposed by several authors [17]. Here, we take an ap-
proach more closely analogous to the well-known optical laser [18, 19]. Instead
of the usual approach of cooling toward the BEC phase-transition point, we start
from an atomic de Broglie wave resonator and seek to overcome losses by gain.
Whereas cooling methods usually yield ensembles in thermal equilibrium, we
show that the atom laser yields nonthermal ensembles.

B. AtoMiC DE BROGLIE WAVE CAVITIES

The backbone of an optical laser is usually formed by the optical cavity. Such a
cavity supports a certain set of modes with a discrete frequency spectrum, which
results from the boundary conditions imposed on the electromagnetic field on
the mirror surface. Similarly, an atom resonator imposes boundary conditions on
the atomic de Broglie wave; that is, on the wave function describing the center-
of-mass (CM) motion, leading to a discrete energy spectrum of trapped atom
states. These trapped CM states serve as the modes of the atom laser.

In principle, any atom trap could be discussed in terms of its discrete CM
states. In practice, however, this mode structure becomes important mostly when
the confinement is strong and hence the mode spacing large. We concentrate
here on atom resonators constructed from potentials due to the light shift in blue
detuned near-resonant laser light. The induced dipole force then pulls the atoms
into the dark regions of the light field. Confining the atoms in the dark has the
important advantage of minimizing the photon scattering rate and hence also res-
onant dipole —dipole interaction between the atoms. The reason to use light at all
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rather than, say, a magnetic trap is to achieve state selectivity: A potential can be
created that affects only atoms in a given internal state and not atoms in other
states. This feature plays an important role in our atom lasing scheme. The use
of light also allows stronger confinement than in a magnetic trap.

An atom resonator that closely resembles the well-known Fabry—Perot res-
onator, as used in most optical lasers, was proposed by Wilkens et al. [62], see
Fig. 16. The mirrors in this case are Gaussian-shaped potential barriers, created
with blue-detuned Gaussian laser beams. The transmissivity of the mirrors, de-
termined by the tunneling probability, is extremely low except for atoms with an
energy close to the top of the barrier. Consequently, the Fabry —Perot resonances
are extremely narrow and loading atoms into it through the mirrors seems im-
practical. Nevertheless, in combination with the loading scheme we will discuss,
this resonator may provide a useful atom laser cavity.

It is also possible to replace one of the mirrors with an evanescent wave and
let gravity perform the task of the second mirror. In principle, this so-called
gravito-optical cavity provides an example of a dark atom resonator [63]. How-
ever, experiments of this type so far were performed entirely in the classical do-
main, where one observes atoms bouncing on the evanescent wave as if on a
trampoline [64--66].

Quantized atomic motion has been observed in optical lattices {67-72),
where atoms are very strongly confined on a subwavelength scale. These first ex-
periments were on “bright” lattices, where atoms are trapped in the intensity
maxima of a light field; that is, the antinodes in the interference pattern of sev-
eral light beams. In bright lattices, the atoms interact strongly through resonant
dipole—dipole interaction. Therefore, to observe quantum collective effects,
“dark” lattices are much more promising. Recently, dark lattices have been real-
ized where atoms were trapped in states that do not couple to the light field [73,
74]. Another possibility is to use blue-detuned light and actually trap atoms in

L]

FiG. 16. Fabry—Perot resonator for atoms as proposed by Wilkens et al. Gaussian laser beams
serve as atomic mirrors (from Ref. 62).
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places where the light intensity vanishes. We consider here the latter possibility,
in particular for the case that the light is far off-resonant. We then obtain essen-
tially blue-detuned versions of the so-called far off-resonance trap [75].

In the low saturation limit, s(r) << 1, the light shift is proportional to the local
intensity: U(r) = —1/2s(r)iA, with the saturation parameter defined as

R(r)/2 - R(r)
A+ T?/4 2A%

s(r) = (57
Here R(r) is the Rabi frequency at the CM position r of the atom and
A = w, = v, is the detuning between the laser frequency w, and the atomic tran-
sition with frequency w, and line width I". The approximate equality in Eq. (57)
applies to the far off-resonant situation considered in this chapter. With (large)
blue detuning, A <0, we have U(r) > 0, so that the atoms can be confined to
dark spots.

Near intensity minima, the trapping potential is effectively harmonic. In a
standing wave, where U(r) = —(AR/44) sin? (k,x), a harmonic approximation
around the nodes yields a trap vibrational frequency 1 = R Ve, / |A|, where
R, is the peak Rabi frequency and .= #ik7/2M is the recoil frequency, with k,
the laser wave vector and M the mass of the atom. Strictly speaking, the eigen-
states of the potential are delocalized Bloch states. For a sinusoidal potential,
Schrodinger’s equation takes the form of Mathieu’s equation [76]. We here make
the approximation of independent harmonic oscillators located in the field
nodes. The possibility of using Block states as the atom lasing modes remains an

intriguing subject for further study.

C. AtoM GAIN: EMISSION STIMULATED BY ATOMS

In an optical laser, gain has its origin in stimulated emission, which at first sight
would seem impossible for an atom laser. It is important to realize, however, that
no new atoms need be created, they must be only brought into the same quantum
state. Consider a two-level atom (assumed to be a boson) in the excited state.
The emission of a photon by this atom can be stimulated in two ways; namely,
either because the optical mode into which the photon is emitted was already oc-
cupied or because the final state of the ground state atom was already occupied,
see Fig. 17. The latter possibility can produce gain on an atom resonator mode.

The principles of our atom laser are illustrated by Fig. 18. The scheme uses
four different internal atomic states, labeled |a), |b), |e), and |g), with |a) and |e)
(meta-)stable. Such level schemes can be found, for example, for rare gas or al-
kaline earth atoms. The transition |g) <> |e) is driven by a far blue-detuned laser
so that the resulting ac Stark shift (“light shift”) creates potential wells for state
|g). We neglect the opposite potential acting on |e), the radiative width of this
state being larger than the induced potentials.
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FiG. 17. Emission of a photon (le)—|g) + photon), stimulated by (a) identical photons (optical
laser) or (b) identical atoms that occupy the final state of the emitting atom (atom laser). In the latter
case, the upward arrow denotes a transition of the electromagnetic field from the vacuum state to a
state with one photon.

Shown in Fig. 18 is the potential created by a standing wave laser field. The
wells, separated by one-half laser wavelength, A, /2, confine atoms to better than
A, (Lamb-Dicke limit, LDL). We consider in particular the 3D generalization,
an optical lattice of quantum dots [69—71]. We label the bound levels for the
center-of-mass motion in the wells (the modes of the atom laser) by |). This is
shorthand for (light-shifted) internal state |g) plus three vibrational quantum
numbers |v,, v, v,) for the spatial directions. Quantum statistical effects in a
cooling process in the LDL with a fixed number of atoms (closed system) have
been discussed by Cirac et al. [77]. Here, we consider an open system, where

atoms are continuously leaving the trap and are replenished by new ones.

o 1))
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FiG. 18. Principle of the proposed atom laser. After being precooled in state |a), atoms are ex-
cited into |e), from where they can decay into one of the bound levels |v) in an optical lattice; S , indi-
cates Franck ~Condon factors, «, are loss rates. The transition into |v) can be stimulated by the pres-
ence of identical atoms (bosons) in |v).
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Gain is created by pumping atoms into the modes |v) out of a cold reser-
voir in state |a), produced by laser cooling on the closed transition |a) <> |b).
The pumping process proceeds by excitation from |a) to |e) at a rate r, fol-
lowed by decay into one of the modes |v), under emission of a photon. It may
be necessary to use a 1D or 2D array of quantum dots, so that the emitted
photon can leave the trapping region without being reabsorbed. If reabsorp-
tion can be neglected, population inversion between |g) and |e) is not re-
quired. The transition |a) <> |e) is assumed weak so that spontaneous decay
from |e) back to |a) is negligible.

Initially, when no population is present in the modes |v), the transitions from
le) into |») will be spontaneous. As population builds up, the probability to end
up in |v) will be enhanced by a factor 1 + N, if N identical bosonic atoms are
already present in |v). This factor arises from the permutation symmetry of the
many-boson wave function, which must be totally symmetric [77]. When the
pump rate » exceeds a threshold value 7, such that the gain exceeds the loss rate
K, for a given mode, we expect a buildup of a macroscopic population (N, >> 1)
in that mode.

D. Caviry Loss

We assume that the scattering of a trap-laser photon always leads to the loss of
the atom from the trap and that this is the major loss mechanism. We treat here
only the density-independent or “small signal” loss, assuming that these deter-
mine the lasing threshold. Density-dependent losses also will occur due to elas-
tic and inelastic collisions between the atoms; these processes are not included
here.

In the low-saturation limit the photon-scattering rate is I" (r)/2. Making a har-
monic approximation around the field nodes, the loss rates x due to photon scat-
tering may be estimated by the mean value (s(r))y,

r 1
K, =~ EIKI 2 (vi + 5)9[ (58)

i=xyz

Substituting typical numbers, I'/27 = 5.5 MHz, A/27r= —2 THz and Q27 =
30 kHz, we find, for the ground state, k, = 0.4 sec™".

Note that the harmonic oscillator quality factor, Q = Q/k, =5 X 10°, is or-
ders of magnitude larger than in red-detuned optical lattices (Q ~ 1 — 10)
[67-69]. Atoms in higher lying harmonic oscillator levels have a shorter trap-
ping time than those in lower lying levels, because they penetrate deeper into the
light field and hence scatter a photon more quickly. This selective removal of
atoms from the higher levels provides a natural mode-selection mechanism. As a
result, a uniform distribution over all levels (T = «) at time ¢ = 0 should evolve

into a distribution at time ¢ = 7 with effective temperature T o« 771
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E. ATOM MODE MATCHING

The probability that an excited atom in state |e¢) ends up by spontaneous emis-
sion in a “target” mode |v) can be considered a problem of “atom mode match-
ing.” We find that mode matching is best for the lowest bound level |0). This can
be expressed in a Franck—Condon (FC) factor, which describes the overlap of
the momentum distribution of the cold reservoir with the available bound states.
The FC factor for a transition from the momentum state p (in electronic state Ie))
into level |v) is given by the overlap S, = [|(p — ik |v)}[*],. Here, 7tk denotes the
recoil due to photon emission and [. . .], denotes an average over the dipole-ra-
diation pattern. We neglect the recoil, assuming that the reservoir temperature is
well above the recoil temperature fiw,_, /k, and average the FC factors over the
thermal momenta p. Since the atom can fall into any of the wells of the lattice, it
is convenient to normalize the momentum states |p) in a box with a volume of
one unit cell. The same normalization volume applies to the pump rate, so that r
is the pump rate per unit cell.

For a one-dimensional standing wave, with period A,/2 and in the harmonic
approximation, the thermally averaged FC factors are

s y=2 AB (1)
Sv - <Svp> )\L m‘m, (2vv') <H v(§)>7 (59)

where Az = h/V2aMkT is the thermal de Broglie wavelength, H (£) are Her-
mite polynomials, ¢ = p/VM#A(), and (. . .) indicates a Gaussian average with
(£) =0 and (¢%) = (2 + hQ/k,T)". Note that S is inversely proportional to the
unit cell size A, /2. For a 3D lattice, the FC factors are the product of the FC fac-
tors for the three spatial directions. The FC factors are largest for transitions into
the low-lying states. For example, §,/S, = 1 + #£}/2k,T, so that for temperatures
kT <) transitions into the CM ground state dominate. A typical number for
the ground state FC factor (in 3D) is S, = 102

A close analogy exists between the FC factors and the so-called spontaneous
emission coefficient 8 of an optical laser. The latter describes the fraction of
spontaneous emission that couples into the lasing mode [78]. This parameter can
be approximated by

po L m A

T 4w VO OAA (60)

where A is the wavelength, AAX is the emission line width, » is the refractive in-
dex, and V is the mode volume. Both 8 and the FC factors are inversely propor-
tional to the mode volume, measured in optical wavelengths or in de Broglie
wavelengths, respectively. Further comparison of the two expressions suggests
that the temperature in Eq. (59) plays a role similar to the linewidth of the gain
medium. Typical values for 8 are in the range 10~5—10~%. Much effort has been
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devoted recently to developing microlasers such that 3 approaches unity, which
would correspond to a thresholdless laser [78].

F. NUMERICAL MODEL

We have investigated the atom laser just outlined numerically. Several basic fea-
tures can be obtained from a set of simple evolution equations for the mean oc-
cupation numbers N :

N=r- I‘Ne<1 + ESVIVV) (61)

N.V = —kN, +INS(1 +N) (62)

where Ne is the mean population of |e). The summation in Eq. (61) runs over the
bound levels and EVS L < 1 (not all levels are bound). Note that the rate for a tran-
sition into level [v) contains the Bosé enhancement factor 1 + N . This indicates
the similarity to stimulated emission in optical lasers, where in that case N de-
notes the number of photons in laser mode ».

In Fig. 19a, we show an example displaying threshold behavior and mode
competition between two modes with S, = 0.01, §; = 0.95 S, and «, = %KO. The
steady-state solution of Eq. (62) is shown as a function of the normalized pump
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FiG. 19. Steady-state numerical results: (a) Mean occupation numbers N, of two competing
modes, with §, = 0.01, §, =0.955,, , = %KO. Mode O reaches threshold at pump rate r = ry, =x,/S,
and has a slope efficiency above threshold of dN/dr = ;. In the absence of mode 0, mode 1 would
have its lasing threshold at r/r; =« S;/k,S, =1.75. (b) Probability distribution P(N,) for the occupa-
tion of a single mode with S, = 0.01, when no other modes are present.
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rate r/ry, where r, = /S, is the threshold pump rate for mode 0. With «, = 0.4
sec™!, we have r, = 40 sec”!, which we estimate to be three orders of magnitude
beyond the present experimental state of the art. The curves are well approxi-

mated by
- 1 |r r 2 r |2
N~=—{——1+|[——-1] +45,— 6
0 2So{ro [(ro ) Oro] } ©

-1
nefaf o)

with r, = k,/S,. Equation (63) is exact in the one-mode case and a good approxi-
mation in the two-mode case for the parameters chosen. Far above the threshold,
the slope efficiency is dN/dr = k7. Mode competition is evident from Fig. 19a,
because in the absence of mode 0, mode 1 would have its lasing threshold at
rlry = K,Sy/kS; = 1.75. In the presence of mode O, the buildup of population N .
is suppressed. This is expressed directly by Eq. (64), which is exact within the
model of Egs. (61) and (62) and implies Nl <(r/fry— 1)71, irrespective of the
pump rate r (here, N, <1.33).

Information about statistical distributions is obtained by simulating the evolu-

tion of the density matrix py, where N = {N . N\, . . .} stands for a config-
uration with Ny, atoms in state |v,, v, V) = |0, 0, 0, and so forth. Since ' >> r,

« , the pumping process is described as a direct transfer |ay —> |g), bypassing the
intermediate state |e). We propagate py by iterating p* = LPp™ ~ Y, mapping
the density matrix p of the trapped atoms just before the arrival of the nth atom
onto the density matrix just before the arrival of the (n + 1)st atom. The super
operator L describes loss during the time interval between successive arrivals
of two atoms. The pump super operator P describes the addition of one new
atom to the configuration N. The explicit form of £ and P will be published
elsewhere [79].

In Fig. 19b, we show the steady-state result of this procedure for the case of
only one mode, with §; = 0.01. The distribution function P(N,) for the occupa-
tion number N, is shown, for three different values of the normalized pump rate
r/r,. Like in an optical laser, the distribution is super-Poissonian below threshold
(r/ry=0.9) and becomes Poissonian far above threshold (r/r, > 1).

G. LIMITATIONS
1. Interactions

An important assumption of our model is the omission of the interaction be-
tween the atoms. Concerning electronic ground—ground interactions, this
ideal gas approximation is justified as long as the average pair interaction



CLASSICAL AND NONCLASSICAL ATOM OPTICS 213

energy per particle does not exceed A{). A simple estimate shows that this
condition is well satisfied for a number of atoms up to the order of / /a,
where [, is the characteristic size of the trap ground state and a the s-wave
scattering length. This ratio is much larger than unity and varies widely, de-
pending on the geometry (/;) and choice of atom (a). Concerning collisions,
the ideal gas approximation is justified provided thermalization due to colli-
sions is slower than the pump process. If the thermalization is faster than
the pump process, the mechanism leading to quantum degeneracy in the
“lasing” mode can be looked upon as a continuous Bosé—-Einstein conden-
sation in an open system.

2. Photon Reabsorption

Another limitation that has, so far, been left out of the description is that of pho-
ton reabsorption. The photon emitted in the transition |e) —|g) can be reab-
sorbed by atoms in the lasing mode, which are then lost. The reabsorption prob-
lem seems to be especially severe for mode volumes larger than A3 [19, 80]. One
way around this problem could be to choose a one- or two-dimensional geome-
try, so that the emitted photon has a large solid angle where it can escape with-
out encountering any absorber atoms. Such low-dimensional structures perhaps
even could be loaded quite efficiently using an atomic trampoline [66], if the
pumping process (Ja) — |e) in Fig. 18) takes place in the classical turning point
of the atomic trampoline.

H. AroMm LASErs vs. BEC

The atom laser as described here displays typical laserlike features, such as
threshold behavior, mode competition, and Poisson statistics above thresh-
old. For use as a coherent source of de Broglie waves in atom optics, the
most important feature is the occupation of the ground state by a macro-
scopic number of atoms. This raises the question of how the atom laser
compares to Bose—Einstein condensation, which also produces a macro-
scopic occupation of the ground state of a trap. Whereas in BEC atoms are
driven into the ground state by collisions that take place during the cooling
process, in the optical laser this is taken care of by a stimulated optical
process. The atom laser therefore tends to produce a situation of thermal
nonequilibrium. In principle, it should also be possible to obtain atom las-
ing in a trap level other than the ground level, such as by creating extra loss
for the ground level, so that its lasing threshold is raised. A detailed com-
parison of the atom laser and BEC as sources in atom optics remains a sub-
ject for future study.
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